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THE STATIONARY CURRENT-VOLTAGE CHARACTERISTICS
OF THE QUANTUM DRIFT DIFFUSION MODEL *

RENE PINNAU AND ANDREAS UNTERREITER

Abstract. This paper is concerned with numerical algorithms for the bipolar quantum
drift diffusion model. For the thermal equilibrium case a quasi-gradient method minimizing
the energy functional is introduced and strong convergence is proven. The computation of
current—voltage characteristics is performed by means of an extended Gummel-iteration. It
is shown that the involved fixed point mapping is a contraction for small applied voltages.
In this case the model equations are uniquely solvable and convergence of the proposed
iteration scheme follows. Numerical simulations of a one dimensional resonant tunneling
diode are presented. The computed current—voltage characteristics are in good qualita-
tive agreement with experimental measurements. The appearance of negative differential
resistances is verified for the first time in a Quantum Drift Diffusion model.
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1. Introduction. The performance of increasingly many ultra—small semi-
conductor devices relies on quantum mechanical phenomena. The incorporation
of these quantum effects is one of the major tasks of modern semiconductor device
modeling. Especially the numerical verification of negative differential resistance ef-
fects (NDR) exhibited by resonant tunneling diodes (RTD) has gained considerable
attention in the literature, see e.g. [8, 10, 16, 20, 26, 11].

The approaches range from microscopic to macroscopic models. At the most
fundamental level there are microscopic quantum models such as Schrédinger—
Poisson or (kinetic) Wigner—Poisson systems [25]. It is meanwhile well-known that
these models give a fairly accurate account to quantum-dominated device behaviour
[26, 28, 32, 33].

From an applicational point of view these approaches are not completely sa-
tisfactory. Firstly, the computation of macroscopic current—voltage characteristics
is settled on the computation on microscopic quantities such as Schrédinger func-
tions or Wigner functions. Hence, the simulation of realistic devices requires high
computational costs. Secondly, the identification of the system’s parameters and
the incorporation of relaxation terms is difficult to perform. (Up to now it is not
clear how to add relaxation terms to Schrodinger’s equation.) Thirdly, quantum
effects play an important role only in small parts of the device (e.g. across hetero-
junctions), i.e. there is some redundancy in the microscopic approach. Finally, the
appropriate choice of boundary data is an open problem [30].

The macroscopic quantum models are settled on the density-functional theory
(DFT). Based on the electron density rather than the density matrix as fundamental
variable the DFT has been successfully employed in atomic, nuclear, molecular
and solid state physics, see [13] for a review. The core of DFT is the attempt to
build a ”classical” picture of quantum mechanics in terms of macroscopic variables.
DFTs are essentially based on Madelung’s transformation (published in 1926) of
the Schrodinger equation into quantum fluid-dynamical equations (c.f. [21]).

The corresponding models for semiconductors are usually referred to as quan-
tum hydrodynamic models (QHD). QHDs consist in a hierarchy of coupled moment
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equations [10, 12, 16] which are supplemented with closure conditions [23]. Na-
turally, the more moment equations are considered the closer the model is to the
microscopic approach. The price one has to pay is an increasingly cumbersome
implementation and the specification of the moment’s boundary conditions.

In this paper we shall be concerned with a first-moment version of the QHD.
Neglecting — as in the classical case — velocity’s convection term one gets the
quantum drift-diffusion model (QDD) [3, 4]. The advantage of this approach is
threefold. Firstly, the model equations equal up to a quantum correction term the
classical drift diffusion model. Hence the computation of current—voltage characte-
ristics can be carried out with comparably little effort. A reduction of redundancy
in regions where the device behaves ”almost” classical can be expected. Secondly,
there is a natural way to prescribe boundary conditions — at least in situations
where the device’s state is not ”far away” from thermal equilibrium. Thirdly, for
the QDD investigated here unipolar and bipolar versions are available. The bipolar
version extends available QHDs and allows to incorporate generation—recombination
effects.

The scaled, stationary QDD stated on a bounded domain Q@ C R*, d = 1,2 or
d = 3 reads [1]

( Ayn
_ 20V —
€ n +log(n)+V + B, = F,
A
—¢e? VP +log(p) -V + B, =G,
$ VP (1.1)
div (4, n VF) = R(n,p) (exp (F +G) — %),
div (up, pVG) = R(n,p) (exp (F +G) —6%),
XAV =n—p— Cyo-

The scaled physical parameters are the Planck constant €, the ratio £ of the
effective masses of electrons and holes and the mobilities pn,up, of electrons and
holes, respectively, and the Debye length A. All these quantities are assumed to
be positive constants, excluding especially field dependent mobilities. The do-
ping profile Cyoy = Cyot(z) (where z is the spatial variable ranging in Q) repre-
senting a fixed charge distribution and the non-negative quantum well potenti-
als By, , = By, p(z) are assumed to be fixed. Equation (1.1) includes generation-
recombination processes of the form R(n,p) (exp(F + G) — 6%), where R : R* —» R
and & > 0. In thermal equilibrium there is no generation-recombination process.
Hence, §? = exp (Feq + Geq), where F,,, G, are the (constant!) equilibrium values
of the Quantum Quasi Fermi Levels, see [1]. The model includes Shockley—Read—
Hall and Auger generation-recombination processes but excludes generation through
impact ionization [24].

In (1.1) the electron density n = n(z) > 0, the hole density p = p(x) > 0, the
Quantum Quasi Fermi levels F' = F(z),G = G(z) and the electrostatic potential
V = V(z) are unknown. The current densities of electrons and holes are determined
by the charge densities, the quantum quasi Fermi levels F, G and the mobilities:

Jn=pnnVF, J,=—pu,pVG. (1.2)

The model equations (1.1) are supplemented with mixed Dirichlet-Neumann
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boundary conditions

n=np, p=pp, V =Ve+Ves onTp, (1.32)
F = Feq + Vezt: G= Geq — Vegzt ON FD, (13b)
Vn-v=Vp.-v=VV.-v=0on Ty, (1.3c)
VF.-v=VG-v=0onTy, (1.3d)

where I'p and 'y are disjoint parts of the boundary of Q with Tp Uy = 0 Q2
and v is the unit outward normal vector along I'y. Along I'p Dirichlet boundary
conditions are prescribed. The thermal equilibrium densities n., and p., are possible
candidates for np and pp. V4 is the thermal equilibrium potential. V.. is an
external voltage.

Let us briefly recall available analytical results. The thermal equilibrium ver-
sion of (1.1) has been analyzed in [29, 37]. The core of these investigations is the
introduction of an energy functional £ minimized in an appropriately chosen set of
comparison functions. The minimizer of £ constitutes the unique thermal equili-
brium solution of (1.1). The full model equations (1.1),(1.3) were analyzed in [1]
(under mild assumptions on the data) where the existence of solutions was esta-
blished. The proofs rely on a combination of approximations and fixed point and
minimization arguments.

The paper is organized as follows. Section 2 is devoted to the computation
of the thermal equilibrium solution of (1.1). In Section 2.1 the model equations
are re-formulated as a variational problem, i.e. £ has to be minimized in a closed,
convex subset C' of a Hilbert space X. We prove a general Poincaré-type inequality
which ensures that £ is locally uniformly convex at its minimizer. This suggests
the employment of a projected gradient method to generate minimizing sequences.
However, £ is not Fréchet—differentiable but only Gateaux differentiable in directions
ranging in a dense subset D, D # X, of X. Hence, it is a priori not possible to
define a gradient method. This topic is discussed in Section 2.2 for a general class of
variational problems. The concept of a quasi—gradient is introduced and a projected
quasi—gradient method is defined. We show — under mild additional assumptions
— the strong convergence of minimizing sequences generated by this algorithm.
In Section 2.3 the projected quasi-gradient method is discretized by means of a
Galerkin-like internal approximation. Based on the general results derived so far
we prove convergence for a large class of approximations.

The thermal equilibrium quantities computed by the (discretized) projected
quasi-gradient method of Subsection 2.4 are employed in Section 3 where the full
model equations (1.1), (1.3) are investigated. In Subsection 3.1 various (mild) as-
sumptions on the data are collected. In Subsection 3.2 a fixed point map (modifying
the argumentation of [1]) is constructed. The equations are decoupled and become
numerically more tractable. Their numerical treatment is performed by an exten-
ded Gummel-iteration [17], which has been intensively studied in connection with
the classical drift diffusion equations [19, 24] and is still successfully used in simu-
lation codes for semiconductor devices. It is shown that the suggested fixed point
mapping is actually a contraction. Thus, the convergence of the iteration scheme es-
sentially follows from Banach’s fixed point theorem. In Subsection 3.3 convergence
properties of this method are investigated. We distinguish the cases of vanishing
and non vanishing generation—recombination terms. In the former we prove con-
tractivity of the fixed point mapping for sufficiently small values of the applied bias
potential. This settles global convergence of the iteration scheme. In the latter
we derive additional conditions (the Quantum Quasi Fermi Levels F, G have to be
"close” to their equilibrium values Fi,,G.,) to ensure that the mapping is still a
contraction. In Subsection 3.4 numerical simulations of a one dimensional RTD are
presented. The computed current—voltage characteristics (IVCs) show NDR for the



4 R. PINNAU AND A. UNTERREITER

first time in a QDD model and are in good qualitative agreement with experimental
measurements.

2. Computation of the Thermal Equilibrium State. The boundary con-
ditions (1.3) involve the thermal equilibrium solution of (1.1) which is the minimizer
of an energy functional £ in a subset C' of a Hilbert space X. Such minimizers are
frequently computed by descent gradient algorithms, see e.g. [22], for which various
convergence results are available. The assumptions on £ vary from mild ones (which
ensure convergence in a weak sense [34]) to stringent ones (which allow to estimate
the rate of convergence [9]).

The functional £ investigated here fails to be Gatedux—differentiable. £ is only
”quasi—differentiable”. Roughly speaking the domain of £ is ”"too small” to take
directional derivatives in all directions of X. Hence £ has no gradient. On the other
hand & need not have a gradient to define a descent—gradient—like algorithm: If the
linear Taylor expansion of £ is available on C for ”sufficiently many” directions,
then it will be possible to define the ”quasi—gradient” of £. For energy functionals
with quasi—gradients a ”projected quasi—gradient method” can be defined. By this
method approximative minimizers are generated which converge (under additional
assumptions not mentioned here) strongly to the minimizer of £ in C.

2.1. The Variational Problem. The investigations of this subsection are
based on the following assumptions:

A1 QCRYd=1,2o0rd=3is a non-void, convex, bounded domain.

A .2 There exists a constant K = K(Q) € (0, 00) such that for all f € L2(Q),

IVIflllz=) < K|l fllz2),

where AV[f] = f.
A3 B,,B,,Ciot € L*(Q) and By, > 0.
Remark 1. Assumption A.2 is essentially a requirement on the smoothness of
0. For instance it is well known, see e.g. [7], that for 9Q € C™ and f € L?()
the estimate

IVIflllaz) < Kl flleo)

holds. This estimate implies in dimensions d < 3 assumption A.2, because due to
a0 € CO (Q is conver by A.1) the embedding H*(Q) — Cg(Q) is continuous [2].
The thermal equilibrium state is the state of minimal total energy [29, 37]

5(n,p):52/ |Vv/n|? da:+£.52/ vk da:+/ H(n) dx+/H(p) dx
Q Q Q Q
2
+)\—/ [VV [0 —p— Caotl)’ dm+/Bnnd:v+/Bppd:c.
2 Ja Q Q
in the set

C:={(n,p) e L") xL(Q): np>0, vn,ypeH(Q),

/ndx:N, /pda::P},
Q Q

where H(t) = tlog(t) — ¢t + 1 is a primitive of h(t) = logt, N := [,C} . dz,
P:= [,Cy; dz and V = V[n—p—Cyo is the self consistent electrostatic potential
defined via —X*AV =n —p — Cyor with [, V(z) dz = [,(n — p — Cip) dx. (We
note that [, (n —p — Caot) do = 0 for all (n,p) € C.)

Let us recall [37] that
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Theorem 2. Assume A.1-A.3. Then £ has a unique minimizer (Neq,Peq) N
C and Neq,Peq and Veg := V[neg — Deg — Caot] have the following properties:
0,) Neg;Peq; Veq € CB(Q) n Hl(ﬂ)
b) There exists a constant .4 € (0,1) such that Oy < Ney, Peq < 1/0c,.
¢) There exist constants F.q,Geq € R such that

AV

N +1og(neg) + Veg + Bn = Fey
eq

_&52 Avpeq
\/peq

We want to construct an algorithm which generates minimizing sequences of £
converging in some strong sense to (eq,Peq). 1t is adviseful to exploit the fact
that (neq,peq) not only belongs to L'(Q) x L'(2) but also to the Hilbert space
X = H'(Q) x H'(Q). We therefore consider £ as a mapping from the convex set

M:={(n,ppeX: np>0, vn,/peH ()}

to RT U {0}. The reader may wish to verify

Proposition 3. Assume A.1-A.3. Then & is sequentially lower semi conti-
nuous, strictly convex and coercive on M.

We furthermore observe that neg, pe, belong to H?(£2): By Theorem 2 we have
A\ fTicg; Ay/Peq € L°(Q) and both ,/ne; and /peg satisfy homogeneous Neumann
boundary conditions. Thus, we have /Tieg, \/Peq € H?(Q), see [15], and therefore
due to the uniform bounds on neg, pey it follows that ney,peq € H?(Q). This ob-
servation makes it possible to replace C by a set C' of smoother functions without
changing the minimizer of &:
Since 9Q belongs to C%! we can find r, s € (2,00] with r~1 + 571 =21 such that

[2]

+10g(peq) — Veq + Bp = Geq

H'(Q) = L*(Q) and H?*(Q) <= W""(Q).

In fact, we can chooseif d=1: r =2,s = 00, and if d = 2: s € (2,00) and if d = 3:
r=3,s = 6. We define

C::{(n,p)eX: K<np<K, /ndm:N,/pda::P
Q Q

ey » Dol secy < F} ,

where we take K, K € (0,00) such that (neq,peq) € C. One easily verifies that
Proposition 4. Assume A.1-A.3. Then C is a closed and convez subset of
X, C C M and (Neq, Pey) s the unique minimizer of € in C.
Our next observation concerns the local behaviour of £ at (g, peq). We need
a technical Poincaré-type lemma whose proof can be found in the appendix.
Lemma 5. Assume A.1 and let u € WET(Q) withm < u < M a.e. for some
0<m < M < co. Then there exists for all 8 € R a constant K = K(Q,u,f) €
(0,00) such that for all ¢ € H'(Q) with [, ¢ dz = 0:

fe ()

With the aid of lemma 5 we can prove

2
dz > K [|V||72(q - (2.1)
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Lemma 6. Assume A.1-A.3. Then & is uniformly convex at (Neq,Peq), i.6-

3m>0 V(np) €C: En,p) = Eeg,peq) = m|[(0,9) = (Neg, Peg) I -

The proof of lemma 6 is deferred to the appendix.

This uniform convexity of £ at its minimizer makes it adviseful to choose a
projected gradient method to generate minimizing sequences. However, £ is defined
on a set with empty interior. Hence, £ cannot be Fréchet differentiable on X and
it is not possible to define the projected gradient method. On the other hand £ is
Gateaux differentiable in directions ranging in a dense subset of X.

Lemma 7. Assume A.1-A.3. Let D = (HY(Q) N LW(Q))Z. Then:

a) D is a dense subset of X.

b) C—CCD.

¢) For all (p1,92) € D there is to = to(p1,92) € (0,00) such that (n,p) +
t(p1,02) € M for all (n,p) € C and dll t € [0,1,).

d) The Gateduz derivative E'(n,p)[p1,ps] exists for all (n,p) € C and all
directions (p1,p2) € D:

g2 [ 2nVnVy, — |Vn|?
emplpnel = 5 [ o 2Vl o g,
Q n
Le 2pVpVer — [Vl o2
4 2 v
Q D

+/ log(n)p1 d:c+/ log(p)ps dz
Q Q

+/ Vin—p— Caot] (01 — ¢2) dx
Q

+/Bncp1 d$+/chp2d:L'.
Q Q

e) For all (n,p) € C the mapping (v1,p2) — E'(n,p)[e1,v2] is linear and
bounded on D.

The proof of Lemma 7 can be found in the appendix.

Due to e) of Lemma 7 there is for all (n,p) € C a unique linear and bounded
extension 6&(n, p) € X' of £'(n,p). We shall call this extension the ” quasi—gradient
of £ at (n,p)”. Concerning the mapping 6 : C — X' we have the following
regularity result whose proof is deferred to the appendix.

Lemma 8. Assume A.1-A.3. Then d& is Lipschitz continuous on C.

As we shall immediately see, the properties of £ derived so far are sufficient
to define a projected quasi—gradient method. The definition of this method and
its analysis is the content of the following subsection. We will prove the strong
convergence of minimizing sequences generated by this algorithm and establish the
respective convergence of a discretized version for a large class of approximations.

2.2. The Projected Quasi—Gradient Method. Let X be a Hilbert space
with inner product (-,-). Let C, M, D be subsets of X. We assume

V.1 D is dense in X.

V.2 C and M are convex sets with ) #C C M.

V.3 Cisclosed and C — C C D.

V.4 For all ¢ € D there is t, = to(¢) € (0,00) such that ¢ + tp € M for all

c€ C andall t €[0,t,].

We consider a functional £ : M — R* U {0, 00} where we assume that

V.5 € # oo is sequentially lower semi continuous, strictly convex and coercive.

V.6 The Gateaux derivative £'(c)[p] exists for all ¢ € C and all directions ¢ € D.
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V.7 £'(c) : D — R is linear and bounded for all ¢ € C.
Since D is dense in X we can define the ”quasi-gradient” of £:
Definition 9. Assume V.1-V.7 and let ¢ € C. The uniquely determined linear
and bounded extension §€(c) € X' of £'(c) is called the quasi-gradient of £ at c.
Remark 10.
a) If £ is Gateduz-differentiable at ¢ € C then the quasi-gradient of £ at ¢
coincides with the gradient of £ at c.

b) Since we are working in o Hilbert space we identify 6 with its Riesz—
representative, again denoted by 6.
We furthermore assume
V.8 The mapping ¢ — §&(c) is Lipschitz continuous on C i.e. there is a constant
L > 0 such that for all ¢;,¢c0 € C

[16€(c1) — 6&(c2)llx < Lller — eallx
In the sequel we shall be concerned with the constrained minimization problem

min E(e).
Due to the assumptions imposed so far it follows from standard results (see, e.g. [35])
that £ has a unique minimizer ¢ in C. We additionally require
V.9 £ is uniformly convex at ¢, i.e. there exists an m > 0 such that for all ¢ € C

E(e) = €@ > mlle—al%- (2.2)
Since C' is closed and convex the projection

P : X - C
u — Pu)

is well defined. (We recall that P(u) is the unique minimizer of the mapping ||. —
ullx : C = [0,00),c+ ||c—ul|x.) We are now in the position to define the projected
quasi—gradient method.
Algorithm 1.
1. Choose ® € C, v € (0,1) and @ > 0.
2. For k € Ny compute the step length

of =sup{a€[0,a]: & (c*) - & (P (F —ads(ch))) >
v {6 (c*) ,cF — P (cF —adE(c?)))} (2.3)

and set k1t = P (ck — ok 6E(cY)).
Remark 11. Equation (2.3) is known as Armijo’s rule (see [22]).
The main result of this subsection is
Theorem 12. Assume V.1 -V.9. Then the sequence (c*)
converges to ¢ strongly in X as k — oo.
The proof of Theorem 12 is deferred to the appendix.

keNo of Algorithm 1

2.3. Internal Approximation. As in Subsection 2.2. let X be a Hilbert
space with inner product (-,-). Let C, M be subsets of X where we assume

D.0 C, M are convex subsets of X. C is closed. ) #C C M.

Assumption D.0 ensures that the projection P of X onto C' is well defined.

To compute the minimizer ¢ of £ numerically we have to discretize Algorithm 1.
For this purpose let, by a slight abuse of notation, (h) denote a sequence of positive
discretization parameters tending to zero.

Firstly, we shall be concerned with discretizations of X; and Cj of X and C,
respectively. Let W C X. We assume
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D.1 For all h: X} is a finite dimensional subspace of X. X}, is equipped with
the inner product induced by X.

D.2 W is a dense subspace of X.

D3 Forallh: 0 #Cr C XpNMNW. Cp is closed and convex.

D.4 For all h and all ¢, € X}, thereis ty, = tp(pn) € (0, 00) such that cp +tpp, €

XnN M for all ¢, € Cp, and all t € [0, tp]

By assumption D.1 the projection II; of X onto X} is well defined for all h. Due
to D.3 the projection Py, of X onto C}, is well-defined. We assume

D.5 Forallce C: }ILILI}] |Pre —¢|lx = 0.

D.6 Forallr > 0: lim sup | Pcp—cpllx =0.

h—=0 ., ec,,
llenllx <r

Remark 13. Note that neither Cp, C C nor C C C}, is required and that

the straight forward assumption ’lllin 51612 |Pch — cnl|lx = 0 does not even hold for
Ch h

quadratic finite elements, if C consists of functions ¢ > 0 and Cp, of elements with
cn(x;) > 0 at the grid points x;.
Let {Rp,h > 0} be a family of restrictions of X to Xj. We assume

D.7 For all h: Ry, : X — X}, is linear, bounded and onto.

D.8 For all w € W: }LERJ lw — Rpw|| x = 0.

We deduce from the assumptions imposed so far

Lemma 14. Assume D.0-D.8. Then:

a) Let (cp) be a sequence with ¢, € Cy for all h. Assume that ¢, =~ v € X
weakly in X as h — 0. Thenv € C.

b) For all u € X: Pyu — Pu strongly in X as h — 0.

c¢) The norms ||Rp||L(w,x,) are uniformly bounded.

d) For allu € X: Mlpu — u strongly in X as h — 0.

Remark 15. Due to D.8 and due to d) of Lemma 14 the pairs (X, Ry) and
(Xp,I1p) are convergent internal approzimations W and X, respectively [5] .
Secondly, £ is discretized by a family of functionals &, : X, N M — R and we shall
solve the finite dimensional optimization problems

Juin En (cp).
We make the following assumptions
D.9 For all h: &, : M N Xy — RY U {0}, & # oo, is sequentially lower semi
continuous, strictly convex and coercive.
D.10 For all h: The Gatedux derivative &, (cp)[y] exists for all ¢p € Cp, and all
directions ¢ € Xj,.
D.11 For all h and all ¢, € C: The mapping ¢ — &; (ch)[¢] is linear.
Due to the assumptions D.0-D.11 we can proceed as in Subsection 2.2 to deduce
that for all h: &, has a unique minimizer &, € Cy and the quasi-gradient DEx(cp,)
(which is again identified with its Riesz-representative) exists for all ¢, € Cf,. We
assume in similarity to Subsection 2.2
D.12 D&y, is Lipschitz-continuous uniformly in h, i.e. there is a constant L, €
(0, 00) such that for all h and all cp1, cp2 € Ch:

|DER(ch1) — DER(ch2)llx < Lollcht — challx-

D.13 For all h: &, is uniformly convex at ép,.
The uniformity constant of D.13 may depend on h. Finally, let us assume that the
following consistency conditions hold:

D.14 For all u € M: llllgh |En (Rpu) — E(u)| = 0.

D.15 For all c € C: ’llirr%] | DER (Pre) — dE(c)|| x = 0.
—
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We are now in the position to discretize Algorithm 1:
Algorithm 2.
1. Choose &) € Cp, v € (0,1) and a > 0.
2. For k € Ny compute the step length

ok = sup {a€l0,a]: &, (cfb) —En (Pa (cﬁ — aDSh(cﬁ))) >
V(D& (c}) ,ch = P (ch — aDEx(ch)))}  (2.4)

and set ci ! = Py, (cf — af DEX(c)).
It readily follows from Theorem 12:
Theorem 16. Assume D.0-D.15. Then for all h: The sequence (cf),  of
Algorithm 2 converges to ¢y in Xy as k — o0o.
The main result of this section is
Theorem 17. Assume V.1-V.9 and D.0-D.15. Let c® € C be the starting
point of Algorithm 1. Assume for the respective starting points of Algorithm 2 holds

tim [~ Fac?] =0,
Then for all k € Ny:
tim ek = Rt =0

The proof of Theorem 17 is deferred to the appendix.

Finally we observe that the results derived so far ensure that

Corollary 18. Assume V.1-V.9 and D.0-D.15. Then é, converges to &
strongly in X as h — 0. The proof of Corollary 18 is deferred to the appendix.

2.4. Numerical Results. We employ Algorithm 1 to compute the thermal
equilibrium state of a GaAs—AlGaAs double barrier structure. The device consists
of a quantum well GaAs—layer sandwiched between two Al,Ga; yAs-layers, each
50 A thick. This resonant barrier structure is itself sandwiched between two spacer
layers of GaAs, each also 50 A thick, and the whole channel lies in between the source
and drain contact GaAs-layers of 250 A thickness, respectively (see Figure 2.1).

The contact layers are nt—doped with a doping density Cyo; = 1024 m~3, while
in the channel the doping is only Cgo; = 5-10? m~3. The barrier height B depends
on the content of the content of aluminium, such that a low Al concentration im-
plies a lower barrier height. As the equilibrium densities are crucial for the choice
of ‘correct’ boundary conditions for the non—equilibrium problem, we will present
numerical results for different heights B. These give numerical evidence that there
is almost no influence of the barrier height B on the boundary values of the equili-
brium densities.

We use a reduced one—dimensional version of (1.1) since the diode can be mo-
deled as an unipolar device. Then, the unscaled QDD equations read

m? (v/n)
- rr Tl B=F 2.
6m + kpTlog(n)+qV + (2.5a)
J=punF,, J,=0 (2.5b)
—€Vezr = q(n — Caot) 2.5¢)

and they are considered on the interval Q = (0, L).

The physical constants are the reduced Planck constant i = 1.05- 10734V As?
the Boltzmann constant kg = 1.38 - 1072 V AsK~!, the elementary charge ¢ =
1.6 - 10712 As and the permittivity of GaAs, e = 12.9- ¢y = 1.14- 10712 As/V cm.
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A
GaAs
5nm
5nm GaAs
AlGaAs
5nm —— GaAs 75 nm
AlGaAs
5nm GaAs
5nm
GaAs
A

Fi1c. 2.1. Resonant tunneling diode

Furthermore, we have to specify the parameters of the device, as the device tem-
perature T = 77K, the device length L = 750 A, the mobility of electrons p, =
25000 cm? V~!s~! and the effective electron mass m = 0.067 - mo = 0.57- 103! kg.

We assume m to be constant along the device and ignore the effective jumps at
the heterojunctions, although there are results giving evidence that their incorpo-
ration yields a higher accuracy of the device’s current—voltage characteristics. This
will be discussed more detailed in Section 3.5.

The variables are scaled in the following way:

z — L%, n — Cp i, F—>kpgTF,

n mk T - ~ ~
’UCTBJ, Vo UpV, Cuaot = Com Claor.

J =
Here, C,,, denotes the maximal density of charged background ions and Ur = kgT'/q
the thermal voltage. This scaling yields

) P

Ur
SR RN ¢ p——
6 kg T m, L?’

€ _7quL2'

To get a convergent internal approximation of H'(0,1) we define X5 as a space
of linear finite elements with the canonical restriction Ry. The verification of As-
sumptions D.0—D.15 is straight forward and omitted here. We used a grid with
300 points and the computations were done for piecewise constant doping profile
and barriers, but smoothing is possible and will improve the performance of the
implemented code. The computed equilibrium densities can be found in Figure 2.2,
where we also plotted the doping density for reference. One verifies that the influ-
ence of the barriers is only local in the resonant structure, such that the equilibrium
densities fulfill the classical assumption of charge neutrality at the boundary (cf.
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[24]). For a detailed discussion of boundary values for ultra small devices see [30].
Figure 2.3 shows the built—in potential and the computed Quantum Quasi Fermi
Level. Note that these two coinci! de at the boundary points, which will be essential
for the derivation of boundary values for the non—equilibrium problem.

1025

10% — —
S N Pes
N 77
AN !
1021 VN L !
\ -=- !
\ I
L -\ I
E N
Z10%F by
(7] \ \ !
c L
[7) \ T
a v,
\ v
! ol
1021 L \ , y |
doping
107k - - B=0eV | 4
- - B=0.1eV| ]
B=0.2eV
1019 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X (scaled)
Fic. 2.2. Equilibrium densities
x10°
5 T
Potential

- Fermi Level

Voltage [V]

-3 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X (scaled)

F1G. 2.3. Built-in potential and Fermi Level for B = 0.1leV

3. Computation of Current—Voltage Characteristics. In Subsection 3.1
we collect some assumptions required for the following investigations. The itera-
tion scheme for the computation of the current-voltage characteristics is formally
introduced in Subsection 3.2. The algorithm relies on a decoupling strategy gene-
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ralizing the Gummel-iteration for the classical drift diffusion model. In Subsection

3.3 the well-posedness of the corresponding fixed point mapping is proven. A con-

vergence analysis distinguishing between the cases R = 0 and R # 0 is carried out

in Subsection 3.4. Numerical simulations of a RTD are presented in Subsection 3.5.
We introduce short-hands for spaces frequently used in the sequel:

V= H}(QUTy),

X = H'(Q)NL®(N),

Xo == Hy(QUTN) N L®(NQ),
L®(A;Q)={feX: Af e L*(Q)}.

Let us recall that H}(Q U Ty) is the closure of C°(Q U 'y) with respect to the
H'(Q)-norm. Equipped with the inner product of H*(Q2), H} (QUTy) is a Hilbert-
space.

3.1. Assumptions. We impose several assumptions on the data extending
A.1-A.3 of Subsection 2.1. Let us recall

Al QCRYd=1,20r d=3is anon-void, convex, bounded domain.

A2 There exists a constant K = K(Q) € (0, 00) such that for all f € L?(Q),

VI ll=) < Kllfllez),

where AV[f] = f.
A3 By,B,,Ciot € L*(Q) and By, >0
We require some properties of the Dirichlet- and Neumann-boundary of 2.

A .4 The boundary I of Q is piecewise regular. T' is the disjoint union of I'p
and T'y. T'p has non vanishing (d — 1)-dimensional Lebesgue measure. T'n
is closed.

A5 Tp =Y, Th, where M > 2 and dist(T'%3, T'2) > 0 for Iy # I, and Iy, €
{1,...,M}.

Remark 19.
a) Assumptions A.1 and A.J ensure the ezistence of a constant K =
K(Q,Tp,In) € (0,00) such that for all u € V [36]:

lull ) < K (|Vullrz(q)-

b) The sets Tk, ... ,T'Y of A.5 are Ohmic contacts, while Ty are the insu-
lating parts of the boundary. Due to M > 2 we have at least two Ohmic
contacts. The assumption on the distance of two Ohmic contacts implies
that they are pairwise separated by the insulating boundary I'n. This is
realistic from the physical point of view (otherwise there could be short cir-
cuitin) and essential for the regularity of the solutions.

The function R arising in the generation-recombination term is assumed to satisfy
A6 R € C(R?) is non-negative and Lipschitz—continuous on closed intervals
of (0,00)2, i.e. for all § € (0,1) there exists a Lipschitz-constant L () €

(0,00) such that for all ny,ns,p1,ps € [0,1/6]

|R (n1,p1) — R (n2,p2)| < Lr(6) (In1 — n2| + [p1 — p2l) -
Remark 20. Clearly, A.6 is fulfilled for the Shockley—Read—Hall term

1
ao + a1 |n| +az |p|’

Rsru(n,p) =

and the Auger generation—recombination term

Rau(n,p) =bo |n| + b1 |p],
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with positive constants ag, a1, a2,by and by [24].
As already mentioned in Subsection 2.1 the assumption A.l imposed on
ensures the existence of r,s € (2,00] with 7! +s71 =271 and [2]

HYQ) = L*(Q) , H*Q) = Wr(Q),

with 7 > d. In fact we can chooseif d =1: r = 2,5 = 00, and if d = 2: s € (2,00)
and if d = 3: s € [3,6). We require
A.7 For all § € (0,1): There exists a constant K = K(Q,Tp,T'n,80) € (0,00)
such that for all @ € WH7(Q): If § < a < 1/6, then there exists for all
f € L*(Q) and all up € WH7(Q) a function u € WH7(Q) with

div(aVu) = f , uw—up € Hy(QUTy),
lellwrgay < K (lenllaoioy + 1 e o) -

Remark 21.
a) The function u of A.7 equals up at U'p and satisfies homogeneous Neu-
mann boundary conditions at T .
b) There exists at most one function u solving the mized boundary value pro-
blem of A.7.
¢) Assumption A.7 is essentially a requirement on the domain Q and T'p,T'N.
Especially the following cases are included (assuming A.1 and A.4): The
boundary of Q) belongs to C*° for a & € (0,1) (/36]), or @ C R? is polygonal
convez and r < 4 ([15]), or Q@ CR.
We rewrite the boundary conditions (1.3) in the following form

n—np, PpP—Pb, V_(V-eq‘i'v-ezt) € V7 (318‘)
F— (Feq + ‘/emt)y G - (Geq - emt) € Va (31b)

where we assume that
A8 np,pp € WH"(Q) and there exists a constant p € (0,1) such that p <
np,pp < 1/0p.
A9 Vo € W22(Q). ||Ve$t||Lco(Q) < Pnge-
V6$t|1‘§3 =U,eRforl=1,..., M.
min{U;:l=1,... M} <V <max{U;:l=1,... ,M}.
Remark 22.

a) If one chooses np = neq and pp = peg, then A.8 will be satisfied, see Sub-
section 2.1.

b) Assumption A.8 especially implies that \/np,/pPp € L>(A;Q).

¢) The constant @4, of A.9 limits the applied voltage. Such a limitation is
necessary to prevent blasting.

d) Due to A.9 he externally applied voltage V.py is constant at each Ohmic
contact. This assumption is very natural in applications and simplifies the
presentation. The reader may wish to verify that the subsequent results also
hold - with obvious changes - also in cases where it is only assumed that
Veat € WZ’OO(Q).

e) The assumed separation properties of 'y, 1 =1,... M (see A.5) ensure
that for given Uy,... ,Upy € R there exists an extension Vop € W22 (Q)
coinciding with Uy on TY, for 1 = 1,..., M and satisfying the estimate of
A9

Let us recall that [1]
Theorem 23. Assume A.1-A.9. Then the system (1.1), (3.1) possesses a
solution (n,p,V,F,G) € X°.
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3.2. The Decoupling Algorithm. We introduce a decoupling algorithm for
problem (1.1), (3.1). This algorithm relies on a fixed point iteration decoupling the
current equations from the rest of the system. In each iteration step two semi linear
elliptic systems are solved.

We formally introduce the fixed point mapping T. Let (Fy,Go) be a pair
of Quantum Quasi Fermi Levels from an appropriately chosen set. Then we set
T(Fy,Go) := (F1,G1), where (F1,G1) is computed from (Fp, Gy) as follows:

Algorithm 3.

1. Solve the semi linear elliptic system

Ayvn
—¢? 1 B, = F, 2
€ I +log(n) +V + 0 (3.2a)
AvPp
—£2=Y2 4 log(p) — V + B, = G, 3.2b
3 b g(p) » = Go (3.2b)
—NAV =n —p— Cyor, (3-2¢)
subject to the boundary conditions (3.1a) for (ni,p1,V1).
2. Solve
div (unm1 VF) = R(ny,p1) (exp (F +G) — §°), (3.3a)
div (up p1 VG) = R(n1,p1) (exp (F + G) — %), (3.3b)

subject to the boundary conditions (3.1b) for (F1,Gq).

Clearly, every fixed point of T is a solution of the original problem (1.1) with
boundary conditions (3.1).

From the numerical point of view it is advantageous not to deal with a coupled
system of five semi linear elliptic equations, but with two much more tractable
problems: System (3.2) is similar to the thermal equilibrium problem [37], which
has been intensively investigated and system (3.3) fits into the theory of monotone
operators [39].

Indeed, there are other possible decoupling strategies which result in even nu-
merically more tractable iteration schemes, but a convergence analysis would be
more involved.

3.3. Well-posedness of T and Algorithm 3. In the sequel several positive
constants will be denoted as K. These constants will eventually depend — amongst
others — on data which are assumed to be fixed. For the sake of a smoother
presentation we shorthand these data as

D:= (Ddoma Dpota Dpara Dbdry)a

where Dgom, = (Q,FD,FN), Dpot = (”Bn”Lco(Q) ) ||Bp||Leo(Q) ) ”Cdot”Lco(Q))a
Dpar = (Ea 6; )‘) and Dbdry = (0D, (I)maza Feq; Geq; ||I/€q||chJ(Q))
We shall introduce an operator 1" acting on the set

¢={(F,G) € H'(®) x H'(): IF = Fegll ey IG = Geql oy < P } -

Obviously C is a closed and convex subset of H'(Q2) x H'(2). We wish to prove
that T is well-defined on C. Let us recall that

e 7 = 2 in one space dimension,

e 7 > 2 in two space dimensions,

e 1 € (3,6] in three space dimensions,
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and s € (2, 0c] satisfies s7! = 271 — r=1. We observe that W1 (Q) — L*(Q).

We begin with investigations of the first boundary—value problem of Algo-
rithm 3. Again a Poincaré—type inequality (compare Lemma 5) plays a prominent
role.

Lemma 24. Assume A.1 and A.J. Then there exists for oll B € R and all
0 € (0,1) a constant K = K(Dgom,B,0,s) € (0,00) such that for all u € X with
0 <u<1/0 and all ¢ € Xy:

f o ()
Q u
The proof of Lemma 24 is deferred to the appendix.
Remark 25. Lemma 2/ assures (together with the estimates on n and p) that
the quantum operators A(p) = A\/p/\/p, p = n or p = p, are monotonic with

respect to the L*(2)-norm. Alternatively, one can deduce that the second variation
of the quantum energy term

Equant(p) = /Q VP da

is positive definite with respect to the L*(Q)-norm. This property has already turned
out to be essential for the understanding of the thermal equilibrium problem, see
Subsection 2.1.
With the aid of Lemma 24 we can prove
Theorem 26. Assume A.1-A.9. Then:
a) For oll (F,G) € C: The system

2
dz > K [|l|7.(q) - (34)

A
—52—\/5 +log(n) +V + B, = F, (3.5a)
vn
ANY/7
—£e2=—Y= +log(p) —V + B, =G, 3.5b
e? = + log(p) ) (3.5b)
—MAV =n—p— Cyo, (3.5¢)

subject to the boundary conditions (3.1a) has a unique solution
(Mo, Do, Vo) € MD,PD, Veg+ Veat) + (VX V x V). Thus, there exist operators

Sy CxC — (np,pp)+(VxV)
(F7G) = S]-(FJG)J

Sy : CxC = (Veg+Veg) +V
(FvG) = SV(F7G)7

such that for all (F,G) € C: The triple (S1(F,G), Sv(F,G)) is the unique
solution of (3.5),(3.1a).

b) There exists a constant @ = (D) € (0,1) such that for all (F,G) € C: The
unique solution (ne,po, Vo) = (S1(F,G), Sv(F,Q)) of (3.5),(3.1a) satisfies

0 < no,po < 1/0;

AvTs|| Lo (@), | AVPoll Lo (s Vol Lo (o) < 1/6.

¢) There exists a constant K = K(D,s) € (0,00) such that for all
(Fa G), (FlaGl) €C:

(3.6)

lIno — ”1||Ls(Q) + llpo — p1 Ls(Q)
<K (IF = Fill gy + 16 = Gill o) - (37)

where (no,po) = S1(F,G) and (n1,p1) = S1(F1,G1).
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The proof of Theorem 26 (which is deferred to the appendix) heavily relies on
the fact that Sy is Lipschitz—continuous, see c). The Lipschitz—continuity of S; is a
consequence of the Poincaré-type inequality of Lemma 24.
The definition of T' is completed by the second step of Algorithm 3. We prove
Theorem 27. Assume A.1-A.9. Then:
a) For all (n,p) € S1(C): The system

div (n VF) = R(n,p) (exp (F + G) — §%), (3.8a)
div (pVG) = R(n,p) (exp (F + G) — %), (3.8b)

subject to the boundary conditions (3.1b) has a unique solution
(Fo,Go) € (Feq+ Vegts Geqg — Vegt) + (V x V). Thus, there exist an operator

Sy Sl(C) e (Feq + Vext;Geq - Vezt) + (V X V)
(n,p) = 52 (nap)a

such that for all (n,p) € S1(C): The pair Sa(n,p) is the unique solution of
(3.8),(3.1b).

b) For all (n,p) € S1(C): The unique solution (F,,Gs) = Sa(n,p) of (3.8),
(3.1b) belongs to L>(Q) x L>(Q) and satisfies

min {Feq, Foy + irnf ngt} < F, < max {Feq, F.q + sup Vm} ,  (3.9a)
D I'p

min {Geqa Geq — sup Vewt} < G, < max {GCQ7 Geq - irnf Vewt} . (39b)
T'p D

c) There exists a constant K = K(Dgom,Dsary, (D), Lr(6(D)),r,s) €
(0,00) — where (D) is as in Theorem 26 — such that for all (n1,p1),
(n2,p2) € S1(C): The unique solutions (F;,G;) = Sa(ni,p;) of (3.8)
(3.1b), i = 1,2, respectively, satisfy

)

IV (Fr = )l 2 (q) + IV (G1 = G2)ll 12 (g

< K eAlVestllzoe ) IVeztll L= () [||n1 = 2|y + IPr = P2l e (o) | -

(3.10)

The proof of Theorem 27 is deferred to the appendix.

We set T := S50S5;. Then T is due to Theorem 26 and Theorem 27 well-posed.
Furthermore, due to the bounds (3.9) the operator T maps C into itself. Thus,
Algorithm 3 defines a recursion formula: Choose (Fy,Go) € C. For k € Ny let

(nk+1,pk+17vk+1) - (Sl(Fk,Gk),SV(Fk,Gk)),

(Fk+1, Gk+1) .= Sz (nk+17pk+1).

3.4. Convergence Analysis. In this subsection we investigate the conver-
gence properties of a sequence (n*,p*, V¥ F¥ G*)ien generated by Algorithm 3.
(n*, pk, Vk F*¥ G*)ren converges at least for sufficiently small values of the norm
| Veatll Le(g)- In addition to this result convergence in case of R = 0 is established
whenever

OVert := min  max |U; — Uy,
1< <M 1< <M

is sufficiently small.
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3.4.1. Convergence of (n*,p*, V¥ F¥ G*)rcn. The main result of this sub-
section is

Theorem 28. Assume A.1-A.9. Then there exists a constant
U, =U,(D,0(D),Lr(6(D)),r,s) € (0,00) — where §(D) is as in Theorem 26 —
such that

Veatll oo (o) < Us

implies:
a) There exists a unique solution (no,po, Vo, Fo,Gs) of (1.1), (1.3).
b) T : (C, |-l g ) = (|-l o)) is a contraction.
c) (n*, pF, VE F* G*) converges to (no,po, Vo, Fo,Go) strongly in
(L*(Q))? x (HY(Q))? as k — 0.
The proof of Theorem 28 is deferred to the appendix.
Remark 29. Theorem 28 applies in cases where

”F - Feq”Lm(rD) ) “G - Geq”Loo(FD) < an

i.e. F' and G have to be close to Feq,Geq on I'p. This corresponds to the uniquen-
ess result for the classical drift diffusion model [27]: For small applied bias voltages
the current-voltage characteristics is uniquely defined. This is physically reasonable.
For higher applied voltages no uniqueness result is available. But it may be assu-
med that uniqueness does not hold in general: The performance of many devices
(thyristors) relies on the existence of multiple solutions [25].

3.4.2. Convergence of (n*,p* Vk FF G*¥).cn in case of R = 0. Let us
recall that

0Vert = min  max |U;, —U,|.
1<hi<M 1<lo<M
By a close screening of the proof of Theorem 27 it is easy to verify
Theorem 30. Assume A.1-A.9 and let R = 0 Then there exists a constant
K = K(Dgom, Dpary, (D), r) € (0,00) — where §(D) is as in Theorem 26 — such
that for all (n1,p1), (na,p2) € S1(C): The unique solutions (F;,G;) = Sa2(n;, p;) of
(3.8), (3.1b), i = 1,2, respectively, satisfy

IV (Fi = F2)llp2q) + IV (G1 — G2)ll 2

<K Vgt [lIn1 = 2l oy + lIp1 = 2|

Le(@) ] -

We can proceed along the lines of the proof of Theorem 28 to conclude
Theorem 31. Assume A.1-A.9 and let R = 0. Then there exists a constant
Uy =Ui(D,8(D),r,s) € (0,00) — where §(D) is as in Theorem 26 — such that

OVezt < Ur

implies:
a) There exists a unique solution (no,po, Vo, Fo,Gs) of (1.1), (1.3).
b) T : (C, |-l g ) = (-l o)) is a contraction.
c) (n*, pF, VE F* G*) converges to (no,po, Vo, Fo,Go) strongly in
(L*(Q))? x (HY(Q))? as k — 0.

3.5. Numerical Simulations of a Resonant Tunneling Diode. In this
subsection we employ the generalized Gummel-iteration defined by Algorithm 3 to
compute the stationary current—voltage characteristic (IVC) of the resonant tun-
neling diode depicted in Figure 2.1. For the calculations we supplement (2.5) with



18 R. PINNAU AND A. UNTERREITER

the following boundary conditions which are in agreement with the boundary data
for the computed equilibrium densities (see Section 2.4):
Assuming charge neutrality at the contacts gives rise to

n(0) = Caot(0), n(L) = Cyot(L)-

As we have V,4(0) = Voq(L) = F.q we might choose without loss of generality
Veq = Feqg = 0 on 09, since the system (2.5) does not change if one replaces V' and
F by V + «a and F + a, respectively, for some a € R. This yields

V)=0, V(L)=U
and
FO)=0, F(L)=U,

where U is the applied biasing voltage. This set of boundary conditions can also be
motivated physically by employing the assumption of vanishing quantum effects at
the boundary [18].

The values of the physical constants and parameters can be found in Section
2.4.. Furthermore, we assumed an effective electron mass m = 0.126 - mg, which
correspond to a relaxation time 7 = 0.18 ps. The barrier height is assumed to be
B =0.3eV, which is 65 % of the band gap.

For the numerical simulations we discretized system (2.5) using linear finite
elements and decoupled the equations according to Algorithm 3. To compute the
solution of the first step of Algorithm 3 we employed a Newton—iteration, since we
control the linearization of the considered system due to Theorem 26. The second
step was computed by standard techniques for linear elliptic equations.

x 107

1
0 0.05 0.1 0.15 0.2 0.25 03 0.35
UMV

Fi1c. 3.1. Current—voltage characteristic

As expected the algorithm did behave very well for small voltages, in this special
case up to 0.2 V, which could be even increased due to the usage of voltage con-
tinuation, i.e. the voltage was incremented and in each step the previous solutions
was used as an initial guess for the iteration.
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F1G. 3.2. Electron densities at the peak (U = 0.16 V) and at the valley (U = 0.25 V)
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Fi1G. 3.3. Conduction—band energy at the peak (U = 0.16 V) and at the valley (U = 0.25 V)

Again, the computations were done for piecewise constant doping profile and
barrier, but smoothing is possible and will improve the performance of the imple-
mented code. The computations were done on a grid with 300 points.

The IVC depicted in Figure 3.1 has a prominent region of negative differential
resistance and the peak to valley ratio is approximately 1.5:1. This is less than
experimental values for similar devices [26, 28] and also the voltage at which the
peak is observed (here 0.16 V) is lower than measured ones. But there are so many
effects influencing the IVC, such as series resistance and contact resistance [26],
which we did not include in our model. Furthermore, these values are very sensitive
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FiG. 3.4. Electron wvelocities at the peak (U = 0.16 V), the valley (U = 0.25 V) and at
U=033V

to other parameters, as the barrier height and width, the effective electron mass or
the relaxation time. The same holds for the peak current density, which strongly
depends on the mobility of electrons, as can be seen from (2.5b) and which we
assumed to be constant along the device, neglecting a dependence on the electric
field. Thus, the choice of the intrinsic device parameters is crucial for the accurate
quantitative simulation of resonant tunneling! structures. Especially, the imposed
assumptions on the effective tunneling mass of the electrons is very restrictive, as
Vanbésien et al. pointed out in [38].

Despite this quantitative deviations from experimental results, the QDD model
is capable of predicting other effects of RTD structures. Figure 3.2 shows the com-
puted electron densities in the device just for the applied voltages where the peak
and the valley occur in the IVC. It illustrates the high concentration of electrons
(more than two orders of magnitude higher than the background doping density) in
the quantum well, which is typical for RTD structures and can also be seen in other
QHD simulations [10, 16]. Note that concentration of electrons in the quantum well
increases for increasing biasing voltages U.

The computed conduction—band energies V + B can be found in Figure 3.3,
showing clearly the effect of band bending near the resonant barrier, which decreases
the effective voltage applied to the barrier.

Furthermore, we present the carrier velocities J/(gn) in Figure 3.4, where ad-
ditionally the barriers are indicated as vertical lines. The electrons are almost six
orders of magnitude faster in the barriers than in the quantum well. Note that
the lowest velocity in the quantum well occurs exactly when the valley current is
flowing.

Appendix.

A.1. Proofs of Subsection 2.1.
Proof of Lemma 5. We introduce

S = {¢ € HY Q) : /Q¢d$ =0, ||V¢||L2(Q) = 1}'
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Due to the normalization condition fQ ¢ dr = 0 and due to A.l there exists a
constant & € (0,00) such that for all ¢ € S:

6l @) < &lIVollL2 @) = & (A1)

o= ()

We observe that F maps S into Rt U{0, 00} and F # oo. Since (2.1) is homogeneous
with respect to ¢ it suffices to prove: There exists a K € (0, 00) — which naturally
depends on Q,u, 3 — such that

For ¢ € S let

2
dx.

inf > K.
;gsf(@ >

This estimate is shown in an indirect way: We assume that infycg F(¢) = 0.
Then there exists a minimizing sequence (¢, )nen in C such that

Am F(én) = inf F(¢) = 0.

Set f, = ‘1’7“ With the aid of (A.1) we can assume without loss of generality that
| fnll g1 (o 18 uniformly bounded. Thus there exists a subsequence — again denoted

by (fn)nen — such that f, — f weakly in H'(Q) and f,, — f strongly in L?(Q) as
n — o0. Due to sequentially lower semi continuity we have

/uﬂwﬂ2 dr =0
Q

and therefore f = ¢ = constant and - since H'(Q) is strictly convex — f, — ¢
strongly in H*(Q2) as n — oco. This implies ¢,, — cu strongly in L?(Q) as n — oo,

0= lim ¢nd:c=c/udx
Q Q

n—oQ

and therefore ¢ = f = 0. Employing ||V, |2, =1 we get
1:/ IV (u fo)? deo
Q

=/f§ |Vul” da:+2/uanqun dm+/u2 \Vinl” da
Q Q Q

2
< (%) HUH?/VL"(Q) ||fn||H1(Q) +2M ||U||W1,r(9) ||fn||Ls(Q) ||an||L2(Q)
+ M| fall 71 g -
The right-hand side of this inequality tends to 0 as n — oco. Contradiction. 00

Proof of Lemma 6. A straight-forward calculation gives

N+ Neg P+ Peq
2 7 2

o

& (neq:peq) <

1
< =£ (n,p) + 55 (neq;peq)

52/
4 Jo

e? )
< & (nap) ) Negq
4K Ja

[neg VR — nVneql2
NNeq (N + Neg)

+¢
PPeq (P + PDegq)

2 2
(e o (52
Neq Deq

|pequ - pvPeqﬁ] da

+Ep2,
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From Lemma 5 and Poincaré’s inequality [2] we obtain the existence of constants
K, k1 > 0 such that for all (n,p) € C:

E(n,9) = Eeg: Peq) > k1 (190 = 1eq) () + IV (P = Pea) 20 )

2
2 K “(nap) - (neq;peq)”X .

Proof of Lemma 7. a), b) and c¢) are obvious and d) can be derived after some
cumbersome calculations. Concerning e) we immediately obtain the linearity of the

mapping (41, p2) — &' (n, p)[e1, p2]. We estimate
€', p)ler, 22l < w1 (B F) (V1 (0 + V211200 )
+ 82 (1K) (1o + 2l o))
+ k5 (KT, B, By) (I1ll 0 + 192l 3o

1V = 2= Caodlllaay (I01ll2(0) + 192l 120y)
S KJ4(K) Fa BnaBpaﬂ) ”(pHX )

for some constants k; € (0,00), 4 = 1,...,4, where we have used Holder’s inequa-
lity, standard results from the theory of elliptic PDE’s and Sobolev’s embedding
theorems. Hence &'(n,p) is bounded for all (n,p) € C. O

Proof of Lemma 8. Let (n1,p1), (n2,p2) € C. We are only estimating the terms
involving ny and ns since the others can be handled in analogy. Standard ellipticity
results [14] imply

/ Viny —n2 —p1 + p2] (01 — 92) dx
Q

<1 (Im1 = nall ey + o1 = Poll oy ) (10120 + I2llzage) -

Using the mean value theorem we get the following estimates:

< Kz [lna = nallp2q) e ll2 )

/Q (log(n1) — log(ns)) o1 de

/ (Vﬂq _ Vn;;) v(,01 da
Q ny UP]

< / ¥ [log(n) — log(ns)] Vg | da

< Ky (||V(n1 —n2)ll 2 () + lIne - n2||L2(Q)) IVerll 2y s

LG -G e

S/le[log(nl) —log(ng)] V [log(n1) + log(na)] ¢1| dx

< ki (IV01 = 12) 2y + Ima = nall gy ) ot e »
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for some constants x; € (0,00), 1 = 1,...,4, independent of (n1,p1) and (ns, ps).
By Sobolev’s embedding theorem there exists a constant L > 0 such that for all
(n1,p1), (n2,p2) € C:

16€ (n1,p1) = 0 (n2, p2)ll 0 < L[|(n1,p1) = (n2, p2) x

A.2. Proof of Subsection 2.2.

Proof of Theorem 12. The proof of Theorem 12 is a modification of ideas that
can be found in [9]. We shall make frequent use of the fact that C — C C D. For
notational convenience we introduce

c(a) =P (c—ad&(c).
From the well known angle property
VueX VeeC: (u—P(u),c—Pu)) <0,

we deduce the following estimates. Setting u = ¢* — a d€ (c¥) and ¢ = ¢* gives
1 2
kY b _ k+1 & okt
(08 (c*),c* —c >Za” ki (A-2)
and by choosing instead ¢ = é

(6 (¢F), 1 = &) < 2| = | [t = - (A-3)

1
a
First we establish the feasibility of Armijo’s rule (2.3). This holds because of

lim @) —Ele@) _

—_ fi 11 .
S, B e —cla) o foralleeC

Employing the mean value theorem and the Lipschitz continuity of §€ this can be
seen as follows:

£(c) — € (ela) — BE(e), ¢ — e(a))] =
/ (38 e+ t(e — e(a))) — BE(e), ¢ — e(a)) dt| < ¥ le — e(a)lk

which yields

lle = c(e)l%
£(c),e = (c(@))

N
=]
tn

~~
o

SN—r
o

|

—~
o)

~~
Q

SN—r

S—r

S~

|

L
26
al
<_7
- 2

because of (A.2). Next we show that the sequence of step sizes (a*), . generated
by Algorithm 1 is bounded away from zero, which is an easy consequence of the
following estimate [6]

Vo € (0,1) Vae [0, @] L £(0) — E(ca)) > 0 (6E(c), ¢ — c(a),
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which is derived as follows

E(c) —E(c(a)) = /1 (6&(c+t(c — c(a))),c — c(a)) dt
0
> (6&(c), ¢ — c(a))

— /0 {6 (c + t(c — c(a))) — 6E(c),c — c(a))| dt
> (58 (), ¢ — ela) — 4 lle — e(a)l%
> (1- %) Ge,c—cla,

where we used a variant of (A.2). Hence, the construction of the step sizes (a*),
implies

e )] a>0. (A4)

VekeNy: of > T =

Now we are able to show the convergence of Algorithm 1. We set £F := & (cF).
Notice that we have

gk _gk+1 > ’Y((Sg (ck) ,Ck _ ck+1>
=& (ck) [ck — ck'H]

> Tk~ 4 > 0,

due to (A.2). Hence, (£¥),_y is a non increasing bounded sequence and thus

convergent with limy_,, £ = E>E (@) > —oo. Consequently
1 (kY [k kL]
kl)rrolog (c ) [c c ] 0
li k _ k+1 = 0.
and kggo Hc c ||X 0

Due to the convexity of £ we have

0<&k—¢g@) <& (cF)[F-¢
=& (ck) [ck _ ck'H] + & (ck) [Ck+1 _ 6]

1 -
SE() [ =+ It = | [l el

where we used (A.3). The coerciveness of £ implies the boundedness of (c*),

and thus limy_,. £¥ = £ (¢) and it follows from the uniform convexity of £ that
limg o0 [|c* — ||, = 0.0

A.3. Proofs of Subsection 2.3.

Proof of Lemma 14. a) Since (cp) is a weakly convergent sequence the norms
|ller||x are uniformly bounded. Hence it follows from D.6 that limy ¢ || Pcp—cp||x =
0. Therefore the sequence (Pcy) is bounded, too. By passing to a subsequence
(Pecpr) we obtain Pepr — ¢ € X weakly in X as h' — 0. Since C is closed and
convex, C' is weakly closed, too, see e.g. [31]. Hence ¢ € C. We furthermore have
for all z € X:

| (x, Pepr — ) | < [lz||x||Pep — cprllx + 1 {2, cne —v) |,

where both terms on the left-hand side converge to 0 as ' — 0. Hence Pcp — v
weakly in X as b’ — 0. This settles v =c € C.
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b) Step 1: We wish to prove that the sequence (Pyu) is bounded for all u € X. We
observe that due to P, (Pu) € Cp,

lu = Prullx < |lu— Pa(Pu)llx < llullx + [|Pn(Pu) — Pullx + [|Pullx,

and the middle term of the left-hand side of this inequality is uniformly bounded
due to Pu € C' and assumption D.5.

Step 2: We wish to prove that
lim ||Phu — u||x = ||Pu — ul|x (A.5)
h—0

for all u € X. As shown in Step 1 the sequence (P,u) is uniformly bounded.
It follows from D.6 that limj_q || P(Pru) — Pru||lx = 0. We furthermore have
|lu— Pul|x < ||lu—Pru||x +||P(Pru)— Pyul|x. Hence ||u— Pul|x <liminfp o |ju—
Pyu||x. On the other hand we have ||u — Pyu||x < ||u — P,(Pu)||x and therefore
lu— Pru|lx < ||u— Pul||x +|Pu— Pn(Pu)||x, where due to D.5 the second term of
this inequality tends to 0 as h — 0. This gives |ju— Pul|x > limsup,_,q ||u— Pru| x.

Step 3: It suffices to prove that P,u — u — Pu — u strongly in X as h — 0. By
Step 2 and due to the strict convexity of X it suffices to prove that Pyu — u —
Pu — u weakly in X as h — 0. Let (h') be a subsequence of (h). Since (Ppru)
is bounded (Step 1) we may extract a subsequence (Pp~u), such that Ppru —
¢ weakly in X as h — 0. As already shown in a) we have ¢ € C. Using the
weak sequentially lower semi continuity of the norm and Step 2 we get ||c — u||x <
liminfpr o || Ppru — ul| y = ||Pu — ul| x and therefore ¢ = Pu, which is independent
of the choice of the subsequence (h'). Hence P,u — Pu weakly in X as h — 0 and
therefore Pyu — u — Pu — u weakly in X as h — 0, too.

c) follows immediately from D.7 and the Banach-Steinhaus theorem.

d) Let u € X and € > 0 be arbitrary. Choose w. € W with [|w. —ul|xy < § and
h(e) > 0 such that ||w. — Rywe||x < § for all h < h(e). Then for all h < h(e)
the estimate ||u — Rpwe||x < |lu — wellx + ||lwe — Rpwe||x < € holds. This implies
inf,, ex, |lu —unl|x <eforall h < h(e). O

Proof of Theorem 17. The proof is done by induction. For k = 0 there is
nothing to do. Suppose we have

lim ||} — Rpc*|y =0, (I A)

for an iteration index k > 0. We calculate

leit" = Bac®™** || = [[Pa (ck — of DEn (1)) = Ba (P (c* = a* 68 (c*)))]| ¢

5
<24l
1=1

with

174 ] = lle* =<kl

1721l = o [|9€ (") = Dén (k) ]

28] 5 = lo* = ai []0€ ()|

1Zallx = [P0 (c* = a"6€ (¢*)) = P (c* — a*6€ ()| 5

78]l = 1P (¢* = a*3€ (")) = B (P (" = a*o€ (<)) |
These terms can be estimated as follows:

I

e < lle* = Ruc*|xc + [[Bne® - il
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Thus we have lim,_,q ||I,§||X =0 due to (I. A. ) and D.8. Since aﬁ < a and using
the uniform Lipschitz continuity of D&}, we derive
175]l xc < @ (|08 (c*) — Dén (Pac®) |  + @ | DE (Puc®) — DEn (cf) ||
< a ||6€ (") — D& (Puc®)|  + @ Lo (|| — Rac®| 5 +

+[[Bne® = e[l + (| = Pactx)

Employing (I. A. ), D.5, D.6 and D.9-D.15 each of these terms converges to zero
as h — 0.

Next we show that limp_,0af = aF. To this purpose choose an arbitrary
subsequence of (af). Since (af) is bounded there exists another subsequence,
again denoted by (af), such that limj_,oaf = G. For this sequence one easily

verifies that (2.4) becomes in the limit h — 0:
E(F) =€ (P (" —ade (c¥)) > v (3 (c*),c* — P (cF —ad€ (cF))).

Due to the definition of a* we have @ < a*. Assume by contradiction & < a*.
Then there exists an oy € (&, aF) such that for h small enough we have af < a;

and

En (ch) = En (Ph (ch — 1 DEn (h))) > 7 (Dén (er) ,ef; = Pa (e, — a1 Dén (cf)))

which is a consequence of the point wise convergence and of
& (ck) =& (P (ck — a1 68 (ck))) > 7((58 (ck) cF—P (ck —a; 6& (ck))> .

But this is in contrast to the maximality of aﬁ and thus & = a*. Together with the
boundedness of (H(SE (c*) ||X) on C this implies limp_q ||I,3;||X =0.

Finally, due to D.8 and Theorem 14, || I}
h—0.0

Proof of Corollary 18. Let € > 0. Applying Theorems 12, 17 and 14 there exist
constants K. € N and h. > 0 such that

||X and HI,Z’HX are tending to zero as

len = éllx < flen = chllx + [lch = [l x + ][ =l x <e
forall k > K, and h < h.. O

A.4. Proofs of Subsection 3.2.

Proof of Lemma 24. We define Y := {u € X : § < u < 1/6}. Firstly we show
that for each u € U there exists a constant K, = Ky(Dgom, 8,6, s) € (0,00) such
that

Fu(o) = /Quﬂ|V(;5|2 dz > K, (A.6)

for all

Le(Q) = 1}-

This is shown in an indirect way. Assume there exists a minimizing sequence (¢ )ren
such that limy_,oo Fu(dr) = 0. (We note that F,(¢) #Z oo for some ¢ € B,,
i.e. infyep, Fu(p) < 00.) Then — due to Poincaré’s inequality — ¢, — 0 strongly
in H'(Q) as k — oo. Since H'(Q) — L*(Q) we get limy oo [k ullps(q) = O
Contradiction.

b€ By = {¢€X0 ol
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Hence for all u € U: m,, = infyep, Fu(d) € (0,00). We claim that K :=
inf,eyymy > 0. (Certainly, K € [0,00).) We again proceed in an indirect way.

Assume that K = 0. There exists a sequence (ug)ren C U such that limg_, o0 My, =
0. Additionally, for each k € N there exists a ¢ € B, such that

1
/ U'g|v¢k|2 dx < My, + E:
Q

which again yields ¢ — 0 strongly in H1(Q) and L?(f2) as k — co. But this implies

1 im in ||¢kuk|Ls(Q) <1/ im in ||¢k||Ls(Q 0

Contradiction. Hence K > 0 holds. Now let u € U and ¢ € Ay with ¢ #Z 0. Then
o=/ ||¢u||LS(Q) is an element of B,, which yields

[ w196 do> K 6ul
Q

2
Le(2)

Replacing ¢ by ¢/u gives (3.4).0

Proof of Theorem 26. It readily follows from Theorem 2.1 in [1] that (3.5),
(3.1a) possesses a solution (n.,po,Vs) € X2 which satisfies (3.6) for a § = §(D) €
(0,1). We will now prove (3.7) and thus show the uniqueness of the solution. Let
( 7G)7 (F17G1) € C and let (n07p07%)7 (nlaplavvl) € (nDapD7V(-»3q + V-ezt) + (V X
VY x V) be any respective solutions of (3.5), (3.1a). We introduce an operator
d : L2(Q) —» HY(Q) as follows. Given f € L?(Q) we define ®[f] as the unique
H(Q)-solution of

“NAB=f, B = (Ve + Veat) € V.
We define the set
M = {(n,p) € X*: (n—np,p—pp) € X5, 6<n,p<1/8},
where we note that (n.,p.), (n1,p1) € M. We introduce the operator A : M —
H-1(QUTy) x H1(QUTy), which is given by

(A, 6) = [

[—EZA—\/E +log(n) + ®n —p—C] + Bn] 1 dz
Q

Jn
QM — n — — < i
+/Q [—ga 7 +log(p) — ®[n —p C]+Bp] ¢2 dz,

for all ¢ = (¢1,¢2) € V2. We observe that A is actually well-defined on M.
Furthermore, for fixed ¢ = (¢1,¢2) € V? and fixed (n,p) € M the Gatedux—
differential (A'(n,p)[O],#) of (A(.,.),¢) : M — R in a direction © = (01,03) €
(Xo)? exists and is given by

(A'(n,p)[O], ¢) =
2 2
Q n n n

+/Q(%+‘I’[@1—@2]) ¢1 dx

2 A®, A Vpvoe Vpl?
€ < 2__210@2_ P2 2+| €| @2> ¢2 dx
Q p D D D

+/Q<%—q>[®1—@2]) by dz
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We also have for ¢ = o, 1
(A(ni,pi), ¢) = ((F3,Gi) ,¢),  forall g € V2 (A7)
Let du = uo — u1. Setting ¢ = (0n,dp) we obtain by subtraction from (A.7)
(A(no, po) — A(n1, p1), (9n,0p)) = ((OF, 6G), (9n, dp))
For h € [0,1] let
nyp:=no —hdén and pp:=po— hdp.

We introduce the function [0,1] 3 h — (A(np,pr), (6n,dp)) € R, which is differen-
tiable on [0,1]. By the mean value theorem there exists an h € (0,1) such that

(A" (n, pn) [(6n, 6p)], (dm, 6p)) = ((OF, 6@G), (dn, dp)) - (A.8)

Using Lemma 24 the left-hand side of (A.8) can be estimated as follows

2

(A" ) (6. 39)). (o 0) = * [ |V (2—’;) dz
e e (2)] o

2 2
+/ —((M) dx+/ _((Sp) dx
Q Nn Q Phn
+/ |V®[on — op]|° da
Q

> (1 + K1 (I6nl-q) + 1p7-())

where K1 = K1 (Dgom,0(D),s) € (0,00). By the Cauchy—Schwarz—inequality we
obtain

6n)17+ ) + 16P17 (0

K, 2 2 1/2
< s o 1076 o) (190130 + 109l30))

1/2
where Ky = K»(Q,s) € (0,00). Canceling (||6n||i(9) + ||5p||is(9)) and using

1/2
(lal + [B)Y/2 < |a] + [b] < 2172 (Jaf* + [b*) " gives (3.7). O
Proof of Theorem 27. a), b): We introduce for m > 0 a truncated exponential
function

Instead of (3.8) we consider the modified system

div(nVF) = R(n,p) (em (F + G) — 6%), (A.9a)
div (pVG) = R(n,p) (em (F +G) —§?). (A.9b)
For u = (u1,u1) € HY(Q) x H*(Q) and ¢ = (¢1,p2) € V? we set
(A (u), @) ::/QnVul Vi dx + /QquQ V¢ dx

+ / R(n,p) (em (s +uz) — 8%) (61 + ) da.
Q
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This defines an operator A, : H'(Q) x H'(Q) - H-}(QuUTx) x H-}(QUTy).
We readily verify that A,, is bounded (takes bounded sets to bounded sets) and
hemicontinuous. Furthermore, A, is uniformly monotone, since for u,v € H'(Q) x
H'(Q) we have

(Am (1) = A (v),u — v) > min {n, p} IV (u = v)|[32(q) »

where we used R > 0 and the monotonicity (em(z) —em(y)) (z —y) > 0 for all
z,y € R Due to Theorem 4.16 in [36] the equation

(An(F,G),¢) =0, for all ¢ € V?

has a unique solution (F,,Gn) € (Feq + Vezt, Geqg — Vewt) + (V x V). This proves
that (A.9) has a unique solution for all m > 0. Hence, it remains to establish (3.9)
for all sufficiently large m. Let

F = min {Feq,Feq + ian th} , F = max {Feq,Feq + sup Vm} ,
D T'p

G = min {Geq,Geq — sup Vewt} , G = max {Geq,Geq - irnf V;m} .
T'p D

Let m > 2. Then F + G = F + G = F.; + G, and thus
§* = exp(F + G) = en(F + G) = exp(F + G) = en(F + G).

One easily verifies that (F — F)T = max{0, F— F} and (G — G)~ = min{0,G — G}
are admissible test functions in (A.9). This yields
2

_/n|V(F—F)+‘2 da:—/p‘V(G—Q)_‘ dx
Q Q

=/RmmkMF+®—ﬁ]
Q

JF-P"+G-60)| d
>0
Thus, we have (F—F)* =0 and (G—G)~ = 0 in the sense of H'(f), which implies
F < F and G < G a.e.. The other inequalities F < F and G < G can be shown

analogously by choosing (F — F)~ and (G — G)* as test functions, respectively.
c) We set R; = R(n;,p;) for i = 1,2 and employ the weak formulation

—/ n; VE;V¢ dr = / R; (exp(Fi +G;) — (52) ¢ dx
Q Q

_/ pi VGV dz = / Ri (exp(F; + Gi) — 6) ¢ da,
Q Q

for all ¢ € V. Using ¢; = F1 — F5 and ¢5 = G1 — G2 as test functions, respectively,
yields after subtraction

/ ny |V (Fy — )2 dm+/p1 IV (Gr — Go)|? dar =
Q Q
—/ (n1 —n2) VBV (Fy — F) dx —/ (p1 —p2) VG2V (G — G2) dx
Q Q
- / Ry (11461 — PtG2) (Fy — Fy) + (Gh — Ga)) da
Q

— / (R1 — Rz) (€F2+G2 — 6Feq+Geq) ((Fl — F2) + (Gl — GQ)) dx
Q
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We estimate termwise. Employing Holder’s inequality we get

—/ (m —TLQ)VFQV(Fl —FQ) dzr
Q

< llny = n2ll s @) IV B2l pr (o) IV(FL = F2) | 2

and analogously

_/ (p1 — p2) VG2V (G — Gs) dx
Q

< ||P1 —P2|

@) IVG2ll @y IV(Gr = G2)l 12 -
Next we use the fact that R; > 0 and the monotonicity (e —e¥)(z —y) > 0, for all
z,y € R, to derive
—/ R1 (6F1+G1 — eF2+GZ) ((Fl — FQ) + (G1 — Gz)) d.Z' S 0.
Q

The last term can be estimated as follows

- / (Ry — Ry) (€192 — efeatCer) (F, — ) + (G — G)) da
Q

< ”Rl _ R2| Fo+Go eFeq+Geq

L (Q) ”e L™(Q)

X (1B = Foll g + 11G1 = Gal gy | -

Combining these estimates, using Young’s inequality and Poincaré’s inequality we
obtain

0IV(Fi — Bo)ll721) + 0 IV(G1 — G720y

1 0
< glint —ne 2o IVEal 7oy + 1 IV - B)|720)

1 0
+ 5l = P2l VG2l () + 7 V(G- Ga)l72(0y

2

FotGo _ oFeqtGeq @
L (Q

+ K7 ||Ry — Rol

2

ooy lle
0 2 0 2

+ 1 IVEL = B2 () + 7 IV(G1 = Go)lliz(q) »

where § = (D) € (0,1) is as in Theorem 26 and K; = K;(Dgom,8) € (0,0). Now
we make use of the Lipschitz—continuity of R and the fact that ||F; — Feql|pe(q),
IGi — GeqllL=() < [VeatllL=(q) (see b)) to obtain after re-ordering

0 0
3 IV(FL = B)l[La) + 5 IV(G1 = G2)lL2(q) <

1 1 2 2
9 lln1 — n2||2Ls(Q) ||VF2||2Lr(Q) + ] llp1 —P2||Ls(9) ”VG2”LT(Q)
+ K2 K MV =@ |V [2 ) [t = )y + 1 = Bl

where K> = K»(Q; Lg(6),r,s) € (0,0).
Next we wish to estimate ||VF2||2LT(Q). (The term ||VG2||2L,~(Q) can be handled in

analogy.) Setting a := ny we easily verify that due to A.8 all assumptions required
in A.7 are satisfied for a 6, = 6,(0,6p). Considering U := F» — F,, we have

div(naVU) = Ry (eVUTFeatC2 _ gFeatCGeay = 7 Y, € V.
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Hence, it follows from A.7 that there exists a constant K3 = K3(Dgom,8,0p) such
that

IVE: @) = VUl (g
S K3 (”‘/extHWl,'r‘(Q) 4 ||R2 (eF2+G2 _ eFeq"‘GeQ)”Lw(Q))

< K3K4 ||I/;3wt||Lw(Q) e2||Vea:i||LOO(Q),

where Ky = K4(Dgom,0,7) € (0,00). Collecting all terms finally gives

IV(FL = F2)lz2g0) + IV(G1 = Go)llzaqq
(@) ()
< K e'lVestlioe o ||Vezt||2Loo(Q) [||"1 - ”2||is(9) +llps —P2||is(9) g

where K5 = K5 (Ddom7 Dbdrya G(D)a LR(G(D))a T, S)'
Now (3.10) immediately follows.O

A.5. Proof of Subsection 3.4.

Proof of Theorem 28. Let (F;,G;) € C, i = o,1. We set (n;,p;) := S1(F;, Gs),
1= o, 1 and (Fz,éz) = Sg(n,-,p,-), 1= o, 1. Then E,G’z) = T(F,,Gz), 1= o, 1.
b) Due to (3.7) there exists a Ky = K;(D, s) € (0, 00) such that

lIno — ”1||Ls(Q) + llpo — p1 Ls(Q)

<K (”Fo - F1||L2(Q) +||Go — G1||Lz(9)) . (A.10)
Employing this estimate in (3.10) we get

HV (ﬁ" B Fl) HL2(Q) + HV (é" B él) | L2(Q)

< Ky Vel 2% || Vogy [ e [||Fo — Fillpaqy + 1Go — G1||L2(Q)] . (A1)

for a constant Ky = Ko(D,8(D), Lr(6(D)),r,s) € (0,00) and (D) is as in Theorem
26. Now we apply Poincaré’s inequality to obtain

|7 -7
HY(Q

< Ky 1Verrlio @ [Vogyll e [||Fo — Fillg gy + 1Ge — G1||H1(Q)] , (A12)

) + Hé° B G~1HH1(Q)

for a constant K3 = K3(D,6(D),Lr(0(D)),r,s) € (0,00). Hence b) follows by
defining U, = U,(D, (D), Lr(6(D)),r, s) € (0,00) via

K3 €2U° U, =1.

a) follows immediately from b).

¢) The stated convergence property of (F*, G¥),en follows from b). The respective
convergence property of (n*,p*)ren follows from the convergence of (F*,G*)ren
and (3.7). This convergence of (n*, p*)ren also ensures the stated convergence of

(VF)kenO
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