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Abstract

In recent decades, there has been increasing interest in analyzing the behavior of complex sys-
tems. A popular approach for analyzing such systems is a network analytic approach where the
system is represented by a graph structure [WF94, BLM+06, BE05, Ves18]: Nodes represent the
system’s entities, edges their interactions. A large toolbox of network analytic methods, such as
measures for structural properties [New10], centrality measures [KLP+05], or methods for identi-
fying communities [For10], is readily available to be applied on any network structure. However,
it is often overlooked that a network representation of a system and the (technically applicable)
methods contain assumptions that need to be met; otherwise, the results are not interpretable or
even misleading. The most important assumption of a network representation is the presence of
indirect effects: If A has an impact on B, and B has an impact on C, then A has an impact on
C [Zwe16, BRMW13]. The presence of indirect effects can be explained by ”something” flowing
through the network bymoving from node to node. Such network flows (or network processes) may
be the propagation of information in social networks, the spread of infections, or entities using the
network as infrastructure, such as in transportation networks. Also several network measures, par-
ticularly most centrality measures, assume the presence of such a network process, but additionally
assume specific properties of the network processes [Bor05]. Then, a centrality value indicates a
node’s importance with respect to a process with these properties.

While this has been known for several years, only recently have datasets containing real-world
network flows become accessible. In this context, the goal of this dissertation is to provide a bet-
ter understanding of the actual behavior of real-world network processes, with a particular focus
on centrality measures: If real-world network processes turn out to show different properties than
those assumed by classic centrality measures, these measures might considerably under- or over-
estimate the importance of nodes for the actual network flow. To the best of our knowledge, there
are only very few works addressing this topic. The contributions of this thesis are therefore as
follows: (i) We investigate in which aspects real-world network flows meet the assumptions con-
tained about them in centrality measures. (ii) Since we find that the real-world flows show con-
siderably different properties than assumed, we test to which extent the found properties can be
explained by models, i.e., models based on shortest paths or random walks. (iii) We study whether
the deviations from the assumed behavior have an impact on the results of centrality measures.
To this end, we introduce flow-based variants of centrality measures which are either based on the
assumed behavior or on the actual behavior of the real-world network flow. This enables system-
atic evaluation of the impact of each assumption on the resulting rankings of centrality measures.
While–on a large scale–we observe a surprisingly large robustness of the measures against devi-
ations in their assumptions, there are nodes whose importance is rated very differently when the
real-world network flow is taken into account. (iv) As a technical contribution, we provide amethod
for an efficient handling of large sets of flow trajectories by summarizing them into groups of sim-
ilar trajectories. (v) We furthermore present the results of an interdisciplinary research project in
which the trajectories of humans in a network were analyzed in detail. In general, we are convinced
that a process-driven perspective on network analysis in which the network process is considered
in addition to the network representation, can help to better understand the behavior of complex
systems.
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Introduction
Chapter 1

In the last twenty years, network analysis has emerged as a popular and powerful tool for under-
standing and analyzing complex systems [WF94, BLM+06, BE05, Ves18]. Complex systems consist
of many components interacting with each other in various ways. While there are several defini-
tions for complex systems, one of their fundamental properties is that they show emergent behavior :
a system’s behavior which cannot be explained by the properties of the single components, but is a
consequence of their interactions. Vicsek phrases this property of a complex system by stating that
“the laws that describe its behaviour are qualitatively different from those that govern its individual
units” [Vic02].

A complex system can be represented as a network [New10]: The system’s components are repre-
sented as nodes, their interactions are represented as edges. This representation as a graph structure
has great potential for enabling a better understanding of complex systems and has been proven to
be useful in various disciplines, such as–to name but a few–in sociology for understanding social
systems [BMBL09], in biology for understanding the functionality of a cell by studying the inter-
actions of molecules [BO04], in medicine for identifying disease genes [BGL10], or in economy for
understanding the interdependencies of financial institutions [SFS+09].

In recent years, a wealth of methods, measures, algorithms, and software tools have been de-
veloped that make it very easy to create a network representation and apply network analytic
methods on it–for example to identify the system’s most important components through centrality
measures [KLP+05], to find cohesive groups of system components through community detection
algorithms [GN02], or to predict the future evolution of a system through link prediction meth-
ods [LNK07]. However, it is sometimes overlooked that a network representation and all network
analytic methods entail specific assumptions. Representing a complex system as a network allows
analyzing indirect effects in the system [BRMW13, Zwe16]: An interaction between the entities A
and B is modeled as an edge between node “A” and node “B” in the network, and an interaction
between the entities B and C yields an edge between node “B” and node “C” in the network. By
creating a network representation from these interactions and connecting the nodes “A” and “B”
as well as the nodes “B” and “C”, it is assumed that entities A and C have some effect on each
other via B–or share some commonality via the link over B. A network representation and network
analytic methods enable the analysis of these indirect effects. If indirect effects are not present or
not of interest, other types of representation or other analysis methods are more convenient and
more efficient.

How can these indirect effects be explained? One possible explanation for indirect effects is that
“something” is flowing through the network from node to node by using the existing edges. For
example, in social systems, pieces of information or gossip stories can be told from person to person,
whereby a person can have an indirect effect on another person without any direct connection;
infections or other diseases can be spread from person to person, which also causes indirect effects;
entities such as passengers in a transportation infrastructure flowing from node to node are another
example of such a network flow yielding indirect effects.

1



1 Introduction

While the network representation itself requires the presence of indirect effects, several network
methods implicitly assume the presence of a network process, particularly centrality measures.
The most well-known centrality measures were introduced by Freeman with the idea in mind that
they quantify a node’s importance with respect to a network process: “Thus, the use of these three
measures is appropriate only in networks where betweenness may be viewed as important in its
potential for impact on the process being examined” [Fre77]. Borgatti points out that the most
commonly used centrality measures do not only assume the presence of a network process, but
also assume specific properties of those processes [Bor05]. He found that most centrality mea-
sures either assume a network process with a transfer mechanism (where indivisible entities move
from node to node) or a process solely using shortest paths. It is clear that most relevant network
processes, such as the spreading of information or infections, do not satisfy these requirements.
However, even for network processes for which those assumptions seem reasonable, it is not clear
whether the assumptions are met when real-world data about them is considered.

Since various datasets from different domains are available that contain information on how a real-
world network flow moves through a network, several questions arise: Do the real-world network
flows show the same properties as the centrality measures assume about them? If not, can a differ-
ent flow model reproduce the properties of the real-world network flow? But also: if the real-world
network flow does not have the same properties as assumed by the centrality measures, does this
have an impact on the results of the centrality measures? Furthermore, when dealing with large
datasets of real-world network flows, how can the data be summarized to enable efficient handling
of the data?

This thesis will address these questions while the focus of this thesis is on centrality measures,
most of which assume network processes using a transfer mechanism and shortest paths. Thus,
this thesis is restricted to the analysis of real-world network flows where those assumptions seem
reasonable.

1.1 Motivation

A common approach for understanding a complex system by a network analytic approach is the
following procedure [Zwe16] (shown in Figure 1.1):

(i) The behavior of the complex system is observed in order to obtain data about the entities’
interactions.

(ii) Observations of interactions of the system are used to build a network representation.
(iii) Standard network analytic methods are applied to the network representation.
(iv) The results of these methods on the graph representation are then translated back into the

original context in order to draw conclusions about the complex system of interest.

Each step appears to be natural, but each has its caveats and uncertainties:

(i) Observing a system to collect raw data about the system’s interactions involves decisions on
the part of the researcher, such as the choice of which type of interactions to be observed,
and is prone to errors in measurement.

(ii) Transforming observations of interactions in a complex system into a network representation
is rarely unique: for the same set of observed interactions, there are often several plausible
network representations. At the same time, it has been shown that seemingly trivial decisions
in creating the network representation can have a considerable effect on the resulting network
structure and thus also on any network analytic result [But09, DCMHW10].

(iii) For the same question (such as ”Which node is the most important one?“ or ”Which nodes
belong to the same community?“), there is often more than one possible applicable network
analytic method: There are dozens of different centrality measures [KLP+05], and dozens
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Figure 1.1 Phases of a network analytic project (Figure adapted from Zweig [Zwe16])

of different community detection algorithms [For10]. The choice of the ”right“ method is
not trivial, as even the choice of the normalization method can have an impact on the re-
sult [TZ16].

(iv) When translating the results on the graph representation back into the original domain in
order to draw conclusions about the system, all choices need to be considered when inter-
preting the results since each choice is associated with certain assumptions.

We argue that network analytic approacheswhere the research question is tied to a network process
can benefit from a process-driven perspective in which the focus is on the process of interest. We
distinguish the terms network process and network flow : We understand a network process as a
model of how something is flowing through the network whereas the network flow itself consists
of observable trajectories of something using the network (see Figure 1.2). Taking into account the
relevant network process and network flow is beneficial mainly for the following two reasons:

(I) Taking into account the process of interest during all stages of the network analytic procedure
can help to reduce the number of relevant choices in each step (see also Figure 1.3). It has been
shown that the process of interest, the network representations and the network measures
cannot be chosen independently [DLZ12]: The network process of interest restricts the set of
possible network representations, since the network representation needs to be chosen such
that the edges represent the relationship relevant for the process of interest. When the focus
is on a process such as the spreading of a disease, the corresponding network representation
needs to contain edges representing relations that are essential for passing on this disease.
Network representations where the edges represent a different type of relation, will yield
results that are difficult to interpret. Thus, the process of interest constrains the set of possible
network representations for a meaningful network analysis. At the same time, the process
of interest can restrict the set of applicable network measures: Borgatti argued that in the
case of centrality measures, each centrality measure implicitly contains a process model with
certain properties [Bor05]. A centrality measure can then only quantify a node’s importance
with respect to network flows with these properties. Using a centrality measure for which the
process model assumes the usage of shortest paths, for measuring a node’s importance for
spreading a gossip story, will yield results that are hard to interpret. Therefore, the network
process of interest restricts both, the set of possible network representations and the set of
applicable network measures [DLZ12]. Thus, the process of interest constrains the set of
applicable network measures. At the same time, the chosen network representation affects
the results of any applied network measure [But09, DCMHW10]. The interdependencies of
the network process, the network representation, and the network measure are depicted in
Figure 1.3.

(II) Representing a system as a network is a strong simplification of a system: A complex system
consisting of various components with possibly different individual properties and behaviors,
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Figure 1.2 An overview of the terminology used.
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Figure 1.3 Why taking into account network processes can be helpful: If the process of interest, determined
by the research question, is considered at the beginning of any network analytic project, it can help to reduce
the number of relevant choices in each step of the network analytic project.

interacting in various ways with each other, is transformed into a very restrictive mathemat-
ical structure, consisting only of nodes and edges. As with any modeling approach, a lot of
information is lost by this transformation. But if such a representation is chosen appropri-
ately, it is able to capture the essential properties of a system–while being simpler and easier
to handle. In other words, when chosen appropriately, such a representation strips off all
unnecessary information and only focuses on the relevant information required to answer
the research question of interest. It is, however, not clear whether a static network repre-
sentation is sufficient in all cases to capture the essential properties of a system. We argue
that, particularly when the system is the infrastructure for a process disseminating through
the system, it might be valuable to consider the process dynamics in addition to the static
network representation. Consider the air transportation system [GMTA05] where each city
area is represented by a node, and existing airline connections are represented by an edge.
A relevant flow in this network is the flow of passengers traveling from a start city to their
destination. By solely considering the network representation, the actual passenger flow is
neglected: The edge between two nodes representing small rural cities has the same quality
as an edge between nodes representing large metropolises. This can lead to anomalies with
respect to the nodes’ centrality scores [GMTA05, DLZ12]. When taking into account the ac-
tual passenger flow, it becomes obvious that those example edges are of different qualities.
It is therefore important to not only consider the static network representation, but also–if
available–the actual process dynamics on the network structure itself.

1.2 Main contributions

Based on the motivational aspects stated above, this thesis addresses the analysis of network flows
and their connection to network measures, where the focus is on centrality measures. In this con-
text, the following contributions are made.

Properties of real-world network flows Particularly centrality measures assume the presence
of a network flow with specific properties and measure the nodes’ importance with respect
to network flows with these properties. It is, however, not clear whether these properties are
matched by existing processes. Therefore, we considered datasets containing trajectories of
real-world network flows, two datasets containing passenger flows in transportation systems,
and three datasets containing human navigation trajectories in game-like contexts. For these
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real-world network flows, we can answer the following question:

Do real-world network flows show the same properties as assumed by certain network
measures?

Therefore, the properties of real-world network flows are compared to their assumed proper-
ties. Besides the usage of shortest paths, centrality measures expect the network flow to be
uniform in the sense that there is an equal amount of flow between each node pair. We show
that this is not given in all considered datasets–on the contrary, for real-world network flows,
there are a few node pairs between which there is a large proportion of the total flow, while
there is (almost) no flow between many other nodes. A further assumption contained in cer-
tain centrality measures concerns the behavior of the flow when there are several equivalent
possibilities to flow from node A to node B. In this case, measures normally assume that the
flow is distributed among the alternative routes. We investigate whether this behavior is also
shown by real-world network flows.

Alternative process models Since we show that real-world network flows show different proper-
ties than assumed by standard centrality measures, but datasets containing real-world net-
work flows are rarely available, there is a need for an alternative process model. If such a
model was available, it could be used to make more accurate predictions for flow-related
problems than the standard process model. The main question is thus:

Can the real-world network flow be simulated to a satisfying extent by a model?

In order to answer this question, we investigate whether the properties of the real-world
network flow can be reproduced by a model based on shortest paths or by a model based on
random walks. For this reason, several model variants are implemented and the properties
of the trajectories generated by these models are compared to the properties of real-world
network flows.

Impact on centrality measures Since real-world network flows show different properties than
the process model implicitly contained in standard centrality measures, a naturally arising
question is whether this actually matters; i.e.:

Which impact does it have on the results of centrality measures that their assump-
tions about the network process are not satisfied?

In order to answer this question, we introduce ”flow-based“ variants of the classic centrality
measures, namely closeness and betweenness centrality: these variants either use the prop-
erty of the standard process model or the property of the actual real-world network flow
contained in the flow datasets. For each assumed property (for example usage of shortest
paths), the flow-based variants allow ”switching on or off“ the assumption or the actual flow
behavior. This approach enables systematic evaluation of the importance of each contained
assumption. We find that at a large scale, the considered centrality measures are surprisingly
stable against deviations in their process model. At the same time, we observe large ranking
variations of single nodes among the centrality variants. Those large ranking variations even
affect high-ranked nodes.
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Summarizing a large set of flow trajectories Since we find that simple models are not able to
explain the properties of real-world network flows, it is necessary to consider the single trajec-
tories of real-world network flows in order to understand the underlying system. However,
when dealing with a large number of trajectories in a graph, limited computing resources
might constrain a detailed analysis. For this reason, we aim for a method for grouping and
summarizing trajectories. Then, an analysis can be carried out on a smaller set of represen-
tative trajectories instead of on the full set of data:

Given the data of a network flow with transfer mechanism, how can the trajectories
be summarized enabling a more efficient analysis?

For this reason, in Chapter 5, several similarity and distancemeasures for walks on graphs are
introduced which are then used to group trajectories using a standard clustering procedure.
We provide a taxonomy of modeling variants for walks, review existing similarity measures
from different domains and adapt them to the case of walks in graphs1. These similarity
and distance measures are then evaluated by their ability to find meaningful groupings of
trajectories, by using a dataset containing trajectories with ground truth.

Domain-specific analysis of flow trajectories While the challenges and corresponding approaches
above described are rather concerned with network flows of different domains, we describe
the results from an interdisciplinary collaboration project in which domain-specific trajecto-
ries in a network were analyzed in detail:

How can trajectories in networks of a specific domain be analyzed in detail in order
to get insights for the domain?

In this case, we describe the results of a joint research project with researchers from the
Department of Psychology at the Technical University (TU) of Dresden. For their research
question in the context of learning and human problem solving, an experiment was designed
and conducted in which participants were asked to solve a sliding-block puzzle. A partic-
ipant’s solution attempt could then be modeled as a walk through the game’s state space
which opens up new methods of analysis. In this thesis, we propose a novel approach for
analyzing such human problem solving attempts by introducing an error category system
which allows new insights in the cognitive process of human problem solving.

1.3 Thesis outline

This thesis is structured as follows:

• Chapter 2 sets the context of this thesis by presenting publications that are relevant for this
work, and also introduces necessary definitions and notations.

• In Chapter 3, the properties of real-world network flows are tested using network flow datasets.
Particularly those properties assumed by classic centrality measures are tested. Chapter 3
also includes an analysis of whether a random-walk-based model can explain the proper-
ties of real-world network flows. The results presented in this chapter are mainly based on
publications [5] and [8].

1In a previous work [Boc15], a preliminary set of similarity and distance measures was proposed which is extended in this
thesis.

6



1.3 Thesis outline

• Based on the findings of Chapter 3, in Chapter 4, we investigate which impact it has on the
results of classic centrality measures that its basic assumptions are not fulfilled. The results
of this chapter are mainly based on publications [4] and [6].

• Chapter 5 presents an approach for summarizing and grouping a set of trajectories into rep-
resentative groups. The results of this chapter are based on publications [3] and [2].

• Chapter 6 presents the results of the interdisciplinary collaboration project in which a de-
tailed analysis of trajectories in a graph was used to get a better understanding of the cog-
nitive process of human problem-solving. The results of this chapter are based on publi-
cation [1] and represent joint work done with Olaf Peters and Susanne Narciss from the
Department of Psychology at TU Dresden.

• In Chapter 7, an extended outlook is given in which the importance of considering network
processes in addition to the static network representation is emphasized.

• Finally, Chapter 8 gives a summary of the results presented in this thesis and sketches ideas
for future work in this area of research.
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Background and related work
Chapter 2

Chapter outline

In this chapter, the context of this thesis is set. For this reason, we will give a short introduc-
tion to network analysis, provide the definitions needed in this thesis, and review related
work that is relevant for this thesis.

2.1 Complex networks

Complex network analysis is a methodology for understanding and analyzing the behavior of com-
plex systems [New02]. A complex system consists of independent entities interacting with each
other such that the system exhibits a so-called emergent behavior, a behavior that cannot be ex-
plained by the behavior of the single entities, but only by their interactions. Network analysis
enables the analysis of these interactions by representing the system as a network in which the
system’s entities are represented as nodes and their interactions are represented as edges. Mathe-
matically, networks are modeled as graphs. We distinguish the terms graph and network: While a
graph refers to a mathematical object consisting of nodes and edges, a network consists of nodes
and edges, but these represent the system’s entities and their interactions. Therefore, we use the
term network to refer to a graph structure with a mapping between the nodes and the system’s
entities.

As all network analytic methods and tools are defined on the graph structure, we will introduce the
necessary definitions and notations in the following.

2.1.1 Graph definitions

Definition 2.1: Graph

A graph G = (V, E, ω) consists of a set of nodes V = {v1, v2, . . . , vn}, a set of edges E ⊆
V × V , and a weight function ω ∶ E → R.

If the edge set E consists of unordered pairs {v, w}with v, w ∈ V , the graph is said to be undirected.
If the edge set E consists of ordered tuples (v, w), the graph is called directed. The weight function
ω assigns weights to the edges. If the weight function ω is the trivial function ω(e) = 1 for all e ∈ E,
the graph is called unweighted, and the notation can be simplified to G = (V, E). Otherwise, the
graph is called weighted. In most cases, the edge set E is a simple set allowing at most one edge
from node v to node w and does not contain edges such as (v, v) (so-called self-loops), yielding a
simple graph. In some cases, multi-edges or self-loops are needed, then E is a multi-set allowing
multiple edges from node v to node w and the graph is called a multiple graph. In this work, we
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consider simple, directed, weighted graphs.

If the graph is directed, v is called the source node of the edge e = (v, w), and w is called the target
node of the edge. An edge e = (v, w) ∈ E is called incident to the nodes v and w. If the edge set
contains the edge e = (v, w) ∈ E, then, the nodes v and w are called adjacent to each other or
are said to be neighbors of each other. For a directed graph, we distinguish the out-neighbors (or
successors)

N→(v) = {w ∈ V ∣(v, w) ∈ E} (2.1)

of node v and the in-neighbors (or predecessors)

N←(v) = {w ∈ V ∣(w, v) ∈ E}. (2.2)

The number of neighbors of a node v is called the degree of a node, denoted by deg(v). For directed
graphs, a distinction is made between a node’s in-degree and its out-degree, denoted by deg←(v)
and deg→(v), respectively, as the number of its in-neighbors and as the number of its out-neighbors.

Definition 2.2: Subgraph

A subgraph G′ = (V ′, E′) of graph G = (V, E) is a graph with V ′ ⊆ V and E′ ⊆ V ′×V ′ ⊆ E.
An induced subgraph G′ = (V ′, E′) is a subgraph of G where V ′ ⊆ V and E′ = {(v, w) ∈
E∣v, w ∈ V ′}, i.e., G′ must contain all edges of E for which source and target is in V ′.

Definition 2.3: Walks, trails, and paths

A walk is an alternating (finite) sequence of nodes and edges, P = (v1, e1, v2, . . . , ek−1, vk)
with vi ∈ V and ej = (vj , vj+1) ∈ E for all i ∈ {1, . . . , k} and j ∈ {1, . . . , k − 1}, respectively.
If the edges of P are pairwise distinct, P is called a trail. If nodes and edges of P are
pairwise distinct, P is called a path.

In this work, only simple graphs are considered, thus, P is uniquely determined by its node se-
quence and the notation can be simplified to P = (v1, v2, . . . , vk). The length of a walk P is denoted
by ∣P ∣ and is defined as

∣P ∣ =
k−1
∑
i=1

ω(ei). (2.3)

The start node (or source node) of the walk P is denoted as s(P ) = v1, the end node (or target
node) as t(P ) = vk . The i-th node in the node sequence of P is denoted as P (i) = vi for 1 ≤ i ≤ k.
If a node v is contained in a walk P , we write v ∈ P . Similarly, if an edge e is contained in a walk
P , we write e ∈ P . The set of nodes contained in a walk P is denoted by V (P ), the set of edges
contained in a walk is denoted by E(P ). Note that ∣V (P )∣ ≤ k. We furthermore define the index
set of a walk by I(P ) = {1, 2, . . . , k}. Let Pi,j for any 1 ≤ i ≤ j ≤ k denote the sub-path of P with
Pi,j = (vi, vi+1, . . . , vj).

Definition 2.4: Graph distance

For two nodes v, w ∈ V , the length of the shortest path from v to w is called the distance
from v to w and is denoted by d(v, w). If there exists no path in the graph from v to w, it
is set d(v, w) ∶=∞.

The longest shortest path between any two nodes in the graph is called the diameter of a graph,
diam(G) = maxv,w∈V d(v, w). For a node v and a walk P in G, let d(v, P ) denote the length of
the shortest path from v to any node in P , i.e., d(v, P ) =minw∈V (P ) d(v, w).
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Definition 2.5: Connectedness

An undirected graph is called connected if there exists a path between any two nodes in
the graph. A directed graph is called strongly connected if for any two nodes v, w ∈ V ,
there exists a path from v to w. A directed graph is called weakly connected if replacing all
directed edges in G by undirected edges yield a connected (undirected) graph. A connected
component of a graph G is a maximal connected subgraph of G.

Definition 2.6: k-core

A maximal connected subgraph in G in which all nodes have a degree of at least k, is called
a k-core. A node v has a coreness k if it belongs to a k-core, but not to a (k + 1)-core.

2.1.2 A brief history of complex network analysis

In order to understand the context in which network analysis and its methods evolved, it is useful
to briefly review the historical development of this discipline. The theory of graphs dates back
to the 18th century when Leonhard Euler published a mathematical problem that became famous
under the name Seven Bridges of Königsberg [Eul41]: Through the city of Königsberg, a river flows in
which there are two islands. The city areas on both sides of the river and the islands are connected
by several bridges. The question was: Is it possible to walk through the city using each bridge
exactly once? By transforming the city into a graph structure in which a node is a city area and
an edge is a bridge connecting those areas, it is easier to prove that such a walk cannot exist.
Although Euler did not directly use this representation, Euler’s contribution is the introduction of
a new level of abstraction that made it easier to solve the problem, and which is why this work is
seen as the beginning of graph theory. From then on, the discipline of graph theory evolved, where
the structural properties of graphs were proven and methods for solving problems on graphs were
developed. Examples include questions such as: How many colors are needed when each node of
a graph shall be colored such that any two adjacent nodes are not colored with the same color
(graph coloring problems)? How many graphs with certain properties exist (graph enumeration
problems)? Methods were also developed for deciding whether a graph contains a certain subgraph
(graph isomorphism problems) or for the efficient computation of the shortest paths.

While the field of graph theory is concerned with the structural properties of graphs as mathemat-
ical objects, the field of network analysis uses graph structures as a representation format in order
to analyze the underlying system. One of the first historical examples where a network representa-
tion was used to infer knowledge about the underlying system, was given by Sylvester [Syl78] who
used a graph for representing the structure of chemical molecules in the 19th century. Sociologists
constructed so-called sociograms (network representations in our terminology) for understanding
social systems: In these sociograms, persons are represented as nodes and their relationships are
represented as edges. In the 1930s, Jacob L.Moreno and his colleagues were among the first ones
using these forms of representation [MJ38, Mor77] to understand phenomena in social groups.

Over the years, a large toolbox of methods for analyzing the structure of a network and gaining
insights about the underlying system has been developed, motivated by questions in different con-
texts, such as:

• How can the structure of the network as a whole be characterized? To answer this
question, a lot of measures exist, quantifying some aspect of the network structure, for ex-
ample the size of the network (its number of nodes), the density of the network (the number of
its edges divided by the number of possible edges), the transitivity and clustering coefficient
(both measures for quantifying to which extent the network is locally dense, i.e., whether

11



2 Background and related work

there exist dense substructures), as well as measures based on the nodes’ distance to each
other, for example, the network’s diameter or the average path length (the mean distance
between all pairs of nodes).

• Which nodes are the most important ones with respect to their position in the net-
work? This question can be answered with the help of centrality measures [KLP+05]. Sec-
tion 2.1.3 is dedicated to introducing existing centrality measures that are relevant for this
thesis.

• Which system entities have similar roles in the system? Consider for example a network
representing the social interactions between members of a company or an organization. If
the social structure of each department is built similarly, methods of (structural) equivalence
aim at identifying positions with similar functions in the system [LW71], for example, the
secretary or the department head.

• Which system entities belong together? Particularly in social network analysis, iden-
tifying groups of persons is of interest. For example, when considering who is a friend of
whom, there are groups of highly connected people, with loose connections to other groups
of friends. Identifying these groups through the network structure is the goal of clustering
methods [GN02, DPV05, For10].

• Do system entities form recurring patterns? Particularly in biological networks, for ex-
ample interaction networks of two biological components such as mRNAs and microRNAs,
it has turned out that small subgraphs with a certain structure occur extraordinarily of-
ten [Mil02]. This is why it is likely that those structures (so-called motifs) provide a certain
functionality in the system. Methods for finding such patterns in the network have been
used for identifying potential tumor suppressors for breast cancer [UMZ+12].

• Howwill the system evolve in the future? The previously mentionedmethods are applied
to the network representation of a system at a certain point in time. However, systems often
change over time: entities join or leave the system, new interactions are started or existing
interactions are ended. Link-prediction methods aim at predicting the future evolution of the
system based on its current (or past) structure [LNK07].

Although networks were known in various disciplines (under various names) and methods and
measures for analyzing them were developed, until the end of the 20th century, there did not exist
a research area dedicated to the analysis of networks per se. Networks were rather used as a
form of representation for systems of the respective discipline. This changed at the end of the
20th century when personal computers began to be a more common tool also for research. Until
then, manually collected and curated network representations of systems were mainly analyzed
manually which made it infeasible to consider networks larger than a few nodes. The availability
of personal computers made automated analysis of networks possible which is why more networks
and networks of a larger size could be considered.

During this time, two articles were published that gave rise to the discipline of complex network
analysis as we know it today. Instead of considering the structure of one network in order to un-
derstand the underlying system, these works consider the structure of several networks of different
domains. One paper is by Barabási and Albert [BA99] who considered the network representa-
tions of systems from several domains, for example a network representation of the World Wide
Web (at that time), of the power grid system in the United States, or the citation network where
a node represents a published paper and an edge represents a citation. Their surprising finding
was that the structure of the networks showed similar properties. They considered the networks’
degree distributions and found that the degree distributions of all considered networks showed
so-called scale-free behavior, i.e., the distributions followed a power law. This means that there
are a few highly connected nodes while most nodes have a very small degree. This is surprising
for two reasons: (i) Since these systems were formed by different mechanisms, different structural
properties could have been expected. (ii) Until then, random graphs such as the famous G(n, p)
or G(n, m) [ER60] were used as a model for unknown network structures. In those random graph
models, the degrees follow a Poisson distribution [Bol01]–which is very different to a power-law
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distribution.

The second seminal paper in the early days of network analysis is the one by Watts and Stro-
gatz [WS98]: Until then, it was assumed that network representations of complex systems can be
approximated by either of two graph models: random graphs, such as G(n, p), or regular graphs
where nodes are thought of being placed on a lattice and each node is connected to its direct lattice
neighbors. Watts and Strogatz also used the availability of several datasets containing network rep-
resentations of systems from different domains and considered the average path length as well as
a newly introduced measure, the clustering coefficient of these networks. When comparing these
two structural properties of the real-world networks to the properties of the regular graph and the
random graphs, they found that neither model showed the same characteristics as the real-world
networks: While regular graphs exhibit a high clustering coefficient and a large average path length,
random graphs show small clustering coefficients and small average path lengths. Real-world net-
works, however, often have a high clustering coefficient and small characteristic path lengths at the
same time. Motivated by this observation, Watts and Strogatz introduced the famous Small world
model where a parameter p controls how many random edges are inserted into a regular graph
such that with increasing values of the parameter p, the generated graphs approach a graph gener-
ated by a pure random procedure. Interestingly, there is a range of the parameter p for which the
generated graphs show the same properties as the real-world network: a high clustering coefficient
together with a small average path length.

2.1.3 Centrality measures

In this thesis, we are mainly concerned with one particular type of network measures, namely
centrality measures. Thus, the following section will briefly introduce the most common centrality
measures. One question that occurs frequently in network analysis is concerned with the position
of the nodes within the network: Which node is the most important node due to its position in the
network? This can be relevant in various scenarios: In marketing, it can be of interest to determine
persons who have a large impact to promote new products; in an epidemic scenario with a limited
number of vaccination doses available, it might be of interest to identify persons whose vaccination
will have the largest impact on the spread of the disease; for infrastructure planning, it might be of
interest to identify the most essential waypoints of a system.

This has led to the notion of centrality. Since the first mention of structural centrality by Bave-
las [Bav48], a large number of centrality measures have been proposed because there are different
aspects why a node can be considered as being central in the network. Borgatti et al. named sev-
eral of these aspects [BEJ13]. A node can–for example–be regarded as important because removing
the node from the network would affect the network. A node can also be regarded as central be-
cause it is connected to a large number of other nodes. Freeman [Fre78, FRM79] reviewed existing
centrality measures and distinguished between three aspects on which a node’s centrality can be
based: (i) its connectedness, through which a node has a large potential of immediate influence on
other nodes; (ii) its role as mediator, through which a node has a large potential of control over the
communication of other nodes; and (iii) its closeness to other nodes, through which a node has a
large potential of indirect influence on other nodes. Based on these three aspects, Freeman pro-
posed a set of measures that are still among the best-known centrality measures: degree centrality,
betweenness centrality, and closeness centrality.

The following paragraphs will introduce the most common centrality measures that aim at cap-
turing the importance of a node with respect to different aspects. Common to all of them is that
they are functions assigning a value to each node, based only on the structure of the graph. An
overview of existing centrality measures is provided by Koschützki et al. [KLP+05], a classification
of centrality measures based on their computation is given by Borgatti and Everett [BE06].

13



2 Background and related work

Degree centrality The degree centrality [Nie74, Fre77] is designed to measure a node’s direct
connectedness to other nodes in the network, by simply counting the number of a node’s incident
edges:

Definition 2.7: Degree centrality

For a node v, the degree centrality D(v) = deg(v) is simply defined as the degree of node
v. For comparing the degree centrality values of different graphs, the degree centrality is
sometimes normalized by its possible maximum value ∣V ∣−1, yielding the normalized degree
centrality (denoted by a superscript N )

DN(v) = deg(v)
∣V ∣ − 1

. (2.4)

For directed graphs, we can distinguish between the in-degree centrality and the out-degree
centrality, counting the in-neighbors and the out-neighbors of a node respectively.

The degree centrality measures the potential direct effect of a node since it only counts the direct
connections of a node to other nodes.

Closeness centrality A common motivating example for closeness-like centrality measures is
a facility location problem: Consider an environment, such as a city, with geographic distances
between different positions. A facility such as a supermarket or a hospital, needs to be placed at
some position in the environment. There are different possible optimization criteria for the op-
timal facility location. One example: the total distance of the facility from all other positions in
the environment is minimal which leads to the classic closeness centrality. Based on the ideas of
Bavelas [Bav50], Beauchamp [Bea65], and Sabidussi [Sab66], Freeman [Fre78] defined closeness
centrality as

CF (v) =
∣V ∣ − 1

∑w∈V d(w, v)
(2.5)

A node is thus considered as central, i.e., it is a good position for a facility, if the average distance
from all other nodes to it is small. There are a few issues with this original definition which is why
we will use a slight adaptation. Since in a directed graph d(v, w) is not necessarily equal to d(w, v),
we will define two variants, an in-closeness counting the distances to node v, and an out-closeness,
counting the distances from v. If there are nodes for which there exists no path between them,
their distance is usually set to ∞ which is problematic with the formula above. We will thus use
the following definition:

Definition 2.8: Closeness centrality

For a node v ∈ V , its in-closeness centrality is defined as

C←(v) = ∑
w≠v∈V

∣V ∣ − 1
d(w, v)

(2.6)

and its out-closeness centrality is defined as

C→(v) = ∑
w≠v∈V

∣V ∣ − 1
d(v, w)

(2.7)

with d(v, w) the length of the shortest path from v to w, v, w ∈ V , and the convention
1
∞ = 0.
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2.1 Complex networks

Betweenness centrality Betweenness centralitywas independently introduced by Freeman [Fre77]
and by Anthonisse in an unpublished work [Ant71]. It is supposed to measure whether a node is
positioned between other nodes: Nodes that due to their position are able to control the communi-
cation between other nodes, so-called gatekeepers, are thought to be in a powerful position since
they have the power to interrupt any flow by not forwarding it. This idea is quantified by the
following formula:

Definition 2.9: Betweenness centrality

For a node v, its betweenness centrality is defined as

B(v) = ∑
s∈V,
s≠v

∑
t∈V,

s≠t≠v

σst(v)
σst

(2.8)

where σst denotes the number of shortest paths from s to t, and σst(v) denotes the number
of those paths containing the node v.

It is thus supposed to measure the amount of flow that a node is able to control by being able to
stop the flow when not forwarding it. A slightly different variant is the betweenness centrality
including endpoints:

Definition 2.10: Betweenness centrality including endpoints

The betweenness centrality including endpoints for a node v ∈ V is defined as

Be(v) = ∑
s∈V
∑
t∈V

σst(v)
σst

(2.9)

Feedback centralities Another family of centralities considers a different idea for centrality: A
person or another entity can also be regarded as important if they have the potential of influencing
other important persons. Therefore, nodes connected to nodes with a high centrality value should
also get a high centrality value themselves. This idea leads to several centralities, for example, the
Eigenvector centrality.

Definition 2.11: Eigenvector centrality

For a node v, its Eigenvector centrality [Bon72] is defined as

E(v) = 1
λ
∑

w∈N(v)
E(w) (2.10)

where λ is a constant, and N(v) is the set of neighbors of node v.

From the definition, it can be seen that a node’s Eigenvector centrality is dependent on the cen-
trality value of its neighbors. The name can be explained as follows. The above equation can be
rewritten to the eigenvector equation Ax = λx where A is the adjacency matrix of the graph, a
matrix of size ∣V ∣ × ∣V ∣ where aij = 1 if there is an edge from node vi to node vj and aij = 0
otherwise. x is an Eigenvector, and λ is the Eigenvalue. Since there can be several Eigenvectors
and Eigenvalues that solve the Eigenvector equation, the Eigenvector centrality is regarded as the
Eigenvector with the largest Eigenvalue. Thus, the i-th entry in the corresponding Eigenvector is
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2 Background and related work

the Eigenvector centrality of node i.

There are several centralities with a similar motivation as the Eigenvector centrality, for example
the Katz centrality [Kat53], or Google’s PageRank centrality [PBMW99] which is used by Google’s
search engine to rank web pages by their relevance. Here, the structure of the web pages is con-
sidered as a network where links between pages are represented as directed edges. Also for the
PageRank centrality, the centrality of a node is dependent on the centrality of its neighbors, more
precisely, on the centrality of the nodes pointing to it. The idea is that a web page should be
considered as important if it is referenced by other (and many) important pages.

Definition 2.12: PageRank centrality

For a node v ∈ V , its PageRank centrality is defined as

PR(v) = d ∑
w∈N←(v)

PR(w)
deg→(w)

+ 1 − d

∣V ∣
(2.11)

where deg→(v) is the out-degree of node v, N←(v) is the set of in-neighbors of v, and
d ∈ [0, 1] (usually called a damping factor).

The intuition of the measure is as follows: Similar to the Eigenvector centrality, the PageRank
centrality of a node v is dependent on the centrality of the nodes pointing to v. If, however, node
w is pointing to a large number of nodes, w should contribute a smaller value to the centrality of
v. Therefore, the contribution of w to its neighbors’ centrality is divided equally among all the out-
neighbors of w which introduces normalization by the out-degree of w. Additionally, a so-called
damping factor d is introduced which can be understood as a probability, and which can be best
explained by the model of a random surfer, randomly moving through the network. In each step,
with probability d, the random surfer randomly chooses one of the outgoing links and moves to
the chosen web page. With probability 1 − d, however, the random surfer is “jumping” to a node,
chosen randomly from the set of all nodes. The PageRank centrality for a node v can then also
be understood as the probability that the random surfer is at node v. Introducing this damping
factor overcomes several problems: Otherwise nodes without any out-going edges would possibly
get high centrality values since the random surfer cannot leave this node anymore.

2.2 Network processes

The abovementionedmethods andmeasures have been used in various contexts to infer knowledge
about the underlying system. However, it needs to be emphasized that the network representation
itself, all measures and methods are bound to assumptions. Technically, with a network represen-
tation at hand, all listed methods and measures can be applied to it. But when the results of the
applied methods are interpreted with respect to the underlying system, the methods’ assumptions
need to be regarded.

Borgatti discussed these assumptions for the most common centrality measures [Bor05]. He points
out that each common centrality measure can be understood as a measure quantifying a node’s
relevance for something flowing through the network. This aspect was already pointed out by
Freeman when he introduced betweenness-based centrality measures [Fre77]:

Thus, the use of these three measures is appropriate only in networks where between-
ness may be viewed as important in its potential for impact on the process being ex-
amined. Their use seems natural in the study of communication networks where the
potential for control of communication by individual points may be substantively rel-
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evant.

In this connection, we will use the following terminology: We understand a network process as a
model of how something is flowing through the network whereas the network flow itself consists
of observable trajectories of something using the network. We will use the term trajectory if the
empirically observed route of one process entity is referred to, while we will use the term walk (or
path or trail) if only the structure of the trajectory in the graph is relevant or if it is referred to as a
possible walk in the graph that is not necessarily taken by a process entity.

Each centrality measure does not only assume the presence of a network flow, but also certain
properties of the network flow. Borgatti [Bor05] identified two dimensions along which such a
process model can differ: the type of node-to-node transmission and the type of trajectories
used. For the latter, he distinguishes between shortest paths, paths, trails, and walks: For walks,
there is no restriction of multiple node or edge visits; a walk is called a trail, if nodes are contained
at most once (while edges might be visited multiple times). A trail is called a path, if no node or
edge is contained more than once (see also Definition 2.3). For the dimension of node-to-node
transmission, Borgatti differentiates between a transfer mechanism and a duplication mechanism.
For processes with a transfer mechanism, an indivisible process entity literally moves from node to
node. Therefore, the process entity can only be at one node at one point in time. For processes
with a duplication mechanism, the process entities, such as pieces of information or infections,
disseminate to the next nodewhile still staying at the current node. The duplicationmechanism can
be further distinguished into two types: parallel and serial duplication. With a parallel duplication,
the process entity is duplicated onto all neighbors of a node at once, while with a serial duplication,
the process entity is duplicated onto the node’s neighbors one by one.

2.2.1 Which process properties are assumed by centrality measures?

All introduced centrality measures can be interpreted as measuring a node’s importance with re-
spect to a network process. For this interpretation, the different measures additionally contain
assumptions about the properties of the flow process. In this thesis, we focus on network processes
and their properties with respect to centrality measures. Therefore, we will briefly review the sin-
gle assumptions of each measure as stated by Borgatti [Bor05], in the following section. Table 2.1
summarizes the identified assumptions.

Degree centrality Degree centrality only considers the number of incident edges of a node; thus,
it only measures the direct effect of or on a node. Indirect effects such as A affecting C via B are not
caught by this measure. If the measure is interpreted with respect to a network process, there are
two possibilities [Bor05]: It either assumes a process that can only move one step, or it measures
the effect of a flow process within one time step. Borgatti names situated knowledge construction
as an example of a process without indirect links, where two nodes share something that is unique
to them and cannot spread further. The second possibility listed by Borgatti is to measure the effect
of a flow process within one time step. Consider a network where each node can either be infected
or not and the infection can spread from node to node. If a certain proportion of nodes is infected
at one time point, the degree centrality is directly proportional with a node’s risk of getting infected
in the next time step.

Borgatti argues that degree centrality is appropriate for processes with a parallel duplication mech-
anism where the initial distribution over the network is random, or for transfer processes where a
process entity is performing an infinitely long random walk through the network [Bor05]. In the
first case, degree centrality is an indicator of the risk of being infected in the following step; in
the second case, degree centrality is proportional to the expected number of visits by the random
walker. When considering for which processes with which types of trajectories degree centrality is
appropriate, it is noticeable that for this centrality, all types of trajectories except shortest paths are
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Table 2.1 Centrality measures and their assumptions about the network flow: Table from Borgatti [Bor05]
(reprinted from [Bor05], Copyright (2004), with permission from Elsevier): Which common centralitymeasures
assume which type of network process?

Transmission mechanism
Parallel duplica-
tion

Serial duplication Transfer

Tr
aj
ec

to
ry

ty
pe Shortest paths Closeness Closeness,

Betweenness
Paths Closeness, Degree
Trails Closeness, Degree
Walks Closeness, Degree,

Eigenvector

allowed. For processes using solely shortest paths, degree centrality cannot give any interpretable
number for the importance of a node.

Closeness centrality By calculating the total distances of all nodes to node v (or its inverse),
closeness centrality can be understood as a measure for expected arrival time. If a process entity
starts in any of the nodes and moves to v on the shortest path, the closeness score of v indicates the
expected arrival time of the process entity at v. Nodes for which all other nodes are quite close, will
have a higher closeness score, which is why a process entity will arrive at v earlier–in expectation.
In this measure, it is assumed that the process entities only use shortest paths. This implies two
further aspects: first, each process entity also has a target to reach; second, it knows how to get
there as fast as possible. Borgatti argues that closeness centrality is appropriate for measuring a
node’s importance with respect to two types of processes: transfer processes along shortest paths,
and parallel duplication processes [Bor05]. He mentions that there are also assumptions about
reachability in the measure. Since the measure in its original definition by Freeman [Fre77] given in
Equation 2.5 is not able to handle disconnected graphs, it is implicitly assumed that only connected
(and for directed graphs, strongly connected) graphs are considered. For disconnected graphs, the
measure will yield undefined or infinity for every node (depending on how the distance between two
nodes that are not reachable from each other is defined). Additionally, for a node v, the (potential)
traffic from all other nodes to v is considered. This includes two assumptions: First, it is assumed
that there is traffic from each node w to v (or: the probability that there is traffic from w to v
is equal for each w). Second, since all distances are weighted equally, the amount of traffic from
w to v is considered as equally important for all w. Apart from that, all centrality measures that
consider graph distances such as closeness centrality, implicitly assume that graph distances are
actually a meaningful concept for the network and network flow at hand. This seems to be an odd
requirement at first sight. The reasoning is as follows: In networks representing infrastructures
such as road networks, graph distances have a clear semantic and it is essentially different whether
two nodes have a distance of 10 km or of 1000 km. In other networks, this is not that clear: Friedkin
analyzed communication networks in academic contexts [Fri83], and found a so-called horizon of
observability, a distance beyond which members of the network are not aware of the work of the
other member anymore. Therefore, for a member, it is of the same quality whether other members
are, e.g., 10 or 20 hops away if both distances are beyond this horizon of observability–both are out
of his sight which is why there will never be any targeted flow between these members. It is clear
that an untargeted flow such as the spread of information can exist between those members, and
for such a flow, it is in most cases more probable that an information reaches the member who is
10 hops away than the one who is 20 hops away (and probably faster). For targeted flows, however,
it might occur–depending on the flow process at hand–that each flow trajectory has a maximal
reachability bounded by the horizon of observability. Since closeness centrality assumes a targeted
flow, this aspect needs to be considered, too.
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Betweenness centrality Betweenness centrality calculates the proportion of the number of short-
est paths through v to the total number of shortest paths between two nodes–this is done for
each node pair and summed up. Consequently, if there are several shortest paths, it is assumed
that the flow process can only take one of them, and not several simultaneously as would be pos-
sible for duplication processes. This implies that the measure expects a process with a transfer
mechanism [Bor05]. Additionally, by counting shortest paths, it is assumed that the flow process
only travels along shortest paths. Similarly to the assumptions of the closeness centrality, this im-
plies that each process entity has a target to reach, and knows how to reach it on a shortest path.
Furthermore–also similarly to closeness centrality–it is assumed that there is potential traffic be-
tween each node pair and the traffic between each node pair is of equal importance. This is only
true if there is a process flowing between each node pair–or if the probability that there is traffic
between two nodes is equal for every node pair and betweenness centrality measures the expected
amount of flow in which a node is involved.

Availability of edges Common to all introduced measures and generally to all path-based mea-
sures is the assumption that all paths in the graph are available. In static networks, edges that have
been inserted once, are constantly present. This is different for dynamic networks where edges can
be added or deleted over time, or temporal networks where each edge has timestamps indicating
at which time points the edge is valid [HS12]. However, most network measures are designed for
static networks in which any timestamps of edges are ignored. This is not always a valid assump-
tion: In some systems, such as air transportation systems, connections are not always available,
but only at certain time points. In other systems, there exist dependencies: a certain connection
(b, c) might only be available for a process entity if the connection used directly before was (a, b).
This is, however, mainly a matter of representation. Consider, for example, networks constructed
from trajectory data: Trajectories a → b → c and d → b → e will usually yield a network where
the nodes a, c, d, and e are connected to node b. Aggregating the trajectories to such a network
hides any dependencies contained in the trajectories. In this network representation, it is no longer
taken into account that the edge (b, c) is only viable when coming from a. An alternative form of
representation are so-called networks of higher order in which nodes do not represent single actors,
but tuples of actors (for example (a, b)) [XWC16]. It is, however, not clear which order is sufficient:
Second-order networks incorporate dependencies of two consecutive steps, third-order networks
take into account dependencies of depth three, etc. Scholtes presents a model selection approach
for determining the order of a network [Sch17]. For the first case, where edges have a timestamp,
the usual approach when centrality measures are applied, is to ignore the timestamps and apply
the centrality measure to the network without the timestamp. This is not unproblematic since the
centrality values will be based on process flows which are not possible in a real system due to the
non-availability of edges. For this reason, Scholtes et al. propose variants of centrality measures
that only incorporate time-respecting paths, i.e., paths in which the order of the contained edges
respects the order of their timestamps [SWG16].

2.2.2 Further properties of network processes

While Borgatti used the dimensions of trajectory type and mechanism of node-to-node transmis-
sion for categorizing network processes, we argue that network processes can be categorized by
more than these two dimensions (see Table 2.2 for an overview):

Target to reach Network processes that move towards a goal will show different properties than
those without a goal: In particular, they will stop when the target is reached while those
without a goal will continue moving through the network. Based on other constraints, such
as knowledge of the network’s structure, and the ability of the process entity to optimize its
way through the network, the chosen paths might come close to the shortest paths. Network
processes without a goal or with short-term goals like money transfer will look more like
random walks on the infrastructure. Processes with a target can be further distinguished
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into those where all entities have exactly the same target (a player trying to solve a game),
and those where each entity has its own target.

Routing mechanism How is the trajectory of a process entity determined? There are processes
such as a parcel being delivered, where the trajectory is predefined before the entity starts its
trajectory. Hence, while moving through the network, no routing choices are made. This also
requires global knowledge of the network structure to be available for determining the route
(whichwe call global routing). This can be different for other processes. For a person browsing
the Internet searching for some specific information, the global knowledge of the network
structure is not available, but the decision onwhich page to visit next is made by the browsing
person on the basis of the local view of the network (we call this scenario local routing by
process). There is yet a third scenario, such as the propagation of a piece of information
through a social network. The decision of which node the piece of information is forwarded
to is also made on the basis of local knowledge of the network, but not by the process entity,
but rather by the network node (local routing by node).

Forwarding or Adopting In the case of processes routed locally by the nodes, we can distinguish
processes by the criterion of whether the sending node or the receiving node is of relevance:
Consider the propagation of a gossip story where a person decides to whom the story is told.
The propagation of a behavior or a trend is different: Although the sending node decides
about showing the behavior or promoting a trend, it is actually the receiving node that de-
cides whether to adopt it or not. For the latter, Centola distinguishes between simple and
complex contagion [Cen10]: For simple contagion, the exposure to the process by a single
neighbor node is sufficient to adopt it, while for complex contagion processes, a node needs
to be exposed to the specific behavior from several neighbor nodes before it adopts it (in social
networks, this is known as social reinforcement). For both cases, forwarding and adoption,
a further distinction can be made regarding the aspect whether the forwarding or adopting
of a process is a voluntary act of the node: Telling a gossip story or adopting a behavior is
a voluntary act of the concerned node, while for the spread of an infection, this happens
without the active decision of the concerned node. In the first case, there can be individ-
ual differences in the adopting/forwarding behavior of the nodes–some nodes might adopt a
process with fewer exposure events than others. De Domenico et al. write “Despite the fact
that information spreading shares some general dynamical features with the spreading of
diseases, their nature is deeply different. […] Information […] is only worth spreading or not
and this decision is made by individuals, unlike the case of disease spreading.” [DDLMM13]
In the context of information diffusion, Milli et al. differentiate between active and passive
diffusion [MRPG18]: The nodes of a network can be active in the sense that they can “decide”
whether they want to adopt a behavior or another process. In other types of diffusion pro-
cesses such as the spreading of a disease, the nodes are passive in the sense that the diffusion
process will spread to them without them having any possibility to avoid it.

Interaction of network and process Do the process and the system interact in any way such
that the one can change the other? In most cases, the network can be seen as the infras-
tructure in which the process can disseminate; thus, the process is restricted by the network
structure. In other cases, there is a feedback loop such that, in the long run, the process can
change the network structure. This is, for example, the case for transportation networks:
When a connection between two airports is in high demand, but only an indirect connec-
tion via an intermediate stop is available, the airline might install a new direct connection.
Hence, this would yield a new edge in the network representation. On the other hand, when
a connection between two airports is not demanded by a sufficient number of passengers,
the connection might no longer be offered by the airline; hence, the edge would be removed
from the network. This effect has been analyzed in the context of information flow in social
networks [WRP+13]. A further example is the spreading of diseases: If a disease is lethal, its
spreading might lead to the removal of nodes of the network. Thus, the network process will
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Table 2.2 Catalog of network process properties that determine the way an entity uses the network structure.
The first two properties, transmission mechanism and trajectory type, were proposed by Borgatti [Bor05].

Dimension Possible values

Transmission mechanism [Bor05]
transfer
serial duplication
parallel duplication

Trajectory type [Bor05]

shortest paths
paths
trails
walks

Target to reach
same target for all entities
individual targets
no target

Routing mechanism
local routing by node
local routing by process
global routing

Adopting
forwarding
adoption: simple contagion
adoption: complex contagion

Interaction network and process
no interaction
process shapes network

considerably change the network’s structure by the removal of a proportion of the nodes.

2.3 Empirical analysis of network flows

As described in the previous section, the most frequently applied centrality measures contain a
process model that uses shortest paths or a parallel duplication mechanism [Bor05] (see also Ta-
ble 2.1). This insight raises the question for which real-world network flows the existing centrality
measures are appropriate. In this thesis, we will consider datasets containing real-world network
flows in order to test to which extent they fulfill the assumptions of centrality measures (in Chap-
ter 3). Therefore, the following section reviews prior works analyzing the empirical properties of
real-world network flows.

2.3.1 Empirical analysis of flows with a transfer transmission

For transfer processes, all introduced centrality measures only consider shortest paths (their ex-
istence, their length, or their number) [Bor05], apparently assuming that the relevant network
process is moving on shortest paths. This also implies that the single process entities have a target
to reach and that they know how to reach this target. While this might be true for several net-
work processes, it has been shown for various processes that the aim to use shortest paths is rarely
achieved overall.

Processes with a target to reach might involve humans–either as process entities themselves nav-
igating through a network, or as nodes in a network forwarding process items. An example of the
latter are social networks of humans who pass a piece of information to their acquaintances. While
a piece of information normally does not have a target to reach, this is different in the famous
experiment of Milgram from the late 1960s [Mil67]. Milgram asked randomly1 selected people to

1To be precise, participants were recruited by an advertisement in a newspaper specifically looking for persons who con-
sidered themselves as ”well-connected“.
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send a letter to a target person by forwarding it to one of their acquaintances–who should then
repeat this procedure until the letter eventually reached its target person. The experiment is also
called Small-world-experiment since Milgram found that those letters that arrived at the target per-
son only needed five intermediate steps, so this was surprisingly short. Although the experiment
was not based on a large data base (in the different runs of the experiment, only 15 to 35 % of all
letters actually reached the target person), it still gives a hint that humans are able to find sur-
prisingly short paths in a network of which they only have a local view. This type of experiment
was later repeated on a larger scale, for example by Dodds [Dod03] Adamic and Adar [AA05], and
Backstrom [BBR+12]: Dodds recruited almost 100 000 participants who were asked to forward an
email to a social acquaintance they considered to be closer to the target person (one of 18 target
persons). He found similar effects: Themajority of message chains did not reach the target persons,
while the successful chains were quite short–only needing between five to seven steps.

For processes where humans navigate through a virtual or physical environment, it has been shown
in various cases that humans are surprisingly efficient in finding a short way through the environ-
ment although rarely the optimal one. This observation has been made for human navigation in
information networks, such as the network consisting of Wikipedia articles and the hyperlinks
pointing to articles: West and Leskovec analyzed more than 50 000 human paths through this net-
work collected by the game Wikispeedia where a player needs to navigate from a source to a target
article [WL12b]. They found that the paths taken by the humans are rarely optimal, but on av-
erage only one step longer than the optimal path (with the optimal paths being between two and
nine steps long). Similar results exist for human navigation in word networks where two words
are connected by an edge if they differ in exactly one letter. Studies working on different datasets
have found that the paths taken by humans are on average 1.7 times longer than the optimal
path [SIVMZN12], when only experienced participants are considered, this factor even decreases
to 1.1 to 1.2 [GBR+20].

Even for human navigation in physical environments where a global view of the environment is
possible via maps, it has been shown that humans use short paths, but no shortest paths. This
has been shown for human travel patterns within cities [ZL15] and for the routes of minicab taxis
in London [MAC15]. It seems that the drivers prefer anchor-based routes, i.e., they use certain
locations as landmarks for constructing the individual route, then first navigate to the landmark
and from there to the destination.

For transfer processes where the navigation is not done by humans and where optimal paths
could be expected, there is also evidence that this assumption is not necessarily true. Gao and
Wang [GW02] analyzed the routes of packages being routed on the Internet. They found that
more than 20 % of all considered paths were at least one hop longer than the shortest path. Csoma
et al. [CKR+17] looked at trajectories of empirical network flows from different domains, including
trajectories within the human brain, and also found a considerable number of non-optimal paths.

2.3.2 Empirical analysis of flows with a duplication transmission

For processes with a duplication transmission mechanism, there is a wealth of studies analyzing
the properties of real-world network flows empirically. Since this thesis focuses on network pro-
cesses with a transfer transmission mechanism, we will only name a few studies about duplication
processes. Several studies provide details of information spreading on the Twitter platform, for
example studies by Romero et al. [RMK11] or De Domenico et al. [DDLMM13], on the Facebook
platform [BRMA12] or via email communication [IM09]. The spreading of memes has also been
the subject of research [ALF12]. An overview of studies on information diffusion in online social
networks is provided by Guille et al. [GHFZ13]. Christakis et al. [CF08, CF07] empirically ana-
lyzed the spreading of behavioral patterns or habits in a social network, such as obesity or smoking
habits. They found that the behavioral patterns of close friends and family members have a signifi-

22



2.3 Empirical analysis of network flows

cant impact on the person’s own behavior. Investigating the spreading of a disease in networks is a
whole research field in complex network analysis (and other fields): Pastor-Satorras and Vespignani
studied the spreading dynamics of a computer virus in scale-free networks, Rocha et al. studied
the spreading of infections in sexual contact networks [RLH11], and Salathe and Jones investigated
the dynamics of infections in networks with a community structure [SJ10], to name but a few.

2.3.3 Using empirical network flow data for inferring knowledge about
the system

Empirical real-world network flows show a different behavior than could be expected from the
network structure. Therefore, it is possible to use real-world flows to infer additional knowledge
about the system that could not be derived using only the network structure. This has been done in
a few approaches. West et al. [WPP09] used human navigation trajectories through an information
network to infer a semantic similarity between Wikipedia articles. Rosvall et al. [REL+14] used the
data of real-world network trajectories to deduce community structures of the network. Weng et
al. [WRP+13] used a dataset containing the actual diffusion of information in a social network, to
predict the evolution of the network, i.e., the formation of new links. Yuan et al. [YZZ+10] made
use of real taxi trajectories to compute the quickest path between places in a city: Thus, instead
of using the global knowledge about the network structure, they used the collective knowledge of
the taxi drivers contained in their trajectories to compute the effectively shortest path. A different
approach is presented by Zheng et al. [ZZXM09] who used GPS trajectories of travelers to identify
popular places. In Chapter 6, we will use the empirical human trajectories in a game’s state space
to infer knowledge about cognitive process of human problem-solving.

2.3.4 Existing adaptations of centrality measures

The assumption a process is using shortest paths is not a realistic presumption in many cases.
Stephenson and Zelen noted in a work in 1989: “It is quite possible that information will take a
more circuitous route either by random communication or may be intentionally channeled through
many intermediaries in order to “hide” or “shield” information in a way not captured by geodesic
paths.” [SZ89] Thus, there exist adaptations of centralitymeasures containing shortest paths. These
adaptations either relax the restriction of shortest paths by additionally allowing longer paths, or
incorporate a different process model into the measure. An example for the incorporation of a
different process model is Freeman’s flow betweenness centrality [FBW91] where not the number
of shortest paths is counted, but rather the number of paths in which a node is contained in if there
is a maximal flow between all node pairs. For the flow betweenness centrality, non-shortest paths
can also contribute to the centrality value of a node. While the assumption of shortest paths is left
aside for this variant, it is still assumed that the flow does have a target to reach, namely to get from
each node to any other node. This might not be a realistic assumption in many cases. Furthermore,
it is assumed that the process uses ideal paths–not in the sense of length, but with respect to the
maximal flow. For this reason, Newman suggests a random walk betweenness centrality [New05].
He notes that “in most cases a realistic betweenness centrality should include non-geodesic paths
in addition to geodesic ones” [New05]. The idea of his random walk betweenness is to sum the
probabilities that random walkers in the network starting and ending in two nodes will visit node
v on their random walk. A similar approach was already used earlier by Bonacich who proposed a
power centrality that measures the expected number of times that a random walker with a fixed
probability of stopping at each step, visits a node, averaged over all possible starting points for
this walk [Bon87]. Similar adaptations exist for closeness centrality where instead of the length
of the shortest paths from all nodes to v, the expected number of steps is considered that random
walkers starting in each node need to reach v; for example Markov centrality [WS03], or random-
walk centrality [NR04]. PageRank centrality [PBMW99] is another example of a centrality measure
based on the model of a random walker.
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However, random walks are also often not a realistic approximation for relevant network flows:
Chierichetti et al. [CKRS12] for example examined the assumption that web users can be modeled
using a Markov chain. Similarly, Meiss et al.[MMF+08] considered human clickstream data and
compared a relevance ranking of the pages obtained from real user traffic with the ranking obtained
by the PageRank measure. They found that, assuming a random walker, PageRank was not able
to rank the pages with respect to the actual user flow. Newman [New05] notes “our random-
walk betweenness and the shortest-path betweenness of Freeman [Fre77] are at opposite ends of
a spectrum of possibilities, one end representing information that has no idea of where it is going
and the other information that knows precisely where it is going. Some real-world situations may
mimic these extremes while others, such as perhaps the small-world experiment, fall somewhere in
between.” Thus, in Chapter 3, we will also test to which extent the considered real-world network
flow trajectories can be approximated by variants of random walks. In Chapter 4, we will then
evaluate the impact on the results of the centrality measures that the real-world network flows are
neither well-approximated by shortest paths nor by random walks.
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Properties of network flows in
complex networks

Chapter 3

Chapter outline

In this chapter, we are concerned with the properties of real-world network flows. Par-
ticularly for centrality measures, it is known that they implicitly assume a process flowing
through the network and also assume certain properties of the network flow [Bor05]. There-
fore, we collected datasets containing the trajectories of real-world network flows from dif-
ferent domains. In this chapter, we will use the datasets of real-world network flows to
examine whether they fulfill those assumptions: It is tested whether real-world network
flows fulfill the assumption of shortest paths and the assumption of equal amount of flow
between each node pair. Then, it can be judged whether–for example–betweenness cen-
trality is a suitable measure for measuring the nodes’ importance with respect to the actual
network flow. We find that real-world network flows often deviate considerably from their
assumed properties. This is why we will investigate whether other simple trajectory mod-
els, i.e., shortest paths and random walks, are able to reproduce the properties of real-world
network flows. Since real-world network flows show different properties than these simple
models, the next chapter (Chapter 4) will then investigate which impact these deviations
have on the results of classic centrality measures.
The work in this chapter is mainly based on our publications [5] and [8].

3.1 Motivation

Most well-known centrality measures assume the presence of a network process with specific prop-
erties [Bor05] (see also Chapter 2). Consider the betweenness centrality as an example: To compute
the betweenness centrality for a node v, we count for each pair (s, t) howmany shortest paths from
s to t contain v, in relation to the total number of shortest paths from s to t. These proportions of
all (s, t)-pairs are summed up which yields the betweenness centrality for node v. The motivation
for this measure is intuitive: If a node is positioned between many node pairs, this node is able to
control the communication of these nodes and possesses a certain power over the other nodes by
possibly not forwarding some information. This explanation already makes it clear that between-
ness centrality is intended to measure a node’s importance with respect to some network process,
such as flow of information. When taking into account the formula, it can be seen that the process
model presumed by this centrality measure needs to consist of indivisible items since one process
entity can only use one path at once and not several simultaneously [Bor05]. Furthermore, what-
ever flows through the network, uses only shortest paths, since only these are counted. In other
words, betweenness centrality implicitly incorporates a model of a network process consisting of
indivisible items and using shortest paths. Furthermore, the number of shortest paths between
each node pair contributes a value of at most 1 to the betweenness value, i.e., the amount of flow

25



3 Properties of network flows in complex networks

from s to t is weighted equally for every node pair (s, t). Thus, it is assumed that there is flow be-
tween each node pair, and the amount of flow between each node pair is equally important. Hence,
a node with a high betweenness centrality value is only important with respect to processes with
these properties. Using betweenness centrality to measure the importance of a node with respect
to a process that does not have these properties, such as the spreading of a piece of information,
will yield uninterpretable or even misleading results.

Borgatti also examined other well-known centrality measures for their incorporated process model
and found that many relevant processes, such as infection or information spreading, have different
properties than those assumed by most centrality measures [Bor05]. There are, however, network
processes for which a transfer mechanism and the usage of shortest paths can be expected, for
example for the flow of passengers in a transportation system. We therefore collected datasets
containing information on how a network flowmoves through a network and investigated to which
extent the real-world trajectories are in accordance with their assumed properties. Thus, the main
question of this chapter is:

Do real-world network flows satisfy the properties which are assumed of them by several
network measures, particularly by centrality measures?

We therefore structured this chapter along the assumptions contained in centrality measures1:

(i) From where to where does it flow?
(ii) How does the flow move from its source to its target?

For the first part, in Section 3.3, the real-world datasets are tested regarding the assumption that
there is an equal amount of flow between each node pair. We find that this assumption is not
fulfilled in any of the considered datasets: There are a few node pairs between which a large pro-
portion of the total amount of flow is accumulated, while there is only a small amount of flow or
even no flow between the other nodes. In Section 3.3.1, we also investigate whether standard net-
work measures can explain the high usage of certain nodes. Section 3.3.2 provides an explanation
on which node pairs are used more often than others.

For the second part, Section 3.4 contains an analysis of the available trajectories along the follow-
ing questions (a) Which types of trajectories are found in real-world flow trajectories? (b) Is the
assumption of shortest paths fulfilled? This also includes an analysis in Section 3.4.3 of whether all
possible alternative paths are taken with equal intensity. The motivation for this analysis can again
be best understood by looking at the example of betweenness centrality: If there are two shortest
paths from node s to node t, and a node v is contained in one of them, this node pair contributes
a value of 1/2 to the betweenness value of v. This contains the assumption that either the flow
from s to t is split equally among the two alternative paths, or the probability that the flow takes
either of the alternatives is equal for both. In Section 3.4.3, we will therefore investigate whether
this assumption is met by real-world network flows. As a start, a description of the datasets we
used in our investigation will be provided in Section 3.2.

For all considered assumptions, Sections 3.3 and 3.4 reveal that the real-world network flows de-
viate from the properties of the process model contained in the network measures, particularly in
centrality measures. One immediate question at this point is whether a different model than the
one using shortest paths would be able to explain the properties of the real-world network flow.
This is relevant since data on real-world network flows is not available in many cases. Thus, a

1The assumption of being a transfer or duplication process cannot be tested, but is a matter of the choice of the datasets.
Since most well-known centrality measures assume a transfer process, we restrict our analysis to datasets containing
trajectories of transfer processes.
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model that is able to reproduce the essential properties of real-world network flows could be used
as a more realistic model. Apart from the model of shortest paths, another generic model for a
network flow is based on random walks. Centrality measures such as PageRank [PBMW99], or
random walk betweenness centrality [New05], the community detection method WalkTrap [PL05]
or community detection by random walks [RB08], and link prediction by random walks [BL11] are
examples of network measures incorporating a model based on random walks. In Section 3.5, we
will therefore test whether several variants of a random walk model are a good proxy for real-world
network flows.

3.2 Datasets used

In the following section, the datasets containing a network flow that we used for our investigation
will be described. For the subsequent analysis, only network flows consisting of trajectories are
suited, so, the following requirements need to be fulfilled:

(i) It is a transfer process, i.e., the network flow consists of several indivisible items or entities
moving from node to node. Thus, each entity or item is at one node at one point of time.
This excludes network processes such as infections or information. Otherwise, the concept of
trajectories or shortest paths is not meaningful to apply for those kinds of processes.

(ii) The network representation and the process of interest need to be in accordance: The edges
need to represent the type of relationship that is essential for the dissemination of the process.
Considering the spreading of a virus in a social network would not really be suitable, since it
is not the relationship “knowing a person” that is essential for the contagion of a virus, but
rather the relationship “being in physical proximity to a person”.

(iii) The network flow usually traverses more than one edge in a row, i.e., the network flow gen-
erates trajectories in the graph, and not only a set of dyadic relations (thus, trajectories of
length 1)2. This excludes network processes such as emotional support or seeking advice in
social networks because the aspect of transitivity is not given: If A supports B and B supports
C, there is no flow of support from A to C.

We use four datasets that fulfill these requirements which are described in the following (see Fig-
ure 3.1 for an illustration of the datasets used in this chapter, and Table 3.1 for their basic statistics).

London Transport We use a dataset containing passenger journeys within the London Transport
system. The data is provided by Transport of London [Tra17], the governmental authority re-
sponsible for public transport within the region of Greater London. Every year, they publish
the Rolling Origin and Destination Survey [Tra17] which includes the passenger journeys of
a sample of 5 % of holders of Oyster cards, an electronic ticket, using the London Under-
ground system, during one week in November (we used the data for 2017), using London
Underground system. Passengers with an Oyster card are required to check in and check
out at entry and exit stations as well as at stations where they change trains. This makes it
possible to know for each passenger trip the start, the destination, and the stations where
train changes occurred. It is, however, not known which connection the passenger took or
how much time they spent on the platform.

We used the publicly available timetables for the London transport system to construct a
multilayer network of the system and to reconstruct which connection a passenger (prob-
ably) took, as described in the following. In this network, each layer corresponds to one
Underground line, e.g., the Central line or the Victoria line, and each node represents an Un-
derground station. In layer X , there is an edge from node v to node w, if station w can be
reached from station v via line X without changing trains. This does not yield a chain-like

2Note that this requirement allows a network flow to contain trajectories of length 1, but not exclusively.
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Airline transportation (DB1B)

Source Nodes Edges Process
[Bur16] Cities Non-stop airline connections Passengers

Example journey

Atlanta, Georgia, USA
Charlotte,

North Carolina, USA
Washington/Baltimore,

USA

London Transport (LT)

Source Nodes Edges Process
[Tra17] Public transport stations Public transport connections Passengers

Example journey

Victoria
West-
minster

Baker
Street

King’s Cross
St.Pancras

District line

3min

Jubilee line

6min

Metropolitan line

5min

Wikispeedia

Source Nodes Edges Process
[WL12b] Wikipedia articles Hyperlinks Players

Example game log

Rush Hour

Source Nodes Edges Process
[JP12] Game configurations Game moves Players

Example game log

Figure 3.1 Overview of the datasets used in this chapter.
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structure for each line as a route map of a line would suggest, but rather the transitive closure
of the chain. The edges are weighted by travel time; more precisely, by the minimal travel
time possible with the corresponding line. In addition to the multilayer network, we created
a one-layer network by merging all layers into one. This yielded a network with 268 nodes
and almost 14 000 edges. To extract the passenger journeys containing the stations where
the passenger changed trains, we assumed that for each connection between two stations,
the passenger took the line with minimal travel time. Note that this is a rough estimation
and not necessarily true in all cases since the timing of the trains is not taken into account.
It might be possible that the passenger actually took a different line since it left the plat-
form earlier. However, since the precise times of the passenger journeys are not known, this
estimation is the best possible. The complete trajectory is then the concatenation of these
single connections. Note that in this modeling, a passenger’s trajectory only contains the
stations where the passenger changed trains, and not any intermediate stations where the
train stopped, but the passenger did not get off. The reason for this modeling is the analy-
sis in Section 3.5 where the observed trajectories are compared to random walks generated
by an agent-based simulation. Such a representation of the trajectories and of the system
makes a comparison of the random walks and the observed trajectories possible. The dataset
contains more than 4.8 million passenger journeys, most of which were taken by a number
of passengers which is why there are approximately 50 000 different journeys in the dataset.
Due to inconsistencies in the data, 31 different journeys (a total of 37 000 journeys) were
filtered out3.

Air transportation (DB1B) We used a dataset containing the passenger flow in the air trans-
portation network in the US. The US Bureau of Transportation Statistics provides the Arline
Origin and Destination Survey (DB1B) for every quarter year [Bur16]. This database contains
the details of a 10 % sample of all airline tickets for flights within the United States (from all
reporting airlines). We used the data published for the years 2010 and 2011 and extracted for
each ticket the exact itinerary the passenger took, including origin and destination airport
as well as all airports in which the passenger transfered to another aircraft. Most itineraries
start and end at the same airport (passengers travel to their destination and then travel back
home). Therefore, itineraries that include a ”trip break“ were split according to this attribute
yielding two itineraries, an outbound and a return trip. We constructed a network where each
node represents a city containing all airports of the city area (according to the database entry
Market City ID); for example, the airports Chicago O’Hare International Airport and Chicago
Midway International were both assigned to the city node of Chicago. An edge from node v
to node w was inserted if the journey database contained at least one direct connection from
an airport in v to an airport in w. This yielded a network with 462 nodes and almost 13 000
edges. For the extracted itineraries, basic consistency checks were performed: Itineraries not
containing the same number of intermediate stops as indicated by the database were filtered
out, as were itineraries containing the same airport as consecutive stops. In this way, we
obtained more than 62 million passenger itineraries which took place within a period of two
years.

Wikispeedia As another dataset containing a network flow of indivisible entities with a target, we
used human trajectories in information networks, provided by West and Leskovec [WL12b].
They considered human navigation in information networks such as the Wikipedia network,
which consists of Wikipedia articles as nodes and hyperlinks between them as edges. West
and Leskovec provide a publicly accessible, browser-based game on their website that inter-
ested users can play. In this game (Wikispeedia), the player is given a pair of articles (or
chooses them on their own) and needs to navigate from the start to the target article by fol-
lowing the hyperlinks within the article. A public highscore is used in an attempt to motivate

3According to the official timetables provided by Transport of London, a connection contained in these journeys is not
possible. It seems that this is due to changes in the route map executed after the data collection of the journeys and
before we downloaded the official timetables.
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Table 3.1 Basic properties of the datasets used. ∣V ∣ and ∣E∣ denote the cardinality of the node and edge set
of the underlying graph, ∣P ∣ denotes the number of observed flow trajectories in the dataset. All networks
consist of a single connected component.

Dataset ∣V ∣ ∣E∣ ∣P ∣ Trajectory length
Range Average

London Transport 268 13 173 4.8m [1, 107]min 16.3min
DB1B 462 12 499 86m [1, 12] hops 1.4 hops
Wikispeedia 4 589 119 804 51 306 [1, 404] hops 5 hops
Rush Hour Game A 364 1 524 3 044 [3, 33] hops 5 hops
Rush Hour Game B 6 769 33 142 1 965 [11, 59] hops 15 hops
Rush Hour Game C 830 4 037 1 472 [13, 95] hops 26 hops

the players to find the shortest possible path. The underlying network is not the complete
set of Wikipedia articles, but rather a static subset of roughly 5 000 articles [Wik07]. West
and Leskovec collected more than 70 000 solutions (and solution attempts) of almost 15 000
distinct players (more precisely, almost 15 000 distinct IP addresses). We used their dataset
published on the SNAP network dataset collection [LK14] with the following adaptations:
Due to a few missing links in the edgelist provided there [LK14] (which are however accessi-
ble when playing the game and therefore also included in the collected paths), we used the
corrected edgelist that Robert West sent us upon request. The network consists of one giant
component (containing almost all nodes of the network) and one isolated small component
(containing three nodes). We limited our analysis to the giant component. Furthermore, we
included only players’ solutions that ended in their target article. While playing, the players
were able to use an Undo button to withdraw their previous move (which they could also
apply several times in a row). For our analysis, we excluded all moves that were revoked by
using the Undo button.

Rush Hour As a second dataset containing game logs, we used a dataset containing human solu-
tion attempts for the single-player board game called Rush Hour4. In this game, the board
with 6 × 6 cells and one designated exit represents a parking lot on which cars are placed. A
player is given an initial configuration in which blocks (representing cars) are placed on the
board. The player then needs to move the blocks such that a designated car (called target
car) can be moved through the exit of the board. The blocks of width 1 and length 2 or 3 are
placed horizontally or vertically on the board and can only be moved forward and backward,
but not sideways. Figure 3.1 shows an example game configuration. A game configuration c
induces a state space Gc = (Vc, Ec) where a node represents a board configuration, and an
edge represents a move transforming one board configuration into another. Vc thus contains
the following nodes: one node representing the configuration c (the start configuration) and
nodes representing all configurations that can be reached from c by allowed moves. A config-
uration is called a goal configuration if the target car can be moved through the exit. The set
of goal configurations is denoted by F ⊆ Vc. We do not include nodes into Vc which can only
be reached from the start configuration via a goal configuration. An attempt of a player to
solve the puzzle is then a walk through the state space, starting in the node representing the
start configuration and–if the puzzle was solved successfully–ending in a node represent-
ing a goal configuration. We thus distinguish between solving and non-solving trajectories.
We used the trajectories of players for three games, collected by Pelánek and Jarušek [JP12]
via a web-based learning platform. We only included solving logs, i.e., successful solution
attempts. Table 3.1 shows the sizes of the corresponding state spaces and the number of
available game logs.

4The game was invented by Nob Yoshigahara and is distributed by Thinkfun Inc. and HCM Kinzel (in Germany).
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These datasets enabled us to investigate to which extent real-world network flows are in accordance
with the process model contained in several network measures, which will be done in the following
sections.

3.3 From where to where does it flow?

In this section, we will look at how the real-world network flows described above use the underlying
network. Several network measures assume an equal amount of flow between each node pair. In
the following, it will be tested whether this is a valid assumption for the available datasets.

3.3.1 Are all nodes equally likely to be contained in a trajectory?

Before the amount of flow between node pairs is considered, it is tested whether all network nodes
are used by an approximately equal number of trajectories. We start by considering whether the
real-world network flow uses the whole network or only a subset of nodes.

Are all nodes contained in at least one trajectory? We investigate whether the real-world
network processes use the network in a uniform way, i.e., whether all nodes and edges are vis-
ited approximately equally often by the process trajectories. For this reason, we first consider the
network coverage by the network flow:

Definition 3.1: Network coverage by P

If P denotes the set of real-world flow trajectories, we define the network coverage by P as

C(P) = 1
∣V ∣
∣{v ∈ V ∣∃P ∈ P ∶ v ∈ P}∣, (3.1)

i.e., the proportion of nodes contained in at least one trajectory.

The table in Figure 3.2a shows the network coverage by the real network flow for each of the
datasets. Due to the network construction of the DB1B and the London Transport network, it is
clear that these networks show a coverage of 100 %. For the game datasets, between 10 % (for
Wikispeedia) and 89 % (for Rush Hour Game C) of all nodes are not contained in any trajectory.

Is this finding due to insufficient data? The question arises whether the finding that not all
nodes are contained in some trajectory is due to insufficient data or due to the nature of the flow
process. In other words: if more data on the network flow was available, would the coverage values
approach 100 % or would parts of the network stay uncovered also with more data available? Note
that the networks of all considered datasets are connected.

In order to answer this question, we perform the following experiment: For each dataset, we used
the set of trajectories P , successively picking (and removing) a trajectory P from P uniformly at
random, and add P to an initially empty set P ′. In every iteration, the coverage C(P ′) was com-
puted. This procedure yields a sequence of increasing coverage values (C(P ′1), C(P ′1), . . . ) where
P ′i is the set P ′ in iteration i. In order to reduce the effect of the order in which the trajectories
are drawn from P , this procedure was repeated N = 500 times, and the minimum, average, and
maximum value of each C(P ′i) over all N = 500 iterations was computed. For the datasets DB1B
and London Transport, where P contains more than 63million and almost 5million trajectories,
respectively, for computational reasons, not the complete set P is used for the above procedure,
but a randomly sampled subset (0.1 % and 10 % of the real trajectories, respectively). Figure 3.2b
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Network coverage by P

DB1B London Transport RH Game A RH Game B RH Game C Wiki
100 % 100 % 63 % 11 % 53 % 90 %

(a) Percentage of nodes covered by the network flow.

DB1B London Transport Rush Hour Game A Rush Hour Game B Rush Hour Game C Wikispeedia

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00
0e

+0
0

1e
+0

5

2e
+0

5

3e
+0

5

4e
+0

5

5e
+0

5 0

10
00

20
00

30
00 0

50
0

10
00

15
00

20
00 0

50
0

10
00

15
00 0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

0.00

0.25

0.50

0.75

1.00

Number of real trajectories

Pe
rc

en
ta

ge
 o

f 
co

ve
re

d 
no

de
s

(b) Network coverage by the real-world network flows with increasing number of trajectories. Note that for
DB1B and London Transport, not all real trajectories were used, but a randomly sampled subset.

Figure 3.2 Network coverage by the real-world network flow trajectories.

shows for each dataset the minimum, average, maximal coverage values for increasing number of
trajectories in P ′. It can be seen that the network coverage of London Transport and Wikispeedia
reaches saturation with a small proportion of the available trajectories. While for London Trans-
port, the coverage reaches the maximal possible value of 100 %, the coverage by the Wikispeedia
trajectories reaches saturation at 90 % and it does not appear that adding further real trajectories
would increase the coverage. This also holds for the DB1B dataset; for the Rush Hour games, the
coverage values increase more slowly with increasing numbers of trajectories, but no saturation
could be verified. We conclude that for most of the considered datasets, the incomplete coverage
of the networks is rather due to the nature of the process than to insufficient available trajectory
data. If the coverage values increase with the same factor if further trajectories are added to P ′, a
large number of trajectories would be needed to reach a coverage of 100 %. Note that for DB1B the
coverage by the sampled subset of trajectories approaches approximately 90 % while the coverage
by the complete trajectory set P is 100 %. This already indicates that there might be an imbal-
ance in the usage of the nodes by the trajectories: There appears to be a subset of nodes that are
only contained in very few trajectories. Sampling a subset of trajectories, these nodes were found
not to be contained in any of the sampled trajectories with high probability. The next section will
investigate this imbalance of node usage more closely.

Are all nodes used equally often by the real-world network flow? In order to investigate
whether the real-world network flow is present at all covered nodes with the same intensity, we
consider the node usage:

Definition 3.2: Node usage

We define the node usage of node v as

nu(v) = ∣{P ∈ P ∣v ∈ P}∣
∣P ∣

, (3.2)

i.e., the proportion of trajectories a node is contained in.

Figure 3.3 shows the node usage distribution for each dataset, Figure 3.3a shows for each node
usage nu the frequency of nodes with this node usage (normalized by the total number of nodes
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(a) Node usage distribution of the real-world net-
work flows. In a double logarithmic representation,
he node usage nu is on the x-axis, the proportion of
nodes with a node usage = x on the y-axis.

(b) Cumulative node usage distribution of the real-
world network flows. In a double logarithmic rep-
resentation, the node usage nu is on the x-axis, the
percentage of nodes with a node usage ≥ x is on the
y-axis.

Figure 3.3 Node usage distribution of the real-world network flows. Note the logarithmic scales in both plots.

in the network), Figure 3.3b shows the same distributions as cumulative distributions, i.e., for each
node usage nu(v) = x, the y-axis shows the proportion of nodes with a node usage of at least x. It
can be seen that for all datasets, the majority of nodes are only contained in very few trajectories–
if they are contained in any trajectory at all–, while there are a few nodes that are contained in a
large number of trajectories. Therefore, for all considered datasets, it is not true that the network
flow process is present at all nodes with the same intensity. On the contrary: there is an imbalance
in the node usage by the network flow.

Can network measures explain the high usage of certain nodes? Since it is observed that
a few nodes are used heavily by the network flow while most nodes are used only once or not at
all, the question arises whether network analytic measures can explain the high usage of certain
nodes. We therefore computed several standard centrality measures for the networks at hand (see
Chapter 2 for their definition) and compared the nodes’ centrality values to their actual node usage.
Figure 3.4 shows a graphic representation of this comparison. We furthermore computed Spear-
man’s correlation coefficient [Spe04] of each centrality measure to the node usage (see Table 3.2).
Only for the dataset DB1B did we find a high correlation between node usage and centrality mea-
sures (≈ 0.9). For the Wikispeedia dataset, medium to high correlations (between 0.7 and 0.83) can
be observed, while for the other datasets, the correlation coefficients are low or even negative for all
centrality measures. This means that for the air transportation network, the actual node usage and
the nodes’ importance rated by standard centrality measures are in accordance–and this is true for
all considered centrality measures. For the remaining datasets, including the other transportation
dataset London Transport, standard centrality measures are not able to predict the actual network
flow present in the nodes.

3.3.2 Are all node pairs equally likely to be source and destination of a
trajectory?

We first consider whether all node pairs are used as source and target of at least one trajectory
of the real-world network flows. The table in Figure 3.5a shows that for all datasets, there is no
flow between the majority of the nodes. For the game datasets, this is not surprising: With 50 000
trajectories, the set of available trajectories for Wikispeedia is simply not large enough to make it
possible to observe a flow between all 21million node pairs. For Rush Hour, all players start at the
same start node and end (since only solving trajectories are considered) at one of the goal nodes.
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3 Properties of network flows in complex networks

Figure 3.4 (Absolute) node usage by real-world network flows, compared to values of common centrality
measures.

Table 3.2 Spearman’s correlation coefficients of classic network measures (node degree, closeness,
betweenness[Fre77], and PageRank [PBMW99] centrality) to the actual node usage by real-world trajecto-
ries. Starred values indicate a p-value of < 0.05.

Dataset Degree Closeness Betweenness PageRank

DB1B 0.96∗ 0.94∗ 0.89∗ 0.93∗

LT 0.50∗ 0.51∗ 0.54∗ 0.54∗

Wiki 0.71∗ 0.77∗ 0.72∗ 0.83∗

RH Game A 0.007 0.15∗ 0.36∗ 0.16∗

RH Game B -0.15∗ -0.29∗ 0.03∗ 0.01
RH Game C -0.21∗ -0.12∗ 0.29∗ 0.01
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3.3 From where to where does it flow?

Percentage of node pairs used

DB1B London Transport RH Game A RH Game B RH Game C Wikispeedia
42 % 46 % < 0.01 % < 0.01 % < 0.01 % 0.14 %

(a) Percentage of node pairs used as source and target of at least one trajectory.

(b) Source-target frequency distribution of
real-world network flows. x-axis: logarithm of
node pair usage npu of the node pairs; y-axis:
logarithm of proportion of node pairs with a
node pair usage = x.

(c) Cumulative source-target-frequency distribution of
real-world network flows. x-axis: logarithm of node pair
usage npu of the node pairs; y-axis: logarithm of propor-
tion of node pairs with node pair usage ≥ x.

Figure 3.5 Source-target-frequency of real-world network flows.

If we consider only those node pairs (s, g) where s is a start and g a goal node, the percentage of
node pairs used increases to 36 %, 3 %, and 11 %, respectively, which is still low. For the datasets
DB1B and London Transport, both systems designed to bring passengers from one place to another,
there is no network flow between more than half of all node pairs.

Similarly to the coverage and node usage in the previous section, we do not only consider the
number of node pairs between which there is a network flow, but also the intensity of the flow
between the node pairs. We therefore count for every node pair (s, t) ∈ V × V the number of
trajectories starting in s and ending in t:

Definition 3.3: Node pair usage

We define the node pair usage npu for two nodes s, t as

npu(s, t) = ∣{P ∈ P ∣s(P ) = s, t(P ) = t}∣
∣P ∣

, (3.3)

i.e., the fraction of trajectories starting in s and ending in t.

Figure 3.5b and 3.5c show the distribution of the node pair usage of the node pairs for all datasets.
On the left, the proportion of node pairs with a value of node pair usage is shown; on the right, the
corresponding cumulative distribution is shown. It can be seen that for all datasets, the majority of
node pairs are used only by one or two trajectories as source and target, while high values of node
pair usage occur very rarely.

To illustrate how imbalanced the amount of flow between the node pairs is, we used a measure
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3 Properties of network flows in complex networks

that is often used in economics to show the income inequality of a population–the Gini coefficient
(named after the Italian statistician Corrado Gini [Gin12, Gin21, CV12]). If a population’s income
is distributed perfectly equally between all persons, each person has the same amount of income,
i.e., here, if the amount of flow is distributed perfectly equally between all node pairs, there is an
equal amount of flow between all node pairs. The previous section already showed that there are
node pairs between which there is no flow at all which is why we focus on those node pairs between
which there is at least one trajectory. An extremely unequal distribution then corresponds to the
situation that almost the complete amount of flow is between one node pair, and only a minimal
amount of flow is between the remaining nodes5. The Gini index is designed to quantify this degree
of inequality. For the computation of the Gini coefficient, the Lorenz curve L is used where–in our
case– the proportion of (used) node pairs is shown on the x-axis, and the proportion of flow is
shown on the y-axis. A point (x, y) on the Lorenz curve then means that the x % least used node
pairs accumulate y % of the total flow. Perfect equality will yield the identity line as a Lorenz curve;
extreme inequality among the node pairs used will yield a Lorenz curve with y-values close to 0
for x between 0 and close to 1, and a steep connection to the point (1, 1) at an x-value close to 1.
Figure 3.6b shows the Lorenz curves for the source-target-distribution of the considered datasets
where only those node pairs are considered between which there is at least one trajectory. The
Gini coefficient is then the area between the Lorenz curve and the identity line (drawn in blue in
Figure 3.6b), divided by the size of the area under the identity line.

The table in Figure 3.6a shows the corresponding Gini coefficients (the second row shows the re-
sulting Gini coefficient if all node pairs are considered instead of only those between which there
is at least one trajectory). Figure 3.6 shows the Lorenz curves and the Gini indices for all consid-
ered datasets. It can be seen that when all node pairs are considered, the Gini coefficient is very
high or even close to 1 for all datasets. When only considering those node pairs between which
there is flow, differences between the datasets can be seen. The DB1B dataset shows the greatest
inequality in the distribution of the amount of flow between the node pairs. This is due to the fact
that for example 75 % of the total flow is among less than 2 % of all (used) node pairs. Such an
inequality has an effect on any analysis using centrality measures such as betweenness centrality:
A node which is positioned between one of these high-demand node pairs should be rated as more
important than a node which is positioned between the same number of node pairs, but which are
used much less by the actual flow. However, this cannot be achieved by the betweenness centrality
since it does not take into account the actual network flow, but each node pair is weighted equally.
The most equal distribution (among the pairs used) is shown by the Wikispeedia dataset: Here,
there are four node pairs with a larger amount of flow between them, while between 69 % of all
(used) node pairs, there is exactly one trajectory. The datasets London Transport, and the three
Rush Hour games show similar values for the Gini coefficient, all above 0.73. This implies that
even for the Rush Hour games where only those (s, t)-pairs are considered where s is a start node,
and t is a target node used, there is a clear preference of the players regarding which target node
is reached most frequently, while other target nodes are reached far less often.

Which node pairs are used more often than others? In order to understand which node
pairs are used more often as source and target than others (see also Table 3.3 for the five node pairs
used most often by the trajectories in each dataset), we consider the graph distance of the node
pairs. For that, we define a distance-based node pair usage:

5Originally, extreme inequality corresponds to the situation in which the complete amount of flow is between one node
pair and no flow between the remaining node pairs. However, since only node pairs that were really used are considered
here, this situation would actually represent a perfect equality
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3.3 From where to where does it flow?

Gini coefficient for flow between (used) node pairs

DB1B London RH Game A RH Game B RH Game C Wikispeedia

Used pairs 0.95 0.73 0.74 0.84 0.75 0.38
All pairs 0.98 0.88 ≈ 1 ≈ 1 ≈ 1 0.999

(a) Gini coefficient for the amount of flow between the node pairs used (first row) and between all node pairs
(second row).

(b) Lorenz curves (drawn in red) for the distribution of flow between all node pairs with at least one trajectory
between them. The Gini coefficient corresponds to the size of the blue area divided by the total size of the
area underneath the identity line. Therefore, a Gini coefficient of 0 corresponds to perfect equality of the
data (equal amount of flow between each node pair), while a Gini coefficient close to 1 corresponds to a high
inequality of the data (large amount of flow between one node pair, and minimal amount of flow between the
remaining node pairs).

Figure 3.6 The Gini index and the corresponding Lorenz curves for measuring the equality of the distribution
of the total amount of flow among all (used) node pairs.

Definition 3.4: Distance-based node pair usage

For a graph distance k, it is counted how many trajectories start and end in node pairs with
a graph distance of k. The node pair usage for a given distance k is thus defined as

npu(k) = ∣{P ∈ P ∣d(s(P ), t(P )) = k}∣ (3.4)

Note that this definition does not take into account the trajectory length, but the graph distance
of source and target node since the aim is to investigate whether a high amount of flow between
node pairs depends on their distance. For this reason, it is not relevant which exact path is taken
to get from one node to the other. In order to take into account that the total number of node pairs
with distance k might vary for different values of k, we consider the total number of node pairs
with distance k using

np(k) = ∣{(v, w) ∈ V × V ∣d(v, w) = k}∣. (3.5)

For the London Transport dataset where the edges are weighted by travel time, we introduced
distance intervals of 5minutes such that a node pair with the distance 0 < k ≤ 5 is assigned the
interval number 1, etc. For the DB1B dataset where an edge represents one flight connection,
we additionally considered a weighted version of the network where an edge weight represents
the geographic distance between the corresponding airports. For this network version, we also
introduced distance intervals of 500km.
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3 Properties of network flows in complex networks

Table 3.3 The five most frequently used source-target pairs for the datasets DB1B, London Transport, and
Wikispeedia. The second column gives the proportion of trajectories using the corresponding node pair as
source and target.

Source-target pair %P

San Francisco, CA → Los Angeles, CA 0.086 %
Los Angeles, CA → San Francisco, CA 0.085 %
Miami, FL → New York, NY 0.064 %
New York, NY →Miami, FL 0.063 %
Los Angeles, CA → New York, NY 0.048 %

(a) DB1B

Source-target pair %P

Asteroid→ Viking 2.03 %
Brain→ Telephone 2.03 %
Theatre→ Zebra 1.76 %
Pyramid→ Bean 1.25 %
Batman→Wood 0.29 %

(b) Wikispeedia

Source-target pair %P

Bank/Monument→Waterloo 0.48 %
Waterloo → Bank/Monument 0.41 %
King’s Cross St. Pancras → Paddington 0.26 %
Victoria → Oxford Circus 0.24 %
Waterloo → Canary Wharf 0.21 %

(c) London Transport

Figure 3.7 shows for each dataset6 the number of trajectories starting and ending in node pairs
of distance (or distance interval) k, normalized by the total number of node pairs with distance
(interval) k. It can be seen that for all considered datasets, there is considerably more flow between
node pairs that are closer to each other than between node pairs that are further apart. For the
unweighted version of DB1B, the value of npu(k)/np(k) is already close to 0 for k = 2. This is not
too surprising since the network is often shaped by demand: If there is high demand between two
airports, a direct flight between them will be installed and, vice versa, if there is only low demand
between two airports, the direct connection might not be offered anymore. For London Transport,
we found that particularly those node pairs that are close to each other are in much greater demand
than node pairs with a greater distance. For the passenger flow within London, it can be expected
that most passengers journeys are within the inner city center of London (where all stations are
closer to each other) and not between peripheral stations, which can explain this result.

Although the result is not surprising for the datasets at hand, it does have consequences for net-
work analysis: If a network measure expects a network flow in the network such as betweenness
centrality, it is assumed that the probability of flow is equal for each node pair. This is, however,
not the case for real-world network flows. A similar observation was made by Friedkin [Fri83] for
communication networks: He found that in these networks, a distance threshold exists, which he
calls the horizon of observability, beyond which the members of the network are not aware of each
other. Thus, it is very unlikely to observe any flow between nodes that are further apart than this
horizon of observability.

3.4 How does it flow?

While the previous sections considered the real-world network flows contained in the datasets with
respect to the question of ”from where to where does it flow?“, the following analysis is concerned
with the question of ”how does the flowmove from its source to its destination?“. For this question,

6The Rush Hour dataset was excluded from this analysis since it is clear that all contained trajectories start at the same
start node and end in one of the goal states.
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Figure 3.7 Source-target frequency by distance of the nodes. For each graph distance k, the total number
of trajectories between nodes k steps away from each other, is normalized by the total number of node pairs
in the graph with distance k. For datasets with weighted edges, the distance between nodes is divided into
intervals of equal size: for London Transport, intervals of 5 minutes travel time, for the weighted network of
DB1Bwith edges being weighted by the geographic distance between the airports, intervals of 500 km distance
between the airports.

we first consider the types of trajectories contained in the datasets.

3.4.1 Trajectory types

Borgatti’s typology of network processes distinguishes flow trajectories by their type [Bor05]. He
distinguishes between shortest paths, paths (trajectories containing each node and edge at most
once), trails (trajectories containing each edge at most once), and walks (no such restriction). In
order to be able to handle directed graphs, we extend this categorization: In directed graphs, it is
possible that a trajectory contains both the edges u → v and v → u–which are different edges. A
trajectory containing both the edges u→ v and v → u is categorized as a trail although it contains
the reverse edges u → v and v → u. Thus, in order to differentiate between trajectories containing
such reverse edges and trajectories not containing this pattern, we distinguish between four types
of trajectories: (i) All nodes and edges in the trajectory are unique. (ii) At least one node is contained
multiple times, but it does not contain any edge more than once and (u, v) ∈ P ⇒ (v, u) ∉ P for
all (u, v) ∈ E. (iii) At least one node is contained multiple times in the trajectory, edges are unique,
but there exists (u, v) ∈ E with (u, v) ∈ P with (v, u) ∈ P . (iv) At least one node and one edge is
contained more than once in the trajectory. In Borgatti’s terminology, all four types fall under the
category of a walk, types (i) to (iii) are called trails, type (i) is called a path. For trajectories of type
(i), we furthermore checked whether it has optimal length, i.e., for a trajectory P ∈ P , its length
∣P ∣ is equal to the length of the shortest path from the source to the target of the trajectories, i.e,
d(s(P ), t(P )).

For our used datasets, we computed the type of each trajectory. Table 3.4 shows the proportion
of each trajectory type for our datasets. For the datasets containing transportation processes, we
found that the proportion of trajectories of type (i) is close to 100 %. Also for the Wikispeedia
trajectories, we observed a high percentage of this trajectory type, only 1 % of the Wikispeedia
trajectories visited the same article more than once. This picture is different for the trajectories for
the Rush Hour game instances. Even for the simple game A, 20 % of the trajectories turned out to
be of types (ii) to (iv) which means that at least one node was visited more than once. For game
C, only 30 % of the trajectories had unique nodes and edges. This is especially surprising since the
dataset contains only solving paths.
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3 Properties of network flows in complex networks

Table 3.4 Trajectory types of the real trajectories: Type (i) are paths in Borgatti’s terminology, types (ii) to
(iv) are trails, type (iv) are walks in Borgatti’s terminology. Optimal denotes the proportion of trajectories with
optimal length. The total number of trajectories is shown in the last column.

Dataset Type (i) optimal Type (ii) Type (iii) Type (iv) ∣P ∣

London Transport 99.7 % 89 % 0 % 0.3 % 0 % 4.8m
DB1B 99.8 % 69 % ≈ 0 % 0.2 % ≈ 0 % 86m
Wikispeedia 98.6 % 22 % 1.1 % 0.04 % 0.2 % 51306
Rush Hour A 78.8 % 37 % 0.8 % 18.5 % 1.9 % 3044
Rush Hour B 57 % 14 % 0.5 % 27.9 % 14.6 % 1965
Rush Hour C 30.8 % 1.8 % 1.8 % 36.9 % 30.5 % 1472

3.4.2 Is the network structure used optimally?

The previous paragraph showed that there is a non-negligible number of trajectories in the datasets
that are longer than the corresponding shortest path. While this could be expected for the game
datasets, it is surprising that even for the trajectories in the transportation systems, 11 % (London
Transport), respectively 31 % (DB1B) of all trajectories were longer than needed. In the following,
we will consider the lengths of the trajectories in order to investigate whether the assumption of
shortest paths is a valid assumption for the considered real-world network flows. In Figure 3.8, the
length of the trajectories is compared to the length of the shortest path from source to destination.
Thus, for all trajectories in P with a distance of x from source to destination, the length of the
trajectories is shown as boxplot. For the Rush Hour games, all trajectories start at the same initial
node and end at one of the goal nodes which is why the length of the shortest path is equal for
all trajectories for each game. For DB1B, Figure 3.8a shows that for each length of the optimal
path, the median of the length of the real trajectories is equal. Note that there is no trajectory
where the source and the destination have a distance greater than 4. However, particularly for
trajectories with an optimal path length of 1, there is a considerable number of real trajectories of
length 2. Overall, the itineraries were on average longer by a factor of 1.3 than the optimal path
in the network (counted in hops). For the other transportation system, London Transport, where
the edges are weighted by travel time, the length of the real trajectories and the corresponding
optimal paths are divided into intervals of 5minutes. Figure 3.8b shows that the length of the real
trajectories is very close to the length of the corresponding optimal path, on average, the travels
are longer than the optimal path by a factor of 1.02. There are, however, outliers where the length
of the real trajectories is longer than the optimal path by up to 30minutes. As expected, for the
game datasets, most real trajectories are longer than the corresponding optimal path. However, for
Wikispeedia, the real trajectories are longer than the optimal path by only one step on average (see
Figure 3.8a). For the three Rush Hour games (see Figure 3.8c), the lengths of the real trajectories
strongly depend on the game instance: For the easy game A with an optimal solution length of
three steps, the real trajectories are on average of length 5 (median 4); for game B with an optimal
solution length of 11, an average length of 15 (median 14) is observed for the real trajectories; for
game C with an optimal solution of 13, the average length of the real trajectories increases to 26
(median 21).

Thus, for the transportation processes, the real trajectories are close to optimal paths. There is,
however, a considerable number of real trajectories that are longer. For the game datasets, the real
trajectories are longer than the shortest path by–on average–1 for Wikispeedia and by up to 13
steps for Rush Hour.
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(a) Datasets Wikispeedia and DB1B.
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(c) Dataset Rush Hour games.

Figure 3.8 Lengths of trajectories for the datasets used, shown as boxplots. ForWikispeedia, three trajectories
of length 404, 108, and 101 were removed to improve readability.

3.4.3 When several alternative paths are possible, are all possibilities
used equally often?

Usually, for a process entity traveling from node s to node t in the network, there are several pos-
sibilities to reach t. This is often also true if the network flow only uses shortest paths. Since for
network measures assuming a network flow, it is not known which route the network flow takes in
order to reach t from s, it is assumed that each alternative route between s and t is taken with equal
probability. For betweenness centrality, for example, consider two nodes s and t with two shortest
paths between them. For each node on the two shortest paths from s to t, it is then assumed that
it can control half of the flow between s and t.

For real-world network flows, it is not obvious whether all alternative routes are taken with equal
probability, i.e., whether the amount of flow from s to t is distributed equally on all alternative
routes. It is also possible that most flow is concentrated on one particular route while alternative
routes are only rarely taken. This section describes the analysis we performed to investigate which
case is true for real-world network flows.

Since the previous section showed that real-world network flows often do not use shortest paths,
the following analysis cannot be limited to shortest paths between node pairs, but needs to consider
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3 Properties of network flows in complex networks

Table 3.5 The table shows the number of node pairs (s, t) that were used for the analysis of alternative routes
(results shown in Figure 3.9). The left column contains the number of node pairs (s, t) ∈ V ×V between which
there is at least one flow trajectory in the dataset, the right column shows the number of node pairs between
which there are at least 10 trajectories in the dataset. Only these node pairs are used for the analysis of
alternative routes.

Dataset #(s, t) with npu(s, t) ≥ 1 #(s, t) with npu(s, t) ≥ 10

DB1B 89 968 50 376
London Transport 32 905 26 982
Wikispeedia 28 706 160
Rush Hour Game A 19 13
Rush Hour Game B 50 17
Rush Hour Game C 11 7

all possible walks between node pairs. However, if the length of the walks is not restricted, there can
be infinitely many walks between the nodes s and t, since cycles–if contained in the walk once–can
be looped arbitrarily often. For this reason, we focus on the walks actually taken by the network
flow.

We will first consider the number of different trajectories between node pairs before considering
how the flow entities are distributed among the alternatives. For a node pair (s, t) and all real
trajectories starting in s and ending in t, we count how many different trajectories are contained in
the real-world trajectories where each of the different trajectories is also called an alternative route.
Each alternative route is used by at least one flow entity in the dataset. Counting alternative routes
between nodes is only meaningful if several flow entities travel between these nodes. Therefore,
only node pairs (s, t)with at least 10 real trajectories from s to t will be considered in the following.
Table 3.5 shows the total number of node pairs (s, t)with at least 1 and at least 10 trajectories from
s to t. Excluding node pairs with less than 10 trajectories between them substantially reduced the
number of considered node pairs. Nevertheless, this step is necessary for a meaningful analysis of
route alternatives.

Figure 3.9a shows for each dataset and each node pair (with the restrictions described above), the
number of alternative routes taken and its (unnormalized) node pair usage, i.e., the number of
flow entities traveling from s to t. For Wikispeedia and also for the Rush Hour games, it can be
seen that the number of alternative routes taken increases with increasing node pair usage, i.e.,
the more entities move from s to t, the more alternative routes are taken. This is not true for the
transportation datasets. For London Transport, we found that only very few alternative routes were
taken; most were between 1 and 10, independent of the node pair usage. For DB1B, on the other
hand, for each node pair usage, there are almost all possible values of the number of alternatives
taken. In the extreme case, there are more than 2 000 route alternatives (with a total of more than
418 000 trajectories between the corresponding nodes).

However, when we consider the total number of node pairs between which such a high number
of alternative routes was taken, it turns out that these are only the extreme cases. The table in
Figure 3.9b shows the proportion of node pairs between which exactly one route was taken by all
flow entities. Note that here as well, only those node pairs are included between which there are
at least ten trajectories. Figure 3.9c shows the corresponding histogram: For each number of route
alternatives between a node pair, the number of node pairs with this value is shown. It can be
observed that for all datasets, only a small number of route alternatives was taken for most node
pairs. For London Transport, we even found that for more than 61 % of node pairs used, exactly
one route was taken by all flow entities.
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(a) Number of trajectories between a node pair versus number of different trajectories between the node pair.
Each point represents one node pair. Note the logarithmic scales on both axes.

Percentage of node pairs where only one alternative is used

DB1B London Transport RH Game A RH Game B RH Game C Wiki
8.0 % 61.9 % 0 % 0 % 0 % 4.8 %

(b) Percentage of node pairs between which exactly one route is taken by all trajectories. Note that only
those node pairs are included between which there are at least ten trajectories.
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(c) For each node pair between which there are at least ten trajectories, we counted how many different
alternative routes were taken. The histogram shows the number of node pairs with the corresponding number
of alternative routes.
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(d) For node pairs between which more than one alternative route was taken and between which there are at
least ten trajectories, the Gini coefficient for the distribution of the trajectories among the alternative routes
for each node pair was computed. The histogram shows the number of node pairs with the corresponding
Gini coefficient value.

(e) Gini coefficient of a node pair versus number of trajectories between the node pair. Only node pairs with
at least ten trajectories between them and where more than one possible route was taken are depicted.

Figure 3.9 Analysis regarding equal use of alternative routes between node pairs.



3 Properties of network flows in complex networks

For those node pairs between which more than one route was taken by the real-world flow, we
looked at whether the flow entities are distributed equally among all alternative routes or whether
most entities used one route while the remaining alternative routes were taken only by a few enti-
ties. For this purpose, we used the Gini coefficient introduced in Section 3.3.2. For each node pair
(s, t) (with at least ten trajectories and more than one route alternative from s to t), we counted
how many flow entities used which route alternative from s and t. The Gini coefficient was then
computed for this distribution of each node pair. A Gini coefficient close to 0 for a node pair (s, t)
then means that all route alternatives were used by an approximately equal number of flow en-
tities; a Gini coefficient close to 1 for a node pair means that one route alternative was taken by
a large number of flow entities, and the remaining route alternatives were only used by one flow
entity each. Figure 3.9d shows the frequency distribution of the computed Gini coefficients for
each dataset. It shows that the situation is different for the considered datasets. For DB1B, in par-
ticular, higher Gini coefficients are observed, indicating that in most cases, one route alternative
was clearly preferred. When we look at the data to see how these high Gini coefficients can be
explained, we find that for many (s, t)-pairs with a graph distance of 1, the majority of the passen-
gers took the direct connection from s to t. For those node pairs, the dataset also contains journeys
of passengers who traveled from s to t via an indirect connection. The existence of these cases can
be explained by various reasons–temporary unavailability of the direct connection, price-related
advantages of the indirect connection, or private reasons for intermediate stops. Therefore, since
the majority of passengers took the direct connection, but a (relatively) small number of passengers
were distributed among these indirect connections, high values of the Gini coefficient are found.

For Wikispeedia on the other hand, rather low values of the Gini coefficient are found, indicating
that in most cases, the players were distributed almost equally among the route alternatives. But
here as well, there are cases where one route was clearly preferred: For theWikispeedia trajectories
from the node Bird to the node Great White Shark, 90 of all 138 trajectories between them used
the route over the nodes Fish→White shark→Shark, 29 used another alternative route–and the
remaining 17 route alternatives were only used by one entity (and one alternative was used by
three entities). Interestingly, this preferred route alternative is not the shortest path from Bird to
Great White Shark. The shortest path over the nodes Penguin→Orca was not taken by a single
player. However, in general, for most node pairs of Wikispeedia, rather low values of the Gini
coefficient are found, such as for the node pair (Africa, Differential equation) where each of the
13 alternative routes was taken by exactly one or two players.

For the London Transport dataset, almost no values of the Gini coefficient larger than 0.6 are ob-
served, indicating that for this dataset, there are almost no node pairs between which there exists
one preferred route. Most of the Gini coefficient values we found are between 0.25 and 0.5. How-
ever, it needs to be noted that for this dataset, less than 40 % of all node pairs are included in this
figure, because for the remaining node pairs, only one route was taken by all flow entities. For the
node pairs between which more than one route was taken, Figure 3.9c shows that the flow entities
only used two or three alternative routes in most cases.

In order to investigate whether only node pairs with a large amount of flow between them show
high or low values of the Gini coefficient for the distribution of the route choice, the number of
trajectories between a node pair was plotted against its Gini coefficient value, as depicted in Fig-
ure 3.9e. Also here, only node pairs with at least ten trajectories between them and between which
more than one possible route was taken, were considered. It can be seen that such a relationship
only exists for the DB1B dataset. Here, large values of the Gini coefficient, i.e., a clear preference
for one route, is only present at node pairs with a large amount of flow. There are, however, also
node pairs with large amounts of traffic and lower values of the Gini coefficient.
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3.5 Can properties of trajectories be explained by a random walk model?

3.5 Can properties of trajectories be explained by a random
walk model?

The previous sections showed that the real-world network flows show a different behavior than
it is assumed by centrality measures where an equal amount of flow between each node pair is
considered, possibly on shortest paths. For real-world network flows, we found that there is a large
amount of flow between a few node pairs while almost no flow exists between the majority of
node pairs. We found a similar effect for node usage: A few nodes are contained in many flow
trajectories while most are only contained in a few trajectories. At the same time, we found that
even for those network flows where each flow entity has a target to reach as fast as possible, there
are a considerable number of trajectories that do not use the shortest path.

This means that network measures assuming an ”ideal flow“ such as some centrality measures,
will yield inaccurate results if the real flow deviates from the ”ideal“ behavior (see Chapter 4 a for
detailed analysis of centrality measures assuming network flows). However, since datasets of real-
world network flow are (i) rarely available, and (ii) highly dependent on the data collectionmethods
and data preprocessing steps, the question arises whether a simple reproducible model may be able
to produce a similar behavioral pattern as real-world network flows. If this is the case, datasets of
real-world network flows are not needed: the process model can be used instead. The two simplest
models for simulating network flow are shortest paths and random walks. In some sense, shortest
paths and random walks are the extreme cases of the same scale as Newman describes it for the
case of shortest path and random walk betweenness: They “are at opposite ends of a spectrum of
possibilities, one end representing information that has no idea of where it is going and the other
information that knows precisely where it is going” [New05].

Simulating network flows with a transfer transmission mechanism using models has been done in
various contexts. Most are based on random walks or some variant of a Markov chain. Sen and
Hansen [SH03] considered human browsing of the web within a single site and propose a model for
predicting the user’s next click, by usingMarkovmodels. Manley [Man15] presents aMarkov chain
simulation approach for modeling the traffic in London, by using the trajectory data of minicab
routes in London. Rosvall et al. simulated real-world network flows, such as passenger flows in
air transportation and taxi trajectories, also using a second-order Markov chain [REL+14]. The
commonality of both approaches is that their process model is based on real-world network flows:
the probability to which node the simulated flow moves next is not independent of its previous
steps, but the transition probabilities are computed based on the real-world trajectories. West
and Leskovec [WL12a] describe agent-based navigation in information networks where the agents’
decisions are not based on the human trajectories, but rather on simple numerical attributes of the
nodes. An approach in which several routing strategies are compared to each other is presented
by Lee and Holme [LH12]. They considered spatial networks, i.e., networks in which each node is
associated with a spatial position given in coordinates. They implemented a ”greedy navigator”,
an agent-based exploration where each agent is equipped with some local sense of orientation,
and compared the resulting trajectories with those of shortest-path-navigators and random walk
navigators.

Section 3.4.2 already showed that the considered real-world network flows cannot be perfectly re-
produced by shortest paths, and we also do not expect that they will be perfectly reproduced by
random walks. These two possibilities are, however, the two extreme cases that determine the pos-
sible space for the flow behavior. In the following, we will investigate whether real-world network
flows can be simulated using shortest paths or random walks to reproduce certain properties of
their behavior.
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3.5.1 Simulation using random walks

The most simple random walk model consists of a random walker which can be at one node at a
time. In each step, the random walker uniformly at random chooses one of the neighbor nodes
of the current node and moves to the chosen node. There exist many network measures that are
based on random walks; for example centrality indices such as Page Rank [PBMW99] or random
walk betweenness [New05], or community detection through random walks [PL05]. Most of them
do not rely on simulations of a random walker, but can be solved analytically by considering the
stationary distribution of the corresponding Markov chain in which the states represent the posi-
tion of the random walker. The stationary distribution then yields for each node the probability
that the random walker is at this node. For an infinitely long random walk with uniform probabil-
ity of choosing a new neighbor and a probability of 1/∣V ∣ for each node v that the random walker
starts its random walk in v, the stationary probability distribution is a function dependent on the
nodes’ degree (in undirected graphs) [MPL17].

In this work, we used a simulation approach for the following reason: The previous section showed
that real-world network flows show a source-target frequency which is far from being uniform
in the sense that the probability that a random walker starts in node s is equal for all nodes. We
therefore need to take into account this skewed distribution in order to distinguishwhich behavioral
pattern is due to the source-target distribution and which is due to the way the process entities
move through the network. This is why we used the following simulation procedure in which the
simulated random walks are tied to the set of real trajectories P in the following way: for each
P ∈ P , a random walk is started in s(P ), chooses a neighbor node, moves to the chosen node, and
continues this procedure until a stopping criterion dependent on the length of P is reached. In
this procedure, the number of generated random walks and real trajectories is equal, their source-
distribution is equal, as is their ”outreach potential“. This allows separating the two aspects that
might impact the flow’s behavioral patterns: (i) From where to where does it flow7? (ii) How does
it flow through the network?

The following variants of the basic procedure were implemented which differ with respect to the
choice of the neighbor nodes and the stopping criterion:

Neighbor choice Two variants of neighbor choices were implemented:
Uniform neighbor choice (UNC) The simplest variant of choosing the next node to which the

random walker moves next is to select a node uniformly at random from the set of all
neighbors of the current node.

Backwards-restricted choice (BWR) Another variant for choosing the next node is to select
uniformly at random from the set of neighbors of the current node where the node
visited directly before is excluded.

Stopping criterion Both implemented stopping criteria were intended to ensure that the random
walks had the same ”outreach potential“ as the real-world trajectories.
Path length restriction (PL) The random walker continues its random walks as long as the

length of its walks does not exceed the length of the corresponding P . This yields a
random walk Qrand with ∣Qrand∣ = ∣P ∣. For the case of weighted networks, the random
walk is bounded by the weighted length of P . In this case, the randomwalker continues
as long as ∣Qrand∣ ≤ ∣P ∣. If the random walker chooses an edge where adding is weight
to the weight of the current random walk, would exceed ∣P ∣, this edge is not added
to the random walk, and the random waker stops. This yields a random walk with
∣Qrand∣ ≤ ∣P ∣.

Line change restriction (LC) For the London Transport dataset, where the system is mod-
eled as a multi-layer network with each layer corresponding to one train line, a ran-
dom walker with path length restriction would yield a random walk with many layer

7In the described procedure, only the source distribution can be considered because the random walk does not necessarily
end in t(P ).
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3.5 Can properties of trajectories be explained by a random walk model?

changes. In the system, this corresponds to a journey withmany line changes where the
passenger gets off the train, possibly changes platform, and gets onto another train. This
does not necessarily correspond to a passenger’s behavior since in reality changing lines
takes additional time (which is not included in the modeled trajectories–here, changing
the layer does not increase the length of the trajectory). We therefore introduced a sec-
ond stopping criterion particularly for random walks in the London Transport network
where the random walker is restricted by the number of line changes contained in P .
In each node, the random walker chooses a neighbor node. If this node can be reached
within the current layer, the random walker moves to the chosen node and no change
of lines is registered. If this node is only reachable by changing a line, the number of
line changes made by the random walker is increased by 1. This procedure is contin-
ued until the random walker’s number of line changes is equal to the number of line
changes in P .

For each dataset and the corresponding trajectory set P , sets of random walks tied to P were
computed. In the following, the properties of the generated random walks will be compared to the
observed properties of the real trajectories.

Network coverage We first checked whether the generated random walks yielded a similar net-
work coverage as the real trajectories (see also Figure 3.2). We therefore repeated the coverage
experiment described in Section 3.3.1 with random walks. We also included shortest paths so that
for network coverage with increasing number of real trajectories, random walks and shortest paths
can be compared. Algorithm 3.1 illustrates the method we used: For each drawn real trajectory P ,
the corresponding random walk was generated and a shortest path from s(P ) to t(P ) was com-
puted. The network coverage by the set of real trajectories, random walks, and shortest paths was
computed. As in Section 3.3.1, this procedure was repeated 500 times in order to reduce the effect
of the order in which the real trajectories were drawn, and the minimum, average, and maximum
coverage by each subset was computed.

Figure 3.10 shows the network coverage by real trajectories, random walks, and shortest paths with
increasing numbers of trajectories. For the datasets Rush Hour, Wikispeedia, and DB1B, only the
results for random walks with uniform neighbor choice are shown, since the results for random
walks with backwards-restricted neighbor choice are qualitatively the same.

The results are different for the different datasets. For DB1B (see Figure 3.10c), we found that
with an increasing number of trajectories, the coverage coincides perfectly for real trajectories and
shortest paths which is in accordance with the previous observation that 69 % of all real trajectories
are shortest paths. While the coverage by real trajectories and shortest paths approaches a value
of 90 %, the coverage by the corresponding random walks reaches a value of 100 %. Note that
the complete set of real trajectories also reaches a network coverage of 100 %, however, for this
experiment (as in Section 3.3.1), a randomly sampled subset of trajectories (0.1 % of all trajectories)
was used. This indicates that there is a subset of airports that is used occasionally by flights (and
is reachable for a random walker), but much less often than the remaining airports. This finding
supports the previous findings, indicating that the real-world network flow is very different from
the ”ideal“ flow as assumed by centrality measures.

ForWikispeedia, Figure 3.10b shows that the coverage pattern almost coincides for real trajectories,
random walks and shortest paths. This is surprising since the analysis in Section 3.4.2 showed that
real trajectories are not shortest paths, but only longer than shortest paths by one step on average.
Thus, real trajectories are neither shortest paths nor randomwalks, but still show the same coverage
behavior.

For London Transport (see Figure 3.10d), all types of trajectories–real, random, and shortest–reach
a coverage of almost 100 % very fast. Note that also here (as in Section 3.3.1) a randomly sampled
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Algorithm 3.1: Procedure of computing the coverage values by the observed tra-
jectories, shortest paths, and random walks. After termination, 500
sequences of coverage values (each) for observed trajectories, by
shortest paths, and by random walks are saved which can then be
used for further analysis.

Data: graph G = (V, E), set of walks P in G
1 for 500 times do
2 Initialization:
3 Sequence of coverage values by observed trajectories: C = ()
4 Sequence of coverage values by shortest paths: Csp = ()
5 Sequence of coverage values by random walks: Crand = ()
6 P ′ = ∅
7 PRAND = ∅
8 PSP = ∅
9 while P ≠ ∅ do

10 draw (and remove) Q from P
11 add Q to P ′
12 compute coverage by P ′ and append it to C
13 compute shortest path from s(Q) to t(Q), add this shortest path to PSP

14 compute coverage by PSP and append it to Csp

15 perform random walk: start a random agent in s(Q), agent moves randomly
to one of the neighbors of current nodes (restricted by neighbor choice
mechanism), until stopping criterion is reached.

16 add random walk to PRAND

17 compute coverage by PRAND and append it to Crand

18 end
19 save C , Csp and Crand

20 reset P to initially given set of walks
21 end

subset of trajectories (10 % of all trajectories) was used instead of the complete set of trajectories.
They do not show large differences. It is, however, interesting that shortest paths and randomwalks
restricted by line changes, show faster coverage than the real trajectories and the random walks
restricted by path length.

For all considered Rush Hour games (see Figure 3.10a), the set of shortest paths only covers a small
subset of graph nodes. This is not surprising since all real trajectories start at the same node and
end at one of a few goal nodes. The coverage by real trajectories and random walks is different for
the three games: It is both higher than the coverage by shortest paths for all three games, but while
their coverage is approximately the same for game C, the coverage by random walks is higher than
by real trajectories for game A–and the other way around for game B.

Node usage We compared the node usage by real trajectories to the node usage of the generated
random walks. Figures 3.11a to 3.11f show the node usage nu(v) for each node v by the real
trajectories and the random walks: The x-axis represents the network nodes, ordered by their node
usage by real trajectories, while the y-axis shows the node’s node usage by the corresponding walk
type (shortest paths/random walks/real trajectories). Several observations can be made: For the
Rush Hour games, there is only a low correlation between the node usage by real trajectories and by
the random walks8 (Pearson correlation coefficient of 0.77 (game A), 0.64 (game B), and 0.36 (game

8random walks with uniform neighbor choice
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(a) Dataset with Rush Hour games

(b) Wikispeedia.

(c) DB1B. Not all trajectories were consid-
ered, only 0.1 %, randomly sampled.
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Figure 3.10 Coverage of the networks by real trajectories, shortest paths, and random walks. The solid line
represents the mean coverage value over the N = 500 iterations, the dashed lines the minimal and maximal
coverage values over the 500 iterations.

C)). For the datasets Wikispeedia, DB1B, and London Transport, we found higher correlations, i.e.,
correlation coefficients between 0.81 and 0.87. This is also supported by Figure 3.11g where the
node usage by the real trajectories is shown on the x-axis, and the node usage by the random
walks with uniform neighbor choice and path length restriction, is shown on the y-axis. While for
Wikispeedia, London Transport, and DB1B, it can be seen that the node usages are correlated, this
is not the case for the Rush Hour games. Note that for DB1B, London Transport, and Wikispeedia,
it is exactly the same set of nodes that are used most often by both types of walks, real trajectories
and random walks (the appendix contains a figure showing the nodes with the highest node usage
by real trajectories and random walks; see Figure A.1). By construction, random walks do not
incorporate any knowledge about the network structure nor the target of each trajectory, while
the real trajectories do not necessarily use the shortest path to their target, but the corresponding
(real) agents clearly use their knowledge about the network structure in order to reach their goal
quite fast. Nevertheless, the trajectories of both types of agents show a similar node usage pattern
with respect to the question of which nodes are used most often. This implies that the node usage
pattern, caused by real trajectories and by random walks, is mainly due to the established source
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3 Properties of network flows in complex networks

distribution because the source distribution was kept the same for the random walk generation
(and probably mainly due to the source-target-distribution, but since only the source distribution
can be kept in the random walk procedure, this cannot be tested).

Furthermore, it can be seen that for most datasets, the different variants of random walks do not
yield distinct node usages: For the Rush Hour games, the node usage by random walks with
backwards-restricted neighbor choice consistently yielded slightly higher node usages for each
node than the random walks with uniform neighbor choice. For Wikispeedia and DB1B, the node
usages by random walks with uniform neighbor choice and backwards-restricted neighbor choice
yielded almost exactly the same values of node usage which is why the figure only shows the node
usage of random walks with uniform neighbor choice. For London Transport, the variant of neigh-
bor choice also yielded almost exactly the same values for node usage; however, the choice of the
stopping criterion had an impact on the node usage values. Although the stopping criterion of line
change restriction (LC) was introduced for this dataset in particular in order to gain more realis-
tic random walks, it is actually the random walks with path length restriction for which the node
usage pattern is more like the node usage pattern by real trajectories.

Although for the datasets London Transport, DB1B, and Wikispeedia, a high correlation of node
usage by random walks and real trajectories can be observed, there is also another effect: The node
usage distribution is ”flattened“ when considering random walks instead of real trajectories. While
the nodes with the highest node usage by the real trajectories also have the highest node usage
by the random walks, their node usage by the real trajectories is higher than their node usage by
the random walks. At the other end of the scale, the nodes with the smallest node usage values
for random walks and real trajectories were used even less often by the real trajectories than by
the random walks. In other words, the range of node usage values is larger for the real trajectories
than for the random walks: For the real trajectories, a few nodes were used very often and a few
nodes were used very rarely, while for the random walks, these differences are less extreme. Fig-
ure 3.12 shows the cumulative node usage distributions for the real trajectories and for the random
walks. For the Wikispeedia dataset, the cumulative node usage distributions are even coincident
for most possible values; only for the smallest and largest possible values of the node usage are the
cumulative distributions different. For DB1B and London Transport, the finding was the same as
before: The nodes used least often show smaller node usage values for the real trajectories than for
the random walks, and the nodes used most often show larger node usage by the real trajectories
than by the random walks.

Interestingly, although the node usage by the random walks and by the real trajectories shows
smaller correlations for the Rush Hour games, the cumulative distributions of the node usage are–
except for the same ”flattening effect“ as in the remaining datasets–quite similar for the random
walks and the real trajectories. This means that although the order of nodes by node usage is
different for the random walks and the real trajectories, their cumulative distributions are alike.

Node pair usage We also considered the node pair usage of the node pairs by the randomwalks.
Figure 3.13 shows the cumulative distribution of the node pair usage npu by the real trajectories (as
shown in Section 3.3.1 in Figure 3.5c) and by the generated random walks, using uniform neighbor
choice and path length restriction as stopping criteria. As the random walks were tied to the set of
real trajectories P , the source distribution was the same for the real trajectories and the random
walks. However, Figure 3.13 shows that the source-target-distributionmeasured by node pair usage
is different for the random walks and the real trajectories. As for node usage by the random walks,
a “flattening” of the distribution can be observed here as well: The node pairs demanded most often
by the real trajectories have higher node pair usage than the node pairs demanded most often by
the random walks, and the node pairs demanded least often by the real trajectories have lower
node pair usage than the node pairs demanded least often by the random walks.
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(c) Rush Hour Game B
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(d) DB1B
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(e) Rush Hour Game C
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(f) London Transport
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(g) Node usage of the real paths vsmean node usage of the randomwalks (UNC, PL). Node usage is normalized
by the number of (real or random) agents.

Figure 3.11 Node usage by real trajectories and by randomwalks: For panels (a)-(f), each point represents one
node and its node usage (by randomwalks or real trajectories), ordered by their node usage by real trajectories.
For DB1B and Wikispeedia, only results of random walks with uniform neighbor choice are shown since the
results for backwards-restricted neighbor choice are qualitatively the same. Panel (g) shows the node usage
of each node by the real trajectories (on the x-axis) versus its node usage by the random walks (y-axis).



3 Properties of network flows in complex networks

Figure 3.12 Cumulative node usage distribution of real trajectories and random walks. The random walks
implement a uniform neighbor choice (UNC) or a backwards-restricted neighbor choice (BWR), their length
is restricted by the length (PL) or, if applicable, by the weight (PW) of the corresponding real trajectory. Note
the logarithmic scales on both axes.

Figure 3.13 Cumulative distribution of source-target-frequency of the random walks (left, with uniform
neighbor choice (UNC) and path length restriction (PL) as stopping criteria) and of the real trajectories (right).
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3.6 Summary

3.6 Summary

In this chapter, datasets containing real-world network flows, i.e., two datasets of passenger flows
in transportation systems, one dataset containing human navigation in information networks, and
one dataset containing game logs for a board game, were studied. Several network measures, par-
ticularly classic centrality measures, implicitly contain a model of a network flow with certain
properties: Centrality measures then indicate the importance of a node with respect to network
flows with the assumed properties. Therefore, in this chapter, we investigated to which extent
real-world network flows match the assumed properties. We found that all considered datasets
deviated considerably from most assumed properties. Although for all considered network flows,
the assumption of shortest paths seems to be given according to the process description, the data
revealed that there is a considerable number of trajectories that are longer than the respective short-
est path. Furthermore, we found a large imbalance in the distribution of network flow between the
node pairs: For all datasets, most of the flow is accumulated between only a few node pairs, while
there is no or only a small amount of flow between most node pairs. This is substantially differ-
ent than assumed by standard centrality measures, which assign equal importance to each node
pair. Since the real-world trajectories showed different properties than the corresponding shortest
paths, in a second step, we examined whether their properties can be reproduced by a simple pro-
cess model, i.e., a random-walk-based model. For this purpose, we implemented several variants of
random walk simulations that maintained certain properties of the real-world network flows, but
moved randomly through the network. We found that the real-world network flows resembled the
random walks in some aspects, but were different in others.

In order to investigate how deviations from assumptions impact the results of centrality measures,
the next chapter will introduce flow-based centrality measures that incorporate the properties of
real-world network flows into the measures.
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Flow-based centrality measures
Chapter 4

Chapter outline

In the previous chapter, the analysis of real-world datasets containing network flows re-
vealed an extreme imbalance in the usage of the network by the flow: It was seen that
not all nodes are visited by the flow, and that a few nodes are used very often, while most
nodes are used only a few times. The same holds for the node pairs: A few node pairs were
found to be the source and target of many trajectories while most node pairs were used
only rarely or not at all as source and target. Furthermore, how the observed trajectories
move through the network was neither via shortest paths nor via random walks. These ob-
servations have an impact on common centrality measures for networks. Classic centrality
measures assume the presence of network flow and contain implicit assumptions about the
properties of the network flow. It can be expected that centrality measures quantifying
the nodes’ importance with respect to a hypothetical network flow with “ideal” properties
will identify different nodes as the most central ones than if the nodes’ importance is mea-
sured with respect to the real network flow properties. In this chapter, we will analyze the
impact on the nodes’ centrality rankings when the properties of the real-world flow are
used instead of the hypothetical properties of the network flow. For this reason, we will
introduce several flow-based closeness and betweenness variants that either use the hypo-
thetical properties of the network flow (such as equal amount of flow between each node
pair or usage of shortest paths) or use the observed properties of the real-world network
flow. By introducing several variants that can “switch” between the assumed and the real
properties of the network flow, we are able to analyze in detail which assumptions of the
centrality measures have an impact on the results.
The results presented in this chapter are mainly based on [4] and [6].

4.1 Motivation

When analyzing a complex system as a network, it is often of interest to identify the most impor-
tant actor in the system. When modeling the system as a network, there exist centrality measures
that were designed to compute a score of importance for every node according to its position in
the network. Thus, a centrality measure is a function assigning a number to each node of the net-
work, using solely the structure of the network. From the few named examples, it is clear that
there are different requirements for methods identifying important actors which is why there exist
dozens of different centrality measures. The best-known ones are degree centrality [Nie74], close-
ness centrality [Fre78], betweenness centrality [Fre77, Ant71], Eigenvector centrality [Bon72], and
Katz centrality [Kat53]. Faced with such a wealth of measures, the question arises which of these
measures is applicable in which situation. In order to answer this question, it is helpful to consider
how these measures are actually computed. Although all these measures only use the structure
of the network, they all assume a process flowing through the network. This was already stated
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4 Flow-based centrality measures

by Freeman in his article presenting betweenness-based measures [Fre77]: “Thus, the use of these
three measures is appropriate only in networks where betweenness may be viewed as important
in its potential for impact on the process being examined.” Thus, centrality measures quantify the
importance of a node with respect to a process, i.e., entities flowing through the network using the
network structure. As described in Chapter 2, there are two major points regarding the usability
of centrality measures, pointed out by Borgatti [Bor05]: (i) The most popular centrality measures
assume the presence of a process, and (ii) they also assume certain properties of such processes.
In other words, each centrality measure implicitly incorporates the model of a flow process with
certain properties. He found that most well-known centrality measures assume that the network
processes move on shortest paths or are transmitted by parallel duplication (see also Chapter 2).
It is obvious, however, that most processes for which the most important actors are of interest do
not have these properties; for example information flow or infection spreading. Even worse, even
those network flows for which a transfer process and usage of shortest paths can be assumed, do
not exhibit this behavior in reality. In Chapter 3, several datasets of network flows with a transfer
process and presumably shortest paths were analyzed in detail. Although the entities tracked in the
datasets have a target that they try to reach as fast as possible, we found that even these network
flows violate the assumption of shortest paths.

Which consequences does this have for centrality measures? Consider Figure 4.1 as an example:
It shows a small network with two example network flows sketched with blue and orange edges.
Standard betweenness and closeness centrality would assign high values to the nodes A and B since,
for betweenness centrality, (almost) all shortest paths between the two groups involve A and B, and,
for closeness centrality, these nodes are closest to nodes of both groups. Let us assume a network
flow flowing along the bold blue edges. Although for this flow, it is true that there is flow between
the two groups, it does not use the shortest path from its origin to its destination. The nodes A and
B, which are ranked high by standard measures, are not relevant at all with respect to the network
flow at hand. Another case occurs for the flow sketched with dashed orange edges. This flow
moves along shortest paths; however, it is only relevant for the right subgroup of nodes. For this
toy network flow, node F is highly relevant, which cannot be recognized by the standard measures
because they assume a simple processmodel in which an equal quantity of flow is assumed between
each pair of nodes.

If even network flows for which the classic centrality measures are applicable in the classification
of Borgatti [Bor05] do not show these properties in reality, the question arises how valid the results
of any centrality measure can be. If a centrality measure is applied on a network assuming a
network process with certain properties, but the actual network flow does not show these assumed
properties, the centrality measure cannot be expected to be able to identify the most important
actor with respect to the actual network process. Or can it?

In this chapter, the goal is to answer exactly this question:

Which impact on the resulting node rankings does it have if an empiric network flow does
not have the characteristics of the process model incorporated in the centrality measure?

In order to answer this question, our approach is as follows: Instead of incorporating a processmodel
into a centrality measure, we incorporated the characteristics of the actual empirically observed
network flow. For example, instead of counting in how many shortest paths a node is contained,
we counted in how many actually observed trajectories a node is contained.

We can do this even more systematically and test every single assumption contained in a centrality
measure on its own: When looking at the formula of betweenness centrality, it can be seen that
besides the usage of shortest paths, there are more assumptions in the process model: There is a
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4.1 Motivation

Figure 4.1 An example network with a simple network flow illustrated by colored edges. Standard between-
ness centrality would assign a high value to nodes A and B because their position is between the two larger
subgraphs and all shortest paths between the subgraphs contain the nodes A and B. If, however, an example
network flow such as the one sketched with bold blue edges, does not use these edges, standard betweenness
centrality is not able to identify the most important node with respect to the existing network flow.

flow between every pair of nodes, and the flow is of equal frequency for every node pair. In the
datasets with empirically observed flow data, we found that these assumptions were not generally
true: There were node pairs between which no flow was observed, and there was a large amount
of flow between a few node pairs, while there was only a small amount of flow between most node
pairs.

In order to answer the main question, we introduce different variants of centrality measures, either
using the property of the incorporated process model or using the actual characteristics of the
empirically observed network flow. This allows us to systematically “switch on or off” specific
assumptions in the process model by replacing them with the actual flow behavior.

The structure of this chapter is thus as follows: Based on the centrality measures’ assumptions
reviewed in Chapter 2, Section 4.2 introduces variants of betweenness, and closeness centrality
that are able to include or exclude empirically observed flow behavior instead of the process model.
In Section 4.3, we briefly review existing methods for comparing values and rankings of centrality
or other scoring measures, and introduce a newmeasure for comparing two rankings: the weighted
overlap coefficient. In Section 4.4, we describe the datasets used, before presenting our findings in
the remaining sections. The results sections are structured along the following questions:

(i) How robust are the standard measure variants, i.e., standard betweenness, and standard
closeness centrality against variations in their process model? In Section 4.5, we investigate
to which extent the rankings of the flow-based centrality variants differ from the ranking of
the corresponding standard centrality measure.

(ii) Which nodes are impacted by changes in the process model? This question is analyzed in
Section 4.6 in two steps: We first consider those nodes that are ranked highly by at least one
measure variant because most of the time, one is interested in the most important entities.
Changes in ranking among the high-ranked nodes are of higher relevance than changes in
ranking among less highly-ranked nodes. In a second step, we focus on those nodes that are
impacted most by including or excluding a certain aspect of the empirically observed flow.
If possible, we provide explanations on why these nodes experience such a large change in
ranking position.

(iii) Which assumptions matter and which do not? By comparing the rankings of the flow-based
centrality variants including or excluding certain assumptions, we can analyze whether there
are some assumptions whose violations have a large impact on the resulting rankings or
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whether their impact is minor. In this context, we need to consider to which extent the
assumptions are actually violated. Section 4.8 presents our results for this question.

Notation In general, given a graph G = (V, E), a centrality measure is a function c ∶ V → R that
assigns a value to each node. Usually, a centrality measure is required to be a structural index, i.e.,
its values solely depend on the structure of the graph. Normally, a high value of c indicates high
importance of the nodewhile a low value indicates low importance. The values of c induce a ranking
on the nodes where each node is assigned a rank from 1 to ∣V ∣: The node with the highest c value
gets the rank 1, etc. A node with a high c value is “ranked high” while a node with a small c value
is “ranked low“. In this chapter, we will consider closeness centrality as defined in Definition 2.8 on
page 14, and betweenness centrality including endpoints as defined in Definition 2.10 on page 15.

4.2 Flow-based centrality measures

In Chapter 3, we have shown that the main assumptions of the considered centrality measures
(as described in Chapter 2) are not met in empirical flow data: Flows do not move along shortest
paths through the network, and there are node pairs in the network between which there is more
communication than between others.

The question arises whether this actually matters for the identification of the most important nodes
by centrality measures. Since the network structure and the corresponding network flow are often
not independent of each other–actual demand by the flow process might shape the network and
the flow process is constrained by the network structure–, it is possible that the network structure
is indeed sufficient. On the other hand, the contained simple process model might be too simplistic
to capture those nodes that are relevant for the actual process.

Since datasets containing network flows are available, the information of how a process actually
flows through the network is accessible. We thus used the following approach: For each centrality
measure, the following sections will introduce flow-based variants that–instead of the simple pro-
cess model–incorporate the behavior of the real-world network flow. For example, one variant will
count in how many empirically observed trajectories a node is contained instead of counting the
number of shortest paths it is contained in. With this approach, we are able to ”switch on and off“
the existing assumptions contained in the centrality indices and replace the behavior of the simple
process model with the behavior of the real-world process flow.

4.2.1 Flow-based betweenness centrality

We will introduce four flow-based betweenness variants which are all based on the empirical flow
data to a certain extent. For all variants, the empirical flow data is needed which is assumed to be
given as a set of trajectories in the graph, P = {P1, . . . , Pℓ} where elements of P are walks in the
graph G.

As a general framework, we introduce a weighted betweenness centrality:

Definition 4.1: Generalized weighted betweenness centrality

The weighted betweenness centrality is defined as

Bw(v) = ∑
s∈V
∑
t∈V

w(s, t, v) ⋅ σst(v)
σst

with a weight function w ∶ V × V × V → R.
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4.2 Flow-based centrality measures

Standard betweenness centrality is obtained by inserting the weight function

w(s, t, v) =
⎧⎪⎪⎨⎪⎪⎩

0 if s = t or s = v or v = t

1 else

and standard betweenness centrality including endpoints has the weight function wE(s, t, v) = 1
for all s, t, v ∈ V .

Figure 4.2 shows an example graph with six paths in it, indicated by directed edges with different
colors. Hence, the set of paths is here given as

P = {P1, P2, P3, P4, P5, P6}

with

P1 = (10, 1, 2, 3, 4, 6),
P2 = (7, 3, 4, 6),
P3 = (8, 7, 2, 3, 9, 4, 6),
P4 = (7, 3, 9, 4, 6),
P5 = (1, 2, 3, 9, 4), and

P6 = (7, 2, 3, 9, 4, 6).

Color and size of the nodes in the figure indicate the node’s centrality value with respect to the
corresponding measure, while the numbers next to the nodes show the corresponding measure
value. Figure 4.2b show the betweenness centrality values of the nodes with respect to the standard
betweenness centrality that includes the endpoints of the shortest paths.

Table 4.1 shows an overview of the introduced flow-based betweenness measures.

Note that the subsequent analysis will be mainly performed on the rankings induced by the mea-
sure variants and not on the actual values which is why there is no need for normalization of the
measures.

Betweenness variant BS The first variant will keep the assumption of shortest paths (indicated
by the subscript S), but will only use the (shortest) paths between those node pairs between which
real-world flow has been observed. Consider again Figure 4.1 as a motivating example: The process
flow indicated by the orange edges only takes place within the right group of nodes which is why
there is no reason to consider nodes A or B as ”gatekeepers“ for the present flow. Whether this
aspect is relevant for real-world network flows, is tested with the variant BS , where we count only
shortest paths between node pairs that are source and target of the real-world network flow.

Definition 4.2: Betweenness variant BS

Thus, we define

BS(v) = ∑
s∈V
∑
t∈V

wS(s, t, v) ⋅ σst(v)
σst

(4.1)

with the weight function

wS(s, t, v) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃P ∈ P ∶ s(P ) = s and t(P ) = t

0 else
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In the example in Figure 4.2c, the weights are hence wS(1, 4, ⋅) = wS(7, 6, ⋅) = wS(8, 6, ⋅) =
wS(10, 6, ⋅) = 1 and wS(s, t, v) = 0 for all other s, t, v ∈ V . For node 3, the centrality value is
then

BS(3) =wS(1, 4, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

⋅
σ1,4(3)

σ1,4
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+wS(8, 6, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⋅
σ8,6(3)

σ8,6
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 0

1

+

wS(10, 6, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⋅
σ10,6(3)

σ10,6
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+wS(7, 6, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⋅
σ7,6(3)

σ7,6
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2

= 2.5

Table 4.1 Categorization of the introduced flow-based betweenness centralities

count how? sum over weight

BS shortest s, t: ∃P ∈ P ∶ s(P ) = s→ t = t(P ) 1
BSW shortest s, t: ∃P ∈ P ∶ s(P ) = s→ t = t(P ) #P ∶ s→ t
BR real → s→ v → t→ all nodes 1
BRW real s→ v → t s, t: ∃P ∈ P ∶ s(P ) = s→ t = t(P ) #P ∶ s→ t

(a) The graph. (b) Be (standard) (c) BS

(d) BSW (e) BR (f) BRW

Figure 4.2 Application of the flow-based betweenness measures on an example graph with the set P =
{P1, P2, P3, P4, P5, P6} with P1 = (10, 1, 2, 3, 4, 6), P2 = (7, 3, 4, 6), P3 = (8, 7, 2, 3, 9, 4, 6), P4 =
(7, 3, 9, 4, 6), P5 = (1, 2, 3, 9, 4), and P6 = (7, 2, 3, 9, 4, 6). Size and colour of the nodes correspond to their
centrality value, the values of the centrality measures are shown in the grey box next to each node.
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4.2 Flow-based centrality measures

Betweenness variant BSW In this variant, the assumption of shortest paths is still kept, but
the assumption of equal amount of flow between each node pair is dropped. We have seen that
between some node pairs, there is larger flow than between others. The idea is that a node should
get a higher centrality value if it is on many shortest paths between node pairs that are in high
demand as source-target-pairs by the real-world flow than if a node is on many shortest paths
between node pairs where demand is less. In the previous variant, however, any node pair can
contribute at most the value 1 to the centrality of a node, regardless how often (if at least once)
this pair was demanded as a source and destination of the process. Therefore, a weight (thus
the subscript W ) is chosen such that being between highly demanded node pairs yields a higher
centrality score. The weight is thus proportional to the number of times this node pair was the
source and destination of an empirically observed trajectory.

Definition 4.3: Betweenness variant BSW

We define

BSW (v) = ∑
s∈V
∑
t∈V

wSW (s, t, v) ⋅ σst(v)
σst

(4.2)

with the weight functiona

wSW (s, t, v) = ∣{P ∈ P ∣s(P ) = s, t(P ) = t}∣
aSince we are not interested in the actual values of the centrality measures, but in the node rankings they yield,

it is not necessary to require the weights to be in the interval [0, 1] and therefore, we do not need to normalize
wSW .

For the example in Figure 4.2d, this means that the weights are as follows

wSW (s, t, v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if (s=1, t=4) or (s=8, t=6) or (s=10, t=6)
3 if s = 7, t = 6
0 otherwise

which then yields for node 3

BSW (3) =wSW (1, 4, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⋅
σ1,4(3)

σ1,4
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+wSW (8, 6, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⋅
σ8,6(3)

σ8,6
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 0

1

+

wSW (10, 6, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⋅
σ10,6(3)

σ10,6
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+wSW (7, 6, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=3

⋅
σ7,6(3)

σ7,6
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 1

2

=3.5

Since shortest paths are counted, frequently visited nodes such as node 9 or 2, which are not on
any shortest path, get a low centrality value.

Betweenness variant BR Unlike the previous two measure variants which count in how many
shortest paths a node is contained, the following two measures count in how many observed trajec-
tories a node is contained (indicated by the subscript R for real trajectories). Consider the example
network flow in Figure 4.1 indicated by the blue edges. Instead of using the shortest path via nodes
A and B, it uses the detour via nodes C, D, and E which is why those nodes should be rated as
relevant for the present process. This cannot be accomplished by any of the previous measure vari-
ants counting shortest paths. For this reason, we need to define a flow-based version of σst and
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4 Flow-based centrality measures

σst(v) as the number of observed trajectories between two nodes and that contain v. In order to
keep the assumption that there is communication between any pair of nodes and not only between
the node pairs that are actually source and destination of real trajectories, we define σP⋅st⋅ as the
number of observed trajectories that contain s and t (in this order) and σP⋅st⋅(v) as the number of
observed trajectories that contain s and t and v in between. Otherwise, if σP⋅st⋅ was defined as the
number of observed trajectories from s to t, node pairs that are not source and target of any ob-
served trajectory would not be considered at all, meaning the assumption of equal amount of flow
between each node pair would already be dropped. It is clear that even with the given definition of
σP⋅st⋅ and σP⋅st⋅(v), node pairs (s, t) where s or t are not contained in any observed trajectory (or not
contained in at least one common observed trajectory), will not contribute to the centrality value
because σP⋅st⋅ is 0 in this case.

Definition 4.4: Betweenness variant BR

We define

BR(v) = ∑
s∈V
∑
t∈V

wR(s, t, v) ⋅ σ
P
⋅st⋅(v)
σP⋅st⋅

(4.3)

with the weight function wR(s, t, v) = 1 for all s, t, v ∈ V with s ≠ t, the convention 0
0 = 0,

and
σP⋅st⋅ = ∣{P ∈ P ∣P = (. . . , s, . . . , t, . . . )}∣

and
σP⋅st⋅(v) = ∣{P ∈ P ∣P = (. . . , s, . . . , v, . . . , t, . . . )}∣

.

In the example in Figure 4.2e, all nodes except node 5 are contained in some path. For node 2, we
therefore get

BR(2) =
σP⋅1,4⋅(2)

σP⋅1,4⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

2

+
σP⋅2,6⋅(2)

σP⋅2,6⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 3

3

+
σP⋅1,9⋅(2)

σP⋅1,9⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+
σP⋅2,3⋅(2)

σP⋅2,3⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 4

4

+
σP⋅8,2⋅(2)

σP⋅8,2⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+
σP⋅10,4⋅(2)

σP⋅10,4⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1
1

+
σP⋅7,3⋅(2)

σP⋅7,3⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

4

+
σP⋅8,9⋅(2)

σP⋅8,9⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+
σP⋅2,4⋅(2)

σP⋅2,4⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 4

4

+
σP⋅10,3⋅(2)

σP⋅10,3⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1
1

+
σP⋅7,4⋅(2)

σP⋅7,4⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

4

+
σP⋅1,2⋅(2)

σP⋅1,2⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

2

+
σP⋅10,6⋅(2)

σP⋅10,6⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1
1

+
σP⋅1,3⋅(2)

σP⋅1,3⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

2

+
σP⋅7,6⋅(2)

σP⋅7,6⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

4

+
σP⋅8,6⋅(2)

σP⋅8,6⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+
σP⋅8,3⋅(2)

σP⋅8,3⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+
σP⋅2,9⋅(2)

σP⋅2,9⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 3

3

+
σP⋅10,2⋅(2)

σP⋅10,2⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1
1

+
σP⋅8,4⋅(2)

σP⋅8,4⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

+
σP⋅7,2⋅(2)

σP⋅7,2⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

2

+
σP⋅7,9⋅(2)

σP⋅7,9⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 2

3

+
σP⋅1,6⋅(2)

σP⋅1,6⋅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

1

= 21.17

We see that nodes whose centrality value was very small before because they are not on (many)
shortest paths have a (relatively) larger centrality value in this variant. For example, node 9 or
node 2 have minor importance with respect to the standard betweenness centrality, but rise in
importance in this variant because they are used by a certain number of real paths.
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Betweenness variant BRW The last betweenness measure variant combines the idea of making
use of a weight function that is proportional to the number of observed trajectories using this s-
t-pair as source and destination, and the idea of counting the observed trajectories instead of the
shortest paths in which a node v is contained. Therefore, both assumptions, usage of shortest paths
and equal amount of flow between each node pair, are dropped and replaced by the behavior of the
empirical flow. Since in this case, the weight function will yield 0 for node pairs (s, t) where s and
t are not source and target of any observed trajectory, we can use a simpler flow-based version of
σst and σst(v).

Definition 4.5: Betweenness variant BRW

We define

BRW (v) = ∑
s∈V
∑
t∈V

wRW (s, t, v) ⋅ σ
P
st(v)
σPst

(4.4)

with the weight function wRW (s, t, v) = wSW (s, t, v). and σPst = ∣{P ∈ P ∣s(P ) = s, t(P ) =
t}∣ and σPst(v) = ∣{P ∈ P ∣s(P ) = s, t(P ) = t, v ∈ P}∣. This can be simplified to

BRW (v) = ∑
s∈V
∑
t∈V
∣{P ∈ P ∣s(P ) = s, t(P ) = t}∣ ⋅ σ

P
st(v)
σPst

= ∑
s∈V
∑
t∈V
∣{P ∈ P ∣s(P ) = s, t(P ) = t}∣ ⋅ ∣{P ∈ P ∣s(P ) = s, t(P ) = t, v ∈ P}∣

∣{P ∈ P ∣s(P ) = s, t(P ) = t}∣
= ∑

s∈V
∑
t∈V
∣{P ∈ P ∣s(P ) = s, t(P ) = t, v ∈ P}∣

= ∣{P ∈ P ∣v ∈ P}∣

which is the number of paths in P that contain v.

BRW is thus a kind of stress betweenness centrality.

We see in Figure 4.2f that node 3, which is central with respect to all previously considered centrality
measures is also central with respect to BRW , but nodes such as 9 and 2 rise in importance because
they were actually used by a considerable number of trajectories. Figure 4.2 also shows that the
different flow-based variants we introduced do change the relative importance of nodes in the
given example. Sections 4.5 to 4.8 will present the results after the computation of the introduced
measures using real-world empirical process flows.

4.2.2 Flow-based closeness centrality

For closeness centrality, there are some similar assumptions as for betweenness centrality which
can be replaced by the behavior of the real-world process flow in flow-based centrality variants:
usage of shortest paths and equal amount of flow from/to any other node. Similar as for the flow-
based betweenness variants, wewill introduce flow-based closeness variants that drop or keep these
assumptions separately (as far as possible). We again begin with a generalized closeness centrality
from which the different variants can then be derived1.

1In the following, for the sake of better readability, we will only introduce variants as in-closeness; the corresponding
out-closeness can be easily derived.
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Definition 4.6: Generalized weighted closeness centrality

Let

Cω(v) = ∑
w∈V (v)

N(v)
ω(w, v)δ(w, v)

(4.5)

a generalized weighted closeness centrality with a weight function ω ∶ V × V → R, a
normalization factor N ∶ V →N and a distance function δ ∶ V ×V → R and v-based subset
of nodes.

Setting N(v) ∶= ∣V ∣ − 1 for all v ∈ V , δ(v, w) = d(v, w) as the graph-theoretic distance of nodes,
ω(v, w) = 1 for all v, w ∈ V , and V (v) ∶= V / {v} yields the standard closeness (as defined above).

The following sections will introduce six different flow-based closeness variants. Their naming
follows the same scheme as for the betweenness variants: The subscript S or R indicates whether
shortest or real trajectories are considered, the additional subscriptW indicateswhether the amount
of flow between two nodes is considered by the weight function. Table 4.2 gives an overview of the
introduced closeness variants, Figure 4.3 shows a graph with example paths in it (the same as in
the example for the betweenness variants), and the results of the flow-based closeness variants.

Closeness variant CS The first flow-based closeness variant keeps the assumption of shortest
paths (which is why the ”normal“ graph-theoretic distance function d can be used as a distance
function), but only distances between those node pairs are considered between which a real-world
flow is observed. There are several possibilities for defining which node pairs (s, t) to be considered:
Either only node pairs (s, t) for which there exists a real trajectory starting in s and ending in t,
or node pairs (s, t) such that at least one real trajectory starts in s and at least one real trajectory
ends in t, or node pairs (s, t) such that s and t are contained in at least one common trajectory
(in this order). We decided to introduce two variants, one using the first and one using the last
definition (which will be the variant C ′S , defined in the following paragraph). In the variant to be
defined here, flow from s to t is defined strictly as the existence of at least one observed trajectory
starting in s and ending in t.

Definition 4.7: Closeness variant CS

We define

C←S (v) = ∑
w∈VS(v)

NS(v)
ωS(w, v)d(w, v)

(4.6)

with the weight function

ωS(w, v) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃P ∈ P ∶ s(P ) = w, t(P ) = v

0 otherwise

and the normalization factor

NS(v) = ∣{w ∈ V ∣∃P ∈ P ∶ s(P ) = w, t(P ) = v}∣,

and VS(v) = {w ∈ V ∣ωS(w, v) ≠ 0}.

It is clear that only nodes in which at least one trajectory from P ends, have a value above 0. In
the example in Figure 4.3, all example paths end in node 6 or 4 which is why the values for all other
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(a) The graph. (b) Standard closeness C→ and C←

(c) C←S (d) C←S′ (e) C←SW

(f) C←R (g) C←RW (h) C←RW ′

Figure 4.3 Application of the flow-based closeness (in-)measures on an example graph with the set
P = {P1, P2, P3, P4, P5, P6} with P1 = (10, 1, 2, 3, 4, 6), P2 = (7, 3, 4, 6), P3 = (8, 7, 2, 3, 9, 4, 6), P4 =
(7, 3, 9, 4, 6), P5 = (1, 2, 3, 9, 4), and P6 = (7, 2, 3, 9, 4, 6). Size and color of the nodes correspond to their
centrality value, the values of the centrality measures are shown in the grey box next to each node. Only
out-variants are shown here.
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Table 4.2 Categorization of the introduced flow-based (in-)closeness centralities.

Which distances? To which nodes? Weight

CS shortest ∃P ∶ s(P ) = w → v = t(P ) 1
CS′ shortest ∃P ∶→ w → v → 1
CSW shortest ∃P ∶→ w → v → #P ∶→ w → v →
CR real ∃P ∶→ w → v → 1
CRW real ∃P ∶ s(P ) = w → v = t(P ) #P ∶ w → v
CRW ′ real ∃P ∶→ w → v → #P ∶→ w → v →

nodes are 0. For node 6, we obtain VS(6) = {10, 7, 8} and thus,

C←S (6) =
Ns(6)

ωS(10, 6)d(10, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅4

+ Ns(6)
ωS(7, 6)d(7, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅3

+ Ns(6)
ωS(8, 6)d(8, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅2

= 3.25

Closeness variant CS′ This variant is similar to CS , however, in this variant, the requirement
for a flow between a node pair is defined less strictly: here, in order to consider a node pair (s, t),
it is sufficient that at least one observed trajectory contains s and t.

Definition 4.8: Closeness variant CS′

We define

C←S′(v) = ∑
w∈VS′(v)

NS′(v)

ωS′(w, v)d(w, v)
(4.7)

with the weight function

ωS′(w, v) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃P ∈ P ∶ P = (. . . , w . . . , v, . . . ), v ≠ w

0 otherwise

and the normalization factor

NS′(v) = ∣{w ∈ V ∣ ∃P ∈ P ∶ P = (. . . , w . . . , v, . . . ), v ≠ w}∣

and the node subset VS′(v) = {w ∈ V ∣w ≠ v, ωS′(w, v) ≠ 0}.

This relaxation makes this flow-based variant more like the standard closeness centrality: As in
standard closeness centrality, all intermediate nodes between w and v also contribute to the close-
ness value.

In the example in Figure 4.3, this change raises the values of all nodes that are at least contained
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in one path from P , for example for node 3, we obtain VS′(3) = {10, 1, 2, 7, 8}

C←S′(3) =
NS′(3)

ωS′(10, 3)d(10, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅2

+ NS′(3)
ωS′(1, 3)d(1, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅1

+ NS′(3)
ωS′(2, 3)d(2, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅1

+ NS′(3)
ωS′(7, 3)d(7, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅1

+ NS′(3)
ωS′(8, 3)d(8, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 5
1⋅2

= 20

Closeness variant CSW Like the previous two variants, this variant still considers the length of
the shortest paths, but distances from nodes from which there is more real-world flow, will have a
larger impact on the measure value. We thus chose a weight for (w, v) proportional to the number
of process trajectories between w and v.

Definition 4.9: Closeness variant CSW

We define

C←SW (v) = ∑
w∈VSW (v)

NSW (v)
ωSW (w, v)d(w, v)

(4.8)

with
ωSW (w, v) = ∣{P ∈ P ∣P = (. . . , w, . . . , v, . . . )}∣

and the normalization factor

NSW (v) = ∑
w∈V

ωSW (w, v)

and VSW (v) = {w ∈ V ∣w ≠ v, ωSW (w, v) ≠ 0}

For the example shown in Figure 4.3, this yields for node 4, VSW (4) = {10, 1, 2, 7, 3, 8, 9} and thus,

C←SW (4) =
NSW (4)

ωSW d(10, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
1⋅3

+
NSW (4)

ωSW d(1, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
2⋅2

+
NSW (4)

ωSW d(2, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
4⋅2

+
NSW (4)

ωSW d(7, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
4⋅2

+
NSW (4)

ωSW d(3, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
6⋅1

+
NSW (4)

ωSW d(8, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
1⋅1

+
NSW (4)

ωSW d(9, 4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 22
4⋅1

= 49.5

Closeness variant CR In this and the following two variants, the assumption of shortest paths is
dropped and instead the ”real path length“ is considered. The idea is that if a network process tends
to use detours instead of the shortest path, the closeness centrality should consider the length of
the actually taken paths instead of the length of the (not used) shortest path. If a network process
is moving along shortest paths, the variants will coincide. We therefore need to define a flow-
based path length dP(v, w). For a single trajectory P ∈ P , we define the P -distance from node
v to node w, denoted by dP (v, w), as the sum of the edge weights contained in P between the
occurrence of v and w in P 2, it is not defined if P does not contain v or w. It is possible that there

2To be precise: if v and w are contained multiple times in P , the minimum sum of edge weights of the edges between v
and w in P is used.
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are multiple P ∈ P containing both nodes v and w. For a flow-based distance dP , the single P -
distances are aggregated by averaging them. Consider the graph and the trajectory set P shown
in Figure 4.3. Nodes 3 and 6 have a graph-theoretic distance d(3, 6) = 2, so we obtain the following
P -distances for them: dP1(3, 6) = 2, dP2(3, 6) = 2, dP3(3, 6) = 3, dP4(3, 6) = 3, dP6(3, 6) = 3,
while dP5(3, 6) is not defined. By averaging those (defined) single values, we obtain a flow-based
distance of dP(3, 6) = 13

5 = 2.6.

The flow-based distance is then used for defining variant CR.

Definition 4.10: Closeness variant CR

We define

C←R (v) = ∑
w∈VR(v)

NR(v)
ωR(w, v)dP(w, v)

(4.9)

with

ωR(w, v) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∃P ∈ P ∶ P = (. . . , w, . . . , v, . . . ), v ≠ w

0 otherwise

and
NR(v) = ∣{w ∈ V ∣∃P ∈ P ∶ P = (. . . w . . . v . . . )}∣

and VR(v) = {w ∈ V ∣w ≠ v, ωR(w, v) ≠ 0}

Since for nodes v, w which do not occur in any common trajectory, there is no flow-based distance,
for computing the closeness for v, only those nodes co-occurring with v in at least one trajectory
can contribute to the value. Thus, the assumption of the existence of flow from each node to v
cannot be upheld completely.

In the example in Figure 4.3, the following flow-based distances need to be computed in order to
compute C←R (3):

dP(10, 3) = 3
1

, dP(1, 3) = 2 + 2
2
= 2, dP(2, 3) = 1 + 1 + 1

3
= 1

dP(5, 3) undefined, dP(7, 3) = 1 + 2 + 1 + 2
4

= 1.5, dP(8, 3) = 3
1

dP(4, 3) undefined, dP(9, 3) undefined, dP(6, 3) undefined

For node 3, we get VR(3) = {10, 1, 2, 7, 8} and can then compute the value for node 3 as follows

C←R (3) =
NR(3)

ωR(10, 3)dP(10, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅3

+ NR(3)
ωR(1, 3)dP(1, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅2

+ NR(3)
ωR(2, 3)dP(2, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅1

+ NR(3)
ωR(7, 3)dP(7, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅1.5

+ NR(3)
ωR(8, 3)dP(8, 3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅3

= 14.17

Closeness variant CRW Similarly as before, we additionally introduce a weight function pro-
portional to the amount of flow between two nodes. Thus, distances between nodes between which
there is a large amount of flow contribute more to the measure value than distances of node pairs
between which there is (almost) no flow.
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Definition 4.11: Closeness variant CRW

We define

C←RW (v) = ∑
w∈VRW (v)

NRW (v)
ωRW (w, v)dP(w, v)

(4.10)

with
ωRW (w, v) = ∣{P ∈ P ∣s(P ) = w, t(P ) = v}∣

and the normalization factor

NRW (v) = ∑
w∈V

ωRW (w, v)

and VRW (v) = {w ∈ V ∣w ≠ v, ωRW (w, v) ≠ 0}.

In this variant, most nodes of the example in Figure 4.3 get a value of 0, since for the example paths,
only nodes 6 and 4 have an incoming flow according to the strict definition used in this variant.
For computing the value for node 6, the following flow-based distances need to be computed:

dP(10, 6) = 5
1

, dP(7, 6) = 3 + 5 + 4 + 5
4

= 4.25, dP(8, 6) = 6
1

,

With VRW (6) = {10, 7, 8}, we get

C←RW (6) =
NRW (6)

ωRW (10, 6)dP(10, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅5

+ NRW (6)
ωRW (7, 6)dP(7, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
3⋅4.25

+ NRW (6)
ωRW (8, 6)dP(8, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

5
1⋅6

≈ 2.23

Closeness variant CRW ′ Like for the variants CS and CS′ , we loosen the restriction of ”flow
from v to w“ in this case. In the previous variant, a trajectory P only contributes to the flow between
its start node s(P ) and its target node t(P ). In this variant, we count all trajectories going through
v and w for the flow between v and w.

Definition 4.12: Closeness variant CRW ′

We define

C←RW ′(v) = ∑
w∈VRW ′(v)

NRW ′(v)
ωRW ′(w, v)dP(w, v)

(4.11)

with
ωRW ′(w, v) = ∣{P ∈ P ∣v, w ∈ P, v ≠ w}∣}

and
NRW ′(v) = ∑

w∈V
ωRW ′(w, v)

and VRW ′(v) = {w ∈ V ∣w ≠ v, ωRW ′(w, v) ≠ 0}.
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For node 6 in the example in Figure 4.3, we get VRW ′(6) = {10, 1, 2, 3, 7, 8, 4, 9}, so we get

C←RW ′(6) =
NRW ′(6)

ωRW ′(10, 6)dP(10, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
1⋅5

+ NRW ′(6)
ωRW ′(1, 6)dP(1, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
1⋅4

+ NRW ′(6)
ωRW ′(2, 6)dP(2, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
3⋅3.5

+ NRW ′(6)
ωRW ′(3, 6)dP(3, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
5⋅2.6

+ NRW ′(6)
ωRW ′(7, 6)dP(7, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
4⋅4.25

+ NRW ′(6)
ωRW ′(8, 6)dP(8, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
1⋅6

+ NRW ′(6)
ωRW ′(4, 6)dP(4, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
5⋅1

+ NRW ′(6)
ωRW ′(9, 6)dP(9, 6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

23
3⋅2

≈ 27.9

with these flow-based distances

dP(1, 6) =4 + 4
2
= 4, dP(2, 6) =3 + 4 + 3 + 4

4
= 3.5, dP(5, 6) undefined,

dP(3, 6) =2 + 2 + 3 + 3 + 3
5

= 2.6, dP(4, 6) =1 + 1 + 1 + 1 + 1
5

= 1, dP(9, 6) =2 + 2 + 2
3

= 2

4.3 Comparison methods for rankings

Given a graph G = (V, E) and a set of walks in G, denoted by P , all introduced measures can
be computed (see Section 4.4 for a description of which datasets will be used as G and P). Thus,
for each measure and each dataset, each node v ∈ V is assigned a value. In order to analyze the
obtained data, this section will introduce various methods for comparing values and their resulting
rankings.

Rankings For a measure c ∶ V → R, with V = {v1, v2, . . . , vn}, we say that c induces an order ≤c

on V by:
vi ≤c vj ⇔ c(vi) ≥ c(vj).

When the elements of V are written in a sequence (vi1 , vi2 , . . . , vin) where {vi1 , . . . , vin} = V
such that vij ≤c vij′ for any j, j′ ∈ {1, . . . , n}, we can deduce a ranking σ ∶ V → {1, . . . , n} by
assigning each element of V its position number in the ordered sequence, hence the element of
V with the highest value of c, here i1, gets a ranking value σ(i1) = 1 and so forth. We say that
elements with a low ranking value (1, 2, 3, . . . ) are ranked high while elements with a high ranking
value (n, n − 1, . . . ) are ranked low. There are several strategies for handling ties, i.e., elements of
V with the same measure value c. Ordinal ranking σo assigns distinct numbers to each element,
where the positioning of elements with the same measure value c can be done according to some
arbitrary criterion, for example randomly, which yields random ranking σr . Standard competition
ranking σmin can assign the same ranking number to different elements of V : Elements with an
equal measure value c are all assigned theminimal position of the elements in the ordered sequence.
Fractional ranking σf assigns the mean position number of the tie elements’ position numbers. An
example is given in Table 4.3.

Given then two measures c and d on V , and their corresponding rankings σc and σd, different
approaches exist for comparing them.
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Table 4.3 Let V be a set of items and c(v) a measure inducing an order on V . σo shows the deduced ordinal
ranking, σmin the deduced standard competition ranking, and σf the fractional ranking, σr (one possible
instantiation of)random ranking.

Ranking methods
V c(v) Sequence σo σmin σf σr

A 10 B 1. B 1. B 1. B 1. B
B 30 F 2. F 2. F 2. F 2. F
C 5 A 3. A 3. A 4. E 3. A
D 10 D 4. D 3. D 4. A 4. E
E 10 E 5. E 3. E 4. D 5. D
F 25 C 6. C 6. C 6. C 6. C

Pearson correlation of measures The Pearson correlation coefficient is a measure quantifying
the strength of a linear relationship between two variables. Let c⃗ and d⃗ denote vectors containing
the values c(vi) and d(vi) for each vi ∈ V . Let c⃗i ∶= c(vi) (d⃗i ∶= d(vi) respectively), denote the
value of c (respectively d) for node vi. Then, c = 1

n ∑
n
i=1 c(vi) is the mean value of c⃗ (and defined

correspondingly for d). The Pearson correlation coefficient[Gal89, Bra46] is then defined as

τP (c⃗, d⃗) = ∑n
i=1 (c⃗i − c)(d⃗i − d)

√
∑n

i=1 (c⃗i − c)2∑n
i=1 (d⃗i − d)2

(4.12)

The Pearson correlation coefficient ranges from 1 (indicating a perfect linear relationship) over 0 (no
linear relationship) to −1 (indicating a perfect negative linear relationship). This measure is widely
used. However, since themeasures introduced in Section 4.2 are not necessarily related linearly (the
following sections will show that they are related, but rarely in a purely linear way), the Pearson
correlation coefficient is not the appropriate measure for comparing the measure values.

Spearman’s rank correlation coefficient If the values of two measures are related, but not
linearly, the Pearson correlation coefficient is not a good measure for quantifying the relationship.
An alternative possibility is given by Spearman’s rank correlation coefficient [Spe04]. Instead of
testing for a linear relationship, Spearman’s rank correlation coefficient tests for any monotonic
relationship between the values of the two measures. This is done by replacing the measure values
with their ranking position and computing the Pearson correlation coefficient on the rank variables.
Using this approach, non-linear relationships can also be detected, i.e., any monotonic relationship
can be detected, and the measure is more robust against outliers than the Pearson correlation
coefficient.

Ranking deviations and span of ranking positions Basic metrics for comparing two rankings
σc and σd are the absolute differences of the ranking positions for each node v ∈ V , i.e., ∆cd(v) =
∣σc(v) − σd(v)∣ for a v ∈ V . For a first comparison of two rankings, the minimal, maximal, and
mean value of all ∆-values might be of interest. For comparing k rankings, σ1, . . . , σk , this can be
generalized yielding a measure we call the span of ranking positions of a node v, and is computed
by

span(v) = max
i,j∈{1,...,k}

∆ij(v) = max
i=1,...,k

σi(v) − min
i=1,...,k

σi(v). (4.13)

Also for the span of ranking positions, the minimal, maximal, and mean values over all span-values
can provide insights about the similarity of the rankings.

Kendall rank correlation coefficient A popular approach for comparing two rankings is the
Kendall rank correlation coefficient introduced by [Ken38]. For this measure, all pairs of elements
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in each ranking are considered: A pair (vi, vj) is called concordant if their order is consistent in both
rankings, more precisely, σc(vi) < σc(vj)⇔ σd(vi) < σd(vj). A pair (vi, vj) is called discordant
if σc(vi) < σc(vj)⇔ σd(vi) > σd(vj). A pair is called a tie in σc if σc(vi) = σc(vj) and σd(vi) ≠
σd(vj) (a node pair being a tie in σ2 is defined accordingly). A node pair (vi, vj) is called a tie in
σc and σd if σc(vi) = σc(vj) and σd(vi) = σd(vj). Let C then be the number of concordant pairs,
D the number of discordant pairs, and Tc (Td) the number of tie pairs in σc (σd).

Then the Kendall rank correlation coefficient is defined as

τK(σc, σd) =
C −D√

(C +D + Tc) ⋅ (C +D + Td)
(4.14)

which, in the case of no ties, can be simplified to τK = C−D
C+D

. In both cases, it holds that −1 ≤ τK ≤ 1.
Furthermore, if there are more concordant pairs than discordant pairs, then τK > 0.

While τK is a well-defined measure, satisfying coincidence (at least with obvious modifications),
symmetry, and the triangle inequality, it does exhibit some undesired behavior in some contexts:
When considering rankings, we are mostly interested in the highly ranked elements and less in-
terested in the low-ranked elements. Therefore, we might pay less attention to the exact position
of low-ranked elements as long as they are low-ranked in both rankings, than to the difference of
the ranking positions in the top k positions. This, however, is not taken into account in the com-
putation of the Kendall coefficient (nor in that of any other measure introduced in the previous
paragraphs). Consider the following three rankings (written as a sequence)

σ1 = (1, . . . , 100),
σ2 = (1, . . . , 90, 100, 99, . . . , 91) and
σ3 = (10, 9, . . . , 1, 11, 12, . . . , 100).

Comparing σ1 and σ2 with the Kendall rank correlation coefficient yields D = (10
2 ) = 45 discordant

pairs and C = (90
2 )+90⋅10 = 4905 concordant pairs, and hence (since there are no ties) τK(σ1, σ2) =

4860/4950 = 0.98, the same as for σ1 and σ3. This behavior might not be desired when comparing
the rankings induced from centrality measures. In this case, it might be advantageous to put more
emphasis on similar ranking behaviors among the top-ranked elements than among the least highly
ranked elements. Furthermore, the exact ranking positions of a node are often of less interest than
whether it is ranked high or low by both rankings. For these reasons, we propose a measure called
Weighted overlap of rankings which will be introduced in the following paragraph.

Weighted overlap of rankings For the two reasons stated above and for want of an interpretable
and illustrative measure, we developed the weighted overlap of rankings for comparing rankings.
It is based on the idea that the top x nodes of both rankings do not need to be in perfect order to
get a high value, but should at least contain nearly the same elements. We therefore consider the
overlap of the top x elements, i.e., the number of elements that are among the x highest ranked
elements in both rankings,

ov(σc, σd, x) = ∣{v ∈ V ∣σc(v) ≤ x} ∩ {v ∈ V ∣σd(v) ≤ x}∣. (4.15)

In the following, we assume the rankings to be free of ties.

Obviously, for any two rankings σc and σd, it holds that ov(σc, σd, 0) = 0 and ov(σc, σc, n) = n.
Note that ov(σc, σd, x) = x for a x ∈ {0, . . . , n} does not imply equality of the two rankings, also
not on the first x positions. If, however, ov(σc, σd, x) = x holds for all x, it implies σc = σd.

We use this definition to define a preliminary measure for comparing two rankings, from which we
will derive the weighted overlap of rankings. We refer to the preliminary version as unweighted
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overlap of rankings and define it as

τ = 4
n2

n

∑
x=0
(x − ov(σc, σd, x)) (4.16)

The differences between each possible x of the actual overlap and the perfect overlap (the overlap
of identical rankings which is x) are computed and summed up. A graphical explanation is: If the
overlap function is plotted as a function of x, τ corresponds to the area between the overlap line
and the identity line. The identity line is the overlap curve of two identical rankings (see Figure 4.4,
where the value of τ corresponds to the red area).

The total area between the overlap and the identity function is normalized by its maximal value n2

4 .
That this is the maximal possible area that can be reached by rankings can be seen by a graphical
argument as well: It holds that the slope of the overlap line for any two rankings cannot exceed 2.
To prove this claim, consider the difference in overlap from any x to x + 1. For any two rankings
σc and σd, it is clear that from any x to x + 1, the overlap cannot decrease, i.e., ov(σc, σd, x) ≤
ov(σc, σd, x+1) for all 0 ≤ x ≤ n−1. Furthermore, from any x to x+1, the overlap can increase by
at most 2 because exactly two elements are considered 3 when computing ov(σc, σd, x+1), namely
σc(x + 1) and σd(x + 1). There are four cases to distinguish: (i) If the two considered elements
are the same, σc(x + 1) = σd(x + 1), the overlap increases by 1. (ii) If they are not the same, and
σc(x+1) is contained in the first x entries of ranking σd, and vice versa (i.e., σd(x+1) is contained
in the first x entries of σc), the overlap increases by 2 since both considered elements increase the
intersection. (iii) If only one of the two considered elements is contained in the first x entries of the
other ranking, i.e., σc(x) is contained in first x entries of σd or vice versa, the overlap increases by
1. (iv) If neither of the two considered elements on position x+1 is contained in the first x positions
of the other ranking, the overlap does not change. Hence, it holds that

0 ≤ ov(σc, σd, x + 1) − ov(σc, σd, x) ≤ 2

which implies that the slope of the overlap function cannot exceed 2.

Together with the facts that ov(σc, σd, n) = n, ov(σc, σd, 0) = 0, and ov(σ1, σ2, x) ≤ x for all
x ∈ {0, . . . , n}, it follows that for any two rankings σc and σd, it holds that

0 ≤ x ≤ ⌊n
2
⌋⇒ ov(σc, σd, x) ≥ 0

x ≥ n

2
⇒ ov(σc, σc, x) ≥ 2x − n

Exactly this overlap line is realized by the rankings σc = (1, . . . , n) and its reverse σd = (n, . . . , 1).
A larger area is not possible since the overlap line needs to reach the point (n, n), but cannot
be steeper than 2. This maximal possible area between the overlap line and the identity line is
indicated by the gray area in Fig. 4.4. Since this maximal area has the size n2/4, τ is normalized by
this factor, yielding a measure between 0 and 1.

The measure τ satisfies symmetry, coincidence, and the triangle inequality. At the same time, the
graphic visualization makes it easy to understand the two rankings of interest, e.g., whether the
two rankings differ with respect to the highly ranked elements or to the lower ranked elements.

τ , however, still exhibits the same behavior as the Kendall rank correlation: Swaps in ranking po-
sitions have the same impact, regardless of whether they occur for high-ranked elements or for
lower-ranked elements. For this reason, we modify it by introducing a weight where the difference
from the perfect overlap for each x is weighted dependent on x. We chose a weight decreasing

3Here, the assumption of no ties is needed.
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Figure 4.4 Graphical explanation of the introduced overlap measures τ and τw : When plotting the overlap
of two rankings σc and σd as a function of x, for x ∈ [0, n], the measure τ gives the area between the identity
line and the overlap function (red area), normalized by its maximal value (gray area). The bottom panels
illustrate that the Kendall rank correlation τK and the overlap measure τ are not affected by the position of
ranking differences: Differences in ranking positions between σc and σd have the same effect whether they
occur in the top x or bottom x elements. This undesired behavior is modified by the introduction of a weight
that penalizes differences in rankings more when they occur in the top ranked elements (yielding a weighted
overlap measure τw).

linearly with x, but other variants might also be appropriate. There is still another counterintuitive
behavior: consider the maximally reachable value of x − ov(σc, σd, x) for each x. It is easy to see
that for x ≤ n/2, each summand x−ov(σc, σd, x) can contribute at most x to the sum, for x = n/2,
x−ov(σc, σd, x) can contribute the largest value, i.e., n/2, and for values of x > n/2, each summand
can contribute at most n − x to the sum. This is why we normalize each summand by its maximal
value (introducing a normalization factor η. We then get

τw =
2

n(n − 1)

n

∑
x=1

w(x) ⋅ x − ov(σc, σd, x)
η(x)

) (4.17)

with w(x) = n − x and

η(x) =
⎧⎪⎪⎨⎪⎪⎩

x x ≤ ⌊n/2⌋
n − x otherwise

(4.18)

Using these adaptations, we gain a measure that returns 0 for identical rankings and 1 for a ranking
and its reverse. For other rankings, τw penalizes differences in the rankings more if they occur at
higher ranking positions (1, 2, 3, . . . ) than if they occur at lower ranking positions (n, n−1, . . . ) (see
also Figure 4.4 for examples).
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Table 4.4 Properties of the datasets used. ∣V ∣ and ∣E∣ denote the cardinality of the node and edge set of the
underlying graph, ∣P ∣ the number of observed trajectories.

Dataset ∣V ∣ ∣E∣ ∣P ∣ Path length
Range Average

DB1B 415 5141 86m [1, 12] 1.4
LT (Lines) 268 626 4.8m [2, 49] 8.2
LT (Transitive) 268 13172 4.8m [2, 49] 8.2
Wiki 4589 119804 51261 [1, 82] 5
Wordmorph 1008 8320 11651 [3, 55] 5.0

Other measures There also exist other measures that we will not use in this work: One possi-
ble way to compare two rankings is to use edit distance, which was originally used for comparing
strings [Dam64]. In general, for edit distances, several edit operations are defined, usually in-
sertions, deletions, substitutions, and swapping of symbols. All these operations are associated
with costs. The edit distance between two strings is then the minimum cost for transforming one
string into another using the allowed edit operations. Hannak et al. [HSK+13] for example used
an edit distance that counts the number of elements that need to be inserted, deleted, substituted
or swapped in order to transform one list into another to compare rankings from search engine
results.

In the next section, we will describe the datasets on which the previously introduced flow-based
centralities were applied before presenting the results in the subsequent sections.

4.4 Datasets used

For all introduced measures, a dataset containing a network structure and (real or synthetic) net-
work flow is needed. Since we mainly consider closeness and betweenness centrality, only datasets
containing flow with a transfer mechanism are appropriate. Furthermore, each single entity of the
network flow should have a target that it tries to reach as fast as possible. Otherwise, if there is
no incentive for the entities to use the shortest path (or if they do not have any target at all), it
makes no sense to compare these real-world flow processes with process models assuming shortest
paths. For network processes that do not have a target or do not use shortest paths, the applica-
tion of centrality measures assuming shortest paths is questionable anyway. For this reason, the
following datasets were used (see Table 4.5 for an overview of the datasets used, and Table 4.4 for
the basic properties of these datasets).

Airline transportation (DB1B) Weused a dataset containing passenger journeys in the air trans-
portation system in the US, as described in Chapter 3. Here, we set a threshold for the in-
sertion of nodes and edges into the network as follows: A node was only inserted if it was
contained in at least 100 passenger itineraries, and an edge from node v to node w was in-
serted if there existed at least ten passenger itineraries with a flight from an airport in the
city represented by v to an airport in the city represented by w. This procedure yielded a net-
work containing 415 nodes. Since for almost all edges (v, w), it holds that the edge (w, v)
also exists, we modeled the network as an undirected network (and include the undirected
edge (v, w) if the directed edge (v, w) or (w, v) exists). This yielded 5141 undirected edges.

London Transport As a second network flow from the domain of passenger transportation, we
used a dataset provided by Transport for London [Tra17] (described in Chapter 3), containing
passenger journeys within the London transportation system. Here, we used the timetables
to construct two different versions of the transport network, for the following reason. There
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Airline transportation (DB1B)

Source Nodes Edges Process
[Bur16] Cities Non-stop airline connections Passengers

Example journey

Atlanta, Georgia, USA
Charlotte,

North Carolina, USA
Washington/Baltimore,

USA

London Transport (LT)

Source Nodes Edges Process
[Tra17] Public transport stations Public transport connections Passengers

Example journey in lines graph

Victoria

St.
James
Park

Westminster

Green
Park

Bond
Street

Baker
Street

Great
Portland
Street

Euston
Square

King’s Cross
St.Pancras

1min 2min 2min 2min 2min 2min 1min 2min

Example journey in transitive graph

Victoria
West-
minster

Baker
Street

King’s Cross
St.Pancras

District line

3min

Jubilee line

6min

Metropolitan line

5min

Wikispeedia

Source Nodes Edges Process
[WL12b] Wikipedia articles Hyperlinks Players

Example game log

Wordmorph

Source Nodes Edges Process
[KCR+18] 3-letter words Hamming distance of 1 Players

Example game log
CRY DRY DAY DAD DID

Figure 4.5 Overview of the datasets used.

76



4.4 Datasets used

are two different perspectives on the system: the perspective of a single passenger and the
perspective of an administrator of the system. From the perspective of a single passenger,
when getting on a train at station A and getting off the train at station B, the intermediate
stations through which the train passed, are not of relevance for the passenger. For the pas-
senger, the relevant network nodes are those in which they change trains. For this reason,
we use the network representation as constructed for the analysis in Chapter 3, where each
node represents a station, and there is an edge from v to w if there is a train connection from
station v to w without train changes. The edges were weighted by travel time extracted from
the time tables (if there are several possible connections between two stations, the smaller
travel time was chosen). Thus, when a passenger journey is modeled in this kind of network,
the corresponding walk only contains stations where trains are changed–intermediate stops
of the train (where the passenger does not get off the train) are not included in the passen-
ger journey. This type of network, however, is unable to show the physical structure of the
system: When a train moves from one station to another, it needs to pass the intermediate
stations in between. For this reason, we introduced a second type of network where a node
again represents a station, and there is an edge from station v to station w if there is a train
connection from v to w without intermediate stops. This type of graph rather resembles the
route map of the Underground system (which is why we call this network type lines graph),
while the first type of network can be understood as the transitive closures of the lines graph
(separately for each single Underground line) which is why we call this network type transi-
tive graph. Figure 4.6 shows an example of how the same transportation system consisting of
three different train lines leads to two different network representations. When considering
centralities, both representations can be meaningful depending on the application scenario:
If one is interested in the most central stations with respect to the number of passengers that
(hypothetically) pass through a station in order to change platforms, the transitive graph
might be the better representation. On the other hand, if one is interested in central nodes
with respect to the amount of flow (number of passengers) traveling through the station in
trains, the lines graph is a better representation. In both cases, this procedure yielded a graph
with 268 nodes, once with 626 edges (for the lines graph), once with 13172 edges. Both are
connected.

Wikispeedia Adifferent type of network flow processes using (or at least aiming at taking) shortest
paths is provided by West and Leskovec [WPP09, WL12b] containing human navigation in
information networks (see Chapter 3 for a detailed description of this dataset). Here, we
furthermore excluded solutions longer than 30 steps (for a note on how this decision affected
the results, see Section 4.7. This yielded more than 50000 solutions navigating in a network
of 4589 nodes and almost 120000 edges.

Wordmorph Weused a second dataset containing game logs, from people playing the gameWord-
morph. In this game, a player is given two words of the same length, and needs to transform
the one word into the other by changing only one letter at a time–and each letter transfor-
mation needs to yield an existing word. A valid sequence of transformations is for example
cry→dry→day→dad→did. We used a dataset collected by Kőrösi et al. [KCR+18] who devel-
oped an app in which people can play this game while game logs are collected for research
purposes. In this app, players can choose whether they want to play with English or Hun-
garian words and which length the words should have (3 to 7). We restricted our analysis
to successful games with English words of length 3, which resulted in approximately 11000
game logs (out of almost 20000 game logs of the original dataset) being used for the analy-
sis. The underlying network consists of 1008 nodes each representing a 3-letter English word
(official English Scrabble words from WordFind [Wor]) and 8320 (undirected) edges where
two nodes v and w are connected if their represented words have a Hamming distance of 1,
i.e., can be transformed into each other by changing one letter.
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(a) Lines graph of a transportation system. (b) Transitive graph of the same transport system.

Figure 4.6 Example for two different representations of the same transportation system.

Application of flow-based measures For each dataset, all introduced flow-based centrality
measures as well as the standard closeness and betweenness centrality4 were computed. The mea-
sure values were used to deduce a ranking for each dataset and each measure, where fractional
ranking was applied.

4.5 How robust are standard centrality measures?

The first question which is going to be investigated is how robust the standard centrality measures
are against violations in their process model. Chapter 3 showed that the network flows contained
in the considered datasets do not satisfy the assumptions of shortest paths and equal amount of
flow between each node pair. In this section, by comparing the rankings of the standard centrality
measures to the rankings of the flow-based measures, we can investigate whether the violations of
the assumptionsmakes a big difference for the resulting rankings orwhether the standard centrality
measures are robust against those violations.

4.5.1 Correlation of measures

For this reason, we compute the Spearman rank coefficient of the values of each flow-basedmeasure
and the values of the corresponding standard measure, as well as the weighted overlap measure
between the corresponding rankings5. For the closeness measures, we compare the in-closeness
variants to the standard in-closeness centrality, and the out-closeness variants to the standard
out-closeness centrality (for datasets with undirected networks, standard in- and out-closeness
coincide, while the flow-based in- and out-variants are not necessarily equal). Table 4.5 shows for
each dataset and each flow-based betweenness measure the Spearman rank correlation to standard
betweenness centrality and the weighted overlap τw of the corresponding rankings. Table 4.6 shows
the corresponding values for the closeness variants. Figures 4.7 and 4.8 show the measure values
and the corresponding rankings of the flow-based variants compared to the values and rankings
of the corresponding standard centrality value. Figure 4.7 (for betweenness measures) and 4.8 (for
closeness measures) show for each variant the measure value against the value of its standard
centrality measure (blue points) and its corresponding rank position (red). For each single plot,
each node is hence represented by two data points (red and blue). To facilitate comparison, the
values for each measure c were scaled to the interval [0, 1] by using the following transformation

4For betweenness centrality, we used betweenness centrality including endpoints as standard betweenness centrality.
This is due to the fact that all introduced flow-based variants also include the endpoints of the trajectories into the
computation.

5Since normalization of the weighted overlap is only applicable if the ranking does not contain any ties, we computed the
weighted overlap between the rankings obtained by applying random ranking. The remaining analysis was done on the
rankings obtained by fractional ranking.
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c(v) → c(v)−minw(c(w))
maxw(c(w))−minw(c(w)) . The ranking positions which normally range between 1 and ∣V ∣

were (only for these figures) also scaled to the interval [0, 1] and reversed by 1 − rank such that
the node with the highest measure value has a rank of 1.0.

Betweenness measures From Table 4.5, it can be seen that the correlations are high for most
datasets and variants–most are above 0.7. This impression is supported by Figure 4.7 where a posi-
tive relationship between any flow-based betweenness variant and standard betweenness centrality
can be seen for each dataset. This is particularly visible for the DB1B dataset, where the correla-
tions with standard centrality are between 0.87 and 0.89 for each variant. The weighted overlap τw

is also low, between 0.16 and 0.22 for all variants for DB1B (note that τw is 0 for equal rankings and
1 for reverse rankings). Such high correlations and small τw values could have been expected for
the variant BR since the trajectories actually taken are very close to shortest paths in this dataset.
It is, however, surprising that the other measure variants also show such high correlations since
in this dataset, almost 50 % of all node pairs were not the source and target of any observed tra-
jectory. Furthermore, the node pairs used as source and target of at least one trajectory were not
used equally often: A few node pairs were used by a high number of trajectories, while most node
pairs were used rarely. This should be visible in the values of the measure variants BSW and BRW

in which node pairs with a high amount of flow between them contribute more to the final value
than node pairs used less frequently. This is, however, not the case for the DB1B dataset: Here, all
flow-based measure variants show an approximately equal correlation to the standard between-
ness centrality. At the same time, Figure 4.7 reveals that especially for the variants BSW , BR, and
BRW , there is a small number of nodes in which the values of the flow-based measure and the
standard betweenness centrality do not match: There are nodes with high standard betweenness
values and low flow-based values, and vice versa.

For all other datasets, the correlations are less strong which can also be seen in Figure 4.7: A positive
correlation between the measure values can be observed, but less strong than for DB1B. Especially
for the game datasets, Wikispeedia andWordmorph, it is striking that the flow-basedmeasure vari-
ants assign (relatively) higher values to nodes that only have small standard betweenness values.
From Table 4.5, it can be observed that the correlations of the flow-based measures incorporating
observed trajectories instead of shortest paths, i.e., BR and BRW , are smaller than those for the
variants BS and BSW . For these measure variants, the correlation drops to values of 0.49 and 0.58,
respectively. This suggests that for these datasets, the violation of the assumption of shortest path
does have an effect on the resulting rankings. Although the observed trajectories do not deviate
much from the actual shortest paths (for London Transport, the observed trajectories are longer
than the shortest paths by a factor of only 1.02 on average), there is an observable effect on the
measure values.

Closeness measures For the closeness variants, the correlations with the standard closeness
centrality are generally lower than the correlations for the betweenness centrality variants. Here,
for the Wikispeedia dataset, there is even a (slightly) negative correlation for all flow-based out-
closeness variants. For the in-closeness variants, however, the correlation is constantly between
0.74 and 0.79. For the datasets DB1B, the transitive graph of London Transport, and Wordmorph,
it is particularly noticeable that the correlations and the weighted overlap coefficient τw are differ-
ent for the different datasets, but are approximately constant across the different variants. There
are also no considerable differences between the corresponding in- and out-variants. For the lines
graph of London Transport, however, the correlations between all variants and the standard close-
ness centrality are quite high–except for those variants incorporating a weight proportional to the
amount of flow, i.e., all variants with a subscripted W . For those variants, the correlation drops
from 0.8 to 0.5. This effect is not present for any other dataset. Note furthermore that for each
dataset and almost each variant, there is at least one node that is ranked highest by the standard
closeness and by the flow-based variants.
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Figure 4.7 Flow-basedbetweenness variants compared to standardbetweenness Each point represents
a node of the network, its values for the (standard and flow-based) measures are drawn in blue. For the sake
of better readability, the values of all measures were scaled to the interval [0, 1]. The figures also contain the
resulting rankings of the nodes with respect to the corresponding measures. For these figures, the rankings
were also scaled to the interval [0, 1] and the value 1− rank was drawn, such that the node with the highest
measure value gets the rank 1.0 and the node with the lowest measure value gets the rank 0.0.

80



4.5 How robust are standard centrality measures?

(a) DB1B in-variants.
(b) Wikispeedia in-variants.

(c) DB1B out-variants.
(d) Wikispeedia out-variants.

(e) London Transport (lines graph): out-variants.

(f) London Transport (lines graph): in-variants.
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(g) Wordmorph in- and out-variants.

Figure 4.8 Flow-based closeness variants compared to standard closeness Each point represents a node
of the network and its values for the (standard and flow-based) measures are drawn in blue. For the sake of
a better readability, the values of all measures were scaled to the interval [0, 1]. The figures also contain the
resulting rankings of the nodes with respect to the corresponding measures. For these figures, the rankings
were also scaled to the interval [0, 1] and the value 1− rank was drawn, such that the node with the highest
measure value gets the rank 1.0 and the nodewith the lowestmeasure value gets the rank 0.0. If applicable, the
flow-based in-closeness variants were compared with standard in-closeness, and the flow-based out-closeness
variants with standard out-closeness.
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4 Flow-based centrality measures

Table 4.5 Correlation between flow-based betweenness measures and standard betweenness cen-
trality Spearman rank correlation between the flow-based betweenness centrality measures and the standard
betweenness centrality and the weighted overlap of the corresponding rankings (τw). For Spearman correla-
tion, starred values (*) indicate a p-value of < 0.05. Note that the Spearman correlation coefficient ranges
from −1 (negative linear correlation) via 0 (no correlation) to 1 (positive linear correlation) while τw ranges
from 0 (equality of rankings) to 1 (reverse rankings).

Spearman Correlation

Data set BS BSW BR BRW

LT (Lines) 0.92∗ 0.72∗ 0.59∗ 0.49∗
LT (Transitive) 0.62∗ 0.65∗ 0.58∗ 0.62∗
DB1B 0.88∗ 0.89∗ 0.87∗ 0.88∗
Wikispeedia 0.83∗ 0.81∗ 0.81∗ 0.79∗
Wordmorph 0.75∗ 0.75∗ 0.63∗ 0.73∗

Weighted overlap τw

Data set BS BSW BR BRW

LT (lines) 0.17 0.32 0.37 0.46
LT (transitive) 0.27 0.27 0.36 0.34
DB1B 0.17 0.23 0.22 0.23
Wikispeedia 0.21 0.26 0.30 0.31
Wordmorph 0.36 0.36 0.48 0.41

4.5.2 Deviation of rankings

The previous section showed that almost all flow-based variants show a correlation to their cor-
responding standard centrality measure, but the relationship is far from perfect. For each dataset
and each measure variant, there are a considerable number of nodes whose importance is rated dif-
ferently by standard centrality and by the flow-based variant. In order to quantify to which extent
the rankings of a single node can vary among the variants, we used the span of ranking positions
introduced in Section 4.3. For each node, its span of ranking positions was computed–separately
for the betweenness and the closeness measures. Table 4.7 shows for each dataset, the minimal,
maximal and mean values of the nodes’ span of ranking positions. Although the correlations be-
tween the measure variants and the standard centrality measures appeared to be quite high in the
previous section, Table 4.7 shows that there is considerable movement of ranking positions among
the flow-based variants and standard centrality. Even for the DB1B dataset, where the correlations
between the flow-based variants and the standard centralities seemed high, the maximum rank-
ing difference among all variants is on average 62 positions which is 15 % of all ranking positions.
There is even one node with a ranking difference of 348 (out of 462 positions) among the variants.
For Wikispeedia, we found an average span of ranking positions of more than 800 positions for the
betweenness measures, and almost 2000 positions for the closeness measures (for ∣V ∣ = 4589).

This analysis shows that although the flow-based variants are correlated with the standard central-
ity measures, there are considerable differences in the rankings for the flow-based variants which
we will analyze in detail in the next sections.
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4.5 How robust are standard centrality measures?

Table 4.6 Correlation between flow-based closeness measures and standard closeness centrality
Correlation between the flow-based closeness centrality measures and their corresponding standard closeness
centrality measures and the weighted overlap of the corresponding rankings (τw). The flow-based in-(/out-
)closeness was (if applicable) compared to the standard in-(/out-)closeness. For Spearman correlation, starred
values (*) indicate a p-value of < 0.05. Note that the Spearman correlation coefficient ranges from−1 (negative
linear correlation) via 0 (no correlation) to 1 (positive linear correlation) while τw ranges from 0 (equality of
rankings) to 1 (reverse rankings).

Spearman Correlation

Data set C←S C→S C←S′ C→S′ C←SW C→SW

LT (Lines) 0.84∗ 0.84∗ 0.93∗ 0.93∗ 0.64∗ 0.70∗
LT (Transitive) 0.49∗ 0.47∗ 0.51∗ 0.50∗ 0.51∗ 0.49∗
DB1B 0.88∗ 0.88∗ 0.88∗ 0.88∗ 0.88∗ 0.88∗
Wikispeedia 0.76∗ 0.34∗ 0.79∗ 0.42∗ 0.79∗ 0.41∗
Wordmorph 0.58∗ 0.55∗ 0.67∗ 0.64∗ 0.66∗ 0.62∗

C←R C→R C←RW C→RW C←RW ′ C→RW ′

LT (Lines) 0.93∗ 0.93∗ 0.78∗ 0.79∗ 0.63∗ 0.69∗
LT (Transitive) 0.51∗ 0.50∗ 0.49∗ 0.47∗ 0.51∗ 0.49∗
DB1B 0.88∗ 0.88∗ 0.88∗ 0.88∗ 0.88∗ 0.88∗
Wikispeedia 0.80∗ 0.42∗ 0.75∗ 0.33∗ 0.79∗ 0.41∗
Wordmorph 0.70∗ 0.66∗ 0.60∗ 0.56∗ 0.69∗ 0.65∗

Weighted overlap τw

C←S C→S C←S′ C→S′ C←SW C→SW

LT (Lines) 0.27 0.30 0.21 0.21 0.54 0.49
LT (Transitive) 0.47 0.48 0.45 0.45 0.45 0.46
DB1B 0.15 0.15 0.14 0.14 0.18 0.18
Wikispeedia 0.38 0.60 0.33 0.53 0.34 0.54
Wordmorph 0.57 0.57 0.45 0.47 0.45 0.47

C←R C→R C←RW C→RW C←RW ′ C→RW ′

LT (Lines) 0.22 0.21 0.34 0.37 0.54 0.50
LT (Transitive) 0.45 0.45 0.46 0.46 0.45 0.46
DB1B 0.15 0.15 0.19 0.19 0.18 0.18
Wikispeedia 0.33 0.53 0.39 0.61 0.34 0.54
Wordmorph 0.43 0.45 0.57 0.57 0.44 0.46
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4 Flow-based centrality measures

Table 4.7 Span of ranking positions of the flow-based betweenness and closeness measures: For each node,
its span of ranking positions (see also Section 4.3) was computed by subtracting its maximal ranking position
with respect to any flow-based or variant or standard centrality from its minimal ranking position with respect
to any flow-based variant or standard centrality. This was done separately for the betweenness and closeness
variants. The table shows for each dataset the mean value of the spans of the rankings and the range of
the ranking spans. The mean value is given in absolute ranking positions and, in parentheses, relative to the
number of nodes.

Betweenness Closeness
Dataset Mean Range Mean Range

LT (lines) 69.1 (25 %) [2,197] 97.0 (36 %) [12,221]
LT (transitive) 61.5 (23 %) [0,218] 74.3 (28 %) [6,234.5]
DB1B 62.1 (15 %) [5,348] 57.0 (14 %) [5,313.5]
Wikispeedia 845.2 (18 %) [0,3743] 1988 (43 %) [14,4458]
Wordmorph 288.1 (29 %) [2,815] 444.8 (44 %) [11,962]

4.6 Which nodes are impacted?

The last section compared the rankings from the flow-based centrality measures to the rankings of
the corresponding standard centrality measure in order to check whether the standard centrality
measures are robust against violations of the assumptions of their incorporated process model.
This was done by comparing the complete rankings to each other. We found that, in general and
for most flow-based centralities, the standard and flow-based centralities show a medium to high
correlation. At the same time, there exist a non-negligible number of nodes whose ranking position
changes considerably from onemeasure variant to another. This section provides material intended
to explain these ranking variations. This is done in two steps: In Section 4.6.1, the analysis focuses
on those nodes that are ranked high by at least one centrality variant. This approach is based on
the fact that when analyzing a network with means of centrality measures, often only the most
important nodes are of interest. We therefore consider the ranking behavior of those nodes that
are central with respect to at least one measure variant. In the second step (see Section 4.6.2, the
analysis focuses on the extreme cases, i.e., the rankings of those nodes are considered that show
the largest ranking deviations among the centrality variants.

As illustration for the nodes’ ranking behavior for the different centrality variants, the nodes and
their centrality values are visualized on a map for those datasets containing nodes with geographic
information. Figures 4.9 and 4.10 show the nodes’ centrality values for betweenness variants for
the air transportation dataset and for the London Transport dataset. Similarly, Figures 4.15, 4.16,
and 4.17 show the visualization for the closeness variants.

4.6.1 Effect on high-ranked nodes

When applying a centrality measure to a network, the interest is mostly on the high-ranked nodes
and less on the lower-ranked nodes. Especially for the topmost entries of the resulting ranking,
high reliability of the results is desired. For this reason, in this section, we focus on those nodes
that are among the highest-ranked entries for at least one centrality variant. If the flow-based
and standard centralities approximately agree on the most important nodes while the changes in
ranking positions rather occur in the lower part of the rankings, the effect is less relevant than if
the flow-based and standard measures show large differences in their high-ranked nodes.

Figure 4.11 shows the ranking positions of those nodes that are among the ten highest-ranked
nodes with respect to at least one flow-based betweenness centrality or with respect to standard
centrality. Figure 4.14 shows the corresponding figures for the closeness variants. For each of these

84



4.6 Which nodes are impacted?

(a) US map.

(b) Alaska.
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Figure 4.9 Effect of flow-based betweenness measures on the nodes’ centrality values for the DB1B dataset,
visualized on a map: Each point represents a node (representing a city with airports) in its geographic location,
color and size correspond to the centrality value of each variant.
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4 Flow-based centrality measures

Figure 4.10 Effect of flow-based betweenness measures on the nodes’ centrality values for the London Trans-
port dataset (lines graph), visualized on a map: Each point represents a node (representing an London Under-
ground Station) in its geographic location; color and size correspond to the centrality value of each variant.

nodes, the figures show its ranking position for each centrality variant.

For all datasets and for both types of centrality measures, betweenness and closeness, we found
that not the same set of ten nodes was ranked highest by all variants. There was considerable
variation of rankings even among these nodes.

Betweenness measures

DB1B For the DB1B dataset, Figure 4.11a shows that all nodes ranked among the top ten by any
measure variant, are at least among the top 60, most even among the top 30 nodes of all variants.
Almost all nodes found among the top ten of at least one betweenness variant represent large6

airports. The ranking behavior of one node stands out: The node representing the airport of An-
chorage in Alaska is ranked high (ranks 2 and 10, respectively) by standard betweenness centrality
and variant BS , but drops in importance with respect to the other variants. This effect can be ex-
plained when considering the structure of the network in more detail: The airport of Anchorage
serves as a gateway between airports in the contiguous United States and the airports in the state
of Alaska. It is not the case that any airport in Alaska can only be reached via Anchorage–there
are direct flights from airports in the contiguous states to other airports in Alaska, but those are of
almost no consequence for the computation of standard betweenness centrality, for the following
reason: The network consists of a densely connected 46-core, a subgraph consisting of 56 nodes
in which each node has a degree of at least 46. This subgraph almost forms a clique, therefore al-
most all nodes within this subgraph have a distance of 1 to each other, and all of them have a high
betweenness value. All nodes of the dense subgraph represent airports located in the contiguous
United States; none of them represents an airport in Alaska. The reason why the node Anchorage is
ranked high by standard betweenness centrality is that Anchorage is well connected to nodes in the
dense subgraph and to all Alaskan airports. Figure 4.12a shows the relevant extract of the network,
i.e., all Alaskan airports and their direct neighbors. The nodes are colored depending on the k-core
of the network they belong to. Red nodes belong to the large dense subgraph, i.e., the 46-core,
while Anchorage and Honolulu (colored in orange) belong to the 44-core. There are a few Alaskan
airports belonging to a 15- or 10-core, but most Alaskan airports are only connected to one or two
other airports. Anchorage, however, is well-connected to the densely connected subgraph–it is di-
rectly connected to 24 of those nodes–and more than half of Alaskan airports can only be reached
via Anchorage. This is why Anchorage is ranked high by standard betweenness centrality–even
higher than almost all nodes within the dense subgraph. When the observed number of passen-
gers traveling to an airport is incorporated into betweenness centrality, as done by the variants
BSW and BRW , the relative importance of the node Anchorage decreases. This is because only
0.5 % of all journeys of the dataset have an airport in Alaska as their destination.

6as classified by the Federal Aviation Administration (FAA), part of the United States Department of
Transportation[Adm17]
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(b) Wikispeedia. Note logarithmic scale on y-axis.
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(e) Wordmorph.

Figure 4.11 Top 10 nodes (betweenness) Ranking positions with respect to all betweenness centrality
variants of those nodes which are among the 10 most central nodes with respect to at least one centrality
variant. Top nodes have rank 1 (top of each plot), the order of the line colors is due to the node’s standard
betweenness centrality.
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4 Flow-based centrality measures

(a) An extract of the DB1B air transportation network: All Alaskan airports and their direct neighbors. The
color shows to which k-core the nodes belong in the complete network: Red nodes belong to the largest and
most densely connected core of the network. Nodes representing airports in Alaska are labeled by AK, nodes
representing airports in contiguous United States are labeled by US.

(b) A small extract of the lines graph for the London transportation system. The edge labels indicate the
travel time between the stations which are used as edge weights; the edge colors indicate which Underground
lines serve the corresponding connection.

Figure 4.12 Extracts of the air transportation network of the DB1B dataset and the lines network of London
Transport dataset.
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4.6 Which nodes are impacted?

London Transport For the dataset containing public transport journeys within London, we
found that the results are different for the two network versions (see Figure 4.11c and 4.11d): While
in the transitive network version, the node representing the station King’s Cross St. Pancras is the
most central node with respect to all flow-based betweenness variants and to standard between-
ness centrality, for the lines graph variant, this node is the most central one only with respect to
the variants BR and BRW . For the other variants, this node is also among the top ten nodes, but
less highly ranked. For the lines graph variant, it is the node representing the station Baker Street
that is ranked as the most central node by standard betweenness centrality. Both stations, King’s
Cross St. Pancras and Baker Street, serve as junction points in the London Underground network.
King’s Cross St. Pancras is the only station in the network serving six different Underground lines,
while the Baker Street station serves five different Underground lines. Therefore, and due to the
structure of the network (see Figure 4.13)–a more densely connected subgraph in the ”center“ and
chain-like structures appended to it–, both nodes are contained in many shortest paths. The Baker
Street station, however, is slightly better positioned in the network in the sense that it is contained
in more shortest paths than King’s Cross St. Pancras. When taking into account the real usage of
the system, the top ranking of the node Baker Street is lost: In reality, there are more passengers
traveling through King’s Cross St. Pancras than through Baker Street.

There is an effect observable here that is due to the modeling of the system: For the lines network
variant, the nodes Holborn and London Bridge are not among the top 100 nodes for standard
betweenness centrality. But they are among the top 100 nodes for the variants BS and BSW , and
even among the top ten for the variants BR and BRW . When we investigated the reason for this
rise of importance, it turned out that this is caused by the modeling of the system. The system
is modeled as one network where there exists an edge from one node to another if there is a non-
stop Underground connection from the one station to the other. The edges are weighted by travel
time; however, additional time needed for changing lines (getting off a train, changing platforms,
and getting onto another train) is not taken into account. An algorithm computing the shortest
path on this network may therefore yield paths that–although they are the shortest in the graph
representation and taking into account the edge weights–are not the fastest (or most convenient)
connection in reality. In reality–depending on the actual timetables–, it is often advantageous (and
more convenient) to include fewer line changes in one’s travel plan. A shortest path algorithm,
however, may–in extreme cases– yield paths where each edge corresponds to a different line and a
change of lines would be necessary at each intermediate node. The ranking behavior of the nodes
Holborn and London Bridge is caused by this effect. Consider Figure 4.12b which shows an extract
of the lines network where edges are drawn several times if a connection is served by several lines.
In most cases, passengers traveling from King’s Cross St. Pancras to South Kensington, for example,
will take the Piccadilly line which takes 13 minutes and does not require any change of lines. The
shortest path in the network, however, is: King’s Cross St. Pancras to Green Park via the Victoria
line, and then to South Kensington via the Piccadilly line, which yields a path length of 9 minutes in
total. Since for many node pairs, the shortest path between them is going through this subgraph,
this effect occurs for the computation of the shortest path between all these node pairs. Therefore,
the node is not ranked high by standard betweenness centrality (because it contains an unrealistic
shortest path model), is ranked a bit higher by the variants BS and BSW (because in these variants,
many node pairs on opposite ends of the network are not included in the computation), and is
ranked among the top ten for the variants BR and BRW (because in these measures, journeys
actually taken are considered which often do contain the node Holborn). The effect is also visible
for other nodes in this network extract besides Holborn, however, these are not among the top ten
of any measure and therefore not contained in Figure 4.11c.

The same effect occurs in the transitive variant of the network. Here, we observe the opposite effect:
Nodes lose importance when real passenger journeys are taken into account as in the case of the
node Moorgate. Moorgate is among the top ten nodes for the variants counting shortest paths, i.e.,
standard betweenness centrality, and the variants BS and BSW , but is only ranked in position 31,
respectively 29, for the variants BR and BRW . For real passenger journeys, there is often no need
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Figure 4.13 London Transport lines graph: The edges are colored according to which Underground line
serves this connection (and drawn several times if more than one line serves a connection); the size of the
nodes corresponds to its standard betweenness value. The edge weights are not shown.

to change trains at Moorgate which is why (in the transitive network representation), this node
is not contained in the passenger journeys and therefore ranked less high for BR and BRW . In
the graph representation, however, there exists a shorter path that does contain Moorgate, which
results in a higher ranking position for the variants counting shortest paths.

Therefore, in futurework, itmightworth considering–depending on the research question–modeling
the system in a different way such that the time needed for changing lines is included in the net-
work.

Wikispeedia For the dataset containing game logs of the game Wikispeedia, we can make sev-
eral observations (see Figure 4.11b. Among the nodes contained in Figure 4.11b, i.e., nodes that are
among the top ten of at least one betweenness measure variant, the differences in ranking positions
are higher than for all other datasets. There is a node that is among the top ten for onemeasure, and
not even among the top 1000 for other measures. At the same time, for all measure variants, the
top five nodes are rather stable in their ranking position. The node representing the article on the
United States is the most central node for all measure variants which reflects a popular strategy
when playing the game Wikispeedia: Players often7 use this article as a landmark in their naviga-
tion. They first navigate to the article on the United States (which is long and has a large number
of outgoing links8) and from there to the target article. In Figure 4.11b, it can also be observed that
there are four nodes (representing the articles on Brain, Viking, Asteroid, and Telephone) with
considerably higher values in the weighted betweenness variants, i.e., BSW and BRW . This effect
is due to the data collection method described by West and Leskovec [WL12b]: Normally, when
a player starts a game, they can either choose a start and target article, or two articles are drawn
uniformly at random and suggested as the start and target article. However, for a specific research
question, for a limited time period, there were four node pairs that were suggested to the players
more often. This is why the node pairs (Asteroid,Viking), (Brain,Telephone), (Theatre,Zebra), and
(Pyramid,Bean) occur with a higher frequency in the dataset (in descending order). Therefore, the
nodes Asteroid, Viking, Brain, and Telephone gain in importance when the observed amount of
flow between node pairs is incorporated into the measure variants, i.e., with BSW and BRW . For
the four other nodes (Theatre, Zebra, Pyramid, and Bean), this effect is also observable, but it is
less strong, so they do not reach the top ten nodes of the ranking of any measure and are therefore
not contained in the figure.

7the article on the United States is contained in approximately 16 % of all game logs
8The article on the United States actually has the largest number of incoming links and the largest number of outgoing

links of all nodes of the network.

90



4.6 Which nodes are impacted?

Wordmorph For the other dataset containing game logs (see Figure 4.11e), a high similarity of the
rankings by the measures BS and BSW , and of the rankings by BR and BRW can be found. This
is plausible because of the source-target-pairs used, 99 % were the source and target of exactly one
game log, and the remaining of at most three game logs. Therefore, the weighted and unweighted
variants show similar ranking results. However, when comparing the variants counting shortest
paths to those counting real trajectories, differences in the rankings can be observed. The nodes
art and are increase their ranking position from 111 to 2 and from 43 to 3, respectively. At the same
time, the nodes oes, aye, and soy lose ranking positions when we switch from counting shortest
paths to counting real trajectories. The node ait stays among the top three nodes for everymeasure.
It is noticeable that especially those nodes gain in importance that are more common in daily
language (such as are, art, sit, etc) while unusual words–possibly unknown to players–(such as
aas, oes, or ort) have a good position in the network due to their betweenness value, but are not
included in many game logs.

Closeness measures

Figure 4.14 shows the ranking behavior of the high-ranked nodes for each closeness centrality vari-
ant, i.e., as before for the betweenness variants, the ranking positions of all nodes that are among
the ten highest-ranked nodes with respect to at least one measure variant. This was done sepa-
rately for the in- and out-variants. We only show and describe the results for the out-variants; the
figures for the in-variants can be found in the Appendix.

DB1B For the dataset containing air transportation journeys (see Figure 4.14a, it can be seen
that there is only a small variation of ranking positions among the considered nodes. Particularly
the rankings of the measures CS , CS′ , and CR rank the nodes in a similar way. When weights pro-
portional to the amount of observed flow between node pairs are incorporated into the measures,
there are considerable9 changes in the rankings. When considering the measure variants CSW and
CRW ′ , it can be observed that there is a small set of nodes that seem to switch ranking positions:
The nodes representing the airports Denver, Minneapolis/St. Paul, and Phoenix are among the most
central nodes with respect to all other variants, but decrease in importance for CSW and CRW ′ ,
while other nodes such as Miami increase their ranking position by more than twenty positions.
This effect is due to the high amount of passenger traffic between the airports Miami and New
York. Between these two airports, the second highest amount of traffic is observed in the dataset
(more passenger journeys in the dataset occurred only between San Francisco and Los Angeles).
Furthermore the network consists of a densely connected subgraph, a 46-core in which all nodes
shown in Figure 4.14a are contained; therefore, all nodes within this subgraph have a distance of 1
to each other. Particularly those nodes shown in Figure 4.14a have a distance of at most 3 to any
other node (and a distance of 1 or 2 to most other nodes). Thus, when the distance between two
nodes is weighted proportionally to the amount of traffic between them, a node such asMiami with
a highly demanded connection to another well-connected node can boost its centrality ranking and
get ranked higher than nodes whose unweighted average distance to all other nodes is smaller.

London Transport Figure 4.14c and 4.14d show the results of the closeness variants for the two
network variants of the London Transport dataset. As before for the betweenness measure vari-
ants, we found that the results differ notably for the two network variants. While for the transitive
network version, all shown nodes are among the top 60 of each measure, for the lines network
variants, there are nodes that are among the top ten for one measure and not even among the top
100 for other measures. Furthermore, for the transitive network variant, there are only small vari-
ations in ranking positions among the flow-based centrality variants: When comparing standard
closeness to the flow-based closeness measures, the top ten nodes are almost disjoint; when com-
paring the flow-based measures among each other, the nodes’ ranking positions are rather stable.
This is different for the lines network variant. Here, especially the variants CRW ′ and CSW show
9In absolute numbers, the changes observed here are still small: All considered nodes are still among the top 25 nodes.
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Figure 4.14 Top ten nodes (closeness) Ranking positions with respect to all (out-)closeness centrality vari-
ants of those nodes that are among the ten most central nodes with respect to at least one centrality variant.
Top nodes have rank 1 (top of each plot), the order of the line colors is due to the node’s standard closeness
centrality.
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Figure 4.15 Closeness values of the flow-based variants for the air transportation dataset (DB1B) visualized
on a US map (for Alaska and Hawaii, see Figure 4.16). Each node representing a city area is shown by a point
in its geographic location; size and color correspond to the centrality value of each variant.

93



4 Flow-based centrality measures

(a) Alaska.

(b) Hawaii.

Figure 4.16 Values of flow-based closeness variants visualized on a map, as in Figure 4.15; here for Alaska
and Hawaii.

Figure 4.17 Values of flow-based closeness variants on a map of London (London Transport dataset (lines
graph)). Each node representing a London Underground station is shown as a point in its geographic location;
size and color correspond to the value of the corresponding centrality variant.
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a substantially different set of nodes rated as important.

Wikispeedia For this dataset, incorporating observed trajectories into closeness centrality had
a much larger effect than for any other dataset (see Figure 4.14b): Even among the highly ranked
nodes contained in the figure, there are nodes whose ranking position increases or decreases by
more than 1000 positions. Interestingly, there appear to be three types of behavior: the ranking
behavior of the standard closeness centrality, the ranking behavior of the measure variants CS and
CRW which are rather similar, and the ranking behavior of the remaining measure variants which
is almost identical. For the measure variant CRW (and, less strongly, also for CS), we again see
the impact of the data collection method: As mentioned in Section 4.6.1, for a specific research
question, West and Leskovec modified their game platform in the sense that four node pairs were
suggested to the players with increased frequency [WL12b]. The impact of the increased source-
target frequency of those node pairs can also be observed for the closeness variants: The ranking
positions of the corresponding source nodes (Asteroid, Brain, Theatre, and Pyramid) increased by
more than 1000 positions and reached the top eight nodes of this measure variant. Since players
were also allowed to choose a source and target node themselves, several effects of this can be
observed in the ranking behavior: For some reason, the article Batman was a popular start article
(5th most frequently used source article, behind the four promoted ones) which is reflected by its
increased ranking position with respect to the measure variant CRW : Here, it is in position 2 (while
being in rank 4044 for standard out-closeness centrality). When considering the rankings of CS ,
the articles on Jesus and Adolf Hitler are among the top three nodes. We speculate that this is
due to two popular game variants–5 clicks to Jesus and Clicks to Hitler which are believed to be the
original forms of the game. In these variants, a player needs to navigate from a randomly chosen
article to the article on Jesus or Adolf Hitler, respectively. We can only speculate that due to
the popularity of these variants, the articles on Jesus and Adolf Hitler were popular source and
target nodes. The effect can be seen in the increase of their ranking in the variant CS . The effect
is stronger for the in-variants where these two articles jumped to ranking position 1 and 2 for CS

and CRW , respectively (see Figure A.5b in the Appendix).

An interesting effect can be observed for the articles Driving on the Left or Right, List of Coun-
tries, and List of Circulating Currencies. All three articles contain a complete list of all countries
with links to the corresponding articles which results in a high ranking of standard out-closeness
centrality. However, since these articles were used not at all or only very few times by the players,
their ranking position is constantly low for all flow-based closeness variants.

Wordmorph For the closeness variants, there are similar observations for both game datasets,
Wikispeedia and Wordmorph. The ranking variation among the considered nodes–top ten with
respect to at least one measure variant–is larger for these datasets than for the transportation
data sets. For Wordmorph, we found nodes with a span of ranking positions of more than 700
positions. The node representing the word are for example increased its ranking position from 813
for standard closeness to position 3 or 4 for several flow-based measure variants. Note furthermore
that the rankings with respect to the variants CR, CRW ′ , CS′ , and CSW were rather stable for the
considered nodes.

4.6.2 Which nodes are impacted most?

The previous section focused on the impact of high-ranked nodes, i.e., nodes that are ranked high
by at least one centrality variant. We found that even among those nodes, there are large varia-
tions in ranking positions among the flow-based centrality variants. In a second step, we consid-
ered the extreme cases, i.e., those nodes that are affected most by incorporating the properties of
the real-world network flow and those that are affected least. In order to see the impact on the
nodes, a node’s highest ranking position among all centrality variants (flow-based and standard)
and its lowest ranking position were considered. This was done separately for the betweenness
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and closeness variants. Figure 4.18 shows the nodes’ highest and lowest ranking positions for the
betweenness variants. The difference between minimal and maximal ranking position was intro-
duced as the span of a node in Section 4.3. Tables 4.8 to 4.12 list for each dataset the most stable
nodes, i.e., the nodes with the smallest span, and the most unstable nodes, i.e., the nodes with the
largest span. Although there were already considerable changes in the ranking positions among
the highly ranked nodes (see previous section), Figure 4.18 shows that there was also an impact on
lower-ranked nodes.

In the following, we will only discuss the results concerning the betweenness variants; the corre-
sponding figures for the closeness variants can be found in the Appendix.

DB1B As already shown in Table 4.7, it is also visually obvious that the impact was the smallest
for the DB1B dataset. For this dataset, the majority of nodes is plotted close to the identity line,
meaning that their highest and lowest ranking positions are close to each other. There are, however,
nodes with considerable differences in their ranking positions: Table 4.8 shows the nodes with the
largest span of ranking positions. The airports Atlantic City (New Jersey), Stockton (California),
and Rockford (Illinois) have the largest span of ranking positions, more than 300 positions for each
of them. The table also shows the nodes’ ranking positions with respect to each centrality variant:
For the four most unstable nodes, their instability is mainly due to their high ranking position of
BR and their low ranking position of BS . When considering which nodes are the most stable and
the most unstable, it can be observed that nodes representing large cities seem to be stable, while
nodes representing smaller cities are among the unstable nodes. We quantified this speculation by
using data provided by the Federal Aviation Administration, part of the United States Department
of Transportation. They provide a categorization of US airports by purpose and by their number of
annual passenger boardings. They categorize airports into the following categories [Adm17]:

• Commercial service airports: publicly owned airports with scheduled passenger service and
at least 2500 passenger boardings per year;

• cargo service airports: airports served by cargo aircrafts, might also be a commercial service
airport;

• reliever airports: airports to relieve congestion at commercial service airports; and
• general aviation airports: airports without scheduled passenger service or with less than 2500

passenger boardings per year.

Commercial service airports are further categorized by the percentage of their annual passenger
boardings:

• Primary large hubs: more than 1 % of all annual passenger boardings;
• primary medium hubs: between 0.25 % and 1 % of passenger boardings;
• primary small hubs: between 0.05 % and 0.25 % of all passenger boardings;
• primary non-hubs: at most 0.05 % of all passenger boardings, but at least 10000 passenger

boardings; and
• non-primary airports: between 2500 and 10000 passenger boardings per year.

For the DB1B dataset at hand, we assigned a category to each node according to this categorization:
If a node represents a city containing more than one airport, the category of its largest airport was
assigned. The dataset then contained 23 primary large hubs, 27 primary medium hubs, 66 primary
small hubs, 228 primary non-hubs, 52 cargo service airports, and 19 general aviation airports. Fig-
ure 4.19 shows the nodes’ span of ranking positions according to their categorization. It can be seen
that especially nodes representing cities with smaller airports, i.e., labeled as primary non-hubs and
non-primary airports, show large spans of ranking positions, significantly higher than for large and
medium hubs. The ranking positions of these, large andmedium hubs, are rather stable. Their span
of ranking positions is only 11 and 17 positions on average (median) and shows very small variance.
Small hubs have a median ranking span of 29 positions and larger variance. However, the nodes la-
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(a) DB1B (b) Wikispeedia

(c) London Transport (lines graph) (d) London Transport (transitive graph)

(e) Wordmorph

Figure 4.18 Min-max-plot for rankings for flow-based betweenness centrality variants: Each node is rep-
resented by a point and its highest ranking position over all betweenness variants (flow-based and standard
betweenness centrality) is plotted against its lowest ranking position. The color of the points indicates the
nodes’ ranking with respect to standard betweenness centrality.
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Table 4.8 The most stable nodes with respect to their ranking position among the betweenness variants
(standard and flow-based variants) and the most unstable nodes, for the DB1B dataset. span(v) describes
the nodes’ span of rankings, i.e., the difference between its highest and its lowest ranking position among all
centrality variants. In total, the network contains 415 nodes.

DB1B: Most stable nodes

Node standard BS BSW BRW BR span(v)

Kansas City, MO 29 28 26 26 31 5
Chicago, IL 9 5 5 3 4 6
Dallas/Fort Worth, TX 6 3 9 7 2 7
Seattle, WA 10 8 14 15 10 7
Colorado Springs, CO 73 67 72 72 65 8
Washington, DC 4 6 4 5 12 8
Houston, TX 11 11 15 14 7 8
Las Vegas, NV 13 14 6 9 9 8
Phoenix, AZ 17 18 13 10 14 8
Tampa, FL 22 27 19 21 22 8

DB1B: Most unstable nodes

Atlantic City, NJ 162 387 88 87 39 348
Stockton, CA 325.5 413 223 223 68 345
Rockford, IL 177 409 207 207 89 320
Sanford, FL 61 296 101 103 11 285
Punta Gorda, FL 224 411 235 235 134 277
Fort Collins/Loveland, CO 234 415 245 245 144 271
Youngstown/Warren, OH 231 414 267 267 160 254
Hilo, HI 325.5 198 85 83 234 242.5
Branson, MO 325.5 336 195 194 124 212
Owensboro, KY 206 407 296 296 203 204

beled as non-hubs and as non-primary airports exhibit a ranking span of 63.25 and 60, respectively,
on average (median) and show the largest variance. Therefore, for this dataset, nodes represent-
ing cities with large and medium airports are embedded in the network such that their network
position and their importance with respect to the actual network flow match well: Incorporating
real-world network flow into the betweenness measure impacts the nodes’ ranking position only in
a minor way. This is different for nodes representing cities with smaller airports, particularly those
labeled as non-hubs and as non-primary airports. Here, measuring their importance using standard
betweenness centrality or any of the flow-based variants can lead to considerably different results.

London Transport For the London Transport dataset, we observed that the results were differ-
ent for the two network representations of the system. Figures 4.18c and 4.18d show that the rank
variation is generally larger for the transitive graph than for the lines graph. Tables 4.9 and 4.10
reveal that there are mostly different nodes that are stable and unstable for the two network repre-
sentations. In order to learn which type of nodes are affected most (or least) by switching between
the different betweenness variants, we used external data about properties of the stations. First,
we compared the average span of ranking positions with the position of the corresponding station
within the area of London. For this reason, we used the station’s information about the public
transport zone to which it belongs: As for most urban public transport systems, the stations are
grouped into zones. Stations in the inner city belong to zone 1, while zones 2 to 9 are concentric
around it. Second, we used another attribute provided by Transport for London [Tra17], the num-
ber of daily passengers exiting a station (from TfL Rolling Origin and Destination Survey 2017). The
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Figure 4.19 For the DB1B dataset, there exists an official classification of airports based on the airport’s
purpose and its annual passenger numbers. The node’s span of ranking positions for the betweenness variants
is shown against their official classification.

number of passengers exiting a station is assigned to four equally sized intervals which we used as a
station attribute. Figure 4.20 shows the relationship between these two attributes and the average
span of ranking positions. Unlike before for the DB1B dataset where a clear connection between
the impact on the ranking position and the size of the airport could be observed, this is not the case
here. Neither for the geographic location of the stations expressed by their zone, nor for the actual
passenger traffic, can a clear connection to the span of ranking positions be observed. Therefore,
the impact of incorporating real-world network flow into betweenness centrality on the resulting
nodes’ ranking seems to be uncorrelated for both network representations and both considered
station attributes.

Wikispeedia Figure 4.18b supports the finding of the previous sections that for the Wikispeedia
dataset, there was an effect on the nodes’ rankings when the properties of the real-world network
flow were incorporated into the centrality measures, here betweenness. Figure 4.18b reveals that
there are nodes that are among the highest-ranked nodes for one measure variant and among the
least highly ranked nodes for another measure. There is, for example, the node representing the
article on Achilles Tendon which is among the least central nodes for standard betweenness and
the unweighted flow-based variants, but reaches the ranking position 632, respectively 917.5 for
BSW and BRW . For the stable nodes, on the other hand, we found that there are two nodes that
have almost no changes in ranking position among all variants: The node United States is the most
central node for all variants, and the node United Kingdom ranks in position 2 or 3 for all variants.
Apart from many nodes (more than 300) that are all in the same low-ranking position and therefore
show a small span of ranking positions (see Table 4.11), there are only very few nodes with such a
small span of ranking positions. It can be observed that especially articles on countries are stable
nodes.

Wordmorph For the second game dataset, i.e., Wordmorph, Figure 4.18e confirms that a consid-
erable number of nodes were rated very differently by the different betweenness centrality variants.
Several nodes lose or gain more than 700 ranking positions when changing from one variant to an-
other. Table 4.12 lists the most stable and most unstable nodes for this dataset, i.e., those nodes
with the smallest and largest value of span(v). Like for the other datasets, it can be hypothesized
that the large span of ranking positions could be explained by an external node attribute. For this
dataset, a plausible hypothesis is that words that are used more often in natural language and in
texts will be more stable in their ranking behavior. Therefore, we used a frequency list of English
words based on the Corpus of Contemporary American English provided by [Dav8 ]. Based on a
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4 Flow-based centrality measures

Table 4.9 The most stable nodes with respect to their ranking position among the betweenness variants
(standard and flow-based variants) and the most unstable nodes, for the London Transport dataset (lines
graph). span(v) describes the nodes’ span of rankings, i.e., the difference between its highest and its lowest
ranking position among all centrality variants. In total, the network contains 268 nodes.

London Transport (lines graph): Most stable nodes

Node Bc BS BSW BRW BR span(v)

Green Park 2 1 1 3 2 2
Bank / Monument 4 4 2 4 5 3
Upminster 256.5 259 257 256 260 4
Watford 256.5 260 261 258 256 5
Cockfosters 256.5 255 262 259 262 7
Liverpool Street 5 8 7 12 11 7
Westminster 6 5 5 11 12 7
Harrow & Wealdstone 256.5 261.5 254 254 257 7.5

London Transport (lines graph): Most unstable nodes

Leicester Square 220 149 79 23 31 197
Swiss Cottage 241 226 212 87 51 190
Bromley-by-Bow 242 248 238 98 67 181
Charing Cross 218 147 93 37 84 181
St. John’s Wood 228 205 189 79 48 180
Blackfriars 231 197 139 52 80 179
Covent Garden 236 194 142 61 64 175
North Greenwich 215 152 64 45 106 170
Chancery Lane 191 119 66 21 26 170

Table 4.10 The most stable nodes with respect to their ranking position among the betweenness variants
(standard and flow-based variants) and the most unstable nodes, for the London Transport dataset (transitive
graph). span(v) describes the nodes’ span of rankings, i.e., the difference between its highest and its lowest
ranking position among all centrality variants. In total, the network contains 268 nodes.

London Transport (transitive graph): Most stable nodes

Node standard BS BSW BRW BR span(v)

King’s Cross St. Pancras 1 1 1 1 1 0
Bank / Monument 2 2 2 5 5 3
Oxford Circus 5 3 5 2 3 3
Green Park 8 4 4 4 4 4
Baker Street 7 6 6 3 2 5
Wembley Park 34 34 32 28 28 6
Westminster 15 13 13 9 11 6

London Transport (transitive graph): Most unstable nodes

Hammersmith (H&C) 168 251 254 66 36 218
Canary Wharf 241 38 49 52 43 203
Ickenham 49 204 199 243 250 201
Brixton 241 51 48 50 53 193
Vauxhall 241 50 64 65 51.5 191
Ruislip Manor 49 195 171 220.5 238 189
Pimlico 241 52 60 62 54 189
North Greenwich 241 55 70 71 57 186
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4.6 Which nodes are impacted?
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(a) London Transport (transitive graph): span of rank-
ings versus zone of station.
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(b) London Transport (transitive graph): span of rank-
ings versus daily number of passengers exiting a sta-
tion.
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(c) London Transport (lines graph): span of rankings
versus zone of station.
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(d) London Transport (transitive graph): span of rank-
ings versus daily number of passengers exiting a sta-
tion.

Figure 4.20 The nodes’ span of ranking positions for the London Transport dataset (top: transitive graph;
bottom: lines graph), plotted according to external node attributes. The plots on the left compare the nodes’
span of ranking positions with the zone in which a station is located, the plots on the right compare the span
of ranking positions with the average daily number of passengers exiting a station (both attributes provided
by Transport for London [Tra17].
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4 Flow-based centrality measures

Table 4.11 The most stable nodes with respect to their ranking position among the betweenness variants
(standard and flow-based variants) and the most unstable nodes, for the Wikispeedia dataset. span(v) de-
scribes the nodes’ span of rankings, i.e., the difference between its highest and its lowest ranking position
among all centrality variants. In total, the network contains 4589 nodes.

Wikispeedia: Most stable nodes

Node standard BS BSW BRW BR span(v)

United States 1 1 1 1 1 0
United Kingdom 2 2 2 3 3 1
Europe 4 3 3 2 2 2
England 3 4 4 5 4 2
Africa 5 5 8 6 6 3
Earth 11 9 5 4 5 7
A Wrinkle in Time 4375.5 4383 4383 4379 4379 7.5
Abacá 4375.5 4383 4383 4379 4379 7.5
… … … … … … 7.5
English language 10 13 18 17 14 8
World War II 7 7 16 7 8 9
Germany 6 6 12 9 15 9
France 14 10 25 13 12 15
Bird 23 32 36 22 38 16
China 16 14 19 28 32 18
India 15 17 11 24 31 20

Wikispeedia: Most unstable nodes

Achilles tendon 4375.5 3908.5 632 917.5 2598 3743.5
History of Puerto Rico 187 3566 3636 3618.5 3725 3538
Matsuo Bashō 774 3955 4038 4071.5 4024.5 3297.5
Malwa (Madhya Pradesh) 1132 4162 4115 4379 4379 3247
Union Station (San Diego) 622 3747 3867 3864 3859.5 3245
Stock car (rail) 886 3976 4050 4071.5 4113.5 3227.5
Fauna of Australia 425 3559 3211 3330 3651 3226
Coupling (railway) 850 4028.5 3972 4000 4059 3209

large and diverse text corpus, the frequency of occurrence of each word is counted. Furthermore,
they provide a score (called frequency rank) for each word, which is a function of its frequency and
its dispersion [JCR64], where dispersion is a measure quantifying how evenly a word is distributed
among the parts of the text corpus. For words contained in the network that are inflected forms
(such as are is an inflected form of the verb to be), the score of the corresponding base form is used.
For words that are contained several times in the frequency list (such as use as a noun and as verb),
the entry with the higher score is kept. Not all words contained in the Wordmorph network are
contained in the frequency list provided by [Dav8 ]. We used this frequency list and compared the
words’ frequency ranks to the span of ranking positions of the corresponding node. Figure 4.21a
shows that there is no connection between the nodes’ span of ranking position and the frequency
rank of the corresponding word. The average span of ranking positions is approximately the same
for all intervals of frequency ranks. A different plausible hypothesis is that common words are used
more often by players when navigating from one word to another, and less common words are used
less often. This would be reflected in the ranking by measure variants counting real trajectories,
i.e., the measures BR and especially BRW . Figure 4.21b shows the ranking position of the nodes
for all betweenness variants and their frequency rank from the text corpus. It can be observed
that there is no relationship between these properties. For standard betweenness centrality, this
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4.7 A note on the results’ sensitivity to changes of the trajectory set

Table 4.12 The most stable nodes with respect to their ranking position among the betweenness variants
(standard and flow-based variants) and the most unstable nodes, for the Wordmorph dataset. span(v) de-
scribes the nodes’ span of rankings, i.e., the difference between its highest and its lowest ranking position
among all centrality variants. In total, the network contains 1008 nodes.

Wordmorph: Most stable nodes

Node standard BS BSW BRW BR span(v)

ait 2 3 3 1 1 2
chi 992.5 991 991 996.5 992 5.5
ghi 992.5 1001 1001.5 1002 998 9.5
ais 3 2 2 4 12 10
ohm 992.5 1001 1001.5 1002 1003 10.5
urd 992.5 1005 1005 1005 1002 12.5
imp 992.5 996 996.5 991.5 984 12.5
ivy 992.5 1001 1001.5 1005 997 12.5
adz 992.5 996 996.5 999.5 986 13.5
oxy 992.5 1001 996.5 1002 1006 13.5

Wordmorph: Most unstable nodes

aah 141 834 838 955.5 932 814.5
hmm 130 740 724 814 926 796
arm 538 822 823 82.5 48 775
eta 719 966 966 839 203 763
phi 123 859 859 883.5 882 760.5
ahi 124 790 793 883.5 816 759.5
eld 767 980 980 861 226 754
oho 45 707 697 798.5 415 753.5
ute 539 923 924 699.5 184 740
ope 144 783 780 883.5 626 739.5

is not surprising: There is no reason why the structure of a network where an edge corresponds
to a Hamming distance of 1 should reflect the frequency of occurrence of words. For the measure
BRW , this would have been plausible, but it turned out that there is no connection between the
occurrence of a word in the text corpus and the usage of the corresponding node by players playing
the Wordmorph game.

4.7 A note on the results’ sensitivity to changes of the
trajectory set

The results of all introduced flow-based centrality measures are heavily dependent on the available
trajectory set P . Since the trajectory set P is based on empirical observations, it is possible that
there are errors or uncertainties in the data. Furthermore, in order to obtain P , usually prepro-
cessing steps are necessary where different researchers might make different decisions leading to
different trajectory sets P . For the Wikispeedia dataset used in this work, we decided to exclude
unsolved solution attempts as well as players’ solutions that are longer than 30 steps. The reason
for this decision is the assumption that such long paths are not the result of thoughtful playing,
but rather of untargeted clicking, possibly for a different purpose than solving the task. This is
certainly a decision that can be made differently. The length restriction excludes only 45 solutions
(out of more than 51000). The effect of this exclusion on the results of the analysis was however
surprisingly large: The betweenness variant BR was extremely sensitive to such preprocessing deci-
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4 Flow-based centrality measures
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(b) The node’s ranking position for each flow-based
betweenness centrality shown against the word’s fre-
quency rank.

Figure 4.21 For the Wordmorph dataset, we used the word frequencies in a large text corpus provided by
[Dav8 ] as a comparison variable. The frequency rank for a word is a score dependent on its frequency of
occurrence and its dispersion in the text corpus (see text for explanation). Note that not all nodes of the
dataset are contained in the word frequency list of [Dav8 ].

sions. In addition to the analysis of the previous sections, we computed all flow-based betweenness
variants on the basis of the unrestricted trajectory set of Wikispeedia, i.e., P is the set of players
successful solution attempts, without any length restriction.

Table 4.13 shows the Spearman rank correlation coefficient of the flow-based betweenness variants
to standard betweenness centrality, based on the unfiltered trajectory set and (as before) based on
the trajectory set where the 45 long solutions were excluded. It can be seen that no effect is visible
on the variants BS , BSW , and BRW , but for the variant BR, the correlation coefficient drops from
0.3 to 0.39 by only excluding 45 trajectories.

Figure 4.22 shows the effect on the top most central nodes: As in Figure 4.11, for all nodes that are
among the ten most central nodes with respect to at least one betweenness variant, their ranking
positions for all variants are shown. To compare the results, the results for both dataset versions
are shown, once for the dataset as used in the previous sections, once for the dataset where long
paths were not filtered out. Also here, the sensitivity of the variant BR becomes obvious: While the
nodes’ ranking behavior for all other variants is rather similar for both dataset versions and the top
ten nodes show a large overlap, there is a clear discrepancy for the variant BR. This is due to the
definition of BR: The flow-based count of paths, i.e., the definition of σP⋅st⋅(v) only requires that
the nodes s, v, and t occur in the same real trajectory (in this order) to be counted. This explains
the large impact of long trajectories: Each triple of nodes (s, v, t) contained in the trajectory in this
order contributes to the corresponding σP value. Since these long trajectories were not targeted at
all (the longest trajectory contains 404 steps although the target could have been reached within 2
steps!), the values of σP⋅st⋅(v) change considerably when these long trajectories are included in P .
This explains the considerably different ranking behavior of BR when including or excluding the
long trajectories.

On the other hand, the remaining flow-based betweenness variants and all closeness variants (re-
sults not shown here) do not show this effect. It has not been shown yet how robust they are
against major changes in the underlying trajectory set P , but they show at least less sensitivity to
changes in P than BR.
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4.7 A note on the results’ sensitivity to changes of the trajectory set

Table 4.13 Effect of preprocessing decisions on the results of flow-based betweenness centralities:
Spearman rank correlation coefficient and weighted overlap of all flow-based variants compared to standard
centrality, once for the dataset Wikispeedia as used in the previous sections, once for a slightly modified
dataset, where 45 trajectories with more than 30 steps that were not removed from P before the flow-based
betweenness variants were computed with them.

Spearman correlation

Dataset version BS BSW BR BRW

Wikispeedia: all trajectories 0.83∗ 0.81∗ 0.78∗ 0.79∗
Wikispeedia: trajectories with > 30 steps filtered out 0.83∗ 0.81∗ 0.81∗ 0.79∗

Weighted overlap τw

Dataset version BS BSW BR BRW

Wikispeedia: all trajectories 0.21 0.25 0.39 0.31
Wikispeedia: trajectories with > 30 steps filtered out 0.21 0.25 0.30 0.31
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(a) Wikispeedia: trajectories with more than 30 steps
were excluded from P .
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(b) Wikispeedia: P contains all solving solutions.

Figure 4.22 Effect of preprocessing steps on the results of flow-based betweenness measures: The figure
shows the ranking behavior of those nodes that are among the ten highest ranked nodes with respect to at
least one betweenness variant (as in Figure 4.11). On the left: for the dataset as used in the previous sections
(the figure is the same as in Figure 4.11b) where 45 solutions of a length of more than 30 steps were removed
from P before the flow-based betweenness variants were computed. On the right: all solving solutions are
included in P .
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4 Flow-based centrality measures

4.8 Which assumptions matter, which don’t?

In the previous sections, the flow-based centrality measures were compared to the corresponding
standard centrality measure, i.e., standard betweenness and standard closeness centrality. In order
to investigate whether the violation of certain assumptions contained in these standard measures
has a larger impact on the results than the violation of other assumptions, wewill compare the flow-
based centrality variants among each other in this section. For an appropriate interpretation of the
results, we not only need to know that an assumption is violated by the real-world network flow
contained in a dataset, but we need a measure that quantifies to which extent a certain assumption
is not met by the real network flow. Otherwise, the results of the different datasets cannot be
compared. We will therefore introduce measures for each single assumption which measure how
far the real network flow is from the assumed processmodel with respect to a specific assumption10:

There is flow between each node pair We have shown that for none of the datasets, the state-
ment that flow is observed between each node pair holds. In order to quantify this observa-
tion, we simply used the percentage of node pairs between which at least one real trajectory
was observed in the dataset, relative to the total number of all node pairs in the graph. Ta-
ble 4.14 shows the corresponding values for the datasets we used: While we assumed 100 %
for the assumed processmodel, for the transportation datasets, approximately half of all node
pairs were used as source and target of any observed trajectory. For the game datasets, Wik-
ispeedia and Wordmorph, this percentage was much smaller, 1.1 % and 0.13 %. However, it
needs to be noted that the corresponding networks are larger than the networks of London
Transport and DB1B, so that a higher number of trajectories is needed to ensure at least one
trajectory between each node pair. For Wikispeedia, for example, given the available number
of trajectories and the network, a percentage value of 0.24 % is the maximal value that could
be reached. For Wordmorph, only 1.1 % of all node pairs were the source and target of at
least one observed trajectory; however, with 11651 trajectories contained in the dataset, a
percentage of only 1.14 % is actually possible.

Equal amount of flow between each node pair Furthermore, we assumed that the amount of
flow between each node pair is equal. In order to quantify to which extent this was not the
case, we considered those node pairs between which there exists at least one trajectory. An
frequently usedmeasure for quantifying the inequality of a distribution is theGini coefficient,
which was introduced in Chapter 3. Table 4.14 shows the resulting values. It can be seen that
the Wordmorph dataset shows the smallest value, even close to 0, while DB1B shows the
largest value, even close to 1 indicating that the amount of flow between the node pairs used
is distributed in a very imbalanced way for DB1B.

Usage of shortest paths In order to measure to which extent the real-world network flow is us-
ing shortest paths, we used two measures: We first considered the percentage of observed
trajectories whose length is equal to the length of the shortest path from its source to its des-
tination. These values are quite high (above 69 %) for all datasets except Wikispeedia where
it is only 22 %. We furthermore computed the factor by which a trajectory was longer than
its corresponding shortest path, and computed the average of those values (including those
that were as short as possible). Table 4.14 shows that the trajectories of the London Transport
dataset are generally very close to the optimum, while the trajectories of Wikispeedia are,
on average, longer than the shortest path by a factor of 1.76. With 1.27, the value for DB1B
seems surprisingly high. This is due to the fact that the majority of DB1B trajectories have
a length of 1 or 2, and there are a large number of trajectories with length 2 and a shortest
path of length 1. All these trajectories contribute to the overall value with a value of 2.

With a quantification at hand regarding the extent to which the real-world network flows show

10Since all considered datasets contain the flow of transfer processes, this assumption does not need to be considered here.
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Table 4.14 Violation of assumptions in the considered datasets: For each assumption, a corresponding mea-
sure was used to quantify to which extent the real-world network flow deviates from its assumed behavior.

Assumption: There is flow between each node pair
Measured by: Percentage of node pairs used
assumed DB1B London Transport Wikispeedia Wordmorph
100 % 51 % 46 % 0.13 % 1.1 %
Assumption: Equal amount of flow between node pairs used
Measured by: Gini coefficient ∈ [0, 1]
assumed DB1B London Transport Wikispeedia Wordmorph
0 0.95 0.73 0.38 0.0086
Assumption: Usage of shortest paths
Measured by: Percentage of trajectories with optimal length
assumed DB1B London Transport Wikispeedia Wordmorph
100 % 69 % 89 % 22 % 71 %
Measured by: Factor by which trajectories were longer than optimum
assumed DB1B London Transport Wikispeedia Wordmorph
1.0 1.27 1.02 1.76 1.22

Table 4.15 The tables contain the Spearman rank correlation coefficient between the values of the flow-based
betweenness measures (white cells, upper right cells), and the weighted overlap τw between the rankings of
the measures (gray cells, lower left cells). Starred values for the Spearman rank correlation coefficient indicate
a p-value of ≤ 0.05.

BS BSW BRW BR

BS 0.94∗ 0.94∗ 0.91∗
BSW 0.16 1.00∗ 0.97∗
BRW 0.15 0.02 0.97∗
BR 0.15 0.15 0.14

(a) DB1B

BS BSW BRW BR

BS 0.98∗ 0.95∗ 0.91∗
BSW 0.11 0.96∗ 0.91∗
BRW 0.18 0.16 0.97∗
BR 0.23 0.24 0.12

(b) Wikispeedia

BS BSW BRW BR

BS 0.92∗ 0.75∗ 0.78∗
BSW 0.19 0.89∗ 0.85∗
BRW 0.35 0.21 0.95∗
BR 0.29 0.26 0.18

(c) London Transport (lines graph)

BS BSW BRW BR

BS 0.97∗ 0.94∗ 0.96∗
BSW 0.09 0.96∗ 0.92∗
BRW 0.17 0.13 0.97∗
BR 0.15 0.20 0.10

(d) London Transport (transitive graph)

BS BSW BRW BR

BS 1.00∗ 0.91∗ 0.60∗
BSW 0.02 0.91∗ 0.60∗
BRW 0.25 0.25 0.77∗
BR 0.48 0.48 0.33

(e) Wordmorph
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different properties than the assumed process model, it is interesting to consider the flow-based
centrality variants and compare their results among each other. For each dataset and each two flow-
based centrality measures (separately for betweenness and closeness variants), the Spearman rank
correlation coefficient and the weighted overlap between their values and rankings were computed
(see Section 4.3 for details). Table 4.15 shows the results for the betweenness variants. Several
observations can be made:

• For all datasets, the correlation between the weighted and unweighted variants, i.e., between
BS and BSW as well as between BR and BRW , is high , indicating that incorporating the
amount of flow between nodes as a weight into the measure, does not have a large impact on
the resulting ranking. This is not surprising for the Wordmorph dataset where the amount of
flow between all node pairs used is 1 for almost all node pairs and the Gini coefficient is close
to 0. For Wikispeedia, the higher amount of flow between certain node pairs is mainly due
to the increased frequency of four node pairs (intended by the researchers, see Section 4.6.1
and [WL12b]), which explains that the overall effect on the remaining nodes was minor. For
DB1B, where the assumption of equal amount of flow is also not met, the correlation is still
high with 0.94. However, the weighted overlap for BS and BSW is the largest among all
variant combinations within the DB1B dataset.

• When considering the correlations between the variants counting shortest paths and the
variants counting real trajectories, the results are different for the different datasets. For the
Wordmorph dataset, the correlation coefficients are the lowest, dropping to 0.60 for the vari-
ants BS and BR, and for the variants BSW and BR (note that for Wordmorph, the weighted
and unweighted variants are almost identical because the assumption of equal amount of
flow between the nodes used is approximately satisfied here). The weighted overlap even in-
creases to the value of 0.48. Nevertheless, even for this dataset, the correlation is still positive
and far from 0. Considering the transportation datasets DB1B and London Transport, it can
be observed that although according to Table 4.14, the assumption of shortest paths is less
satisfied for DB1B than for London Transport, the correlations are opposite: The correlations
between BSW and BRW , and between BS and BR, are smaller for London Transport than
for DB1B.

4.9 Summary and limitations

4.9.1 Limitations

There are limitations of this work that need to be mentioned. As for any data-based analysis, the
results are highly dependent on the data collection methods and all data preprocessing steps. In
this work, we used datasets consisting of a network representation of the system and a set of trajec-
tories. For one dataset, both the network representation and the set of trajectories were built from
the same data; for the remaining datasets, they were built from different sources. In either case, it
is neither guaranteed that the data we used is complete nor that it is free of any errors. As in many
cases, the network representation of the system needs to be defined by the researcher, and there
are several plausible choices for this. Other network representation choices would probably have
yielded different results. For the London Transport dataset, there are two graph representations
that are both plausible for the application of the considered centrality indices, so we performed the
same analysis on both representations. For the preprocessing of the trajectory set of each dataset,
different decisions are also possible and plausible. For the game datasets for example, a plausible
filtering step is to exclude all trajectories that are longer than a certain threshold. In Section 4.7,
we demonstrate that one of the introduced flow-based betweenness centralities is sensitive to this
decision. In future work, a systematic analysis of the sensitivity of the introduced measures to the
input trajectory set P is needed.

To test the impact of single assumptions on the results of centrality indices, we decided to use
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information from real-world network flows. A different approach would be to use synthetic data
(or solving it analytically), which would give a higher controllability of the data and make it easier
to consider the assumptions separately. However, we chose to use the data of real-world net-
work flows in order to demonstrate that there is also an effect for networks with processes for
which the application of the classic centrality indices is reasonable according to Borgatti’s classifi-
cation [Bor05]: We intentionally chose datasets containing transfer processes where each process
entity has a target that it tries to reach on the shortest path. If synthetic data containing trajectories
satisfying all but one assumption were used, the effect on the process-driven centrality measures
would not be surprising. However, we even found an effect of the violation of assumptions on the
centrality results when using datasets that–in theory–could satisfy the assumptions.

A further limitation of the following analysis is the bandwidth of the datasets used. We applied
our analysis to only four datasets of which two are transportation systems and two are games. To
improve the validity of the results, a larger set of datasets from more different domains would be
necessary. Unfortunately, only very few datasets satisfying the requirements for this analysis are
available which is why the usage of more diverse datasets was not possible.

4.9.2 Summary

Many centrality indices implicitly contain a process model with certain properties. The ranking in-
duced by a centrality index can then be interpreted as the nodes’ importance with respect to a pro-
cess with these properties. For example, betweenness centrality measures a node’s importance with
respect to a network process consisting of indivisible entities traveling on shortest paths through
the network. In the previous chapter (Chapter 3), we demonstrated that the behavior of real-world
network flows is not necessarily in conformity with the assumed properties. In this chapter, we
considered whether this has an impact on the results of the centrality indices. For this reason, dif-
ferent flow-based variants of betweenness and closeness centrality were introduced which, for each
assumption, either used the “ideal” process model or the properties of the real-world network flow.
This technique allows us to separate between the different assumptions contained in the centrality
indices.

When applying these variants on four different datasets, two containing passenger flow in trans-
portation systems and two containing player flows in game networks, we found that violation of
the assumptions by the real-world network flow does have an effect on the results of the centrality
index. When comparing the rankings of the flow-based variants to the corresponding standard cen-
trality index, we found that their correlation was still high in general. However, when considering
which nodes are impacted by replacing the process model with the behavior of the real-world flow,
we observed nodes whose ranking positions changed enormously. We even found considerable
ranking deviations among the highest-ranked nodes which is remarkable since, when centrality
indices are applied, usually only the highest-ranked nodes are of interest. If even the ten most
central nodes are different for the flow-based variants and their corresponding standard centrality,
the interpretability of any centrality-based result becomes more difficult.

We further analyzed which nodes are impacted more by incorporating the properties of the real-
world network flow. For the DB1B dataset containing passenger flow in the US airline transporta-
tion system, we found that particularly the ranking position of small airports was affected by incor-
porating the properties of the real-world network flow while for large airports, such as New York
or Los Angeles, the assumed flow and the actual network flow appeared to be in accordance such
that their ranking position was stable among all variants and standard centrality.

Furthermore, in order to investigate whether the violation of certain assumptions has a larger im-
pact on the results than the violation of others, we compared the flow-based centrality variants
among each other. In general, we found that their correlations were rather high for all datasets
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although the corresponding assumptions were not necessarily met by the real-world flow con-
tained in the respective dataset. Nevertheless, we also found cases where the incorporation of real
trajectories into the betweenness instead of shortest paths leads to considerable variations in the
rankings.

Although the assumptions of centrality indices are well-known in the community, to the best of
our knowledge, this is the first work that systematically analyzes the impact of single assumptions
by using real-world datasets.
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Summarizing trajectories of
real-world network flows

Chapter 5
Chapter outline

In this chapter, several distance and similaritymeasures for walks in a graph are derived. We
are not aware of any work proposing a distance or similarity measure for walks. Therefore,
we review data structures as which a walk can be modeled: as a set, as a sequence, as
a set of elements in which each two elements have a distance to each other (thus as a
set of points in a metric space), and as a sequence of elements with a pairwise distance
between them (thus as a polygonal curve in a metric space). For each of those structures,
similarity or distance measures have been proposed. In this chapter, we review the existing
measures and adapt them to the application on walks in a graph. These similarity and
distance measures are then used to cluster the empirically observed walks of a dataset into
groups. We use a dataset containing the state space of a board game as network, and
humans trying to solve the game as walks through the state space. The main goal is to
evaluate the proposed similarity measures whether they are able to distinguish between
structurally different walks.
This chapter is based on the work published in [3] (for similarity and distance measures)
and (for clustering trajectories) based on the publication [2]ab.

aIn the publication [2], the additive version of the (simplified) additive discrete Fréchet distance is called
CoMapPa2 (CoMapPa1) because we were not aware that this measure has been proposed before.

bIn a previous work [Boc15], a preliminary set of similarity and distance measures was proposed, which is ex-
tended in the present work.

5.1 Motivation

The previous chapters revealed that the properties of real-world network flow cannot be repro-
duced by simple trajectory models, i.e., shortest paths and random walks. A similar situation was
described by Watts and Strogatz in their famous small-world article [WS98]: Networks deduced
from real-world systems showed neither the structural properties of regular graphs nor those of
random graphs. They therefore introduced a new model for generating graphs (small world model)
whose properties could be scaled with a parameter between the two extremes regular graphs and
random graphs.

When considering real-world network flows, there is no such model available that captures the
properties of an empirical network flow. Until such a realistic model is available, it is necessary to
consider the empirically collected trajectories instead. However, given a large set of trajectories,
it is often not feasible to consider each single trajectory, so a grouping of the trajectories into
subsets of trajectories with similar structural properties is helpful. First, considering representative
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5 Summarizing trajectories of real-world network flows

Figure 5.1 A state space of a board game and human navigation in it when solving the game. All players
start in the node leftmost drawn and aim at reaching the solution state drawn in the bottom right corner.

trajectories for each group instead of the complete trajectory set reduces computational complexity.
Second, identifying groups of structurally similar trajectories might help to develop a more realistic
model for trajectories.

Consider Figure 5.1 which shows the state space of the single-player board game Rush Hour (as
introduced in Chapter 3) where a node represents a game configuration and edges represent valid
game moves. Attempts of humans trying to solve the puzzle can be understood as walks through
the state space. The edges in the figure are drawn bolder if more players used them while solving
the game. For the human eye, it is easy to recognize that most players take “somehow similar”
ways to solve the game. With respect to this application scenario, it would be helpful to identify
these similar solutions, for example in order to identify different solution strategies used by the
players.

Finding meaningful groups of any type of trajectories is also relevant in other areas of research:

• Consider an e-learning platform or an online course providing learning material to students
(videos, documents, tests, etc). A student taking a course and using the provided material
items creates a sequence of items, depending on the order and frequency of use of the ma-
terial items. Grouping these trajectories into meaningful groups could be used to identify
different learner types and help to improve learning efficiency by providing different mate-
rials (or the same material items in a different order) to students of different learner types.

• Similarly, consider the purchase history of users in a commercial context. For each user, there
is a sequence containing which product the user has bought in which order. Finding groups
of similar purchase histories might lead to better product recommendations [YML+14].

• Trajectories representing solutions of humans trying to solve a puzzle can be clustered in
order to identify different strategies for solving the puzzle.

• Sequences of proteins can be grouped according to the assumption that protein sequences
within the same group have a similar biological function [YW03].

• Trajectories from tracking moving objects can be clustered for various purposes: predict-
ing future object behavior [SB00], identifying trajectories of the same object [VKG02, AT06],
identifying leaders and followers [AGLW07], classifying the shopping behavior of customers
in a supermarket by considering their routes through the store [LBF05, STYS16], or identify-
ing similar strategies of football teams by analyzing the players’movements in a game [GH17].

In order to achieve a meaningful grouping, a suitable similarity measure for walks is needed. To the
best of our knowledge, no similarity measure dedicated particularly to walks in graphs exists. There
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are, however, dozens of different similarity and distance measures for other data structures from
various areas of research. In applications such as video surveillance systems, the positions of mov-
ing objects are tracked through consecutive frames and their trajectory is extracted. For automati-
cally distinguishing between regular and anomalous trajectories, similaritymeasures between these
trajectories have been developed [VKG02, ME02, BSK04, BKS03]. Themost frequently used similar-
ity measures for this scenario are the length of the longest common subsequence [BSK04, VKG02]
and theHausdorff distance [JJS04]. Other trajectories ofmoving objects are tracked byGPS sensors,
for example animals in the wild [SBvLP+11], routes of cyclists [VHL+14], or trajectories of pedes-
trians [AT06]. In this area of research, the discrete Fréchet distance [Fré06, EM94] is often used,
for example to detect recurring subtrajectories [BBG+11]. Other approaches consider sequences
of events and aim at identifying similar sequences where variants of edit distances or alignment
methods from string matching [Gus97] are often used, for example for measuring the similarity
between event sequences [MR97].

All these approaches from different areas of research exist and they can all be adapted to walks in
graphs. The main questions posed in this chapter are therefore:

How can the similarity of two walks in a graph be measured? Which information contained
in a walk is essential such that it needs to be incorporated into a similarity measure for
walks? Which similarity or distance measure is best suited to find meaningful groups of
trajectories?

This chapter consists of two parts: We will first introduce and review existing similarity measures
for the following four data structures: sets, sequences, sets of points in metric space, and polygonal
curves in metric space. Second, we will test which of the introduced measures is best suited for
finding meaningful groups of trajectories, by using a dataset with ground truth. For the sake of
simplicity, in this chapter, the underlying graph is assumed to be undirected, unweighted, and
simple.

5.2 Similarity and distance measures for walks in graphs

In general, a similarity measure is a function s ∶ X ×X → R which indicates for two elements of
a set X how similar they are. Usually, a high value of s implies high similarity of the two objects
(according the criteria used by s). A distance measure on a set X is a function δ ∶ X ×X → R

that indicates the distance or dissimilarity of two elements of X . A low value of δ implies high
similarity. There are several desirable properties of distance measures:

Definition 5.1: Properties of distance and similarity measures

Non-negativity A distance measure is said to satisfy non-negativity if for all x, y ∈ X , it
holds that δ(x, y) ≥ 0.

Coincidence A distance measure δ is said to satisfy coincidence if for all x, y ∈X , it holds
that δ(x, y) = 0⇔ x = y. Hence, from a distance value of 0, it can be deduced that
the two elements are identical, and vice versa.

Symmetry A distance measure satisfies symmetry if for all x, y ∈X , it holds that δ(x, y) =
δ(y, x).

Triangle inequality A further desirable property is the triangle inequality: for all x, y, z ∈
X , the following inequality holds: δ(x, z) ≤ δ(x, y) + δ(y, z).

Boundedness Adistancemeasure δ or similaritymeasure s is bounded above by a constant
C ∈ N if for any two elements x, y ∈ X , it holds that δ(x, y) ≤ C and s(x, y) ≤ C ,
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respectively.
A distance measure satisfying non-negativity, coincidence, symmetry, and the triangle in-
equality is called a distance metric.
If a similarity measure is bounded, we can formulate the above properties also for similarity
measures:
Non-negativity A similarity measure is said to satisfy non-negativity if s(x, y) ≥ 0.
Symmetry A similarity measure is said to satisfy symmetry if for all x, y ∈X , it holds that

s(x, y) = s(y, x).
Coincidence A similarity measure is said to satisfy coincidence if for all x, y ∈ X , it holds

that s(x, y) = C⇔ x = y.
Triangle inequality A similarity measure is said to satisfy the triangle inequality if for all

x, y, z ∈X , it holds that s(x, z) ≥ s(x, y) + s(y, z) −C .

We claim that there are three kinds of information contained in a walk (see also Figure 5.2):

(i) Information on which elements are contained in a walk, i.e., which nodes and edges.
(ii) Information on the order in which they occur in the walk.
(iii) Information on where in the graph the walk is located.

From these three kinds of information, corresponding similaritymeasures can be derived: Similarity
measures using the first kind of information consider a walk as a set of elements, so, similarity
measures for sets can be used. Similarity measures using the order of the elements consider the
walk as a sequence of nodes and edges, so, existing similarity measures for sequences or strings
can be used. If the position of the walk nodes within the graph is of interest (and only of those),
we consider the position of the single walk nodes within the graph. Hence, a walk is considered
as a set of points in a metric space and existing similarity measures for this kind of data structure
can be used. If all three kinds of information–elements, order, and position in the graph–are to
be considered, a walk can be modeled as a discrete curve in a metric space. This data structure
allows considering all three kinds of information and there exist similarity measures for this type
of structure.

5.2.1 A walk as a set

The simplest approach for modeling a walk is to only consider the nodes or edges it contains as
a set. For the comparison of two sets, basic measures are available, for example the number of
common elements, or as a normalized variant, the Jaccard index [Jac12]: For two sets A and B, the
Jaccard index is defined as

sJaccard =
∣A ∩B∣
∣A ∪B∣

.

Node and edge set similarity

For a walk, we can either consider the nodes or the edges contained in it as the relevant set1.

Definition 5.2: Node and edge set similarity for walks

For walks P and Q, their node set and edge set similarity are defined as follows. Node set
similarity:

snss(P, Q) = ∣V (P ) ∩ V (Q)∣ (5.1)

1These two similarity measures are also contained in previous work [Boc15]
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Figure 5.2 An overview of how a walk in a graph can be modeled, depending on which kind of information
is used. When only its contained elements are of interest, a walk can be modeled as a set (of nodes or edges);
when its order is of interest, it can be modeled as a sequence; when its position in the graph is of interest, it
can be modeled as a set of points in the metric space (V, d) where V is the set of nodes in the graph and d is
the graph distance between the nodes (indicated by the gray dashed edges with labels). An approach using all
three kinds of information is modeling as a sequence of points in the metric space (V, d), i.e., as a polygonal
chain or polygonal curve.

115



5 Summarizing trajectories of real-world network flows

(a) Example of two different walks with the same node
set.

(b) Example of two paths with the same edge set that
are not identical. The green path is (1, 2, 3, 4, 5, 1), the
blue path is (1, 2, 3, 4, 5, 1, 2, 3, 4, 5).

Figure 5.3 Examples of walks where the set-based measures are not satisfactory.

Normalized node set similarity:

sN
nss(P, Q) = ∣V (P ) ∩ V (Q)∣

∣V (P ) ∪ V (Q)∣
(5.2)

Edge set similarity
sess(P, Q) = ∣E(P ) ∩E(Q)∣ (5.3)

Normalized edge set similarity

sN
ess(P, Q) = ∣E(P ) ∩E(Q)∣

∣E(P ) ∪E(Q)∣
(5.4)

Properties of the set similarities These measures are easy to compute and satisfy bounded-
ness (bounded by ∣V ∣, ∣E∣, and 1, respectively), non-negativity, symmetry, and the triangle inequal-
ity [Kos19]. However, it is obvious that a lot of information contained in a walk is not considered,
if a walk is broken down into a set of nodes or edges. This is why the introduced measures do not
satisfy coincidence: There are walks, such as those shown in Figure 5.3, which yield the highest
possible similarity measure, but are not identical.

5.2.2 A walk as a sequence

When awalk is considered as a sequence of nodes or a sequence of edges, the order of the contained
elements is taken into account and similarity measures designed for sequences or strings can be
applied. In the area of bioinformatics, several measures have been designed to compare genome
sequences. Interestingly, most existing measures can be formulated as edit distances [Lev66]: As-
sume a set of allowed edit operations, such as inserting, deleting, or substituting an element in the
string, where each operation is associated with a cost. The edit distance between two sequences
is then the minimal cost necessary for transforming the one sequence into the other by using the
allowed edit operations.

Longest common subsequence measure

When inserting and deleting are allowed edit operations, and both operations are assigned a cost of
1, we obtain a measure that is also called the longest common subsequence distance [NW70]: For
a sequence a = (a1, . . . , al), a subsequence of a is defined as any sequence of elements that can be
obtained from a by deleting elements. Note that the elements of a subsequence of a do not neces-
sarily occur consecutively in a. Thus, (a, c, g) is a subsequence of the sequence (a, b, c, d, e, f, g, h).
For two sequences a and b, let lcs(a, b) denote the length of the longest subsequence of a and b.
Let lcs(P, Q) for walks P and Q be defined accordingly based on the node sequences of P and Q.
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5.2 Similarity and distance measures for walks in graphs

Definition 5.3: LCS similarity for walks

For two walks P and Q as sequences of nodes, we define their LCS similaritya as:

slcs(P, Q) = lcs(P, Q) (5.5)

and their normalized LCS similarity as

sN
lcs(P, Q) = lcs(P, Q)

max{∣P ∣, ∣Q∣} + 1
. (5.6)

aThis similarity measure is contained in a previous work [Boc15].

Properties of the LCS similarity These measure variants have several desirable properties,
such as non-negativity, symmetry, coincidence (at least the normalized version), and the triangle
inequality [Nav01, ZYPW02]. Note that the unnormalized version does not satisfy boundedness.
However, there are several drawbacks for the case of walks: First, the concept of edit distances is
not natural for walks. When applying an edit operation that is reasonable for strings or sequences,
on a sequence representing a walk, this might yield a sequence that is no longer a possible walk
in the graph. Second, this type of distance measures is designed for comparing sequences whose
length is large compared to the size of the alphabet from which the letters are taken. This is the
case, for example, for genetic sequences consisting of only four types of letters while containing
thousands of letters. This is different for walks where a walk usually only contains a small subset of
the nodes in the graph. Hence, when comparing twowalks in a graph, they usually only contain few
common nodes for which the order can be taken into account by the LCS similarity. Even worse,
for walks with no common nodes, the similarities introduced so far will yield a value of 0 no matter
what they look like. Our intuition, however, is that two walks that somehow ”run parallel“ through
the graph should be regarded as more similar–even though they do not share any node–than two
walks that are structurally totally different from each other–even though they share a few nodes.
In order to quantify this, the position of the contained nodes in the graph needs to be considered.

5.2.3 A walk as a set of points in metric space

In order to take into account the position of the nodes of a walk within the graph, a natural choice
is to consider the graph distances of the nodes of the walk. We will first introduce several distance
measures for walks that only incorporate the graph distance of the walk nodes between each other,
but not their order in the walks. Thus, a walk is modeled as a set of nodes where each two nodes
have a distance to each other. This can be formulated as a set of points in a metric space: a metric
space is defined as a (X, δ) with a set X and a distance metric on X . In this case, the set of graph
nodes V together with the graph distance d forms a metric space (V, d) (if G is connected and
undirected). A walk can then be understood as a set of points in (V, d) by only considering its
nodes in the walk and their embedding in the graph. For measuring the distance between two sets
of points in a metric space, there exist several distance measures.

The Hausdorff distance

Hausdorff introduced a metric that takes into account the maximal distance between points in
the sets, which is named as Hausdorff distance. More precisely, for each point in the one set, the
distance to its closest point in the other set is computed: the Hausdorffmetric is then themaximum
of these distances. We can easily adapt this measure for the application to walks in a graph and
get the following definition:
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5 Summarizing trajectories of real-world network flows

Table 5.1 Similarity and distance measures for paths, depending on how a path is modeled. The references ei-
ther refer to the authors who introduced the original measure or to authors who applied it in the corresponding
context.

Modeling as Measure References Used for walks as

Set Jaccard Index [Jac12]
s
(N)
nss

s
(N)
ess

Sequence

longest common substring distance [Gus97]

longest common subsequence distance [NW70] s
(N)
lcs

Levenshtein distance [Lev66]

further edit distances [Nav01]

Hausdorff distance [Hau14] δh

matched average distance [Boc15] δ
(N)
mad

Set of points sum of minimum distances [Nii87]

in metric space (Fair) Surjection distance [Odd86]

Link distance [EM97]

Matching distance [RB01]

Fréchet distance [Fré06, AG95]

Sequence of discrete Fréchet distance [EM94] δdF

points in
additive discrete Fréchet distance [EM94]

δ
(N)
adF

metric space δ
(N)
sadF

LCSS distance [VKG02]

Definition 5.4: Hausdorff distance for walks

For two walks P and Q in graph G, their Hausdorff distance is defined as

δh(P, Q) =max{ max
v∈V (P )

d(v, Q), max
w∈V (Q)

d(w, P )} (5.7)

with d(v, P ) =min {d(v, w) ∣w ∈ V (P )}.

The construction with two maximum operators is due to the fact that otherwise the measure would
not be symmetric. Consider Figure 5.5a as an example where the two walks P and Q are shown by
blue (P ) and green (Q) edges. The gray dashed lines are existing edges in the graph. Computing
maxv∈V (P ) d(v, Q) yields a value of 1 because for all nodes of P , the minimal distance to any
node of Q is its distance to node v which is 0 or 1 for all nodes of P . Vice versa, computing
maxw∈V (Q) d(w, P ) yields a value of 4 because the closest node of P to w is v with a distance of 4.

Properties of the Hausdorff distance Although this distance measure is used often, for exam-
ple, to compare trajectories of moving objects (for example [JJS04]) and is actually a distance metric
in the original version, it does have several unwanted properties. First, when applied to walks, it
does not satisfy coincidence anymore (see Figure 5.3). Second, it is obviously very sensitive to out-

118



5.2 Similarity and distance measures for walks in graphs

liers since only the maximal distance is considered. In the case of walks, the term outliers is not
well-suited because walks are restricted by the graph structure. However, taking the maximum
distance between the nodes of two walks, as the Hausdorff measure does, often does not capture
our intuition regarding the distance between two walks. Two walks with a constant distance of k
should be rated differently than two walks that are identical for most of their parts, but contain a
few nodes that have a distance of k. One possibility to improve this behavior is to take the sum of
the corresponding distances instead of the maximal distance. This would allow respecting the ”av-
erage“ distance of the walks instead of their maximal distance. Furthermore, we need to determine
which nodes of P to compare to which nodes in Q.

5.2.4 A generic scheme for distance measures for sets and sequences of
points in a metric space

In general, there are a lot of possibilities for measuring the distance between two sets or sequences
of points in a metric space when the position of the points is considered for the computation.
We can give a generic definition of a distance measure from which several well-known distance
measures can then be derived. We will define this generic measure for sequences of points in a
metric space such that it is also applicable for the next section, where we will consider walks as
sequences. Distance measures derived from the generic distance measure that do not consider the
order of the points in the sequence are thus distance measures for sets of points.

Let A = (a(1), a(2), . . . , a(k)) and B = (b(1), b(2), . . . , b(l)) be sequences of points in a metric
space (V, d), thus a(i), b(j) ∈ V for all i ∈ I(A) and all j ∈ I(B), where we denote I(A) =
{1, . . . , k} and I(B) = {1, . . . , l} as the index set of A and B, respectively. For computing a distance
measure between A and B, we need to determine which point in A is compared to which point in
B. Thus, a mapping relation µ ⊆ I(A)× I(B) is needed that determines which distances between
a point of A and a point of B is used in the measure. If (i, j) ∈ µ, we say that point A(i) is mapped
onto point B(j). Second, for a givenmapping relation µ, we need to determine how these distances
are used in the measure; hence, a cost function for a given mapping relation needs to be defined.
The cost function can, for example, take the maximum distance of all mapped points as in the
Hausdorff distance, or it can take the sum of the distances of all mapped points. Furthermore, it
needs to be determined which of the possible mapping relations is used for computing the distance
measure. We thus define the following generic scheme for distance measures for sequences of
points in a metric space:

Definition 5.5: Generic scheme for distance measures for sequences of points in
metric space

For A = (a(1), a(2), . . . , a(k)) and B = (b(1), b(2), . . . , b(l)) sequences of points in a
metric space (V, d), a generic position-based distance measure for A and B is given by

δ(A, B) = N ⋅ Cµ∈HA,B
{cost(µ)}

with
Mapping relations For a set of specified mapping properties,HA,B denotes the set of all

mapping relations I(A) × I(B) with those properties.
Cost function For a mapping relation µ ∈ H, cost(µ) yields the costs of it for the given

sequences A and B.
Choice of mapping For a given cost function cost and a set of mapping relations HA,B ,

C chooses a µ ∈HA,B with respect to cost(µ). Here, in most cases C is set to min.
Normalization factor N is a normalization factor which can be chosen depending on the

chosen µ and the given sequences A and B.
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5 Summarizing trajectories of real-world network flows

Figure 5.4 Which choices of mapping relations and of which aggregations in the cost function lead to which
distancemeasures. For simplification, constructions tomake themeasures symmetric such as in the Hausdorff
distance are omitted in this categorization.

We can require several properties of a mapping relation µ ⊆ I(A) × I(B).

Definition 5.6: Properties of mapping relations

We say a relation µ is
left-total (lt) if for every i ∈ A, there exists a j ∈ B with (i, j) ∈ µ,
right-total (rt) if for every j ∈ B, there exists a i ∈ A with (i, j) ∈ µ,
left-unique (lu) if for all i, i′ ∈ A and all j ∈ B, it holds that (i, j), (i′, j) ∈ µ ⇒ i = i′

(injective),
right-unique (ru) if for all i ∈ A and all j, j′ ∈ B, it holds that (i, j), (i, j′) ∈ µ ⇒ j = j′

(functional),
order-preserving (op) if for every (i, j), (i′, j′) ∈ µ, it holds that i < i′ ⇔ j ≤ j′ and

j < j′ ⇒ i ≤ i′.

The relevant steps for instantiating a distance measure based on the given generic definition are
thus: select the desired properties of the mapping relation (or select a specific mapping relation),
select a cost function for the mapping relations, select the mapping (where mostly the one with the
minimal costs is taken), and select a normalization factor. Figure 5.4 shows an overview of which
selections lead to which distance measures, which will be introduced in the following.

The matched average distance

If a mapping relation such as the one implicitly contained in the Hausdorff distance is used, i.e, a
left-total, right-unique relation where for each point in A, its closest point in B is mapped to it,
and a cost function is selected that sums up the distances of the mapped points, we get a measure
we call matched average distance [Boc15, BZ16]. In this case, the choice of the mapping is unique
such that C does not need to be specified. For an unnormalized variant, we choose N to be 1; for a
normalized variant, N is set to the length of the longer sequence. Our selection is aimed at assuring
that each node of the longer walk is mapped to a node of the shorter walk.
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5.2 Similarity and distance measures for walks in graphs

Definition 5.7: Matched average distance for walks

For walks P = (p1, . . . , pℓ) and Q = (q1, . . . , qk), we define their matched average dis-
tance as

δmad(P, Q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑ℓ
i=1 d(pi, Q) if ℓ > k

∑k
i=1 d(qi, P ) if ℓ < k

min{∑ℓ
i=1 d(pi, Q),∑k

i=1 d(qi, P )}
(5.8)

and the normalized matched average distance as

δN
mad(P, Q) = δmad(P, Q)

max{∣P ∣, ∣Q∣} + 1
. (5.9)

Note that the order of the nodes in the walks is not taken into account, so this measure is for sets
of points in the metric space (V, d).

Properties of the matched average distance With this mapping relation, it can happen that
there are nodes in the shorter walk that are not taken into account at all, which is not a desired
property. See Figure 5.5a for an example: All nodes of the blue path are mapped onto node v of the
green path while the position of all other nodes of the green path is not used in the computation.
We hence need to require further properties of the mapping relation µ. Furthermore, it is not a
distance metric because it does not satisfy coincidence and the triangle inequality.

Further distance measures for sets of points in metric space

There are several other distance measures for sets of points in a metric space, for example the sur-
jection measure proposed by the philosopher Oddie for comparing theories to each other [Odd86].
This measure is gained when the cost-optimal mapping of all left-total, right-total and right-unique
mapping relations is used in the introduced generic scheme, and the distances of all mapped points
are summed up. Further measures that could be adapted for walks are the fair surjection distance
(where the entries of the mapping relation need to be fairly distributed among all nodes of P and
Q, see [EM97]); a measure called link distance where left-total and right-total mappings are con-
sidered [EM97]; and the matching distance proposed by Ramon and Bruynooghe [RB01].

5.2.5 A walk as a polygonal curve

It seems natural to combine the previous approaches and to define a distance or similarity measure
that incorporates all three kinds of information contained in a walk: its elements, the order of its
elements, and the position of its elements in the graph. A data structure containing all these kinds
of information is a sequence of points in a metric space (in computational geometry, this is called
a polygonal curve or polygonal chain). Polygonal curves are often the result of the discretization
of a continuous curve in a metric space. Informally, a polygonal curve is a sequence of points in a
metric space where two consecutive points are connected by a straight line.

Definition 5.8: Continuous and polygonal curves

A curve is a continuous mapping f ∶ [a, b] → V , where a, b ∈ R and a < b and (V, d) is a
metric space.
A polygonal curve in a metric space (V, d) is a mapping C ∶ [0, k]→ V (where k ∈N), such
that for each i ∈ {0, 1, . . . , k − 1} and λ ∈ [0, 1], it holds that

C(i + λ) = C(i) + λ(C(i + 1) −C(i)).
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5 Summarizing trajectories of real-world network flows

(a) Example where for the
matched average distance, all
nodes of one walk are mapped
onto one node of the other walk.

(b) When walks (indicated by
blue and green edges) are mod-
eled as point sets in metric space,
the corresponding mapping does
not need to respect the order
in which the nodes occur in the
walks. The shown mapping (in-
dicated by gray lines) is a valid
left-total and right-total map-
ping between the walk nodes.
Thus, all nodes of both walks
need to be involved in the map-
ping.

(c) When walks are modeled
as polygonal curves where each
node of the path is a point in the
sequence, variants of the (dis-
crete) Fréchet distance can be
applied to compute the distance
of thewalks [Fré06, EM94]where
the corresponding mapping of
the nodes in the sequences (in-
dicated by gray lines) need to be
left-total, right-total and order-
preserving.

Figure 5.5 Modeling of walks as sets and sequences of points in a metric space and possible resulting distance
measures.

A polygonal curve is hence uniquely determined by the sequence (C(0), C(1), . . . , C(k)).

There exist several distance measures for polygonal curves. A well-known one is the Fréchet dis-
tance [Fré06]. The Fréchet distance was originally proposed by Fréchet in 1906 (who, as a side note,
also introduced the concept of metric spaces) as a distance measure for (continuous) curves in a
metric space.

Definition 5.9: Fréchet distance for (continuous or polygonal) curves

Let f ∶ [a, b]→ V , g ∶ [a′, b′]→ V be curves in a metric space (V, d), their Fréchet distance
is defined as

δF (f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))) (5.10)

where α and β are arbitrary continuous nondecreasing functions from [0, 1] to [a, b] and
to [a′, b′], respectively.

A popular intuitive explanation for the distance measure is as follows: Assume a man walking with
his dog on a leash. The man is following one curve, his dog another one. Their speed can vary,
but they can only move forward and they need to go from the start to the end of their curve. The
Fréchet distance between the two curves is then the minimal length of the leash that is sufficient
to allow both to follow their routes. The man and the dog adapt their speed in such a way that
the necessary length of the leash decreases. Transferring this example to the formal definition, the
parameter t can be understood as time, then f(α(t)) is the position of the man (or the dog) at time
t. The distance between dog and man at time t is thus d(f(α(t)), g(β(t))). The Fréchet distance
then uses the maximal distance between man and dog at any time point (maximizing over all time
points t ∈ [0, 1]) when both keep track of their speed in the optimal way (taking the infimum over
all possible variations of speed α and β). This definition can also be applied to polygonal curves as
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5.2 Similarity and distance measures for walks in graphs

a special case of continuous curves.

The discrete Fréchet distance

For the comparison of walks in graphs, a variant of the Fréchet distance is interesting, which is the
discrete Fréchet distance δdF where only the points C(0), C(1), . . . , C(k) are considered for the
computation, but not the straight lines between these line endpoints. The discrete Fréchet distance
is an approximation of the Fréchet distance and was introduced by Eiter and Mannila [EM94]. For
two polygonal curves A and B, the illustrative example can be adapted as follows: The man and
the dog are replaced by two frogs jumping from one stone (A(i) and B(i)) to another (A(i + 1)
and B(i + 1)) [AAKS14]. As before, the frogs can choose the point of time when they jump to the
next stone, but they need to start at A(0) and B(0), respectively, and reach A(k) and B(l) and
are only allowed to jump to the next stone. The discrete Fréchet distance of A and B is then the
minimal length of the leash connecting the frogs that is sufficient for taking their route. Note that
the Fréchet distance of two polygonal curves and the discrete Fréchet distance of the same two
polygonal curves are not necessarily equal. Eiter and Mannila [EM94] defined the discrete Fréchet
distance for polygonal curves by introducing a mapping relation (they call it coupling) between the
curves which we can adopt to walks in graphs:

Definition 5.10: Discrete Fréchet distance for walks

Given two walks P and Q in a graph G, let GP,Q denote the set of all left-total, right-total
and order-preserving mapping relations between I(P ) and I(Q). For a mapping µ ∈ GP,Q,
its cost is then defined as the length of the longest link

costm(µ) = max
(i,j)∈µ

d(P (i), Q(j))

and the discrete Fréchet distance can then be defined as the cost of the cost-minimal map-
ping:

δdF (P, Q) = min
µ∈GP,Q

costm(µ) (5.11)

The mapping with the minimal costs is called the optimal mapping (and denoted by µ∗).

The discrete Fréchet distance incorporates the order of the contained points as well as their position.
Note that there exist continuous and discrete versions of both: the curves (yielding continuous and
polygonal curves) and the measure (yielding the continuous and the discrete Fréchet distance).
Relevant for this work is the discrete Fréchet distance for polygonal curves. It fulfills all desired
properties, even the triangle inequality [EM97].

Additionally, we will use an additive variant of the discrete Fréchet distance where the cost of a
mapping µ is not defined by its longest link, but by the sum of its links:

Definition 5.11: Additive discrete Fréchet distance for walks

For two walks P and Q in a graph G, let GP,Q denote the set of all left-total, right-total and
order-preserving mapping relations between I(P ) and I(Q). For a mapping µ ∈ GP,Q, its
cost is defined as the sum of the links. The discrete Fréchet distance can then be defined
as the cost of the cost-minimal mapping:

costΣ(µ) = Σ(i,j)∈µd(P (i), Q(i))

With this additive cost function, we define for two walks P and Q, their additive discrete
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Fréchet distance as
δadF (P, Q) =min

µ∈G
costΣ(µ) (5.12)

and their normalizeda additive discrete Fréchet distance as

δN
adF (P, Q) = 1

max ∣P ∣, ∣Q∣ + 1
min

µ∈GP,Q

costΣ(µ). (5.13)

aNote that unweighted and simple graphs are assumed in this chapter.

Properties of the additive discrete Fréchet distance By changing the cost function from
using the longest link to using the sum of the links, the distance measure δadF loses some properties
of distance metrics; in particular, the triangle inequality is not fulfilled anymore, not even for walks
of the same length: Figure 5.6 shows three walks in a graph for which the triangle inequality is
violated:

δadF (P , Q) = 6
δadF (Q, R) = 6
δadF (P , R) = 14

and thus,

δadF (P , Q) + δadF (Q, R) < δadF (P , R)

Figure 5.6b shows the reason why the triangle inequality does not hold: On the left, one of the
cost-optimal mappings between P and Q is shown as well as one of the cost-optimal mappings
between Q and R, on the right, a cost-optimal mapping between P and R is shown. Mapping P
and R directly is more expensive than adding the costs of the single mappings because the cost of
the edges (A, 1) and (5, V ) are only counted once in the single mappings, but are counted three
times in the direct mapping between P and R.

Eiter and Mannila propose an algorithm computing the discrete Fréchet distance with a runtime
of O(kl) with a dynamic programming approach where k and l are the number of points in the
sequence of the polygonal curves, Agarwal et al. [AAKS14] provide an algorithm computing the
discrete Fréchet distance with a subquadratic runtime, with a runtime of O(kl log(log(l))

log(l) ) when
l ≥ k.

A simplified additive discrete Fréchet distance δsadF

We furthermore consider a slightly different variant of δadF that is easier to compute than δadF . We
call this variant simplified additive discrete Fréchet distance δsadF . In this variant, the requirements
for the mapping relation are constrained such that only mapping functions (instead of relations)
are allowed, i.e, the relation is required to be right-unique. Since for the existence of a left-total,
right-total, and right-unique relation between I(P ) and I(Q), it must hold that ∣I(P )∣ ≥ ∣I(Q)∣,
we consider mapping functions from the longer walk to the shorter walk.

Definition 5.12: Simplified discrete additive Fréchet distance for walks

For two walks P and Q in a graph G, let FP,Q denote the set of all left-total, right-total,
right-unique and order-preserving mapping relations between I(P ) and I(Q). For a map-
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(a) Three walks in a graph; black edges are existing edges in the graph.

(b) Left: a cost-optimal mapping (denoted by gray lines) between P and Q, and a cost-optimal mapping
between Q and R (with respect to the cost function costΣ). Right: a cost-optimal mapping between P and R
(the edge labels denote the cost of including the edge in the mapping).

Figure 5.6 An example of three walks for which the triangle inequality for the additive discrete Fréchet
distance δadF and δN

adF fails. It can be seen why the triangle inequality fails here: it is less expensive to add
up the cost of the single mappings than directly map P and Q because when adding the costs of the single
mappings, the cost of the edges (A, 1) and (5, V ) are only counted once while for the mapping between P
and Q, these edges need to be counted three times.

ping µ ∈ FP,Q, its cost is defined as the sum of the links:

costΣ(µ) = Σ(i,j)∈µd(P (i), Q(i))

With this additive cost function, we define for two walks P and Q, their simplified addi-
tive discrete Fréchet distance as

δsadF (P, Q) =
⎧⎪⎪⎨⎪⎪⎩

ming∈FP,Q
costΣ(g) if ∣P ∣ ≥ ∣Q∣

ming∈FQ,P
costΣ(g) otherwise

(5.14)

and their normalized simplified additive discrete Fréchet distance as

δN
sadF (P, Q) = 1

max{∣P ∣, ∣Q∣} + 1
δsadF (P, Q). (5.15)

A simple observation leads to an algorithm computing δsadF which has the same scheme as the
algorithm proposed by Eiter and Mannila for the discrete Fréchet distance [EM94]. The algorithm
(Algorithm A.2) and a proof of correctness are provided in the Appendix in Section A.3.
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5.3 Clustering of trajectories

The previous sections introduced a variety of similarity measures and distance measures for walks
in a graph. We introduced these measures with the aim of using them for clustering empirically
observed walks into meaningful groups. Thus, the introduced measures were tested in order to
determine whether they are suited for finding meaningful groups of walks in a graph to enable
answering the following question:

Which of the introduced similarity and distance measures is best suited for finding mean-
ingful clusterings of trajectories in a graph?

For this purpose, a dataset with a ground truth of meaningful groups is needed so that the qual-
ity of the clustering computed by the distance and similarity measures can be evaluated by the
correct clustering given by the ground truth. We used a dataset containing state spaces of a single-
player board game and attempts of human players to solve the game which are walks through the
state space. For each pair of walks in the same state space, all distance and similarity measures
introduced in the previous sections of this chapter were computed. Then, a standard clustering
procedure was applied to each distance and similarity measure. The advantage of this dataset is
the availability of a very simple ground truth: A clustering based on a similarity or distance mea-
sure should at least be able to distinguish solving and non-solving attempts. We thus evaluated the
quality of the computed clusters according to this ground truth.

5.3.1 Clustering procedures

In general, the task of clustering is as follows: Given a set of elements S = {s1, s2, . . . , sm}, find
a grouping of the elements Γ = {γ1, γ2, . . . , γl} (also called clustering) where γi ⊆ S for all i ∈
{1, . . . , l} and ⋃γi∈Γ γi = S. A clustering is non-overlapping (also sometimes called crisp) if the
single clusters of Γ are disjoint, i.e., γi∩γj = ∅ for all i ≠ j. Then, the grouping Γ is also a partition.
If elements of S are allowed to be in more than one γi ∈ Γ, the clustering is called overlapping (or
sometimes fuzzy).

There are many approaches for finding such clusterings. They all have in common that they are
given a set of elements and return a grouping of these. Since in this work, we aim at evaluating
similarity and distance measures, relevant clustering approaches are those based on the distance
or similarity between the elements of S. There also exist other approaches, for example based
on features computed for each element. Clustering approaches based on similarity or distance
measures require a distance or similarity measure defined on S × S and are designed to find a
clustering such that elements that are closer (or more similar) to each other belong to the same
cluster while elements that are less similar to each other belong to different classes.

Probably the best-known classes of distance-based methods are hierarchical and centroid-based
clustering approaches. We will use a hierarchical approach, which we will explain briefly in the
following.

Hierarchical clustering approaches The idea of hierarchical clustering approaches is that a tree
of the elements is built: Each element is a leaf of the tree and “cutting the tree” at a certain height
yields a clustering of elements. Cutting the tree disconnects the tree and the resulting components
represent the computed clusters.

For the computation of the tree (also called a dendrogram), approaches proceed either in an ag-
glomerative or in a divisive way. In divisive approaches, the tree is built top-down, i.e., starting
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from the root where all elements are in one cluster, and iteratively dividing the existing clusters
into smaller ones. In agglomerative approaches, the tree is built bottom-up, thus, in the beginning,
each element is in its own cluster (contained in the tree leaves), which are merged into larger clus-
ters (subtrees) step by step. Thus, each step of the procedure (and hence, each level of the tree)
represents a valid grouping of the elements. When the tree is built, it needs to be decided which of
the possible clusterings is used as the final clustering.

Taking an agglomerative approach as an example, it proceeds as follows:

• Given: a set of elements S = {s1, . . . , sm}, a distance measure2 δ ∶ S × S, and a distance
measure D for clusters (explained below).

• As initialization, each element s ∈ S is assigned to its own cluster.
• In each step, the distance D between each pair of clusters is computed (as explained below),

and the two clusters with the smallest distance aremerged. This is repeated until all elements
are contained in the same cluster.

For measuring the distance of two clusters γ1, γ2 ⊆ S, there are several measures. The best-known
ones are:

Single linkage For two clusters γ1 and γ2, their distance is computed by considering the elements
of γ1 and γ2 that are closest to each other with respect to the distance measure. Thus, we
get

Dsl(γ1, γ2) = min
siγ1,sj∈γ2

d(si, sj)

Complete linkage The distance of two clusters is based on the elements of γ1 and γ2 that are
furthest apart with respect to the distance measure d and thus,

Dcl(γ1, γ2) = max
si∈γ1,sj∈γ2

d(si, sj)

Average linkage (UPGMA) Here, the distance of two clusters is based on the average distance
between the elements of γ1 and the elements of γ2:

Dav(γ1, γ2) =
1

∣γ1∣ ⋅ ∣γ2∣
∑

si∈γ1

∑
sj∈γ2

d(si, sj)

Hierarchical clustering approaches have the advantage that the final number of clusters does not
need to be known in advance. Furthermore, the structure of the built tree can give insights about
the structure of the data. On the other hand, in order to get a clustering, it needs to be determined
which clustering to choose. A further property of hierarchical clustering procedures which is an
advantage and a drawback at the same time, is the fact that elements do not change their cluster
affiliation during the clustering procedure: Elements placed into the same cluster at some step of
the procedure will stay in the same cluster. There are cases where it might be beneficial to reassign
elements to clusters in a later stage of the procedure; however, this is not possible in hierarchical
clustering approaches. At the same time, this property is also an advantage of the approach: Since
the decision about an element’s cluster affiliation is irreversible, the number of possibilities that
need to be considered is reduced significantly. This has an impact on the computational complexity
of the procedure.

5.3.2 Dataset used

As a dataset for evaluating the introduced similarity and distance measures for walks in graphs,
we used a dataset containing twenty different configurations of the board game Rush Hour as

2The procedure can be easily adapted when a similarity measure instead of a distance measure is given
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5 Summarizing trajectories of real-world network flows

(a) Rush Hour con-
figuration.

(b) The state space corresponding to the shown configuration. The node
representing the start configuration is colored red, the nodes representing
goal configurations are green.

Figure 5.7 A Rush Hour game configuration and its resulting state space. The goal is to arrange the cars in
such a way that the red car can leave through the exit on the right side.

described in Chapter 3. Unlike the data used in Chapter 3, in this chapter, the state spaces and the
logs of twenty game configurations instead of only three are used; furthermore, here, all solution
attempts–not only the successful ones–are included in the analysis.

Thus, a set of twenty game configurations with almost 14000 walks in total was used as the eval-
uation dataset, of which roughly 6000 walks were solving walks. Table 5.2 shows for each of the
selected games the size and order of its state space as well as how many solution attempts were
available for it. For a game configuration c, let Gc = (Vc, Ec) denote the corresponding state space,
and Pc denote the set of available walks in Gc.

5.3.3 Clustering procedure

We performed the following procedure (see also Figure 5.8):

• For each starting configuration c, and each pair of walks in Pc, all distance and similarity
measures described in Section 5.2 were computed (normalized and unnormalized). This yields
a matrix of size ∣Pc∣ × ∣Pc∣ for each configuration and each measure.

• The unnormalized measure values were scaled to the interval [0, 1] using the following trans-
formation: Let A denote the matrix containing the measure values where aij is an entry of
A, then all entries are substituted by

a′ij =
aij −mink,lakl

maxk,lakl −mink,lakl

for all i, j This yields a matrix containing values between 0 and 1.
• The similarity measures were then converted to distance measures by inverting their scale:

If A again denotes the matrix with the similarity measures (from the interval [0, 1] due to
normalization or the previous scaling), all entries of A are substituted by

a′ij = 1 − aij

for all i, j. Thus, all matrices contain values between 0 and 1 where 0 means high similari-
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5.3 Clustering of trajectories

Table 5.2 Overview of the dataset used. For each configuration, the size of the associated problem space is
shown (∣V ∣ and ∣E∣ denote the number of nodes and edges of the problem space, ∣V P ∣ denotes the number of
nodes occurring in at least one of the walks, % is the percentage of nodes used). Optimal denotes the length
of the optimal solution path. The remaining columns contain information on the number of solution attempts
contained in the dataset for each configuration and the number of solving and non-solving attempts.

State spaces Number of walks
∣V ∣ ∣V P ∣ % ∣E∣ optimal total solving non-solving

Game 19 1169 153 13.01 8620 31 662 213 449
Game 64 2952 354 12.00 21017 5 2934 2592 342
Game 121 4405 263 5.97 33302 47 270 39 231
Game 202 4635 171 3.69 38176 41 359 89 270
Game 246 3003 323 10.76 22418 33 552 158 394
Game 260 3095 203 6.56 24919 48 247 54 193
Game 326 3493 175 5.01 27529 50 290 48 242
Game 357 4426 99 2.24 37649 42 205 58 147
Game 393 4533 244 5.38 30587 49 175 53 122
Game 441 4533 238 5.25 30587 49 178 59 119
Game 578 2853 257 9.01 24732 31 904 230 674
Game 579 4573 189 4.13 35232 30 511 150 361
Game 674 6090 128 2.10 53537 44 306 90 216
Game 692 887 126 14.21 5226 46 404 89 315
Game 722 2241 144 6.43 14517 48 156 47 109
Game 723 830 181 21.81 7978 13 2704 1472 1232
Game 765 1327 182 13.72 10143 30 462 109 353
Game 820 7235 204 2.82 63551 41 212 44 168
Game 841 1050 128 12.19 5957 45 203 65 138
Game 906 864 226 26.16 6934 24 2013 520 1493

ty/small distance and 1 means low similarity/large distance.
• Each matrix was input into a hierarchical clustering procedure with complete linkage. Using

a hierarchical clustering procedure allows considering the complete clustering procedure be-
tween 1 big cluster containing all walks and ∣Pc∣ clusters containing one walk each. This is
convenient since it was not clear what the “correct” number of clusters was for this dataset.
We used the function hclust from the standard R library with the option of complete linkage
(other linkage options were tested, but the results are quantitatively similar). This yielded a
clustering object containing the cluster association of each walk in each step of the agglom-
erative hierarchical clustering procedure, for each game and for each distance and similarity
measure.

• For a comparison of the quality of the clustering results (how we measured the quality of the
clusterings will be explained below), we used two baseline clusterings: As an upper bound,
we used a ground-truth-based distance measure which is 0 if two walks are both solving
or both non-solving, and 1 otherwise. A matrix containing these values for each game was
also input into the clustering procedure. As a lower bound, for each game c, 500 matrices
of size ∣Pc∣ × ∣Pc∣ are filled with random numbers, drawn uniformly at random from the
interval [0, 1]. Each of those random matrices was input into the clustering procedure, and
the minimum, maximum and average quality of the 500 clustering results is computed.

5.3.4 Evaluating the quality of the clusterings
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5 Summarizing trajectories of real-world network flows

20 game configurations: state space Gc and set of walks Pc

For each game configuration c

Compute all dis-
tance and similarity
measures on Pc × Pc

Transform distance
and similar-
ity matrices

Compute matrix with
ground-truth-based
similarity measure

Fill 500 matrices
of size ∣Pc∣ × ∣Pc∣

with random values

Hierarchical
clustering based

on matrices

Evaluate quality
of computed
clustering.

Figure 5.8 Procedure for evaluating the similarity and distance measures introduced in Section 5.2.

As a ground truth for the described dataset, the property of walks being solving or non-solving was
used. The underlying assumption is that a similarity or distance measure should at least be able
to distinguish between these types of walks. It is clear that this is not a perfect ground truth: Two
solving walks might be very different, and two almost identical walks where one ends in a goal
configuration and the other ends one step before (and is thus non-solving) should be considered as
similar. Nevertheless, we assumed that the majority of the walks do not show these extreme cases,
and thus, a solving and a non-solving walk should be structurally different. Furthermore, since
the complete hierarchical clustering procedure was considered, this accounted for the possibility
of several clusters of solving or non-solving walks.

For a clustering of a set of walks, we considered the purity of the clusters regarding the property of
being solving or non-solving. For a walk p ∈ Pc, let q(p) ∈ {0, 1} denote this binary attribute where
q(p) = 1 if p is solving, and q(p) = 0 if p is non-solving. For a given clustering Γ = (γ1, . . . , γk) of
Pc, a cluster γ ∈ Γ is called pure if all walks in γ are either solving or non-solving. We could use
the number of pure clusters as an evaluation criterion; however, requiring that all clusters should
be pure is a very strict criterion. This is why we consider the purity of the clusters instead which
tells how many of the walks contained in a cluster have the same property [MRS08]:

Definition 5.13: Purity of a cluster

Thus, for a cluster γ ∈ Γ, we define its purity as

purity(γ) = 1
∣γ∣

max
⎧⎪⎪⎨⎪⎪⎩
∑
p∈γ

q(p), ∣γ∣ −∑
p∈γ

q(p)
⎫⎪⎪⎬⎪⎪⎭

,

i.e., the maximum of the two fractions of walks in γ which are solving or non-solving.

Note that purity(γ) ≥ 0.5 always holds. For a clustering Γ = (γ1, . . . , γk), we consider two ways
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5.3 Clustering of trajectories

of aggregating the purities of the single clusters. The unweighted average purity takes the mean
purity of the single clusters:

Definition 5.14: Unweighted average purity of a clustering

For a clustering Γ = (γ1, . . . , γk) of Pc, the unweighted average purity is defined as

purity(Γ) = 1
∣Γ∣

k

∑
i=1

purity(γi)

An unweighted average purity of a clustering has the effect that it is higher if Γ contains many
small clusters, or even singletons, i.e., clusters containing only one element, because each singleton
cluster contributes a value of 1 to the unweighted average purity. This is, however, not a good
behavior of a quality measure for a clustering. We therefore consider a weighted average purity
where the purity of each cluster of Γ is included proportionally to its size.

Definition 5.15: Weighted average purity

For a clustering Γ = (γ1, . . . , γk) of Pc, the weighted average purity is defined as

purityw(Γ) =
1
∣Pc∣

k

∑
i=1
∣γi∣ ⋅ purity(γi)

= 1
∣Pc∣

k

∑
i=1

max ∑
p∈γi

q(p), ∣γi∣ − ∑
p∈γi

q(p)

Note that theweighted and unweighted average purity does not necessarily increases when clusters
are split up. A good clustering procedure should do that, but there exist sequences of clusterings
such that a clustering with a smaller number of clusters has lower (or equal) average purity as a
clustering with a higher number of clusters. Figure 5.9a shows such a case.

The unweighted and weighted average purity is a quality measure for a given clustering Γ. In our
procedure, we considered the complete hierarchical clustering procedure which gives a sequence of
clusterings. In order to compare the quality of one clustering sequence to that of another one, we
use the following idea: A good sequence of clusterings should reach high (weighted or unweighted)
average purity with a small number of clusters and increase its average purity with an increasing
number of clusters. In order to evaluate the quality of a sequence of clusterings, we adapted the
idea of computing the area under the curve for the (weighted or unweighted) average purity line
plotted against the number of clusters in the clustering (see Figure 5.10). In order to account for
the fact that the walks of different game configurations have different ratios of solving to non-
solving walks, we considered the area between the average purity line and the horizontal line with
this ratio (the dashed line in Figure 5.10). Let AUC denote the size of this area (the red area in
Figure 5.10). Let q(Pc) denote the maximum of the ratio of solving walks to all walks and the ratio
of non-solving walks to all walks. A perfect clustering sequence has an average purity of q(Pc) for
the clustering with one cluster, and an average purity of 1 for all other clusterings in the sequence.
We therefore normalized AUC by the size of the area between the purity of a perfect clustering
sequence and the q-line (the gray area in Figure 5.10) and got the Relative AUC.
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Γ1 = (

Γ2 = (

, , , , , , )

)

(a) Example for the case where merging the clusters will yield a higher unweighted average purity and an
equal weighted purity: Clustering Γ1 yields an unweighted average purity of purity(Γ1) = 1

7(6 ⋅ 0.5+ 1.0) ≈
0.57 while merging all clusters of Γ1 yields the new clustering Γ2 with an unweighted average purity of
purity(Γ2) = 20

26 ≈ 0.77. Here, the weighted average purity is equal for Γ1 and Γ2.

Γ = (

purity(γi):

purity(Γ) =

purityw(Γ) =

, , , , )

0.5 1.0 0.75 1.0 0.8

1
5 ⋅ (0.5 + 1 + 0.75 + 1 + 0.8) = 0.81

1
21 ⋅ (2 + 1 + 3 + 2 + 8) ≈ 0.76

(b) Example for computing the unweighted and weighted average purity.

Figure 5.9 Illustrating the introduced measures weighted and unweighted average purity of a clustering.
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Figure 5.10 Example for computing the relative AUC: The average purity of a sequence of clusterings is
plotted against the number of clusters. The relevant area AUC is the area between the purity line and the
dashed line which is the maximum of the fractions of solving or non-solving walks in Pc. In order to compute
the relative AUC, the size of the red area is normalized by the size of the gray area.
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5.3.5 Clustering results

This section presents the results of the clustering procedure, as described in the previous para-
graphs.

How does the average purity evolve in the hierarchical clustering procedure?

Figure 5.11 shows the results for three example game configurations: For each game configuration
(and its available game logs) and each similarity and distance measure, the hierarchical clustering
procedure was performed. For each intermediate clustering in the clustering procedure, its un-
weighted and weighted average purity was computed. Figure 5.11 shows the average purity for
each number of clusters. For the clusterings from random matrices, the average purity was com-
puted for each clustering; then, the average, minimum andmaximum of the average purity for each
number of clusters was computed over the N = 500 iterations. In Figure 5.11, the mean value of
the (weighted or unweighted) average purity of the random clustering is shown by a line, while the
minimum and maximum are indicated by a gray area.

It is obvious that any clustering will reach an average purity of 100 % at some point of the clustering
procedure, the latest when each element is in its own cluster. A good clustering, however, reaches
a high average purity value with a small number of clusters.

It can be seen that the ground-truth-based clustering reached a (weighted and unweighted) average
purity of 100 % with two clusters. Since existing clusters were not mixed during the procedure, but
only merged, the purity value of 100 % was kept during the whole clustering procedure. For the
clustering based on random values, it can be seen that the (weighted and unweighted) average
purity increased approximately linearly with increasing numbers of clusters.

With these two baselines–the ground-truth-based clustering and the random clustering–we can
evaluate the average purity lines of the clusterings based on the introduced similarity and dis-
tance measures. For almost all measures, the corresponding average purity lines are between the
baselines. There are three measures–unnormalized node set similarity, unnormalized LCS simi-
larity, and unnormalized edge set similarity–for which the clusterings have a considerably worse
weighted average purity than the random clustering. Their purity values are very close to q(Pc)
for the greatest part of the procedure, until they increase from a certain number of clusters on and
reach 100 % with the maximal number of clusters. When comparing the unweighted average pu-
rity lines of these three measures, it can be seen that they have a local minimum at the same point
where the weighted average purity starts to increase. This is due to the fact that the hierarchical
clustering procedure for these three measures produces clusterings with a high number of single-
ton clusters, i.e., clusters with only one element. The increasing number of singletons, each with a
purity of 100 %, leads to an increase of the unweighted average purity (as can be seen in Figure 5.11
on the left), but not to an increase of the weighted average purity. Then the effect described in Fig-
ure 5.9a occurs: Splitting up clusters does not increase the unweighted average purity, but leads to
a decrease. This does not affect the weighted average purity. At some point, however, the clusters
need to be split up further with an increasing number of clusters which leads to an increase of both
weighted and unweighted average purity. This behavior was observed not only for the selected
three configurations, but also for almost all other configurations.

However, such a behavior was only noted for the purely set- and order-based measures. The clus-
terings based on position-based measures show a higher weighted and unweighted average purity
and are located between the average purities of the baseline clusterings. Especially the clusterings
based on the three normalized variants of the measures incorporating all three kinds of informa-
tion contained in a walk, i.e., normalized Fréchet distance, normalized additive discrete Fréchet
distance, and normalized simplified additive discrete Fréchet distance, show an average purity that
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Figure 5.11 Unweighted average purity (left column) and weighted average purity (right column) of the
clustering results for some example configurations, i.e., games 202, 441, and 578. The plots show the average
purity during the complete hierarchical clustering procedure: The x-axis shows the number of clusters in the
corresponding clustering, the y-axis its average purity. The horizontal gray dashed line indicates the q(Pc),
i.e., the fraction of solving or non-solving walks for the corresponding game configuration. The gray shaded
areas show the minimal and maximal average purity over all N = 500 simulations of random clustering.
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is very close to the ground-truth-based clustering, and considerably better than the random clus-
tering. Interestingly, for almost all measures, the normalized variants perform considerably better
than the unnormalized variants. Even the normalized variants of the three measures with an av-
erage purity smaller than that for random clustering, node set similarity, edge set similarity, and
LCS similarity, yielded clusterings with a weighted average purity above 90 % with a reasonably
small number of clusters for the shown game configurations. For all three shown configurations
(and also for almost all other configurations), the clustering based on the unnormalized matched
average distance is constantly and considerably lower than for the other measures, but higher than
for random clustering.

Since it is desirable to achieve a high average purity with a small number of clusters, we con-
sidered the weighted average purity for a fixed (small) number of clusters and compared it for
the different similarity and distance measures. Table 5.3 shows these numbers for x clusters with
x ∈ {2, 5, 10, 20} for three example game configurations. For each game and each x, the highest
purity value is highlighted in the table. It can be seen that for such a small number of clusters,
the distance measures incorporating a walk’s elements, their order and their position in the graph,
clearly yielded better clustering results than the measures incorporating only one of these features
of a walk. When considering the results of all game configurations of the dataset and the clustering
in terms of which measure yielded the highest weighted purity with only two clusters, we found
that in all configurations where one measure clearly yielded a higher average purity, it was either
the discrete Fréchet distance δdF (in five cases), the simplified additive discrete Fréchet distance
δsadF (also in five cases), or the discrete additive Fréchet distance δadF or Hausdorff distance (in
three cases each).

Relative AUC of average purity

In the previous paragraphs, the average purity of the clustering of single game configurations was
described. In order to show that these findings are not just artifacts of single games, but are valid
for the complete dataset, we computed the relative AUC of the average purity for each clustering,
as described in Section 5.3.4, i.e., the area under the purity line normalized by the area under the
“perfect” purity line. Figure 5.12 shows the relative AUC for each similarity and distance measure,
aggregated over all game configurations of the dataset. It can be seen that the findings are similar to
those for the single game configurations when aggregating over the data of all game configurations:

• The three distance measures incorporating the elements of a walk, their order and their po-
sition in the graph, yielded clusterings for which the relative AUC is close to the “perfect”
clustering. The unnormalized variants of these three measures still had satisfactory results,
but these were considerably worse than for the normalized variants. Furthermore, there is
one game for which these three measures did not yield a good clustering result.

• The unnormalized variants of node set similarity, edge set similarity, and LCS similarity
yielded clusterings with an aggregated relative AUC smaller than that for random clustering.
Their normalized variants, though, performed considerably better.

• The relative AUC of the unnormalized matched average distance was considerably smaller
than that for most other measures, but still better than the relative AUC of random clustering.

Does the clustering simply distinguish long and short walks?

In order to be a solving walk, a walk needs to have a minimum length, i.e, the length of the optimal
solution. Non-solving walks do not have this length requirement. It is therefore possible that the
clustering procedure only distinguishes between longer walks and shorter walks. Figure 5.13 shows
the distribution of walk lengths in the single clusters for one specific game, when the clusteringwith
two clusters is considered. For each distance and similarity, the lengths of the walks contained in
cluster 1 and cluster 2 are shown.
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5 Summarizing trajectories of real-world network flows

Table 5.3 Weighted average purities of the clusterings for each of the introduced distance and similarity mea-
sures for a fixed number of clusters and a few selected game configurations. For each measure, the quality of
the clusterings resulting from the unnormalized and the normalized distance/similarity measure are shown.
px for x ∈ {2, 5, 10, 20} denotes the weighted average purity when choosing the clustering with x clusters.
q(Pc) denotes the fraction of solving or non-solving walks of all walks for the configuration. For each config-
uration and each x ∈ {2, 5, 10, 20}, the highest px for a similarity or distance measure is highlighted in green.
The values of the ground-truth-based clusterings are not highlighted although they are always the highest.

Normalized Unnormalized
Game Measure q(Pc) p2 p5 p10 p20 p2 p5 p10 p20

Game 19 δsadF 0.68 0.84 0.85 0.85 0.92 0.83 0.83 0.83 0.84
Game 19 δdF 0.68 0.84 0.90 0.91 0.96 0.85 0.86 0.89 0.89
Game 19 δadF 0.68 0.84 0.90 0.91 0.96 0.84 0.84 0.84 0.85
Game 19 sess 0.68 0.68 0.68 0.68 0.79 0.68 0.68 0.69 0.69
Game 19 δh 0.68 0.84 0.84 0.88 0.91
Game 19 slcs 0.68 0.84 0.84 0.84 0.84 0.68 0.68 0.68 0.68
Game 19 δmad 0.68 0.82 0.84 0.85 0.89 0.68 0.75 0.81 0.81
Game 19 snss 0.68 0.74 0.79 0.79 0.84 0.68 0.68 0.76 0.76
Game 19 random 0.68 0.68 0.68 0.68 0.68
Game 19 ground truth 0.68 1.00 1.00 1.00 1.00

Game 357 δsadF 0.72 0.86 0.95 0.95 0.98 0.87 0.89 0.89 0.90
Game 357 δdF 0.72 0.94 0.99 1.00 1.00 0.96 0.96 0.97 0.97
Game 357 δadF 0.72 0.94 0.99 1.00 1.00 0.72 0.73 0.86 0.89
Game 357 sess 0.72 0.72 0.72 0.83 0.89 0.72 0.72 0.72 0.72
Game 357 δh 0.72 0.82 0.82 0.95 0.96
Game 357 slcs 0.72 0.76 0.80 0.86 0.89 0.72 0.72 0.72 0.72
Game 357 δmad 0.72 0.84 0.85 0.90 0.90 0.76 0.79 0.80 0.81
Game 357 snss 0.72 0.72 0.85 0.85 0.86 0.72 0.72 0.72 0.72
Game 357 random 0.72 0.72 0.72 0.72 0.73
Game 357 ground truth 0.72 1.00 1.00 1.00 1.00

Game 723 δsadF 0.54 0.99 0.99 0.99 0.99 0.54 0.62 0.66 0.89
Game 723 δdF 0.54 1.00 1.00 1.00 1.00 0.93 0.96 0.97 0.97
Game 723 δadF 0.54 1.00 1.00 1.00 1.00 0.54 0.54 0.56 0.65
Game 723 sess 0.54 0.55 0.55 0.59 0.62 0.54 0.54 0.55 0.55
Game 723 δh 0.54 0.54 0.88 0.91 0.92
Game 723 slcs 0.54 0.54 0.71 0.84 0.87 0.55 0.55 0.55 0.56
Game 723 δmad 0.54 0.88 0.95 0.95 0.95 0.54 0.84 0.84 0.84
Game 723 snss 0.54 0.62 0.86 0.90 0.94 0.55 0.55 0.55 0.57
Game 723 random 0.54 0.54 0.54 0.55 0.55
Game 723 ground truth 0.54 1.00 1.00 1.00 1.00
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Figure 5.12 Relative AUC of the weighted average purity (top panel) and the unweighted average purity
(bottom panel) for all paths of all configurations.
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Figure 5.13 For each similarity and distance measure, the clustering with two clusters was selected, and the
distribution of walk length within each cluster (clusters 1 and 2) is shown, here for game 723. The vertical line
shows the length of the optimal solution for the game. The purity values of the single clusters are shown in
the plots. The fraction of solving walks is 0.54 for this game.

The following observations can be made for this game configuration:

• Supporting the previous results, only the clusterings based on the measures δN
mad, δ

N
sadF , δN

dF ,
δdF , and δN

adF (and ground truth based clustering) yielded clusters with approximately the
same size. The clusterings based on the remaining similarity and distance measures yielded
one clustering with one very small cluster and another containing almost all walks of the
dataset.

• Although it is true that a solving walk needs to have a minimum length, it is neither true that
non-solving walks are generally shorter than solving walks, nor that the clustering on any
of the measures yields a separation of the walks into longer and shorter walks. There are,
however, a few game configurations and measures for which the corresponding clustering
with two clusters rather separates longer and shorter walks. Figure 5.14 shows examples of
these cases. However, it can be seen that the separation by length does not necessarily yield
clusters with higher purity.

We therefore repeated the above-described clustering procedure with the same dataset, but only
including sufficiently long walks, i.e., walks at least as long as the optimal solution. Thus, for each

138



5.4 Limitations and summary

purity: 0.7 purity: 1

1 2

0 100 200 300 0 100 200 300

0

20

40

60

Length of walks

F
re

qu
en

cy

(a) Game 692, δh.

purity: 0.72 purity: 1

1 2

0 100 200 300 0 100 200 300

0

20

40

60

Length of walks

F
re

qu
en

cy

(b) Game 692, δN
adF .

purity: 0.68 purity: 1

1 2

0 100 200 300 0 100 200 300

0

20

40

60

Length of walks

F
re

qu
en

cy

(c) Game 692, δN
mad.

purity: 0.56 purity: 0.87

1 2

0 100 200 300 400 0 100 200 300 400

0

10

20

Length of walks

F
re

qu
en

cy

(d) Game 357, sN
lcs.

Figure 5.14 Examples of games and clusterings in which (approximately) shorter and longer walks are sepa-
rated into the two clusters.

configuration c and the corresponding set Pc, the matrices containing the distance and similarity
measures, the ground-truth-based values, and the random numbers, were reduced by removing all
rows and columns corresponding to walks shorter than the optimal solution. These reduced matri-
ces were then used as input for the hierarchical clustering procedure as before, and the quality of the
resulting clusterings was evaluated by computing their average purity and the Relative AUC of the
average purity. Figure 5.15 shows the resulting Relative AUCs aggregated over all configurations. It
can be observed that those measures that yielded a high Relative AUC when considering all walks,
also yielded a consistently high Relative AUC when only sufficiently long walks were considered:
The three normalized Fréchet-based distance measures still yielded a Relative AUC close to 1 on
average. Their unnormalized variants performed slightly worse. On the other hand, the unnormal-
ized variants of node set similarity, edge set similarity, and LCS similarity, still yielded a Relative
AUC worse than random clustering, but slightly better than for the clustering containing all walks.
In general, however, the results for the clustering with all walks and for the clustering with only
sufficiently long walks show similar characteristics: Clusterings based on the measures δN

dF , δN
adF ,

and δN
sadF are best in distinguishing solving and non-solving walks; in other words, exactly those

measures that incorporate all three kinds of information contained in a walk.

5.4 Limitations and summary

5.4.1 Limitations

This study has several limitations since it rather serves as a proof-of-concept. We see the following
caveats in our work:

Generalizability This study was only performed on one dataset. It is unclear to which extent the
results can be transfered to walks from other domains. It is, however, a challenge to acquire
suitable datasets with a ground truth regarding group affiliation.

Ground truth used The ground truth we used in the performed experiments contains a large
assumption: Similar walks are either both solving or both non-solving, and two walks of
which one is solving and the other is non-solving, cannot be similar. This is certainly not true
in all cases. However, we are convinced that it is a sufficient approximation for the presented
evaluation of the introduced similarity and distance measures.

Finding structurally similar walks Clustering walks as a whole might miss important features
of the walks: Two walks might contain very similar (or even identical) sub-paths while be-
ing different in other parts. Transferred to the game dataset we used, it is plausible that
two players followed the same solution strategy in one phase of the game, but a different
strategy in another phase of the game. This cannot be accounted for measures that take two
complete walks as input. An improvement of the method could work with similar sub-paths:
first splitting the walks into segments, then applying similarity measures to the segments,
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Figure 5.15 Relative AUC of the weighted average purity (top panel) and the unweighted average purity
(bottom panel), if only sufficiently long walks are considered.
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and finally clustering the walks into groups according to their common or similar sub-paths.
It is, however, not clear what would be a meaningful segmentation strategy. An approach
for trajectories aimed at finding and clustering similar sub-trajectories is given by Lee et
al. [LHW07].

5.4.2 Summary

In this chapter, several distance and similarity measures were introduced with the aim of using
them for finding meaningful groups of trajectories. We categorized the introduced measures by
the way the walks are modeled: as sets, as sequences, as sets of points in a metric space, or as
polygonal curves in a metric space. For each modeling approach, we adapted existing similarity
or distance measures for the application on walks. When a walk is understood as a set, set-based
measures such as the Jaccard distance for the node or edge set of the walk can be used. When a
walk is understood as a sequence, sequence-based distance measures such as the LCS similarity
for the sequence of the walk nodes can be used. When a walk is understood as a set of points in a
metric space, matched average distance or other measures that compare the positions of the nodes
of one walk with the position of the nodes of another walk can be used. When all three kinds of
information contained in a walk–its elements, the order of the elements, and the position of the
elements in the graph–are used, a walk can be modeled as a polygonal curve in a metric space since
the set of graph nodes V together with the graph distance forms a metric space (V, d) (if the graph
is connected and undirected). For this type of structure, the discrete Fréchet distance [EM94] can
be adapted. We considered an additive version of the discrete Fréchet distance which does not
consider the maximal distance between the nodes, but the sum of the distances.

In order to evaluate the introduced similarity and distance measures for finding meaningful groups
of trajectories, we clustered a dataset containing human solutions for a board game according to
a standard hierarchical clustering algorithm, using a distance or similarity matrix as input. This
procedure was performed for each introduced similarity and distance matrix as well as for two
baseline measures, one “perfect” measure serving as upper bound for the clustering quality, and
one random measure serving as lower bound for the clustering quality. For the evaluation of the
quality of the resulting clusterings, we made the assumption that a clustering based on a good
similarity or distance measure should at least be able to distinguish between solving and non-
solving walks. We computed the clusters’ purity with respect to the walks’ property of being solving
or non-solving, and consider the average purity of the clustering during the complete hierarchical
clustering procedure.

We found that the measures based on the Fréchet distance, i.e, discrete Fréchet distance, additive
discrete Fréchet distance, or simplified discrete Fréchet distance, yielded clusterings with high av-
erage purity with very few clusters. This happened not only for the walks of single games. When
we aggregated the average purity of the clusterings of all games and the same distance or similar-
ity measure, we found that clusterings based on Fréchet-like measures yielded consistently high
average purity very close to the average purity of the “perfect” clustering.

On the other hand, there are three similarity measures that yielded clusterings with an average
purity smaller than that of random clusterings. These three measures–the unnormalized node set,
edge set and LCS similarity–are not well-suited for making a distinction between solving and non-
solving walks of our dataset.

In order to make sure that the results are not solely based on properties of the walk other than the
similarity and distance measures, we repeated the procedure with the same dataset restricted to
walks at least the same length as the optimal solution. The reasoning behind this is the fact that
solving walks need to have a minimum length while non-solving walks can be arbitrarily short.
However, for this subset of walks, the quality of the clusterings was also found to be similar to the
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5 Summarizing trajectories of real-world network flows

clustering with all walks.

The results imply that similarity or distance measures for walks incorporating all three kinds of
information contained in walks–i.e., its contained elements, the order of the elements, and the
position of the elements in the graph–are suited best to finding groups of similar walks. Especially
those measures that only consider the elements, or only their order, yielded unsatisfactory results
for the dataset we examined.
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Case Study: Analyzing game
trajectories

Chapter 6

Chapter outline

In this chapter, the results of an interdisciplinary project with researchers from the field
of psychology will be presented. In order to answer the research question from psychol-
ogy, an experiment was conducted in which participants attempted to solve a Rush Hour
game twice–one group with an intervention in between, the control group without an in-
tervention in between. Therefore, for each participant, two solution attempts of the same
game instance are available. Common metrics for comparing two solution attempts and
assessing their quality are solution length, solution time, and whether the solution attempt
was successful. While these are valid metrics for a basic evaluation of the experiment data,
they fall short when one wants to understand where and why a solution attempt failed:
For this, more detailed analysis methods are needed. At this point, it is beneficial to con-
sider a participant’s solution as a trajectory in the state space of the game and consider the
performed game moves in detail, particularly those moves that were not optimal. For this
reason, in this chapter, we propose an error category system that is able to classify these
error moves according to the (assumed) motive of the participant. Given a participant’s so-
lution attempt, the error category system automatically labels each error move according
to the assumed reason why the error move occurred. This approach allows answering ques-
tions such as: Which types of errors are persistent through several solution attempts–and
which can be avoided by the participant in a second attempt? When considering in which
situations an error type is actually possible, it can be checked whether there are error types
that occur more often than expected. Besides the error category system, we also propose a
method for identifying similar error moves in different solution attempts. This is not trivial
since two error moves do not need to occur in identical game situations in order to be con-
sidered as conceptually equal. Using the proposed matching procedure for error moves, it
is possible to analyze which factors are essential to enable a participant to avoid an error in
the second solution attempt–and which factors cause a repetition of the same error. While
the presented error category system and the matching procedure for error moves is only
used to answer these questions specifically for the game Rush Hour, we believe that almost
all error categories and the matching procedure can be transferred to other types of tasks
such that the insights and methodological approaches presented in this chapter are also
valuable for other learning contexts.
This chapter is based on [1] and presents work done jointly with Olaf Peters and Susanne
Narciss.

143



6 Case Study: Analyzing game trajectories

6.1 Motivation and background

The background of the described collaboration project is learning psychology, i.e., the issue of what
can help a student to learn (more) effectively. Specifically, the researchers around Susanne Narciss
at the Technical University of Dresden are interested in the effects of formative feedback in the
learning process. Formative feedback is “information communicated to the learner that is intended
to modify his or her thinking or behavior for the purpose of improving learning” [Shu08]. Sources
of formative feedback might be a teacher, a system, another learner, or the learner him- or herself
(internal feedback). Usually, the research focus is on the receiver of the feedback[CM10, SND10].
In this project, however, the focus was on the feedback provider. By revising a solution of another
person (a “peer”) and generating feedback, the learner is required to reflect on the solution, detect
errors and provide suggestions for improving the solution. This might have a positive effect on
the learner’s performance when solving the task him- or herself. The research question of the
collaboration project was therefore: Does generating peer feedback have an effect on one’s own
performance in solving a task? A secondminor research questionwaswhether the peer’s confidence
regarding the correctness of their solution has an impact on the solving performance.

In order to investigate this question, an experiment was designed in which participants were ran-
domly assigned to two groups (for a detailed description of the experimental procedure, see Sec-
tion 6.3). All participants first attempted to solve a task. The participants of the first group were
then asked to generate feedback on another (fictitious) participant’s solution of the same task,
whereas the participants of the second group did not perform this feedback generating process. All
participants then attempted to solve the same task again.

The reason why this collaboration project is of relevance for this thesis is the lack of detailed meth-
ods for analyzing, evaluating the quality, and comparing several solution attempts of a task. For
each participant, two solution attempts of the same task are available and for answering the re-
search question, questions such as the following are of interest: Did the participant improve in the
second solution attempt? Which errors persisted in the second solution attempt? Are there signifi-
cant differences in the performance of the two experimental groups? Can situations be identified in
which participants who generated feedback before the second solution attempt performed better
than participants who did not see a peer’s solution? To avoid an error in the second attempt, is it
necessary to be aware of the error?

The challenge is thus to develop appropriate methods for analyzing such data. An important pre-
requisite for a detailed analysis of the data is an appropriate choice of the task. In problem-solving
research, a distinction is often made between well-defined and ill-defined problems[NS72, And93,
Gre78]. For well-defined problems, the initial situation, the goal situation and all applicable oper-
ators for transforming the situation are known. For ill-defined problems, at least one of these is
not available to the problem solver. For a quantitative evaluation of the quality of a solution, only
well-defined problems are possible as a task for the experiment.

We selected the board game Rush Hour (described in Chapter 5) as a task, mainly for two reasons:

• It is well-defined and sequential, i.e., it cannot be solved within a single step, but requires a
sequence of actions to solve a task. This has two advantages: First, since the goal situation is
clearly defined, each move is either correct or not. This is beneficial for assessing the quality
of a solution. Second, since solving the task requires more than one step, there is a wide
range of different solutions–and not only one correct and one wrong one. If there is only
one correct and one wrong solution, generating peer feedback and investigating its effect is
difficult to impossible.

• Although the task is easy to understand and all elements, rules, and principles are presented
to the learner, there are game configurations of Rush Hour ranging from medium to high dif-
ficulty [RSF11, BZ15]. In order to see an improvement in solving performance, it is necessary
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to choose a task that most students will not solve optimally in the first attempt.

Like any well-defined sequential task, a Rush Hour game configuration induces a state space where
nodes represent board configurations and edges represent legal game moves. A solution is thus a
trajectory from the node representing the start configuration to a node representing a goal state.
For Rush Hour, all moves are reversible which means that the state space can be modeled as an
undirected graph, and, if the initial configuration is solvable, a goal state can be reached from any
node of the state space. This can be different for other types of games where the player can end
up in a “dead end” with a wrong move. Because this cannot happen for Rush Hour, it holds that
in every node of a state space, there exists at least one correct move that decreases the distance to
a goal state. Furthermore, due to the reversibility of the moves, for each move, it holds that it can
increase or decrease the distance to the closest goal state by at most one step. We can therefore
group the moves into three types of moves: correct moves which decrease the distance to a goal
state by 1, wrong moves which increase the distance to a goal state by 1, and unnecessary moves
which neither increase nor decrease the distance to a goal state. We will refer to both, wrong and
unnecessarymoves, as errormoves because a solution containing at least one of thesemoves cannot
have the optimal length anymore. A wrong move is worse than an unnecessary move because it
increases the length of the solution by two as it needs to be corrected by an additional move, while
an unnecessary move only lengthens the solution by one.

When considering several error moves, it becomes obvious that they can occur for different rea-
sons: A participant might, e.g, have a wrong understanding of the task or might make a mistake in
planning the solution strategy; however, an accidental wrong click can also lead to an error move.
Our hypothesis is that there exist conceptually different error moves. For the analysis of human
solution attempts of a Rush Hour game or any other sequential well-defined problem, it is ben-
eficial to detect the different types of conceptual errors: In most experimental research projects
concerned with human problem-solving, human solution attempts of a problem need to be ana-
lyzed. To assess the quality of a solution attempt, simple metrics are applied in most cases, such
as solving success (was the problem instance successfully solved?), solving time (how long did it
take to solve the problem instance?), or solution length (how many steps were needed to solve the
problem instance?). In order to understand the cognitive processes that lead to a specific solution
of a problem, it is necessary to analyze the human solution in more detail. Focusing on the error
moves has great potential since those are the points where “something goes wrong”: Identifying
situations that are prone to errors can for example help to understand the difficulty of problems.
For this purpose, however, an error move should be rated differently in terms of whether it is a
conceptual error or an unintentional error. Therefore, a categorization of error moves is needed
that enables classifying error moves with respect to their (assumed) motive. At a task-independent
level, Norman and Reason categorize error moves into planning failures (mistakes) and execution
failure (slips) [Rea90]: “An error in the intention is called a mistake. An error in carrying out the
intention is called a slip.” [Nor83] However, in order to understand the process of human problem-
solving, a more detailed categorization is needed. More detailed categorizations do exist for specific
tasks: Caramazza et al. [CMVR87] considered types of errors in word-spelling tasks, Rasmussen
categorized human errors in the early days of human-computer interaction [Ras82]; several ap-
proaches consider human errors in patient medication in hospitals [Lea94, ZPJS04], conceptual
errors in learning mathematical concepts [ENSM12], or in performing a proof [ADS12]. There ex-
ist, however, very few approaches for categorizing errors in well-defined sequential problems, such
as the categorization of error moves in a block design puzzle [TS04]. For Rush Hour, to the best of
our knowledge, the present work is the first extensive categorization of error moves. The following
paragraphs will introduce a category system for error moves. While their concrete definition is
phrased for the Rush Hour game, most of them are based on general principles that can also be
applied to other types of well-defined sequential tasks.

The remainder of this chapter is structured as follows: In Section 6.2, we will present the error
category system, then, as a validation of the proposed system, report on its application to a large
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dataset containing more than 31000 human solutions of Rush Hour tasks with a total of more than
190000 error moves to be categorized. Section 6.3 describes the experiment conducted to answer
the research question from the field of psychology regarding whether generating peer feedback
has an effect on a learner’s performance. Section 6.4 presents the application of the error category
system to the experimental data. Here, the value of such a system is shown since it enables a more
detailed analysis of the experimental data. Section 6.5 provided a short summary of the presented
work.

6.2 Error categorization system

We will introduce eleven error categories, with four being rather descriptive and seven being based
on the actual board configuration which we call conceptual error categories.

6.2.1 Descriptive error categories

The following four error categories are called descriptive because they describe the pattern of the
error move. Their definition is independent of the board configuration and to a certain extent
even independent of the actual game since only their pattern in the state space is needed for their
detection.

Generalized Undo Mistake It is never optimal to reverse the effect of a move: A solution con-
taining the moves (v, w) and (w, v) cannot be optimal anymore and at least one of these
two moves is an error move. We thus call an error move (v, w) a Generalized Undo Mistake
if the solution contains both (v, w) and (w, v). If both moves are error moves because they
are both unnecessary moves, they are both categorized as such a mistake. Note that the two
moves do not need to occur consecutively in the solution.

Undo Mistake If a solution contains (v, w) and (w, v) consecutively, the error move is addition-
ally categorized as Undo Mistake.

Two In One Mistake If a solution contains the move sequence (v, w), (w, x) and the state space
contains the edge (v, x), at least one of the two moves is an error move because the effect
of the two moves could have been accomplished by only one move. Thus, we call such an
error move a Two in One Mistake. In the case or Rush Hour, the two moves need to involve
the same car, otherwise the edge (v, x) would not exist. The existence of such an error move
shows that the participant thought that the first move needed to be corrected or adjusted by
a second move.

Equivalence Trap A solution might contain moves that “do not make a difference” because they
do not change the relevant relations of the board configurations. For Rush Hour, the relevant
relations of the board are the blockings of the cars: Which car does, in its current position,
restrain the movement of which other car? If a move is performed that does not change
these blocking relations, the move does not have any effect on the game situation: In both
situations, before and after the move, exactly the same set of moves is possible. We formalize
this observation by an equivalence of board configurations. We say that a car A blocks a car
B in a board configuration if

(i) A and B are both placed horizontally (or both vertically) on the board and are in the
same row (or column) of the board, or

(ii) A is placed horizontally and B is placed vertically on the board, and A occupies cells in
the column in which B is placed, or

(iii) A is placed vertically and B is placed horizontally on the board, and A occupies cells in
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(a) Concept of blocking cars: In the de-
picted game configuration, the red cars are
blocked by the green car.

(b) Equivalence Trap: Moving the blue car
will lead to an Equivalence Trap mistake.

Figure 6.1 Example board configurations illustrating the concept of equivalent game configurations.

the row in which B is placed.

Simply put, if A was not there, B could move further on the board (if all other cars are ig-
nored). Figure 6.1a shows an example: The green car blocks the three red cars. We say that
two game configurations are equivalent if each car blocks exactly the same set of cars in
both configurations. With this concept, we call an error move (v, w) an Equivalence Trap
Mistake if v and w are equivalent. Thus, a move of this type does not have any relevant effect
on the game configuration because all cars are still blocked by the same cars as before. In
Figure 6.1b, moving the blue car yields an error move categorized as Equivalence Trap mis-
take. While this definition of equivalent game configurations is specific for Rush Hour, the
general concept of equivalent situations can also be applied to other games or well-defined
sequential problems, meaning that all descriptive error categories can be easily applied to
any well-defined sequential problem.

6.2.2 Conceptual error categories

While the presence of an error move categorized as one of the descriptive error categories shows
that the participant’s solution is somehow erroneous, this does not allow any conclusion as to why
an error occurred. The following seven error categories are based on the actual game configuration
and presume a motive for the mistake. Three categories are based on spatial features of the board,
four are related to the goal of the game. The underlying general principles of the error categories
are generalizable to other games.

Categories based on spatial features

Most tasks have some visual representation. The following three error categories are based on
spatial features of the visual representation.

Stay Local Mistake When confronted with a complex task containing several interdependencies,
a good heuristic for reducing the complexity of the task is to split it into subproblems and
resolve the subproblems one after the other. For spatial representation, this means that struc-
tures on the board are considered locally and resolved one by one. This is often a successful
strategy, but sometimes it fails. We hypothesize that this heuristic leads to error moves where
the participant considers the same local structure as in the previous move, but a change to a
different local structure would have been necessary for an optimal solution. For Rush Hour,
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Table 6.1 Examples of the introduced conceptual error categories: Correct moves are shown with a green
frame, error moves with a red frame.

Error category Example move Correct alternatives

Stay Local Ð→ Ð→

Relaxed
Car Unit

Ð→ Ð→

Border
Attraction

Early Unblock

Avoid Blocking
The Exit

Early Target
Car Move

Avoid Moving
Target Car
Backwards
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this yields a simple solution heuristic: Check which board cells have been freed by the pre-
vious move, then move another car onto the freed cells. If this heuristic fails, i.e, leads to
an error move, this error move is categorized as Stay Local Mistake. Formally, an error move
m = (v, w) moving car i is called a Stay Local Mistake, if

(i) in configuration w, car i occupies at least on cell that was freed by the move directly
before m, and

(ii) in configuration v, there exists no correct alternative move that also uses one of these
freed cells.

Table 6.1 shows an example of such an error move: The first (correct) move frees a cell in the
bottom row. The depicted error move uses the freed cell by moving the horizontal car in the
bottom row, whereas for a correct alternative move, a different car would have needed to be
moved.

Relaxed Car Unit Mistake Bennati et al. [BBRK14] found in experimental data that the exis-
tence of so-called clusters of cars on a Rush Hour board has an effect on the optimality of
the participants’ solutions. A cluster of cars (or car unit) consists of two cars, either both
horizontally or both vertically, which are placed in directly consecutive rows or columns, and
at least one cell occupied by the first car is adjacent to at least one cell occupied by the other
car. In Figure 6.1b, the blue and the dark brown car form a car unit. Bennati et al. show that
the presence of such a cluster decreases the chances of a participant to find an optimal so-
lution. They explain this finding with Gestalt effects: Humans tend to perceive close objects
as belonging together which is why they are treated similarly. Following this argument, for
the case of Rush Hour, two close cars are perceived as a unit and are moved together–which
might not always be a correct move. Based on this observation, we define a new error cate-
gory called Relaxed Car Unit Mistake1: It means that a participant moves both cars of a car
unit in consecutive moves although only one needed to be moved in this situation. Formally,
an error move m = (v, w) is called a Relaxed Car Unit Mistake if there is another move m′

directly before or after m in the solution, thus m′ = (x, v) or m′ = (w, y), such that

(i) in the configuration before m and m′ and in the configuration after m and m′, there
exists a car unit, and

(ii) m and m′ involve moving the cars of the car unit in the same direction, and
(iii) in the configuration before m and m′, there does not exist any alternative sequence of

two correct moves involving the same two cars.

Thus, moving one car of the car unit (possibly in a correct move) provokes an error move
in order to retain the car unit. Note that the order of the two moves is not relevant for the
categorization of this error type: Whether a correct move is followed by an error move or
vice versa, yields the same categorization. This is in accordance with the underlying idea of
this error type: If the cars are perceived as a unit, it is irrelevant for the participant which of
them is moved first. Table 6.1 shows an example: The two horizontal cars in the top two rows
form a car unit and are moved together. While the second move is correct, the first move is
a wrong move. It would have been correct to only move the lower car of the car unit instead.
While the concept of car units is specifically defined for Rush Hour, the principle of objects
perceived as a unit can also be transferred to other games or tasks for which a similar error
category can then be derived.

Border Attraction Mistake When playing Rush Hour, it feels natural to move a car as far as
possible because such a move is seemingly better than only moving the car by only one or
two cells: It creates the impression of creating more space on the board which appears to be

1The prefix Relaxed indicates that a perfect car unit in which the two cars are perfectly aligned is not necessary. Rather, a
car unit where one cell of overlap is sufficient is used.
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better for the further course of the game. Error moves resulting from applying this heuristic
are called Border Attraction Mistakes: An error move m = (v, w) is categorized as Border
Attraction Mistake if

(i) the moved car is moved as far as possible (constrained by the border of the board or by
another car), and

(ii) there exists a correct alternative move that moves the same car in the same direction,
but less far than m.

In other words, it was the correct choice to move a particular car into this direction, but
moving it that far yields an error move. Table 6.1 shows an example.

Goal-based categories

Any well-defined problem-solving task has a goal to reach. Thus, a simple heuristic for solving a
task is to transform the current task configuration into another configuration that appears more
similar to the goal configuration, whenever possible. This heuristic is so simple that it will fail in
most cases (and is not suited as a stand-alone heuristic since it is not clear which step to take if the
heuristic is not applicable). We still hypothesize that humans will prefer those moves that (seem-
ingly or actually) yield a configuration more similar to the goal configuration, and avoid moves that
(seemingly or actually) yield a configuration less similar to the goal configuration. Errors resulting
from those types of moves will be described in the following and can be twofold: when making a
move that seems to yield a configuration more similar to the goal configuration is not a correct
choice at that point (but might be later in the course of the game), or when avoiding a move that
seems to yield a configuration less similar to the goal situation is necessary at that point in order
to get closer to the goal state.

For Rush Hour, the goal can be formulated in two ways: The target car needs to be moved towards
the exit, or all cells to the right of the target car need to be freed. For each version of phrasing the
goal, we get an “Avoid”-mistake and a “Too Early”-mistake.

Avoid Blocking the Exit Mistake Moving a car onto a cell to the right of the target car and thus
additionally blocking the target car from the exit seems counterintuitive for reaching the goal
of the game and might be avoided. An error move resulting from the avoidance of such move
where it would be necessary is called an Avoid Blocking the Exit Mistake. Formally, an error
move is categorized as Avoid Blocking the Exit Mistake if

(i) neither before nor after the move, the moved car occupies any cell to the right of the
target car in its row, and

(ii) all correct alternative moves require moving a car onto a cell to the right of the target
car (and thus blocking the target car).

Hence, it would have been necessary to block the target car, but this move is avoided and an
error move is made instead. Table 6.1 shows an example.

Early Unblock Mistake The corresponding “Too Early”-mistake involves moving the target car
towards the exit although it is not necessary–even counterproductive–at this point in the
course of the game. Thus, an error move is categorized as Early Unblock Mistake if

(i) the moved car blocks the exit before the move, and
(ii) does not block the exit after the move, and
(iii) no correct alternative move exists in which the same car is moved in the same direction

as in the error move.
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The last requirement ensures that the move shown in Table 6.1 as an example for a Border
Attraction Mistake is not categorized as an Early Unblock Mistake because there exists a
correct alternative that also unblocks the target car.

Avoid Moving Target Car Backwards Mistake Similarly to avoidingmoves that block the exit,
we define an error move as Avoid Moving Target Car Backwards Mistake if the participant
seems to avoid a move that moves the target to the left, i.e., further away from the exit. An
error move m = (v, w) is categorized as Avoid Moving Target Car Backwards Mistake if

(i) it does not move the target car to the left, while
(ii) all correct alternative moves do.

Thus, a correct move in v requires the target car to be moved to the left, but instead an error
move is made.

Early Target Car Move Mistake In the same scheme as the Early Unblock Mistake, an Early
Target Car Move Mistake is present if the target car is moved to the right (towards the exit)
although this is not correct at this point in the course of the game. Thus, an error move is
categorized as Early Target Car Move Mistake if it moves the target car to the right (while no
correct alternative move does so).

The error category system is implemented such that, given the initial game configuration and a
participant’s solution, it is possible to automatically label each error move with the corresponding
categories.

6.2.3 Validation of error category system

In order to validate the proposed error category system, we applied it to the dataset described in
Chapter 3, containing 56 Rush Hour game configurations and students’ solution attempts for these
game configurations. The data was collected by an online learning platform developed by a Czech
university [JP12]. For the validation of the error categories, we excluded unsolved attempts and
attempts that needed three times more steps than the optimal solution. The considered data then
contained a total of more than 31 000 solution attempts for 56 game configurations, with between
13 and 2 319 solutions for a single game. The difficulty of the game configurations varied, with
an optimal solution length range between 3 and 50 moves. In these 31 000 solutions, more than
190 000 error moves were observed. The number of observed error moves varied across the different
game configurations. Figure 6.2 shows for each game configuration the number of observed error
moves per solution attempt. The order of the game configurations on the x-axis is due to the length
of their optimal solution length; thus, easier games (with a shorter optimal solution) are on the left
and harder games are on the right. Not surprisingly, the solutions of the harder games contained
a considerably larger number of error moves, although the variance is very large. The average
number of error moves per solution ranges from 2.1 ± 1.2 error moves for a game configuration
with an optimal solution length of 3 to an average number of 41.3 ± 12.5 for a game configuration
with an optimal solution length of 47.

Although the data was collected in an uncontrolled environment (since the games are browser-
based and publicly available), the dataset is still suited as a benchmark dataset for testing whether
the proposed error category system is a reasonable categorization of common errors in playing
Rush Hour.

All error moves were categorized according to the introduced category system. To validate the
category system, we checked:
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Figure 6.2 Validation of error category system on benchmark dataset: The figure shows the number of
observed error moves for each game configuration. The game configurations on the x-axis are ordered by the
length of their optimal solution: Easier games are on the left, harder games on the right. The numbers in the
gray boxes show the length of the optimal solution.

(i) Do the categories cover the majority of observed errors?
(ii) Do the categories overlap?
(iii) Do any unnecessary categories exist?

Do the categories cover the majority of observed errors? Figure 6.3 shows for the benchmark
dataset which percentage of observed error moves falls into which number of categories. We found
that for 23 % of all error moves, no error category applied, while the remaining 77 % fell into at least
one category. If only the conceptual categories were considered, 40 % of the error moves remained
uncategorized. However, it seems that especially for the easier games, the category system needs
to be refined. If only games with an optimal solution of at least 13 steps were considered, the
percentage of uncategorized moves dropped to 17 % (with all categories) and 33 % (only conceptual
categories)–although far more error moves were observed in these games. Figure 6.4 supports this
observation: For each game, its optimal solution length and its percentage of uncategorized error
moves is shown, separately for all categories, for both the conceptual and the descriptive categories.
It can be seen that the percentage of errors not categorized by any conceptual category is rather
constant for harder games, but for easier games, there is a large variation and the percentage is
higher on average. When the proportion of uncategorized error moves was considered separately
for each of the 56 games (not shown), the proportion ranged from 7 to 52 %; for games with an
optimal solution length of at least 13, the proportion ranged from 7 to 27 %. There was, for example,
one game with more than 1 000 solutions and more than 8 000 observed error moves, of which
only 1 000 moves were uncategorized. Of the categorized error moves of this game, only 700 are
solely characterized by descriptive categories; the rest (more than 7 000) fall into at least one of the
conceptual categories.

Do the categories overlap? Since 83 % of all error moves of the less easy games of the bench-
mark dataset fall into at least one category, the question arises whether there are many error moves
that fall into more than one category. This is more acceptable for the descriptive categories than
for the conceptual ones. Figure 6.3 shows that only 15 % of all error moves fall into more than one
conceptual error category, and only 1 % fall into more than two conceptual categories. We found
that multiple categorizations were mainly due to Stay Local Mistakes: If this error category is ex-
cluded, the percentage of errors categorized into multiple categories drops to only 6 % which is a
reasonably small value.
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(a) Validation of error category system: The plot shows the absolute frequency of error moves categorized
into number of categories; separately for all categories, only for the descriptive categories and only for the
conceptual categories.

in … categories

Games 0 1 2 3 > 3

all 23 % 37 % 27 % 10 % < 3 %
less easy 17 % 38 % 29 % 12 % < 4 %

in … conceptual categories

0 1 2 > 2

all 40 % 44 % 15 % 1 %
less easy 33 % 48 % 17 % 2 %

(b) Percentage of the 194 290 observed error moves in the solutions falling into exactly 0, 1,… categories,
either for all game configurations or for those with an optimal solution length of at least 13 (for which 89 540
error moves were observed).

Figure 6.3 Validation of the introduced error category system, showing how many of the observed error
moves fall into how many categories.
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Figure 6.4 Validation of proposed error category system: The figure shows the percentage of uncategorized
error moves of the benchmark dataset, dependent on the difficulty of the game, i.e, its optimal solution length.
Each point represents one game configuration.
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Table 6.2 Application of the error category system to the benchmark dataset. The tables help to showwhether
there are unnecessary categories in the category system.

Games Category is subset of

All Undo Gen. Undo
Game 266 Stay Local Early Unblock
Game 342 Undo Early Unblock
Game 342 Gen. Undo Early Unblock
Game 566 Stay Local Border Attraction
Game 674 Stay Local Border Attraction

(a) The table shows in which game configurations of the benchmark dataset, a category is a subset of another
one.

Error category not contained in

Border Attraction 13/56 game configurations
Avoid Blocking The Exit 9/56 game configurations
Avoid Moving Target Car Backwards 8/56 game configurations
Early Unblock 3/56 game configurations
Early Target Car Move 1/56 game configurations

(b) The table shows in how many game configurations of the benchmark dataset, error categories do not
occur at all in the solutions.

Are there unnecessary categories? In almost all tasks, error moves of each category occurred.
Only for a few game configurations did not all error categories occur. For example, Border Attrac-
tion Mistakes did not occur in 13 of the 56 game configurations (see Table 6.2b). However, most
categories are contained in the solutions of all or almost all games. Furthermore, except for the
pair Undo and Generalized Undo, there is no pair of categories such that an error move of the first
category is always one of the other category as well. There are, however, a few game configurations
for which this is the case (see Table 6.2a). This involves only the error types Undo, Generalized Undo
and Stay Local which are rather general categories by design.

It can be summarized that the introduced error category system seems to be well suited for catego-
rizing existing error moves in Rush Hour solutions–although the category definitions are strict, and
the variety of different game situations is large. There is, however, still potential for improvement
because about a third of the observed error moves was found not to be covered by any conceptual
category.

In the following, we will use the proposed error category system for a detailed analysis of the data
from the conducted experiment. Therefore, in the next section, we will describe the experimental
setup before presenting the analysis of the experimental data based on the error category system
in Section 6.4.

6.3 Experimental setup

In order to investigate the research question posed by the group of psychologists, an experiment
with 138 participants was conducted at the Department of Psychology at the Technical University
of Dresden.
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Figure 6.5 Design and procedure of the experiment. The different phases were done in the depicted order
from left to right. Each row represents one experimental group.

For each participant, the experiment session lasted approximately 100 minutes and consisted of
six main phases, with a different order of the phases depending on the group (cf. Figure 6.5): All
participants attempted to solve two rather easy exercise game configurations of Rush Hour in order
to get acquainted with the rules of the game. After the exercise phase, all participants attempted
to solve a Rush Hour task of medium difficulty, shown in Table 6.3 (length of optimal solution: 25
moves) and referred to as the experimental level. The solution for the experimental level is referred
to as the initial solution. While there was no limit on time or on the number of moves for the
first exercise task, the second exercise task had to be solved within 10 minutes and 50 moves, the
experimental level within 10 minutes and 60 moves. The participants were allowed to undo their
last move (but only one at a time; reversing the last move through a regular move is clearly always
possible). Moves undone by a participant via the Undo buttonwere not included in the participant’s
solution in order to prevent the inclusion of accidental moves. Rush Hour tasks were solved in a
computer-based experiment environment.

After the first solution attempt, all participants were asked to document the problem-solving strat-
egy they employed in their initial solution attempt and had a phase of generating internal feedback
on their own solution. Participants of the experimental group additionally had a phase of generat-
ing feedback on a (fictitious) peer’s solution before they attempted to solve the experimental level
for a second time (referred to as revised solution). The participants of the control group did not have
this phase of peer feedback generation between the initial and the revised solution. The peer’s so-
lution solved the task, but was not optimal: It contained four wrong moves and four unnecessary
moves which resulted in a total solution length of 37 steps. All error moves fell into at least one
error category; five conceptual and two descriptive errors were contained in the peer draft. The
participants were asked to generate feedback on the peer’s solution guided by the following as-
pects for each section: (i) correctness, i.e., optimality of the section, (ii) location of errors, (iii) kind
of errors and consequences for the remaining solution (while they were not aware of the error cat-
egories introduced in Section 6.2), and (iv) suggestions on how to improve the solution approach.
For the second solution attempt, the participants were, as in the initial attempt, restricted by 60
moves and 10 minutes time. The participants had all the materials and documents from previous
phases at hand while solving the task.

The participants were assigned randomly to one of four conditions in a 2×2 factorial designwith the
following factors: (i) generating peer and internal feedback prior to revision of the task (PF) versus
generating internal feedback prior to revision task (IF), and (ii) high peer response confidence (High
RC) versus low peer response confidence (LowRC). Since the focus of this work is onmethodological
approaches for analyzing and comparing human solution approaches, and the analysis will mainly
focus on the comparison of each participant’s first and second solution attempts, the following
analysis and discussion will either be restricted to two groups (IF and PF) or neglect the groups2.

2The results of statistical analyses testing for group differences to answer the research question from psychology will
appear in a separate publication.
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Table 6.3 Tasks used in the experiment.

First exercise task Second exercise task Experimental level

Difficulty rating
by manufacturer

Beginner (1 of 5 diffi-
culty categories)

Beginner (1 of 5 diffi-
culty categories)

Intermediate (3 of 5
difficulty categories)

Optimal solution
length

9 13 25

Size of state space ∣V ∣ = 102, ∣E∣ = 282 ∣V ∣ = 7223, ∣E∣ =
41384

∣V ∣ = 3182, ∣E∣ =
13013

6.4 Analysis of experiment results

Conducting the described experiment yielded two solution attempts for the experimental level for
each of the 138 participants3. Due to incomplete data, the results of 23 participants had to be
excluded from the analysis. Thus, the experimental data of 115 participants (95 female, 18 male;
age: 18 to 30 years, Mage = 20.88 ± 2.80) were used in the analysis. We found that in the initial
attempt, 70 participants managed to solve the task (and 45 failed to solve it within the given time
frame or the maximal number of moves). In the second solution attempt (also referred to as revised
solution in the following), 108 participants were able to solve the task, while seven also failed in the
second attempt. Notably, neither in the first nor in the second attempt was a single participant able
to solve the game within the optimal number of moves. For both solution attempts, the shortest
solution found by any participant contained 27 moves while the task can be solved within 25 moves.

This shows that neither the percentage of participants able to solve the task at all nor the percentage
of participants able to solve the task within the optimal number of moves, is a sufficient metric for
a detailed analysis. When considering the error moves made by the participants, we found that the
participants’ initial solutions contained on average 9.6±8.0 wrongmoves and 8.0±4.2 unnecessary
moves while these numbers dropped to 2.6± 4.1 wrong moves and 3.5± 3.6 unnecessary moves in
the revised solution. We applied the proposed error category system to all error moves contained
in all solution attempts. Table 6.4 shows the fraction of error moves classified into the number of
categories, separated by initial and revised solution attempt, once for all error categories and once
only for the conceptual categories. For this task, the categorization of error moves worked well:
Only 7 % of all error moves were left uncategorized while the number of error moves categorized
into multiple categories is reasonably small. It can be seen that a considerable portion of the latter
can be explained by the fact that they fall into (at least) one conceptual and (at least) one descriptive
error category. When we only consider categorization by conceptual categories, the percentage of
multiple categorizations drops from 58 % to 32 %.

We will structure the following paragraphs along the following questions:

3and each participant’s solution of two exercise tasks, their generated internal feedback and peer feedback. While including
this information in the analysis is also interesting, in this chapter, we focus on the application of the error category
system to the experimental data.
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Table 6.4 Experimental data: Each of the 2026 error moves in the initial solutions and the 661 error moves
in the revised solutions of the experimental level was categorized according to the proposed error category
system. The table shows how many of the error moves were categorized in how many categories (conceptual
and descriptive).

categorized into … categories

# 0 1 2 3 4 5

Initial 2026 7% 35% 35% 18% 4% <1%
Revised 661 7% 54% 27% 9% 3% <1%

categorized into … conceptual categories

# 0 1 2 3 4 5

Initial 2026 15% 54% 26% 5% <1% 0
Revised 661 15% 63% 18% 3% <1% 0

(i) How often does an error type occur in the solution attempts of the experimental level?
(ii) In which situations do the error types occur?
(iii) Are there error types that are often possible, but rarely made or–the other way around–rarely

possible, but often made in these situations?
(iv) Which error types are avoided in the revised solutions? On which factors does it depend

whether or not an error can be avoided?

6.4.1 How often does an error type occur in the solution attempts?

We first consider the occurrence frequency of each error type in the participants’ initial and revised
solutions. Figure 6.6 shows the average number of occurrences of each error type in the solutions.
In the initial solutions, the descriptive error type Generalized Undo and the conceptual error type
Stay Local were the most common error types with a median frequency per solution of 5 and 7,
respectively. The error types Relaxed Car Unit, Early Unblock, and Avoid Blocking The Exit occurred
about three times in every solution. The error type Equivalence Trap was not observed in any solu-
tion and is not shown. When considering the revised solutions, it can be seen that almost all error
types were eliminated. Only the error types Stay Local and Relaxed Car Unit are still present, on
average (median) once in every solution. The error move classified as Relaxed Car Unit is actually
a wrong move (and thus needs to be corrected by an additional move) and is exactly the move that
prevented even the good participants from achieving the optimal solution of 25 moves (needing 27
moves instead).

For each error type, we additionally computed the number of the participants’ solution attempts
containing at least one occurrence of an error type. Table 6.5 shows that only five out of 115
participants’ solutions in the initial attempts were free of any Stay Local error move. The error type
Relaxed Car Unit–although not occurring in a high absolute number–was also found in almost all
participants’ initial solution attempts. But while the Stay Local error could be avoided by some
participants in the revised solution (and was made by 77 participants in the revised solution), the
error type Relaxed Car Unit was still contained in almost all participants’ revised solutions. The
finding that the number of solutions containing at least one Relaxed Car Unit error even increased
from the initial to the revised solution can be explained as follows: There were several participants
who did not solve the task in the initial solution and therefore did not reach a situation in which
such an error is possible. In the second attempt, most of them were able to solve the task, so some
of them also made a Relaxed Car Unit error. In general, we found that almost all error categories
were present in the majority of the initial solutions.
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Figure 6.6 Experimental data: For each error category, it is shown how many error moves of this type are
contained in the participants’ solutions (initial and revised).

Table 6.5 For each error type, the number of participants who made at least one such error in their initial
and revised solution is shown.

Category Initial Revised (both groups) Revised (separate groups)

52/56 IF
Relaxed Car Unit 106/115 110/115 58/59 PF

Early Unblock 94/115 44/115 25/56 IF
19/59 PF
26/56 IF

Border Attraction 66/115 44/115 18/59 PF

Early Target Car Move 76/115 13/115 9/56 IF
4/59 PF
14/56 IF

Avoid Blocking The Exit 77/115 25/115 11/59 PF
Avoid Moving Target 59/115 7/115 6/56 IF
Car Backwards 1/59 PF

41/56 IF
Stay Local 110/115 77/115 36/59 PF

Two In One 23/115 15/115 10/56 IF
5/59 PF
18/56 IF

Undo 83/115 27/115 9/59 PF

Generalized Undo 84/115 27/115 18/56 IF
9/59 PF
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6.4.2 When in the solving process do the error types occur?

In addition to the pure frequency of occurrence of the error categories, we examined when in the
solving process certain error types occurred. Since the solutions have different lengths (as the
participants could also revisit the same situation twice), we did not consider the location of the
errors relative to the number of steps of the solution. Instead, we considered the location of an
error relative to the number of steps necessary to reach a goal state, i.e., the length of the shortest
path from the error location to the closest goal state. This has the advantage that the location of
errors in shorter and longer solutions can be compared. We understand that two game situations
are not necessarily similar situations merely because their distance to a goal state is the same, but
this approach is a sufficient approximation for this stage of the analysis. For the experimental level,
the distance from the start configuration to the closest goal state was 25 steps, and there existed
no reachable game configuration with a distance of more than 25 steps to a goal state. Figure 6.7
shows the number of errors dependent on their location of occurrence as distance to the goal state;
the number is normalized by the number of participants (in the corresponding group).

It appears that there are two patterns of occurrences: Some error types only occurred in very specific
game situations (at least at specific distances), while other error types occurred independent of the
situation, but rather in the first half of the solution. Most conceptual error types are situation-
dependent: For both Avoid-categories, for Border Attraction, and for Relaxed Car Unit, the peaks
of occurrence are rather narrow. For the error categories Stay Local, (Generalized) Undo, and Early
Target Car Move, the location of occurrence is not constrained to specific distances, but they mostly
occurred in the first half of the solution. There are three possible explanations for this finding: (i) It
is possible that the participants followed an exploratory “trial-and-error” approach in the beginning
of the solving process, provoking a large number of Stay Local and Undo errors. In the further
course of the solving process, this approach was replaced by a more target-oriented strategy due
to learning effects in the solving process. A target-oriented strategy causes a decrease of the error
types Stay Local andUndo. (ii) Another possible explanation is that planning the nextmove becomes
easier when the goal to be reached is “within sight”. The smaller the distance to the goal state gets,
the more probable it becomes that the participants will be able to plan the remaining moves needed
to reach the goal. This might also explain the decrease of these error types in the second half of
the solution. However, the decrease of error occurrences was found in the distance range of 10 to
15 steps to the goal state which–we assume–seems too long to account for a complete planning of
the remaining steps. (iii) Since we only considered the number of error occurrences independent of
the concrete game situations, it might also be possible that certain error types are only possible in
specific situations–and that some participants made these errors only in these specific situations,
while errors such as Stay Local or (Generalized) Undo are basically always possible. The question is
thuswhether there are errors that aremade particularly often in relation to the number of situations
in which it is actually possible to make them, while others are only made rarely in relation to their
possible number of occurrences. In Section 6.4.3, we will examine this question.

When comparing the error occurrences in the initial and revised solutions, it can be observed that
the number of those errors that rather occurred in the first half of the solution decreased consid-
erably in the revised solution. This supports the hypothesis that these types of errors occur less
often after the participants have spent a certain amount of time attempting to solve the task, due
to learning effects. This is also supported by the observation that the decrease of these errors in
the revised solution was also found for the group IF, which did not get any external material be-
fore the second solution attempt. Other error types also occurred less often in the revised solution.
However, when we looked at the situation-dependent error types Border Attraction and Relaxed
Car Unit, we found that their peaks of occurrence are almost of the same height for both the initial
and the revised solution. For other situation-dependent error types, the peaks of occurrence are at
the same distance, but the number of their occurrence dropped considerably from the initial to the
revised solution.
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Figure 6.7 The number of error occurrences dependent on the distance to the goal state (on the x-axis) is
shown separately for each error category. The absolute number of error occurrences is normalized by the
number of participants (on the y-axis).

In order to investigate whether the observed narrow peaks of occurrence for certain error types are
due to the fact that these error types are only possible in these situations, in the next section, we
will compare the actual error occurrences to the possible number of error occurrences.

6.4.3 Which error types are often possible, but rarely made (and the
other way around)?

The previous paragraph showed that some error types only occur at specific locations in the so-
lution. This raises the question whether these errors occur only at these locations because they
are only possible in these situations and not possible in others, or whether there are situations in
the game that provoke certain error types – although they are also possible in other situations. To
answer this question, we performed the following analysis: For each solution of each participant
and for each visited game configuration, we checked which move alternatives the participants had
in this situation and which alternative they chose. Each erroneous alternative was then categorized
according to the error category system. For each state of the participant’s solution, we then know
which types of error moves can be made here.

For those error categories that are dependent on the previous move of the participant, i.e., Stay Lo-
cal or Undo, the previous state in the participant’s solution was considered. In the case of Relaxed
Car Unit, the categorization might be dependent on the participant’s subsequent move which is ob-
viously non-existent for an alternative move that was not made. Therefore, the following approach
was taken: Consider a participant’s move (v, w)moving car j and all moves possible in configura-
tion w, with successor states denoted as x1, . . . , xk . If any of the moves (w, xl) with l ∈ {1, . . . , k}
moving car i is an error move and car j and i fulfill the requirements for a Relaxed Car Unit, move
(w, xl) is categorized as a Relaxed Car Unit Mistake. However, the idea of the Relaxed Car Unit
Mistake is that a correct move with a car j provokes amistakemove with another car i because they
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are perceived as a unit. Since they are considered as a unit, for the categorization of the mistake,
it should not make a difference in which order the two cars are moved: whether the first move is
correct and followed by the mistake or the other way around. For a participant’s move (v, w), we
therefore check all sequences of two moves possible from w. If for such a sequence w → xl → yl′ ,
it holds that (w, xl) is a mistake move, (xl, yl′) is a correct move and cars of a car unit are moved,
we say that a Relaxed Car Unit Mistake is possible in configuration w.

It is clear that descriptive error types are almost always possible; therefore, the following analy-
sis focuses only on conceptual errors. For each participant’s solution, each error type, and each
distance from the goal state, we counted in how many states (contained in the participant’s so-
lution) the particular error type is possible and in how many states the participant actually chose
a move of this error type. The relation between these two frequencies, called Proportion of occur-
rence, is shown in Fig. 6.8, once separately for each distance to the goal state (Figure 6.8b) and
once aggregated over all distances (Figure 6.8a), in both cases aggregated for all participants in the
PF-groups and the IF-groups, and separately for the initial and the revised solution. Figure 6.8a
shows that in the initial phase, the errors of the types Avoid Moving Target Car Backwards, Stay
Local and Avoid Blocking The Exit were made most often in relation to the number of situations
in which they are possible. This decreased significantly in the revised solution. Nevertheless, al-
though it occurred less often than in the initial solutions, Stay Local was the error type made most
frequently in the revised solutions: It was still made in almost a quarter of all situations in which
it is possible. Furthermore, the observation from the previous analysis could be confirmed: The
proportion of occurrence of Relaxed Car Unit Mistakes did not change considerably from the initial
to the revised solution. Figure 6.8b provides an explanation for the narrow peaks of the errors of
the types Relaxed Car Unit or Border Attraction in Figure 6.7. For the type Relaxed Car Unit with a
narrow peak at distance 11 and a wider peak at distance 21 to 16 in Figure 6.7, Figure 6.8b reveals
that this error type is also possible at other distances, but was rarely or never made there. Only at
distance 11, almost all participants (median proportion of occurrence of 1) perform an error move
that is a Relaxed Car Unit Mistake. For other error types with distinct peaks of occurrence in Fig-
ure 6.7, Figure 6.8b shows that they are actually only possible at specific distances in the course of
the game. For example, for the error type Avoid Moving Target Car Backwards, it can be seen that
this error is only possible in the participants’ solutions at distances 21, 20, and 19. But there (in the
initial solution and the revised solution of group IF), this error was made in approximately 50 % of
all cases.

6.4.4 Which errors could be avoided in the revised solution?

When comparing a participant’s initial and revised solution, it is interesting to see whether the
participant was able to avoid a specific error in the revised solution that they had made in their
initial solution attempt–or whether in certain game situations, errors persisted also in the second
attempt. This kind of question is particularly interesting in learning contexts of any task: For a
teacher (or any automatic feedback system), it is important to know which kind of errors can be
avoided by a learner in a second attempt without any intervention, and for which type of errors,
an intervention by the teacher or the system is needed to help the learner. There are many errors
made by learners when initially solving a task that they can detect by themselves–no intervention
or external feedback is needed to help the learner to improve. Other errors, however, will persist
also in a second attempt if there is no intervention or feedback for the learner from the teacher
or the system. It is therefore of relevance to distinguish between these two types of errors. This
leads to the question of which factors are necessary to enable a learner to avoid repeating mistakes,
or–vice versa–which factors cause the learner to repeat an error. In our experimental setting, the
previous paragraph showed that the majority of the error types made in the initial attempt could
be avoided in the revised solution while others were still present in the second solution attempt.
In order to recognize whether the same errors were made in the second attempt as in the first
one, it is not sufficient to compare the frequency of occurrence of each error category. As already
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(a) Proportion of occurrence of each error type, aggregated over all game states of all participants’ solutions
of the same group.

(b) Proportion of occurrence, separately for each distance to the goal. Distances for which no state is con-
tained in the solutions in which an error type is possible at all are left blank.

Figure 6.8 For each game state contained in the participants’ solutions, we computed which type of error
moveswould have been possible. Thus, for each error category, we could compute the proportion of occurrence,
and the number of times that an error move of this type was made in relation to the number of times in which
such an error type was possible. The upper plot aggregates these proportions of occurrences for all participants
of each group, while the lower plot computes these proportions of occurrence separately for each distance to
the goal state.
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mentioned in the previous paragraph, there were participants who did not proceed far enough in
solving the task in the initial attempt, so they simply could not make certain errors. It might be that
a participant makes an error move in a certain situation in the first attempt and is able to avoid this
error in the same situation in the second attempt, but by proceeding further in the second attempt,
they are in new situations where they make the same error type (but in a different game situation).
Furthermore, only because two errors in two solutions are categorized as the same type does not
necessarily imply that they are conceptually identical.

We therefore need to define a notion of similar errormoves in different solutions. This is not obvious
because two error moves can be conceptually similar although they do not involve exactly the same
game configurations. Consider, for example, the wrong move shown in Table 6.1 for the category
Border Attraction. Assume that one of the two horizontal cars positioned under the target car is one
cell further to the right than it is in the figure and that the pictured move is performed. Although
these are not exactly the same game configurations, these moves should be considered as similar
error moves.

We therefore introduce the following notation of similar error moves.

Definition 6.1: Similar error moves

An error move mi = (vi, wi) contained in one solution and an error move mr = (vr, wr) in
another solution are said to be similar (noted as mi ≃mj ), if
(i) mi and mr move the same car,
(ii) in the same direction,
(iii) mi and mr are either both unnecessary or both wrong moves, and
(iv) if dF (vi) and dF (vr) denote the minimal number of steps necessary to reach a goal

state from vi and vr , respectively, it holds that ∣dF (vi) − dF (vr)∣ ≤ 2.
The last requirement assures that only moves in approximately similar game situations are
called similar.
For three error moves m1 = (v1, w1), m2 = (v2, w2) and m3 = (v3, w3)which are all similar
to each other, we say that m1 is more similar to m2 than to m3 if

∣dF (v1) − dF (v2)∣ < ∣dF (v1) − dF (v3)∣.

The threshold of 2 was determined specifically for this particular task with the intention of only
considering moves as similar that are very close to each other. For a different game configuration,
a different threshold might be appropriate.

We then performed the following matching procedure for the error moves of each participant: Let
I be the participant’s initial solution, R their revised solution and P the peer solution (the same
for all participants). For each error move mi of I , each error move mp of P and mr of R (if a
participant’s solution contains exactly the same error move twice, it is only considered once), we
checked whether

(i) mi ≃ mr and mr ≃ mp and mp ≃ mi (a perfect match: a similar error move is contained in
all three solutions), or

(ii) mi /≃mr and mr /≃mp and mp /≃mi (no match: the three solutions do not have any similar
error move in common), or

(iii) mi ≃ mr and mr /≃ mp and mp /≃ mi (partial match: there is a similar error move in initial
and revised solution, but no corresponding error move in the peer solution), and the three
corresponding combinations, or

(iv) mi ≃ mr and mr ≃ mp and mp /≃ mi partial match that needs to be resolved) and the
three corresponding combinations.
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Table 6.6 The table shows how many error moves of the initial solutions, the peer solution and the revised
solutions matched. Y/N denotes whether an error move was contained (Yes) or not contained (No) in the
corresponding solution. The first letter represents the initial solution, the second letter the peer solution, the
third letter the revised solution. There are for example 350 error moves (summed over all participants) where
a similar error move is contained in both the initial and the revised solution, but not in the peer solution.

Perfect match Partial match No match
YYY YYN NYY YNY NNY NYN YNN

152 219 78 350 179 551 1300

Partial matches that needed to be resolved were transformed into partial matches bymatching only
those two error moves out of the three that are more similar to each other and not matching the
other one. If they were equally similar which was the case for very few move triples, the decision
was made manually. Note that an error move of any solution can be contained in several matches
(this is the case for only very few error moves), for example if an error move in the revised solution
was similar to several error moves in the initial solution. But it is not possible for an error move to
be contained in more than one different type of matches: It is either contained in perfect matches,
or in partial matches, or in no match.

Table 6.6 shows the number of perfect, partial and no matches obtained by this procedure. We use
the following short notation for matches, consisting of three letters: The first letter corresponds to
the participants’ initial solution, the second one to the peer solution, the third one to the revised
solution. Yes or No indicate whether a corresponding similar error move exists for a match: YYN
for example contains partial matches where a similar error move is contained in a participant’s
initial solution and in the peer solution (mi ≃ mp), but no corresponding error move is contained
in the participant’s revised solution (mp /≃mr and mi /≃mr).

Although the category of the error moves was not considered in the matching procedure, the error
moves matched by this procedure do fit very well with respect to their categorizations: For all
matched error moves of the initial and the revised solution, 84 % have exactly the same conceptual
error categories, while 13 % differ in exactly one category. These proportions are similar for the
matched error moves of the initial and the peer solution (85 % and 12 %) and for the matched error
moves of the peer and the revised solution (98 % and 2 %).

The procedure of matching error moves allows analyzing which error moves were repeated and
which ones could be avoided by a participant in the revised solution. Table 6.6 shows that the vast
majority of error move matches are no matches, mostly YNN, i.e., an error move is contained in a
participant’s initial solution, but there is no corresponding error move either in the peer solution or
in the participant’s revised solution. Among the perfect and partial matches, the pure frequencies
shown in Table 6.6 indicate that it is very rare that an error not made in the initial solution, but
contained in the peer solution, is then contained in the revised solution (case NYY). This would
correspond to the situation that a participant unintentionally “learned” from the peer solution by
adopting an error from the peer move that they had not made in the initial solution. However,
this can also include scenarios in which a participant did not manage to solve the task in the ini-
tial attempt (and therefore simply could not make certain errors), and then used the provided peer
solution as a solution draft together with all of its errors. A more common case is that an error con-
tained in the initial solution as well as in the peer solution could be avoided in the revised solution
(case YYN). In this case, it is possible that the participant benefited from generating feedback for
the peer solution since the peer solution contained a similar error move as their own initial solution
and detecting this error in another solution helped to avoid the same error in the revised solution.
However, these interpretations cannot be derived from Table 6.6, but are rather speculations at
this point, for the following reasons: First, Table 6.6 contains the number of error move matches
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aggregated over all experimental groups. Half of the participants, however, generated feedback on
the peer solution (and therefore saw the peer solution) after attempting to solve the task for the
second time. Therefore, error moves in the peer solution could not have had any impact on the
error moves in their revised solution. Second, it can be expected that it makes a difference whether
a participant noticed that a move in their initial solution or in the peer solution was not correct. It
can be expected that if a participant noticed that a move in their initial solution was not correct,
they would not repeat the same error in the revised solution–independent of whether the error
move was contained in the peer solution.

These considerations lead us back to the original question of this section: Which factors are actually
essential to enable a participant to avoid an error in the revised solution and which factors lead to
a repetition of the same error?

To answer this question, we used additional data collected in the experiment: Every participant
generated internal feedback on their own initial solution and feedback on the peer solution. It is
therefore known for each error move in the initial solution whether they recognized it as a mistake
directly after the solving process. The PF-groups also generated feedback on the peer solution,
which is why for the participants of those groups, it is also known which of the peer error moves
were recognized as mistakes4.

We used this data to generate a decision tree that provides predictions on whether an error will be
repeated or avoided in the revised solution. In general, decision trees are used as simple predictors
for the class membership of a set of elements [Qui86, RM08]. If each element is associated with
a set of features, e.g., represented by a vector x⃗ and a class variable, a decision tree trained with
a set of elements for which the class membership is known (test data) is a model that is able to
predict–based on the vector x⃗–the class of new elements. This is achieved through the generation
of a binary tree where each leaf node is associated with a class, each internal node represents one
feature and the outgoing edges of internal nodes correspond to possible values of the feature. If
the class for a new element is to be predicted, the tree is traversed from top to bottom. For each
internal node, the value of the corresponding feature is checked; and the corresponding tree branch
is used. This procedure is repeated until a leaf node is reached and the prediction for the class of
the new element is according to the class associated with the leaf node.

Standard methods for generating such a decision tree usually work top-down: From the root to the
leaves, at each step, that feature is chosen as the current node that best separates the given data
where “best separation” can be measured by several metrics. Since trees built in such a way are
usually overly complex, the tree is reduced (“pruned”) in a second step [BFSO98].

For the data at hand, all matched error moves of all participants in their initial and revised solutions
as well as in the peer solution correspond to the set of elements. The class variable to be predicted
is the flag whether the error move is contained in the revised solution or not where R.Y means
that the error move is contained in the revised solution, and R.N means that the error move is not
contained in the revised solution. The following features were used:

Group ∈ {IF, PF} Group association of the participant.
InI ∈ {0, 1} Flag whether error move is contained in the initial solution.
InP ∈ {0, 1, NA} Flag whether error move is contained in the peer solution. Variable is set to NA

if the participant is in group IF since participants of this group did not see the peer solution
before the second solution attempt.

MAW_IF ∈ {0, 1, NA} Flag whether error move in the initial solution was marked as wrong by

4Participants in the IF groups also generated feedback on the peer solution, but after the second solution attempt. There-
fore, for those participants, it is also known which error moves of the peer solution were recognized as error moves. But
since this should not have any effect on the second solving performance, we did not consider this information for the
question of which errors were repeated in the revised solution.
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the participant in the internal feedback phase. If the error move was not contained in initial
solution, MAW_IF was set to NA.

MAW_PF ∈ {0, 1, NA} Flag whether the error move in the peer solution was marked as wrong
by the participant in the peer feedback generation phase. If the error move was not contained
in the peer solution or the participant was in the experimental group IF, the flag was set to
NA.

Error categories For each error category and each solution type (initial, peer, and revised), there
is a flag indicating whether the error move in the solution was categorized as such an er-
ror. If the error move in the initial solution was categorized as Relaxed Car Unit, the flag
RelaxedCarUnit_IF is 1, if it was not categorized as such an error, the flag was set to 0. If the
error move was not contained in the initial solution, the flag is set to NA. Since the error
categorization of the matched error moves coincided for almost all matched error moves, it
is sufficient to use the categorizations of the error moves of only one phase.

Figure 6.9b shows a graphical representation of the generated decision trees. Below each node, the
feature name and condition are shown by which the data is split at this node. The left branch is
applied on the data entries for which the feature condition is true, the right branch for data entries
for which the feature condition is false. In each node, the first line represents the prediction for
the data entries for which this node is valid, the second line represents the proportion of each class
in the sub-data where the left value is, in this case, the proportion of error moves not contained in
the revised solution (R.N). The third line indicates to which proportion of the total data the node
applies.

Which factors predict the repetition of an error move in the revised solution? In order
to investigate which factors are essential so that an error is not repeated in the second solution
attempt, we constructed a decision tree based on those error moves contained in the initial solution
(i.e., the matchings starting with the letter Y ). Figure 6.9a shows the corresponding decision tree.
It can be seen that the feature discriminating best between the repetition and the avoidance of
an error move is the factor MAW_IF, i.e., whether the error move was marked as wrong by the
participant. This applies to 62 % of all matched error moves. It is, however, astonishing that 16 %
of these error moves–marked as wrong by the participant–were repeated in the revised solution.
For those error moves where the participant did not notice that it is not a correct move, the second
discriminating feature contained in the decision tree, is MAW_PF, i.e., whether the corresponding
error move was detected as wrong in the peer solution: If a participant did not realize that a move
was not correct, they could benefit from seeing another person’s solution attempt. If they were
able to realize that the corresponding error move in the peer solution was wrong, a repetition of
the error in the second solution attempt becomes less probable. Although this is an intuitive result,
it needs to be noted that the depicted decision tree does not offer a perfect prediction for the error
moves at hand: For 23 % of the error moves, the decision tree yields a wrong prediction about the
repetition of an error move, although these are the error moves from which the decision tree was
generated.

Which factors predict the repetition of an error even though it was detected as an error?
The decision tree shown in Figure 6.9a reveals that 16 % of these error moves contained in the initial
solution and marked as wrong by the participant were repeated in the revised solution. This is an
unexpectedly high number since we would expect that realizing that a move was wrong should
enable the participant to avoid the same error move in a second attempt. In order to explain this
high number, we generated a second decision tree for predicting the occurrence of an error move
in the revised solution, which is now based on data that includes only those matched error moves
that are contained in the initial solution and were marked as wrong by the participant (a total of
1256 error moves). Besides the participant’s group, the discriminating features were MAW_PF, i.e.,
whether the participant was able to detect the corresponding error in the peer solution, and the
flag showing whether the error move was categorized as a Relaxed Car Unit error. If the error was
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Figure 6.9 Decision trees predicting whether an error move will be repeated by a participant in the revised
solution (R.Y–error is contained in revised solution; R.N–error is not contained in revised solution), depen-
dent on the following factors: experimental group of the participant (PF and IF); whether error move was
marked as wrong by the participant in internal feedback phase (MAW_IF=1–marked as wrong; MAW_IF=0–
not marked as wrong); whether this error move is contained in the peer solution (InP=1–contained in peer
solution; InP=0–not contained in peer solution); whether error move was marked as wrong by the participant
in peer solution (MAW_PF=1–marked as wrong; MAW_PF=0–not marked as wrong); error category of error
move in initial/revised/peer solution (e.g., RelaxedCarUnit_{PF,IF}=1–error move is categorized as Relaxed Car
Unit in peer/initial solution; RelaxedCarUnit_{PF,IF}=0–error move is not categorized as Relaxed Car Unit in
peer/initial solution).

contained in the peer solution and not marked as an error, and if it was categorized as a Relaxed
Car Unit error, the repetition of the error in the revised solution can be predicted perfectly. Thus,
it seems that perceiving two cars as a unit is sometimes such a strong incentive for moving both of
them consecutively that such errors are even made if the participant is aware that this move is not
correct.

6.5 Summary

In this chapter, the methods and results of an interdisciplinary research project were presented.
While the research question–the impact of generating feedback on a learner’s performance–stems
from the field of psychology, methods and approaches from computer science helped to analyze
the experimental data and gain insights about the cognitive processes of human problem-solving.
Due to the experimental design, the experimental data contained (among other information) two
solution attempts of a Rush Hour task for each participant. The challenge was thus to compare the
solution attempts of each participant and to evaluate the quality of each solution. While the number
of errors in a solution is a simple and meaningful metric for quantifying the quality of a solution,
it is clear that this metric is not sufficient to understand the problem-solving process. In order to
better understand why one solution is worse than another, our approach was to focus on the error
moves: Errors can occur for different reasons. We therefore aimed at providing a category system
capable of automatically classifying error moves according to their (assumed) motive. While the
proposed categories were formulated for the experimental task, a Rush Hour game, all categories
are based on general principles that are also valid for other types of tasks.

The error category system allows a more detailed analysis of the experimental data. When com-
paring each participant’s first and second solution attempts, we found that most errors categorized
as descriptive error types could be avoided by the participants in the second attempt. There were,
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6 Case Study: Analyzing game trajectories

however, error types that were still present in almost all participants’ second solution attempts.
When considering at which points of time in the course of the game these errors occurred, we find
two different patterns: Some error types occurred at specific situations in the game while others
were situation-independent, but tended to only occur in the first half of the initial solutions.

Since one possible explanation for these patterns is that errors are only possible in certain situations,
we considered for each move all of its alternative moves and analyzed which error types were
possible in the game situations. For error types such as bothAvoid-categories as well as for the error
category Early Target CarMove, we could confirm that these errors are only possible in specific game
situations. Other error types such as Relaxed Car Unit are almost always possible, but nevertheless,
they were made only in specific situations–and then by almost all the participants. This indicates
that certain game situations are more error-prone than others.

For learning contexts, it is often of relevance to know which factors are essential for a learner to be
able to avoid an error–and which factors cause a learner to repeat an error. In order to answer this
question for the experimental data, a notion of “the same error” in different solutions is required.
We therefore proposed a method of matching the error moves of different solutions which allows
identifying whether a participant’s initial and revised solution and the peer solution contain the
“same” error move. Although in most cases, an error made in the initial attempt was not contained
anymore in the revised solution, there were a considerable number of cases in which the same error
was repeated in the revised solution. In order to understand which factors explain the repetition of
errors, we constructed decision trees predicting the occurrence of an error in the revised solution,
based on its occurrence in the initial and the peer solution, its error category, and on whether the
error was detected by the participant in the initial or the peer solution. We found that realizing
that a move was not correct was the most important factor for not repeating an error. While this
result is not surprising, we also found that 16 % of all error moves contained in the initial solution
and detected as error moves by the participants were still repeated in the revised solution. In these
cases, the participant could have benefited from seeing another person’s solution and could have
detected the same error in the other solution. Interestingly, there is an error move categorized as
Relaxed Car Unit which was repeated by most participants in the revised solution although they
detected it as wrong in their own solutions.

We are convinced that although the proposed error category system was developed for solutions of
Rush Hour tasks and the analysis was performed for these tasks, themethods can be transfered and
applied to other well-defined sequential tasks. In general, we believe that there is great potential in
interdisciplinary collaborations such as the presented project. Bringing together ideas andmethods
from different disciplines, can yield interesting results overall, and help to understand the cognitive
processes of human problem-solving in particular.
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Towards a process-driven
network analysis

Chapter 7

7.1 The relevance of network processes for network analysis

In Chapter 1, we named two aspects as motivation for this thesis which we think are both relevant
for network analysis: (i) considering the relevant network process helps to determine appropriate
network representations and measures; and (ii) considering empirical network flow in addition to
the network representation offers valuable information that facilitates understanding the complex
system. In the following, the results of this thesis will be contrasted with these two aspects of
motivation.

Why taking into account the process is beneficial for network analytic projects It has
been argued that in a network analytic project in which a real-world complex system is under inves-
tigation, the network representation, and the network methods cannot be chosen independent of
the network process of interest [DLZ12]: First, the network representation and the network process
need to match, since the network representation needs to be chosen such that the network edges
represent the type of relations that are essential for passing on the process of interest. Investigating
how an infection such as HIV will spread by using an online social network like Facebook will lead
to results that are difficult to interpret. Second, the applicable network measures are restricted by
the process of interest: Borgatti argued for common centrality measures, saying that each central-
ity measure contains a set of assumptions about a network flow [Bor05]. A centrality value then
reflects a node’s importance with respect to a network flow with those assumed properties. Apply-
ing a network measure with the assumption that a network flow uses shortest paths while one is
interested in the process of information spreading, is technically possible, but the results are also
difficult to interpret.

At the same time, when considering a real-world complex system, there are often dozens of dif-
ferent plausible network representations for the same set of system observations, and even more
(technically) applicable networkmethods. It has been shown that seeminglyminor decisions in net-
work construction will lead to considerably different analysis results [But09, DCMHW10, TZ16].
Thus, the appropriate network representation for the system under investigation and the specific
research question need to be chosen with care.

We therefore argue that–in cases where the research project is tied to a network process–a network
analytic project might benefit from focusing on the relevant process in an early stage of the project.
When it has been determined whether and which network process is relevant for the research ques-
tion, the number of possible plausible network representations and applicable network measures
can often be reduced. Therefore, a focus on the relevant network process helps to determine an
appropriate network representation and applicable network measures.
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7 Towards a process-driven network analysis

Focusing on the relevant network process can also help to identify situations in which a network
representation is not necessary at all: A network representation is a helpful representation when
indirect effects are of interest. This form of representation focuses on the interactions between the
entities instead of on the properties of the single entities. It allows analyzing effects that can only be
explained by the connectedness of the entities, and not by the behavior of the single entities. This
means, in particular, that entities can have an effect on each other evenwhen they are not connected
directly, but rather indirectly via intermediate links. Indirect effects can be caused by a network
process flowing through the network: Pieces of information, infections, but also flows of passengers
can cause indirect effects. Note, however, that this is not the only explanation. Consider for example
a relationship such as similarity (of any kind) between entities. If such a relationship is transformed
into a network representation where an edge is inserted if the two entities are sufficiently similar
to each other, a network representation can, for example, be used to identify groups of similar
entities. At the same time, there is no process flowing in this network. On the other hand, if
network measures associated with a network process, such as centrality measures, are applied to
this type of network, the interpretation of the results needs to be done with care.

Why empirical flow data should be considered In this work, we have shown that empirical
network flows show different properties than simple process models. This is particularly interesting
because commonly used network measures such as centrality measures, also measure the nodes’
importance with respect to a simple process model. We have shown that incorporating the empir-
ical flow data into these measures affects the nodes’ centrality scores. At the same time, it is often
the case that network representations are created by using trajectory data: A set of trajectories is
aggregated into a network representation by inserting an edge from a to b into the network if at least
x trajectories contain a transfer from a to b. This was also done in this work, for example to create
the air transportation network from passenger journeys used in Chapters 3 and 4. Aggregating tra-
jectory data like this is a convenient way to obtain a network representation of the infrastructure in
which the trajectories take place. There are, however, mainly two drawbacks: First, by aggregating
the trajectories, any dependencies contained in them, cannot be represented anymore. Consider
the trajectories (x, y, z) and (x′, y, z′) where, for some reason, transitions from y to z are only vi-
able if the previous transition is (x, y). Aggregating all trajectories into one network representation
cannot describe such dependencies anymore. In order to overcome this limitation, it has been pro-
posed to use network representations of higher order [XWC16], where the nodes do not represent
single entities anymore, but tuples of entities. Then, depending on the order k, dependencies of
depth k can be represented. It is, however, not trivial to interpret results from network measures
applied to a network representation of higher order. A second drawback of aggregating trajectories
into a network representation is that any information about usage frequencies is lost: Possibly tens
of thousands of trajectories are aggregated into one network representation where each edge has
the same “quality”–independent of whether it is contained in one or in several thousands of trajec-
tories. There are several options for weakening this effect, for example by introducing a threshold
x such that an edge is only inserted if the corresponding connection is contained in at least x
trajectories, or by introducing edge weights representing the number of trajectories that contain
this connection. However, none of the options is a satisfactory solution: Introducing a threshold
only removes the less used edges; and applying a network measure to a weighted network always
needs to be done with care, since weights can carry different semantic meanings–and for different
network measures adapted to weighted networks, the weights might be interpreted differently.

For these reasons, we are convinced that considering the empirical trajectories of network flows in
addition to the network representation is a valuable approach in order to understand the properties
of a complex system. Only recently have datasets containing such trajectories become available.
In a manner of speaking, this situation is somehow similar to the early days of “complex network
analysis” in the late 1990s when datasets of real-world networks became available, and–due to
the increasing capacities of computers–their analysis became feasible. Similarly, when datasets
of network flows now become available, methods and tools for analyzing such types of data are
needed, which will be described in the following section.
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7.2 Thinking about network analysis from a process
perspective

Complex network analysis comprises several aspects for which an analogy for network processes
can be drawn:

Structural properties Whenwe consider network representations of real-world systems, it turned
out that most network structures found in real-world systems showed similar structural properties
although they were derived from different contexts. Many real-world networks share the property
of scale-freeness, meaning that their degree distribution follows a power law [BA99] (this finding
has, however, been questioned recently [BC19]). For processes in networks, there is an analogy:
In Chapter 3, we showed that real-world processes also have such characteristics. There are a few
nodes and node pairs that are used very often by the process while most are only used a few times or
not at all. Future work needs to show whether there are more common or distinguishing properties
of real-world network flows.

Methods as analytical tools There exist many methods that are used as analytical tools in
order to gain insights about the underlying complex system: Centrality measures are designed to
identify the most important actor in the system [KLP+05], clustering approaches to find groups
of actors in the system, link prediction mechanisms to predict the future evolution of the system,
etc. Similarly, network processes can also be used to infer knowledge about the system: While
existing network measures only use the structure of the network, methods incorporating the actual
usage of the network by the process might be able to provide better insights about the underlying
system. Possible application scenarios that are beyond simple usage frequencies, are flow-based
centrality measures as proposed in Chapter 4, or definitions of node equivalences where a similar
usage pattern determines nodes with the same functionality, or flow-based methods of community
detection.

Models When analyzing the structural properties of a network representation, an appropriate
comparison is needed to determine whether the identified properties are remarkable in any sense.
This is usually done by comparing the structural properties of the real-world network with a suit-
able network model created artificially. Another important use case for network models is their
explanatory power: When a model created with only a few simple rules is able to reproduce the
structural properties of a real-world network, this leads to the presumption that these simple rules
also played a role in the formation of the real-world network. Due to these two reasons, several
classes of network models have been proposed. In the early days of network analysis, there were
basically two types of models for graphs: regular graphs, i.e., graphs with a lattice structure, and
random graphs, i.e., graphs with randomly created edges. However, it turned out that the structure
of real-world networks can be explained neither by random graphs nor by regular graphs. While
regular graphs exhibit a high clustering coefficient and large characteristic path lengths, random
graphs show small clustering coefficients and short characteristic path lengths. Real-world net-
works, however, often have a high clustering coefficient and small characteristic path lengths at
the same time. Watts and Strogatz then introduced their small-world networkmodel [WS98] which
is able to scale between those two extremes with a parameter p.

For a certain range of p, the created networks show a large clustering coefficient (like real-world
networks and regular graphs) and small characteristic path lengths (like real-world networks and
random graphs). There is a similar situation regarding network processes: There are mainly two
types of models for processes: models that move on shortest paths and models that move ran-
domly through the graph (in many different variants). In Chapter 3, we showed that the real-world
network flows we considered neither moved on shortest paths nor totally randomly, but fell some-
where between these extremes, which is in analogy to Watts’ and Strogatz’ small-world model. We
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Table 7.1 Aspects of classic network science with an example and how they can be transfered to a process-
based perspective.

Aspect Example from network analysis Transfer to process perspective

Structural properties Degree distribution: Source-target distribution:
power law [BA99] power law? (Chapter 3)

Methods Centrality measures[BE06]: Flow-based measures:
use network structure use network usage (Chapter 4)

Models Small-world model: between reg-
ular and random graphs [WS98]

Trajectory model: between short-
est paths and random walks
(Chapter 3)

Data preprocessing Impact of data collection and deci-
sions in network creation [But09]

Impact of data collection and deci-
sions in trajectory creation

compared the real-world flow trajectories to a suitable set of shortest paths and random walks and
showed that the real-world flow trajectories share certain properties with both shortest paths and
random walks. A suitable model for real-world flow trajectories is thus needed.

Dimensions of data preprocessing An often neglected aspect of network analysis is the proce-
dure of transforming the observations of the system into a network structure. It has been shown
that the results of any network analytic method are highly dependent on the researcher’s decisions
in the data preprocessing phase [But09, DCMHW10]. Decisions that a researcher might make to
construct a network representation from a system are for example:

• Which observations of the system are included: Restrict to which time window of observa-
tions? Filter out seemingly erroneous observations?

• What entities are represented by a node: Aggregate entities [But09]? Which entities to in-
clude [LMP83]?

• What interactions are represented by edges: Introduce a threshold [DCMHW10]? Aggregate
over time?

These considerations and their implications also need to be made for the analysis of processes:
When observing a process in the system, it is not always obvious how to extract single process
trajectories from these observations. Future work needs to analyze how robust the analysis of
network processes is against the modeling decisions in the data collection and preprocessing phase.
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Summary
Chapter 8

In recent decades, network analysis has been proven to be a useful tool for understanding com-
plex systems in various disciplines. In this approach, the system is represented as a network in
which the nodes represent the system’s entities and the edges represent the entities’ interactions.
Thus, the focus is on the interactions within the system instead of on individual analyses of the
single entities. Nowadays, there is a large number of pre-compiled datasets containing a network
representation of a system, and easy-to-use software libraries that enable analyzing these network
structures. However, it is sometimes overlooked that a network representation and all network
analytic methods–like almost all representations and methods–include a set of assumptions: A
network is a convenient representation if indirect effects in the system are of interest. If such in-
direct effects are not present, a different form of representation or different analysis tools might
be suited better. Also each network measure contains assumptions. For centrality measures, Bor-
gatti [Bor05] pointed out that all classic centrality measures assume the presence of a network
process, i.e., “something” is flowing through the network from node to node. A centrality measure
can then determine the importance of a node with respect to such a flow. These processes can
also explain indirect effects in a system: A can have an impact on C via B if, for example, a piece of
information is transferred from A via B to C. Centrality measures that assume the presence of a pro-
cess, also assume certain properties of this process [Bor05]. Borgatti notes that the most frequently
used centrality measures assume a process using only shortest paths or a process being spread by
a parallel duplication mechanism. However, many processes for which a centrality measure would
be relevant, do not exhibit these properties.

To make matters worse, even for network processes where these assumptions seem justified, our
analysis in Chapter 3 showed that the assumptions are also not met when considering datasets of
real-world network flows. Neither of the considered datasets showed exclusive usage of shortest
paths. Other assumptions of classic centrality measures were found not to be met, either. For all
datasets, we found node pairs between which there was a large proportion of the total amount of
flow while there was only a small amount of flow (or no flow at all) between most node pairs. Our
finding was similar for the assumption that the flow is distributed equally among equivalent path
alternatives. Here, we found that the real-world network flows rather preferred one alternative
instead of equal distribution among the alternatives, although how strong this effect was varied
among the datasets we considered.

A naturally arising question from these findings is: Which impact does it have on existing central-
ity measures that their assumptions are not completely fulfilled? In order to answer this question,
we introduced flow-based variants of closeness and betweenness centrality in Chapter 4. In each
variant, either the original measure’s assumption was used for the computation or the actual be-
havior of the real-world network flow. One betweenness variant, for example, counts the number
of real trajectories in which a node is contained instead of the number of shortest paths. Another
betweenness variant considers only those node pairs for the computation between which there is
flow in the real-world network flow, instead of all node pairs. A similar approach was presented
for closeness centrality. This approach allows a systematic evaluation of the measures’ assump-
tions and an answer to the question: Which impact does the violation of an assumption have on
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the results of a centrality measure? We found that for all considered datasets, the standard cen-
trality measures showed a high correlation to the flow-based variants indicating a robustness of
the measures against violations of their assumptions. At the same time, for all datasets, we found
nodes whose ranking position deviated considerably in at least one flow-based variant compared
to the standard centrality measure. Also nodes ranked high by the standard centrality measure
were concerned. This has consequences for the application of the standard centrality measures in
practice: When applying a centrality measure to a network, it is usually only the highest-ranked
nodes that are of interest. We found that even those nodes can be affected by taking into account
the actual flow dynamic in the network: Nodes ranked highly by the standard centrality measure
decreased in importance when the real-world flow was considered–and nodes that were important
with respect to the actual network flow were not ranked high by the standard centrality measure.
Our results in Chapter 4 thus show that rankings of centrality measures need to be interpreted
with care.

Our results also show the importance of taking into account the flow dynamic on the network
when analyzing a network: In some cases, a static network representation without any informa-
tion about the flow might simply not be sufficient for understanding the system. In these cases,
reducing the system to a network structure and applying measures to the structure of the network
might be an oversimplification of the system. This is particularly the case when flow data is used
to generate a network as in the case for the air transportation data described in Chapter 3. Here,
the flow trajectories are used to infer the network structure and in this inference, a lot of infor-
mation is lost. When network analytic methods are then applied to the network representation,
the results might be misleading. An illustrative example of such a case is given in Chapter 4 for
the US air transportation system: When building a network structure from the passenger journeys
and applying betweenness centrality to this network, the Alaskan airport Anchorage is among the
highest-ranked nodes although only a small proportion of the network flow involves this airport.
This effect is due to the fact that there are many airports in Alaska, but all of them are small, process
only a negligible amount of passenger flow, and almost none of them is connected to any airport
outside Alaska–except Anchorage, which therefore serves as a gateway between the contiguous
United States and the state of Alaska. Thus, if we only consider the network structure in which an
edge between two Alaskan airports and an edge between New York City andWashington, D.C. is of
the same quality, the betweenness centrality does what it should do–perfectly: The node Anchor-
age is identified as a gateway node and therefore ranked high. If, however, we consider the actual
passenger flows, it becomes obvious that the node Anchorage should not be the most central node
of the network. We therefore argue that using the actual network flow–if available–is beneficial
for a more profound analysis.

When handling real-world datasets of network flows consisting of a large number of trajectories,
computational resources might limit the analysis of such datasets. Therefore, a method for sum-
marizing the set of trajectories into groups is beneficial, since then, a subsequent analysis can be
performed on the set of representative trajectories of each group. To achieve this goal, a method
for finding groups of “similar” trajectories is needed. It is, however, not clear how the similarity
of two trajectories can be measured and which similarity measure is to be preferred over another.
In Chapter 5, we therefore presented a systematic evaluation of existing distance and similarity
measures, adopted on trajectories. Similarity and distance measures from different domains, not
necessarily designed for trajectories, were introduced and their ability to find meaningful groups
was evaluated by using a dataset with ground truth. We found that distance measures based on
the discrete Fréchet distance yielded groups of trajectories with a clearly higher purity with respect
to the ground truth than other distance and similarity measures. We postulate that this result is
due to the fact that these distance measures take into account a trajectory’s set of nodes, their
order, and their position in the network, while other similarity and distance measures only take
into account one of these aspects.

As a case study in which a set of trajectories in a network was used to gain insights about the
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domain itself, we presented the results of an interdisciplinary project in Chapter 6. Together with
researchers from the department of Psychology at TU Dresden, we conducted an experiment in
which the participants were asked to solve a planning task, i.e., to solve a medium level of a single-
player board game. By understanding the participants’ solution drafts as trajectories in the game’s
state space, new and more sophisticated methods of analysis become possible. In order to under-
stand the difficulties in solving the given task and to evaluate the participants’ improvement in
their second attempt, we proposed an error category system: A rule-based system labels each er-
ror move contained in a participant’s solution attempt according to the assumed motive for why
this error move occurred. Although the proposed category system was formulated for the specific
task used in the experiment, the categories are based on general cognitive principles, which can be
transferred to other types of tasks as well.

In general, this thesis demonstrates the relevance of considering network processes:

(i) A focus on the network process relevant for a specific research question in an early stage of
a network analytic project will help to reduce the number of appropriate network represen-
tations and the number of applicable network measures.

(ii) The analysis of datasets containing real-world network flows has shown that real-world net-
work flows show different properties than simple, commonly used flow models. Thus, in
order to analyze networks with respect to the actual flow, real-world data needs to be taken
into account.

(iii) This is particularly true for network measures assuming a network flow, such as centrality
measures. The results presented in this thesis showed that commonly used centrality mea-
sures overestimate and underestimate the importance of nodes with respect to the actual
network flow. Thus, when applying a centrality measure on a network, its results need to be
interpreted with care.

8.1 Future work

The work presented in this thesis can serve as a starting point for further research dedicated to the
analysis of network flows, particularly with respect to existing network measures andmethods. We
therefore see several aspects for future work:

• A major challenge of this work was the collection of suitable datasets containing real-world
network flows, since only a few suitable datasets are available. A big task for the whole
research community is therefore to collect of further datasets, and make them accessible to
the community.

• This work mainly focused on centrality measures and reviewed this family of network mea-
sures with respect to their assumptions. In future work, other types of networkmeasures also
need to be evaluated with respect to the assumptions incorporated in them, particularly with
respect to assumptions about process properties. Using the available network flow datasets,
those assumptions can be evaluated as we did in this thesis for centrality measures.

• In Chapter 3, we compared the properties of real-world network flows to the two simplest
models for trajectories, shortest paths and random walks. Since both extremes did not yield
satisfactory results such that one of these models was able to reproduce the properties of
real-world network flows, future work can be dedicated to investigate whether more sophis-
ticated trajectory models are able to yield better results. While there exist dedicated trajec-
tory models for trajectories of specific domains, a unifying model applicable for trajectories
from different domains is missing–like, for example, the Small-World-model, which is valid
for networks from different contexts.

• In Chapter 4, flow-based variants of centrality measures were introduced for testing the im-
pact of each assumption. This was done using the empirical data of real-world network flows.
While it would certainly be interesting to extend this approach by using more diverse net-
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work flow datasets, there are also other interesting extensions: Using synthetic flow data
where the violation of each assumption can be controlled instead of using empirical flow
data, would allow a more systematic evaluation of each assumption. However, an analyti-
cal approach instead of a data-driven simulation approach can also be considered. Further-
more, in this work, only two centrality measures were considered. A systematic extension to
other centrality measures as well as to other types of network measures seems worthwhile.
For example, there exist several clustering algorithms, such as the Girvan-Newman algo-
rithm [GN02], based on shortest paths. Although further considerations will be required, it
might be interesting to check whether incorporating real-world network flows into this type
of methods yields intuitive results. For this approach, though, datasets containing a network
flow and a ground truth about the cluster membership of each node is needed.

• During the analysis phase for the work presented in Chapter 4, we noticed that there are
groups of nodes with similar ranking behaviors with respect to the centrality variants; for
example, a subset of nodes that is not central with respect to standard centrality, but is central
with respect to flow-based centrality variants. Thus, for this type of nodes, it seems that they
are not embedded well in the network structure, but are relevant for the network flow. In
future work, it might be interesting to formalize this concept which is similar to the concept
of structural equivalence and identify nodes with a similar role with respect to the network
flow.

• While this was not the scope of this thesis, tools for visualizing network flows were needed
during the work on this thesis. To the best of our knowledge, there is no tool available that
is able to visualize a network and its flow based on data. Providing such a tool would be
extremely helpful for the whole research community.
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Supplementary material
Appendix A

A.1 Supplementary material for Chapter 3 (Properties of
network flows in complex networks)

A.1.1 Nodes used most frequently by real trajectories and random walks

In Chapter 3, we compared the properties of several real-world network flows with the properties
of random-walk-based models. Figure 3.11 on page 51 shows the node usage by the real-world
trajectories and by the random-walk-based model variants as a scatter plot. As supplementary
material, we provide Figure A.1 in which the ten most frequently used nodes of each trajectory
variant (real trajectories and random walks) are shown for each dataset. For node usage by random
walks, the average node usage over all N = 500 simulation runs is shown. The points are labeled
with the node labels. For Rush Hour, the labels encode the cars’ position on the board; thus, only
node labels with a Hamming distance of 1 can belong to adjacent nodes.

It can be seen that for the Rush Hour game instances, the nodes used most frequently by each
trajectory variant do not show a large overlap: Besides the node representing the initial configu-
ration, only direct neighbors of the initial configuration are found among the ten nodes used most
frequently by all trajectory variants.

For the DB1B dataset, there are a lotmore nodes that are among the ten nodes usedmost frequently
by both trajectory types, real trajectories and randomwalks: Nine out of ten can be found in the ten
nodes used most frequently by both trajectory types. A similar picture was found for the London
Transport dataset (transitive graph): The node representing London’s main station, King’s Cross
St. Pancras, shows the highest node usage by all types of trajectories. Apart from that, there are
almost no nodes that occur in the ten nodes used most frequently for only one trajectory type.

For Wikispeedia, six out of the ten nodes used most frequently were found to be common for
real trajectories and random walks. Interestingly, the node Latin is the seventh most frequently
used node by the random walks, although it is only the 73rd most frequently used node by real
trajectories and is not adjacent to the most frequently used start nodes of the trajectories.
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(c) London Transport
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(d) Wikispeedia

Figure A.1 Ten nodes used most frequently by real trajectories and random walks.



A.2 Supplementary material for Chapter 4

A.2 Supplementary material for Chapter 4 (Flow-based
centrality measures)

A.2.1 Overlap of rankings

In Chapter 4, we introduced the measure weighted overlap of rankings (see Section 4.3 starting
on page 70) for comparing two node rankings. In this measure, the number of common elements
in the top x nodes of both rankings (their overlap) is considered for each possible x. This can
be visualized by plotting the overlap of the two rankings as a function of x. Since the overlap
function of two identical rankings is the identity function, the size of the area between the overlap
function and the identity line then indicates the extent to which the rankings differ from each
other. Furthermore, it can be seen in which part of the rankings, they exhibit their differences–
rather among the lower-ranked nodes or also among the higher-ranked nodes. Figure A.2 shows
this visualization for comparing the rankings of the flow-based betweenness measures introduced
in Chapter 4 (see Section 4.2.1) to the corresponding ranking of standard betweenness centrality
(including endpoints). The area between the overlap function and the identity line is colored blue,
the maximal1 area (realized by rankings where one is the reverse of the other) is colored gray.
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Figure A.2 Betweenness variants For each dataset and each flow-based betweenness variant, its overlap
with the standard betweenness centrality is shown.

A.2.2 Variation of rankings of flow-based centralities

Figures A.3 (betweenness) and A.4 (closeness) visualize the deviation between the rankings of stan-
dard centrality (betweenness or closeness) and the flow-based centrality variants. For this purpose,
the nodes are drawn on the x-axis (ordered by their ranking position with respect to standard
centrality), and their ranking position is drawn on the y-axis separately for each centrality vari-
ant. Thus, the panels of the standard centrality measure show a straight line. For the flow-based
centrality measures, it can be seen whether the nodes increase or decrease their ranking position

1no ties assumed
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compared to the standard centrality variant. Furthermore, for each node, the span of its ranking
position is shown by a gray vertical line: For each node, the corresponding gray line ranges ranges
from the node’s minimal to its maximal ranking position over all centrality variants.

(a) DB1B (b) Wikispeedia

(c) London Transport (lines graph) (d) London Transport (transitive graph)

(e) Wordmorph

Figure A.3 Betweenness measures Ranking positions of each node with respect to each flow-based be-
tweenness variant and standard betweenness centrality (including endpoints). The x-axis contains all nodes,
ordered by their ranking position with respect to standard betweenness centrality (this order is the same for
all panels of one subfigure); the y-axis represents the nodes’ ranking position with respect to the correspond-
ing centrality variant. For each node, a gray bar indicates the span of its ranking positions: A long gray bar
indicates that a node changes ranking positions considerably from one variant to another.

A.2.3 Top ten nodes of flow-based centrality variants

In Chapter 4, we considered the ranking behavior of those nodes that were among the ten highest-
ranked nodes with respect to any considered centrality variant. Figure 4.14 on page 92 shows this
for all variants of the out-closeness measure. As supplementary material, Figure A.5 shows the
behavior of the high-ranked nodes with respect to any in-closeness variant.

A.2.4 Min-max-ranking plot for flow-based closeness centralities

In Chapter 4, Figure 4.18 on page 97 shows for each node its minimal ranking position over all flow-
based betweenness measures (and standard betweenness centrality) against its maximal ranking
position over all measure variants. We additionally provide the corresponding figure for the flow-
based closeness variants here. Nodes with large differences between their maximal and minimal
ranking positions are shown with their node label.
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(a) DB1B (b) Wikispeedia

(c) London Transport (lines graph) (d) London Transport (transitive graph)

(e) Wordmorph

Figure A.4 Closeness measures Ranking positions of the nodes for standard in- and out-closeness and for
all flow-based closeness measures. Each node’s position on the x-axis is determined by its ranking position
with respect to standard in-closeness. For each node, its minimal and maximal ranking positions with respect
to any flow-based variant are depicted by a gray line.
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(b) Wikispeedia. Note logarithmic scale on y-axis.
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Figure A.5 Top 10 nodes (closeness) Ranking positions with respect to all (in-)closeness centrality variants
of those nodes that are among the ten most central nodes with respect to at least one centrality variant. Top
nodes have rank 1 (top of each plot). The order of the line colors is due to the nodes’ standard closeness
centrality.
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(a) DB1B (b) Wikispeedia

(c) London Transport (line graph) (d) London Transport (transitive graph)

(e) Wordmorph

Figure A.6 Min-max-plot for rankings for flow-based closeness centrality variants: Each node is represented
by a point, and its highest ranking over all closeness variants (flow-based and standard closeness centrality)
against its lowest ranking position over all variants is shown. The color of the dots indicates the nodes’ ranking
with respect to standard out-closeness centrality.
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A.3 Supplementary material for Chapter 5 (Summarizing
trajectories of real-world network flows)

A.3.1 Properties of similarity and distance measures

In Chapter 5, several similarity and distance measures for walks in graphs were introduced. For
each measure, Table A.1 shows its properties (without proof).

Table A.1 Properties of the similarity and distance measures for walks in graphs, introduced and used in
Chapter 5.

Boundedness Non-negativity Coincidence Symmetry Triangle inequality

Set

snss 3 3 7 3 3

sN
nss 3 3 7 3 3

sess 3 3 7 3 3

sN
ess 3 3 7 3 3

Sequence
slcs 7 3 7 3 3

sN
lcs 3 3 7 3 3

Set of δh 3 3 7 3 3

points in δmad 3 3 7 3 7

metric space δN
mad 3 3 7 3 7

δdF 3 3 3 3 3

Sequence of δadF 7 3 3 3 7

points in δN
adF 3 3 3 3 7

metric space δsadF 7 3 3 3 7

δN
sadF 3 3 3 3 7

A.3.2 Algorithms for computing δadF and δsadF

In Chapter 5, variants of the discrete Fréchet distance were introduced for measuring the distance
between two walks in a graph. These include the discrete Fréchet distance δdF ,the additive dis-
crete Fréchet distance δadF , and the simplified additive discrete Fréchet distance (see Sections 5.2.5
and 5.2.5). Eiter andMannila provide an algorithm for computing δdF and (with a slight adaptation)
δadF for polygonal curves P and Q, with a runtime of O(kl) where k and l denote the length of
P and Q, based on a dynamic programming approach [EM94]. Algorithm A.1 shows the algorithm
for computing δadF , given by Eiter and Mannila [EM94] where the notation was adapted to the
notation used in this thesis.

Computing δadF The idea of the algorithm is as follows: A cost-optimal (left-total, right-total,
and order-preserving) mapping between P and Q needs to be composed of cost-optimal mappings
for sub-paths of P and Q. It is, however, not clear at which indices P and Q can be split into sub-
paths such that the optimal mapping for sub-paths is included in the optimal mapping of P and
Q. Therefore, in the dynamic programming approach, a table T is filled in which the costs of the
mappings of the sub-paths at each possible “split index” are stored.

It is easy to verify that a cost-optimal mapping for the walks P and Q cannot contain any N-like
structures: For a cost-optimal mapping containing the entries (i, j), (i + 1, j) and (i + 1, j + 1) for
some i, j, it is clear that the entry (i + 1, j) can be removed from the mapping which still yields
a left-total, right-total, and order-preserving mapping with smaller costs than the previous one.
Thus, the assumed mapping containing such an N-like structure cannot be cost-optimal.
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Algorithm A.1: Computing the additive discrete Fréchet distance δadF for two
walks P and Q in a graph G, algorithm given by Eiter and Man-
nila [EM94] (slightly adapted, notation was adopted to the notation
used in this thesis).

Data: G = (V, E), P = (p1, p2,⋯, pl) and Q = (q1, q2,⋯, qk)
Result: cost(µ) with µ ∈ GP,Q optimal
// T (i, j) contains the costs of the optimal mapping for (p1, . . . , pi)

and (q1, . . . , qj)
1 T (1, 1) ∶= d(p1, q1);
2 for i = 2 to l do
3 T (i, 1) ∶= T (i − 1, 1) + d(pi, q1);
4 end
5 for j = 2 to k do
6 T (1, j) ∶= T (1, j − 1) + d(p1, qj);
7 for i = 2 to l do
8 T (i, j) ∶= d(pi, qj) +min {T (i − 1, j), T (i, j − 1), T (i − 1, j − 1)}
9 end

10 end
11 return T (l, k);

Based on the observation that an optimal mapping cannot contain N-like structures, it is clear that
for any walks P and Q with ∣P ∣ > 1 and ∣Q∣ > 12, the optimal mapping is composed of at least
two node-disjoint parts: For a pair of indices (i, j) (also called pair of separating indices), all nodes
to the left of i (and i itself) are mapped onto nodes to the left of j (or on j itself) and all nodes
right of i are mapped onto node right of j. Thus, if these pairs of separating indices were known,
the computation of the optimal mapping would be easy: Compute the optimal mappings for the
sub-paths between the separating indices and merge them–which yields an optimal mapping for
P and Q. Thus, in Algorithm A.1, a table T of l×k cells is filled such that the entry T (i, j) contains
the cost of the optimal mapping for the sub-paths P1,i and Q1,j .

Computing δsadF In Chapter 5, a simplified version of δadF , i.e., δsadF , was introduced, in which
the set of possible mappings is restricted to the set of left-total, right-total, order-preserving and
right-unique mappings. Algorithm A.2 computes the simplified additive discrete Fréchet distance
for two walks P and Q with ∣P ∣ = l ≥ ∣Q∣ = k in O(k(l − k)) and a space complexity of O(l − k)
plus the costs of storing the graph G, under the assumption that the graph distances between the
nodes are precomputed.

In the following, we assume that P and Q are walks with l = ∣P ∣ ≥ ∣Q∣ = k. Furthermore, for a
given mapping µ, let µi,∆ ⊆ µ denote a submapping of µ that only contains those entries (i′, j)
with i ≤ i′ ≤ i +∆.

We first note that several observations leading to the algorithm for δadF also hold for the possible
mappings for δsadF : For δsadF , too, the optimal mapping cannot yield any N-like structure because
a right-unique mapping cannot contain both (i, j) and (i, j′) for any i, j, j′. Therefore, the optimal
mapping ofF is also composed of optimal submappings along its pairs of separating indices. Hence,
a dynamic programming approach such as the one for δadF can also be used to compute δsadF .
However, since the mapping µ needs to be right-unique, it is no longer allowed that any i ∈ I(P ) is
contained in more than one mapping link. Hence, for the computation of the costs of the optimal
mapping for P1,i and Q1,j , the link (i, j) is added either to the optimal mapping of P1,i−1 and
Q1,j−1 or to the optimal mapping of P1,i−1 and Q1,j .

2Note that if ∣P ∣ = 1 or ∣Q∣ = 1, there is only one possible left-total, right-total and order-preserving mapping.
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Algorithm A.2: Computing the simplified additive discrete Fréchet distance for two
walks P and Q in a graph G

Data: G = (V, E), P = (p1, p2,⋯, pl) and Q = (q1, q2,⋯, qk) with l ≥ k
Result: cost(g) with g ∈ FP,Q optimal
// T (∆, j) contains the costs of the optimal mapping for P1,j+∆ and

Q1,j

1 T (0, 1) ∶= d(p1, q1);
2 for ∆ = 1 to l − k do
3 T (∆, 1) ∶= T (∆ − 1, 1) + d(p1+∆, q1);
4 end
5 for j = 2 to k do
6 T (0, j) = d(pj , qj) + T (0, j − 1);
7 for ∆ = 1 to l − k do
8 T (∆, j) ∶= d(pj+∆, qj) +min {T (∆ − 1, j), T (∆, j − 1)}
9 end

10 end
11 return T (l − k, k);

However, for these mappings, the number of possible pairs of separating indices can be reduced:
Since the mapping needs to be right-unique and left-total and right-total, for each j ∈ I(Q), there
is only a limited range of indices in I(Q) with which j can form a pair of separating indices in an
optimal mapping. Informally, each i ∈ I(P ) can only be used once in the mapping, but all j ∈ I(Q)
need to be ”hit“ by an i at least once. If a j ∈ I(Q) is hit by too many i ∈ I(P ), there are not enough
i ∈ I(P ) left to cover the remaining indices of Q.

Lemma 1

If (i, j) is a pair of separating indices for a mapping µ ∈ F and j ∈ {1, . . . , k − 1}, then
j ≤ i ≤ j + l − k. If (i, j) is a pair of separating indices and j = k, then i = l.

Proof. Let µ ∈ F be a mapping for P and Q and (i, j) a pair of separating indices. If j = k,
then it is clear that i = l, otherwise µ cannot be left-total and order-preserving. Let j < k.
We first prove the first part of the inequality, i.e., j ≤ i. For the sake of a contradiction,
assume i < j. The fact that (i, j) is a pair of separating indices for µ implies that µ1,i is a
left-total, right-total, right-unique and order-preserving mapping for P1,i and Q1,j . Hence,
µ1,i maps i nodes onto j nodes. If i < j holds, µ1,i cannot be right-total and right-unique.
Thus, it needs to hold j ≤ i. For the second part of the inequality, i.e., i ≤ j + l − k, we
can use the same argumentation. If (i, j) is a pair of separating indices, µi+1,l is a right-
total, left-total, right-unique, and order-preserving mapping for Pi+1,l and Qj+1,k . Assume
i > j + l − k, then µi+1,l maps l − i < l − (j + l − k) = k − j nodes onto k − j nodes, which is
not possible in a right-total and right-unique way.

The lemma implies that not all (i, j) are candidates for being a pair of separating indices, thus,
in the algorithm computing δsadF , not all (i, j) need to tested, but only those (i, j) that fulfill
Lemma 1. This leads to Algorithm A.2. Note that for the computation of an entry in column j,
only one entry in column j −1 and one entry in column j which were computed before are needed.
Therefore, it is sufficient to keep one column of T in the memory instead of the complete table T .
This reduces thememory requirement to amatrix of size (l−k+1)×1 (plus thememory requirement
for storing the graph).
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List of abbreviations and
notations

Graph and walk definitions

G = (V, E) graph with a V set of nodes, E ⊆ V × V set of edges

∣P ∣ length of a walk

V (P ) node set of a walk

d(v, w) length of shortest path from node v to node w

dF (v) for graphs with goal states: length of shortest path from node v to closest
goal state

d(v, P ) length of shortest path from node v to closest node in V (P )
deg(v) degree of node v

P = {P1, P2, . . . , Pℓ} (multi-)set of walks (trajectories) in graph G

s(P ) source node of walk P

t(P ) target node of walk P

I(P ) index set of walk P

P (i) i-th node of walk P

Pi,j sub-path of walk P containing the nodes P (i), P (i + 1), . . . , P (j)
V P subset of nodes of V that are contained in at least one trajectory of P
q(Pc) for game trajectories: fraction of solving/non-solving trajectories in Pc

σst number of shortest paths from node s to node t

σst(v) number of shortest paths from node s to node t containing v

σP⋅st⋅(v) flow-based version of σst(v) (based on trajectory set P)

k-core a maximal connected subgraph of a graph G in which all nodes have a degree
of at least k

Further definitions

N set of natural numbers (including 0)
R set of real numbers

(X, d) metric space: set X and distance metric d on X

µ mapping relation
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List of abbreviations and notations

µ∗ cost-optimal mapping

HP,Q set of all relations on I(P ) × I(Q)
Γ = {γ1, . . . , γl} grouping (clustering)

σ(v) ranking position of node v

σo ordinal ranking

σmin standard competition ranking

σf fractional ranking

Measures

s ∶X ×X → R similarity measure on X

δ ∶X ×X → R distance measure on X

distance metric distance measure satisfying non-negativity, coincidence, symmetry, and the
triangle inequality

D distance measure for clusters

τP Pearson correlation coefficient

τK Kendall rank correlation coefficient

τ unweighted overlap of rankings

τw weighted overlap of rankings

ov(σ1, σ2, x) number of common elements in first x positions of rankings σ1 and σ2

span(v) span of ranking positions of node v

D(v) degree centrality of node v

C→(v) out-closeness centrality of node v

C←(v) in-closeness centrality of node v

B(v) betweenness centrality of node v

Be(v) betweenness centrality including endpoints of node v

BS , BSW , BR, BRW flow-based betweenness variants

CS , CS′ , CSW , CR,
CRW , CRW ′

flow-based closeness variants

Gini coefficient measure of statistical dispersion

σnss node set similarity

σess edge set similarity

σlcs LCS similarity (based on longest common subsequence)

δh Hausdorff distance

δmad matched average distance

δs surjection distance

δF Fréchet distance for (continuous) curves

δdF discrete Fréchet distance for polygonal curves

δadF additive discrete Fréchet distance for polygonal curves
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List of abbreviations and notations

δsadF simplified additive discrete Fréchet distance

purity(γ) purity of a single cluster γ ∈ Γ
purity(Γ) unweighted average purity of a clustering Γ
purityw(Γ) weighted average purity of a clustering Γ
C(P) network coverage by trajectory set P
nu(v) node usage of node v by trajectories in P
npu(s, t) node pair usage for node pair (s, t) ∈ V × V

npu(k) node pair usage for graph distance k

np(k) number of node pairs in graph G with graph distance k

Naming conventions

P, Q, R variable names for walks

v, w, x variable names for nodes

e = (v, w) variable name for edges

i, j, k, l variable names for indices (natural numbers)

Abbreviations

UNC uniform neighbor choice

BWR backwards-restricted neighbor choice

PL path length restriction

LC line change restriction

IF Internal Feedback; also: control group only generating Internal Feedback

PF Peer Feedback; also: experimental group generating Peer Feedback

HighRC High Response Confidence

LowRC Low Response Confidence

InI Boolean flag whether an error move is contained in initial solution

InP flag whether an error move is contained in peer solution

MAW_IF flag whether error move in initial solution is Marked AsWrong by participant

MAW_PF flag whether error move in peer solution is Marked As Wrong by participant

DB1B airline origin and destination survey; identifier for dataset containing airline
passenger journeys

RH Rush Hour
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