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Abstract

The subject of this thesis is the design of axial flow machines. The type

of turbomachine under examination is used to supply energy for high viscous

fluid flow, as used in mixing and stirring tasks. The high viscous media treated

in these tasks usually have non-Newtonian fluid properties. This kind of fluid

flow is frequently associated with the field of energy and process engineering.

In order to narrow down the problem described, the field of turbomachinery

is restricted to the consideration of propellers. Propellers are used in a wide

range of fluid mechanics tasks. In the form of wind turbines, propellers extract

kinetic energy from a control room and thereby slow down the flow. Propeller

stirrers, on the other hand, increase the energy level of a flow and accelerate

it. Both machines are based on the same principle – only the direction of the

energy flow is to be considered as the opposite direction.

The design of new agitators is usually based on experience. Often, agita-

tors are, therefore, not flow-optimised, and cannot be optimally operated. In

this thesis, it is investigated whether the design processes of modern wind

turbines, which are considered to be mature, can be adapted in order to gen-

erate a flow-optimised geometry for this type of turbomachine as well.

This thesis will first examine the basics of wind turbine design processes.

Special attention will be paid to the differences caused by the viscous fluid

properties under consideration. The highly viscous behaviour of the fluids

under consideration means that the theoretical fundamentals have to be ex-

tended as a result. Such extensions are identified and supplement the theo-

retical basis. The thesis will then present and examine an analytically based

design process for flow-optimised propeller mixers. The procedure is based

on blade element momentum theory.

Application of blade element momentum theory requires detailed knowledge

of the aerodynamic behaviour of the profiles used. This behaviour is usually

only known for low viscosity and high-Re applications, as is usually the case

for wind turbines or propeller engines. Comprehensive profile characteristics

are not available for highly viscous and low-Re applications. In this thesis,

these basics are generated using numerical methods.



In the next step, the newly introduced design method is combined with the

results of the investigations of profile aerodynamics for high viscous low-Re

fluid flow. This combination is done using a calculation process which pro-

duces the flow-optimised geometry of a propeller mixer. The theoretical prin-

ciples of the methods are implemented in an algorithm in such a way that the

resultant turbomachine can be designed for a previously selected operating

point, the design point. In contrast to classical turbomachinery, the design

point additionally requires the specification of viscous fluid properties.

However, in practical use, the final selected operating point of a turbomachine

is often not the design point. The algorithm is examined for its suitability for

inverse power calculation as well in order to compute the complete charac-

teristic curve for a previously generated propeller mixer already in the design

process.



Kurzfassung

Die vorliegende Arbeit stellt einen Beitrag zur Auslegung axial fördernder

Strömungsmaschinen dar. Der untersuchte Typ einer Strömungsmaschine

dient der Energiezufuhr in Strömungen hochviskoser Medien, wie diese z.B.

für Misch- und Rühraufgaben eingesetzt werden. Die dort behandelten hoch-

viskosen Medien verfügen meist über nichtnewtonsche Fluideigenschaften

und treten häufig im Bereich der Energie- und Verfahrenstechnik auf.

Um das beschriebene Problem einzugrenzen, steht als Strömungsmaschine

der Propeller im Fokus der Arbeit. Propeller werden in vielfältigen strömungs-

mechanischen Fragestellungen eingesetzt. In Form von Windenergieanal-

agen entziehen Propeller einem Kontrollraum kinetische Energie, und ver-

zögern auf diese Art die Strömung. Propellerrührer hingegen erhöhen das

Energieniveau einer Strömung und beschleunigen diese. Beide Maschinen

basieren auf denselben Grundlagen – lediglich die Richtung des Energieflus-

ses ist entgegengesetzt zu betrachten.

Der Entwurf neuer Rührorgane basiert in der Regel auf Erfahrung. Oft ver-

fügen Rührorgane deswegen nicht über eine strömungsoptimierte Form und

können nicht optimal betrieben werden. In dieser Arbeit wird untersucht, ob

die als ausgereift geltende Auslegungsprozedur moderner Windenergieanal-

agen auf Propellerrührer adaptiert werden kann, um eine strömungsoptimier-

te Geometrie auch für diese Art Strömungsmaschine zu generieren.

Zunächst werden in dieser Arbeit die Grundlagen der Auslegungsprozeduren

von Windenergieanalagen analysiert. Insbesondere die Unterschiede infolge

des betrachten Fluides werden hierbei berücksichtigt. Durch das hochvisko-

se Verhalten der betrachteten Fluide ergeben sich notwendige Erweiterun-

gen der theoretischen Grundlagen. Diese werden identifiziert und die theo-

retische Basis wird um diese notwendigen Erweiterungen ergänzt. Daran an-

schließend wird eine analytisch basierte Auslegungsprozedur für strömungs-

optimierte Propellermischer eingeführt und untersucht. Diese basiert auf der

Verwendung der Blattelement-Momenten-Methode.

Die Verwendung der Blattelement-Momenten-Methode erfordert das detail-

lierte Wissen über das aerodynamische Verhalten der eingesetzten Profile.



Dieses Verhalten ist bislang meist nur für niedrigviskose high-Re Anwen-

dungsfälle bekannt, wie dies üblicherweise bei Windenergieanalagen oder

bei Propellertriebwerken der Fall ist. Für hochviskose low-Re Anwendungen

sind umfassende Profilcharakteristika nicht vorhanden. Diese Grundlagen

werden im Rahmen dieser Arbeit mit numerischen Methoden generiert.

Die neu eingeführte Auslegungsprozedur wird im letzten Schritt der Arbeit

mit der Profilaerodynamik für hochviskose low-Re Strömungen kombiniert.

Die Kombination erfolgt in einer numerischen Prozedur, deren Resultat die

strömungsoptimierte Geometrie eines Propellerrührers ist. Die theoretischen

Grundlagen der Methoden werden derart in einem Algorithmus umgesetzt,

dass die resultierende Strömungsmaschine für einen zuvor gewählten Aus-

legungspunkt zur Verfügung gestellt werden kann. Im Gegensatz zum klas-

sischen Strömungsmaschinenbau erfordert der Auslegungspunkt zusätzlich

die Angabe der viskosen Fluideigenschaften.

Kenntnisse über den im Betrieb anfallenden Leistungsbedarf einer Strömungs-

maschine sind wesentlich zur Einsparung von Ressourcen. Häufig ist der

gewählte Betriebspunkt einer Strömungsmaschine allerdings nicht der Aus-

legungspunkt. Es wird daher weiterhin untersucht, inwiefern der verwende-

te Algorithmus invers ausgeführt werden kann, um das Leistungskennfeld a

priori für zuvor generierte Propeller zu berechnen.
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Ẋ Time derivative

X + Dimensionless distance in space

XP− Entity infinitesimal upstream from point P

XP+ Entity infinitesimal downstream from point P

Abbreviations

Symbol Description

BEM Blade element momentum theory

CAD Computer aided design

CMC Carboxymethyl cellulose

CFD Computational fluid dynamics

GG Guar gum

LBM Lattice-Boltzmann method

LES Large eddy simulation

LV E Linear viscoelastic regime

NLV E Non-linear viscoelastic regime

PAA Polyacrylamide

RANS Reynolds-averaged Navier-Stokes equations

UDA Ultrasonic Doppler anemometry

XG Xanthan gum

xvii



Part I.

Synopsis



1. Introduction

1. Introduction

1.1. Subject of research

Mixing is widely-used in process engineering. For instance, mixing is used

in the pharmaceutical [8], food, and chemical industries [38; 190], as well as

in the energy sector [109] and even in waste water treatment [56]. Mixing is

important in many areas of process engineering [38; 154].

The process of mixing is applied to various tasks. It is often a matter of ho-

mogenising a heterogeneous system. Thus, mixing is not applied only to

liquid media, but also to gas or even solid materials mixed with a fluid. In

addition, mixing can reduce the thickness of the boundary layer. Hence, mix-

ing is very suitable in heat transfer tasks. Mixing is sometimes subdivided

into five major tasks in accordance with its different applications, for exam-

ple, homogenisation, heat transfer, suspension and emulsion creation and

dispersing, as suggested by Zlokarnik [246] and Stieß [218].

Owing to the wide range of mixing applications and tasks, different criteria

have been developed for mixing process analysis and mixer type selection: a

very important, widely used and often enhanced criterion is the mixing time

analysis [38; 119; 218; 246]. But when performing a mixing time analysis,

a further criterion is necessary, one which describes the goal of the mixing

process. In the case of the homogenisation of two liquids with differing re-

fraction, for example, a streak method can be applied, and the mixing time T

may be defined as that time which has to pass until no streaks remain [218].

Obviously, this criterion is not suitable for heat transfer processes. Hence,

assessing such mixing processes by analysing the mixing time is not appro-

priate and the mixing time is mostly related to the task of homogenisation.

Another more general criterion for mixer selection involves the analysis of

the mixer power consumption. In many subfields of process engineering, the

mixing technology requires an enormous amount of energy. Sometimes, the

mixer is the most expensive item in energy billing for the whole facility. In

biogas power plants, mixing and pumping technology consumes around 10%

of the entire energy [101]. From this point of view, it is very desirable to select
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1. Introduction

power-optimised mixers to reduce energy input. Hence, for these types of

mixing tasks, power consumption should be prioritised over other criteria.

Unfortunately, in many cases, it is not possible to determine the true power of

a mixer before it is utilised. For non-Newtonian fluid flow or complex mixing

systems in particular, estimating the power consumption is still a challenge

[43; 195].

In addition to the uncertainties in presuming power consumption, the shape

of the mixer is often not clearly defined [195], and sometimes taken from

other engineering subfields [134]. In this case, the previous power calcula-

tion cannot be used and the calculation is instead performed by correlation

methods. To meet the power requirements, the mixers are often driven by

over-dimensioned motors to provide a minimum of drive power.

Hence, it needs to be emphasised that there are still open questions on how

to design and how to select a mixer for specific tasks [121; 195].

1.2. Objective

As stated above, mixers that are not well designed will cause inefficiencies

in mixing and in power performance. Achieving maximum energy efficiency

across entire facilities has always been an aim not just since the time of

the energy revolution – and is particularly important in the field of renewable

energy technology.

Although there have been many research projects on mixing in the past and

despite the enormous amount of knowledge that has been gained in this

field in the last 100 years, many important facts about the design process

are still unknown, especially in the subfield of non-Newtonian fluid flow [120;

121]. Therefore, within the scope of this work, a sub-area of mixing will be

considered in order to develop a flow-optimised mixer form. The goal is to

enable efficient mixing as well as an increase in performance, especially for

low-Re viscous fluid flow, which is typically related to non-Newtonian fluid

patterns.

As will be described later, the field of mixing is very broad, with many differ-

ent mixer types and different mixing tasks (see Chapter 2.1 and Figure 2.3).
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Hence, it is not possible to optimise the whole field of mixers by developing

a single machine. The scope of this work, therefore, has to be reduced to

clear, defined tasks in a limited subfield:

The geometrical shape of mixers is often designed by experience or is

taken from other engineering fields (see Chapter 2.1). In the case of the

propeller mixer, it is often taken from marine applications. A propeller is an

aerodynam- ically or hydrodynamically developed flow machine, e.g. those

constructed for aircrafts, ships, or wind turbines. It is more reasonable

to adjust the design techniques of the aforementioned propeller types for

mixing instead of applying a propeller from another field of engineering.

These methods, therefore, have to be adjusted. Finally, a propeller can be

developed especially for the purpose of mixing. Following this idea, the aim

of this work is as follows:

To develop a design process for propellers specifically for the

purpose of mixing.

The design method must provide the geometrical shape of this

propeller for a specific and predefined mixing problem.

The drive power is of fundamental importance and must form the

basis of the design process.

1.3. Solution concept

To develop the required design process for propeller mixers for the agitation

of low-Re viscous fluid flow, the procedure will be developed in line with the

design principles of modern wind turbines. Furthermore, jet theory will be
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adopted. This means that the research project will consist of three different

scientific fields:

• Fluid mechanics:

– Hydro- and aerodynamics

– Free jet theory

– Mixing

• Renewable energy technology: wind turbines

• Rheology: non-Newtonian fluid flow

These three categories will be combined in such a manner that the aim of

the research project will be a logical result, even though these categories are

not commonly combined. Hence, some aspects will be discussed in detail

to help explain their application. Therefore, a short overview of the solution

concept is provided at this point to support understanding.

1.3.1. Overview

As with many fluid machinery design processes, blade element momentum

theory will be applied here to develop a flow-optimised propeller mixer. This

means that the propeller will be designed by considering the momentum

forces at several different sections.

This creates a need for suitable flow profiles for the desired purpose. In the

past, an enormous number of airfoils were developed and investigated for a

variety of different applications. Unfortunately, most of them were developed

for low viscosity and high-Re flow respectively. Nevertheless, some special

flow profiles for hydrofoils or other marine applications can be found in litera-

ture. However, no investigation has been carried out into the performance of

any flow profile in non-Newtonian fluid flow, which means that all the investi-

gations performed previously are worthless with regard to the subject of the

present work.

Repeating the investigations for the airfoil studies with regard to non-New-

tonian fluid flow is not beneficial, specifically because these profiles were
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not designed for high viscous fluid flow. Hence, this study will investigate the

lift and drag characteristics of preselected flow profiles in non-Newtonian fluid

flow. Subsequently, blade element momentum theory can be adopted to non-

Newtonian fluid flow, as mentioned earlier, and can be used to establish the

shape of a flow-optimised propeller by integration via the radial coordinate.

Furthermore – in addition to the as yet unknown profile polar characteristics

– this procedure requires knowledge of the flow conditions of the specific

problem for which the propeller has to be designed.

Typically, the inflow condition into the control volume around the desired flow

machine is not known. In the case of marine applications, the velocity of the

ship is known and may be applied as an inflow condition, but, in the present

case, the propeller is place-bound. To solve this problem, a control volume

with known outflow conditions can be derived from propeller jet theory. Using

mass and momentum balances, the inflow condition can be derived from the

outflow conditions.

Bringing together all of the above fields will cause several problems. These

problems are, however, dealt with in this work, and are discussed below.

1.3.2. Problems to solve

As outlined, bringing the individual tasks together will cause problems. The

use of the above methods in non-Newtonian fluid flow is especially uncom-

mon – in particular, blade element momentum theory has never been applied

to non-Newtonian fluid flow before. Non-Newtonian fluid flow poses a chal-

lenge with most of the methods and procedures, and it causes the following

problems, which were discussed in brief earlier.

The control volume

The application of blade element momentum theory requires the knowledge

of the effective velocity at the flow profile – but at the early stages of the mixer

design process, the inflow conditions are not known and the effective velocity

cannot be calculated.
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However, if the control volume and its outflow are known, the inflow mass flow

rate can be calculated, provided continuity is achieved over the control room.

A comprehensive work by Oebius [146] revealed the sole erosion of ship

propellers in harbour basins. To find the momentum forces of the jet, Oebius

developed a special jet theory for propellers. An expected mass inflow can

be derived from this theory. Assuming the validity of the control volume, all

necessary velocity profiles can be derived.

In Chapter 6, jet theory and propeller jet theory in particular will be explained

in detail. In Chapter 7.1.1, Oebius’ theory will be adopted for viscous fluid

flow.

Profile characteristics

Blade element momentum theory involves airfoil characteristics such as drag

and lift. The most convenient way of determining these characteristics is

to perform investigations in a wind tunnel. The airfoil under investigation is

mounted on multi-component scales. By varying the angle of attack and the

flow velocity, a profile polar diagram consisting of lift and drag coefficients

can be derived. Both coefficients are plotted against each other and the wind

speed variation data is collected to produce a profile polar diagram which,

according to Lilienthal [125], provides an array of curves, with its array pa-

rameter being given by the Reynolds number.

In the past, this was performed for a huge number of profiles – mostly in

air, sometimes in water, but never in fluids with varying viscous properties.

Hence, to utilise blade element momentum theory, the procedure of investi-

gating flow profiles has to be repeated for a broad variation of non-Newtonian

media. Owing to the enormous amount of available profile data, which has

been analysed since the early work by Lilienthal in the late 19th century, it

is not convenient to analyse all the available profiles for non-Newtonian flow.

One alternative is to develop new profiles, but this is not suitable, either, since

the common method in designing airfoils is related to potential flow and, thus,

to inviscid fluid flow.

It makes more sende to select suitable profiles that are already available
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for investigation with non-Newtonian media. Unfortunately, the loads for a

flow profile on a small-sized test bench would be very low, while the effort in

operating such a test bench with several non-Newtonian fluids would be very

high. In this work, therefore, all profile investigations will be performed by

numerical methods (see Chapter 7.2). The fundamentals of aerodynamics

are discussed in Chapter 3.

The Reynolds number

When performing investigations of flow profiles in non-Newtonian fluid flow, a

serious problem arises: there is no unambiguous viscosity for non-Newtonian

fluids and the Reynolds number cannot be calculated. This means that the

results that are obtained cannot be compared with each other. In the end,

all the results will be worthless. Hence, a method is defined to calculate a

Reynolds number for non-Newtonian fluid flow.

In Chapter 5, non-Newtonian fluid flow, together with common and advanced

methods to calculate a Reynolds number for non-Newtonian fluid flow, will be

discussed in detail.

Derivation of a geometrical shape

The aim of this work is to develop the shape of a flow-optimised propeller

mixer. A further goal is to estimate the drive torque within the design process

in a highly accurate manner.

The aim is to establish an analytical design method to solve the issue. Owing

to the similarities between wind turbines and propeller mixers, common wind

turbine design methods will be applied.

Unfortunately, the procedure requires the Reynolds number, while the

Reynolds number is a function of chord length and local apparent viscos-

ity. Both are unknown at the beginning of the design process and the method

has to be solved iteratively. Because of this issue, the design process must

apply numerical methods. In addition, the algorithm must be combined with

an optimisation procedure to guarantee the most suitable solution.

8
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Part III covers the overall design process and will be presented in detail in

Chapter 7 and validated in Chapter 8 and 9 respectively. The fundamen-

tals of the method, taken from the technique of wind turbines, is outlined in

Chapter 4.
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2. Brief literature overview

Before the mandatory fundamentals, as derived from the solution concept,

are discussed, a brief literature overview is given in this chapter to outline

recent developments in the main research areas this work is related to.

In general, the main research areas under consideration here are mixer de-

sign and the design concept of modern wind turbines. Nevertheless, mixers

and wind turbines are not the only focus of this work. All applied fundamentals

and techniques are described later in more detail along with the fundamen-

tals of wind turbines. These can be found in Part II.

2.1. Mixer design processes

The beginning of mixing

Humankind has been mixing fluids and solids for centuries. Nevertheless,

the history of mixing is not well documented. One of the first references can

be found in Agricola’s ‘De Re Metallica Libri XII’ of 1556. There, Agricola

[3] describes the application of mixing in the metallurgical process of gold

extraction, [3; 120; 121], as illustrated in Figure 2.1. It can be assumed,

therefore, that mixing is a centuries-old technique.

However, the main efforts in research and development are quite recent and

took place as recently as the middle of the last century. The first detailed and

scientific description of the knowledge of mixing was written by Fischer [64] in

1911. He called for increased efforts in investigating mixing processes due to

the fact that mixing was still not well-researched and was even not accepted

as a technical discipline in its own right. In contrast to Fischer’s statement,

Zlokarnik [246] summarised in 1999, that mixing had been well investigated

for a variety of mixers. Hence, within about 90 years, the field of mixing had

been researched with an enormous degree of effort [120; 121]. Nowadays,

mixing is understood as a discipline in its own right, as a technique that is

highly relevant to process engineering in particular, and is used in a very
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Figure 2.1. Historical application of mixers for metallurgical processes in the Late Middle Ages,
taken from Kraume [121] according to Agricola [3]

broad field of engineering, such as e.g. in the food or pharmaceutical indus-

tries, and in wastewater treatment and energy technologies [38; 119; 154].

As summarised by Kraume [120, 121], the investigation of two theoretical

fields were of major importance for the study mixing and led to greater under-

standing of it. These fields were dimension analysis and statistic turbulence

theory.

The first field of dimensional analysis, also called π theorem, is frequently

associated with Buckingham [29]. However, it was originally formulated by

Riabouchinsky [185] and Federmann [63]. The earlier publication by Vaschy

[230] is also related to the field of dimensional analysis but was not recog-

nised by the scientific community. The π theorem is still the procedure used to

derive relevant dimensionless numbers to fully describe a problem; it is also

the topic of many different work, such as those by Pawlowski [155], Spurk

[216] or Zlokarnik [247]. In the field of mixing, the very important Newton

11
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number Ne and the Reynolds number Re are derived from the dimensional

analysis; see Chapter 5.3 for a detailed explanation.

The second field, statistic turbulence theory, is especially important for turbu-

lent mixing. This theory traces back to the research on the energy cascade by

Richardson [186], and the work of Kolmogorov [117, 118]. The work of both

researchers helps explain the transfer of turbulent energy from the mixer to

the mixed fluid.

Power consumption agitating Newtonian fluid flow

Although both theories help to understand the principles of mixing, they can-

not answer the more general question about a mixer’s power consumption.

The first investigations into power consumption were performed by Thomson

[221] and Unwin [227] in the late 19th century and by Buckingham [30] and

Wood et al. [241] at the beginning of the 20th century, but the broad research

of this field was investigated with regard to both aforementioned theories in

parallel in the middle of the last century. In 1933, Hixson and Wilkens [98]

investigated the power consumption of a 45 ◦ pitched blade turbine with four

blades. By analysing the power consumption for a broad parameter vari-

ation, they performed the first comprehensive and documented study of a

mixing system. White and Brenner [237] were also pioneers in the investiga-

tion of power consumption, but Rushton et al. [196, 197] published the first

broad study of mixers in their famous works ‘Power Characteristics of Mix-

ing Impellers – Part I’ and ‘Power Characteristics of Mixing Impellers – Part

II’. The final diagram of their results – see Figure 2.2 – was often adopted

to additional results and published in fundamental literature, for example in

Todtenhaupt and Zeiler [222], Zlokarnik [246], and in Kraume [119].

Power consumption of agitating non-Newtonian fluid flow

However, these researchers did not investigate the power consumption of ag-

itating non-Newtonian fluid flow – this subfield of mixing came to be of interest

in the 1950s. Magnusson [128] performed fundamental work in this field. He

formulated the concept of effective viscosity, often referred to as apparent vis-

12
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Figure 2.2. Historical results of power characteristics according to Rushton et al. [196, 197]

cosity: as a thought experiment, Magnusson considered two identical mixer

systems. While the first system was filled with a Newtonian fluid, the sec-

ond one was filled with a non-Newtonian fluid. Both mixers were driven with

the same shaft speed while the torque was observed. By notionally chang-

ing the viscosity of the first system, the torque was adjusted to the torque of

the second system until both mixing systems had the same torque values.

Then, Magnusson assumed, the non-Newtonian fluid would have the same

viscosity as the Newtonian fluid.

Based on this concept, a pseudo-correlation between Newtonian and non-

Newtonian fluid patterns is suggested: it is possible to transform the investi-

gations into the power consumption of Newtonian fluid flow to non-Newtonian

fluid flow. One of the most important pieces of research in the design of mix-

ers for non-Newtonian fluid flow was carried out by Metzner and Otto [131]

in 1957. Metzner and Otto found that when the shear rate (∂v/∂r) around a

mixer is reduced to a mean value γ̇mean, this value is proportional to the shaft

speed of the mixer, provided the mixer is operating in the laminar regime1.

Introducing a geometry-specific coefficient (often called Metzner and Otto’s
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constant) yields the shaft speed-based concept, which is the quasi-basis of

the state-of-the-art design process for mixers agitating non-Newtonian fluid

flow. In addition to the fundamental work of Metzner and Otto, Metzner and

Taylor [133] and Metzner et al. [134] proved their origin concept and validated

the concept for propeller mixers.

As well as the concept of Metzner and Otto, the research by Rieger and

Novak [187, 188, 189] enables scale-up (or scale-down) of an existing mixer,

as long as the power characteristics for agitating Newtonian fluid flow are

known.

Both procedures are documented well in literature. For further details, refer

to Nagata [139], Böhme [20], Todtenhaupt and Zeiler [222], Knoch [116], or

Kraume [119].

Criticism and enhancements of Metzner and Otto’s concept

Owing to the very simple relationship proposed by Metzner and Otto, and

be- cause of its simplicity in practical use, the shaft speed-based concept is

almost the standard procedure, and is common in the process industry. How-

ever, the concept has often been criticised, precisely because of its simplicity.

The concept has been frequently commented on and examined for this rea-

son, see Blasinski and Rzynski [25], Doraiswamy et al. [54], Shekar and

Jayanti [211], and Henzler [93]. In other investigations, Metzner and Otto’s

concept has been analysed for special issues and, different researchers have

often found contradictory results.

The concept of Metzner and Otto have mostly been criticized because of its

fluid dependency. Kelkar et al. [111, 112] proved the concept and found that

the concept is valid for creeping flow and also for viscoelastic fluids. How-

ever, Ulbrecht and Wichterle [226] and Pawlowski [156], emphasised the un-

certainties of the concept. Godleski and Smith [79] discovered the validity of

the concept for varying flow indices as well, while Tanguy et al. [220] and Re-

viol [178] found that the proportional coefficient of the concept has to depend

on the fluid properties. Finally, as a first researcher, Höcker et al. [91] sug-

gested that there must be a clear, pronounced dependency of the concept
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on viscoelastic fluids, which was confirmed by Reviol et al. [180]. Hence, the

concept apparently depends on the mixed fluid, while the dependencies are

not fully understood. Pawlowski’s critique in particular is theoretically based

and targets the pseudo correlation of Newtonian and non-Newtonian fluid

properties formulated by Magnusson.

The geometric dependency has also been frequently discussed. Even though

Metzner and Otto claimed the proportional coefficient was depending on the

geometry of the mixer, Calderbank and Moo-Young [31] assumed a constant

coefficient, without any connection to the shape of the mixer. Schümmer

[205], Bertrand and Couderc [14], Ducla et al. [58], and Shekar and Jayanti

[211] investigated different mixers, with the conclusion that the proportional

factor has to be constant but different for certain mixer types. This is in agree-

ment with most of the research.

Alternatives to Metzner and Otto’s concept

In the past, several more accurate procedures were presented, e.g. by

Böhme [20] and Kluck [115], but they could not verify these themselves in

practice because of their complexity. It seems to be more convenient to apply

certain enhancements, such as those proposed by Henzler and Obernosterer

[94], Wassmer and Hungenberg [236], or Reviol [178]; Reviol et al. [179]. As

a consequence, the uncertainties of the concept seem to be accepted – and

thus also the relevance of the concept for practical use because of its sim-

plicity. For this reason, the concept of Metzner and Otto is accepted as suf-

ficiently accurate [238] and is still the accepted method in designing mixers

[181].

Design and operation purposes of different mixer types

While the history and design of mixers have been outlined, one major topic

is missing: there is no method to derive the geometrical shape of a mixer,

other than experience or by taking a mixer from another field [181]. In lit-

erature, however, design proposals such as DIN28131:09-1992 [53] can be

found, though these proposals are approximate and do not answer the ques-
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Figure 2.3. Mixer types for different mixing tasks, Propeller (1), Pitched-blade turbine (2), Blade
turbine (3), Helix (4), Intermig (5), Paravisc (6), Combijet (7), Phasejet (8), Isojet B (9), illustra-
tions taken from Chmiel et al. [39]

tions about flow optimisation. This is a crucial fact with respect to mixer ef-

ficiency. Therefore, contemporary applied mixers are highly specialised flow

machines, optimised for one certain task, and often related to the opera-

tional experiences of single manufacturers, such as the INTERMIG impeller

by EKATO, see Figure 2.3-5. Figure 2.3 illustrates other typical mixer types

for different mixing applications.

The typical application of the mixer types shown is described for example in

Chmiel et al. [39]. Since this work focuses on propeller mixers, only the com-

mon operational purpose of this type will be discussed: typically, propeller

mixers are applied if high flow rates are the aim of the mixing task [246].

The arrangement is mostly centric to the symmetry axis of the vessel, but an
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eccentric position is also possible. Propeller mixers are utilised to agitate tur-

bulent and high viscous fluid flow – typical values for the viscosity are about

µ = 500mPas, but propeller mixers are also applied for agitating fluids with

even higher viscosity of about µ = 8000mPas as well. The common circum-

ferential velocity is u = 2–15m/s [119; 246]. Owing to these facts, propeller

mixers are widely used, such as e.g. in the field of wastewater treatment and

biogas power plant technology.

2.2. Wind turbines

As noted above, the design process of wind turbines is adopted in this re-

search work to design a fluid-optimised propeller mixer. The relevant funda-

mentals of wind turbines will, therefore, be discussed in the following.

Historical utilisation of wind energy

Mankind has been exploiting wind energy for many centuries. In the first

millennium, wind was mainly used for sailing, with the first known utilisation

of wind to drive a rotating machine at the end of the first millennium in around

950 AD, as reported by Baker [9]; Sørensen [215]; Wulff [243]. The principle

of early windmills was drag-based. The east of Persia is believed to be the

place where they were first used – which is why these early windmills are

called Persian windmills. In Figure 2.4, the oldest known drawing of this

concept [243] is shown along with a windmill in Nashtifan, Iran, which still

works to this day.

However, the use of wind energy for industrial purposes is much younger and

does not relate to the historical concept. As mentioned, the concept of the

Persian windmill uses drag, while modern wind turbines use lift.

The theoretical fundamentals of the wind turbines used nowadays were first

taken from marine-type propellers and from airscrews. Thus, wind turbines

and propellers have the same theoretical background. Hence, only wind tur-

bines will be discussed here, even though propellers are also a main part of

this research project.
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(a) Oldest known drawing of a Persian
windmill, taken from Wulff [243], origi-
nally referenced to Al-Dimashqi [5]

(b) Original Persian windmill, Nashtifan,
Iran, Copyright CC by 4.0 Tasnim News
Agency (Attribution) and Mohammad Hos-
sein Taghi (Photographer)

Figure 2.4. The Persian windmill: the oldest means of converting wind energy: the illustration
shows a historical drawing and a photograph of such a windmill in Iran

Blade element momentum theory

Today, as summarised e.g. by Hansen et al. [89]; Jamieson [104]; Snel [212,

213], the common method used to design a wind turbine is blade element

momentum theory – using computational enhancements based on CFD.

The first full formulation of the blade element momentum theory was docu-

mented by Glauert [77]. It is based on two important theoretical approaches,

such as the pioneering work of Rankine [170] and R. E. Froude [67], known

as momentum theory. However, this theory could not describe the geomet-

rical shape of the machine, but only the energy transfer over a hypothetical

rotating disc. In contrast to the considerations of momentum theory, blade el-
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ement theory focuses the flow around a profile. This theory was developed by

W. Froude [69], Drzewiecki [57], and Lanchester [122], and is the second part

of Glauert’s blade element momentum theory. While blade element theory is

an alternative useful approach, this theory was associated with uncertainties

because of the need to know the characteristics of the blades. For many

years, even though all the relevant fundamentals were known, as detailed in

the aforementioned publications, the two theoretical approaches could not be

reconciled. However, Glauert is said to be the creator of the blade element

momentum theory, thanks to his clear and methodological formulation of the

fundamentals and connections of both theories.

Glauert and the other researchers formulated their theoretical considerations

for airscrews and airplane propellers, but Glauert remarked that this theory

is not only valid for airplane propellers, but also for other aerodynamic ma-

chines, such as windmills. Also by utilising blade element momentum theory,

a propeller could be designed by (semi-)analytical methods.

The Betz-Joukowsky maximum

Along with blade element momentum theory, another important research

topic should also be considered: the maximum Betz-Joukowsky limit. In the

early 20th century, three famous European aerodynamics schools investi-

gated the maximum theoretical efficiency of a wind energy machine. Their

considerations were based on the momentum theory, devised by Rankine

[170] and R. E. Froude [67], and led to three different publications with anal-

ogous content: by Lanchester [123] of the British scientific school, by Betz

[17] of the German Institute for Technical Physics at the University of Göttin-

gen, led by Ludwig Prandtl, and by Joukowsky [108] of the Russian Central

Aerohydrodynamic Institute of Moscow. According to a review by Bergey [12],

Lanchester and Betz found the value almost simultaneously. Hence – in their

opinion – the limiting factor should be called the Lanchester-Betz maximum.

Since Bergey did not know of the abovementioned publication of Joukowsky,

van Kuik [229] suggested naming the limit after all three researchers, but

Okulov and van Kuik [148] found that the work of Lanchester [123] is based
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on a mistake, done by C. A. Parsons, as remarked in R. E. Froude [68], and

suggested Betz-Joukowsky maximum as the name for the factor. Further,

Munk [138] too, found the limiting value, but his publication was released af-

ter from the publications by Betz and Joukowsky. However, since 1920, the

limiting factor has been known as the Betz-Joukowsky limit and amounts ap-

proximately to 59.3%, which means that only this amount of wind energy can

be converted.

Chord line distribution of ideal wind turbines

Considerations regarding the maximum efficiency of a wind turbine are merely

theoretical if no machine exists that can extract power from the wind. Unfor-

tunately, the considerations above do not provide any guidance as to how to

design the shape of a propeller for optimal conditions.

To obtain the shape, the blade element momentum theory is applied to calcu-

late the power of an infinitesimal annulus, as described in Gasch and Twele

[72] or Hansen [88]. This procedure can be traced back to Glauert [77] but

had already been initially performed by Betz [19], though Betz considered

infinitesimal axial forces instead of power. Subsequently, the infinitesimal

power of the annulus is set equal to the infinitesimal power derived from ideal

considerations. While Glauert applied an induction factor, Conrad [42] ap-

plied a graphical method based on the circulation. Schmitz [204] also en-

hanced the method of using the Betz-Joukowsky limit as the infinitesimal

ideal power by considering the swirl in the wake of the flow.

Note that the German literature typically prefers the equality of the infinitesi-

mal power to the Betz-Joukowsky limit at an annulus, while the Anglo-Ameri-

can literature mostly utilises the induction factors formulated by Glauert [72].

To fully design a wind turbine, further enhancements were necessary, such

as e.g. the tip-loss correction by L. Prandtl in Betz [16], but these corrections

are not within the scope of this work and, so, are not discussed here.
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Figure 2.5. V164-9.5 MW turbines from MHI Vestas Offshore Wind [136]

Additional concepts for the design of wind turbines

In addition to the blade element momentum theory and the Betz-Joukowsky

limit, the wake was also a frequent point of interest in the work of several

researchers. Although Betz [17] did take the wake into account, it was Gold-

stein [80] who first formulated the early vortex theory. Based on the consid-

eration of a vortex, wind turbines can be designed by a lifting line or even a

lifting plane theory, based on panel methods in accordance with Hess [97],

as presented in Hansen [88]; Hansen et al. [89]. But as already mentioned,

the blade element momentum theory is mostly used to design wind turbines,

and only this theory was applied in this work.

Modern wind turbines

At the end of this brief overview, the recent state of the development of mod-

ern wind turbines is shown as a contrast to of the first wind turbines: nowa-

days, turbines are built with about 2 to 5 MW onshore and 3 to 8 MW for

offshore. The largest projected wind turbine2 in the world, the MHI V164-9.5,

21



2. Brief literature overview

was developed by MHI Vestas Offshore Wind. It is shown in Figure 2.5.

Notes

1The shaft speed-based concept of Metzner and Otto was often criticised because of its
uncertainties, but these were often the result of the application of the concept outside of the
laminar regime. However, not only may the flow regime change the proportional factor, but the
geometrical shape and the stirred fluid may do so too, as stated by Metzner and Otto.

2The data for the largest planned wind turbine project was valid at the date of retrieval of the
given information. This was in September 2018 and may no longer be current.
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3. Fluid mechanics of flow profiles

3. Fluid mechanics of flow profiles

This research aims to define a method to design a flow-optimised propeller

mixer. As mentioned in Chapter 1, the method is based on the blade ele-

ment momentum theory that is utilised in wind turbines. In this chapter, the

aerodynamic fundamentals of the blade element momentum theory and the

theory itself will be discussed. The design process of wind turbines has been

described in Chapter 4.

The blade element momentum theory was created by Glauert [77] and is

based on two previous approaches. The first fundamentals were discovered

by Rankine [170] and R. E. Froude [67] and are known as the axial momen-

tum theory. This theory is discussed in Chapter 3.2.1. The second theory is

known as the blade element theory and was first established by W. Froude

[69] and subsequently developed by Drzewiecki [57] and Lanchester [122].

The details of Froude’s theory are discussed in Chapter 3.2.2.

Before blade element momentum theory is explained in Chapter 3.2, the role

of the airfoil is discussed in Chapter 3.1, even though these considerations

were published by Lilienthal [125] in 1889 and thus after the fundamentals of

the blade element momentum theory. The aerodynamics of the profile will be

discussed first for sake of understanding.

3.1. Profile aerodynamics

Considering the aerodynamics of an airfoil, the shape of this profile is very

important for the aerodynamic load. While blade element theory has been

known since its formulation by W. Froude [69] in 1878, the loads of a pro-

file can be calculated in principle, but the significance of the profile’s form

for aerodynamic loads was discovered several years later by Lilienthal [125].

Due to his understanding of the physics, Lilienthal was able to reproduce the

mechanics of flying for the first time [126; 210] and can be said to be the first

flying man ever.
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Lilienthal observed the flight of birds, especially their wings. Figure D.1 in

Appendix D of this work shows the clear understanding that Lilienthal had

from the form and the kinematics of a bird’s wing. He carried out many ex-

periments over a number of years to establish the influences of an arched

profile on lift and drag. Finally, he published his famous book ‘Der Vogelflug

als Grundlage der Fliegekunst – Ein Beitrag zur Systematik der Flugtechnik’

(Translation: Bird Flight as the Basis of Aviation: A Contribution to the System

of Flying Technology). It contains the first polar diagrams, see e.g. Figure D.2

for a flat plate. These can be used to find the profile coefficients required by

the blade element theory.

At almost the same time, Phillips [160] discovered arched profiles as well.

In 1884, Phillips filed his results as a patent. Figure D.3 shows clear con-

gruencies between Lilienthal’s and Phillips’ studies. They reached their re-

sults independently of each other [122; 210], but Lilienthal’s investigations

received more attention from the scientific community due to his methodol-

ogy in research and, of course, because of the success of his spectacular

practical experiments [126]. Hence, although Phillips published his findings

some years before Lilienthal, Lilienthal is regarded as the man who first iden-

tified the influence of the profile form on aerodynamic loads. His proposal

to plot the profile coefficients against the angle of attack and each other has

been widely applied and remains the most-used method.

The form of an airfoil and its terminology will be considered first, then the

resulting loads, and finally, the characteristics of a profile – as utilised in Part II

of this work – will be derived.

3.1.1. General description

Many different profiles have been developed over time for different aerody-

namic task. Most of them can be categorised by profile families, such as

the well-known range of NACA profile series [1]. Each family, regardless of

where it was created, is characterised by a methodological design process to

create different profiles. The profile shape is commonly described by univer-

sal parameters. So, the shape of a profile and its universal parameters will
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Figure 3.1. Geometrical description of a profile: shape, thickness distribution, camber line, and
relevant parameters for mathematical description, as shown for GOE-387

be examined before the physics of the aerodynamical loads.

Shape

The shape of a profile typically consists of a thickness distribution and camber

line. Figure 3.1 shows a GOE-387 profile (upper view), which is assembled

by its thickness distribution (middle view) and camber line (lower view). This

kind of profile is typical for subsonic flow only, while profiles for other flow

tasks, such as supersonic flow, are quite different. However, only profiles for

the subsonic flow are discussed, as these are more relevant for the project,.

Besides the mentioned parts, Figure 3.1 illustrates all typical parameters

which characterise an airfoil. The length of the profile is given by the length

of chord line l which reaches from the leading edge to the trailing edge of the

profile. The maximum thickness is given by the relative thickness yTH/l and

is positioned at xTH/l, while the relative maximum camber is yCA/l at xCA/l.

The leading edge can be characterised by the relative leading edge radius

rLE/l and the trailing edge by the angle 2 · ϑTE. Lilienthal utilised most of

these parameters to characterise the profiles of his investigations.
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Figure 3.2. Aerodynamic loads on a profile under flow conditions, as shown for GOE-387 –
illustration schematically drawn and not to scale

Kinematics and loads

A specific profile can be obtained on the basis of the parameters above. De-

pending on this profile and on a specific flow condition, different forces will

result at the airfoil. Figure 3.2 gives an overview of the acting forces, with a

profile under a flow with velocity v and angle of attack α.

While investigating flat plates and cambered profiles, Lilienthal recognised

that, under the flow conditions described above, the lifting force FL, which

is perpendicular to the direction of the velocity v, will occur, while drag force

FD acting in the direction of the velocity. Both forces can be calculated by

applying Equation 3.1 and Equation 3.2 1, provided the coefficients CL (lift)

and CD (drag) are known. The area A is mostly understood as a rectangle

projected to the plane of the chord line and not as the surface of the profile.

FL = CL ·
ρ

2
· v2 ·A (3.1)

FD = CD ·
ρ

2
· v2 ·A (3.2)

The vector addition of FL and FD gives the resulting force FR, which can be

applied at the centre of pressure.

The centre of pressure results from the pressure distribution at the profile and
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Figure 3.3. Distribution of the pressure coefficient4 Cp over a profile, illustration for three dif-
ferent angles of attack α for Re = 1 · 106 exemplary for GOE-387, calculated with JavaFoil from
Hepperle [95]

is caused by the differences in the velocity field at the top and the bottom of

the profile. Figure 3.3 shows the dimensionless pressure Cp, according to

Equation 3.3, for the profile GOE-387 as a function of the dimensionless x-

coordinate of the considered airfoil for different flow angles. In Figure 3.3, the

Reynolds number was at a constant value of Re = 1 ·106 while three different

angles of attack were analysed. So, three different courses for Cp can be

obtained2. For each course, the bottom (pressure side) and the top (suction

side) are marked in the diagram. As can be seen, the course of the curves

is varying with the angle of attack and thus the centre of pressure varies as

well. 3

Cp =
p− p∞
1
2 ρ v

2
∞

(3.3)

Under the assumption that the weight force always affects the centre of grav-

ity, the pitching moment T has to be induced because of the variation of the

centre of pressure.

In total, three mechanical moments are induced by the pressure distribution,
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3. Fluid mechanics of flow profiles

and all the three moments have to be considered with regard to the aerody-

namical loads of a profile. These moments are the lifting force FL, the drag

force FD, and the pitching moment T .

Aerodynamic characteristics of a profile

Consideration of the moments is not relevant for practical use and only the

dimensionless coefficients of the loads will be considered, as proposed by

Lilienthal.

Therefore, the coefficients lift CL, drag CD, and pitching moment CT are taken

into account when analysing the characteristics of a profile. Nevertheless,

as described above, the centre of pressure moves with the flow conditions

and hence is not suitable for describing the pitching moment. In the field

of aerodynamics – especially in the subfield of flight stability – the pitching

moment CT,0.25 for 25% chord length is analysed instead.

Figure 3.4 illustrates the three dimensionless coefficients using the exam-

ple of the GOE-387 profile. Since the characteristics of subsonic airfoils are

similar, these are illustrated by the chosen example:

Each subfigure of Figure 3.4 shows a coefficient as a function of the angle of

attack α. To show the influence of the velocity, a family of curves is shown

with the Reynolds number as the array parameter for each plot. Figure 3.4a

also contains information about zero-lift and maximum-lift conditions – owing

to reasons of simplicity, these are only given for a single Reynolds number as

an example (here Re = 1 · 106).

As can be seen in the lift plot shown in Figure 3.4a, the course of the curve

is linearly rising for a huge interval of the angle of attack α, starting approxi-

mately with the zero-lift value and ending with the maximum-lift value: in the

chosen example, zero-lift takes place at α = −5 ◦ , while the maximum-lift of

CL = 1.846 is reached at α = 15 ◦. These parameters are very important for

the design process and should be close to the given example for flow profiles

with high aerodynamic loads.

For suitable flow profiles and for the mentioned region, the coefficient CD

reaches its lowest values, see Figure 3.4b. According to Gasch and Twele
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Figure 3.4. Aerodynamic characteristics of a profile: lift coefficient CL, drag coefficient CD,
and the pitching moment coefficient CT over the angle of attack α for different Reynolds num-
bers, as shown for the airfoil GOE-387, calculated with JavaFoil from Hepperle [95] and taken
from the AID Airfoil Investigation Database [4]

[72], the lift coefficient is about 20–100 times higher than the drag coefficient

for suitable profiled.

Figure 3.4c shows the course of the pitching moment coefficient CT,25. All

the curves of the array are negative and declining for rising flow angles. Al-

though the pitching moment coefficient is very important for the flight stability

of planes, the profiles are fixed at a hub in this work; thus, the pitching mo-

ment is not relevant for further considerations and will not be considered.

Typically, the coefficients of lift and drag are plotted against each other –

Figure 3.5 shows this kind of plot for the chosen example of the GOE-387

profile. Since this type of a polar plot goes back to Lilienthal, these diagrams

are given the name Lilienthal polar.

Figure 3.5 depicts the same Lilienthal polar twice, but only the view on the

right is to scale. In this view, the plotted part of the curve can be understood

as the laminar flow region of the profile which is well illustrated. Note that for

stall, no results are drawn in Figure 3.5. However, the properly scaled view

is not suitable for identifying further characteristics. So, in the left view, CD is

scaled to obtain a clear and comprehensive representation.
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Figure 3.5. Lilienthal polar of a profile for different Reynolds numbers, glide performance illus-
trated for Re = 1 · 106, data aspect ratio not properly scaled (left) and properly scaled (right), as
shown for GOE-387, calculated with JavaFoil from Hepperle [95] and taken from the AID Airfoil
Investigation Database [4]

The scaled Lilienthal polar shows the aerodynamic quality of a profile. When

selecting a profile for an aerodynamic task, profiles with high lift values are

generally desired, while the drag coefficient should be as low as possible.

This optimum point can directly be found on the Lilienthal polar by creating

a tangent curve through the origin of the diagram. While the slope of this

tangent gives the optimum lift-to-drag ratio ǫ, the angle between the ordinate

axis and the tangent curve leads to the glide angle δ = tan−1 ǫ−1. As will

be seen in Chapter 7.3.1, the glide angle is an important criterion for a flow-

optimised propeller shape.

Further details and explanations about the general description of airfoils and

about deriving the shape by applying different mathematical methods can be

found in Schlichting and Truckenbrodt [202].

3.2. Blade element momentum theory

The methods to design wind turbines are strongly associated with the blade

element momentum theory, which is still the standard design process [89;
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104; 212; 213]. Owing to the adaption of these methods to designing a flow-

optimised propeller mixer, this theoretical approach is very important for the

present work. The relevant points will be elucidated in detail below.

In the literature, Glauert is said to be the creator of the blade element mo-

mentum theory. However, in his underlying publication ‘Airplane Propellers’,

he presents the fundamentals of this concept, which are axial momentum

theory and blade element theory.

3.2.1. Axial momentum theory

The fundamentals of axial momentum theory were first formulated by Rank-

ine [170, 171] to analyse ship propulsion. A few years later, R. E. Froude

[67] analysed propulsion by considering the pressure differences. While both

discussed the theory to establish the propulsion of a ship, Glauert [77] gen-

eralised the theory for every form of propeller-like fluid machinery.

In the following, the major steps of Rankine and Froude towards the modern

form of the axial momentum theory, as formulated by Glauert, will be dis-

cussed. Note that only the parts relevant for the present work are discussed.

Underlying assumptions

The aim of the theory, as outlined by Rankine in 1865, was to determine the

thrust FT of a propeller to drive a ship under different ideal and non-ideal

conditions. In his considerations, Rankine regarded an effective area in the

propeller plane, as shown in Figure 3.65. For the total thrust, he formulated

Equation 3.4. Here, v2 is the velocity downstream from the propeller, while v0
is the velocity of the ship and thus the velocity of the propeller itself.

FT =

∫

(A2)

ρ v2 (v2 − v0) dA2 (3.4)

Glauert also applies this equation, but he assumed the principle of relative

motion and thus assumed the propeller as rotating at a fixed point. For this,
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v0 is not related to the velocity of the ship, but to the inflow velocity into the

control room.

Besides the thrust FT, Rankine also discussed in detail how to estimate the

work of the propeller. However, as already mentioned, these considerations

are not relevant for the issue of the present work and are not considered

here. For further details of Rankine’s scientific work, refer to Rankine [170,

171]; Rankine et al. [172].

In 1889, Froude resumed Rankine’s work and outlined the role of the pres-

sure difference over a surface in the propeller plane [67]. He formulated the

theory of the actuator disc by suggesting a “...thin vertical plate, of finite area,

immersed deeply in water and acted upon by a finite normal force.” [67, p.

391, §6]. Contrary the suggestion of Rankine, he proposed to consider the

fluid flow as continuous without any sudden velocity changes, even though

the pressure changes. And as an important result, he formulated Equa-

tion 3.5, which is generally known as Froude-Rankine’s theorem.

v1 =
v0 + v2

2
(3.5)

The procedure, as outlined above, is deduced from sophisticated thought

experiments. Though the origin publications come with several mathematical

proofs, the modern form of the theory was formulated by Glauert. In this

form, the theory was often adopted and can be found, for instance, in Gasch

and Twele [72]; Hansen [88]; Hau [90]; Schlichting and Truckenbrodt [202];

Wilson and Lissaman [240]. Therefore, the modern form of the theory will be

explained in detail below with all relevant mathematical derivations.

Control room

In line with the fundamentals outlined by Rankine and Froude, Glauert con-

sidered a vertical plate, but he followed Froude’s assumptions in describing

the stream tube in which the plate is positioned.

Figure 3.6 illustrates the hypothetical vertical plate together with its surround-
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Figure 3.6. Elementary stream tube to derive the general axial momentum theory, as consid-
ered by R. E. Froude [67] and Glauert [77]

ing stream tube. To identify the relevant loads, a control room is also shown

in the figure.

The fluid enters the control room through the stream tube with the conditions

of the velocity v0 and the pressure p0 at Position 0 . The entering distance

of the stream tube is given by A0. Owing to the supply of the flow with the

power P at Position 1 , the flow is accelerated and hence the stream tube

will contract over the distance A1 on the plane of the rotating plate to A2 at

the outflow Position 2 . Just before the fluid flows through the rotating plane,

the position in front of this plane is named with 1−, while the position just after

the plane is named 1+.

The control room is subdivided into a free part and a bounded part. The free

control room is chosen as a rectangular box that includes the stream tube

and therefore the rotating plate, while the bounded control room contains

only the surface of the vertical plate. Ambient pressure p∞ affects around the

free control room, except for the distances A0 at the inflow and for A2 at the

outflow. In the bounded control room, all forces on the flow caused by the
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plate have to be considered.

Two coordinates – x for the axial and z for the vertical direction – were in-

troduced for the exact identification of the directions in the two-dimensional

plane.

Continuity

First of all, the mass flow balance will be considered. Owing to continuity in

the stream tube, the mass flow rate at the inlet has to be equal to the flow

rate at the outlet, as given by Equation 3.6. From this, the meridional mass

flow rate ṁm is known, which is also valid for Position 1 , as well as for 1+

and 1−, see Equation 3.7. With the assumption of incompressible fluid flow,

density is constant for the whole area. With Equation 3.8, it is clear that the

velocity just in front of the rotating plane is equal to the velocity infinitesimally

after the plane.

ṁ = ρ0 v0A0 = ρ2 v2A2 = ṁm (3.6)

ṁm = ρ1− v1−A1− = ρ1+ v1+A1+ (3.7)

v1− = v1+ (3.8)

Bernoulli’s principle

Based on these assumptions, there is no flow through the surface shell of the

stream tube. Hence, the fluid conditions of an arbitrary section plane perpen-

dicular to the symmetry line can be reduced to the centre point of this section

plane. This means that this single point is representative of the whole section

plane. Thus, considering all possible sections between inflow and outflow,

all the resulting points, taken together, will form a representative stream tube

filament. Owing to the horizontally-aligned rotating axis, the resulting stream

tube filament is also horizontal and identical to the symmetry line of the disc.

The validity of a stream tube filament allows the application of Bernoulli’s

principle.
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Nevertheless, due to the power supply of the flow at Position 1 , the amount

of the total pressure changes. Consequently, Bernoulli’s principle is not valid

when choosing a path that includes the disc. Therefore, two different stream

tube filaments will be considered without including the disc. The first filament

reaches from Position 0 to Position 1−, see Equation 3.9, while the sec-

ond one describes the path from Position 1+ to Position 2 , as described in

Equation 3.10.

p0 +
ρ

2
v20 = p1− +

ρ

2
v21− (3.9)

p2 +
ρ

2
v22 = p1+ +

ρ

2
v21+ (3.10)

To find a relationship between inflow and outflow, Equation 3.10 is subtracted

from Equation 3.9. This leads directly to the difference pressure ∆p, as given

in Equation 3.12.

✘✘✘✘✘(p0 − p2) +
ρ

2

(
v20 − v22

)
= (p1− − p1+) +✘✘✘✘✘✘✘ρ

2

(
v21− − v21+

)
(3.11)

∆p = (p1− − p1+) =
ρ

2

(
v20 − v22

)
(3.12)

Momentum balance

Subsequently, all loads that affect the boundaries of the control area will be

balanced. Loads are either caused by pressure differences or as a reaction

force induced by the geometrical shape of a body. Here, these forces are

summarised by
∑ #»

F . But loads are also caused by fluid momentums, as

summarised by
∑ #̇»

I . The equilibrium of loads is establishes when all fluid

momentum forces are equal to the pressure and reaction forces, see Equa-

tion 3.13.
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∑

j

∂
#»

Ij
∂t

=
∑

j

∂ (m · vn ι ·
#»n )j

∂t

!
=
∑

k

# »

Fk (3.13)

∑

j

[
mj✘✘✘✘✘✘✘
(
∂vjn ιj ·

#»n j

)

∂t
+
(
vjn ιj ·

#»n j

) ∂mj

∂t

]
=
∑

j

ṁj · vjn ιj ·
#»n j

!
=
∑

k

# »

Fk

(3.14)

In this case, all momentum forces
#̇»

I j = ∂ (m · vn ι ·
#»n )j /∂t can be reduced to

#̇»

I j = ṁj · vjn ιj ·
#»n j because of the requirement for stationary conditions and

Equation 3.14 results. In both equations ι is defined by ι =
#»n · #»v
| #»n · #»v | and calcu-

lates the sign and thus the direction of
#̇»

I . Figure 3.7 shows the momentums

discussed above for an example of an axial turbomachine.
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ρA0 (v0n ι0 ·
#»n 0)

2
+ ρA2 (v2n ι2 ·

#»n 2)
2
= p0A0 + p∞ (A0 −A2)

− p2A2 + FT (3.15)

ρA0 (v0n · (−1))
2
+ ρA2 (v2n · (1))

2
= p0A0 + p∞ (A0 −A2)

− p2A2 + FT (3.16)

F̌T = ṁ (v0 − v2) if v0n = v0 ∧ v2n = v2 (3.17)

Considering the fluid state at inflow and outflow as well as the reaction force

at the disc (see Figure 3.6) enables the formulation of Equation 3.15 and

hence Equation 3.16. Due to the relatively slow fluid velocity, the ambient

pressure p∞ and the inlet pressure p0, as well as the outlet pressure p2, are

equal, and finally, Equation 3.17 can be found for the force affecting the disc.

It must be noted that the force affecting the disc F̌T is the reaction force of

the force FT, and thus, they differ by the factor (−1).

Froude-Rankine’s theorem

Among the above-mentioned balances and principles, it is absolutely clear

that the pressure change over the area A1 of the rotating disc has to be

equivalent to the force F̌T, see Equation 3.18.

F̌T = ∆pA1 (3.18)

Together with Equation 3.12, Froude-Rankine’s theorem can be derived by

Equations 3.17 and 3.18. Finally, Equation 3.20 results, which was also

achieved by Froude (see Equation 3.5).
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ṁ (v0 − v2) =
ρ

2

(
v20 − v22

)
A1 (3.19)

⇒ v1 =
v0 + v2

2
(3.20)

This is a very important intermediate result because Equation 3.20 applies a

very simple relationship to calculate the velocity in the propeller plane for the

given conditions at the inlet and outlet.

In addition to the explanations outlined above, Glauert formulated the inter-

ference factor a, which is commonly found in the Anglo-American literature,

and Equation 3.21 results6 for the velocity in the propeller plane. Within this

thesis, the interference factor will not be considered.

v1 = v0 (1 + a) (3.21)

A further important fact, deduced by Glauert, is the validity of Froude-Rank-

ine’s theorem for individual annular elements – this is very important for the

common design process of wind turbines, as described in Chapter 4.2.2, as

well as for the derived design technique for propeller mixers, as described in

Chapter 7.1.

However, the axial momentum theory is limited and comes with two enor-

mous problems: the theory is totally decoupled from the geometrical form

of the fluid machinery required to fulfil a propulsion task. This leads to the

second problem – a rotatory fluid machine will cause swirl in the slipstream

downstream from the machine, but the axial momentum theory was deduced

from a two-dimensional problem.

The unsatisfactory decoupling from geometry in particular makes another

concept indispensable in order to obtain the geometrical parameters of a

fluid machine.
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0
r dr

Figure 3.8. Element of a blade with length dr at the distance r, Glauert [77]

3.2.2. Blade element theory

The blade element theory can be adopted to design the geometrical shape of

a fluid machine and was “...initiated in a rather crude form by Froude in 1878.”

[77, p. 178, Section 4]. Although Glauert credits Drzewiecki [57] as the real

creator of the blade element theory, W. Froude [69] formulated the original

basics of the theoretical approach, but he did not summarise the infinitesimal

power over the propeller radius as other researchers did in later publications.

Froude focused his considerations on the efficiency of the propeller rather

than on thrust or power.

As mentioned, one of the most important research papers with respect to

blade element theory was published by Drzewiecki. The fundamental idea

of his blade element theory is to calculate the thrust and power of a fluid

machine by taking single infinitesimal blade elements into account instead of

considering the machine as a whole. Figure 3.8 shows such an element at

an arbitrary position in the radial direction. Considering every possible blade

element on the radial axis and bringing together all loads of each single ele-

ment to an integral value, the amount of thrust and power can be calculated

for the regarded blade. Figure 3.2 depicts an example element with acting

loads.

To calculate thrust and power using blade element theory, it is mandatory to

split these loads into their components. These are lift and drag. For an airfoil,

the forces for lift and drag according to Equations 3.1 and 3.2, were found as

a function of the related coefficients for lift CL and drag CD, respectively, see

Chapter 3.1.1. However, applying the blade element theory, the forces for

lift and drag have to be applied on a single blade element with infinitesimal

thickness. This is only valid under the assumption that the physics of the
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flow, as described in Chapter 3.1.1, at the airfoil are considered as equal to

the flow at a single blade element with infinitesimal thickness – this means

that the parameters for lift CL and drag CD, as calculated for a certain airfoil,

must be valid for the blade element, and all blade elements are assumed to

be independent of their neighbouring elements of the considered blade.

Under these assumptions, Equation 3.22 and Equation 3.23 follow, for the

infinitesimal lift and drag force at a single blade element:

dFL =
ρ

2
w (r)

2
· CL (α) · l (r) dr (3.22)

dFD =
ρ

2
w (r)

2
· CD (α) · l (r) dr (3.23)

Note that in both equations, the effective velocity w, the chord length l, and

even the coefficients CL and CD are functions of the radial position r due to

their chained dependence on the angle α.

Since the aim of blade element theory is to calculate thrust and power –

just like the axial momentum theory before – the forces dFL and dFD are not

appropriate for this purpose and have to be converted with respect to the rele-

vant directions of thrust and power. For this, an example section, as depicted

in Figure 3.9, will be considered. In the figure, all acting loads caused by the

attached velocity triangle are shown together with a breakdown of the forces

dFL, dFT, and dFR into their relevant components. The figure also contains

the axis of rotation as well as the circumferential direction. The latter direction

is a reference to the velocity triangle because of the perpendicular orientation

of the wind speed to this direction.

Figure 3.9 clearly shows that for the calculation of the thrust, only the axial

component dFT of the resulting force dFR is relevant, while only the circum-

ferential component dFC of the resulting force dFR is mandatory for the cal-

culation of the power dP , see also Equation 3.24. Here, dT is the infinitesimal

torque at the considered position of r and ω the angular velocity.
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dP = ω ·
∣∣∣
(

#  »

dFR · #»n C

)
#»n C × #»r

∣∣∣ = ω · dFC · r = ω · dT (3.24)

Hence, as depicted in Figure 3.9, the axial force dFT and the circumferential

force dFC have to be expressed as their vector sum, which is composed

of the related axial and circumferential components of lift and drag. Thus,

Equations 3.25 and 3.26 can be formed.

dFT = dFL,T + dFD,T = cosΘ · dFL + sinΘ · dFD (3.25)

dFC = dFL,C − dFD,C = sinΘ · dFL − cosΘ · dFD (3.26)

With respect to the loads as depicted in Figure 3.9 and taking the number
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of blades nz into account, for a rotating impeller with the relative angle Θ

between the circumferential velocity u and the effective velocity w, the in-

finitesimal thrust and torque, as cited by Glauert [77], give the final result of

the blade element theory, see Equations 3.27 and 3.28.

dFT

dr
=
ρ

2
w (r)

2
· l (r)

[
cosΘ · CL (α) + sinΘ · CD (α)

]
nz (3.27)

dT

dr
=
ρ

2
w (r)

2
· l (r) · r

[
sinΘ · CL (α)− cosΘ · CD (α)

]
nz (3.28)

Finally, the disadvantages of the above approach should be outlined: in actual

fact, the blade element theory in its primitive form, is very unsatisfactory for

machines with high blade numbers. Wood et al. [242] investigated airfoils

aligned in a cascade and discovered a normalised deviation in thrust between

theoretical calculations and their experimental results of about 3% for all the

discovered variations of the blade number. The deviation in the torque was

estimated at about 4%. Note that the non-normalised results were much

higher for both parameters. These unsatisfactory results are caused by the

blades interferring with each other. Thus, the assumptions outlined above are

not valid for impellers with a high number of blades.

A further problem comes with the axial velocity, as presumed in the prim-

itive blade element theory discussed above. The theory underwent many

enhancements, such as by Betz [15] and de Bothezat [48]. While Drzewiecki

erroneously an undisturbed axial velocity assumed in his considerations, the

authors of enhanced blade element theories applied the axial velocity using

the axial momentum theory, as discussed in Chapter 3.2.1. The first con-

nections between axial momentum theory and blade element theory can be

recognised as a result. Note that this enhancement will be applied in this

research work too, see Chapter 7.1.

However, in the scope of this research, a propeller with a low number of

blades will be designed and further enhancements of the blade element the-

ory are not relevant78.

43



3. Fluid mechanics of flow profiles

Notes

1In Equations 3.1 and 3.2, the coefficients for the lift and drag of an airfoil are given. These
parameters are the dimensionless form of their related force. The mentioned equations can be
found by applying Buckingham’s π theorem, as discussed in Chapter 5.3.1.

2The mandatory calculations to plot the dimensionless coefficients of Figures 3.3 to 3.5 were
performed using the tool JavaFoil from Hepperle [95]. With the exception of Figure 3.3, the
data was taken from the AID Airfoil Investigation Database [4]. The results of Figure 3.3 were
calculated by the author of this thesis, utilising the tool JavaFoil.

3The pressure coefficient Cp may also be analysed for beginning flow separation. For rising
Cp at the suction side, flow separation becomes more and more probabile and can be expected
as a consequence. Hence, the late onset of rising Cp is aimed for, especially for gliders.

4In Figure 3.3, a sudden rise of the plotted curves can be found at x/l = 1. This is because
of the value Cp = 1 for the trailing edge as required from the theoretical background of potential
flow, as applied in the calculation tool. Measurement values would decline otherwise.

5Instead of the stream tube, as shown in Figure 3.6, Rankine assumed a sudden change in
axial velocity over the propeller plane. This was in line with the state of knowledge of those times
and a subject of controversy later. Indeed, the physics of the propeller flow was discussed by
Froude in 1889 in a correct manner, while the mistake of Rankine was repeated by Parsons in
1911 [68, p. 158, Discussion] and led to the Lanchester’ mistake in estimating the theoretical
limit of wind turbines [148].

6The interference factor a, as conceived by Glauert [77], leads to different formulations
of Froude-Rankine’s theorem. When calculating the Betz-Joukowsky maximum (see Chap-
ter 4.2.1), the differences lead to different mathematical derivations: consequently, both theo-
retical approaches lead to the same final result, see e.g. Gasch and Twele [72] for details.

7Modern airfoil theory has a similar approach to the blade element theory but is related to a
different basis. For machines with high blade numbers in particular, it is sufficient to consider the
vortex theory, which considers the vortex system of the propeller and thus the induced velocities.
Because of the low number of blades for propeller mixers under consideration in this research
work, a low deviation due to interference can be expected. This assumption is in line with the
investigations of Wood et al. [242].

8It should be mentioned that even the assumption of the equality of the flow around an airfoil
and a blade element with infinitesimal thickness may be wrong. The reason can be found in
the finite span of the investigated airfoils. Either the measured airfoil has to be dimensioned
by a ratio of 5 or 6 or the measured values have to be corrected – see Glauert [77] for related
formulae.
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4. Wind turbine design methods

Although the goal of this research project is to find a design method for opti-

mum propeller mixers, a brief overview of the contemporary design process

for wind turbines is provided. These procedures are relevant for this research

topic due to the adoption of this design process as a part of the desired de-

sign process of propeller mixers.

4.1. Principles of wind turbines

In general, the physical principles of utilising wind speed in wind turbines can

be subdivided into two different principles:

• The utilisation of the stagnation pressure of the wind speed at a flat

plate or similar bodies as shown in Figure 4.1a

• The principle of aerodynamic lift at a streamline-shaped body. Fig-

ure 4.1b shows an example for the second principle.

While the principle of stagnation pressure is very suitable for wind speed

anemometers, this principle is not relevant for wind energy power plants. For

industrial purposes, only the principle of aerodynamic lift is utilised.

This is because of the maximum tip speed. Typically, the tip speed is given as

the ratio of the maximum circumferential speed to the wind speed: Λ = ωR/c.

While the tip speed ratio of rotors based on stagnation pressure can reach

the maximum values of Λ = 1, which is only possible for idle speed, rotors

based on aerodynamic lift can reach higher tip speed ratios up to Λ = 12 for

one-bladed turbines [72].

Considering the velocity triangles at the leading edge of a single blade of the

wind turbine as sketched in Figure 4.1, it is clear that the effective velocity

at the blade is given by the relative velocity w. The relative velocity is the

vector addition of the wind speed c on the rotor plane and the circumferential

velocity of the rotor u = ω·r. Hence, the value of the relative velocity is always

larger than the wind speed. Thus, the physics of the aerodynamic principle

45



4. Wind turbine design methods

c

w u

n

(a) Wind speed anemometer based on
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(b) Wind turbine for industrial use, Photo:
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Figure 4.1. Wind energy principles

is more suitable for industrial purposes, and only this type of machine will be

considered in the following.

To design a wind turbine based on aerodynamic principles, the most conve-

nient method is to apply blade element momentum theory, as conceived by

Glauert [77], see Chapter 3.2. Although blade element momentum theory

was conceived to design the shape of a propeller, the method provides no

guidance as the maximum power output. This mandatory optimisation was

investigated by Betz [17] and Joukowsky [108] simultaneously. Both Betz and

Joukowsky discovered the maximum power output of an ideal working rotor

with one-dimensional methods.

With blade element momentum theory, it is possible to identify the necessary

overlap of a stream tube with a rotor to obtain the ideal power identified by

Betz and Joukowsky. Both theories are combined in the momentum method
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and will be discussed in Chapter 4.2.

Due to the problems of the momentum method, Chapter 4.3 briefly outlines

the more general vortex methods. However, the momentum method is still

the preferred design process in practice [89; 104; 212; 213].

4.2. Momentum method

The momentum method of wind turbine design consists in the principle of

two theoretical models. The main theory is the blade element momentum

theory, which was discussed in detail in Chapter 3.2. The fundamentals of

this theory are combined with the theory of Betz and Joukowsky to find a

certain impeller shape to extract the maximum possible power from the wind.

4.2.1. Betz-Joukowsky maximum

Betz [17] and Joukowsky [108] both developed the theory independently of

each other. They conducted their research at a time when wind turbines

were used for water pump systems or even to grind corn. Using wind energy

machines to generate electricity was of minor importance, yet was a topic

of discussion at the time [18]. Therefore, they could not have foreseen wind

energy power plants having a major role in the energy sector. All the same,

their theory is still the basis of the contemporary design process [89; 104;

212; 213].

The theory is based on the axial momentum theory by Rankine and Froude

and has similarly approximate assumptions:

• The flow around the wind turbine is reduced to a two-dimensional stream

tube that contains an arbitrary geometrical shape to withdraw power

from the fluid flow, as depicted in Figure 3.6. Note that Figure 3.6

shows a propulsion task, as opposed to the case under consideration:

the principles are valid for both considerations, as cited by Glauert [77].

• The geometrical shape of the impeller was chosen by Betz and

Joukowsky as a hypothetical rotating disc, with this already being de-

47



4. Wind turbine design methods

fined by axial momentum theory by Rankine and Froude. This means

that the real contour of the machine is still unknown and therefore with-

out any further influence for the whole method, except for withdrawing

power.

• Furthermore, the fluid flow needs to be ideal and the fully developed

velocity profile of the incompressible fluid is ideally rectangular without

any time-dependent effects.

From axial momentum theory, the velocity at Position 1 on the disc plane

is known by Equation 3.20, and the change of the kinetic energy from the

inflow at 0 to the outlet at 2 can be calculated while performing an energy

balance with respect to the relevant plane in 1 . The first law of thermo-

dynamics can be applied and leads to Equation 4.1. Taking continuity into

account produces Equation 4.2.

✓
✓✓dE

dt
= ṁm g (z2 − z0) +

ṁm

2

(
v22 − v20

)
+ P (4.1)

ṁm = ρ v1A1 = ρ
v0 + v2

2
A1 (4.2)

Because of the stationary conditions, there is no time dependency. Further-

more, the potential quantities are ignored because of the horizontal aligned

stream tube filament, and finally, with Froude-Rankine’s theorem, the power

P is found, according to Equation 4.3.

P =
ṁm

2

(
v20 − v22

)
= ρ

v0 + v2
4

A1

(
v20 − v22

)
(4.3)

It is obvious that a complete deceleration of the flow in the stream tube by the

disc would withdraw all the kinetic energy of the wind, and one could assume

that this should be the aim of the turbine. However, this would cause a flow

velocity of v2 = 0m/s behind the disc, and the mass flow rate ṁm would be

stopped. Thus, the total conversion of kinetic energy in the wind turbine is

not suitable due to the blocking of the stream tube. On the other hand, it is
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also clear that without deceleration, no power can be withdrawn because of

the equality of the inlet and outlet velocities. Hence, from Equation 4.3, it is

clear that the withdrawn power cannot be equal to the kinetic energy of the

wind. There must be a point of optimum energy transformation.

To identify this point of optimum energy transformation, Betz and Joukowsky

separated the relevant wind energy PWind = ρ/2 ·A1 v
3
0 of the propeller plane

and Equation 4.3 can be transduced to Equation 4.4 using a brief calculation.

P =
ρ

2
A1 v

3
0

︸ ︷︷ ︸
PWind

·

[
1

2

(
1 +

v2
v0

)(
1−

(
v2
v0

)2
)]

︸ ︷︷ ︸
CP

(4.4)

Equation 4.4 can be subdivided into two factors. Since the first factor corre-

sponds to the total power of the wind PWind on the disc plane, the second

factor is the coefficient of power CP of the ideal fluid energy machine un-

der consideration. The coefficient CP is often interpreted as aerodynamic

efficiency.

In the case of the assumed ideal conditions, the coefficient of power is a

function of the velocity ratio v2/v0, which is drawn in Figure 4.2. The course

of the curve shows a clearly distinguished maximum value. Performing a

simple curve sketch, the maximum value for the coefficient can be identified

as CP = 16/27 and is named the Betz-Joukowsky maximum after its creators.

To reach the point of maximum power, a velocity ratio of v2/v0 = 0.3̄ must be

established, see Equation 4.5.

CP,max = CP

(
v2
v0

=
1

3

)
=

16

27
≈ 0.593 (4.5)

These results show that no machine can utilise more than about 59% of the

wind energy, provided the control room and all assumed conditions as de-

scribed above are correctly set. In reality, a lower aerodynamic efficiency can

be expected because of the rough assumptions included in the fundamentals
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Figure 4.2. Course of ideal power coefficient CP over velocity ratio v2/v0 with the maximum
point of power

of the theory, as discussed above.

Note that there are theoretical considerations when creating a ducted flow

around the disc [88]. This would enable the extraction of a larger amount of

wind energy by raising the coefficient of power. Nevertheless, these methods

are not relevant in practice and will not be considered here.

4.2.2. Optimum blade dimension

The principle of the Betz-Joukowsky limit alone is not sufficient to design the

geometrical shape of a wind turbine, but only provides information about the

maximum power output.

Thus, the design process must aim to find a geometrical shape that fulfils

the conditions proposed by Betz and Joukowsky and can achieve the max-

imum power output. Typically, blade element momentum theory, which was

discussed in Chapter 3.2, is applied to identify the geometrical shape.

Under the assumption of sufficient incidence, the lift coefficient CL is typically

much bigger than the drag coefficient CD, and the drag force can be ignored
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[72], especially under ideal conditions, as required by Betz and Joukowsky.

Hence, together with Equation 3.22, Equation 4.7 follows from Equation 4.6

for the circumferential component dFC of a single blade of an impeller on the

rotating plane 1 according to Figure 3.6.1

dFC = dFL,C − dFD,C︸ ︷︷ ︸
≪dFL,C

(4.6)

dFC ≈ sinΘ ·
ρ

2
w1 (r)

2
· CL (α) · l (r) dr (4.7)

The circumferential component dFC of the resulting force will cause loads at

all blades. Thus, Equation 4.7 has to be multiplied by nz. While impellers with

up to 32 blades or just one blade were built in the past 2, the blade number of

modern impellers is typically set to nz = 3. This value does not (only) result

from aerodynamics, but also from structural strength, low noise development,

and also experience. 3

Furthermore, to obtain the power, Equation 4.7 must be multiplied by the

rotation frequency and the rectangular distance from the origin. This leads

to the infinitesimal power of a radial section, see Equation 4.8. Equation 4.9

follows from Equation 4.7. Figure 4.3 illustrates the procedure for a three-

bladed impeller.

dP (r) = dFC, i · nz · ω r (4.8)

dP (r) =
ρ

2
w1 (r)

2
· CL (α) · l (r) dr · nz · ω r (4.9)

Although Equation 4.9 provides an analytics-based method for calculating

the power at an infinitesimal section, by integrating it to the total power of the

impeller, Equation 4.9 cannot be solved yet. Either the geometrical length l or

the infinitesimal power dP are unknown. The other quantities of Equation 4.9

are typically provided within the design process.

The aim of the described procedure is to identify a geometrical shape to

withdraw power from the wind at maximum efficiency as deduced by Betz
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Figure 4.3. Circumferential forces at infinitesimal radial section, three-bladed impeller

and Joukowsky, see Equation 4.5. To solve this problem, the ideal maxi-

mum power will be linearly distributed over the whole propeller. Hence, the

power, according to Equation 4.4 and with respect to the ideal aerodynamic

efficiency of CP = 16/27, is expressed as an integral of r for an annulus, see

Equation 4.10. As outlined by Glauert, this procedure is valid under the given

assumptions.

PIdeal =

R∫

0

ρ

2
c30

16

27
· 2π r dr (4.10)

The infinitesimal ideal power dPIdeal can now be equated with the infinitesimal

power dP at the radial section according to Equation 4.9. This leads to

Equations 4.11 and 4.12.

dP (r) ≡ dPIdeal (4.11)

ρ

2
w2

1 · CL · l dr · ω r · nz ≡
ρ

2
c30

16

27
· 2π r dr (4.12)

At this point, the infinitesimal power of a radial section is related to the amount
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of ideal power that can be withdrawn by the considered section. Hence,

only chord length l is unknown and can subsequently be derived from Equa-

tion 4.12.

After brief calculation, Equation 4.13 can be found. Here, ΛDes = ωR/c1 is

the tip speed ratio for the design point of the wind turbine. Note that even the

coefficient CL is a function of r. This is due to its dependency on the flow

angle α, which depends on the relative velocity w1 of the considered radial

section.

l (r) =
8

9CL nz

2π R√
4
9 +

(
ΛDes

r
R

)2
ΛDes

(4.13)

Not only does the chord length l change with the radial coordinate r, but also

the mounting angle ϕ that defines the angular position of the airfoil of each

radial section. The change occurs due to the change of the flow angle α, as

mentioned above.

To obtain the mounting angle ϕ, the flow angle α has to be subtracted from

the relative angle Θ, as shown in Equation 4.14. From Figure 3.9, for the

relative angle Θ, the following is directly derived: tanΘ = c1/u1. Together

with Froude-Rankine’s theorem and the definition of ΛDes, Equation 4.15 can

be established.

ϕ (r) = Θ− α (4.14)

ϕ (r) = arctan

(
2

3

R

r

1

ΛDes

)
− α (4.15)

Within the rough requirements, assumed by Betz and Joukowsky, Equa-

tion 4.13 calculates the chord length of a blade; with Equation 4.15, its torsion

can be calculated – the course of both parameters is shown in Figure 4.4 for

selected design parameters. Thus, in principle, the geometrical shape of the

blade is known when choosing suitable airfoil profiles for each considered ra-

dial section from a database. For a more detailed explanation of the design
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Figure 4.4. Chord length l (r) and relative angle Θ(r) for ideal blade design, as shown for the
tip speed ratio Λ = 4 (broken line) and Λ = 10 (continuous line) for a hypothetical three-bladed
machine with a constant lift coefficient of CL = 1.2 and a hub radius of r/R = 0.15, the hatching
marks the area of the stream tube, which is overlapped by a single blade

process, refer to Chapter 4.2.5.

The current state of design

At this point, the results found up to this point will be discussed with a view to

evaluating the current state of the design process:

While the course of the chord length l is shown in Figure 4.4a as a plausible

curve, the mounting angle ϕ is not easy to illustrate because of its depen-

dence on a specific impeller design. For identically chosen design points and

different chosen profiles, the geometrical shape of an impeller may vary –

this is because of the change in the glide angle δ when changing the profiles.

Therefore, Figure 4.4b illustrates the relative angle Θ instead of the mount-
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ing angle ϕ. For better understanding, the ratio r/R is drawn over the chord

length l and therefore the relative angle Θ to illustrate the overlapping area of

the stream tube by a single blade as the projection into the theoretical rotat-

ing plane. This region is given by the area under the chord line distribution,

as shown in Figure 4.4a.

Figure 4.4 was generated as a hypothetical example. For this, a blade num-

ber of nz = 3 and a lift coefficient of CL = 1.2 were assumed. While three

is a suitable number of blades, a constant value for the lift coefficient is not

relevant for practical purposes. Typically, the lift coefficient changes with the

radius from low to high values. To achieve a useful distribution, an iterative

design process or even experience is necessary. In the given example, the

course of the chord length and the relative angle alone are the focus of dis-

cussion. So, the practical usability of the graphs was not of relevance, but

their simplicity was taken into consideration.

Besides the elements discussed above, both figures contain two lines: The

continuous curve is for a modern high-speed wind turbine and represents a

tip speed ratio of ΛDes = 10, while the broken curve is for a slow running

machine characterised by ΛDes = 4. Both lines for both figures decrease

monotonically.

The effect of the tip speed ratio ΛDes on both characteristic parameters is

clearly distinguished in the figure, especially for the chord length. For rising

tip speed ratios, the whole curve of the chord length changes to lower val-

ues. Thus, the projection of the impeller to the section of the stream tube

decreases. This means that the overlap of the crossing area of the stream

tube by the turbine becomes lower. But Figure 4.4 shows that the closer the

radial coordinate to the hub, the larger the chord length.

Even the course of the relative angle changes with the tip speed ratio. For low

tip speed ratios, the slope changes slowly, but not for high tip speed ratios.

Considering low relative angles for ΛDes = 10, the slope is very low, while the

slope suddenly changes to higher values for the relative angles of Θ ≈ 25 ◦.

It means that at the tip, the change in the radial position of the blade and thus

the relative angle is very low and almost constant. As the distance to the

symmetry line gets closer, the angular position changes first slightly and then
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rapidly to Θ = 90 ◦.

There is an additional line in the diagram. The line is positioned at r/R =

0.15. This region is where the hub structure begins, and the further course of

the geometrical parameters is no longer of any practical relevance.

Nevertheless, both parameters still rise to higher, albeit theoretical values.

While the region of the tip and the middle of the blade are well designed, the

continuous increasing chord length in particular would lead to a large axial

hub length. Together with the rising mounting angle, the torsion of the blade

would cause huge problems in manufacturing such a blade.

The technical disadvantages arise due to the errors in modelling the fluid

flow. As mentioned before, the theoretical fundamentals of the recent state

are quite rough. In particular, the neglected swirl causes a huge mismatch

between model and reality. Therefore, the theoretical consideration of swirl

and the associated phenomena are discussed in Chapter 4.2.3.

Even the requirement for frictionless conditions will lead to mismatches, but

for the design point considered here, drag forces are significantly smaller

than lift forces and therefore the mistake in assuming frictionless conditions

is relevant only in a minor way, see Equation 4.6. Also, tip-losses caused

by the finite extrusion of a blade are not considered at this point. Compared

to swirl losses, both losses are of minor importance and will be discussed

together in Chapter 4.2.4.

4.2.3. Rotational wake enhancement

One of the major requirements of the axial momentum theory is the require-

ment for two-dimensional flow. Though this assumption is suitable for a the-

oretical approach, as performed by Rankine [170] and Froude [67], these

requirements lead to modelling errors for real fluid machinery: since a struc-

ture in the fluid domain will be affected by the moments caused by the fluid,

the fluid will also be affected by these moments caused by the structure due

to the principle of the action–reaction law. Because of the rotation of the ma-

chine, the loads will be caused by an angular momentum, and this will lead

to swirl in the stream tube as qualitatively illustrated in Figure 4.5.
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Figure 4.5. Stream tube around swirl-affected fluid machine with axial (ci,m) and radial (ci,u)
component of the absolute velocity ci at an arbitrary point with power output P , author’s own
representation based on Hau [90]

To take swirl into account, Schmitz [204] enhanced the common design

method by applying the lifting line theory of Lanchester [122] and Prandtl

[164, 165]. The theory is based on the vortex theory, investigated by

Helmholtz [92], and involves the circulation Γ. Lifting line theory is well estab-

lished in practice and can be found in many references, such as in Schlichting

and Truckenbrodt [202, 203], Wieghardt [239], and many others. However,

allthough lifting line theory can be adopted for the design of fluid machinery,

here only the caused swirl is of interest. A brief overview of the design pro-

cess applying lifting line theory is given in Chapter 4.3, among other vortex-

based methods.

Under the assumption of the vortex theory, the relative velocity changes from

its ideal value w∗
1 to the real value of w1 due to the induction of drag. Thus,

the velocity component wΓ

2 , which is perpendicular to the relative velocity w1,

has to be considered. The vector addition of the velocity components lead

to a change of the absolute velocity c and the velocity triangle according to

Figure 4.6 is found.

As can be seen in Figure 4.6, the absolute velocity c is no longer parallel to

the axis of rotation, and the velocity components cm and cu occur. While the

latter can be understood as swirl, the meridional component of the absolute
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the conditions of circulation, induced velocity wΓ

2
additionally shown as component assembly,
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velocity in the propeller plane becomes Equation 4.16.

c1,m = c∗1 −
wΓ,m

2
(4.16)

Thus, the power according to Equation 4.10 is not appropriate. Balancing

the angular momentum and neglecting acceleration under the assumption of

fully developed flow, leads, together with Equation 4.16, to the infinitesimal

power at the blade as written in Equation 4.194.
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dT =
∣∣∣ #»r × d

#̇»

I C

∣∣∣ = | #»r × ( #»v · #»n C)
#»n C| · dṁ (4.17)

⇒ dT = r c1,u · ρ c1,m 2πr dr (4.18)

dP = dT ω = 2πr2ρ
(
c∗ −

wΓ,m

2

)
wΓ,u ω · dr (4.19)

Note that the consideration of the lifting line theory would lead to the same

result, as shown by Schmitz. However, in the scope of this research project,

the above-presented method was adopted to calculate swirl in the wake of

the propeller.

As with Betz and Joukowsky, the findings of Schmitz for the infinitesimal

power at the section can be equated with the infinitesimal power deduced

from the blade element theory. Finally, the resulting equation can be solved

for the chord length and Equation 4.20 follows.

l (r) =
16π

nz CL
r sin2

[
1

3
· arctan

(
R

ΛDes r

)]
(4.20)

In addition to the chord length, the flow angle α and the relative angle Θ have

to be recalculated to obtain the mounting angle ϕ. The resulting relationships

are given by Equation 4.22.

ϕ (r) = Θ− α (4.21)

ϕ (r) =
2

3
arctan

(
R

r

1

ΛDes

)
− α (4.22)

In comparison with the results of Betz and Joukowsky, the distribution of the

chord length l and the relative angle Θ is calculated differently. Thus, the

course of both functions, according to Schmitz, is outlined in Figure 4.7. The

underlying assumptions of Figure 4.7 are a blade number of nz = 3 and a

hypothetical lift coefficient of CL = 1.2 – they are the same as for the example

results according to Betz and Joukowsky, as shown in 4.4. Besides the two
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Figure 4.7. Chord length l (r) and relative angle Θ(r) according to Schmitz [204] to take
swirl into account, as shown for tip speed ratio Λ = 4 (broken line) and Λ = 10 (continuous line)
for a hypothetical three-bladed machine with a constant lift coefficient of CL = 1.2 and a hub
radius of r/R = 0.15, the hatching marks the area of the stream tube, which is overlapped by a
single blade

examples, both diagrams contain the former results as a faint slight line for

comparison.

Regarding the course of the curves, in the region of the tip, good agreement

can be found between the ideal design and the more practical design by

Schmitz. But the closer the curve is to the hub, the more obvious the differ-

ences are. While the relative angle of Figure 4.7b is in general lower, it is less

so with a rising tip speed ratio. When taking swirl into account, the course of

the chord length changes its characteristics near the hub. Figure 4.7a clearly

shows a turning point, which means that the chord length has a maximum

value in the lower part of the blade near the hub. This is more plausible than

the results of Betz and Joukowsky which lead to a very large chord length
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directly at the hub.

As already mentioned, swirl will be considered within this research project.

Thus, the developed design process, see Chapter 7, contains the method

to calculate the swirl by a momentum balance. Owing to the utilisation of a

high viscous fluid, lifting line theory is not suitable due to the requirement of

a non-viscous fluid flow within this theoretical approach. In Chapter 8, the

influences of the swirl will be investigated in detail.

4.2.4. Further losses

Besides the losses due to swirl, many other losses may occur in the complex

structure of modern wind turbines. But in the field of aerodynamics, only

losses caused by friction and tip flow are of further relevance.

Friction losses

In Chapter 4.2.2, the outlined procedure to design wind turbines comes with

the rough assumption of neglecting friction and thus viscous stresses, see

Equation 4.6. It is obvious that this may cause errors when regarding either

aerodynamically high-loaded profiles or a high-viscous fluid flow.

To take friction into account, it is sufficient to calculate the power ratio in

accordance with Equation 4.23 – it means considering the ratio of a real ma-

chine’s power with the power of the ideal machine, as given by Equation 4.9.

ηFriction =
dP

dPideal
(4.23)

Hence, with Equations 4.6 and 4.9, Equation 4.24 can be found, and finally,

Equation 4.25 is formed while taking the velocity triangle of Figure 3.9 into

account.
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ηFriction = 1−
CD

CL
· tan−1 Θ (4.24)

ηFriction = 1−
3r

2ǫR
ΛDes (4.25)

By Equation 4.25, it becomes clear that the neglect of friction will cause er-

rors if either the fundamental assumption for the insignificance of drag forces

is violated or the profiles are aerodynamically high-loaded – both can be op-

timised by selecting profiles with a high lift-to-drag ratio ǫ.

Tip losses

In the fundamentals of blade element momentum theory, it is essential that no

mass flow passes the stream tube, except at inflow and outflow. In addition to

this requirement, only single cross-sections of a blade and thus infinite airfoils

without hub or tip are regarded. However, the tip of a finite blade in particular

will be affected by the secondary flow because of the pressure compensation

effects and the ideal assumptions are not valid 5.

To take tip losses into account, it is sufficient to introduce the effective but

reduced diameter Dreduced. The method was investigated by Betz [16, with

remarks by Prandtl] and is elucidated in detail in Gasch and Twele [72]6.

Here, only the resulting efficiency ηTip is shown by Equation 4.26. Note that

tip losses are not included in the design method, as discussed in Chapter 7.

ηTip =

(
Dreduced

D

)2

=


1−

4
3 ln 2

nz

√
Λ2
Des +

4
9




2

(4.26)

4.2.5. Final design process

Following the design steps of Chapter 4.2.2 and including the losses accord-

ing to Chapters 4.2.3 and 4.2.4 will produce several well-designed sections.

Note that the typical design process is characterised by a few iteration steps.
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Section 10: DU93-W-210

Section 1: FFA-W3-301

A-A:
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ϕ

Figure 4.8. Typical blade with multiple airfoil profiles, characterised by decreasing chord length
l and changing the mounting angle ϕ with the rising radius r, as realised by several different
airfoils represented by Schubel and Crossley [209]

As the last step of the design process, the considered sections have to be

mounted on a spar in an appropriate manner. As an example, Figure 4.8

shows the final design of a blade comprising a multiple, finite number of dif-

ferent sections.

In Figure 4.8, the considered sections are aligned by their leading edges, but

sections are often aligned by their centre of pressure [72]. As can be seen,

the presented blade consists of multiple sections – an optimum profile was

chosen for each section. Typically, a single blade is designed with airfoils

from different profile series. While the profiles near the hub are relatively

thick for reasons of rigidity, those near the tip become thinner as they are

more aerodynamically loaded than the profiles close to the hub. Besides the

thickness of the profiles, Figure 4.8 also shows the chord length distribution

l (r) and the twist of the mounting angle ϕ (r) over the radius. To illustrate

both functions, Figure 4.9 shows a photo of a wind turbine type E-101 from

Enercon.
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Figure 4.9. Single-blade of a wind turbine type E-101 from Enercon, detailed view of the trailing
edge from hub to tip to illustrate the course of the chord length distribution and the change of the
blade angle, photographer: Marc-André Aßbrock

4.3. Vortex methods

As mentioned in Chapter 3.2, the blade element momentum theory – intro-

duced by Glauert – is established in practice and in the literature. The method

can be found in many references, e.g. in Gasch and Twele [72]; Hansen

[88]; Hau [90]; Schlichting and Truckenbrodt [202]; Wilson and Lissaman

[240]. However, by using one-dimensional methods as in blade element mo-

mentum theory, some physical effects are neglected.

Complex fluid machinery is often related to three-dimensional flow phenom-

ena, especially at the hub and tip, see Figure 4.10. Thus, the method based

on Betz and Joukowsky is not suitable to describe these phenomena. These

effects can be described by considering the circulation Γ on vortex filaments,

as already mentioned in Chapter 4.2.3. The vortex methods are based on the

theorems conceived by Helmholtz and were first formulated as the lifting line

theory by Lanchester [122] and Prandtl [164, 165]. They will be briefly sum-

marised in an overview below. For further details of this theoretical approach,

refer for instance to Schlichting and Truckenbrodt [202, 203], Wieghardt [239]

or Spurk and Aksel [217].
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ΓHub

ΓFree

ΓBounded

v0

Bounded vortex

Free vortices

Hub vortex

Figure 4.10. Vortices for rotating propellers, author’s own representation based on Hau [90]
and Wilson and Lissaman [240]

Lifting line method

As already mentioned, because of the pressure compensation effects at the

tip of finite airplane wings or wind turbine blades, blade element momentum

theory produces unsatisfactory results. Thus, the lifting line theory, as for-

mulated by Prandtl [164, 165], can be applied to solve the problems of the

former approaches.

Lifting line theory is based on the vortex theorems developed by Helmholtz

[92]. Based on this approach, Prandtl claimed that a bounded vortex at the

wing affects the lifting force. Since a vortex filament either has to be a closed

loop, expire at a wall, or be infinite, a free vortex filament merges the bound-

ing vortex filament at the tip. A horseshoe-like vortex results – in the case

of a starting aircraft, the free vortex filaments on both sides merge with the

starting vortex and the vortex filament becomes a closed loop, as depicted

in Figure 4.11. The circulation Γ is a measure for the intensity of the vortex

filament itself.

To apply lifting line theory, a distribution of the circulation is provided on the

wing. The simplest case is to assume a constant value for Γ, but it is more

suitable to assume an elliptic distribution Γ (y) = Γ0

√
1− (2y/b)

2. The rea-
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Figure 4.11. Circulation and vortex filament, schematic view for 2D-extruded airfoil

son can be found in the induced downward velocity7 wind, which becomes a

constant value for an elliptic distribution of the circulation, as can be seen in

Figure 4.12.

Based on the Kutta-Joukowsky relationship according to Equation 4.27 and

Equation 3.22, the effective flow angle α results, see Equation 4.28 and Fig-

ure 4.6.

dFL = ρwΓ (y) dy (4.27)

⇒ α =
2Γ (y)

w l (y) CL
(4.28)

Finally, by applying the Biot-Savart law to the infinitesimal vortex filament −dΓ

at y′ according to Figure 4.12, Equation 4.29 can be found for the induced

flow angle αind due to the relationship αind = wind/w.

αind =
1

4π w

b/2∫

−b/2

dΓ

dy′
dy′

y − y′
(4.29)

The flow angle α∗ (y) of the ideal flow can be found by adding together the

effective flow angle α and the induced flow angle αind, as in Equation 4.30.
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Figure 4.12. Circulation vortex filament for elliptic distribution of circulation, author’s own rep-
resentation based on that of Schlichting and Truckenbrodt [203]

α∗ (y) =
2Γ (y)

w l (y) CL
+

1

4π w

b/2∫

−b/2

dΓ

dy′
dy′

y − y′
(4.30)

From Equation 4.30, either the distribution of the flow angle, or, as is required

in this research project, the chord length distribution l (y) can be calculated,

see Equation 4.31.

l (y) = l0

√

1−

(
2y

b

)2

(4.31)

Note that for Equation 4.31 a constant total flow angle was assumed as well

as an eliptic distribution of the circulation.

Equation 4.31 provides an alternative approach to creating a potential shape

for the shape of an aircraft wing or a propeller blade. Because of the con-

sideration of induced drag as a consequence of the vortex system, the lifting

line theory approach leads to highly qualitative results.
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Disadvantages of the vortex methods

Technical flow in rotating fluid machinery is often associated with complex

vortex structures, such as tip and hub vortices, as can be seen in Figure 4.10.

As elucidated above, the vortex methods allow the calculation of these 3-di-

mensional flow phenomena to a high degree of accuracy. The method can

easily be combined with numerical methods, such as CFD for instance, and

is very important for design processes in practice.

However, the theory is based on the Helmholtz theorems, which are in turn

based on the assumption of negligible viscous effects. In the scope of the

technical fluid flow, it is mainly turbulence effects that dominate and thus the

molecular viscosity is relatively small and although the theorems are suitable

in one sense, they are not within the scope of this research project. This

research topic deals with the treatment of high viscous fluid flow under low-Re

conditions. And thus, the aforementioned requirements for negligible viscous

forces are not at hand and it is not suitable to apply the vortex methods.

Hence, the desired method to design propeller mixers for this kind of fluid

flow, as discussed in Chapter 7, is based on the momentum methods, as

discussed in Chapter 4.2.
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Notes

1The procedure of combining blade element theory with axial momentum theory to describe
the absolute velocity c at a specific blade section by the velocity magnitude v1 on the rotating
plane of the stream tube, is what leads to blade element momentum theory and was done by
Betz [15] to enhance blade element theory. Thus, all further equations in this thesis with any
relationships to blade element momentum theory are given with respect to the indices of axial
momentum theory and the formula symbols of blade element theory as defined in Chapters 3.2.1
and 3.2.2.

2There is a strong connection between the number of blades on the impeller and the aero-
dynamic efficiency of the wind turbine. While high numbers of blades were used in early wind
pump systems, single-blade machines were only built in modern times for research purposes.

3As a new trend in the late 2010s, the utilisation of two-bladed turbines for off-shore wind
farms was discussed due to the superior efficiency and dispensable noise character, but this
concept is yet to be established in practice.

4Taking swirl into account also gives rise to a relationship of the infinitesimal power at a single
section, which can be equated with results using blade element theory. But separating the wind
power dPWind from Equation 4.19 reveals that the resulting coefficient of power CP is no longer
a constant, but a function of the tip speed ratio ΛDes:

CP =

1
∫

0

4ΛDes

( r

R

)2 sin3 2
3
Θ

sin2 Θ
d
( r

R

)

(4.32)

5The tip losses are caused by the tip vortices. Considering a vortex filament, it is clear that
not only tip vortices, but also hub vortices have to exist. This is, of course, true, but typically the
hub vortex is calculated by means of CFD, while this vortex system is neglected in the design
process [72].

6To consider an effective but reduced diameter is sufficient because of the radial distribution
of circulation over the blade: circulation and thus the lifting force will suddenly decrease close to
the tip. The idea is to choose the effective diameter in such a way that it correlates to an ideal
machine without decreasing circulation while the integral value remains the same for the real
machine with decreasing circulation. For details, refer to the notes by Prandtl in [16]. With the
known value of the ideal diameter, the machine can be designed with the method discussed in
Chapter 4.2.2. Subsequently, the ideal power can be reduced by multiplying with the tip efficiency
according to Equation 4.26 to obtain the correct power.

7Lifting line theory predicts the induction of drag, even for the most ideal flow of non-viscous
fluids. The reason can be found in the free vortex, which starts at the tip of the wing due to
pressure compensation effects. This free vortex has to be supplied by energy continuously and
thus the kinetic energy of the wing is reduced. In practice, the induced drag comes with the
induction of the downwards velocity.

69



5. High viscous fluid flow

5. High viscous fluid flow

The flow of high viscous fluids is of major importance in this project. This type

of flow is often characterised by complicated non-linear material properties.

Hence, considering the classic field of fluid mechanics alone is mostly insuf-

ficient, and the field of rheology should also be considered. But the field of

rheology handles the flow of all matter. Since this research field is very broad

and complex, only a short overview of the relevant topics will be given here.

5.1. Flow of matter

The field of rheology investigates the flow properties of matter and thus also

fluids. But within the field of rheology, there is no strict distinction between

fluids and bodies. All real matter, however complex it is, will have an arbitrary

state between two ideal conditions, which are based on simple, yet theoretical

models: the ideal fluid and the ideal body. Therefore, in the following, both

ideal models are explained briefly before the general fluid flow is introduced.

Then, non-Newtonian fluid flow is described, which is often connected with

high viscous liquids and related to the present work.

5.1.1. Ideal constitutive laws

Ideal viscous fluids

First, an ideal fluid flow will be considered. This type of fluid flow can be

described by Newton’s law.

As is commonly known, Newton found in 1714 that there is a proportional

relationship between the force F and the state of deformation. For two-

dimensional shear flow, as shown in Figure 5.1, the state of deformation

can be defined as the ratio of the maximum velocity vmax to the distance

of the gap ∆H, which can be easily reduced to the shear rate γ̇ for infinites-

imal quantities, see Equation 5.1. For infinitesimal quantities, the force F
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dF

dAv (y)y

vmax

∆H

Figure 5.1. Newton’s law

becomes dF and can be transferred to the wall shear stress τ via dividing dF

by the infinitesimal area dA.

vmax

∆H
=
dv

dy
= γ̇ (5.1)

Finally, the dynamic shear viscosity µ can be applied as a constant propor-

tional factor. Taking the density ρ into account, the kinematic shear viscosity

ν = µ/ρ can be derived from the dynamic shear viscosity. Thus, Newton’s

law is commonly formulated according to Equation 5.2.

τ = γ̇ · µ = γ̇ · ν · ρ (5.2)

Frictionless fluid flow is often considered within the field of classic fluid me-

chanics. This is because of the negligible low friction outside the boundary

layer, as it is typical for high-Re problems and modelled by the theory of po-

tential flow. Enhancing the theoretical considerations by viscous flow effects,

for simple Newtonian fluids like air or water, Equation 5.2 is very suitable for

modelling these effects.

While Equation 5.2 represents the most ideal fluid behaviour, the law can

only be adopted for a small number of fluids, as mentioned above. Owing

to the complexity of many technical fluids, Equation 5.2 is not suitable for

modelling their rheological behaviour, especially for a low-Re fluid flow. Many
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technical fluids, even those in the processing industry, are characterised by

high viscous and mostly non-Newtonian behaviour.

Ideal elastic bodies

In keeping with Newtonian fluid, a body is considered to model an ideal elas-

tic body. This body is stressed by an infinitesimal load, dF , as shown in

Figure 5.2.

The force dF leads to the stress τ in the body, thereby causing the strain ∆x

in the x-direction. Together with the distance ∆H, the shear strain γ can be

derived according to Equation 5.3.

∆x

∆H
=
dx

dy
= γ (5.3)

For ideal elastic bodies, the shear stress τ and the shear strain γ are propor-

tionally related, and the shear modulus G can be found as the proportionality

factor. For this ideal linear-elastic body, first described by Hooke in 1678,

Equation 5.4 can be found.

τ = γ ·G (5.4)

Although Equation 5.4 is only valid for ideal bodies and infinitesimal strain,

Hooke’s law is highly important in the field of material science. For small

dF

dA

x
y

∆x

∆H

Figure 5.2. Hooke’s law
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strains, many materials can be modelled in very good agreement by Equa-

tion 5.4 until the onset of plastic deformation.

Ideal viscoelastic fluid

As previously mentioned, real matter cannot be explicitly classified as a fluid

or body within the field of rheology, except for materials with ideal conditions.

It means that all real matter can be classified as being in a state between

Newton’s fluid and Hooke’s body without ever reaching one of these ideal

states. Nevertheless, matter is either characterised by more viscous or more

elastic properties, with viscosity properties dominating for fluids. Only fluids

are of interest in this project and hence the focus of explanation.

γ̇ = γ̇visc. + γ̇elast. (5.5)

When shearing a fluid probe, the response has to occur on a viscous and an

elastic component, as shown in Equation 5.5. When expressing the response

as an equilibrium of loads, the factor λ = µ/G appears, as can be seen in

Equation 5.6. This factor is a time-dependent property of the fluid and is often

referred to as the relaxation time.

γ̇ =
τ

µ
+
τ̇

G

⇔ τ +
µ

G︸︷︷︸
λ

τ̇ = µ γ̇ (5.6)

This model, which represents the simplest way to describe a fluid with vis-

coelastic properties, is called Maxwell fluid1 after its creator, Maxwell, who

established this relationship in 1867. The model takes place on a viscous

damping element, which follows a spring element, see Figure 5.3a. Both ele-

ments are stressed simultaneously. Since the simple Maxwell element is not

able to model real fluids, it is more convenient to consider several parallelised
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Figure 5.3. Maxwell model

simple Maxwell elements. This creates the generalised Maxwell model, as

illustrated in Figure 5.3b.

The generalised Maxwell model can be applied with the enhancements of

Baumgaertel and Winter [10] to identify the necessary number of simple

Maxwell elements and is utilised to model the melts of macromolecules [21;

135], but also for aqueous polymer solutions [180]. The application of this

model has been extensively described by Reviol et al. [180] and performed

for different aqueous polymer solutions.

5.1.2. General fluid flow

With Newton’s and Hooke’s law, and Maxwell’s proposal to model viscoelastic

fluids, linear material properties were considered using the relaxation time λ.

Summarising all materials with linear material properties, they lie on a single

number line, given by the expression ω ·λ,2. On the left of this line, the starting

point is given by Newton’s fluid and its value is 0, while the ending point on

the right is given by Hooke’s body and continues to ∞.

However, in reality, all materials are characterised by more or less distin-

guished non-linear material properties and the mentioned number line of

ideal matter cannot be achieved by real matter, but real matter can come

very close to achieving it. The more distinct the non-linearity, the larger the

distance to the line and both ideal extremes. Pipkin [161] suggested a dia-

gram to combine all ideal and real states in one single chart when the matter
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Figure 5.4. Pipkin’s diagram

is subjected to shear stress, irrespective of how linear or non-linear they are,

see Figure 5.4.

As already mentioned, the Newtonian point can be found in the left corner.

At this point, the shear viscosity µ is a constant, but this state is absolutely

ideal. Enlarging this single point to a larger regime, which can be found in

reality, leads to the Navier-Stokes regime. This regime assumes that the

shear time is low compared to the relaxation time and the shear stress is

a steady load. Because of this, the limit value consideration for low shear

rates of the viscosity function leads to the dynamic zero-shear-rate-viscosity

µ0, which is consequently a constant Newtonian viscosity. For a detailed

explanation of the viscosity function, see Chapter 5.2. In the case of a short

relaxation time, e.g. λ = 1 · 10−12 s for water [135], the Navier-Stokes regime

is appropriate to model simple fluid flow, as considered in the field of classic

fluid mechanics.

Above the Navier-Stokes regime, for rising shear rates, the regime of vis-

cometric flow can be found. This kind of flow is characterised by shear-

dependent fluid properties, while the shear rate is independent of time [102].
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Thus, in this region, the viscosity cannot be reduced to a single value and

the whole viscosity function µ
(
γ̇2
)

has to be taken into account. However,

viscoelastic effects are of minor importance and the fluid can be assumed as

purely viscous but non-linear viscous (see also Chapter 5.1.3 and 5.2 respec-

tively). Many technical fluids in the processing industry are in this regime and

thus this kind of fluid is of major interest in the scope of this work.

Raising the shear frequency ω instead of the shear rate will make the re-

sponse more and more viscoelastic. This regime is called the linear vis-

coelastic regime (LVE). In its simplest formulation, this regime is modelled

by Maxwell’s model4, as illustrated in Figure 5.3. Above the LVE-regime, the

non-linear viscoelastic (NLVE) regime can be found. This region consists of

materials that are very hard to achieve by mathematical models due to the

non-linear character of both viscous and elastic properties with different dis-

tinct characteristics of each property.

As an extreme, for rising frequency, the product ω · λ reaches ∞. If the

shear rate is simultaneously low, the state is represented by the most ideal

body, meaning that the shear modulus G is a constant value. In keeping with

Newton’s fluid, Hooke’s body cannot be achieved by real matter but can be

close to it. The region around the ideal extreme is the infinite elastic regime,

which is valid for real materials. If the strain is low in this region, the shear

modulus is given byG0. Steel and other metals are characterised by a distinct

elastic regime for low strain.

Above the infinite elastic regime, matter with distinctly non-linear but elastic

behaviour can be found. This is the region of rubber-like materials, also called

finite elastic, while the shear modulus becomes a function of the shear strain:

G(γ2).

Note that Pipkin [161] discussed his diagram, as depicted here in Figure 5.4,

from the perspective of a fluid by considering the shear rate γ̇ and the shear

frequency ω. However, Pipkin and Pipkin and Tanner [162] carried out further

considerations for solids. Owing to the insignificance of bodies in the scope

of this work, this will not be considered from the perspective of solids.

76



5. High viscous fluid flow

5.1.3. Introduction of generalised Newtonian fluid flow

In many cases of technical flow, a fluid’s elasticity is of minor relevance5 be-

cause of a dominating viscous flow process. Thus, in agreement with Pipkin’s

diagram, viscometric flow is the most relevant type of flow, provided that the

Navier-Stokes regime is invalid either due to the length of relaxation time λ of

the considered fluid or due to the actual amount of the shear rate γ̇. Hence,

the elasticity is mostly negligible for practical use and the fluid is considered

fully viscous.

However, technical fluids show a more or less distinct dependence on viscos-

ity7 in the state of deformation, as will be explained in Chapter 5.2.2. Hence,

considering a fluid as purely viscous but with varying viscosity is sufficient

in practical use. This fluid type is described in the literature as generalised

Newtonian fluid. For further details, refer to [21; 76; 102]. The generalised

Newtonian fluid flow model includes all non-Newtonian fluid flow without any

distinct elastic properties. Following the proposal by Pipkin to consider a

number line with Newton’s fluid on the left and Hooke’s body on the right,

Figure 5.5 can be derived to classify the matter. Since the number line con-

tains an infinite number of imaginable fluids, generalised Newtonian fluids are

a very special kind of theoretical fluid, but they are, as mentioned above, very

suitable to model technical flow. In Figure 5.5, generalised Newtonian fluids

are marked by a bold, broken line.

Matter

non ideal
pure viscous

visco-
elastic

time
dependent

time inde-
pendent

dilatant plasticpseudo-
plastic

NEWTON fluid HOOKE bodylim
µ→const.

lim
G→const.

6

Figure 5.5. Classification of matter
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As illustrated in Figure 5.5, generalised Newtonian fluids can be further sub-

divided into time-independent and time-dependent fluids – examples of time-

dependent effects are rheopexy (shear-thickening effect over shear time) and

thixotropy (shear-thinning effect over shear time).

In line with the above-mentioned considerations, viscoelasticity will not be

considered in the scope of this work and the model of generalised Newto-

nian fluids will be applied. Additionally, as will be shown in Chapter 9.1 and

9.2, only time-independent fluids were applied in the scope of this work and

hence time-dependent effects, such as rheopexy and thixotropy, will not be

considered8.

Owing to its relevance for this research work, some relevant points about

generalised Newtonian fluids will be discussed below in more detail.

5.2. Generalised Newtonian fluids

Technical fluids are mostly characterised by a more or less pronounced vari-

ability of viscosity. The variability can be caused by temperature, pressure,

or by the recent state of deformation, as well as by moisture and concen-

tration [74]. Since the dependence on moisture and concentration comes

with the change of the initial fluid, they will not be considered here. Fur-

thermore, changes in the viscosity of liquids due to pressure appear only for

high-pressure differences [105; 107; 129; 157]. Though the dependence of

the viscosity on temperature may exist for slight thermal differences, they are

typical (but not only) for Newtonian fluids [74; 129] – the higher the viscos-

ity, the more pronounced the dependence [66] – and it is obvious that these

effects are negligible for (almost) isothermal processes, as considered here.

However, for technical flow, the most important influence on the viscosity of

non-Newtonian fluids is related to the state of deformation [76].

5.2.1. Phenomenology

While the state of deformation causes changes in the viscosity, the change

can range from shear-thinning to shear-thickening, or even plasticity can oc-
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Figure 5.6. Purely viscous and time independent fluids

cur. A schematic overview of these types of fluids is illustrated in Figure 5.6.

As summarised by Giesekus [76], most non-Newtonian fluids are charac-

terised by shear-thinning behaviour and thus, as already mentioned, only

this kind of matter will be discussed in detail.

As outlined, considering technical flow, the viscous properties of the fluid

are of major interest. Thus, in the following, the characteristic aspects of

pseudoplastic fluid flow will be discussed.

Pseudoplastic media are characterised by shear-thinning fluid patterns, but

the shear-thinning effect is not infinite. Typically, the pseudoplastic matter

shows Newtonian behaviour, but only for very low and very high shear rate.

Both regimes show a plateau-like course of the viscosity and are quantified by

the zero-shear-rate-viscosity µ0 and the infinite-shear-rate-viscosity µ∞, as il-

lustrated in Figure 5.7a for the flow function and in Figure 5.7b for the viscos-

ity function. Note that both diagrams of Figure 5.7 show double-logarithmic

axes. Hence, in the regime of the plateau-like course for the viscosity func-

tion, the slope amounts to ∂τ/∂γ̇ = 1 for the flow function due to the constant

values of the zero-shear-rate-viscosity µ0 and the infinite-shear-rate-viscosity

µ∞. The shear-thinning region lies between both plateau-like regions.

As outlined by Chhabra and Richardson [38], microstructures may influence

the rheological behaviour of a fluid and thus cause shear-thinning behaviour,

as discussed above. Ebert [59] discussed two vivid approaches of shear-
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log (τ)
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Figure 5.7. Typical flow characteristics of a shear-thinning fluid (black, continuous line) with
zero-shear-rate-viscosity µ0 and infinite-shear-rate-viscosity µ∞, also shown are the power law
approximation function (grey, broken line) and the functions according to Herschel and Bulkley
(grey, dash-dotted line) and Bird and Carreau (hidden by the characteristics) – deviations of
approximations from characteristics are overstated

thinning behaviour which are presented in the following due to their clarity9:

1. In the case of the liquid dispersion of slender particles like fibres or

macromolecules, there is an entanglement of these particles that looks

like a connection, provided that the dispersion is at rest or under in-

finitesimal slow shear. Under this condition, the viscosity of the dis-

persion is relatively high and nearly constant. For rising shear rates,

connections break with greater frequency and the viscosity decreases.

This effect holds until all particles are oriented in the flow direction and

the viscosity reaches its minimum, which also has to be a constant

value.

2. Liquid dispersions of small particles can be considered as colloidal sys-

tems. At low shear rates, water is bounded as a hydrate shell around

the particles, and hence, the viscosity is relatively high and nearly con-

stant. Increasing the shear rate causes solvation of the hydrate shell

and the lubricant effect of the surrounding water increases, while the

viscosity of the dispersion increases. At some time, most of the water

is transferred out of the hydrate shell and the viscosity reaches a minor

constant value.
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The above mechanisms are reversible for time-independent fluids and irre-

versible for time-dependent fluids. For many practical fluids, both approaches

have a very plausible explanation and thus, they are very suitable but only

phenomenological.

Hence, an overview of the state of deformation will be provided in Chap-

ter 5.2.2. The constitutive law of generalised Newtonian fluid flow will be

presented in Chapter 5.2.4. Some more practical, and yet empirical, models

will be discussed in Chapter 5.2.5.

5.2.2. State of deformation

Arbitrary fluid flow must be characterised by a wide range of fluid properties,

as outlined in Chapter 5.1.2. However, it was emphasised in Chapter 5.1.3

that only a purely viscous fluid flow is of interest in the scope of this research

work. Therefore, only the state of deformation has to be considered while

taking into account the variability of the viscosity.

To discuss an arbitrary state of deformation, the fluid element, according to

Figure 5.8, is considered. Owing to simplicity, the deformation is discussed

for a two-dimensional fluid element only.

The edge lengths of the element are given by dx and dy, respectively. As a

consequence of the fluid flow, the vortices P , Q, R, and S of the element will

be moved within the time dt in an arbitrary manner, and P will be transformed

to P ′ due to the velocity vector v = (vx, vy) at the point P . When the location

of the point P in the x-direction is changed to vx ·dt in the time dt, the location

of the point Q changes to
(
vx +

∂vx

∂x dx
)
dt. Thus, the change of the edge

length in the x-direction amounts to ∂vx

∂x dx dt, while Equation 5.7 results in

the longitudinal strain rate ε̇x in this direction.

ε̇x =
∂vx
∂x

dx dt ·
1

dx · dt
=
∂vx
∂x

(5.7)

Similarly, Equation 5.8 results in the y-direction and Equation 5.9 when con-

sidering the z direction.
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Figure 5.8. Deformation of a fluid element

ε̇y =
∂vy
∂y

(5.8)

ε̇z =
∂vz
∂z

(5.9)

Taking the change in the y direction of the points P and Q into account,

the location of the transformed point P ′ is vy · dt, while the location of Q′ is(
vy +

∂vy

∂x dx
)
dt, see Figure 5.8. Hence, not only can the longitudinal rate of

strain ε̇ be estimated, but also the rate of shear strain γ̇. The rate of shear

strain γ̇x,y of the xy-plane consists of the shear rates of the edge dx and the

edge dy. Both rates of shear strain lead to Equation 5.10.

γ̇x,y =
∂vx
∂y

dydt ·
1

dy · dt
+
∂vy
∂x

dxdt ·
1

dx · dt
=
∂vx
∂y

+
∂vy
∂x

(5.10)

As already performed for the longitudinal strain, the shear strain can also be
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calculated similarly for the remaining directions, see Equations 5.11 to 5.13.

γ̇x,y = γ̇y,x (5.11)

γ̇x,z =
∂vx
∂z

+
∂vz
∂x

= γ̇z,x (5.12)

γ̇y,z =
∂vy
∂z

+
∂vz
∂y

= γ̇x,y (5.13)

Note that the matrix of the shear rate is symmetrical, hence γ̇i,j = γ̇j,i.

By summarising all strain components in one single tensor, Equation 5.14 is

formed.

D =




ε̇x
1
2 γ̇x,y

1
2 γ̇x,z

1
2 γ̇y,x ε̇y

1
2 γ̇y,z

1
2 γ̇z,x

1
2 γ̇z,y ε̇z


 (5.14)

Together with Equations 5.7 to 5.13, Equation 5.14 becomes Equation 5.15.

D =




∂vx

∂x
1
2

(
∂vx

∂y +
∂vy

∂x

)
1
2

(
∂vx

∂z + ∂vz

∂x

)

1
2

(
∂vy

∂x + ∂vx

∂y

)
∂vy

∂y
1
2

(
∂vy

∂z + ∂vz

∂y

)

1
2

(
∂vz

∂x + ∂vx

∂z

)
1
2

(
∂vz

∂y +
∂vy

∂z

)
∂vz

∂z


 (5.15)

Tensor D is called the deformation rate tensor and can fully describe the state

of deformation of a fluid element. It can be used to describe the variability of

the viscosity under the previous assumptions.

As can be seen in Equation 5.15, all components are partial derivatives of

the velocity vector. Calculating the Jacobian matrix Jv of the velocity vector

v leads to Equation 5.16, containing all required partial derivatives of the

velocity vector.
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Jv =




∂vx/∂x ∂vx/∂y ∂vx/∂z

∂vy/∂x ∂vy/∂y ∂vy/∂z

∂vz/∂x ∂vz/∂y ∂vz/∂z


 = L (5.16)

The Jacobian matrix Jv of the velocity vector v is also called the velocity

gradient tensor L. From the gradient tensor L, the deformation tensor D can

be calculated according to Equation 5.17.

D =
1

2

(
L+ LT

)
(5.17)

Equation 5.17 means that only the velocity gradient tensor L has to be known

to calculate the state of deformation.

Note that the deformation tensor D is characterised by three principle invari-

ants10, given by Equations 5.18 to 5.20:

I = tr (D) (5.18)

II =
1

2

(
(tr (D))

2
+ tr

(
D2
))

(5.19)

III = det (D) (5.20)

In Equations 5.18 to 5.20, tr (D) is the trace of the deformation tensor D,

while det (D) is its determinant. The principle invariants will be important for

Reiner-Rivlin’s constitutive law, as discussed in Chapter 5.2.4.

5.2.3. State of stress

In continuum mechanics, an infinitesimal part of a body is typically consid-

ered. In fluid mechanics, an infinitesimal control volume is analysed instead.

In Figure 5.9, the control volume of an arbitrary fluid flow is illustrated.

The flow causes stresses in the fluid and therefore on the surfaces of the

control volume. The state of stress can be separated into normal components
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Figure 5.9. State of stress of a fluid element

σii and tangential components τij. In Figure 5.9, the indices of the stress

components follow the convention that the first index marks the considered

plane, while the second index gives the direction of the axis. Thus, for each

single surface of the control volume, one normal and two tangential stresses

are present and therefore nine different components can be identified while

neglecting the reaction forces.

Each component can be added to Cauchy’s stress tensor S, resulting in

Equation 5.21.

S =



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 (5.21)

When discussing the state of stress at a fluid element, as shown in Figure 5.9,

the hydrostatic pressure entities pi, which are normal to the considered sur-

face, have to be considered. Owing to the direction of the pressure on the
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shape of the control volume, in turn, the pressure has to affect the nor-

mal vectors #»n i of each surface and the normal components can be set to

σii = −pi + τii.

Typically, the hydrostatic pressure pi is understood as isotropic pressure [76;

102]. Strictly speaking, this is a mistake because of the variability of the hy-

drostatic pressure over the spatial structure of a volume, especially for com-

pressibility, as originally discussed by Stokes [219]11. However, in the scope

of this research, the (relatively) slow fluid flow of liquids is the focus and thus

compressibility is not considered. Nevertheless, to obtain isotropic pressure,

it is more correct to consider the thermodynamic pressure p. Following this

concept, the pressure p can be separated from Cauchy’s stress tensor and S

becomes 5.22.

S =



−p 0 0

0 −p 0

0 0 −p


+



τxx τxy τxz

τyx τyy τyz

τzx τzy τzz




︸ ︷︷ ︸
T

(5.22)

Introducing the extra stress tensor T for the second summand of Equa-

tion 5.22, Cauchy’s stress tensor can be defined as follows in Equation 5.23.

S = −p1+T (5.23)

5.2.4. Reiner-Rivlin constitutive law

The previous chapter introduced the state of deformation and the state of

stress. However, the relationship between the state of deformation and the

state of stress is given by the matter. As outlined before, pure but non-linear

viscous fluid flow and thus generalised Newtonian fluid flow is of major inter-

est in this thesis.

Hence, the relationship between both the mentioned states must be formu-

lated with respect to the considered fluid. The mathematical formulation of

86



5. High viscous fluid flow

such a fluid was first formulated by Reiner [175] and Rivlin [191], and thus,

this kind of fluid is called Reiner-Rivlin liquid12.

Since Reiner-Rivlin liquids are the most general form of generalised Newto-

nian fluids, they have to fulfil the four criteria of a viscous fluid for the relation-

ship between stress and velocity field, as outlined by Stokes [219]:

“1. The stresses are continuous functions of the rates of deformation [Dij,
T.R.].

2. The fluid is homogeneous in such a way that the stresses are explicitly
independent of the particle coordinates [xi, T.R.].

3. When the rates of deformation are zero, i.e. [Dij = 0, T.R.], the stresses
are given by the isotropic thermodynamic pressure p = p (ρ, θ).

4. Viscosity is an isotropic property, or in other words, the fluid is isotropic.”
[102, p. 153, chapter 8.2]

In a strict sense, Stokes’ fourth criterion can be neglected because of the

implicit formulation of this criterion by the others. The reason can be found in

the principle of material objectivity while defining a constitutive law.

This principle requires that the state of stress on the surface of a particle,

given by S, has to be independent of the chosen reference system to which

the constitutive law is actually related. As an example, an arbitrary state of

stress S(1) with the reference (1) has to be equal to the state of stress S(2)

with the reference (2), provided that both states are regarded for the same

particle at the same time. For a more detailed explanation of the principle of

material objectivity, refer to Ebert [59]; Giesekus [76]; Irgens [102].

Thus, if the principle of material objectivity is valid, the related quantities are

called objective quantities – for instance, the stress tensor S and the defor-

mation tensor D are objective quantities. Therefore, the relationship between

state of stress and state of deformation consists of objective quantities and

thus the relationship has to be objective as well – this can only be valid for

isotropic fluids, as suggested above as Stokes fourth criterion. Note that the
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mentioned criteria can be found in a slightly different formulation in Ebert [59]

and Giesekus [76].

Underlying the mentioned assumptions, Reiner [175, 176] found Equa-

tion 5.24 for a purely viscous fluid flow.

S = [−p1+ χ0] + χ1D+ χ2D
2 (5.24)

Rivlin [191] also discussed this constitutive law, but in the simpler form of

Equation 5.25.

S = −p1+ χ1D+ χ2D
2 (5.25)

Equation 5.24 and 5.25, are almost identical, except for the function χ0. The

scalar functions χ0, χ1, and χ2 are related to the properties of the fluid. While

χ0 can be understood as bulk viscosity, χ1 is connected with the shear vis-

cosity µ and χ2 with the second normal stress coefficient ψ2 of the fluid.

Hence, Equation 5.25 is valid for neglecting bulk viscosity only and therefore

for incompressible fluid flow.

Note that the scalar functions χi only depend on the density ρ and so on

the temperature θ, as well as on the three principle invariants according to

Equations 5.18 to 5.20: χi = χi (ρ, θ, I, II, III).

Assuming incompressible flow, the bulk viscosity χ0 and thus the first princi-

ple invariant I disappears because of tr (D) = ε̇i = 0. Hence, the remaining

scalar functions only depend on the second and third principle invariants, re-

sulting in Equation 5.26 while only considering the extra stress tensor T, as

stated in Böhme [21].

T = 2µ (II, III) ·D+ 4ψ2 (II, III) ·D
2 (5.26)

Equation 5.26 can easily be transformed into both generalised Newtonian

and Newtonian fluids. In both cases, only viscous fluid properties are required
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and thus ψ2 disappears. For the latter fluid assumption, the viscosity also has

to be a constant and the Newtonian fluid according to Equation 5.2 follows

directly from Equation 5.26. It is clear that the Reiner-Rivlin fluid contains the

most general formulation of a generalised Newtonian fluid as considered in

this research work.

Nevertheless, a fluid according to Reiner and Rivlin has never been observed

in practical considerations. So this kind of fluid does not have any practical

relevance. However, owing to its general formulation of purely viscous fluids

and its possibility to be transformed into Newton’s fluid, the constitutive law

of Reiner and Rivlin is a very important basis, and the fundamental assump-

tions, mentioned for this type of flow, also have to be valid for the considered

flow in the scope of this research topic.

5.2.5. Empirical laws

In the literature, many mostly complex models can be found which describe

several types of fluid flow. One of these models is briefly described in Chap-

ter 5.2.4, but there are more complex and more specific models like the Ol-

droyd or Giesekus constitutive laws. Since these models are associated with

enormous expenses in modelling rheological parameters, they are not suit-

able for practical utilisation. A detailed mathematical description can be found

in Böhme [21]; Ebert [59]; Giesekus [76] or Irgens [102], but they will not be

discussed here due to their complexity.

For the application of more practical models, many different empirical laws

have been presented in the literature to describe the fluid properties for a spe-

cial but small sub-field of non-Newtonian fluid flow. Hence, they are mostly

very appropriate for modelling generalised Newtonian fluids. Many of these

laws are only valid for a special region of interest and cause severe mistakes

when applied outside the intended region. Thus, they have to be applied

carefully.

Furthermore, empirical laws were invented to be applied on measurement

values, performed in viscometers – for instance, in rotational viscometers, as

utilised in the recent research project, see Chapter 9.2. In these measure-
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ment devices, a simple shear flow is typically achieved by the geometrical

shape and thus the state of the deformation tensor D can be reduced to a

two-dimensional tensor. Because of the symmetry of D, the remaining en-

tries are equal – note that the trace disappears for the generalised Newtonian

fluid flow as a result of the purely viscous character – and the indices of the

shear rate can be omitted. Therefore, instead of the deformation tensor D,

the shear rate γ̇ will be stated in the outlined laws.

In the following, only three well-known models will be explained due to their

practical relevance and wide applicability:

Power law approximation

A very simple, but often suitable law is the power law according to Equa-

tion 5.27. This law is suitable for approximating shear-thinning and shear-

thickening fluids as well. Furthermore, for the case of a Newtonian fluid,

Equation 5.27 becomes Newton’s law. The law is also named Ostwald and

de Waele’s law after its creators Ostwald [150, 151] and de Waele [49, 50]

[177].

τ (γ̇) = k · γ̇m

µ (γ̇) = k · γ̇m−1
(5.27)

m





< 1, for shear-thinning fluids

= 1, for Newtonian fluids

> 1, for shear-thickening fluids

The model fits the shear-thinning or the shear-thickening region with a sim-

ple potential function comprising a factor and an exponent. Both parameters

have to be understood as mathematical curve fit parameters rather than as

physical material properties. The factor of the regression function is often

called consistency and is described by k , while the exponent is named flow

index m . The consistency has the dimension [k ] = Pa sm and depends there-
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fore on m , while m itself is dimensionless. For shear-thinning fluids, m is less

than 1 but positive, while m is larger than 1 for shear-thickening fluids. As a

special case, m becomes 1 for Newtonian fluids.

Owing to the potential character of the regression function, the variable course

of the viscosity function becomes a straight line in double-logarithmic dia-

grams, as can be seen in Figure 5.7b. The validity of the law can be found

between the zero-shear-rate-viscosity µ0 and the infinite-shear-rate-viscosity

µ∞, but excluding both crossover areas. Hence, the power law is only valid

for a small portion of the characteristics.

A common mistake in this approximation is its application for shear rates out

of the region of validity, which leads to over- or underestimation of the appar-

ent viscosity. Thus, the application of Equation 5.27 to a measurement series

to identify the parameters k and m must be done very carefully. Including the

crossover areas or even the limiting Newtonian viscosity regions into the fit-

ting algorithm13 may cause significant deviations of the regression curve from

the desired measurement region. Figure 5.7 shows such a deviation from the

characteristic curve, but note that the deviation shown is quite large due to

the clarity of the illustration.

However, most technical fluid flow is in the area of validity and thus this kind

of approximation is mostly very suitable [21; 76].

Herschel and Bulkley approximation

Another well-known regression function was formulated by Herschel and Bulk-

ley [96] in 1926. The mathematical formulation of this law is given by Equa-

tion 5.28. In principle, the Herschel and Bulkley law is very similar to the

power law, except for the yield stress τ0, that is added to the shear stress τ

of the function according to Equation 5.27.

τ = τ0 + k · γ̇m , resp.

µ =
τ0
γ̇

+ k · γ̇m−1 (5.28)
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Table 5.1. Parameter range of the Herschel and Bulkley regression, representation based on
Ehrentraut [61]

fluid character τ0 m

shear-thinning = 0 < 1

Newtonian = 0 = 1

shear-thickening = 0 > 1

visco-plastic > 0 < 1

Bingham-plastic > 0 = 1

The consideration of the yield stress τ0 enables the power law not only to

approximate shear-thinning and shear-thickening fluids, besides Newtonian

fluids, but also the plastic fluid flow. Table 5.1 shows the five different fluid

characteristics the Herschel and Bulkley law is able to approximate, together

with each parameter range of the yield stress τ0 and the flow index m respec-

tively. Note that the Bingham-plastic fluid is characterised by a constant and

thus by Newtonian viscosity, but the fluid has to be treated as a solid if the

shear stress remains lower than τ0.

Owing to the strong relationship between the power law and Herschel and

Bulkley’s law, the advantages and disadvantages are also very similar, and

this model has to be understood as a mathematical curve fit as well.

Carreau approximation

As outlined above, power laws come with the problem of non-physical predic-

tions for the region of the zero-shear-rate-viscosity µ0 and the infinite-shear-

rate-viscosity µ∞. Carreau [32] solved this problem by including both pa-

rameters in a new approach. This approach was intensively investigated

[23; 33; 34] and enhanced by Yasuda [244]. The Carreau-Yasuda approxi-

mation is given by Equation 5.29.
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µ = µ∞ + (µ0 − µ∞) [1 + (λ · γ̇)
a
]

m−1
a (5.29)

Here, the time-related parameter λ and the two dimensionless parameters a

and m are included alongside the mentioned Newtonian parameters µ0 and

µ∞. While the time-related value λ and the dimensionless parameter m are

characteristic values for the considered fluid, the parameter a is often set to 2

(referred to as the Bird and Carreau approximation in this form). Only with the

Yasuda enhancement does Carreau’s approximation become Equation 5.29.

In this case, a influences the starting point of the first crossover region and

thus is sometimes referred to as stiffness.

As can be seen in Figure 5.7, Carreau’s approximation fits the character of

a shear-thinning fluid better than the power law or the Herschel and Bulkley

regression, and hence, this law should be applied preferentially. However,

the law consists of five parameters which have to be determined for each

fluid. The measurement of both the zero-shear-rate-viscosity µ0 and the

infinite-shear-rate-viscosity µ∞ are particullary challenging because of the

wide shear-rate range that exists between both values. Typically, this range

extends over several decades, and different measurement principles have to

be utilised to measure both values. Therefore, the power law according to

Equation 5.27 is preferred to the Carreau approximation.

It should be mentioned that further empirical laws have been established in

the literature, such as the approximations according to Ree and Eyring14,

Cross15 or Casson16 and many more, see Böhme [21], Mezger [135] or Ir-

gens [102]. Mostly, these regression functions were defined for very special

fluids or applications, and thus, they are neither utilised nor explained in this

work.

Table 5.2 summarises all mentioned research-relevant fluid models with their

mathematical formulation and the area of their application.
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Table 5.2. Laws to model pure viscous fluid flow

Model Equation Type

Reiner-Rivlin T = χ1D+ χ2D
2 theoretical

Newton τ = µ γ̇ ideal

Power law µ = k · γ̇m−1 nonlinear

Carreau-Yasuda µ = µ∞ +
µ0 − µ∞

[1 + (λ · γ̇)
a
]
1−m
a

nonlinear

Herschel and Bulkley µ =
τ0
γ̇

+ k · γ̇m−1 plastic

5.3. Similarity mechanics

As a major part of this research project, the profile polar curves of non-New-

tonian fluid flow of different profiles will be investigated and stored in a polar

database, see Chapter 7.2. Subsequently, the most sufficient profile will be

selected for specific operation conditions by comparing the polar curves with

each other. Unfortunately, the polar curves cannot be compared in their di-

mensional form and thus the concept of similarity mechanics is necessary.

The field of similarity mechanics goes back to the work by Buckingham [29],

which was published in 1914 and is not only important for the mixing of non-

Newtonian fluid flow. Typically, the method is named Buckingham’s theorem

after its creator.

However, in the scope of this research work, this theory need only be ap-

plied to the mixing of the non-Newtonian fluid flow in principle. But owing

to the challenging nature of the non-Newtonian character of the considered

fluid flow, the method will not only be applied, but briefly introduced by way of

an example related to mixing. For more details, refer to the original publica-

tion of Buckingham [29] or, for instance, to Pawlowski [155], Spurk [216] and

Zlokarnik [247].
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5.3.1. Introduction to Buckingham’s theorem

Figure 5.10 shows a random mixing vessel with a vertically aligned shaft. The

shaft is connected to an engine that requires the power P to drive the shaft at

the speed n. At the end of the shaft, a mixing unit is installed. The diameter

of the mixing unit is given by DP, while the vessel’s diameter amounts to D.

The depicted mixing process is designed to agitate a fluid characterised by

the density ρ and the dynamic viscosity µ. The free surface of the mixed fluid

is located in the height HF and is influenced by the gravity g. Altogether, eight

quantities are found to describe the mixing process.

The principle of Buckingham’s theorem is that every problem, comprising an

arbitrary amount of quantities Xk, is connected by its dimensions. In the

mentioned example, an amount of k = 8 quantities describes the problem,

but it is more general to consider k = 1, 2, 3, . . . , nz. Owing to the connection

of these quantities, they can also be written in relation to each other, as

proved by Equation 5.30.

n, P

ρ, µ

DP

D

g

HF

Figure 5.10. Relevant quantities of a mixing process
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f (Xk) = f (X1,X2, . . .Xnz
) = 0 (5.30)

The quantities Xk are gathered in the subset Xk and can be separated into

two further nonempty subsets: the first subset only contains quantities with

dimensions that are linearly independent – named Xi – while the dimen-

sions of the entities of the second subset linearly depend on the first sub-

set. The second subset is given by Xj. Next, the relationship according to

Equation 5.30 can be reformulated and results in Equation 5.31.

f
(
Xi,Xj

)
= 0 (5.31)

Considering the dimensions of each quantity, the potential relationship ac-

cording to Equation 5.32 has to be valid due to the linear dependence of Xj

on Xi. Note that the exponent pij is taken from the dimensional matrix, as

discussed by Pawlowski [155], see Equation 5.34.

Dim
(
Xj

)
=
∏

i

(Dim (Xi))
pij (5.32)

Then, the relationship of Equation 5.33 can be found, as stated by Pawlowski

[155].

πj = Xj

∏

i

X
−pij
i (5.33)

Pawlowski [155] also described a vivid formulation based on the considera-

tion of Xk as a dimensional matrix. As was shown in Equation 5.31 for the set

Xk, the dimensional matrix can also be divided into two matrices: the core

matrix containing the entities of Xi and the residual matrix with the linearly

dependent Xj entities.
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Xi Xj

Dim(X1) 1

...
. . . pij

Dim(Xr ) 1

(5.34)

Pawlowski [155] suggests organising the quantities Xi and Xj, respectively,

as columns of the dimensional matrix. Thus, the number of rows is given by

the number of the dimensions of the quantities – in Equation 5.34 given by

r . The total number of rows was chosen as nz. Since the core matrix is a

square matrix, the number of rows is also r . Hence, the number of rows of

the residual matrix is mz = nz − r . This means that a number of mz dimen-

sionless π quantities can be identified by applying Buckingham’s theorem.

As can be read in Pawlowski [155], the core matrix must be transformed into

the unity matrix before applying Equation 5.33 – this is already performed in

Equation 5.34.

ρ DP n µ P g HF D

M 1 0 0 1 1 0 0 0

L 0 1 0 2 5 1 1 1

T 0 0 1 1 3 2 0 0

(5.35)

When applying Pawlowski’s approach to the mixing task of Figure 5.10, Equa-

tion 5.35 follows, when selecting the density ρ, the diameter of the propeller

DP, and the shaft speed n to set the linearly independent SI-dimension sys-

tem comprising mass (M), length (L), and time (T). Note that Equation 5.35

obtains the unity matrix for the core matrix Xi.

As explained, mz = 5 dimensionless π quantities can be found for the consid-

ered example, as can be found in Equations 5.36a to 5.36e. These quantities

fully describe the characteristics of the considered example. Since π4 and π5
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only describe geometrical ratios, they will not be considered due to the re-

quirement for fixed geometry. Moreover, π3 can be transformed into Froude’s

number, which does not influence the power of a mixing process [247], at

least for low-Re flow [196; 197], as considered here and only π1 and π2 are

assumed to influence the mixing process.

π1 =
µ

ρD2
P n

(5.36a)

π2 =
P

ρD5
P n

3
(5.36b)

π3 =
g

DP n2
(5.36c)

π4 =
HF

DP
(5.36d)

π5 =
D

DP
(5.36e)

Equation 5.36a can be transformed into Equation 5.37 through inversion and

results in the Reynolds number Re. This quantity is crucial to this research

work and thus the Reynolds number will be discussed in detail in Chap-

ter 5.3.2 and 5.3.3.

The remaining π quantity according to Equation 5.36b is commonly known as

the Newton number Ne; it gives the dimensionless power of the considered

mixing process.

5.3.2. Common Reynolds number calculation

In 1883, Reynolds published the relationship which is nowadays known as the

Reynolds numberRe [183; 184]. Reynolds studied the development of eddies

in the pipe flow by performing experimental investigation with dye filaments

that are applied to the flow through a trumpet-shaped inlet. As one of the

consequences of his effort, Reynolds found Equation 5.37.
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Re =
ρ v L

µ
(5.37)

Equation 5.37 quantifies the ratio of the inertia force F = ṁ v and the friction

force F = µ v
L A. A further fact, discovered by Reynolds [183], is that pipe

flow is always laminar for Re < 2300, otherwise the flow becomes transitional

and finally turbulent. As elucidated by Rott [192] and also by Eckhardt [60],

Reynolds already assumed that the critical value Re = 2300 can be raised for

ideal conditions.

The Reynolds number is mostly very suitable for identifying influences caused

by friction in the fluid flow. Unfortunately, the Reynolds number is a function

of the dynamic viscosity µ and µ is not defined for non-Newtonian fluid flow.

Thus, the Reynolds number according to Equation 5.37 is not appropriate

for application in this research project and an alternative concept has to be

identified to investigate and analyse the characteristics of friction in the fluid

flow considered here.

5.3.3. Rheological adjusted Reynolds number

As mentioned, to specify the flow character, the Reynolds number according

to Equation 5.37 is not suitable here, but some studies of the flow character

of the non-Newtonian fluid flow, as well as the investigation of representative

Reynolds numbers, based on the apparent viscosity instead of the Newtonian

dynamic viscosity, can be found in the literature.

One of the first investigations was performed by Metzner and Reed [132] in

1955, and it was based on the fluid-independent formulation of the shear

rate, discovered by Rabinowitsch [168] and Mooney [137]. An alternative

suggestion was found by Chhabra and Richardson [38], which is based on the

considerations of the shear rate of a power law fluid, elucidated by Coulson

et al. [44]. Both definitions can be transformed into each other because both

are derived from a pipe flow problem and are related to the assumption of the

validity of the friction factor f = 16/Re for both Newtonian and non-Newtonian
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fluid flow.

Besides the mentioned concepts, other definitions have been presented in

the literature, such as those by Rudman et al. [194], Güzel et al. [82], and

Haldenwang et al. [86]. Since Haldenwang et al. emphasised the definition

of Metzner and Reed as the most convenient, only the definition by Chhabra

and Richardson known from the literature will be applied in this work because

it is identical to Metzner and Reed’s definition. Additionally, a representative

Reynolds number will be derived by applying Buckingham’s π theorem.

Note that Kluck [115] also found the definition of a representative Reynolds

number by theoretical considerations of a propeller flow problem. Kluck

started with the consequent dimensional analysis of all relevant parameters

of an arbitrary mixing task. For this, the method is only suitable for this kind

of mixing task, but not for a single radial section, such as the profiles consid-

ered in Chapter 7.2. So, Kluck’s definition will not be explained here, though

the definition could be suitable for the finally designed propeller mixer; the

definition, however, is not convenient for the design process.

Reynolds number according to Chhabra and Richardson

The Reynolds number according to Chhabra and Richardson [38] can be

introduced by Equation 5.38.

ReCR =
ρ · v2−m · Lm

8m−1 · k ·
(
3·m+1
4·m

)m (5.38)

As already outlined, the Reynolds number according to Chhabra and Richard-

son is based on pipe flow problems. In its original form, the characteristic

length is given as diameter. But owing to the application on flow profiles

here, the characteristic length L in Equation 5.38 is given by the chord length

l.

To derive the representative Reynolds number, Chhabra and Richardson

analysed the velocity distribution and the shear rate in a pipe, and found a

function for the axial velocity, depending on the flow index m of the considered
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Figure 5.11. Differences in the definition of the Reynolds number according to Equations 5.37,
5.38, and 5.41, shown for an exemplarily chosen pipe flow problem with the conditions: v =
5m/s, L = 0.1m, ρ = 998 kg/m3 and k = 0.217Pasm

fluid. By integrating this function over the pipe radius and including the pres-

sure gradient, the mean velocity of the flow depends on friction factor results.

The procedure is nearly identical to the work of Hagenbach [85] which is

based on the research on laminar pipe flow by Hagen [83, 84] and Poiseuille

[163]. Assuming the identity of f = 16/ReCR leads to Equation 5.38.

Because of the similarity of the above derivation to the approach of Hagen’s

and Poiseuille’s law, the procedure of Chhabra and Richardson is logical and

very clear. But the general fundamentals of Chhabra and Richardson’s defi-

nition are related to a pipe flow problem. So, since Chapter 7.2 discusses the

flow around a profile, another physical task is analysed. Errors in similarity

have to be accepted while applying Equation 5.38.

Nevertheless, assuming identical fluid flow in the far field, Chhabra and

Richardson’s Reynolds number may be applied, but it is necessary to com-

pare the Reynolds number of several operating points with each other. In this

case, the comparison turns occurring errors to systematic errors.

Note that the change of the definition of the Reynolds number will result

in values that are not easily to be compared with the original definition by
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Reynolds. In Figure 5.11, an exemplarily chosen pipe flow problem is shown

to have compared the differences of both definitions. While the velocity v,

the characteristic length L, the density ρ, and the consistency k – the latter

eventually becomes the dynamic viscosity µ for Newtonian fluids – were set

to be constant, the value of the flow index m was varied. As can be seen,

for m = 1, the definition given by Chhabra and Richardson [38] becomes the

origin definition. The course of the Reynolds number is over-predicted for

m < 1 and under-predicted for m > 1.

Generalised Reynolds number

In Chapter 5.3.1, Buckingham’s π theorem was introduced. Since this theo-

rem was conceived to derive dimensionless numbers to characterize a prob-

lem and also because of the simple derivation of the Reynolds number, while

applying this theorem (see Equation 5.36a), it is a logical consequence to

also apply the π theorem for non-Newtonian fluid flow around a profile. The

more complex the method to model the fluid, the more challenging the ap-

plication of the mentioned theorem. Fortunately, a very convenient, simple

fluid model was introduced in Chapter 5.2, which can in practice mostly be

reduced to a power law fluid. Thus, the application of Buckingham’s theorem

is quite simple.

A flow problem, shown in Figure 5.12, leads to the lifting force F at the profile,

prompted by the velocity v and the dimensional matrix according to Equa-

F

ρ, k ,m

v

l

Chord line

Figure 5.12. Relevant quantities at an airfoil
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tion 5.39 results when applying the π theorem.

ρ l v k m F

M 1 0 0 1 0 1

L 0 1 0 m 0 2

T 0 0 1 2− m 0 2

(5.39)

From Equation 5.39, three independent and dimensionless numbers can be

identified, see Equation 5.40. In Equation 5.40, π1 is the inverse of the rep-

resentative Reynolds number which can be calculated by the π theorem. π2
is identical to the flow index m of the considered fluid and hence the flow in-

dex itself is a dimensionless number to characterize the problem. In fact, the

non-Newtonian character of the problem is described by m : the closer m is to

1, the less non-Newtonian fluid behaviour while the fluid becomes Newtonian

for m = 1. The third π entity characterises the lifting force of the flow problem.

π1 =
k

ρ · lm · v2−m
(5.40a)

π2 = m (5.40b)

π3 =
F

ρ · l2 · v2
(5.40c)

Equation 5.41 gives the definition of the Reynolds number, calculated by the

theorem.

Regen = π−1
1 =

ρ · lm · v2−m

k
(5.41)

In keeping with the definition given by Chhabra and Richardson, Equation 5.41

is applied on the chosen pipe flow problem to demonstrate the differences in

calculation results, see Figure 5.11. As can be seen, the principle devia-
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tion of Equation 5.41 from the original definition is the same as derived from

the definition given by Chhabra and Richardson, but the deviations are less

pronounced.

In Equation 5.40, substituting the velocity magnitude v by the maximum cir-

cumferential velocity umax/π = n ·DP at the propeller and the chord length l

by the diameter of the propeller DP, the problem is directly transformed into

a mixing task and Equation 5.42 follows.

Regen,P = π−1
1 =

ρ ·D2
P · n2−m

k
(5.42a)

m = π2 (5.42b)

Ne = π3 ·
umax

umax
=

P

ρD5
P n

3
(5.42c)

Owing to the general use of the representative Reynolds number derived by

Buckingham’s theorem the Reynolds number according to Equations 5.41

and 5.42a is defined here as the generalised Reynolds number.
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Notes

1The parallel assembly of damping and spring elements leads to a viscoelastic body, instead
of a viscoelastic fluid and is called a Kelvin-Voight body. Because this is not relevant for fluids, it is
not considered here. Details can be found in Ebert [59]; Giesekus [76]; Irgens [102]; Phan-Thien
[159]

2The product of the frequency ω and the relaxation time λ is utilised to scale the abscissa of
Pipkin’s diagram. The product can be interpreted as the Deborah number De = ω · λ.

3In Pipkin’s diagram, the region of viscometric flow is the region of interest in this thesis.
4To approximate the linear viscoelastic flow, models which are more detailed and even more

complex than Maxwell’s model can be applied. Refer to Giesekus [76] for details.
5Overlooking elasticity may be mistaken for moulding processes with macromolecule melts.

In the scope of the present work, only water-based liquids are of interest and it is sufficient to
assume a purely viscous fluid flow. This assumption is also proven in Chapter 9.1 for the applied
model fluids.

6The scope of this research is related to non-ideal but pure viscous fluid flow.
7Because other rheological effects are not considered, other than the state of deformation,

the expression shear viscosity is reduced to viscosity from this point due to the uniqueness of
the expression.

8In this thesis, only time-independent fluid flow is considered. For a detailed discussion of
time-dependent effects, refer to Ebert [59], Giesekus [76] and Irgens [102]

9Utilised model fluids refer to the approach of entangled slender particles, while the modelled
fluids of biogas and waste-water treatment plants refer to the approach of hydrate shells, see
also Chapter 9.2 for a detailed description of the applied test fluids.

10The principle invariants of the deformation tensor D always remain the same, even when
changing the reference of the tensor.

11In the discussion of the state of stress, compressibility is often neglected, as has also been
done in this thesis. Taking compressibility into account, the bulk viscosity has to be considered,
see e.g. Giesekus [76].

12The Reiner-Rivlin fluid goes back to an idea, suggested by Stokes, but Stokes only formu-
lated a linearised model [76]. However, sometimes this kind of fluid is also called Stokes liquid.

13The approximation of the viscosity function is calculated by empirical models. The method
of least squares is commonly applied to calculate the regression parameters of these models.

14As an alternative for the power law, the Ree and Eyring function is also suitable for non-
plastic fluids.

15To approximate fluids with zero-shear-rate-viscosity µ0 and infinity-shear-rate-viscosity µ∞,
the model by Cross can be applied instead of the approximation by Carreau.

16Casson’s empirical law was developed for printing ink, but it is also recommended for choco-
late melts [135].
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6. Introduction to jet theory

As outlined in Chapter 3.2, blade element momentum theory can only be ap-

plied to design a propeller while setting the velocity of the propeller plane,

taken from axial momentum theory, as the absolute velocity at a blade ele-

ment according to blade element theory. Thus, the inflow velocity into the

stream tube should be known to calculate the absolute velocity at the blade

element. However, blade element momentum theory regards the propulsion

of an airplane or a ship. So, by changing the kinematics, the inflow condition,

as illustrated in Figure 3.6, is known, but not so in the considered case of a

fixed installed propeller mixer.

For mixing tasks, this gap can be closed by considering the mass flow rate

carried by the propeller mixer. Hence, this parameter can be required as

the inlet parameter of the design process – this is in line with the common

mixing tasks, as mentioned in Chapter 2.1. Though this assumption leads

to a mean velocity, a more detailed knowledge of the velocity distribution is

desired, especially because the jet generated by the propeller will accelerate

the surrounding fluid, thereby leading to an increase in the carried mass flow

at the outflow of the stream tube.

Hence, jet theory is essential for the considered mixing task of a propeller

mixer. The necessary basics will be discussed in this chapter. Initially, the

general theory of a turbulent jet, as first elaborated by Tollmien [223], will be

briefly discussed in Chapter 6.1. Chapter 6.2 will explain the semi-empirical

jet theory for propeller propulsion, as investigated by Oebius [146, 147], in

detail.

In both concepts, the geometric characteristics of the jet are similar. Hence,

before discussing the theoretical approaches, the geometrical characteristics

are shown by Figure 6.1.

As can be seen in the figure, a fluid flowing out of a gap with an opening

length of b causes a diverging jet. If the direction of divergence is equal to

the direction of propagation, the divergence is approximately linear and can

be extrapolated backwards to a virtual origin. The jet is initialised in the flow

development region. Here, a core is located with constant velocity conditions.
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Figure 6.1. Definition sketch of plane turbulent jets, author’s own representation based on
Rajaratnam [169]

After this zone, the fully developed flow region is connected. Outside the

core of the initial zone and in the fully developed flow region, the velocity

distribution can be approximated by a Gaussian curve.

6.1. General theory

In the literature, many studies on jet theory can be found, e.g. Zimm

[245], Tollmien [223], Schlichting [200], Andrade [6]; Andrade and Tsien [7],

Görtler [81], Reichardt [174], Rajaratnam [169], Vollmers and Rotta [231],

and Schlichting and Gersten [201].

These studies mostly consider a turbulent jet, but a jet may even be laminar

[200]. Nevertheless, only the turbulent jet theory will be discussed here –

it was first investigated by Tollmien [223]. The decision to only consider the

turbulent propagation of a jet is based on the very low values for the critical

Reynolds number of Re = 30 for the flow characteristics of a jet [201]1.

To outline the theoretical background, the basic concept will be discussed be-

low. Since the theory by Oebius [146] utilised in this research project applies

another approach, the description of the general jet theory is only superficial

in nature and only a brief overview is provided.

In principle, all jet studies start with the boundary equations in the direction

of propagation, mostly given by x, as depicted in Figure 6.1. Owing to the rel-
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Figure 6.2. Dimensionless velocity distribution of a plane jet, author’s own representation
based on Rajaratnam [169] and Förthmann [65]

ative low velocity of a jet, the pressure can be neglected in a first evaluation,

and the boundary equations result in Equation 6.1.

vx
∂vx
∂x

+ vy
∂vx
∂y

=
✚
✚
✚✚

−
1

ρ

∂p

∂x
+

1

ρ

∂τxy
∂y

(6.1)

To calculate the derivative of shear stress ∂τxy/∂y in Equation 6.1, Tollmien

applied the apparent shear stress assumption of Boussinesq [26], in combi-

nation with the theory of the mixing length formulated by Prandtl [166]. But

other procedures for considering turbulence were also applied, such as the

utilisation of the k-ǫ turbulence model by Jones and Launder [106].

Subsequently, a potential flow consideration is applied to derive the equa-

tions of motion. Depending on the different assumptions of the studies and

the different investigated geometrical cases, the equations of motion differ

from one theoretical approach to another, see Tollmien [223] and Görtler

[81]. Afterwards, a momentum balance is carried out and the velocity dis-

tribution is derived. As a result, Tollmien [223] obtained a Gaussian curve,

see Figure 6.2. Note that similar results were found in every study mentioned

108



6. Introduction to jet theory

above.

The theoretical consideration by Tollmien was validated experimentally by

Förthmann [65]. In Figure 6.2, the results of this study are drawn too. Förth-

mann performed experimental investigations for different distances between

x = 20 cm and x = 75 cm. It should be noted that Figure 6.2 shows the nor-

malised velocity distribution. For normalisation, the velocity v is divided by its

maximum value of vmax at each considered x position, while the y coordinate

is divided by the opening length of the gap b. Owing to the normalisation, all

experimental results can be approximated in good agreement with the theo-

retic curve by Tollmien, and for the following, the assumption of a Gaussian

curve for the velocity distribution is in line with the analytical approaches.

6.2. Jet theory for propeller propulsion

The fundamentals of jet theory, as described above, are not appropriate for

defining the velocity distribution in the wake of a propeller. Because of pro-

peller propulsion, the momentum is not unidirectional and evenly distributed,

as in the case of a homogeneous jet out of a gap. The theoretical consid-

eration of a jet, generated by a marine-type propeller with subsequently per-

formed experimental validation, as investigated by Oebius [146]2, can remedy

the previously mentioned problem of the general jet theory. This theory will

be explained below.

6.2.1. Introducing the assumptions

Even though blade element momentum theory is a proven method of design-

ing a propeller, the method is not suitable for calculating the velocity distribu-

tion in the wake. By observing jets from marine-type propellers, Oebius found

that this kind of jet diverges immediately after passing the propeller plane, but

the fundamentals of blade element momentum theory predict contraction due

to acceleration of the fluid. Hence, Oebius started his investigations by con-

sidering a rotational jet and by analysing the analogies between this jet and

a propeller jet.
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Based on the analogies between both types of jets, he proposed several

assumptions to derive the jet theory for propeller propulsion, such as

• the decrease in kinetic energy with the propagation of the jet due to

friction,

• the equality of momentum for every cross-sectional plane because of

negligible differences in pressure and

• the presence of an additional entrainment mass flow rate accelerated

by the free turbulent shear-layer of the jet.

Finally, he concluded that the velocity distribution in a propeller jet and the

geometrical characteristics of its propagation have to be similar to those for

general turbulent jets, as shown in Figure 6.1. He therefore expected a Gaus-

sian curve and formulated Equation 6.2 as the general form of velocity distri-

bution3.

v (x, r) = vmax exp

(
−
1

2

(
r′

Υ

)2
)

(6.2)

In principle, Equation 6.2 is the mathematical definition of an arbitrary Gaus-

sian curve adapted to a propeller jet. Thus, the factorisation of the base of

the Gaussian distribution is given by the maximum velocity vmax of a consid-

ered cross-sectional plane in the x direction, while the exponent is multiplied

by 1/(2Υ2). The function Υ is auxiliary. In the initial region, Υ is identical to

ΥCo and corresponds to the length between the inflection point of the velocity

distribution on the considered x plane and the outer diameter of the poten-

tial core. In the fully developed region, Υ is given by ΥDev and is equal to

the distance between the inflection point and the symmetry axis. The vari-

able quantity r′ of the considered section is given by the distance between

the outer shape and the potential core in case of the initial region and the

symmetry axis for the fully developed zone, respectively. In Figure 6.1, the

mentioned functions and variables are illustrated.
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Based on the assumptions, as required above, Oebius claims that the general

form of Equation 6.2 is valid for all fluids, provided that the density is similar.

This is also in agreement with R. E. Froude [67], who remarked in 1889 that

propulsion depends only on inertia forces due to fluid acceleration. This is

an important point for this research project, see also Chapter 7.1.1, and thus,

the theoretical background of this claim has to be discussed in more detail:

It is obvious that turbulence affects the generation of the jet considered here

– this is the fundamental recognition which led Tollmien to the utilisation of

the boundary layer equations, even though the problem is that this does not

include a wall, only free and turbulent shear layers in a surrounding fluid. The

critical Re number is quite low, and thus, a turbulent jet can be assumed in

most cases, allthough Schlichting [200] outlined the existence of laminar jets.

In turbulent processes, the apparent turbulent viscosity is much larger than

the molecular viscosity, and hence, the latter is negligible. Since turbulence

comes with momentum transport perpendicular to the main direction of the

fluid flow, inertia forces have to be of major relevance. Thus, differences in

density are much more important than differences in viscosity.

Hence, for fluids with similar density, a similar solution according to Equa-

tion 6.2 can be expected.

6.2.2. Universal law of propeller jets

In a further step, Oebius adapted the general law for propeller flow according

to Equation 6.2. To do this, he first identified the differences in both jet types:

• Instead of a single momentum, starting at the outflow, several origins of

various momentums are generated by a propeller. Each blade gener-

ates a single momentum, which additionally depends on the number of

revolutions of the propeller.

• Rotational acceleration may cause radial velocity components.

• The action-reaction law will cause swirl in the wake, and hub and tip-

vortices will be generated.
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Figure 6.3. Schematic view of the geometry of a propeller jet for undisturbed and free-moving
flow conditions, author’s own representation based on Oebius [146]

However, many characteristics of both types of jets are similar. For propeller

propulsion, the jet can also be separated into two zones, see Figure 6.3, for

a schematic view.

A flow-development region can be observed, which reaches from the pro-

peller plane to xCo in the x direction. Within the core of this region, the max-

imum velocity vmax is equal to the maximum velocity of the propeller plane.

It must be mentioned that the point of maximum velocity is not equal to the

outer radius, but to the point of maximum circulation on the blade as given by

DCo. Therefore, the variation of this point for different propellers is possible.

As mentioned before, the divergence of the jet can be observed immediately

on the propeller plane. The divergence is approximately linear and described

by the divergence angle ζ according to Equation 6.3.
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tan ζ =
r −DCo/2

xCo
= C1 (6.3)

Oebius also recognised that the location of the maximum velocity, starting

with the maximum velocity on the propeller plane at the position DCo, con-

verges degressively with the propagation of the jet. While the starting point

DCo and the diameter Υx both depend on the geometry, the differential quo-

tient ∆Υx/∆x was found by Oebius to be a universal law, see Equation 6.4.

The function Υx matches the distance between the course of the location of

the maximum velocity and the symmetry axis, as depicted in Figure 6.3.

∆Υx

∆x
= f (x, r) = C2 (6.4)

In contrast to the rotational jet, as considered in the assumptions of Oebius’s

theory, for the propeller jet, the distance r′ is defined as the length between

the turbulent shear layer and the course of the point of the maximum velocity.

Thus, Equation 6.5 can be found for r′.

r′ = r −
Υx

2
(6.5)

Owing to the dependence of Υx on the course of the points of the maximum

velocity, the distance between inflection points and points of maximum veloc-

ity ΥCo is also a changing function – as given in Equation 6.6 – though the

course of the inflection points does not change in the initial region.

ΥCo =
DCo

2
−

Υx

2
= f (Υx) (6.6)

As a final important parameter of the initial region, Oebius defined the length

of the initial region xCo as universal, but it depends on the diameter DCo, see

Equation 6.7.
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xCo = f (DCo) (6.7)

Behind the initial region, the zone of the fully developed flow is connected.

This region is characterised by a further divergence of the jet. While the angle

of divergence ζ is still constant, the course of the inflection points of velocity

distribution diverges with the angle ζDev in keeping with Equation 6.8.

tan ζDev =
∆Υ

x− xCo
(6.8)

Hence, the distance ∆Υ must be added to the auxiliary function ΥCo to take

the further divergence into account. Finally, ΥDev is found for the fully devel-

oped zone, as given in Equation 6.9.

ΥDev (x) = ΥCo +∆Υ = C3 (6.9)

6.2.3. Semi-empirical law of propeller jets

To adapt the general law according to Equation 6.2 on propeller propulsion,

and to estimate the constant parameters of the specifications according to

Equations 6.3 to 6.9 , Oebius performed an experimental study. He in-

vestigated eight different marine-type propellers with differing geometrical

parameters. Within this study, the diameter of the propellers varied from

DP = 103.6mm to 150.4mm – the hub diameter ratio DP/DHub was mostly

between 5 and 6, but also 4 for some propellers. In addition to the diameter,

Oebius varied the number of blades of the utilised propellers from nz = 3 to 5

to obtain a broad field of geometrical variations and to prevent influences due

to geometry. The considered revolution speed of the propellers was changed

in four variations from n = 375min−1 to 1250min−1. To measure the veloc-

ity distribution in different axial distances, at least 10 planes between 35mm

and 1500mm downwind from the propeller plane were chosen. The utilised
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velocity measurement was performed by traversing a pitot-static tube. As an

extract of the experimental data, selected results are shown in Figure 6.3 and

Figure 6.4.

The experimental data, as drawn in Figure 6.3, gives an overview of the topol-

ogy of the jet. It is striking that the origin of the jet is not positioned at the

outer radius of the propeller, but rather at approximately 67% of the diameter

DP of the propeller. Taking the diameter DHub of the hub into account for the

diameter of the core DCo in the propeller plane, Equation 6.10 follows.

DCo = 0.67 ·DP +DHub (6.10)

The value 0.67 ·DP highlights the origin of the momentum, which affects the

jet. Oebius recognised that this has to be the point of the maximum circulation

Γ. Then, the point of maximum circulation gives the point of maximum lift

and thus of maximum thrust4. Based on this recognition, it is clear that this

point depends on the geometry – this point may change from one propeller

to another. But in practice, a well-designed propeller is mostly near this value

due to similar aerodynamic qualities for well-designed blades. All propellers

investigated by Oebius had a point of maximum thrust of about 65% to 70%,

although they were quite different in geometry. Hence, the error in choosing

a value of 67% is quite small.

In addition to the point of maximum thrust, Oebius found in his experiments

that a divergence angle of about ζ ≈ 18.78 ◦ can be estimated for all pro-

pellers and Equation 6.3 becomes Equation 6.11.

ζ =
r −DCo/2

xCo
≈ 18.78 ◦ (6.11)

The inflection point of velocity distribution is required to fully describe the

Gaussian curve and was thus analysed in the experimental survey. In the flow

development region, the course of these points is parallel to the symmetry

axis and equal to the diameter DCo of the initial core in the propeller plane,
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Υx/DCo

x/DCo

(a) Relocation of the course of maximum ve-
locity

v/vmax

x/DCo

(b) Decrease of the maximum velocity

Figure 6.4. Change in the maximum velocity of a propeller jet with increasing propagation, dou-
ble logarithmic scale, experimental data represented by circles (◦), and curve fit by the dashed
line, author’s own representation based on Oebius [146]

see Equation 6.6, while in the development region, the curve of the inflection

points diverges with the propagation of the jet, as can be seen in Figure 6.3.

In his investigations, Oebius found a constant factor for this divergence of

ζDev ≈ 5 ◦, and the distance ΥDev according to Equation 6.9 can be rewritten

as Equation 6.12 by taking Equation 6.8 into account5.

ΥDev =
DCo

2
−

Υx

2
+ 0.0875 · (x− xCo) (6.12)

To calculate the function Υx, Oebius analysed the relocation of the course of

the maximum value. A detailed view of his results can be found in Figure 6.4a.

In the double logarithmic diagram, the experimental dataset is represented by

circles, while the curve fit is drawn as a dashed line. The function of the curve

fit is represented by Equation 6.13.

Υx (x) = 0.6 ·DCo · (x/DCo)
−0.3 (6.13)
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As mentioned above, the maximum velocity vmax is constant for the develop-

ment region and equal to the velocity of maximum circulation and thrust re-

spectively. But in the fully developed region, the value of vmax decreases with

the propagation of the jet. To obtain a mathematical relationship for this be-

haviour, Oebius performed experimental investigations – the results of these

investigations can be found in the double logarithmic diagram in Figure 6.4b.

Experimental data is again depicted as circles, while the curve fit is given by

a broken line. The nearly constant course of the maximum velocity vmax in

the initial zone is clearly represented by the experiments, and therefore, the

decrease of the course for distances is larger than x/DCo = 1. The curve fit

for the fully developed region can be found as Equation 6.14.

v

vmax
=

3

2

(
x

DCo

)−0.6

(6.14)

Combining the general law for a jet according to Equation 6.2 and the deriva-

tives given in Equations 6.3 to 6.9, the semi-empirical approaches found in

Equation 6.10 to 6.14 lead to the velocity distribution v (x, r), as given in

Equation 6.15.

v (x, r) =





vmax exp

[
− 1

2

(
r−Υx(x)/2

DCo/2−Υx(x)/2

)2]
, for x < xCo

vmax exp

[
− 1

2

(
r−Υx(x)/2
ΥDev(x)

)2]
, for x ≥ xCo

(6.15)

Note that the velocity distribution is defined by cases due to the increased

diverging character in the fully developed region. Thus, Equation 6.16 gives

the definition of the maximum velocity vmax for both cases.

vmax =





vCo, for x < xCo

vCo ·
3
2

(
x

DCo

)−0.6

, for x ≥ xCo

(6.16)

It also has to be said that the maximum velocity vmax depends on the velocity

at the point of maximum circulation, which is given by Equation 6.17.
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80%

100%

40%

20%

60%

100%

80%

100%

40%

20%

60%

100%

2r/DP

x/DP

umax

umax

x/DP = 5

x/DP = 1.25

(a) Isolines
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(b) Velocity in cross-sectional planes

Figure 6.5. Calculation of the velocity distribution in a propeller jet, calculated using Equa-
tion 6.15, shown as isolines of different values to demonstrate the propagation of the jet and as
velocity distribution depending on different cross-sectional planes

vCo = π · n ·DCo (6.17)

Based on Equation 6.15, it is now possible to estimate the velocity distri-

bution for jet propulsion. Figure 6.5 shows the application of such velocity

distribution as an example.

6.2.4. Jet theory for non-Newtonian fluid flow

The focus of the investigation performed by Oebius was the identification

of erosion in harbour basins caused by marine-typed propellers. Thus, it

is obvious that Oebius only considered water. High viscous or even non-

Newtonian fluids were never the focus of his investigation. However, Oebius

explicitly claimed that the method did not depend on the fluid used. He clearly

emphasised the universal character of the law for propeller jets.

Because of the claimed universal character of the propeller jet theory, the

theory will be applied to high viscous and non-Newtonian fluid flow in this
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u
uCo

r
DP

6.25·DP

5.25·DP

4.25·DP

x=3.25·DP

Figure 6.6. Comparison of experiment (1.1 Ma.-% Xanthan gum) with jet theory, performed
with a gear-driven mixer according to Urban [228], taken from Reviol et al. [181]

study. To prove the validity of the theory, the investigation performed by Urban

[228] was analysed and compared with Oebius’ jet theory.

Urban investigated a gear-driven mixer. The mixer agitated an aqueous solu-

tion with 1.1 Ma.-% Xanthan gum. Subsequently, he applied Oebius’ theory.

Both the experiment and theory are depicted in Figure 6.6. The results are

shown as local axial velocity, normalised by the maximum velocity in the core.

The abscissa shows the local radius normalised by the outer diameter of the

mixer. Figure 6.6 contains four different axial positions. The experimental

data is drawn as circles, while the theoretical results are given as a continu-

ous line. As can be seen, the theoretical curves fit the experimental data very

well.

Oebius emphasised the general validity of the propeller jet theory without any

detailed explanation. Hence, the reason for the good agreement is missing

and will be explained in this thesis: Despite Oebius claiming general valid-

ity, the propeller theory cannot be valid for all fluids but only for fluids with

similar densities. As described by Tollmien, the surrounding fluid is acceler-

ated by the free turbulent shear layer. This means that turbulence is the most

dominant effect in the kinematic process and viscous effects are smaller than
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turbulence. Therefore, only the acting inertia forces, which are related to the

density of the fluid, are relevant. Thus, Oebius’ claim of universality is only

correct in part, but sufficiently so for this research project, as will be described

in Chapter 9.2.

Notes

1Laminar jet theory follows directly from the boundary layer equations, see Schlichting [200]
for details – the mathematical procedure is quite similar to the procedure for a turbulent jet, but
without taking the mixing length or similar approaches into account. Owing to the change of the
flow characteristics for low Reynolds numbers of Re = 30, it is assumed that all jets considered
in this work are fully turbulent. Note that the Reynolds number for a non-Newtonian fluid flow is
not easy to calculate, see Chapter 5.3.3.

2The aim of the investigations performed by Oebius was the identification of the influence of
the jet of a propeller on the sole erosion in harbour basins.

3In his further fundamental considerations of a rotational jet, Oebius [146] derived some em-
pirical constants by experimental investigations. The values of these constants are in very good
agreement with the theoretical derived values, as performed by Zimm [245] and Tollmien [223].

4Oebius [146] recognised that the origin of the momentum depends on the circulation. Lilien-
thal [125] found a point of maximum lift which correlates with the point of maximum circulation.
Lilienthal also stated this value to be 67% of the blade length for most blades.

5The constant factor of 0.0875 in Equation 6.12 directly follows from Equation 6.8, when
setting ζDev = 5 ◦. Note that for a rotational jet out of a cylindrical gap, a value of 0.0807 was
estimated by Oebius. This is in very good agreement with the theoretically calculated value of
0.08 for a plane jet as performed by Zimm [245] and Tollmien [223].

120



Part III.

Method development and validation



7. Method development

7. Method development

The previous part of this thesis introduced the mandatory fundamentals to

develop the desired design method for propeller mixers. As suggested by

Reviol et al. [181], the different fundamentals are merged and finally applied

in Part III and especially in Chapter 7.

Before the design technique is presented in Chapter 7.3, the analytical de-

duction of the method is presented first in Chapter 7.1 and then the underlying

profile database is discussed in Chapter 7.2.

7.1. Analytical approach

7.1.1. Kinematic conditions in a jet

As mentioned in Chapter 1.3, parts of the solution concept of the desired

design technique are taken from the field of wind turbines. Adopting these

parts on propeller mixers lead to the problem of the absence of a defined

inflow condition, as given by the wind speed in the field of wind turbines.

Additionally, the fundamentals of the mentioned approaches are defined for

low viscous fluid flow with high Reynolds numbers only and are not valid for

high viscous fluid flow and low Reynolds numbers as given for non-Newtoni-

an media. Thus, the kinematics around a jet – as generated by a propeller

mixer – are considered again, to adjust the state of the art methods for the

purpose considered here.

Figure 7.1 illustrates the schematics of such a jet. The agitator is positioned

at 1 and rotates with the shaft speed n about the symmetry line. The

propeller is driven by the power PPP which leads to the mass flow rate ṁ

at the inflow zone, which is chosen in a sufficient distance upstream from

the propeller, indicated by 0 . Following the theoretical approaches of Oe-

bius [146], between the propeller plane at Position 1 and an arbitrary outlet

position, given by 2 , the jet diverges. Position 2 is also chosen at a suf-

ficient distance to the propeller plane. In the following, the positions defined

in Figure 7.1 are utilised to describe the position in the jet, while the volume,
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INFLOW
ZONE

SHEAR LAYER
OF PROPELLER JET

ARBITRARY
POSITION IN FULLY
DEVELOPED ZONE

TOTAL MASS
FLOW AT OUTLET

x

0

n

ṁ

PP

1

2

Figure 7.1. Sectional view of a propeller jet with relevant process parameters, contour line
calculated according to Oebius [146]’ thoery – illustration of inflow zone (dashed curve) not
included in Oebius’ theory, inflow indicated with 0 , propeller position marked with 1 and outflow
position for arbitrary x coordinate with 2

enclosed by the shear layer of the jet is understood as the control volume for

balancing conserved quantities.

Mass flow balance

The conservation of mass requires equal mass flow rates at in- and outflow,

provided there is no increase or decrease in mass within the control volume.

This means Equation 7.1 has to be valid in principle.

ṁ = ṁ0 = ṁ1 = ṁ2 = const (7.1)

However, Equation 7.1 is only valid if the surrounding surface of the control

volume consists of solid material – or the velocity field in the surface must not

have a component normal for this surface. For a jet, the surrounding surface

is identical to the free shear layer and for a viscous fluid, the absence of
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Figure 7.2. Mass flow rates in the jet downstream from the propeller, depicted for an arbitrary
position, representation according to Reviol et al. [181]

normal velocity components cannot be assumed due to friction. This means,

for a jet, the outflow mass flow rate has to be larger than the inflow mass

flow rate because of the entrainment mass flow rate, which is accelerated by

friction in the shear layer of the jet.

Thus, the entrainment mass flow rate has to be taken into account. For this,

the propeller jet is intersected at an arbitrary position x̂ downstream from the

propeller, as illustrated in Figure 7.2. The figure illustrates the flow through

an arbitrary propeller mixer and the acceleration of entrainment by the jet.

Note that the radial velocity profile and the parameters of its geometrical dis-

tribution as calculated by the propeller jet theory according to Oebius [146]

(see Chapter 6.2) is sketched together with the local mean velocity vx̂ in axial

direction.

To calculate the conservation of mass, as a simplification for low Re and

high viscous fluid flow, incompressible conditions can be assumed. Thus,

Equation 7.2 can be given for the outflowing mass flow rate ṁx̂
2 at position

x̂. Herein, Ax̂ is the area of the section through the jet, perpendicular to the

symmetry line at x̂.
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ṁx̂
2 = ρ · vx̂ ·Ax̂ (7.2)

As described above, the entrainment mass flow rate ṁx̂
En which occurs be-

tween inflow at 0 and outflow at 2 has to be taken into account and

Equation 7.3 results.

ṁx̂
2 = ṁx̂

En + ṁ0 (7.3)

The entrainment mass flow rate ṁx̂
En at x̂ can be understood as the integral

of the local entrainment mass flow rate ṁEn (x) from x̂−∞ to the considered

position x̂, see Equation 7.4. The position x̂−∞ marks the starting point of

the jet.

ṁx̂
En =

1

x̂− x̂−∞

x̂∫

x̂−∞

ṁEn (x) · dx (7.4)

With Equation 7.4, the mass flow rate ṁx̂
2 at the outflow position becomes

Equation 7.5.

ṁx̂
2 =

1

x̂− x̂−∞

x̂∫

x̂−∞

ṁEn (x) · dx+ ṁ0 (7.5)

Combining Equations 7.1 to 7.5 creates the general formula for the whole

mass outflow rate ṁ2, see Equation 7.6. In Equation 7.6, x̂+∞ describes the

axial position of fully dissipated momentum forces – this means the position,

where the velocity field of the jet is equal to the velocity of the far field. The

analogue for the radial position is described by Rx,+∞. It should be noted

that Equation 7.6 is mostly not solvable in practice.
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ṁ2 =
1

x̂+∞ − x̂−∞

x̂+∞∫

x̂−∞

ṁEn (x) dx+ ṁ0

=
ρ

x̂+∞ − x̂−∞

x̂+∞∫

x̂−∞

Rx,+∞∫

0

2π∫

0

v (x, r) · r dϑ dr dx (7.6)

Axial flow velocity at inlet and outlet

To apply blade element theory, as discussed in Chapter 3.2.2, the axial flow

velocity c1 in the plane of the propeller is required. Assuming Froude-Rank-

ine’s theorem according to Equation 3.20, this velocity can be calculated us-

ing the inflow velocity c0 and the outflow velocity c2.

Regarding a control room according to Figure 7.3 and applying continuity,

Equation 7.7 and 7.8 follow respectively.

c0 =
ṁ0

ρ ·A0
(7.7)

c2 =
ṁ2

ρ ·A2
(7.8)

However, due to entrainment, it is not allowed to apply continuity – the flow

perpendicular to the stream tube must not be neglected, as discussed before.

Thus, the mass flow rate at Position 2 has to be larger than at the inflow.

Taking entrainment as formulated by Equation 7.5 into account, Equation 7.7

changes and Equation 7.9 results.

c0 =
ṁ2 −

1
x̂2−x̂−∞

∫
ṁEn dx

ρ ·A0
(7.9)

Equation 7.9 depends on the mass outflow rate and therefore on the still

unknown outflow velocity c2. Assuming a mixing time T , which is necessary
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to circulate the whole fluid exactly one time, c2 can be estimated for a known

mixing volume V and Equation 7.10 is found for the inflow velocity c0 and

Equation 7.11 for the outflow position respectively.

c0 =
V/T

A0
−

∫
ṁEn dx

ρ ·A0 (x̂− x̂−∞)
(7.10)

c2 =
V/T

A0
(7.11)

Taking both the inflow velocity c0 and the outflow velocity c2 into account,

Froude-Rankine’s theorem can be applied in principle to calculate the veloc-

ity in the propeller plane – provided the required assumptions are fulfilled,

which is not valid in the considered case. Equation 3.20 and so the origin

axial momentum theory is only valid for low viscous fluid flow and for the

absence of entrainment, see Chapter 3.2.1 for details. Hence, Froude-Rank-

ine’s theorem has to be enhanced for non-Newtonian fluid flow.

Froude-Rankine’s theorem for high viscous fluid flow

From Equation 7.6, it is obvious that the entrainment mass flow rate ṁx̂
En can

not be calculated precisely under practical conditions. However, the mass

flow rate of the entrainment may be modelled in a simple manner in accor-

dance with the axial momentum theory of Froude [67] and Glauert [77]:

Following the approach to subdivide the mass outflow rate into an entrain-

ment mass flow rate ṁx̂
En and an undisturbed mass outflow rate ṁ∗

2, which

is equal to the mass inflow rate ṁ0 = ṁ∗
2 as performed in Equation 7.3, a

characteristic velocity can be identified for each mass flow rate.

Under these assumptions, cEn is the characteristic velocity of the entrainment

mass flow rate at Position 2 and can be estimated by Equation 7.12 and

7.13.
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Figure 7.3. Stream tube to derive the axial momentum theory for high viscous fluid flow with
characteristic entrainment mass flow rate due to friction, 0 marks the entrance, 1 the propeller
plane and 2 the outflow

cEn = ṁEn/ρA0 (7.12)

ṁEn =

x̂2∫

x̂−∞

ṁEn

∆x
dx (7.13)

Herein, the mass flow rate ṁEn is the mean value of the entrainment from

the starting point x̂−∞ to the outflow position, which is indicated by x̂2 =

∆x+ x̂−∞. Thus, ∆x gives the considered length of the jet.

Similarly, for the ideal mass outflow rate, the hypothetical velocity c∗2 can be

identified. Under these circumstances, continuity still applies and the inflow
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velocity c0 is equal to c∗2. Hence, c∗2 can be understood as characteristic for

the part of the mass flow rate which occurs under frictionless conditions.

In Figure 7.3, the entrainment mass flow rate ṁx̂
En is sketched qualitatively

together with the ideal and undisturbed mass outflow rate ṁ∗
2. Note that

the control room is chosen in a way that every velocity component is either

parallel to the x-axis or to the z-axis of the control room. Because of this,

the pressure distribution becomes complex – but pressure is assumed to

be constant due to incompressible fluid flow and due to the distance of the

boundaries to the considered propeller. Hence, pressure components will

vanish, and only horizontal and vertical aligned velocity components occur.

The fundamentals of the original axial momentum theory are based on

Bernoulli’s principle. Introducing characteristic velocities, as described

above, enables the principle to be applied to the present problem. In anal-

ogy to Chapter 3.2.1, total pressure is balanced. This leads to Equation 7.14

for the fluid flow from Position 0 to the point 1− infinitesimal in front of the

propeller. Note, that Equation 7.14 is equal to Equation 3.9 because of the

onset of entrainment mass flow rate not occuring before the propeller plane

is reached. Thus, Equation 7.15 takes the whole entrainment mass flow rate

from 1+ to Position 2 into account. Finally, Equation 7.16 gives the differ-

ence of both values for the total pressure balances, which has to be equal to

the difference in pressure over the propeller.

p0 +
ρ

2
c0

2 = p1− +
ρ

2
c1−

2 (7.14)

p1+ +
ρ

2
c1+

2 = p2 +
ρ

2
c22 = p2 +

ρ

2
(c∗2 + cEn)

2 (7.15)

∆p =
ρ

2

[
c0

2 − (c∗2 + cEn)
2
]

(7.16)

Subsequently, the momentum balance in axial direction has to be consid-

ered. As explained before, the control room is chosen in such a way that

only horizontal and vertical aligned velocity components are present. For

incompressible flow, Equation 7.17 results.
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FT = ṁ0 c0 − ṁ2 c2 (7.17)

Note, that Equation 7.17 and Equation 3.17 are quite similar but not identical.

In contrast to the original axial momentum theory, the mass flow rate rises

due to the entrainment. Introducing the hypothetical entrainment mass flow

rate ṁEn for entrainment and the hypothetical mass flow rate ṁ∗
2 for the ideal

stream tube, the total mass flow rate at the outflow can be calculated by

Equation 7.18.

ṁ2 = ṁ∗
2 + ṁEn (7.18)

For the ideal case, the mass outflow rate ṁ∗
2 can be substituted by the mass

inflow rate ṁ0. Then, from Equation 7.17 and Equation 7.18, the thrust FT

according to Equation 7.19 is found.

FT = ṁ0 (c0 − c2)− ṁEn · c2 (7.19)

Equating the pressure load ∆p · A1 (see Equation 7.16) and the reaction

force F̌T leads to Equation 7.20, which represents Froude-Rankine’s theorem

for high viscous fluids. As can be seen, neglecting the entrainment mass

flow rate in Equation 7.20, Froude-Rankine’s theorem follows directly, see

Equation 3.20.

c1 =
c0 + c2

2
+

ṁEn · c2
ρA1 (c0 − c2)

(7.20)

Modelling the entrainment flow rate

Equation 7.20 can be utilised to calculate the absolute axial velocity c1 in the

propeller plane – provided the cumulated entrainment mass flow rate ṁEn
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is known. In practice, ṁEn is very hard to predict by analytical methods.

Considerable effort and the use of experimental methods would be necessary

to estimate the mass flow rate. The direct calculation of the outlet velocity c2
is also challenging. For given mixing volume and time, c2 can be derived,

see Equation 7.15. However, the cross section of the jet at the inflow is also

necessary, but unknown.

Thus, in the scope of this research project, the entrainment mass flow rate

ṁEn and also the outflow velocity c2 will be modelled by a semi-analytical

method. For this, Oebius’ propeller jet theory, as discussed in Chapter 6.2,

will be utilised. Oebius estimated the velocity distribution downstream from

the propeller as a function of radial and axial distance to the propeller, see

Equation 6.9 and 6.15. Note that the validity of the method for use on high

viscous fluid flow was proven in Chapter 6.2.4.

As elucidated above, the mass outflow rate – including the entrainment mass

flow rate – can be calculated using Equation 7.6. Taking Equation 6.15 into

account, the velocity distribution is known as mathematical function and the

total mass flow rate can be calculated by integration. Based on this princi-

ple, the mean entrainment mass flow rate ṁEn can be estimated by Equa-

tion 7.21. Equation 7.22 gives the velocity distribution c2. It has to be said,

that entrainment is assumed to only occur downstream from the propeller.

ṁEn = D ·




∞∫

0

v (x̂, r) · 2π r · dr −

∞∫

0

v (0, r) · 2π r · dr


 (7.21)

c2 = v (x = x̂, r) =
1

π R2
x̂,+∞

∞∫

0

v (x = x̂, r) · 2π r · dr (7.22)

The integration point 2 downstream from the propeller has to be chosen

appropriately1. Additionally, the inlet velocity c0 at Position 0 has to be

calculated. For an ideal flow field, the inflow velocity has to be c0 = 0 due

to the infinite distance between the starting point of the jet and the propeller.

In practice, c0 is expected to be larger than 0 and has to be estimated first.
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This can be done either by experimental measurements or by the utilization

of Equation 7.9 and 7.10. Subsequently, the axial velocity c1 in the propeller

plane can be calculated by Equation 7.20.

As a more practical formulation, the simplified velocity in the propeller plane

c̃1 can be identified, see Equation 7.23. The reason for the good agreement

of Equation 7.23 can be found in the utilization of the diameter DCo, which

correlates with the point of maximum velocity in radial distance within the core

region. Furthermore, the influence of entrainment is still low at this position –

entrainment is assumed to start at this point. Thus, the estimation of the axial

velocity with Equation 7.23 seems to be plausible, even though the formula

is not physically correct.

c̃1 ≈
4V/T

πDCo
2 (7.23)

It should be noted that the procedure above can be utilised without the ap-

plication of the jet theory by Oebius, provided the velocity distribution as a

function of radius and distance v (x, r), as can be seen in Figure 7.2, is es-

tablished by alternative methods, such as theoretical models or experimental

data. However, the velocity c1 in the propeller plane can be identified by

Equation 7.20.

Velocity triangles

Until this point of the considerations, the origin axial momentum theory has

been adopted for the agitation of high viscous fluid flow. As a next step, blade

element theory will be applied in analogy to Chapter 3.2.2. For this, the

velocity triangles in the propeller plane 1 are analysed. Figure 7.4 shows

a schematic view of the velocity components at all relevant positions in the

stream tube.

The utilization of blade element theory requires an effective velocity at the

profile, which is identified here by the relative velocity w. The absolute veloc-

ity c is commonly defined as the sum of circumferential u = ω · r and relative
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velocity w. Hence, the magnitude of the relative velocity can be calculated

by both the magnitude of the absolute velocity and the circumferential veloc-

ity. However, it should be noted that Equation 7.20 was formulated for axial

flow conditions, so for neglected swirl. Hence, only the meridional compo-

nent cm of the absolute velocity c can be estimated by Equation 7.20. For

rotating fluid machinery, neglecting swirl can cause huge errors in the de-

sign process. The rotating structure, e.g. a propeller, causes momentums in

radial direction, which can be identified as swirl in the fluid flow – and swirl

requires kinetic energy too. Therefore, not only the already known meridional

component cm, but also the circumferential component cu is essential for the

full description of the absolute velocity c. As can be seen in Figure 7.4, the

circumferential velocity u is enlarged by the circumferential component cu of

the absolute velocity. And for the calculation of the relative velocity w, the

vector sum has to be calculated with the meridional component cm of the ab-

solute velocity. The magnitude of the relative velocity can be calculated using

Equation 7.24.

|w1|
2
= |c1,m|

2
+ (|u1|+ |c1,u|)

2 (7.24)

The circumferential component of the absolute velocity cu results from the

momentum balance in an angular direction. The derivation of the loads from

this balance is performed in the following chapter. Owing to didactic reasons,

an early intermediate result, which leads to cu, is given by Equation 7.25

before the momentum balance is explained in more detail.

c1,u =
dFC

ρ · c1,m · dA1
(7.25)

The calculation of the relative angle Θ is simple and can be performed ac-

cording to Equation 7.26, whereas the flow angle α depends on the consid-

ered flow profile – thus, the position of a selected profile has to be adjusted

until α has reached a desired value.
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Figure 7.4. Velocity triangles upstream from the propeller 0 , in the propeller plane 1 and
downstream from the propeller 2 , author’s own representation based on Reviol et al. [181]

Θ = arcsin
cm
w

= arccos
u

w
(7.26)

7.1.2. Loads caused by the flow

At this point of the considerations, all relevant velocity components for a mo-

mentum balance are known. And thus, the infinitesimal forces at the section

can be calculated by applying blade element theory as discussed in Chap-

ter 3.2.2. For this, Figure 7.5 shows a schematic view of the relevant forces

at an exemplary chosen radial section.
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Figure 7.5. Relevant forces, torque and velocity components at a radial section, author’s own
representation based on Reviol et al. [181]

As depicted, the infinitesimal resulting force dFR is caused by the infinitesi-

mal forces for lift dFL and drag dFD. Additionally, dFR can be separated into

its components in axial and circumferential direction. As a result, dFT can be

obtained for infinitesimal thrust, while dFC gives the infinitesimal circumfer-

ential force. The circumferential component leads directly to the drive torque

TPP = dFC ·r. As with the original blade element theory, the mentioned forces

can be calculated by Equation 3.22, 3.23, 3.25 and 3.26, see Chapter 3.2.2.

It is worth mentioning that in contrast to Chapter 3.2.2 and Chapter 4.2.2,

swirl is taken into account here, as illustrated in Figure 7.5. This is in accor-

dance with the more complex design technique of considering circulation Γ,

as briefly discussed in Chapter 4.3, despite the fact that circulation is also not

taken into account explicitly in this chapter. Hence, the relative velocity w1

has to be calculated according to Equation 7.24.

An alternative approach to estimate the resulting force dFR is the considera-

tion of the acting momentums. The momentum load İ which occurs over the
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infinitesimal time period ∂t is given by Equation 7.27. For steady state con-

ditions – as typically required in the design process – the acceleration ∂c/∂t

becomes zero and only the mass flow rate ṁ has to be taken into account.

İ =
∂I

∂t
=
∂m

∂t
c+

∂c

∂t
m = ṁ · c (7.27)

Applying Equation 7.27, the circumferential force dFC and the thrust force

dFT can be derived directly and Equation 7.28 and 7.29 follow respectively.

Note that dFC is caused by perpendicular and dFT by parallel vectors. Hence,

Equation 7.28 and Equation 7.29 are given in vectorial lettering.

dFC = dİϑ = dṁ · |( #»n ϑ · #»c ) · #»n ϑ| (7.28)

dFT = dİx = dṁ · |( #»n x · #»c ) · #»n x| (7.29)

Considering the velocity triangle, the vectors can be substituted by scalar

quantities and Equation 7.30 and 7.31 are as follows.

dFC = ρ · c1,m c1,u · dA1 (7.30)

dFT = ρ · c1,m
2 · dA1 (7.31)

As mentioned in Chapter 7.1.1, Equation 7.30 can be applied to calculate the

swirl losses within the design process (see Equation 7.24 and 7.25)2.

7.1.3. Derivation of the propeller shape

For the design process of wind turbines, as in Chapter 4.2.2 the shape of the

blade can be derived from the integral forces – provided that a criterion for

optimisation is defined. In the field of wind turbines, the Betz-Joukowsky limit

is typically chosen as the criterion for ideal fluid flow. Here, this approach

is not appropriate: on the one hand, the utilization of a high viscous and

non-Newtonian fluid means that the ideal conditions as required for the Betz-
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Joukowsky limit are not at hand. On the other hand, for the design process

of wind turbines, a maximum conversion of wind energy is desired, while

here, the opposite, a minimum of drive power, is desired. Thus, the target

quantities are differing in general and an alternative criterion to optimise a

propeller mixer must be chosen for the case under consideration.

As mentioned, an optimised propeller mixer is desired which consumes a

minimum of power, which can also be considered as the effort PPP to drive

the propeller. Furthermore, the mixer is expected to generate a maximum

of thrust, because a maximum of thrust leads to a maximum of mass flow

rate, which was defined as the desired purpose of the propeller mixer, see

Chapter 1. The kinetic energy, transported by the jet is given by power PJet of

the jet. Thus, the relationship between benefit and effort defines the propeller

efficiency ηP, see Equation 7.32 as already presumed by Glauert [77].

ηP =
PJet

PPP
=
FT · cm
TPP · ω

(7.32)

⇒ FT = max ∧ TPP = min

With Equation 7.20, 7.30 and 7.31, Equation 7.32 is easy to solve and en-

ables the propeller mixer to be optimised. Instead of considering the drive

power, the thrust force can be chosen as an alternative criterion for optimisa-

tion. In a similar manner to the derivation of the chord length and thus to the

design of the shape of the blade of a wind turbine, the shape of the propeller

mixer can be designed by the derivation of the chord length as a function

of thrust. This means, the chord length of each considered radial section is

adjusted to the infinitesimal thrust and thus, the mixing task of the propeller

mixer will be fulfilled best with this procedure.

The chord length can be obtained by combining the infinitesimal thrust dFT

according to Equation 3.25 with the infinitesimal lift and drag forces, see

Equation 3.25 and 3.26 respectively. The mentioned forces are deduced

from blade element theory as discussed in Chapter 3.2.2. Note that the in-

finitesimal thrust dFT is additionally known by Equation 7.31. When isolating
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the chord length l, Equation 7.33 results. The quantity nz defines the number

of propeller blades and must be chosen.

l =
2 · dFT

nz ρw1
2 (CL cosΘ− CD sinΘ) dr

(7.33)

Unfortunately, the chord length according to Equation 7.33 is a function of a

large number of initially dependent and unknown quantities as can be seen

in Equation 7.34.

l = f (dFT, dr, w1, c1,u, CL, CD,Θ, α) (7.34)

Furthermore, additionally to the chord length l = f (. . .), the mounting angle

ϕ has to be known too. Since the mounting angle not only depends on the

relative angle Θ but also on the flow angle α, the mounting angle can not be

determined a priori due to the implicit character of Equation 7.33. Initially, the

profiles to be selected for each considered radial section are unknown, and

hence, the ideal flow angle is unknown too. Additionally, it is clear that ϕ has

to be a function of the radius r, see Equation 7.35.

ϕ = Θ(r)− α (. . .) = f (r, . . .) (7.35)

To solve the above problem, an iterative procedure is required. This is per-

formed by a numerical algorithm, which can be found in Chapter 7.3 and in

Figure 7.16 respectively. However, before the numerical procedure can be

applied, the essential profile data of selected hydro- and airfoils has to be

investigated. This is done in the following chapter.
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7.2. Underlying polar plot database

As discussed in the overview of this work (see Part I), the procedure pre-

sented in Chapter 7.1 closely resembles the design process of wind turbines,

which is well researched and understood. However, based on the theoretical

consideration in Chapter 7.1, it is clear that the method is only sufficient if

high quality profile polar data for a huge number of profiles is known - but

this data is not available for non-Newtonian fluid flow. In consequence, flow

profiles have to be investigated under non-Newtonian fluid flow conditions in

order to generate a database.

Typically, profile polar data is investigated by experimental surveys. These

studies include a manifold variation of the flow parameters. To derive a single

polar curve, at least ten different measurement positions have to be analysed

depending on the accuracy of the desired results. Mostly, polar plot data is

given for varied velocity magnitude. In total, more than about 50 measure-

ment positions have to be investigated for a single flow profile.

In the scope of this research work, not only do the flow conditions have to be

changed but also the fluid conditions. Investigating only a few fluids would

directly increase the number of measurements enormously – for just one

single flow profile. Hence, in this research work, the polar data is generated

by a numerical survey3. This allows extensive parameter studies.

7.2.1. Selected profiles

First, the investigated profiles will be introduced. It is clear that there are too

many different flow profiles to examine them all. An appropriate preselection

must first be performed, to reduce all the available flow profiles to those re-

lated to the present topic. To do this, several conventional databases were

examined to obtain a representative overview of relevant profiles. Finally, a

small number were selected for thorough examination.

The flow profiles were selected according to the following criteria:

• suitability of the profile as a low-Re-profile and/or

• suitability for use in a liquid
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Figure 7.6. Normalised plot of the three preselected flow profiles

Three different profiles were selected: the Eppler E817 profile, due to its

suitability as a hydrofoil, the Natural-Laminar-Flow (NLF) 1015 profile from

NASA, because of the special development for laminar flow patterns and fi-

nally the Wortmann FX60 profile, because of its suitability as a low-Re profile.

All profiles are depicted together in Figure 7.6 as a normalised plot to highlight

the geometrical differences. As elucidated in Chapter 3.1.1, the profiles can

be characterised by different parameters. These are shown in Table 7.1 and

are separated into geometrical data and polar characteristics - for a detailed

explanation of these parameters, refer to the fundamentals of this research

work. The polar data is of major importance for the application of blade ele-

ment momentum theory. Note that the data given in Table 7.1 concerns an

experimental survey in Newtonian fluids and is therefore not relevant for the

related research project and have to be recalculated for non-Newtonian fluid

flow instead.

7.2.2. Numerical setup

As described above, the numerical investigations are performed with numer-

ical studies. Owing to the large number of necessary investigations, the

Lattice-Boltzman method (LBM) is applied. In the present research project,

the relevant advantage of LBM compared to the RANS method is given by the

numerical procedure. LBM only calculates the local collisions and the result-

ing propagation of the density distribution functions at every node, meaning

that all calculations are carried out locally. Furthermore, no nonlinear sys-
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Table 7.1. Parameters for geometrical description of the investigated flow profiles including
the polar characteristics for optimum flow conditions under Newtonian fluid flow for a Reynolds
number of Re = 1 · 106, data taken from the AID Airfoil Investigation Database [4]

E817 NLF1015 FX60-126

G
e
o

m
e
tr

ic
a
l

d
a
ta Thickness 10.9% 15% 12.5%

Camber 2.9% 4.7% 3.6%

Trailing edge angle 8.1 ◦ 11.8 ◦ 4.1 ◦

Leading edge radius 1.9% 2.4% 2.6%

Lower flatness 8.4% 11% 10.9%

Efficiency 25.3% 46% 41.3%

P
o

la
r

c
h

a
ra

c
te

ri
s

ti
c

s
4 max CL 0.911 1.66 1.491

max CL angle 7 ◦ 8 ◦ 10 ◦

max L/D 62.175 56.523 145.519

max L/D angle 2.5 ◦ 5 ◦ 5 ◦

max L/D CL 0.815 1.284 1.149

Stall angle 2.5 ◦ −0.5 ◦ 10 ◦

Zero lift angle −4 ◦ −7 ◦ −4.5 ◦

tems of equations are necessary. These two advantages significantly reduce

the duration of a single calculation run. The almost linear scalability of the

solving process is particulary noteworthy, due to the MPI-possibilities.

In this work, all CFD calculations were performed with the in-house code

SAM-Lattice of the Institute of Fluid Mechanics and Turbomachinery of the

Technical University of Kaiserslautern. The code is not only an LBM-based

solver but includes an automatic mesh-generator too. The whole code was

developed by Conrad and Schneider and has been comprehensively vali-

dated [40; 206; 207]. For a propeller mixer test case, Conrad et al. [41] have

shown that even the agitation of non-Newtonian fluid flow can be calculated

using the in-house code.

A detailed explanation of the relevant aspects of the LBM and in particular

the in-house code SAM-Lattice are discussed by Conrad [40] and Schneider

[206].
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Figure 7.7. Schematic view of the fluid domain

Fluid domain

To calculate the profile polar characteristics, it is sufficient to consider only

a small profile segment regarded as an element with infinite span by setting

appropriate boundary conditions. This comes with two advantages: the costs

of the numerical procedure are kept low and, more importantly, any influence

of the aspect ratio on the polar characteristics as discussed by Glauert [77]

is not present.

In Figure 7.7, a schematic view is shown. Note that the figure is not drawn

to scale. The fluid enters the fluid domain through the boundary inlet on

the left and exits on the right via the outlet. The boundary type of the inlet

is set to equilibrium velocity with a fixed turbulence intensity of 10%, while

the outlet is set to equil./gauge pressure and the pressure in this plane is

considered as equal to ambient pressure. Only the boundary wall which rep-

resents the flow profile has a physical wall. Thus, the boundary chosen is the

Bouzidi bounce back type. Owing to the assumption of a constant in-plane

velocity, the whole numerical problem will also be two-dimensional. Thus, in

y-direction, periodical (periodic, I and periodic, II, both set to periodic) and

in z-direction, symmetrical conditions (frictionless wall, type frictionless) are

applied. Conditions are adjusted at the inlet and outlet boundaries to gener-

ate the amount and the direction of the desired flux. The dimensions Li are
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constant for all numerical investigations and are set to prevent influences on

the numerical procedure. The relevant parameters of the fluid domain are

shown in Table 7.2.

Mesh

In contrast to the RANS method, the requirements related to computational

grid are significantly less restrictive. In particular, the points do not have to

represent the geometry exactly. In fact, the computational grid of an LBM

simulation consists on a relatively simple rectangular and equidistant grid of

points.

All grids utilised in this project were generated by an in-house tool imple-

mented within the in-house LBM code. The resulting grids for each profile

consists of about 16 · 106 nodes. An exemplary grid for the LBM is depicted

for the E817 profile in Figure 7.8.

As well as an overview in the lower part of the illustration, Figure 7.8 shows a

detailed view of the leading edge (1), the boundary layer region in the middle

of the suction side (2) and the trailing edge (3). As can be seen, the grid

does not exactly match the geometry because of the low restrictive require-

ments of the method on the computational grid. Furthermore, the boundary

layer seems to be unrefined – although due to the short time duration of a

single simulation run, the whole fluid domain can be chosen in an equal and

high refinement level that includes a sufficient resolved boundary layer re-

gion. Hence, the numerical investigations are performed without taking wall

functions into account.

Parameter study

To generate a single polar curve with sufficient accuracy, the variation of the

flow angle must be extensive. Furthermore, a variation of the velocity is re-

quired to generate several polar curves. The considered flow angle varies

from −6 ◦ to +12 ◦. The flow angle is increased by 2 ◦, while the velocity rises

from 0.1m/s to 5m/s in steps of 0.5m/s.
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Figure 7.8. Exemplarily computational grid for the E817 profile as utilised for LBM simulations,
including detailed view of the leading edge (1), the boundary layer region at the suction side (2)
and the trailing edge (3)

As a further very important parameter, the non-Newtonian character of the

fluid under consideration has to be changed within the study. The mathemat-

ical modelling of the fluid properties is carried out using the power law ac-

cording to Equation 5.27, see Chapter 5.2.5. With regard to validation exper-

iments, rheological parameters of aqueous carboxymethylcellulose (CMC)

solutions and xanthan-gum (XG) solutions will be considered, due to the suit-

ability of these solutions for experimental investigations, see Chapter 9.2.

The consistency factors of the applied fluids vary from 0.45Pa sm to

31.31Pa sm. The physics of the regarded fluids result in a corresponding

power law index variation from 0.85 to 0.27. Note that the power law index

decreases in general with increasing consistency, while the pseudoplastic

character increases.
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Solver properties

As mentioned before, the utilised calculation grids consist of an overall node

number of about 16 · 106 nodes. All simulations were performed within an

automatically started process in parallelised CFD runs with typically 32 and at

most 128 CPUs on a high-capacity computer. Each run was performed over

at least 120000 time steps with the Multiple Relaxation Time (MRT) solver

mode. The MRT is selected due to better numerical stability. Oscillations can

be damped by adjusting the bulk viscosity [206].

With these settings, a simulation run requires 24GB RAM and takes about

14h. Owing to the parallelisation capability with a large number of CPUs,

the LBM is very suitable for generating a profile polar database for several

hydrofoils, taking non-Newtonian fluid flow into account.

For all numerical investigations, the forces in x- and y-direction were analysed

to calculate lift and drag forces and their dimensionless coefficients. Owing

to the transient character of an LBM calculation, as emphasised by Conrad

[40], the forces have to be evaluated as a mean value. The mean value was

calculated as the arithmetic average of the last 5000 iteration steps.

Table 7.2 contains the significant solver parameters.

7.2.3. Validation study

Although the utilised LBM code was validated by Conrad et al. [41]; Schneider

[206]; Schneider and Böhle [207]; Schneider et al. [208] for several cases,

the applied code is an in-house code. Thus, experiences are yet limited in

applying the code for special situations or certain problems. Hence, a short

validation study is performed to show the validity of the in-house code by

comparing the LBM results with the commercial CFD tool CFX v14.5 from

ANSYS6. Note that the CFD method of CFX is the popular RANS method.

Owing to the fact that two different CFD methods will be applied, it is neces-

sary to set up both solvers under similar conditions, especially at the bound-

aries. Apart from the differences in the fundamentals of the methods, the

properties of the boundaries are set up identically. However, the plane fric-

tionless wall is set as symmetry in the RANS simulations. The differences
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Table 7.2. Boundary and solver conditions for the numerical investigations, performed with the
LBM and the RANS methods

LBM RANS

CFD tool

SAM-Lattice ANSYS CFX v14.5

Investigated profiles

Profile type Eppler E817, NASA NLF1015, Wortmann FX60-126

Fluid domain

LA [m] 7
LB [m] 15
LC [m] 0.064 1
LD [m] 7
LE [m] 1

Boundary types

Inlet Equilibrium velocity vel. components
Outlet Equil./gauge pressure Opening
Periodic, I Periodic
Periodic, II Periodic
Wall Bouzidi bounce back No slip wall
Frictionless wall Frictionless Symmetry

Boundary conditions

Velocity v [m/s] {0.1 : 0.5 : 5} 5
Angle α [◦] {−6 : 2 : 12}
Pressure p [Pa] 1 · 105

Intensity Tu [%] 10
Consistency k [Pa sm] {0.45, 2.3, 2.8, 5.8, 8.3, 31.3} {0.45, 2.3, 8.3}
Flow index m [−] {0.85, 0.73, 0.40, 0.37, 0.61, 0.27} {0.85, 0.73, 0.61}

Grid & solver properties

No. nodes 16 · 106 2 · 106

Wall function - automatic
No. iterations 120000 min 500, max 1000
Solver mode MRT high resolution
CPU time 14h 8h
Memory 24GB approx. 4GB
No. CPUs 32 4
Turbulence - SST γ-Θ-model5

146



7. Method development

1

2

3

21 3

Figure 7.9. Exemplarily computational grid for the E817 profile as utilised for the RANS simu-
lations, including detailed views of the leading edge (1), the boundary layer region at the suction
side (2) and the trailing edge (3)

in modelling this plane lead to differences in generating the dimensions of the

fluid domain. For CFX-runs, the length LC is set to 1.

The mesh for the RANS-method was generated as a block-structured hexa-

hedron dominant grid with the tool ICEM CFD. Since the logarithmic law for

the wall is potentially unsuitable, the boundary layer was fully discretised. The

resulting dimensionless wall distance y+ of all grids reaches values of y+ < 4

as its maximum. A mesh independency study was performed to ensure that

no dependencies exist between results and mesh topology. The final grid

of each profile consist of about 2 · 106 nodes. In Figure 7.9, the computa-

tional grid for the validation study of the E817 profile is shown. Besides an

overview of the profile, a detailed view of the leading edge (1), the boundary

layer region at the suction side (2) and the trailing edge (3) is shown. The

figure illustrates the distribution of the cell elements to obtain the desired y+

values.
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The solver was run in high resolution mode over at least 500 and at most 1000

iteration steps. For the chosen number of 4 CPUs and a selected RAM size

of 4GB, the time duration of a single run was about 8h. Although this time

duration is almost half of time duration of the LBM, it should be noted that

the utilised computational grids differ in size by a factor of eight and thus, the

LBM is still preferred due to the better resolution of the results.

As a further aspect in quality, the LBM code does not need to model tur-

bulence with two-equation turbulence models. While CFX is utilised in the

application of the SST γ-Θ-model, the LBM code SAM-Lattice can be started

using LES models with low usage of time and memory.

To reduce the effort to validate the LBM tool, the comparison will be per-

formed for the E817 profile only. Note that the flow conditions are restricted

to three different pseudoplastic fluids and only to the velocity of 5m/s.

The validation study is performed for the derived quantities CL and CD to

plot the polar curve as discussed in Chapter 3.1.1. However, before present-

ing the polar plot, the local distribution of the field parameters velocity, static

pressure and viscosity near the profile are presented as a basis for the expla-

nation of the differences in the numerical results, performed with the different

CFD methods.

Velocity and pressure distribution

As an example, one unique operating point is considered. The flow condi-

tions of the chosen operating point are given by a fluid flow with a velocity

magnitude of v = 5m/s and a flow angle of α = 8 ◦. The applied viscous

properties of the fluid are given by the consistency k = 8.3Pa sm while the

flow index is set to m = 0.61. The results of the operating point are shown as

array of various contour plots. Results from the first row were performed us-

ing LBM and the second using CFX with the RANS method. In the third row,

the results from the first two rows were subtracted from each other and nor-

malised. Hence the resulting contour plot illustrates the differences of both

methods. While Figure 7.10 shows the results for the velocity, in Figure 7.11

results for the relative static pressure are shown.
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Figure 7.10. Flow field around E817 profile: velocity distribution, performed with the LBM
(top) and RANS methods using CFX (middle) including the normalised deviation from each other
(bottom), flow conditions: inflow velocity v = 5m/s, flow angle α = 8 ◦, consistency k =
8.3Pa sm, flow index m = 0.61

It can be expected that both methods will produce very similar results. And

in fact, the deviations are very low. Despite the maximum deviation reaching

values of about 45% for velocity, the mean values are much lower and reach

values of only 5%, as can be seen in Figure 7.10. Even for the pressure

distribution, which is shown in Figure 7.11, the mean deviation is lower than

5%, but the maximum value rises locally to about 32%.

In both figures, the distribution of velocity and static pressure come to their

highest deviations due to the same computational reasons. The region of

higher deviations is quite narrow but oblong and is positioned at the end of the

suction side of the profile. This is caused by the differences in calculating the

starting point for stall in the LBM and RANS methods. Because of the small
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Figure 7.11. Flow field around E817 profile: static pressure distribution, performed with the
LBM (top) and RANS methods using CFX (middle) including the normalised deviation from each
other (bottom), flow conditions: inflow velocity v = 5m/s, flow angle α = 8 ◦, consistency
k = 8.3Pa sm, flow index m = 0.61

region of deviation, it can be assumed that the distribution of velocity and

static pressure are calculated in good agreement and without any significant

influence on the coefficients CL and CD.

Viscosity

However, drag is not only caused by the conditions of the fluid flow but also

by fluid friction. Thus, in the scope of this thesis, the viscosity and especially

the ability of the CFD to calculate this value in an appropriate manner is

of utmost importance. In both CFD codes, identically models to predict the

pseudoplastic fluid behaviour have to be chosen. Here, the power law was
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Figure 7.12. Flow field around E817 profile: dynamic viscosity distribution, performed with
the LBM (top) and RANS methods using CFX (middle) including the normalised deviation from
each other (bottom), flow conditions: inflow velocity v = 5m/s, flow angle α = 8 ◦, consistency
k = 8.3Pa sm, flow index m = 0.61

chosen, see Equation 5.27.

As shown in Figure 7.10 and 7.11 respectively, Figure 7.12 shows the identi-

cal operation point as chosen before in the example - but for the distribution

of the viscosity field. To illustrate the normalised deviations for the local distri-

bution of the apparent dynamic viscosity around the profile between the LBM

and RANS methods, the third row shows the difference of the results from

both methods.

As can be seen in Figure 7.12, the mean value of deviation reaches about

12.7%. Although this is a high value, the results are very good, due to the very

low deviations in the boundary layer, which is relevant to the investigations.

In this region, the deviation is nearly zero. Only a small area at the end of
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Figure 7.13. Flow field around E817 profile: deviation of velocity and viscosity, performed
with the LBM and RANS methods using CFX and depicted as normalised deviation from each
other, velocity deviation as superposed isocurves (blue), flow conditions: inflow velocity v =
5m/s, flow angle α = 8 ◦, consistency k = 8.3Pa sm, flow index m = 0.61

the suction side shows higher deviations. This is caused by the differently

estimated break-off-points, as described above. In Figure 7.12, this region is

marked as critical. The remaining regions with identified deviations can be

assumed as uncritical because of the high distance between these positions

and the boundary layer of the profile. Ultimately, only the boundary layer is

relevant for drag and thus for the calculation of the coefficient CD.

Plotting the normalised deviation of the distribution of the velocity field and

the distribution of the apparent viscosity field in a single illustration results in

Figure 7.13. The distribution of the differences in apparent viscosity is shown

as a contour plot, while the deviation of the velocity field is depicted as an

isoline plot. Around the region of highest computational differences in veloc-

ity, it is clear that differences in viscosity must also occur. Since the upper

region of deviations in viscosity is far from the boundary layer, no influence in

the calculation of the coefficient CD should be expected here, but the lower

region of the velocity errors is directly connected to the boundary layer. This

region is marked as critical in Figure 7.12 and 7.13. Thus, Figure 7.13 clearly

proves the influence of the velocity field on the apparent viscosity and the

quality of the numerical calculation of the coefficient CD has to be observed

in particular.
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Figure 7.14. Profile polar plots accordingly to Lilienthal of the validation study, lift and drag
polar curve for the LBM and RANS methods (CFX: laminar and turbulence modelling with γΘ-
model), profile E817, consistency k = 8.3Pa sm, flow index m = 0.61, velocity v = 5m/s

Coefficients of lift and drag

Figure 7.14 shows the polar plot according to Lilienthal, as well as the polar

plots for lift and drag. In analogy to the previous discussion, the figure is

referred to a power law fluid with consistency k = 8.3Pa sm and flow index

m = 0.61 but includes a variation of the flow angle α from −10 ◦ to +10 ◦. The

velocity was set to v = 5m/s. Note that the given Reynolds numbers ReMR

are calculated with Equation 5.38 accordingly to Chhabra, as well as Metzner

and Reed.

As discussed above, a good agreement with all CFD solvers can be expected.

Although Figure 7.14 illustrates differences in the results of both methods,

these differences occur especially for high flow angles and high Reynolds
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numbers. This effect is absolutely clear because of its relationship to begin-

ning stall - and due to calculation mismatches in predicting the break-off-point

between the applied methods.

Nevertheless, for the intended utilization of the database, the results are per-

fectly adequate. This is because of the good agreement for flow angles be-

tween +6 ◦ and +10 ◦. It should be noted that this region is particularly im-

portant because of its relevance for the design process: here the glide angle

δ rises to its optimum value.

As a consequence of the validation study, the LBM is taken as the most

sufficient CFD method to calculate the polar plot database.

7.2.4. Results of the database

The intended method to design a propeller mixer requires a huge number of

profile polar datasets. To obtain this data, a wide-ranged parameter variation

is necessary. Table 7.2 contains all investigated variables and their variation

range. As mentioned above, the LBM is very suitable for performing this huge

number of numerical investigations in a short time with high accuracy.

The results of the parameter study performed with the LBM is shown as an

overview in Figure 7.15. The figure shows all performed numerical investi-

gations and illustrates the results as plot diagrams for all three profiles. The

parameter of the array curves is the Reynolds number according to Chhabra

and Richardson, see Equation 5.38. Because the figure provides as an

overview, the range of the Reynolds number, which is related to the marker

symbols of the single curves, is not given in the figure. For reasons of clar-

ity, the detailed view of each single investigated profile can be found in the

appendix in Figures E.1 to E.3 – nevertheless, the figures will be explained

here too. Figure E.1 contains all data for the Eppler E817 profile. Figure E.2

summarises all data for the NASA NLF1015 profile, and Figure E.3 shows

the data for the Wortmann FX60-126 profile.

The first column of each figure shows the specific results as the polar data

curve, as suggested by Lilienthal. The second column shows the lift and

the last column the drag data of the investigated profiles. The rows of Fig-
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ure 7.15 represent the investigated profiles, while, in the first row, the detailed

figures E.1 to E.3 show an overview of all performed investigations for pro-

file analysed in the figures. The rows, except the first one, show the curves

for different Reynolds numbers. The second row contains all data between

Re = 0 and Re = 11 · 102, while the third row contains all profile polar data

for Re = 11 · 102 to Re = 3.33 · 103. The fourth row contains all data for

Re = 3.33 · 103 to Re = 1 · 104. In the last row, all data with higher Reynolds

numbers is shown.
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Figure 7.15. Resulting profile polar plots accordingly to Lilienthal, lift and drag polar curves as
array curves with Reynolds number according to Chhabra and Richardson [38] as array param-
eters, all investigated parameter variations
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For all investigations, the velocity is increased in steps of ∆v = 0.5m/s from

v = 0.1m/s over v = 0.5m/s to at least v = 5.0m/s. In some investigations,

even a velocity of v < 0.1m/s is analysed. But when choosing such a low

velocity, the Reynolds number becomes also very low. The estimated mini-

mum Reynolds number was Re = 27.5. The drag coefficients in this regime

rise to very high values and CD becomes higher than 1. These values are

not suitable for designing an optimised propeller mixer. Therefore, the figures

only obtain polar datasets with drag coefficients minor than CD = 0.4.

The qualitative behaviour of all discovered hydrofoils is very similar. The lift

polar curve of each hydrofoil is characterised by a clearly pronounced and

almost linear rising regime in the range of −5 ◦ to +10 ◦, as one can expect.

The drag polar curves rise quickly with decreasing Reynolds numbers. This

means that with rising Reynolds numbers, the values of the drag polar curves

become lower. The higher the Reynolds number is, the more distinct this

characteristic is. At one certain point, all drag polar curves only vary in a

small range and the curves become nearly identical. This was be expected

given the rising friction with decreasing Reynolds number.

Taking the polar data plot according to Lilienthal into account, the above

findings are even reflected in the course of the polar data curves. For low

Reynolds numbers in particular, the curves are quickly shifted to high drag

coefficients.

As described above, no undisclosed effects and phenomena were identified

with the numerical study. The results are clear, fully understood and in ac-

cordance with blade element momentum theory. Therefore, blade element

momentum theory is in principle suitable for the design of propeller mixers

to agitate non-Newtonian fluid flow. However, the investigation reveals a very

quick increase of the drag coefficient for low Reynolds numbers. Hence,

when applying blade element momentum theory to design a propeller mixer,

a well-considered and accurate selection of several profiles is necessary.
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7.3. Developed algorithm

As explained in Chapter 1.2, the aim of this research project is to design a

flow-optimised propeller. The analytical deduction to obtain this target is ex-

plained in Chapter 7.1. However, this procedure has to be implemented in

an algorithm to generate the flow-optimised propeller mixer in a fully auto-

matic procedure. For this, the algorithm must be able to identify the most

appropriate profile from the database generated in Chapter 7.2.

Since a further goal of the new design process is to calculate the power char-

acteristics in the design process, the algorithm must be able to fulfil both

of the following: the design point calculation for predefined operating condi-

tions, which is presented in Chapter 7.3.1 and the calculation of the power

characteristics for further and even arbitrary operating conditions. The latter

is described in Chapter 7.3.2.

7.3.1. Design point calculation

The design point calculation is the initial step of the design process and in-

cludes the geometrical design of the propeller. The procedure handles the

theoretical fundamentals as described in Chapter 7.3.1, but arranges them in

a logical structure which can be processed in a numerical algorithm.

This structure was first presented by Reviol et al. [181] and is illustrated as a

flow chart in Figure 7.16. The flow chart is subdivided in several categories

(A. to E.), that will be described below:

A. Read and calculate specifications: In the first sequence, the algorithm

reads the relevant input data to generate the desired propeller mixer. This

data can be separated into three categories:

The first category contains data related to the design point conditions, con-

sisting of shaft speed n, consistency k of the fluid and its flow index m . In

the second category, geometrical parameters are queried. These param-

eters are the diameter of the propeller DP and its hub radius RHub, the

estimated volume flow rate V̇ or tank diameter DT , fill level HF and mixing
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Figure 7.16. Flow chart of the algorithm logics for the design of a propeller mixer for predefined
operating conditions, representation according to Reviol et al. [181]

time T and the number of blades nz. Furthermore, the number of the con-

sidered sections has to be given. The last category contains only one entry:

the method for how to calculate the Reynolds number. Some methods are

known in literature, see Equation 5.38 and 5.42a, and are implemented in

the algorithm. Table 7.3 shows all required input variables.

B. Calculate initial values: As a next step, the initial velocity triangles are

calculated. To perform this, an initial estimation is calculated for the abso-

lute velocity c01 according to Equation 7.20 or 7.23. Subsequently the initial

relative velocity w0
1 and the initial circumferential velocity u01 are calculated
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Table 7.3. Required input parameters for design point calculation, separated into three cate-
gories to describe the design point of the propeller, its geometrical properties and the method
for how to calculate the Reynolds number

D
e

s
.

p
t. Shaft speed n

Consistency k

Flow index m

G
e

o
m

.
p

a
ra

m
e

te
rs Propeller diameter DP

Hub radius RHub

Volume flow rate V̇ (or tank diameter DT, fill level HF

and mixing time T )
Blade number nz
Number of radial sections

Misc. Reynolds number calculation method

using Equation 7.24 and 7.26 respectively. For the later selection of a flow

profile, the Reynolds number is also necessary, thus, the initial Reynolds

number Re01 according to Equation 5.38 or 5.42a is computed.

In addition to the initial velocity triangle, the thrust that has to be produced

by the propeller is estimated. Afterwards, the integral value is distributed

over the chosen number of radial sections. This is performed to deduce the

hydrodynamic properties of the desired propeller shape.

Owing to the fact that the chord length l is not known at the beginning of the

process, it is clear that the procedure has to be solved within an iteration

process. Thus, initially, the chord length is set to the diameter DP of the

propeller as an upper estimate. In the following numerical procedure, an it-

eration loop is performed to compute the geometrical layout of the propeller.

C. Geometrical layout:

To resolve the major problem of the design process, which is to find an

appropriate chord length and mounting angle distribution, an iterative pro-

cedure is necessary. This procedure is performed in this subsequence and

is explained below. Note, that the sequence also considers swirl correc-

159



7. Method development

tion, but for reasons of simplicity, swirl may be neglected first in the following

explanation.

In the first iteration step, the given initial conditions are utilised to derive the

value of the required lift (CL) and drag (CD) coefficients. A profile is se-

lected from the database using these parameters. Note that not only the

coefficients for lift and drag are taken into account but also the glide angle δ

to ensure that the most appropriate profile is chosen for profiles with similar

coefficients of performance. Then, based on the polar data of the chosen

profile, the chord length l can be calculated using Equation 7.33. How-

ever, by changing the chord length, the initial Reynolds number is changed

too. Hence, a Reynolds number correction has to be performed in the

last operation of the iteration step. At the beginning of the next step, the

initial Reynolds number and the corrected Reynolds number, both taken

from the last step, are compared. If the difference of both Reynolds num-

bers is smaller than a previously defined convergence criterion, the iteration

is defined as converged and the loop is interrupted. Otherwise, the cor-

rected Reynolds number of the last iteration step is taken as the new initial

Reynolds number – as for the other derived and calculated quantities – and

the iteration procedure is performed again, until either the convergence cri-

terion is fulfilled or a maximum number of iteration steps is reached.

As mentioned above, the sequence also takes the correction of swirl into

account. For this correction, the circumferential component cu of the ab-

solute velocity c has to be considered. This velocity component is derived

from balancing the affected momentums, see Equation 7.25. Thus, the cir-

cumferential force FC has to be calculated first as in Equation 3.26. Owing

to the dependency of FC on the chord length, it is necessary to perform the

above iteration procedure first before swirl can be corrected. Once the chord

length and thus the circumferential force is known, the circumferential com-

ponent of the absolute velocity can be calculated – but only for a position

downstream from the propeller. To resolve this problem, Froude-Rankine’s

theorem can be utilised. It should be noted that this theorem is found to

be not appropriate in literature, if “...rotation also occurs in the slipstream.”
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[77, p. 194, §2]. Although this claim is true, Glauert only considered the

magnitude of the velocity. Regarding only the components of the different

directions, the validity of Froude-Rankine’s theorem can be expected for the

components, as applied in this thesis. Subsequently, the correction of the

velocity can be computed based on Equation 7.25 and 7.26. However, due

to the dependency of the Reynolds number not only on the chord length, but

also on the relative velocity w, a further correction of the Reynolds number

is necessary and therefore swirl correction has to be handled in an iterative

structure too. In analogy to the previous iteration structure, the convergence

and stop criteria are defined.

In the last step of the sequence, the calculated relative angle Θ of each

considered section is changed by the flow angle α of the selected profile to

obtain the mounting angle ϕ, see Equation 7.35.

D. Geometrical design: In the previous sequence, no true geometrical lay-

out was designed, but only the mathematical distribution of the chord length

l and the mounting angle ϕ. Based on these quantities, the geometrical data

of the selected profiles can be imported and transformed. Specifically, this

leads to a profile which is positioned correctly in the radial direction, scaled,

and rotated about the mounting angle and projected to cylindrical coordi-

nates. This is performed for every considered radial section. In addition to

this procedure, the profiles are arranged around a fictive spar to ensure that

a useful geometrical layout is designed.

As the result of this sequence, a point cloud is generated which can be

exported to any CAD tool. An example point cloud can be seen in Figure 8.2

and 8.6.

E. Calculate and export target values: In the above sequences, several

quantities and parameters are calculated. Based on these calculations, not

only the geometrical layout is computed, but also the loads and momen-

tums at each regarded profile. All infinitesimal circumferential forces, the

total force and thus the expected torque and also power can be evaluated.

Finally, the expected efficiency of the designed propeller mixer can be cal-
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culated according to Equation 7.32.

The algorithm described above can be performed without any experimental

investigations, provided a database with sufficient entries is available. For

this research project, the database entries were generated by numerical in-

vestigations, which were demonstrated to be similarly robust to experimental

investigations. Nevertheless, the procedure is purely analytical and produces

a geometrical layout for a specified operating point, represented by the de-

sign point. All relevant engineering data for this design point such as thrust,

torque and power, is known at the end of the design process.

The final results of the design process fulfil all conditions specified in the

objective of this thesis, see Chapter 1.2. Therefore, the goal of develop-

ing a transparent and comprehensible design method for propeller mixers is

achieved.

However, the design method leads to a fluid machine that is valid for a sin-

gle operating point only, which was defined at the beginning of the design

process – as it is typical in the field of fluid machinery. But instead of the

common design processes in the field of fluid machinery, the fluid is also part

of the design point and thus changing the mixed fluid without changing the

operating conditions will render the design process invalid – and it is obvious

that changing the operating conditions will also render the process invalid. In

technical processes, a fluid machine often operates beyond its design point

and, the fluid properties of the considered fluid may change over the pro-

cess, especially in the processing industry. Hence, it is necessary not only to

design a propeller mixer for a predefined operating point, but also to calcu-

late the power characteristics of this mixer for differing operating conditions –

including the change of the fluid properties.

7.3.2. Inverse calculation of characteristics

Because of the application of blade element momentum theory in the design

process, all relevant data is present at the end of the process, and not only

can the design point be calculated, but also alternative operating points. For
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this, a procedure is developed to estimate the power characteristics for these

operating conditions.

The procedure for deriving the power characteristics is quite similar to the

original design process but starts with a given geometry. Hence, beforehand,

a valid propeller has to be generated by the design process outlined above.

Then, analogue sequences are computed in a reverse order – lastly, the al-

gorithm handles the sequences in an inverse manner, see also Reviol et al.

[182].

In Figure 7.17 the principle of the inverse algorithm is depicted. As can be

seen, the algorithm is subdivided in three major sequences (A. to C.), which

are explained in detail below:

A. Set initial data: In a similar way to the design process, the method

for inverse calculation requires initial parameters too. In fact, these are the

same parameters as for the design process and are related to the geometric

parameters, to the process parameters of the origin design point and to the

method of calculating the Reynolds number. For details, refer to Table 7.3.

Additionally, the parameters of the desired operating point are required. To

specify the new point, the power law parameters of a certain fluid and a new

value for the shaft speed are necessary – note that it is possible to set a shaft

speed interval to calculate not only a single point but also a characteristic

curve for power over shaft speed. Furthermore, the previously calculated

drive torque TPP of the design point is required to compare the torque of the

newly regarded operating point with the originally estimated value.

It should be noted that the procedure can also be used for arbitrary propeller

geometry that is not designed according to the procedure described here,

as long as the required initial data according to Table 7.3 and 7.4 are known.

B. Calculation process: After reading all input data, the main sequence of

the algorithm is started. This sequence performs several calculations which

depend on each other and thus, these calculations are performed by recur-

sive iteration procedures. Although these subsequences are connected to

each other, they can be subdivided into three clearly separated tasks. Owing
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Figure 7.17. Flow chart of the algorithm logics for the inverse calculation of power character-
istics of a propeller mixer for arbitrary operating conditions, representation according to Reviol
et al. [182]

to the change of the shaft speed n, it is necessary to adjust the kinematics

of the flow for each iteration step. This is handled in subsequence B.1. Af-

terwards, for each radial section, in subsequence B.2, a valid polar curve is

requested from the database. And finally, the correction of swirl is computed

in the last subsequence B.3.

B.1. Kinematics: The overall iteration loop of sequence B handles the

shaft speed variation. Thus, over the iteration steps, the kinematic condi-

tions change and before any calculations can be performed, the velocity

triangles of the recently considered shaft speed have to be known. It

should be noted that the change of the shaft speed not only causes a
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Table 7.4. Input parameters for inverse calculation required in addition to those listed in Ta-
ble 7.3

A
d

d
.

p
a

ra
m

e
te

rs Previously calculated torque TPP

Interval of interest for shaft speed n

Profile type of each section

Chord length l of each section

Angle α of each section

variation in the circumferential velocity u, but also in the absolute veloc-

ity c – due to the relationship between shaft speed and volume flow rate

V̇ . This means that the flow rate is required before calculating the recent

velocity triangle.

However, the flow rate is only defined for two points on the power char-

acteristics. One point is defined by the design point and known after the

design process. The second point is simple: it is obvious that for a stand-

ing propeller, the flow rate falls to zero. Between these two points, the

course of the flow rate over the shaft speed has to be approximated. The

simplest method of approximation is to assume a linear distribution.

In fact, it is appropriate to assume a linear distribution of the flow rate.

Regarding the theoretical approaches of Oebius [146], see Chapter 6.2,

it becomes obvious that there is a linear dependency of the axial flow

velocity on the shaft speed.

Based on these considerations, a linear course of the flow rate is sup-

posed. Furthermore, the course of the curve must intersect the origin

point as well as the design point. Now, it is possible to calculate the ve-

locity triangles within the shaft speed variation once this subsequence is

completed.

B.2. Identify profile polar data: The power characteristics of the pro-

peller are directly linked to the coefficients for lift CL and drag CD and thus

to the polar data of the underlying flow profiles. So, identifying the correct

polar data is the key task of the whole algorithm.
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The selected profiles, their chord length and the related mounting angles

are defined during the design process and only the velocity triangles are

missing to calculate the Reynolds number and the flow angle, which are

mandatory to identify the correct polar data. Although the method is suit-

able for arbitrary propellers too, the underlying flow profiles have to be

part of the database. If this is not the case, the database has to be up-

dated for the required profiles – typically, this can be done by a simple

numerical investigation. For a propeller mixer designed by method devel-

oped here, it is easier to identify the correct polar data. Note that even for

known propellers, the polar data may be interpolated because of differ-

ences between the flow data of the database and the flow conditions for

several operating points. Hence, the more data is stored in the database,

the better the results of the inverse calculation.

It should be noted that this subsequence has to be computed with a recur-

sive iteration procedure due to the chained dependency of the Reynolds

number on swirl. Furthermore, the flow angle may also be changed if swirl

is taken into account. For a suitable detection of the polar data, Reynolds

number and flow angle are both very important. Nevertheless, because

of the possibility of ignoring swirl in the computational method, this proce-

dure will be explained separately in subsequence B.3.

When the polar data and the flow angle are identified correctly, based on

lift and drag forces, the infinitesimal torque and thrust of each regarded

radial section can be determined.

B.3. Considering swirl: As mentioned, swirl may be neglected in the

calculation procedure. But in fact, it is not physical for rotating fluid ma-

chinery and especially not for the low-Re conditions considered here. To

take swirl into account, subsequence B.3 can be enabled in the calcula-

tion procedure.

As outlined in the design process, swirl is computed by analysing the mo-

mentum balance of each radial section. The mandatory coefficients are

taken from subsequence B.2. This analysis leads to an adjustment of the

relative velocity which is necessary to recalculate the Reynolds number.
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But by changing the Reynolds number, the previously selected polar data

may be adjusted too, which leads to a variation in the momentum balance

again. As can be seen, the procedures influence each other.

Because of the demonstrated link between Reynolds number and swirl,

the subsequence for swirl is coded as a recursive while loop. Although

this enables the code to solve the problem, the robustness of the algo-

rithm decreases and instability may occur. To avoid these numerical in-

stabilities, the procedure of adjustment is under-relaxed. Note that the

under-relaxation is performed in line with the field of CFD.

Following the procedure described above, within the iteration procedure,

the Reynolds number and the relative velocity will gradually reach an

asymptotic value. To guarantee a highly qualitative result, a residual con-

trol is applied for the convergence procedure. Either a predefined conver-

gence criterion has to be reached to end the while loop, or a maximum

number of iterations has to be performed.

C. Data output: The last sequence is the post-processing step of the algo-

rithm and generates user-friendly data. Specifically, the characteristic curve

is plotted and compared with the origin design point. Furthermore, all data

is cumulated to integral values. In Figure 8.9 and 8.10 example views of the

final plot are depicted.

Based on the fundamentals described in this chapter and by the developed al-

gorithm, a flow-optimised propeller mixer can be designed by transparent and

comprehensible methods. The method is able to calculate the drive power for

a given design point and for arbitrary operating conditions. Thus, a complete

power characteristic can be deduced from the method at an early point in the

development of new propeller mixer.

However, up to this point, all considerations are in fact purely theoretical and

the method has to be validated in an experimental survey for at least one

example propeller. To do this, in Chapter 8, two different prototypes are de-

signed. Both prototypes are investigated experimentally and assessed in

Chapter 9.

167



7. Method development

Notes

1In the scope of this research, the distance between the propeller plane and downstream
position is selected to be equal to the diameter of the test bench [see 233], since this is the
biggest distance in the test setup.

2To take swirl into account, the circumferential component c1,u of the absolute velocity is
required. However, this component is given by Equation 7.25 but cannot be solved directly.
Instead, an iterative procedure has to be performed, refer to Chapter 7.3 and Figure 7.16.

3The application of a numerical procedure requires a final experimental study. This is per-
formed by the investigation of the developed and manufactured propeller mixer, see Chapter 9.

4The data of the polar characteristics presented here (see Table 7.1) is taken from the AID
Airfoil Investigation Database [4] and calculated by JavaFoil from Hepperle [95] under the as-
sumption of Newtonian fluid flow for a Reynolds number of Re = 1 · 106

5To investigate the influence of the turbulence, several CFX-runs were performed with the
assumption of laminar fluid flow.

6The comparison of LBM with the RANS-based code CFX is appropriate. With intensive
experimental and numerical investigations of the scalability of different mixer types, Kluck [115]
shows the accuracy of CFX under the restriction that all pre-processing conditions, especially the
rheological parameters, are well-chosen. The better the modelling of the rheological parameters,
the higher the accuracy of the CFD-calculation. Therefore, as shown by Kluck [115], CFX can
be taken to validate the LBM results.
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8. Application of the method

8. Application of the method

To validate the method discussed in Chapter 7, the method was applied to

design two different propellers. Although both the propellers are designed by

the same design process, the first propeller is designed under the assumption

of negligible swirl. This means that the fluid is viscous but irrotational. The

aim of this very theoretical assumption is to identify whether it is possible

to neglect swirl within the design process to achieve a simpler, more robust

algorithm. In contrast to this high level of abstraction, which underlies the

design of the first propeller, the second propeller is designed after taking

viscous and rotational flow into account.

In the following, the underlying design parameters for both the propellers

will be presented. Subsequently, the resultant propeller geometry will be

discussed. Note that the utilised fluid is of major importance to the design

process and, so, is discussed. The test configuration of each propeller is

only introduced in a conceptual manner and will be discussed in Chapter 9.2.

8.1. Deriving the geometrical shape

In the typical design process of an arbitrary turbomachine, a design point

is given by the requirements the machine has to fulfil and is often identical

with the point of best efficiency. This point consists mostly of information

about pressure rise, mass flow rate, and shaft speed of the impeller – or

on quantities coupled to these. This typical procedure is characteristic for

all types of turbomachinery and can be found in many common pieces of

literature such as Gülich [78]; Lewis [124]; Pfleiderer and Peterman [158]

and many others. Note that in the case of thermal fluid machinery, such

information is insufficient; information about density and temperature is also

important.

In the present case, it would not be sufficient to define the above quantities,

as in the field of thermal turbomachinery. This is because of the significant

influence of the non-Newtonian characteristics of the fluid. Hence, a dataset
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8. Application of the method

which includes the rheological behaviour of the utilised fluid is necessary.

Hence, in this chapter, first of all, the operating point of both the propellers

will be examined in detail. Subsequently, the resultant propeller shape is

presented when the design process is applied. Finally, the inverse calculation

of the power curve is performed.

8.1.1. Propeller A

The first propeller is designed under the assumption of neglectable swirl. This

propeller is referred to as Propeller A and is discussed below.

Design point

Propeller A is designed for laboratory-scaled purposes and is engaged by a

shaft speed of n = 160min−1. To define the volume flow rate, the fluid volume

of the test stand and the mixing time are combined. Via the geometrical

parameters of the laboratory vessel, see Chapter 9.2.1, a volume flow rate of

V̇ = 5.08 l/s is calculated for a mixing time of T = 5.1 s.

As carried out in Chapter 5.1.3, non-Newtonian fluid flow in technical pro-

cesses is mostly in good accordance with generalised Newtonian fluids.

Hence, in the following design process, only purely viscous fluid flow is taken

into account. Furthermore, the viscosity function of the flow under considera-

tion can be reduced to moderate shear rates because of the application of a

mixing process. It can, therefore, be assumed that the dynamic zero-shear-

rate-viscosity µ0 and the infinity-shear-rate-viscosity µ∞ are not reached, and

only the so-called power law regime is of interest for the process considered.

For this level of abstraction, the power law model according to Equation 5.27

is very appropriate. The consistency of the utilised model fluid amounts to

k = 8.75Pa sm and the flow index to m = 0.14. The density is assumed to be

a constant value of ρ = 1000 kg/m3. This value is chosen on the basis of ex-

perience and is in good accordance with the experiments; see Chapter 9.2.1.
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8. Application of the method

Propeller shape

In addition to the above design point, some geometric restrictions have to be

taken into account. Since Propeller A is utilised in a laboratory-scaled test

stand with a diameter of DT = 0.29m, the diameter of Propeller A is set to

DP = 0.18m to ensure an appropriate diameter ratio. The hub radius RHub

is set to 0.015m and the blade number of the propeller is nz = 3.

The subsequently performed design process calculates the chord length dis-

tribution and acquires the most adequate flow profiles from the database to

fulfil the predefined mixing task. This is done for the previously given number

of radial sections. For Propeller A, five radial sections are considered. From

the database, as discussed in Chapter 7.2, the Wortmann FX60-126 profile

was found to be the most appropriate profile for the first three sections. For

the remaining sections near the tip, an Eppler E817 profile is found each time.

In detail, the algorithm computed a chord length li and a flow angle αi in the

interval of l = [0.05, 0.13] m and α = [20, 60] ◦ respectively. The maximum

values of each quantity are located near the hub. This intermediate result

is depicted in Figure 8.1. In Figure 8.1a, the chord length distribution l (r)

is shown as a broken line. The data points in the subfigure represent the

radial sections under consideration and are labelled with the names of the

flow profiles that have been selected. The subfigure shows a strikingly long

chord length for the hub radius – this is similar to the design of wind turbines,

if swirl is neglected: see Chapter 4.2.2 and Figure 4.4a. The distribution

of the mounting angle ϕ (r) is illustrated in Figure 8.1b – the radial sections

are also marked and labelled with the designation of the applied profiles. In

Table 8.1. Calculated process parameters of Propeller A

Estimated jet power PJet 0.70W

Estimated torque TPP 0.21Nm

Estimated power PPP 3.46W

Efficiency ηP 0.20
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Figure 8.1. Distribution of chord length, angle, and profile polar data of Propeller A, Reynolds
number calculated in accordance with the generalised formulation of Equation 5.41, underlying
data according to Reviol et al. [182]

Figure 8.1c, the polar plot – according to Lilienthal – is shown for the flow

profiles. Note that the given Reynolds number is calculated in accordance

with Equation 5.41. Table 8.1 contains all the relevant parameters computed

in the design process. For the parameters defined and calculated previously,

Propeller A is expected by the design process to require a drive torque of

TPP = 0.21Nm and a power of PPP = 3.46W in the design point. The jet

power is estimated at PJet = 0.70W and an efficiency of ηP = 0.20 is the

result. Note that the predefined and derived parameters above for the design

point are revived in the calculation of the power characteristics for arbitrary

operating conditions and, so, these quantities are summarised later with the

parameters for the inverse calculation in Table 8.3.

Afterwards, the algorithm transforms the selected flow profiles. For each ra-

dial section, the profile considered is scaled pursuant to the computed chord

length and transferred from a flat plane to the corresponding cylindrical plane.

Simultaneously, the profiles are rotated about the machine axis to obtain a

useful arrangement of the profiles around a fictitious spar. As a result, a point

cloud is generated, consisting of the geometrical data of the considered and
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Figure 8.2. Point cloud for the example design process to derive the shape of Propeller A,
each profile is marked with a continuous curve, its section and name, presentation according to
Reviol et al. [181]

transformed flow profiles. Figure 8.2 shows this result for Propeller A as 3D-

plot. For better understanding, the points are clustered in accordance with

their flow profiles and connected by a continuous line. Furthermore, the des-

ignations of the flow profiles are added. This point cloud is the final geometric

result of the computing procedure.

As can be seen in Figure 8.3, the blades of the propeller can be obtained by

connecting the point cloud with a free-form surface and rotating the surface

nz-times. These can be easily combined with a model of the hub. The con-

struction can be done in any arbitrary 3D-CAD tool. Figure 8.3 shows the

3D-CAD-model of Propeller A in isometric view, top view, front view, and side

view.

The final step of the design process for Propeller A is the manufacture of

the propeller. This is done by rapid prototyping. The prototyping process

was performed by photopolymer technology – with this technology, horizontal

layers are printed and hardened by UV light. The reachable precision in the

thickness of each layer amounts to 16µm in high-quality mode, but for a full-

scale model, a resolution of 200µm is obtained. The machine used was an

Eden250 3D-printer from Objet. In Figure 8.4, a photography of Propeller A

is depicted.
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(a) Isometric view (b) Front view

(c) Side view (d) Top view

Figure 8.3. Different views of Propeller A, presentation according to Reviol et al. [181]

8.1.2. Propeller B

The second prototype propeller is referred to as Propeller B; it was designed

taking swirl into account. Note that the propeller was previously designed

and investigated in a perfunctory manner by Reviol et al. [181]. In the present

thesis, Propeller B is presented in greater detail. But first all the predefined

parameters to derive the propeller shape are elucidated as was also done for

Propeller A.

Design point

The shaft speed of Propeller B is chosen as n = 380min−1 and the volume

flow rate is defined as V̇ = 54.5 l/s. The utilised test stand to investigate
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Figure 8.4. Propeller A, manufactured prototype, presentation according to Reviol et al. [182]

Propeller B has a maximum volume of about 12.5m3, but for the experimental

survey, a reduced fill level is applied, so that the effective volume of V =

6.87m3 results; see Chapter 9.2.2 for details. Hence, a mixing time of T =

126 s can be calculated.

Because the mixed fluid is part of the design point, the fluid properties have

to be fixed in the design process. For simplification, a generalised Newtonian

fluid is assumed. Hence, any viscoelasticity is neglected, and the fluid is

regarded as purely viscous but shear-thinning. As will be explained in Chap-

ter 9.2.2, for the shear rate region occurring here, this practical approach

is in quite good accordance with theoretical considerations. The power law

model is applied to model the rheological parameters of the fluid. These are

k = 14.50Pa sm for consistency and m = 0.29 for flow index. As an additional

simplification, the fluid is assumed to be incompressible. As also done for

Propeller A, the density of the fluid is simplified to a value of ρ ≈ 1000 kg/m3.

Propeller shape

To find the shape of the propeller, the algorithm requires the outer diameter,

the hub radius, and the number of blades. For Propeller B, these parameters
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Figure 8.5. Distribution of chord length, mounting angle, and profile polar data of Propeller B,
Reynolds number calculated in accordance with the generalised formulation of Equation 5.38,
the underlying data is according to Reviol et al. [182]

are predefined as DP = 0.35m for the outer diameter, RHub = 0.015m for the

hub radius and nz = 3 for the number of blades. The algorithm is applied to

take five different radial sections into account.

After defining all input parameters, the algorithm is started. The chord length

distribution is estimated as the intermediate result, and every considered ra-

dial section is filled with the most suitable flow profile. In the case of Pro-

peller B, the algorithm identifies the Eppler E817 profile as the most suitable

profile for all sections, except for the section at the tip. The tip section is

filled with the NASA NLF1015 profile. The computed chord length distribu-

tion l (r) is in the interval of l = [0.03, 0.08] m. The intermediate results are

illustrated by Figure 8.5. While Figure 8.5a shows the chord length distri-

bution l (r), in Figure 8.5b, the course of the mounting angle ϕ (r) is drawn.

Figure 8.5c depicts Lilienthal’s polar plot data of the selected profiles. The

Reynolds number stated here was calculated on the basis of the suggestion

of Chhabra and Richardson according to Equation 5.38. The designations of

the intended profiles are labelled in all subfigures.

Concerning the chord length, it needs to be highlighted that the course of
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Figure 8.6. Point cloud for example design process to derive the shape of Propeller B, each
profile is marked with a continuous curve and its section and name, presentation according to
Reviol et al. [181]

the curve initially rises over the first two radial sections. Following the rising

regime, the course becomes horizontal, and finally decreases. The change

in monotonicity is in analogy with the chord length distribution according to

Schmitz – see Chapter 4.2.3 – and is caused when swirl is taken into account.

Regarding the mounting angle, it can be seen that this quantity amounts to

ϕ = 42.95 ◦ at the hub and decreases, initially quickly, over 31.60 ◦ to 23.85 ◦

until the middle of the blade is reached. The course of the curve flattens more

and more the closer the considered section lies to the hub. The mounting

angle of the last section is calculated with ϕ = 22.02 ◦. The interval of the

mounting angle can be specified by ϕ = [20, 45] ◦.

The following step of the algorithm procedure computes the transformations

of the profile coordinates to obtain a three-dimensional blade. To do this,

the profile data is scaled and transferred into different cylindrical planes that

have a radius of each considered radial section. For the manufacturing pro-

cess performed later, each profile is aligned to a fictive spar. As a result, a

point cloud of all the profiles considered is obtained. This result is depicted

in Figure 8.6. For better understanding, the points of each profile are con-

nected by a continuous curve. Furthermore, the profiles are labelled with

their designations.

All relevant operating parameters are calculated at the end of the design
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(a) Isometric view (b) Front view

(c) Side view (d) Top view

Figure 8.7. Different views of Propeller B, presentation according to Reviol et al. [181]

processs. For the predefined parameters of n = 380min−1 for shaft speed

and V̇ = 54.5 l/s for the mass flow rate, a drive power of PPP = 296.06W is

estimated. This is equal to a torque of TPP = 7.44Nm. In addition, the power

of the jet is calculated with PJet = 75.60W and, so, the efficiency amounts to

ηP = 0.26. In Table 8.2, all relevant target parameters are summarised. Note

that all previously defined and estimated quantities are considered again for

the calculation of the power characteristics. Hence, all mandatory parameters

of Propeller B are shown in Table 8.4.

The geometrical result of the design process in the form of the point cloud, ac-

cording to Figure 8.6, can be handled in any 3D-CAD tool. By connecting the

points first with spline curves and subsequently the curves with free-form sur-

faces, the shape of one single blade can be designed. Rotating the surface
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Figure 8.8. Propeller B, manufactured prototype, presentation according to Reviol et al. [182]

nz times about the symmetry axis of the machine and adding a hub geometry

produces the final 3D-CAD model of the designed propeller. Propeller B was

constructed with a similar procedure. The resultant 3D-CAD model is shown

in Figure 8.7. In this figure, Propeller B is depicted in isometric view and also

in top view, front view, and side view.

After performing the design process and designing a 3D-CAD model of the

developed propeller, the manufacturing process of Propeller B can be started.

Figure 8.8 shows a photograph of the propeller finally created.

Table 8.2. Calculated process parameters of Propeller B

Estimated jet power PJet 75.60W

Estimated torque TPP 7.44Nm

Estimated power PPP 296.01W

Efficiency ηP 0.26
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8.2. Predicting characteristics

The design process only includes the calculation of the design point, but in

many cases, a fluid machine is not applied at its intended operating point.

Hence, the design process is enhanced by the inverse calculation method –

see Chapter 7.3.2 for details. This procedure has to be performed subse-

quently for the design process and requires the parameters of the desired

operating point as well as the parameters of the design point.

8.2.1. Propeller A

As explained in Chapter 7.3.2, the inverse calculation of the characteristics

requires a range of data. In general, the data includes the design point as

well as the geometrical specifications defined within the design process. Both

are described in detail in Chapter 8.1.1. In addition, the procedure calls for

the operation point, which has to be considered. Hence, shaft speed nOP,

consistency kOP, flow index mOP, and density ρOP of the operation point must

be specified. With regard to the shaft speed, it is possible to set a single

value, but it is more appropriate to choose an interval of interest, as done in

this research project. Table 8.3 gives an overview of all data.

Running the algorithm produces the characteristic data for power and effi-

ciency. Note that the procedure can either be computed to calculate the

behaviour of a designed propeller for partial and overload – this means for

the intended design fluid – or for an arbitrary fluid. In the first case, apart

from the shaft speed, the operating data is identical to the design data.

The inverse calculation algorithm is computed for the shaft speed range of

nOP = [0, 300] min−1 and for the design fluid. The numerical results of the

inverse calculation procedure are plotted in Figure 8.9. The estimation for

torque TPP is shown by a continuous line, while the efficiency ηP is drawn

in a broken line. Furthermore, the design parameters torque, specified as

TPP,Des = 0.21Nm, efficiency calculated as ηP,Des, and shaft speed, given as

nDes = 160min−1, are marked in Figure 8.9.

The plausibility of torque can be assumed because of the intersection with
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both the origin of the diagram and the design point. The course of the ef-

ficiency is also plausible, because of the intersection of the curve with the

design point. However, the very discontinuous course (marked in the dia-

gram with unclear ) of the curve for both torque and efficiency and the still

rising efficiency for overload is striking. Note that this fact is caused by the

profile database. This issue will be discussed intensively in Chapter 10. How-

ever, it has to be said that only an experimental validation is able to verify the

numerical procedures. This validation has to be performed for fluid properties

which differ from those of the design fluid. In this chapter, the application of

the method is performed. Hence, the characteristic curve of the propeller for

the design fluid is of interest and the fluid data is chosen identically to this

point. Later, in Chapter 9.3.1, the propeller is investigated experimentally,

and the method of inverse calculation is examined for the utilised test fluid.
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Figure 8.9. Calculated characteristics of Propeller A as torque over shaft speed (continuous
line) and efficiency (broken line), containing the numerical results of the design point, presenta-
tion according to Reviol et al. [181]
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Figure 8.10. Calculated characteristics of Propeller B as torque over shaft speed (continuous
line) and efficiency (broken line), containing the numerical results of the design point, presenta-
tion according to Reviol et al. [181]

8.2.2. Propeller B

In analogy to Propeller A, the second propeller is considered here for the

design fluid only. Hence, the parameters kOP, mOP, and ρOP are equal to

the design point and only the shaft speed nOP is varied in the interval of

[0, 600] min−1. Table 8.4 contains all data of Propeller B to perform the cal-

culation procedure.

Running the algorithm for inverse calculation, the characteristics for torque

and efficiency – according to Figure 8.10 – can be found. The course of

torque TPP is drawn as a continuous line and the efficiency ηP is drawn as

a broken line. In addition to the derived parameters, the input parameters

to specify the design point are added to the diagram. This point is given by

the torque of TPP,Des = 7.44Nm for a shaft speed of nDes = 380min−1. The

efficiency in this point reaches a value of ηP,Des = 0.26.

As can be seen in Figure 8.10, both curves intersect the origin of the dia-

grams. The calculated design point fits the estimated curves quite well – but

the efficiency only reaches a plateau range at the design point and starts
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Misc. Reynolds number calculation Metzner-Reed184



8. Application of the method

rising again for high overload. In addition to this implausible behaviour of

the efficiency, the course of torque is discontinuous again. Both regions are

marked in the figure as unclear – if these regions are ignored, the course of

both parameters would appear very plausible: the torque would rise contin-

uously and the efficiency would reach its highest value in the design point,

which starts a plateau-like region of nearly equal efficiency. Note that this im-

plausible course of the curves can be neglected, not because of a deficiency

in the calculation method, but in the profile database. This will be discussed

in greater detail in Chapter 10. In the next step, Propeller B – and, so, Pro-

peller A – have to be examined by an experimental study to verify both the

design process and the method of inverse calculation.
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9. Experimental investigations

In this chapter, the experimental validation of the design process discussed

above and the calculation procedure will be presented. Initially, the test con-

figuration of both the hydraulic systems developed will be explained – each

hydraulic system consists of one of the previously discussed propellers, see

Chapter 8.1.1 and 8.1.2 respectively, and a vessel is related to each propeller.

Not only the geometrical specifications, but also the fluid intended for each

system is important, and so these are explained in the description of the

test configuration. This includes a study of available model fluids to select a

suitable test fluid.

The experimental explorations are presented in the second part of this chap-

ter. Before detailed experimental investigations are discussed, the perfor-

mance characteristics of both the propellers are examined in a preliminary

experimental study.

9.1. Model fluid study

In Chapter 8.1, the influence of the rheology of the fluid on the operation

point of the propeller was emphasised. To investigate the designed propeller,

it is obvious that the propeller has to be examined under known conditions –

especially for the design point that includes the design fluid. Hence, model

fluids with distinct rheological properties have to be created.

Preselection of additives

In the literature, a broad variation of additives is known to establish model

fluids with different fluid patterns. In this thesis, only generalised Newtonian

fluids (see Chapter 5.2) especially purely shear thinning fluids are of interest.

Fluids with clear distinct shear thinning behaviour can be obtained by mixing

different additives with water. As a preselection, four additives are chosen.

These are carboxymethyl cellulose (CMC), polyacrylamide (PAA), xanthan
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Figure 9.1. Viscous characteristics of guar gum (GG: 2.0wt.% (�), 1.5wt.% (◦),
1.0wt.% (⋄), data taken from Torres et al. [225]), xanthan gum (XG: 1.5wt.% (�),
1.0wt.% (◦), 0.7wt.% (⋄)), polyacrylamide (PAA: 2.4wt.% (�), 1.8wt.% (◦), 0.9wt.% (⋄))
and carboxymethyl cellulose (CMC: 3.0wt.% (�), 2.5wt.% (◦), 1.2wt.% (⋄)) as aqueous
solutions with different concentration of each specimen

gum (XG), and guar gum (GG). Their principal rheological behaviour will be

assessed to select the final model fluids.

Aqueous solutions of the aforementioned additives were examined in numer-

ous investigations. Often, the viscous behaviour of different concentrations

was of interest. The aforementioned additives were examined in different

concentrations – for example, by Torres et al. [225] for GG, by Klein and

Kulicke [113, 114] for PAA, by CPKelco [45] for XG, and by Ghannam and

Esmail [73] for CMC, but also in preliminary tests within this research project.

In Figure 9.1, the viscous behaviour of different aqueous solutions of these

additives in water is shown. Each specimen was applied in different concen-

trations. All measurements were performed in a Searle-typed coaxial cylin-

der measuring system from Brookfield, except the examinations of GG, which

were taken from Torres et al. [225]. These were performed in a parallel plates

system. As can be seen, the viscous patterns of each type of solution differ

from each other. In the examined shear strain regime, the considered con-

centrations of GG and CMC reach their zero-shear-rate viscosity µ0, while
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Figure 9.2. Viscoelastic characteristics of carboxymethyl cellulose (CMC: ⋄), polyacry-
lamide (PAA: ◦), xanthan gum (XG, ▽) and guar gum (GG: dotted line, taken as relaxation
time λ from Patel et al. [153]) as aqueous solutions with different concentration of each speci-
men, depicted as LVE-range limit γLVE over De = λ · 10 rad/s in Pipkin’s diagram

PAA and XG reach almost their infinity-shear-rate viscosity µ∞. For each

mixture, the power law range can be identified. In principle, therefore, the

viscous properties of the above additives are suitable for the planned experi-

mental investigations of both propellers.

The requirement for generalised Newtonian fluids is strictly connected to the

viscoelastic properties of the model fluid – the model fluid must not have

any pronounced elastic behaviour. Therefore, in Figure 9.2, mixtures of

the four additives are plotted in Pipkin’s diagram to assess their viscoelas-

tic behaviour. To obtain these results, frequency and amplitude sweeps were

performed in a parallel plate measuring system1. As a result, the border

of the LVE regime γLVE and the relaxation time λ of each probe were cal-

culated. The Deborah number was computed by multiplying the relaxation

time with the frequency of the amplitude sweep. This frequency was set to

ω = 10 rad/s. This does not apply to the results of GG. These were taken

from Patel et al. [153] – because of the unclear parameters of the LVE re-

gion in the publication, these results are marked as a dotted line in Pipkin’s

diagram. From all the samples examined, GG is the fluid with the most vis-

coelastic properties. For CMC, PAA, and XG, only slight viscoelastic pat-
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terns could be identified, while XG has more pronounced, though still low,

viscoelastic behaviour.

For further examinations, CMC and XG were chosen on account of their good

viscous properties and their low elastic behaviour. Hence, only these two

types of additives are discussed in greater detail below.

Xanthan gum

Xanthan gum is a natural, widely-used polysaccharide [110; 152], and widely-

used in the food industry, e.g. as a thickening agent, but also in the pharma-

ceutical and drilling industries [110; 152; 193; 198]. The state of aggregation

is solid, and XG is typically processed to a cream-coloured and odourless

powder. When XG is mixed with water, the powder swells and the viscos-

ity of the solution increases. The rheology of aqueous XG solutions has

been discussed by many researchers, such as e.g. by Cauvelier and Launay

[37]; García-Ochoa et al. [71]; Sanderson [198]; Son et al. [214] and many

others. Figure 9.3 shows a sample of xanthan gum powder (on the left).

Because of its distinctly non-Newtonian behaviour and the easy change of

this behaviour by changing the concentration of xanthan gum, aqueous XG

solutions are also utilised in the research of process industry and fluid ma-

chinery to model the required rheological parameters of the fluid in the pro-

cess under consideration [178; 179; 228]. However, XG solutions are found

to be viscoelastic, allthough the elastic behaviour is described as highly de-

pendent on the concentration of XG [37; 214]. Hence, XG solutions can be

considered quasi-viscoinelastic, provided a low concentration of XG is used.

As an additional rheological aspect, initial yield stress has to be regarded for

aqueous XG solutions. The amount of this initial stress also depends on the

concentration of XG but rises quickly. Nevertheless, for low concentrations of

XG of above c ≈ 15 g/l the yield stress is lower, than τ0 ≈ 3Pa, as discovered

by García-Ochoa and Casas [70]; Hannote et al. [87]; Torres et al. [224]. In

line with the viscoelastic effects, initial yield stress is also negligible for low

XG concentrations.

In this thesis, aqueous XG solutions with slight XG concentrations were
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Xanthan gum Carboxymethyl
cellulose

Figure 9.3. Additives used to produce the applied model fluids: xanthan gum (XG) (left) and
carboxymethyl cellulose (CMC) (right), photographer: Christian Landfester

utilised. Hence, all samples are regarded as viscoinelastic and non-plastic.

The applied XG powder is the KELZAN type distributed by CPKelco – see

Appendix C.1.

Carboxymethyl cellulose

Carboxymethyl cellulose is an important industrial polymer and is a derivative

of cellulose resulting from the reaction of cellulose with chloroacetic acid [24;

99]. Different types of CMC exist [193], but in the present study, sodium

carboxymethyl cellulose SCMC was used, and is referred to as CMC in the

following.

Carboxymethyl cellulose is solid aggregated and typically processed to a

granulate or powder. CMC is almost totally white and odourless. Figure 9.3

shows a sample of CMC powder (sample on the right side). When CMC
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powder is added to water, the powder swells, and, depending on the concen-

tration of added CMC, the viscosity of the mixture rises.

As mentioned, CMC is a widely-used industrial polymer and is applied in

aqueous solutions in the food and pharmaceutical industry, and also in engi-

neering processes like drilling or the fuel industry, see Abdelrahim and Ra-

maswamy [2]; Boylu et al. [27]; Rowe et al. [193]. Because of the wide distri-

bution and the different utilisations of aqueous CMC solutions, knowledge of

the rheology is important and has been investigated by a various number of

researchers, such as by Abdelrahim and Ramaswamy [2]; Benchabane and

Bekkour [11]; Ghannam and Esmail [73] and others.

Furthermore, the viscoelastic properties of aqueous CMC solutions have

been investigated in detail. Hence, it is known that CMC solutions become

more and more viscoelastic for rising CMC concentrations. Benchabane and

Bekkour [11] discovered a critical concentration of c ≈ 3.0wt.% for suddenly

rising viscoelastic effects. This means that for lower concentrations, elastic-

ity is of minor importance. This is in good accordance with a study outlined

by Reviol et al. [180]. The authors investigated aqueous CMC solutions with

concentrations of at most c = 2.0wt.% and did not find any significant elastic,

but only viscous, fluid behaviour.

Owing to the application of mixtures with CMC concentrations of c < 3.0wt.%,

in the scope of this work, aqueous CMC solutions will be considered to be

viscoinelastic. The CMC powder used is the WALOCEL CRT 40000 PV from

Dow Construction Chemicals; see Appendix C.2.

9.2. Test configuration

As mentioned, the first part of this chapter provides an overview of the test

configuration. Because two different propellers are designed, two different

test configurations have to be described. The configuration of the first pro-

peller, referred to as Propeller A, which was designed for viscous but irrota-

tional fluid flow, is discussed first.
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9.2.1. Propeller A

Test stand

Propeller A was designed to operate in the laboratory scaled test bench in

accordance with Figure 9.4. For details of the design process, refer to Chap-

ter 8.1.1. The test stand has a modular design and, so, all relevant compo-

nents can be changed with little effort. The most important components will

be described below.

1

2

4

3

5

6

(a) Schematic view

1

2

6

5

4

3

(b) Photograph

Figure 9.4. Test stand for Propeller A, shown as schematic view and photograph, representa-
tion according to Reviol et al. [182]
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At Position 1 , the propeller or any other test specimen is located and driven

by a vertical shaft, which is connected to a DC motor 4 . To investigate

fluid flow with low as well as with high viscous properties, two different mo-

tors with different power outputs can be utilised. The specifications of these

can be found in Appendix B.1. The parameters, which are of major interest

in the present investigations, are torque and shaft speed. Both parameters

are measured by a single device, located at Position 3 . Two torque-/shaft

speed-meters are available, which should be selected on the basis of the

maximum value of the expected torque range. The test stand is designed

to be equipped with DRWPL-I torque meters from ETH-Messtechnik GmbH.

The data sheet of this sensor type can be found in Appendix A.2.

Owing to the low forces, especially for slow fluid flow and slow shaft speed,

bearing friction has a huge impact on the quality of the measurement. To

reduce this influence, the whole drive chain is mounted by precision air bear-

ings. The bearing unit is positioned at 2 between the test specimen and

the torque sensor. The technical specifications of both the axial and the radial

bearing can be found in Appendix B.3.

To change the position of the test specimen in relation to the surface of the

probe, the test bench is equipped with an axial displacement unit 5 . This

is important, in particular, for the use of different vessels. All investigations

were performed in a cylindrical vessel with an inner diameter of DT = 0.29m,

while the fill level was HF = 0.392m for all measurement series. Figure 9.4a

shows only a schematic view of the vessel because of the possibility of using

different tanks, while Figure 9.4b depicts the utilised vessel at Position 6 .

A measurement device – an NI USB-6259 BNC from National Instruments –

was applied to record the measurement data of the observed parameters. To

analyse this data, a desktop PC with the tool Matlab from MathWorks was

utilised. These devices are not shown in Figure 9.4 for reasons of simplicity.

Modelled fluid flow

In the context of this work, aqueous solutions with low XG concentrations are

used. Aqueous XG solutions are suitable to model fluids with generalised
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µ

γ̇

Figure 9.5. Apparent viscosity of aqueous xanthan gum mixture, 0.75wt. − %, model fluid of
Propeller A, illustration according to Reviol et al. [182]

Newtonian fluid behaviour, as claimed in the fundamentals of the design pro-

cedure in Chapter 7 and demonstrated in Chapter 9.1.

The design point of Propeller A is discussed in Chapter 8.1.1, where the

design fluid was set to the rheological parameters k = 8.75Pa sm and m =

0.14 according to the power law viscosity model, see Equation 5.27. The

density is assumed to be near that of pure water because of the slight addition

of XG and is estimated at ρ = 1000 kgm−3. A fluid with these properties can

be produced using an aqueous solution with a concentration of c = 0.75wt.%

xanthan gum powder.

After processing the aqueous XG mixture in the test facility, the mixture was

allowed to rest for a defined period of time to allow the whole powder to swell.

The time period was set to one day. After this time period, a sample from

the test stand was taken and investigated in a Searle-type viscometer from

Brookfield with a predefined measurement protocol. The data sheet of the

applied test device can be found in Appendix A.1.

In Figure 9.5, the viscous properties of the XG solution under investigation

are plotted as the apparent viscosity µ over the shear rate γ̇. In addition to the

viscosity function, the figure also contains the regression of the design fluid
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according to the power law in accordance with Equation 5.27. The approxi-

mation is indicated by a continuous line. For the mathematical fit of the mea-

surement data, only valid measurement points were taken into account, while

statistical outliers and data points outside of the power law region are ignored.

As can be seen in Figure 9.5, for shear rates under γ̇ = 7.5·100 s−1, some out-

liers can be found, while the power law region ends at about γ̇ = 1.9 ·102 s−1.

Hence, the applied shear rate interval lies between these two values and is

qualitatively marked by two broken lines. The courses of both the measure-

ment data and the regression reveal very good agreement.

For statistical certainty, five measurement series were performed. The first

measurement series is ignored because of the destruction of long polymer

chains by initial shear stresses, as suggested by Mezger [135]. Performing

this procedure guarantees similarity between all measurements independent

of the measurement time. Aqueous XG solutions are prone to a natural age-

ing effect. Hence, all examinations are carried out promptly in relation to

each other. In preliminary investigations, the ageing effect could be avoided

– or at least reduced, for a few weeks by using a preservative agent. To

prevent influences caused by ageing over the subsequently performed power

examinations, isocil acid was added as a stabiliser.

As a result of the viscosity measurements, the averaged power law param-

eters were determined as k = 8.462Pa sm for mean consistency and m =

0.136 for mean flow index. To observe the quality of the measurement, the

standard deviation was considered. For the consistency, the standard de-

viation amounts to ςk = 0.492Pa sm (relative value: ςk = 5.81%), while for

the flow index, a value of ςm = 0.01 (relative value: ςm = 7.35%) is cal-

culated. Comparing both averaged parameters with each parameter of the

design fluid, a deviation of ∆k = −3.26% for consistency and ∆m = −3.55%

for flow index resulted. Table 9.1 summarises the viscosity parameters of the

applied model fluid and compares them with the design values.

Among the investigation of viscous properties, the density was also exam-

ined. Owing to the low mass of added XG, the density was slightly changed

in contrast to pure water and amounted to ρ = 998.00 kg/m3. The density

was measured by visibly observing hydrometers, type L 50-095, compliant
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Table 9.1. Rheological parameters of the applied model fluid in comparison with the design
fluid, parameters according to power law

c [wt.%] k [Pa sm ] m [−] ρ
[
kgm−3

]

Design fluid - 8.747 0.141 1000

XG1 0.75 8.462±0.49 0.136±0.01 998.00±0.5

Uncertainty −3.26% −3.55% −0.20%

with ISO387:1977-09 [103] (DIN12790:2019-12 [51] and DIN12791-1:2019-

12 [52]) and, so the calculation of the standard deviation is not appropriate

because of the measurement uncertainty of ±0.5 kg/m3 given by the scale.

Hence, for density, the measurement error is indicated instead of the stan-

dard deviation.

The processed model fluid is named XG1. As can be seen in Table 9.1,

the uncertainty of all parameters is under 3.55% and the model fluid fits the

design fluid very well.

9.2.2. Propeller B

The second propeller is named Propeller B. The test facility and the applied

model fluids are described in the following.

Test stand

Since Propeller A was designed for investigations in laboratory-scaled dimen-

sions, Propeller B is designed to be one dimension larger to investigate not

only the power characteristics, but also the velocity field of the jet.

The test facility for Propeller B is shown in Figure 9.6 as a schematic overview,

in Figure 9.7 as a detailed view, and in Figure 9.8 as photographs.

In principle, the test stand is a rectangular basin with a squared base area.

The length of each side of the base area amounts to L = 2.5m. The height

of the basin is approximately H = 2m; hence, for the volume of the test

basin, it yields V = 12.5m3. To achieve a more practical test configuration,
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Figure 9.6. Geometrical overview of the test basin, applied for experimental investigations of
Propeller B, schematic view

a cylindrical sheet is assembled in the test bench. Since all experimental

investigations were performed for a fluid elevation of HF = 1.4m, an effective

volume of V ≈ 6.87m3 results.

In Figure 9.7 and Figure 9.8, Position 1 marks the position of the propeller.

The propeller is driven by a hydraulic motor 3 . This principle was cho-

sen because of the higher power density of a hydraulic system compared to

electric engines – see Appendix B.2 for details about technical specifications.

To measure the torque and shaft speed, a measuring device is mounted in

a submersible box 2 . The box is open for the shaft and sealed by two dy-

namic seals. To avoid water leakage, the box is air-pressured. Inside the box,

a DRWPL-II torque/shaft speed sensor from ETH Messtechnik GmbH is in-

stalled. The technical data sheet of the sensor can be found in Appendix A.2.
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Figure 9.7. Test setup for Propeller B, schematic view, illustration according to Reviol et al.
[182]

Positions 1 to 3 , which is grouped to the mixing unit, can be rotated

by the angle ϑ over a virtual fixing point that lies just on the sidewall of the

test bench. Simultaneously, the whole mixing unit can be linearly moved in

a vertical direction along a jack screw 4 . Both the angular and the verti-

cal position can be controlled by two actuating motors positioned at 5 . By

these degrees of freedom, a propeller position – which is commonly found

in biogas power plants and waste water treatment plants – can be achieved,

while different assembly positions can be modelled very easily.

Propeller B is investigated not only for the power characteristics, but also for

the velocity distribution of the propeller’s jet. To measure the velocity field,

an automatic linear actuating system is mounted at the top of the test bench

7 . The actuating system is computer-controlled and can reach every point

of the test basin in all spatial coordinates by following a Cartesian grid. The

actuating system is equipped with a measuring probe. At the lowest point

of this probe, a Vector UDA sensor from Nortek AS is mounted 6 . This

sensor measures the velocity vector at one single point by interpreting the

sound response. To do this, the emitter – positioned in the centre of the sen-

sor – sends an acoustic signal at a measurement volume of 5–20mm height,

positioned approximately 157mm under the sensor. The response of the sig-

nal is measured by three different receivers, arranged under 30 ◦ against the

perpendicular plane of the emitter, and rotated by 120 ◦ around the emitter.
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(a) Filled vessel
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(b) Visualisation of mixer position

Figure 9.8. Test setup for Propeller B, photographs, author’s own representation according to
Urban [228]

The sensor has an output sampling rate of 64Hz. The accuracy amounts to

±0.5% of the measured value. Figure 9.9 shows the sensor in detail. Com-

paring the frequency change of the measured signal with the emitted signal

determines the velocity. Since three different positions are observed, the 3D

spatial velocity field can be determined. Further details about the sensor are

given in Appendix A.3. The principle is a contactless method and, so, influ-

ences of the measurement method on the measurement volume are very low.

Alternative methods, such as laser Doppler anemometry, are not suitable on

account of the opaque nature of the test fluids.

To control the test bench and to acquire the measurement data, a desktop

PC is utilised. The desktop PC and the test facility are connected by an NI

Receiver

Emitter

Power supply
and data cable

Figure 9.9. UDA sensor, technical sheet Nortek AS [145]
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PCI-6259 I/O-Module from National Instruments and by the corresponding

BNC connector block NI BNC-2090A. Software control and post processing

are performed by the software tool Labview from National Instruments and

by Matlab from Mathworks respectively. In both Figures 9.7 and 9.8, neither

the devices to control the test facility nor the desktop PC to acquire and post-

process the measurement data are shown for reasons of simplicity.

Modelled fluid flow

In analogy with Propeller A, a model fluid which closely resembles the design

fluid has to be applied to investigate Propeller B at its design point. Instead

of using aqueous xanthan gum solutions, aqueous carboxymethyl cellulose

(CMC) solutions were used.

A model fluid is required that has the same rheological properties as the

design fluid. The desired parameters were fixed by the design point given

in Chapter 8.1.2. The power law model, according to Equation 5.27, was

adopted to characterise the design fluid. The design consistency amounts

to k = 14.50Pa sm , while the flow index at the design point is m = 0.29.

The density was assumed to be similar to pure water and was defined as

ρ = 1000 kgm−3.

By performing a rheological study, a model fluid closely resembling the design

fluid could be found. The final model fluid was achieved with a concentration

of approximately c = 1.25wt.% CMC powder. After adding the CMC powder

to the test bench, the mixture was allowed to rest for a defined time period to

allow all the added CMC powder to swell. However, because of the size of

the vessel and, hence, of the water fraction, a relatively high mass of CMC

powder was added, and the swelling process was supported by mixing the

fluid with a small stirrer, before the aqueous CMC solution was allowed to

rest for a few days. Isocil acid was added to stabilise the mixture, as for the

XG solution, because of the results of a preliminary study on ageing effects.

Because of the relatively high volume of the test stand for Propeller B, a slight

deviation in the concentration of CMC leads directly to relatively high changes

in the rheological parameter of the utilised fluid. Therefore, a final viscometric
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Table 9.2. Rheological parameters of applied model fluid in comparison with the design fluid,
parameters according to power law

c [wt.%] k [Pa sm ] m [−] ρ
[
kgm−3

]

Design fluid - 14.50 0.290 1000
C3 1.25 16.601±1.07 0.302±0.01 989.0±0.5

Uncertainty +14.49% +4.138% −1.100%

test was performed after mixing the model fluid in the test facility. The mea-

sured parameters of the model fluid amount to k = 16.601Pa sm for consis-

tency and to m = 0.302 for the flow index, while the density was measured as

ρ = 988.7 kgm−3. The applied hydrometer conforms with ISO387:1977-09

[103] (DIN12790:2019-12 [51] and DIN12791-1:2019-12 [52]). The values

were obtained by averaging five measurement series. The standard devi-

ation of the parameters was calculated as ςk = 1.07Pa sm (relative value:

ςk = 6.445%) for consistency k , respectively ςm = 0.010Pa sm (relative value:

ςm = 3.311%) for flow index m . The density was also measured and amounts

to ρ = 989.0 kgm−3. Because the applied hydrometer must be observed vi-

sually, calculating the standard deviation is not appropriate, and the minimum

scale unit of 0.5 kgm−3 is given as the quantity for the measurement error.

The relative deviations of the measured parameters from the design parame-

ters are ∆k = +14.490% for consistency, ∆m = +4.138% for flow index and

∆ρ = −1.100% for density. The parameters of the design fluid, the statisti-

cal results of the model fluid – referred to as C3 in the following – and their

deviation from each other are shown in Table 9.2.

At first glance, the deviation of the model fluid from the design fluid seems to

be very high because of a relative error of about 14.5% for the consistency,

and even almost 4.2% for the flow index. But on comparing the regression

curves – as calculated by Equation 5.27 – both fluids are close together with

similar viscous characteristics. Figure 9.10 depicts the apparent viscosity

over the shear rate. The experimental results of the viscometric test are plot-

ted by diamond symbols (⋄), while the regression of the measurement data

is plotted by a continuous line. In addition to both entries, the approximation
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Figure 9.10. Apparent viscosity of investigated aqueous carboxymethylcellulose-(CMC)-
mixtures, C1, C2 and C3 , model fluids of Propeller B, illustration according to Reviol et al.
[182]

of the design fluid is depicted by a broken line. As can be seen, the devia-

tion is slight for the region of moderate shear rates. With rising shear rates,

the deviation becomes higher, because of the difference in the flow indices.

The flow index is the exponent of the power law and represents the slope

of a curve in a double logarithmic plot. Hence, the flow index is responsible

for the divergence of both regression curves. Hence, the flow index is more

important for the quality of the model fluid C3 than the consistency. The error

of the flow index is still in an acceptable region.

To preclude mistakes in comparing the experimental investigations with the

predicted power characteristics, according to Chapter 8.2.2, the experimental

investigation of Propeller B is enlarged for two further fluids with a minor con-

centration of CMC. This procedure is used in addition to prove the quality of

the method developed for varying fluids, and for varying operating conditions.

The supplementary model fluids are named C1 and C2 respectively and are

processed and analysed in analogy with the test fluid C3. The concentrations

are cC1 = 0.62wt.% and cC2 = 0.83wt.% respectively. The resultant consis-

tency of fluid C1 amounts to k = 2.509 ± 0.05Pa sm (relative error: 1.99%)
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Table 9.3. Rheological parameters of applied model fluids for different operating points, pa-
rameters according to power law

c [wt.%] k [Pa sm ] m [−] ρ
[
kgm−3

]

C1 0.62 2.509±0.05 0.440±0.003 991.0±0.5

C2 0.83 6.122±0.12 0.365±0.004 989.5±0.5

C3 1.25 16.601±1.07 0.302±0.01 989.0±0.5

and the flow index m = 0.440 ± 0.003 (relative error: 0.682%). The density

is measured as ρ = 991.0 ± 0.5 kgm−3 (relative error: 0.05%), while the pa-

rameters of fluid C2 are measured as k = 6.122 ± 0.12Pa sm (relative error:

1.96%), m = 0.365±0.004 (relative error: 1.096%) and ρ = 989.5±0.5 kg m−3

(relative error: 0.05%). The change in the density is striking, but in compari-

son with the design fluid, the error is still slight, at most −1.1%. All statistical

parameters of the utilised model fluids are summarised in Table 9.3, while the

measurement data of the viscometric tests of both fluids and their approxima-

tion curves is plotted in Figure 9.10. Fluid C1 is plotted by circle symbols (◦)

and C2 by square symbols (�), while the regression of both fluids is drawn

as a continuous line.

9.3. Preliminary investigations

Two propellers with different abstraction levels were designed. Both of these

were examined in preliminary investigations. The aim of the preliminary study

is to identify the necessary abstraction level for the upstream design process.

To do this, both propellers are examined in the test facilities described in

Chapters 9.2.1 and 9.2.2. The results of these investigations are detailed be-

low. Finally, a brief assessment – which does not include a detailed discus-

sion of the method and the abstraction level – is given. A detailed discussion

is included in Chapter 10.1. The discussion is related to both the theoretical

background and the detailed experimental investigations.
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9.3.1. Propeller A

A software tool for the automatic control of the test stand is used for all ex-

aminations of the propeller. The tool varies the shaft speed over a given

range and measures the torque. At the same time, the shaft speed is moni-

tored for deviations from the control value. Each observed shaft speed holds

for a certain time period. Over this period, both parameters are measured

continuously, and finally averaged over the duration. The result is the power

characteristic over the specified speed range.

To investigate Propeller A, a measurement survey with three repeating mea-

surement series was performed. Figure 9.11 shows the result of the mea-

surement campaign as torque T over shaft speed n. The measured values

for torque are between T = 0Nm and T = 0.35Nm while the shaft speed

was varied from n = 0min−1 to n = 300min−1. The recorded series are

marked with different symbols: Series 1 with ⋄, Series 2 with ◦, and Series 3

with ⊳. In addition to the measurement data, the power curve is calculated.

For comparison, the torque is derived from the numerical result and drawn

as a continuous line in Figure 9.11. To assess the quality of both measure-

ment and calculation procedures, the given design point consisting of torque

TPP = 0.21Nm and shaft speed n = 160min−1 is depicted as well. The

investigations, as explained, were performed by Reviol et al. [182].

The three different measurement series were statistically analysed. A stan-

dard deviation of at most ςmax = 3.29% was calculated. Because of the low

value for deviation, the illustration does not contain error bars. As can be

seen, all measurement series are close together.

Figure 9.11 also contains the results from the numerical procedure in accor-

dance with Figure 8.9 for sake of comparison. The analysis of the course of

the experimental results as well as the numerical results shows large differ-

ences between the two methods. The numerical results are more plausible

on account of the intersection of the curve with the zero point and the design

point. However, the discontinuous course of this curve is conspicuous and,

therefore not very plausible, as already explained in Chapter 8.2.2. A strictly

monotonous rise can be expected, but, for some segments of the curve, the
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Figure 9.11. Experimental data of Propeller A as torque over shaft speed (three measurement
series, Marker Series 1: ⋄, Series 2: ◦, Series 3: ⊳), compared with calculated characteristics
(continuous line), containing the design point (chained line), illustration according to Reviol et al.
[182]

slope becomes negative. These regions are marked as unclear in the illus-

tration. In contrast, the measurement results are very unsatisfactory. Despite

the very small measuring errors, the course is not plausible, since neither the

zero point nor the design point are within the measurement results.

There is a clear explanation for the deviations. The reason can be found in the

abstraction level of the design process. For reasons of clarity, these points

are discussed together with the results of Propeller B in Chapter 10.1.2.

9.3.2. Propeller B

As will be explained later, only Propeller B is used for supplementary inves-

tigations. The explanation for this procedure is given in Chapter 9.3.3. The

investigations include the examination of the flow field for the analysis of the

jet developed by the propeller. Therefore, Propeller B is not operated with an

automatic change of the shaft speed. The investigations are performed by

controlling the shaft speed as the target value and by measuring the actual
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values of torque and shaft speed. For each controlled shaft speed value,

the nominal value is kept constant for a given time period. This duration is

applied for averaging. This process was repeated several times for statisti-

cal reasons. Afterwards, the standard deviation is calculated to estimate the

measurement error. Owing to the different dimensioning of the test bench for

Propeller B and because of the simultaneously performed investigation of the

jet (see Chapter 9.4), a smaller number of measuring points was observed,

but at least the design point and one additional point each for the partial and

overload regimes. Table 9.4 indicates all the preliminary investigations con-

ducted in relation to the utilised fluids and the shaft speed variation. Note that

the table also contains an indication of the variations for the supplementary

investigations.

Figure 9.12 shows the results for torque over shaft speed. All three applied

test fluids (left: C1, centre: C2, right: C3) are shown – the rheological pa-

rameters related to each test fluid are noted in each diagram. The measured

Table 9.4. Measurement plan of Propeller B in relation to the utilised test fluid and the operating
point investigated in relation to the design point, the plan indicates preliminary (characteristics)
and supplementary (jet) investigations

Fluid Design Point Characteristics Jet

C1-N065 C1 65% ✓ ✕

C1-N085 C1 85% ✓ ✓

C1-N100 C1 100% ✓ ✓

C1-N115 C1 115% ✓ ✓

C2-N065 C2 65% ✓ ✕

C2-N085 C2 85% ✓ ✓

C2-N100 C2 100% ✓ ✓

C2-N115 C2 115% ✓ ✓

C3-N085 C3 85% ✓ ✓

C3-N100 C3 100% ✓ ✓

C3-N105 C3 105% ✕ ✓

C3-N115 C3 115% ✓ ✕

206



9. Experimental investigations

values are represented by a single marker (⋄) together with the calculated er-

ror bars. The measured values are between T = 2.9Nm and T = 9.5Nm for

torque and between n = 259min−1 and n = 440min−1 for the shaft speed.

For each parameter, the standard deviation is computed. All the measured

data is shown in Table 9.5 in greater detail. The error bar in Figure 9.12 is cal-

culated with the standard deviation. As can be seen, the measurement error

is small. The maximum value for the relative standard deviation is less than

ς ≈ 1.75% for torque and shaft speed. In addition, the results of the inverse

calculation are displayed for comparison. Torque is drawn as a continuous

line and the efficiency is plotted as a broken line in grey. This data is taken

from Figure 8.10. To assess the results, the predefined design point is plotted

in each subfigure with a broken line for the designed torque of TPP = 7.44Nm

and the design shaft speed of n = 380min−1.

A comparison of the design point with the measurements shows that the

course of test fluid C1 (left) and test fluid C2 (middle) does not fit this point.

However, test fluid C3 (right) fits the design point very well. This is very

plausible, given the fact that only fluid C3 is prepared to match the design
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Figure 9.12. Experimental data of Propeller B as torque over shaft speed (three measurement
series, Marker Series 1: ⋄, Series 2: ◦, Series 3: ⊳), compared with the calculated characteristics
(continuous line), containing the design point (chained line), presentation according to Reviol
et al. [182]
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Table 9.5. Measurement results of Propeller B, includes only preliminary (characteristics) in-
vestigations but indicates whether supplementary (jet) investigations are performed

n
[
min−1

]
T [Nm] Characteristics Jet

C1-N065 252.24± 3.18 2.90± 0.04 ✓ ✕

C1-N085 321.89± 3.54 4.37± 0.05 ✓ ✓

C1-N100 372.25± 3.31 5.78± 0.06 ✓ ✓

C1-N115 437.95± 4.13 7.59± 0.12 ✓ ✓

C2-N065 254.95± 2.07 3.34± 0.03 ✓ ✕

C2-N085 320.37± 2.27 5.42± 0.02 ✓ ✓

C2-N100 352.59± 5.34 6.80± 0.07 ✓ ✓

C2-N115 425.06± 7.38 8.49± 0.10 ✓ ✓

C3-N085 318.57± 2.68 5.77± 0.05 ✓ ✓

C3-N100 375.03± 3.68 7.25± 0.09 ✓ ✓

C3-N115 436.14± 4.64 9.43± 0.10 ✓ ✕

fluid. Fluids C1 and C2 were deliberately prepared to be different from the

design fluid – hence, the measurements related to these fluids must not fit

the design point. Furthermore, a very good agreement of measurement and

inverse calculation can be seen.

9.3.3. Assessment of the model assumptions

The results of Propeller A show a clear difference between predicted and

measured power characteristics. Considering only these results, the method

seems to be invalid. In contrast, Propeller B leads to very plausible results for

design process, calculation method, and measurement results. The reason

for the mismatch of Propeller A and the match of Propeller B is the difference

in the abstraction level of the design process of both propellers. Only Pro-

peller B was designed after taking swirl into account. Hence, a high abstrac-

tion level – as chosen for Propeller A – is not suitable, and it is indisputable

that swirl must be considered in the design process.

Based on the performance characteristics of Propeller B, both the design
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method and the inverse calculation method are considered to have been con-

clusively verified. Because of the unsuitability of Propeller A, further inves-

tigations of this propeller are not worthwhile. Only the second propeller is

examined from this point.

9.4. Supplementary investigations

In the preliminary investigations, the validity of the design technique and the

inverse calculation procedure were verified. However, not only is the power

consumption of the applied propeller a point of interest, but also the gen-

erated flow field. It is clear, then, that the jet developed by the propeller is

the goal of the process. In the following, Propeller B is examined for the de-

veloped flow field of the shaft speed variation considered. In the scope of

this work, only the jet, in a horizontal plane of the machine axis of the pro-

peller, and the related velocity distribution in cross-section planes in front of

the propeller are presented. A more detailed investigation of the flow field

and comparisons with numerical procedures have been published by Wang

[232]; Wang et al. [233, 234, 235].

9.4.1. Measurement methodology

The detailed investigations of the flow field are carried out using a UDA probe.

The probe is installed on a traverse unit that enables the probe to be posi-

tioned at any position in the xy-plane. A detailed description of the test bench

can be found in Chapter 9.2.1. An overview of the test stand is shown in Fig-

ures 9.6 to 9.8. A measurement computer is used for automatic control of

the traverse system. To record the flow field in the xy-plane, the computer

requires a user-defined grid for automatic traversing.

The simplest way of defining a grid is to apply a rectangular coordinate sys-

tem. Hence, in this project, a rectangular grid with a clearance of ∆x =

100mm and ∆y = 100mm between each point is chosen. Because of the

circular shape of the test bench, the rectangular grid is trimmed near the wall.

In addition, the region of the propeller has to be omitted to avoid the collision
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Figure 9.13. Data acquisition points in relation to the test bench with the clearance ∆x and
∆y for both varied spatial parameters

of the UDA probe with the propeller. This result is a reduced rectangular grid

with more than 300 data acquisition points. Figure 9.13 shows the final grid.

As an overlay, a schematic diagram of the test bench is also provided in the

figure.

The variation of the test liquid requires a measurement plan for methodi-

cal investigations. The variation is in line with the preliminary investigations,

as shown in Table 9.4. Note that only three operating points for each ap-

plied fluid are investigated. The investigated operating points always include

partial load and overload. The design point is also investigated each time,
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however, because of the change of the test fluid, the original design speed

was not suitable for test fluids C1 and C2. The shaft speed has, therefore,

been set to more suitable values for the aforementioned fluids. Furthermore,

for test fluid C3, the overload regime was investigated at lower shaft speed.

Table 9.4 indicates the differences between preliminary and supplementary

investigations. Despite the fact that the test bench is designed to also vary

the mounting angle ϑ of the propeller, these investigations are not within the

scope of this research project and have been performed by Wang et al. [235].

The result of the UDA measurements is discrete data recorded for each ac-

quisition point of the grid. For better visualisation, the dataset is interpolated

using the nearest neighbour method, as proposed by Sandwell [199]. The

post-processing of the data is performed in a Matlab routine.

9.4.2. Jet distribution

The detailed investigation of the velocity distribution is carried out for a fill

level of HF = 1.4m. The immersion depth of the propeller is adjusted and

kept constant for all investigations. The z-position of the propeller is set to

z = 0.9m.

This amount has been chosen to achieve a maximum distance between the

floor of the test bench and the propeller, without positioning the propeller too

close to the surface. If the distance between floor and propeller or surface and

propeller is not chosen well, a vortex core may form on the surface or on the

ground, which is connected to the propeller by a vortex filament. This vortex

filament requires energy, which leads to a higher power consumption of the

propeller. This will falsify the measurement results if surface or underwater

vortices occur. To avoid vortices, the proposal by Prosser [167] is applied.

The proposal is adopted from the field of fluid machinery and requires an

immersion depth HID of at least HID = 1 ·DIn for the intake in a pump sump.

In this proposal, DIn is the diameter of the intake, assumed here to be equal

to the diameter of the propeller. The immersion depth is almost 1.5 times

higher than the propeller diameter and a sufficient distance is assumed.

However, the proposal of Prosser refers to pump sumps instead of mixers. In
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particular, the surface of each measurement survey is observed for vortices.

Since the distance between the surface and the propeller is smaller than

the distance between the base and the propeller, vortices are more likely to

occur on the surface. This is in agreement with Rushton et al. [196, 197],

who discovered that Froude number effects – and, hence, surface vortices

– may be relevant for Reynolds numbers higher than Re = 300. No surface

vortex was observed for all measurement surveys. Therefore, the distance of

z = 0.9m is assumed to be appropriate.

In all the measurements performed, only the xy-plane – as shown in Fig-

ure 9.13 – is considered. The machine axis of the propeller is chosen for the

z-position of the measurement plane. This position is equal to the aforemen-

tioned propeller position of z = 0.9m.

The measurements are performed for the same operating points as selected

earlier for the preliminary investigation of the power characteristics. Owing

to deviations in the measurements, slight differences in the operating points

can occur. Hence, the shaft speed was controlled and measured as the ac-

tual value. Table 9.6 contains all measured values for the shaft speed for all

considered operating points. In addition to the measurement value, the stan-

dard deviation is presented. A comparison of the contents of Table 9.6 with

those of Table 9.5 reveals that the differences are negligible. Table 9.6 also

indicates whether the power characteristics are investigated for the velocity

distribution examined.

In Figures 9.14 to 9.16, the velocity distribution in the measurement plane is

depicted as a contour plot. The velocity is normalised by the maximum value

of the velocity magnitude measured for the parameter set under considera-

tion. Each figure represents the measurement results for the investigation of

the operating point near the design point of one of the different test fluids.

In the appendix, the remaining operating points for partial load and overload

are shown. For these results, refer to Appendix E.2 and Figures E.4 to E.12.

Furthermore, the appendix contains not only the results as normalised illus-

trations, but also true-to-scale (Figure E.13 to Figure E.21) and scaled to

the velocity range of v = [0, 1.7] m/s (Figure E.22 to Figure E.30) for better

comparison.
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In addition to the contour plot of velocity in the xy-plane, the velocity distri-

bution is shown in three cross-sections perpendicular to the measurement

plane in all figures. The velocity distribution is plotted as a graph of the ve-

locity magnitude v and its components vx, vy, and vz. The three positions

are chosen at x = −370mm, x = 0mm, and x = 370mm. Each graph is

normalised with its maximum velocity magnitude.

Results of test fluid C1

Figure 9.14 shows the results of the parameter set C1-N100 for fluid C1 nor-

malised with the maximum velocity magnitude of the depicted measurement

output. Figure E.5 shows the same dataset true-to-scale. The applied test

fluid is not as viscous as fluid C2 or even fluid C3. Therefore, the velocity

magnitude reaches its maximum values for this test fluid for all performed

measurements. For the operating point near the design shaft speed consid-

ered here, the maximum velocity amounts to vmax = 1.7997m/s (partial load:

vmax = 1.5667m/s, overload: vmax = 1.9671m/s).

A clear, distinct velocity field is formed by the propeller, which clearly reaches

Table 9.6. Operating points of the detailed investigations as the actual value of the shaft speed.
Includes only supplementary (jet) investigations, but indicates whether the preliminary (charac-
teristics) investigations are fulfilled

Fluid n [s−1] Characteristics Jet

C1-N085 C1 321.85± 3.54 ✓ ✓

C1-N100 C1 372.23± 3.30 ✓ ✓

C1-N115 C1 437.84± 4.21 ✓ ✓

C2-N085 C2 320.36± 2.27 ✓ ✓

C2-N100 C2 352.53± 5.34 ✓ ✓

C2-N115 C2 424.93± 7.42 ✓ ✓

C3-N085 C3 318.57± 2.68 ✓ ✓

C3-N100 C3 375.03± 3.68 ✓ ✓

C3-N105 C3 400.56± 5.95 ✕ ✓
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Figure 9.14. Measurement result C1-N100, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0, and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.7997m/s, and accuracy of the applied UDA sensor: ±0.5%
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the wall opposite the propeller. In the upper half of the velocity field, a separa-

tion can be observed. This may be related to transient effects. The measure-

ment was performed over a small time duration and averaged afterwards.

The duration may not have been long enough to filter out transient effects.

In respect of the characteristics of the whole flow field, a diverging jet with

a pronounced core is measured. This is in agreement with the theoretical

approach of a free jet, as described in Chapter 6.

In addition to the contour plot, the velocity distribution is shown as a set of

curve plots. The first plot is close to the propeller (x = −370mm) and shows,

for the magnitude and the three components, a clear peak near the machine

axis at y = 0mm. For this distance, the core of the jet is still intact. At the

second distance (x = 0mm), the former core region is enlarged and the jet

has begun to diverge. The velocity vx in x-direction still has its maximum

position at y = 0mm but is characterised by a secondary maximum. The

distributions of vy and vz have started to diverge. For the last position at

x = 370mm, the magnitude of v and vx both still show the propagation of the

jet, though no core region can be identified. The remaining components are

scattered. As performed for the contour plot, each diagram is normalised by

its maximum value.

In summary, it can be said that an effective jet was developed and the power

consumption was close to the predicted value. For the test fluid C1, Pro-

peller B operated as expected.

Note that no error evaluation was performed for the contour plot. This is be-

cause of the application of the biharmonic spline interpolation method. Post-

processing was performed for mathematical grid points instead of data ac-

quisition points. Owing to the size of the mathematical grid, the application of

error propagation methods was not appropriate. Therefore, the accuracy of

±0.5% of the measurement device is given in the figures instead of applying

methods of error propagation. This also applies to all further investigations.
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Results of test fluid C2

Test fluid C2 is characterised by moderate viscous properties. The maxi-

mum velocity of the measurements of this fluid for the operating point close

to the design speed amounts to vmax = 1.2681m/s (partial load: vmax =

1.0717m/s, overload: vmax = 1.3557m/s). This value is taken for normalis-

ing the contour plot of the considered results of the parameter set C2-N100,

as depicted in Figure 9.15. For a true-to-scale illustration, refer to Figure E.8.

The contour plot shows a distinct jet which reaches the wall opposite the

propeller. But the jet is not as clearly pronounced as for the test fluid C1.

Furthermore, a separation of the jet into two main regions occurs, and only

the upper part of the jet reaches the wall in Figure 9.15. A few separations

can be observed in the middle between both the main regions of the jet. The

jet seems to diverge rapidly because of the increased viscosity. Owing to

rising shear stress in the free shear layer, it is clear that the divergence of the

jet starts closer to the propeller. The separation regions may be related to

transient effects connected to the hub vortex.

Considering the first velocity plot for the cross-section plane at x = −370mm,

the course of all curves is quite similar to the test fluid C1. The second cross

plane for x = 0mm shows two distinct maxima for both the velocity magnitude

v and the x-component vx. For the upper maximum, the component vy has

a positive peak, while the component vz has a negative peak. For the lower

maximum, it is the other way round. All peaks are of a similar quantity, except

the peak of the component vz for the upper maximum. The courses of both

the component vy and the component vz show the swirl of the flow. It can be

assumed that the jet is still diverging evenly at this x position. The contour

plot shows the enveloping area that is characterised by the tip vortex. For the

last position, no clear structure can be observed in the course of the curves,

allthough it can be assumed that the separation regions are related to the

dissipation of the whole jet in this distance from the propeller.

In conclusion, it can be said that the jet is still clearly pronounced but starts to

diverge closer to the propeller. From the preliminary tests, it is known that the

power consumption was calculated correctly. For the test fluid C2, Propeller B
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Figure 9.15. Measurement result C2-N100, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.2681m/s, accuracy of the applied UDA sensor: ±0.5%
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operated as expected.

Results of test fluid C3

As a final variation, the test fluid C3 was examined. Fluid C3 is characterised

by having the highest investigated viscosity and is similar to the design fluid.

Figure 9.16 illustrates the measurement results C3-N100 for the test fluid as

a normalised dataset for the design speed. The normalisation of the contour

plot was performed by dividing the local velocity magnitude v by the maximum

value vmax = 0.6706m/s of the measurements for the design point (partial

load: vmax = 0.0894m/s, overload: vmax = 0.4726m/s). The graph plots

shown are normalised by the maximum value of velocity magnitude vmax of

each diagram. A true-to-scale illustration of the measurement set is shown in

the Appendix in Figure E.11.

The velocity distribution of the contour plot shows no jet. Only the area near

the propeller is significantly accelerated. This is caused by the high viscosity

of the fluid. However, as an overlay of the contour plot, a vector field is

illustrated. The vector field shows a main flow direction, which is aligned to

the wall opposite the propeller. The length of the vectors is related to the

velocity magnitude. As can be seen, the velocity magnitude is quite low, but

not zero.

To assess the velocity field of the experimental investigation of test fluid C3,

the velocity graph plot has to be taken into account. On reviewing the first

cross-section plane for x = −370mm, a clear pronounced jet can be seen. It

has to be said that the jet is already diverged, and no core can be observed.

For the remaining cross-sections, no clear velocity distribution can be identi-

fied. However, the velocity magnitude is aligned to the x-axis, which can be

seen in the distribution of the x-component of the velocity vector in both the

remaining diagrams. Therefore, the main flow direction is still downstream

from the propeller, although the magnitude of the velocity is very small.

As a result of the measurements, first of all, it was determined that Pro-

peller B is not able to accelerate the test fluid C3 to reach the opposite wall.

Nevertheless, the velocity graph of the first section plane shows a clearly
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Figure 9.16. Measurement result C3-N100, normalised velocity contour plot v/vmax with vec-
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developed but already highly diverged jet. The remaining velocity diagrams

have shown a main flow direction of the fluid aligned to the x axis, as also the

contour plot. The preliminary investigations were also successful, and the

power consumption was predicted with a high degree of accuracy. Although

test fluid C3 is obviously not suitable to be mixed by a propeller agitator, the

design process and the reverse calculation method were finally verified for

the design fluid as well.

Notes

1The measurement device to investigate the viscoelastic properties of possible model fluids
was a RheoStress 6000 rheometer from Haake.
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10. Discussion of the method

The application of the design techniques of wind energy turbines to develop

a propeller mixer was successful. As required in Chapter 1.2, the new design

technique provides both the shape of a propeller and the drive power re-

quired. This data can be computed in the design process for arbitrary low-Re

conditions, which are mostly associated with non-Newtonian fluid flow.

It is clear, however, that the method is not universally valid. The basis of

the new design method was to focus on a clearly defined machine type in

order to obtain a comprehensive and transparent theory for the turbomachine

considered. In addition to being restricted to a specific machine type, some

simplifications or abstractions have been made to apply analytical methods.

Hence, the limits of the method have to be discussed in the following.

The verification of the method was carried out by means of experiments. In

the last part of this chapter, therefore, the applied measurement methods are

critically discussed in order to point out their influence on the verification.

10.1. Disadvantages of the method

The major disadvantages of the method result from the fundamentals of the

method. The disadvantages can be subdivided into different main topics.

These are the general application range and the assumed simplifications of

the approach, which imply the influence caused by non-Newtonian fluid flow.

These are discussed in detail below.

10.1.1. Limited application range

As mentioned earlier, the method was developed to create a propeller mixer

for a specific design fluid. As explained in Chapter 2.1, the field of mixing is

very broad and characterised by various mixing tasks. Propeller agitators are

best suited for mass transport tasks, e.g. in biogas power plants or sewage

treatment plants. Therefore, it is not possible to use the procedure for al-

ternative mixing applications. Since this was evident from the requirements
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of the new design process, the limited application range is known from the

beginning, and, so, is not really a disadvantage.

10.1.2. Polar plot database

Since the fundamental basis of the method is the blade element momentum

theory (see Chapter 3.2), the whole design process depends on polar plot

data and its quality. The database data was discussed in Chapter 7.2. The

dependence of the new method on the polar data became apparent through

the discontinuous course of the predicted power characteristic, as presented

in Chapter 9.3.1 and 9.3.2.

When an analytical energy balance is used, a continuous and strictly mono-

tonically increasing course of the characteristic curve can be expected. The

power must be a cubic function of the entry speed, while the torque char-

acteristic must have a quadratic curve. If a linear relationship is assumed

between inlet velocity and rotational speed, then the above relationship also

applies to rotational speed.

Both Figures 9.11 and 9.12 clearly show that the course of the inverse cal-

culated power has a quadratic trend. The calculated curves can, therefore,

be considered plausible. However, this does not explain the discontinuous

course of the curves, but only proves the plausibility of the curve trend.

The reason for the discontinuity of the characteristic curves must be assumed

to be the limited size of the profile database. During the period in which this

work is carried out, the database consisted only of discrete individual results;

the preservation of which required a great deal of effort. These results were

generated by a large, but limited, number of variations; see Chapter 7.2 for

details. This also means that results are only available for a limited number

of Reynolds numbers. The algorithm uses the Reynolds number to select

the best profile. The Reynolds number determined is compared with the

results of the database. The database entry closest to the Reynolds num-

ber determined by the algorithm is selected for use. In general, it cannot

be assumed that the Reynolds number determined by the algorithm has an

exact counterpart in the database. The greater the difference between the re-
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quired Reynolds number and the existing Reynolds numbers in the database,

the greater the negative influence of the profile that is finally selected. The

database should, therefore, be systematically expanded in order to improve

its quality. In addition, the database must be extended to include physical

effects such as stall, flow separation, or transitions.

It is clear that the limited size of the database will have a significant impact.

The influence of the aspects discussed above becomes obvious for the char-

acteristics illustrated in the Figures 9.11 and 9.12. Each time a peak occurs,

the algorithm estimates a Reynolds number that causes a change of profile.

This is associated with a sudden change of the profile polar data; the course

of the characteristics is also influenced.

Furthermore, for a narrow rotational speed range of the examples performed,

the algorithm selected the datasets with the largest investigated angle of at-

tack. The algorithm may have selected a larger angle if this data had been

present in the database. In this case, it is clear that the data for a larger

angle of attack would be more suitable. However, these were not examined

because of the neglect of stall. Therefore, the database should be extended

for higher levels of attack.

Regions that are not clear – either because of a large difference of required

and stored Reynolds numbers or because of the limited range of the angle

of attack investigated – are marked in Figure 9.11 and 9.12 as unclear. By

neglecting these regions, a continuous course can be assumed.

Finally, it can be said that these influences are not a disadvantage of the

method, but only of the results presented here. Despite the small number

of entries, the method works very well, as the accuracy of the results for

Propeller B shows. Expanding the database will further improve the method

and make the results even more accurate.

10.1.3. Influence of the Reynolds number

In addition to the number of database entries, it can be assumed that the

definition of the Reynolds number also has an influence on the calculation of

the characteristics.
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As explained in Chapter 5.3, the Reynolds number is not defined for non-

Newtonian fluids. As can be seen from Equation 5.27, there is no way to give

a unique viscosity that fully characterises the viscous patterns of a non-New-

tonian fluid. If a representative single value is required, the concept of appar-

ent viscosity can be chosen. In this concept, the Reynolds number depends

on the deformation state and, so, is not unique. Therefore, an alternative

definition must be used.

Two possibilities are presented in Chapter 5.3.3. The first definition was

described by Chhabra and Richardson [38] to compare Newtonian and

non-Newtonian pipe flow. The fundamental of Chhabra and Richardson’s

Reynolds number, according to Equation 5.38, was the assumption of a con-

stant friction coefficient for pipe flow tasks. The second definition of an alter-

native Reynolds number was deduced by applying Buckingham’s π theorem,

see Equation 5.41, and is called generalised Reynolds number. The power

law parameters k and m were adopted for deduction. This means that the

physical properties of a fluid are taken into account by applying mathemati-

cal regression parameters. Hence, the definition is more mathematical than

physical. Both definitions must, therefore, be treated with scepticism.

An analysis of the profile polar data shows that the course of the lift and

drag coefficient is discontinuous when plotted as a function of the Reynolds

number. The magnitude of the influence depends on the definition chosen for

the Reynolds number. A more suitable procedure to compare non-Newtonian

fluids as proposed by Kluck [115] should be adopted, but at present there is

no clear definition of the Reynolds number for non-Newtonian fluid flow that

has been proven in practice.

However, the resultant error in the application of the definitions that have been

applied is systematic. Therefore, in the context of this thesis, it is not permis-

sible to calculate a single value with the definition according to Chhabra and

Richardson or the application of the generalized Reynolds number, but the

consideration of the difference of two different states is permissible, since

only the relative difference of the Reynolds number is considered. It is a pre-

requisite, then, that only one definition of the Reynolds number is used during

the entire design process and that the absolute values of the Reynolds num-

225



10. Discussion of the method

ber are ignored.

10.1.4. Influence of modelling assumptions

The investigated algorithm works very well, but the model assumptions have

to be accurate. The calculation has to take swirl into account. This will be

discussed in the following.

If only the results of Propeller A according to Chapter 9.3.1 are considered,

the calculation method seems to have failed. The deviation between the

preselected design point and the numerical calculation and the experimental

data is unacceptably large. In contrast, all results of Propeller B fit together

very well – see Chapter 9.3.2.

If Propeller A is analysed in greater detail, it immediately becomes clear that

the design point lies on the inverse calculated curve. This means that the de-

sign method and the inverse calculation of the power curve provide, in prin-

ciple, the same results. It may, therefore, be assumed that the differences

result from the experimental investigation. However, all three measurement

series are almost identical and the experimental investigations can be consid-

ered plausible. This suggests that the deviation of Propeller A is not caused

by the basics of the calculation method and also not by the measurements,

but by the model assumptions applied for reasons of simplicity.

A consideration of the model assumptions of Propeller A and their compari-

son with Propeller B show that both the algorithm and the investigations are

valid. Propeller A was designed under the assumption of negligible swirl,

while Propeller B was designed taking swirl into account. The experimen-

tal investigation of Propeller A clearly shows the importance of swirl for the

design process.

At first glance, it does not seem that swirl is the reason for the numerical

overestimation of power. Since swirl requires power, the total power of the

experiments should be higher instead of lower. Although this is true, the

mistake was made at the beginning of the design process. The method was

performed under incorrect, non-physical conditions. Hence, no comparison

of the numerical and the experimental results is possible.
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Further analysis of Propeller A shows that the calculation of the chord length

is responsible for the mismatch of the results. The neglect of swirl causes the

overestimation of the chord length, especially near the hub. In Figure 8.1a,

the chord length distribution of Propeller A is plotted. Near the hub, striking

high values for l occur. For Propeller B, the chord length is more plausible:

see Figure 8.5a. Since the chord length is overestimated for Propeller A,

the Reynolds number is also overestimated because of the dependence of

the Reynolds number on this parameter. As a consequence, non-plausible

data was taken from the database to create the shape of Propeller A. The

profile taken is characterised by over-estimated lift coefficients CL. In con-

trast, the drag coefficient CD is assumed to be too low. Finally, the algorithm

computes higher values for both the design point and the inverse calculated

power characteristics.
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10.2. Discussion of the measurements

Despite the fact that the alignments of the shafts of both the investigated

propellers are different, no effect on the experimental results is expected.

According to Rushton et al. [196, 197] and Prosser [167], the onset of vortices

or caverns will cause increased power consumption. For both propellers, the

surface was observed, and no air sucking vortices were identified. Therefore,

no relevant influence from the test setups is assumed. The alignment of

the jet may cause slight differences due to the influence of gravity. But the

acceleration in the jet and the inertia forces caused are higher than gravity.

Hence, gravity is assumed to be negligible.

Apart from the test bench, the test fluid is also part of the test setup. The

rheological properties of the fluid have to be discussed. For Propeller A, the

applied test fluid XG1 was in good accordance to the defined design fluid,

see Chapter 9.3.1, Figure 9.3 and Table 9.1. The test fluid of Propeller B was

challenging. Between the applied test fluid C3 and the defined design fluid, a

mismatch of ∆k = 14.5% for consistency was measured. For the flow index,

the difference was smaller and was measured at ∆m = 4.1%. However, both

parameters are mathematical curve fit parameters. Hence, the deviation was

only small, as can be seen in Figure 9.10. The small deviation between the

applied test fluid and the design fluid only caused small influences on the

experimental results. The accordance between the predefined design point

and the measured value is very good.

The accuracy of the measured quantities has to be discussed as well. Some

different measurement devices are applied, with each device having a char-

acteristic measurement error. Each sensor is carefully selected with regard

to its measuring range – all the measured quantities amount to at least 10%

of the maximum value of the sensor to avoid the influences caused by the

measuring range. For details about the measurement ranges of all applied

measurement devices, refer to Appendix A.3. To eliminate statistical errors,

each measurement was performed in measurement series with several rep-

etitions. To quantify the statistical dispersion, the standard deviation was

calculated. Each measurement series is specified by the mean value of all
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datasets of the measurement series. The calculated standard deviation of

each measurement series is specified in Chapter 9 together with the mean

value of the measurement series. In every case, the standard deviation was

satisfactorily low.
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11. Conclusion and outlook

11.1. Conclusion

This thesis presented a new design method for axial turbomachinery. The

method is intended for propellers for agitating high viscous fluid flow, such

as those commonly found in process engineering and energy technology.

Typically, this kind of fluid flow is related to non-Newtonian fluid conditions.

The design method is based on analytical and transparent methods and de-

termines both the power requirement and the shape of the propeller for a

predefined operating point.

Bringing together the above topics, which make up the presented design

method, is challenging, and leads to several conflicts in the present funda-

mentals of fluid mechanics, turbomachinery, process engineering, and en-

ergy technology. A major problem is that the present fundamentals to design

propellers only take high-Re fluid flow into account, which is typically mod-

elled with potential flow or other simplifications. But agitating high viscous

fluid flow causes a more pronounced influence of the friction – and, so, of

the shear viscosity of the fluid under consideration. Hence, the above sim-

plifications and their related assumptions are no longer valid in the scope

of this research. Therefore, the theoretical fundamentals were analysed for

their design techniques and subsequently enhanced for non-Newtonian fluid

flow. The fundamentals considered only refer to propeller engines and wind

turbines.

Since the approach that has been applied is derived from the design pro-

cess for axial turbomachinery, such as propeller engines or wind turbines,

the method focuses on the aerodynamics of airfoils. Until now, their aero-

dynamic characteristics are only known for high-Re conditions – mostly for

air and sometimes for pure water – but not for non-Newtonian fluid flow. To

establish the aerodynamics of airfoils under the conditions of non-Newtoni-

an fluid flow, numerical investigations were performed. The Lattice-Boltzman

method was utilised to calculate numerous different flow conditions.

The approach presented in this thesis is combined with the design method of
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modern wind turbines to derive the shape of the turbomachine sought. How-

ever, the application of the methods that have been considered require the

knowledge of the absolute velocity at the inflow of the control room regarded.

This velocity was derived from the momentum forces of the propeller to be

developed. These forces can be found by adopting the jet theory.

Finally, the combination of the above research topics led to an approach that

is able to calculate the optimum shape of a propeller mixer from a given

design point to agitate high viscous low-Re fluid flow. The power consumption

of the turbomachine is calculated in the design process.

The power consumption of this propeller is known early in the design process.

This fact is a key role for suitable design techniques. Nevertheless, the calcu-

lated data is only valid for the design conditions. Therefore, in this thesis, the

new approach is also investigated for its suitability for application in further

operating conditions, such as partial load and overload – or even for agitat-

ing other fluids. For this purpose, the algorithm considered was developed in

such a way that it can be started in inverse mode. This means that not the

design point itself, but a propeller shape is given as the input parameter when

the algorithm is operated in inverse mode. The result of the inverse method

is the full power characteristics of the propeller for an arbitrary fluid. However,

the method is limited to pseudoplastic fluids. Pseudoplastic properties occur

most often in combination with highly viscous media.

In the last part of this thesis, the design method was applied and two propeller

mixers were designed. The propellers were designed with different abstrac-

tion levels: one propeller was designed to neglect swirl, while the second was

designed to take swirl into account. The difference was used to establish the

influence of the abstraction level on the design approach. The influence of

swirl was found to be of high importance for the design. Hence, the second

propeller was chosen for detailed experimental investigations. The examina-

tions proved the suitability of the new approach.

As a consequence, the design techniques of propeller engines and modern

wind turbines can be adopted under some enhancements to design a flow-

optimised propeller mixer for the agitation of high viscous fluid flow.
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11.2. Outlook

The new approach worked as expected. But the quality of the method de-

pends on the investigation of profile aerodynamics for non-Newtonian fluid

flow. The better the quality of the results of these investigations and the

larger the amount of investigated profiles, the better the design technique.

The investigation of more profiles is, therefore, highly recommended. Since

the investigated profiles were taken from other applications, the design of

new profiles, especially for the purpose of the topic under consideration here,

will also increase quality. However, the design of flow profiles for high viscous

fluid flow may be challenging. Furthermore, the flow conditions considered

were not chosen beyond the stall point. For the low-Re conditions regarded,

stall is not expected, but cannot be excluded either. The database should be

extended for these investigations as well.

Although the method itself was proven in this thesis, validation was performed

under laboratory conditions, such as homogeneous fluid flow. The experi-

mental examinations have to be extended for practical use. This type of pro-

peller mixer is commonly applied in waste water treatment or biogas power

plants, for instance. In these plants, the agitated fluid is nonhomogeneous

sewage with gas fraction. Therefore, the influence of particles and gas frac-

tion have to be taken into account in further examinations.1

Notes

1The influence of gas fraction has been investigated by Wang [232].
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A. Measurement devices

A. Measurement devices

A.1. Viscometer

Brookfield Engineering Labs., Inc. Page 7 M/02-212

R/S Rheometer main instrument (minimum configuration)

O K

S TPower

Main-Menue

- Run Single

- Run Program

- Remote

BROOKFIELD

1

4

5

14

13

11

2

3

6

7

8

9

10
12

1 R/S Rheometer
2 Measuring bob coupling
3 Mounting flange
4 Pt100-clamp fixture (accessory)
5 Pt100 (accessory)
6 Standard measuring bob (accessory)
7 Standard measuring cup (accessory)
8 Measuring cup bottom, or thread protection (accessory)
9 Measuring cup screw fitting
10 Stand
11 AC-adaptor
12 Direct current coupling
13 Mains connection cable
14 Data transmission cable (accessory

Figure A.1. Technical specifications of viscometer type R/S from BROOKFIELD ENGINEER-
ING LABORATORIES, INC. [28], excerpt from the data sheet, page 7, overview of the measure-
ment device

249



A. Measurement devices

Brookfield Engineering Labs., Inc. Page 52 M/02-212

VIII. Technical data

R/S Rheometer

Dimensions 480 mm x 300 mm x 290 mm

Weight 8 kg

Nominal operating voltage
Power consumption (average)
Power consumption (maximum)

+/- 15 V, 5 V
12 W
22 W

Ambience conditions
Temperature

in operation
out of operation

Relative humidity (not condensable)
in operation
out of operation

10° to 40°C
10° to 45°C

20% to 80%
10% to 90%

Accuracy
± 1.0 % of maximum range value
± 1 digit

Torque range

Mains operation 0.05 to 50 mNm

Torque resolution 0.01 mNm

Speed range 0.7 min-1 to 800 min-1

Angle resolution 0.8 mrad

Temperature range
Depending on temperature control device used

-20°C to +180°C

Shear rate range
Depending on measuring system used

0.9 s-1 to 4 × 103 s-1

Shear stress range
Depending on measuring system used

0.7 Pa to 3.4 × 104 Pa

Viscosity range

The given range is a standard value (not maximum value)

Depending on measuring system used

1 × 10-3 Pas to 3 × 103 Pas

AC-Adaptor

Dimensions 160 mm x 85 mm x 35 mm

Weight 0.5 kg

Power supply
Mains voltage
secondary voltages (Output)
output-current
output power

from 100 up to 240 V AC
5 V, +/- 15 V DC
2 A, 0.9 / -0.2 A
20 W

Frequency range of mains voltage 50 bis 60 Hz

Environment conditions
Temperature

in operation
out of operation

Relative humidity (not condensable)
in operation
out of operation

+10°C to +40°C
+10°C to +45°C

20% to 80%
10% to 90%

Figure A.2. Technical specifications of viscometer type R/S from BROOKFIELD ENGINEER-
ING LABORATORIES, INC. [28], excerpt from the data sheet, page 52, technical data
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FTK-CC

Dimensions (Width x Height x Depth) 94 mm x 55 mm x 170 mm

Weight 600 g

Temperature range

standard range
with cooling device

-10°C to +90°C
-20°C to +180°C

Measured or evaluated values
The preset values and measured values are listed below as well as all evaluated values:

Value Symbol Physical Unit

Speed n [min-1]

Torque (relative)
(1000 ‰ =̂ 50 mNm)

M [1]

Temperature T [°C]

Time t [s]

Shear rate γ⋅ [s-1]

Shear stress τ [Pa]

Dynamic viscosity η [Pas]

Figure A.3. Technical specifications of viscometer type R/S from BROOKFIELD ENGINEER-
ING LABORATORIES, INC. [28], excerpt from the data sheet, page 53, technical data
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APPENDIX

A1Data sheets of standard measuring systems

Table Standard cylinder measuring systems according to DIN 53019 / ISO 3219
(consists of measuring bob and measuring cup)
For R/S Rheometer three types of measuring bobs are available:

− MB-CC48 ... CC8 DIN/RC
− MB-CC48 ... CC8 DIN/FTK
− MBA-CC48...CC8 DIN/FTK with EMB-CC48...CC8

Measuring system CC48 CC45 CC25 CC14 CC8

Shear rate range

[s-1]

0 ...

4,114

0 ...

1,032

0 ...

1,032

0 ...

1,032

0 ...

1,032

Shear stress range

[Pa]

0 ...

206

0 ...

195

0 ...

1141

0 ...

6501

0 ...

34,844

Viscosity range

[Pas]

0.005 ...

32

0.020 ...

15

0.118 ...

100

0.672 ...

500

3.60 ...

3,000

Filling volume

[ml]
70 100 17 3 0.5

Shear rate factor Kγ⋅

[min/s]
5.142 1.291 1.291 1.291 1.291

Shear stress factor τ‰

[Pa]
0.1900 0.1958 1.1418 6.501 34.844

Radius of measuring bob Ri

[mm]
23.9 22.5 12.5 7 4

Radius of measuring cup Ra

[mm]
24.4 24.4 13.56 7.59 4.34

Radius of shaft Rs

[mm]
3.5 3.5 3.5 2.1 1.2

Angle of measuring bob

cone α

[°]

120 120 120 120 120

Distance between lower

edge of meas. bob and

meas. cup bottom L' [mm]

35 35 15.5 13 12

Immersion of measuring

shaft L'' [mm]
22.5 22.5 12.5 7 4

Length of meas. bob L

[mm]
67.5 67.5 37.5 21 12

Ratio of Radii δ = Error! 1.0209 1.0844 1.0848 1.0843 1.0850

Resistance coefficient cL 1.1 1.1 1.1 1.1 1.1

The given ranges are standard values (not maximum values).

α

M easuring geometrie

DIN 53019

Figure A.4. Technical specifications of viscometer type R/S from BROOKFIELD ENGINEER-
ING LABORATORIES, INC. [28], excerpt from the data sheet, page 55, data of measuring sys-
tems, system CC48, CC45 and CC25 were applied
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A. Measurement devices

A.2. Torque sensors

Figure A.5. Technical specifications of torque sensor type DRWPL-I resp. II from ETH
Messtechnik [62], excerpt from the data sheet, available torque sensors are DRWPL type I-
0.1 Nm, type I-0.5 Nm and type II-10 Nm
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A. Measurement devices

Figure A.6. Technical specifications of torque sensor type DRWPL-I resp. II from ETH
Messtechnik [62], excerpt from the data sheet, available torque sensors are DRWPL type I-
0.1 Nm, type I-0.5 Nm and type II-10 Nm
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A. Measurement devices

A.3. Ultrasonic Doppler anemometry

A.3.1. Technical specifications

Figure A.7. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 1, excerpt from catalogue
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A. Measurement devices

Figure A.8. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 2, excerpt from catalogue
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A. Measurement devices

Figure A.9. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 3, excerpt from catalogue
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A. Measurement devices

Figure A.10. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 4, excerpt from catalogue
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A. Measurement devices

Figure A.11. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 5, excerpt from catalogue
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A. Measurement devices

Figure A.12. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 6, excerpt from catalogue
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A. Measurement devices

Figure A.13. Technical specifications of Ultrasonic Doppler Anemometer, Vector from Nortek
AS [144], page 7, excerpt from catalogue
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A. Measurement devices

A.3.2. Technical drawings

Figure A.14. Technical drawings of Ultrasonic Doppler Anemometer, Vector from Nortek AS
[145]
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B. Drive devices

B. Drive devices

B.1. DC-motors

Figure B.1. Technical specifications of DC-motor, Size 1 from Maedler Gmbh, excerpt from
catalogue [127]
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B. Drive devices

Figure B.2. Technical specifications of DC-motor, Size 2 from Maedler Gmbh, excerpt from
catalogue [127]
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B. Drive devices

B.2. Hydraulic motor

Technical data for OMM with 16 mm and 5/8 in cylindrical shaft

Type OMM OMM OMM OMM OMM OMM

Motor size 8 12.5 20 32 40 50

Geometric displacement cm³

[in³]

8.2

[0.50]

12.5

[0.77]

19.9

[1.22]

31.6

[1.93]

39.8

[2.43]

50

[3.08]

Max. speed min-1 cont. 1950 1550 1000 630 500 400

[rpm] int.1) 2450 1940 1250 800 630 500

Max. torque Nm

[lbf•in]

cont. 11

[95]

16

[140]

25

[220]

40

[350]

45

[400]

46

[410]

int.1) 15

[135]

23

[200]

35

[310]

57

[500]

70

[620]

88

[780]

Max. output kW

[hp]

cont. 1.8

[2.4]

2.4

[3.2]

2.4

[3.2]

2.4

[3.2]

2.2

[3.0]

1.8

[2.4]

int.1) 2.6

[3.5]

3.2

[4.3]

3.2

[4.3]

3.2

[4.3]

3.2

[4.3]

3.2

[4.3]

Max. pressure drop bar

[psi]

cont. 100

[1450]

100

[1450]

100

[1450]

100

[1450]

90

[1310]

70

[1020]

int.1) 140

[2030]

140

[2030]

140

[2030]

140

[2030]

140

[2030]

140

[2030]

peak2) 200

[2900]

200

[2900]

200

[2900]

160

[2320]

160

[2320]

160

[2320]

Max. oil flow l/min

[US gal/min]

cont. 16

[4.2]

20

[5.3]

20

[5.3]

20

[5.3]

20

[5.3]

20

[5.3]

int.1) 20

[5.3]

25

[6.6]

25

[6.6]

25

[6.6]

25

[6.6]

25

[6.6]

Max. starting pressure with

unloaded shaft

bar

[psi]

4

[60]

4

[60]

4

[60]

4

[60]

4

[60]

4

[60]

Min. starting torque at max. press. drop cont.

Nm [lbf•in]

7

[60]

12

[105]

21

[185]

34

[300]

38

[335]

41

[365]

at max. press. drop int.1)

Nm [lbf•in]

10

[90]

17

[150]

29

[255]

48

[425]

62

[550]

79

[700]

Min. speed3) min-1

[rpm]

50 40 30 30 30 30

Type Max. inlet pressure

OMM 8 - 50 bar

[psi]

cont. 140 [2030]

int.1) 175 [2538]

peak2) 225 [3260]

1) Intermittent operation: the permissible values may occur for max. 10% of every minute.
2) Peak load: the permissible values may occur for max. 1% of every minute.
3) Operation by lower speeds may be slightly less smooth.

Technical Information OML and OMM Orbital Motors

Technical data

520L0346 • Rev BA • Feb 2014 25

Figure B.3. Technical specifications of hydraulic motor, type OMM8 from Danfoss [47], excerpt
from technical data sheet, page 25
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B. Drive devices

Function diagrams

Explanation of function diagram use, basis and conditions can be found under Speed, torque and output.

• LIght grey: Continuous range

• Light red: Intermittent range (max. 10% operation every minute)

Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found under

Technical data.

Intermittent pressure drop and oil flow must not occur simultaneously.

OMM 8 function diagram

OMM 12.5 function diagram

Technical Information OML and OMM Orbital Motors

Function diagrams

520L0346 • Rev BA • Feb 2014 29

Figure B.4. Technical specifications of hydraulic motor, type OMM8 from Danfoss [47], excerpt
from technical data sheet, page 29
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B. Drive devices

B.3. Bearings

B.3.1. Radial bearing

Figure B.5. Technical specifications of radial air bearing, type S121201 from NEWWAY air
bearings [142], dimensions

60 psi 80 psi
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(5.5 BAR)
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S121201 Flat Rectangular Air Bearing—012mmx024mm

newwayairbearings.com
610-494-6700

Figure B.6. Technical specifications of radial air bearing, type S121201 from NEWWAY air
bearings [142], performance data
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B. Drive devices

B.3.2. Axial bearing

Figure B.8. Technical specifications of axial air bearing, type S301301 from NEWWAY air bear-
ings [143], dimensions

S301301 Air Bushing—13mmI.D.

newwayairbearings.com
610-494-6700

EQUATIONS:

60PSI English:  y = 7E-05x2 - 0.079x + 21.01

60PSI Metric:  y = 4.857E-01x 2 - 1.396E+01x + 9.349E+01

80PSI English:  y = 8.356E-05x2 - 1.018E-01x + 2.814E+01

80PSI Metric:  y = 5.761E-01x 2 - 1.783E+01x + 1.252E+02

Shaft Material:  Stainless Steel

Surface Finish:  16 RMS
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Figure B.9. Technical specifications of axial air bearing, type S301301 from NEWWAY air bear-
ings [143], performance data
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B. Drive devices

Figure B.10. Technical drawings of axial air bearing, type S301301 from NEWWAY air bearings
[143]
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C. Model fluid

C. Model fluid

C.1. Xanthan gum

Figure C.1. Technical specifications of Xanthan gum, type KELZAN from CPKelco [45], excerpt
from technical data sheet
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C. Model fluid

C.2. Carboxymethyl cellulose

Figure C.2. Technical specifications of carboxymethyl cellulose, type WALOCEL CRT 40000
PV from DowDuPont [55], excerpt from technical data sheet
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D. Historic figures

D. Historic figures

Figure D.1. Historic illustration of sections of a stork’s wing by Lilienthal [125], first recognition
of effects between flow at an unsymmetrical airfoil and caused forces

Figure D.2. Historic illustration of a polar curve of a flat plate, by Lilienthal [125], first recognition
of effects between flow at an unsymmetrical airfoil and caused forces
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D. Historic figures

Figure D.3. Historic patent from Phillips, investigated profile forms, excerpt from patent No.
13678 [160]
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E. Results

E. Results

E.1. Polar plot database
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Figure E.1. Resulting profile polar plots accordingly to Lilienthal, lift- and drag polar
curve as array curves with the Reynolds number according to Chhabra and Richardson
[38] as array parameter, all investigated parameter variations for profile E817
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E. Results
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Figure E.2. Resulting profile polar plots accordingly to Lilienthal, lift- and drag polar curve as
array curves with the Reynolds number according to Chhabra and Richardson [38] as array
parameter, all investigated parameter variations for profile NLF1015
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E. Results
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Figure E.3. Resulting profile polar plots accordingly to Lilienthal, lift- and drag polar curve as
array curves with the Reynolds number according to Chhabra and Richardson [38] as array
parameter, all investigated parameter variations for profile FX60-126
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E. Results

E.2. Jet distribution

E.2.1. True-to-scale velocity
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Figure E.4. Measurement result C1-N085, velocity contour plot true-to-scale with vector plot
and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and x =
370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results

0 500 1250-500-1250

500

1250

-1000

-500

1250

-1250

3
7

0

-3
7

0 x

y

y

ϑ=0 ◦

1.80

v/m
s

1.08

0.72

0.36

0

vi

−1

−1−1

2

22

v
vx
vy
vz

Figure E.5. Measurement result C1-N100, velocity contour plot true-to-scale with vector plot
and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and x =
370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.6. Measurement result C1-N115, velocity contour plot true-to-scale with vector plot
and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and x =
370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.7. Measurement result C2-N085, velocity contour plot true-to-scale with vector plot
and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and x =
370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.8. Measurement result C2-N100, velocity contour plot true-to-scale with vector plot
and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and x =
370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.9. Measurement result C2-N115, velocity contour plot true-to-scale with vector plot
and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and x =
370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.10. Measurement result C3-N085, velocity contour plot true-to-scale with vector
plot and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and
x = 370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.11. Measurement result C3-N100, velocity contour plot true-to-scale with vector
plot and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and
x = 370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.12. Measurement result C3-N105, velocity contour plot true-to-scale with vector
plot and evaluation of the velocity vector for cross-section planes at x = −370, x = 0 and
x = 370mm, drawn for machine-level z = 0.9m, accuracy of the applied UDA sensor: ±0.5%
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E. Results

E.2.2. Normalised velocity
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Figure E.13. Measurement result C1-N085, normalised velocity contour plot v/vmax with
vector plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.5667m/s, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.14. Measurement result C1-N100, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.7997m/s, accuracy of the applied UDA sensor: ±0.5%
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E. Results

0 500 1250-500-1250

500

1250

-1000

-500

1250

-1250

3
7

0

-3
7

0 x

y

y

ϑ=0 ◦

1

v
vmax

0.6

0.4

0.2

0

vi

vmax

−1

−1−1

1

11

v
vx
vy
vz

Figure E.15. Measurement result C1-N115, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.9671m/s, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.16. Measurement result C2-N085, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.0717m/s, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.17. Measurement result C2-N100, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.2681m/s, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.18. Measurement result C2-N115, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 1.3557m/s, accuracy of the applied UDA sensor: ±0.5%
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E. Results
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Figure E.19. Measurement result C3-N085, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 0.0894m/s, accuracy of the applied UDA sensor: ±0.5%
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Figure E.20. Measurement result C3-N100, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 0.6706m/s, accuracy of the applied UDA sensor: ±0.5%
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Figure E.21. Measurement result C3-N105, normalised velocity contour plot v/vmax with vec-
tor plot and evaluation of the normalised velocity vector vi/vmax for cross-section planes at
x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m, maximum velocity
magnitude of contour: vmax = 0.4726m/s, accuracy of the applied UDA sensor: ±0.5%
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Figure E.22. Similarly scaled measurement result C1-N085, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.23. Similarly scaled measurement result C1-N100, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.24. Similarly scaled measurement result C1-N115, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.25. Similarly scaled measurement result C2-N085, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.26. Similarly scaled measurement result C2-N100, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.27. Similarly scaled measurement result C2-N115, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.28. Similarly scaled measurement result C3-N085, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.29. Similarly scaled measurement result C3-N100, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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Figure E.30. Similarly scaled measurement result C3-N105, velocity contour plot scaled to
vmax = 1.7m/s with vector plot and evaluation of the normalised velocity vector for cross-
section planes at x = −370, x = 0 and x = 370mm, drawn for machine-level z = 0.9m,
accuracy of the applied UDA sensor: ±0.5%
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