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Abstract 

A discrete velocity model with spatial and velocity discretization based on 
a lattice Boltzmann method is considered in the low Mach number limit. A 
uniform numerical scheme for this model is investigated. In t,he limit, the 
scheme reduces to a finite difference scheme for the incompressible Navier-Stokes 
equation which is a projection method with a second order spatial discretization 
on a regular grid. The discretization is analyzed and the method is compared 
to Chorin’s original spatial discretization. Numerical results supporting the 
analytical statements are presented, 
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1 Introduction 

Lattice Boltzrnarm methods (LBM) use discrete velocity models of kinetic equations 
to obtain approximate solutions of the incompressible Navier-Stokes system. The 
idea of LBM rests on the observation that the kinetic and the Navier-Stokes model 
are equivalent in the limit of small Knudsen and Mach numbers. See [3, IO] for 
reviews on lattice Boltzmann methods and [21] for a review on discrete velocity 
models. In recent years, mmlerous articles 011 LBM have appeared in which the 

*FB MatAlematik, u I<aiserslautcrn, 
many,(junk@mathematik.uni-kl .de). 

+FB Matlwrnatik Ulld Inforrnatik, FI! 
(klar@math.fu-berlin.de). 



method is analyzed. We refer to the references in the above cited reviews and, e.g., 
to [l, 6, 251. For connections to kinetic schemes, see [16]. 

A disadvantage of standard lattice Boltzmann discretizations is that the stiffness 
of the kinetic equation in the limit of small Knudsen and Mach numbers is not 
taken into account. Since the discretization is fully explicit, very fine time and 
space steps have to be used, slowing down the method considerably. To allow for 
larger discretization steps, the algorithm should at least be partially implicit. Such 
an approach has been successfully used for a large number of kinetic equations 
with stiff relaxation terms in fluid dynamic or diffusive limits and has led to the 
development of asymptotic preserving methods, see [4, 14, 12, 13, 20, 17, 181. For 
a lattice Boltzmann type discrete velocity model with a diffusive scaling, a scheme 
working uniformly in the incompressible Navier Stokes limit, using a semi-implicit 
time discretization and leading to a Chorin projection scheme with MAC grid, has 
been suggested in [19]. 

In this work, our starting point is the following: numerically, it has been proven by 
many authors that the lattice Boltzmann method yields stable and reliable results for 
the incompressible Navier-Stokes equation [23, II]. Moreover, pressure oscillations 
as in the original Chorin method, are not observed although the scheme works on 
a regular (collocated) grid. The aim, to extract the reason for this nice behavior, 
is accomplished by developing a method based on the LB spatial discretization and 
comparing it to Chorin’s original method. 

Our approach is based on the observation that the velocity-discrete kinetic equation 
is in one-to-one correspondence with a system of moment equations. The system 
includes the equations of mass and momentum which yield the Navier-Stokes equa- 
tions in a suitable diffusion limit (related to small Knudsen and Mach numbers). 
Using essentially the space-discretization of LBM, we automatically obtain a dis- 
cretization of the moment system which leads to a new spatial discretization for the 
incompressible Navier Stokes equations. The discretization is used together with the 
Chorin projection. 

As has been investigated in detail for example in [26, 271, the original Chorin space 
discretization leads to an alternating error of first order in the pressure. This type 
of instability is not seen in the projection method if the MAC grid is used. In this 
case a second order approximation of the pressure is obtained without alternating 
terms in the error expansion for the pressure at first order. However, one has to 
use staggered grids having different locations for pressure and velocity. We mention 
that higher order approximation or regularizing methods have been used to avoid 
staggered grids and alternating terms in the error expansion (see [as]). It turns out 
that the spatial discretization of the scheme presented here is second order for both 
the pressure and the velocity, not using grid staggering. However, although the error 
in pressure is reduced compared to Chorin’s scheme the errors in velocity are larger. 

The paper is organized as follows: Section 2 introduces a lattice-Boltzmann type dis- 
crete velocity model and its associated closed moment system. In Section 3 the time 



and space discretization of the numerical scheme for the discrete velocity rnodel and space discretization of the numerical scheme for the discrete velocity rnodel 
is described. Section 4 deals with the low Mach number limit of the discretized is described. Section 4 deals with the low Mach number limit of the discretized 
equations leading to the projection method for the incompressible Navier-Stokes equations leading to the projection method for the incompressible Navier-Stokes 
equations with the new spatial discretization. equations with the new spatial discretization. Section 5 contains remarks on the Section 5 contains remarks on the 
treatment of the bourldary conditions and an analytical investigation of the scheme treatment of the bourldary conditions and an analytical investigation of the scheme 
following the work in [26]. In particular, the scheme is compared to Chorin’s orig- following the work in [26]. In particular, the scheme is compared to Chorin’s orig- 
inal method. Finally, Section 6 presents a numerical investigation of the second inal method. Finally, Section 6 presents a numerical investigation of the second 
order convergence for the pressure which has been found analytically. A numerical order convergence for the pressure which has been found analytically. A numerical 
comparison with Chorin’s scheme is included as well. comparison with Chorin’s scheme is included as well. 

2 A Lattice-Boltzmann type Discrete Velocity Model 2 A Lattice-Boltzmann type Discrete Velocity Model 
and the Associated Moment System and the Associated Moment System 

The basic kinetic model is given by the Boltzmann equation The basic kinetic model is given by the Boltzmann equation 

g -I- VOf = J(f) g -I- VOf = J(f) (1) (1) 

which describes the evohnion of a particle density f(x,v, t). The left hand side which describes the evohnion of a particle density f(x,v, t). The left hand side 
of (1) represents free transport of the particles while the right hand side describes of (1) represents free transport of the particles while the right hand side describes 
interactions through collisions. The difference between continuous and discrete ve- interactions through collisions. The difference between continuous and discrete ve- 
locity models is the structure of the phase space X x U. In the classical Boltzmann locity models is the structure of the phase space X x U. In the classical Boltzmann 
equation, the space part X is a subset of ll@ and the velocity domain V is the full equation, the space part X is a subset of ll@ and the velocity domain V is the full 
space R3. For discrete models we have space R3. For discrete models we have 

v = {co,. a * , W-l} v = {co,. a * , W-l} ci E I@. ci E I@. 

In our particular example, we consider a two-dimensional model (d = 2) with nine In our particular example, we consider a two-dimensional model (d = 2) with nine 
velocities (N = 9) velocities (N = 9) 

Cl = (A, Cl = (A, c2 = (:‘, c2 = (:‘, cj = (i’ ) cj = (i’ ) c4 = (-9) c4 = (-9) 

c:, = (:, c:, = (:, c(j = (7’) c(j = (7’) c7 = (1:) c7 = (1:) CL3 = ( I’l) CL3 = ( I’l) 

and co = 0. In the discrete case, the v-dependence of the particle distribution and co = 0. In the discrete case, the v-dependence of the particle distribution 
f(x, v, t) is uniquely determined through N functions f(x, v, t) is uniquely determined through N functions 

fi(X, t) = f(x, c;, t) fi(X, t) = f(x, c;, t) i = 0 i = 0 , . . . I , . . . I N-l N-l 

which are called occ~~~~tion number:~. Macroscopic quantities like mass--, momentum- which are called occ~~~~tion number:~. Macroscopic quantities like mass--, momentum- 
or energy density are obtained by taking velocity moments of f. If $ is any v- or energy density are obtained by taking velocity moments of f. If $ is any v- 
dependent function, we denot,e the discrete velocity integral by dependent function, we denot,e the discrete velocity integral by 

N-l N-l 
w = c w4. w = c w4. 

{ ̂ I () { ̂ I () 



Then, mass and momentum density can be written as 

N-l 

P(Xl t) = (f(x, v, 9) = c f& 4 
i=o 
N-l (2) 

PUbI t) = WC VG)) = c Cifi(XJ). 
i=o 

In lattice Boltzmann applications, the collision operator J(f) in (1) is typically of 
BGK-type 

J(f) = -i(f - p). (3) 

The parameter r > 0 is called relaxation time and f”‘J is the equilibrium distribution, 
In the isothermal case, f eq depends on f through the parameters p and u which are 
calculated according to (2). For the standard D2Q9-model [22] with 9 velocities, we 
have 

feq(p, u; v) = p 1 + 3u * v - ;]u]z + ;(u * v)2 
( > 

f*(v), 

where f * is defined by 

( 

4 i=o 

f*(q) = i i=l,.** ,4 
1 

s% 1: = 5, a-h ,8. 

The equilibrium distribution is constructed in such a way that 

V(f)) = 0 and W(f)) = 0 

which reflects conservation of mass and momentum in the collision process. 

In order to obtain a relation between the kinetic equation (1) and the incompressible 
Navier-Stokes system, we introduce the diffusive scaling x -+ X/E, t -+ t/c2 together 
with a resealing of velocity u + EU (see [24, 8, a]). Under these transformations, (1) 
turns into 

8.f 1 
dt + ;‘os = --&o - feq(P, 4) (4 

where ;5, = v.V has been used as abbreviation for the space derivatives. In our 
exemplary case, (4) consists of nine equations for the occupation numbers fo, . . . , fs. 
In order to get closer in notation to the Navier-Stokes system, we transform (4) into 



an equivalent set of moment equations (see also [19, 91 for a similar approach). Based 
on the v-polynomials 

PO(V) = 1 

PI(V) = J$ Pg.(v) = : 

Vf 1 
P3(v) = 2 - -“y 

V12)‘J 
3E 

P4(v) = - 
E2 Pdv>= 3 - & (5) 

pG(v) = WI2 - 4h 
3 

91vl” ” 151vl” + 2 

p7(v) = WI2 - 4)ff:! 
63 

h(v) = t4 

we obtain an invertible linear mapping f -+ Pf defined by 

Pf = wtlf) , . ‘. I (r$f)Y* 

Applying P to equation (4) results in an equivalent set of equations with a differential 
operator which is still linear and hyperbolic 

( 
g + ;Pz?P-’ 

> 
Pf = --& (Pf - Pf”Q),CU)) . (6) 

In order to write (6) in a more explicit form, we introduce names for the moments. 
Note that (Pof) = p and (F’;f) = p u i f or i = 1,2. The second order moments form 
a symmetric tensor 

0 = (;;; p) = (I;;; p;;> 

and for the remaining moments we set 

VW 
q = (4.f) ’ ( > 

s = (PpJ) . 

The firstr two equations in (6) are those of mass and momentum conservation 

t&p + divpu = 0 

&pu + dive + &VP = 0. 

Here, the divergence is applied to the rows of 0. The equation for 0 is 

(7) 

where 



Finally, the third and fourth order moments satisfy 

&q+ $div (zrZ z$f) + fVs = --$ 
(9) 

&s -I- -$ divq = -As. 

Altogether, we obtain a hyperbolic system with stiff relaxation terms. The diffusion 
limit of the above system is straightforwardly determined. From the momentum 
equation in (7) we conclude that Vp tends to zero as c 4 0. Hence, p approaches 
a constant p (which is the Boussinesq relation in the isothermal case). Writing 
P = PP + 3E2P), q e uation (7) transforms into 

&p + & div u = - divpu 
(10) 

&u + div $0 + Vp = -3e’dtpu. 

For E -+ 0, equation (8) yields in lowest order 

+3 = u @3 u - ~S[u]. (11) 

Since (9) decouples completely from the other equations (in lowest order) and since 
2 div S[u] = (A + V div)u, we obtain from (10) and (11) the incompressible Navier- 
Stokes equations as limiting system 

div u = 0 
r (14 &u+ divu@u+Vp= -AU. 
3 

The Reynolds number is related to the relaxation time by Re = 3/r. 

We remark that (7)) (8) and (9) can be viewed as a relaxation system for (12). Since 
LBM is a particular discrctization of (4) and since a discretization of (4) automati- 
cally turns into a discretization of the moment system under the transformation P, 
we conclude that LBM can be viewed as a relaxation method for the incompressible 
Navier-Stokes system [16]. 

3 The Numerical Scheme: Spatial and temporal dis- 
cretization 

To obtain a spatial discretization of the moment system (7), (8) and (9), we use 
a first order upwind method for the operator ‘D = v * V in (6). This choice is 
motivated by the lattice Boltzmann method where the upwind approximation is 

6 



combined with an explicit Euler discretization for the time derivative. To get a 
proper treatment of the stiff pressure-velocity coupling, however, we choose a semi- 
implicit time discretization instead of the explicit one (see also [lY]). In the limit E -+ 
0, a projection scheme for the incompressible Navier Stokes equations is obtained. 

Before we describe the discretiaation of the moment system, let us first show how the 
lattice Boltzmann method is obtained in this context, see also [5]. The discretization 
of V = v 1 V is taken as 

rwxx, v, t) = ;(f(x, v, t> - f(X - hv, v, 4). (13) 

Together with an explicit Euler discretization of the time derivative and an evalua- 
tion of the collision operator at a shifted x-position, (4) turns into 

f(x, v, t + At) - f(x,v, t) + $f(x, v, t) - f(x - lzv, v, t)) 

= -$(f - p(p,m>)(x - hv,v,t) 

Setting At = i?, h = E, v = EW and transforming the space variable x -+ x + wAt 
yields for the occupation numbers 

fi(x + w;At, t -I- At) - fi(x, t) = --) (f&q t) - ff’(p(x, t), Eu(x, t))) 

which is the standard discretization in LBM (see [22, 6, 11). 

To describe the effect of the discretization (13) cm the moment system, we introduce 
the vectors 

and 

Using (13) to replace 23 in (6), the discretized moment system can be written in the 
compact form 

g + fPD,,P-$1 = --&M - M”“). 

If {ei : i = 0,. . . , S} are the st,and>rrd unit, vectors in I&‘, we can write the contribu- 
tion of Mj to the equation for Mi as 



With the abbreviation gj = P-rej, (14) can be transformed into 

Hence, the contribution of Mj to equation i can be written as a finite difference 
stencil with the general form 

1 -fi!?j(cS) - fi'isj (C4) -pigj (c7) 
- 
eh 

-pig.i(Cl) Sij - figj(CO) -Pigj(C3) * (15) 
-pigj (C5) -pigj (c2) -pi!& (c6) 1 

In particular, for each space derivative in the moment system (7), (8) and (9) a 
corresponding stencil is found. The discretization of zr and zz-derivatives occurs in 
three different ways. For divpu in the mass conservation equation as well as for Vp 
in the momentum equation the following stencils appear 

a 1 
-1 0 1 [ 1 1 4 1 
-4 0 4 

a 
ZyEi -1 o l ’ 

-&- 0 0 0 . 
ax2 [ 1 (16) 

-1 -4 -1 

They also occur in the momentum equation to approximate L&&r, L&O22 and in 
equation (8) for azlpzlr, L&Pu~. The derivatives of 012 as well as ~~12~2 are always 
discretized by 

(17) 

These stencils also appear in (8) for a,, pu:!, a,, ,OZLZ and &I q2, a,, 41. The remaining 
derivatives in the moment system turn out to be approximated by 

We remark that each stencil is second order accurate. In fact, the stencils can be 
viewed as convex combinations of standard central difference approximations. For 

0 1 [ 0 
1+& 0 
0 -1 

example, the &.,-stencil in (16) can be written as 



Up to now, we have investigated t,he approximations of the space derivatives appear- 
ing in the moment system. However, if we consider, for example, the discretized mass 
conservation equation, we find that apart from n/r, = pzll and Mz = pu2 also the 
other variables MO, Ms,. “. , n/r contribute. Of course, this contribution is of higher 
order in the discretization parameter 11 and the appearance of such terms is not sur- 
prising since we started with a first order upwind approximation (13). As example, 
we mention the contribution of p to the rmss conservation equation (i.e. i = j = 0 
in (15)). Evaluating (Iti), we find up to a constant factor 

1 [ 1 -1 -4 -1 

T;-iT: 
-4 20 -4 = -hA f O(h3) 
-1 -4 -1 

which is the standard nine-point stencil for the Laplacian. If we keep all terms which 
appear in that way and which are of first order in h, we obtain the mod$ed equntion 
of the finite difference approximation (i.e. the equation which is approximated to 
second order accuracy). The modified equation corresponding to (7) is 

3~ + div pu = 
( 

$A,+ idiv divO 
t 

h 
> 

(19) 
&pu -I- dive + &VP = 

( 
$(A+2Vdiv)pu-t- idivQ)h 

Similarly, equations are obtained for 0, q and s. Note that the additional terms 
have a stabilizing effect because they act as artificial viscosity. In the original lattice 
Boltzmann approach, this viscosity is partly compensated by a negative viscosity due 
to the explicit Euler discretization of the time derivative and partly it is combined 
with the physical viscosit,y in the Navier-Stokes equation (which is possible since 
(A + 2V div)pu has the correct structure). In this way, second order accuracy of 
LBM is obtained. Since we want to avoid the explicit time discretization but still 
obtain a second order accurate scheme, we neglect all stencils (15) which do not have 
counterparts in the rnoment system. Wit,11 this step, we focus only on the interplay 
between the stencils (16), (17) and (18). Another possibility is to start with a second 
order upwind discretization of ‘D instead of the first order approach (13) (compare 
here for example [14]). 

To introduce the time discretizat,ion, we will not replace the space derivatives by 
their finite dift’erence approximations (16)) (17) and (18) b t u, restrict to the spatially 
continuous case to avoid confusion. Of course, the complete scheme is obtained by 
combining both space and time discrctizations. 

Introducing the momentum vector m’:(x) = pu(x, k;At) and the pressure variable p” 
by p(x, kAt) = fi(l + 3e2p”(x)), we define p”+l and rnk+l based on a semi-implicit 
discretization of (7) 

At 
b P k+’ = 1)” I p div m”+’ 

. p? Gw 
mk ‘-I = m” - At( div 0’ I- /sV~j~+‘) 

9 



Inserting r&+l into the pressure equation yields a Helmholtz problem 

(A-$)p*i’=--&divm”-divdivk@-gp* (21) 

We remark that the discrctization of the second order operators A and div div is 
automatically given by a composition of the discretizations (16), (17) and (18). As 
time discretization of (8), we choose 

@+1 = 0” _ $s[mk+’ ]+~Qk:A& (o*lL (y)*+l) (22) 

Finally, equation (9) is treated according to 

q kS1 = q’c - !h!div (zf2 v:f)” _ $!Vsk+’ - $qk+l 

$+l - 4At 
- s k - E2 div q”+l - .L&k+l 

which again leads to an elliptic problem (with Q = r/At) 

4re2a, 
+ 62cx)2 

div g” l- 
4r2e2 

6(1 + c2~)2 
A sk+l _ E2a k 

> 

--s -- 
1 f&3 (1 , 

2 

+ (1 ::2aJ2 div div 

The elliptic problems for p and s, which result from the semi-implicit treatment, can 
be solved by an iterative procedure. The remaining equations for m, 0 and q are 
explicit. 

4 The discretization of the incompressible Navier-Stokes 
equations 

The discretization of the moment system described in the last section tends, as 
E -+ 0, to a Chorin type projection method for the incompressible Navier-Stokes 
equations. Since p + ,5 in that limit, we have m = pu + pu and the momentum 
equation in (20) yields 

uk+l = uk - At div A@” - At’r;7p”+l. 
P 

The Helmholtz equation (21) for the pressure turns into 

(23) 

A p k+l - - & div nk - div div iOk 
P 

(24 

10 



Both (23) and (24) are combined with the limit of (22) 

&71;+1 = uk+l (g @l - ~s[uw] (25) 
P 

For (23), this implies 

uktl = uk - At div uk 8 u’ - AtVpk+l + 3 div S[u”]. 
2rAt 

(26) 

By construction, each differential operator in (26) is composed of derivatives from 
the original moment system for which we have derived the discretizations (16), (17) 
and (18). If 151, & denote the approximations in (16) and &,a,~ those in (17), we 
find for the pressure gradient and the convective term in (26) 

vp i--b Gp = 
( > 

&P divu@u+-+fiuk@uu”== - - 
(- 

DlUf + Dz’LL1’1Lz 
D2P ’ > 

- (27) Dlulu2 + D214 

The viscous term is of the form 

2divS[u] +) iu = - 
( 

2-q74 + @u, f L3,l&L, 
-2 

> 
(28) DlD2ul + &, + 2D2u2 ’ 

Under discrete divergence-free condition, iiu = 0, a reorganization yields 

( 

_ x 
“$1 -i- @ui + D2D1u2 = 

> ( 

-2 Dlul + i&, - - - - 

> [ 
+ DIDz,DIDz u 

D1D2u1 f &L, + 20;~~ qu, + El;,, 1 
where [a, .] denotes the commutator. Since both fi,& and Isi,& are second order 
accurate approximations of the mixed derivative ~5%~ a,, , the commutator vanishes 
in the order of accuracy of trhe method 

C 
i&i?&, ri,n, u = O(h”). 1 

Thus, ,!, is a second order approximation of the Laplacian. Finally, divuk and the 
Laplacian in (24) turn out to be discretized by 

divu -++ Du = Dlzll + D~uz, 

Ap t) Lp = j%?p = (ijf + 0;) p. 

According to (25), the double divergence in (24) splits into two contributions. The 
convective part cliv divu @ u is discretized by D&I ci9 u where Du @ u is given in 

n 

(27). Similarly, the part, involving third order derivatives DBS[u]. Altogether, the 
discrete versions of (24) anal (26) can bc written as 

j$“s.l = &Du” - Dh” @ uk + p2u” 

md 

rAt . uk+l = uk - At&” B uk - AtGp”+’ + --~~‘c 
3 

which is a Chorin-type projection methotl with spatial discretization induced by the 
lattice Boltzmnnn approach. 

11 



5 Boundary conditions and remarks on alternating er- 
rors 

In this section appropriate boundary conditions for our method are introduced and 
oscillating pressure error terms are discussed. The following investigations are mo- 
tivated by the detailed analysis of finite difference schemes for the incompressible 
Navier-Stokes equations in [26]. 

In Chorin’s method [7], the pressure is only first order accurate (with respect to 
the spatial discretization parameter h) despite the fact that all finite difference 
approximations are second order consistent. As shown in [26], this behavior results 
from an interaction of the discretized viscous term in the Navier-Stokes equations 
and the pressure Poisson equation. More precisely, the wide stencil for the Laplacian 
in the pressure equation essentially decouples the problem into two Poisson problems 
on separate sub-grids. Since the sub-problems are subject to boundary conditions 
which differ at third order, alternating errors at third order are introduced (i.e., 
error terms are present on one sub-grid and absent on the other), If the Laplacian 
in the viscous term is discretized with the standard five-point stencil, as in Chorin’s 
method, the application to an alternating function yields contributions of order 
l/h2. In this way, the third order oscillating error is brought down to first order. 
To avoid this phenomenon, several approaches have been proposed and some of 
them are analyzed in [26]. In the lattice Boltzmann induced discretization of the 
Navier-Stokes equations described in Section 4, the accuracy of the pressure remains 
second order. In contrast to the methods investigated in [26], an amplification of the 
alternating error at third order is avoided due to the wide stencil 2 for the Laplacian 
in the viscous term. 

To explain the basic principles which lead to the alternating error terms in Chorin’s 
method, we consider the Stokes equation in a periodic channel as a model problem. 
The extension of the boundary treatment to the new discretization will then be 
straight forward. 

By neglecting the nonlinear terms in the Navier-Stokes equations, we obtain the 
Stokes equation 

dtu + Vp = vAu 

divu=O inR, ult=o = uo 
(29) 

As in [26], we choose R = (0,l) x (0,l) with no-slip conditions u = 0 on the top and 
bottom boundaries and periodic conditions in horizontal direction. The pressure p 
is determined by the constraint divu = 0, i.e. p has to be chosen in such a way that 
the gradient 



is exactly compensated. Following the notation in [26], the divergence free projection 
of a is given by 

Pa=a-Vq 

where q solves the Neumann-Poisson problem 

&J Aq= diva ina, %==n.a ondS2 

with a normalization condition & q dx = 0. To get a discrete representation of the 
projection operator, we introduce discretizations G and D of the gradient and the 
divergence, Then, the discrete divergence-free part Pha of a is obtained by solving 

DGq = Da (30) 

with suitably discretized Neumann and normalization conditions. Indeed, setting 

Pha=a-Gq 

we find, by construction, DPha = 0. 

In Chorin’s method, G and D are based on standard central difference approxi- 
mations on the regular square grid & = {xii = (ih, j/l) : i, j = 0,. . . , N} where 
h = l/N. With 

DI = & [ -1 0 I] and D2 = & (: [I -1 

the discrete gradient acting on a scalar function q is given by 

Fwij = ([g$;) = k (;;;+; : ;;;y;) . 

(The weight in the center of the stencil always refers to the point where the stencil 
is applied.) At points trij well inside the domain (2 <: j < N - 2), the divergence D 
acts cm a vector field u according to 

Du = D1ul i- D2u2. 

The iterated operator L = DG appearing in (JO) is then the wide Laplacian 

1 

1 0 
T - --.-.- 1 n n n 1 1 



At points x:ij next to the boundary (j = 1 or j next to the boundary (j = 1 or j 
is, according to Chorin’s approach, replaced by 

= N - l), the original operator 02 

Dp) 2 ?- ; [I 0 

2h 0 
and D$“-l) = _t_ 0 [I 2h -1 * 

For the velocity field u, the discrete operator 

(D (d (3 u)ij = (Dm)ij + (D, ‘L12)ij jE{l,N-1) 

still approximates the divergence since u = 0 on the boundary so that (D(j)u),j = 
(Du)ij. However, 

1 

L(l) = D(l)G = DIDl + #D2 = -i- 
0 

4h2 
1 0 -3 0 1 

0 
0 

now has the interpretation as a discrete Laplacian with an incorporated boundary 
condition. Indeed, (L(l)q);i = (D(l) ). a %l can be rewritten in terms of the undisturbed 
operators (Lq)il = (Da);1 together with the condition 

(hdio = b2ho 

which is a second order accurate approximation of the Neumann boundary condition 
2 = a s n at the lower boundary. (Similar considerations apply to the upper 
boundary.) 

Finally, in boundary points, the xl-derivative of the divergence is deleted completely 
(Dv’ = 0 for j E {O,N}) and the x2-derivative is obtained from the half-sided 
difference difference 

by deleting the by deleting the central weight. central weight. The equation (L(‘)q)io = (D(O)a);o based on the The equation (L(‘)q)io = (D(O)a);o based on the 
iterated operator iterated operator 

L(O) = D(O)G zz D$@D1 f @ID2 L(O) = D(O)G zz D$@D1 f @ID2 

can again be interpreted as (Lq)io = (Da)io but now with the boundary condition can again be interpreted as (Lq)io = (Da)io but now with the boundary condition 



Here, B is the linear interpolation operator 

--1- 
3 

I?= 1 0 =1+O(h”) (33) 
1 

-0 

so that B(D2q - ~12) also approximates the Neumann condition. 

Before we apply the construction of the boundary stencils to the discretization in- 
duced by the lattice Boltzmann method, let us briefly comment on the mechanism 
which introduces alternating errors (see also [26]). A n important observation is that 
the wide Laplacian (31) involves either even layers (j = 0,2,. . . , N), or odd layers 
(j = 1,3,. . . , N - 1) but does not mix in between them (we assume for simplicity 
that N is even). Since the boundary stencils L(l) and L(N-l) respect this separation, 
the Poisson problem on the odd sub-grid decouples completely. (Here, we assume for 
simplicity that the integral normalization is discretized separately on each sub-grid. 
Moreover, the accuracy of the integration rule is assumed to be at least fourth order 
which again simplifies the argument.) To analyze the solution of 

(Lqdd - Da)ij = 0 j = x,3, I. * ) N - 1 

(D2GJodd - a21ii = 0 j E {l,N - 1) (34 
_I -  .  

with the discretized integral normalization, we assume an expansion of the form 

&da = &!/Cl + hq;‘dd + h2q$\ f h”q$; f O(h”). (35) 

Inserting (35) into (34), performing a Taylor expansion and considering equal orders 
in h, we find equations satisfied by the coefficients. In lowest order, the original 
problem 

Aq(‘) = diva, 
aq(0) 
- = a2 on Xl, 
i3Q J’ 

q(O) & = 0 (36) 
51 

equations is recovered. DUG to the second order accuracy of the stencils in (34), the f _ 
for qf$, and q$il are homogeneous so that c$$ = ‘lodd (‘I = 0 because of unique 
solvability. In second order, we find qrdil as solution of 

Altogether, we obtain the expansion 



In the next step we can solve the problem on the even sub-grid which uses q&d in 
the boundary conditions 

(L!7e”en - Da)ij = 0 j = 0,2,. . . ) N 

; [ (~2(leven - U2)i,-1 f q~24even - cJ2)i,l 1 (39) 
= +l(lodd - a2)i,2 + i$h&&ven - %%)i,O 

(a corresponding condition applies on the upper boundary). The coefficients in 

are determined with the same procedure as above. It turns out that qL:i, = qFid is 
the solution of (36) and q$& solves 

Aq(‘) = 0, SE: (T-2) ondfl, Lq(‘)&=l). 

In general, the solution to this problem is non-trivial. However, if a = VAU and 
q(O) = p are related to a smooth solution of the Stokes equation, a compatibility 
condition assures that ~2q(o)/~~~ = &r/&r so that, in fact, q& = 0 (basically, 
the Stokes equation implies Vp = vAu on the boundary so that the compatibility 
relation follows by applying an additional xl-derivative). 

For the coefficient q$, , we recover equation (37) with boundary condition 

ad%l h$!j -=- 
8x2 8x2 

so that also qizLn = qfd\. Only in third order, we observe a difference between the 
solutions on the odd and even sub-grids. While qFdL = 0, the coefficient qf& solves 

Aqc3) = 0, 
I 

q(3) dz = 0, 

sp(p&$Ee+;qP) onaf2* 

Combining the solutions on the sub-grids we find the expansion 

qij = q!;) f h,2 c2) ’ qij 4 h3q$) + (-l)jh”@ + O(h*) 

where q(O), q(‘) solve (36) and (37) and 



n 

In the case of Stokes (or Navier-Stokes) equation, the Poisson problem is coupled In the case of Stokes (or Navier-Stokes) equation, the Poisson problem is coupled 
with the evolution equation for the velocity field u, giving rise to a similar expansion with the evolution equation for the velocity field u, giving rise to a similar expansion 

uij ZE UP) + h uij ZE UP) + h Y Y 2u!3) 2u!3) 
ZJ ZJ 

+ h”ut) f (-l)QJ3q f qp>. + h”ut) f (-l)QJ3q f qp>. (40) (40) 

The input a to the Poisson problem is given by VAU where, in Chorin’s method, The input a to the Poisson problem is given by VAU where, in Chorin’s method, 
the Laplacian is discretized with the usual five-point stencil. Applying this stencil the Laplacian is discretized with the usual five-point stencil. Applying this stencil 
to (40), the term (-l)jk”*(3) to (40), the term (-l)jk”*(3) uij yields the alternating contribution uij yields the alternating contribution 

w (h [’ ;; 1] $. w (h [’ ;; 1] $. 

Since Since 

~[1 i; ‘1 =-4h+h:‘(&-g)+W(h5~ ~[l i; ‘1 =-4h+h:‘(&-g)+W(h5~ 

the source term a in the Poisson equation contains an alternating, first order con- the source term a in the Poisson equation contains an alternating, first order con- 
tribution so that the problem for q(l) tribution so that the problem for q(l) now has a non-trivial alternating source. This now has a non-trivial alternating source. This 
implies that the approximate pressure p in the Stokes problem is only first order implies that the approximate pressure p in the Stokes problem is only first order 
accurate with an alternating error. (For a more detailed analysis, we refer again to accurate with an alternating error. (For a more detailed analysis, we refer again to 

Pm Pm 

Let us now define boundary stencils for the new discretization derived in Section 4. Let us now define boundary stencils for the new discretization derived in Section 4. 
The discrete gradient G’ is always given by 1)i, & defined in (16). The divergence The discrete gradient G’ is always given by 1)i, & defined in (16). The divergence 
ij is also composed of these stencils for points inside the domain (j = 2, . . . , N - 2). ij is also composed of these stencils for points inside the domain (j = 2, . . . , N - 2). 
The corresponding Laplacian has the form The corresponding Laplacian has the form 

-1 4 8 4 1- -1 4 8 4 1- 
4 4 -8 -8 4 4 

L = jjc z.z 4 8 -8 -36 -8 8 . L = jjc z.z 4 8 -8 -36 -8 8 . (41) (41) 
4 4 -8 -8 4 4 
14 8 41 14 8 41 

At points next to the boundary, we modify BI and & by deleting boundary weights At points next to the boundary, we modify BI and & by deleting boundary weights 
giving rise to D(,j) giving rise to D(,j) and L(j) = fj(j)G for ,j = 1, N and L(j) = fj(j)G for ,j = 1, N - 1. On the boundary itself, we - 1. On the boundary itself, we 
replace ai by zero (as in Chorin’s method) and choose half-sided differences for 02. replace ai by zero (as in Chorin’s method) and choose half-sided differences for 02. 
Although these half-sided stencils do not follow directly from the lattrice Boltzmann Although these half-sided stencils do not follow directly from the lattrice Boltzmann 
approach, there is a natural choice based on the observation that D2 can be writteu approach, there is a natural choice based on the observation that D2 can be writteu 
as convex combination of central differences as convex combination of central differences 

j-j2 zz &/I, j-j2 zz &/I, with with c=; [I 4 13. c=; [I 4 13. 



As in Chorin’s method, where 02 
approximation with deleted central 

is replaced by J$’ 
weight) we set 

(a second order, half-sided 

--1 -4 -1 
4 16 4 

jjw = (+q _ 
2 

1 
12h 

I I 

0 I 
0 
0 

A similar choice at the upper boundary yields 04”’ and finally gives rise to z(j) = 
D(j)G for j = 0, N, 

In contrast to the wide Laplacian (31), the stencil (41) does not decouple odd and 
even sub-grids. However, the coupling is not very strong which can be seen if z is 
applied to a function which is constant in q direction. Then, the stencil has the same 
effect as (31) leading to the decoupling known from Chorin’s method. Rewriting the 
boundary stencils in terms of the interior discretization, we again find two different 
realizations of the Neumann boundary condition (which is an important structural 
feature for the occurrence of alternating terms). At the lower boundary, we have 

[ 
C(D2q - u2) - ~(BJ&q - D&) 1 =o 

i,O 

[ B(D2q - u2) - ?@,I& - D@l) 1 = 0 
i,O 

where B is defined in (33). If the compatibility condition d2q/&f = &z~/&~ is 
satisfied, both conditions differ only in third order, exactly as in the case of Chorin’s 
method. 

The fundamental difference compared to Chorin’s approach is the structure of the 
Laplacian i (28) which is used to discretize the viscosity term VAU. We neglect 
second order terms in the definition of ,? and consider 

Granting that u has an expansion as in (40), the Laplacian 2 does not amplify the 
alternating term as the standard five-point stencil. In fact, applying i to h3Atic3) 
(where A is an alternating function with Aij = (-l)j) leads to an alternating term 
of the same order 



In contrast to the five-point Laplacian, the wide stencil i requires a special treatment 
at points next to the boundary. As for the boundary divergence, we consider the 
participating stencils as convex combinations of usual central differences which are 
replaced by half-sided approximations if necessary. For example, B,z defined in (17) 
can be written as fi,~ = CD, with 6’ - i [l 0 11. Close to the boundary, we 
replace 02 by D’L,I~,~ defined in (32). Altogether, we set 

j E (1, N - 1). (WU)ij = (gy: +’ ;~$~~~~~~;),) ) 
t 23 

This modified stencil now again amplifies an alternating term but only by one order _. 

jJ(dAG(“) = %&-(3) + o(l), 

’ 2 

Consequently, a second order alternating contribution appears in the calculated 
pressure and adds to the second order error already present giving rise to a second 
order accurate scheme. (The amplification can even be avoided altogether by using 
D2,hs based on twice the grid size. Then, the approximate second sz-derivative 
operates only on the even sub-grid and thus is unaffected by alternating terms.) 

Motivated by the analysis of the lattice Boltzrnann induced discretization, we can 
set up other schemes with a similar behavior but with simpler stencils. We just use 
the feature of a wide Laplacian in the discretization of VAU to avoid amplifications 
of high order alternating terms. For example, to simplify the numerical effort, one * 
may use, instead of L, the stencil L - with appropriate boundary modifications - 
to approximate the viscous term. Another possibility is to use the wide five point 
stencil (31). As with the LB-induced discretization, h”Ati(“) is not arnplified inside 
the domain and at most by one order next! to the boundary so that second order 
schemes in velocity and pressure are obtained. schemes in velocity and pressure are obtained. 

6 Numerical investigations 6 Numerical investigations 

Our numerical test problem is taken from [26]. The periodic channel problem (29) Our numerical test problem is taken from [26]. The periodic channel problem (29) 
is initialized with the velocity field is initialized with the velocity field 

761(x1, :x2) = f&1:2(1 - ~2) + lli(2~ - 62?j + 42:) sin(27rzl)/27r, 761(x1, :x2) = f&1:2(1 - ~2) + lli(2~ - 62?j + 42:) sin(27rzl)/27r, 

u2(:q. 12) = -16(x; u2(:q. 12) = -16(x; - 2%; + :r;, COS(27tZ~) - 2%; + :r;, COS(27tZ~) 

which relaxes to plane Poiseuille flow for f. -+ 00. which relaxes to plane Poiseuille flow for f. -+ 00. Errors due to time integration Errors due to time integration 
are kept small by using very small time steps. The results obtained with Chorin’s are kept small by using very small time steps. The results obtained with Chorin’s 
method and the LB-induced discretization are presented at t = 1. As mentioned at method and the LB-induced discretization are presented at t = 1. As mentioned at 
the end of the previous section, we consider a simplification of the method described the end of the previous section, we consider a simplification of the method described 
above, using the stencil defined by (31) instead of i. (With L instead of i, the same above, using the stencil defined by (31) instead of i. (With L instead of i, the same 
behavior is observed.) The orders of convergence of the pressure for the different behavior is observed.) The orders of convergence of the pressure for the different 
methods are given in the following table: methods are given in the following table: 

19 19 



1 N 1 Chorin ] Chorin (filtered) ] LB-based ] 

Table 1: Absolute pressure errors (*10e3) (and estimated convergence rates) 

First order convergence for the pressure is found with Chorin’s method in contrast 
to the second order convergence with the lattice Boltzmann based method. This is 
in accordance with the analytical considerations, since wide Laplacians are used to 
discretize the viscous terms in the velocity equation. We mention that second order 
convergence for the pressure can also be obtained with Chorin’s method if filtering of 
the pressure is used, see [26]. However, filtering introduces additional errors so that 
Chorin’s scheme including filtering shows a larger error than the LB type method. 

The convergence of velocity is second order in both cases, as shown in table 2. 

N Chorin LB-based 
16 0.8561 3.6406 
32 0.2141 (2.00) 0.9249 (1.98) 
64 0.0582 (1.88) 0.2215 (2.06) 
128 0.0125 (2.21) 0.0444 (2.32) 

Table 2: Absolute velocity errors (*10e3) (and estimated convergence rates) 

Here, the absolute errors of the LB method exceed those of Chorin’s method by a 
factor four. This loss of resolution is due to the fact that a wide stencil of size 2h 
is used to approximate the viscous term instead of a usual five-point stencil as in 
Chorin’s method. 

7 Conclusions 

Starting from a Lattice Boltzmann type discrete velocity model with the diffusion 
scaling, a relaxation system for an equivalent set of velocity moments is derived. 
A simple upwind discretization of the kinetic equation, similar to the one used in 
the original Lattice Boltzmann scheme, gives rise to a spatial discretization of the 
moment system. A semi-implicit time discretization which respects the stiffness of 
the problem then leads to a Chorin-type projection method for the incompressible 
Navier-Stokes equations as limiting system. In contrast to Chorin’s original method, 
second order convergence of the pressure is observed. This improvement is related 
to the use of wide stencils in the velocity equation. On the other hand, wide stencils 



reduce resolution so that absolute errors in velocity are larger compared to Chorin’s 
method although both schemes are second order accurate in velocity. The analytical 
results are based on an analysis of alternating error terms and are supported by 
numerical investigations. 
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