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Abstract 

The asymptotic analysis of lI3VPs for the singularly perturbed parabolic 
PDE; &rs + &IL = E i).r,, IL in the limit 2 -+ 0 motivate investigations of 
certain recursively defined approxixnative series (“ping--pong expansions”). 
The recursion formulae rely on operators assigning to a boundary condition 
at, the left. or the right, boundary a solution of the parabolic PDE. Sufficient, 
condit,ions for uniform convergence of ping-pong expansions are derived 
and a detailed analysis for the model problem &?L f 0,~ = E aszu is given. 

1 Introduction 

The recursive approximation derived in t,his paper arises from investigations on 
a singularly pert,urbed two--phase Stcfall problem: If one of the two phases is 
characterized by slow diffusiq then a lxnmdary layer at the phase change will 
yield a modified Stefau condition for tlltl unperturbed one--phase problcrn. 
Using matched asymptotic rxpnusions a zcroth order correction term has been 
derived in [SU]. This mrrcct,ion tcrrn i:: sufficiently accurate as long as the 
moving interface stags away from a fixctl boundary. If the moving interface 
approaches this f-iixed boundary, the whole problem will become --. d,ue to in- 
teractiug layers ... quite complicated. hlolmver, the derivation of higher order 
corrections can not, be pcrforrned in a st~rnightforwsrd manner using standard 
matching techniques from asymptotic analysis. 
To have a close insight to the singularly perturbed phase7 it trirned ollt to be 
necessary to develop a seenlingly ilcw (t~ompare [Bobs GFLRT, RST]) asymp- 
totic ilIl&l~SiS h t,llC IllOdCl pU>blcIll. 



with E << 1. 
After re-scaling t and x one gets from (1.1) a half-space problem on [0, oo[, 
which yields the approximation 

x-t t-x 
v,(t,x)=l-Terfc - 

( > 
x+t 

a&t 
- - e”/’ erfc 

t+x 
2 ( > a' 

The function U, is, for small values of E and away from the right boundary 
x = 1, an excellent approximation for uL,, such that essential properties of u, 
[Bob, GFLRT] may be deduced from an almost elementary discussion of u,, i.e. 

hin WE(t) x) = C 
1-(x-t) ) x-t>0 

1 , t-x<0 
The following three questions arise naturally: 

1) Why is V, such a good approximation for uE ? 

2) How may one derive a correction term to handle the boundary layer at 
x=1? 

3) How can higher order terms be constructed ? 

In the course of the discussion of the questions above it turned out that certain 
“one-sided” operators that assign to a given boundary condition at the left or 
the right boundary a solution of the PDE play the most important role. To 
clarify the importance of these operators a more general setting is appropriate, 

We shall therefore be concerned with a general class of initial-boundary 
value problems of the form 

where E << 1 is a “small” parameter. 
The time variable t ranges in J =]O, T[ with T ~10, oo[, the spatial variable x in 
w =]O, l[ and ,fc belongs to Cg(w~), where UT = J x w. Moreover, we assume 
uf E C:(w) and CQ, ,& E Cl,(J). The E-dependent operator A, is defined on 
@%JT) by 

A&] = a, u + b, &,w + c, Z!,x2r, 

where a,, b,, c, E CB (WT) . 

We shall make use of the concept of “C~--solutions” of (1.2). 

Definition 1. u, is a C&solution of (1.2) iff 

1) uc E C2, <where 

C2 := {w E C2(w~)n C~(WT) :u(t,O+) and v(t,l-) mist for all t E J, 
and w(a,O+), w(., l-) belong to CB(J)}. 
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We deal with distinguished recursively d&~d series (xi;_, u$),,~N~ to appmxi- 
mate uE. The recursions rely on linear operators I’!;, I’: : Cz -+ Cp, and squeezes 

('I& 26;) u;, *..) = (I,+I,O+r$ s;+r;, r;+r,2, . ..) 

s11c11 that 

El) I, E C> satisfies 

1): [&I = ,ft-3 I,(O, :x) = uf(2). 

E2) Ii, $ E C2 satisfy 

PE [z10] = 0, Z&2) = 0, l,O@, 0) = C&(t) .- I& Of), 

I;; [T-‘1 = o> ?$(().:I:) = 0, r,“(t, 1) = DE(t) - I& I-) - If@, l-), 

and for all n: E N: 



b) Due to El), E2) the function U, O = IE + 1: + 7-f is a (I&solution of 

Jwl = fE, 7&o, CT) = 7&z), 
$(t, 0) = &E(t) + $(t, Of), t&t, 1) = a(t), 

i.e. U: satisfies the parabolic PDE (1.2), the correct initial condition and 
the correct boundary condition at .‘I: = 1. By E5) we have 

;;y 11% - lL,oIlcx, I p+ygl(E) = 0. 

Hence U: is for “small” values of E an approximation for IL,. Furthermore, 
since 

- where Il.llr is the standard norm in CB(J) - we get lim,+o IlrjIlr = 0, 
such that z$! satisfies approximatively the boundary condition at 2 = 0. 

c) The recursion formulae for If, r!, k E N imply 

1:= (rio (r:or!)“l) [$I, $= (r:or:)k[r:!: (1.3) 

which shows the distinctive importance of ri. 

d) Putting for v E No 

we see as in b) that CF is a Cz-solution of 

i 

~EI = .fE, C,v(O, x) = 7&z), 
x:(6 0) = c@(t) + r,“(t, 0+), cgt, 1) = j%(t), (1.5) 

with llr,V(., O+)ll~ = O(gl,+l) as E + 0. Hence we deduce from E5) and 
the properties assumed for the sequence (gv)YENo that the functions 

uo = -p E E) CL, cz, g, . . I ) g, . . . 

are approximations of zeroth, first, second, third,. . . J&h,. . . order for 
U&. 

e) Trivial choices for I,, I:, 7-f and I’:)’ would be I, = u,, 1,” = ri = 0 and 
I’L1” = 0, the zero-operator. This choice is however not of interest here, 
because we are in particular concerned with Licomplicated” functions u,, 
for which approximations shall be constructed 
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f) According to (1.3)-(1.5) the boundary conditions at, :I: = 0 and n: = ‘1 
enter the recursion formula in different manners. Indeed a much more 
important role is played by 7,O arid the boundary condition at :c = 1, 
which is satisfied by each CL, than by I) arid the boundary condition at 
~1; = 0, which will usllally not be satisfied by any CF. It is hOweVer nOt 
difficult to interchange the role Of t,he boundary conditions. 

g) Loosely speaking tht> construction of the sequence (u:, u;, ~2, . . . ) has 
something in common with “ping-pong” : consider for v E No the func- 
tion 7.:. Then One constructs 1, (, v-+1 1~ solving a “left-hand boundary value 
problem” ) whose purpose is the elimination of Y$‘( ., O+) at, the left bound- 
ary ( ‘iping”). After this intermediate step one finds r.iil by doing the 
very same thing, but now with IF” at the right boundary: one solves a 
“right.--hand boundary value problem”, whose purpose is the elimination 
of /F+ l (., l-) at the ~i,~~ht boundary ( .‘pong” ). Therefore, one can motivate 
to call the approximation defined by El)-E5) ‘a “ping-pong expansion”. 

The paper is 01 ~ganized as follows: in Section 2 we show how recursively defined 
series El) --E5) arise at hand Of the model problem 

&?L, = --&u~ i- E i).rn:21~,, ‘7LF(oJ:) = 1 - cc, IL&O) = 1: IL,-(f,, 1) = 0. 

( w 

The investigations are settled on solutions z; of “half--space problems”, i.e. z, 
sat,isfy IRVPs associated with d, z t E = il,rz, i- E &.zzE on intervals IO, co[ and 
] - CO, I[, respectively. In Section 3 ping pong series Of the type El),-E5) are 
investigated from an abstract point of view. The main result is the derivation of 
sufficient conditions for convergence, wht~~re the proof relies On II geometric series 
argument. The investigations Of Section 2 and the theoretical result of Section 
3 are combined in Section -1 to investigate properties of ping---pong expansions 
for 

i 

a&- = -i!ru, + E&x7/+ 16,(0, 27) = 2,&2), 

7/j_c(t: 0) == tr&), zL,(t. 1) = &(t) 

2 An Introductionary Example 

In this section tvc arc c~oiiccrnctl wit,11 tllc? model problem 

tlf’ll, = --a,&. -I- t‘ il,T,ru,, f/L(l), :I:) = 1 _ :c, ‘1l,,(%:O) = I, 16&, 1) = 0. 
(2.1) 

fOr ‘~11all” vahres of 5’. 111 i,his (‘;w an asympt,otic analysis Of (2.1) has been 
perfOrmed in [Bob] and _ ill a 11101’~’ fi(?IlC’l’ill setting - in [C~FLIW]. FOur aspects 
doniinatc-‘ the behaviour of il., as i: -k 0 (see Figure 1): 

,!I 



1) uE converges as E -+ 0 in a “rather good” (i.e. without oscillations) sense to 
the function 

uo : w’l’ -5 R 

(t,x) e 
C 

l-(X-t) , t<x ’ 
1 ) x<t > 

i.e. ~0 solves the transport equation 

atuo + 3,uo = 0, uo(0, x) = 1 - 2, uo(t, 0) = 1. 

2) The limiting function ua is less regular than any IL,, E > 0. The loss of 
regularity is due to the competition between initial values and boundary values 
(at 2 = 0) along the characteristics {(t,x) E WT : x = t}. 
3) The boundary condition at .7: = 1 is lost in the limit E --+ 0. This amounts 
to the appearance of boundary layers for Q, E > 0, at x = 1. 
4) Away from the “critical” regions {(t, X) E WT : CC = t} and n: = 1 we have 
uniform convergence of U, to %LO as E -+ 0. 

1 
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Figure 1: Numerical solution uE(t:x) for E = 0.01 at different 
times t = 0.1, 0.5, 1.0 and 2.0 (from left ro right). 

One may try to look for these properties of U, for E E 0 in the “explicit” 
solution of (2.1) which is - due to the constant coefficients - available from the 
separation method as follows: introducing 

W E:=exp -2 
( > 2E a& - (1 - XL 

wE satisfies 

i 

-1 dtw, = - 2 - ; WE + t UZ,4UE, 

w,(O,x) = (exp (-2) - 1) (1 - 2), wC(t,O) = w,(t, 

For 1 E N let 



hl: .- .- _ (1 - :c) sin(l 7r 3;) - 3 

E 

Then, sense of L2(]0, l[), 

w, exp (-Xi t) - CL] sin(Z 7r cc), 
l=I 

such that, - again L2(]0, l[) -sense - 

u, = exp (-f-) (I - :c + 5 [K; cq (-Xi ii) - CL] . 
I-I 

The best way to proceed with an asymptotic analysis of (2.1) is to try to find 
an outer expansion of 14,. Speaking phenornenologically for s:nall values of F 
the boundary value at8 :G = 1 is ‘*far away” from the behaviour of TL, on ,7x10, Q]. 
Taking this idea literally, one may think to shift the boundary condition from 
:c = 1 to 2 + m - arid thus to ignore it,. Hence: WC are led to consider the 
half--space problem 

Obviously it is rather difficult to verify l)-4) at hand of this series expansion. 

The best way to proceed with an asymptotic analysis of (2.1) is to try to find 
an outer expansion of 14,. Speaking phenornenologically for s:nall values of F 
the boundary value at8 :G = 1 is ‘*far away” from the behaviour of u, on ,7x10, Q]. 
Taking this idea literally, one may think to shift the boundary condition from 
:c = 1 to 2 + m - arid thus to ignore it,. Hence: WC are led to consider the 
half--space problem 

&I, = -&.v, + E &r:vE, v,-(0: ,r) = 1 - :c, v&O) = 1, (2.2) 

with (t, a:) E J X ?R+ rind ‘IJ,(:I: 4 x) = 0, It may be rcasomblc to think that 
*[I, will be a good ~tpproxinlitt,ior1 of ZL, at, least for (t, :c) E Jx]O, 01. 
Equat,iou (2.2) is explicit,ly solvable by means of t,he Silllls-~I~(~urie~-‘I’ransfor- 
mation (XC Scc’tion 4, u)1l1p;m: [Hir]), which yields mation (XC Scc’tion 4, u)1l1p;m: [Hir]), which yields 

:1‘ -- t :1‘ -- t 
‘?,,(!::I:) = 1 - - ‘?,,(!::I:) = 1 - - 

t -- .I: 
2 2 

crfc li_ 
( 1 

:c -t- t % + x - -_ll_. 
a& 

(>J:/t prf(- _II_ 
2 ’ ( > “ 2&‘ 

WC set I, := ‘OF jwl and7 siiicxc 1> already satisfies t,he corrects boundary valhm 
at 2: = 0, I,0 := 0. According to Figure 2, I5 is an excellent; approximation of 71, 
for small values of 2, Ilatura~lly ;L\viLy fmn :I: = I. 
What, to do wit,11 the boundary condition at x = 1 ? As 1, cxliibit,s no boundary 
layer at :I: = I, one has to find a correct ion tcrni, 

&I, = -&.v, + E &r:vE, v,-(0: ,r) = 1 - :c, v&O) = 1, (2.2) 

with (t, a:) E J X ?R+ rind ‘IJ,(:I: 4 x) = 0, It may be rcasomblc to think that 
*[I, will be a good ~tpproxinl;tt,iorl of ZL, at, least for (t, :c) E Jx]O, 01. 
Equat,iou (2.2) is explicit,ly solvable by means of t,he Silllls-~I~(~urie~-‘I’ransfor- 
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Figure 2: Approximution IE(t, x7 for E = 0.01 at digerent 
times t = 0.1, 0.5, 1.0 and 2.0 (from left ro right). 

The canonical way to proceed would be to re-scale the equations close to 
z = 1 and to apply matching procedures afterwards. This strategy however, 
though promising, leads us astray from recursively defined approximating series 
for uE and a different strategy is needed. 

-0.8 

-1 
0 0.2 0.4 0.6 0.8 1 

Figure 3: Difference u,(t,x) - I;(?,x) for E = 0.01 at different 
times t = 0.1, 0.5, 1.0 and 2.0 (from right to left). 

Let us check the difference SE’ := U, - I, for small values of E, indicated in 
Figure 3: naturally, s, -r has a boundary layer at z = 1. The equation satisfied 
by s;r is 

i 

d&l = -iti& + F az~s;l, s,yo, Lx) = 0, 

s,yt, 0) = 0, s,* (t, 1) = -I&, l-) 
(2.3) 

and we deduce from Figure 3 a very important property of (2.3): away from 
z = 1 the operator AE[u] := 4 + EU” has the tendency to make Is;‘\ rather 
small. From this point of view it is not important to prescribe the boundary 
value 0 at n: = 0, i.e. we may replace (2.3) by the half-space problem (see 
[VaR.o]) 

dt w, = -&Iv, + &&,W,, W,(O,!E) = 0, W&, 1) = -I&, I-), (2.4 
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E Jx] - cx3, I[. For a convolution-type representation is available 
in the form 

r/t’-(t,:,:) rz -1-:I: 
i’ 

I 
,s---:3/2 cxp - 

( 

(1 - :c + s)2 

&G. 0 4 F 
(2.5) 

s > 
I& - s, l-) tls. 

Since 1;1’, solves a “right” boundary value problem, it is appropriate to introduce: 
the notation the notation 

7-O : = v-$- 7-O : = v-$- E E . . 
CL2 ‘T CL2 ‘T 

We put 7~: := 1, f T: (=I, i- r: + T,“) and observe that the function 11: := 7~: We put 7~: := 1, -I- T: (=I, i- r: + T,“) and observe that the function 11: := 7~: 
satisfies the problem satisfies the problem 

1 

a( y$ z -3 g + E [,I 7-O 3‘ p .r.r up : 

X!(fE 0) = 1 f &t, O+), 

Cf(O,z) = 1 - cc, Cf(O,z) = 1 - cc, 
(2.6) (2.6) 

c ‘- Cgt, 1) = 0, Cgt, 1) = 0, 

i.e. the correct equation, the correct initial condition, the correct boundary i.e. the correct equation, the correct initial condition, the correct boundary 
condition at :I: = 1 and -- since Irf(t. O-t)/ condition at :I: = 1 and -- since Irf(t. O-t)/ is rather small (see Figure 4) --I is rather small (see Figure 4) --I 
“almost” the boundary condition at :E = 0. “almost” the boundary condition at :E = 0. 

0 ! I 1 1 I I - .l-.l- 

-0.2 - 

-0.4 - 

-IS, , , I 

-0.6 - 

-0.8 - 



is uniformly bounded, i.e. there is K ~10, W[ such that 

Hence we get for all E E I@ the estimate 

where I]. 11~ is the supremum norm on Co (IO, T[). Using the maximum principle 
[LSU] we can conclude that 

and thus 

Now let us try to derive higher correction terms and let us consider (2.6): 
the two solutions u, and $ differ from each other according to the boundary 
condition at z = 0, such that one may think to substract from uf a func- 
tion satisfying (2.1) with vanishing initial values and with boundary condition 
uf(t, 0+) - 1 = r,O(t, 0+) at z = 0. 
In principle one may wish to fulfil1 the boundary condition at z = 1 as well - 
but then we would run into the same troubles as for uE: no ‘Leasy-to-handle” 
representation of this function would be available. 
On the other hand, our experiences with half-space solutions are so far excel- 
lent and it seems appropriate to consider (the restriction to WT of) a half-space 
solution as a correction for wi. To make this idea more precise let us introduce 
for a E CB(J) and (t,y) E J x R+ the function 

v;[4(GY) := 

Then U, = UE[u] satisfies 

8, u, = -$JJ, + E &zZUE, WOIY) = 0, W~,O) = &)l 

such that it is nearby to set 

uy := 1; := uJ-u;(., O+)q& 

But, C:/” := ?r; e u;12 is not necessarily a better approximation than 
verify this let us consider the IBVP satisfied by Ci’2: 

at c:‘2 = 4&” + E a&y”, Ly2(0, x) = 1 - z, 

c:“(t,o) = 1, Iy2(t, 1) = 1,1(L, l-)) 

(2.7) 

u,o: to 



l/2 such that the difference sE := 2/,, - I$” Misfies 

i 

112 &s, I --i3,sy2 + E &.sy, sf-‘2(o, 2;) = 0, 

,sli2(& 0) = 0, s:‘2(t; 1) = -A#, I-). 

F’rom the maximum principle WC get 

l/7LE - (7LZ + uy2 )llw f IWl WIT, 

where 11. //T is the suprenium norm on CT,, (IO, I’[). Using 

s; (t, I-) = - & ( ()t s-3/2 l_ll exp (-(y-f’) 7$(t-ts,0+) ds, 
I 

for t E J: we get t,lie estimate 

j/q., I-)ljr = O(lI&, Oi)jlT) == 0 (erfc(&)) ftsE-+O, 

and therefore 

//us - (ujl e ?sy”)//, = Cl (cI c(&)) +-f asE+Ot 

i.e. it may happen that IIu, - (IL: + ~~“‘)ll~~ is of the same order of magnitude 
as II1L, - 7$ll,. 
This intermediate result is not entirely surprising: the norm 117~~ - 9&j, is 
determined by the difference of 2~~ and 11: at the left boundary. This order 
of magnitude is - due to the specific structurt: of the solution operator U[.] - 
also the order of magnitude of Zd at the ~i,ght boundary. (As E -+ 0 the PDE 
d& = A,[?/#,] 1 ,ecomes more md more a transport equation “transporting” left 
boundary values into w). Hence t,he difference between TL, and TL~” = 1~: + II 
is at least of t,lic order of mrtgnit~ude of 1: (.) I-), i.e. t,lie order of magnitude of 

-- I,!!. 11, 
‘Vlicsc’~~orisiticratiolls show that there is no clm~ to get, higher order correc- 
tions just by adding half-space terms. ~vliich compensate the wrong hounclary 
condition at :I: = 0. One has to take into a,ccount corrections at the right, bound- 



the difference sk := u, - (7~: + uk) satisfies the problem 

i 

at s, l = -a& + E a& sb(O, IT) = 0, 

s&O) = ?-;(t,O+), si(t, 1) = 0, 

and using the maximum principle we have 

11~ - ($ + uZ)llm = 0 (Il&O+)ll~) as E -+ 0. 

On the other hand it follows as before that 

and therefore 

II~BL 0+)llz- = 0 ([erfc (&)12; I as t- -3 0, 

Hence, we get 

lluE - (2~: + u~)ljm = 0 erfc 
\I ( 

i.e. ui is a higher order correction te 

/i- /l 2 

-)I ) $4 
as & -+ 0, 

rm. 

Let us repeat the single steps for the construction of ui out of rf: 

1) set 1,’ := I$ [7+] := -UE[$(*, O+>] 1 . 
WT 

2) set T, 1 := r; [Ii] := -wE[l:(.,l-)]~wT. 

3) set u, l := 1,' + 7-i. 

It is straightforward to deduce from 1))3) a recursive definition of I,“, 7.: and uk 
and it can be left to the reader to verify that the sequence 

actually satisfies El)-E4). The verification of property E5) however - the cru- 
cial point to accept (C;‘=, ~i),,~~~ as asymptotic expansion of u, - is a bit 

technical. The argumentation is therefore outlined in a more general setting in 
the next section. 



3 3 A Convergence Result for Ping-Pong Expansions A Convergence Result for Ping-Pong Expansions 

The investigations in this section will bc scttlcd on the following assumptions The investigations in this section will bc scttlcd on the following assumptions 
011 the singularly perturbed parabolic equation (1.2) 

Al) E ~10, EO[ wit,h ~0 ~10, co[. 

A2) a,, b,. c, E CR(Wyg and ,fc E CR (q-). 

A3) u; E c;(w). 

A4) N,, j3c E CR(J). 

Following E2) Y Si and r: shall satisfy an IBVP as (1.2); but with vanishing initial 
data and prescribed lmundary conditions only at 2 = 0 or :e = 1, respectively. 
Due to this observation the functions Li, rf are quite similiar to a$, jr: with 
k; E W. In order to keep things simple wc shall assume that lj’, Y$‘, I/ E No are 
‘&merated” by the s;mIe operators L, and R,, i.c. we assume 

A7) L, : CB(J) --+ C2 is linear, /I I /IT-// I/m-lmulded, 

IILEll7’:co := W{lIL,[~]l/, : (L E WJ), II& 5 1) < 00, 

and for all (1. E Gj?( J), 



In accordance with E3), E4) we set for ‘u E Cz 

l?$l] := LE[-v(*, O+)], r;[v] := RJ-v(., l-)]. (34 
It is obvious that the operators defined by (3.1) are linear, II.II,-II.Il~-bounded 
operators with 

Il~~llcqcu := sup II~~E~III -t co : v E c2, II433 5 1> 2 ll-bllT,cxJ > 

It is straightforward to prove 

Proposition 1. Assume AI)-Ad) and let I’:, I’: be given by (3.1). Moreover, 
let 

1; := L, [% - I,(., O+)] ) r,o := R, [a - I,(., l-) - I,“(., l-)] , (3.2) 

and for k E N 

1” .= rl rk-l E . [ 1 EE ) 7’: := r; 12 . [ I 
Then El)-Ed) hold. 

Now we are in the position to formulate the main theoretical result (whose 
proof can be found in Appendix 1): 

Theorem 2. Assume AI)-Ad), I’:, I’: given by (3.1) and for v E No let l,“, r: 
be as in Proposition I. Assume furthermore 

Bl) There is K ~10, CS[ such that for all E ~10, q[, 

(1+ ll~Z:Iloo,oo) 
x (lIRcIl~,cx, IILLIIT f ll~& + llL~Ibr,cm lb - ~d~~O+)kd 5 K, 

B2) There is for each E ~10, EO[ a number O(E) l ]0,1[ such that 

lim O(E) = 0, 
E-+0 

and for all k E N 

There is K1 ~]O,oo[ such that for all E E]O,Q[ and all a 
v, = ~,[a,] is u C-solution of 

then 

E C&): if 



Then we lmuc for all k E W 

/j96f//co < K [o(&)]k, (3.3) 

~~ ~~ 

k-- I 
IL, - c ,ll(! < 1 $;) PMk, (3.4) I 

I/ zz () M 

it?. E5) is slhs$erl IlAll. 
* 

g&) := max{l, IISLiS)I[,}, n(z) := 1 _ O(E) K- [O(E)]k, k E N. 

Some remarks will clarify the theorem above: 

1) In Theorem 2 no strong maximum principle is assumed. This is in ac- 
cordance with [GFLRT] whose asymptotic analysis is settled only cm a 
~luc?aX: maximum principle. In Theorem 2 assumptions Al)--As) allow for 
a replacement of the m:~ximum principle by the weaker assumption B3). 

2) According to (3.4) we have for mrh, :: ~10, EO[ 

li ~~ 

k 
lim ‘71 - 2~: = 0, 

kicx c 
I/ :z () 02 

i.e. the scric (CF)Vtl~,, converges imiformly to zL,. 
Actually, t,his improves E5), where for fixed E E]O, ~0 [ we only get the 
estini;ttc 8 , 

~~ I 
t: 

k I 
lim sup ‘IL, - : 16!! 5 hlslipgk(E), 

kix u=o k-too 
M 

with a right--hand side perhaps larger than 0. 

3) A close screening of the proof shams that the assumption “lim,+~) @[E] = 
0” is not essential to get the estiniatps (3.3) and (3.4): 

Theorem 3. Asswm~ Af)--Ad)), I-l., II’s glum h?g (3.1) nrrd for 11 E I+&~ 
let l:, 7‘: hi us in, P~~~pos%tion, 1. Ass~w~~e Rl) urrui B9) of Theorm, 8 cd 
furtherm ore 

U*) For. ench E E]o.~,)[ the is (I nn~~~bcr O(c) ~10, l[ suc11, that ,for cdl 
n: E N 

II [I-i 0 Iyj k~l-;x < [O(:-)I”. 
i/ 

men 'we htl?le for all x: E N 



4 An Application of Ping-Pong Expansions 

In this section we deal with singularly perturbed IBVPs of the form 

i 

P&] := &u, f &u, - &i&U, = 0, u,(O, XT) = 7&n:), 

~k(~, 0) = &@)7 U&, 1) = /s(t), 
(4.1) 

where we assume that E, IL:, aE,PE satisfy Al), A3) and A4). It can be left to 
the reader to verify that A5) holds under these assumptions. 
We will make use of the fact that U: E C;(w) implies that 

uE(O+), ~f(l-), ($)‘(O+), (UE)‘(l-) exist. 

In order to avoid technical inconveniences we additionally assume that 

Theorem 3 ensures uniform convergence of the serie (C;l=, ZL~),,, to 

uE as long as the estimate of B*) holds, i.e. (~~=0 u$),~N~ provides an 
approximation for U, as long as E is j?xed. Here, three aspects are of 
interest: 

3a) If 0 :]O, sa[+]O, I[ is increasing, then we will get from (3.6) for each 
7 ~10, oc[ a number k(q) E N - independent of E E]O,E~[ ! - such 
that 

i.e. we can choose a fixed “order” of the expansion to achieve a pre- 
scribed accuracy of the approximation, independently of E ~10, EO[. 

3b) If 0 is not increasing, then the norm u I/ E - CE=, uFII will possibly 

grow for fixed k. In this case an increasingly number?(as E + 0) of 
terms in the expansion of U, may be necessary to achieve a certain 
accuracy of the approximation. 

3c) The additional assumption LLlimE+o O(E) = 0” ensures that 7~: is for 
all suficiently small E an acceptable approximation for uE. 

Dl) (~z)“(l-) exists. 

D2) There is iY1 ~10, oo[ such that for all E ~10, EO[: 

ll~Ellw> bElIT, IIL4lT 2 K4. 

According to 1~: E C;(w) and due to Dl) there is G, E C2(R+) with U: = G’,lw. 
Hence, we can assume without loss of generality 

D3) For all E ~10, EO[, uf = G,lti with G, E C2(IR+) and there are K2, K:s E 
10, co[ such that for all E ~10, EO[ and all y E R+: 

I((:; -EG;) (y)l < K2 (1 +ylc3). 
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for all (t, y) E J x W, where naturally 

S(+,W I)l(C Y) = 
.I 

O3 W, I) sin(yI) 4. 
0 

The arguments of the S,+, --operators of (4.6) are products of functions. It can 
be expected that St+, transforms these products into conwolntions of trans- 
formed functions, On behalf of well-known properties of the Fourier transfor- 
mation (see, e.g. [Rud]) it, is not very difficult to verify 

Proposition 4. Let F, G E L2(IR). Assume that 

F is odd and G is even. 

Then (in sense of L2(R)), 

.s&/ [S[F] g] (y) = ; (F * ceweT2 PI) (Y) = ; .I“y F(Y - 0 Cewen F’l (I) 4, co 
where Ceuen[G] th e even extension (to R) of the Cosine-Fourier transform C[G] 
of G: 

V[ E lR+ : CPM = i’m G(Y) COS(~Y) dll. 
< 0 

From (4.6) we get with the aid of some well-known Cosine-Fourier transforma- 
tions [Obe] for all (t, y) E J x Ii@ 

Gw> Y> = Edd * kl@, Y), (4.7) 
where p,O”” is the odd extension of p, to Iw and for (t, z) E J x R, 

k (t,z) = exp -IzI e 
( > 

+ f (exp2[-&) erfc (z) +exp (&) erfc ($+)) . (4.8) 

Equation (4.7) involves the odd extension of p, to Iw. It is however sometimes 
desireable to have a representation of & just in terms of p,. To get such a 
formula for & we can make use of a proposition, which is again straightforward 
to prove: 

Proposition 5. Let F, G E L1(IR). Assume that 

F is odd and G is even. 

Then for all y E R+, 

(F * G)(y) = lW F(y - z) G(z) dz 
--co 

.i 
’ F(y - 2) G(z) dx + i’^- F(y + 2) G(z) dx - lm F(z - y) G(z) dz. 

0 (0 Y 
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[ &(:c + y) - f&(y)] $1 

1 -- 
2 

r , “,, 
L Lt.1 

$$) ferfc (z)] dy 

1) Ic satisfies A6) (;luith .ft- = 0). 

2) I,(.: Of) = us. 



Lemma 7. For E E]O,EO[ und a E CB(J) let 

Lb] := uE[a]liJT. 

Then for all E ~10, E& 

I) L, : C&J) 4 c 2, a G L&z], is linear. 

2) For all a E CB(J) and all (t,z) E we: 

LA4 (6 4 

3) L, satisfies A7). 

4) II-LIIT,cx, <: 2. 

x 1 + dX ds. (4.10) 
( > 

c) The operator R,. 

The purpose of R, is to map right-boundary data b into C2 such that I’, [R, [b]] = 
0 and RE[b](O, .) = 0. The operator R, is constructed as in Section 2 as restric- 
tion of a half-space operator WE. The construction of W, can be performed as 
in a) such that one gets for E E]O,Q[, b E CB(J) and (t,~) E Jx] - co, l[, 

I-- r.,,. \ 1 -I/ l’” -2’2 

d47r~ Jo > 
b(t-s)ds. (4.11) 

Then one gets 

Lemma 8. For E E]O,EO[ and b E CR(J) let 

&[b] := K[r;ll,; 

Then for all E ~10, Q[: 

1. R, : CB (J) + C2, b c) RJb], is linear. 

(4.12) 



(Icrfc (&))k, 



e) Discussion 

In accordance with the discussion of Section 2 one might expect that I, + 1,” is 
away from z = 1 for all sufficiently small E an excellent approximation for u,. 
This is indeed the case, because it readily follows from Lemma 8 for all /3 l ]0,1[ 
that 

‘dt E J, Vx E]O,O[: 1rfI (t, x) 5 6 (K4 + KS) erfc 
&-7 

( > 
_I_ 

a& ’ 

such that due to Theorem 10 

(t,,~~lo,~~l~i-(I,+l~)~(t,r) c:W4+4+ 

qr-i? 
C = erfc ____ 

( 1 24 

i.e. IE + I,0 -4 uE uniformly on JX]O, Q[ as E + 0. 
Now let us discuss the behaviour of 1, + 1,” as E -+ 0. Here the initial and 

boundary data will play a prominent role. In order to keep things simple let us 
assume that of = u’ and cy, = cu E C([O,T]) are &-independent. Then it is easy 
to deduce from lemma 6 and lemma 7 with the aid of Lebesgue’s dominated 
convergence theorem 

‘J(t, x) E WT : If z - t # 0, then li$(I;- + CM, x) = uo(t, 4, 

where 

110 : WT -+ R 

72(x-t) ) x-t>0 

@,x) t-) 

I 

40) T+uI(o) ) x=t 

a!(t - x) + d(0) ) x - t < 0 

is a weak solution of the transport equation 

atuo -I- dzuo = 0, uo(0, x) = d(x), ‘LlrJt, 0) = a(t). 

A close screening of the estimates actually gives a more detailled result: 

1, + 1,” + ~0 uniformly on each compact K CC {(t, x) E WT : x - t # 0} . 

Furthermore, since IE + 1,” is uniformly (i.e. independent of E ~10, E*[) bounded 
on WY, we deduce from the pointwise convergence almost everywhere 

vp E [l, ca[: ,‘i? i’ Iu&, z) - (I, + 1;) (s, 2) y ds dz = 0. 
. WT 

Uniform convergence on tir of IE + 1,” to ~0 is usually not available because the 
limiting function ~0 is continuous iff the additional assumption N(O) = 0 holds. 



5 Conclusion 5 Conclusion 

In the previous sections we derived a recursive approximation for singularly In the previous sections we derived a recursive approximation for singularly 
perturbed parabolic equations of the form perturbed parabolic equations of the form 

&lL, = a’cZ& + bEar7LE 4 (‘5i~,l‘l.lLE) IL,((), :c) = ,tL;(x) 

for n: ~10, 1[ with time-dependent boundary conditions at :t’ = 0 and :I: = 1, 
repectively. The approxinmtiorl is derived from sucessive solutions of related 
half-space prohlerns, where the intermediate boundary conditions at :I: = 0 and 
a: = 1 are alternately shift;ed to infinity. This nmt,ivates to call the recursive 
approximation a “ping p01lg" expansion. 

&lL, = a’cZ& + bEar7LE 4 (‘5i~,l‘l.lLE) IL,((), :c) = ,tL;(x) 

for n: ~10, 1[ with time-dependent boundary conditions at :t’ = 0 and :I: = 1, 
repectively. The approxinmtiorl is derived from sucessive solutions of related 
half-space prohlerns, where the intermediate boundary conditions at :I: = 0 and 
a: = 1 are alternately shift;ed to infinity. This nmt,ivates to call the recursive 
approximation a “ping p01lg" expansion. 
We gave a detailed convergttnce analysis of the new asymptotic method and ap- 
plied the method to a certain model probhn. As mentioned in the introduction, 
our present investigations originated from m asymptot,ic analysis of a singu- 
larly perturbed two-phase Stefan problem and the application of ping--pong 
expansions to this problem is currently under investigation. 

We gave a detailed convergttnce analysis of the new asymptotic method and ap- 
plied the method to a certain model probhn. As mentioned in the introduction, 
our present investigations originated from m asymptot,ic analysis of a singu- 
larly perturbed two-phase Stefan problem and the application of ping--pong 
expansions to this problem is currently under investigation. 
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Proof (of Theorem 2): We observe that 

T,o = r; bEI 1 pE := -I?, 
Hence by (1.3) we have for all k: E IV, 

such that we get 

and due to B2) 

IIdlL 5 (1 + Ilr:ll,,,) PkP IlPEllcm. 

NOW we like to estimate ]]pE]loo: from 

PE = -WE] + 1, + 1,” = -R&L] + 1, + L&E - I,(., 0+)], 

we get 

lIPElI 5 IIWT,co IIPEIIT + IlLllcm + IIJ5h,co II% - M,Of)llTI 
and due to Bl) and (A. 1) one has 

Il4llc-c I K [Wlk, 
which gives estimate (3.3). 
Moreover, according to B2), we have @[E] < 1. Hence the serie (C:),,,W, 

(A4 

- with 
c; = IL; + . . . + u;, Y E No - converges in C~(wr) to - let’s say - ‘wE. From 
(3.3) we have for all k E N the estimate 

Hence, in order to prove (3.4) it suffices to show that uE = wE. 
Let us introduce the function sk := uE - CE, which is a Cz-solution of 

Then, due to B3), we have the estimate 

.i 
wT I&? z)l h-h 5 Kl IIr.:IlT. 
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where Kz only depends on K2. 

can be left to the reader: 

Hence 

We proceed with an observation whose proof 

6EIP: e’erfc(-&+yii) 56. 

(1 + Y”“) [2 + K] dy 5 (2 + 6) K2 =: K;, 

where K; only depends on K2. The first term of E4(t, X) can be estimated as 

f il’“~~(i: + y) exp (-:) erfc (s) dyi 
0 

< K2 im (1 + (CC + y)l(“) exp (-5) dy 

< K2 1” (1 f (1 + Y)“~) exp (-t) dy =: Ki, 

where Kt only depends on K2, KS, Ed. In order to estimate the second term of 
E4(t, X) we need an auxiliary result whose proof again can be left to the reader: 

We observe 

V/y E R+ : ey” erfc(y) 5 min W) 

HE(5 + y) erfc 

< F./I’ (1 + (1 .t y)‘(“) erfc (s) dy. 
0 & I 

and proceed by a case-distinction. If 4~; < ~6, then 





such that 

where the constant Ki only depends on Kz, KS, ~0. q 

Proof (of Lemma 7): The verification of l)-3) can be left to the reader. Con- 
cerning 4) we have for all Q E CB(J) with llall~ < 1 and for all (t,~) E WY the 
estimate 

II 
= 

M(t, 4 

: ( 
a t- 

I ( 
a t- 

&- 
J;; 

.x2 

&S2$X$~S~~ >I 
e 

- 5 -1 ews2 ds = 
s 

Proof (of Lemma 8): The verification of l), 3) can be left to the reader. 
Concerning ). we have for all b E CD(J), llbllT 5 1 and all (t,x) E WT the 
estimates 

IWl(t, 4 
1-x *t 

= a&z 0 I J 
1-n: t 

‘&ZO J 
t 

:i ( exp - 
(1 - .7: + S)2 

4&S 
s-3/2 ds 

” ) 

1-z O” 
=qz-pxp - i’ ( 

((1 -x)m+ i,” da 
4E 

) 

It remains to prove 2): let b E CB(J) and (t,x) E WT. For the sake of brevity 



WC put 0 := 1 - :c. Then H ~]0,1[ and WC have 

IRE[h](t,, :rg 

the estimate 2) in ixsc when :c = 0 or 2: = 1 follows from this resdt by a 
continuity argu~ncnt. n 



PDEs, see e.g. [LSU]. A6) follows from Lemma 6, A7) from Lemma 7 and A8) 
from Lemma 8. Due to Da), Lemma 6, 7, 8 we have IjI,jlix, 5 I& and 

(Ilfmr,fx IIPEIIT + IlLllm + PIIT,m 11% - JELo+m) 
5 (l,Kq++K5+2(Kq+K5))=3(K4+Ks), 


