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Abstract

The asymptotic analysis of IBVPs for the singularly perturbed parabolic
PDE du + dyu = € dypu in the limit £ — 0 motivate investigations of
certain recursively defined approximative series (“ping—pong expansions”).
The recursion formulae rely on operators assigning to a boundary condition
at the left or the right boundary a solution of the parabolic PDE. Sufficient
conditions for uniform convergence of ping-pong expansions are derived
and a detailed analysis for the model problem dyu + d,u == & O u is given.

1 Introduction

The recursive approximation derived in this paper arises from investigations on
a singularly perturbed two-phase Stefan problem: If one of the two phases is
characterized by slow diffusion, then a boundary layer at the phase change will
yield a modified Stefan condition for the unperturbed one~phase problem.
Using matched asymptotic expansions a zeroth order correction term has been
derived in [SU]. This correction term is sufficiently accurate as long as the
moving interface stays away from a fixed boundary. If the moving interface
approaches this fixed boundary, the whole problem will become ~ due to in-
teracting layers - quite complicated. Moreover, the derivation of higher order
corrections can not be performed in a straightforward manner using standard
matching techniques from asymptotic analysis.

To have a close insight to the singularly perturbed phase, it turned out to be
necessary to develop a seemingly new (compare [Bob, GFLRT, RST]) asymp-
totic analysis for the model problem

Ote + Optie = € Opptie,  u(0,2) =12, u(t,0) =1, wu(t,1)=0. (1.1)
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with ¢ < 1.
After re-scaling ¢t and z one gets from (1.1) a half-space problem on [0, oo],
which yields the approximation

Tz —1 t—x -+t t+zx
tyx) =1~ f ~ */% erf :
ve(t, 1) 5 erc(zx/g_t) e erc<2\/?t>

The function v, is, for small values of ¢ and away from the right boundary
z = 1, an excellent approximation for wu., such that essential properties of u,
[Bob, GFLRT] may be deduced from an almost elementary discussion of v, i.e.

: o l=(z—-t) , 2—-t>0
ilj%”f(t"’”)—{ 1, t—-x2<0

The following three questions arise naturally:
1) Why is v, such a good approximation for u, ?

2) How may one derive a correction term to handle the boundary layer at
r=17

3) How can higher order terms be constructed ?

In the course of the discussion of the questions above it turned out that certain
“one-sided” operators that assign to a given boundary condition at the left or
the right boundary a solution of the PDE play the most important role. To
clarify the importance of these operators a more general setting is appropriate.

We shall therefore be concerned with a general class of initial-boundary
value problems of the form

{ Opthe — AE[U’E] = Pe[“s] = fe,
ue (0, ) = Ug(’”)a ue(t,0) = e (t), ue(t, 1) = Be(t),

where ¢ < 1 is a “small” parameter.

The time variable ¢ ranges in J =]0,T[ with T" €]0, oo[, the spatial variable z in
w =]0,1[ and f; belongs to Cp(wr), where wy = J X w. Moreover, we assume
ul € C%(w) and ae, B € Cp(J). The e-dependent operator A is defined on
C*(wr) by

(1.2)

Ac[v] = a. v+ bs Opv + ¢ Ogav,s
where a., b., c. € Cg(wr).
We shall make use of the concept of “Ch-solutions” of (1.2).
Definition 1. u. is a Co-solution of (1.2) iff
1) u. € Cy, where

Cy := {v € C%(wr) N Cplwr) : v(t,04) and v(t,1-) exist for all t € J,
and v(-,04), v(-,1-) belong to Cp(J)}.



2) For all (to,m0) € wr:  partialy u(ty, vo) = Ae[ue](to, To)-
3) ue(+,04) = o and ue (-, 1=) = f..

4) lim / e (t,2) —ul(2)] dz = 0.
t— ’

Jwrp

We deal with distinguished recursively defined series (}:’C’:O ué Jven, to approxi-
mate u,. The recursions rely on linear operators I'y, 7 : Cy — Cg, and sequences
L0 1,2 _ 0, .0 1 .1 2 .2
(ugy wgy, uz, .. =L+ +r), L+ry, Z+ri, ...)
such that

E1) I. € Cy satisfies

P, {IE} = fe, .[5(0, *73) = 'Ltfg(m)'
B2) 19,70 ¢ C, satisfy

P.[2) =0,  12(0,2) =0, 12(t0) = ax(t) — L(t,0+),

Pl =0,  r20,2) =0, 2t 1) = Be(t) — L(t, 1) = 12(t, 1),

and for all &£ ¢ N

k- 1} satisfies

E3) 16 =T [r
P [lﬂ =0,  M0,2) =0, F(0) = —rk1(t,04),

E4) rk =TT [I¥] satisfies

P. {rf]zo, F0,2) =0, Rt 1) = 15t 1),

k-1

Up = 5 uy

=0

E5) [luf e < gp-i(e) and

< gk(E)a

o0

where |||~ 18 the standard normon Cp(wr) and (g, )ven, is a sequence of order
functions g, : R™ — R such that for all & € N we have

lim g (¢) = 0, g = o(gr—1) ase — 0.

g0

. ; l Wi tir T :
In this approach the operators I't" and the “initial” functions 1,12, 70 play the
most prominent roles.

a) According to E1) the function 1. satisfies P[] = f. and fulfills the initial
conditions. It is not assumed that [, satisfies the boundary conditions.



b) Due to E1), E2) the function u0 = I. + 1% + 70 is a Cy-solution of

{ Plul] = fe, u2(0,2) = ul(z),
wl(t,0) = a: () +r0(t,04), (1) = B.(t),

i.e. u! satisfies the parabolic PDE (1.2), the correct initial condition and
the correct boundary condition at z = 1. By E5) we have

iy e =42, < fimos(e) =0

Hence u? is for “small” values of ¢ an approximation for u.. Furthermore,
since

Il = llue (- 04) = ud(-, 04)llr < |Jue = ul]|, = O(g1(e)) ase—0,

— where ||.||7 is the standard norm in Cp(J) — we get lim._,q ||70||7 = 0,
such that u0 satisfies approximatively the boundary condition at = 0.

The recursion formulae for I*, %, k € N imply

k-1 k
= (e (rmerl) Y g = (mert) b

which shows the distinctive importance of 0.

Putting for v € Ny
v - ¢ 0 S ! r ol r Yoo
25 e Zus :UE—{-Z(FE—{»FEOFE) o (FEOFE> [7‘5], (14)
¢=0 ¢=1

we see as in b) that £¥ is-a Cy—solution of

{ P[Y) = fe, $2(0,7) = ul(z),

(1.5)
Zg(ta 0) = as(t) + Teu(ta 0+)7 Els/(ta 1) = Be(t)v

with ||rZ(., 0-H)|l7 = O(gv+1) as € — 0. Hence we deduce from E5) and
the properties assumed for the sequence (g, )ven, that the functions

0 . 50 1 2 3 k
W=x0 ntow2owd ) wk

are approximations of zeroth, first, second, third,...,k~th,... order for
Ug.

Trivial choices for I,12,7% and I would be I, = u,, 19 =170 =0 and
AL 0, the zero—operator. This choice is however not of interest here,
because we are in particular concerned with “complicated” functions u,,
for which approximations shall be constructed.



f) According to (1.3)=(1.5) the boundary conditions at z = 0 and z =1
enter the recursion formula in different manners. Indeed a much more
important role is played by 70 and the boundary condition at = = 1,
which is satisfied by each ©¥, than by I and the boundary condition at
z = 0, which will usually not be satisfied by any £%. It is however not
difficult to interchange the role of the boundary conditions.

g) Loosely speaking the construction of the sequence (ul,ul,u?,...) has

something in common with “ping-pong”: consider for v € Ny the func-
tion 77. Then one constructs Y1 by solving a “left-hand boundary value
problem”, whose purpose is the elimination of 77 (.,0+) at the left bound-
ary (“ping”). After this intermediate step one finds r/*! by doing the
very same thing, but now with l;’“ at the right boundary: one solves a
“right-hand boundary value problem”, whose purpose is the elimination
of I"*1(.,1~) at the right boundary (“pong”). Therefore, one can motivate
to call the approximation defined by E1)-E5) a “ping-pong expansion”.

The paper is organized as follows: in Section 2 we show how recursively defined
Optte == —Optie + € Opplle, ue(0,2) = 1 — z, ue(£,0) =1, wu:(t,1) =0.

The investigations are settled on solutions z. of “half-space problems”, i.e. z¢
satisfy IBVPs associated with 0; 2z, = 0,2c + € Opp2ze on intervals ]0, 00[ and
] = 00, 1], respectively. In Section 3 ping-pong series of the type E1)-E5) are
investigated from an abstract point of view. The main result is the derivation of
sufficient conditions for convergence, where the proof relies on a geometric series
argument. The investigations of Section 2 and the theoretical result of Section
3 are combined in Section 4 to investigate properties of ping-pong expansions
for

Oy = — Ot + € O, u(0,2) = ul(2),

ue(t,0) = e (t),  ue(t, 1) = Be(t)

2  An Introductionary Example
In this section we are concerned with the model problem

Oty == —~Optte + € Opptis, ue(0,2) = 1 =z, we(t,0) =1, w6, 1) =0.
(2.1)

for “small” values of . In this case an asymptotic analysis of (2.1) has been
performed in [Bob] and - i a more general setting - in [GFLRT]. Four aspects
dominate the behaviour of u. as ¢ — 0 (see Figure 1):



1) u, converges as € — 0 in a “rather good” (i.e. without oscillations) sense to
the function

ug wr - R
- — <
(t2) + {1 o ?."‘”}’

i.e. ug solves the transport equation
Opug + Ozuy = 0, up(0,2) =1 -z, ug(t,0) = 1.

2) The limiting function ug is less regular than any u., ¢ > 0. The loss of
regularity is due to the competition between initial values and boundary values
(at z = 0) along the characteristics {(t,z) € wr : z = t}.

3) The boundary condition at z = 1 is lost in the limit ¢ — 0. This amounts
to the appearance of boundary layers for u.; ¢ > 0, at z = 1.

4) Away from the “critical” regions {(t,z) € wr : z = t} and z = 1 we have
uniform convergence of u; to ug as € — 0.
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Figure 1: Numerical solution u;(t,z) for ¢ = 0.01 at different
times t = 0.1, 0.5, 1.0 and 2.0 (from left ro right).

One may try to look for these properties of u. for € = 0 in the “explicit”
solution of (2.1) which is — due to the constant coefficients — available from the
separation method as follows: introducing

z
We 1= exp (»55) ue — (1 — z),

w, satisfies

1 -z 1
= We + & OppWe,

we(0,2) = (exp (—%) - 1) (1-2z), we(t0)=w(t,1) =0

For [ € N Jet

Opwe = —



and

1ot I
KL= %/0 exp (~§g) (1 — ) sin(lrx) de - 2;;5
s L !
T e e -t 52 =1 ?
L <1 OXP< 25.) ( )>
1

@f = e
207w (1 +4e21272)

€

Then, in sense of L(]0, 1]),

(&S]

we = Z [hfg exp (»Ai ‘t) - C’ﬁ} sin(l 7 ),

I==1

such that - again L2(]0, 1])-sense —

Us = eXp (%) <1 ~ 1+ i [Iﬁl exp (»Aé t) ~ Cé} sin(! 7T’L)> .

=1
Obviously it is rather difficult to verify 1)-4) at hand of this series expansion.

The best way to proceed with an asymptotic analysis of (2.1) is to try to find
an outer expansion of u.. Speaking phenomenologically for small values of ¢
the boundary value at x = 1 is “far away” from the behaviour of u. on Jx]0,6].
Taking this idea literally, one may think to shift the boundary condition from
T = 1tox — oo — and thus to ignore it. Hence, we are led to consider the
half-space problem

OV = —0yVe + € Oy Vs, ve(0,2) =1 -z, ve(£,0) =1, (2.2)

with (¢,2) € J x Rt and v.(z — o0) = 0. It may be reasonable to think that
ve will be a good approximation of ., at least for (¢, z) € Jx]0,6].

mation (see Section 4, compare [Hir]), which yields

r =t t—u Tt t+4x
Vet 2) =1 — ———erfc — | - e™/¢ erfe <-—~———> .
() ) <2\/gf,> 2 2Vet
We set I, = "UE] ‘

wp

and, since I already satisfies the correct boundary values
at =0, 1% := 0. According to Figure 2. I. is an excellent approximation of u.
for small values of ¢, naturally away from z = 1.
What to do with the boundary condition at @ = 17 As [, exhibits no boundary
layer at x = 1, one has to find a correction term.
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Figure 2: Approzimation I (t,z) for ¢ = 0.01 at different

times t = 0.1, 0.5, 1.0 and 2.0 (from left ro right).

The canonical way to proceed would be to re-scale the equations close to
z = 1 and to apply matching procedures afterwards. This strategy however,
though promising, leads us astray from recursively defined approximating series
for u. and a different strategy is needed.
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Figure 8: Difference u.(t,z) — I. (¢, z) for e = 0.01 at different
times t = 0.1, 0.5, 1.0 and 2.0 (from right to left).

Let us check the difference s;*

=y, — I, for small values of ¢, indicated in
Figure 3: naturally, s7! has a boundary layer at z = 1. The equation satisfied
by st is

{ Qs = =05t + €08, s71(0,2) =0, 23)

s7U(t,0) =0, st 1) =—L(1-)

and we deduce from Figure 3 a very important property of (2.3): away from
z = 1 the operator A.[v] := —v' 4+ ¢v" has the tendency to make |s;!| rather
small. From this point of view it is not important to prescribe the boundary
value 0 at z = 0, i.e. we may replace (2.3) by the half-space problem (see
[VaRo])

O We = =0, W, + € 0p W, WE(Ov I) =0, We(ta 1) = “‘Iﬁ(ta 1*)3 (2‘4)



with W € Jx] = oo, 1[. For W, a convolution-type representation is available
in the form

L—z [t . 1~z + 5)?
We(t, ) = — \/1;12 : s732 exp <~L-~ZI;—-11> I(t —s,1=) ds.  (2.5)
N ( Coo2

Since W. solves a “right” boundary value problem, it is appropriate to introduce
the notation

rd = W.

wr

0

£

We put u! = I + 70 (=1, + 1% +70) and observe that the function £? := v
satisfies the problem
N = 0,30 + 0,80, ¥20,1) =1~ =, 26)
$0(4,0) = 1+ 70(,04), ¥t,1) =0, '
i.e. the correct equation, the correct initial condition, the correct boundary
condition at = = 1 and — since |r0(t,0+)| is rather small (see Figure 4) -
“almost” the boundary condition at z = 0.
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Figure 4: Function We(t,z) for ¢ = 0.01 at time t = 2.0

What is the reason for the excellent approximation properties of 1.0 ?
Let us consider the difference s? := . — ul, which satisfies

O Sg = "_0;‘1‘:‘52 +& 0.7::7:'5'27 5?(0 x) =0,
s2(,0) = —r2(t,04),  s2(£,1) =0

From (2.5) we have

1 12
7‘S(t,0+) = L / §737% exp <“Q—+;)—> I(t —s,1=) ds,
Jo

Vadme

where we note that the termn

oy Lo o Lo gy o fo-+1
I{o1—) =1~ —5 erfe <2\/§§F> e erfe <§7L‘77>




is uniformly bounded, i.e. there is K €]0, oo such that
Ve c RV ,Vo € J: [Ie(0,1-)] < K.

Hence we get for all ¢ € R the estimate

1

0

L0l <2Kerfe [ —— ),

P20 < 2 K erte (52 )

where ||.||7 is the supremum norm on Cp(]0, T[). Using the maximum principle
[LSU] we can conclude that

a0 <
[e — uel|oo < 2 K erfe (2\/_)

and thus

l[te = udfloo = O (erfc <§“_i/5>) as € — 0,

Now let us try to derive higher correction terms and let us consider (2.6):
the two solutions u. and u! differ from each other according to the boundary
condition at z = 0, such that one may think to substract from u? a func-
tion satisfying (2. 1) with vanishing initial values and with boundary condition
ul(t,04) — 1 =r2(t,0+) at z = 0.

In principle one may wish to fulfill the boundary condition at z = 1 as well —
but then we would run into the same troubles as for u.: no “easy-to—handle”
representation of this function would be available.

On the other hand, our experiences with half-space solutions are so far excel-
lent and it seems appropriate to consider (the restriction to wy of) a half-space
solution as a correction for u2. To make this idea more precise let us introduce
for a € Cp(J) and (t,y) € J x RT the function

ts*3/2 exp (—(UJJ) a(t — s) ds. (2.7)

Uela(t,y) e

Y /
Vaen Jo
Then U, = U,[a] satisfies
O Uz = —0,Uc + € 05, U, U:(0,y) =0, Ut,0) = alt),
such that it is nearby to set
W= i i= U200

1/2 . : . .
/ is not necessarily a better approximation than uQ:

12,

But, ;7 = u -+ ug/z
verify thlS let us consider the IBVP satisfied by 3¢

to

9,5 = —9, 5l 42,517 SVH0,2) =1~ g,
220y =1, 2V 1) =1, 1-),

10



o 1/2 19 ..
such that the difference 35/ =y, - 2T satisfies

1/2 A~ 1/2 ; 1/2 1/2
ath/ = _“(-)T,SE/ + Ed;r;r,b'g[ s Sg/ (0,11;) = 0,

sY24,0) =0, st 1) = <1l 1-).
From the maximum principle we get

e = (u + w?) o < 10 1)l

where ||.]]7 is the supremum norm on C'z(]0, 7). Using

Lt 1) = — - /'ES*/2 exp Bty r(t —s,04) ds,
¢ \/m 0 des ¢

for ¢t € J, we get the estimate

e 1) = ()(||7'?(.,()+)|\7~) =) (erfc (;3—;)) as e = 0,

1
o =0 <erfc <2\/E>> as ¢ = 0,

i.e. it may happen that ||u. — (ul + 11,;/2)
as |lue — 1Yo

This intermediate result is not entirely surprising: the norm [fu, — ul|s is
determined by the difference of u. and u? at the left boundary. This order
of magnitude is — due to the specific structure of the solution operator U[-] —
also the order of magnitude of I} at the right boundary. (As ¢ — 0 the PDE
Oyue = A.[u.] becomes more and more a transport equation “transporting” left

and therefore

e = (ud + ul?)

~ 1s of the same order of magnitude

boundary values into w). Hence the difference between u.; and ug/ 2 ug + I:
is at least of the order of magnitude of I!(.,1-), i.e. the order of magnitude of
us — ul.

These considerations show that there is no chance to get higher order correc-
tions just by adding half-space terms, which compensate the wrong boundary
condition at 2 = . One has to take into account corrections at the right bound-
ary as well.

Similar to U[-], we introduce for b € Cp(J) and (¢,y) € Jx]—o0, 1] the function

L~y (' 3 (1 =y -+ S)E>
Welt,y) = : 7 exp | = e ) bt 8) ds. 2.8
Vlty) = S [ e (L) b s ds (28)
Then W, = W.[b] satisfies
O W, = —0,We +e0,,Woo Wo(Ooy) =0, W(t,1) = b(t),

such that it iy now nearby to define

rl= W= 1)

wr

11



If we introduce
wlo=1 4l
the difference s! = u, — (u? + u!) satisfies the problem

Opst = —0yst 4+ €08k, sL(0,2) =0,

and using the maximum principle we have
[ue — (ud + ub)loo = O (|1, 00) 7)) ase— 0.

On the other hand it follows as before that

H@@GMMS?WKJﬂMa%<£ﬁ>

and therefore

2
I‘T3(30+)IIT =0 <|:€I'f(3 <21/E>:| ) as ¢ — 0’
Hence, we get

u%—w%wmw=0(km(§;ﬂj as e 0,

i.e. ul is a higher order correction term.

Let us repeat the single steps for the construction of ul out of 2:

1) set I} :=TL [r] := =U.[r2(-,04)]

wr

2) set rli=TT [I1] = —W[IL(,1~)]

wr
3) set ul =1l +rl.

It is straightforward to deduce from 1)-3) a recursive definition of I%,r* and w?
and it can be left to the reader to verify that the sequence

W, wl, Wl )= (L0 Ml B4 )

actually satisfies E1)-E4). The verification of property E5) however - the cru-

clal point to accept (ZZ:o uﬁ) as asymptotic expansion of u. — is a bit

veENg
technical. The argumentation is therefore outlined in a more general setting in

the next section.

12



3 A Convergence Result for Ping—Pong Expansions

The investigations in this section will be settled on the following assumptions
on the singularly perturbed parabolic equation (1.2)

Al) e €]0,eq] with ey €]0, 0o].
A2) ae,be,c. € Cglwr) and f. € Cp(wr).
A3) ul € O%(w).

Ad) or, B € Cp(J).

AB) Problem (1.2) has exactly one Cy-solution u,.

Concerning the beginning condition I of E1) we assume

A6) The function I, € Cy satisfies P.[I.](t,z) = fc(t,z) for all (t,2) € wr and

hm/][ (t,z) (z)] dz =0.

Following £2), 12 and r? shall satisfy an IBVP as (1.2); but with vanishing initial

data and prescribed boundary conditions only at x = 0 or x = 1, respectively.

Due to this observation the functions 2, 70 are quite similiar to 1%, vk with

k € N. In order to keep things simple we shall assume that ¥, 77, v € Ny are
“generated” by the same operators L and Ry, i.e. we assume

A7) Le: Cg(J) = Cy is linear, || - ||7-] - [lxo—bounded,
[ Lellr,00 := sup {|| Le[al{jc : @ € Cp(J), llallr < 1} < oo,
and for all a € Cg(J),

ATa) P, [L:]a]] (t,2) =0, for all (t.z) € wyp,
A7b) (L:]a]) (-, 0+) = a.
ATe)y limyo [ | (Lelal) (8, 2)] dz = 0.

A8) R.:Cp(J) — Cyis linear, || - ||7—|| - ||so—bounded,

| Re|

Tomo = SUp {1 R:bllloc 1 b € Cp(J), ||bllr < 1} < oc,
and for all b & Cp(J),
ABa) P [Rc[b]] (t,z) = 0, for all (t.2) € wr,

A8b) (R.[b]) (-, 1=) = b.
A8c) limyo [ [ (R[b]) (¢, 2)] dz = 0.



In accordance with E3), E4) we set for v € Cy
TL[o] i= Le[~v(, 04)], TT[v]:= R[—v(,1-)]. (3.1)

It is obvious that the operators defined by (3.1) are linear, ||.||so-]|-[|co-bounded
operators with

I lo,00 = 50D { ITE 0]l + 0 € Cay ollow < 1} < [1Zellro

||P2”00,oo < HREH’I‘,OO-
It is straightforward to prove

Proposition 1. Assume A1)-A8) and let T, I'T be given by (3.1). Moreover,
let

0= Lefoe ~ L.(,04)], r0=R. [Be~L(,1=)=10(,1-)],  (3.2)
and for k € N
g:mpyw @:mpﬂ.
Then E1)-E4) hold.

Now we are in the position to formulate the main theoretical result (whose
proof can be found in Appendix 1):

Theorem 2. Assume A1)-A8), Tt T'T given by (3.1) and for v € Ny let 1,7}
be as in Proposition 1. Assume furthermore

B1) There is K €)0,00[ such that for all £ €]0, 0],

(1 + ([T lloo,00)
X (IRellTyo0 l1Bellr + [ elloo + 1 LellTy00 le = Ie(:, 0) ) < K,
B2) There is for each € €]0,e0[ a number ©(e) €]0, 1 such that
lim O(e) = 0,

and for all k € N

[or]| <

0,00

B3) There is Ky €]0,00[ such that for all ¢ €]0,e0[ and all a € Cp(J): if
ve = vela] is a Cy—solution of

PE[UE] = O, UE(Oa .’L') = Oa Us(ta 0) = a, 'UE(t7 1) = Oa

then

/ lve (7, 2)| drdz < K7 |aljr.

14



Then we have for all k € N

oo < K O, (3.3)
k1 K
e — > ul|l < e k 3.4
“b, Z “; 3 1 o @(6) [6(5)] 7 ( )
| v==0 e
ie. BE5) s satisfied with
0 . K k
g()(g) = max{l, ”“5“00}’ f]lst(g) = 1= (_)(_C_) {@(E)] a]‘ €N

Some remarks will clarify the theorem above:

1) In Theorem 2 no strong maximum principle is assumed. This is in ac-
cordance with [GFLRT] whose asymptotic analysis is settled only on a
weak maximum principle. In Theorem 2 assumptions Al)-A8) allow for
a replacement of the maximum principle by the weaker assumption B3).

2) According to (3.4) we have for each ¢ €]0, g9

k
§
Us — g u!

=0

lim
ko0

= {),

oo

i.e. the serie (XY),en, converges uniformly to ..

Actually, this improves E5), where for fixed e €]0,e9[ we only get the
estimate

Eo]

Us — E u
o0

v=0

lim sup
k—no

< limsup gx(e),
k—o00

with a right-hand side perhaps larger than 0.

3) A close screening of the proof shows that the assumption “lim,.,¢ ©e] =
0” is not essential to get the estimates (3.3) and (3.4):

Theorem 3. Assume A1)-A8), L, TT given by (3.1) and for v € Ny
let IZ,rY be as in Proposition 1. Assume B1) and B3) of Theorem 2 and
furthermore

B¥) For each ¢ €]0. 0] there is a number ©(c) €]0,1[ such that for all
keN
k|
mer]| <oy
i 0,00
Then we have for all k € N
1uF s € K [O(e)) (3.5)
oA K :
Ug == ziijf L o [O()F (3.6)
v=0 s - 0(e)




Theorem 3 ensures uniform convergence of the serie (ZZ:O ué),,eNO to

us as long as the estimate of B*) holds, i.e. (EZZO ug)ugNO provides an
approximation for u, as long as ¢ is fired. Here, three aspects are of
interest:

3a) If ©:])0,e0[—]0, 1] is increasing, then we will get from (3.6) for each
n €]0,00[ a number k(n) € N — independent of ¢ €]0,e0[ ! — such
that

k(n)
Ve €]0,¢eol: Ug. ZUZ <n,
v=0

i.e. we can choose a fixed “order” of the expansion to achieve a pre-
scribed accuracy of the approximation, independently of € €]0, ¢].

k v

3b) If © is not increasing, then the norm {ju, — > ), ul

will possibly
[e.¢]
grow for fixed k. In this case an increasingly number (as ¢ — 0) of

terms in the expansion of u; may be necessary to achieve a certain
accuracy of the-approximation.

3c) The additional assumption “lim._,p ©(g) = 0” ensures that u0 is for
all sufficiently small € an acceptable approximation for u,.

4 An Application of Ping—Pong Expansions

In this section we deal with singularly perturbed IBVPs of the form
P.[u] = Opus + Optiy — € Opptic = 0,  uc(0,z) = ul(z), 4.1)
e (t,0) = ae(t),  welt,1) = Be(t), '

where we assume that e, ul, o, 3, satisfy A1), A3) and A4). It can be left to
the reader to verify that A5) holds under these assumptions.
We will make use of the fact that ul € C%4(w) implies that

wl(04), uf (1), (uf)'(04), (uf)'(1~) exist.
In order to avoid technical inconveniences we additionally assume that

D1) (u])"(1-) exists.

£

D2) There is K4 €]0,00[ such that for all € €]0, o]
[ oo llevel, 18: e < K.

According to ul € C%(w) and due to D1) there is G, € C?(R") with ul = G5|w.
Hence, we can assume without loss of generality

D3) For all € €]0,e0[, ul = GE}w with G, € C*(R") and there are Ky, K3 €
10, 0o[ such that for all € €]0,¢p[ and all y € R

(6~ eG) ()] < K (1+55).
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Our aim is to construct I, R, L. such that the assumptions of Theorem 2 are
satisfied. As in Section 2 the argumentation is settled on half-space problems:

Remark 1. The proofs of the statements given in this section can be found in
Appendiz- 2.
a) The initial function /..

We set I, 1= O] L where ¢ € C?(J x R") satisfies

Pd.) =0,  ®.(0,9) = G.(y), P(t0)=ul(0+). (4.2)

We like to derive a convolution—type representation for ®.. This can be achieved
by introducing for (¢,y) € J x R" the function

be(t,y) = exp (sz ) (@:(t,y) — G=(y)).

f
o

Then ¢. satisfies

1
Orde + I‘g ¢: = € Opabe + pey (/)5(0,1/) =0, (/)E(t’o) =0, (43)
where
S YN (comgy — o
pe(y) = exp (=5=) (= GLy) - GLW)) (4.4)

We introduce (formally) the Sine-Fourier transformations of ¢. and p. by
0
S(@:)(1€) = Vi) = [ gulton) sin(€n) d
Jo
o)

S[p.J(¢) = /O pe(y) sin(¢ ) dy,
where £ € R*, such that (4.3) formally becomes

OV, + G +££2> V=S, Vi(0,6) = 0. (4.5)
The solution of (4.5) is given by

S[Z’F](é) < ( t >>>
‘fc f‘f — o 1,“ SXT __.ywmgtf“ .
A9 Tlg + e &2 P de > ’

such that we get applying again the Sine-Fourier transformation [Obe]




for all (¢,y) € J x R", where naturally

Sl 1) = | " h(t,) sin(y &) de.

The arguments of the S¢_,,~operators of (4.6) are products of functions. It can
be expected that S¢_,, transforms these products into convolutions of trans-
formed functions. On behalf of well-known properties of the Fourier transfor-
mation (see, e.g. [Rud)]) it is not very difficult to verify

Proposition 4. Let F,G ¢ L*(R). Assume that
F is odd and G is even.
Then (in sense of L%(R)),

e SIF1a) ) = 5 (Fx C G W) = 3 [ Fly—9) C*[61) de,

2/

where C#¥¢"[(] the even extension (to R) of the Cosine-Fourier transform C[G]

of G:
VEeRY:  Cl)(E) = /O " Gly) cos(ey) dy.

From (4.6) we get with the aid of some well-known Cosine-Fourier transforma-
tions [Obe] for all (t,y) € J x R*

e (t,y) = [p2"  k:)(t, v), (4.7)

where p2% is the odd extension of p. to R and for (¢,2) € J X R,

£

ke(t, z) = exp (*%)
b3 (om (-2) et (5) +ow (52) e (525 )) - 49)

Equation (4.7) involves the odd extension of p, to R. It is however sometimes
desireable to have a representation of ¢. just in terms of p.. To get such a
formula for ¢, we can make use of a proposition, which is again straightforward
to prove:

Proposition 5. Let F,G € LY(R). Assume that
F is odd and G.is even.

Then for all y € RY,

oo

(F+G)(y) = / Fly - 2)G(2) dz

=00

/y F(y —2)G(z) dz + /‘OO Fly+2)G(z) dz — /OO F(z —y)G(2) d=.
0 JO Y
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Now we are in the position to formulate our main result concerning /:

Lemma 6. Assume A1), A3) and D1)-D3). For (t,x) € wr let
I(t,z) ==« ((uwf_’)/ (x) - (ug)l (0)) +ul (04)

0
4 [ e (<2) (o4 ) ~ B dy
JO <

+ :15 /OJ H(z~y) [erfc <;\;Ey_t> + exp (ng) erfe < \/—ﬂ dy
+ %/ODO H.(z +vy) [exp <—g> erfe <%> + erfc <;;—/>] dy
_ %/ﬂ 1.(y) exp (-~—> erfe ( 2\'2%?]) dy

H.(y) = eGlly) — G.(y).

b l

where for y € Rt

Then
1) I. satisfies A6) (with fo =0).
2) I.(.,04+) = ul(0+).
3) There is K5 = K5(Ky, K3, Ky, £p) €]0,00[ such that for all € €]0,¢o{:
el < K.

Remark 2.

1) In applications one may wish to use (4.6) to compute ¢. and pass to
L(t,z) = exp (&) ¢:(t,x) + Gely) afterwards. This strategy is of ad-
vantage 1 whenever the Sine-Fourier transforms of (4.6) can explicitly be
calculated (which is the case, e.q., for Ge(z) = ul(z) = L —u of the
introductionary example in Section 2).

2) The estimate on ||1.]~ does not depend on T'.

b) The operator L..

The purpose of L, is to map left-boundary data @ into Cy such that Pe[L.[a]] = 0
and L.[a](0,-) = 0. The operator L. is constructed as in Section 2 as restriction
of a half-space operator U.. The construction of U, can be performed as in a),
such that one gets for £ €)0,g0[, @ € Cp(J) and (t,y) € J x R,

N

- eins Q 2
Ulal(t,y) == HU:_ s732 oxp (» U S) ) a(t = s) ds. (4.9)

Then we have
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Lemma 7. For ¢ €]0,e0[ and a € Cg(J) let

L.[a] := Us[a,”wT.
Then for all € €]0, o]
1) L. : Cp(J) = Cy, a— L.[a], is linear.

2) For all a € Cp(J) and all (t,z) € wr:

LE[a](t3 55)

! /00 e"s2a<t— v >
V[ a=t es?+z+2\esves?+x
x (1+~—*—/-5‘3~—> ds. (4.10)

Vest+
3) L. satisfies A7T).
4) HLEHT,oo <2.

¢) The operator R..

The purpose of R, is to map right-boundary data b into C, such that P.[R.[b]] =
0 and R.[b](0,-) = 0. The operator R, is constructed as in Section 2 as restric-
tion of a half-space operator W,.. The construction of W, can be performed as
in a) such that one gets for ¢ €]0,¢0[, b € Cp(J) and (t,y) € Jx] — 00, 1],

1-— o 1—y+s)?
We[b](t,y) = \/ﬂlfg i 5732 exp (—%—)J b(t - s) ds. (4.11)

Then one gets

Lemma 8. For e €]0,e] and b e Cp(J) let

R[b] := W[b]|, -
Then for all € €]0,e0][:
1. R : Cp(J) = Cy, b= R.[b], is linear.

2. Forallbe Cg(J) and oll z € w=10,1]:

HRE[bK>$)HT <2 HbHT erfc ( 14_£$> . (412)

3. R. satisfies A.8.

4o N Relloo < 1.
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d) Ping—-pong asymptotics for (4.1).

We wish to define a ping-pong serie as in Section 3 for (4.1). This is done in
several stops We always assume that A1), A3), A4) and D1)-D3) hold. The
operators I'2! are introduced as in (3.1), i.e. I%': Cy — Cy with

) i= L=v(-,04)], TTv]:= Re[=v(-, 1=)]. (4.13)
The ping~pong asymptotics will work because of the following essential Lemma:

Lemma 9. For all e € RF:

. 1
HI—‘Ig © FZHOO700 S 4 erfe <2 \/E> .

Now we-can prove

Theorem 10. For ¢ €]0,¢¢[ let I. as in Lemma 6, L. as in Lemma 7 and R,
as in Lemma 8. For e €]0,¢0] and v € Ny let IY and r¥ be given by (3.2) with
L T as in (4.13).

Furthermore, let ¢, €]0,00[ such that

1 , , ‘ o
4 erfe <2 ﬁ) =1, de e, =0.3778422150:. .,

Then, for all ¢ €)0,e,[ the sequence
(Wl wl, Wk )= (00 el e )
satisfies E1)-FE4),
] | <3 (Ky+Ks),

where Ky 1s as in D2), Ky as in Lemma 6, and for all k € N we have

k
“ <6 (K4 + Ks) <4 erfc <2-7:>>

1;(ﬁ:<jﬂ)) <4m( <2 \/ﬁ>>k/

=

=0 f
yeralal<dal =} «' Y el ‘va & v . U a Q) f ; Il 1] 9 o
Moreover, the ping-pong-serie (Zgzﬂ u,:)”t . converges uniformly to w. as
Vo 00! 0
| v
; | =~ ¢
lm || — E usll = 0.
e < 7

Remark 3. The ping=pong serie for u. (ommrqps for all € €)0,e,[ with ¢, as
given above - independently of the choices of ul, aw, Be (as long as A3), A4),
D1)-D3) are satisfied). The norms of these functions determine to some extent
the rate: of convergence of the ping=pong serie, but not whether the ping-pong
seéries converge at all.



e) Discussion

In accordance with the discussion of Section 2 one might expect that I. + 12 is
away from z = 1 for all sufficiently small ¢ an excellent approximation for u..
This is indeed the case, because it readily follows from Lemma 8 for all § €]0,1]
that

Vi € J,Vx €]0,6[: [7‘2‘ (t,z) < 6 (K4 + Ks)erfc ( 1= 9) ,

2ve
such that due to Theorem 10

sup Jus — (L +19)| (h) <6 (K + K5) 22 ¢
(t,2)eJ%]0,0] 1-C
vi—-86
C = erfc (77;")

i.e. I + 12 — u. uniformly on Jx]0,6[ as ¢ — 0.

Now let us discuss the behaviour of I, 4+ 12 as ¢ — 0. Here the initial and
boundary data will play a prominent role. In order to keep things simple let us
assume that u! = u! and o = a € C([0,T7]) are e-independent. Then it is easy
to deduce from lemma 6 and lemma 7 with the aid of Lebesgue’s dominated
convergence theorem

V(t,z) €wp: Iz —t#0, then liII(l)(IE +10)(t,2) = uo(t, x),
£
where
uy . + wr = R

ul(z—t) |, z2—t>0

alt—z)+ul(0) , 2-1<0
is a weak solution of the transport-equation
Oyug + Opug =0, up(0,z) = ul(z), wo(t,0) = aft).
A close screening of the estimates actually gives a more detailled result:
I. + 12 = ug uniformly on each compact K CC {(t,z) €wr:x —1t# 0} .

Furthermore, since I, + IV is uniformly (i.e. independent of ¢ €]0, &,[) bounded
on wp, we deduce from the pointwise convergence almost everywhere

Vp e [1,00): lim |luo (s, 2) — (I + 19) (s,z)’p dsdz = 0.

e—0 wr

Uniform convergence on wp of I, + lg to g is usually not available because the
limiting function wug is continuous iff the additional assumption «(0) = 0 holds.
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5 Conclusion

In the previous sections we derived a recursive approximation for singularly
perturbed parabolic equations of the form
Otte = ety + beOptte + CeOppte,  ug(0,2) = ug(:z)

for = €]0, 1] with time-dependent boundary conditions at z = 0 and 2 = 1,
repectively. The approximation is derived from sucessive solutions of related
half-space problems, where the intermediate boundary conditions at © = 0 and
x = 1 are alternately shifted to infinity. This motivates to call the recursive
approximation a “ping-pong” expansion.

We gave a detailed convergence analysis of the new asymptotic method and ap-
plied the method to a certain model problem. As mentioned in the introduction,
our present investigations originated from an asymptotic analysis of a singu-
larly perturbed two-phase Stefan problem and the application of ping-pong
expansions to this problem is currently under investigation.
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A Appendix 1
Proof (of Theorem 2): We observe that

7“? =TT [pe] 3 Pe = “Rs[ﬁel + I + lg-
Hence by (1.3) we have for all k € N,

k k
= (mlorr) (), rE=Tro[rtor] [o)

such that we get
k
wb =18+ 7k = (id+ 7)o [PLoTr] [p].
It follows that

k : r l r k
oo < lid + Tl oo || [T oT2] | ol

00,00

and due to B2)

[¥llse < (14 1Tl 0) O [ llo- (A1)
Now we like to estimate ||p; [|os: from
pe = —Re[Be] + I + 10 = —Rc[B:) + L + Lc[ae — I.(,04)),
we get
el < IRellzoo 16 iz + 1 Tello + N2elioo e = T, 04l
and due to B1) and (A.1) one has
oo < K [O(E)F,

which gives estimate (3.3).

Moreover, according to B2), we have ©[e] < 1. Hence the serie (2Y),¢n, — with
YYo= ug +...+ul, v e Ny - converges in Cp(wr) to — let’s say — w.. From
(3.3) we have for all k£ € N the estimate

k=1
l We — Z Uy
v=0

Hence, in order to prove (3.4) it suffices to show that u. = w,.

Let us introduce the function s’g =y, — Zif, which is a Cy—solution of

Wy — E’:“lH =
oo

> K
<Y oo € —— [O(e)]".
- VZ;; 1—0(¢)

P.lsf =0, s(0,2) =0, s5(t,0) = —rF(t,04), sF(t,1) = 0.

Then, due to B3), we have the estimate

‘/' sk (r, 2)] drdz < Ky [Ir¥]lr- (A2)

24



On the other hand
k
b =Tlo[rlert] [o,
for all k& € N and therefore, due to B1) and previous estimates, we get

Irfllr < K [O()]F,

such that we deduce from (A.2)

F(r,2) drdz < K K [0@E)]F =0 as k— oo,

k
[
- u}T

which immediately gives w.(t,z) = u:(t,z) for almost all (t,z) € wp. Since wy
and 1. are continuous, it follows that w. = u,. U

B Appendix 2

Proof (of Lemma 6): It is easy to deduce from (4.7) that ¢. satisfies

- 1 i
dt(fsf (toe ZJO) + I; ((65 (tOS 7/0) =& dac:r:d’e (tO» !/0) + ps(t()a I/U)a

forall (tp,yp) € J x Rt with
H(t,0+) =0, and lim/ (e (t, 2)| dz = 0.
=0/,

From these properties of ¢. and due to I, = (I)E]w with

D (t,y) = exp (*%) be(t,y) + Gely)

for (t,y) € J x R" one readily obtains 1) and 2)
The function I. is of the form

I(tx) = ENa) + EX @) + E3(t,2) + BNt 2) — ES(t,2) — ES(t,2),
where (¢,2) € wr and we estimate term-by-term: first,

T

Ei(x) = uf(x) + / HL(¢) de.

S0

According to D3), D4)

, : 1
o 1 = s r*] - a @ -
Ei(n)] < Ky = Ky + Koy (1 T n K3> 5

where K{ only depends on Ks, K3, Ky. Concerning E?(x) we have

B0 < 2K

V)

1 ,. ) :
exp <-~(/—> (1 + 4™ dy < 4Ky = Kg),




where K2 only depends on Kj. We proceed with an observation whose proof
can be left to the reader:

GkeRt: WYy, deRt: o erfe (51; +75> < K.

Hence
3 Ky [! K 3
Bt o)l < = [ (L+y™) 24 4] dy < (24 8) Ky =1 K5,
0
where K2 only depends on Ky. The first term of Fy(t,z) can be estimated as

o0
] t—y
H.(x +vy) exp|—=) erf : d
/0 el +y) p( 6) 10<2 E) y'

* K Y
ng/ (L+ (z4+y)"3) exp —— ) dy
0 0

L
2

where K only depends on K>, K3,¢g. In order to estimate the second term of
E4(t, z) we need an auxiliary result whose proof again can be left to the reader:

: 1
Yy eRY . e erfe(y gmin{l,*w——}. (B.1)
o) VY
We observe
1| [ t+y
5/0 Hg(cc+y)erfc<2 ?t) dy‘
Ky ™ K t+y
<2 : 3 :
<5/ (1+(1+y) )erfc<2\/m dy

and pfoceed by a case-distinction. If 4¢3 < ¢, then

t+y 1
Vy € RT . —
ve 2ol

and due to (B.1),

£ 1 2y/et t 2 2
erfe Yy < — £0 exp »( +y> < exp <-—J——),
2+/¢ept ﬁ t+y 2+/egt 2¢eg

such that we get in this case

1] [ L+
2/0 H.(z + y)erfc (2\/%> dy\

0]
<2 y)Ks ~ L) dy = kP
< 2/0 (1+(1+y) )eXp< 25(]) y = K3,
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where we note that K2 only depends on Ko, K3,¢¢. If 4et > mt, then

A

2 S()t‘ lb;/zj

and therefore due to (B.1)

2
) Y ?/\/77 yom
s < erfe : ) 1663 )
erfe <2¢T> < erfc <2m> < erfe (45‘/2> PXD< 1658>

3
0

such that in this case

/ H.(z + y) erfc <LL> dy

Vet
Ky [ K yin 6
< 7/0 (l+(1+y) ‘3) exp ml—()‘gg dy =: Ky,

where we note that K¢ only depends on Ky, K3.69. Summarizing the discussion
we have in any case

1 ge el
H(z +y)erte ( ) dy
/ R

2

< K$+ K,

and thus
|EX(t 2)| < Kd 4+ K2+ K8,

4 5 6 s » 4 . .
where K3, K2 and K? only depend on K3, K3, 9. E2 can easily be estimated
as

. 1 [ ? t—x—1y
B (o) < = {H, exp > erfc | ————=
B <y [ ] esp (L) et (S222)

e v e K3 y IR Tt
< Ky (1+vy )exp - | dy =: K3,
Jo

€0

/\
ul IQ’

dy

where K¢ only depends on Ky, K3, ¢, It remains to look at

geel

. 1/~ x t+x 4y
ES(t,e) == [ H( (— erfe == ) dy.
2 (t,x) 5/, ¢(y) exp 6) br6< Vo >(y

From the estimate

. . §— 1
Yy, d,u € BT explu) erfe(y + du) < exp <_115§Ni> .

we have




such that

K o -
B < 2 [ ) e (<L) ay = R
JO

€0
where the constant K 58 only depends on K5, K3, &0 O
Proof (of Lemma 7): The verification of 1)-3) can be left to the reader. Con-

cerning 4) we have for all a € Cp(J) with |la|lr <1 and for all (¢,z) € wr the
estimate

\L[]

/

2
( z ) e’ <1+~—‘/—%—‘L) ds
€82+ x4+ e sV4des? + 4z

N
\/E €s“+x
2 .
< a(t z ) e’ <1+—\/ES—> ds
ﬁ st £82 + 1 + e sVdes? + 4x Ves? +x

el (i) ws e aes

O
Proof (of Lemma 8): The verification of 1), 3) can be left to the reader.
Concerning ). we have for all b € Cp(J), ||bllr < 1 and all (¢,2) € wr the
estimates

| R[] (t, )]

-z [! (1~xz+s)? ~3/2
‘2\/_ b(t — s) exp (———*) s ds

des

- T (].—'E+S)2> _3/2
< b(t — s - d
< 222 [ iem ( s s

des

—z [t 1—z+s)?
4dme Jo

des

B Ooexp <~—((lﬁx)a+%)2> do
\/we,ﬁ de

<1»a:/°° (1—2)20? o — 2 /°° o= s
= Ure Jo P de 'U_\/%‘ oy

*erfc(luﬂU) <1
Vite)
It remains to prove 2): let b € Cp(J) and (¢,z) € wy. For the sake of brevity
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we put 0 := 1 —z. Then 6 €]0,1[ and we have

| R [b] (2,

l—a [ (1 -+ 9)2> ~3/2
= b(t —s) exp | ——————) s 7 ds
Vidme, ) p< des

)
0 11bllr (9+» oy mwT/w (Bo+ 1)
< b K s s — A e N O d
- \/47r5‘/0 P des ’ d Ve '?}? oxp 4e 7
2
< Olltlx (0o +3)
, e Al d
\/ﬁ exp P o
. 9 1 2 56 0 1 2
o ()HbHT /\ﬂ’ exp __(_u(ii_l)..‘ do 4 / exp _M do
me \Jo 4e J 3 4¢e

o 5
Olbllr [ [ (0o+2)7) 1 /‘“’0 0o+ 1)
= S - = , 2 o it T )]
— _/“1 exp i e do +. 71& exp P do
y )

2
AL A G () .
=" . exp | == P +1) do
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the estimate 2) in case when z = 0 or x = 1 follows from this result by a
continuity argument. O

Proof (of Lemma 9): Let v € Cy with |[v||» < 1. Then we have due to Lemma
7and 8
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Proof (of Theorem 10): The result will follow from theorem 2. We therefore
have to check its assumptions. By assumption 'we have Al), A3), Ad) and A2)
1s trivially satisfied. Assumption A5) follows the standard theory of parabolic



PDEs, see e.g. [LSU]. A6) follows from Lemma 6, A7) from Lemma 7 and A8)
from Lemma 8. Due to D2), Lemma 6, 7, 8 we have || ||cc < K5 and

(HREHT,OO HﬁEHT + HIEHOO + “LEHT,OO ]lag - IE(-70+)||T)
< (1-K4++K5+2(K4+K5)) = 3(K4+K5),

and ||I'%|lco,co0 < 1. Hence B1) of Theorem 2 holds with, e.g., K = 6 (K4 + Kj).

B2) follows from Lemma 9 with O(¢) = 4erfc (ﬁ) B3) follows from the

maximum principle. U
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