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1. 1. Introduction Introduction 

2.1 We want to study solid objects in real three dimensional 1.1 We want to study solid objects in real three dimensional 
space aiming at two issues: space aiming at two issues: 

(il) modelling solids subject to boolean set algebra, (il) modelling solids subject to boolean set algebra, 
including wire models, including wire models, 

(i2) determining the behaviour of moving solids, e.g. when (i2) determining the behaviour of moving solids, e.g. when 
they collide and the resulting points of contact. they collide and the resulting points of contact. 

This This research has research has been been initiated initiated by the FORD Motor by the FORD Motor 
Company, Company, Cologne. Cologne. It is motivated by the intention to It is motivated by the intention to 
provide for a model of an automatical car gear, which provide for a model of an automatical car gear, which 
gives a high precision basis to the optimization of moving gives a high precision basis to the optimization of moving 
tolerances. tolerances. 

1.2 Basically we have to choose a suitable representation of 1.2 Basically we have to choose a suitable representation of 
the intended model. the intended model. In CAD the choice will be somewhere In CAD the choice will be somewhere 
between sets of formulae, between sets of formulae, describing it as a mathematical describing it as a mathematical 
entity, entity, and collections of coordinate values. and collections of coordinate values. 

Commonly in CAD surface patches are used, thereby linking Commonly in CAD surface patches are used, thereby linking 
machine machine representation to coordinate values representation to coordinate values (see e.g. (see e.g. 
[E-S] , [N-S]). [E-S] , [N-S]). This is well suited to graphical display This is well suited to graphical display 
and finite element analysis and finite element analysis for instance. for instance. To our issues To our issues 
however this approach however this approach implies time and space consuming implies time and space consuming 
brute force searches involving great numbers of patches brute force searches involving great numbers of patches 
(cf. (cf. [Gr]). Still not always good approximations to [Gr]). Still not always good approximations to 
intersection curves, intersection curves, as desired in (ix) result. Concerning as desired in (ix) result. Concerning 
the second issue these methods do not guarantee collision the second issue these methods do not guarantee collision 
points to be found and little can be done regarding their points to be found and little can be done regarding their 
exactness. exactness. So the requirements of an intention like the So the requirements of an intention like the 
one above seem to be hard to match. one above seem to be hard to match. 

1.3 We want to introduce some of the geometrical 1.3 We want to introduce some of the geometrical ideas of ideas of 
differential differential topology topology and and algebraic geometry to link algebraic geometry to link 
machine representation to mathematical description. machine representation to mathematical description. 



P  

Our treatment rests on a careful a priori analysis of the 
families of real (semi)algebraic sets in question' with 
respect to mappings which can be chosen quite arbitrarily, 
the underlying scheme being what we shall call a 
stratification by rank. For intersection curves for 
example one deduces how they can be built from/represented 

by Usingular points" and parametrized arcs. These are 
given by few algebraic criteria and parametrizations which 
are closed form in almost all interesting cases and one 
variable problems else. 

c We expect ta achieve a very economical machine represen- 
tation and a quick production of igh precision data 
meeting the requirements intende 

1.4 In this paper we primarily want to explain a conceptual 
idea which we believe is new. To this end we treat a not 
too complicated special case first, becoming more involved 
and general later. So we start by analyzing the 
intersection curve problem, basic to the first issue ~I_ 
above, for two arbitrary cylindrical surfaces, deriving 
the representatian-of intersection curves. 

Next we show how to solve the collision point problem of ---- -- 

E 

the second issue for two solid cylinders, one of them 
moved by an arbitrary translation or rotation. Not 
surprisingly the intersection curve problem comes in here. 

In part three we try to give an idea of how to proceed in _I_ 
general. The computations of the first parts fit in here 
but we want to convince the reader that much more can be 
achieved. 

The fourth part on pragramminq indicates how to integrate 
things to get and manipulate moving wire models. 

In the appendix we give a more rigorous treatment of 
stratification by rank, We show how the representation and 

i) This applies to families of solids de ined by E&ZIER- 
or SALINE-patches too. 



the type of an intersection curve fit into the 
representation of the whole solid. We propose the notion 

x of stratification as the proper mathematical framework for 
solid geometry. 

1.5 We wish to mention that, along with the studies on two 
arbitrary cylinders, we have built a prototypical computer 
program to explore numerical realizability and behaviour 
of our concept. 

1.6 Acknowledgements: The author expresses his thanks to the 
FORD Motor Company, Cologne, for supporting this work, in 
particular to . . . Hierlwimmer and . " * . . SchultheiB who 
initiated it and accompanied it with their suggestions. 

The author is indebted to Professor Neunzert of the 
Laboratory of Technomathematics at the University of 
Kaiserslautern, whose sponsorship rendered this 
cooperation possible. 

The members of the singularities/algebraic geometry/topo- 
logy group at the University of Kaiserslautern were of 
great help in discussions on the mathematical background. 

2. Two grinders: a case study _- - 

Cylinders of course are ubiquitous in technical geometry, 
occurring as bars, tubes or drilling holes etc. We suppose 
a general infinite cylinder to be iven by a point p on 
its axis, a directional veetar u (Of unit 1 enntmh 

eventually) and its radius r, 
\-- - - - -  -  - - “ -3 -_-  



Taking an equation f--O for its surface", we can 
assume one of the sectors 

fL0 or EL0 
of 3 to be rVemptyVt or "fulX1@, i.e. solid. _--___ 

Similarly for a solid composed of two cylinders the 
solid region, the surface and the intersection curve of 
the two constituting cylindrical surfaces are determined 
by equations and inequalities. 

2.1 Intersection curves of two cylindrical surfaces Sl,. S2. 

2.1.1 By a suitable translation followed by a rotation we 
assume them to be in a standardized wsition where ..--____ w-e 

S1 is given by p(l) = [ H 1) u(l) = 1 i lr any r(I), 

S2 is given by some arbitrary P(~), LX(~), r(2). 
- .  -  -  

P  

so one pair of cylinders in tandardiz~d ,position 
corresponds to one point in a parametrizing set _____ Jc 
subset of the total space of parameters 
coordinates 

rw, r(2), pia, 42” k = I, 2, 3. 

In fact this set is the HIEBERT-scheme of all pairs of 11_--1__ __1___1 
cylinders in standard position in 

2) On one hand each real algebraic set can be described 
by one equation (the real zero set of fl)...l f, is the 
same as that of g := fT+*..+f$). On the other hand an 
algebraic subset of 3 is purely 2-dimensional if and only 
if every polynomial function which vanishes on it is a 
polynomial multiple of one certain polynomial function 
defining it (see [PI 2.3.13, 2-3.14). 





* subset T of n(Sl) and z as a function 

TI (a,fi) I---+ Z(@lfi) 
which is one-to-one onto the arc. 

2.1.4 Clearly (1) is quadratic in z and can be turned to 
the form 

(1) Az2 + Bz + C = 0. 

Keeping the side condition (2), this can be used to 
determine z on one hand. On the other hand (1) and (2) 
decide whether t exists at all, i.e. where to look far 
the parametrizing subset T c n(Sl). z of course exists 
if and only if along with (2) 

(la) A*0 and B2 -AC&O 
or (lb) A = 0 = C (B = 0 follows here) 

can be satisfied. 

Under (la) there are two values for 2 (counted with 
multiplicities) and for an arcwise parametrization we 
have to select one, If (lb) holds the two cylinders are 
parallel, There exist infinitely many solutions to z and 
the arcs, in which S1 and $32 intersect, are one or two 
straight lines, or Sl and S2 coincide, Clearly one 
obtains exactly two general wametrization formulae in - -w-e 
closed form. 

2.1.5 Having dismissed of the variable z in (la)l (lb) we can 
push the question of existence one step further. We 
switch to the boundary or exceptional conditions on 
(cflfi> E T c C n(Sl) by taking equality in (la) instead 
of . II &II . 

(la) f A * 0 and B2,- AC = 0 
or (lb)' A=O-C 

keeping (2). Together they determine the subset 



* 
D, := t (a,fi) (I n(Sl) 1 B2 -AC=O) 

of n(Sl) which we call the discriminant of nlC. L 
I 

e 

It is the image of the singular set of nIC which bounds 
the arcs to be parametrized or coincides with them if 

5 they map to a point. 

2.1.6 Both (la)' and (lb)' turn out to be equivalent to sets 
of quadratic equations (again!) in (oc,B). 

As above with z, these can be used to determine (oc,fi) on 
the boundary of T on one hand and on the ‘other to decide 
on the existence of these points and thus of T itself. 

Once more we have to discuss the vanishing of 
coefficients and discriminant of the respective 
equation. The union of their vanishing sets D (keeping 
(2)) is a subset D of $?, called discriminant of the --- - -- 
intersection curve problem. .- 
D seems to be the image of the singular set of the 
projection R3 x R8 ----+ R8 restricted to the family 
of all standardized cylinder pairs. 

2.1.7 In OUE- casi? D is interpreted quite simply as 
characterizing non-generic or exceptional values of the 
distance d between the projections of the axes of our 
cylinders. 

(4 a)l 

<l 

i\ 



2.1.8 We are left with the variables 

r(l), r(2), sky ~(2) k = 1, 2, 3 

whose value characterizes the intersection curve 
problem. 

We define the type of an intersection curve by the 
number of its parametrized arcs, the ranks of n/C within 
them, and the ranks of nlC in their endpoints. 

AS r(l), rw, pw, u(2) vary, the corresponding type 
will not change unless D is crossed or, varying within 
D, unless certain subsets of D are crossed (viz. 
A=(-)= C within B2 - AC = 0 in our case). So x and D 
are stratified by the type conditions into certain 
subsets which can be seen to be semialgebraic (for this 
notion see the.appendix). 

2.1.9 We are ready to put things together now and define the 
representation of an intersection curve to be given by 
the following data: 

(r-1) the data of the two intersecting surfaces Sl, S2 

(r2) the endpoints of the parametrizing subsets 
of n(S1). 

This representation shows how to build the intersection 
curve from its parametrized arcs using the two general 
cylinder/cylinder parametrization formulae of 2.1.4. --- 1_1. 

2.1.10 Finishing this section we cive nictures of the distinct-. 
4 L 

types of cylinder/cylinder intersection curves on the 
next page. 



case (la) 

u 

* 

* 4, 440,0~ 

p’ _ r(2) 
. -P- 

I* 

i 2,1+il, (44 *2, .B 

L 
case (lb) 

4 *2 00 

* 

The curves are marked by #arcs, (type of left endpoint, 
type of right endpoint). The non-intersecting case, to i 
be marked 0, has been left out. 

This classification is complete and each class 
corresponds to a connected component of \ D (these 
classes are marked with an *) or to one Ptstratum@8 of 

* D in the HILBERT-scheme 

2.2 Contactpoints of two moving solid cylinders. -- __-I 

According to the preceding discussion two solid 
cylindrical bars can touch in essential1 

(4 al (4 b) 

Q 

v 



2.2.1 We assume cylinder S1 to rest in place and allow 
cylinder S2 to move in two ways, namely 

(ml) S2 is translated along a directional 
vector v (of unit length if suitable) I 

or (m2) S2 is rotated with respect to some axis, 
given by a point q and a directional 
vector v (of unit length if suitable) 

In fact, we can assume Sl in the same position as before 
(2.14. So now we have a standard situation, varying 
according to the translational resp. rotational 
parameters. 

2.2.2 We just look whether the varying standard situation 
parameters hit the discriminant D of (2.1.6)3 by 
substitution: 

(ml) P(~) is replaced by P(~) + hv 

(m2) P(~) is replaced by Bv (~(~)-q) c q, 
u(~) is replaced by 0, u(~) 

where 0, is the orthogonal matrix of a general rotation 
of 3-space with axis vector v, parametrized by (a,~) on 
a unit circle. 

2.2.3 The discriminant equation simply gives a quadratic 
equation in h in case of (ml). From (m2) at first look 
one obtains fourth-degree equations in (6,~). By.taking 
the contour lines of n(s2) instead of its axis however 
(see 2.1.7) they can be split into second degree 
equations, Anyway all equations can be solved in closed 
form again. 

As to programming we have an alternative here which 
occurs quite frequently in the present context. Either 
we solve numerically for CI, T or h here, move the 
cylinders to the respective position and compute the 
contact points as degenerate intersection curves (left 
endpoint of arc = right endpoint), 

3) We remark, that it is not reasonable to look for -- 
further touching conditions. 



Or we solve algebraically for u, -- f or A, substitute the 
expressions obtained in 

%J(P(2)-s) + g, e&l(2)) or p(2) -t” hV 

respectively and derive formal, closed form solutions 
for the contact points. 

Mathematically of course both amounts to the same. 

3. Towards stratification 

We try to give an idea of stratification by rank. A more 
rigorous treatment is postponed to the appendix. 

3.1 As indicated in section 2 already, starting with one 
equation 

f=O 

(f a polynomial with real, coefficients) for an 
algebraic surface, we further get the regions 

f .L 0, EL0 

of space which can be considered the empty or full -- 
regions of a solid as desired. 

Note, that *f or f2 give the same surface but different 
regions and remember that the respective gradient always 
points to the ttaOvf side, 

3.2 To get more complicated solids we can of course form 
intersections or unions of one-equation-solids (hyper- 
surfaces, see [PI 2.3). A finite solid cylinder for 
example is the intersection of an infinite cylinder with 
two half spaces. This leads to the general definition of 
a solid as a semialgebraic set, Of course one will try 
to restrict to some suitable set of primitives. 

For the intentions of 1.1 

M 

plane, cylinder, cone, sphere, torus 

have been proposed. Mathematically these are 

distinguished clearly by their low genus (O,l,O,O,l 
respectively). 

However also solids defined by ElkZTER- or SPLLNE-poly- 



IQ  nomial patches fit into the definition of solid we use 

(the point is in how we use them). 
I 

3.3 There are several particular subsets of a solid: its 
interior, the smooth and the singular points of its 
surface (i.e. singular points like the tip of a cone or 
those lying on several of the constituting surfaces). 

\ 
The singular points of the surface form the wire model of 
the solid. Intersection curves belonging to them maybe 
meet or have singular points themselves. Of course the 
representation of intersection curves has to take their r\ 
intersections and singular points into account. 

* This partitioning is the first, absolute stage of 
stratification. 

3.4 We introduce a mapping TI to order to get a 
description of a solid with respect to its image under n. 
In fact n can be chosen quite generally. 

The second, relative stratification stage subdivides the 
subsets obtained so far into smaller smooth strata on --- 
which the restriction of n has constant rank. 

L We get one set of strata parametrised by their image, the __I- - 
restriction of 1~ to them being l-1. They are pieces of the 
surface of the solid or are the ~ar~m~trized arcs of 
section 2. 

The other strata constitute the interior of the solid, or 
border the parametrized strata or are Cartesian products 
essentially. 

The stratification by the rank of ~1 we have obtained thus -- 
tells how to build the solid from parametrized and 
exceptional subsets. 

The mapping of a solid onto a screen of course too is a 
mapping in this sense and the related stratification for 
instance gives the contour lines of the image. 

R 3.5 We make use of course of the equations of the image of 
parametized areas/arcs and their boundaries (see 2.1.5), 

I i.e. the images of strata. Now they are semialgebraic and 
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there are general methods to commute effective ~. -!I_ y the 
image of semialgebraic sets (equations and inequalities) 
under all the mappings we have in mind (see section 5). 

One can use classical elimination algorithms - modern 
treatments in the context of CAD have been given by [GO], 
[G-S-A] , [ M-T] for instance. Only recently these 
algorithmus have been supplemented by the new standard 
base approach due to HIRONA and BUCHBERGER (see e.g. 
[L-J] ) e 

4. Programming considerations ____, 
4.1 We give a sketch only. A computer program solving the 

"wire model" and the llcollidin solids" problems could be 
structured as follows: 

(pl) c 0 n t r 0 1 section: receives requirements from 
outside and calls appropriate actions; location of 
the wire model repre~~~~~~ion. "- 

(p2)inte r s e ctio n curve section: 
routines computing the representation of specific 
surface pair intersections. --___~l-_ 

(p3)inte r s e ctio n point section: 
computer intersection points of pairs of inter- 
section curves (resp. of triples of surfaces) 

(~4) g e n e r a 1 mathematical subroutines. 

(~5) C A D - background defining requirements 
and receiving data produced 

4.2.1 The representation of intersection curves as computed in 
(~2) by (2.1.9) will consist of 

(r2) the endpoints of the parametrizing subsets of n(S1) \ 

essentially, the intersecting surfaces being input. 

4.3. The representation of a wire model resides in (~1). It 
consists of a graph with the data of the involved 
solids/surfaces as nodes, the data of their inter- 
sections on the solid to be modelled as edges, and some 
additional information on other singular points, contour 
lines etc. as desired. 



If a new mathematical solid (a primitive) is added or ! 
subtracted from the model, the graph is modified as 
follows: I 

(1) The surface data are stored as a new node, I__ __I_.- 
solid/empty regions indicated according to whether 
to add or to subtract the new solid. 

(2) Intersection curves with the existing surfaces are 
computed. 

(3) Intersection points of the new curves from (2) among 
themselves and with the old ones are computed. 

it 
At this stage the new curves of (2) are subdivided into 
their natural arcs and further into sub-arcs by the 

* intersection points of (3). 

(4) If an endpoint af a sub-arc lies inside the *lemptyV1 
region of one of the constituting sufaces it is 
omitted: otherwise it is kept as a new %e of the 
graph representing the wire model 

4.4 Additional features -----.L-- 

4.4.1 Sometimes one wishes to have only a certain number of 
points on an intersection curve, with a predetermined 

i* spacing or distribution, This can be achieved using 
grad z (as we' did in our prototypical program) or 

Y approximations to arc length, 

4.4,2 An&her important fs~tur~ are sf fset curves to 
intersection curves C = SInS2 as the paths of a cutter 
touching both SJ. and S2 (cf. [F-P] p.268 ff, where the 
offset curve is the path of the center of the cutter) or 
as the boundary of a welding seam. 

&AE 

P 

In *leachll point of C we cansider the plane E 
perpendicular to C. Then a disk of prescribed small 



* radius in E is computed, which touches both S+lnE and S2nE 

d 

on a prescribed side of SI and S2 respectively. The 
touching points are displayed. This approximates the path 

of a ball rolling along C while touching both SI and S2. 

aendix: Stratification by rank -- II -- 

Al. Our computations of section remind of the concept of 
stratification of sets and mappings which was introduced 
by WHITNEY and THOM, We believe that this is, general as 
it may look, the economic and effective mathematical 
framework for the geometry of real solids, which moreover 
provides for a proper unde~sta~~i~~~ 

For reference see [T: 1954, 19691, [Ma], [G-G]. 

As an attempt let's describe a stratification which allows 
to do a computation like ours for arbitrary solids (semi- 
algebraic sets) with respect to a large class of mappings. 

Its range of validity is greater than' that of the 
so-called THOM-BOARDMANN-stratificatian, with which it 
coincides for smooth solids and lfgeneric"V mappings (see 
[G-Gl). Much finer stratifications have been employed in 
singularity theory (see the references). 

For illustration we take, say, a solid S, composed of two 
solid cylindrical bars SIF S2 in standard position (as in 
2*) F intersecting in a proper curve as depicted below: 

A.2 Definition A ~1____ (family ~3 solid(s) is a semialgebraic _I__.~ - 
* subset of ( one that is obtained by a finite 

combination of union, inte~~~ctio~ and taking complements 
of subsets of ( 3 given by conditions of the form 

f 1 0, f a polynomial with real coefficients. 



v Examples: 

(i) the solid S = Si v S2 above, 

(ii) any solid defined locally by BBZIER- or SPLINB- 
patches 

(iii) the family of all pairs of cylinders in standard 
position 

A.3 There is a decomposition of every solid into its interior 
i and its boundary aS = S-A . If it is not empty, !5 is a 
smooth three-dimensional, submanifold" M3 of R3, 23s is a 
semialgebraic set again, which decomposes into the semi- 
algebraic, at most l-dimensional singular subset (BS)sing 
and its complement. aS-(~S)sing (if not empty) is a 
smooth, 2-dimensional submanifold M2 of R3. 

(sS)sing finally decomposes into a set of points and a 
smooth, l-dimensional submanifold M1 af 3* The remaining 

set of points forms a smooth, O-dimensional submanifold M" 
The manifolds Mi may Rave several components, may 

be compact or not, even empty. 

This is WHITNEY's rank-stratification of S and we call it 

A.4 The absolute stratification step. Split S into a finite 
union 

S s M3 v M2 v Ml v MO 

af disjoint smooth submanifolds Mi (i=O,1,2,3) of R3, with 

4) BY (smooth) manifold we mean analytic manifold 
without boundary. Any (semi)algebraic subset of fil without 
singular points also is an analytic submanifold of fil (see 
IPI 2.4), 



I: Mi, k = 0,2,2,3, dim Mi = i 
i=O 

semialgebraic. The connected components of the manifolds 
Mi are called the absolute strata of S. 

A.5 We introduce now the projection 

n:R3 -=----+ R2, n(x,y,z) = (x~Y). 

It maps every semialgebraic subset of 3 to a semi- 
algebraic set in R2. The image can be effectively computed 
by the methods of 2.3.4. 

P 

A.6 The relative stratification step: Split a _11_4 smooth, 
4 m-dimensional manifold M (to be thought of as one of the 

Mi above) with respect to the restriction n[M of the 
projection n into 

3. 
M= u P"(n) 

j-0 -0 

such that the rank of nlM will take on the value 

min (m, 2) - i0 

equally in each point of x10 (n). Note that all the sets 
P 

X"O(n) are semialgebraic. 

rl ,I ,._ -.. .-.. ._. _ , 
h A -.- .I. _.. -.'- , 

I, * " --. ' 1 I \ I __ . _. ' I ‘/ I ' G",' ..'. .* '. 
/ \ 1 , ," ' 1 
\ .I" I 

I‘ ' I I I \ ,' -- -- . _.... _ 

M's $: ~0(~(i7i) w- M” 

Remarks: - 

(i) Gl(nlMl) is the sin its image under n is the 
discriminant af 2.1.5. 

P 

s 





P One last relative stratification gives the Sets 

* . . 
';;;;:;;yf' 1 := Z(nlmfy) 

01 I 

which are semialgebraic. 

They are 1*41fiV-dimensional smooth manifolds in case they * , 
are open in the respective E+"'?i and points else. 

IOf 

A.8 The following tree-diagram many visualize the strati- 
fication prosess; its leaves are the strata; dimensions P 
are indicated in the form IV4 dim'! 

,\ 
s 

I 
abs 

Mi 43 

I 
rel 

+ ,L: 3 
open in camp./ 
of Pi//@+- 

\* 

abs 

I @+-+-* 
553 It-0 s ,* 3ocJiY Zf; jocJ: I2 

Ir rel 

4 2 
I 

3rCJ: 4 1 

rel 
* . * 

41 /T;;;;; ,I2 

\ 
closed 

1 * * 
4 1 CtaP-31~+2 j2cJ2 ~$Of~l,~2 j2cJ: 

3oIlrr32 10171172 

The set of these strata as embedded in the solid S is 
called the stratification of S by (the) rank (of n). -- 

!' 

I 



Remarks: l__-_l__ 
(i) For generic maps the absolute stratification steps 

are trivial. The lower indices are sumerfluous then 
ZS --- 

of BOARDMAN-type (or THOM-BOARDMAN-strata of type) - 

and the Ci,l ***lin are the universal singular se1 

i ot**? in (see [G-G]). 

(ii) The indices ik correspond to the type of 2.1.8. 

(iii) The closure of each stratum is a union of strata. 
This is the most basic condition one usually asks 
on how strata should fit in with each other. 

(iv) Every x0 of some restriction of of to an absolute 
stratum is the complement of its singular set 

i!i021D The image of a singular set generally is 

called a discriminant. This notion occured already 
in several places of this work and is identical 
also with the llcontourll of remark A6 (ii). 

(v) For a family of solids over some parameter spaceEn 
one hand one has the family of all the strati- - 
fications of its members. On the other hand one has ----- 
the stratification of the family with respect to 
the projection to as) a We have made first use 

P of their relation in 2.1.6 - 2.L.8, 2.2. 

A.9 S is 
their 

(El) 
(f32) 

(s31 

the union of the disjoint strata. We summarize the union of the disjoint strata. We summarize 
: properties. : properties. 
Each stratum is a connected, semialgebraic set. Each stratum is a connected, semialgebraic set. 
Each stratum is a smooth manifold Each stratum is a smooth manifold (and thus a (and thus a 
smooth submanifald of smooth submanifald of 
If of is restricted to anv stratum, its rank is the If of is restricted to anv stratum, its rank is the .  .  .d 

same in each point of it. 
(~4) The closure of each stratum is a union of strata. 

A.10 As mentioned already the image of each stratum under it 
can be effectively computed by (~1). 

(~2) and (~3) guarantee that we know exactly about the 
behaviour of ~1. Let m be the dimension of a stratum M 
and r be the rank of the restriction RIM. 



Then 

R 
(a) if r = m: nlM is locally 1-1 onto it's image, i.e. 

its image parametrizes M locally. ~ 

(b) if r 'L m: RIM maps M to a lower dimensional set Ml 
and M is an open subset M = M' x 

These facts allow to construct the stratified solid 
from the images of the strata (note the incidence 
relations contained in (~4)). 

We have carried out the details in section 2 for two 
cylinders. 

Remark: In (a) one does not necessarily have a globally 
l-l mapping as the smooth space curve para- 
metrized by 

x,13t,. 3t2 
lit3 

r y=- 
1+t3 

, 2=-k 

shows. The projection to the x,y,-plane is 2-1 

aver OKY) = 0, 1-2 else. 

A.11 Satisfying as this really is, one frequently may wish to 
use different mappings, Of course one can switch to their 
graph and again have a projection. In the stratification 
process we did not make any use of specific properties of 
a projection except its differentiability. However the 
graph idea shows f which mappings in principle al-?? 

well computational~V suited to our approach: r 
-- ---- 

with semialqebraic graph, ____I. 

nappings 

In fact the graph idea shows how to make use of a further 
way to relate domain and image, the use of which way 
become apparent in example (ii) below. For reference see 
[MuI. 

A.12 Definition: An algebraic correspondence from a solid S to - 
a subset of ii'~~ is the restriction of a relation 

2 c R3 x R2 

to s x IIP , Z given by algebraic equatians. Similarly a 
correspondence 5 of a family of solids is given by an 
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