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ABSTRACT

In the increasingly competitive public-cloud marketplace, improving the efficiency of

data centers is a major concern. One way to improve efficiency is to consolidate as

many VMs onto as few physical cores as possible, provided that performance expecta-

tions are not violated. However, as a prerequisite for increased VM densities, the hyper-

visor’s VM scheduler must allocate processor time efficiently and in a timely fashion.

As we show in this thesis, contemporary VM schedulers leave substantial room for

improvements in both regards when facing challenging high-VM-density workloads

that frequently trigger the VM scheduler. As root causes, we identify (i) high runtime

overheads and (ii) unpredictable scheduling heuristics.

To better support high VM densities, we propose Tableau, a VM scheduler that guar-

antees a minimum processor share and a maximum bound on scheduling delay for

every VM in the system. Tableau combines a low-overhead, core-local, table-driven

dispatcher with a fast on-demand table-generation procedure (triggered on VM cre-

ation/teardown) that employs scheduling techniques typically used in hard real-time

systems. Further, we show that, owing to its focus on efficiency and scalability, Tableau

provides comparable or better throughput than existing Xen schedulers in dedicated-

core scenarios as are commonly employed in public clouds today.

Tableau also extends this design by providing the ability to use idle cycles in the sys-

tem to perform low-priority background work, without affecting the performance of

primary VMs, a common requirement in public clouds.

Finally, VM churn and workload variations in multi-tenant public clouds result in

changing interference patterns at runtime, resulting in performance variation. In par-

ticular, variation in last-level cache (LLC) interference has been shown to have a sig-

nificant impact on virtualized application performance in cloud environments [124].

Tableau employs a novel technique for dealing with dynamically changing interfer-

ence, which involves periodically regenerating tables with the same guarantees on uti-

lization and scheduling latency for all VMs in the system, but having different LLC

interference characteristics. We present two strategies to mitigate LLC interference: a

randomized approach, and one that uses performance counters to detect VMs running

cache-intensive workloads and selectively mitigate interference.
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CHAPTER 1

INTRODUCTION

As the marketplace for public clouds matures and cloud services are being increasingly

commoditized, cloud providers are forced to continuously increase the efficiency of

their data centers, and to improve the price/performance ratio of their various service

tiers, especially at the low end.

One way to increase data center efficiency is to pack a growing number of VMs onto

fewer physical cores. This reduces resource wastage as active cores serving multiple

lower-tier VMs are highly utilized while the number of paying customers relative to

the required infrastructure can be increased. Alternatively, any freed-up cores can be

used to support higher-tier (and higher-priced) VMs that require dedicated processing

cores.

Regardless of how freed-up resources are utilized, the ability to consolidate a larger

number of lower-tier VMs onto fewer cores—i.e., the ability to pack VMs as tightly as

possible without violating customer expectations—is a distinct economic advantage in

the competitive cloud marketplace. However, consolidating VMs onto shared cores is

easier said than done as customers desire high throughput and reasonably low and

stable latency characteristics even for lower-tier VMs.

A key hypervisor component that affects these central metrics—application through-

put and latency (as perceived by the customer)—is the VM scheduler. However, if the

VM scheduler is a major bottleneck, then it will surely impose a tax on application per-

formance. In particular, if the VM scheduler is inefficient (i.e., if it suffers from large

runtime overheads), then the peak throughput attainable by guest VMs will be need-

lessly limited. Furthermore, while application tail latency is a complex phenomenon

that is determined by multiple factors, if the VM scheduler occasionally induces a sub-

stantial amount of scheduling latency due to poor scheduling decisions, then application

tail latency will inevitably suffer.

1
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Unfortunately, many of the VM schedulers in widespread use today are not yet opti-

mized for hosting highly consolidated, high-VM-density workloads, and have little to

offer in terms of performance guarantees. In particular, as we show later (Chapter 6)

in an evaluation of the popular open-source Xen hypervisor, existing VM schedulers

can negatively affect either tail latencies, throughput, or both due to the use of un-

predictable scheduling heuristics that sometimes backfire and/or implementation as-

pects that cause undesirably high overheads, especially when faced with many densely

packed VMs.

Further, VM schedulers are only one part of the puzzle to achieving high throughput

and predictable latency in VMs in dynamic, multi-tenant public cloud environment. A

secondary issue that arises is higher interference and performance variability due to

increased micro-architectural resource contention, which must be addressed in order

to achieve these goals. Packing VMs tightly onto cores exacerbates micro-architectural

contention due to hardware-level resource sharing (e.g., shared memory caches). This is

particularly problematic due to the multi-tenant nature of public clouds, where work-

load characteristics of VMs co-located on the same machine vary over time, making it

insufficient to simply ensure isolation at VM admission time. Rather, such contention

needs to be dealt with continuously and isolation mechanisms need to be actively re-

configured at runtime accordingly.

This thesis. Motivated by these observations, and to better support highly consoli-

dated VM workloads in public clouds, this thesis presents Tableau, a highly predictable,

high-throughput VM scheduler based on an unorthodox design not previously ex-

plored in a data-center context. Specifically, Tableau leverages multiprocessor schedul-

ing techniques typically used in hard real-time systems, and exploits specific proper-

ties of cloud environments to minimize runtime overheads, unlike prior real-time VM

schedulers (e.g., RT-Xen [120]). Tableau also supports other common requirements of

cloud schedulers, namely the ability “to soak up” any idle cycles on a machine by

running low-priority background VMs. Finally, Tableau also addresses the issue of

cache-level contention through a novel load-balancing technique.

Tableau consists of two main components: (i) a low-overhead, table-driven, core-local

dispatcher that schedules VMs primarily based on a given static schedule, and (ii) an

asynchronous, infrequently invoked planner that re-generates tables on-demand when

VMs are either created, torn down, or reconfigured.

As a result of this clear separation between a semi-offline planning phase and an ex-

tremely simple online dispatcher, Tableau incurs significantly lower runtime overheads

(around 5.6×, 2.4×, and 2× lower than under Credit, Credit2, and RTDS, respectively,
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see Section 6.2). These efficiency gains in turn can translate into substantial improve-

ments in SLA-aware throughput (e.g., compared to RTDS, Tableau can achieve up to

1.6× higher peak throughput when serving 1 KiB files with a 100 ms SLA, see Sec-

tion 6.4).

Furthermore, Tableau’s inherent predictability can yield substantially improved tail la-

tency characteristics for workloads that frequently invoke the VM scheduler (e.g., in

some cases VMs scheduled by Tableau exhibit up to 17× lower maximum ping latency

compared to Credit, the most commonly used Xen scheduler, see Section 6.3).

Key to Tableau is the planning stage, which is performed asynchronously and only

affects the creation, teardown, and reconfiguration time of VMs (inflating each one by

a few hundred milliseconds). We consider this to be an acceptable trade-off for these

relatively infrequent operations that usually take on the order of seconds to begin with.

Each VM under Tableau is configured with a minimum CPU budget (or utilization)

and a maximum-acceptable scheduling delay, both of which can be determined either

based on an explicit SLA, based on pre-determined, price-differentiated service tiers

offered by cloud vendors, or empirically based on the deployed workload or simple

fair-share policies. Tableau’s planner applies techniques from hard real-time multi-

processor scheduling to quickly re-generate scheduling tables whenever needed, while

ensuring that all constraints on the minimum utilization and maximum scheduling la-

tency for every VM in the system are satisfied. Consequently, Tableau provides direct

control over one of the key contributors to tail latencies, namely the scheduling latency

of individual VMs.

A common requirement in public clouds is the ability to use any idle cycles in the

system in order to perform low-priority background work, without affecting the per-

formance of primary VMs (which are typically paid for by customers). The primary ob-

stacle to achieving this is the lack of strong performance guarantees for VMs [46, 128],

which Tableau provides. Subsequently, we present the design of a background sched-

uler that enables a lower-priority class of VMs (henceforth tier-2 VMs) to use any idle

cycles in the system when no SLA-backed VMs (i.e., table-driven VMs henceforth re-

ferred to as tier-1 VMs) are runnable. We present results that show that the impact

of tier-2 VMs on the performance of tier-1 VMs is low, making it practical for cloud

environments.

Finally, as there is VM churn in multi-tenant public clouds, and VMs on a single ma-

chine change workload characteristics, interference patterns change at runtime, result-

ing in performance variation. In particular, in this thesis, we focus on last-level cache

(LLC) interference as it has been shown to have a significant impact on virtualized ap-

plication performance in cloud environments [124]. We present a novel approach for
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dealing with such changes in runtime interference, which involves periodically regen-

erating tables that provide the same guarantees on utilization and scheduling latency

for all VMs in the system, but have different LLC interference characteristics.

We present two strategies to mitigate interference: a randomized approach, and one

that uses performance counters to detect VMs running cache-intensive workloads and

selectively mitigate interference. Both approaches employ a general mitigation strategy

of distributing VMs causing LLC interference evenly across the cores in the system. The

randomized approach does this by randomly shuffling the core assignments of all VMs

in the system periodically, while the performance-counter-based version does this by

first detecting “bad” VMs causing undue cache interference and selectively repartition-

ing them to distribute them evenly across the system. We present the design of both

approaches, as well as compare their performance using a cache-sensitive subset of the

PARSEC benchmark [15]. Our results show that randomizing tables works well for mit-

igating worst-case slowdowns due to cache interference. For the performance-counter-

based approach, we explore different ways of detecting interfering VMs but conclude

that a more robust detection mechanism is needed in order to match the performance

of the randomized approach.

Contributions. This thesis is primarily based on the work presented in [108] and

makes the following key contributions.

• We present the design of Tableau (Section 3.2), an unorthodox scheduling ap-

proach rooted in static scheduling tables (as pioneered in hard real-time sys-

tems [65]), which has not previously been explored in a cloud context. Tableau

requires on-demand generation of scheduling tables satisfying the utilization and

scheduling-latency constraints of individual VMs in the system.

• We detail how to quickly find such tables by repurposing relevant real-time schedul-

ing theory (Chapter 5), and report on an efficient implementation of Tableau in

Xen 4.9 (Chapter 4). Notably, our implementation is inherently scalable because it

uses almost exclusively core-local data structures. In an evaluation with an I/O-

intensive workload on a dual-socket, 16-core Intel Xeon platform (Chapter 6), our

Tableau prototype is shown to outperform the existing Xen schedulers (RTDS,

Credit, and Credit2) in terms of their SLA-aware peak throughput.

• We present the design and implementation of a background scheduler (Section 4.3)

that enables a two-tier system for VMs, allowing for tier-1 VMs to have strong

guarantees via the table-driven dispatcher, while tier-2 VMs execute on any spare

idle cycles in the system with low impact on tier-1 performance (Section 6.6).
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• We propose an extension of Tableau to address LLC interference from co-located

VMs (Chapter 7). The primary challenge to doing so in a multi-tenant setting is

dealing with the dynamic nature of such interference as workloads on co-located

VMs, and consequently cache pressure, vary over time. We propose two ap-

proaches: a randomized one, and one that uses performance monitoring data

for individual VMs. Both approach work by periodically regenerating Tableau’s

scheduling tables at runtime so as to lower peak interference on any single core.





CHAPTER 2

BACKGROUND AND PRIOR WORK

The contributions presented in this dissertation are built upon on a foundation of prior

work, which we review briefly in this chapter. We also present the necessary back-

ground required to understand the contributions of this thesis.

This chapter is organized as follows. We begin by establishing basic terminology re-

lated to cloud computing (section 2.1) as well as providing basic background on OS

virtualization technology (subsection 2.1.1). Next, we present a general overview of

the Xen hypervisor (section 2.2), its scheduling framework in particular (section 2.3),

and briefly discuss scheduling approaches used in some other popular commercial hy-

pervisors (section 2.4). Next, we present core real-time scheduling background related

to this thesis (section 2.5), followed by a brief overview of performance monitoring

support on Intel platforms (section 2.6). Finally, we summarize prior work related to

Tableau.

2.1 Cloud Computing and OS Virtualization

Cloud computing refers to delivering computing resources (compute, storage, and net-

work) as a service, where they can be rented by customers on demand from a shared

pool of physical compute resources, which are typically built as multiple specialized

datacenters. Large players at the time of writing this thesis include Amazon’s AWS,

Microsoft’s Azure, and Google’s Cloud Platform.

The advantages of clouds are that (i) economies of scale for providers lowers costs for

users, (ii) the pay-as-you-go pricing model allows customers to optimize costs by mak-

ing resource usage elastic (i.e., that is increase or lower resource availability on demand),

and (iii) providers can intelligently multiplex customer workloads to improve overall

7
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datacenter utilization. Finally, (iv) it lowers the total cost of ownership for businesses

which no longer need to purchase, setup, and maintain their own datacenters.

2.1.1 Cloud Computing Terminology

We distinguish between three forms of cloud computing in this thesis: public, private,

and hybrid clouds.

Public clouds are what “cloud computing” commonly refers to in the general usage of

the term. In public clouds, users can quickly rent virtualized resources from providers,

and are billed using a pay-as-you-go model where costs are incurred only for the amount

of resource used. While there are advantages, as outlined above, there are also some

disadvantages of using public clouds. Primarily, public clouds are unsuitable for busi-

nesses running applications that deal with highly sensitive information that must not

be handled by third parties. Another common issue has to do with the need to comply

with specific regulatory requirements (e.g., HIPAA compliance for medical records, or

PCI-DSS compliance for handling credit card information), although cloud providers

are increasingly providing services tailored for dealing with such regulatory require-

ments as well [8].

Private clouds are at the other end of the cloud computing spectrum, where virtualized

resources are only available to a single organization, typically implemented within a

privately-owned data center. Private clouds offer strong data privacy due to the high

degree of control organizations have over physical hardware, and can be tailored to

specific regulatory requirements. However, these advantages come with a high ini-

tial investment cost, requiring dedicated maintenance personnel to ensure continued

security, as well as limited elasticity in the face of changing load.

Finally, a hybrid cloud combines the best of both worlds by connecting a private and

public cloud together. This allows the private section of a cloud to host critical or sensi-

tive applications and data, while the non-critical workloads can be hosted on the public

section. The only downside is the need to ensure a proper integration and connectivity

between the two distinct cloud environments as the public component is likely to be

maintained by a different organization. It should be noted that there is a difference

between a private resource hosted within a public cloud and a private resource hosted

in a private cloud. While both can be secured from public exposure to the internet

by configuring internal networking rules, the former is under the control of the cloud

provider, while the latter is entirely in control of the client organization. Therefore it is
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not the safety with respect to public internet exposure that is at issue, but rather expo-

sure to potentially untrustworthy cloud providers. Hybrid clouds provide the ability

to maintain data safety both from the public internet and cloud organizations.

In this thesis, we focus primarily on public clouds, however, it should be noted that the

techniques we describe are in no way limited to them. They are equally applicable in

private and hybrid cloud settings.

2.1.2 OS Virtualization

The underlying technology that has enabled cloud computing is OS virtualization,

which allows the multiplexing of multiple smaller virtual machines (VMs) on a larger

physical machine, with each VM appearing as an independent, dedicated machine.

At the heart of virtualization is the hypervisor, a supervisory software whose primary

function is to multiplex the physical resources on a given machine among multiple

smaller VMs.

Intel x86 virtualization. Early attempts at virtualizing the Intel x86 architecture showed

it to be difficult to virtualize for multiple reasons.

First, Intel processors provided no hardware provisions to aid virtualization. As a re-

sult, certain operations that only worked under privileged rings, and could not be exe-

cuted in unprivileged rings, required emulation in software since guest OSes could not

be run in privileged mode safely [106].

Second, various instructions demonstrated different behavior depending on which priv-

ilege ring one was operating in. For example, various instructions would fail silently

when run in unprivileged rings [6] instead of causing an exception that would allow

the hypervisor to trap and emulate it. This meant that running a hypervisor in the

highest-privilege processor ring with OSes in lower-privilege rings would not always

allow the hypervisor to observe invalid behavior by guest OSes. As a result, early vir-

tualization techniques resorted to (i) trap-and-emulate techniques when possible [95],

with problematic instructions being emulated at the cost of lowered performance, or

(ii) to binary translation, where problematic instructions were re-written with trap in-

structions either statically at compile time or dynamically at runtime. These techniques

result in lower performance compared to modern, hardware-assisted virtualization due

to the additional work that needs to be done by the hypervisor at runtime.

Third, x86 virtualization was challenging as it also required many data structures of

the guest OS to be shadowed. For example, OSes using virtual memory (most of them)
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could not be safely granted access to the MMU as this would remove control from the

hypervisor. Instead, a shadow page table would be provided to the guest that would

trap memory access attempts, allowing the memory addresses being accessed to be

translated in software.

Finally, virtualizing I/O required emulating the entire device in software, leading to a

significant lowering in I/O performance.

To remedy this, Intel and AMD released the VMX and SVM instruction set extensions,

respectively. The VMX and SVM instruction set extensions introduce a new privilege

ring that has higher privileges than the four rings typically found in Intel x86 archi-

tectures (i.e., VMX and SVM introduced ring −1 to the x86 architecture). Now, the

hypervisor could be safely run in this new privileged ring, arbitrate hardware access

for each VM in the system, while the OS within the VM would run in the familiar

4-ring x86 environment. Combined with paravirtualization (see below) to remove the

need for I/O-device emulation, this removed the need for the heavyweight techniques

described above in modern hypervisors.

We do not attempt to summarize the vast literature on virtualization techniques in this

thesis. Rather, we refer the interested reader to a survey describing the historical evo-

lution of virtualization techniques [26], as well as a survey of x86-specific virtualization

techniques [6].

2.1.2.1 Types of Virtualization

We clarify various definitions for modern virtualization terminology by outlining the

common types of virtualization referenced by hypervisor vendors and cloud providers

at the time of writing this thesis.

Full software virtualization. In this type of virtualization, the entire hardware is em-

ulated in software. The biggest advantage of full software virtualization is that any OS

and application stack can potentially be hosted as the virtualization software is identi-

cal in its characteristics to the actual hardware the application was designed for.

This is advantageous for running legacy applications that have been designed at huge

cost on new hardware (e.g., safety-critical applications that have gone through expen-

sive certification processes). It also does not require any specialized hardware with

specific instruction set architectures or hardware modules. Any hardware that can run

the emulation software can host the applications.

The big downside to full software virtualization is that it introduces high runtime over-

heads, which results in lower application performance and higher resource usage. For
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example, in order to simulate a simple 6501 processor, every instruction in the 6501

instruction-set architecture must typically be emulated via multiple instructions of the

host architecture. In addition, I/O access is slower since it must be transparently inter-

mediated by emulated hardware, which adds additional runtime overheads compared

to accessing the physical device directly.

Paravirtualization (PV). Under PV, the guest OS is modified to actively interface with

the hypervisor. The guest OS therefore can choose to virtualize problematic parts of

the system to improve performance. For example, rather than emulating an interrupt

controller that would allow interrupt-based communication between the hypervisor

and guest, the guest OS can implement an efficient mailbox-style system in shared

memory to allow the hypervisor to “raise” interrupts by queueing messages into it.

Another advantage of PV is that I/O can be efficiently routed through a privileged OS

that has privileged access to the underlying hardware, which obviates the need for re-

implementing device drivers in the hypervisor. It also allows for complex resource-

management policies to be implemented within the privileged OS as all I/O flows

through it.

To summarize, the core idea behind PV is to make the guest aware of the fact that it

is being virtualized, and have it actively interface with the hypervisor. Essentially, PV

shows that if the cost of virtualizing the underlying architecture is too high or difficult

to achieve, then one can virtualize an architecture closest to it that is virtualization

friendly, and interface with the underlying hypervisor for the rest.

Hardware-assisted software virtualization (HV). Under HV, the hypervisor takes

advantage of hardware features as described above (e.g., Intel VT-x and AMD-V). Sim-

ilar to software virtualization, some instructions are trapped and emulated, but this is

done by specialized hardware that does not incur the same performance impact. This

enables unmodified operating systems to be virtualized, without the downsides of full

software virtualization (i.e., lower performance due to emulation overheads).

Therefore, HV has the highest performance of all virtualization types as it makes use

of specialized hardware features.

Typically, as we will see in the case of Xen, hardware-assisted virtualization is com-

bined with paravirtualized device drivers in order to boost I/O performance. This

is because I/O devices must still be shared, and the alternative to paravirtualization

would be expensive emulation.



12 BACKGROUND AND PRIOR WORK

SR-IOV More recently, the limitation of HV VMs with regard to I/O (i.e., lowered

performance due to the need for paravirtualized I/O devices), has been supplanted

by newer hardware with the single root input/output virtualization (SR-IOV) specifica-

tion [38].

SR-IOV technology allows for PCI Express devices to be logically isolated for reasons

of performance and maintainability. Under SR-IOV, a single physical device can be

shared by exposing multiple, independent virtual functions. These virtual functions

give the illusion of having multiple hardware devices, although they are associated

with a single physical machine. The multiplexing of I/O streams is performed directly

by the hardware and no I/O scheduling is required in software.

This is advantageous for virtualization as it allows different VMs to share a single

I/O hardware device (e.g., a network adaptor). In particular, combining SR-IOV with

hardware-assisted virtualization eliminates the need for paravirtualized I/O entirely.

However, as SR-IOV requires specialized I/O hardware, most hypervisors like Xen are

typically configured for paravirtualized I/O out-of-the-box, with SR-IOV requiring ad-

ditional configuration.

One potential downside to SR-IOV is that it takes away software control of I/O schedul-

ing and leaves the multiplexing of multiple streams of I/O from different virtual ma-

chines to the physical device itself, which typically uses a simple round-robin scheme

by default. This makes it difficult to enforce more complex I/O policies such as pri-

oritizing I/O traffic from specific VMs. However, in such cases where more complex

policies are required, paravirtualized I/O is still a viable solution.

2.1.3 Intel VT-x and AMD-V

Newer Intel processors provide virtualization support via the VT-x extensions. The VT-

x extensions add an Input/Output Memory Management Unit (IOMMU) that enables

virtualized systems safe, direct access to the memory of I/O devices. It also enables di-

rect memory access (DMA) and interrupts for devices to be directly mapped into VMs in

an efficient manner (e.g., for Ethernet and graphics devices). Finally, extended page tables

enable direct translation from guest virtual addresses to physical addresses without the

need for shadow page tables in software.

AMD processors support virtualization through a similar set of hardware extensions

called AMD-V. The AMD-V technology introduces similar technologies as VT-x. For

example, rapid virtualization indexing (RVI) assists with virtual-to-physical page transla-

tions, similar to VT-x’s extended page tables).
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FIGURE 2.1: The two types of hypervisors

VMs using hardware-level features for virtualization such as those provided by In-

tel VT-x and AMD-V have come to be commonly known as hardware virtual machines

(HVM) and have seen widespread adoption in cloud infrastructure. Therefore, through-

out this thesis, when we refer to VMs, we specifically refer to HVMs unless explicitly

specified.

2.1.4 Types of Hypervisors

A common distinction is made in prior literature to two types of hypervisors: type 1

and type 2.

Type-1 hypervisors run on the physical hardware, interfacing with it directly. The hy-

pervisor, which is installed on the hardware, typically boots a supervisory host OS at

boot within a VM, except it provides it with privileged access to the underlying hard-

ware. Examples of this type of architecture include Xen and VMWare ESX Server. In

Xen terminology, the hypervisor hosts a privileged supervisory VM called Dom0, and

a set of guest VMs called DomU’s. DomU’s are provided with access only to the re-

sources allocated to it via Dom0.

Type-2 hypervisors run as a regular software program on top of a regular OS and typi-

cally provide software virtualization (although some like QEMU can make use of hard-

ware extensions by interfacing with a type-1 hypervisor running beneath the host OS).

The advantage of type-2 hypervisors is that they can be ported to any OS just like any

other piece of user software and does not require modification of the host OS. VMWare

Server, Oracle’s Virtualbox, and QEMU are examples of type-2 hypervisors. The down-

side of this approach is lower performance due to emulation overheads and the pres-

ence of an OS that intermediates between the hypervisor and the hardware.

A comparison of the two types of hypervisors are shown in Figure 2.1. In this thesis,

we focus on Xen, which is a type-1 hypervisor. However, we emphasize that the tech-

niques presented here are in no way limited to them and can be employed in type-2
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FIGURE 2.2: A comparison between virtual machines and containers

hypervisors as well.

2.1.5 VMs vs. Containers

Containers are a lightweight alternative to VMs that virtualize the system at the OS

API level rather than that of the instruction set architecture as is the case with VMs.

While both essentially provide isolation between individual components, containers

have seen an increase in adoption in commercial cloud environments today due to

their smaller resource consumption and faster boot times.

Figure 2.2 shows the key differences between VMs and containers. As can be seen

in the figure, containers are more lightweight, in terms of resource usage, compared

to VMs. This is due to VMs having an entire guest OS, whereas a single guest OS is

shared across all containers in the system. Containers are typically implemented by

using kernel-level support for isolating resources among processes via namespaces,

where each process only sees its own environment and does not have access to those of

other processes running in the system.

Owing to their lower runtime overhead, containers work well for running a large num-

ber of applications on a specific OS. In comparison, the number of VMs that can be

supported on the same hardware is significantly lower due to the higher resource us-

age from having a distinct guest OS in each VM.

The disadvantage of container-level isolation is that sharing a kernel introduces a much

larger attack surface that is more prone to exploits from malicious applications that

are co-located on the same machine. Therefore, for applications that require stronger

security and isolation across tenants, VMs are desirable due to their stronger isolation.

In this thesis, we focus exclusively on VMs. As we show later in section 3.2, Tableau’s

design results in increased creation and teardown overheads, making it unsuitable for
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scheduler container-based workloads. However, we present multiple techniques in sec-

tion 6.1 that can be employed by Tableau to mitigate this overhead. Further, any im-

provements in the efficiency of the hypervisor control plane can further lower these

overheads. For example, LightVM [80] is a Xen-based virtualization solution that fea-

tures a redesign of the Xen’s control plane, called Tinyx, which allows custom-built

VMs to boot up in a few milliseconds. Such improvements can be immediately com-

bined with Tableau to adapt it for containers. In fact, LightVM shows that the primary

benefits of VMs over containers (i.e., strong isolation) can be achieved with low over-

head. For example, VMs under LightVM can be booted two orders of magnitude faster

than Docker (a popular containerization platform [87]) and comparable to the overhead

of a fork() and exec on Linux.

2.1.6 VMs and Unikernels

As we have seen above, VMs have the downside that they require more resources ow-

ing to the fact that each VM has a complete guest OS embedded inside it. While con-

tainers solve this by virtualizing at the OS API level and sharing a guest OS among

all containers, it comes at the cost of increased attack surface since any container that

compromises the kernel gains privileged access to the entire machine. This can include

attacks that target bugs in the exposed kernel API or simply just denial-of-service at-

tacks that work by exhausting shared system resources (e.g., memory, file descriptors).

One approach to avoid this is to run multiple containers from a single client inside a

client-specific VM.

An alternative approach is to use unikernels, which are a recent attempt to combine

the advantages of both VMs and containers. That is, to provide fully-isolated virtual

machines with a smaller attack surface, while also ensuring low resource usage.

Unikernels such as MirageOS [76] achieve this by building application-specific virtual

machines by bundling the application and its dependencies into a lightweight VM im-

age. By doing so, the attack surface is reduced as there is no guest OS but merely a

thin library OS that mediates access between the applications, its dependencies, and

the hardware. Further, the absence of a full guest OS in each VM means that VMs can

be booted significantly faster and incur lower resource usage.

Unikernels are still an active area of research and, at the time of writing this thesis,

no major cloud provider provides a commercial offering. However, while this thesis

focuses on traditional VMs (i.e., with a full guest OS per VM), most of the techniques

presented can be adapted to unikernel-based VMs as well. In some cases where it is



16 BACKGROUND AND PRIOR WORK

not possible to directly adapt Tableau to support unikernels, we explicitly point it out

and present alternatives.

2.2 The Xen Hypervisor

Xen is a commercial, open-source type-1 hypervisor that we use in this thesis to imple-

ment the design of Tableau. The three core components of a Xen setup are the hypervi-

sor, the supervisory VM, and guest VMs.

The hypervisor runs on the hardware, and arbitrates physical resources among mul-

tiple VMs running on it. While Xen was originally designed as a paravirtualized hy-

pervisor, it has evolved over the years to make use of hardware support for virtual-

ization and supports HVM guests. However, as we describe below, I/O under Xen is

still paravirtualized by default as it avoids the need for specialized hardware, and has

the added advantage that one does not have to implement a large number of device

drivers, and can piggyback on the range of drivers available in dom0.

Dom0. At boot, Xen spawns a supervisory VM (called domains in Xen terminology),

called Domain-0 (Dom0 for short), that receives privileged access to hardware via the

hypervisor. This enables it to issue hypercalls, a mechanism for interacting with the

hypervisor analogous to system calls in an OS, in order to (i) manage and configure

new and existing VMs as well as (ii) configure the system (e.g., setting resource limits

for individual VMs and assigning PCI devices to other VMs). The VMs created via

Dom0 are called guest VMs or DomU’s in Xen terminology.

In practice, Dom0 runs Linux, although Dom0 implementations also exist for other

OSes such as OpenSolaris [85] and NetBSD [19]. For this thesis, we assume the common-

case of a Linux-based Dom0.

Dom0 communicates with the hypervisor via a hypercall interface that parallels how

userspace processes communicate with an OS kernel using a system call interface.

As described above Dom0 acts as the control plane of a Xen-virtualized machine. How-

ever, Dom0 also has another role in Xen: as the hypervisor itself does not have any

device drivers, Dom0 handles I/O for all VMs in the system by default. This is im-

plemented via high-performance virtual device drivers in guest OSes (called frontend

drivers) that allow data to be passed between guests and Dom0 using shared mem-

ory, with the guest running the backend driver. The backend driver is responsible for

translating I/O requests into a device-native request and for forwarding it to the actual

device driver.
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As a consequence of this architecture, Dom0 has the responsibility of multiplexing the

I/O requests from multiple VMs onto a single hardware device. Typically, this means

that guest I/O can be configured using Linux’s standard interfaces for configuring I/O.

The advantage of this design is that the hypervisor itself can stay fairly lean and does

not need to provide device drivers for all the hardware available, and can instead pig-

gyback on Linux’s mature driver-support codebase. Further, it also negates the need

for more expensive hardware that supports I/O multiplexing via SR-IOV.

DomU’s. While Xen runs a single Dom0 for the entire system, it is capable of hosting

multiple unprivileged guest VMs, also called DomU’s. DomU’s are restricted in what

actions they can perform. Typically this means that DomU’s do not have access to any

hypercalls that access hardware (only Dom0 can do that) unless explicitly permitted to

do so (e.g., by Dom0 configuring device passthrough for a given VM). As a result, in

the typical case, where device passthrough is not configured, the guest OS running in

DomU’s does not run drivers for the hardware device, but simply the frontend compo-

nent for Xen’s special I/O devices that allow for communciating I/O requests to Dom0.

One disadvantage of this approach is that Dom0 is part of the entire trusted computing

base of the system, in that, compromising Dom0 gives an attacker unfettered access to

the entire system, including all VMs hosted on it. It should be noted that Xen provides

an alternative approach for hosting device drivers in separate VMs instead of in Dom0

via a library-based operating system called minios. This allows for reducing the surface

area for attacks by using a dedicated device-driver VM, which if compromised doesn’t

give access to Dom0. Therefore, the security of Dom0 is not an insurmountable archi-

tectural security issue in Xen, but a practical design choice. In this thesis we assume a

Xen setup with Dom0-based device drivers.

2.3 VM Scheduling in Xen

The role of a VM scheduler is analogous to the role of a process scheduler in an OS.

Similar to how the latter allocates CPU time for processes in the OS, the former allocates

CPU time to virtual CPUs (henceforth vCPUs). From a scheduler’s perspective, a VM

is essentially a container for multiple vCPUs. Therefore, a single-core VM contains

a single vCPU, while a multi-core VM consists of multiple vCPUs. Regardless, the

scheduler need only be aware of vCPUs and their requirements.

A VM scheduler must satisfy two requirements. First, it must ensure that all vCPUs in

the system receive the right amount of CPU time. We refer to this as the utilization of a
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vCPU, and is typically configured by system administrators. Second, a VM scheduler

must ensure that vCPUs receive their utilization in a timely manner. That is, the maxi-

mum delay between consecutive slots when a vCPU is scheduled should be bounded

in some way. To illustrate this, consider two scenarios, each consisting of two vCPUs

with a utilization of 50%. In the first scenario the VM scheduler alternates between the

two VMs, running each one continuously for 10ms. In the second scenario, the VM

scheduler does the same thing but alternates between them every hour. In both sce-

narios, while the long-term utilization is identical (i.e., 50%), the scheduling delay (i.e.,

the delay introduced by the scheduler) is significantly different, and leads to different

performance characteristics. For example, while the former scenario would be suited

for a latency-sensitive VoIP workload, the latter would not.

Xen comes bundled with multiple schedulers, namely Credit, Credit2, and RTDS. In

this thesis we consider these three owing to their being the most mature. This choice

of schedulers that Xen provides is thanks to a built-in scheduler framework that allows

for easily implementing new schedulers. In this section, we will look at the scheduler

framework in Xen in and provide a brief description of each of the above three sched-

ulers.

2.3.1 The Xen Scheduler Framework

Xen comes bundled with an extensible scheduler interface, which provides generic glue

code that is common to all scheduler implementations and scheduling algorithms. Us-

ing the framework, a new scheduler may be implemented in a modular fashion, with

interaction between the generic parts of the scheduler, and specific code pertaining to

a given scheduler implementation occurring via a well-defined scheduler interface.

The scheduler interface is implemented in the form of an abstract interface comprised

of a set of functions pointers, which can be overridden to inject custom scheduler-

specific behavior into key parts of the VM creation, configuration, teardown, and schedul-

ing control flows.

In order to implement a new scheduler, one must simply instantiate a structure with

pointers to functions containing scheduler-specific logic. This structure can be added

to the list of available schedulers, allowing for the new scheduler to be selected at

boot time. Below, we give a high-level overview of the callbacks that were relevant

to Tableau’s implementation.

Initialization and teardown. The init and deinit callbacks are invoked to provide

schedulers with an opportunity to initialize and teardown global structures pertaining



BACKGROUND AND PRIOR WORK 19

to the scheduler itself, and must be overridden by each new scheduler implementation.

Following this, each scheduler must instantiate structures to deal with (i) each physical

core in the system, (ii) each VM in the system, and (iii) each vCPU in the system (recall

that in Xen, VMs are simply containers for one or more vCPUs).

To deal with physical cores, the alloc_pdata() and free_pdata() callbacks are

invoked to allow schedulers to allocate and deallocate per-CPU structures, while the

init_pdata() and deinit_pdata() callbacks are invoked to allow for their initial-

ization and teardown.

A similar approach is employed for vCPUs, where for each vCPU in the system, the

alloc_vdata() callback is invoked upon a new vCPU being created, and the free_vdata()

callback is invoked before it is removed from the system. Similar to the callbacks for

physical cores, the insert_vcpu() and remove_vcpu() are invoked to initialize

vCPUs after allocation, and teardown vCPUs before deallocation, respectively.

Finally, individual VMs (called domains in Xen) are created and torn down via the

alloc_domdata() and free_domdata() callbacks.

Dealing with blocking and wakeups due to I/O. Schedulers must also implement

logic for dealing with blocking and waking up of vCPUs when I/O operations occur

or complete, respectively. The Xen scheduler framework invokes the sleep() call-

back when a vCPU blocks and the wake() callback when it is woken up. It should

be noted that, due to how Intel processors route interrupts, wakeup events for a par-

ticular vCPU may occur on any core in the system, and not necessarily on the same

core where the VM originally blocked. This means mutual exclusion (using spinlocks)

must be ensured when accessing and modifying vCPU state in the wake() callback.

Further, the wake() callback can specify whether the scheduler needs to be invoked at

the end, allowing for a new scheduling decision to be made following the unblocking

of a vCPU.

Scheduling logic. Finally, a scheduler must implement the logic for dispatching vC-

PUs onto cores, for which the do_schedule() callback can be provided. The callback

must be a function that returns a vCPU structure along with the time that it should be

allowed to run for (including, if necessary, indefinitely). The scheduler framework then

saves the state of the previous vCPU, and the new vCPU returned by do_schedule()

is dispatched. If a finite amount of time was specified for the vCPU to run, a timer is

programmed to invoke do_schedule() again after the provided time interval.
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Finally, once the state of the currently-running vCPU as been saved, the context_saved()

callback is invoked. This is where logic such as migrating vCPUs can be performed as

doing so directly in the do_schedule() callback, before the state of the de-scheduled

vCPU has been saved, may result in multiple cores accessing it simultaneously, leading

to stack corruption.

We now provide a brief description of the three Xen schedulers considered in this thesis.

2.3.2 The Credit Scheduler

The Credit scheduler is a proportionate fair-share scheduler aimed at ensuring fairness

and low latency for I/O applications. At the time of writing this thesis, the Credit

scheduler is the default scheduler in Xen [5].

Each VM running under Credit is associated with a weight and cap. The former de-

termines the proportionate share of CPU time that each vCPU belonging to the VM

receives, while the latter determines the upper bound (i.e., vCPUs are cut off from fur-

ther CPU time once the cap is reached).

Under Credit, VM weights are relative, which means that the value is only relevant in

proportion to other VMs in the system. For example, all VMs having a weight of 256

(the default) means every vCPU gets an equal share of CPU time, but is also true if all

VMs have a weight of 512, or 1024. However, two VMs with a weight of 256 and 512,

respectively, will result in the latter getting double the share of CPU time compared

to the former. Note that for vCPUs, the maximum time possible is an entire core, and

while we talk in terms of fractions of a core, we are are only referring to the total CPU

time provided to a VM under Credit. In reality, this CPU time may be distributed across

multiple physical CPUs (unless the VM has been pinned to a specific core).

VM caps under Credit are absolute and are representative of the maximum proportion

of a physical CPU that it can use. For example, a cap of 50 means that all vCPUs for

that VM will each be limited to at most 50% of a single core. Specifying a cap of zero

(the default) implies there is no upper limit on CPU share for a given VM, and each of

its vCPUs can use up to 100% of the physical core if available.

Under the default settings (no cap in place), Credit is work conserving; that is, when-

ever there are free cycles on a particular core, runnable vCPUs will be dispatched to

execute on it. Setting a cap on a VM, however, may result in non-work-conserving be-

havior. Specifically, when all VMs in the system are capped, and the sum of these caps

is less than the total CPU share available, there is guaranteed to be idle time. However,

note that having even just a single uncapped, runnable vCPU per core is sufficient to

“soak up” any idle cycles, making the system work-conserving again.
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The Credit scheduling algorithm. Under Credit each vCPU is provided with credits

proportional to its weight as discussed above. At any given time, a vCPU can be in one

of two states, OVER or UNDER, representing whether a vCPU has credits available or

has used up all its credits, respectively. Credit schedules vCPUs in the UNDER state

in a round-robin fashion, and if none are available on a given core, it attempts to pull

UNDER vCPUs from other cores in the system. Once a vCPU exhausts its credits, it is

put into the OVER state.

The Credit scheduler schedules vCPUs in 30ms quanta by default. That is, vCPU’s

are dispatched to run for 30ms at a time, and once the quantum expires, a new vCPU

is chosen to run. It also periodically (by default every 10ms) performs an accounting

cycle where vCPU’s priorities are updated based on its CPU usage pattern (see below).

Once all runnable vCPUs have exhausted their credits, and only OVER vCPUs remain,

Credit replenishes all of their credits based on their proportional weight, and moves

them into the UNDER state so they can be dispatched again. Note that only runnable

vCPUs are replenished.

In the case of capped domains, there may be a situation where a vCPU has credits but

has hit its cap, and therefore cannot be scheduled. In this case, when new credits are

allocated, Credit accounts for this by taking the credits that would have gone to the

capped vCPU, and distributing them to the other runnable ones. That is, it calculates

the distribution of credits assuming the capped VM is not runnable.

Finally, to improve I/O latencies, Credit introduces a third priority level called BOOST.

A vCPUs is set to the BOOST priority as soon as it is woken up (i.e., as a result of

an I/O completion), and any boosted vCPUs are given a higher priority than regular

UNDER vCPUs. Credit’s periodic accounting tick is used to remove the BOOST state.

Essentially, if a boosted VM is detected to be executing for more than a single tick, it is

marked as a CPU-bound workload, otherwise its BOOST state is maintained. In effect,

the periodic tick allows Credit to determine whether a VM is expressing characteristics

of short I/O-related work or longer CPU-bound work.

Finally, Credit also attempts to balance vCPUs across cores via a pull mechanism. This

means that a core that idles will attempt to acquire and dispatch runnable vCPUs on

other busy cores.

2.3.3 RTDS Scheduler

The Real-Time Deferrable Server (RTDS) scheduler is a real-time scheduler in Xen that

is aimed at workloads that require predictable latency characteristics. The RTDS sched-

uler is derived from the RT-Xen project [120, 122], which is an extension of Xen with
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support for an assortment of real-time scheduling schemes, created with the goal of

supporting real-time guarantees in virtualized clouds.

The RTDS scheduling algorithm. Under RTDS, VMs are configured using a period

(P ) and budget (B), and each vCPU in the system is guaranteed up to B units of CPU

time within a period of time P . Note that the budget need not be contiguous and is

available to the VM at any time during its period. At the end of each period, any re-

maining budget is discarded and then fully replenished to B units. Therefore, the ratio

of B and P specifies the utilization of the VM. Each VM also has an implicit deadline

(i.e., at any given time, the deadline is equal to the end of the current period’s time

interval).

VMs under RTDS are therefore eligible for dispatch only when they have a non-zero

budget, and all eligible VMs are maintained in a global ready queue. RTDS schedules

VMs using a global earliest-deadline-first (G-EDF) scheduling scheme, where VMs with

earlier deadlines are prioritized over those with later ones, and at any given time, the

m highest-priority VMs are scheduled on the m processors in the system.

While a VM is running on a CPU, its budget is depleted continuously until it runs out

of budget or is replenished at the end of the current period’s time interval.

As we will see later in Chapter 5, Tableau models VMs in a similar way as RTDS, but

takes a very different approach to scheduling VMs. RTDS focuses primarily on pre-

dictability while Tableau additionally optimizes for high throughput by lowering the

runtime overheads of its implementation. In contrast, for example, RTDS’ implemen-

tation uses a global lock to ensure mutually exclusive access to its global ready queue,

which results in higher runtime overheads due to increased lock contention, thereby

lowering throughput.

2.3.3.1 The Credit2 Scheduler

The Credit2 scheduler is the successor of Xen’s Credit scheduler and was was designed

with particular focus on improving support for mixed workloads (i.e., batch and latency

sensitive) and improving latency of virtualized applications.

The documentation and technical details of the Credit2 scheduler are sparse, and its

implementation in the version of Xen that we based the implementation of Tableau on

(Xen 4.9) did not support many of the configuration options that the original Credit

scheduler did. However, we still evaluate it extensively in Chapter 6 and show that,

while it provides improvement in latency metrics for certain workloads compared to

Credit, it achieves lower throughput.
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One primary change compared to Credit is the removal of BOOST states for VMs. VMs

are only scheduled based on their position in the ready queue, which itself depends on

remaining budget.

As of writing this thesis, the Credit2 scheduler was still under development, with the

older, more stable Credit scheduler being the default [5].

2.4 VM Scheduling in Other Hypervisors

Scheduling in KVM. Kernel-based Virtual Machine (KVM) is a virtualization solu-

tion for Linux running on x86 and x86_64 hardware. It is provided as a loadable kernel

module that allows a regular Linux kernel to function as a hypervisor. As a result of

KVM’s tight integration with the Linux kernel, VMs are scheduled like any other pro-

cess using Linux’s in-built scheduling framework.

Linux’s CFS scheduler. The default Linux scheduler is the Completely Fair Scheduler

(CFS), which is the default scheduler used by KVM to schedule VMs. While CFS has

many improvements built on top of its scheduling (e.g., group- and user-fair schedul-

ing, as well as a modular scheduler framework [116]), we focus on the core scheduling

approach below.

CFS is a proportionate fair-share scheduler, similar to Xen’s Credit scheduler. Under

CFS, vCPUs are dispatched based on a “virtual runtime”, which also determines their

priority. Virtual runtime simply tracks the amount of time a given vCPU has spent ex-

ecuting on the processor. The longer a particular vCPU has executed on a processor,

the lower its priority, allowing all vCPU to execute fairly over time. For improving

the performance of interactive tasks, CFS modifies the virtual runtime value of vC-

PUs that block. Upon unblocking, the waking vCPU is inserted back into the ready

queue (implemented as a red-black tree) with its virtual runtime adjusted to prioritize

it higher [115].

At an implementation level, CFS uses per-processor ready queues similar to a parti-

tioned real-time scheduler [34], and each vCPU belongs to exactly one ready queue

at any given time. However, CFS approximates a global scheduling approach [34],

where a single global ready queue holds all vCPUs in the system and each processor

dispatches vCPUs from it. It does this approximation using a push-pull mechanism

where vCPUs are migrated at runtime to ensure that, for a system with m processors,

the m highest-priority vCPUs are always executing. We describe both the push and

pull mechanism below, and how it is used to approximate a global scheduler.
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CFS push operation. A push operation is performed by CFS when (i) a currently-suspended,

higher-priority vCPU resumes execution, or (ii) when the currently-executing vCPU is

preempted by a higher-priority one. The scheduler iterates over the ready queues of all

processors in the system and attempts to “push” the currently-running task onto their

local ready queue. The core to migrate to is chosen based on whether it is executing a

vCPU with a lower priority that that of the vCPU being migrated.

CFS pull operation. A pull operation is performed whenever a core schedules a lower-

priority vCPU, such as when a previously-running higher-priority vCPU blocks or is

torn down. In this case, the scheduler again scans the ready queues of remote proces-

sors and tries to find higher-priority vCPUs to schedule instead. If any such vCPUs

are found, the highest-priority one is migrated. The vCPU is chosen such that it has a

priority higher than all vCPUs in the local ready queue.

Together, the push and pull operations enable CFS to use distributed ready queues to

approximate the invariant of a global scheduler, which suffers from increased average-

case overheads due to lock contention on the global ready queue (as is the case for

RTDS). However, it has been shown that while CFS performs well in the average case,

in a system under load, it induces high worst-case latencies due to requiring more

complex locking of local ready queues [23].

Scheduling in VMware ESXi. VMware ESXi is a commercial type-1 hypervisor that

is used in commercial cloud environments [3].

Under ESXi each virtual machine, or world, comprises one or more vCPUs. VM schedul-

ing in ESXi uses a proportionate fair-share scheduling algorithm like Xen, which allo-

cates CPU time to worlds based on a combination of three user-specified parameters:

shares, reservations, and limits [107].

Shares are similar in nature to Xen’s VM weights and determine the CPU time allocated

to a VM proportional to the total number of shares in the system. For example, if VM1

has twice as many shares as VM2, it would receive twice as much CPU time as VM2.

Reservations specify a guaranteed lower bound on CPU time for a VM, while limits

specify an upper bound in CPU time that can be allocated to a VM. It should be noted

that under ESXi, VMs can be assigned to a group in a configurable hierarchy of groups,

similar to CFS, and configuration parameters can be specified at the group level directly.

However, for the sake of clarity, we limit the description below to the simpler case of

VM-level configuration below.

The ESXi scheduler uses a quantum-based scheduling approach, where the quantum is

a globally configurable value, similar to the global quantum in Xen’s Credit scheduler.

The VM scheduler is invoked whenever the currently running world blocks, or its time
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quantum expires. When invoked, the ESXi scheduler schedules the next ready world

from a local ready queue. If no world is found locally, a remote ready queues are

searched, and if even that fails, the idle world is picked.

Worlds are charged budget when they execute, and are prioritized in the ready queue in

decreasing order of remaining budget. As a result, generally, a world that is frequently

blocked due to I/O gets scheduled more promptly compared to a world that is CPU

bound, as the latter uses its budget more compared to the former within any given

time interval. In this regard the ESXi scheduler has a similar design to Xen’s Credit2

scheduler, and does not have any special boosted priority for I/O intensive VMs,

2.5 Real-Time Scheduling

Next, we review necessary background in the area of real-time systems pertaining to

the work in this thesis.

2.5.1 Periodic Task Model

Periodic tasks are a classic real-time task model [72] where a task τi is characterized by

two parameters (Ci, Ti): its worst-case execution time Ci, and its period Ti. A periodic

task τi is assumed to release a job every Ti time units, with each job taking at mostCi time

units anywhere during the current period’s interval. The only associated correctness

criterion is that each job released by a periodic task must receive (up to) C time units of

processor service during each scheduling interval [0, T ), [T, 2T ), [2T, 3T ), etc.. That is,

periodic tasks are assumed to have an implicit deadline where the deadline Di for a task

τi is equal to its period Ti.

2.5.2 Schedulability, Feasability, and Optimality

A given task set is considered to be schedulable if the temporal constraints of all tasks

comprising it will always be satisfied (i.e., no deadlines are missed). A task set is feasible

if and only if there exists a scheduling algorithm such that the task set is schedulable

under it. Finally, a scheduler is considered optimal if it can successfully schedule all

feasible task sets. That is, a scheduler S is optimal if and only if every feasible task set

is schedulable under S.
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2.5.3 Partitioned Earliest-Deadline-First Scheduling

Earliest-deadline-first scheduling. Earliest-deadline-first (EDF) is a dynamic-priority

real-time scheduling algorithm. Under earliest-deadline-first (EDF) scheduling, jobs are

dispatched in order of increasing deadlines (i.e., the more urgent a task is, the earlier it

is dispatched), with no prior priority assignment required. Liu and Layland, showed

that EDF is optimal on preemptive uniprocessors. When scheduling periodic tasks

with implicit deadline (i.e., tasks that have deadlines equal to their periods), EDF has a

utilization bound of 100%. That is, EDF guarantees that all tasks meet their deadlines

provided the total CPU utilization is less than or equal to 100%.

Partitioned EDF. There are three types of multiprocessor scheduling: global, parti-

tioned [37], and clustered. Under global scheduling, all processors dispatch jobs of

tasks from a single ready queue, and jobs may migrate freely among processors. Un-

der partitioned scheduling, tasks are statically assigned to processors during an offline,

partitioning phase, with each processor scheduling all jobs of tasks assigned to it using

a uniprocessor scheduling policy. Finally, clustered scheduling is similar to partition-

ing, except the size of each partition is greater than one (i.e., not just a single proces-

sor). Alternatively, partitioned scheduling can be considered a special case of clustered

scheduling where the cluster size is equal to one. Partitioned EDF in particular (P-EDF)

is a partitioned scheduling policy where each processor schedules all tasks assigned to

it using an EDF policy.

Partitioning heuristics. While partitioned multiprocessor scheduling has the advan-

tage that each processor can be analyzed as a uniprocessor, it comes at a cost: in or-

der to obtain a partitioned system, the task set needs to be first partitioned. That

is, tasks must first be assigned to individual processors such that neither of them is

overloaded. Unfortunately, solving this task-assignment problem requires solving a

bin-packing-like problem, which is a classic intractable problem that is NP-hard in the

strong sense [37, 44]. However, as a result of this, we can use existing bin-packing

heuristics to partition task sets. Prior work on bin-packing heuristics is extensive and

we do not attempt to summarize it here as it is beyond the scope of this thesis. Instead,

we refer the interested reader to a survey of the same [27].
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FIGURE 2.3: An overview of the PikeOS scheduler. The system comprises multiple
application time partitions (TPX ), for which a static schedule is generated, and the
system time partition (TP0 ), which is always eligible (left). Each time partition
consists of 256 ready queues and an associated bitmap tracking which levels have
eligible tasks (middle). At runtime, the first task from the highest-priority, non-empty
ready queue, in either TP0 or the currently active TPX , is dispatched (right).

2.5.4 Space and Time Partitioning with ARINC 653

Table-driven scheduling is not a new technique; it was originally proposed by Kopetz

and Bauer in their Time-Triggered Architecture [65]. One of the more prominent ap-

plications of table-driven scheduling is the ARINC 653 software specification for space

and time partitioning mandated in safety-critical avionics RTOSes. Under ARINC 653,

tasks are partitioned into cores and a repeating table is generated that schedules each

task periodically. This simple design facilitates the predictability mandated for critical

avionics software and Tableau applies a similar approach to VM scheduling to improve

predictability. 1

To give a more concrete example, we describe a real-world ARINC 653-compatible

scheduler from PikeOS, a certified microkernel designed for safety-critical applications.

2.5.4.1 Example: Scheduling in PikeOS

PikeOS is a separation microkernel for multi-core, hard-real-time systems, and can be

used as both a real-time OS (i.e., hosting native applications) as well as a type-1 hyper-

visor (i.e., hosting complete operating systems). PikeOS provides various personalities,

or different OS interfaces (e.g., ARINC 653, Linux, POSIX, AUTOSAR, etc.), for the de-

velopment of applications in different domains.

PikeOS is widely used in industry due to its certifiable nature: PikeOS has been certified

to safety standards such as DO-178B (avionics), IEC 61508 (electrical/electronic/pro-

grammable electronic safety-related systems), and EN 50128 (railways), making it a

“battle-hardened,” top-tier choice for mixed-criticality applications with components

at different safety and security levels that need to be isolated via resource partitioning.

1In fact, Xen contains an ARINC 653 scheduler implementation, although it is limited to uniprocessors
and has not been applied, to the best of our knowledge, in the context described in this thesis.
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Scheduling in PikeOS. The PikeOS scheduler is based on time partitioning (as de-

fined by the APEX specification in the ARINC 653 standard reference). Conceptually,

time partitions are encapsulating containers for a set of threads, where threads in dif-

ferent time partitions are scheduled in mutually exclusive time windows. In PikeOS,

application tasks are assigned to application time partitions, which are activated period-

ically as specified by a repeating static schedule. When a time partition is activated,

any tasks of the previously active time partition are forcibly preempted; frequent time-

partition switches thus incur significant runtime overheads. As application time parti-

tions are strictly separated from another, tasks in different partitions can be certified to

different levels of assurance (i.e., each in accordance to its own criticality).

Owing to PikeOS’ microkernel design, all OS functionality (e.g., device drivers, file

systems, etc.) is implemented as service daemons (or tasks) scheduled in time partitions

similarly to standard applications. To ensure that essential system services are always

available, PikeOS assigns these tasks to a special time partition zero that is always eligible

to run. Thus, in PikeOS, there may be up to two active time partitions in the system

at any given time: time partition zero (TP0 ) and, depending on the static schedule, an

application time partition (TPX ). Note that threads in TP0 are always certified to the

highest assurance level since their functional and non-functional correctness is essential

to the correct operation of the entire system.

For every time partition in the system, PikeOS maintains a ready queue for each of 256

supported priority levels, and each ready queue is simply a FIFO-ordered list of tasks

eligible for scheduling at that priority level. When making a scheduling decision, the

scheduler finds the highest-priority, non-empty ready queue, and picks the first task

from it. It does this taking into account tasks from both TP0 and the currently active

TPX , if any, with TP0 tasks taking precedence over those in the currently active TPX at

any given priority level. Consequently, while the worst-case latency incurred by tasks

in TPX depends on the static schedule, TP0 tasks are always schedulable and thus

incur lower latency (affected only by other higher-priority tasks in the system).

For each time partition in the system, the PikeOS scheduler maintains a priority bitmap

to track non-empty priority levels so that it can efficiently determine the highest pri-

ority that is currently eligible when making a scheduling decision. That is, for each

time partition and priority level, a bit is set if and only if runnable threads exist in the

corresponding time partition at the given priority level.

Figure 2.3 summarizes the PikeOS scheduling architecture. On a multiprocessor, it is

instantiated on each core (partitioned scheduling).
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2.6 Performance Monitoring on Intel Platforms

Modern processers come equipped with a Performance Monitoring Unit that enables

collection of low-level processor events during its execution. Modern Intel processors

support two categories of performance monitoring events; the first are a large set of

model-specific events that vary from one processor model to the next, while the second

are a smaller set of events that are consistent across processor models [52]. The PMU

can be programmed to increment a counter when a specific event occurs as well as to

raise an interrupt when a counter exceeds a user-specified value. The latter is useful

for recording the instruction pointer, allowing for profiling a program using statistical

sampling.

Various high-level libraries are available for using performance counters to measure

the performance of native applications running on top of an OS such as Linux. These

include, for example, Intel’s VTune [98] profiler that allows for analyzing applica-

tion performance using performance counters, the PAPI standard, which specifies a

standard application programming interface (API) for accessing hardware performance

counters [88], the oProfile sampling-based profiler for Linux [28], Intel’s Performance

Counter Monitor tool [51, 113], and Linux’s perf tool [35].

Various approaches also exist for measuring the performance of virtualized applica-

tions running inside VMs (e.g., XenoProf [86], Perfctr-Xen [90]). Xen also provides a

virtualized PMU driver, which uses a save-and-restore mechanism for PMU registers

enacted upon vCPU context switches, as well as a trap-and-emulate mechanism for

PMU configuration registers. This allows for using standard tools, such as the perf

tool [39], within guest OSes to access performance counter data.

The limitation of these approaches is that they do not provide per-VM counter measure-

ments, but rather support either system-wide measurement (as in the case of XenoProf)

or measurement for virtualized applications running inside the guest OS running in a

VM (such as in the case of Perfctr-Xen or Xen’s virtualized PMU). To track per-VM

performance, we use a simple implementation in Chapter 7, which involves directly

programming the PMU registers. See section 7.3 for details on how we program the

PMU and use it in our implementation of Tableau.

2.7 Prior Work

In this section we present prior work related to the work presented in this thesis.
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Supporting soft- and hard-real-time applications. We first present relevant work

that focuses on supporting hard- and soft-real-time applications within VMs, and makes

the case for using techniques from the area of real-time systems. While we present a

small subset of this work here, we refer the interested reader to a survey by García-Valls

et al. [43] who present related work focused on supporting real-time applications in the

cloud, and the various technical challenges involved.

Cucinotta et al. [31] present the challenges involved in ensuring timeliness guarantees

for virtualized real-time applications, and show how simple real-time scheduling tech-

niques, such as reservation-based scheduling, can be employed to provide stronger

guarantees on response times. Cucinotta et al. [32] show how hierarchical scheduling

mechanisms can be used to improve the predictability of virtualized applications. They

present an improved schedulability test for hierarchical real-time systems, and show re-

sults demonstrating improved predictability of a set of KVM-based virtual machines.

Masrur et al. [82] present a fixed-priority VM scheduler implementation and show how

such a system can ensure timing constraints of an automotive-inspired real-time control

loop. Crespo et al. [30] present XtratuM, which is a type-1 hypervisor designed to meet

safety-critical real-time requirements. It does this via a space- and time- partitioning

approach that provides strong temporal and spacial isolation for VMs (and supports

the ARINC 653 standard). In a similar vein, Danish et al. [33] present the scheduling

framework in Quest OS, an OS capable of scheduling vCPUs, which allows for safely

co-locating batch and I/O workloads by employing real-time servers [71].

Xi et al. [120–122] presented RT-Xen, which implements a wide range of real-time schedul-

ing algorithms: both global and partitioned schedulers are implemented, with support

for both static and dynamic priorities, and with VMs modelled as either periodic or

deferrable servers. The RTDS scheduler in Xen, which we evaluate in this thesis, is

derived from the RT-Xen project. Other work has built on top of RT-Xen, such as RT-

OpenStack, which integrates RT-Xen with the popular OpenStack cloud management

system [100]. RT-OpenStack extends OpenStack with a real-time resource management

interface, in order to support the co-location of real-time and non-real-time VMs on the

same hardware. Finally, with respect to KVM, Checconi et al. [24], similar to the work

on RT-Xen, extend the Linux scheduler to support real-time reservation-based servers,

thus allowing KVM-based VMs to use real-time servers.

Co-locating batch and I/O workloads in clouds. Next we present selected work that

looks at the challenging problem of how to co-locate CPU-intensive batch workloads

alongside latency-sensitive I/O workloads in the cloud.
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VSched [70] looks at how to co-host batch and interactive VMs on shared hardware,

while ensuring both a predictable utilization for the batch VM, and low latency for the

interactive one. While VSched does not attempt to optimize throughput, and imple-

ments its scheduler as a user-space process resulting in high runtime overheads, the

paper makes a case for using periodic real-time scheduling in hypervisors to achieve

more predictable performance.

Kim et al. [62] present a VM scheduler which detects I/O-bound VMs, correlates in-

coming events with them, and optimistically boosts their priority so they can handle

them with low latency.

Lee et al. [66] present an enhanced version of Xen’s Credit scheduler that allow VMs

to specify their scheduling latency requirements using a laxity parameter. With this ex-

plicit latency goal available for each VM, their enhanced version of the Credit scheduler

is able to better prioritize latency-sensitive VMs. The work focuses more on soft real-

time workloads such as telephony applications, and shows how the default version of

the Credit scheduler is unable to achieve the required performance for latency-sensitive

workloads.

Govindan et al. [45] reinforce the point we make in this thesis that providing the right

amount of CPU time is not enough; it must also be provided in a timely manner. Similar

to our findings, it traces the root cause of performance degradation in cloud workloads

to scheduler-induced delays. They propose a new scheduling approach that preferen-

tially schedules I/O-bound VMs over CPU-intensive ones, resulting in improved I/O

latencies (albeit at the cost of increased short-term unfairness in CPU allocation).

Xen schedulers. Xen’s various schedulers have been studied extensively in prior lit-

erature, especially the Credit scheduler owing to its widespread use. Next, we briefly

summarize relevant work in this area.

Cherkasova et al. [25] presented one of the early works that compared the performance

of three Xen schedulers: the Borrowed Virtual Time (BVT) scheduler, Simple EDF (S-EDF)

scheduler, and the Credit scheduler. While the BVT and S-EDF schedulers are not ac-

tively maintained, one of the interesting findings they present regarding Credit is that

it shows high CPU allocation errors: deviations of up to 10% from the configured uti-

lization were observed, even over a longer time interval of three minutes.

In particular, Xen’s Credit scheduler has been studied extensively in prior literature.

Ongaro et al. [92] studied the effect of different scheduler configurations on I/O perfor-

mance. Multiple papers [64, 92, 112] have also studied how the co-location of different

types of workloads results in performance degradation under Credit. As a result, var-

ious designs have been proposed in prior work to remedy the shortcomings of the
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Credit scheduler. For example, there have been multiple attempts at improving the

performance of I/O-bound VMs that are latency sensitive [45, 61].

Yu et al. [126] present some limitations of the Credit scheduler in Xen with regards to

predictability. One of their findings presented shows that using different values for

weights, but with the same proportions, results in variation in observed application

latencies.

Abeni and Faggioli [5] present an empirical analysis of Xen and KVM scheduler-induced

latencies. They conclude that, for the evaluated workload, KVM guests can achieve

worst-case latencies around 100µs, while in the case of Xen, larger latencies are ob-

served. They also find that the source is not scheduler-induced delays, but rather the

overhead from Xen’s interrupt-forwarding mechanism. We note that this paper does

not present a high-density scenario, which exacerbates the scheduling latencies; we

show that under a high-density scenario, scheduler-induced delay can indeed have

significant impact on I/O tail latencies (see Chapter 6).

Gupta et al. [48] study the performance isolation mechanisms in Xen, and conclude

that they do not correctly account for resources consumed within the hypervisor when

doing work on behalf of VMs (e.g., I/O processing). They present the design and im-

plementation of a monitoring system that accounts for this resource consumption. In

modern clouds, the use of SR-IOV-enabled I/O hardware means there is significant less

work performed within the hypervisor (or Dom0) to service I/O requests for individ-

ual VMs; rather, VMs directly access virtualized devices, with the hardware performing

the multiplexing of requests across VMs.

Finally, ERTDS [118] is an extension of Xen’s RTDS scheduler that allows real-time

VMs to exceed their budget if available. The goal is similar to Tableau’s uncapped VMs,

where VMs are allowed to use available CPU time past their guaranteed allocation in

order to improve average-case performance, as long as it does not interfere with the

performance of other VMs (see section 3.2).

Performance variability and degradation in clouds. Performance variability in com-

mercial public clouds has been extensively studied in prior literature. It is a well-known

problem that is an inevitable consequence of hosting multiple tenants running a wide

range of workloads on the same hardware. For example, Iosup et al. [53] analyzed pro-

duction traces from Amazon Web Services and Google App Engine and found that a

significant proportion of the workloads exhibited periodic load patterns on the order

of days and weeks. Similar findings were made by Leitner and Cito [67] who con-

ducted an extensive empirical evaluation of the performance variability of four cloud



BACKGROUND AND PRIOR WORK 33

providers, and concluded, among other things, that multi-tenancy has a large impact

on throughput and predictability.

Nathuji et al. [89] empirically show that consolidating VMs onto a multicore system

with a shared last-level cache causes performance degradation. In particular, they make

the point that while strictly partitioning shared resources, as is the case with software-

based cache management techniques such as page coloring [104, 129], can improve pre-

dictability, it comes at a cost. First, complexity of the system increases as the partition-

ing schemes must be incorporated, not just for caches, but other shared resources such

as memory bandwidth [127] as well. Second, resource partitioning requires the design

and implementation of effective partitioning techniques, and owing to the temporal

variability exhibited in public clouds, would require a more dynamic approach where

resources are re-allocated over time as workload characteristics change. Finally, hard-

ware sharing techniques like HyperThreading [81] are explicitly designed to increase

resource utilization through increase sharing, at the cost of system predictability. Such

shared mechanisms must be disabled in order to support a partitioning-based scheme.

Instead, they advocate for designing adaptive resource allocation mechanisms in hy-

pervisors that are aware of Quality-of-Service (QoS) requirements of individual VMs

and which transparently provision resources to achieve them. They present Q-Clouds,

a control framework that allows VMs to specify QoS requirements, and optimizes re-

source allocation for each VM over time to mitigate performance degradation due to

interference.

Tableau’s unique semi-offline design enables it to perform changes to the scheduling ta-

bles without increasing the complexity of the hypervisor itself. This means that Tableau

makes it easy to support re-partitioning at runtime to mitigate dynamic cache interfer-

ence via a userspace daemon like we do in Chapter 7. Therefore, by designing the

scheduler with simplicity and high-performance in mind, Tableau is able to avoid in-

troducing significant system complexity when implementing a dynamic re-partitioning

scheme.

Tail latency and mitigation techniques. Tail latency refers to the latencies at the tail end

of the observed latency distribution, typically in interactive or user-facing services. In par-

ticular, it gets harder to control tail latencies as systems scale up in size and complexity.

In such systems, high-latency spikes that were relative rare at smaller scales, become

more prominent. We present some prior work that look at this problem and propose

various mitigation techniques.

Dean and Barroso [36] outline common causes for high tail latencies in online services

and present techniques to mitigate their effect on system performance. They argue for
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designing tail-tolerant services that are able to provide end-to-end tail latency guarantees

regardless of the performance of individual components comprising the system. This

includes techniques such as monitoring and blacklisting machines that induce high la-

tencies, and hedging requests by issuing the same request to multiple machines and us-

ing the result of the first request that completes. In comparison, Tableau addresses spe-

cific sources of latency variability, namely scheduler-induced delays, and tail-tolerant

techniques as proposed by Dean and Barroso are complementary to its goals. That is,

they can be combined with Tableau to further improve predictability.

Xu et al. [125] studied the tail latencies of network requests in multiple Amazon Web

Services EC2 datacenters, and found that the root cause was the co-scheduling of CPU-

bound and latency-sensitive VMs on the same cores. Based on this, they present Bob-

tail, a system that detects and avoids problematic VM placement. In comparison,

Tableau is able to co-locate latency-sensitive and CPU-bound VMs on the same cores

as the latency requirements of each VM is “baked in” to the scheduling tables directly,

and strictly enforced by the VM scheduler.

Li et al. [69] study the tail latency characteristics of multiple workloads on Linux and

identify various sources of latency in the system. These include interference from back-

ground processes, poor I/O scheduling, and CPU power-saving features. In Tableau,

background VMs are scheduled by a lower-priority scheduling tier, and thus are dis-

patched only when no table-driven VMs are eligible to run, causing less interference.

Further, our use of an SR-IOV-enabled virtualized network card means that I/O schedul-

ing policy does not affect network tail latencies.

Closely related to our work on Tableau is SageShift [103], which has similar goals: im-

proving application latencies while increasing resource utilization. SageShift does this

through a strict admission-control component, which determines whether a new VM’s

service-level objectives (SLOs) can be met. Once admitted, the VM’s SLO is guaranteed

via a VM scheduler that dynamically adjusts, both the utilization and scheduling delay

of the VM at runtime. While a comparison with SageShift would be interesting, we

were unable to locate any publicly available source code for the project.

Interference detection and mitigation in virtualized environments. We now present

some prior work that looks at the problem of detecting and mitigating performance

degradation due to interference from co-located VMs sharing the same hardware.

In general, any shared hardware resources are a source of interference, and a lot of

prior work has studied the problem in more detail. We do not attempt to exhaustively

list each one here, but rather present some representative work. We refer the interested

reader to a survey by Abel et al. [4] of the performance impact from interference in
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both bandwidth-based shared resource (e.g., memory buses), and storage-based shared

resources (e.g., caches).

DeepDive [91] is a system that identifies and mitigates performance degradation due

to interference in virtualized environments. The challenge of mitigating interference,

from the cloud provider’s perspective is that they do not have visibility into client VMs,

and therefore cannot easily determine when interference occurs. Rather, DeepDive runs

VMs in isolation first to build a model of their performance metrics, and monitors vari-

ous low-level hardware performance counters for each VM in the system at runtime. If

a deviation from the expected performance trend is detected, it runs a clone of the VM

in isolation and monitors its performance to confirm that it was indeed being interfered

with. If the performance in isolation varies from the performance observed at runtime,

the VM is migrated to a different machine.

DejaVu [109] has similar goals as DeepDive: to identify interference and mitigate it at

runtime. It does this by profiling workloads in isolation to build a workload signature

for each, and clusters multiple workloads based on their runtime characteristics. At

runtime, DejaVu observes VM behavior and classifies its workload by computing its

workload signature. Finally, it computes the resources that each VM requires in order

to achieve its service-level objectives.

In contrast to both DeepDive and DejaVu, we take a simpler approach in Chapter 7 and

attempt to detect interference using low-level hardware performance counters alone.

Javadi and Gandhi [55] presented DIAL, a load balancer that clients can use without

assistance from the cloud provider. DIAL works by detecting the performance degra-

dation due to local interference from co-located VMs, directly within client VMs them-

selves. Following this, it re-distributing application load to other VMs experiencing

lower interference. The goals of DIAL are orthogonal to that of Tableau, and can be

combined to achieve lower interference across client VMs.

Similar to DIAL, other techniques have been proposed in the literature for “user-centric”

interference detection [22, 56, 78, 79], which involve detecting interference directly

within client VMs. Such techniques have the advantage that they do not require special-

ized software to be deployed by providers, and can be set up by end users themselves.

Our cache-interference detection approach described in Chapter 7 is not a user-centric

detection mechanism, and is implemented via a combination of a lightweight perfor-

mance counter monitor directly in the hypervisor, and a userspace daemon in Dom0.

However, we note that such user-centric techniques can be incorporated by clients to

additionally detect interference within guests running on Tableau.

Zhang et al. [130] proposed CPI2, a technique for detecting and mitigating interference
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in multi-tenant clusters using performance counter data. The metric they propose to

for detecting interference is cycles per instruction. CPI is a measure of VM performance

that looks at the average number of cycles it takes to retire an instruction. That is, the

number of cycles a VM takes until an instruction is completed and its results are com-

mitted in the architectural state of the system. In general, increased cache interference

results in an increase in CPI, as instructions take longer to retire due to longer memory

fetches holding up their completion. CPI can be efficiently measured by calculating

the ratio of the number of unhalted CPU cycles (i.e., cycles where the VM was execut-

ing on the core) to the number of instructions retired, both of which can be monitored

accurately in the Intel architecture using low-level performance counters. While the

work on CPI2 was aimed at container based workloads, the use of CPI in virtualized

environments presents some challenges. In particular, as there is a guest OS between

the kernel and the virtualized application, an increase in CPI cannot necessarily be at-

tributed to external interference; it can also occur as a result of self-interference within

the VM being measured. We detail this and other issues with CPI as a interference-

detection metric in Chapter 7.

Wang et al. [110] proposed VMon, a system that monitors VMs using hardware perfor-

mance counters and quantifies the interference between them. It does this using the

LLC miss rates of each VM, and by analyzing how it correlate to the VMs performance

degradation. It does this by placing the VM in a sandbox, monitoring its resource re-

quirements, and building an interference prediction model, which is then used in pro-

duction to detect interference. They found that different applications exhibit different

LLC miss rate patterns under interference. Similar to VMon, we use LLC miss rates

as a detection mechanisms in Chapter 7. However, we attempt to detect interference

using the low-level metrics alone.

Intel Cache Allocation Technology. More recently, Intel introduced Cache Allocation

Technology (CAT), which provides hardware support for partitioning the LLC, with var-

ious cache-allocation approaches having been proposed based on it [42, 123]. We do not

use CAT in our approach as it requires specialized hardware, and partitioning the LLC

comes with a trade-off in the form of lowered application performance.

Containers and unikernels. Recently, there has been a shift towards more lightweight,

container-based isolation [12, 49, 84, 96, 101, 117, 119] and unikernels [63, 75], which en-

able lightweight, purpose-built “OS-less” VM images.
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With regards to lightweight containers, they do not invalidate Tableau’s design—the

Tableau approach can be easily applied to schedule containers instead of vCPUs, pro-

vided the containers are sufficiently long-running. That is, for systems where the con-

figuration of application images is relatively static, Tableau remains applicable. In

particular, combined with container-orchestration tools like Kubernetes [21], Tableau

may be used to declaratively specify performance requirements of containers running

on a cluster. With regards to unikernels, as they are designed to be lightweight and

application-specific, combining them with Tableau would provide significantly increased

performance predictability.

However, we note that Tableau, as presented in this thesis, is not applicable for certain

uses of containers and unikernels (e.g., on-demand spawning of containers to service

individual requests [77]), as such use cases break Tableau’s assumption that VM (or

container instance) creation and teardown are relatively infrequent events, which is

not the case in such scenarios. However, we do not see such techniques replacing tra-

ditional virtualization in the foreseeable future. Further, we present various techniques

for extending Tableau to support such use cases (see section 6.1), including caching

tables, or pre-generating fixed-sized slots in tables.

End-to-end predictability. From an end-to-end perspective, VM scheduling is not the

only source of unpredictability and tail latencies in data centers (see Chapter 7). For in-

stance, much prior work has dealt with network performance isolation within datacen-

ters [7, 47, 54, 57, 94, 114]. An example of a system that integrates multiple techniques

into a complete system is Heracles [73], which shows how to jointly consider multiple

aspects (scheduling, memory isolation, and network isolation) using Linux’s heuristic-

driven CFS scheduler. The contribution of Tableau is to specifically improve the design

of the VM scheduler, and can be combined with techniques that target other sources of

unpredictability.





CHAPTER 3

THE TABLEAU VM SCHEDULER

In this chapter, we first look at the high-level role of a VM scheduler and the design de-

cisions that affect the runtime performance of client VMs. In particular, we look at two

key sources of performance volatility and degradation: the use of heuristics during the

scheduler’s decision-making process and high runtime overheads of scheduling oper-

ations. Based on this, we present the high-level design of Tableau, a novel approach to

VM scheduling that is designed from the ground up to avoid these pitfalls.

3.1 The Role of a VM Scheduler

While a VM in modern hypervisors, by itself, serves as a container for various resources

(e.g., CPU, memory, I/O devices and bandwidth), from the perspective of a VM sched-

uler, a VM can be simplified to be a container for one or more virtual CPUs (or vCPUs).

The role of the VM scheduler, at a high level, is to ensure that all vCPU’s in the system

receive a user-configured share of CPU time, while minimizing the latency and max-

imizing the throughput of tenant applications. At a lower level, this means that each

vCPU must be allowed to execute for a certain cumulative share of CPU cycles and

these cycles must be provided in a way so as to ensure the incurred scheduling latency

stays within acceptable bounds.

It should be noted that the definition of “acceptable bounds” can vary significantly

across current public cloud providers, as well as across different tiers of VMs from

the same provider. Regardless, we assume the presence of some quantitative value of

scheduling latency, whether it be through implicit means (e.g., based on customer ex-

pectations as a result of advertising) or via explicit means (e.g., a service-level agreements

(SLAs) signed between customers and providers).
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Scheduling Latency and Maximum Scheduling Latency: We define the schedul-

ing latency incurred by a particular vCPU as the delay introduced by the scheduler

between consecutive timeslices during which the vCPU is executing. This occurs

in all schedulers when either (i) multiple uncapped vCPUs contend for a single

core or (ii) the maximum CPU share of a vCPU is capped to less than a single core.

Controlling this scheduling latency is crucial as it is visible to clients in the form

of increased application latencies. We define the maximum scheduling latency as

the maximum-observed scheduling latency from the point of view of a virtualized

application.

The goals of a VM scheduler, namely ensuring a certain CPU share and guaranteeing a

bound on application latency for every VM in the system, are affected by two primary

factors: (i) increased and unpredictable tail latencies for tenant applications resulting

from unpredictable scheduling heuristics, as employed by many popular VM schedulers,

and (ii) lowered application throughput due to high scheduler runtime overheads, which

eat up precious CPU cycles that could have been used by tenant VMs. We expand

on these two factors in more detail below before providing an overview of Tableau’s

high-level design.

3.1.1 Heuristics Increase Tail Latencies

To improve the average-case latency of VMs, many VM schedulers employ heuristics

and special-case optimizations that favor VMs performing I/O [25, 93, 107].

For example, when a vCPU resumes (or unblocks) from a blocking I/O operation, Xen’s

Credit scheduler attempts to temporarily “boost” its priority, thereby overriding the

fairness criterion. Such heuristics are not unique to Xen and are commonly imple-

mented in most major cloud hypervisors today. For example Linux’s Completely Fair

Scheduler (CFS), which is widely used in conjunction with Linux’s built-in KVM hyper-

visor, also uses accounting tricks to favor I/O activity (e.g., the “gentle fair sleepers”

setting [93]). In fact, CFS has even been observed to under-utilize cores in fully loaded

systems due to complex, erratic, and often erroneous load-balancing heuristics [74].

Similarly, in the VMware ESXi scheduler, a VM “that is frequently blocked due to I/O

gets scheduled more promptly compared to [a VM] that is CPU bound if all other con-

ditions are equal.” [107].

The problem is that while such approaches result in improved average-case scheduling

latencies (and consequently, application latencies) for I/O-bound VMs, as we show

later in Chapter 6 for Xen, it also induces unpredictable, hard-to-anticipate delays in
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scheduler tail latencies. For example, in the case of the Credit scheduler in Xen, if every

vCPU is performing I/O and is boosted to a higher priority, then effectively no vCPU

is boosted since they all contend at the same higher priority level. Combined with the

multi-tenant nature of public clouds, which host a diverse range of workloads from

different customers with varying runtime characteristics, it is difficult to predict what

the observed tail latencies will be for a given vCPU at any given time.

A secondary, but important, concern is that in order to implement such a heuristic, one

must introduce complex runtime logic into the VM scheduler to keep track of metrics

and perform various book-keeping operations that aid the decision-making process.

This results in CPU cycles being spent on work that could have been used by tenants.

For example, in Xen’s Credit scheduler, a periodic task tracks vCPU runtime statistics

in order to characterize their I/O sensitivity. It also requires more complex dispatch

logic, a critical system hotpath, which makes use of this information.

3.1.2 Scheduling Overheads Limit Throughput

A second major concern is that a VM scheduler must exhibit very low runtime over-

heads. There are two reasons for this requirement: first the scheduler is frequently

invoked and any wasted cycles during key runtime operations are multiplied as a re-

sult. Second, because any cycles spent on scheduling are pure overhead in that they

would otherwise have been available to applications of paying customers. Therefore,

it can be argued that any cycles used beyond the minimum requirements of satisfying

a VM’s SLA are detrimental towards the performance of VMs and the useful work per-

formed on the machine as a whole. To reiterate the previous example regarding the use

of heuristics, in addition to causing unpredictable latency spikes, dynamic scheduling

heuristics are also detrimental to throughput because they must be frequently com-

puted. Similarly, any other major source of runtime overheads such as lock contention

inside the scheduler hurts application throughput.

At cloud scale, such overheads can accumulate towards massive costs. For example, a

recent study of more than 20,000 computers in one of Google’s data centers found that

roughly 5% of all processor cycles are spent on the kernel’s process scheduler [58]. In

the case of high-density workloads, the effects of any scheduling bottlenecks are further

exacerbated by the fact that the rate at which context switches occur is naturally higher.

There is thus strong motivation to make the VM scheduler as efficient as possible.

However, as we demonstrate in our evaluation, contemporary VM schedulers leave

substantial room for improvements in terms of both runtime overheads and scheduler-

induced tail latencies when facing challenging high-density workloads that frequently
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trigger the VM scheduler. As a novel, unorthodox alternative that occupies a previ-

ously unexplored point in the design space of VM schedulers, we propose Tableau, a

low-overhead VM scheduler that guarantees a minimum share of CPU time and a hard

bound on maximum scheduling latency for every vCPU.

3.2 Design Overview

Tableau is based on a table-driven design inspired by hard real-time systems to mini-

mize runtime overheads while maintaining high throughput and predictable latencies

even when confronted with a large number of VMs. In the following, we introduce the

high-level design; implementation-level details are discussed in Chapter 4.

3.2.1 Dispatcher vs. Planner

VMs in cloud environments are typically long-running. For example, a majority of

customer VMs hosted on Microsoft Azure have a lifetime of at least a few hours [29],

and VMs that run longer than a day are likely to run for several days and account for

more than 95% of the total core hours [29]. Based on this key observation, we push all

expensive scheduling logic related to satisfying VM performance requirements into a

separate, infrequent planning (or system reconfiguration) step that is only invoked when

a VM is started up, torn down, or reconfigured.

Consequently, Tableau’s scheduler consists of two main components: a straightfor-

ward, low-overhead, table-driven dispatcher and a relatively heavy-weight scheduling

table generator (or planner). The dispatcher resides in the hypervisor and is invoked

whenever a scheduling decision is needed. It simply enacts the latest scheduling ta-

ble provided by the planner. The planner in turn can reside anywhere (e.g., it can be

an unprivileged process) and is invoked if a new table is needed, i.e., when a system

reconfiguration occurs. By leveraging multiprocessor real-time scheduling theory (dis-

cussed in Chapter 5), the planner quickly generates tables that guarantee a minimum

CPU share and a hard upper bound on the maximum scheduling delay for each VM in

the system.

An immediate benefit of the split between a minimal, efficient dispatcher and a sep-

arate system-wide planning process is that the dispatcher uses primarily core-local data

structures, which trivially ensures Tableau’s scalability on large multicore platforms. All

decisions requiring system-wide information and coordination as well as table updates

are done asynchronously by the planner and do not slow down the online dispatcher.
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Thus, the performance-critical scheduler hot paths are not impacted by the planner’s

overheads.

3.2.2 Second-Level Scheduler

A naive table-driven scheduler, however, is too inflexible at runtime and results in

non-work-conserving behavior. As a result, the average scheduling latency incurred

by VMs is higher due to the blackout periods that occur between consecutive slots in

the scheduling plan. That is, if an I/O request for a VM arrives between two of its

slots in the current plan, the I/O request is deferred at least until the beginning of the

next slot, after which it will incur the usual intra-VM queueing delays before being ser-

viced. Therefore, a table-driven scheduler alone has the downside of observably higher

average-case I/O latencies for applications. Further, it might be the case that the CPU

ends up being idle because the VM whose slot is currently active is idle.

Ideally, we want to be able to utilize these idle cycles, whether they result from inter-

slot idle periods or intra-slot idle time due to VMs idling. To remedy this, we introduce

a second-level scheduler that is invoked whenever the table-driven dispatcher picks

the idle vCPU (i.e., when it does not have any valid table-driven VM to schedule).

The second-level scheduler then picks, in a round-robin fashion, one of the other table-

driven VMs assigned to that core that are runnable. Therefore, a table-driven VM that

receives an I/O request during an idle period, and becomes runnable, ends up process-

ing the request immediately when dispatched by the second-level scheduler.

Since being scheduled by the second-level scheduler results in VMs receiving more

CPU time than agreed upon in the SLA, we make the distinction in Tableau between

capped and uncapped VMs (similar the other hypervisor schedulers). Capped VMs are

restricted to executing within their slots specified in the current plan, and incur the

higher average-case latency. This is similar to other VM schedulers like Xen’s Credit

scheduler, where a capped VM is cut off from further CPU time regardless of whether

idle cycles are available in the system. On the other hand, uncapped VMs are guaran-

teed the time within their slots in the current plan but are allowed to execute during

idle periods via the second-level scheduler.

Another way to think about this is that capped VMs are guaranteed a fixed share of

CPU time, while uncapped VMs are guaranteed a minimum share of CPU time, with

no guarantees for CPU time beyond that. In both cases, Tableau guarantees scheduler

latency bounds.
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3.2.3 Background Scheduler

Finally, since it is generally the goal of cloud operators to use each and every available

cycle to maximize profits, it is advantageous to provide a way to harvest any idle cycles

that are left after both the first- and second-level scheduler have attempted to schedule

table-driven VMs.

To accommodate this, Tableau allows for a third group of VMs to exist in the system,

which are scheduled by a third-level background scheduler using a simple round-robin

fair-share algorithm. The background scheduler is invoked only when both the first-

and second-level schedulers fail to find a vCPU to schedule and consequently only

harvests idle cycles that would have otherwise gone to waste.

Therefore, in addition to uncapped and capped VMs with strong guarantees on CPU

share and scheduling latency, the background scheduler enables a low-priority, best-

effort class of VMs to co-exist on the same machine without affecting the utilization

and latency characteristics of client VMs. These low-priority VMs simply soak up any

unused cycles in the system and can be used for performing other useful work. For ex-

ample, cloud providers can choose to provide these idle cycles for use internally within

their organization to run secondary, CPU-intensive workloads such as an extension of

search indexing or for fuzzing product APIs to improve their security.

Finally, providers can also simply choose to rent these VMs out to customers at a sig-

nificantly lower cost owing to the lack of strong performance guarantees in the default

case. That said, it should be noted that performance guarantees for background VMs

can be trivially introduced by limiting the utilization per core and ensuring the pres-

ence of a minimum amount of idle time during the planning step. In doing so, the

configured idle fraction of each core will be divided among the background VMs, pro-

viding a lower bound on their average, long-term performance.
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Tier-1 vs. tier-2 VMs: To accommodate the discussion of the various levels of the

Tableau scheduling approach, we differentiate the terminology between two types

of VMs for the rest of this thesis. We refer to VMs that have performance guar-

antees and are scheduled via the table-driven dispatcher and second-level round-

robin scheduler as tier-1 VMs. On the other hand, we refer to low-priority VMs

scheduled via the background scheduler as tier-2 VMs. We also make the dis-

tinction between capped and uncapped tier-1 VMs: capped tier-1 VMs execute only

via the table-driven dispatcher, while uncapped tier-1 VMs additionally get dis-

patched by the second-level scheduler. Finally, tier-2 VMs are always assumed to

be uncapped and, apart from being subject to limitations imposed on them by the

background scheduler itself, have no limits on how much idle time they can soak

up.

To summarize, Tableau is a three-level, hierarchical scheduling approach aimed at

cloud providers with a table-driven dispatcher at the first level, a core-local fair-share

scheduler at the second level to enable uncapped VMs, a background scheduler for

running low-priority workloads, and an infrequently invoked asynchronous planner.

Together, these components ensure flexible, work-conserving runtime behavior on top

of the minimum performance guarantees incorporated into the tables, which are (re-

)generated on demand.

We next elaborate on the dispatcher in Chapter 4 and then discuss how the planner

finds scheduling tables with performance guarantees in Chapter 5.





CHAPTER 4

DISPATCHER IMPLEMENTATION

This chapter gives a detailed description of our Xen-based implementation of the table-

driven dispatcher described in the previous chapter, as well as an overview of the

second-level and background schedulers in Tableau.

4.1 Table-Driven Dispatcher

At the first and highest level, Tableau schedules tier-1 vCPUs using a table-driven dis-

patcher, not unlike those commonly found in safety-critical hard real-time systems. For

instance, the ARINC 653 standard for integrated modular avionics (see Section 2.5.4) spec-

ifies time-partitioned scheduling, which is accomplished with static scheduling tables.

We adopt this proven technique for building a highly predictable VM scheduler.

A table-driven dispatcher requires a pre-generated scheduling table of finite length

(usually in the range of a few hundred milliseconds). For each core, the table is pro-

vided as a set of non-overlapping intervals, each of which is specified using offsets

relative to the start of the table. Each interval is either marked as idle or reserved for a

specific tier-1 vCPU that is given the highest priority during that interval

When the dispatcher is invoked at runtime, it simply looks up the interval in the

scheduling table corresponding to the current system time (modulo the table length). If

this interval is reserved for a specific vCPU, and if that vCPU is ready, it is dispatched

and allowed to run uninterruptedly until the end of the current interval, or until it

blocks, whichever comes first.

If the specific vCPU is blocked (e.g., while waiting for an I/O request to complete), or if

the current interval is marked as idle, the second-level scheduler is invoked to schedule

any ready core-local tier-1 vCPUs, which are chosen in a round-robin manner.
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FIGURE 4.1: Tableau architecture

To summarize, the scheduler hotpath in Tableau consists of little more than a straight-

forward table lookup in the common case, which is a minimal and hence extremely ef-

ficient approach to scheduling. The schedule resulting from the table repeats cyclically

until a new table is installed by the planner. Importantly, as we show later in Chapter 5,

it can be made inherently predictable: the maximum “blackout time,” during which

a vCPU receives no service, and which directly translates into application-visible la-

tency, can be trivially bounded by applying techniques from multiprocessor real-time

scheduling theory during table generation. It is also work-conserving (w.r.t. core-local

vCPUs) owing to the second-level scheduler.

The Tableau approach is not tied to any particular system and can be realized in vir-

tually any modern hypervisor. For evaluation purposes, we chose the popular Xen

hypervisor (version 4.9) as the basis for our experiments, due to its widespread use in

public clouds such as Amazon EC2 at the time of our implementation efforts.

The main components of Tableau in Xen are illustrated in Figure 4.1. Recall that Xen

consists of a special supervisory VM called domain-0, or dom0, which has privileged

access to the underlying hardware to enable (i) device access, and (ii) the creation,

teardown, and reconfiguration of domains. Accordingly, the planner is realized as a

daemon in the userspace of dom0 (henceforth referred to simply as userspace).

Implementing the scheduling logic in userspace is quite convenient. In particular,

the Tableau planner is written in Python using SchedCAT, an open-source real-time

scheduling toolkit [1]. The use of a high-level language greatly simplifies the rapid

exploration of new post-processing phases and scheduling ideas, potentially even by

non-systems developers or using machine-learning techniques.

In total, our Tableau prototype consists of around 2,350 lines of new or changed C

code in the hypervisor itself, and around 1,600 lines of code in the userspace Tableau

daemon. It was possible to realize Tableau with a relatively small code base because

the hypervisor component is simple by design, and because the planner heavily relies
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on existing scheduling logic [18] in SchedCAT.

New scheduling tables are pushed by the planner to the hypervisor via a hypercall

in a compiled, binary format and used directly by the Tableau dispatcher. While the

dispatcher is conceptually straightforward, there are certain choices involved in imple-

menting it efficiently. In the following, we highlight four key aspects.

4.2 Tier-1 Scheduling

In this section we look at the first- and second-level scheduler used to scheduler tier-1

VMs. We first look at the algorithm used by the tier-1 scheduler before giving a brief

overview of the round-robin approach used in the second-level scheduler.

4.2.1 Table-Driven Scheduler

Figure 4.2 shows the structure of a Tableau scheduling table as it is provided by the

planner. It consists of per-CPU lists of allocations, which map an interval of time to a

specific vCPU.

The first implementation-level challenge that we must address is to design an efficient

mechanism to quickly lookup the current slot in the scheduling table. The problem is

that an allocation in the table represents a variable-length interval within the table. In

the worst-case (i.e., we are in the last slot of the table) we have to iterate through each

slot in the linked list until we come to the currently-active slot. Using a more compact

structure with a fixed-size array might improve the lookup to O(log n), but is still not

constant time.
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O(1) lookups using a slice table. To facilitate constant-time lookups, the scheduling

table is accompanied by a slice table. A slice table is essentially an index comprised

of “slices” of the allocation table, where each slice describes a fixed-sized time interval

of the allocation table. The slice length is chosen such that each slice overlaps with at

most two allocations (and possibly some idle time between them). This is accomplished

by picking, for each pCPU, a per-CPU slice length equal to the length of the shortest

allocation on that particular pCPU. Effectively, the inclusion of the slice table allows us

to translate from the time domain to a specific slot within the table in constant time.

The slice table therefore enables O(1) scheduling decisions. First, the dispatcher de-

termines the current slice by indexing the slice table using the current time (modulo

the table length), and then it determines which of the two allocations within the slice

(or the idle time between them) currently needs to be scheduled. The allocation and

slice-table records are aligned to cache lines, so at most two cache lines are accessed per

lookup.

The simple table-driven dispatcher is efficient and inherently scalable as most mem-

ory accesses are to core-local data structures, especially in the common-case hot path.

However, in two exceptions, which we briefly sketch next, remote accesses are needed.

Cross-core migrations. In Tableau, as we will see later in Chapter 5, a vCPU may

have allocations on two cores, due to semi-partitioning, if that is the only way it can be

scheduled. One challenge is that if the gap between these two allocations in the table

is small (or even overlapping by a few cycles due to timer skew), we must ensure that

one core does not schedule the vCPU until it has been completely de-scheduled on the

other core (to avoid stack corruption).

To this end, for each vCPU, Tableau tracks the core that currently schedules the vCPU,

if any. Before scheduling a vCPU, a core checks that it “owns” the vCPU. If the vCPU

is still marked as “scheduled elsewhere,” the core that failed to schedule the vCPU

sets a field in the vCPU structure requesting an inter-processor interrupt (IPI) to be sent

when the vCPU is de-scheduled, and schedules either a vCPU selected by the second-

level scheduler or idles until notified. No locks or cache lines shared by all pCPUs are

required.

In the expected case (no overlap of allocations), the only cost is an atomic write to

the vCPU control block (which is already in-cache anyway). In the rare case of a race

between allocation start and end times, a remote memory reference and an IPI are oc-

casionally incurred, which however does not impact scalability.
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Blocking vCPUs. Blocking a vCPU does not involve any action since the state of each

vCPU is checked and ensured to be runnable before attempting to schedule it. There-

fore, when a slot switches to that of a blocked vCPU, the scheduler will simply see that

the state is not runnable and choose to invoke the second-level scheduler.

Unblocking vCPUs. Tableau must also deal with wake-ups of blocked vCPUs, which

may be processed on any core in the system. For each vCPU, we keep track of the

core it currently has an allocation on (or where it last had an allocation). When a core

processes a wake-up for a vCPU that has a current allocation, it reads this field and

sends an IPI to the responsible core. Similarly, if the vCPU does not have a current

allocation, but is allowed to take part in second-level scheduling, and the vCPU’s last-

used core is currently idling, then an IPI is sent to said core.

If, however, the vCPU does not currently have an allocation on any core and is capped

(i.e., not eligible to take part in second-level scheduling), then the wake-up can be safely

ignored; when the next allocation pertaining to the vCPU begins, it will be seen to be

runnable anyway. Again, no locks or globally shared cache lines are required to realize

this optimization.

For simplicity, it is also possible to unconditionally send an IPI; if IPIs are relatively

cheap, then this may be preferable to complicating the wake-up logic. Our proto-

type currently uses this approach and simply unconditionally sends an IPI whenever a

vCPU unblocks.

Synchronization-free table switching. To avoid adding a lock or a barrier in a hot

path, table switches in Tableau are time-synchronized. Each core has a next_table

pointer, which is set when a new table is pushed. If a core finds this field to be set

when the current table wraps around, then it switches to the new table (otherwise the

current one is reused). However, if the next_table pointer is set during a table wrap,

some cores may pick up the change while others may retain the old table, causing an

inconsistent schedule. To avoid such races, we simply ensure that tables are never set

during or close to a table wrap. When a new table is pushed, all next_table pointers are

timed to be set at a point in the middle of the next round of the current table. Given

the scheduling table length in Tableau (≈ 102ms), this technique avoids any race and

all cores consistently switch to the new table. Two rounds after a new table has been

uploaded, when all cores are certain to have switched to the new table, the previous

table is garbage-collected.
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4.2.2 Second-Level Scheduler

The second-level scheduler is a simple round-robin scheduler that is invoked when

the table-driven dispatcher idles. This may occur for one of two reasons: either the

current slot is an idle slot, or the current slot is non-idle but the vCPU to be scheduled

is currently blocked on I/O.

The second-level scheduler works within a configurable periodic interval called an

epoch, which is set to a default of 20 ms. At the beginning of every epoch, a budget

replenishment occurs where each currently runnable VM is assigned an equal share of

the next epoch. For example, if there are currently four runnable tier-1 VMs on a core

with a 20 ms epoch, each of them is assigned a 5 ms budget for the upcoming epoch. If

a new VM wakes up during that epoch, it will be accommodated in the next epoch by

assigning each VM 4 ms (now that there are five ready VMs). If a VM that was assigned

a budget in the current epoch blocks during the epoch, it maintains its budget for that

epoch. Therefore, if it were to unblock at some point in the future during the same

epoch, it would resume execution with the budget it had prior to blocking.

When invoked, the second-level scheduler iterates through the list of ready tier-1 VMs

on the current core, and picks the first one with sufficient budget and schedules it. It

also sets up a timer to fire in the future when the budget of the vCPU expires. If the

vCPU executes without blocking, this timer fires at the point where the vCPU’s budget

would have expired. Within the timer handler, the budget of the scheduled tier-1 vCPU

is deducted by calculating the total time difference from the current time to the time

when the vCPU was previously dispatched.

Semi-partitioned VMs. The current implementation of the second-level scheduler

only considers tier-1 VMs that are not semi-partitioned (i.e., only those vCPUs that

have slots on a single core are considered), which means that semi-partitioned VMs

cannot currently make use of spare idle cycles.

The underlying reasoning for this choice is that semi-partitioned VMs, owing to their

having slots on different cores, require additional synchronization to ensure that second-

level schedulers on multiple cores do not attempt to schedule them simultaneously. For

example, if a VM is semi-partitioned across cores 1 and 2, both of which are currently

idle, we must incorporate additional logic in the scheduler hotpath to ensure that they

do not both end up scheduling the semi-partitioned VM simultaneously, which would

result in memory corruption as both cores attempt to use the VM’s stack area.
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This problem is not unique to the second-level scheduler and is handled in the table-

driven scheduler as discussed above in Section 4.2.1 (see discussion on “cross-core mi-

grations”). However, synchronizing cross-core migration in a table-driven scheduler is

significantly easier as the table provides complete information regarding where a VM

might be currently executing. In the case of the second-level scheduler, one would in-

cur higher synchronization overheads as it would need to search through the ready

queues of all second-level schedulers on all cores a VM may currently be running on.

Since attempting to introduce additional synchronization into the second-level sched-

uler hotpath would affect all VMs, and because semi-partitioned VMs are expected

to be absent in most production scenarios (or present only in extremely rare circum-

stances), we simply ignore them for second-level scheduling. The alternative would

be to increase the cost of the second-level scheduling hotpath in favor of a rare case

(i.e., uncapped semi-partitioned VMs), at the expense of the common case (uncapped

fully-partitioned VMs).

It should be emphasized that ignoring semi-partitioned VMs at the second-level sched-

uler has no effect on the performance guarantees provided by the first-level scheduler:

semi-partitioned VMs continue to enjoy the guarantees provided to them via the cur-

rent scheduling table. They simply cannot be uncapped, and thus cannot use up addi-

tional idle cycles in the system.

4.3 Tier-2 Scheduling

The Tier-2 scheduler, or the background scheduler, is responsible for dispatching tier-2

VMs whenever the first two scheduling levels idle because they cannot find any VM to

schedule.

The background scheduler has a design nearly identical to the second-level scheduler:

background VMs are partitioned onto individual cores upon creation and, on each core,

the background scheduler employs a round-robin approach to schedule any runnable

tier-2 VMs within a configurable periodic epoch.

Dealing with non-work-conservation. Unfortunately, idle time may not be distributed

evenly across cores in the system, and depends on the idling behavior of both capped

and uncapped tier-1 VMs. This means there may be situations where idle time is avail-

able on a core but due to a prior partitioning, it does not have any tier-2 VMs to run. At

the same time, tier-2 VMs may be starving on a different core due to a sudden burst of

tier-1 work. This non-work-conservation may be acceptable to some extent given the
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lower priority of tier-2 VMs, however, a prolonged periodic of non-work-conserving

behavior is undesirable. Rather, we require some form of load balancing to mitigate

this.

One way to ensure work-conservation is to incorporate a more complex global sched-

uler design for tier-2 scheduling that load balances tier-2 VMs across all cores in the

system as they become idle. However, we eschew this approach as it would require

additional cross-core synchronization that introduces runtime overheads that affect the

first- and second-level schedulers.

The key difference in design between the second-level and background schedulers is

that the background scheduler keeps track of idle-time statistics for each core in the sys-

tem. It tracks the total cycles that were idle in the last n rounds of the table, where n is

a configurable parameter. This idle-time is then extracted (free of any synchronization)

by a userspace load-balancing daemon that periodically re-partitions tier-2 VMs, ac-

counting for any changes in the distribution of idle time in the system (averaged across

a configurable number of scheduling table cycles).

Currently, the repartitioning metric is simple and just assigns tier-2 VMs to cores in

proportion to the average idle time they experienced in the last n rounds. The re-

partitioning period of the daemon can be configured depending on how much non-

work-conserving behavior one is willing to tolerate, with the trade-off being increased

CPU usage for dom0 due to the frequency of actions of the load-balancing daemon. A

high frequency reduces the delay during which tier-2 scheduling is non-work-conserving,

but increases the CPU usage of the load-balancing daemon. On the other hand, a lower

load-balancing frequency reduces CPU usage but increases the potential for temporary

starvation of tier-2 VMs due to the non-work-conserving behavior of the tier-2 sched-

uler.

Finally, we note that when a VM is created, it is initially always created as a tier-2 VM.

This means that all VMs, including VMs that will eventually be promoted to a tier-1

VM (via a later table push) begin their lifecycle as tier-2 VMs. The advantage of doing

so for tier-1 VMs is that they begin executing immediately if there are any idle cycles

available. On the other hand, there is a slight delay between when a tier-1 VM is created

as a tier-2 VM initially and when a table push promotes it to a tier-1 VM. However, since

table re-generation is invoked as soon as a VM destined to be a tier-1 VM is created, this

delay is predictably bounded: it takes at most the overhead of a table push plus the time

taken for a single round of the planner to complete. As we show later in Chapter 6, this

delay is typically a fraction of the time taken for a VM to boot up, and so we consider

it acceptable.
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4.4 Summary

To summarize, Tableau is implemented via a three-level hierarchical scheduler. The

first level schedules tier-1 VMs strictly using a table provided to it by the planner. The

second-level additionally enables runnable, uncapped tier-1 VMs to use up any idle

cycles available in the system when the first-level scheduler idles. Finally, a third-level

background scheduler soaks up any remaining idle cycles in the system and gives them

to tier-2 VMs, a lower-priority set of VMs. The background scheduler uses a parti-

tioned scheduling approach that is susceptible to non-work-conserving behavior, and

to remedy this, a userspace load-balancing daemon extracts idle-time statistics gath-

ered by the background scheduler to periodically re-partition tier-2 VMs. This allows

for maintaining the advantageous properties of a partitioned scheduler (i.e., simplicity,

low overhead) while providing approximate work conservation.





CHAPTER 5

PLANNER DESIGN

In this chapter we detail the planner component of Tableau. In particular, we look at the

approach used by the planner for generating good scheduling tables for a given system

configuration.

From the planner’s perspective, the view of the system consists of a list of vCPUs,

each with some configuration parameters. More specifically, the planner assumes (and

requires) a specified reserved utilization U and a maximum scheduling latency L for each

vCPU in the system, which may be selected by system administrators based on their

requirements. For example, they may be explicitly specified by an associated SLA, pre-

determined according to price-differentiated service tiers set by the cloud provider, or

simply computed by a fair-share policy (e.g., U = m
n , where m is the number of CPU

cores and n the number of vCPUs assigned to the host).

Crucial to note is that Tableau does not require more information to be provided than

existing fair-share schedulers such as Xen’s Credit scheduler or Linux’s CFS scheduler.

Just as in Xen’s Credit scheduler or KVM’s CFS, U can be determined automatically

based on a vCPU- or VM-specific weight, the number of cores, and the number of

vCPUs in the system. Similarly, L can be given a reasonable default magnitude similar

to the scheduling quantum in Credit or the sched_latency_ns tunable of CFS.

The advantage of Tableau is that it additionally allows for more sophisticated performance-

or price-differentiated provisioning strategies without the added administrative com-

plexity of a more complicated default setup or a higher barrier to adoption.

Based on this, the challenge for the planner is to find a static vCPU schedule for the

dispatcher that is runtime-efficient and that satisfies the minimum utilization and max-

imum latency guarantees for all vCPUs in the system.

Since the planner can operate outside the restricted confines of the hypervisor, such

as within a supervisory VM, one might be tempted to use high-level tools such as ILP
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or SMT solvers to find schedules. However, we want the table generation process to

be relatively fast (i.e., seconds rather than minutes) even for hundreds of vCPUs and

therefore avoid such heavyweight solutions.

Rather, we map the problem to the well-studied problem of multiprocessor hard real-

time scheduling, which allows us to quickly generate reasonably short tables satisfying

all constraints for any possible configuration of VMs that does not over-utilize the system

(i.e., where the sum of all U parameters does not exceed the number of available cores).

The planner generates tables in two steps. It first models each vCPU as a periodic

task [72] with parameters that are carefully chosen to (i) reflect its specified U and L

parameters while (ii) ensuring a short maximum table length. It then simulates a mul-

tiprocessor real-time schedule of the set of periodic tasks representing all vCPUs in the

system. This simulation results in a repeating table that guarantees the target utilization

and ensures the desired scheduling latency for each vCPU.

We now describe in detail each of the various steps taken by the planner to create a

scheduling table.

5.1 Mapping vCPUs to Periodic Tasks

The first step performed by the planner is to model each vCPU in the system as a

periodic task. Recall that a periodic real-time task [72] τ = (C, T ) is characterized by

its worst-case execution time C and period T . That is, a periodic task is assumed to release

a job every T time units, with each job taking at most C time units anywhere during

the current period’s interval. The only associated correctness criterion is that each job

released by a periodic task must receive (up to) C time units of processor service from

the scheduling during each scheduling interval [0, T ), [T, 2T ), [2T, 3T ), etc.

When mapping a vCPU (U,L) to a periodic task τ = (C, T ), we clearly require U = C
T .

However, while we know the ratio betweenC and T , how do we map a vCPU’s latency

goal L to an “equivalent” period T ?

Without knowing anything about the final schedule, a suitable period can be deter-

mined by observing that a periodic task must be scheduled for at least C time units

during every period of length T . The worst-case blackout time (i.e., contiguous interval

without any processor service) hence occurs when a periodic task is scheduled for C

time units at the very beginning of one period, and then scheduled next only at the

very end of the next period, again for C time units. For example, a periodic task with
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(C, T ) = (10ms, 100ms) might be scheduled during [0ms, 10ms) and then again dur-

ing [190ms, 200ms), yielding a blackout time of 180ms corresponding to the blackout

interval [10ms, 190ms).

In general, the worst-case blackout time incurred by a periodic task with period T and

cost C is bounded by 2 × (T − C), or equivalently 2 × (1 − U) × T . Thus, a vCPU’s

latency goal L can be converted into a suitable period T by picking any period T such

that T ≤ L
2×(1−U) . If U = 1, then the vCPU is simply mapped to a dedicated pCPU and

excluded from further consideration.

Bounding table lengths. While the simple approach above results in periodic tasks

that satisfy the U and L associated with each vCPU in the system, in order to minimize

preemptions, one should attempt to maximize the period (i.e., a shorter period results

in more frequent preemptions that degrades performance due to system overheads and

cache-related preemption delays).

However, simply choosing the maximal period for each vCPU can result in a periodic

task set with an extremely large hyperperiod, the least common multiple of all task peri-

ods. Since this is also the length at which the dispatching table repeats, picking periods

indiscriminately could even result in exponential table sizes (if all chosen periods are

relatively prime). This would result in significant memory usage as well as significant

cache usage by the frequently-invoked scheduler hotpath.

To avoid this problem of ending up with potentially large dispatching tables, we in-

stead select periods from a set of candidate periods with a known maximum hyper-

period. Specifically, in our implementation, we searched for a number close to 100 ms

(=100,000,000 ns) that has a large number of factors larger than 100µs (since periods

smaller than 100µs are hard to enforce due to scheduling overheads). We chose 102,702,600 ns

as the maximum hyperperiod, which has a large number of integer divisors (186) above

the 100µs threshold.

With this simple extension the planner can pick the best period for a particular vCPU

from any of these 186 divisors. In our planner implementation, we choose the nearest

candidate period that is less than the computed maximal period, without facing the

risk of resulting in large table lengths. More precisely, if F denotes the set of all integer

divisors of 102,702,600 greater than 100,000, we select for each vCPU the largest T ∈ F
such that 2 × (1 − U) × T ≤ L. Depending on the chosen T , tenants may observe less

scheduling delay than stipulated by L, which is consistent with it being an upper bound

on scheduling latency.
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VM U L

vCPU1 0.60 25
vCPU2 0.60 50
vCPU3 0.60 100

TABLE 5.1: Example vCPUs
corresponding to three VMs,
each with a utilization U and
maximum scheduling latency L.

Task C T

τ1 18 30
τ2 36 60
τ3 72 120

TABLE 5.2: The equivalent
periodic tasks corresponding to
the vCPUs shown in Table 5.1
with a budget C and a period T .

Choice of Table Length: The choice of table length is arbitrary, but guided by

certain principles: the length of approximately 102ms is short enough to be gen-

erated and replaced quickly, and has a large number of factors that form the set

of candidate periods, and allow for the final period to be as close to the requested

one as possible. In general, a shorter table can be made longer if needed by simply

unrolling it multiple times. For example, if there is only a single VM on a core,

it might make sense to unroll the table as much as possible to avoid the slightly

increased overhead of table wrap-arounds (owing to fact that an additional branch

is needed to check if the table has been switched during the last round). This of

course has the downside of increasing the time taken for table switches to take

effect, as the new table would only take effect a minimum of one entire cycle later.

Running example. Consider the simple example workload in Table 5.1. Each VM has

a target utilization of U = 60%, but differing maximum acceptable scheduling delay

bounds of L ∈ {25ms, 50ms, 100ms}, which for example could reflect three price- and

service-differentiated instance types with varying scheduling delay guarantees.

In the case of vCPU1, we observe that the largest candidate period T in F satisfying

2 × (1 − 0.60) × T ≤ 25ms is T = 30ms. Hence, the task τ1 corresponding to vCPU1 is

given a period T = 30ms, which implies a cost of C = U×T = 18ms. Similar reasoning

for the other vCPUs yields the periodic tasks listed in Table 5.2.

Once each vCPU is represented as a periodic task, the planner must find a schedule that

satisfies the timing constraints of all periodic tasks, in which case all vCPU utilization

and latency goals are guaranteed to be met. To this end, Tableau uses a progression

of three increasingly expensive techniques: first a very simple and quick bin-packing

heuristic that we expect to be sufficient in most practical use cases, and then two more

involved scheduling techniques that we include primarily for the sake of completeness

(i.e., to ensure that the planner never fails, even in pathological scenarios).
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5.2 Partitioning

We begin by attempting to partition the task set, that is, to statically assign tasks to indi-

vidual cores such that no core is overloaded. Such an approach is a desirable first step

as it results in high cache affinity (since no vCPUs migrate between cores). Partitioning

also has the advantage that additional considerations can be easily incorporated. For

example, memory locality on NUMA platforms can be enforced by limiting the set of

CPUs that a vCPU can be partitioned on to the subset associated with the NUMA do-

main its memory resides in. Similarly, special treatment of hardware threads (e.g., to

avoid side channel attacks) can be incorporated by preventing vCPUs of different VMs

from being partitioned onto two threads of the same core. Finally, cache interference

concerns can be mitigated to some extent by partitioning memory-intensive vCPUs

onto different sockets (with a distinct L3 cache), or if the working set is smaller and fits

in L1 or L2 cache, onto different cores.

Partitioning periodic tasks onto cores is a bin-packing-like problem that is NP-hard.

We use the well-known worst-fit decreasing heuristic (always assign the next task to the

least-utilized core), which has the benefit that it distributes the load roughly evenly

across all cores in the system.

Choice of Partitioning Heuristic: While we use the worst-fit decreasing heuristic

for partitioning vCPUs onto cores, others may be used in order to achieve differ-

ent properties. The worst-fit decreasing heuristic has the advantage of spreading

vCPUs onto as many cores as possible, thereby lowering intra-core interference

among vCPUs partitioned on the same core. For example, partitioning sixty-four

VMs of 25% utilization each across thirty-two cores using the worst-fit decreasing

heuristic would result in each core being assigned two VMs. This is in contrast to

a best-fit decreasing heuristic that would pack VMs tightly, resulting in only six-

teen cores being assigned four VMs each. Naturally, other situations might require

optimizing for different concerns. For example, a best-fit decreasing heuristic as

shown in the example above can be used to instead pack vCPUs onto as few cores

as possible, allowing for powering down entire cores. This can be a useful alterna-

tive if minimizing power consumption is a primary goal.

If the partitioning heuristic succeeds in finding a valid partition, we simply simulate on

each core an earliest-deadline-first (EDF) schedule until the hyperperiod, keeping track

of the scheduling intervals and the vCPU being scheduled. Since EDF is optimal on
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uniprocessors [72], the simulation guarantees a schedule satisfying all utilization and

latency goals.

Running example. Recall the task in Table 5.2, and suppose we have two cores. Since

all tasks have the same utilization, it does not matter in which order they are consid-

ered. The first two tasks can be trivially assigned to the two cores. However, there is

no way to fit the third task without overloading a core. The heuristic thus fails.

It is important to note that although the example above is designed to illustrate a

case where partitioning fails, it is expected to succeed for all practical applications of

Tableau. The primary use case for Tableau is to support VMs on machines in datacen-

ters run by a cloud provider. It is not only practical, but desirable, to segment VM offer-

ings into a few configurations. This is because providing clients with fine-grained con-

trol over low-level VM parameters complicates the management of workloads within

a datacenter. Rather, segmenting VM types allows the cloud provider to optimize the

placement of VMs on individual machines within the datacenter. In particular, we as-

sume that VM utilizations are dimensioned to be easy to partition (e.g., a provider can

choose to allow VMs with utilizations from one of 10%, 25%, 50%, or 100%). This means

that bin packing is simplified and partitioning always succeeds. For example, an entire

rack can be dedicated to 25% VMs of a particular client, with spare capacity for more,

allowing for easy partitioning while enabling new VMs to be created.

For the sake of completeness, in the next two sections, we explain how Tableau deals

with situations where partitioning does not succeed. The first of those techniques at-

tempted when partitioning fails is semi-partitioning [9].

5.3 Semi-Partitioning

Semi-partitioning is a simple extension of partitioning. First, we try to partition the

task set as before. However, when encountering a task that cannot be assigned to any

core, instead of giving up, the task is broken up into smaller subtasks with precedence

constraints, which are then easier to partition. The subtasks represent the task’s frac-

tional allocations on different cores. At runtime, a split task migrates among the cores

to which its subtasks have been assigned to use the reserved processor time.

The trick is to ensure (i) that the subtasks never execute in parallel (since they still

reflect the same sequential task), and (ii) that no core becomes overloaded. In general,

this is not trivial, but many suitable semi-partitioning schemes have been proposed in

recent years [10, 11, 16, 17, 20, 59, 60, 68].
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Task C T D on core

τ1 18 30 30 1
τa2 12 60 12 1
τ b2 24 60 48 2
τ3 72 120 120 2

TABLE 5.3: Semi-partitioned example tasks

⌧1 ⌧1
⌧3 ⌧3

⌧a
2 ⌧a

2

⌧b
2 ⌧b

2

CPU1

CPU2

0 24 48 72 96 12012 36 60 84 108

FIGURE 5.1: Example scheduling table for the semi-partitioned task set given in
Table 5.3

We simply apply C=D task-splitting [20] (see Chapter 2) that virtually always finds a

valid split, even for difficult problem instances that almost fully utilize all cores [18].

Finding valid C =D task splits is non-trivial, coNP-hard [41], and computationally

demanding in general; however, due to the fixed table length, it is fast in Tableau’s use

case.

Running example. Recall that the task set in our example could not be partitioned

onto two cores. Let us resolve the situation by selecting τ2 with a cost of 36ms to be

semi-partitioned. Applying the C=D scheme, we manage to split the task into two

subtasks τa2 and τ b2 with costs of 12ms and 24ms , respectively. Both subtasks can be

assigned without causing overload and we can obtain a suitable table by simulating an

EDF schedule on each core until the hyperperiod is reached (which in this example is

simply 120). The resulting scheduling table is shown in Figure 5.1.

If semi-partitioning succeeds, the planner again simulates an EDF schedule on each

core (including both tasks and subtasks), tracking the scheduling intervals and the

vCPU associated with them. On the other hand if semi-partitioning fails, which only

occurs for pathological configurations that are never seen in practice, we continue with

localized optimal scheduling.
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5.4 Localized Optimal Scheduling

While the C=D approach is empirically near-optimal [18], i.e., it is virtually always

possible to find workable task splits, there nonetheless exists theoretically a chance

that it might fail. In such a case, which we never encountered in our evaluation, it is

possible to fall back to optimal multiprocessor real-time scheduling as a last resort [14,

50, 83, 97, 102]. Although optimal schedulers guarantee the existence of a schedule, we

do not use them as our first choice since they tend to generate many preemptions and

migrations. Instead, we perform semi-partitioning to the extent possible, and use an

optimal scheduler to schedule the remaining tasks on a minimal subset of cores.

Specifically, we identify two physical cores that are “close” (e.g., that share a cache) and

turn them into a cluster (i.e., a “double-sized bin”) that is optimally scheduled. This

merging of bins is repeated if needed until all tasks can be partitioned, split into sub-

tasks, or assigned to some cluster of cores. The process is guaranteed to stop when

reaching a single cluster encompassing all cores (if the system is not over-utilized).

However, we emphasize that this procedure is virtually never needed for practical

workloads; we include it simply so that table generation truly never fails (unless the

system is over-utilized, which is a misconfiguration that is rejected).

It is worth mentioning that vCPUs that migrate among two or more pCPUs due to semi-

partitioning (or localized optimal scheduling) represent a complication for the second-

level scheduler—on which pCPU should such a vCPU participate in the second-level

scheduling? To avoid costly synchronization, one straightforward approach is to adopt

a “trailing core” policy: migrating vCPUs participate in the second-level schedule (only)

on the pCPU on which they last received a guaranteed allocation. This also necessar-

ily means that the vCPU would be assigned budget by the second-level scheduler for

the particular core on which it is dispatched, and migrating across cores would require

recalculating the vCPUs budget (only possible in the next epoch of the new core) to

maintain fair-share properties.

5.5 Table Generation

The final step of the planner is to generate the actual scheduling tables. This is done

in two steps: first a series of post-processing steps ensure that the slots in the table are

within practical system constraints, and second the planner writes it to disk.
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5.5.1 Post-Processing Tables

After a schedule has been found, the planner performs certain post-processing opera-

tions before handing the schedule over to the dispatcher. First, it coalesces allocations

below a certain threshold into a neighboring allocation. This threshold is determined

by the overheads involved in context-switching vCPUs, since allocations smaller than

the threshold are impossible to enforce. In the last step, the planner “slices” the table to

enable constant-time lookups, as discussed in the following section.

Finally, while this thesis does not explore this space, it is trivial to add additional post-

processing steps to the current planner implementation. For instance, one might add a

“peep-hole” optimization pass to reduce the number of migrations and preemptions

even further. Alternatively, one might add a pass to encourage or discourage co-

scheduling of certain VMs, e.g., due to performance-counter-based profiles or for syn-

chronization purposes. We leave these interesting opportunities and extensions to fu-

ture work.

5.5.2 Storing and Pushing Tables

Recall that during each of the above phases, the planner keeps track of the simulated

scheduling intervals and the vCPUs associated with each. Once post-processing of

tables is complete, the planner simply writes these intervals to disk.

Rather than writing scheduling tables in a format that requires the hypervisor to parse

and create an in-memory version of it, tables are written to disk as binary files mir-

roring the exact memory layout of data structures internally used by the hypervisor.

Therefore, when the table is pushed to the hypervisor, and copied from dom0 mem-

ory into the hypervisor memory, no heavy processing needs to be performed to make

it usable. The only processing that is performed is to walk through the list of vCPU

structures in the table memory and rewrite placeholder pointers with the addresses of

internal vCPU structure used by Tableau. A Python-based program that generates the

memory layout for each table generated by the planner is shown in Appendix D.

5.6 Summary

In this chapter, we looked at how the planner in Tableau generates scheduling tables

for use by our Xen-based dispatcher. The planner starts by modeling each vCPU as

an equivalent periodic task, ensuring that the hyperperiod of the set of all vCPUs in

the system is bounded. It then attempts to partition, and semi-partition them onto
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individual cores, with localized optimal scheduling being a rare final case. Finally, it

writes tables to disk as binary files mirroring a memory layout that requires minimal

processing by the hypervisor to use.



CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we present results from our experimental evaluation of Tableau. The

presented results serve to validate the following key claims.

1. The time and space overheads of Tableau’s planning step are acceptable relative

to typical VM commissioning and decommissioning times.

2. Tableau incurs low scheduling overheads compared to other Xen schedulers.

3. Tableau offers both predictability (i.e., consistent, low latencies) and high through-

put in a high-density scenario compared to other Xen schedulers.

4. Tableau provides comparable or higher throughput for VMs compared to existing

schedulers when configured with dedicated cores for each VM.

5. Tableau can be configured to provide performance guarantees for tier-2 back-

ground VMs.

6. Tier-2 VMs have a low impact on the performance of tier-1 VMs for the evaluated

workload.

We begin with the time and space overheads of Tableau’s planner.

6.1 Table-Generation Overheads

The time and memory overhead of Tableau’s planner varies depending on (i) the num-

ber of VMs, and (ii) the configuration of individual VMs, and (iii) the number of cores

in the system. Together, these parameters determine the number of slots and slices that

need to be generated, optimized, and written to disk.
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Rather than exhaustively evaluate the planner overheads under every potential config-

uration, we instead chose to demonstrate the performance trends it exhibits. In particular,

we evaluated how (i) the number of VMs in the system and (ii) the choice of latency

goals affected the time and space overheads of the planner. We do not evaluate the per-

formance as a function of cores but instead present performance results from a machine

with a large number of cores.

Specifically, we measured both the time taken to generate tables, as well as the size of

the generated tables for a varying number of VMs, with all VMs being assigned one

of four latency goals (1ms, 30ms, 60ms, and 100ms). To stress the planner and test

its scalability limits, we performed these experiments on and for a 48-core Intel Xeon

(E7-8857) server, the largest machine in our lab at the time of writing. Four cores were

dedicated to dom0, and four tier-1 VMs were admitted for each of the remaining forty-

four cores.

Table-generation time. In Figure 6.1, the Y axis shows the total time taken to generate

the table (averaged over 100 separate runs) as a function of the number of VMs for

which the table was generated. The number of VMs was varied up to a total of 176

VMs (i.e., four VMs per core).

As can be seen in the figure, table-generation time never exceeds two seconds for the

machine used in our evaluation. We believe this to be acceptable in the context of

public clouds where typical VM lifetimes far outweigh VM startup, teardown, and

reconfiguration times [29].

In scenarios where system re-configuration time may be crucial (e.g., Tableau-based

container scheduling, or even high-priority process scheduling), several optimizations

could be made, both at an implementation level and the design level.

Implementation level. These techniques involve implementation-level optimizations that

improve table generation times. This includes, (i) incrementally re-computing tables on

a per-core basis, and (ii) reducing language runtime overhead (recall that the planner

presented in this thesis was implemented in Python) by switching the implementation

of the planner to a more performance-oriented compiled language such as C.

Design level. These techniques involve changing the design of the planner itself. First, as

in Tableau the planner does not necessarily have to reside on the same machine (i.e., ta-

ble generation may also be offloaded to a faster, independent machine, similarly to how

jobs are scheduled across data centers [99]), it is trivially possible to centrally cache ta-

bles for common configurations that are frequently reused. Second, for machines that

run homogeneous VM types, or ones whose configuration is known beforehand, the

planner can be extended to enable pre-creating slots for future VMs, which initially
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FIGURE 6.1: Table-generation times for a varying number of VMs with different
latency goals. The 30 ms and 100 ms curves overlap.

point to the idle vCPU, and can be switched to a newly created VM with low over-

head. This would render the overhead of table generation a one-time cost at system

initialization, with tier-1 guarantees being near-instantaneous upon VM creation.

Increased reconfiguration delays. Since the planner resides locally in dom0, where

it is triggered on demand when VMs are created, torn down or reconfigured, Tableau

introduces a planning delay to these operations. However, we emphasize that the plan-

ning overhead does not affect the performance of VMs once they have commenced exe-

cution (i.e., it increases only their provisioning or reconfiguration time). As VM creation

under Xen already takes many seconds, even without accounting for the time it takes

the guest OS to actually boot up (nor any time spend on fetching a VM image from re-

mote storage), we deem even the longest table-generation delay reported in Figure 6.1,

which is two seconds, to still be acceptable.

Memory overheads. Figure 6.2 shows the table size (in MiB) on the Y axis, as a func-

tion of the number of VMs on the X axis. The four curves show the table size when all

VMs are all assigned a latency goal of 1ms, 30ms, 60ms, and 100ms, respectively.

As can be seen in the figure, the memory overhead for all configurations was below

1.2 MiB, which only occurs for a fairly demanding case of every VM having a latency

goal of 1 ms. We consider this to be a negligible overhead for modern server-class ma-

chines with hundreds of gigabytes, and even terabytes, of RAM. We consider a latency

goal of 1 ms to be unsuitable for application performance as it results in microsecond-

scale slot sizes for VMs in the scheduling table. This results in a large number of

scheduler activations at runtime, and as a result degrades performance. We show

this empirically in Appendix A, where the performance of VMs under Tableau with a
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1 ms scheduling latency result in the lowest performance compared to those measured

across a wide range of more practical values.

Apart from low-level optimizations of reducing data structure sizes, this overhead is

to some extent non-negotiable in that it is the least amount of information required at

runtime to ensure O(1) scheduling in Tableau. It should be pointed out that this, in

general, makes Tableau an unsuitable fit for embedded devices with severely limited

memory (e.g., 8-bit microcontrollers with kilobytes of RAM). However, as memory us-

age depends on the number of VMs, the number of cores in the system, and the specific

configuration parameters for each VM, there may be situations where Tableau is ac-

ceptable for embedded use (e.g., for a small number of VMs running on few cores with

larger configuration parameters values). Further, Tableau’s design would be suitable

for many modern 32-bit embedded devices (e.g., Raspberry Pi), which can have many

gigabytes of memory.
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FIGURE 6.2: Generated table size for a varying number of VMs with different latency
goals. All but the 1 ms curve overlap.

6.2 Scheduler Runtime Overheads

We now look at the runtime overheads of Tableau compared to other Xen schedulers,

which is a crucial factor in the performance of VMs running on top of a hypervisor.

This is because any cycles spent in the scheduler runtime are cycles that could have

been used by some VM to perform useful work. While eliminating all runtime over-

head is not possible (e.g., interrupts still need to be handled and routed to VMs), from

a scheduler standpoint, any cycles spent beyond guaranteeing the SLA of VMs are

wasted cycles. Second, even when restricting the cycles spent within the scheduler to

those operations needed to guarantee an SLA, the performance must be optimized to

minimize the total number of cycles spent for this purpose.
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To gain a better understanding of how Tableau performs, we present microbenchmarks

comparing Tableau’s scheduler overheads with three different schedulers in Xen.

Platform. We used a 16-core, 3.2 GHz Intel Xeon (E5-2667) server (comprising two

sockets with eight cores each) with 512 GiB of RAM, running Ubuntu 16.04.3 LTS (Linux

kernel version 4.4.0) on Xen 4.9. We employed an identical client machine, connected

on the same network via 10 Gbit/s Ethernet, as a load generator. We disabled all CPU

power-saving features for our evaluation to avoid performance unpredictability.

Evaluated schedulers. We compared our implementation of Tableau with three stock

schedulers in Xen (Credit, Credit2, and RTDS). Recall that Credit is the default sched-

uler in Xen and is a weighted proportionate-fair-share scheduler. That is, each VM is

allocated credits proportional to a configured weight, which it “burns” when it exe-

cutes. Additionally, Credit gives VMs that wake up from an I/O operation a “boost” in

priority. Recall that Xen’s more recent Credit2 scheduler extends the original Credit de-

sign with the goal of improving responsiveness, and does this primarily by eliminating

Credit’s priority boosting as it is now understood to cause performance unpredictabil-

ity. Finally, recall that RTDS is a real-time scheduler that, like Tableau, is also based

on the periodic task model [72]. However, in contrast to Tableau, and similar to Credit,

RTDS is a dynamic scheduler (i.e., it makes all decisions online) based on an EDF policy.

RTDS is an interesting baseline to compare against because it provides similar capabil-

ities in terms of predictable control over latency and utilization, while representing an

entirely different set of trade-offs due to its dynamic nature.

Scheduler setup. Due to the number of tunable parameters in each of the evaluated

schedulers, and the resulting vast configuration space, we did not attempt to exhaus-

tively evaluate every possible parameter combination. Rather, our evaluation is based

on a single setup that is intended to be representative of the kind of workloads Tableau

is designed to support.

Specifically, on our 16-core server, we assigned four single-vCPU VMs per core (i.e.,

each with 25% CPU utilization), with four cores dedicated to dom0.

In the results shown in this section, Credit was configured according to documented

best practices. In particular, we used a global timeslice of 5 ms under Credit as the

default 30 ms value is known to be non-ideal for I/O workloads [25]. Under Tableau,

to allow for a reasonably fair comparison with Credit, we chose a maximum scheduling

latency of 20 ms since Credit with a 5 ms timeslice will, in the presence of four VMs per

core, replenish all credits roughly once every 20 ms. This results in the planner picking
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a period of roughly 13 ms with a budget of about 3.2 ms. To enable a direct comparison,

RTDS was configured to match the parameters of Tableau.

Due to differences in capabilities of the various schedulers, we evaluated two distinct

scenarios: a “capped” scenario, where VMs are configured with CPU-usage upper

bounds (supported by Credit, RTDS, and Tableau), and an “uncapped” scenario, where

a VM’s CPU usage is not bounded (supported by Credit, Credit2, and Tableau). We

used Ubuntu 16.04.3 LTS as the guest OS.

Overhead results. Under each scheduler, we traced the runtime cost of key schedul-

ing operations in an I/O-intensive scenario, where each VM ran an I/O-intensive work-

load based on the well-known stress benchmark [111] for a duration of 60 seconds.

Overhead samples were collected using Xen’s built-in tracing framework by adding

tracepoints around key operations within the scheduler.

Table 6.1 shows the mean overhead (in µs) of three scheduler operations on our 16-

core server: (i) the time taken to make a scheduling decision, (ii) the time taken to

process wake-up interrupts, and (iii) the time taken to perform any operations after

de-scheduling a vCPU, such as sending re-schedule IPIs to another core.

TABLE 6.1: Average runtime overheads (in µs) for three key scheduler-related
operations on a 16-core, 2-socket server.

Credit Credit2 RTDS Tableau

Schedule 8.08 3.51 2.86 1.43
Wakeup 2.12 5.19 3.90 1.06
Migrate 0.32 5.55 9.42 0.43

As can be seen from the results, our focus on runtime efficiency in Tableau’s design

(Section 3.2) and the optimized, core-local implementation of Tableau’s dispatcher (Chap-

ter 4) is clearly reflected in its low scheduler overheads. We observe that Tableau indeed

incurs substantially lower overheads compared to other schedulers: the mean schedul-

ing overhead under Tableau is around 5.6x, 2.4x, and 2x lower than under Credit,

Credit2, and RTDS, respectively. Concerning post-scheduling operations (“Migrate”),

recall that Tableau may occasionally need to send an IPI after de-scheduling a vCPU.

As expected, this results in only a negligible increase in the overhead (approximately

an additional 100ns on average compared to Credit in our example).

RTDS incurs significantly higher overhead (over 9µs) for post-schedule work due to

requiring the acquisition of a global lock when load-balancing vCPUs. To highlight

this bottleneck, we also collected overhead data on a 48-core server machine with four

sockets (each comprised of 12 cores). Table 6.2 shows the observed overheads. It is

obvious that RTDS’ global lock does not scale well: on average, RTDS spends over
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168µs while attempting to migrate a VM each time it is preempted. We do not present

results from this machine any further in the remainder of this section.

TABLE 6.2: Average runtime overheads (in µs) for three key scheduler-related
operations on a 48-core, 4-socket server.

Credit Credit2 RTDS Tableau

Schedule 16.40 4.70 4.39 2.49
Wakeup 7.07 5.61 19.16 1.82
Migrate 0.42 18.19 168.62 0.66

Finally, Table 6.1 shows the mean overhead for processing wakeups to be 2× lower

compared to Credit, almost 5× lower compared to Credit2, and over 3× lower than

when running RTDS. This is a consequence of Tableau’s fast wakeup handling (Chap-

ter 4), which uses the table to determine which CPU to send an IPI to.

To summarize, the advantages of Tableau’s design choices are reflected in its efficient

runtime compared to other schedulers. This is the result of moving VM budget and

latency enforcement to an offline planner, using per-core data structures, and the use of

a minimal table-driven dispatcher.

6.3 Comparing Scheduling Delay

To understand the scheduling delays induced by the existing Xen schedulers and Tableau,

we used (i) the popular redis-cli workload with the -intrinsic-latency op-

tion, and (ii) measured the ping latency between our client machine and one of the

VMs. The two workloads were chosen as they allow insight into the performance of

respectively CPU-bound and sporadically activated, network-I/O-centric VMs under

each scheduler. In the following, we present measurements from a single vantage VM.

The vantage VM did not receive any special treatment or configuration-specific advan-

tages and is thus representative of general scheduler performance.

redis-cli intrinsic latency. redis-cli is a command-line interface distributed as

part of the redis key-value store. We ran it within our vantage VM and measured the

intrinsic latency of the system. When measuring the intrinsic latency, redis-cli runs

a tight CPU-bound loop and measures the delay between iterations, thus measuring if

any delays occur due to the scheduler. That is, if the scheduler preempts the VM during

a particular loop, the end time will only be recorded once the VM has been dispatched

again. This allows us to precisely measure the scheduling delay that each scheduler

induces.



74 EXPERIMENTAL RESULTS

No BG I/O BG CPU BG
0

5

10

15

20

25

30

35

40

45

In
tr

in
si

c 
La

te
n
cy

 (
m

s)

Credit

RTDS

Tableau

(A) Capped VMs

No BG I/O BG CPU BG
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

In
tr

in
si

c 
La

te
n
cy

 (
m

s)

Credit

Credit2

Tableau

(B) Uncapped VMs

FIGURE 6.3: Maximum scheduling delay as measured by redis-cli. “BG” denotes
background workload.

To isolate the effect of the VM scheduler, we ran the tool with the highest SCHED_FIFO

priority to avoid interference arising from the Linux scheduler in the guest VM. We

evaluated both capped and uncapped scenarios, with four VMs per core, without any

background workload, with an I/O-intensive background workload, and with a CPU-

intensive background workload. The background workloads used the popular stress-ng

tool to spawn a single worker performing either I/O-intensive (using -io 1) or CPU-

intensive work (using -cpu 1). The results are illustrated across two graphs, Fig-

ure 6.3a and Figure 6.3b, as Credit2 does not support capped VMs and RTDS does

not support uncapped VMs.

In the capped scenario shown in Figure 6.3a, regardless of the background workload,

every scheduler induces scheduling delays as it forcibly cuts off CPU access to VMs

once they exceed their assigned amount. In the case of Credit, the VM experiences

delays of up to almost 44 ms. Under RTDS, configured as discussed in Section 6.2,

this results in around 10 ms in the best case with no background workload (i.e., the

VM runs at the beginning of each period); more latency (up to 13ms) was observed in

the presence of a background workload. Finally, under Tableau, we always see about

10 ms of scheduling delay, regardless of background workload. In this experiment,

RTDS controls scheduling latency just as well as Tableau, but we will later show that it

does not achieve the same throughput.
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In the uncapped scenario shown in Figure 6.3b, VMs are not rate-limited and are al-

lowed to consume additional idle cycles if available. As a result, when no background

workload is present, all schedulers achieve sub-millisecond scheduling latencies, and

the corresponding bars are barely visible in Figure 6.3b. However, latency becomes

substantially worse under Credit and Credit2 as a background workload is introduced.

In this case, the responsibility of maintaining low scheduling latency for all VMs falls

on the scheduler, and as can be seen, it does not work well in high-density scenarios:

we observed delays as high as 220 ms under Credit. Credit2 fares well in the pres-

ence of a CPU-intensive background workload, but not so well in the presence of the

I/O-intensive workload. In contrast, under Tableau, the burden of meeting scheduling

latency bounds is the responsibility of the semi-offline planner, which is oblivious to

background workloads. As a result, Tableau exhibits at most 10 ms of scheduling delay

regardless of background workload.

Ping latency. To cross-validate our findings, we also measured the average and max-

imum observed ping latency from our client machine to the vantage VM. ICMP echo

requests are handled directly within the guest kernel, which eliminates any depen-

dence on the guest scheduler, but can only be processed when the VM is dispatched

by the VM scheduler. As a result, with a controlled network like in our setup, the ping

latency is dominated by (and is a good proxy for) the scheduling latency incurred by a

VM in reaction to wake-ups triggered by external I/O events.

We again evaluated both capped and uncapped scenarios, without any background

workload, with an I/O-intensive background workload, and with a CPU-intensive

background workload. Similar to the previous experiment, the background workloads

again used the popular stress-ng tool to spawn a single worker performing either

I/O-intensive (using -io 1) or CPU-intensive work (using -cpu 1).

The experimental setup consisted of eight threads on our client machine, each sending

5,000 randomly-spaced pings with delays ranging from zero to 200 ms. The resulting

40,000 samples were aggregated to determine the average and the maximum observed

ping latency for each configuration. The results are reported in Figure 6.4a through

Figure 6.4d.

In the uncapped scenario, without a background workload, the average latency (Fig-

ure 6.4a) is low for all schedulers (around 100µs) as the VM can always react imme-

diately to incoming packets. In contrast, the capped scenario (Figure 6.4b) shows the

impact of the table’s rigid structure, which results in Tableau exhibiting clearly higher

average latency (but well below the configured latency goal of 20 ms).
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FIGURE 6.4: Average and maximum-observed round-trip ping latencies. “BG”
denotes background workload.

With an I/O workload in the uncapped scenario, since background VMs frequently

block, the vantage VM is able to leverage the resulting idle cycles to achieve a low aver-

age latency (Figure 6.4a). In the case of a CPU-bound background workload, however,

there are no additional idle cycles to be had and the vantage VM can only execute dur-

ing its own slots, which are active only periodically. Thus, the average latency under

Tableau is noticeably higher (Figure 6.4a), but still well below the configured latency

goal of 20 ms), since the average latency is determined by the gaps between slots in the

table. In contrast, under the other schedulers, which are dynamic in nature and employ

heuristics that favor I/O workloads (as is the case under Credit), the vantage VM is able

to (on average) respond almost immediately since it is allowed to preempt the predom-

inantly CPU-bound background VMs. However, as we show in Section 6.4, these same

features can also reduce application throughput and lead to increased unpredictability.

In the uncapped scenario, the maximum observed latencies in an otherwise idle system

are around 200µs (Figure 6.4c). However, once a background workload is introduced,

the maximum observed latency increases under all schedulers. Under Credit, we ob-

serve latencies approaching 75 ms in the presence of an I/O-intensive background work-

load (Figure 6.4c). Credit2 continues to provide good tail latency characteristics, but as

we will show in Section 6.4, it is unable to maintain high throughput in this scenario.

In the capped scenario (Figure 6.4d), the maximum observed latencies under Credit are

significantly higher even without any background workload. This is simply because,

while VMs are not running any benchmark, they still require CPU time occasionally for

system processes. As a result the vantage VM may, under rare circumstances, exhaust

its budget, while simultaneously having to wait for the other three background VMs

on the same core to exhaust their budget, resulting in up to 15 ms of scheduling latency.



EXPERIMENTAL RESULTS 77

While in principle RTDS is also susceptible to the same worst-case behavior, the nec-

essary conditions did not trigger during our experiment because they occur only very

rarely.

With an I/O background workload active, Credit exhibits tail latencies of around 30 ms

(Figure 6.4d). On the other hand, RTDS and Tableau enable accurate control over the

scheduling delay. The maximum observed ping latency under RTDS is around 9 ms

(Figure 6.4d), somewhat less than the delay allowed in each period. Similarly, re-

gardless of the background workload, Tableau never exhibits latencies above 10 ms

(Figure 6.4d), which reflects the structure of the table that the planner created for this

workload.

To summarize, Credit shows substantially increased tail latency under load in a high-

density scenario. While Credit2 and RTDS show good latency characteristics, they

struggle to do so while maintaining high throughput, as we show next.

6.4 Comparing nginx HTTPS Throughput (High Density)

We now present a comparison of Tableau, RTDS, Credit, and Credit2 in a high-density

scenario in terms of their respective impact on application throughput and latency, as

exemplified by the nginx web server.

We used wrk2 [2], an extension of the well-known wrk HTTP load generation tool, that

allows for accurate measurement of tail latencies while accounting for the Coordinated

Omission problem [105].

Setup. Our setup again comprised of four single-core tier-1 VMs per core on twelve

cores of our two-socket, 16-core server (i.e., a total of 48 VMs), with the remaining four

cores being dedicated to dom0. Each VM was assigned a virtual network interface us-

ing Intel’s SR-IOV technology that allowed it to bypass the I/O scheduler in dom0.

There were no tier-2 background VMs present, which we evaluate separately in sec-

tion 6.6.

The vantage VM was hosting an nginx server that served a small PHP “application”

via HTTPS. The PHP application simply sends a randomly selected file of a given size

(1 KiB, 100 KiB, or 1 MiB) chosen from a 1 GiB dataset. To minimize measurement noise,

all files were stored in an in-memory tmpfs volume. Similarly, nginx was assigned a

real-time priority to reduce noise in the results due to activity of the guest OS’s sched-

uler.
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The client machine hosted the wrk2 tool, which generated requests for a specific file

size (1 KiB, 100 KiB, or 1 MiB) at a given rate, and measured the achieved through-

put and latency characteristics of the requests. We increased the request rate progres-

sively until the server was saturated. As in the previous experiments, we evaluated

both capped and uncapped scenarios, with and without an I/O-intensive background

workload, which was generated using the popular stress-ng tool with a single I/O-

intensive thread (via the -io 1 command-line argument).

Note. To validate that the scheduler configurations used in this evaluation did not pe-

nalize any specific scheduler, and to validate that the benefits of Tableau are not limited

to the specific configuration used in this section, a more exhaustive evaluation was also

conducted. We compared the performance of Credit, Credit2, RTDS, and Tableau across

various scheduling latency values (1, 5, 10, 15, 20, 25, 30, and 35 milliseconds), with dif-

ferent background workloads (idle, cache-intensive CPU-bound, and I/O-intensive)

under the high-density setup described above. The results of this exhaustive evalua-

tion can be found in Appendices A and B, and they support the findings presented in

this chapter.

Graphs. The results are illustrated in Figure 6.5, comprising three columns and six

rows. The first three rows (Figure 6.5(a)–(i)) show to the capped scenario and the last

three rows (Figure 6.5(j)–(r)) show the uncapped scenario. Each row corresponds to

the results for either 1 KiB files, 100 KiB files, or 1 MiB files. Within each row, the three

columns correspond to the mean, 99th percentile, and the maximum observed latency,

respectively, versus the observed throughput.

Since Credit2 does not support capped VMs and RTDS does not support uncapped

VMs, each graph comprises only three curves: Credit, RTDS, and Tableau (for capped

scenarios), and Credit, Credit2, and Tableau (for uncapped scenarios). The X-axis

shows the observed throughput, while the Y-axis shows a latency metric. Thus, lower

is better (i.e., less latency), as is being further to the right (i.e., higher throughput). At

some point, the server can no longer keep up with the request rate, and the curve peaks

upwards as queueing delays start to dominate.

Experiment 1: Capped VMs (Figure 6.5(a)–(i)). In the following, we discuss results

for 1 KiB and 100 KiB files (the first two rows); we revisit Tableau’s performance with

1 MiB files (Figure 6.5(g)–(i)) later in Section 6.7. We make the following key observa-

tions.

Tableau provides good tail latencies. The 99th percentile and the maximum observed la-

tency under Tableau are lower than under Credit and RTDS (Figure 6.5(b)–(c) and
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FIGURE 6.5: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for capped (first three rows) and uncapped scenarios
(last three rows), for 1 KiB, 100 KiB, and 1 MiB files (see Y-axis labels), with an
I/O-intensive background workload and with varying throughput.

Figure 6.5(e)–(f)). While for low request rates, Credit and RTDS’s tail latencies are

sometimes on par with Tableau’s, they quickly increase with the request rate. In con-

trast, Tableau continues to maintain relatively stable tail-latency characteristics until

the server reaches its peak throughput.

Tableau supports higher SLA-aware peak throughput. In both the 1 KiB and 100 KiB scenar-

ios, Tableau achieves a higher peak throughput. In addition, Tableau’s latency begins

to creep upwards much later than under Credit and RTDS. Thus, given a latency-based
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service-level agreement (SLA), Tableau supports a higher SLA-aware throughput. For ex-

ample, for 1KiB files, given an SLA that mandates a 99th-percentile latency of 100ms or

lower, the peak throughput for RTDS and Credit is around 1,000 and 1,400 requests per

second, respectively (see Figure 6.5(b)). Tableau can support up to 1,600 requests per

second while satisfying the SLA.

Tableau’s rigidity affects its mean latency. The mean latency (Figure 6.5(a) and (d)) under

Tableau is higher than under either Credit or RTDS for low request rates. This is ex-

pected in a table-driven scheduler, as a request arriving just after the end of a VM’s

slot has to wait until the next slot of the VM to be processed, while dynamic schedulers

like Credit and RTDS can react to the request immediately. However, both schedulers

become overwhelmed as the request rate increases, while Tableau’s rigidity becomes

advantageous and translates into stability at higher request rates.

RTDS struggles to sustain high throughput. In the presence of an intense I/O back-

ground workload that causes frequent scheduler invocations, RTDS achieves signifi-

cantly lower peak throughput than either Credit or Tableau. This is apparent for all

three file sizes, and highlights that high VM scheduling overheads can substantially

reduce guest application performance.

Credit is significantly less predictable. Mean, 99th, and maximum observed latencies under

Credit start to increase significantly before peak throughput is reached. For instance,

in graphs (b), (c), (e), and (f) of Figure 6.5, Credit exhibits a noticeable upwards slope

before peaking (note the log scale), which reflects upon increasing unpredictability as

the system becomes increasingly busy. This supports the observation that Credit’s I/O

boosting heuristic can backfire when faced with interference from I/O-intensive work-

loads.

Experiment 2: Uncapped VMs (Figure 6.5(j)–(r)). Recall that, in the uncapped sce-

nario, Tableau allows uncapped tier-1 VMs to additionally execute in any idle time

available on its core, with multiple contending VMs being allocated idle time in a

round-robin manner. The challenge for the scheduler is thus to ensure that interfer-

ence and overheads do not consume precious CPU cycles, thereby degrading the per-

formance of the system. This is where Tableau’s low-overhead, table-driven design

shines: it maintains stable latency characteristics for significantly higher throughputs

compared with Credit and Credit2 for all file sizes. We detail our observations below.

Similar to Experiment 1, our setup for this experiment consists only of tier-1 VMs; tier-2

background VMs are evaluated separately in section 6.6.

Tableau supports significantly higher throughput. In all cases, Credit’s performance starts

to degrade already at a very low throughput. While Credit2 performs well at low
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FIGURE 6.6: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for capped (first row) and uncapped VMs (second
row) for 100 KiB files with a cache-thrashing background workload and
varying throughput.

throughput, the peak throughput achieved under Credit2 is still considerably less than

the peak throughput achieved under Tableau. For example, with 100 KiB files and a

99th-percentile SLA of 100 ms (Figure 6.5(n)), Credit supports only 50 requests per sec-

ond, Credit2 supports up to 500 requests per second, but Tableau is able to support

more than 800 requests per second, about 60% more than Credit2.

Tableau’s second-level scheduler is effective. From Figure 6.5(n) and Figure 6.5(e), we can

see that Tableau achieves a higher peak throughput of around 850 requests per second

in an uncapped scenario compared with around 600 requests per second in the capped

scenario. This is due to Tableau’s second-level scheduler, which allows the vantage VM

to use any idle cycles in the system in addition to its pre-determined slots. To evaluate

the contributions of the second-level scheduler, we traced Tableau’s scheduling deci-

sions while fixing the request rate at 700 requests per second (supported by Tableau

only in the uncapped scenario). We observed that over 85% of the scheduling deci-

sions resulting in the vantage VM’s execution were made by the level-2 round-robin

scheduler. That is, idle cycles are efficiently and opportunistically allocated by Tableau

to other VMs on the same core, which translates into improved throughput without a

significant latency penalty.

Experiment 3: Cache-thrashing background workload. We now contrast how the

schedulers perform in the presence of stress-ng’s cache-thrashing background work-

load, which is fully CPU-bound. Figure 6.6 shows the results for 100 KiB files; one row

for the capped scenario (Figure 6.6(a)–(c)) and one row for the uncapped scenario (Fig-

ure 6.6(d)–(f)). Results for other file sizes were similar; we summarize the main trends.
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All schedulers perform similarly in the capped scenario. Since the background workload

now is fully CPU-bound—none of the cache-thrashing background VMs ever voluntar-

ily triggers the VM scheduler—the rate of scheduler invocations, and hence the impact

of scheduling overheads, is much reduced. As a result RTDS fares much better, and can

perform more or less as well as the other schedulers. Fundamentally, Figure 6.6(a)–(c)

show a case where the VM scheduler is hardly a bottleneck, and hence it is not surpris-

ing to see little differentiation among the schedulers.

Credit outperforms Credit2 due to effective boosting in the uncapped scenario. Credit’s boost-

ing heuristic was ineffective in the prior experiment (Figure 6.5) since all VMs were

I/O-bound and thus all (or effectively none) were prioritized. However, with a cache-

thrashing background workload, Credit’s boosting heuristic works as intended and

plays in favor of the vantage VM, which is the sole VM performing I/O. On the other

hand, Credit2, which does not explicitly favor I/O workloads, achieves a lower peak

throughput, as can be seen in Figure 6.6(d)–Figure 6.6(f).

Finally, Tableau outperforms both Credit and Credit2 in the uncapped scenario. This is where

Tableau’s rigid table-driven design works best compared to Credit and Credit2’s dy-

namic, heuristic-based designs, which struggle to maintain fairness given the aggres-

sive CPU demand of the uncapped background workload. When comparing the peak

throughput under Tableau in the capped and uncapped scenarios (first row vs. second

row), we see no drop in Tableau’s peak throughput (around 500 requests per second

in both cases) as the vantage VM is guaranteed its utilization in both cases, while both

Credit and Credit2 see a significant reduction in throughput due to increased interfer-

ence from uncapped background VMs.

This experiment demonstrates Tableau’s advantage in ensuring that each VM receives

its guaranteed minimum amount of service no matter what the rest of the system is

doing.

Experiment 4: Comparing susceptibility to interference. We now contrast the sus-

ceptibility of each scheduler to different types of interference from background VMs.

Figures 6.7 and 6.8 show the results for 1 KiB files comparing the throughput-vs-latency

curves under three different background workloads (idle, CPU-bound cache intensive,

and I/O intensive). Figure 6.7 shows the results for Credit, RTDS, and Tableau in a

capped scenario, while Figure 6.8 compares Credit, Credit2, and Tableau in an un-

capped setting. Note that since an uncapped scenario with an idle background is sim-

ilar to a dedicated-core scenario, and not comparable, we omit it from the graphs in

Figure 6.8. We summarize the main trends below.
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(C) Tableau Scheduler

FIGURE 6.7: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped, high-density scenario for 1 KiB files,
with three background workloads (I/O-intensive, CPU-bound cache-intensive, and
idle) and with varying throughput.

Tableau provides better latency characteristics under interference in the capped scenario com-

pared to Credit. Tableau’s table-driven design, the latency characteristics are not de-

pendent on scheduler decisions, but rather only on the background interference. In

Figure 6.7(C), Tableau’s curves are relatively flat until they rise sharply. In contrast

Credit (Figure 6.7(A)) sees a gradual rise in latency in the presence of an cache-intensive

or I/O-intensive background workload. Note that Credit provides comparable peak

throughput as Tableau (around 1,500 requests per second), although it achieves this at

the cost of increased tail latencies. In fact, as is evident from comparing Figure 6.7(A)

and Figure 6.7(C), Tableau outperforms Credit on 99th percentile latency when under

interference, and while mean latencies under Credit are lower for lower request rates,

Tableau provides more consistent mean latencies across the entire throughput range.

Tableau provides higher throughput under interference in the capped scenario compared to

RTDS. When comparing Tableau (Figure 6.7(C)) with RTDS (Figure 6.7(B)), we see that

Tableau supports significantly higher throughput under interference. For example,

with an I/O background workload, the throughput under Tableau peaks at around
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FIGURE 6.8: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for an uncapped, high-density scenario for 1 KiB
files, with two background workloads (I/O-intensive and CPU-bound
cache-intensive) and with varying throughput. Results with the idle background
workload are omitted as they are equivalent to a dedicated core scenario, and
therefore not comparable.

1,500 requests per second compared with RTDS, which peaks at around 1,000 requests

per second, almost a 30% reduction.

Tableau provides higher throughput under interference in the uncapped scenario compared

to both Credit and Credit2. When comparing Tableau (Figure 6.8(C)) with Credit and

Credit2 (Figure 6.7(A) and (B)), we see that Tableau supports significantly higher through-

put under interference even in the uncapped scenario. For example, with an I/O

background workload, the throughput under Tableau peaks at around 2,200 requests

per second compared with Credit, which peaks at around 1,000 requests per second

(around 50% lower) and Credit2, which peaks at around 1,100 requests per second

(around 40% lower). Again, this is due to how uncapped VMs receive guaranteed ser-

vice via the generated table as well as additional service when the currently-scheduled

tier-1 VM is not runnable (e.g., when it blocks on I/O).

All schedulers suffer under interference, particularly cache-intensive interference. As can be
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seen in both Figure 6.7 and Figure 6.8, all four schedulers, including Tableau, see sig-

nificant reduction in throughput, as well as a relative increase in latency when sub-

ject to cache interference from background VMs. However, it should be noted that

Tableau performs significantly better than the other schedulers. In the capped scenario,

Tableau’s peak throughput is higher compared to RTDS, and while Credit matches it, it

does so at the cost of increased latency. In the uncapped scenario, Tableau outperforms

both Credit and Credit2.

In summary, while Tableau experiences throughput variations as a result of background

interference, it performs comparably or better with regard to peak throughput relative

to the other evaluated schedulers. Where it performs comparably on peak throughput,

it outperforms on latency characteristics, ensuring lower and more predictable laten-

cies.

6.5 Comparing nginx HTTPS Throughput (Dedicated)

While the previous section shows the advantages of Tableau in a high-density sce-

nario, we also evaluate its performance in the common-case scenario where VMs are

assigned dedicated cores (i.e., there is a one-to-one mapping between vCPUs and phys-

ical CPUs). Such dedicated-core scenarios are popular as they allow for simpler con-

figuration of individual VMs. In particular, since there is only a single VM per core,

scheduling latency arising due to the multiplexing of VMs is absent entirely, and does

not need to be configured. In this section we evaluate Tableau in a dedicated-core sce-

nario to determine whether its performance in high-density settings comes at the cost

of performance degradation in the common-case, dedicated-core scenario.

We present evaluation results from such a scenario, comparing the performance of

Tableau against the three evaluated Xen schedulers, and show that Tableau’s advan-

tages extend beyond high-density scenarios and to dedicated-core ones as well.

Experimental setup. Our setup comprised of one single-core VM per core on twelve

cores of our two-socket, 16-core server (i.e., a total of 12 VMs), with the remaining four

cores being dedicated to dom0. Each VM was assigned a virtual network interface as

in the high-density experiment.

As in the high-density experiment, the vantage VM was hosting an nginx server that

served a small PHP application via HTTPS, which responded with a randomly selected

file of a given size (1 KiB, 100 KiB, or 1 MiB) chosen from a 1 GiB dataset. To minimize

measurement noise, all files were stored in an in-memory tmpfs volume. Similarly,
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FIGURE 6.9: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency with a dedicated-core scenario for 1 KiB, 100 KiB,
and 1 MiB files, with an I/O-intensive background workload and with varying
throughput.

nginx was assigned a real-time priority to reduce noise in the results due to activity of

the guest OS’s scheduler.

The client machine hosted the wrk2 tool, which generated requests for a specific file

size (1 KiB, 100 KiB, or 1 MiB) at a given rate, and measured the achieved throughput

and latency characteristics of the requests. The request rate was increased progres-

sively until the server was saturated. Unlike the previous experiments, since there is

no difference in a dedicated-core setting between capped and uncapped scenarios, we

configured VMs under Credit, Credit2, and Tableau to be uncapped, while they were

“capped” at 100% under RTDS (as it does not support uncapped VMs). The remaining

VMs ran an I/O-intensive background workload using the popular stress-ng tool.

Note. A more exhaustive evaluation was conducted to compare the performance of

Credit, Credit2, RTDS, and Tableau with different background workloads (idle, cache-

intensive CPU-bound, and I/O bound) under the above-described dedicated-core sce-

nario. The results of this exhaustive evaluation can be found in Appendix C. We note
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that the trends presented in this section are consistent with the results for the larger

range of configurations evaluated in Appendix C.

Graphs. The results are illustrated in Figure 6.9, comprising three rows of graphs with

three columns each. Each row corresponds to the results for different file sizes being

requested (1 KiB files, 100 KiB files, or 1 MiB). Within each row, the three columns cor-

respond to the mean, 99th percentile, and the maximum observed latency, respectively,

versus the observed throughput. Each graph comprises four curves, one for each of the

evaluated schedulers (Credit, RTDS, Credit2, and Tableau). As the X-axis shows the

observed throughput, and the Y-axis a latency metric, lower is better (i.e., less latency),

as is being further to the right (i.e., higher throughput).

Tableau performs comparably or better than existing schedulers. As can be seen in the figures,

in a dedicated-core scenario, Tableau performs comparably or better than the other

evaluated schedulers in both throughput and latency metrics, regardless of the request

size. In all figures, it can also be observed that the peak throughput under Tableau is

slightly higher, and the mean and 99th percentile latencies are more predictable com-

pared to the other schedulers. This is owed to the lower runtime overheads incurred

by Tableau compared to other schedulers, combined with the simplicity of scheduling

dedicated VMs; as no multiplexing of CPU time between multiple VMs is required,

VMs do not experience any scheduling delays due to other VMs on the same core.

VMs under Tableau experience the lowest slowdown under cache interference compared to other

schedulers. Figure 6.10 shows the results from a setup similar to the one used in Fig-

ure 6.9, with the only difference being that all other VMs in the system run a cache-

intensive stress-ng workload instead of an I/O-intensive one. As can be seen from

the graphs in Figure 6.10, Tableau outperforms all other schedulers on throughput

while providing comparable or better latency guarantees. For example, for 100 KiB

files, Tableau achieves around 2,100 requests per second, while Credit and RTDS peak

at approximately 1,800 requests per second. Credit2 achieves the lowest peak through-

put of around 1,500 requests per second. Contrasting these results with Figure 6.9

shows that Tableau results in the least performance degradation under cache-intensive

background stress compared to an I/O one. Compared to 1 KiB files under an I/O-

intensive workload, Tableau sees a reduction from around 6,500 requests per second to

6,000 requests per second (an 8% reduction). In contrast, Credit sees a reduction from

6,000 requests per second to just 5,000 requests per second (a 16% reduction).

To summarize, Tableau does not sacrifice performance for common-case configurations

in order to provide high performance for high-density configurations. Further, it pro-

vides additional benefits: slightly increased throughput and more predictable latencies
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FIGURE 6.10: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency with a dedicated-core scenario for 1 KiB, 100 KiB,
and 1 MiB files, with a cache-intensive background workload and with varying
throughput.

in many cases. Further, while all schedulers see throughput degradation when co-

located with a cache-intensive background workload instead of an I/O-intensive one,

Tableau achieves the least degradation.

6.6 Tier-2 Performance and Impact

In this section, we evaluate both the performance of tier-2 VMs as well as their effect

on the performance of (tier-1) table-driven VMs.

A primary goal of running background VMs in a datacenter to use up any available idle

cycles is to avoid performance degradation of VMs that have guaranteed performance.

In particular, since the most common configuration in commercial clouds is dedicated-

core VMs, we evaluate the impact of tier-2 VMs on the performance of dedicated-core

tier-1 VMs in this section.
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FIGURE 6.11: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency with a dedicated-core scenario, and a tier-3 VM
running an interfering workload, for 1 KiB, 100 KiB, and 1 MiB files and with varying
throughput.

In Tableau, this means that for tier-2 VMs to be practical, they must have a low impact

on the performance of tier-1 VMs. However, due to Tableau’s novel three-level sched-

uler, tier-1 VMs are guaranteed service before tier-2 VMs. To illustrate this, we ran an

experiment where the performance of a dedicated-core tier-1 VM was measured, while

a co-located tier-2 VM ran an interfering background workload using any available idle

cycles on the core. The performance of the tier-1 VM was measured using our HTTPS

nginx workload as in previous experiments; the requests per second were varied and

both latency and actual throughput were measured.

Figure 6.11 shows the results from our experiment. The figure consists of three rows

and three columns. The three rows correspond to the results for different file sizes be-

ing served (1 KiB, 100 KiB, and 1 MiB, respectively), while the three columns show the

throughput compared against a varying latency metric (mean latency, 99th percentile

latency, and maximum-observed latency, respectively). Finally, each graph comprises

four curves, one for each of four background interference workloads that the tier-2 VM

was running.
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FIGURE 6.12: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency of tier-3 VM co-located with a tier-1 VM capped at
varying utilizations (20%, 40%, 60%, and 80%) and running a CPU-intensive
workload, for 1 KiB files and with varying throughput.

Tier-2 VMs have low impact on the performance of tier-1 VMs for the evaluated workload.

As can be seen from the graphs, the variation in the performance of the tier-1 VM is

negligible regardless of the characteristics of the background workload run on the tier-

2 VM. In particular, given that the idle scenario (blue line in each graph) represents

the baseline performance of the tier-1 VM in the absence of any interference, it can be

clearly seen that its performance is comparable even in the presence of an interfering

tier-2 VM on the same core. The largest reduction in performance can be seen with

respect to the maximum-observed latency of 1 KiB file requests with an I/O-intensive

tier-2 VM. However, note that the 99th and mean latencies are not affected, and only

peak throughput is affected, that too negligibly; it is still comparable to the baseline.

We show in Chapter 7 that a highly cache-sensitive workload responds differently to

cache interference, and can indeed suffer higher slowdowns as a result of tier-2 VMs.

However, we note from section 6.5 that VMs under Tableau suffer the lowest slowdown

when compared with other existing schedulers.

Therefore, we conclude that tier-2 VMs in Tableau can be practical, and that they do

not significantly affect the performance of tier-1 VMs in dedicated-core scenarios for

many practical workloads, such as the nginx-based web service evaluated in this chap-

ter. For more cache-sensitive workloads, tier-2 VMs may have a higher impact (see

Chapter 7), and while the impact is still low compared with other schedulers, it might

make sense to avoid tier-2 VMs for such workloads (e.g., via a more expensive cache-

or memory-optimized offering).

It should also be noted that the performance of tier-2 VMs themselves is configurable.

That is, the amount of service received by tier-2 VMs can be configured by capping the

maximum utilization of tier-1 VMs, and leaving idle time for tier-2 VMs to use.

To illustrate this, we ran an experiment where the performance of a tier-2 VM was

measured, while a tier-1 VM ran a CPU-bound workload, but was capped at different

utilizations. The performance of the tier-2 VM was measured using our HTTPS nginx
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FIGURE 6.13: 99th percentile latency of a tier-1 VM capped at varying utilizations
(20%, 40%, 60%, and 80%) and co-located with a tier-2 VM running various
background workloads (idle, CPU-intensive, cache-intensive, and I/O-intensive), for
1 KiB files and with varying throughput.

workload while serving 1 KiB files; the requests per second were varied and both la-

tency and actual throughput were measured.

Figure 6.12 shows the results from our experiment. The figure consists of three columns

corresponding to the throughput compared against a varying latency metric (mean

latency, 99th percentile latency, and maximum-observed latency, respectively). Each of

the three graphs comprises four curves, one for each of four capped utilizations of the

tier-1 VM (20%, 40%, 60%, and 80%).

Tier-2 VM performance can be configured by capping tier-1 VM utilization. As can be seen

in the figure, the performance of the tier-2 VM depends on the amount of idle time

available for it. That highest tier-2 performance can be observed when the co-located

tier-1 VM is capped at 20% utilization, while the lowest tier-2 performance is observed

when the tier-1 VM is capped at 80%. This, combined with the negligible impact of

tier-2 VMs on tier-1 performance allow for flexible and configurable trade-offs between

tier-1 and tier-2 performance.

Tier-2 VMs have low impact on the performance of tier-1 VMs. Figure 6.13 shows the per-

formance of a tier-1 VM capped at different cappings while a co-located tier-2 back-

ground VM runs various background workloads (idle, CPU-intensive, cache-intensive,

and I/O-intensive) using the stress-ng tool. Thus, these graphs show the perfor-

mance impact on tier-1 VMs as a result of tier-2 background work. As can be seen in
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Figure 6.13, the degradation in performance from tier-2 VMs on the same core is negli-

gible. This shows that Tableau’s approach to scheduling background VMs is practical

and does not impact tier-1 performance significantly.

6.7 Discussion and Limitations

A rigid table-driven scheduler like Tableau is not ideal for certain scenarios. We next

discuss some of the limitations of Tableau.

Lower I/O device utilization in certain capped scenarios. One of the drawbacks of

a table-driven scheduler is that I/O requests are sent in periodic bursts. For example,

when a VM’s slot is active, it is able to enqueue packets in the network interface’s ring

buffer, but when the VM is preempted for a relatively long time, the network device

drains its buffer and then idles. This is inefficient and results in lower throughput than

a dynamic scheduler, which can ensure a more even distribution of VM execution over

time, resulting in a better-utilized I/O device given the same CPU utilization.

This effect is evident in Figure 6.5(g)–(i), which shows a capped scenario with 1 MiB

files where Credit achieves higher peak throughput compared to Tableau. This does

not occur for smaller file sizes as they require less bandwidth (i.e., utilizing the network

efficiently is not so important because CPU utilization is the bottleneck when serving

small files). However, for larger files, transmission time becomes significant and the

VM must work harder to keep the network device sufficiently busy to ensure high

throughput.

Overall, if the goal is to maximize I/O device utilization, a rigid table-driven scheduler

is not ideal. However, Tableau’s second-level scheduler for uncapped VMs can help

with overcoming this inefficiency, as is evident in Figure 6.5(p)–(r).

Higher mean latencies in capped settings. While Tableau provides high throughput

and predictable tail-latency characteristics, it can be seen in Figure 6.5(a), (d), and (g)

that it performs worse compared to Credit in terms of mean latency in capped settings.

This is not unexpected since capped VMs under Tableau do not have the luxury of

responding to requests at any point in time; rather, they are limited to carefully con-

trolled windows of time where they are allowed to process requests. This means that

requests arriving in the blackout period between slots incur higher latencies, resulting

in increased average latency. However, as can be seen in the other graphs in Figure 6.5,

dynamic schedulers come with their own trade-offs, namely lower throughput in the
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face of frequent scheduler invocations due to more complex, higher-overhead schedul-

ing logic.

Semi-partitioned VM performance. In this thesis, we focus on the (common) case of

fully partitioned vCPUs and do not evaluate migrating vCPUs, that is, VMs that are

forced to frequently migrate across multiple cores due to semi-partitioning or local-

ized optimal scheduling (or other table generation methods). To reiterate, we consider

semi-partitioning to be rare in a controlled cloud setting as operators can pick vCPU

utilizations that are easy to partition.

However, in the rare cases where semi-partitioning is unavoidable, there is undoubt-

edly a performance penalty to be paid by frequently migrating VMs. While Credit,

Credit2, and RTDS also frequently migrate vCPUs, there is a significant difference: un-

der these schedulers, all vCPUs are (non-deterministically) subject to occasional migra-

tion, so the performance penalty evens out over time. In contrast, in Tableau, migration

costs are borne exclusively by vCPUs with allocations on multiple pCPUs, which is un-

fair.

There are several ways around this imbalance. For one, any split vCPU could be “com-

pensated” for the increased overheads by increasing its utilization by a few percentage

points and factoring this added resource usage into the cost. Alternatively, one could

periodically re-generate the scheduling table to make sure that all vCPUs take a turn

being split across cores. It will be interesting to explore the involved trade-offs in more

detail in future work.

Other sources of unpredictability. While we focus on two sources of performance

variability, CPU scheduling and cache interference, these are merely two pieces of a

larger predictability puzzle. Modern server-class machines have many other sources of

such performance variability, including queueing delays in shared I/O schedulers, in-

teraction of the hypervisor and guest OS schedulers, variability arising from filesystem

I/O. Case in point, in the experiments discussed in Section 6.4 we specifically removed

the guest OS scheduler and disk I/O from consideration to minimize measurement

noise. A complete system that comprehensively addresses all such issues is beyond the

scope of this thesis, but an important challenge for future work.

Performance degradation under cache interference. As we saw in Section 6.4, there

is significant performance degradation under all schedulers under interference from

VMs running cache-intensive workloads. While Tableau outperforms existing sched-

ulers, it does not attempt to mitigate the interference itself. In particular, as interference
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in multi-tenant clouds is temporally localized, it may be possible to improve perfor-

mance through runtime mitigation techniques. We look at this in more detail in the

next chapter.



CHAPTER 7

MITIGATING DYNAMIC CACHE

INTERFERENCE

As we saw in the last chapter, cache interference from co-located VMs can result in

significantly reduced throughput. However, the background workload used in our

evaluation in Chapter 6 fully utilized all cores in the system entirely, and utilizations in

public clouds are comparatively lower [13]. This means that, in practice, interference is

lesser and non-uniform, both spatially and temporally.

Therefore, from the point of view of a VM scheduler, it is not sufficient to simply guar-

antee utilization and scheduling latency bounds for VMs (e.g., via a scheduling table

in Tableau) and expect the performance to remain consistent. Rather, a more dynamic

approach must be taken to additionally mitigate changes in interference patterns at

runtime.

The challenge lies in achieving this without increased runtime overheads. In this chap-

ter, we present a novel interference mitigation mechanism that is unique to Tableau’s

design. Recall that under Tableau, a new scheduling table is generated every time a VM

is created, torn down, or reconfigured. However, Tableau is not limited to generating

tables in just these situations. Instead, in this chapter we employ an approach where

tables are periodically regenerated such that they provide the same performance guar-

antees (i.e., the utilization and scheduling latency of every VM is satisfied), but have

different cache-interference characteristics.

95
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7.1 Motivation

Cache interference is an unavoidable consequence of sharing cache memory on a given

core (e.g., L1 or L2 caches in Intel architectures) or socket (e.g., LLC) with other tenants,

and cannot be eliminated entirely. Such cache interference has a negative effect on VM

performance, most notably throughput (as we saw in section 6.4).

Cache interference arises at multiple levels of the cache hierarchy: L1 and L2 caches,

which are private to each core in the system, are subject to interference from VMs on

the same core. Similarly, LLC interference is caused by interfering VMs running on

cores that share it; in our evaluation platform, and as is common in most commercial

platforms, all cores on a single socket share an LLC, and as a consequence, any VMs

executing on a particular socket may cause LLC interference for co-located VMs.

Distribution of cache pressure. While cache interference, or increased cache pressure

(or simply interference, as we refer to it in the rest of this chapter), is simply unavoidable

when sharing caches with other VMs, it is important to note that the distribution of

cache pressure may vary both temporally and spatially.

For an example of varying temporal distribution of interference, consider a system with

50% of VMs running a cache-intensive workload. On one end of the spectrum, 50% of

all VMs may be a source of interference for 100% of the time, or at the other end of the

spectrum, 100% of VMs may cause interference for 50% of the time.

Similarly, interference may be spatially distributed in the system, with the 50% of VMs

running a cache-sensitive workload being, on one hand, uniformly distributed on all

cores in the system or, in the other extreme, concentrated on a few cores.

Regardless of the precise nature of the instantaneous distribution of interference over

time (i.e., the temporal or spatial distribution of interference on the active cores in the

system), the key point to note is that in systems that are not fully utilized, there may be

room for lowering interference experienced by any particular VM at runtime by simply

lowering peak cache pressure on any given core or socket. That is, we can use load

balancing to redistribute cache pressure evenly across the system so that no specific

VM is unduly penalized.

To demonstrate this, we show PARSEC benchmark [15] results under two different

cache interference scenarios.

The first (CI-1) runs a cache-intensive workload on a specified number of randomly-

chosen VMs in the system, and the random subset of VMs is changed every ten sec-

onds. Since the VMs are chosen randomly, interference is uniformly distributed over
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all active cores in the system in the long run. Therefore, CI-1 represents the best-case

performance degradation in the system for a given number of interfering VMs.

The second interference workload (CI-2) runs a cache-intensive workload on a speci-

fied number of VMs, but specifically targets cores on the same socket as the VM being

evaluated. The workload periodically (every second) determines the placement of the

evaluation target VM using the current scheduling table, and repartitions the interfer-

ing VMs successively on to the same core as the target VM, the same socket as the

target VM, and finally other sockets in the system. This serves as the other extreme

of performance degradation, where a specific VM is targeted explicitly, and possibly

maliciously, with the intent of degrading its performance.

Experimental setup. We ran the canneal benchmark, which is a part of the PARSEC

benchmark suite [15]. It was chosen as it is a cache-aware benchmark whose perfor-

mance is well-known to be sensitive to cache interference. The canneal benchmark

was run on our evaluation target VM, and the total time to completion measured. A

subset of the remaining VMs, of varying size, ran a cache-intensive stress workload us-

ing the stress-ng tool. A hundred samples were collected for each experiment using

the simsmall dataset provided by PARSEC. We calculated 95% confidence intervals

for each experiment using bootstrapped confidence intervals [40] and plot them for

each bar presented.

Figure 7.1 shows the results of the canneal benchmark under varying number of VMs

running both types of interference workloads (CI-1 and CI-2), which are discussed be-

low.

Figure 7.1 shows a bar chart where the X-axis shows the number of VMs running the

interfering workload and the Y-axis shows the slowdown in performance compared to

a system where no VMs are running an interference workload. The blue and red sets

of bars show the results for CI-1 and CI-2, respectively.

As can be seen from Figure 7.1, as the number of VMs running the cache-interfering

workload is increased, the performance degrades. In particular, it can be clearly seen

that the performance degradation is more severe under the targeted interference (i.e.,

in scenario CI-2). This is not surprising as the targeted CI-2 interference is designed to

maximally interfere with the VM being evaluated.

Note that the performance under randomly distributed interference (CI-1) represents

the best-case scenario. In contrast, the performance under CI-2 represents the worst-

case scenario.
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FIGURE 7.1: A comparison of canneal performance running in a VM in a
high-density scenario under varying number of interfering VMs running two types
of interference workloads.

When interference is uniformly distributed across all cores in the system, it minimizes

the peak pressure. That is, no single core experiences undue, targeted cache pressure.

Cache pressure with respect to a specific core in the system, may be lowered below this

best-case level (e.g., if all cache pressure is targeted on a different socket than the one

being measured). However, this comes at the cost of fairness, as some other VM will

receive higher peak pressure. Alternatively, another approach that lowers cache pres-

sure would involve isolating all VMs running cache-intensive workloads onto a sepa-

rate socket, but again this sacrifices fairness as each of them experience undue cache

pressure compared to those VMs not running cache-sensitive workloads. Therefore,

scenario CI-1 represents the best-case cache-interference achievable on a multi-tenant

machine without sacrificing fairness and penalizing specific VMs.

On the other hand, a specific VM in the system experienced maximal cache pressure

when all VMs running cache-intensive workloads are co-located on, successively, the

same core as the VM, the same socket, and finally, on other sockets in the system. This

is the behavior of the CI-2 scenario, which for a given number of interfering VMs, max-

imizes the interference experienced by the evaluation target VM.

Therefore, the gap between the blue and red lines in Figure 7.1, both of which represent

the same data as the bars except as a line plot, represent the potential for improve-

ment via load balancing. Ideally, we want to be able to achieve slowdowns in VM

performance approaching that under CI-1 (i.e., the blue line), while being subject to

CI-2 interference (i.e., the red line).
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We now present the design, implementation, and evaluation of two mitigation strate-

gies that we implemented in Tableau. The first approach randomizes schedules con-

tinuously so as to prevent interference hotspots from forming at runtime. The second

strategy attempts to detect specific VMs causing cache interference using low-level,

per-VM performance counter data, and then redistribute interfering VMs by regener-

ating new, optimized scheduling tables.

7.2 Mitigation Strategy 1: Random Repartitioning

As we saw in Figure 7.1, the canneal benchmark performs better when the interfer-

ence is spread out across all cores in the system as opposed to being concentrated on a

few targeted cores.

The intuition behind the first mitigation strategy is that, while we cannot convert CI-2

interference into CI-1 interference by modifying the interference characteristics of VMs

themselves, we can achieve the same effect by randomizing the placement of VMs in

the system.

By randomizing VM placement at runtime, this strategy prevents any interference

hotspots from building up on specific cores, and dissipates the interference across all

cores in the system when averaged over longer intervals of time.

To test this, we implemented a userspace randomizer daemon that takes the current

scheduling table and swaps the slots of two randomly-chosen VMs. This process was

repeated one hundred times to ensure sufficient randomization. The new table was

then pushed to the hypervisor. Finally, this entire process was performed continuously

in a loop, with no delay between iterations, while the canneal workload was evalu-

ated.

This highlights one limitation of the randomized approach, which requires many inter-

changeable, similarly-configured VMs that can be repartitioned at runtime. However,

we note that this is not a major issue for two reasons. First, our approach of swapping

VM allocations is only one way to repartition VMs. An alternative approach, for ex-

ample, would involve modifying the partitioning heuristic used in the planner to be

less deterministic. This would allow for regenerating randomized tables directly with

the planner. Second, from the perspective of a cloud provider, co-locating similarly-

configured VMs on the same machine is not problematic. Therefore, we consider our

randomized approach to be practical.

Figure 7.2 shows the results of an experiment where thirty VMs were generating CI-2
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FIGURE 7.2: A comparison of canneal performance running in a VM under a
no-interference scenario (Baseline), with thirty CI-1 VMs, thirty CI-2 VMs, and thirty
CI-2 VMs with randomized mitigation

interference and our randomizer is running. The number of interfering VMs was cho-

sen to be thirty as Figure 7.1 shows the largest gap in performance between CI-1 (ran-

dom) and CI-2 (targeted) interference for thirty VMs. We compare against a baseline

of performance when all VMs are running CPU-intensive work without a significant

cache footprint.

Figure 7.2 shows the results in the form of a bar graph where the Y-axis shows the mean

execution time of the canneal benchmark, and the X-axis shows four bars: a baseline

where all VMs run a CPU-bound loop, thirty VMs running a CI-1 workload, thirty

VMs running a CI-2 workload, and finally, thirty VMs running a CI-2 workload while

the randomizer daemon is active. The values above the bars indicate the percentage

slowdown compared to the baseline.

First, it is evident from Figure 7.2 that CI-2 interference results in significantly longer

completion times compared to CI-1 interference (an additional 143% under CI-2 com-

pared to the baseline, as opposed to a 75% increase under CI-1).

Next, we observe that canneal performance under a targeted CI-2 interference with

our randomizer active achieves comparable performance as when under random inter-

ference (CI-1). This is because, by randomizing tables and consequently VM placement,

we achieve the uniform interference distribution of a CI-1 workload even though the

VM is under CI-2 interference.

In fact, we found that canneal performance with the randomizer enabled, and tar-

geted CI-2 interference was comparable or better than the performance under random

CI-1 interference.
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FIGURE 7.3: A comparison of canneal performance running in a VM in a
high-density scenario under varying number of interfering VMs in two scenarios:
one with random CI-1 interference, and one with CI-2 interference but our
randomizer active.

Figure 7.3 shows a bar chart similar to Figure 7.1, where the X-axis shows the number

of VMs running the interfering workload and the Y-axis shows the slowdown in per-

formance compared to a system where no VMs are running an interference workload.

The blue and green sets of bars show the results for CI-1 and CI-2 with our randomizer

active, respectively.

As can be seen in Figure 7.3, canneal performance under CI-2 interference with our

randomizer active is either comparable or better than its performance under CI-1 in-

terference. The reason for this has to do with an asymmetry in our setup. While our

evaluation machine has two sockets with eight cores each, four of the cores on the

first socket are dedicated to Xen’s dom0. As a result, the peak number of interfering

VMs that can be present on the first socket is limited to half that on the second one.

The results in Figure 7.1 and Figure 7.2 were generated with the evaluated VM being

partitioned onto a core on the second socket (i.e., a socket whose LLC is susceptible

to interference from all eight cores on the socket in the worst case). In contrast, the

randomizer migrates VMs across all cores, including those of the first socket, result-

ing in lower interference on average. This highlights an advantage of the randomized

mitigation strategy: by migrating VMs across all cores in the system, it is able to take

advantage of imbalances in the levels of LLC interference on different sockets in the

system, resulting in improved average performance.

However, we note that for a more balanced setup (i) where all cores on each socket are

avaible for guest VMs, or (ii) where dom0 cores are equally distributed among all sock-

ets in the system, the randomized approach can be expected to achieve performance

only comparable to that under CI-1 interference.
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Based on our observations, we conclude that continuous random repartitioning of VMs

at runtime is an effective strategy for lowering peak cache pressure and distributing it

uniformly across the entire system.

7.3 Mitigation Strategy 2: Load Balancing Based on Performance

Counters

An alternative mitigation strategy that we evaluate involves monitoring the perfor-

mance of VMs at runtime, detecting when they perform cache-intensive work, and

using this information to balance the pressure across sockets and cores in the system so

as to avoid hotspots of cache pressure.

Conceptually, the advantage of this strategy over the randomized approach is that

fewer VMs need to be moved around at runtime, requiring fewer resources for the table

regeneration, as well as reducing the number of VMs that are migrated to a different

core than the one on which they are currently running.

One way to achieve this would be via runtime monitoring and load balancing within

the hypervisor scheduler itself. However, we do not implement this approach as it

would result in higher runtime overheads of the scheduler, which as we have shown in

Sections 6.2 and 6.4, lowers throughput.

Rather, we take an alternative approach: we only gather lightweight performance mon-

itoring metrics at runtime within the hypervisor. These are then extracted by an asyn-

chronous userspace daemon, which uses them to detect cache-intensive VMs. Finally,

the userspace dameon rebalances cache-intensive VMs evenly across all cores in the

system in order to lower hotspots of cache pressure. This rebalancing is performed by

pushing a new, optimized table to the hypervisor.

We first describe how we gather metrics in a lightweight manner, without incurring

significant runtime overhead.

Monitoring per-VM performance counters. As discussed in section 2.6, most mod-

ern processors used in datacenters come with a performance monitoring unit (PMU)

that can be used to count low-level architectural events.

We extended Tableau to simultaneously monitor multiple performance counters for

each vCPU in the system. Our evaluation platform (described in section 6.4), supported

four programmable counters that could be counted simultaneously at any given time.
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The implementation was straightforward: each vCPU-specific structure was extended

with accumulators for each counter being measured. When a particular vCPU is dis-

patched, the dispatcher activates the performance monitoring unit to begin counting a

set of (configurable) events, and when the vCPU is de-scheduled, it stops monitoring

them. The observed count of each event are added to an event-specific accumulator

within the per-vCPU structure.

Apart from the mechanism to collect performance-monitoring data for each vCPU, a

custom hypercall command was implemented to allow a userspace daemon to read

out the accumulator values for each vCPU in the system.

Programming the PMU. The added overhead in the system is not evaluated but is

low as programming the PMU involves only two lightweight wrmsr instructions for

each counter being monitored, and reading out the current value requires just a single

rdmsr instruction for each counter being monitored.

Intel x86 architectures provide special model-specific registers (MSRs) which can be used

to control various auxiliary functionalities such as performance monitoring. Reading

and writing MSRs to and from a specified address, respectively, is done using the spe-

cial rdmsr and wrmsr instructions.

By default, Tableau counts four events: the number of cycles a VM executes for, the

number of instructions retired, the number of last-level cache misses, as well as the

number of last-level cache references.

With these counters available for each VM in the system, we attempt to detect the subset

of VMs currently performing cache-intensive work.

Performance monitoring daemon. We implemented a userspace daemon (similar to

the tier-2 load balancing daemon described in section 4.3) that extracts performance

counter data for each VM in the system and streams it to a detection and mitigation

framework.

The detection part of the framework is responsible for determining when VMs start or

stop performing cache-intensive work. The mitigation part is responsible for generat-

ing new, optimized tables taking into account the current state of the system.

The detection framework has been designed to keep a record of timeseries performance

counter data for each VM, core, and socket in the system. Using this timeseries data, it

efficiently tracks trend lines using trailing simple moving averages over configurable

time intervals. The general mechanism for detecting cache-intensive work uses a pair

of trailing moving averages, one over a short time interval and another over a longer
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time interval, to determine the current phase of the VM. The trend line for the shorter

time interval, owing to the shorter time window used for averaging, is more responsive

to short-term changes in VM behavior compared with the trend line for the longer time

interval, which is less susceptible to variations in short-term, volatile changes in VM

behavior. As a result, we can detect a phase change (e.g., a VM starts doing cache-

intensive work) when the trend line for the shorter interval exceeds the trend line for

the longer interval by a certain (configurable) threshold. Similarly, we can also detect

the reverse phase change (e.g., a VM stops running cache-intensive work) when the

trend line for the shorter time interval falls below that for the longer interval by another

(configurable) threshold.

We discuss two metrics for detecting such phase changes below: one using LLC misses,

and one using cycles per instruction (CPI).

Detecting cache interference using LLC misses. The simplest approach to detecting

cache-intensive work is to track the LLC misses of the VM. This value has been ob-

served to increase sharply when a VM begins to perform cache-intensive work.

To demonstrate this, we performed an experiment where a single VM was monitored

while it went through three phases: it was idle for the first sixty seconds, then ran a

cache-intensive stress benchmark, using the stress-ng tool, for the next sixty sec-

onds, and finally ended with another idle phase sixty seconds long. Figure 7.4 shows

various trend lines tracking LLC misses over different window sizes for the evaluated

VM, and shows how they respond to VM workload changes.

As can be seen from Figure 7.4, there is a visible rise in the trend line at sixty seconds

when the cache-intensive benchmark is started, as well as a drop at 120 seconds. It can

also be seen how the choice of time window affects the volatility and responsiveness

of the trend. In particular, a shorter time window results in more volatile but more

responsive trends, while a longer one results in less responsive, but more stable trends.

We also ran the same experiment, but instead of starting a cache-intensive stress bench-

mark, we ran a CPU-intensive one instead. As this benchmark is a simple loop and does

not have a significant cache footprint, it serves as a test of how useful LLC misses are

as a metric for detecting cache-intensive work.

As can be seen from Figure 7.5 there is a slight increase in the LLC misses at 60 and

120 seconds. This is because although the workload used is CPU-intensive, it still

has some cache accesses, albeit significantly lower than for Figure 7.4, which used a

cache-intensive workload. Therefore, in order to robustly classify VMs running cache-

intensive workloads, but not CPU-intensive ones, a higher threshold can be configured

in the detection framework.
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FIGURE 7.4: Trend lines tracking LLC misses for a single VM and varying time
windows. The VM goes through three phases of sixty seconds each: idleness,
CPU-intensive work, and again idleness.

Detecting interference using cycles per instruction. A second metric we explored for

determining when interference occurs was the well-studied cycles-per-instruction (CPI)

metric [130].

CPI is a measure of VM performance that looks at the average number of cycles it takes

to retire an instruction. That is, the number of cycles a VM takes until an instruction

is completed and its results are committed in the architectural state of the system. In

general, CPI increases as a result of increased cache pressure, as instructions take longer

to retire due to longer memory fetches holding up their completion.

CPI is measured by calculating the ratio of the number of unhalted CPU cycles (i.e.,

cycles where the VM was executing on the core) to the number of instructions retired,

both of which can be monitored accurately in the Intel architecture using low-level

performance counters.

The problem with cycles per instruction. Unfortunately, using CPI to detect cache-

interference in a VM environment has some downsides. Recall that CPI is a ratio be-

tween cycles executed and instructions retired. While it is meaningful to compare CPI

across VMs if one of either the numerator or denominator are changing, this becomes

an issue if both are changing at runtime.
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FIGURE 7.5: Trend lines tracking LLC misses for a single VM and varying time
windows. The VM goes through three phases of sixty seconds each: idleness,
CPU-intensive work, and again idleness.
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FIGURE 7.6: A comparison of CPI over a five second interval, measured for a VM
when it is idle, when running a CPU-intensive loop, and when running a
cache-intensive workload

In particular, the numerator, the number of cycles executed, depends on the idleness of

a VM at any given time. On the other hand, the denominator changes based on both

the idleness of the VM as well as how much interference the VM is experiencing at any

given time. This makes it difficult to compare across VMs that have different idle time

characteristics in order to compare the interference experienced by each.

Figure 7.6 shows the CPI over a five second interval for a VM when it is idle, when

running a CPU-intensive loop, and when running a cache-intensive workload. As can
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FIGURE 7.7: Trend lines tracking number of cycles executed by a single VM and
varying time windows. The VM goes through three phases of sixty seconds each:
idleness, CPU-intensive work, and again idleness.

be seen in the figure, the curves when running a CPU-intensive and cache-intensive

workload show the correct trends. For CPU-intensive work, as there are fewer memory

fetches, there is high instruction-level parallelism resulting in less than one cycle per in-

struction retired. On the other hand, for the cache-intensive workload, we see it taking

greater than one cycle to retire a single instruction. While these two are comparable,

the problematic case is the curve where the VM is idle. In this case, both the denom-

inator and numerator change compared with the CPU-intensive and cache-intensive

cases, making it incomparable.

The second issue with CPI is that it does not pinpoint the source of interference accu-

rately. A rise in CPI for a single interfering VM is accompanied with a rise in CPI for

other VMs sharing resources with it (e.g., other VMs on the same socket sharing the

LLC with the interfering VM). As a result, while CPI can be used to establish that VMs

are experiencing interference, we cannot use it to robustly pinpoint the specific VM that

is the source of the interference.

Since (i) acting on the CPI of near-idle VMs does not yield meaningful results, and (ii)

they are not a source of interference anyway, one alternative is to additionally detect

when VMs become idle or busy. We can then filter idle VMs when determining the set

of interfering VMs. Figure 7.7 presents a graph showing how trend lines tracking the

number of cycles executed for in a given time interval can be used to determine when

a VM becomes busy or idles.
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Figure 7.7 shows trend lines tracking the number of cycles a VM executed for while

it underwent three phases of execution of sixty seconds each: idleness, CPU-intensive

work, and again idleness. As can be seen in Figure 7.7, the count of executed cycles can

be used to accurately detect the idle and busy phases of a particular VM.

However, due to (i) the issue of correlated CPI rise, and (ii) the fact that it is difficult

to track accurate timeseries data for VMs (excluding idle intervals) when they are con-

stantly idling, we did not explore the use of CPI further. Rather, we chose to use the

raw number of LLC misses to detect interfering VMs instead.

To reiterate, our general approach to detecting interference involves configuring two

trend lines, each with a window size and two thresholds, and detecting when the trend

for the shorter time interval exceeds or falls below the configured threshold, compared

to the trend line for the longer time interval. We discuss our selection of the parameters

for configuring the pair of trend lines next.

Tuning trend line parameters. There is significant opportunity for finding ways to

choose both the window size as well as the two threshold values, but this is beyond

the scope of this thesis. Our goal is to design mechanisms that allow for implementing

arbitrary policies, and presenting proof-of-concept policies that shows the benefit of the

approach. In our detection, we tested a range of parameters and settled for a window

length of one second for the short trend, a window length of five seconds for the long

trend, and a threshold of 1,000 LLC misses.

Mitigation strategy. Following the detection of VMs performing cache-intensive work,

the goal of the mitigation algorithm is to distribute the interference evenly across all

cores in the system. In particular, it is not our goal to sacrifice fairness in order to

improve performance (e.g., by co-locating all cache-intensive VMs together on a sep-

arate socket). While this would improve performance for other VMs compared to a

uniformly-distributed interference, it would also unfairly penalize a subset of tenants.

Rather, our goal is to minimize peak interference.

Figure 7.8 shows the performance of PARSEC’s canneal workload for two scenarios:

when all VMs on a particular socket generate cache interference (using the stress-ng

benchmark tool), and when the same number of VMs are spread across two sockets

equally. Both are compared with a baseline performance where all VMs are running a

CPU-intensive workload without significant cache footprint.

As can be seen from Figure 7.8, splitting VMs evenly across two sockets unsurprisingly

lowers cache contention and improves performance (i.e., from 9.5 seconds on average to
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FIGURE 7.8: A comparison of canneal performance running in a VM under (i) a
no-interference scenario (Baseline), (ii) with all VMs on a socket causing cache
interference, and (iii) with the same VMs spread across both sockets in the system.
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FIGURE 7.9: A comparison of VM performance under a no-interference scenario
(Baseline), with three interfering VMs are co-located on the same core as the
evaluated VM, and when the three VMs are spread across cores of the same socket.

7.6 seconds). This is because each socket has its own LLC, and spreading the interfering

VMs across two sockets instead of one results in lower peak interference per socket.

Similarly, Figure 7.9 shows the performance of canneal running on one of four VMs

placed on a single core versus when the four VMs are spread across the cores of a single

socket.

Interestingly, it can be seen in Figure 7.9 that there is a slight performance improvement

when co-locating interfering VMs onto a single core, compared to when the four VMs
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are spread out across the socket socket (only a 73% degradation in the former com-

pared to the baseline, versus an 80% degradation in the latter case). This is likely due

to the specific scheduling table created where, when all VMs are on a single core, no

parallelism is possible, while when spread across a socket, VMs can interfere simulta-

neously with each other, resulting in increased cache pressure. However, we note that

this does not generalize to a principle that says co-locating cache-intensive VMs on few

cores is preferable. Rather, it depends on the specific schedule, and it can be beneficial

to spread the interference across an entire socket.

Figure 7.9 shows that interference concentrated on a single socket is less preferable than

when concentrated on multiple sockets. We also conclude that, independent of specific

scheduling tables, concentrating interference on a particular core is less preferable to

spreading it out over all the cores in the same socket. That is, as a general principle,

reducing peak interference on (i) sockets, and (ii) cores within each socket is a good way

to reduce cache interference experienced by VMs without causing undue performance

degradation on specific VMs (i.e., by sacrificing fairness).

Mitigation algorithm. Our mitigation algorithm proceeds in two phases. In the first

phase, the number of cache-intensive VMs are split evenly across all sockets in the

system, owing to the fact that each socket has its own LLC. This is done by each socket

in the system first donating excess cache-intensive VMs, followed by all sockets with

fewer cache-intensive VMs picking them up based on their deficit.

Once this is complete, the number of cache-intensive VMs are equally split across all

the sockets in the system. The second phase then uses a similar technique to evenly

distribute cache-intensive VMs across cores within the socket. That is, VMs from cores

with an excess number of cache-intensive VMs get reassigned to cores with a deficit in

cache-intensive VMs.

At the end of the two phases, the cache-intensive VMs in the system are spread out

evenly across all sockets in the system

Therefore, the cache pressure in any given socket is comparable to that of any other

socket in the system, with no single socket receiving undue cache pressure. Similarly,

the interference per core within each socket is comparable to that of other cores in

the socket. This configuration is written as a configuration file, which is used by the

userspace daemon to generate and push a new scheduling table to the hypervisor pe-

riodically (every second in our experiments).
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FIGURE 7.10: A comparison of VM performance under a no-interference scenario
(Baseline), with thirty CI-1 VMs, thirty CI-2 VMs, thirty CI-2 VMs with
performance-counter-based mitigation, and thirty CI-2 VMs with randomized
mitigation

Experimental results. We measured the performance of PARSEC’s canneal bench-

mark under CI-2 interference with thirty interfering VMs, and with our performance-

counter-based mitigation strategy enabled.

Figure 7.10 shows the results in the form of a bar graph where the Y-axis shows the

mean execution time of the canneal benchmark, and the X-axis shows five bars: a

baseline where all VMs run a CPU-bound loop, thirty VMs running a CI-1 workload,

thirty VMs running a CI-2 workload, thirty VMs running a CI-2 workload while the

performance-counter-based mitigation is active, and finally, thirty VMs running a CI-2

workload while the randomized mitigation is active. The values above the bars indicate

the percentage slowdown compared to the baseline.

As can be seen in the figure, with 30 VMs generating CI-1 interference, we see an in-

crease of approximately 75% in completion time for the canneal benchmark. Simi-

larly, with 30 VMs generating CI-2 interference, we see a 143% increase.

With our performance-counter-based mitigation strategy enabled, we see improved

performance compared to no mitigation strategy (only a 131% increase compared with

143%). However, it does not perform as well as the randomized strategy discussed in

section 7.2, which results in performance comparable to that under CI-1 interference,

while experiencing targeted CI-2 interference.

This is primarily due to a lack of robustness in our detection mechanism for pinpoint-

ing VMs performing cache-intensive work. During the course of running experiments,

we observed significant noise in the detection mechanism with lots of false positives,

indicating that our performance-counter based detection technique is simply not robust

enough for the purpose of detecting interfering VMs. However, the false-positive rate
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can be lowered by employing more sophisticated phase detection techniques for time-

series data, which is beyond the scope of this thesis. However, we note that detection

techniques arising from future work can be easily integrated into the current detection

framework presented in section 7.3.

Discussion. There are two major areas for improvement for the performance-counter-

based mitigation technique. The first involves exploring more robust mechanisms

for detecting VMs running cache-intensive workloads. The detection mechanism pre-

sented in section 7.3 results in high false positive rates resulting in unnecessary table

changes. Second, the tuning parameters for the trend lines can have a significant impact

on performance, but are currently chosen based on limited experimental observations.

Better approaches to determining the right tuning parameters can result in improved

mitigation.

In this chapter, we showed how dynamic changes in the interference characteristics of

VMs can result in large variability in performance. We also showed how such variabil-

ity can be reduced in a semi-offline fashion in Tableau using two strategies: one where

VMs are randomly load balanced so as to prevent cache pressure from being concen-

trated in certain parts of the system, and one using performance monitoring data to

detect cache-intensive VMs and distribute them uniformly across sockets and cores in

the system. While the performance monitoring based approach does not provide signif-

icant benefit due to the lack of a robust detection mechanism, the randomized approach

maintains performance comparable to a randomly-generated interference (CI-1), even

when under targeted interference aimed at maximizing cache pressure (CI-2).



CHAPTER 8

CONCLUSION

In this thesis, we presented the design and implementation of Tableau, a novel VM

scheduler for public clouds. Tableau comprises a three-level scheduler, where the first

level, which uses a table-driven scheduler coupled with an asynchronous userspace

planner, enables capped VMs with strong guarantees on utilization and scheduling

delay. The second level further enables uncapped VMs, which execute beyond their

resource limits specified in the table to use up any additional idle time on the core.

Finally, the third level enables a lower-priority tier of VMs to execute using idle cycles

in the system with a low impact on the performance of table-driven VMs.

We presented an extension of Tableau to deal with changing cache interference at run-

time. Our basic approach involved regenerating optimized tables asynchronously based

on two mitigation techniques. The first technique was a randomized approach, where

VM placement was periodically changed at runtime by repartitioning all VMs in the

system. The second technique was a performance-counter-based approach that de-

tected interfering VMs via low-level performance counter data, and reduced cache

pressure by distributing interfering VMs uniformly across the entire system.

Below, we briefly summarize key results pertaining to Tableau and present open ques-

tions to be explored in future work.

8.1 Summary of Results

Our evaluation of Tableau showed the following:

1. The time and space overheads of Tableau’s planning step are acceptable relative

to typical VM commissioning and decommissioning times.

2. Tableau incurs low scheduling overheads compared to other Xen schedulers.

113
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3. Tableau offers both predictability (i.e., consistent, low latencies) and high through-

put in a high-density scenario compared to other Xen schedulers.

4. Tableau provides comparable or higher throughput for VMs compared to existing

schedulers when configured with dedicated cores for each VM.

5. Tableau can be configured to provide performance guarantees for tier-2 back-

ground VMs.

6. Tier-2 VMs have a low impact on the performance of tier-1 VMs for the evaluated

workload.

Our evaluation of the cache-mitigation extension to Tableau showed that:

1. There is a significant difference between the performance of VMs when experi-

encing random interference versus targeted interference (with the latter aimed at

maximizing interference). We conclude that there is scope for a dynamic load

balancing approach to mitigate peak cache interference.

2. A randomized mitigation strategy results in performance comparable to random

cache interference even when experiencing worst-case targeted interference.

3. The performance-counter based mitigation strategy results in improved perfor-

mance compared to targeted interference, however performs poorly compared

with the randomized mitigation strategy. We attribute this primarily to lack of

a robust technique for detecting interfering VMs from low-level performance

counter data.

In conclusion, we believe that Tableau provides a high-performance, and predictable

alternative to existing VM scheduler designs used in public clouds. In addition, the

better isolation between SLA-backed VMs and background VM under Tableau opens

up potential for improved server utilization in cloud datacenters. Finally, the flexible

semi-offline approach allows for rapidly extending the scheduler using high-level lan-

guages, tools, and libraries, while maintaining low runtime overheads.

8.2 Open Questions and Future Work

In this section, we present some open questions pertaining to Tableau to be explored in

future work.
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Planner improvements. While the planner implementation presented in this thesis

performs acceptably, performance of table generation can be improved significantly.

First, the Python-based implementation can be replaced with an implementation in a

faster language such as C or C++. Second, the writing of tables to disk as an inter-

mediate step can be eliminated entirely. Finally, tables can be generated incremen-

tally by comparing against the current table and rebuilding only parts that need to be

changed. An alternative, when VM sizes are known upfront, would be to allow for

pre-generating slots in the system to allow for fast VM creation and teardown with-

out any planning delay. This would potentially enable on-demand, container-style VM

lifetimes with stronger isolation than containers alone can provide.

Robust detection of cache-intensive VMs. As seen in Chapter 7, the design of a ro-

bust technique for detecting VMs performing cache-intensive work using low-level

performance counter data is still an open area for further study.

Optimizing Tableau tables for secondary performance characteristics. Our work on

mitigating cache interference is a specific instance of a general class of solutions where

tables are generated that have the same utilization and scheduling latency guarantees,

but differ in some secondary characteristic (e.g., distribution of LLC pressure). On area

of future research involves exploring other secondary characteristics that tables can be

optimized for. As an example, I/O performance can vary across different cores in the

system due to differences in proximity to the I/O device, and regenerating tables at

runtime that place I/O-bound VMs on cores closer to the devices would improve I/O

performance.

End-to-end guarantees for distributed applications. While Tableau aims to provide

guarantees for a VMs on a single machine, modern applications may have more com-

plex architectures distributed across multiple machines. For example, multi-tier, microservice-

based web applications may consist of multiple services distributed across different

machines working together to produce a response. Therefore, one potential direction

for future research would involve extending Tableau to provide stronger guarantees

for distributed application architectures running on VMs on different machines. A fur-

ther extension of this direction would be to design a complete system that combines

Tableau with other orthogonal isolation techniques (e.g., the cluster scheduler, the dat-

acenter network) to provide stronger end-to-end guarantees.





APPENDIX A

EXTENDED EVALUATION: EFFECT OF

VARYING SCHEDULING LATENCY

This section shows how the performance of each of the four evaluated Xen schedulers

(Credit, Credit2, RTDS, and Tableau) varies with different settings of scheduling la-

tency. The details of the experimental setup are described in detail in section 6.4.

The results presented validate the choice of parameters for Credit in our evaluation

presented in Chapter 6. In particular, we find that with an idle background, Credit

performs best with a 1ms global timeslice. However, in the presence of a background

workload (e.g., CPU intensive, cache intensive, or I/O intensive), it performs the worst

of all evaluated values. Either a 5ms or 10ms timeslice tends to perform best in the

majority of evaluated scenarios, and our experiments presented in Chapter 6 use a 5ms

timeslice.

Since there is no way to configure the scheduling latency under the Credit2 scheduler,

the graphs for it are omitted.

117



118 EXTENDED EVALUATION: EFFECT OF VARYING SCHEDULING LATENCY

A.1 Credit Scheduler

A.1.1 Idle Background Workload

A.1.1.1 Capped Scenario
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FIGURE A.1: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under Credit, requesting 1 KiB,
100 KiB, and 1 MiB files, with an idle background workload and with varying
scheduling latencies and throughput.
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A.1.2 Cache-Intensive Background Workload

A.1.2.1 Capped Scenario
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FIGURE A.2: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under Credit, requesting 1 KiB,
100 KiB, and 1 MiB files, with a cache-intensive background workload and with
varying scheduling latencies and throughput.
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A.1.2.2 Uncapped Scenario
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FIGURE A.3: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for an uncapped scenario under Credit, requesting
1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive background workload and with
varying scheduling latencies and throughput.



EXTENDED EVALUATION: EFFECT OF VARYING SCHEDULING LATENCY 121

A.1.3 I/O-Intensive Background Workload

A.1.3.1 Capped Scenario
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FIGURE A.4: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under Credit, requesting 1 KiB,
100 KiB, and 1 MiB files, with an I/O-intensive background workload and with
varying scheduling latencies and throughput.
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A.1.3.2 Uncapped Scenario
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FIGURE A.5: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for an uncapped scenario under Credit, requesting
1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive background workload and with
varying scheduling latencies and throughput.
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A.2 Tableau Scheduler

A.2.1 Idle Background Workload

A.2.1.1 Capped Scenario
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FIGURE A.6: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under Tableau, requesting
1 KiB, 100 KiB, and 1 MiB files, with an idle background workload and with varying
scheduling latencies and throughput.
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A.2.2 Cache-Intensive Background Workload

A.2.2.1 Capped Scenario
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FIGURE A.7: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under Tableau, requesting
1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive background workload and with
varying scheduling latencies and throughput.
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A.2.2.2 Uncapped Scenario
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FIGURE A.8: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for an uncapped scenario under Tableau, requesting
1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive background workload and with
varying scheduling latencies and throughput.
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A.2.3 I/O-Intensive Background Workload

A.2.3.1 Capped Scenario
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FIGURE A.9: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under Tableau, requesting
1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive background workload and with
varying scheduling latencies and throughput.
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A.2.3.2 Uncapped Scenario
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FIGURE A.10: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for an uncapped scenario under Tableau, requesting
1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive background workload and with
varying scheduling latencies and throughput.
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A.3 RTDS Scheduler

A.3.1 Idle Background Workload

A.3.1.1 Capped Scenario
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FIGURE A.11: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under RTDS, requesting 1 KiB,
100 KiB, and 1 MiB files, with an idle background workload and with varying
scheduling latencies and throughput.
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A.3.2 Cache-Intensive Background Workload

A.3.2.1 Capped Scenario
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FIGURE A.12: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under RTDS, requesting 1 KiB,
100 KiB, and 1 MiB files, with a cache-intensive background workload and with
varying scheduling latencies and throughput.
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A.3.3 I/O-Intensive Background Workload

A.3.3.1 Capped Scenario
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FIGURE A.13: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for a capped scenario under RTDS, requesting 1 KiB,
100 KiB, and 1 MiB files, with an I/O-intensive background workload and with
varying scheduling latencies and throughput.



APPENDIX B

EXTENDED EVALUATION:

SCHEDULING LATENCY ACROSS

SCHEDULERS

This section compares the performance of the four evaluated Xen schedulers (Credit,

Credit2, RTDS, and Tableau) with varying configurations for scheduling latency. The

details of the experimental setup are described in detail in section 6.4, and the data

presented in this section is simply a different representation of the data presented in

Appendix A.

In the scenario with an idle background workload and uncapped VMs, the performance is

similar to the full-core scenario. Therefore these graphs are omitted entirely in this sec-

tion. To see a comparison of performance of each scheduler under a full-core scenario,

please refer to Appendix C.

Further, for the Credit2 scheduler, since there is no way to configure the scheduling, a

single set of results are used in all graphs to allow for comparison.

Note that, in general, one overall trend that appears across schedulers is that a 1 ms

timeslice or scheduling latency results in the lowest performance, regardless of back-

ground workload or capped or uncapped scenario. This is simply due to the large

number of interrupts generated by the scheduler causing a reduction in throughput

due to the additional overheads.
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B.1 1ms Scheduling Latency

B.1.1 Idle Background Workload
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FIGURE B.1: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 1ms timeslice (or scheduling latency) and varying throughput.
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B.1.2 Cache-Intensive Background Workload

B.1.2.1 Capped Scenario
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FIGURE B.2: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 1ms timeslice (or scheduling latency) and varying
throughput.
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B.1.2.2 Uncapped Scenario
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FIGURE B.3: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 1ms timeslice (or scheduling latency) and varying
throughput.
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B.1.3 I/O-Intensive Background Workload

B.1.3.1 Capped Scenario
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FIGURE B.4: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 1ms timeslice (or scheduling latency) and varying
throughput.
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B.1.3.2 Uncapped Scenario
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FIGURE B.5: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 1ms timeslice (or scheduling latency) and varying
throughput.
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B.2 5ms Scheduling Latency

B.2.1 Idle Background Workload

B.2.1.1 Capped Scenario
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FIGURE B.6: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 5ms timeslice (or scheduling latency) and varying throughput.
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B.2.2 Cache-Intensive Background Workload

B.2.2.1 Capped Scenario
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FIGURE B.7: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 5ms timeslice (or scheduling latency) and varying
throughput.
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B.2.2.2 Uncapped Scenario
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FIGURE B.8: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 5ms timeslice (or scheduling latency) and varying
throughput.
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B.2.3 I/O-Intensive Background Workload

B.2.3.1 Capped Scenario
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FIGURE B.9: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 5ms timeslice (or scheduling latency) and varying
throughput.
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B.2.3.2 Uncapped Scenario
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FIGURE B.10: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 5ms timeslice (or scheduling latency) and varying
throughput.
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B.3 10ms Scheduling Latency

B.3.1 Idle Background Workload

B.3.1.1 Capped Scenario
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FIGURE B.11: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 10ms timeslice (or scheduling latency) and varying throughput.
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B.3.2 Cache-Intensive Background Workload

B.3.2.1 Capped Scenario
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FIGURE B.12: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 10ms timeslice (or scheduling latency) and varying
throughput.
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B.3.2.2 Uncapped Scenario
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FIGURE B.13: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 10ms timeslice (or scheduling latency) and varying
throughput.
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B.3.3 I/O-Intensive Background Workload

B.3.3.1 Capped Scenario
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FIGURE B.14: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 10ms timeslice (or scheduling latency) and varying
throughput.
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B.3.3.2 Uncapped Scenario
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FIGURE B.15: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 10ms timeslice (or scheduling latency) and varying
throughput.
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B.4 15ms Scheduling Latency

B.4.1 Idle Background Workload

B.4.1.1 Capped Scenario
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FIGURE B.16: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 15ms timeslice (or scheduling latency) and varying throughput.
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B.4.2 Cache-Intensive Background Workload

B.4.2.1 Capped Scenario
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FIGURE B.17: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 15ms timeslice (or scheduling latency) and varying
throughput.
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B.4.2.2 Uncapped Scenario
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FIGURE B.18: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 15ms timeslice (or scheduling latency) and varying
throughput.
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B.4.3 I/O-Intensive Background Workload

B.4.3.1 Capped Scenario
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FIGURE B.19: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 15ms timeslice (or scheduling latency) and varying
throughput.
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B.4.3.2 Uncapped Scenario
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FIGURE B.20: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 15ms timeslice (or scheduling latency) and varying
throughput.
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B.5 20ms Scheduling Latency

B.5.1 Idle Background Workload

B.5.1.1 Capped Scenario
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FIGURE B.21: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 20ms timeslice (or scheduling latency) and varying throughput.
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B.5.2 Cache-Intensive Background Workload

B.5.2.1 Capped Scenario
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FIGURE B.22: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 20ms timeslice (or scheduling latency) and varying
throughput.
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B.5.2.2 Uncapped Scenario
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FIGURE B.23: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 20ms timeslice (or scheduling latency) and varying
throughput.
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B.5.3 I/O-Intensive Background Workload

B.5.3.1 Capped Scenario
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FIGURE B.24: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 20ms timeslice (or scheduling latency) and varying
throughput.
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B.5.3.2 Uncapped Scenario
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FIGURE B.25: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 20ms timeslice (or scheduling latency) and varying
throughput.
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B.6 25ms Scheduling Latency

B.6.1 Idle Background Workload

B.6.1.1 Capped Scenario

0 500 1K 1.5K

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

105

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 500 1K 1.5K

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

105

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 500 1K 1.5K

Throughput (reqs/sec) (size=1K)

100

101

102

103

104

105

M
a
x
. 
La

te
n
cy

 (
m

s)

Credit Tableau RTDS

0 100 200 300 400 500 600 700

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 100 200 300 400 500 600 700

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 100 200 300 400 500 600 700

Throughput (reqs/sec) (size=100K)

100

101

102

103

104

105

M
a
x
. 

La
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 20 40 60 80 100 120

Throughput (reqs/sec) (size=1M)

100

101

102

103

104

105

106

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 20 40 60 80 100 120

Throughput (reqs/sec) (size=1M)

100

101

102

103

104

105

106

9
9

th
 %

ile
 L

a
te

n
cy

 (
m

s)

Credit Tableau RTDS

0 20 40 60 80 100 120

Throughput (reqs/sec) (size=1M)

100

101

102

103

104

105

106

M
a
x
. 

La
te

n
cy

 (
m

s)

Credit Tableau RTDS

FIGURE B.26: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 25ms timeslice (or scheduling latency) and varying throughput.
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B.6.2 Cache-Intensive Background Workload

B.6.2.1 Capped Scenario
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FIGURE B.27: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 25ms timeslice (or scheduling latency) and varying
throughput.
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B.6.2.2 Uncapped Scenario
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FIGURE B.28: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 25ms timeslice (or scheduling latency) and varying
throughput.
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B.6.3 I/O-Intensive Background Workload

B.6.3.1 Capped Scenario
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FIGURE B.29: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 25ms timeslice (or scheduling latency) and varying
throughput.
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B.6.3.2 Uncapped Scenario
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FIGURE B.30: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 25ms timeslice (or scheduling latency) and varying
throughput.
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B.7 30ms Scheduling Latency

B.7.1 Idle Background Workload

B.7.1.1 Capped Scenario
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FIGURE B.31: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 30ms timeslice (or scheduling latency) and varying throughput.
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B.7.2 Cache-Intensive Background Workload

B.7.2.1 Capped Scenario
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FIGURE B.32: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 30ms timeslice (or scheduling latency) and varying
throughput.
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B.7.2.2 Uncapped Scenario
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FIGURE B.33: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 30ms timeslice (or scheduling latency) and varying
throughput.
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B.7.3 I/O-Intensive Background Workload

B.7.3.1 Capped Scenario
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FIGURE B.34: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 30ms timeslice (or scheduling latency) and varying
throughput.
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B.7.3.2 Uncapped Scenario
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FIGURE B.35: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 30ms timeslice (or scheduling latency) and varying
throughput.
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B.8 35ms Scheduling Latency

B.8.1 Idle Background Workload

B.8.1.1 Capped Scenario
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FIGURE B.36: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle background
workload and with a 35ms timeslice (or scheduling latency) and varying throughput.
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B.8.2 Cache-Intensive Background Workload

B.8.2.1 Capped Scenario
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FIGURE B.37: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 35ms timeslice (or scheduling latency) and varying
throughput.
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B.8.2.2 Uncapped Scenario
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FIGURE B.38: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a cache-intensive
background workload and with a 35ms timeslice (or scheduling latency) and varying
throughput.
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B.8.3 I/O-Intensive Background Workload

B.8.3.1 Capped Scenario
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FIGURE B.39: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, RTDS, and Tableau under a capped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 35ms timeslice (or scheduling latency) and varying
throughput.
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B.8.3.2 Uncapped Scenario
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FIGURE B.40: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, and Tableau under an uncapped
scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an I/O-intensive
background workload and with a 35ms timeslice (or scheduling latency) and varying
throughput.





APPENDIX C

EXTENDED EVALUATION:

DEDICATED-CORE PERFORMANCE

COMPARISON

This section compares the performance of the four evaluated Xen schedulers (Credit,

Credit2, RTDS, and Tableau) in a full-core scenario. That is, each VM is assigned an

entire core with only twelve VMs being present in the system (one for each available

core on our 16-core machine with four cores dedicated to Dom0).

When dedicating an entire core to a VM, configuring scheduling latency has no effect

since the scheduler does not need to multiplex VMs on each core. Therefore each sched-

uler was configured using default parameters (or recommended parameters, when

available). For Tableau and RTDS, a 5 ms scheduling latency was chosen, while a 5 ms

global timeslice was configured under Credit. Credit2 did not support any configu-

ration of the scheduling latency at the time of writing this thesis. Consequently, four

sections show the results comparing the performance of these schedulers under four

background workloads (idle, CPU-intensive, cache-intensive, and I/O-intensive), re-

spectively.
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C.1 Idle Background Workload
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FIGURE C.1: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, RTDS, and Tableau under a
dedicated-core scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an idle
background workload and with varying throughput.
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C.2 CPU-Intensive Background Workload
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FIGURE C.2: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, RTDS, and Tableau under a
dedicated-core scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a
CPU-intensive background workload and with varying throughput.
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C.3 Cache-Intensive Background Workload
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FIGURE C.3: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, RTDS, and Tableau under a
dedicated-core scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with a
cache-intensive background workload and with varying throughput.
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C.4 I/O-Intensive Background Workload
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FIGURE C.4: Mean (first column), 99th percentile (second column), and maximum
(third column) observed latency for Credit, Credit2, RTDS, and Tableau under a
dedicated-core scenario, requesting 1 KiB, 100 KiB, and 1 MiB files, with an
I/O-intensive background workload and with varying throughput.





APPENDIX D

TABLEAU TABLE GENERATION

SCRIPT

Listing D.1 through Listing D.10 show various Python functions that are used to gen-

erate the binary structure of the scheduling table that the Tableau scheduler uses. The

entry point for the code below is the pack_global() function shown in Listing D.1.

1 # Pack the e n t i r e schedul ing t a b l e into a binary blob .

2 def pack_global(vcpu_list , l1_schedule , l1_slices , l1_slice_lens):

3 num_cpus = len(l1_schedule[’tables’])

4

5 # 1 . Pack a VCPU i n f o l i s t containing a l i s t o f a l l vCPUs

6 # in the system .

7 vinfo_packed = pack_vcpu_info(vcpu_list)

8

9 # 2 . Pack a per−CPU struc ture f o r each CPU in the system ,

10 # containing the l i s t o f l o c a l vCPUs, the schedule ,

11 # and the s l i c e t a b l e .

12 percpu_packed = []

13 for i in xrange(num_cpus):

14 percpu_struct = pack_percpu(i, vcpu_list ,

15 l1_schedule[’tables’],

16 l1_slices , l1_slice_lens[i],

17 l1_schedule[’length’])

18 percpu_packed.append(percpu_struct)

19

20 # 3 . Pack a g l o b a l header containing metadata about the

179
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21 # r e s t o f the t a b l e . (1 ) The number o f vCPUs in the

22 # tab l e , the numbre o f CPUs f o r which a schedule i s

23 # provided .

24 #

25 # The header i s immediately fo l l owed by the packed

26 # l i s t o f vCPUs in the system , fo l l owed by a packed

27 # s t ruc ture f o r each CPU in the system .

28 header = pack_global_header(len(vcpu_list),

29 num_cpus ,

30 vinfo_packed ,

31 percpu_packed)

32

33 # The Pack ( ) o b j e c t genera tes a f l a t t e n e d binary o f a l l

34 # the packed data appended to i t . The f l a t t e n i n g i s done

35 # in the order o f i n s e r t i o n o f data .

36 ret = Pack()

37 ret.push_packed(’global_header’, header)

38 ret.push_packed(’vinfo’, vinfo_packed)

39 for i in xrange(num_cpus):

40 ret.push_packed(’percpu[’ + str(i) + ’]’, percpu_packed[i])

41

42 return ret

LISTING D.1: Python function for packing a Tableau scheduler table.

1 # Packs the g l o ba l header containing metadata about the t a b l e .

2 def pack_global_header(num_vcpus , num_cpus , vinfo, percpu_packed):

3

4 ret = Pack()

5

6 # Push the number o f CPUs

7 ret.push_u64(’num_vcpus’, num_vcpus)

8 # The g l o b a l vCPU l i s t i s at the end o f t h i s s t ruc ture .

9 # Since t h i s s t ruc ture i s page a l igned to 4KB, the vCPU

10 # l i s t can be found at byte 4096.

11 ret.push_u64(’vcpu_list_off’, 4096)

12

13 # Push the number o f phys i ca l CPUs in the system . This
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14 # corresponds to the number o f per−CPU struc ture appended

15 # a f t e r the vCPU l i s t .

16 ret.push_u64(’num_cpus’, num_cpus)

17

18 # For each per−CPU structure , append the o f f s e t within

19 # the t a b l e where i t can be found .

20 off = 4096 + vinfo.length()

21 for i in xrange(len(percpu_packed)):

22 ret.push_u64(’percpu_off[’ + str(i) + ’]’, off)

23 off += percpu_packed[i].length()

24

25 # Pad with zeros so a t o t a l o f 64 e n t r i e s are f i l l e d up .

26 for i in xrange(len(percpu_packed), 64):

27 ret.push_u64(’percpu_off[’ + str(i) + ’]’, 0)

28

29 # Align t h i s s t ruc ture to 4KB by padding with zeroe s .

30 ret.align_pad(4096)

31

32 # The equ iva l ent C st ruc ture l ook s l i k e the fo l l owing :

33 #

34 # s t r u c t g loba l_header {

35 # uint64_t num_vcpus ;

36 # uint64_t v c p u _ l i s t _ o f f ;

37 # uint64_t num_cpus ;

38 # uint64_t percpu_o f f [MAX_CPUS] ;

39 # } __at t r ibute__ ( ( a l igned ( 4 0 9 6 ) ) ) ;

40

41 return ret

LISTING D.2: Python function for packing a global header.

1 # Pack a per−CPU struc ture containing core − l o c a l data .

2 def pack_percpu(core, vcpu_list , l1_slots , l1_slices ,

3 l1_slice_len , l1_table_len):

4

5 # Pack the s l o t s and s l i c e s f o r t h i s core

6 packed_l1_slots = pack_slots(l1_slots[core], vcpu_list)

7 packed_l1_slices = pack_slices_percpu(l1_slices[core], l1_slots)
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8

9 # Generate and pack the per−CPU VCPU i n f o l i s t

10 percpu_vlist = [x for x in vcpu_list if core in x.cores]

11 packed_vinfo = pack_vcpu_info(percpu_vlist)

12

13 # Pack a header containing the o f f s e t s to each part o f the per−CPU

14 # data s t ruc ture . (1 ) The s l o t s tab l e , (2 ) the s l i c e tab l e , and

15 # (3 ) the l o c a l vCPU i n f o t a b l e .

16 offset_slots = 4096

17 offset_slices = 4096 + packed_l1_slots.length()

18 offset_vcpus = offset_slices + packed_l1_slices.length()

19 packed_header = pack_percpu_header(

20 nslots=len(l1_slots[core]),

21 nslices=len(l1_slices[core]),

22 slot_off=offset_slots ,

23 slice_off=offset_slices ,

24 slice_len=l1_slice_len ,

25 table_len=l1_table_len ,

26 nvcpus=len(percpu_vlist),

27 vcpu_list_off=offset_vcpus

28 )

29

30 # Pack the s t ruc ture . Header , f o l l owed by s l o t tab l e , f o l l owed

31 # by s l i c e tab l e , f i n a l l y fo l l owed by l o c a l vCPU i n f o s t ruc ture .

32 ret = Pack()

33

34 ret.push_packed(’header’, packed_header)

35 ret.push_packed(’slots’, packed_l1_slots)

36 ret.push_packed(’slices’, packed_l1_slices)

37 ret.push_packed(’vinfo’, packed_vinfo)

38

39 return ret

LISTING D.3: Python function for packing a per-CPU structure.

1 # Pack a per−CPU header .

2 def pack_percpu_header(nslots, nslices, slot_off , slice_off , slice_len ,

3 table_len , nvcpus, vcpu_list_off):
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4 ret = Pack()

5

6 # The number o f s l o t s t ruc tur e s in the s l o t l i s t .

7 ret.push_u64(’nslots’, nslots)

8 # The o f f s e t o f the s l o t l i s t .

9 ret.push_u64(’slot_list_off’, slot_off)

10

11 # The number o f s l i c e s in the s l i c e t a b l e .

12 ret.push_u64(’nslices’, nslices)

13 # The o f f s e t o f the s l i c e t a b l e .

14 ret.push_u64(’slice_list_off’, slice_off)

15

16 # The time−i n t e r v a l o f each s l i c e .

17 ret.push_u64(’slice_length’, slice_len)

18 # The time−i n t e r v a l o f the t a b l e i t self .

19 ret.push_u64(’table_length’, table_len)

20

21 # The number o f vCPU struc tur e s l o c a l to t h i s CPU.

22 ret.push_u64(’nvcpus’, nvcpus)

23 # The o f f s e t o f the vCPU i n f o s t ruc ture .

24 ret.push_u64(’vcpu_list_off’, vcpu_list_off)

25

26 # Pad everything to 4KP ( page s i z e )

27 ret.align_pad(4096)

28

29 return ret

LISTING D.4: Python function for packing the header for a per-CPU structure.

1 # Pack a l l the s l i c e s f o r the per−CPU struc ture

2 def pack_slices_percpu(slices, slots):

3 ret = Pack()

4

5 # I t e r a t e over each s l i c e , pack i t , and append i t .

6 for s in slices:

7 ret.push_packed(’slice’, pack_slice(s, slots))

8

9 # Align to page s i z e (4KB)
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10 ret.align_pad(4096)

11

12 return ret

LISTING D.5: Python function for packing the slice table for a particular CPU.

1 # Pack a s i n g l e s l i c e into a 64−byte s t ruc ture .

2 def pack_slice(s, slots):

3 ret = Pack()

4

5 # The s t a r t and end time o f t h i s s l i c e

6 ret.push_u64(’start’, s.t_from)

7 ret.push_u64(’end’, s.t_to)

8

9 # Pack the l e f t s l o t ( should always be s e t )

10 assert s.left_alloc != None

11 ret.push_u64(’left’, sched.sid_to_slot(s.left_alloc , slots))

12

13 # Pack middle s l o t (may be NULL; that i s i d l e )

14 if s.idle_middle == None:

15 ret.push_u64(’middle’, 32767)

16 else:

17 ret.push_u64(’middle’, sched.sid_to_slot(s.idle_middle , slots))

18

19 # Pack the r igh t s l o t (may be NULL; tha t i s i d l e )

20 if s.right_alloc == None:

21 ret.push_u64(’right’, 32767)

22 else:

23 ret.push_u64(’right’, sched.sid_to_slot(s.right_alloc , slots))

24

25 # Align to 64 bytes .

26 ret.align_pad(64)

27

28 return ret

LISTING D.6: Python function for packing a single slice within the slice table.

1 # Pack a l l the s l o t s f o r the per−CPU struc ture
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2 def pack_slots(slots, vinfo):

3 ret = Pack()

4

5 # I t e r a t e over each s l o t , pack i t , and append i t .

6 for s in slots:

7 ret.push_packed(’slot’, pack_slot(s, vinfo))

8

9 # Align to page s i z e (4KB)

10 ret.align_pad(4096)

11

12 return ret

LISTING D.7: Python function for packing the slots for a particular CPU.

1 # Pack a s i n g l e s l o t in to a 64−byte s t ruc ture .

2 def pack_slot(slot, vinfo):

3 ret = Pack()

4

5 # Of f s e t o f t h i s s l o t ’ s vCPU in g l o b a l VCPU l i s t

6 ret.push_u64(’offset’, slot.t_from)

7 # A blank po int e r tha t the hypervisor overwr i t es

8 # to point to the r e a l vCPU struc ture at runtime .

9 ret.push_u64(’vcpu_ptr’, sched.find_in_vinfo(vinfo, slot.dom_id, slot.vcpu_id))

10 # The time−i n t e r v a l length o f t h i s s l o t

11 ret.push_u64(’length’, slot.t_to − slot.t_from)

12 # The s t a r t and end times

13 ret.push_u64(’start’, slot.t_from)

14 ret.push_u64(’end’, slot.t_to)

15 # Padded to 64 bytes ( cache −l i n e s i z e )

16 ret.align_pad(64)

17

18 return ret

LISTING D.8: Python function for packing a single slot within the scheduling table

1 # Pack a l l the vCPU struc tur e s f o r the each CPU

2 def pack_vcpu_info(vcpus):

3 ret = Pack()
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4

5 # I t e r a t e over each l o c a l vCPU, pack i t , and append i t .

6 for v in vcpus:

7 ret.push_packed(’vcpu’, pack_vcpu(v))

8

9 # Align to page s i z e (4KB)

10 ret.align_pad(4096)

11

12 return ret

LISTING D.9: Python function for packing the vCPU information list.

1 # Pack a s i n g l e VCPU i n f o s t ruc ture into a 64−byte image .

2 def pack_vcpu(v):

3 ret = Pack()

4

5 # The domain and vCPU ID

6 ret.push_u32(’dom_id’, int(v.dom))

7 ret.push_u32(’vcpu_id’, int(v.vcpu))

8

9 # A bitmask o f CPUs t h i s vCPU i s scheduled on

10 cpumask = 0

11 for c in v.cores:

12 cpumask |= 1 << c

13 ret.push_u64(’cpumask’, cpumask) # Pack the CPU mask (64 b i t s )

14

15 # A f l a g s p e c i f y i n g i f i t ’ s semi−p a r t i t i o n e d .

16 if len(v.cores) > 1 or not v.burstable:

17 ret.push_u64(’flags’, 1)

18 else:

19 ret.push_u64(’flags’, 0)

20

21 # A blank po int e r f o r s tor ing address o f the

22 # ac tua l vCPU struc ture at runtime .

23 ret.push_u64(’vcpu_ptr’, 0)

24

25 # Align to 64 bytes

26 ret.align_pad(64)
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27

28 return ret

LISTING D.10: Python function for packing the data for a single vCPU.
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