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Zusammenfassung

Das Betrachten unsicherer Strukturen oder Daten bekommt mehr und mehr Aufmerksamkeit in

der diskreten Optimierung. Diese Arbeit behandelt zwei unterschiedliche Problemstrukturen in-

nerhalb der diskreten Optimierung: Zusammenhang und Überdeckungen.

In Anwendungsproblemen mit unsicheren Strukturen in Netzwerken ist es oft interessant her-

auszufinden, wie viele Knoten oder Kanten ausfallen können, sodass das Netzwerk zusammenhän-

gend bleibt. Zusammenhang ist ein weites, gut untersuchtes Feld innerhalb der Graphentheorie.

Eines der wichtigsten Resultate diesbezüglich ist der Satz von Menger. Dieser sagt aus, dass die

minimale Anzahl an Knoten, die man benötigt, um zwei nicht adjazente Knoten zu trennen, gleich

der maximalen Anzahl intern knotendisjunkter Wege zwischen diesen Knoten ist. In dieser Ar-

beit untersuchen wir unterschiedliche Formen gemischten Zusammenhangs. In diesem werden

Knoten und Kanten gleichzeitig vom Graphen entfernt. Die Beineke Harary Behauptung sagt aus,

dass für je zwei unterschiedliche Knoten, die mit 𝑘 Knoten und 𝑙 Kanten getrennt werden können,

aber nicht mit 𝑘 − 1 Knoten und 𝑙 Kanten oder 𝑘 Knoten und 𝑙 − 1 Kanten, 𝑘 + 𝑙 kantendisjunkte
Wege existieren, von denen 𝑘 + 1 knotendisjunkt sind. Im Gegensatz zum Satz von Menger ist

die Existenz der Pfade in diesem Fall nicht hinreichend für die Aussage über den Zusammenhang.

Unser Hauptbeitrag is der Beweis der Beineke Harary Behauptung für den Fall 𝑙 = 2. Ein weiterer

Beitrag dieser Arbeit ist die kanonische Zerlegung von Graphen entlang von Separatoren, die nur

aus einem Knoten und einer Kante bestehen.

Bezüglich Überdeckungsproblemen betrachten wir in dieser Arbeit ein Dominationsproblem, in

welchem wir annehmen, dass die genaue Struktur des zu dominierenden Graphen nicht bekannt

ist. Wir kennen nur einen Obergraphen und wissen, dass der zu dominierende Graph ein Spann-

baum ist. Wir beweisen eine äquivalente Charakterisierung des Problems, welche keine Spann-

bäume benutzt und verwenden diese, um einen Lösungsalgorithmus zu entwickeln, der auf dem

Block-Schnitt Baum eines Graphen operiert. Diesen Algorithmus nutzen wir, um polynomielle

Lösbarkeit des Problems auf unterschiedlichen Graphenklassen zu beweisen.

Wir betrachten auch unterschiedliche Überdeckungs- und Einrichtungsplatzierungsprobleme.

In diesen Problemen sind Mengen von Standorten und Regionen gegeben, wobei jede Region eine

assoziierte Anzahl an Kunden hat. Wir suchen nun eine Verteilung von Lieferanten in die Stand-

orte, sodass jeder Kunde von einem Lieferanten bedient werden kann. Der auffallende Unterschied

zu anderen Problemen in diesem Forschungsfeld ist hier, dass wir annehmen, dass jeder Lieferant

nur eine konstante Anzahl Kunden bedienen kann. Wir klassifizieren die Komplexität dreier sol-

cher Probleme, die sich in der Zuteilung von Kunden zu Lieferanten unterscheiden, und entwickeln

entsprechende Lösungsmethoden.
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Abstract

Dealing with uncertain structures or data has lately been getting much attention in discrete op-

timization. This thesis addresses two different areas in discrete optimization: Connectivity and

covering.

When discussing uncertain structures in networks it is often of interest to determine how many

vertices or edges may fail in order for the network to stay connected. Connectivity is a broad, well

studied topic in graph theory. One of the most important results in this area is Menger’s Theorem

which states that the minimum number of vertices needed to separate two non-adjacent vertices

equals the maximum number of internally vertex-disjoint paths between these vertices. Here, we

discuss mixed forms of connectivity in which both vertices and edges are removed from a graph

at the same time. The Beineke Harary Conjecture states that for any two distinct vertices that

can be separated with 𝑘 vertices and 𝑙 edges but not with 𝑘 − 1 vertices and 𝑙 edges or 𝑘 vertices

and 𝑙 − 1 edges there exist 𝑘 + 𝑙 edge-disjoint paths between them of which 𝑘 + 1 are internally

vertex-disjoint. In contrast to Menger’s Theorem, the existence of the paths is not sufficient for

the connectivity statement to hold. Our main contribution is the proof of the Beineke Harary

Conjecture for the case that 𝑙 equals 2. Another contribution regarding mixed connectivity is the

canonical decomposition of graphs along separators consisting of a single edge and a single vertex.

Concerning covering, in this thesis, we discuss a domination problem in which we do not as-

sume to know the exact structure of the given graph. We are merely given a supergraph and know

that the graph we aim to dominate is a spanning tree of that graph. We give an equivalent charac-

terization of the problem that does not use spanning trees. Further, we describe an algorithm that

operates on the tree structure of the blocks of a graph. We exploit this to prove polynomial time

solvability on special graph classes.

We also consider different problems from the area of facility location and covering. We regard

problems in which we are given sets of locations and regions, where each region has an assigned

number of clients. We are now looking for an allocation of suppliers into the locations, such that

each client is served by some supplier. The notable difference to other covering problems is that

we assume that each supplier may only serve a fixed number of clients which is not part of the

input. We discuss the complexity and solution approaches of three such problems which vary in

the way the clients are assigned to the suppliers.
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Chapter 1.

Introduction

It has become common practice in optimization to consider problems where some data is assumed

not to be known exactly in advance. In many applications it is the case that only rough bounds

or structures of the actual input data is known. This thesis deals with two different settings of

incorporating this uncertainty into problems. It is split into two parts.

In the first part of this thesis, we consider different structural graph theoretic problems. We

regard a mixed form of connectivity, in which we are allowed to remove vertices and edges in

a graph. Further, we use a decomposition along mixed separators to characterize the class of

Eulerian graphs that decompose into a unique number of cycles. Finally, we study a version of the

dominating set problem in which the graph to be covered is not exactly known and we seek to

dominate all spanning trees of a graph.

The second part considers different problems from the area of facility location and covering

problems. Here we assume that the number of clients to be served is not exactly known in ad-

vance and use approaches from Robust Optimization to cope with the uncertain data. In one of the

problems the clients are assigned to the suppliers. In the other problems the clients have freedom

of choice of the supplier to some extent. The problems studied in this part are motivated by the

research projects HealthFaCT and ONE PLAN in which the optimization research group of the TU

Kaiserslautern seeks to optimize location structures in emergency rescue services. As the focus of

this thesis is on theoretic considerations we refrain from giving details on the application in this

thesis. Some details on the application can be found in our publications [KSS19; Büs+20].

Part I: Structural Uncertainty in Graphs: Connectivity and Domination

When considering graphs or networks whose structure is not known exactly in practical appli-

cations it is often of interest to know how many vertices or edges may be deleted such that the

graph or a pair of distinct vertices remain connected. For example, when planning a road network

it is crucial to still be able to reach all places when a road is blocked. Connectivity is a means

of measuring this robustness against removal of vertices and edges. One of the most famous re-

sults concerning connectivity is Menger’s Theorem, cf. [Wes01]. For two distinct non-adjacent

vertices 𝑠, 𝑡 it states that the minimum number of vertices (edges) necessary to disconnect 𝑠 and

𝑡 equals the maximum number of internally vertex-disjoint (edge-disjoint) 𝑠-𝑡 paths between the

two vertices. There are many known variants of Menger’s Theorem, cf. [Wes01]. There are also

1



Chapter 1. Introduction

many results concerning fixed size separators in graphs. For example it is well known that any

graph uniquely decomposes into its maximal subgraphs not containing cut vertices, the blocks of

the graph, cf. [Wes01]. These blocks induce a unique tree structure that may be computed in linear

time [HT73]. The resulting structure is called the block-cutpoint tree of a graph. Similar results

have been obtained by Hopcroft and Tarjan for separators consisting of two vertices, cf. [HT72].

Another well studied field in graph theory is domination. At the foundation of this research field

is the dominating set problem, in which we aim to find a a minimum size subset of the vertices such

that each vertex is either contained in the set or adjacent to some vertex in the set, cf. [HHS98].

There are various variants of Dominating Set in the literature. For example in Disjunctive

Domination, additionally, no two vertices in the searched set may be adjacent, cf. [GH13]. In

contrast, in Total Domination each vertex in the searched set has to be adjacent to another

vertex in the set, cf. [Hen09]. Dominating Set is well known to be NP-complete, cf. [GJ79], and

so are most of the variants of Dominating Set. For a more detailed introduction and overview on

domination in graphs we refer to the textbook [HHS98].

Contributions of Part I In this thesis we considermixed forms of connectivity inwhich deletion

of vertices and edges is allowed at the same time. Mixed connectivity has not been getting the

same attention in the literature as its pure counterparts. The conjecture of Beineke and Harary,

cf. [BH67], states:

If two distinct vertices 𝑠, 𝑡 can be disconnected with 𝑘 vertices and 𝑙 edges but not with 𝑘 − 1

vertices and 𝑙 edges or 𝑘 vertices and 𝑙 − 1 edges, then there exist 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths
of which 𝑘 + 1 are internally vertex-disjoint.

It can be considered a mixed version of Menger’s Theorem. The most prominent difference be-

tween the two statements is that in the Beineke Harary Conjecture the existence of the paths is

not claimed to be sufficient for the connectivity statement to hold and in fact, it is not. One of the

main contributions of this thesis is proving the conjecture for 𝑙 = 2 and arbitrary 𝑘 . We also exploit

this result in order to prove the conjecture for arbitrary 𝑙 and 𝑘 on graphs with treewidth at most

three.

In analogy to blocks and triconnected components we give a canonical decomposition along

separators consisting of a single vertex and a single edge. We prove this decomposition to be

obtainable in linear time. As an application of this we give a characterization of the class of Eulerian

graphs that decompose into a unique number of cycles: It is exactly the class of Eulerian graphs in

which no two edge-disjoint cycles share three or more vertices.

Finally, we regard a version of Dominating Set inwhich the structure of the graph is not exactly

known in advance. In Simultaneous Domination of Spanning Trees, we aim to be dominat-

ing in every spanning tree of a graph. We prove equivalence of the problem to Vertex Cover

on 2-connected graphs and describe a dynamic program operating on the block-cutpoint tree of

a graph that solves Min-Simultaneous Domination of Spanning Trees using an algorithm for

Min Vertex Cover on certain subgraphs. We use this algorithm to prove polynomial time solv-

ability for different graph classes, such as bipartite graphs, chordal graphs or graphs with bounded

2



Chapter 1. Introduction

treewidth. As the most surprising result concerning this topic, we prove that Simultaneous Do-

mination of Spanning Trees is NP-hard on perfect graphs. This is in contrast to Vertex Cover

being polynomial time solvable on perfect graphs, cf. [Sch03].

Outline of Part I This part of the thesis is split into four chapters. In Chapter 3 we discuss a

mixed form of connectivity, called connectivity pairs. The main focus of this chapter is the conjec-

ture of Beineke and Harary. Mixed separators consisting of a single vertex and a single edge are

discussed in Chapter 4. In particular, we consider a decomposition of graphs along those separators

and prove their uniqueness. In Chapter 5 we characterize the class of Eulerian graphs decomposing

into a unique number of cycles as an application of the separators discussed in Chapter 4. Finally,

we analyze the complexity and give solution approaches for a variant of Dominating Set in which

each spanning tree of a graph is required to be dominated in Chapter 6.

For the basic knowledge and notation needed for Part I of this thesis, we refer to Chapter 2.

In particular, Section 2.5 of the chapter provides the notation concerning graph theory which is

relevant for this thesis.

Part II: Uncertainty in the Demand: Robust Approaches to Covering and Facility
Location Problems

In the second part of this thesis we examine uncertainty in the demand of certain covering and

facility location problems. When we say that there is uncertainty in the demand of a problem, we

mean that instead of being given a fixed demand vector as input for the problem, we rather get

a set of demand vectors, subsequently called the uncertainty set of the instance. Each demand

vector in the uncertainty set represents one possible scenario. In this thesis we only consider finite

uncertainty sets. In the literature there are different approaches of dealing with uncertainty in

input data. The most important in our field of study are robust and stochastic optimization. In

stochastic optimization we are often given a probability distribution on the uncertain data and

aim to optimize an objective function in expectation or intend conditions to be fulfilled with high

probability. In robust optimization on the other hand, the uncertain data typically comes without

probabilities. We aim at hedging against the worst case or strive for solutions that fulfill certain

conditions in all possible cases. In this thesis, we focus on robust optimization and therefore refrain

from giving any further details on stochastic optimization here. Instead, we refer to [BL11] for a

general overview on stochastic optimization.

The work on robust optimization was started by Soyster in the early 1970s [Soy73] and became

more popular in the 1990s with publications from Ben-Tal and Nemirovski [BN98; BN99; BN00]

and El Ghaoui et al. [GL97; GOL98]. Since then there has been a very large number of publications

in the field of robust optimization. A lot of research has been done on discrete uncertainty where the

uncertainty set is given as a collection of vectors. As in practical applications an exact collection

of scenarios (elements of an uncertainty set) is often not known, it is also common to only give

lower and upper bounds for each uncertain component, the so called interval uncertainty. For a

recent overview on discrete and interval uncertainty we refer to [KZ16]. Interval uncertainty is,
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in many applications, still very conservative, as it allows for the worst case to happen in every

uncertain component. Bertsimas and Sim therefore proposed the use of budgeted uncertainty, in

which in addition to the lower and upper bounds the number of components that may vary from

a given nominal value is bounded, cf. [BS03; BS04]. In this thesis we use the notion of budgeted

uncertainty slightly differently. Instead of bounding the number of components that may vary

from their nominal value, we bound the total deviation.

For an extensive introduction to robust optimization we refer to [BGN09] and for a recent

overview we refer to [GMT14].

For surveys of covering problems in facility location not including uncertain data we refer

to [OD98; Far+12]. In the literature there are various studies on robust covering and facility loca-

tion problems. The earliest go back to the 1970s with publications from, e.g., Cooper, cf. [Coo78].

Dhamdhere et al. [Dha+05] introduce demand-robust covering problems and provide approxima-

tion algorithms. In [PA13] the set cover problem with uncertainty in the cost coefficients is consid-

ered and exact algorithms for computing the min-max regret solution are presented. For further

reading on covering and facility location problems under uncertainty we refer to [Lut+17; Sny06].

Contributions of Part II In Part II of this thesis we introduce three covering, respectively fa-

cility location problems: 𝑞-Multiset Multicover, 𝑞-freeClient, and 𝑞-orderedClient. In all

of the three problems we are given a set of locations and a set of regions, where each region has a

number of clients and a subset of the locations, its consideration set. In the optimization versions of

the problems we aim at placing a minimum number of suppliers in the locations such that all clients

are served, where each supplier may serve up to 𝑞 clients. The difference of the three problems lies

in the assignment of clients to suppliers. In 𝑞-Multiset Multicover we may assign a client to

any location in its consideration set. In 𝑞-freeClient we have to ensure feasibility of the solution

for any assignment of clients to locations in their consideration set. Finally, in 𝑞-orderedClient

the consideration set of each client is assumed to have some ordering and the client is assigned to

the first location which contains at least one supplier. In the robust versions of the problems we

assume that the number of clients in each region is not known exactly, but taken from some set of

possible client allocations, the uncertainty set.

We establish various complexity results for all problems, their robust versions and subproblems

arising in the solution process. In the setting in which no restrictions are made on the uncertain

data all regarded problems are proved to be NP-hard, even when 𝑞 is fixed to 1. In the non-robust

case, in which the demand is known exactly, we prove𝑞-MultisetMulticover to beNP-complete

for any fixed 𝑞 ∈ N with 𝑞 ≥ 3 and 𝑞-orderedClient to be NP-complete for any fixed 𝑞 ∈ N
with 𝑞 ≥ 2. 𝑞-freeClient, on the other hand, is linear time solvable for any 𝑞 ∈ N. Introducing
uncertainty in the number of clients increases complexity of the problems. We prove that𝑞-Multi-

setMulticover isNP-complete for𝑞 ∈ N and restricted to uncertainty sets containing 𝑘 elements

if 𝑞 · 𝑘 ≥ 3. For 𝑞-orderedClient we even show that it is NP-complete if max {𝑞, 𝑘} ≥ 2. Loosely

speaking this shows that 1-orderedClient is NP-hard as soon as any uncertainty in the number

of clients is introduced. 𝑞-freeClient is again an exception: We show linear time solvability of
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the problem for many common restrictions on the uncertainty set, such as discrete uncertainty,

interval uncertainty and budgeted uncertainty.

Further, we describe mixed integer programming models for all regarded problems and, for 𝑞-

Multiset Multicover, describe a solution approach based on constraint generations. The com-

plexity of the arising separation problem is also studied. We prove NP-hardness of the separation
problem for budgeted uncertainty and polynomial time solvability for discrete and interval uncer-

tainty.

Outline of Part II Part II of this thesis consists of two chapters. In Chapter 7 we consider 𝑞-

Multiset Multicover. We classify the complexity of the non-robust problem. We then turn to

the robust version of the problem and also consider its complexity for various cases with very few

restrictions on the regarded uncertainty sets. Before we turn to the complexity of the problemwith

more restrictions on the uncertainty sets we describe a general solution approach.

In Chapter 8 we study the two problems 𝑞-freeClient and 𝑞-orderedClient. Again, we clas-

sify the complexity of the non-robust versions at the start of the chapter. Afterwards we turn to

the complexity of the robust versions and the impact of common restrictions on the uncertainty

sets.

For the basic knowledge and notation needed for Part II of this thesis, we refer to Chapter 2. In

particular Section 2.4 of that very chapter might be worth looking into before starting this part, as

some terminology and assumptions slightly differ from the standards in robust optimization.

A Note on Publications

Large parts of this thesis have been previously published. We briefly state all those publications

here and name the corresponding co-authors. In the respective chapters we give more details on

the relationship of the publication and the chapter in this thesis if necessary.

Chapter 3 is published in [JKS19] and joint work with Sebastian Johann and Sven O. Krumke.

A version similar to [JKS19] has been submitted to Graphs and Combinatorics (Springer) and is

currently under review. Chapter 4 is strongly based on [Hei+20a], which is joint work with Irene

Heinrich, Till Heller, and Eva Schmidt. An extended version of [Hei+20a] is available in [Hei+20b].

The results of Chapter 5 have originally been published in [HS19] which is joint work with Irene

Heinrich. The results of Chapter 4 made it possible to make some of the statements and proofs

more elegant. Some of these altered statements have also been published in [Hei+20a] and are

therefore joint work with Irene Heinrich, Till Heller, and Eva Schmidt. Large parts of the result in

Chapter 6 are published in [JKS18]. A version similar to [JKS18] has been submitted to Electronic

Journal of Graph Theory and Application and is currently under review.

Part of the results of Chapter 7 have been published in [KSS19], which is joint work with Sven

O. Krumke and Eva Schmidt. Finally, Chapter 8 is based on results from [Büs+20], which is joint

work with Christina Büsing, Martin Comis, and Eva Schmidt. A version similar to [Büs+20] has
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also been submitted to the European Journal of Operational Research (Elsevier) and is currently

under review.
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Chapter 2.

Preliminaries

In this chapter we recall basic definitions, make assumptions and define notations that will be used

throughout this thesis. We focus on things, that deviate from standards in terminology in the field

of graph theory and optimization.

2.1. Fundamentals

The number 0 is a natural number, i.e. 0 ∈ N. Whenever we consider the set N \ {0} we use the
notation N>0. For A ∈ {Z,Q,R} we write A≥0 = {𝑥 ∈ K : 𝑥 ≥ 0} and A>0 = {𝑥 ∈ A : 𝑥 > 0}.
For two sets 𝐴, 𝐵 we use the notation 𝐴 ⊆ 𝐵 to indicate that each element of 𝐴 is contained in

𝐵. If we want to emphasize that additionally 𝐴 ≠ 𝐵 we use the notation 𝐴 ⊊ 𝐵. Further we write

𝐴 ·∪ 𝐵 instead of 𝐴 ∪ 𝐵 to emphasize that 𝐴 ∩ 𝐵 = ∅. We call a collection of sets {𝐴1, . . . , 𝐴𝑘 } a
partition of a set 𝐴 if

𝑘×
𝑖=1

𝐴𝑖 = 𝐴.

For a finite set𝐴with𝑘 elements, unless stated otherwise, we implicitly assume that the elements

have unique indices from 1 to 𝑘 , i.e. 𝐴 = {𝑎1, . . . , 𝑎𝑘 }. When necessary, we identify 𝑎 ∈ 𝐴 with its

index 𝑖 ∈ {1, . . . , 𝑘}. In particular we use the elements of finite sets as indices, when applicable.

Let 𝐼 be a finite set, 𝐼 ′ ⊆ 𝐼 and 𝑥 ∈ R |𝐼 |
. We write

𝑥 (𝐼 ′) B
∑︁
𝑖∈𝐼 ′

𝑥𝑖 .

Note that this is an example of the identification of elements of 𝐼 with their indices in 𝐼 .

2.2. Problems and Complexity Classes

For the definition of decision problems, basic complexity classes, and polynomial time reductions

we refer to [GJ79]. We call a decision problem P NP-hard if there is there is a polynomial time

reduction from P ′
to P for all P ′ ∈ NP. A decision problem is called NP-complete if it is NP-
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hard and also contained in NP. For an overview on decision problems regarded in this thesis, see

Appendix 9.

Let P be a decision problem and I be an instance of the problem. Assume the question of P is

to decide if some value 𝑥 (I) is less or equal (larger or equal) to some number 𝐵 ∈ R. We denote by

Min-P (Max-P) the corresponding optimization problem in whichwe seek tominimize (maximize)

the value 𝑥 (I).
For an optimization problem Min-P we call an algorithm alg an 𝑓 (I)-approximation if for all

instances I of Min-P it holds true that

alg(I) ≤ 𝑓 (I) · opt

and it can be implemented to run in polynomial time. For a more detailed definition of approxi-

mation algorithms we refer to [Aus+12].

2.3. Linear and Integer Programming

In this thesis we only use standard notation and results from the field of linear and integer pro-

gramming. We therefore refrain from giving any details regarding this field and refer to [GLS88]

for an introduction to the topic.

2.4. Robust Optimization

In this section we recall basic definitions and notations in the field of robust optimization used

throughout this thesis. As this thesis only discusses a small sub-area of robust optimization, we

refrain from giving general definitions. For a general overview over the field of robust optimization

we refer to [BGN09].

Let P be a decision problem containing some vector 𝑑 ∈ 𝑈 ⊆ R𝑚 for some𝑚 ∈ N>0 as input

parameter, such that an instance of P is a yes-Instance if and only if a condition𝐶P (𝑑) defined by
P evaluates to true. The according robust decision problem has the same input parameters, except

that it contains a collection of vectors U ⊆ 𝑈 instead of 𝑑 . A given instance is a yes-Instance if

and only if the condition 𝐶P (b) evaluates to true for all b ∈ U. A robust optimization problem is

the optimization version of a robust decision problem as defined in Section 2.2.

We call the set U the uncertainty set of the instance and an element b ∈ U a scenario. All

uncertainty sets regarded in this thesis are of the form U ⊆ N𝑚 for some𝑚 ∈ N and assumed to

be finite and non-empty.

When regarding the complexity of robust decision problems, the encoding length of the uncer-

tainty sets is of importance. Throughout this thesis we assume that for an uncertainty setU ⊆ N𝑚
for some𝑚 ∈ N>0 the encoding length is in Ω(𝑚). In the following we denote by ⟨𝑥⟩ the encoding
length of an input parameter 𝑥 . We say that an uncertainty set in a problem instance is polynomial

time enumerable if we may enumerate all elements ofU in polynomial time in its encoding length.

8
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Throughout this thesis we regard robust decision and optimization problems, where we restrict

the uncertainty sets of the instances. We define all of the used restrictions here. Let P be a robust

decision or optimization problem with uncertainty setU ⊆ N𝑚 .

Discrete Uncertainty We call U discrete if its scenarios are given explicitly. We call the prob-

lem P with instances restricted to discrete uncertainty sets P with discrete uncertainty. We assume

that a discrete uncertainty setU =
{
b1, . . . , b𝑘

}
has encoding length

∑𝑘
𝑖=1

⟨b𝑖⟩, where each scenario
is encoded as a vector of integers. Note that discrete uncertainty sets are polynomial time enu-

merable.

Polyhedral Uncertainty We call U polyhedral if there exists a matrix 𝐴 ∈ R𝑛×𝑚 and a vector

𝑏 ∈ R𝑛 for some 𝑛 ∈ N>0 such that

U = {b ∈ N𝑚 : 𝐴b ≤ 𝑏} .

In this case the polyhedron 𝑃 = {𝑥 ∈ R𝑚 : 𝐴𝑥 ≤ 𝑏} is called the underlying polyhedron. We call the

problem P with instances restricted to polyhedral uncertainty sets P with polyhedral uncertainty.

We assume that polyhedral uncertainty are encoded as the matrix𝐴 and the vector 𝑏. Its encoding

length is therefore ⟨𝐴⟩ + ⟨𝑏⟩.

Interval Uncertainty We call the problemP restricted to instances with polyhedral uncertainty

sets of the form U = {b ∈ N𝑚 : 𝑎 ≤ b ≤ 𝑏} for some 𝑎, 𝑏 ∈ N𝑚 , P with interval uncertainty. The

encoding length of this kind of uncertainty sets is assumed to be ⟨𝑎⟩ + ⟨𝑏⟩.

Budgeted Uncertainty We call U budgeted if there exists Γ ∈ N and 𝑎, 𝑏 ∈ N𝑚 such that U ={
b ∈ N𝑚 : 𝑎 ≤ b ≤ 𝑏,∑𝑚

𝑖=1
|b𝑖 | ≤ Γ

}
. In addition for this thesis we assume that 𝑎(𝐽 ) ≤ Γ ≤ 𝑏 (𝐽 ) to

ensure that U ≠ ∅. We call the problem P restricted to instances with budgeted uncertainty sets

P with budgeted uncertainty. We assume that the encoding length of budgeted uncertainty sets is

⟨Γ⟩ + ⟨𝑎⟩ + ⟨𝑏⟩.

Subset Budgeted Uncertainty We callU subset budgeted if there exists a collection of subsets

S of the index set 𝐼 = {1, . . . ,𝑚}, i.e. S ⊆ 2
𝐼
, and for each 𝑆 ∈ S integers 𝛼𝑆 , 𝛽𝑆 ∈ N such that

U = {b ∈ N𝑚 : 𝛼𝑆 ≤ b (𝑆) ≤ 𝛽𝑆 ∀𝑆 ∈ S}. We call the problem P restricted to instances with subset

budgeted uncertainty sets P with subset budgeted uncertainty. We assume that a subset budgeted

uncertainty set has encoding length

∑
𝑆 ∈S ⟨𝛼𝑆⟩ + ⟨𝛽𝑆⟩.

2.5. Graph Theory

In most parts of this thesis we use standard graph terminology, cf. [Die00; KN09; Wes01]. In the

followingwe recall some of the notation and state well known results in graph theory. All results in

this chapter can be found in the mentioned standard textbooks. As directed graphs are barely used

9



Chapter 2. Preliminaries

throughout this thesis we do not repeat any particular notations here and simply refer to [KN09]

for formal definitions. We often omit the set brackets in our notations, when the considered set

consists of only one element.

Fundamentals An (undirected) graph 𝐺 is a triple that consists of a finite non-empty vertex

set 𝑉 (𝐺), a finite edge set 𝐸 (𝐺) and a mapping that assigns each edge a set of 2 endvertices. We

say an edge connects its two endvertices. In particular, all graphs regarded in this thesis do not

contain loops. The number of vertices in a graph is called its order and the number of edges its

size. Two edges with the same set of endvertices are called parallel. If a graph 𝐺 does not contain

any parallels, it is called simple. An edge is incident to its endvertices and two vertices are adjacent

or neighbors if they are the endvertices of an edge. The neighborhood 𝑁𝐺 (𝑣) of a vertex 𝑣 ∈ 𝑉 (𝐺)
is the set of all neighbors of 𝑣 , and deg𝐺 (𝑣) = |𝑁𝐺 (𝑣) | is the degree of 𝑣 in 𝐺 . For both notations

we omit the subscript in the if the graph is clear from context. For disjoint subsets 𝑆,𝑇 ⊆ 𝑉 (𝐺),
we denote by 𝐸 (𝑆,𝑇 ) the set of edges that have one endpoint in 𝑆 and one in 𝑇 .

Lemma 2.1. Let 𝐺 be a graph. It holds that∑︁
𝑣∈𝑉 (𝐺)

deg(𝑣) = 2 · |𝐸 (𝐺) | .

In particular, the number of vertices with odd degree is even.

We denote an edge 𝑒 ∈ 𝐸 (𝐺) with endvertices 𝑣,𝑤 ∈ 𝑉 (𝐺) by 𝑣𝑤 . As we consider parallel

edges in this thesis, we may not identify an edge with its to endvertices. However, for simplicity

of notation we assume that two edges that are equal always connect the same two endvertices. If

differentiation of parallels is necessary we use the notation (𝑣𝑤), (𝑣𝑤) ′, . . . and so forth. By |𝑣𝑤 |
we denote the number of edges connecting 𝑣 and𝑤 .

We call two graphs 𝐺1,𝐺2 isomorphic if there exists a bijective mapping 𝜙 : 𝑉 (𝐺1) → 𝑉 (𝐺2)
such that |𝑣𝑤 | = |𝜙 (𝑣)𝜙 (𝑤) | for all 𝑣,𝑤 ∈ 𝑉 (𝐺1). By abuse of notation we also call two isomorphic

graphs 𝐺1 and 𝐺2 equal and write 𝐺1 = 𝐺2.

Sub- and Supergraphs Let 𝐺 be a graph. If 𝐺 is simple, the graph 𝐺 with 𝑉 (𝐺) = 𝑉 (𝐺) and
𝐸 (𝐺) = {𝑣𝑤 : 𝑣,𝑤 ∈ 𝑉 (𝐺), 𝑣𝑤 ∉ 𝐸 (𝐺)} is called the complement of 𝐺 . A subgraph 𝐺 ′

of a graph

𝐺 is a graph such that 𝑉 (𝐺 ′) ⊆ 𝑉 (𝐺), 𝐸 (𝐺 ′) ⊆ 𝐸 (𝐺), and in 𝐺 ′
, each edge has the same set of

endvertices as in 𝐺 . We write 𝐺 ′ ⊑ 𝐺 . In this case 𝐺 is called a supergraph of 𝐺 ′
. If additionally

𝐺 ≠ 𝐺 ′
we call𝐺 ′

a proper subgraph of𝐺 and𝐺 a proper supergraph of𝐺 ′
. For a subset𝑉 ′ ⊆ 𝑉 (𝐺)

of the vertices of 𝐺 the graph 𝐺 [𝑉 ′] induced by 𝑉 ′
is the subgraph of 𝐺 on the vertex set 𝑉 ′

that

contains all edges in 𝐸 (𝐺) with both endpoints in 𝑉 ′
. Similarly for 𝐸 ′ ⊆ 𝐸 (𝐺) the graph 𝐺 [𝐸 ′]

induced by 𝐸 ′ is the graph consisting of all endvertices of edges in 𝐸 ′ as vertex set and 𝐸 ′ as edge

set. For two graphs 𝐺,𝐺 ′
we call the graph 𝐺 ∪ 𝐺 ′

with vertex set 𝑉 (𝐺) ∪ 𝑉 (𝐺 ′) and edge set

𝐸 (𝐺) ∪ 𝐸 (𝐺 ′) the union of 𝐺 and 𝐺 ′
.
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Addition and Removal of Vertices and Edges Let 𝐺 be a graph. For 𝑉 ′ ⊆ 𝑉 (𝐺) we write

𝐺 −𝑉 ′
for the graph 𝐺 [𝑉 (𝐺) \𝑉 ′]. For 𝐸 ′ ⊆ 𝐸 (𝐺) we write 𝐺 − 𝐸 ′ for the graph with vertex set

𝑉 (𝐺) and edge set 𝐸 (𝐺) \ 𝐸 ′. For 𝑣,𝑤 ∈ 𝑉 (𝐺) we denote by 𝐺 + 𝑣𝑤 the graph that, in contrast to

𝐺 , contains one additional edge connecting 𝑣 and𝑤 .

Paths and Cycles A graph 𝑃 is called a path if its vertex set is of the form 𝑉 (𝑃) = {𝑣1, . . . , 𝑣𝑘 }
for distinct vertices and its edge set is of the form 𝐸 (𝑃) = {𝑣1𝑣2, 𝑣2𝑣3, . . . 𝑣𝑘−1𝑣𝑘 }. We often denote

a path by the sequence of its vertices, i.e. 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑘 . We denote by Ω(𝑃) = {𝑣1𝑣𝑘 } the set of
endvertices of the path 𝑃 and also call 𝑃 an 𝑣1-𝑣𝑘 path. All vertices of 𝑃 that are not endvertices are

called its internal vertices. Further for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 , we write 𝑣𝑖𝑃𝑣 𝑗 = 𝑣𝑖 . . . 𝑣 𝑗 , where we omit to

write 𝑣𝑖 (𝑣 𝑗 ) for 𝑖 = 1 ( 𝑗 = 𝑘). We call paths 𝑃1, . . . 𝑃𝑘 internally vertex-disjoint if no two paths 𝑃𝑖

and 𝑃 𝑗 have a common internal vertex and edge-disjoint if no two paths contain a common edge.

If 𝑃 is a path with endvertices Ω(𝑃) = {𝑣,𝑤} the graph 𝑃 + 𝑣𝑤 is called a cycle. We denote by

𝐶𝑛 a cycle on 𝑛 vertices.

Particular Graphs A simple graph on 𝑛 vertices𝐾𝑛 containing one edge for each pair of distinct

vertices is called complete graph on 𝑛 vertices. A multiedge is a graph on two vertices containing

at least one edge. The graph 𝐶3 is a triangle. A graph consistin of 4 vertices and 3 edges such that

one vertex is connected to all other vertices is called a claw.

Special Vertex and Edge Sets Let 𝐺 be a graph, 𝑆 ⊆ 𝑉 (𝐺) and 𝐹 ⊆ 𝐸 (𝐺). The set 𝑆 is a

dominating set in 𝐺 if for each vertex a neighbor or itself is contained in the set 𝑆 . We call 𝑆 an

independent set in𝐺 if not two vertices in 𝑆 are connected by an edge. 𝑆 is a vertex cover if at least

one endvertex of each edge is contained 𝑆 and it is a clique if induces a complete graph. The set

𝐹 is an edge cover if every vertex in 𝐺 is incident to an edge in 𝐹 . If no two edges in 𝐹 share an

endvertex, 𝐹 is a matching.

Graph Classes Let𝐺 be a graph. If the vertex set𝑉 (𝐺) can be partitioned into two sets𝐴 ·∪𝐵 =

𝑉 (𝐺), such that each edge in 𝐸 (𝐺) connects a vertex from𝐴 to a vertex from 𝐵, we call𝐺 bipartite.

In this case𝐴 ·∪𝐵 is called the bipartition of𝐺 . We call𝐺 chordal, if every cycle𝐶 of length at least

4 in 𝐺 contains a chord, i.e. an edge in 𝐺 that connects two vertices not adjacent in 𝐶 . If 𝐺 does

not contain a claw as an induced subgraph it is called claw free. 𝐺 is called perfect graph if in every

induced subgraph the size of a maximum clique and the minimum number of colors needed for a

feasible vertex coloring coincides.

Connectivity and Separators Let 𝐺 be a graph. If 𝑆,𝑇 ⊆ 𝑉 (𝐺) such that there exists an 𝑠-𝑡

path in 𝐺 for some 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . A set

𝑊 B {𝑣1, . . . , 𝑣𝑘 } ⊆ 𝑉 (𝐺) \ (𝑆 ∪𝑇 ) (𝐹 B {𝑒1, . . . 𝑒𝑘 } ⊆ 𝐸 (𝐺))
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is called 𝑆-𝑇 𝑘-vertex separator (𝑆-𝑇 𝑘-edge separator), if in𝐺 −𝑊 (𝐺 − 𝐹 ) there does not exist an
𝑠-𝑡 path for any 𝑠 ∈ 𝑆 , 𝑡 ∈ 𝑇 . We say𝑊 (𝐹 ) is a 𝑘-vertex separator (𝑘-edge separator) if it is an

𝑆-𝑇 𝑘-vertex separator (𝑆-𝑇 𝑘-edge separator) for some nonempty sets 𝑆,𝑇 ⊆ 𝑉 (𝐺). We call the

element in a 1-vertex separator, a cut vertex. An edge is called bridge in 𝐺 it it is contained in a

1-edge separator.

Lemma 2.2. Let 𝐺 be a graph that does not contain a bridge and 𝑒1, 𝑒2, 𝑒3 ∈ 𝐸 (𝐺). If {𝑒1, 𝑒2} and
{𝑒2, 𝑒3} are 2-edge separator, then so is {𝑒1, 𝑒3}.

A graph 𝐺 is called connected if for any pair of distinct vertices 𝑣,𝑤 ∈ 𝑉 (𝐺) there exists a 𝑣-𝑤
path in𝐺 . A subgraph 𝐻 ⊑ 𝐺 is called connected component if it is a maximal connected subgraph

of𝐺 . For𝑘 ≥ 2, we call a graph𝐺 𝑘-connected if𝑉 (𝐺) ≥ 𝑘+1 and𝐺 does not contain a (𝑘−1)-vertex
separator. We call 𝐺 𝑘-edge connected if it does not contain a (𝑘 − 1)-edge separator.

Theorem 2.3 (Menger (1927), cf. [Wes01]). Let𝐺 be a graph with distinct vertices 𝑣,𝑤 ∈ 𝑉 (𝐺). If
𝑣𝑤 ∉ 𝐸 (𝐺), the minimum size of an 𝑠-𝑡 vertex separator equals the maximum number of internally

vertex-disjoint 𝑠-𝑡 paths.

There is a similar version of Menger’s Theorem concerning edge connectivity and different

formulations with similar proofs. We refrain from stating them here and restate themwhen needed

in this thesis.

Let 𝐺 be a connected graph. The maximal subgraphs of 𝐺 that do not contain a cut vertex are

called blocks. A block is either a multiedge or a 2-connected graph. Denote by 𝐴 the set of cut

vertices in 𝐺 and by B the set of blocks in 𝐺 . The simple bipartite graph with vertex set 𝐴 ·∪ B
that contains an edge 𝑎𝐵 for a cut vertex 𝑎 and a block 𝐵 if and only if 𝑎 ∈ 𝑉 (𝐵) is called the

block-cutpoint tree of 𝐺 . We refer to the vertices of a block-cutpoint tree by nodes.

Lemma 2.4 ([Wes01],[HT73]). The block-cutpoint tree of a connected graph𝐺 is a tree and can be

computed in O(|𝑉 (𝐺) | + |𝐸 (𝐺) |).

Directed Graphs, Cuts, and Flows A directed graph 𝐺 can be defined in a similar manner as

an undirected graph, cf. [Wes01]. Instead of an edge set a directed graph contains an arc set 𝐴(𝐺)
and an arc is associated with a startvertex and an endvertex. By 𝛿+

𝐺
(𝑣) we denote the set of arcs that

have 𝑣 as an endvertex and by 𝛿−
𝐺
(𝑣) we denote the set of arcs that have 𝑣 as a startvertex.

Let 𝐺 be a connected directed graph with edge weights 𝑐 : 𝐸 (𝐺) → R. Further, let 𝑠, 𝑡 ∈ 𝑉 (𝐺)
be two distinct vertices. An 𝑠-𝑡 cut is a partition {𝑆,𝑇 } of the vertices 𝑉 (𝐺) such that 𝑠 ∈ 𝑆 and

𝑡 ∈ 𝑇 . The capacity of the cut is

∑
𝑒∈𝐸 (𝑆,𝑇 ) 𝑐 (𝑒). An 𝑠-𝑡 cut is minimum if it has minimum capacity

among all 𝑠-𝑡 cuts. An 𝑠-𝑡 flow with respect to 𝑐 is a map 𝑓 : 𝐸 (𝐺) → R with 𝑓 (𝑒) ≤ 𝑐 (𝑒) for
all 𝑒 ∈ 𝐸 (𝐺) and ∑

𝑒∈𝛿+ (𝑣) 𝑓 (𝑒) =
∑

𝑒∈𝛿− (𝑣) 𝑓 (𝑒) for all 𝑣 ∈ 𝑉 (𝐺) \ {𝑠, 𝑡}. The value is defined as∑
𝑒∈𝛿− (𝑡 ) 𝑓 (𝑒) −

∑
𝑒∈𝛿+ (𝑡 ) 𝑓 (𝑒).

Theorem 2.5 (Max-FlowMin-Cut Theorem, cf. [Sch03]). Let𝐺 be a directed graph, let 𝑠, 𝑡 ∈ 𝑉 (𝐺)
be distinct vertices, and let 𝑐 : 𝐴(𝐺) → R≥0. The maximum value of an 𝑠-𝑡 flow subject to 𝑐 equals

the minimum capacity of an 𝑠-𝑡 cut.
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Trees and Forests A graph 𝐺 that does not contain a cycle is a forest. A connected forest is

called a tree. A vertex of degree 1 in a forest is called leaf. A tree𝑇 rooted at a vertex 𝑟 ∈ 𝑉 (𝑇 ) is a
tree with 𝑟 designated as the root of 𝑇 . Let 𝑣,𝑤 ∈ 𝑉 (𝑇 ). We call 𝑣 a descendant of 𝑤 if 𝑤 is on the

unique 𝑟 -𝑣 path in 𝑇 . In this case we say 𝑤 is an ancestor of 𝑣 . If additionally 𝑣𝑤 ∈ 𝐸 (𝑇 ) we say 𝑣
is the parent of𝑤 and𝑤 is a child of 𝑣 .

Contraction and Minors Let 𝐺 be a graph and 𝑣𝑤 ∈ 𝐸 (𝐺) be an edge in 𝐺 . The contraction of

𝑣𝑤 in𝐺 is the graph, in which the vertices 𝑣 and𝑤 are replaced by a single vertex which is incident

to all edges which have one endvertex in {𝑣,𝑤}. We call a graph𝐻 aminor of𝐺 if it can be obtained

from a subgraph of 𝐺 by repeated contractions of edges. The contraction of a subgraph 𝐻 of 𝐺 is

the graph, in which all vertices 𝑉 (𝐻 ) in 𝐺 are replaced by a single vertex, which is incident to all

edges which have one endvertex in 𝑉 (𝐻 ). We write 𝐺/𝐻 for the contraction of 𝐻 in 𝐺 .

Tree Decomposition and Treewidth A tree decomposition of a graph𝐺 is a pair (B,T), where
T is a tree and B = {𝐵𝑖 : 𝑖 ∈ 𝑉 (T )} is a family of subsets of the vertices in T , such that

(i)

⋃
𝐵∈B 𝐵 = 𝑉 (𝐺),

(ii) for each 𝑣𝑤 ∈ 𝐸 (𝐺) there exists some 𝐵 ∈ B with 𝑣,𝑤 ∈ 𝐵 and

(iii) for all 𝑖, 𝑗, 𝑘 ∈ 𝑉 (T ), if 𝑘 is on the path from 𝑖 to 𝑗 in T , then 𝐵𝑖 ∩ 𝐵 𝑗 ⊆ 𝐵𝑘 .

We refer to the subsets in B as bags and usually refer to the vertices of T as nodes. The width of

a tree decomposition (B,T) is max𝐵∈B |𝐵 | − 1. Finally the treewidth, tw(𝐺), of a graph 𝐺 is the

smallest integer 𝑘 for which there exists a tree decomposition of width 𝑘 . For a general overview

on tree decompositions and treewidth we refer to [Bod98].

Even Graphs A graph 𝐺 is called even if all vertices are of even degree. A graph that is even

and connected is called Eulerian.
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Chapter 3.

Connectivity Pairs and the Conjecture of Beineke and Harary

The Beineke Harary Conjecture states that any two distinct vertices that can be separated with

𝑘 vertices and 𝑙 edges but not with 𝑘 − 1 vertices and 𝑙 edges or 𝑘 vertices and 𝑙 − 1 edges can be

connected by 𝑘 + 𝑙 edges-disjoint paths of which 𝑘 + 1 are internally vertex-disjoint. Our main

contribution in this chapter is to prove the conjecture for 𝑙 = 2 and any 𝑘 ∈ N. We exploit the

result for 𝑙 = 2 in order to prove that the conjecture also holds for all graphs that have treewidth

at most 3 and all 𝑘, 𝑙 ∈ N. Finally, we prove that deciding if two vertices can be separated by 𝑘

vertices and 𝑙 edges is NP-complete.

The results of this chapter are published in [JKS19] and are joint work with Sven O. Krumke and

Sebastian Johann.

One of themost fundamental questions, when regarding uncertainty in graphs, is to ask whether

a graph remains connected when deleting some of its elements. Connectivity is a well examined

property of graphs. A famous example is Menger’s Theorem where vertex- and edge-connectivity

are related to the the number of internally vertex- and edge-disjoint paths, cf. Theorem 2.3. For

further basic results and a literature overview on connectivity we refer to the introduction of this

thesis or standard textbooks, such as [BWO12; Die00; Wes01].

On the other hand properties of graphs that remain connected when removing vertices and

edges at the same time have not been getting the same attention. In [EKM91] Egawa et al. in-

troduce a form of mixed connectivity in which two vertices are (𝑘, 𝑙)-connected if they cannot

be separated with 𝑘 − 𝑟 vertices and at most 𝑟𝑙 − 1 edges for any 1 ≤ 𝑟 ≤ 𝑘 . They establish a

mixed version of Menger’s Theorem: Two vertices are (𝑘, 𝑙)-connected if and only if there exist 𝑘𝑙
edge-disjoint paths between these vertices which can be partitioned into 𝑙 sets each containing 𝑘

internally vertex-disjoint paths. As we do not regard this kind of mixed connectivity here we refer

to [BWO12] for further details.

Here we regard a form of mixed connectivity introduced by Beineke and Harary in [BH67],

called connectivity pairs. A pair of non-negative integers (𝑘, 𝑙) is called a connectivity pair for

distinct vertices 𝑠 and 𝑡 if they can be separated by removing 𝑘 vertices and 𝑙 edges, but not with

𝑘 − 1 vertices and 𝑙 edges or 𝑘 vertices and 𝑙 − 1 edges, cf. Definition 3.2.

In [BH67] Beineke and Harary claim to have proved a mixed version of Menger’s Theorem

concerning connectivity pairs: If (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 , there exist 𝑘 + 𝑙 edge-
disjoint 𝑠-𝑡 paths of which 𝑘 are internally vertex-disjoint. Mader pointed out in [Mad79] that
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the proof is erroneous. Later Sadeghi and Fan claimed in [SF19] to have proved the following

statement:

When𝑉 (𝐺) ≥ 𝑘 + 𝑙 + 1, 𝑘 ≥ 0 and 𝑙 ≥ 1, a graph𝐺 has 𝑘 + 𝑙 edge-disjoint paths of which 𝑘 + 1 are

internally vertex-disjoint between any two vertices, if and only if the graph cannot be disconnected by

removing 𝑘 vertices and 𝑙 − 1 edges.

Again the claimed proof has been found faulty as was observed by the author of this thesis,

cf. [JKS19]. The paper by Sadeghi and Fan was retracted shortly after the authors were notified

that their proof is erroneous. In particular, the claimed statement is not correct, as the existence

of the claimed paths are not sufficient for the connectivity statement to hold. A counterexample is

provided in Section 3.2.

The most meaningful result on the conjecture to date is due to Enomoto and Kaneko, cf. [EK94].

They first extended the conjecture claiming that it is possible to find 𝑘 +1 internally vertex-disjoint

paths instead of just 𝑘 under the additional assumption that 𝑙 ≥ 1 and then proved their statement

for certain 𝑘 and 𝑙 . The exact result is restated here as Theorem 3.6.

From our studies the following conjecture originally formulated by Beineke and Harary

in [BH67] and extended by Enomoto and Kaneko in [EK94] may hold. In the remainder of

this section we refer to the conjecture by the name Beineke Harary Conjecture.

Conjecture (Beineke Harary Conjecture). Let 𝐺 be a graph, 𝑠, 𝑡 ∈ 𝑉 (𝐺) distinct vertices and 𝑘, 𝑙
non-negative integers with 𝑙 ≥ 1. If (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 in 𝐺 , then there exist 𝑘 + 𝑙
edge-disjoint paths of which 𝑘 + 1 are internally vertex-disjoint.

Regard a graph 𝐺 and two distinct vertices 𝑠 and 𝑡 . By ^𝐺 (𝑠, 𝑡) we denote the cardinality of a

minimum 𝑠-𝑡 vertex separator in𝐺 . For 𝑘 ∈
{
0, . . . , ^𝐺−𝐸 (𝑠,𝑡 ) (𝑠, 𝑡)

}
it can be observed that there is a

unique 𝑙 ∈ N such that (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 in𝐺 , cf. Observation 3.17. In [BWO12],

the authors mention that it is an interesting open question to consider the complexity of computing

that unique integer 𝑙 .

Outline We begin this chapter by giving formal definitions for disconnecting and connectivity

pairs and making some basic observations concerning the topic in Section 3.1. In Section 3.2 we

return to the Beineke Harary Conjecture and state basic results and observations concerning the

conjecture. Section 3.3 is dedicated to proving the Beineke Harary Conjecture for 𝑘 = 2. We prove

the conjecture for graphs of treewidth at most 3 in Section 3.4. Finally, in Section 3.5 we show

that no polynomial time algorithm computing the second coordinate in a connectivity pair exists,

unless P = NP.

3.1. Connectivity Pairs

Definition 3.1 (Disconnecting Pair). Let𝐺 be a graph and 𝑆,𝑇 ⊆ 𝑉 (𝐺) be non-empty subsets of

vertices. We call a pair (𝑊, 𝐹 ) with𝑊 ⊆ 𝑉 (𝐺) \ (𝑆 ∪𝑇 ) and 𝐹 ⊆ 𝐸 (𝐺) an 𝑆-𝑇 disconnecting pair

if 𝐺 −𝑊 − 𝐹 contains no path from a vertex in 𝑆 to one in 𝑇 .
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We call the number of edges in a disconnecting pair its size, the number of vertices in a discon-

necting pair its order and the number of elements |𝑊 | + |𝐹 | its cardinality. If 𝑆 = {𝑠} or 𝑇 = {𝑡}
consist of only one element we omit the set brackets in the notation and also write 𝑠-𝑡 disconnect-

ing pair.

Beineke and Harary introduced connectivity pairs in their paper from 1967 [BH67]. We recall

their definition below.

Definition 3.2 (Connectivity Pairs). Let 𝐺 be a graph and 𝑠, 𝑡 ∈ 𝑉 (𝐺) be distinct vertices. We

call a tuple of non-negative integers (𝑘, 𝑙) a connectivity pair for 𝑠 and 𝑡 in 𝐺 if

(i) there exists an 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 and

(ii) there is no 𝑠-𝑡 disconnecting pair of cardinality less than 𝑘 + 𝑙 , order at most 𝑘 and size at

most 𝑙 .

As property (i) implies, that there exist 𝑘 vertices other than 𝑠 and 𝑡 and at least 𝑙 edges, we may

replace property (ii) by

there is no 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 − 1 or order 𝑘 − 1 and

size 𝑙 .
(3.1)

If there are fewer than 𝑙 edges between 𝑠 and 𝑡 , we can simplify the condition even more and

replace property (ii) by

there is no 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 − 1. (3.2)

This is true since we may replace any edge in an 𝑠-𝑡 disconnecting pair by a vertex incident to it

unless the edge connects 𝑠 and 𝑡 .

3.2. The Foundations of the Beineke Harary Conjecture

The Beineke Harary Conjecture is, in some sense, a mixed form of Menger’s Theorem. As wemake

use of them, we recall three versions of Menger’s theorem here.

Theorem (Menger’s Theorem). Let 𝑠 and 𝑡 be two distinct vertices of a graph 𝐺 .

(i) If 𝑠𝑡 ∉ 𝐸 (𝐺), then the minimum number of vertices separating 𝑠 and 𝑡 in 𝐺 is equal to the

maximum number of internally vertex-disjoint 𝑠-𝑡 paths.

(ii) The minimum number of edges separating 𝑠 and 𝑡 in𝐺 is equal to the maximum number of

edge-disjoint 𝑠-𝑡 paths in 𝐺 .

(iii) the minimum cardinality of an 𝑠-𝑡 disconnecting pair is equal to the maximum number of

internally vertex-disjoint 𝑠-𝑡 paths.
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Proof. Proofs for the statements (i) and (ii) can, for example, be found in [Wes01]. The state-

ment (iii) is a direct consequence of (i): Any edge connecting 𝑠 and 𝑡 induces an 𝑠-𝑡 path that is

internally vertex-disjoint to all other 𝑠-𝑡 paths. Also every edge connecting 𝑠 and 𝑡 is contained

in every 𝑠-𝑡 disconnecting pair. The statement now follows considering that any edge in an 𝑠-𝑡

disconnecting pair that does not connect 𝑠 and 𝑡 can be replaced by one of its endvertices.

Menger’s Theorem implies the Beineke Harary Conjecture for a couple of base cases regarding

the integers 𝑘 and 𝑙 . These have been observed before and are not hard to grasp.

Observation 3.3. Let 𝑘 ≥ 0 and 𝑙 ≥ 1 be integers and let 𝑠 and 𝑡 be two distinct vertices of a

graph 𝐺 .

(i) If (𝑘, 0) is a connectivity pair for 𝑠 and 𝑡 in𝐺 , then 𝑠 is not adjacent to 𝑡 . Further, the minimum

number of vertices separating 𝑠 and 𝑡 is 𝑘 and by Menger’s Theorem there are 𝑘 internally

vertex-disjoint 𝑠-𝑡 paths.

(ii) If (𝑘, 1) is a connectivity pair for 𝑠 and 𝑡 , then the minimum cardinality of an 𝑠-𝑡 disconnecting

pair is 𝑘 + 1. Hence, by Menger’s Theorem there are 𝑘 + 1 internally vertex-disjoint 𝑠-𝑡 paths.

(iii) If (0, 𝑙) is a connectivity pair for 𝑠 and 𝑡 , then the minimum number of edges separating 𝑠 and

𝑡 is 𝑙 . By Menger’s Theorem there are 𝑙 edge-disjoint 𝑠-𝑡 paths.

Another rather basic result shows that it suffices to prove the Beineke Harary Conjecture for

non-adjacent vertices 𝑠 and 𝑡 as we see in the next two lemmata.

Lemma 3.4. Let 𝐺 be a graph, 𝑠, 𝑡 ∈ 𝑉 (𝐺) be two distinct vertices and let 𝑘, 𝑙 be non-negative

integers. Then, (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 in𝐺 if and only if (𝑘, 𝑙−|𝐸 (𝑠, 𝑡) |) is a connectivity
pair for 𝑠 and 𝑡 in 𝐺 − 𝐸 (𝑠, 𝑡).

Proof. Any 𝑠-𝑡 disconnecting pair in𝐺 has to contain all edges in 𝐸 (𝑠, 𝑡). Thus, we get a one-to-one
correspondence between the 𝑠-𝑡 disconnecting pairs in 𝐺 and the ones in 𝐺 − 𝐸 (𝑠, 𝑡) by mapping

a pair (𝑊, 𝐹 ) to the pair (𝑊, 𝐹 \ 𝐸 (𝑠, 𝑡)). The desired result follows immediately.

Lemma 3.5. Let G be a class of graphs which is closed under deletion of edges. If the Beineke

Harary Conjecture holds true for all graphs 𝐺 ∈ G and all vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) such that 𝑠 and 𝑡 are

not adjacent, then the conjecture holds true for all graphs in G.

Proof. Assume the Beineke Harary Conjecture holds for all graphs 𝐺 ′ ∈ G and all vertices 𝑠, 𝑡 ∈
𝑉 (𝐺 ′) with |𝐸 (𝑠, 𝑡) | = 0. Let 𝐺 ∈ G be a graph, 𝑠, 𝑡 ∈ 𝑉 (𝐺) distinct vertices with |𝐸 (𝑠, 𝑡) | ≥ 1, and

let (𝑘, 𝑙) be a connectivity pair for 𝑠 and 𝑡 in 𝐺 . By Lemma 3.4, (𝑘, 𝑙 − |𝐸 (𝑠, 𝑡) |) is a connectivity

pair for 𝑠 and 𝑡 in 𝐺 − 𝐸 (𝑠, 𝑡). Thus, by assumption there exist 𝑘 + 𝑙 − |𝐸 (𝑠, 𝑡) | edge-disjoint 𝑠-𝑡
paths of which at least 𝑘 are internally vertex-disjoint in 𝐺 − 𝐸 (𝑠, 𝑡). Note that we cannot assume

that 𝑘 + 1 paths are internally vertex-disjoint, as 𝑙 − |𝐸 (𝑠, 𝑡) | = 0 is a possibility. Nevertheless, the

𝑘 + 𝑙 − |𝐸 (𝑠, 𝑡) | paths together with the edges in 𝐸 (𝑠, 𝑡) yield 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths of which
at least 𝑘 + 1 are internally vertex-disjoint, as the edges in 𝐸 (𝑠, 𝑡) are internally vertex-disjoint to

all 𝑠-𝑡 paths and by assumption |𝐸 (𝑠, 𝑡) | ≥ 1.
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Figure 3.1.: A graph containing a vertex-edge separator, such that between any pair of vertices

there exist three edge-disjoint paths of which two are internally vertex-disjoint.

Other than these simple observations the only meaningful result on the Beineke Harary Con-

jecture is due to Enomoto and Kaneko. Their result implies the correctness for certain integers 𝑘

and 𝑙 . We mention one explicit choice as a corollary, as we use this statement later on.

Theorem3.6 ([EK94]). Let𝑞, 𝑟 , 𝑘 , and 𝑙 be integers with𝑘 ≥ 0 and 𝑙 ≥ 1 such that𝑘+𝑙 = 𝑞(𝑘+1)+𝑟
and 1 ≤ 𝑟 ≤ 𝑘 + 1. Let 𝑠 and 𝑡 be distinct vertices of a graph 𝐺 . If 𝑞 + 𝑟 > 𝑘 and if (𝑘, 𝑙) is a
connectivity pair for 𝑠 and 𝑡 , then𝐺 contains 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths of which 𝑘 + 1 are internally

vertex-disjoint.

Corollary 3.7. Let (1, 𝑙) be a connectivity pair for two distinct vertices 𝑠 and 𝑡 of a graph𝐺 . There
are 𝑙 + 1 edge-disjoint 𝑠-𝑡 paths of which two are internally vertex-disjoint.

Proof. For 𝑙 = 1 the statement holds true due to Observation 3.3. For 𝑙 ≥ 2 and 𝑞, 𝑟 ∈ N with

1 + 𝑙 = 𝑞 · 2 + 𝑟 and 1 ≤ 𝑟 ≤ 2 we have 𝑞 + 𝑟 > 1 and by Theorem 3.6 we get the desired paths.

Before we turn to the proof of the Beineke Harary Conjecture for 𝑙 = 2, we discuss the claim

made by Sadeghi and Fan in [SF19], that we mentioned in the introduction. This serves to under-

stand the difficulties of the Beineke Harary Conjecture and further shows why the conjecture does

not claim equivalence of the existence of connectivity pairs and paths.

In [SF19] for integers 𝑘, 𝑙 ≥ 1 a graph 𝐺 with at least 𝑘 + 𝑙 + 1 vertices is called (𝑘, 𝑙)-connected
if it cannot be disconnected by removing 𝑘 vertices and 𝑙 − 1 edges. The following claim is then

made.

Let 𝑘, 𝑙 ≥ 1 and𝐺 be a graph with at least 𝑘 + 𝑙 + 1 vertices. Then𝐺 is (𝑘, 𝑙)-connected if
and only if 𝐺 is 𝑘 + 1 vertex-connected and 𝑘 + 𝑙 edge-connected. (3.3)

If 𝐺 is in fact (𝑘, 𝑙)-connected it can readily be observed that it is also 𝑘 + 1 vertex-connected and

𝑘 + 𝑙 edge-connected. On the other hand𝐺 being 𝑘 + 1 vertex-connected and 𝑘 + 𝑙 edge-connected
does not imply (𝑘, 𝑙)-connectivity. To see this, consider the two complete graphs 𝐺1 and 𝐺2 on

the vertex sets {𝑥1, 𝑥2, 𝑥3, 𝑥4} and {𝑥1, 𝑥5, 𝑥6, 𝑥7}. We construct a graph 𝐺 by regarding the union

of 𝐺1 and 𝐺2 and additionally adding an edge between vertices 𝑥5 and 𝑥2. Figure 3.1 displays the

constructed graph. The graph 𝐺 is 2-vertex-connected and 3-edge-connected, but it is not (1, 2)-
connected as the removal of the vertex 𝑥1 and the edge 𝑥2𝑥5 disconnects the graph. Thus, the
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Claim (3.3) cannot hold. As a corollary of Claim (3.3), Sadeghi and Fan state the following.

Let 𝑘 ≥ 0, 𝑙 ≥ 1, and 𝐺 be a graph with at least 𝑘 + 𝑙 + 1 vertices. Then 𝐺 is (𝑘, 𝑙)-
connected if and only if it has 𝑘 + 𝑙 edge-disjoint paths between every pair of vertices of

which 𝑘 + 1 paths are internally vertex-disjoint.

(3.4)

As a corollary to Claim (3.3), Claim (3.4) cannot be considered proven. We give a counterexample

to the claim in Proposition 3.8.

In the original conjecture by Beineke and Harary [BH67] and in the extension due to [EK94] it

is never claimed that the existence of the desired paths is sufficient for (𝑘, 𝑙)-connectivity and, in

fact, it is not. For the sake of completeness we argue why the existence of the paths in Claim (3.4)

is not sufficient.

Proposition 3.8. The graph 𝐺 constructed above contains a separator of one vertex and one edge

and between any pair of vertices there exist three edge-disjoint paths of which two are internally

vertex-disjoint.

Proof. Consider the graph 𝐺 above, that also provided a counterexample to Claim (3.3), see Fig-

ure 3.1. The vertex 𝑥1 together with the edge 𝑥5𝑥2 disconnects the graph. Now let 𝑣1, 𝑣2 ∈ 𝑉 (𝐺).
If 𝑣1, 𝑣2 ∈ 𝑉 (𝐺𝑖) for some 𝑖 ∈ {1, 2} there are three internally vertex-disjoint 𝑣1-𝑣2 paths. Other-

wise, without loss of generality 𝑣1 ∈ {𝑥2, 𝑥3, 𝑥4} and 𝑣2 ∈ {𝑥5, 𝑥6, 𝑥7}. Denote by 𝑃1 a shortest path

from 𝑣1 to 𝑥2 (This is either a single edge or the path without edges) and by 𝑃2 a shortest path

from 𝑥5 to 𝑣2. We define the 𝑣1-𝑣2 path 𝑃 B (𝑃1 ∪ 𝑃2) + 𝑥2𝑥5. Further let 𝑄 = 𝑣1𝑥1𝑣2. Finally let

𝑤1 ∈ {𝑥3, 𝑥4} \ {𝑣1} and𝑤2 ∈ {𝑥6, 𝑥7} \ {𝑣2} and define the path 𝑅 = 𝑣1𝑤1𝑥1𝑤2𝑣2. It is easily verified

that 𝑃 ,𝑄 , 𝑅 are three edge-disjoint 𝑣1-𝑣2 paths and 𝑃 and𝑄 are also internally vertex-disjoint.

The graph from Figure 3.1 illustrates two things. On the one hand it shows that we may not

hope to prove an equivalence in the fashion of Claim (3.4). On the other hand it shows that it is not

possible to replace themixed form of connectivity by two separate statements on pure connectivity

in the fashion of Claim (3.3). This is one of the reasons why the Beineke Harary Conjecture is not a

consequence of Menger’s Theorem and its proof has not been established as of yet. It also suggests

that the usual techniques used for proofs of Menger’s Theorem might not transfer to the mixed

statement. In the following we use a novel technique for proving the Beineke Harary Conjecture

for the case that 𝑙 = 2. The idea is to keep the desired 𝑘 + 1 internally vertex-disjoint paths and

move from 𝑠 to 𝑡 along the remaining path. The statement is then proved by induction.

3.3. The Beineke Harary Conjecture for Disconnecting Pairs with Two Edges

Now that we have established some foundations for connectivity pairs and the Beineke Harary

Conjecture, we are ready to turn to the main result of this chapter.

Theorem 3.9. Let 𝐺 be a graph and 𝑠, 𝑡 ∈ 𝑉 (𝐺) and let (𝑘, 2) be a connectivity pair for 𝑠 and 𝑡 .

Then, there exist 𝑘 + 2 edge-disjoint 𝑠-𝑡 paths of which 𝑘 + 1 are internally vertex-disjoint.
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Before we begin with the proof, note that the result of Theorem 3.9 has only been proved for

𝑘 = 1. In particular, the result of Enomoto and Kaneko, cf. Theorem 3.6, basically tackles the

conjecture from a different angle, as in their statement for 𝑙 = 2 and 𝑘 ≥ 2, the sum 𝑞 + 𝑟 always
equals 2, which leads to a big gap between 𝑘 and 𝑞 + 𝑟 for large 𝑘 .

We prove a more general version of Theorem 3.9 and afterwards conclude the correctness of the

theorem. To this end recall that for a graph 𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), and 𝑘 ∈ N>0 an 𝑠-𝑡 𝑘-skein is

the union of 𝑘 internally vertex-disjoint 𝑠-𝑡 paths.

Theorem 3.10. Let 𝐺 be a graph, 𝑠1, 𝑠2, 𝑡 ∈ 𝑉 (𝐺) with 𝑠1 ≠ 𝑡 . Further assume that

(i) there exists an 𝑠2-𝑡 path in 𝐺 ,

(ii) there exists an 𝑠1-𝑡 (𝑘 + 1)-skein in 𝐺 , and

(iii) there is no {𝑠1, 𝑠2}-𝑡 disconnecting pair of cardinality 𝑘 + 1 and order at most 𝑘 in 𝐺 .

Then there exist 𝑘 + 2 edge-disjoint paths of which 𝑘 + 1 are internally vertex-disjoint 𝑠1-𝑡 paths and

of which one is an 𝑠2-𝑡 path.

Proof. Let 𝐺 be a graph, 𝑠1, 𝑠2, 𝑡 ∈ 𝑉 (𝐺) with 𝑠1 ≠ 𝑡 fulfilling properties (i) to (iii). We prove the

claim by induction on the number of edges |𝐸 (𝐺) |. If |𝐸 (𝐺) | ≤ 𝑘 there cannot be 𝑘 + 1 internally

vertex-disjoint 𝑠1-𝑡 paths, as 𝑠1 ≠ 𝑡 . Thus, from now on we may assume the following.

Let 𝐺 ′
be a graph with |𝐸 (𝐺 ′) | < |𝐸 (𝐺) | and vertices 𝑠 ′

1
, 𝑠 ′

2
, 𝑡 ′ ∈ 𝑉 (𝐺 ′) with 𝑠 ′

1
≠ 𝑡 ′. If

Properties (i) to (iii) are fulfilled in 𝐺 ′
, then there exist 𝑘 + 2 edge-disjoint paths of which

𝑘 + 1 are internally vertex-disjoint 𝑠 ′
1
-𝑡 ′ paths and of which one is an 𝑠 ′

2
-𝑡 ′ path.

(3.5)

We begin by proving the induction step for the case that 𝑠2 is contained in an 𝑠1-𝑡 (𝑘 +1)-skein and

afterwards use this result to prove the induction step for the case that 𝑠2 is not contained in such

a skein.

Case 1: The vertex 𝑠2 is contained in an 𝑠1-𝑡 (𝑘 + 1)-skein.
If 𝑠2 = 𝑡 , then the 𝑘 + 1 internally vertex-disjoint paths from Property (ii) together with the

𝑠2-𝑡 path 𝑠2 = 𝑡 form the desired paths. Thus, we may assume that 𝑠2 ≠ 𝑡 . Denote by 𝑃1, . . . , 𝑃𝑘+1

the 𝑠1-𝑡 paths of an 𝑠1-𝑡 (𝑘 + 1)-skein containing 𝑠2. Without loss of generality we may assume

𝑠2 ∈ 𝑉 (𝑃𝑘+1). Denote by 𝑠 ′2 the vertex after 𝑠2 on 𝑃𝑘+1, i. e. 𝑃𝑘+1 = 𝑠1 . . . 𝑠2𝑠
′
2
. . . 𝑡 . Note that 𝑠1 = 𝑠2

is not forbidden at this point. We now want to use the induction hypothesis for 𝐺 − 𝑠2𝑠
′
2
and the

vertices 𝑠1, 𝑠
′
2
and 𝑡 , cf. Figure 3.2 a).

Property (i) is fulfilled as 𝑠 ′
2
𝑃𝑘+1 is an 𝑠

′
2
-𝑡 path in𝐺 − 𝑠2𝑠

′
2
. Suppose that there do not exist 𝑘 + 1

internally vertex-disjoint 𝑠1-𝑡 paths in𝐺−𝑠2𝑠
′
2
. ByMenger’s Theorem there is an 𝑠1-𝑡 disconnecting

pair (𝑊, 𝐹 ) of cardinality 𝑘 . Since in𝐺−𝑠2𝑠
′
2
the internally vertex-disjoint paths 𝑃1, . . . 𝑃𝑘 still exist,

all elements of (𝑊, 𝐹 ) are contained in the paths 𝑃1, . . . , 𝑃𝑘 , cf. Figure 3.2 a). Thus, the path 𝑃𝑘+1𝑠2

still exists in𝐺 −𝑠2𝑠
′
2
−𝑊 −𝐹 and (𝑊, 𝐹 ) is an {𝑠1, 𝑠2}-𝑡 disconnecting pair in𝐺 −𝑠2𝑠

′
2
, cf. Figure 3.2

b). By assumption (𝑊, 𝐹 ∪ {𝑠2𝑠
′
2
}) is not an {𝑠1, 𝑠2}-𝑡 disconnecting pair in𝐺 and there exists some

{𝑠1, 𝑠2}-𝑡 path in𝐺−𝑊 −𝐹 −𝑠2𝑠
′
2
, cf. Figure 3.2 c), which yields a contradiction. Hence, Property (ii)
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a)

𝑠1 𝑡

𝑠2 𝑠 ′
2

b)

𝑠1 𝑡

𝑠2 𝑠 ′
2

c)

𝑠1 𝑡

𝑠2 𝑠 ′
2

Figure 3.2.: Case 1 in the proof of Theorem 3.10: Supposed separation of 𝑠1 and 𝑡 . The colored

vertices correspond to elements in (𝑊, 𝐹 ). The dotted lines are mutually internally

vertex-disjoint. The solid line is a single edge. The colored lines indicate a connection

of vertices that does not touch colored vertices or edges.

a)

𝑠1 𝑡

𝑠2 𝑠 ′
2

b)

𝑠1 𝑡

𝑠2 𝑠 ′
2

c)

𝑠1 𝑡

𝑠2 𝑠 ′
2

Figure 3.3.: Case 1 in the proof of Theorem 3.10: Supposed separation of

{
𝑠1, 𝑠

′
2

}
and 𝑡 . The colored

vertices correspond to elements in (𝑊, 𝐹 ). The dotted lines are mutually internally

vertex-disjoint. The solid line is a single edge. The colored lines indicate a connection

of vertices that does not touch (𝑊, 𝐹 ).

is fulfilled in𝐺 − 𝑠2𝑠
′
2
and 𝑠1, 𝑠

′
2
, 𝑡 . Now suppose there exists an {𝑠1, 𝑠

′
2
}-𝑡 disconnecting pair (𝑊, 𝐹 )

of cardinality 𝑘 + 1 and order at most 𝑘 in 𝐺 − 𝑠2𝑠
′
2
. As the paths 𝑃1, . . . , 𝑃𝑘 , 𝑠

′
2
𝑃𝑘+1 are internally

vertex-disjoint, each element of (𝑊, 𝐹 ) is contained in one of these paths, cf. Figure 3.3 a). Thus,

𝑃𝑘+1𝑠2 still exists in𝐺 − 𝑠2𝑠
′
2
−𝑊 − 𝐹 and neither 𝑠2 nor 𝑠

′
2
are contained in the same component as

𝑡 in𝐺 − 𝑠2𝑠
′
2
−𝑊 − 𝐹 . This implies that (𝑊, 𝐹 ) is an {𝑠1, 𝑠2}-𝑡 disconnecting pair in𝐺 , cf. Figure 3.3

b). Again this is a contradiction to Property (iii) in 𝐺 , cf. Figure 3.3 c) and hence Property (iii) is

fulfilled for 𝐺 − 𝑠2𝑠
′
2
and 𝑠1, 𝑠

′
2
, 𝑡 .

As 𝐺 − 𝑠2𝑠
′
2
contains |𝐸 (𝐺) | − 1 edges, the statement (3.5) is applicable and there exist 𝑘 + 2

edge-disjoint paths of which 𝑘 + 1 are internally vertex-disjoint 𝑠1-𝑡 paths, say 𝑃
′
1
, . . . , 𝑃 ′

𝑘+1
, and of

which one is an 𝑠 ′
2
-𝑡 path, say 𝑃 ′

𝑘+2
, cf. Figure 3.4 b).

If 𝑠2 ∈ 𝑉 (𝑃 ′
𝑘+2

) the paths 𝑃 ′
1
, . . . , 𝑃 ′

𝑘+1
, 𝑠2𝑃

′
𝑘+2

are the desired paths in 𝐺 . Otherwise the paths

𝑃 ′
1
, . . . 𝑃 ′

𝑘+1
, 𝑠2𝑠

′
2
∪ 𝑃 ′

𝑘+2
form the desired paths, cf. Figure 3.4 c).

Thus from now on, in addition to (3.5), we may assume:

Let𝐺 ′
be a graph with |𝐸 (𝐺 ′) | = |𝐸 (𝐺) | and vertices 𝑠 ′

1
, 𝑠 ′

2
, 𝑡 ′ ∈ 𝑉 (𝐺 ′) such that 𝑠 ′

1
≠ 𝑡 and

𝑠 ′
2
is contained in an 𝑠1-𝑡 (𝑘 + 1)-skein. If Properties (i) through (iii) are fulfilled, then there

exist 𝑘 + 2 edge-disjoint paths of which 𝑘 + 1 are internally vertex-disjoint 𝑠 ′
1
-𝑡 ′ paths and

of which one is an 𝑠 ′
2
-𝑡 ′ path.

(3.6)
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a)

𝑠1 𝑡

𝑠2 𝑠 ′
2

b)

𝑠1 𝑡

𝑠2 𝑠 ′
2

c)

𝑠1 𝑡

𝑠2 𝑠 ′
2

Figure 3.4.: Paths in Case 1 of the proof of Theorem 3.10. The dotted lines are mutually internally

vertex-disjoint. The dashed line is edge-disjoint to the dotted lines. The solid line is a

single edge not contained in any of the displayed paths. The colored lines form 𝑘 + 2

vertex-disjoint paths of which 𝑘 + 1 are vertex-disjoint.

a)

𝑠1 𝑡

𝑠2

𝑠 ′
2

b)

𝑠1 𝑡

𝑠2

𝑠 ′
2

c)

𝑠1 𝑡

𝑠2

𝑠 ′
2

Figure 3.5.: Case 2 in the proof of Theorem 3.10: Supposed separation of

{
𝑠1, 𝑠

′
2

}
and 𝑡 . The colored

vertices correspond to (𝑊, 𝐹 ). The dotted lines are mutually internally vertex-disjoint.

The colored lines indicate a connection of vertices that does not touch (𝑊, 𝐹 ).

Case 2: The vertex 𝑠2 is not contained in any 𝑠1-𝑡 (𝑘 + 1)-skein.
Denote by 𝑠 ′

2
a vertex on an 𝑠1-𝑡 (𝑘+1)-skein that is closest (with respect to the number of edges)

to 𝑠2 among all vertices on 𝑠1-𝑡 (𝑘 + 1)-skeins. Now we show that the assumptions still hold true if

we replace 𝑠2 by 𝑠
′
2
.

Observe that Properties (i) and (ii) are fulfilled when replacing 𝑠2 by 𝑠
′
2
. To see that Property (iii)

still holds, suppose that there exists an {𝑠1, 𝑠
′
2
}-𝑡 disconnecting pair (𝑊, 𝐹 ) of cardinality 𝑘 + 1 and

order at most 𝑘 . As there cannot be any 𝑠1-𝑡 path left in𝐺−𝑊 −𝐹 , all elements of the disconnecting

pair are contained in some 𝑠1-𝑡 (𝑘+1)-skein, cf. Figure 3.5 a). The vertex set𝑊 may also not contain

𝑠 ′
2
by definition. Thus, the vertices 𝑠1, 𝑠2 and 𝑠

′
2
are contained in the same component of𝐺 −𝑊 − 𝐹 ,

cf. Figure 3.5 b). In𝐺 , the pair (𝑊, 𝐹 ) cannot be {𝑠1, 𝑠2}-𝑡 disconnecting by assumption, cf. Figure 3.5

c). This contradicts (𝑊, 𝐹 ) being {𝑠1, 𝑠
′
2
}-𝑡 disconnecting in 𝐺 and Property (iii) is fulfilled.

Thus, by (3.6) there exist 𝑘 + 2 edge-disjoint paths, say 𝑃1, . . . , 𝑃𝑘+2, such that 𝑃1, . . . 𝑃𝑘+1 are

internally vertex-disjoint 𝑠1-𝑡 paths and 𝑃𝑘+2 is an 𝑠 ′
2
-𝑡 path, cf. Figure 3.6 b). Denote by 𝑃 ′

a

shortest 𝑠2-𝑠
′
2
path. Note that no element of 𝑃 ′

, except possibly 𝑠 ′
2
, is contained in 𝑃1, . . . , 𝑃𝑘+1 as no

vertex or edge on an 𝑠1-𝑡 (𝑘 + 1)-skein is closer to 𝑠2 than 𝑠
′
2
. Further denote by 𝑠 ′ the vertex on 𝑃 ′

closest to 𝑠2 that is also contained in 𝑃𝑘+2, cf. Figure 3.6 c). Then 𝑃
′𝑠 ′ ∪ 𝑠 ′𝑃𝑘+2 is an 𝑠2-𝑡 path that is

edge-disjoint to all 𝑃1, . . . , 𝑃𝑘+1 and we obtain the desired paths.

Proof of Theorem 3.9. If 𝑠 and 𝑡 are adjacent, then (𝑘, 1) is a connectivity pair in 𝐺 − 𝑠𝑡 and there
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a)

𝑠1 𝑡

𝑠2

𝑠 ′
2

b)

𝑠1 𝑡

𝑠2

𝑠 ′
2

c)

𝑠1 𝑡

𝑠2

𝑠 ′
2

𝑠 ′

Figure 3.6.: Paths in Case 2 of the proof of Theorem 3.10. The dotted lines are mutually internally

vertex-disjoint. The dashed lines are edge-disjoint to the dotted lines. The colored lines

form 𝑘 + 2 vertex-disjoint paths of which 𝑘 + 1 are internally vertex-disjoint.

exist 𝑘 + 1 vertex-disjoint 𝑠-𝑡 paths in𝐺 by Observation 3.3 (ii). Together with the deleted edge we

get the desired paths in 𝐺 . So assume that 𝑠 and 𝑡 are not adjacent. We show that Properties (i)

through (iii) of Theorem 3.10 hold for 𝐺 , 𝑠1 = 𝑠2 = 𝑠 , and 𝑡 .

By the definition of a connectivity pair, there is no 𝑠-𝑡 disconnecting pair of cardinality less than

𝑘 + 2, order at most 𝑘 and size at most 2. Thus, by Menger’s Theorem there exist 𝑘 + 1 internally

vertex-disjoint 𝑠-𝑡 paths and Properties (i) and (ii) are fulfilled. Now suppose Property (iii) is not

fulfilled and let (𝑊, 𝐹 ) be an 𝑠-𝑡 disconnecting pair of cardinality 𝑘+1 and order at most 𝑘 . As 𝑠 and

𝑡 are not adjacent, any edge in 𝐹 has an endvertex not contained in {𝑠, 𝑡}. Thus, replacing all but

one edge in (𝑊, 𝐹 ) with one of its endvertices that is contained in {𝑠, 𝑡}we get an 𝑠-𝑡 disconnecting
pair of cardinality 𝑘 + 1, order 𝑘 , and size 1. Such a pair may not exist, as (𝑘, 2) is a connectivity
pair for 𝑠 and 𝑡 . This yields a contradiction. Thus, the assumptions of Theorem 3.10 are fulfilled

and there exist 𝑘 + 2 edge-disjoint 𝑠-𝑡 paths in 𝐺 of which 𝑘 + 1 are internally vertex-disjoint.

Theorem 3.9 is not only a stand-alone result, but can also be of help when proving the Beineke

Harary Conjecture for some restricted graph classes. We illustrate this fact by proving the conjec-

ture for graphs with treewidth at most 3 in the next section.

3.4. The Beineke Harary Conjecture on Graphs with Small Treewidth

In this section we prove the Beineke Harary Conjecture on graphs with treewidth at most 3. We

need a couple of small lemmata and observations before we turn to the actual theorem.

The following result is well-known and can be found in [Die00]. We formulate it here as an

observation:

Observation 3.11. Let 𝐺 be a graph and (B,T) a tree decomposition of 𝐺 . Let 𝑖 𝑗 ∈ 𝐸 (T ) and
denote by𝑇𝑖 and𝑇𝑗 the two components of T − 𝑖 𝑗 with 𝑖 ∈ 𝑉 (𝑇𝑖) and 𝑗 ∈ 𝑉 (𝑇𝑗 ). If 𝑣 ∈ 𝐵𝑖′ \ (𝐵𝑖 ∩ 𝐵 𝑗 )
for some 𝑖 ′ ∈ 𝑉 (𝑇𝑖) and𝑤 ∈ 𝐵 𝑗 ′ \ (𝐵𝑖 ∩ 𝐵 𝑗 ) for some 𝑗 ′ ∈ 𝑉 (𝑇𝑗 ), then 𝐵𝑖 ∩ 𝐵 𝑗 is a separator for 𝑣 and

𝑤 in 𝐺 .

Lemma 3.12. Let𝐺 be a graph with treewidth at most 𝑘 for some integer 𝑘 ≥ 1 and let 𝑠, 𝑡 ∈ 𝑉 (𝐺)
be distinct and non-adjacent. Assume that every tree decomposition of width at most 𝑘 has a bag

24



Chapter 3. Connectivity Pairs and the Conjecture of Beineke and Harary

containing 𝑠 and 𝑡 . Then, there exists a tree decomposition 𝐷 = (B,T) of width 𝑘 , such that there is

some 𝑖 𝑗 ∈ 𝐸 (T ) with 𝑠, 𝑡 ∈ 𝐵𝑖 ∩ 𝐵 𝑗 ,

��𝐵𝑖 ∩ 𝐵 𝑗

�� ≤ 𝑘 and 𝐺 − (𝐵𝑖 ∩ 𝐵 𝑗 ) not connected. In particular 𝑠

and 𝑡 are contained in a vertex separator in 𝐺 containing at most 𝑘 vertices.

Proof. Let 𝐺 be a graph with treewidth 𝑘 and 𝑠, 𝑡 ∈ 𝑉 (𝐺) distinct and non-adjacent. Assume that

every tree decomposition of width at most 𝑘 has a bag containing 𝑠 and 𝑡 . We begin by proving

that every tree decomposition of width 𝑘 has at least two bags containing 𝑠 and 𝑡 .

Suppose that 𝐷 is a tree decomposition of 𝐺 with width 𝑘 , such that 𝑠 and 𝑡 share exactly one

bag 𝐵𝑖 . Let 𝑗1, . . . , 𝑗𝑟 be the neighbors of 𝑖 in T whose bags contain 𝑠 . We construct a new tree

decomposition by replacing the node 𝑖 with two adjacent nodes 𝑖1 and 𝑖2 with corresponding bags

𝐵𝑖1 = 𝐵𝑖 \{𝑡} and 𝐵𝑖2 = 𝐵𝑖 \{𝑠}, making 𝑗1, . . . , 𝑗𝑟 adjacent to 𝑖1 andmaking the remaining neighbors

of 𝑖 adjacent to 𝑖2. As 𝑠 and 𝑡 are not adjacent, the result is a tree decomposition of width at most

𝑘 in which no bag contains both, 𝑠 and 𝑡 . As we assumed that every tree decomposition of𝐺 with

width at most 𝑘 has a bag containing 𝑠 and 𝑡 , this is a contradiction. Thus, we may assume that

every tree decomposition of width at most 𝑘 has at least two bags containing 𝑠 and 𝑡 .

Regard some small tree decomposition 𝐷 = (B,T) of 𝐺 with width at most 𝑘 , i.e., 𝐵𝑖 ⊊ 𝐵 𝑗 and

𝐵 𝑗 ⊊ 𝐵𝑖 for all 𝑖 𝑗 ∈ 𝐸 (T ). By the above arguments, there exists 𝑖 𝑗 ∈ 𝐸 (T ) such that 𝑠, 𝑡 ∈ 𝐵𝑖 ∩ 𝐵 𝑗 .

As the tree decomposition is small there exist 𝑣 ∈ 𝐵𝑖 \𝐵 𝑗 and𝑤 ∈ 𝐵 𝑗 \𝐵𝑖 . By Observation 3.11, the

set 𝐵𝑖 ∩ 𝐵 𝑗 separates 𝑣 and𝑤 and the edge 𝑖 𝑗 fulfills the conditions of the theorem.

Lemma 3.13. Let 𝐺 be a graph with treewidth at most 3, let 𝑠, 𝑡 ∈ 𝑉 (𝐺) be distinct and non-

adjacent, and let 𝑘 ≥ 0 and 𝑙 ≥ 1 be integers. Further, let (B,T) be a tree decomposition of width at

most 3 such that for no bag 𝐵 ∈ B we have 𝑠, 𝑡 ∈ 𝐵. If (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 in 𝐺 ,

then there exist 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths of which 𝑘 + 1 are internally vertex-disjoint.

Proof. Denote by𝑇𝑠 (𝑇𝑡 ) the subtree of T induced by all nodes corresponding to bags containing 𝑠

(𝑡 ). As 𝑉 (𝑇𝑠) ∩𝑉 (𝑇𝑡 ) = ∅, there exists an edge 𝑖 𝑗 ∈ 𝐸 (T ) that separates 𝑉 (𝑇𝑠) from 𝑉 (𝑇𝑡 ). Thus,
by Observation 3.11, the set 𝐵𝑖 ∩ 𝐵 𝑗 is an 𝑠-𝑡 vertex separator in 𝐺 . We may assume without loss

of generality that 𝐵𝑖 ≠ 𝐵 𝑗 and therefore get

��𝐵𝑖 ∩ 𝐵 𝑗

�� ≤ 3. The pair (𝑘, 𝑙) is a connectivity pair and

𝑙 ≥ 1, which implies 𝑘 ≤ 2. If 𝑙 = 1 the result follows from Observation 3.3. If 𝑙 = 2 the result

follows from Theorem 3.9. Further, if 𝑘 = 1 the result follows form Corollary 3.7. Finally if 𝑙 > 2,

𝑘 = 2, and 𝑞, 𝑟 integers such that 2 + 𝑙 = 𝑞 · 3 + 𝑟 with 1 ≤ 𝑟 ≤ 3, we get that 𝑞 + 𝑟 > 2 = 𝑘 and the

desired result follows from Theorem 3.6.

Note that in the proof of Lemma 3.13, we used our main result, Theorem 3.9, from the previous

section. It is worth noting, that no other result in this thesis or another easy argument seems to

be able to replace Theorem 3.9 in the proof of the lemma. In fact, the proof of the theorem was the

only piece missing for proving the Beineke Harary Conjecture for graphs with treewidth at most

3 for some time.

We observe that the Beineke Harary Conjecture holds for graphs of treewidth 1: If for a graph𝐺

the underlying simple graph is a tree, either 𝑠 and 𝑡 are adjacent or there exists a vertex 𝑎 ∈
𝑉 (𝐺) \ {𝑠, 𝑡} separating 𝑠 and 𝑡 . In both cases the only possible connectivity pairs for 𝑠 and 𝑡 are

of the form (0, 𝑙) for 𝑙 ≥ 1 or (1, 0). The conjecture follows from Observation 3.3.
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Observation 3.14. Let 𝐺 be a graph of treewidth 1 and vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺). Further let (𝑘, 𝑙) be a
connectivity pair for 𝑠 and 𝑡 in𝐺 , with 𝑘 ≥ 0 and 𝑙 ≥ 1. Then there exist 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths,
𝑘 + 1 of which are internally vertex-disjoint.

In the next step we prove the conjecture for graphs with treewidth at most 2. Although Theo-

rem 3.15 is implied by Theorem 3.16 and the proof could be included into the one of the latter, for

better readability we prove the theorems separately. The structure of the two proofs is similar and

therefore the proof of Theorem 3.15 can be regarded as a warm-up for the more technical one of

Theorem 3.16.

Theorem 3.15. Let𝐺 be a graph of treewidth at most 2 with distinct vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and 𝑘 ≥ 0

and 𝑙 ≥ 1 integers. If (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 , then 𝐺 contains 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡
paths of which 𝑘 + 1 are internally vertex-disjoint.

Proof. Let 𝐺 be a graph, 𝑠, 𝑡 ∈ 𝑉 (𝐺) be distinct vertices and let (𝑘, 𝑙) be a connectivity pair for 𝑠

and 𝑡 with 𝑙 ≥ 1. If tw(𝐺) = 1 the result follows from Observation 3.14. By Lemma 3.5 we may

assume that 𝑠 and 𝑡 are not adjacent in 𝐺 .

We prove the theorem by induction on the number of vertices |𝑉 (𝐺) |. If |𝑉 (𝐺) | ≤ 3, as 𝑠 and 𝑡

are not adjacent, there always exists a tree decomposition of 𝐺 in which no bag contains both, 𝑠

and 𝑡 . The claim follows from Lemma 3.13. So assume the claim holds for all graphs with less than

|𝑉 (𝐺) | vertices.
If there exists a tree decomposition of𝐺 in which no bag contains both 𝑠 and 𝑡 , the claim is again

implied by Lemma 3.13. Otherwise, by Lemma 3.12, the set {𝑠, 𝑡} is a vertex separator in 𝐺 . Let 𝐶
be a component of 𝐺 − {𝑠, 𝑡} and denote the graph induced by 𝐶 ∪ {𝑠, 𝑡} by 𝐺1. Let 𝐺2 = 𝐺 − 𝐶 .
Note that |𝑉 (𝐺𝑖) | < |𝑉 (𝐺) | for 𝑖 ∈ {1, 2} and 𝐸 (𝐺1) ∩ 𝐸 (𝐺2) = ∅. Regard some 𝑠-𝑡 disconnecting

pair (𝑊, 𝐹 ) of order 𝑘 and size 𝑙 in 𝐺 . For 𝑖 ∈ {1, 2}, the pair induces an 𝑠-𝑡 disconnecting pair

(𝑊𝑖 , 𝐹𝑖) in 𝐺𝑖 , with𝑊𝑖 =𝑊 ∩𝑉 (𝐺𝑖) and 𝐹𝑖 = 𝐹 ∩ 𝐸 (𝐺𝑖). Let 𝑘𝑖 = |𝑊𝑖 | and 𝑙𝑖 = |𝐹𝑖 |. Then, (𝑘𝑖 , 𝑙𝑖) is
a connectivity pair for 𝑠 and 𝑡 in 𝐺𝑖 . Further 𝑘1 + 𝑘2 = 𝑘 , 𝑙1 + 𝑙2 = 𝑙 and without loss of generality

we may assume 𝑙2 ≥ 1. Thus, in𝐺1 there exist 𝑘1 + 𝑙1 edge-disjoint paths of which 𝑘1 are internally

vertex-disjoint. Note that we cannot assume that there exist 𝑘1 + 1 internally vertex-disjoint paths

as 𝑙1 may equal 0. In𝐺2, by induction, we get 𝑘2+𝑙2 edge-disjoint paths of which 𝑘2+1 are internally

vertex-disjoint. For any two paths 𝑃1 in 𝐺1 and 𝑃2 in 𝐺2 it holds true that 𝑃1 and 𝑃2 are internally

vertex-disjoint in𝐺 . Thus, there exist 𝑘1 + 𝑘2 + 𝑙1 + 𝑙2 = 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths in𝐺 of which

𝑘1 + 𝑘2 + 1 = 𝑘 + 1 are internally vertex-disjoint.

Finally, we turn to the proof of the Beineke Harary Conjecture for graphs with treewidth at most

3. The structure of the proof is very similar to the one in Theorem 3.15. It is quite possible that this

structure also generalizes graphs with larger treewidth. The main reason why we do not prove the

conjecture for graphs of treewidth at most 4 (or even larger) is, that in order for Lemma 3.13 to

hold for this class of graphs, we would have to prove the conjecture for 𝑙 = 3 or find another way

of proving this. The idea of the proof is to divide the graph at some separator containing 𝑠 and 𝑡

and use paths found in the resulting graphs by induction. In contrast to Theorem 3.15, a separator
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𝑠 𝑡

𝑎

𝐺1

𝐺2

𝑠 𝑡
𝑎

𝐻1

𝑠

𝑎

𝑡

𝐻2

Figure 3.7.: Case 1 of the proof of Theorem 3.16: Partitioning the Graph𝐺 into𝐺1 and𝐺2 on the left.

Defining the graphs 𝐻1 and 𝐻2 on the right. Colored elements form 𝑠-𝑡 disconnecting

pair. Dotted lines indicate a connection between vertices.

containing 𝑠 and 𝑡 may now also contain a third vertex 𝑎. Thus, it is possible that some of the

searched path actually cross at this vertex. To address this issue we introduce artificial edges that

simulate part of the paths in the other component.

Theorem 3.16. Let 𝐺 be a graph with treewidth at most 3. Let 𝑠, 𝑡 ∈ 𝑉 (𝐺) be two distinct vertices
and 𝑘 ≥ 0, 𝑙 ≥ 1 integers. If (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 , then𝐺 contains 𝑘 + 𝑙 edge-disjoint
𝑠-𝑡 paths of which 𝑘 + 1 are internally vertex-disjoint.

Proof. Let 𝐺 be a graph, 𝑠, 𝑡 ∈ 𝑉 (𝐺) distinct vertices and let (𝑘, 𝑙) be a connectivity pair for 𝑠 and

𝑡 with 𝑙 ≥ 1. If tw(𝐺) ≤ 2 the result follows from Theorem 3.15. By Lemma 3.5 we may assume

that 𝑠 and 𝑡 are not adjacent in 𝐺 .

As in the proof of Theorem 3.15, we do the proof by induction on the number of vertices. If

|𝑉 (𝐺) | ≤ 4, there exists a tree decomposition of 𝐺 with width 3 in which no bag contains both, 𝑠

and 𝑡 , and the claim is implied by Lemma 3.13. So assume the claim holds for all graphs of treewidth

at most 3 and |𝑉 (𝐺) | ≤ 4.

If there exists a tree decomposition of𝐺 width width 3 in which no bag contains both, 𝑠 and 𝑡 , the

claim is again implied by Lemma 3.13. Otherwise, by Lemma 3.12, there exists a tree decomposition

𝐷 = (B,T) containing an edge 𝑥𝑦 ∈ T such that for 𝐵 B 𝐵𝑥 ∩𝐵𝑦 it holds true that 𝑠, 𝑡 ∈ 𝐵, |𝐵 | ≤ 3,

and𝐺 −𝐵 is not connected. If 𝐵 = {𝑠, 𝑡} is a vertex separator, we may simply repeat the arguments

in the proof of Theorem 3.15. So assume there is a vertex 𝑎 ∈ 𝑉 (𝐺) \ {𝑠, 𝑡}, such that 𝐵 = {𝑠, 𝑡, 𝑎}.
Let𝐶 be a component of𝐺−𝐵, denote by𝐺1 the graph induced by𝑉 (𝐶)∪𝐵 and let𝐺2 be the graph

𝐺 −𝑉 (𝐶) − 𝐸𝐺 (𝑠, 𝑎) − 𝐸𝐺 (𝑎, 𝑡), cf. Figure 3.7. Note that |𝑉 (𝐺𝑖) | < |𝑉 (𝐺) | for 𝑖 ∈ {1, 2}. Further, as
𝐵𝑥 ∩ 𝐵𝑦 = {𝑠, 𝑡, 𝑎}, the two components of T − 𝑥𝑦 induce tree decompositions of 𝐺1 and 𝐺2 and

we get tw(𝐺1) ≤ 3 and tw(𝐺2) ≤ 3. As the vertices 𝑠 , 𝑡 and 𝑎 are contained in both 𝐵𝑥 and 𝐵𝑦 ,

adding edges between these vertices in𝐺1 or𝐺2 does not increase the treewidth of the graphs. We

distinguish two cases.
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Case 1: The vertex 𝑎 is contained in an 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 in 𝐺 .

In 𝐺 − 𝑎 the pair (𝑘 − 1, 𝑙) is a connectivity pair for 𝑠 and 𝑡 . Let (𝑊, 𝐹 ) ba an 𝑠-𝑡 disconnecting
pair of order 𝑘 and size 𝑙 with 𝑎 ∈𝑊 . For 𝑖 = 1, 2, the pair (𝑊, 𝐹 ) induces an 𝑠-𝑡 disconnecting pair
(𝑊𝑖 , 𝐹𝑖) in 𝐺𝑖 − 𝑎 of order 𝑘𝑖 and size 𝑙𝑖 such that 𝑘1 + 𝑘2 = 𝑘 − 1 and 𝑙1 + 𝑙2 = 𝑙 . Without loss of

generality we may assume 𝑙1 ≥ 1.

Claim 1. (𝑘𝑖 , 𝑙𝑖) is a connectivity pair for 𝑠 and 𝑡 in 𝐺𝑖 − 𝑎.

Proof. Suppose (𝑘𝑖 , 𝑙𝑖) is not a connectivity pair. As (𝑊𝑖 , 𝐹𝑖) is a disconnecting pair of order

𝑘𝑖 and size 𝑙𝑖 such a pair exists. Thus, there is a disconnecting pair (𝑊 ′, 𝐹 ′) of order 𝑘 ′ ≤ 𝑘𝑖 ,
size 𝑙 ′ ≤ 𝑙𝑖 and cardinality 𝑘 ′+𝑙 ′ < 𝑘𝑖 +𝑙𝑖 , but then (𝑊 ′∪𝑊𝑗 ∪{𝑎}, 𝐹 ′∪𝐹 𝑗 ) with 𝑗 ∈ {1, 2}\{𝑖}
is an 𝑠-𝑡 disconnecting pair in 𝐺 of order at most 𝑘 , size at most 𝑙 and cardinality less than

𝑘 + 𝑙 which yields a contradiction. ■

Next we show that if (𝑘2, 𝑙2) is not a connectivity pair for 𝑠 and 𝑡 in 𝐺2, the desired paths exist. If

(𝑘2, 𝑙2) is in fact not a connectivity pair, then (𝑘2, 𝑙2+𝑝) is a connectivity pair for some integer 𝑝 ≥ 1.

By induction we get 𝑘2 + 𝑙2 + 𝑝 edge-disjoint 𝑠-𝑡 paths in𝐺2, 𝑘2 + 1 of which are internally vertex-

disjoint. As (𝑘1, 𝑙1) is a connectivity pair in 𝐺1 − 𝑎 again by induction we get 𝑘1 + 𝑙1 edge-disjoint
𝑠-𝑡 paths in𝐺1 −𝑎 of which 𝑘1 +1 are internally vertex-disjoint (recall that 𝑙1 ≥ 1). Together we get

𝑘2 + 𝑙2 + 𝑝 +𝑘1 + 𝑙1 ≥ 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths in𝐺 of which 𝑘1 + 1 +𝑘2 + 1 = 𝑘 + 1 are internally

vertex-disjoint. Thus, we may assume that (𝑘2, 𝑙2) is a connectivity pair for 𝑠 and 𝑡 in 𝐺2.

Now𝑎 cannot be contained in any 𝑠-𝑡 disconnecting pair in𝐺2 of order𝑘2 and size 𝑙2, as otherwise

(𝑘2, 𝑙2) would not be a connectivity pair for 𝑠 and 𝑡 in 𝐺2 − 𝑎. We fix some 𝑠-𝑡 disconnecting pair

(𝑊 ′
2
, 𝐹 ′

2
) in 𝐺2 that has order 𝑘2 and size 𝑙2. As in 𝐺2 −𝑊 ′

2
− 𝐹 ′

2
, the vertex 𝑎 cannot be connected

to both, 𝑠 and 𝑡 , without loss of generality we may assume that 𝑎 is not connected to 𝑡 . Thus, for

the remainder of Case 1 we assume

(𝑘2, 𝑙2) is a connectivity pair for 𝑠 and 𝑡 in𝐺2, (𝑊 ′
2
, 𝐹 ′

2
) is an 𝑠-𝑡 disconnecting pair of order𝑘2

and size 𝑙2 that does not contain 𝑎, and the vertices 𝑎 and 𝑡 are not connected in𝐺2−𝑊 ′
2
−𝐹 ′

2
.

(3.7)

We define 0 ≤ 𝑞 ≤ 𝑙1 to be the unique integer such that (𝑘1 + 1, 𝑙1 − 𝑞) is a connectivity pair for

𝑠 and 𝑡 in 𝐺1. Note that this is well-defined as (𝑊1 ∪ {𝑎}, 𝐹1) is an 𝑠-𝑡 disconnecting pair of order

𝑘1 + 1 and size 𝑙1.

Denote by 𝐻1 the graph arising from 𝐺1 by adding 𝑞 parallel edges 𝑒1, . . . , 𝑒𝑞 between 𝑎 and 𝑠 ,

cf. Figure 3.7. Then the following holds:

Claim 2. (𝑘1 + 1, 𝑙1) is a connectivity pair for 𝑠 and 𝑡 in 𝐻1.

Proof. As argued before, (𝑊1 ∪ {𝑎}, 𝐹1) is an 𝑠-𝑡 disconnecting pair of order 𝑘1 + 1 and size

𝑙1 in𝐺1 and thereby also disconnecting in 𝐻1. Suppose that there exists an 𝑠-𝑡 disconnecting

pair of order 𝑘1 + 1 and size at most 𝑙1 − 1. Let (𝑊 ′, 𝐹 ′) be one such pair of minimal size.

Suppose that 𝑒𝑖 ∈ 𝐹 ′ for some 𝑖 ∈ {1, . . . , 𝑞}. As the size of the disconnecting pair is minimal,

this implies 𝑒𝑖 ∈ 𝐹 ′ for all 𝑖 ∈ {1, . . . , 𝑞}. If this is the case (𝑊 ′, 𝐹 ′ \ {𝑒1, . . . , 𝑒𝑞}) is an 𝑠-𝑡
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𝑠 𝑡
𝑎
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𝑠

𝑎

𝑡
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𝑎

𝐺1

𝐺2

Figure 3.8.: Case 1 of the proof of Theorem 3.16: 𝑠-𝑡 paths in 𝐻1 and 𝐻2 given by induction on the

left. Creation of desired 𝑠-𝑡 paths in𝐺 on the right. Colored dotted lines indicate inter-

nally vertex-disjoint 𝑠-𝑡 paths. Dashed line indicates an 𝑠-𝑡 path that is edge-disjoint to

all other indicated paths. Solid lines are single edges.

disconnecting pair in𝐺1 of order at most 𝑘1 + 1 and size at most 𝑙1 − 1−𝑞 in contradiction to

(𝑘1 + 1, 𝑙1 − 𝑞) being a connectivity pair in 𝐺1. Thus, either 𝑎 ∈𝑊 ′
or 𝑎 and 𝑠 are contained

in the same component of 𝐻1 −𝑊 ′ − 𝐹 ′. In particular there is no 𝑎-𝑡 path in 𝐺1 −𝑊 ′ − 𝐹 ′.
But then (𝑊 ′ ∪𝑊 ′

2
, 𝐹 ′ ∪ 𝐹 ′

2
) is an 𝑠-𝑡 disconnecting pair in 𝐺 of order at most 𝑘 and size at

most 𝑙 − 1 by (3.7). This contradicts (𝑘, 𝑙) being a connectivity pair for 𝑠 and 𝑡 in 𝐺 . ■

Next, denote by 𝐻2 the graph arising from 𝐺2 by adding 𝑞 parallel edges 𝑓1, . . . , 𝑓𝑞 between 𝑎 and

𝑡 , cf. Figure 3.7. We prove the following:

Claim 3. (𝑘2, 𝑙2 + 𝑞) is a connectivity pair for 𝑠 and 𝑡 in 𝐻2.

Proof. If 𝑞 = 0 the statement holds true by (3.7), so assume that 𝑞 ≥ 1. The pair (𝑊 ′
2
, 𝐹 ′

2
∪

{𝑓1, . . . , 𝑓𝑞}) is an 𝑠-𝑡 disconnecting pair in 𝐻2 and 𝑎 and 𝑡 are not in the same component in

𝐻2 −𝑊 ′
2
− 𝐹 ′

2
∪ {𝑓1, . . . , 𝑓𝑞}. So suppose there exists an 𝑠-𝑡 disconnecting pair of order 𝑘2 and

size 𝑙2 +𝑞 − 1. Let (𝑊 ′, 𝐹 ′) be one such pair of minimal size. With the same arguments as in

the previous claim we get that 𝑓𝑖 ∉ 𝐹
′
for all 𝑖 ∈ {1, . . . , 𝑞}. Thus, 𝑎 ∈𝑊 ′

or 𝑎 and 𝑡 are in the

same component in𝐻2−𝑊 ′−𝐹 ′. In particular there does not exist an 𝑠-𝑎 path in𝐺2−𝑊 ′−𝐹 ′.
As (𝑘1 + 1, 𝑙1 −𝑞) is a connectivity pair for𝐺1, there exists an 𝑠-𝑡 disconnecting pair (𝑊 ′

1
, 𝐹 ′

1
)

in𝐺1 of order 𝑘1 + 1 and size 𝑙1 − 𝑞. Suppose there exists an 𝑠-𝑎 path in𝐺1 −𝑊 ′
1
− 𝐹 ′

1
. Then,

there does not exist an 𝑎-𝑡 path and (𝑊 ′
1
∪𝑊 ′

2
, 𝐹 ′

1
∪ 𝐹 ′

2
) is an 𝑠-𝑡 disconnecting pair in 𝐺 of

order 𝑘 and size 𝑙2 + 𝑙1 −𝑞 < 𝑙 by (3.7) — a contradiction. On the other hand if there does not

exist an 𝑠-𝑎 path in 𝐺1 −𝑊 ′
1
− 𝐹 ′

1
, then the pair (𝑊 ′

1
∪𝑊 ′, 𝐹 ′

1
∪ 𝐹 ′) is 𝑠-𝑡 disconnecting in 𝐺

and of order 𝑘 and size 𝑙 − 1, which again yields a contradiction. ■

Note that for 𝑖 ∈ {1, 2} it is 𝑉 (𝐻𝑖) = 𝑉 (𝐺𝑖) < 𝑉 (𝐺) and tw(𝐻𝑖) ≤ 3 as tw(𝐺𝑖) ≤ 3 and we only

added edges between 𝑠 and 𝑎, respectively 𝑎 and 𝑡 to get to𝐻𝑖 from𝐺𝑖 . By Claim 2 and the induction
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hypothesis there are 𝑘1 + 1 + 𝑙1 edge-disjoint 𝑠-𝑡 paths in 𝐻1, say 𝑃1, . . . , 𝑃𝑘1+𝑙1+1, of which 𝑘1 + 2

are internally vertex-disjoint, cf. Figure 3.8. Without loss of generality let 𝑃1, . . . , 𝑃𝑟1
be the paths

using edges from {𝑒1, . . . , 𝑒𝑞}, where from these we denote by 𝑃1 the path that is among the 𝑘1 + 2

internally vertex-disjoint paths, if one such path exists. If 𝑞 = 𝑙2 = 0, then (𝑘2, 0) is a connectivity
pair for 𝑠 and 𝑡 in𝐺2 − 𝑎 by Claim 1, and by Observation 3.3 there are 𝑘2 internally vertex-disjoint

𝑠-𝑡 paths in 𝐺2 − 𝑎. Together with 𝑃1, . . . , 𝑃𝑘1+𝑙1+1 we get the desired paths for 𝐺 . So assume that

𝑞 + 𝑙2 > 0. By Claim 3 and the induction hypothesis there exist 𝑘2 + 𝑙2 +𝑞 edge-disjoint 𝑠-𝑡 paths in
𝐻2, say𝑄1, . . . , 𝑄𝑘2+𝑙2+𝑞 of which 𝑘2 + 1 are internally vertex-disjoint, cf. Figure 3.8. Without loss of

generality let 𝑄1, . . . , 𝑄𝑟2
for 𝑟2 ≤ 𝑞 be the paths using edges from {𝑓1, . . . , 𝑓𝑞}, where again from

these we denote by𝑄1 the path that is among the 𝑘2+1 internally vertex-disjoint paths, if one such

path exists. We now claim that for 𝑟 := min{𝑟1, 𝑟2} the paths

𝑄1𝑎 ∪ 𝑎𝑃1, . . . , 𝑄𝑟𝑎 ∪ 𝑎𝑃𝑟 , 𝑃𝑟1+1, . . . , 𝑃𝑘1+𝑙1+1, 𝑄𝑟2+1, . . . , 𝑄𝑘2+𝑙2+𝑞

are at least 𝑘 + 𝑙 edge-disjoint 𝑠-𝑡 paths of which at least 𝑘 + 1 are internally vertex-disjoint, cf. Fig-

ure 3.8. First note, that the number of paths is exactly

𝑟 + (𝑘1 + 𝑙1 + 1) − 𝑟1 + (𝑘2 + 𝑙2 + 𝑞) − 𝑟2 = 𝑘 + 𝑙 + 𝑞 + 𝑟 − 𝑟1 − 𝑟2.

As 𝑟 is equal to 𝑟𝑖 for some 𝑖 and 𝑞 is greater than or equal to 𝑟1 and 𝑟2 we get that the number of

paths is at least 𝑘 + 𝑙 . To see that among the paths above, there are at least 𝑘 + 1 internally vertex-

disjoint paths, note that we started off with a set of 𝑘1 + 2 +𝑘2 + 1 = 𝑘 + 2 internally vertex-disjoint

paths P ⊆ {𝑃1, . . . , 𝑃𝑘1+𝑙1+1, 𝑄1, . . . , 𝑄𝑘2+𝑙2+𝑞}.
The only vertex besides 𝑠 and 𝑡 that may be contained in more than one path of P is 𝑎. If

𝑄1, 𝑃1 ∈ P they are glued together and 𝑘 + 1 internally vertex-disjoint paths still remain. If only

one of 𝑃1 and𝑄1, say 𝑃1, is among the internally vertex-disjoint paths, then P \{𝑃1} is a set of 𝑘 +1

internally vertex-disjoint paths, as only one other path than 𝑃1 may contain 𝑎. Finally if neither

𝑃1 nor 𝑄1 are among the internally vertex-disjoint paths, then P contains a subset of internally

vertex-disjoint paths of size 𝑘 + 1 as at most two paths in P may contain 𝑎. This concludes Case 1.

Case 2: The vertex 𝑎 is not contained in any 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 .

Denote by (𝑊, 𝐹 ) an 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 and for 𝑖 ∈ {1, 2} let𝑊𝑖 =

𝑉 (𝐺𝑖) ∩𝑊 , 𝑘𝑖 = |𝑊𝑖 |, 𝐹𝑖 = 𝐸 (𝐺𝑖) ∩ 𝐸𝑖 , and 𝑙𝑖 = |𝐹𝑖 |. Then 𝑘1 + 𝑘2 = 𝑘 and 𝑙1 + 𝑙2 = 𝑙 . Without loss

of generality we may assume that there is no 𝑠-𝑎 path in 𝐺 −𝑊 − 𝐹 and thereby also no 𝑠-𝑎 path

in 𝐺𝑖 −𝑊𝑖 − 𝐹𝑖 for 𝑖 ∈ {1, 2}.
For 𝑖 ∈ {1, 2} denote by 0 ≤ 𝑞𝑖 ≤ 𝑙𝑖 the unique integer such that (𝑘𝑖 , 𝑙𝑖 − 𝑞𝑖) is a connectivity

pair for 𝑠 and 𝑡 in𝐺𝑖 . Note that this is well-defined as as (𝑊𝑖 , 𝐹𝑖) is an 𝑠-𝑡 disconnecting pair in𝐺𝑖 .

We define 𝑞 = max{𝑞1, 𝑞2} and assume without loss of generality that 𝑞 = 𝑞1. Let (𝑊 ′
1
, 𝐹 ′

1
) be an

𝑠-𝑡 disconnecting pair in𝐺1 of order 𝑘1 and size 𝑙1 −𝑞 and denote by 𝐻1 the graph arising from𝐺1

by adding 𝑞 edges 𝑒1, . . . , 𝑒𝑞 between 𝑎 and 𝑡 .

Claim 4. (𝑘1, 𝑙1) is a connectivity pair for 𝑠 and 𝑡 in 𝐻1.
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Proof. If 𝑞 = 0 the claim holds true by definition of 𝑞. So assume 𝑞 ≥ 1. Clearly (𝑊 ′
1
, 𝐹 ′

1
∪

{𝑒1, . . . , 𝑒𝑞}) is an 𝑠-𝑡 disconnecting pair in 𝐻1 of order 𝑘1 and size 𝑙1. So suppose there

exists an 𝑠-𝑡 disconnecting pair of order 𝑘1 and size at most 𝑙1 − 1. Let (𝑊 ′, 𝐹 ′) be such a

pair of minimal size. If 𝑒1, . . . , 𝑒𝑞 ∈ 𝐹 ′ the pair (𝑊 ′, 𝐹 ′ \ {𝑒1, . . . , 𝑒𝑞}) is 𝑠-𝑡 disconnecting
in 𝐺1 and of order 𝑘1 and size at most 𝑙1 − 𝑞 − 1, contradicting the fact that (𝑘1, 𝑙1 − 𝑞) is a
connectivity pair for 𝑠 and 𝑡 in𝐺1. Thus, either 𝑎 ∈𝑊 ′

or 𝑎 and 𝑡 are contained in the same

component in 𝐻1 −𝑊 ′ − 𝐹 ′. In particular there is no 𝑠-𝑎 path in 𝐺1 −𝑊 ′ − 𝐹 ′ and thereby

the pair (𝑊 ′ ∪𝑊2, 𝐹
′ ∪ 𝐹2) is 𝑠-𝑡 disconnecting in𝐺 and of order 𝑘 and size at most 𝑙 − 1. A

contradiction to (𝑘, 𝑙) being a connectivity pair for 𝑠 and 𝑡 in 𝐺 . ■

Let now 𝐻2 be the graph arising from 𝐺2 by adding 𝑞 edges 𝑓1, . . . , 𝑓𝑞 between 𝑎 and 𝑠 . For 𝐻2 we

can also find a connectivity pair.

Claim 5. (𝑘2, 𝑙2 + 𝑞) is a connectivity pair for 𝐻2.

Proof. Again, if 𝑞 = 0 the claim is immediate by definition of 𝑞. So let 𝑞 ≥ 1. Then (𝑊2, 𝐹2 ∪
{𝑓1, . . . , 𝑓𝑞}) is an 𝑠-𝑡 disconnecting pair of order 𝑘2 and size 𝑙2 + 𝑞 in 𝐻2. So suppose there

exists an 𝑠-𝑡 disconnecting pair of order 𝑘2 and size at most 𝑙2 + 𝑞 − 1. Let (𝑊 ′, 𝐹 ′) be such a

pair of minimal size. If 𝑓1, . . . , 𝑓𝑞 ∈ 𝐹 ′, then there is no 𝑠-𝑎 path in 𝐻2 −𝑊 ′ − 𝐹 ′. This implies

that (𝑊 ′∪𝑊1, 𝐹
′\{𝑓1, . . . , 𝑓𝑞′}∪𝐹1) is a disconnecting pair in𝐺 of order at most 𝑘 and size at

most 𝑙 − 1 yielding a contradiction. Thus, either 𝑎 ∈𝑊 ′
or 𝑎 and 𝑠 are contained in the same

component in 𝐻2 −𝑊 ′ − 𝐹 ′. In particular there is no 𝑎-𝑡 path in𝐺2 −𝑊 ′ − 𝐹 ′. If there is also
no 𝑎-𝑡 path in𝐺1 −𝑊 ′

1
− 𝐹 ′

1
, the pair (𝑊 ′∪𝑊 ′

1
, 𝐹 ′∪ 𝐹 ′

1
) is disconnecting in𝐺 and of order at

most 𝑘 and size at most 𝑙 − 1. This yields a contradiction to (𝑘, 𝑙) being a connectivity pair

for 𝑠 and 𝑡 in 𝐺 . So suppose that there is an 𝑎-𝑡 path in 𝐺1 −𝑊 ′
1
− 𝐹 ′

1
. Then there is no 𝑠-𝑎

path in𝐺1 −𝑊 ′
1
− 𝐹 ′

1
and (𝑊 ′

1
∪𝑊2, 𝐹

′
1
∪ 𝐹2) is an 𝑠-𝑡 disconnecting pair in𝐺 , that has order

at most 𝑘 and size at most 𝑙1 − 𝑞 + 𝑙2 < 𝑙 as 𝑞 ≥ 1. Again this contradicts the fact that (𝑘, 𝑙)
is a connectivity pair for 𝑠 and 𝑡 in 𝐺 . ■

As in the proof of Case 1 we use the induction hypothesis on 𝐻1 and 𝐻2 to get the desired paths.

If neither 𝑙1 = 0 nor 𝑙2 +𝑞 = 0 we get the paths in𝐺 in the same manner as in Case 1 and therefore

do not repeat the arguments here.

For the other case, let 𝑙 ′
1
= 𝑙1 and 𝑙

′
2
= 𝑙2 + 𝑞. If we can show for 𝑖 ∈ {1, 2}, that if 𝑙 ′𝑖 = 0, then in

𝐺𝑖 − 𝑎 the pair (𝑘𝑖 , 0) is a connectivity pair, we can again proceed as in Case 1 and get the desired

paths. To see this we simply observe that 𝑎 is not contained in any 𝑘𝑖-vertex separator in𝐺𝑖 as this

would imply that 𝑎 is contained in an 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 in 𝐺 .

3.5. Computing the Second Coordinate in a Connectivity Pair

In [BWO12] Beineke and Wilson proposed the question how difficult it is to compute the second

coordinate in a connectivity pair. In this section we deal with this question and show that there is

no polynomial time algorithm for this problem unless P = NP. We formulate the question as the

following decision problem.
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Connectivity Pair (CP).

Instance: An undirected graph 𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), and 𝑘, 𝐵 ∈ N.
Question: Does 𝑙 ∈ N with 𝑙 ≤ 𝐵 exist such that (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 in 𝐺?

Recall that by ^𝐺 (𝑠, 𝑡) we denote the vertex-connectivity between 𝑠 and 𝑡 , i.e. the cardinality of

a minimum vertex separator separating 𝑠 and 𝑡 . It can be readily observed, that for a fixed 𝑘 the

second coordinate in a connectivity pair is unique in the following sense.

Observation 3.17. Let 𝐺 be a graph with distinct vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and let, 𝑘, 𝑙 ∈ N with

0 ≤ 𝑘 ≤ ^𝐺−𝐸 (𝑠,𝑡 ) (𝑠, 𝑡). There exists a unique integer 𝑙𝑘 such that (𝑘, 𝑙𝑘 ) is a connectivity pair for 𝑠

and 𝑡 in𝐺 . In particular, if there exists an 𝑠-𝑡 disconnecting pair of order 𝑘 and size 𝑙 , then there exists

a unique integer 𝑙𝑘 ≤ 𝑙 such that (𝑘, 𝑙𝑘 ) is a connectivity pair.

We prove that Connectivity Pair isNP-complete by a reduction from Partial Vertex Cover.

Let 𝐺 be a graph and 𝑞 a non-negative integer. Recall the definition of a partial vertex cover in a

graph: We call a subset𝐶 ⊆ 𝑉 (𝐺) a partial vertex cover with respect to 𝑞 if at least 𝑞 edges in 𝐸 (𝐺)
are incident to a vertex in 𝐶 . In [CS13] Caskurlu and Subramani showed that Partial Vertex

Cover is NP-complete when restricted to instances with bipartite graphs.

Theorem 3.18. Connectivity Pair is NP-complete.

Proof. To verify that CP ∈ NP, we use as a certificate an 𝑠-𝑡 disconnecting pair of order 𝑘 and size

𝑟 ′ for some 𝑟 ′ ≤ 𝐵. Clearly we may verify that the pair is disconnecting in polynomial time. Thus,

by Observation 3.17 there exists an 𝑙 ≤ 𝑟 ′ such that (𝑘, 𝑙) is a connectivity pair.

Let an instance of Partial Vertex Cover be given, such that the graph 𝐺 of the instance is

bipartite with bipartition 𝐴 ·∪ 𝐵. As we can decide in polynomial time if there exists a vertex

cover with at most 𝐵 vertices on bipartite graphs, we may assume that any vertex cover of 𝐺 has

cardinality of at least 𝐵+1. We construct an instance of CP as follows: Set the graph of the instance

to be𝐺 ′
with𝑉 (𝐺 ′) := 𝑉 (𝐺)∪{𝑠, 𝑡} for some distinct vertices 𝑠, 𝑡 ∉ 𝑉 (𝐺) and 𝐸 (𝐺 ′) = 𝐸 (𝐺)∪𝐸𝑠∪𝐸𝑡 ,

where 𝐸𝑠 (𝐸𝑡 ) consists of |𝐴| · |𝐸 (𝐺) | (|𝐵 | · |𝐸 (𝐺) | edges of which |𝐸 (𝐺) | are parallels between 𝑠 (𝑡 )
and 𝑎 (𝑏) for each 𝑎 ∈ 𝐴 (𝑏 ∈ 𝐵). Moreover, set 𝑘 B 𝐵 and 𝑙 B |𝐸 (𝐺) | − 𝑞. All these steps can
be realized in polynomial time. We note that there are at least 𝑘 + 1 internally vertex-disjoint 𝑠-𝑡

paths, as any vertex cover in 𝐺 has cardinality at least 𝐵 + 1 > 𝑘 .

First assume that there exists a partial vertex cover 𝑆 with respect to 𝑞 in 𝐺 such that |𝑆 | ≤ 𝐵.

Then (𝑆, 𝐹 ) with 𝐹 B {𝑣𝑤 ∈ 𝐸 (𝐺) : 𝑣,𝑤 ∉ 𝑆} is an 𝑠-𝑡 disconnecting pair in 𝐺 ′
with |𝑆 | ≤ 𝐵 = 𝑘

and |𝐹 | ≤ |𝐸 (𝐺) |−𝑞 = 𝑙 . By Observation 3.17 there exists an 𝑙 ′ ≤ 𝑙 such that (𝑘, 𝑙 ′) is a connectivity
pair for 𝑠 and 𝑡 in 𝐺 ′

.

Now assume that (𝑘, 𝑙 ′) is a connectivity pair for 𝑠 and 𝑡 in𝐺 ′
for some 𝑙 ′ ≤ 𝑙 . By the definition

of a connectivity pair, there exists an 𝑠-𝑡 disconnecting pair (𝑊, 𝐹 ) of order 𝑘 and size 𝑙 ′. There

does not exist an 𝑠-𝑡 disconnecting pair of order 𝑘 and size smaller than 𝑙 ′. Thus, it holds true

that 𝐹 ⊆ 𝐸 (𝐺), as 𝑙 ′ ≤ 𝑙 ≤ |𝐸 (𝐺) | and any disconnecting pair with a minimal amount of edges

either contains an edge and all its parallels or it does not contain the particular edge. For any edge
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𝑎𝑏 ∈ 𝐸 (𝐺) \ 𝐹 it holds true that 𝑎 ∈ 𝑊 or 𝑏 ∈ 𝑊 , as otherwise, 𝑠𝑎𝑏𝑡 is an 𝑠-𝑡 path in 𝐺 −𝑊 − 𝐹 .
Thus,𝑊 is a partial vertex cover in 𝐺 with respect to |𝐸 (𝐺) | − |𝐹 | ≥ |𝐸 (𝐺) | − 𝑙 = 𝑞. Further it is
|𝑊 | = 𝑘 = 𝐵, which finishes the proof.

We get the intractability of the computation of the second coordinate of a connectivity pair as

an immediate corollary: An algorithm computing the second coordinate in polynomial time could

clearly be used to decide CP in polynomial time.

Corollary 3.19. Unless P = NP, there is no polynomial time algorithm that, given any graph 𝐺 ,

distinct vertices 𝑠 and 𝑡 and an integer 0 ≤ 𝑘 ≤ ^𝐺−𝐸 (𝑠,𝑡 ) (𝑠, 𝑡), returns the integer 𝑙 such that (𝑘, 𝑙) is
a connectivity pair for 𝑠 and 𝑡 in 𝐺 .

Note that it is possible to formulate a version of CP for the first coordinate of a connectivity

pair. We would get NP-completeness in a similar manner as in Theorem 3.18. We do not explicitly

define this problem here, as for a fixed 𝑙 , there does not necessarily exist a 𝑘 such that (𝑘, 𝑙) forms

a connectivity pair and the question of computing the first coordinate in a connectivity pair is

thereby undefined. To see this, for example, regard some graph where each edge has at least 𝑙 + 1

parallels.

As for any fixed 𝑘 the corresponding connectivity pair is unique by Observation 3.17, the prob-

lem of computing all connectivity pairs for a graph 𝐺 and vertices 𝑠 and 𝑡 can be solved by com-

puting the unique connectivity pairs for all 𝑘 with 0 ≤ 𝑘 ≤ ^𝐺−𝐸 (𝑠,𝑡 ) (𝑠, 𝑡).

Conclusion We began this chapter by briefly repeating basic observations and previous results

concerning connectivity pairs and, in particular, the Beineke Harary Conjecture. We then proved

the conjecture for the special case that the second coordinate in the regarded connectivity pair

equals 2. This substantially differs from previous results in the literature and can be used to prove

the Beineke Harary Conjecture for restricted graph classes. We illustrate the latter fact by using

our results from Section 3.3 to prove the conjecture for graphs of treewidth at most 3. Finally, in

the last section we consider the complexity of computing the second coordinate in a connectivity

pair, which was raised by Beineke et al. in [BWO12]. We prove that there is no polynomial time

algorithm performing the desired task, unless P = NP.
The most self-evident further research direction is proving the Beineke Harary Conjecture for

𝑙 = 3 or even larger. As mentioned in Section 3.4, this could also lead to further results on graphs

with bounded treewidth. Provided that the conjecture holds for 𝑙 = 3 it should be possible to prove

the conjecture for graphs of treewidth at most 4 in a similar manner as in the proofs for graphs of

treewidth at most 2 and 3.

As a concluding remark, we strongly believe that the Beineke Harary Conjecture holds in its

form presented in the introduction of this chapter.
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Chapter 4.

2.5-connectivity

In this chapter we discuss separators containing a single vertex and a single edge — vertex-edge

separators. We prove that any 2-connected graph canonically decomposes into a set of graphs,

such that all resulting graphs are either cycles or do not contain vertex-edge separators. We show

that this decomposition induces a tree structure and both, the graphs and the tree structure, can

be computed in linear time.

This chapter is strongly based on Sections 2, 3 and 4 of our publication [Hei+20a]. The method-

ology used in [Hei+20a] somewhat differs from the one we use here, though the results remain

largely unchanged. We comment on differences to [Hei+20a], when applicable. All of the results

of this chapter are joint work with Irene Heinrich, Till Heller and Eva Schmidt.

It is well known that any connected graph uniquely decomposes into its blocks and there exists

a unique block-cutpoint tree whose nodes are cut vertices and blocks, cf. Section 2.5 of Chapter 2.

Hopcroft and Tarjan established a similar results for blocks: Any connected graph without a cut

vertex decomposes into its triconnected components, which are multiedges, cycles or 3-connected

graphs, cf. [HT72]. In the same publication they proved that there exists a unique tree structure

on the triconnected components, which serves as a build-up manual for the original graph. This

tree structure is more commonly known as SPQR-trees, which were introduced by Di Battista

et al. in [BT89]. Hopcroft and Tarjan also claimed linear time computability of the triconnected

components of a connected graph without a cut vertex, though their proof contained minor errors.

These were corrected by Gutwenger and Mutzel in [GM01], who also argued that computing the

SPQR-tree of a connected graph without a cut vertex can be implemented to run in linear time.

Triconnected components and SPQR-trees have several applications. Most of the applications

are in the field of graph drawing. For example, triconnected components can be used for the

recognition of planar graphs, cf. [BSW70], or the representation of all planar embeddings of a

2-connected planar graph.

More recently Grohe described a decomposition of a graph into quasi 4-connected components,

cf. [Gro16]. This decomposition refines the decomposition into triconnected components. Fur-

ther Grohe establishes structural results which strongly connects the decomposition into quasi

4-connected components to certain tree decompositions of a graph.

Here we introduce another set of components of a graph, that, in some sense, lies between the

blocks and the triconnected components of a graph. The blocks of a connected graph can be defined
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by exhaustively dividing the graph at its cut vertices. The triconnected components of a graph can

essentially are essentially defined by dividing the graph at 2-vertex separator. In order to obtain

the components discussed here we split up the graph at (or rather along) vertex-edge separators.

Vertex-edge separators are used to characterize the class of Eulerian graphs that decompose into

a unique number of cycles in [HS19], cf. Chapter 5. For a summary on mixed separators we refer

to the introduction of Chapter 3 or the chapter on mixed connectivity in [BWO12].

Outline In the first section of this chapter we repeat some of the results and the notation from

Hopcroft and Tarjan in [HT72], as we make use of them throughout this chapter. Afterwards,

in Section 4.2, we introduce vertex-edge separators and 2.5-connected components and gather

some basic facts surrounding the topic. In Section 4.3 we state results on the behavior of 2-edge

separator in a graph, when splitting along vertex-edge separators. In Section 4.4, we prove the

uniqueness of the regarded 2.5-connected components and, afterwards, in Section 4.5 we argue that

the components may be computed in linear time. Finally, we give formal proofs for the statements

in Section 4.3 and consider the behavior of general separators in Section 4.6.

4.1. Triconnected Components

In this section we repeat some of the notation and results from Hopcroft and Tarjan in [HT72].

Our definitions regarding 2.5-connected components are strongly based on this.

Let 𝐺 be a connected graph without a cut vertex. For two distinct vertices 𝑣,𝑤 ∈ 𝑉 (𝐺) we
define a relation on the edges of 𝐺 : Two edges 𝑒1 and 𝑒2 relate if there exists a path 𝑃 in 𝐺 with

𝑒1, 𝑒2 ∈ 𝐸 (𝑃) that does not contain 𝑣 or𝑤 as an interior vertex. This defines an equivalence relation

on 𝐸 (𝐺). We call the equivalence classes 𝐸1, . . . , 𝐸𝑘 of the relation the separation classes of 𝐺 with

respect to {𝑣,𝑤}. Examples of separation classes can be seen in Figure 4.1 and 4.2. The pair {𝑣,𝑤}
is then called separation pair if

(i) 𝑘 = 2 and min {|𝐸1 | , |𝐸2 |} ≥ 2,

(ii) 𝑘 = 3 and not |𝐸1 | = |𝐸2 | = |𝐸3 | = 1, or

(iii) 𝑘 > 3.

Examples of subsets of vertices that do not form separation pairs can be seen in Figure 4.1 and

examples for sets that are separation pairs can be seen in Figure 4.2. It is worth noting, that a

separation pair {𝑣,𝑤} does not necessarily separate a 2-connected graph𝐺 in the sense that𝐺−𝑣−𝑤
hasmore than one component, cf. Figure 4.2 c). If the two vertices of a separation pair are connected

by multiple edges it is possible that the deletion of this separation pair does not lead to a graph

with multiple components. However, if the graph𝐺 − 𝑣 −𝑤 has more than one component, {𝑣,𝑤}
is always a separation pair.

Let now {𝑣,𝑤} be a separation pair of a graph 𝐺 with separation classes 𝐸1, . . . , 𝐸𝑘 . Further, let

𝐸 ′ B
⋃

𝑖∈𝐼 𝐸𝑖 for some 𝐼 ⊆ {1, . . . , 𝑘}, such that 𝐸 ′, as well as 𝐸 (𝐺) \𝐸 ′ contain at least 2 edges. We
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a) b) c)

Figure 4.1.: Examples of separation classes in graphs with respect to the colored vertices. Same

colored edges are contained in the same separation class.

a) b) c)

Figure 4.2.: Examples of separation pairs in graphs. The colored vertices form the separation pair.

Same colored edges are contained in the same separation class.

call the two graphs𝐺1 B 𝐺 [𝐸 ′] + 𝑣𝑤 and𝐺2 B 𝐺 [𝐸 \𝐸 ′] + 𝑣𝑤 split graphs of𝐺 with respect to the

separation pair {𝑣,𝑤}. The two additional edges in 𝐸 (𝐺1) and 𝐸 (𝐺2) that are not contained in 𝐸 (𝐺)
are called virtual edges. Let G be a set of graphs in which no two graphs have a common edge.

Replacing 𝐺 ∈ G by the split graphs 𝐺1 and 𝐺2 corresponding to some separation pair contained

in 𝐺 , is called a split on G. The result of this split is the set G′ B G \ {𝐺} ∪ {𝐺1,𝐺2}. If G = {𝐺}
for some graph 𝐺 , by abuse of notation we also say split on 𝐺 instead of {𝐺}. For an example of

different splits on a graph see Figure 4.3.

Any pair of virtual edges 𝑒1, 𝑒2 is assigned a unique label, when created. We call 𝑒1 the split

partner of 𝑒2. With this we define the backwards operation of a split. Given two graphs 𝐺1 and

𝐺2 with virtual edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2) having the same label, we call the graph 𝐺 =

(𝑉 (𝐺1) ∪ 𝑉 (𝐺2), 𝐸 (𝐺1) ∪ 𝐸 (𝐺2) \ {𝑒1, 𝑒2}) the merge graph of 𝐺1 and 𝐺2. Analogously to a split,

replacing two graphs by their merge graph, is called a merge.

The sequence 𝑠1, . . . , 𝑠𝑘 is a sequence of splits (and merges) on G if 𝑠1 is a split (or a merge) on

G and 𝑠𝑖 is a split(or a merge) on the result of 𝑠𝑖−1 for all 𝑖 ∈ {2, . . . , 𝑘}. The result of a sequence of
splits (and merges) is the result of the last split (merge) in the sequence. A set of split components𝔖

of 𝐺 is the result obtained from a sequence of splits on 𝐺 , such that no graph 𝐺 ′ ∈ 𝔖 contains a

separation pair. Each graph in a set of split components is either a multiedge containing exactly

3-edges, a triangle or a 3-connected graph.

Let 𝐺 be a connected graph without a cut vertex and let G be a set of split components of 𝐺 .

Perform a sequence of merges on G, such that each merge in the sequence replaces two graphs that

are either both cycles or both multiedges. If the result X of the sequence of merges does not allow
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Figure 4.3.: Possible splits at the separation pair consisting of the colored vertices. Dashed edges

are virtual. Edges with the same color belong to the same separation class if solid and

are split partners else.

for another merge of this form, X is the set of triconnected components of 𝐺 . The next theorem

justifies saying the triconnected components.

Theorem 4.1 ([HT72]). The triconnected components of a graph are unique.

For a connected graph𝐺 without a cut vertex and the result G of a sequence of splits and merges

on 𝐺 Hopcroft and Tarjan [HT72] introduced the graph 𝑇spl(G) with

𝑉 (𝑇spl(G)) = G
𝐸 (𝑇spl(G)) = {𝐺𝐻 : 𝐺 and 𝐻 contain a virtual edge with the same label} .

Here we refer to 𝑇spl(G) as the split tree of G. The following lemma is a keystone in the proof of

the uniqueness of the triconnected components.

Lemma 4.2 ([HT72]). Let 𝐺 be a connected graph without a cut vertex and denote by G the result

of a sequence of splits and merges on 𝐺 . Then the following holds true.

(i) The split tree 𝑇spl(G) is a tree.

(ii) G is the result of a sequence of splits on 𝐺 .

As the term uniqueness may lead to some misunderstanding we discuss it in the following. Let

X1,X2 be two sets of triconnected components of the same graph 𝐺 . The only thing that possibly

differs in X1 and X2 are the labels of the virtual edges. In particular we can turn X1 into X2 only

by relabeling split partners in graphs of X1, i.e. replacing split partners with a new pair of virtual

edges having the same endvertices as before. That being said, we may canonically label the virtual

edges in a set of triconnected components in order to get the set of triconnected components. Note

that this uniqueness of the components is far from obvious. The split components of a graph, for

example, are not unique in this sense. To see this regard a cycle on four vertices. It can be split

in two different ways leading to two different sets of split components. Note that this form of
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uniqueness is stronger than uniqueness up to isomorphism. When we discuss uniqueness of 2.5-

connected components in Section 4.4 the term uniqueness should be understood in the same way.

For an example of the triconnected components of a graph see Figure 4.4.

This concludes our summary of the results from Hopcroft and Tarjan in their paper [HT72]. We

are now ready to turn to vertex-edge separators in the next section.

4.2. Vertex-Edge Separators

In this section we formally introduce vertex-edge separators and 2.5-connectivity. We give some

basic results and facts on these kind of separators, establish a connection to separation pairs and

finally introduce 2.5-components of a graph.

Definition 4.3. Let 𝐺 be a 2-connected graph. We call the pair (𝑣, 𝑒) a vertex-edge separator in
𝐺 if𝐺 − 𝑣 − 𝑒 is not connected. If there does not exist a vertex-edge separator in𝐺 , then we call𝐺

2.5-connected.

Lemma 4.4. Let 𝐺 be a 2-connected graph containing a vertex-edge separator (𝑣,𝑢𝑤). Then, the
graph 𝐺 − 𝑣 − 𝑢𝑤 has exactly two components.

Proof. As𝐺 is 2-connected, the graph𝐺−𝑣 is connected. Deleting an edge from a connected graph

results in a graph with no more than 2 components. As𝐺 − 𝑣 −𝑢𝑤 is not connected it has exactly

two components.

Lemma 4.5. Let 𝐺 be a 2-connected graph and let 𝑢𝑤 ∈ 𝐸 (𝐺). Then 𝐺 − 𝑢𝑤 is connected and the

block-cutpoint tree 𝑇 of 𝐺 − 𝑢𝑤 is a path.

Proof. Let 𝑢𝑤 ∈ 𝐸 (𝐺) be arbitrary. If 𝑢 and 𝑤 are contained in the same block of 𝐺 − 𝑢𝑤 , the

block-cutpoint tree 𝑇 of 𝐺 − 𝑢𝑤 consists of a single block and the claim holds. So assume 𝑢 and

𝑤 are contained in two distinct blocks 𝐵1, 𝐵2 in 𝐺 − 𝑢𝑤 . Then the block-cutpoint tree of 𝐺 can be

obtained by replacing all nodes on the distinct 𝐵1-𝐵2 path in 𝑇 by the union of all blocks on that

path with the additional edge 𝑢𝑤 . As 𝐺 is 2-connected its block-cutpoint tree consists of a single

block and 𝑇 is a path.

Lemma 4.6. Let 𝐺 be a 2-connected graph that is not a triangle and let (𝑣,𝑢𝑤) be a vertex-edge

separator in 𝐺 . If 𝑣,𝑤1, . . . ,𝑤𝑘 are the cut vertices of 𝐺 − 𝑢𝑤 , then any two distinct vertices 𝑥,𝑦 ∈
{𝑣,𝑢,𝑤,𝑤1, . . . ,𝑤𝑘 }, such that 𝑥𝑦 is not 𝑢𝑤 and 𝐺 [𝑥𝑦] is not a block of 𝐺 − 𝑢𝑤 , yield a separation

pair (𝑥,𝑦) of 𝐺 . In particular, {𝑣,𝑢} or {𝑣,𝑤} is a separation pair.

Proof. By Lemma 4.5 the block-cutpoint tree of 𝐺 − 𝑢𝑤 is a path 𝑃 . Let 𝐵1, . . . 𝐵𝑙 be the blocks of

𝐺 −𝑢𝑤 ordered in their appearance in 𝑃 and let 𝐵𝑙+1 be the path consisting of the single edge 𝑢𝑤 .

Let 𝑥,𝑦 ∈ {𝑢, 𝑣,𝑤,𝑤1 . . . ,𝑤𝑘 } such that 𝑥𝑦 ≠ 𝑢𝑤 and 𝐺 [𝑥𝑦] is not a block in 𝐺 − 𝑢𝑤 . If 𝑥,𝑦 ∈ 𝐵𝑖
for some 𝑖 ∈ {1, . . . , 𝑙 + 1}, by definition of 𝑥 and 𝑦, the block 𝐵𝑖 consists of more than one edge

and

⋃
𝑗≠𝑖 𝐸 (𝐵 𝑗 ) is a separation class of𝐺 with respect to {𝑥,𝑦}. Thus, {𝑥,𝑦} is a separation pair in

𝐺 . Otherwise, each separation class of 𝐺 with respect to {𝑥,𝑦} contains the edges of at least two

38



Chapter 4. 2.5-connectivity

Figure 4.4.: On the left, the triconnected components of the above graph. On the right the 2.5-

connected components of the graph. Dashed lines are virtual edges.

graphs in {𝐵1, . . . , 𝐵𝑙+1} and hence {𝑥,𝑦} is again a separation pair. To see that {𝑣,𝑢} or {𝑢,𝑤} is
a separation pair we observe that not both 𝑣𝑢 and 𝑣𝑤 can be a block in 𝐺 − 𝑢𝑤 , as then 𝐺 would

be a triangle.

Lemma 4.6 suggests that for each vertex-edge separator in a 2-connected graph𝐺 (not a triangle)

we have at least one related separation pair. Now themain idea for the definition of 2.5-components

is to split graphs along separation pairs, that are related to a vertex-edge separator in the sense of

Lemma 4.6. Let us formalize what we just described.

Definition 4.7. Let 𝐺 be a 2-connected graph and let {𝑣,𝑤} be a separation pair in 𝐺 . We call

two split graphs of 𝐺 with respect to {𝑣,𝑤} 2.5-split graphs if one of the created virtual edges is

contained in a 2-edge separator in its respective split graph. Any split that replaces a graph by 2.5-

split graphs is called supporting split or 2.5-split. Any edge that is contained in a 2-edge separator

with the created virtual edge is said to support the separation pair and the 2.5-split. We refer to

splits that are not supporting as non-supporting.

A set of 2.5-split components𝔖 of 𝐺 is the result obtained from a sequence of supporting splits

on 𝐺 that does not allow for another supporting split. A set of 2.5-connected components of 𝐺 is

the result Y of a sequence of merges on a set of 2.5-split components, such that no two different
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𝑠 𝑠★

𝑠 ′ 𝑚

Figure 4.5.: A sequence of strongly supporting splits and merges on a graph. The result cannot

be obtained by a sequence of strongly supporting splits only. Dashed lines are virtual

edges. Colored edges indicate possible supports of the split leading to the displayed set

of graphs.

cycles in Y can be merged, i.e. no two split partners are both contained in cycles of Y.

Observe that in a 2-connected graph that is not a triangle each of the separation pairs from

Lemma 4.6 induces a supporting split. Regard a set of 2.5-split components 𝔖 of a 2-connected

graph 𝐺 . Then each graph in 𝔖 is either a triangle, a multiedge with at least 3 edges, or a 2.5-

connected graph. In particular, if a graph in𝔖 is not a triangle, then it does not contain a vertex-

edge separator. The same holds for a set of 2.5 components except that these may contain arbitrary

large cycles instead of only triangles. For an example of 2.5-connected components of a graph 𝐺 ,

see Figure 4.4.

In [Hei+20a], we defined 2.5-splits and the according graphs in a slightly different manner. For

a split to be supporting the according separation pair had to be of the form {𝑣,𝑤}, where (𝑣,𝑢𝑤) is
a vertex-edge separator for some vertex 𝑢. The required 2-edge separator is formed by 𝑢𝑤 and one

of the virtual edges created by the split. Here we refer to splits of this kind as strongly supporting

splits. We use the former definition here, as it allows for more freedom when splitting the graph

and simplifies some of the statements. In particular a result of an arbitrary sequence of strongly

supporting splits and merges can in general not be obtained by a sequence of strongly supporting

splits only, as Example 4.8 shows. For supporting splits this is possible as we see later on.

Example 4.8. Regard Figure 4.5. The splits 𝑠 and 𝑠 ′ indicate strongly supporting splits. The
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graph obtained by the merge𝑚 can however not be obtained by a strongly supporting split. The

split 𝑠★ in the figure is supporting.

However, we prove that both approaches define the same set of 2.5-connected components,

cf. Theorem 4.23. In order to prove the uniqueness of 2.5-connected components the transference

of 2-edge separators along splits is of importance. This is what we consider in the next section.

4.3. 2-Edge Separators in Split Graphs

This section is dedicated to the behavior of 2-edge separators along splits. For Lemmata 4.9-4.11,

we can formulate versions for general separators. As the statements and proofs of these are quite

technical, we move them to Section 4.6 at the end of this chapter and merely state the versions

which are needed for the proof of the uniqueness here. This facilitates following the proofs in the

next section.

Lemma 4.9 (cf. Lemma 4.26). Let𝐺 be a 2-connected graph and let𝐺1,𝐺2 be two split graphs of𝐺

with virtual edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). If {𝑒, 𝑒 ′} is a 2-edge separator in 𝐺 , then 𝑒 and 𝑒 ′ are

both contained in 2-edge separators in 𝐺1 or 𝐺2.

In particular if 𝑒, 𝑒 ′ ∈ 𝐸 (𝐺𝑖) for some 𝑖 , {𝑒, 𝑒 ′} is a 2-edge separator in𝐺𝑖 . Otherwise, if 𝑒 ∈ 𝐸 (𝐺1),
{𝑒, 𝑒1} and {𝑒 ′, 𝑒2} are 2-edge separators in 𝐺1, respectively 𝐺2.

Lemma 4.10 (cf. Lemma 4.27). Let 𝐺 be a 2-connected graph and let 𝐺1,𝐺2 be two split graphs of

𝐺 with virtual edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). If {𝑒, 𝑒 ′} is a 2-edge separator in𝐺1 and 𝑒1 ∉ {𝑒, 𝑒 ′},
then {𝑒, 𝑒 ′} is a 2-edge separator in 𝐺 .

Lemma 4.11 (cf. Lemma 4.28). Let 𝐺 be a 2-connected graph and let 𝐺1,𝐺2 be two split graphs of

𝐺 with virtual edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). If {𝑒, 𝑒1} and {𝑒 ′, 𝑒2} are 2-edge separators in 𝐺1 ,

respectively 𝐺2, then {𝑒, 𝑒 ′} is a 2-edge separator in 𝐺 .

For non-supporting splits and 2-edge separators we can even go further. The following lemma

basically states, that a graph 𝐺 has no 2-edge separator with one edge in each split graph, if the

corresponding split is non-supporting. As this lemma does not generalize to arbitrary separators

we prove it here.

Lemma 4.12. Let 𝐺 be a 2-connected graph and let 𝐺1,𝐺2 be two split graphs of 𝐺 , that are not

2.5-split graphs of 𝐺 . Then 𝑒, 𝑒 ′ is a 2-edge separator in𝐺 if and only if it is a 2-edge separator in𝐺1

or 𝐺2.

Proof. Let {𝑒, 𝑒 ′} be a 2-edge separator in𝐺 . Suppose that 𝑒 ∈ 𝐸 (𝐺1) and 𝑒 ′ ∈ 𝐸 (𝐺2). By Lemma 4.9,

{𝑒, 𝑒1} is a 2-edge separator in 𝐺1, where 𝑒1 denotes the virtual edge in 𝐺1. As 𝐺1,𝐺2 are not 2.5-

split graphs of 𝐺 , this is a contradiction. Otherwise 𝑒, 𝑒 ′ ∈ 𝐸 (𝐺𝑖) for some 𝑖 ∈ {1, 2} and again by

Lemma 4.9, we get that {𝑒, 𝑒 ′} is a 2-edge separator in 𝐺1 or 𝐺2.

Now assume that {𝑒, 𝑒 ′} is a 2-edge separator in 𝐺1. Denote by 𝑒1 the virtual edge in 𝐸 (𝐺1).
As 𝐺1 and 𝐺2 are not 2.5-split graphs 𝑒1 ∉ {𝑒, 𝑒 ′}. By Lemma 4.10 we get that {𝑒, 𝑒 ′} is a 2-edge

separator in 𝐺 .
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4.4. Uniqueness of 2.5-connected Components

The main idea in the proof of the uniqueness of 2.5-connected components of a 2-connected graph

𝐺 is to prove that any set of 2.5-connected components can be obtained from the triconnected

components of 𝐺 by merging the same set of virtual edges. Before we prove this, we establish

some lemmata on supporting and non-supporting splits.

Lemma 4.13. Let 𝐻 be a 2-connected graph and let 𝑡1, . . . , 𝑡𝑙 , 𝑠1, . . . , 𝑠𝑘 be a sequence of supporting

splits on 𝐻 resulting in the set G. Let𝑚 be the merge on G along the virtual edges created by 𝑠1. The

result of𝑚 can be obtained by a sequence of supporting splits on 𝐻 .

Proof. Denote by G′
the result of the sequence 𝑡1, . . . , 𝑡𝑙 . Technically the sequence of splits 𝑠2, . . . 𝑠𝑘

may not be applied to G′
as 𝑠2 operates on the result of 𝑠1. Observe however, that we may use

a very similar sequence that operates on G′
: Regard the tree 𝑇spl(G), cf. Lemma 4.2. The merge

𝑚 corresponds to a contraction of the corresponding edge in 𝑇spl(G). Denote by 𝑇 ′
the resulting

tree. Now merge along all edges in 𝑇 ′
that correspond to some split 𝑠𝑖 for 𝑖 ≥ 3. The remaining

nodes are the result of a split 𝑠 ′
2
on G′

with the same virtual edges as were created by 𝑠2. This can

be repeated for every split 𝑠𝑖 , 𝑖 ≥ 3. We get a sequence 𝑠 ′
2
, . . . , 𝑠 ′

𝑘
which results in the same set of

graphs as𝑚. It remains to be shown that 𝑠 ′𝑖 is supporting for all 𝑖 ≥ 2.

Denote by 𝑒★
1
, 𝑒★

2
the virtual edges created by 𝑠1 and let 𝐻1, 𝐻2 be the corresponding split graphs

with 𝑒★
1
∈ 𝐸 (𝐻1). As 𝑠1 is supporting, at least one of the two virtual edges is contained in a 2-edge

separator in its corresponding split graph. Thus, we may assume that

𝑒★
1
is contained in a 2-edge separator in 𝐻1. (4.1)

Let 𝑖 ≥ 2, let𝐺 be the graph that is replaced by 𝑠𝑖 with the two split graphs𝐺1 and𝐺2, and denote

by 𝑒𝑖 ∈ 𝐸 (𝐺𝑖) for 𝑖 ∈ {1, 2} the virtual edges created by the split. Further let 𝐺 ′
be the graph that

𝑠 ′𝑖 replaces by the two split graphs 𝐺 ′
1
,𝐺 ′

2
. Note that the virtual edges created by 𝑠 ′𝑖 are also 𝑒1 and

𝑒2. We assume 𝑒1 ∈ 𝐸 (𝐺 ′
1
) and 𝑒2 ∈ 𝐸 (𝐺 ′

2
). As 𝑠𝑖 is supporting, 𝑒1 or 𝑒2 is contained in a 2-edge

separator in𝐺1 or𝐺2. Without loss of generality assume that 𝑒1 is contained in a 2-edge separator

{𝑒1, 𝑒} in𝐺1. If neither 𝑒
★
1
nor 𝑒★

2
are contained in 𝐸 (𝐺1), then𝐺1 = 𝐺

′
1
and we are done. So assume

that one of them is contained in 𝐸 (𝐺1). Then 𝐺 ′
1
is the merge graph of 𝐺1 and some other graph

𝐺★
. Further it is 𝐺2 = 𝐺

′
2
.

First assume that 𝑒 ∉
{
𝑒★

1
, 𝑒★

2

}
. As {𝑒1, 𝑒} is a 2-edge separator in 𝐺1, by Lemma 4.10, it is also

one in 𝐺 ′
1
and 𝑠 ′𝑖 is supporting.

Next assume that

{
𝑒1, 𝑒

★
1

}
is a 2-edge separator in 𝐺1. By (4.1), 𝑒★

1
is contained in a 2-edge

separator in 𝐻1. By Lemma 4.9 it is still contained in a 2-edge separator

{
𝑒★

1
, 𝑒★

}
in 𝐺 . If 𝑒★ ∈

𝐸 (𝐺2), by Lemma 4.9,

{
𝑒★, 𝑒2

}
is a 2-edge separator in 𝐺2 = 𝐺 ′

2
making 𝑠 ′𝑖 supporting. Otherwise

𝑒★ ∈ 𝐸 (𝐺1) and by Lemma 2.2,

{
𝑒★, 𝑒1

}
is a 2-edge separator in 𝐺1. Using Lemma 4.10 we get that{

𝑒★, 𝑒1

}
is a 2-edge separator in 𝐺 ′

1
making 𝑠 ′𝑖 supporting.

Finally assume that

{
𝑒1, 𝑒

★
2

}
is a 2-edge separator in𝐺 ′

1
. By (4.1) and Lemma 4.9, 𝑒★

1
is contained

in a 2-edge separator

{
𝑒★

1
, 𝑒★

}
in 𝐺★

. Further, by Lemma 4.11,

{
𝑒★, 𝑒1

}
is a 2-edge separator in 𝐺 ′

1

again making 𝑠 ′𝑖 supporting.
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Lemma 4.14. Let𝐺 be a 2-connected graph and denote by G the result of a sequence of supporting

splits and merges on 𝐺 . Then the following holds true.

(i) The split tree 𝑇spl(G) is a tree.

(ii) G is the result of a sequence of supporting splits on 𝐺 .

Proof. As all 2.5-splits are splits, it is immediate from Lemma 4.2, that 𝑇spl(G) is a tree. Regard

an arbitrary sequence of splits and merges. By Lemma 4.13, the result of the first merge in the

sequence can be obtained by a sequence of supporting splits only. The claim follows by induction

on the number of merges in the sequence.

Lemma 4.15. Let 𝐺 be a 2-connected graph and let 𝑒 ∈ 𝐸 (𝐺), such that there does not exist a split

on 𝐺 that is supported by 𝑒 . Then 𝑒 does not support any split on any split graph of 𝐺 .

Proof. Let 𝑠 be any split on 𝐺 resulting in the the set {𝐺1,𝐺2} with 𝑒 ∈ 𝐸 (𝐺1) creating virtual

edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). We prove the statement by contraposition. So assume 𝑠 ′ is a split

on {𝐺1,𝐺2} that is supported by 𝑒 resulting in the set

{
𝐺 ′

1
,𝐺 ′

2
,𝐺2

}
and creating the virtual edges

𝑒 ′
1
∈ 𝐸 (𝐺 ′

1
), 𝑒 ′

2
∈ 𝐸 (𝐺 ′

2
). Then, without loss of generality,

{
𝑒, 𝑒 ′

1

}
is a 2-edge separator in 𝐺 ′

1
. The

merge on

{
𝐺 ′

1
,𝐺 ′

2
,𝐺2

}
along the virtual edges 𝑒1 and 𝑒2 now results in some set

{
𝐺★

1
,𝐺★

2

}
, where{

𝐺★
1
,𝐺★

2

}
is the result of a split 𝑠★ on {𝐺}. As

{
𝑒, 𝑒 ′

1

}
is a 2-edge separator in 𝐺 ′

1
, by Lemma 4.10,{

𝑒, 𝑒 ′
1

}
is a 2-edge separator in 𝐺★

1
. This implies, that 𝑒 supports the split 𝑠★.

Lemma 4.16. Let Y be a set of 2.5-connected components of𝐺 . There exists a sequence of splits on

Y, such that the result of the sequence are the triconnected components of 𝐺 .

Proof. Regard a sequence of splits 𝑠 on Y leading to some set of split components of 𝐺 and let𝑚

be a sequence of merges leading to the triconnected components of 𝐺 . We claim, that any merge

in𝑚 corresponds to a split in 𝑠 .

Suppose this is not the case, i.e. there exists a merge𝑚′
in𝑚 that corresponds to a supporting

split 𝑠 ′ that is not contained in 𝑠 . Denote by 𝐺1,𝐺2 the split graphs corresponding to the split 𝑠 ′

and let 𝑒1 ∈ 𝐸 (𝐺1), 𝑒2 ∈ 𝐸 (𝐺2) be the two virtual edges created by 𝑠 ′. Further, denote by 𝐺 ′
1
,𝐺 ′

2

the two graphs that are merged by𝑚′
with 𝑒1 ∈ 𝐸 (𝐺 ′

1
). As 𝑠 ′ is a supporting split, without loss of

generality we may assume that 𝑒1 is contained in a 2-edge separator in𝐺1. By Lemma 4.9, 𝑒1 is also

contained in a 2-edge separator in 𝐺 ′
1
. As no multiedge with 3 or more edges contains a 2-edge

separator and only multiedges and cycles are merged in𝑚, this implies that 𝐺 ′
1
and 𝐺 ′

2
are cycles

and therefore

𝑒2 is contained in a 2-edge separator in 𝐺 ′
2
. (4.2)

Denote by 𝐺★
1
,𝐺★

2
∈ Y the graphs in the given set of 2.5-components containing the edges 𝑒1 and

𝑒2. Again by Lemma 4.9, 𝑒1 is contained in a 2-edge separator in𝐺★
1
. The only graphs with 2-edge

separators in Y are cycles and no two cycles in Y share a virtual edge with the same label. Thus,

𝐺★
1
is a cycle and𝐺★

2
does not contain a 2-edge separator. As𝐺★

2
∈ Y, there are no 2.5-split graphs
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of𝐺★
2
and 𝑒2 does therefore not support any split on𝐺

★
2
. By Lemma 4.15, this implies that 𝑒2 is not

contained in a 2-edge separator in 𝐺 ′
2
yielding a contradiction to (4.2).

Lemma 4.17. Let 𝐺 be a 2-connected graph. Regard some sequence of splits 𝑠 = 𝑠1 . . . 𝑠𝑘 on 𝐺 such

that the result of the sequence are the triconnected components of𝐺 and let 𝑖 ∈ {1, . . . , 𝑘}. Out of any
two split partners in the result of 𝑠1 . . . 𝑠𝑖 at most one edge is contained in a 2-edge separator in its

graph.

Proof. Suppose that there are split partners 𝑒1 and 𝑒2 in the result of 𝑠1, . . . , 𝑠𝑖 that are both contained

in a 2-edge separator. By Lemma 4.9, both of these are still contained in a 2-edge separator in

their corresponding triconnected component. The only triconnected components containing 2-

edge separators are cycles. Thus, in the triconnected components of 𝐺 , there exist two virtual

edges with the same label, that are both contained in a cycle. This contradicts the definition of

triconnected components.

We now turn to the actual uniqueness result. We use a coloring of the virtual edges. As we shall

make use of this later on we separately define the coloring for arbitrary sequences of splits.

Definition 4.18. Let𝐺 be a 2-connected graph and let 𝑠 = 𝑠1, . . . , 𝑠𝑘 be a sequence of splits on𝐺

resulting in the set G. For each 𝑖 ∈ {1, . . . , 𝑘} we assign a color from {red, green} to the virtual

edges 𝑒1 and 𝑒2 created by the split 𝑠𝑖 , that may depend on colors of virtual edges created in previous

splits. We denote the color of a virtual edge 𝑒 by col(𝑒) ∈ {red, green}.

(i) If 𝑠𝑖 is a non-supporting split, set col(𝑒1) = col(𝑒2) = red.

(ii) If 𝑠𝑖 is a supporting split which is supported by a non-virtual or a virtual, green edge, set

col(𝑒1) = col(𝑒2) = green.

(iii) Otherwise, set col(𝑒1) = col(𝑒2) = red.

We call the coloring of the virtual edges of the graphs in G obtained in this way the 2.5-coloring

induced by 𝑠 .

Theorem 4.19. Let 𝑠 = 𝑠1, . . . , 𝑠𝑘 be a sequence of splits on a 2-connected graph 𝐺 resulting in the

triconnected components of 𝐺 . Denote by col the 2.5-coloring induced by 𝑠 . For any virtual edge 𝑒 in

the triconnected components of 𝐺 , it holds true that col(𝑒) = green if and only if the triconnected

component of 𝑒 or its split partner is a cycle that contains at least one non-virtual edge.

In particular, the 2.5-coloring of the virtual edges in the triconnected components does not depend

on the choice of the sequence leading to the triconnected components.

Proof. For 𝑖 ∈ {0, . . . , 𝑘} regard the subsequence 𝑠 (𝑖) = 𝑠1, . . . , 𝑠𝑖 resulting in the set G𝑖 . We prove

the following.

Claim 1. Let 𝑒 be a virtual edge in the result of the sequence 𝑠 (𝑖). It holds true that col(𝑒) =
green if and only if 𝑒 or its split partner is contained in a 2-edge separator with a non-virtual

edge in some graph 𝐺 ∈ G𝑖 .
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To see that Claim 1 implies the theorem, recall that in the triconnected components of𝐺 the only

graphs containing 2-edge separator are cycles.

In the following, if a virtual edge fulfills the condition of Claim 1, we say that its color is valid.

We prove Claim 1 by induction on 𝑖 . For 𝑖 = 0 the claim is trivially fulfilled, as there are no virtual

edges created yet. So let 𝑖 ≥ 1, denote by 𝐺 ∈ G𝑖−1 the graph that is split by 𝑠𝑖 and let 𝐺1 and 𝐺2

be the according split graphs, where we denote the virtual edges created by 𝑠𝑖 by 𝑒1 ∈ 𝐸 (𝐺1) and
𝑒2 ∈ 𝐸 (𝐺2). Note that we only have to validate the colors of the virtual edges in 𝐸 (𝐺1) ∪ 𝐸 (𝐺2)
(and the colors of their split partners). The colors of all other virtual edges remain valid, as their

respecting graphs are unchanged by the split 𝑠𝑖 .

First assume 𝑠𝑖 is a non-supporting split and we assign the color red to 𝑒1 and 𝑒2. As 𝑠𝑖 is

non-supporting, neither 𝑒1 nor 𝑒2 are contained in a 2-edge separator in 𝐺1 or 𝐺2. Further, by

Lemma 4.12, any 2-edge separator in 𝐺1 or 𝐺2 is also a 2-edge separator in 𝐺 and vice versa.

Therefore, the previously defined colors remain valid, by induction.

So from now on assume that 𝑠𝑖 is a supporting split. By Lemma 4.17, not both, 𝑒1 and 𝑒2, are con-

tained in 2-edge separators in their respective graphs 𝐺1 and 𝐺2. Thus, without loss of generality

we may assume that

𝑒1 is contained in a 2-edge separator in 𝐺1, whereas 𝑒2 is not in 𝐺2. (4.3)

As by Lemma 4.9, any 2-edge separator

{
𝑒 ′

1
, 𝑒 ′

2

}
in 𝐺 , such that 𝑒 ′

1
∈ 𝐸 (𝐺1) and 𝑒 ′2 ∈ 𝐸 (𝐺2), would

imply that

{
𝑒2, 𝑒

′
2

}
is a 2-edge separator in 𝐺2, we may assume by Lemma 4.9 that

any 2-edge separator in 𝐺 is also a 2-edge separator in 𝐺1 or 𝐺2. (4.4)

The last assumption we can make, is due to Lemma 4.10:

Any 2-edge separator in 𝐺𝑖 , that does not contain 𝑒𝑖 is a 2-edge separator in 𝐺 . (4.5)

We begin by arguing that all previously defined colors remain valid. Regard some virtual edge

𝑒 ∈ 𝐸 (𝐺) and denote by 𝑒 ′ its split partner. If 𝑒 is colored green, by induction, 𝑒 or 𝑒 ′ are contained
in a 2-edge separator with a non-virtual edge in their graphs in G𝑖−1. If 𝑒 is contained in a 2-edge

separator with a non-virtual edge in 𝐺 , by (4.4) it is contained in a 2-edge separator with a non-

virtual edge in𝐺1 or𝐺2. Further, the graph of 𝑒 ′ in G𝑖−1 remains unchanged by 𝑠𝑖 . Thus, the colors

of 𝑒 and 𝑒 ′ remain valid. If 𝑒 is colored red, by induction, neither 𝑒 nor 𝑒 ′ are contained in a 2-edge

separator with a non-virtual edge. Any 2-edge separator containing a non-virtual edge and 𝑒 in𝐺1

or 𝐺2 would also be a 2-edge separator in 𝐺 by (4.5). As the graph in G𝑖−1 containing 𝑒
′
remains

unchanged by the split the color of 𝑒 and 𝑒 ′ remain valid.

It remains to validate the colors assigned to 𝑒1 and 𝑒2. Recall, that by (4.3) 𝑒2 is not contained in a

2-edge separator in𝐺2. If 𝑒1 is not contained in 2-edge separators with green virtual or non-virtual

edges, we assign the color red to 𝑒1 and 𝑒2, which is clearly valid. If 𝑒1 is contained in a 2-edge

separator with a non-virtual or green edge 𝑒★ we set col(𝑒1) = col(𝑒2) = green. If 𝑒★ is non-

virtual, the coloring is valid. So assume 𝑒★ is a green virtual edge. As 𝑒★ is in a 2-edge separator
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with 𝑒1, by Lemma 4.17, the split partner of 𝑒★ is not contained in a 2-edge separator. Thus, by

induction, there exists some non-virtual edge 𝑒 ∈ 𝐸 (𝐺) such that

{
𝑒★, 𝑒

}
is a 2-edge separator in

𝐺 . By (4.4), this is also a 2-edge separator in 𝐺1 and, by Lemma 2.2, {𝑒1, 𝑒} is a 2-edge separator.

Thus, all colors assigned are valid.

Theorem 4.19 almost immediately implies the uniqueness of the 2.5-connected components.

Recall that an ear in a graph𝐺 is a path 𝑃 in𝐺 , such that all internal vertices of 𝑃 are of degree 2 in

𝐺 and 𝑃 is not a proper subgraph of another such path. Note that each edge 𝑒 ∈ 𝐸 (𝐺) is contained
in some ear of𝐺 . If an ear only contains one edge, we refer to it as trivial ear, otherwise it is called

non-trivial.

Theorem 4.20. Let 𝐺 be a 2-connected graph. The 2.5-connected components of 𝐺 are unique. In

particular, the 2.5-connected components of 𝐺 can be obtained from the triconnected components by

merging along split partners that are both contained in a trivial ear or in a cycle consisting solely of

virtual edges.

Proof. Regard a sequence of 2.5-splits 𝑠 on 𝐺 leading to some set of 2.5-connected components Y
of 𝐺 . Such a sequence exists by Lemma 4.14. Now let 𝑠 ′ be a sequence of splits on Y leading to

the triconnected components of 𝐺 . This sequence exists by Lemma 4.16. Denote by col the 2.5-

coloring induced by the sequence 𝑠𝑠 ′. As the graph 𝐺 does not contain any virtual edges and all

splits in 𝑠 are supporting, any split of the sequence 𝑠 only creates virtual edges that are colored

green. Note that no edge contained in any graph 𝐻 ∈ Y supports a split on 𝐻 . By Lemma 4.15,

none of these edges support any split in 𝑠 ′. Thus, any split in 𝑠 ′ is either non-supporting or only

supported by virtual edges created by 𝑠 ′. Therefore, all virtual edges created by 𝑠 ′ are colored red.

We know that the triconnected components of 𝐺 are unique. By Theorem 4.19, the coloring of

the virtual edges is independent of the choice of the sequences 𝑠 and 𝑠 ′. Thus, any sequence of

2.5-splits on𝐺 leading to some set of 2.5-connected components produces the same set of graphs.

The 2.5-connected components are therefore unique.

Theorem 4.20 gives away two corollaries about 2.5-connected components and the according

split tree.

Corollary 4.21. Let𝐺 be a 2-connected graph with 2.5-connected components Y and triconnected

components X. 𝑇spl(Y) is a minor of 𝑇 (X). For any two graphs in 𝑉 (𝑇spl(Y)) that are adjacent,
it holds true that one of them is a cycle containing virtual and non-virtual edges and the other is a

multiedge or a 2.5-connected graph.

Proof. Regard the 2.5-coloring of the virtual edges in X. Now contract all edges in 𝐸 (𝑇spl(X))
that correspond to virtual edges that are colored red and apply the corresponding merges. The

resulting graph is𝑇spl(Y). The remainder of the claim is a direct consequence of Theorem 4.20.

Corollary 4.22. Let 𝐺 be a 2-connected graph that is not a cycle. Then 𝐺 is 2.5-connected if and

only if in the triconnected components of 𝐺 there does not exist a cycle containing both virtual and

non-virtual edges.
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We conclude this section by revisiting the definition of 2.5-splits we used in [Hei+20a]. Recall

that here we refer to these splits as strongly supporting. By Lemma 4.6, any vertex-edge separator

in a 2-connected graph 𝐺 that is not a triangle induces a separation pair at which a strongly sup-

porting split is possible. Thus, it is an easy consequence that any result G of a sequence of strongly

supporting splits such that no further strongly supporting split is possible on G is a set of 2.5-split

components of𝐺 . As argued before an arbitrary sequence of strongly supporting splits and merges

may, in general, not be replaced by a sequence of strongly supporting splits only, cf. Example 4.8.

However, the next theorem shows that the 2.5-connected components can in fact be obtained by

a sequence of strongly supporting splits only, cf. [Hei+20a].

Theorem 4.23. Let G be a set of graphs obtained from a 2-connected graph 𝐺 by a sequence of

splits and merges, such that from each pair of virtual edges with the same label exactly one of the

edges is contained in a non-trivial ear. If each non-trivial ear in a graph in G contains a non-virtual

edge, then the set G can be obtained from𝐺 by a sequence of strongly supporting splits. In particular,

the 2.5-connected components can be obtained from 𝐺 by a sequence of strongly supporting splits.

Proof. We prove the claim by the number of graphs 𝑘 in G. By Lemma 4.2, we can obtain the set

G by a sequence of splits 𝑠 = 𝑠1, . . . , 𝑠𝑘−1 on 𝐺 . We prove the claim by induction on 𝑘 . If 𝑘 = 1 the

claim is trivially fulfilled. So let 𝑘 ≥ 2 and regard two split partners 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2) for
graphs 𝐺1,𝐺2 ∈ G. By assumption for some 𝑖 ∈ {1, 2} we have that 𝑒𝑖 is contained in a non-trivial

ear 𝑃 in 𝐺𝑖 that contains a non-virtual edge, say 𝑒1. Then 𝑒2 is contained in a trivial ear. We have

|𝐸 (𝑃) | ≥ 2. Denote by 𝑒 ′
1
, 𝑒 ′

2
∈ 𝐸 (𝑃) the first respectively last edge on the path 𝑃 . If one of them is

virtual, say 𝑒 ′
1
, set 𝑒 ′ B 𝑒 ′

1
, otherwise set 𝑒 ′ B 𝑒1. Let 𝑠𝑖 be the split that created the virtual edge 𝑒

′

and denote by𝑚𝑖 the merge on G that replaces the two graphs containing the virtual edges with

the same label as 𝑒 ′. Then, the set G′
that is the result of the sequence 𝑠1, . . . , 𝑠𝑘 ,𝑚𝑖 of splits and

merges fulfills the assumptions of the theorem and contains fewer graphs than G. By induction

G′
is the result of a sequence of 2.5-splits on𝐺 . Further, observe that the split on G′

that reverses

𝑚𝑖 is also a 2.5-split, which proves the claim.

In the next section of this chapter we briefly argue how to compute the 2.5-connected compo-

nents of a 2-connected graph in linear time.

4.5. Finding 2.5-connected Components in Linear Time

Triconnected components of a graph can be found in time linear in the number of edges and

vertices of a graph, cf. [GM01]. Using this and Theorem 4.20 we get a procedure that computes the

2.5-connected components in linear time: First compute the triconnected components of 𝐺 . Next

compute the 2.5-coloring of the triconnected components. Finally, merge all virtual edges that are

colored red.

Theorem 4.24. For a 2-connected graph 𝐺 we can compute the 2.5-connected components of 𝐺 in

time O(|𝑉 | + |𝐸 |).
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Proof. Gutwenger and Mutzel proved, that the triconnected components of a 2-connected graph𝐺

can be found in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |). To identify the virtual, green edges in the 2.5-coloring

of the triconnected components we use Theorem 4.19: We iterate through all triconnected compo-

nents𝐻 of𝐺 . If𝐻 is a cycle that contains non-virtual edges we color all virtual edges in𝐻 and their

split partners green. By Theorem 4.21 all virtual edges who are not yet colored are exactly the

virtual edges which have to merged. In the implementation of Gutwenger and Mutzel the edges

of the triconnected components are given as lists and according pointer between split partners are

given. Testing if a graph is a cycle can be done in linear time in the number of edges and vertices

of the graph, e.g., by using a depth first search. Taking into account that the sum of the number of

edges and vertices of all triconnected components is contained in O(|𝑉 (𝐺) | + |𝐸 (𝐺) |), cf. [HT72],

the marking of the virtual edges can be completed in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |). Merging the nec-

essary virtual edges can again be realized in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |), as a single merge can be

completed in constant time, cf. [GM01].

4.6. Connectivity in Split Graphs

This section is dedicated to giving formal proofs for generalized versions of the claims made in

Section 4.3. Recall the definition of a disconnecting pair from Chapter 3, cf. Definition 3.1. If𝐺 is a

connected graph, then a pair (𝑊, 𝐹 ) for𝑊 ⊆ 𝑉 (𝐺) and 𝐹 ⊆ 𝐸 (𝐺) is a disconnecting pair in 𝐺 if

and only if𝐺 −𝑊 − 𝐹 is not connected. Observe that disconnecting pairs generalize the notion of

vertex-, edge- and vertex-edge separators.

At the very base of all the following lemmata is the following simple observation. It will also

come in handy for the application of 2.5-connectivity discussed in Chapter 5.

Observation 4.25. Let 𝐺 be a 2-connected graph and H be the result of a sequence of splits on 𝐺 .

Fix some graph 𝐻 ∈ H , denote by 𝐻1, . . . , 𝐻𝑘 the graphs obtained by merging all complete pairs of

virtual edges in the components of H \ {𝐻 } and let for 𝑖 ∈ {1, . . . , 𝑘} the edge 𝑒𝑖 be the virtual edge
that is left in 𝐻𝑖 with split partner 𝑒 ′𝑖 .

Any set of edge-disjoint paths in 𝐻 can be extended to a set of edge-disjoint paths in𝐺 by replacing

any virtual edge 𝑒 ′𝑖 in the paths by subpaths in 𝐻𝑖 − 𝑒𝑖 connecting the endvertices of 𝑒𝑖 , which exist by

the definition of a split.

We now turn to the transference of arbitrary separators along split graphs. Lemma 4.26 deals

with the transference of separators in a graph 𝐺 into its split graphs, whereas Lemma 4.27 and

Lemma 4.28 regard the opposite direction. A combination of Lemma 4.26 and Lemma 4.27 can be

found in a similar form in our publication [HS19].

Lemma 4.26. Let 𝐺 be a 2-connected graph and let 𝐺1,𝐺2 be two split graphs of 𝐺 with respect to

{𝑣,𝑤} and virtual edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). Further, let (𝑊, 𝐹 ) be a disconnecting pair in 𝐺
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and let 𝐶1, . . . ,𝐶𝑘 be the components of 𝐺 −𝑊 − 𝐹 . Set𝑊1 =𝑊 ∩𝑉 (𝐺1) and

𝐹1 =

{
𝐹 ∩ 𝐸 (𝐺1) ∪ {𝑒1} , if there is no 𝑣-𝑤 path in 𝐺 −𝑊 − 𝐹 ,
𝐹 ∩ 𝐸 (𝐺1), else.

Then each non-empty set of vertices in {𝑉 (𝐶1) ∩𝑉 (𝐺1), . . .𝑉 (𝐶𝑘 ) ∩𝑉 (𝐺1)} induces a component of

𝐺1 −𝑊1 − 𝐹1. In particular, if 𝐺1 has vertices in more than one component of 𝐺 −𝑊 − 𝐹 , the pair
(𝑊1, 𝐹1) is a disconnecting pair in𝐺1 that separates two vertices in𝐺1 if and only if they are separated

by (𝑊, 𝐹 ) in 𝐺 .
Proof. Denote by {𝑣,𝑤} the separation pair along which the split graphs 𝐺1 and 𝐺2 are created.

Let 𝑥,𝑦 ∈ 𝑉 (𝐺1) \𝑊 be two distinct vertices. We show that there exists an 𝑥-𝑦 path in𝐺1−𝑊 ′−𝐹 ′
if and only if there exists an 𝑥-𝑦 path in 𝐺 −𝑊 − 𝐹 .
First assume that there exists a 𝑣-𝑤 path 𝑃 ′

in 𝐺 −𝑊 − 𝐹 . Let 𝑃 be an 𝑥-𝑦 path in 𝐺1 −𝑊 − 𝐹 .
If the path does not contain the edge 𝑒1 it also exists in 𝐺 . Otherwise, as 𝑣 and 𝑤 are in the same

component in𝐺 −𝑊 − 𝐹 , 𝑥 and 𝑦 are also in the same component in𝐺 −𝑊 − 𝐹 . On the other hand

if 𝑃 is an 𝑥-𝑦 path in𝐺 it either is completely contained in𝐺1 or we may replace the subpath of 𝑃

contained in 𝐺1 with the edge 𝑒1 to get an 𝑥-𝑦 path in 𝐺1.

Otherwise 𝑣 and𝑤 are not in the same component of𝐺 −𝑊 − 𝐹 . Then no 𝑥-𝑦 path in𝐺 −𝑊 − 𝐹
may use vertices not contained in 𝐺1. Thus, any 𝑥-𝑦 path in 𝐺 −𝑊 − 𝐹 is also an 𝑥-𝑦 path in

𝐺1 −𝑊 ′ − 𝐹 ′. On the other hand any 𝑥-𝑦 path in 𝐺1 −𝑊 ′ − 𝐹 ′ also exists in 𝐺 as 𝑒1 ∈ 𝐹 ′.

Lemma 4.27. Let 𝐺 be a 2-connected graph and let 𝐺1,𝐺2 be two split graphs of 𝐺 with virtual

edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). If (𝑊, 𝐹 ) is a disconnecting pair in 𝐺1, with 𝑒1 ∉ 𝐹 , then (𝑊, 𝐹 ) is
a disconnecting pair in 𝐺 .

Proof. If (𝑊, 𝐹 ) is a disconnecting pair in 𝐺1, there exist 𝑥,𝑦 ∈ 𝑉 (𝐺1) such that there is no 𝑥-𝑦

path in𝐺1 −𝑊 − 𝐹 . We prove the claim by contraposition. So assume that there exists an 𝑥-𝑦 path

𝑃 in 𝐺 −𝑊 − 𝐹 . Then 𝑃 contains a subpath 𝑃 ′
connecting the endvertices of 𝑒1, as otherwise it

would also exist in 𝐺1 −𝑊 − 𝐹 . Since 𝑒1 ∉ 𝐹 , we can replace the subpath 𝑃 ′
in 𝑃 with the edge 𝑒1

to get an 𝑥-𝑦 path in𝐺1. As𝐺 is 2-connected, we get that (𝑊, 𝐹 ) is a disconnecting pair in𝐺 .

Lemma 4.28. Let 𝐺 be a 2-connected graph and let 𝐺1,𝐺2 be two split graphs of 𝐺 with respect to

{𝑣,𝑤} and with virtual edges 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). For 𝑖 ∈ {1, 2}, let (𝑊𝑖 , 𝐹𝑖) be a disconnecting
pair in 𝐺𝑖 such that 𝑣 and 𝑤 are contained in different components of 𝐺𝑖 −𝑊𝑖 − 𝐹𝑖 . Then (𝑊, 𝐹 ) B
(𝑊1 ∪𝑊2, 𝐹1 ∪ 𝐹2 \ {𝑒1, 𝑒2}) is a disconnecting pair in𝐺 . In this case, if𝐶1, . . . ,𝐶𝑘 are the components

of𝐺 −𝑊 − 𝐹 , then each non-empty set of vertices𝑉 (𝐶 𝑗 ) ∩𝑉 (𝐺𝑖) induces a component of𝐺𝑖 −𝑊𝑖 − 𝐹𝑖
for 𝑗 ∈ {1, . . . , 𝑘} and 𝑖 ∈ {1, 2} .
Proof. Let 𝑥,𝑦 ∈ 𝑉 (𝐺1) be two vertices that are contained in different components of𝐺1 −𝑊1 − 𝐹1.

Any 𝑥-𝑦 path in 𝐺 must contain a 𝑣-𝑤 path in 𝐺2 − 𝑒2, as it otherwise also exists in 𝐺1. Any such

𝑣-𝑤 path contains an element from (𝑊2, 𝐹2) and the claim follows. The claim on the components

of 𝐺 −𝑊 − 𝐹 is now an immediate consequence of Lemma 4.26.
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Conclusion This concludes our chapter on 2.5-connectivity. For vertex cuts consisting of one,

two, or three vertices, decomposition results have been established in the past. Here we succeeded

in defining decomposition steps for separators consisting of a single vertex and a single edge lead-

ing to 2.5-connected components, which, in some sense, lie between triconnected components and

blocks. In analogy to Hopcroft and Tarjans triconnected components, cf. [HT72], we were able to

establish uniqueness results on the 2.5-connected components and discussed the transference of

separators along splits on graphs. For further research, it could be of interest to examine splits

along larger mixed separators and see if some of the results transfer. For example one could regard

splits such that one of the created virtual edges is contained in a 𝑘-edge separator for some 𝑘 ≥ 3.

Finally we argued that we may compute the 2.5-connected components of a 2-connected graph

in linear time by using a simple extension of the algorithm byGutwenger andMutzel that computes

triconnected components in linear time, cf. [GM01].
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Eulerian Graphs Decomposing into a Unique Number of Cycles

In this chapter we discuss cycle decomposition as an application to 2.5-connected and triconnected

components. We give different characterizations for the class of Eulerian graphs that decompose

into a unique number of cycles. We also argue, how these characterizations can be used to recog-

nize a graph from this class in linear time.

The main result of this chapter, that an Eulerian graph decomposes into a unique number of

cycles if and only if it does not contain two cycles sharing three or more vertices, has been pub-

lished in [HS19] and [Hei20]. The means of obtaining this characterization used in [HS19] are not

presented here, as the results from Chapter 4 ([Hei+20a]) make the characterization more elegant

and somewhat extend the results from [HS19]. Nevertheless the ideas of the proofs in [HS19] only

needed small adjustment to fit the new characterization. All of the results of this chapter are joint

work with Irene Heinrich.

Problems surrounding the decomposition of even graphs into cycles or packing cycles into an

arbitrary graph have been studied in the literature before. Regarding the characterization of graphs

whose cycle decompositions or packings fulfill certain properties, it is worth mentioning that Ha-

rant et al. characterized all graphs whose cyclomatic number
1
differs from the maximum size of

a cycle packing by a constant, cf. [Har+10]. Regarding cycles and connectivity, Otto and Recht

used the triconnected components of a 2-connected graph to get an O(log( |𝑉 (𝐺) |)) approxima-

tion algorithm for the maximum cycle packing problem on a graph 𝐺 . This algorithm turns out

to be optimal for generalized series-parallel graphs, cf. [OR19]. Here, we regard cycle decompo-

sitions as an application to the 2.5-connectivity introduced in Chapter 4. The characterizations

we give are novel and fit in nicely with the above research. So far, the connection between 2.5-

connectivity and cycle decomposition problems has not been studied in the literature, except in

our publications [HS19; Hei+20a].

Outline In the first section we recall the definitions of minimum and maximum cycle decompo-

sition and observe some basic results. In Section 5.2 we briefly discuss triconnected components

1
For a graph𝐺 the cyclomatic number is defined as |𝐸 (𝐺) | − |𝑉 (𝐻 ) | + 𝑘 , where 𝑘 denotes the number of components

of 𝐺 .
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Figure 5.1.: Decomposition of the 𝐾7 into

seven triangles.

Figure 5.2.: Decomposition of the 𝐾7 into

three Hamiltonian cycles.

in connection with cycle decompositions and thereby motivate the use of 2.5-connected compo-

nents. In Section 5.3 we discuss the connection of cycle decompositions and 2.5-connected com-

ponents. We prove that there is a one-to-one correspondence between cycle decompositions of

the 2.5-connected components of a graph and cycle decompositions of the graph itself. In the

last section we characterize Eulerian graphs that decompose into a unique number of cycles using

2.5-connected components.

5.1. Cycle Decompositions: Basic Definitions and Results

It is well known that the edge set of an even graph 𝐺 can be partitioned into sets 𝐸1, . . . , 𝐸𝑘 , such

that 𝐺 [𝐸𝑖] is a cycle for each 𝑖 ∈ {1, . . . , 𝑘}, cf. [Fle90].

Definition 5.1. Let 𝐺 be an even graph and let {𝐸1, . . . , 𝐸𝑘 } be a partition of the edge set 𝐸 (𝐺).
If 𝐺 [𝐸𝑖] is a cycle for each 𝑖 ∈ {1, . . . , 𝑘} we call the set {𝐺 [𝐸1], . . . ,𝐺 [𝐸𝑘 ]} a cycle decomposition

of 𝐺 . In this case we say that 𝐺 can be decomposed into the 𝑘 cycles {𝐺 [𝐸1], . . . ,𝐺 [𝐸𝑘 ]}.

Even graphs may have multiple cycle decompositions. In particular, two cycle decompositions

of an even graph do not necessarily have the same cardinality. For example, regard the complete

graph 𝐾7 on seven vertices. This graph is Eulerian and can be decomposed into seven triangles

(Figure 5.1) as well as in 3 Hamiltonian cycles (Figure 5.2).

There are two decision problems that arise from this example. For the sake of completeness we

give formal definitions of both problems here.

Small Cycle Decomposition (SCD).

Instance: An even graph 𝐺 and an integer 𝐵 ∈ N.
Question: In 𝐺 , does there exist a cycle decomposition with at most 𝐵 cycles?

Large Cycle Decomposition (LCD).

Instance: An even graph 𝐺 and an integer 𝐵 ∈ N.
Question: In 𝐺 , does there exist a cycle decomposition with at least 𝐵 cycles?

Both problems are known to be NP-complete. For SCD, this is due to the fact, that it is NP-hard
to decide if a directed, 4-regular graph can be decomposed into two Hamiltonian cycles, cf. [Pér84].
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The NP-hardness of LCD can be proven by using the fact that deciding if the edge set of a graph

can be decomposed into triangles is NP-hard, cf. [DT97]. Formal proofs for the NP-completeness

of SCD and LCD can be found in Appendix B in [Hei20].

We refer to the optimization versions of the problems by Min-Cycle Decomposition, respec-

tivelyMax-Cycle Decomposition and denote by 𝑐 (𝐺) (a (𝐺)) the minimum (maximum) cardinal-

ity of a cycle decomposition of an even graph 𝐺 .

As a consequence of the NP-hardness results concerning SCD and LCD, there is no polynomial

time algorithm solving Min-Cycle Decomposition or Max-Cycle Decomposition for general

graphs, unless P = NP. Thus, it is of interest to decide if an even graph decomposes into a unique

number of cycles as Min-Cycle Decomposition and Max-Cycle Decomposition are trivially

solvable on this class of graphs. This is what we aim at for the remainder of this chapter. We

achieve it by giving both a constructive characterization and a simple structural characterization

of the class.

It is not hard to see that when computing cycle decompositions of a graph𝐺 we may essentially

restrict ourselves to the blocks of a graph𝐺 . This is due to the fact that a cycle in𝐺 neither touches

two different components of𝐺 , nor touches edges from different blocks of𝐺 . In particular, we get

the following two observations.

Observation 5.2. Let 𝐺 be an even graph with components 𝐷1, . . . , 𝐷𝑘 and blocks 𝐵1, . . . 𝐵𝑙 . The

following two properties hold true.

(i) 𝑐 (𝐺) = ∑𝑘
𝑖=1
𝑐 (𝐺 [𝐷𝑖]) and a (𝐺) = ∑𝑘

𝑖=1
a (𝐺 [𝐷𝑖]),

(ii) 𝑐 (𝐺 =
∑𝑘

𝑖=1
𝑐 (𝐺 [𝐵𝑖]) and a (𝐺) = ∑𝑘

𝑖=1
a (𝐺 [𝐵𝑖]) .

5.2. Cycle Decompositions in Triconnected Components

When regarding the triconnected components of a graph lemmata in this form do not come so

easily. In fact, the split graphs of a given 2-connected, Eulerian graph, do not necessarily have to

be Eulerian. To see this regard any two 2-connected Eulerian graphs𝐺1 and𝐺2 such that𝑉 (𝐺1) ∩
𝑉 (𝐺2) = {𝑣,𝑤} for distinct vertices 𝑣 and𝑤 . Then𝐺1 + 𝑣𝑤 and𝐺2 + 𝑣𝑤 are split graphs of𝐺1 ∪𝐺2.

Both vertices 𝑣 and 𝑤 are of odd degree in these split graphs. Thus, neither 𝐺1 + 𝑣𝑤 nor 𝐺2 + 𝑣𝑤
is even.

Even if the split graphs of a 2-connected graph are Eulerian𝐺 , we are in general not able to give

a one-to-one correspondence between the cycle decompositions of the split graphs and the cycle

decomposition of 𝐺 :

Let𝐺 B 𝐶1∪ . . .∪𝐶𝑘 for some odd integer 𝑘 ≥ 3, where𝐶1, . . . ,𝐶𝑘 are all edge-disjoint cycles on

the vertex set {1, . . . , 𝑛} for some 𝑛 ≥ 6. The set C B {𝐶1, . . . ,𝐶𝑘 } is a cycle decomposition of 𝐺 .

Regarding the split graphs 𝐺1 and 𝐺2 with respect to {1, ⌈𝑛/2⌉}, there is no cycle decomposition

in 𝐺1 and 𝐺2 that relates to C in an obvious way. In particular, there is essentially only one cycle

decomposition in 𝐺1 and 𝐺2 (up to switching parallel edges), whereas in 𝐺 there exist ⌈𝑘/2⌉ cycle
decompositions that substantially differ.
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This, however, does not imply that triconnected components are of no use for any cycle related

problem. In fact, as in any maximum cycle packing there can be no two cycles sharing more than

three vertices, cf. Lemma 5.8, we can use the triconnected components of a graph 𝐺 for finding a

maximum cycle packing of 𝐺 . In [OR19], Otto and Recht present an O(log( |𝑉 (𝐺) |)) approxima-

tion algorithm, which can be used in a similar form to compute a maximum cycle packing using

maximum cycle packings on the triconnected components of the graph. The algorithm is a dy-

namic program on the split tree of the triconnected components of 𝐺 . We refrain from stating it

here, as our focus is on the 2.5-connected components of a graph.

Regarding minimum cycle decompositions though, as the above example shows, there is no

easy way of computing small cycle decompositions from minimum cycle decompositions of the

triconnected components of an Eulerian graph. This is where 2.5-connected components are of

better usage.

5.3. Cycle Decompositions in 2.5-connected Components

In this section we regard the correspondence between cycle decompositions of 2-connected Eule-

rian graphs and their 2.5-connected components. We show that they almost behave as nicely as

connected components and blocks. We begin by proving that 2.5-splitting preserves nodes of even

degree.

Lemma 5.3. Let 𝐺 be a 2-connected, Eulerian graph. Any 2.5-split graph of 𝐺 is Eulerian.

Proof. If 𝐺 does not have 2.5-split graphs, there is nothing to prove. Denote by 𝐺1 and 𝐺2 two

2.5-split graphs of𝐺 with respect to a separation pair {𝑣,𝑤} and let 𝑒1 ∈ 𝐸 (𝐺1), 𝑒2 ∈ 𝐸 (𝐺2) be the
corresponding virtual edges. By the definition of a 2.5-split 𝐺1 and 𝐺2 are connected and we may

assume without loss of generality that 𝑒1 is contained in a 2-edge separator {𝑒1, 𝑒
′} in 𝐺1.

Note that for 𝑖 ∈ {1, 2} and all vertices 𝑢 ∈ 𝑉 (𝐺) \ {𝑣,𝑤}, it holds true that deg𝐺𝑖
(𝑢) = deg𝐺 (𝑢).

In particular all vertices except possibly 𝑤 and 𝑣 have even degree in 𝐺𝑖 . If we can show that the

degree of 𝑣 and𝑤 in𝐺1 is even, then they also have even degree in𝐺2 and𝐺1 and𝐺2 are Eulerian.

Suppose 𝑣 has odd degree in𝐺1. Regard the graph𝐺
′
induced by the component of𝐺1 − 𝑒1 − 𝑒 ′

containing 𝑣 . As 𝐺1 − 𝑒1 is connected by the definition of a split, 𝑤 ∉ 𝑉 (𝐺 ′). If 𝑣 is an endvertex

of 𝑒1 and 𝑒
′
it has odd degree in 𝐺1 − 𝑒1 − 𝑒 ′ and thereby in 𝐺 ′

. All other vertices in 𝐺 ′
have even

degree, which yields a contradiction to the fact that the number of vertices with odd degree is even,

cf. Lemma 2.1. Otherwise 𝑣 is incident to 𝑒1 but not incident to 𝑒
′
and has therefore even degree in

𝐺 ′
. As 𝑒 is incident to some other vertex in𝐺 ′

, this vertex is of odd degree in𝐺 ′
again contradiction

Lemma 2.1. We conclude that 𝑣 has even degree in𝐺1 and thereby, again by Lemma 2.1, the vertex

𝑤 is of even degree in 𝐺1 and the graphs 𝐺1 and 𝐺2 are Eulerian.

Let G = {𝐺1, . . . ,𝐺𝑘 } be the result of a sequence of 2.5-splits on a 2-connected Eulerian graph𝐺 ,

where we assume unique indices on the graphs 𝐺𝑖 . To ease notation in the following we define a

cycle decomposition of G to be the direct product of cycle decompositions of the graphs in the set,

i.e. (C1, . . . , C𝑘 ) for cycle decompositions C𝑖 of 𝐺𝑖 . Edges that are virtual in some 𝐺𝑖 are assumed
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Figure 5.3.: The 2.5-connected components and its split tree of a graph 𝐺 decomposing into a

unique number of cycles. Virtual edges are dashed. The colors indicate a cycle decom-

position of the 2.5-connected components of𝐺 and its induced cycle decomposition in

𝐺 .

to be virtual in their cycles in G𝑖 and we assume that their label is unchanged. Regard some cycle

decomposition ℭ B (C1, . . . , C𝑘 ) of G. We call the cycle decomposition of 𝐺 that is obtained by

performing all possible merges on cycles in {𝐶 ∈ C𝑖 : 𝑖 = 1, . . . , 𝑘}, the cycle decomposition induced

by ℭ. We say a cycle 𝐶 in 𝐺 crosses an edge 𝐻1𝐻2 ∈ 𝑇spl(G) if the cycle 𝐶 has edges in graphs of

both components of 𝑇spl(G) − 𝐻1𝐻2. See Figure 5.3 for an example of the above definitions.

Induced cycle decompositions will come in handy, when characterizing the class of Eulerian

graphs that decompose into a unique number of cycles. We observe that the cardinality of an

induced cycle decomposition is closely related to the number of cycles in the decomposition it is

induced by.

Observation 5.4. Let 𝐺 be a 2-connected, Eulerian graph. Further let the result of a sequence of

2.5-splits on 𝐺 be G = {𝐺1, . . . ,𝐺𝑘 } and let C be a cycle decomposition of 𝐺 induced by a cycle

decomposition (C1, . . . , C𝑘 ) of G. Then it holds true that

|C| =
𝑘∑︁
𝑖=1

( |C𝑖 |) − 𝑘 + 1.

Note that on first sight it might be possible that arbitrarily many cycles cross a given edge of

a split tree. And in fact, for arbitrary split trees this may happen as we saw before. The next

lemma shows that for results of sequences of 2.5-splits on𝐺 exactly one cycle in a decomposition

of 𝐺 crosses an edge of the corresponding split tree. This is the main reason why 2.5-connected

components turn out to be a very useful tool for cycle decomposition problems.

Lemma 5.5. Let𝐺 be a 2-connected, Eulerian graph, letG = {𝐺1, . . . ,𝐺𝑘 } be the result of a sequence
of 2.5-splits on 𝐺 , and let C be a cycle decomposition of 𝐺 . For each edge 𝐻1𝐻2 ∈ 𝐸

(
𝑇spl(G)

)
, there
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exists exactly one cycle in C that crosses 𝐻1𝐻2.

Proof. Regard an arbitrary edge 𝐻1𝐻2 ∈ 𝐸
(
𝑇spl(G)

)
and denote by 𝑒1 ∈ 𝐻1 and 𝐻2 ∈ 𝐻2 the virtual

edges corresponding to𝐻1𝐻2. Let𝐺1,𝐺2 be the two graphs obtained frommerging all virtual edges

in G except 𝑒1 and 𝑒2 such that 𝑒1 ∈ 𝐸 (𝐺1) and 𝑒2 ∈ 𝐸 (𝐺2). Then 𝐺1 and 𝐺2 are 2.5-split graphs of

𝐺 and by Lemma 5.3 Eulerian. Thus, 𝐺1 − 𝑒1 ∪𝐺2 − 𝑒2 = 𝐺 . The graph 𝐺1 − 𝑒1 is not Eulerian, as

the degree of the endvertices of 𝑒1 are odd. We conclude that there must exist a cycle 𝐶 ∈ C that

uses edges of 𝐺1 and 𝐺2, which immediately implies that 𝐶 crosses 𝐻1𝐻2.

As𝐺1 and𝐺2 are 2.5-split graphs, 𝑒1 or 𝑒2 are contained in a 2-edge separator. Say 𝑒1 is contained

in a 2-edge separator {𝑒1, 𝑒
′} in 𝐺1. Then 𝑒

′
is a bridge in 𝐺1 − 𝑒1 and thus, any cycle 𝐶 ∈ C that

crosses the edge 𝐻1𝐻2, also contains the edge 𝑒 ′.

We get that each edge in the split tree of G is crossed by exactly one cycle 𝐶 ∈ C.

As a consequence of Lemma 5.5 and Observation 5.4, we have a one-to-one correspondence be-

tween the cycle decompositions of a graph 𝐺 and the cycle decompositions of its 2.5-connected

components. In other words, any cycle decomposition of𝐺 is induced by a unique cycle decompo-

sition of the 2.5-connected components of𝐺 . We get that computingmaximum andminimum cycle

decompositions may be reduced to the 2.5-connected components of a graph. See also Figure 5.3

for an example of this.

Corollary 5.6 (cf. Theorem 19 in [Hei+20a]). Let 𝐺 be a 2-connected, Eulerian graph with 2.5-

connected components Y = {𝐻1, . . . , 𝐻𝑘 }. It holds true that

𝑐 (𝐺) =
𝑘∑︁
𝑖=1

(𝑐 (𝐻𝑖)) − 𝑘 + 1 and a (𝐺) =
𝑘∑︁
𝑖=1

(a (𝐻𝑖)) − 𝑘 + 1.

5.4. Characterizing Eulerian Graphs Decomposing into a Unique Number of
Cycles

Before we give our characterization of Eulerian graphs decomposing into a unique number of

cycles, we establish three more lemmata, which significantly simplify the characterization proof.

Lemmata 5.7 and 5.8 are rather straight forward observations, whereas Lemma 5.9 is the key to the

actual characterization. A similar result to Lemma 5.8 has been observed before in [DR08].

Lemma 5.7 (cf. Lemma 5.1 in [HS19]). Let 𝐺 be an Eulerian graph. If 𝐻 is an even subgraph of 𝐺

for which 𝑐 (𝐻 ) < a (𝐻 ), then 𝑐 (𝐺) < a (𝐺).

Proof. Observe that 𝐺 − 𝐸 (𝐻 ) is even. Thus, given any cycle decomposition of 𝐺 − 𝐸 (𝐻 ), we
can extend this decomposition to a decomposition of 𝐺 with a minimum, respectively maximum,

cycle decomposition of 𝐻 to get cycle decompositions C1 and C2 of 𝐺 such that |C1 | < |C2 |. This
immediately implies that 𝑐 (𝐺) < a (𝐺).
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Figure 5.4.: Two cycles sharing three vertices and two different cycle decompositions.

Lemma 5.8 (cf. Lemma 5.1 in [HS19]). Let 𝐺 = 𝐶1 ∪𝐶2, where 𝐶1 and 𝐶2 are edge-disjoint cycles

such that |𝑉 (𝐶1) ∩𝑉 (𝐶2) | ≥ 3. Then it holds true that a (𝐺) > 2 = 𝑐 (𝐺).

Proof. See also Figure 5.4 for this proof. Note that {𝐶1,𝐶2} is a minimum cycle decomposition

of 𝐺 and thereby 𝑐 (𝐺) = 2. Now let 𝑢, 𝑣,𝑤 ∈ 𝑉 (𝐶1) ∩ 𝑉 (𝐶2) three distinct vertices. Then, for

𝑖 ∈ {1, 2} there exists a 𝑢-𝑣 path 𝑃𝑖 in𝐶𝑖 such that𝑤 ∉ 𝑉 (𝑃𝑖). 𝑃1 ∪𝑃2 is an even subgraph of𝐺 with

a (𝑃1 ∪ 𝑃2) ≥ 1. The graph 𝐺 − 𝐸 (𝑃1 ∪ 𝑃2) is even and as 𝑤 is a degree 4 vertex in the graph, we

have a (𝐺 − 𝐸 (𝑃1 ∪ 𝑃2)) ≥ 2. Combining two maximum cycle decompositions of these two graphs

yield a maximum cycle decomposition of 𝐺 with cardinality at least 3.

Lemma 5.9 (cf. Proof of Theorem 5.2 in [HS19]). Let𝐺 be an Eulerian, 2.5-connected graph. Then

𝐺 contains two cycles that share 3 or more vertices.

Proof. Let 𝐺 be a 2.5-connected graph. Let us assume that 𝐺 contains a vertex 𝑣 ∈ 𝑉 (𝐺), that
it connected to two of its neighbors, say 𝑤1 and 𝑤2 by multiple edges, cf. Figure 5.5 a). As 𝐺 is

2.5-connected we know that 𝐺 − 𝑣 is 2-edge-connected. By Menger’s Theorem there exist two

edge-disjoint paths 𝑃1, 𝑃2 from𝑤1 to𝑤2 in𝐺 − 𝑣 . But then the two cycles 𝑣𝑤1𝑃1𝑤2𝑣 and 𝑣𝑤1𝑃2𝑤2𝑣

are edge-disjoint and share more than two vertices. Thus, from now on, we may assume

every vertex in 𝐺 is connected to at most one of its neighbors by mutliple edges. (5.1)

Assume next, that there is a vertex 𝑣 ∈ 𝑉 (𝐺), which has 3 or less neighbors in 𝐺 . We have

|𝑁 (𝑣) | > 1, as 𝐺 is 2-connected. Suppose for the sake of contradiction that |𝑁 (𝑣) | = 2, say

𝑁 (𝑣) = {𝑤1,𝑤2}. By (5.1), 𝑣 is connected to one of its neighbors by a single edge, say 𝑤1. Then

(𝑤2,𝑤1𝑣) is a vertex-edge separator in𝐺 , which is a contradiction to𝐺 being 2.5-connected. Thus,

|𝑁 (𝑣) | = {𝑤1,𝑤2,𝑤3} for distinct vertices 𝑤1,𝑤2,𝑤3 ∈ 𝑉 (𝐺), cf. Figure 5.5 b). By (5.1), we may

further assume that 𝑣 is connected to𝑤1 and𝑤2 by a single edge only. As𝐺 − 𝑣𝑤1 is 2-connected,

there is a cycle 𝐶 in 𝐺 − 𝑣𝑤1 containing the vertices 𝑣 and 𝑤1. Since 𝑤2 and 𝑤3 are the only

neighbours of 𝑣 in 𝐺 − 𝑣𝑤1, the cycle 𝐶 also contains the vertices𝑤2 and𝑤3. The graph 𝐺 − 𝐸 (𝐶)
is even and thus, 𝑣𝑤1 is contained in some cycle 𝐶 ′

in𝐺 − 𝐸 (𝐶). The single edge 𝑣𝑤2 is contained

in 𝐶 . Hence, 𝑣 has only neighbours 𝑤1 and 𝑤3 in 𝐺 − 𝐸 (𝐶) and 𝐶 ′
contains the vertex 𝑤3 as well.

Thereby 𝐶 and 𝐶 ′
are two edge-disjoint cycles with more than two vertices in common. We may

now also assume that

for every 𝑣 ∈ 𝑉 (𝐺) it holds true that |𝑁 (𝑣) | ≥ 4. (5.2)
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a)

𝑣𝑤1 𝑤2

𝑃1

𝑃2

𝐶 ′

b)

𝑣
𝑤1 𝑤2

𝑤3

𝐶

c)

𝑣𝑘 𝑣1

𝑣2

𝑣𝑘−1

𝑣𝑖
𝐶 ′

𝐶

Figure 5.5.: Graphs appearing in the proof of Lemma 5.9. Solid lines are edges. Dashed lines are

paths that are edge-disjoint to each other, do not contain edges that are drawn in the

figure, and also do not contain vertices they do not touch in the figure.

We now exploit (5.1) and (5.2) to complete the proof. Regard a path 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑘 with the

property that 𝑁 (𝑣𝑘 ) ⊆ {𝑣1, . . . , 𝑣𝑘−1} and 𝑣1𝑣𝑘 ∈ 𝐸 (𝐺), cf. Figure 5.5 c). Such a path can be found

in a greedy fashion: Start at some vertex 𝑣 in the graph and always move to a new vertex until

all neighbors of the current vertex 𝑤 have already been visited. The resulting path contains the

neighborhood of 𝑤 . Now simply set 𝑣1 to be the neighbor of 𝑤 that has been visited first and

the subsequent vertices accordingly. By Property (5.2) we have |𝑁 (𝑣𝑘 ) | ≥ 4. Thus, we can find

𝑖, 𝑗 ∈ {2, .., 𝑘 − 2} with 𝑖 ≠ 𝑗 and 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑁 (𝑣𝑘 ). (5.1) implies that 𝑣𝑘 is connected to 𝑣𝑖 or 𝑣 𝑗 by a

single edge. Without loss of generality let this be 𝑣𝑖 . Set𝐶 B 𝑣1𝑣2...𝑣𝑘𝑣1. Then𝐺 −𝐸 (𝐶) is an even

graph and we can find a cycle𝐶 ′
in𝐺−𝐸 (𝐶) containing the edge 𝑣𝑘𝑣𝑖 . Since 𝑁 (𝑣𝑘 ) ⊆ {𝑣1, . . . , 𝑣𝑘−1}

the two edge-disjoint cycles 𝐶 and 𝐶 ′
have more than two vertices in common, which concludes

the proof.

Theorem 5.10 (cf. Theorem 5.2 in [HS19]). Let𝐺 be a 2-connected, Eulerian graph. The following

statements are equivalent.

(i) 𝐺 decomposes into a unique number of cycles.

(ii) 𝐺 does not contain two edge-disjoint cycles sharing three or more vertices.

(iii) The 2.5-connected components of 𝐺 are a set of multiedges and cycles.

(iv) Each triconnected component of 𝐺 is either a multiedge or it is a cycles that does not solely

consist of virtual edges.

Proof. (i)⇒ (ii): If𝐺 contains two cycles𝐶1,𝐶2 sharing three or more vertices, then by Lemma 5.8

a (𝐶1 ∪𝐶2) > 𝑐 (𝐶1 ∪𝐶2) and by Lemma 5.7 a (𝐺) > 𝑐 (𝐺).

(ii) ⇒ (iii): Let Y be the 2.5-connected components of 𝐺 and suppose 𝐻 ∈ Y is a 2.5-connected

graph. By Lemma 5.9,𝐻 contains two edge-disjoint cycles𝐶1,𝐶2 sharing three or more vertices. By

Observation 4.25, there also exist two edge-disjoint cycles 𝐶 ′
1
,𝐶 ′

2
in𝐺 that share the same vertices

as 𝐶1 and 𝐶2 — a contradiction.
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(iii) ⇒ (i): For a graph 𝐻 that is a cycle or an Eulerian multiedge, it holds true that 𝑐 (𝐻 ) = a (𝐻 ).
Thus, if {𝐺1, . . . ,𝐺𝑘 } are the 2.5-connected components of 𝐺 , then by Corollary 5.6, we conclude

𝑐 (𝐺) =
𝑘∑︁
𝑖=1

𝑐 (𝐺𝑖) + 𝑘 − 1 =

𝑘∑︁
𝑖=1

a (𝐺𝑖) + 𝑘 − 1 = a (𝐺) .

(iii) ⇔ (iv): If the 2.5-connected components of 𝐺 are a set of cycles and multiedges, then the

only splits that are possible are splits of cycles or multiedges. When constructing triconnected

components these splits are merged again. Thus the triconnected components of𝐺 are exactly the

2.5-connected components and by Corollary 4.21 do not contain cycles solely consisting of virtual

edges. If on the other hand the triconnected components of𝐺 only contains multiedges and cycles,

that not solely consist of virtual edges, by Theorem 4.20, the 2.5-connected components are the

same.

For an example of a graph that decomposes into a unique number of cycles, we refer to Figure 5.3.

The figure shows one such graph and its 2.5-connected components aligned in their split tree.

Corollary 5.11. Given an even graph𝐺 we can decide in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |) if𝐺 decomposes

into a unique number of cycles. Thereby we may also decide in linear time if 𝐺 contains two edge-

disjoint cycles sharing three or more vertices.

Proof. By Observations 5.2 and the fact that we can compute the components and blocks of a graph

in linear time, cf. [HT73], we may restrict ourselves to 2-connected graphs. By Theorem 4.24 we

can compute the 2.5-connected components of a graph in linear time. Further, it is not hard to see

that we can verify that a given graph is a cycle or a multiedge in linear time in the number of edges

in the graph. Note that the total number of edges in the 2.5-connected components is contained in

O(|𝑉 (𝐺) | + |𝐸 (𝐺) |), cf. Chapter 4. Thus, by Theorem 5.10 we get the desired result.

Conclusion In this chapter we discussed cycle decompositions of Eulerian graphs as an ap-

plication to 2.5-connectivity in graphs. We observed that there is a one-to-one correspondence

between cycle decompositions of the 2.5-connected components of a 2-connected graph and the

graph itself, whereas the same does not hold for the triconnected components of a graph. As a

consequence, computation of minimum and maximum cycle decompositions may be restricted to

2.5-connected graphs. As the main result of this chapter we gave two different characterizations

of Eulerian graphs decomposing into a unique number of cycles: These are exactly those graphs,

in which no two edge-disjoint cycles share two or more vertices or whose 2.5-connected compo-

nents consist of cycles and multiedges only. The key to proving this characterization is the fact

that any 2.5-connected graph contains two cycles that share three or more vertices. A direction of

further research could be to classify the class of Eulerian graphs whose minimum and maximum
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cycle decomposition number varies by a constant. It could also be interesting to examine the max-

imum difference between the two graph invariants for Eulerian graphs that do not contain two

edge disjoint cycles sharing 𝑘 vertices for 𝑘 ≥ 4.

We also used the above characterization to argue that the class of Eulerian graphs that decom-

pose into a unique number of cycles can be recognized in linear time.
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Chapter 6.

Simultaneous Domination of Spanning Trees

In this chapter we discuss simultaneous domination in spanning trees of a graph. A dominating

set is a subset of the vertices of a graph such that each vertex is either contained in the set or has

a neighbor in the set. A subset of the vertices of a graph simultaneously dominates all spanning

trees if the set is dominating in each spanning tree. We prove that on 2-connected graphs, any set

dominating all spanning trees is a vertex cover in the graph and vice versa. This is not the case for

general graphs. We show that the problem of finding a minimum size simultaneous dominating

set on perfect graphs is hard, whereas it is known that a minimum vertex cover can be found in

polynomial time. We present an algorithm that finds a minimum simultaneous dominating set

by computing a minimum vertex cover on certain subgraphs of the blocks of the graph.

Most of the results of this section have been published in [JKS18] and are joint work with Se-

bastian S. Johann and Sven O. Krumke. The results for which this does not apply are marked

accordingly.

Dominating sets are a very broad andmuch studied field in graph theory. For a general overview

on domination problems we refer to [HHS98]. Here we regard a version of the problem, in which

we not only seek to dominate one graph, but in particular all spanning trees of a graph.

In the literature, similar domination problems have been called factor domination or global dom-

ination. Global domination aims at dominating not only the graph itself, but also its complement,

cf. [BC17]. Factor domination was originally introduced in by Brigham and Dutton in [BD90].

In their definition a set is said to be a factor dominating set for a given graph 𝐺 and a partition

{𝐸1, . . . 𝐸𝑘 } of the edge set of𝐺 , if it is dominating in each graph𝐺 [𝐸𝑖] for 𝑖 ∈ {1, . . . , 𝑘}. Later, the
term factor dominating set was also used for a set that is dominating on given factors of a graph

by Dankelmann et al., cf. [DL03; Dan+06]. In the latter definition the given factors possibly share

edges and do not necessarily partition the edge set. Dankelmann et al. give bounds on the smallest

size of a factor dominating set. In [CH14], Caro and Henning introduce the name simultaneous

domination and give bounds on the simultaneous domination number. Here we stick to the term

of simultaneous domination as the original definition of factor domination does not exactly fit our

problem setup. The problem of dominating all spanning trees in a graph has previously not been

considered in the literature.
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Outline In Section 6.1 we formally define the problem of dominating all spanning trees, give an

alternative characterization and analyze its complexity. Section 6.2 deals with a dynamic program-

ming approach to finding minimum simultaneous dominating sets operating on the block-cutpoint

tree of a graph. Here, we assume that we may solved a generalized version of the problem on the

blocks of a graph. We focus on solving this related problem in Section 6.3. In Section 6.4 we ana-

lyze the complexity of the problem on restricted graph classes. Finally, in Section 6.5 we present a

2-approximation based on a rounding procedure of a solution to an LP-formulation.

6.1. Problem Definition and Classification

We begin by formally defining simultaneous dominating sets of all spanning trees and the corre-

sponding decision problem. As in this thesis we only regard simultaneous domination of spanning

trees, we omit the term spanning tree in the definition of the term.

Definition 6.1. Let 𝐺 be a graph and 𝑆 ⊆ 𝑉 (𝐺). We call the set 𝑆 a simultaneous dominating set

(sd-set) in𝐺 if 𝑆 is a dominating set in each spanning tree of𝐺 . In this case we say 𝑆 simultaneously

dominates 𝐺 . By 𝛾𝑇 (𝐺) we denote the minimum cardinality of a simultaneous dominating set in

𝐺 .

We also say a vertex 𝑣 ∈ 𝑉 (𝐺) is simultaneously dominated by a set 𝑆 , if it is dominated by 𝑆

in every spanning tree. Similarly we call a subset𝑊 ⊆ 𝑉 (𝐺) simultaneously dominated by 𝑆 if all

𝑤 ∈𝑊 are simultaneously dominated by 𝑆 .

Simultaneous Domination of Spanning Trees (SDST).

Instance: A graph 𝐺 and an integer 𝐵 ∈ N.
Question: Does there exist a subset 𝑆 ⊆ 𝑉 (𝐺) of the vertices of 𝐺 with |𝑆 | ≤ 𝐵 such that 𝑆 is

a dominating set in each spanning tree of 𝐺?

As already mentioned in the introduction of this chapter, there is a close resemblance of simul-

taneous dominating sets and vertex covers of graphs. As the graph consisting of a single isolated

vertex is an exception to this resemblance and not of particular interest we make the following

assumption for the remainder of this chapter.

Assumption 1. A connected graph contains at least two vertices.

We are now ready to clarify the resemblance between vertex covers and simultaneous dominat-

ing sets.

Proposition 6.2. Let𝐺 be a connected graph. Then a subset 𝑆 ⊆ 𝑉 (𝐺) is a simultaneous dominat-

ing set in 𝐺 if and only if for every 𝑣 ∈ 𝑉 (𝐺) it holds true that 𝑣 ∈ 𝑆 or:

(i) 𝑣 is not a cut vertex in 𝐺 and 𝑁 (𝑣) ⊆ 𝑆 , or

(ii) 𝑣 is a cut vertex in𝐺 and for one of the blocks 𝐵 of𝐺 with 𝑣 ∈ 𝑉 (𝐵) it holds true that 𝑁𝐵 (𝑣) ⊆ 𝑆 .
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Proof. Let 𝑣 ∈ 𝑉 \ 𝑆 be a vertex that is not a cut vertex in𝐺 . If all the neighbors of 𝑣 are contained
in 𝑆 , then 𝑣 is simultaneously dominated by 𝑆 , since there is at least one edge between 𝑣 and one of

its neighbors in each spanning tree of 𝐺 . Conversely, assume that 𝑣 is simultaneously dominated

by 𝑆 . As𝐺 − 𝑣 is connected, there exists a spanning tree𝑇of𝐺 − 𝑣 . We obtain a spanning tree of𝐺

from 𝑇 by adding 𝑣 and any edge incident to 𝑣 in𝐺 . Thus, for any neighbor𝑤 ∈ 𝑁𝐺 (𝑣) there is at
least one spanning tree of 𝐺 such that 𝑤 is the only neighbor of 𝑣 . Since 𝑣 is dominated in every

spanning tree of 𝐺 and 𝑣 ∉ 𝑆 we get that all the neighbors of 𝑣 are contained in 𝑆 .

Next consider the case that 𝑣 is a cut vertex and is further contained in the blocks 𝐵1, . . . , 𝐵𝑘 . If

for some 𝑖 ∈ {1, . . . , 𝑘} we have 𝑤 ∈ 𝑆 for all 𝑤 ∈ 𝑁𝐵𝑖
(𝑣), then 𝑣 is simultaneously dominated by

𝑆 as in every spanning tree of 𝐺 there is at least one edge between 𝑣 and one of its neighbors in

the block 𝐵𝑖 . Conversely, assume that 𝑣 is dominated by 𝑆 in every spanning tree of 𝐺 . Suppose

that for each block 𝐵𝑖 there is at least one neighbor 𝑤𝑖 of 𝑣 in 𝐵𝑖 that is not in 𝑆 . We can find a

spanning tree𝑇 of𝐺 by taking a spanning forest in𝐺 − 𝑣 , adding 𝑣 and for every 𝑖 ∈ {1, . . . , 𝑘} the
edge between 𝑣 and 𝑤𝑖 . 𝑇 is a spanning tree of 𝐺 in which 𝑣 is not dominated by 𝑆 since neither

the vertex 𝑣 nor any of its neighbors𝑤𝑖 is contained in 𝑆 — a contradiction.

Corollary 6.3. Let 𝐺 be a 2-connected graph. A subset 𝑆 ⊆ 𝑉 (𝐺) is simultaneously dominating if

and only if 𝑆 is a vertex cover.

Proof. As 𝐺 is 2-connected, it does not contain any cut vertices. Thus, by Proposition 6.2, a set 𝑆

is simultaneously dominating if and only if for each vertex 𝑣 ∈ 𝑉 it is 𝑣 ∈ 𝑆 or 𝑁 (𝑣) ⊆ 𝑆 , which is

exactly the definition of a vertex cover.

One might think that any further investigation of SDST is obsolete. Note however, that a min-

imum simultaneous dominating set in a graph 𝐺 cannot be found by simply taking the union of

simultaneous dominating sets in the blocks of 𝐺 . A difference to vertex covers is that a simulta-

neous dominating set in a graph 𝐺 , does not need to be simultaneously dominating in all blocks

of 𝐺 . For examples of this see also Figure 6.1 and 6.2. We later see that SDST restricted to perfect

graphs remains NP-complete, whereas Vertex Cover is known to be polynomial time solvable

on perfect graphs, cf. [Sch03]. Thus, a further investigation of the problem is in line.

As, in general, Vertex Cover isNP-complete, cf. [GJ79], the next result is hardly surprising. We

state it for the sake of completeness. It is not hard to see that Vertex Cover remainsNP-complete

when restricted to 2-connected graphs.

Theorem 6.4. The decision problem Simultaneous Domination of Spanning Trees is NP-
complete. It remains NP-complete, when restricted to 2-connected graphs.

Proof. Given a solution to SDST, wemay validate it using Proposition 6.2 in polynomial time. Thus,

SDST is contained in NP. The NP-hardness is a direct consequence of Corollary 6.3 and the fact

that Vertex Cover is NP-complete when restricted to 2-connected graphs.

Using Proposition 6.2, we easily verify, that any vertex cover in a connected graph 𝐺 with

|𝑉 (𝐺) | ≥ 2 is also simultaneously dominating. Thus, it holds true that 𝛾𝑇 (𝐺) ≤ 𝜏 (𝐺) for all
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...

Figure 6.1.: Vertex cover of minimum size

...

Figure 6.2.: Sd-set of minimum size

these graphs. For 2-connected graphs we also have equality by Corollary 6.3. For general graphs,

however, this equality does not hold as the following example shows.

Example 6.5. For some 𝑛 ∈ N denote by 𝐾𝑛 the complete graph with vertex set {1, . . . , 𝑛}.
Further, for 𝑖 ∈ {1, . . . , 𝑛}, denote by 𝑃𝑖 the path 𝑖 (𝑛 + 𝑖) (2𝑛 + 𝑖). We regard the graph𝐺 = 𝐾𝑛 ∪𝑃1 ∪
. . . ∪ 𝑃𝑛 and observe that 𝛾𝑇 (𝐺) = 𝑛 and 𝜏 (𝐺) = 2𝑛 − 1, cf. Figures 6.1, 6.2. Thus, there exists an

infinite class of graphs, such that for all graphs𝐻 in this class it holds true that 𝜏 (𝐻 ) ≥ 2𝛾𝑇 (𝐻 ) −1.

In fact, Example 6.5 is already the worst case for the gap between the size of a minimum vertex

cover number and the size of a minimum simultaneous dominating set.

Theorem 6.6. Let𝐺 be a graph and let 𝑆 be a simultaneous dominating set in𝐺 . 𝑆 can be extended

to a vertex cover 𝐶 by adding no more than |𝑆 | − 1 vertices. In particular 𝜏 (𝐺) ≤ 2𝛾𝑇 (𝐺) − 1.

Proof. Let 𝐺 be a connected graph and let 𝑆 be a simultaneous dominating set in 𝐺 . Denote by 𝑇

the block-cutpoint tree of 𝐺 . By definition, any simultaneous dominating set is non-empty. Thus,

there exists some block 𝐵 of 𝐺 such that 𝑉 (𝐵) ∩ 𝑆 ≠ ∅. We root the tree 𝑇 at one such block

𝐵𝑟 . Denote by 𝑋 the set of cut vertices of 𝐺 and define for each cut vertex 𝑣 ∈ 𝑋 with children

𝐵1, . . . , 𝐵𝑘 in 𝑇 the set

𝑆 (𝑣) := 𝑆 ∩
(

𝑘⋃
𝑖=1

𝑉 (𝐵𝑖)
)
.

Further let 𝐶 := 𝑆 ∪ {𝑣 ∈ 𝑋 : 𝑆 (𝑣) ≠ ∅}.
First we show that |𝐶 | ≤ 2 · |𝑆 | − 1. If we can find an injective mapping from 𝐶 \ 𝑆 to 𝑆 \𝑉 (𝐵𝑟 )

we are done as |𝑉 (𝐵𝑟 ) ∩ 𝑆 | ≥ 1. So let 𝑣 ∈ 𝐶 \ 𝑆 . By definition of𝐶 there exists some𝑤 ∈ 𝑆 (𝑣). We

map 𝑣 to𝑤 . This induces an injective mapping: If𝑤 is not a cut vertex, then 𝐵 is the only block𝑤

is contained in and 𝐵 is no child of any other cut vertex than 𝑣 . Otherwise𝑤 is a cut vertex and is

itself a child of 𝐵 in 𝑇 . All blocks besides 𝐵 containing𝑤 are children of𝑤 . But as𝑤 ∈ 𝑆 , no other
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added vertex may be mapped to𝑤 . This implies that the defined mapping is injective and thereby

|𝐶 | ≤ 2 · |𝑆 | − 1.

It remains to show that 𝐶 is actually a vertex cover. So let 𝑣𝑤 be some edge in 𝐺 . If one of the

two vertices 𝑣 and𝑤 is not a cut vertex, then one of them is contained in 𝑆 by Proposition 6.2 and

thereby also in 𝐶 . So assume 𝑣 and 𝑤 are cut vertices. If 𝑣 ∈ 𝐶 we are done, so assume 𝑣 ∉ 𝐶 .

By the definition of 𝐶 every child 𝐵 of 𝑣 in 𝑇 fulfills 𝑉 (𝐵) ∩ 𝑆 = ∅. Thus, as 𝑣 is simultaneously

dominated, by Proposition 6.2 this implies that all neighbors of 𝑣 in the block that is the parent of

𝑣 in 𝑇 are contained in 𝑆 and thereby in 𝐶 . If 𝑤 is contained in that block we are done, so assume

that𝑤 is contained in some child 𝐵★ of 𝑣 in𝑇 . As𝑤 is a cut vertex, by Proposition 6.2 this implies

𝑁𝐵′ (𝑤) ⊆ 𝑆 for some block 𝐵′
containing𝑤 . In particular we have 𝑁𝐵′ (𝑤) ∩ 𝑆 ≠ ∅, which implies

𝑉 (𝐵′) ∩ 𝑆 ≠ ∅. We cannot have 𝐵′ = 𝐵★ as this would imply that 𝑣 ∈ 𝑆 . Thus, 𝐵′
is a child of𝑤 in

𝑇 and by the definition of 𝐶 , it holds true that 𝑤 ∈ 𝐶 . Thereby the edge 𝑣𝑤 is covered by 𝐶 . This

implies that 𝐶 is a vertex cover.

6.2. Block-cutpoint Tree Algorithm

In this section we present a dynamic program operating on the block-cutpoint tree of a graph that

solvesMin-Simultaneous Domination of Spanning Trees. Throughout the section we assume

that we can solve the appearing subproblem on 2-connected graphs. Solving this subproblem is

then the focus of the next section.

In the following we refer to the leaves of the block-cutpoint tree of a graph as a leaf block and to

the unique cut vertex connecting a leaf block to the rest of the block-cutpoint tree as its connection

vertex.

To introduce the generalized version of simultaneous domination we assign colors to vertices.

To get an intuition what these colors represent we now state our interpretation of them. The vertex

𝑣 has color

– 1, if 𝑣 is fixed to be contained in the sd-set,

– 0, if 𝑣 is currently not contained in the sd-set, but assumed to be simultaneously dominated

already and

– 0̂, if 𝑣 is currently not contained in the sd-set and assumed not to be simultaneously domi-

nated yet.

We say that color 1 is better than colors 0 and 0̂ and call color 0 better than color 0̂. For a sub-

set 𝐶 ⊆ {1, 0, 0̂} we denote the best color of 𝐶 by max𝐶 .

Let us briefly describe the idea of the algorithm: We begin by regarding some leaf block 𝐵 with

connection vertex 𝑣 of a graph𝐺 . We take among all minimum size sets 𝑆 ⊆ 𝑉 (𝐵) that simultane-

ously dominate all vertices in 𝑉 (𝐵) \ {𝑣} one with the best coverage for 𝑣 , i.e., the best color for 𝑣 .

We then remove 𝑉 (𝐵) \ {𝑣} from 𝐺 and continue with the next leaf-component.

In later iterations of the algorithm we have vertices, which are already simultaneously domi-

nated or even in the sd-set for free. This has to be taken into account when computing a minimum
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size set in some block that was originally no leaf block in the whole graph. The crucial point why

this procedure works is, that any given vertex can be simultaneously dominated by adding at most

one vertex to the simultaneous dominating set, namely itself. Thus, if all minimum simultaneous

dominating sets for some leaf block do not simultaneously dominate the connection vertex 𝑣 , then

we simply simultaneously dominate 𝑣 later on, as we can be sure that it never costs us more than

it would to simultaneously dominate it in the current leaf block.

Before we turn to the actual algorithm we formally define the previously mentioned generalized

version of a simultaneous dominating set. This is the problem we aim to solve on 2-connected

graphs in the next section. We also introduce some notation that simplifies the formulation and

the correctness proof of the algorithm.

Definition 6.7. Let𝐺 be a connected graph and let 𝑓 : 𝑉 (𝐺) → {1, 0, 0̂} be a mapping assigning

each vertex of 𝐺 one of the indicated colors. We call a subset 𝑆 ⊆ 𝑉 (𝐺) 𝑓 -respecting simultaneous

dominating set of 𝐺 if the following conditions hold:

– 𝑓 −1(1) ⊆ 𝑆 .

– 𝑆 simultaneously dominates 𝑓 −1(0̂).

If we do not specify the coloring we also use the term color respecting simultaneous dominating set.

A color respecting sd-set 𝑆 is an sd-set with the property that all vertices with color 1 are con-

tained in 𝑆 and all vertices with color 0 do not have to be simultaneously dominated by 𝑆 . Clearly

this is a generalization of the definition of an sd-set: If we color all vertices by 0̂, a color respecting

sd-set and an sd-set are the same thing.

Let 𝐺 be a graph and 𝑓 : 𝑉 (𝐺) →
{
1, 0, 0̂

}
some coloring of the nodes. For any induced sub-

graph 𝐻 of 𝐺 we denote by 𝑓 𝐻 the coloring 𝑓 restricted to the nodes of 𝐻 . Further, for any

fixed vertex 𝑣 ∈ 𝑉 (𝐻 ) and 𝑐 ∈
{
1, 0, 0̂

}
we denote by 𝑓 𝐻𝑣=𝑐 the coloring of 𝑉 (𝐻 ) with 𝑓 𝐻𝑣=𝑐 (𝑣) = 𝑐

and 𝑓 𝐻𝑣=𝑐 (𝑤) = 𝑓 𝐻 (𝑤) for all 𝑤 ∈ 𝑉 (𝐻 ) \ {𝑣}. Finally we denote for 𝑐 ∈
{
1, 0, 0̂

}
by 𝑆𝐻𝑣=𝑐 a mini-

mum 𝑓 𝐻𝑣=𝑐-respecting sd-set in 𝐻 . If 𝐻 = 𝐺 we omit the superscript 𝐻 in the notation.

In the remainder of this section we assume that we are given an algorithm crSDS: The algorithm

is given a 2-connected graph 𝐺 and a coloring 𝑓 : 𝑉 (𝐺) →
{
1, 0, 0̂

}
. It returns an 𝑓 -respecting sd-

set 𝑆 of minimum size and the size # of this set.

Algorithm 1 shows a pseudocode version of the complete procedure. Within it we use the black

box algorithms crSDS and GetLeafBlock. The latter one gets a graph𝐺 which is not 2-connected

as an input and returns a leaf 𝐵 of the block-cutpoint tree of 𝐺 and its parent 𝑣 ∈ 𝐵. We save the

current color of 𝑣 and compute a color respecting sd-set in 𝐵 for all possible colors of 𝑣 . We use

the simultaneous dominating set, which is the smallest among the three possibilities, where ties

are broken by the best coverage of 𝑣 . We then delete all vertices in𝑉 (𝐵) \ {𝑣} from𝐺 and continue

with the remaining graph. By abuse of notation we denote the graph 𝐺 − (𝑉 (𝐵) \ {𝑣}) by 𝐺/𝐵.
Before we formally prove the correctness of Algorithm 1 and discuss its running time, we prove

two lemmata, which simplify arguments later on.
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Algorithm 1: Computing a color respecting sd-set of minimum size

Input: A connected graph 𝐺 = (𝑉 , 𝐸) and a coloring 𝑓 : 𝑉 (𝐺) → {1, 0, 0̂}
Output: An 𝑓 -respecting sd-set of minimum size in 𝐺

1 𝑆 = ∅
2 while 𝐺 is not 2-connected do

3 𝐵, 𝑣 = getLeafBlock(𝐺)
4 𝑐★ = 𝑓 (𝑣)
5 for 𝑐 ∈ {1, 0, 0̂} do
6 𝑓 (𝑣) = 𝑐
7 𝑆𝑐 , #𝑐 = crSDS(𝐵, 𝑓 𝐵)
8 if #1 = #

0̂
= #0 then

9 𝑓 (𝑣) = 1

10 𝑆 = 𝑆 ∪ 𝑆1

11 else if #1 > #
0̂
= #0 then

12 𝑓 (𝑣) = max

{
𝑐★, 0

}
13 𝑆 = 𝑆 ∪ 𝑆

0̂

14 else

15 𝑓 (𝑣) = 𝑐★
16 𝑆 = 𝑆 ∪ 𝑆0

17 𝐺 = 𝐺/𝐵
18 𝑆𝐺 , # = crSDS(𝐺, 𝑓 )
19 return 𝑆 ∪ 𝑆𝐺

Lemma 6.8. Let 𝐺 be a connected graph, 𝑣 ∈ 𝑉 (𝐺) a fixed vertex in 𝐺 and 𝑓 : 𝑉 (𝐺) →
{
1, 0, 0̂

}
some coloring. Then the following two statements hold true:

(i) |𝑆𝑣=0 | ≤ |𝑆𝑣=0̂
| ≤ |𝑆𝑣=1 |.

(ii) |𝑆𝑣=1 | − |𝑆𝑣=0 | ≤ 1.

Proof. We begin by showing that every 𝑓𝑣=0̂
-respecting sd-set 𝑆 is also 𝑓𝑣=0-respecting. Clearly we

have 𝑓 −1

𝑣=0
(1) = 𝑓 −1

𝑣=0̂

(1) ⊆ 𝑆 . Further, it holds true that 𝑓 −1

𝑣=0
(0̂) ⊆ 𝑓 −1

𝑣=0̂

(0̂). Thus, 𝑆 simultaneously

dominates 𝑓 −1

𝑣=0
(0̂) and is thereby also 𝑓𝑣=0-respecting. With similar arguments we get that any 𝑓𝑣=1-

respecting SD-set is also 𝑓𝑣=0̂
-respecting. These two small observations directly imply Property (i).

To see that (ii) also holds, let 𝑆0 be a minimum size 𝑓𝑣=0-respecting sd-set of𝐺 . Then 𝑆0 ∪ {𝑣} is
𝑓𝑣=1-respecting, as

𝑓 −1

𝑣=1
(1) = 𝑓 −1

𝑣=0
(1) ∪ {𝑣} ⊆ 𝑆0 ∪ {𝑣}

and 𝑓 −1

𝑣=1
(0̂) ⊆ 𝑓 −1

𝑣=0
(0̂). This already implies that the minimum size 𝑓𝑣=1-respecting sd-set has at

most one element more than 𝑆0.
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Lemma 6.9. Let𝐺 be a graph with some coloring 𝑓 : 𝑉 (𝐺) → {1, 0, 0̂} and 𝐵 be some leaf block of

𝐺 with connection vertex 𝑣 ∈ 𝑉 (𝐵). Then the following three statements hold true:

– If |𝑆𝐵𝑣=0
| = |𝑆𝐵

𝑣=0̂

| = |𝑆𝐵𝑣=1
|, then 𝑆𝐵𝑣=1

∪𝑆𝐺/𝐵
𝑣=1

is a minimum 𝑓 -respecting simultaneous dominating

set in 𝐺 .

– If |𝑆𝐵𝑣=0
| = |𝑆𝐵

𝑣=0̂

| < |𝑆𝐵𝑣=1
|, then 𝑆𝐵

𝑣=0̂

∪ 𝑆𝐺/𝐵
𝑣=max{𝑓 (𝑣),0} is a minimum 𝑓 -respecting simultaneous

dominating set in 𝐺 .

– If |𝑆𝐵𝑣=0
| < |𝑆𝐵

𝑣=0̂

| = |𝑆𝐵𝑣=1
|, then 𝑆𝐵𝑣=0

∪ 𝑆𝐺/𝐵
𝑣=𝑓 (𝑣) is a minimum 𝑓 -respecting simultaneous domi-

nating set in 𝐺 .

Proof. It is easy to see that all claimed sets are 𝑓 -respecting simultaneous dominating sets in 𝐺 ,

we now focus on their minimality. To this end let 𝑆 be a minimum 𝑓 -respecting simultaneous

dominating set in 𝐺 .

We begin with the case that |𝑆𝐵𝑣=0
| = |𝑆𝐵

𝑣=0̂

| = |𝑆𝐵𝑣=1
|. First assume that 𝑣 ∈ 𝑆 . Then 𝑆 ∩ 𝑉 (𝐵) ≥

|𝑆𝐵𝑣=1
| and 𝑆 ∩ 𝑉 (𝐺/𝐵) ≥ |𝑆𝐺/𝐵

𝑣=0
|. By (ii) of Lemma 6.8 this implies the claim. Next assume 𝑣 ∉ 𝑆

and regard 𝑆 ∩𝑉 (𝐵). This set simultaneously dominates all vertices in 𝐵 with respect to 𝑓 except

possibly 𝑣 . As 𝑆𝐻𝑣=0
is of minimum size among these sets we have |𝑆 ∩ 𝑉 (𝐻 ) | ≥ |𝑆𝐻𝑣=0

| = |𝑆𝐻𝑣=1
|

and we can replace 𝑆 ∩ 𝑉 (𝐻 ) by 𝑆𝐻𝑣=1
without making it larger. We now have a minimum 𝑓 -

respecting simultaneous dominating set containing 𝑣 and by the same arguments as above we get

that 𝑆𝐻𝑣=1
∪ 𝑆𝐺/𝐵

𝑣=1
is a minimum 𝑓 -respecting sd-set in 𝐺 .

Next assume |𝑆𝐵𝑣=0
| = |𝑆𝐵

𝑣=0̂

| < |𝑆𝐵𝑣=1
|. First note that this implies 𝑣 ∉ 𝑆𝐵

𝑣=0̂

. Regard the

set 𝑆 ′ B (𝑆 ∩𝑉 (𝐺/𝐵)) ∪ 𝑆𝐵
𝑣=0̂

. Then |𝑆 ′ | ≤ |𝑆 | and 𝑆 ′ is still simultaneously dominating with

respect to 𝑓 . Furthermore it holds true that |𝑆 ′ ∩𝑉 (𝐺/𝐵) | ≥ |𝑆𝐺/𝐵
𝑣=max{𝑓 (𝑣),0} | and we get

|𝑆 | ≥ |𝑆 ′ | = |𝑆 ′ ∩𝑉 (𝐺/𝐵) | + |𝑆 ′ \𝑉 (𝐺/𝐵) | ≥ |𝑆𝐺/𝐵
𝑣=max{𝑓 (𝑣),0} | + |𝑆𝐵

𝑣=0̂

|,

which implies the desired result.

Finally assume that |𝑆𝐵𝑣=0
| < |𝑆𝐵

𝑣=0̂

| = |𝑆𝐵𝑣=1
|. If 𝑣 is not simultaneously dominated by 𝑆 ∩𝑉 (𝐵) in

𝐵 we are done, so assume 𝑣 is simultaneously dominated by 𝑆 in 𝐵 and hence |𝑆 ∩𝑉 (𝐵) | > |𝑆𝐵𝑣=0
|.

If 𝑣 ∈ 𝑆 , by Lemma 6.8 we have |𝑆 ∩𝑉 (𝐺/𝐵) | ≥ |𝑆𝐺/𝐵
𝑣=1

| ≥ |𝑆𝐺/𝐵
𝑣=𝑓 (𝑣) | and hence,

|𝑆 | = |𝑆 ∩𝑉 (𝐵) | + |𝑆 ∩𝑉 (𝐺/𝐵) | − 1 > |𝑆𝐵𝑣=0
| + |𝑆𝐺/𝐵

𝑣=𝑓 (𝑣) | − 1.

If 𝑣 ∉ 𝑆 , Lemma 6.8 implies |𝑆 ∩𝑉 (𝐺/𝐵) | ≥ |𝑆𝐺/𝐵
𝑣=0

| ≥ |𝑆𝐺/𝐵
𝑣=𝑓 (𝑣) | − 1 and we get

|𝑆 | = |𝑆 ∩𝑉 (𝐵) | + |𝑆 ∩𝑉 (𝐺/𝐵) | > |𝑆𝐵𝑣=0
| + |𝑆𝐺/𝐵

𝑣=𝑓 (𝑣) | − 1.

Both cases then imply |𝑆 | ≥ |𝑆𝐵𝑣=0
| + |𝑆𝐺/𝐵

𝑣=𝑓 (𝑣) |.
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Theorem 6.10. For a connected graph𝐺 and a coloring 𝑓 : 𝑉 (𝐺) → {1, 0, 0̂}, Algorithm 1 correctly

computes a minimum 𝑓 -respecting simultaneous dominating set 𝑆 of𝐺 . It can be implemented to run

in polynomial time if crSDS can be implemented to run in polynomial time.

Proof. The proof of correctness can be regarded as a direct consequence of Lemma 6.9. Neverthe-

less we give a formal proof here for the sake of completeness. To this end, note that Algorithm 1

can be regarded as a recursive algorithm, where in each step one leaf-component is cut off the

graph. We do induction on the number of blocks of𝐺 . If𝐺 is 2-connected the claim trivially holds.

So let 𝐵 be a leaf block of 𝐺 with connection vertex 𝑣 . In the algorithm we now compute 𝑆𝐵𝑣=𝑖
for 𝑖 ∈ {1, 0, 0̂}. By Lemma 6.8 the three case distinction made in the algorithm (concerning the

sizes of these sets) are the only cases that may occur. The algorithm now handles the cases as

follows:

– If |𝑆𝐵𝑣=0
| = |𝑆𝐵

𝑣=0̂

| = |𝑆𝐵𝑣=1
|, it adds 𝑆𝐵𝑣=1

to the current set and colors 𝑣 with color 1. Thus, by

induction the algorithm returns 𝑆𝐵𝑣=1
∪𝑆𝐺/𝐵

𝑣=1
, which is a minimum 𝑓 -respecting simultaneous

dominating set by Lemma 6.9.

– If |𝑆𝐵𝑣=0
| < |𝑆𝐵

𝑣=0̂

| = |𝑆𝐵𝑣=1
|, it adds 𝑆𝐵𝑣=0

to the current set and leaves the color as it was.

Thus, by induction the algorithm returns 𝑆𝐵𝑣=0
∪ 𝑆𝐺/𝐵

𝑣=𝑓 (𝑣) , which is a minimum 𝑓 -respecting

simultaneous dominating set by Lemma 6.9.

– If |𝑆𝐵𝑣=0
| = |𝑆𝐵

𝑣=0̂

| < |𝑆𝐵𝑣=1
|, it adds 𝑆𝐵

𝑣=0̂

to the current set and sets the color of 𝑣 tomax {𝑓 (𝑣), 0}.
Thus, by induction the algorithm returns 𝑆𝐵

𝑣=0̂

∪ 𝑆
𝐺/𝐵
𝑣=max{𝑓 (𝑣),0}, which is a minimum 𝑓 -

respecting simultaneous dominating set by Lemma 6.9.

In all considered cases the algorithm correctly computes a minimum 𝑓 -respecting simultaneous

dominating set.

Considering the running time of Algorithm 1, note that we can find all blocks in time O(|𝑉 (𝐺) |+
|𝐸 (𝐺) |), cf. [HT73]. With a small adjustment of the usual lowpoint algorithm by Hopcroft and Tar-

jan [HT73] we can get the components in order such that each time we regard the next component

it is a leaf block of the remaining graph. Doing this as a preprocessing step, each call to GetLeaf-

Block takes constant time and the deletion of 𝐻 is done implicitly. In each iteration, besides the

three calls to crSDS we only do steps that can be realized in polynomial time, thus if crSDS can

be implemented to run in polynomial time so can Algorithm 1.

6.3. Color Respecting Simultaneous Dominating Sets in 2-connected Graphs

In the last section we showed how to find a minimum sd-set provided we can find a minimum size

color respecting sd-set on 2-connected graphs. In this section we focus on finding such a color

respecting sd-set.

Recall that a color respecting simultaneous dominating set 𝑆 in a graph𝐺 that is 2-connected is,

in some sense, a simultaneous dominating set in 𝐺 with the additional constraint that all vertices
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Algorithm 2: crSDS(𝐺, 𝑓 ): Finding a minimum color respecting simultaneous dominat-

ing set on 2-connected graphs

Input: A 2-connected graph 𝐺 = (𝑉 , 𝐸) and a colouring 𝑓 : 𝑉 (𝐺) → {1, 0, 0̂}
Output: A minimum 𝑓 -respecting simultaneous dominating set and its size

1 𝐺 = 𝐺 − 𝑓 −1(1)
2 𝐺 = 𝐺 − 𝐸 (𝐺 [𝑓 −1(0)])
3 𝑆 = MinVertexCover(𝐺)
4 return 𝑆 ∪ 𝑓 −1(1), |𝑆 ∪ 𝑓 −1(1) |

with color 1 are contained in 𝑆 and the exception that all vertices with color 0 do not actually

have to be simultaneously dominated, cf. Definition 6.7. Algorithm 2 describes how to solve this

problem using an algorithm (MinVertexCover) for solvingMin Vertex Cover as a black box.

Theorem 6.11. Given a 2-connected graph 𝐺 and a coloring 𝑓 : 𝑉 (𝐺) →
{
1, 0, 0̂

}
Algorithm 2

returns a minimum 𝑓 -respecting simultaneous dominating set of 𝐺 . It can be implemented to run in

polynomial time if MinVertexCover can be implemented to run in polynomial time.

Proof. We begin by proving that the set returned by the algorithm, say 𝑆★, is an 𝑓 -respecting

simultaneous dominating set. It is obvious that 𝑓 −1(1) ⊆ 𝑆★, thus by Definition 6.7, as 𝐺 is 2-

connected, we only need to prove that for all vertices 𝑣 with 𝑓 (𝑣) = 0̂, we have 𝑣 ∈ 𝑆★ or 𝑁𝐺 (𝑣) ⊆
𝑆★. So let 𝑣 ∈ 𝑉 with 𝑓 (𝑣) = 0̂. After having deleted all vertices with color 1 we do not delete edges

incident to 𝑣 . Thus, the vertex cover computed either contains 𝑣 itself or all neighbors of 𝑣 which

do not have color 1. As all deleted vertices are contained in 𝑆★ the required condition follows and

we conclude that 𝑆★ is indeed an 𝑓 -respecting simultaneous dominating set.

Let 𝐺 ′ = (𝐺 − 𝑓 −1(1)) − 𝐸 (𝐺 [𝑓 −1(0)]). To see that the algorithm actually returns a minimum

𝑓 -respecting simultaneous dominating set we show that for every 𝑓 -respecting simultaneous dom-

inating set 𝑆 in 𝐺 it holds true that 𝑆 \ 𝑓 −1(1) is a vertex cover in 𝐺 ′
. The correctness then fol-

lows immediately. So let 𝑆 be an arbitrary 𝑓 -respecting simultaneous dominating set in 𝐺 and

let 𝑒 = 𝑣𝑤 ∈ 𝐸 (𝐺 ′). Then at least one endpoint of 𝑒 , say 𝑣 , has color 0̂ and neither 𝑣 nor 𝑤 has

color 1. By Definition 6.7 this means either 𝑣 or all vertices in 𝑁𝐺 (𝑣) are contained in 𝑆 . But we

have𝑤 ∈ 𝑁 ′
𝐺
(𝑣). This implies𝑤 ∈ 𝑆 \ 𝑓 −1(1) or 𝑣 ∈ 𝑆 \ 𝑓 −1(1). As 𝑒 was an arbitrary edge in 𝐸 (𝐺 ′)

we know that 𝑆 \ 𝑓 −1(1) is a vertex cover in 𝐺 ′
.

It is easy to see that all steps of the algorithm, except possibly the call toMinVertexCover can

be implemented to run in polynomial time.

6.4. Special Graph Classes

This section is dedicated to analyzing the complexity of SDST when restricted to certain graph

classes. From Theorem 6.10 and Theorem 6.11 we conclude polynomial time solvability of SDST

for a large class of graphs.

Corollary 6.12. Let G,H be two classes of graphs fulfilling the properties
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(i) Vertex Cover restricted to instances with graphs from H is contained in P and

(ii) for all 𝐺 ∈ G and all blocks 𝐵 of 𝐺 the graph 𝐵 − 𝑈 − 𝐸 (𝐵 [𝑊 ]) is contained in H for all

𝑈 ,𝑊 ⊆ 𝑉 (𝐵).

Then Simultaneous Domination of Spanning Trees restricted to instances with graphs from G is

contained in P.

In the following we give three examples of graph classes that fulfill the conditions of Corol-

lary 6.12 and discuss two classes, perfect graphs and claw free graphs, that do not fulfill the condi-

tions.

Bipartite Graphs It is easy to see that bipartite graphs are hereditary, i.e. every induced sub-

graph is again bipartite. Even if we delete edges in the graph it remains bipartite. With the help of

König’s theorem [Sch03] and for example the Hopcroft-Karp algorithm [HK71] we can compute a

minimum vertex cover for bipartite graphs in polynomial time. Thus, Simultaneous Domination

of Spanning Trees restricted to instances with bipartite graphs is contained in P by Corollary 6.12.

Graphs with bounded Treewidth For some fixed 𝑘 regard the class G𝑘
of all graphs with

treewidth at most 𝑘 . Bodlaender showed in [Bod93], that the class can be recognized in linear

time. He also showed that a tree decomposition of width 𝑘 can be found in linear time for graphs

in G𝑘
. Arnborg and Proskurowski showed in [AP89] that a vertex cover of minimum size can

be computed for a graph with bounded treewidth and given tree decomposition in linear time.

As deleting vertices or edges does not increase the treewidth, by Theorem 6.12 Simultaneous

Domination of Spanning Trees restricted to instances with graphs from G𝑘
is contained in P.

Chordal Graphs Chordal graphs are hereditary but, if we delete edges of induced subgraphs in

a chordal graph, it is possible that the resulting graph is not chordal anymore. However, with the

help of the strong perfect graph theorem, cf. [Chu+06], we can show that deleting all edges of an

induced subgraph from a chordal graph always results in a perfect graph. In perfect graphs we can

compute a minimum vertex cover in polynomial time, cf. [Sch03]. Thus, again using Corollary 6.12

we get that Simultaneous Domination of Spanning Trees restricted to instance with chordal

graphs is contained in P.
In the following we show that for any chordal graph𝐺 and𝑊 ⊆ 𝑉 (𝐺) the graph𝐺−𝐸 (𝐺 [𝑊 ]) is

perfect. Before we prove the statement, we recall the perfect graph theorem and the terminology

needed to understand it as we will be needing the theorem in the proof. For a graph𝐺 an odd hole

of 𝐺 is an induced subgraph of 𝐺 which is a cycle of odd length at least 5. An odd antihole of 𝐺 is

an induced subgraph of 𝐺 whose complement is an odd hole in 𝐺 .

Theorem 6.13 (Strong perfect graph theorem, [Chu+06]). A graph 𝐺 is perfect if and only if 𝐺

neither has an odd hole nor an odd antihole.

71



Chapter 6. Simultaneous Domination of Spanning Trees

Lemma 6.14. Let 𝐺 be a chordal graph and𝑊 ⊆ 𝑉 (𝐺). Let 𝐺 ′
be the graph obtained by deleting

all edges between the vertices of𝑊 in 𝐺 , i.e.

𝐺 ′ = 𝐺 − 𝐸 (𝐺 [𝑊 ]) .

Then 𝐺 ′
is perfect.

Proof. Assume 𝐺 ′
has an odd hole 𝐶2𝑘+1. Then at most 𝑘 vertices of 𝐶2𝑘+1 can be contained in𝑊

since𝑊 is an independent set in 𝐺 ′
. Hence, there are two consecutive vertices on 𝐶2𝑘+1 which

are not in𝑊 . Since these two vertices do not have the same neighbor in 𝐶2𝑘+1 and only edges

between vertices of𝑊 are deleted there exits a cycle of length at least four in𝐺 that has no chord

— a contradiction.

Now let us assume that the graph 𝐺 ′
has an odd antihole 𝐶2𝑘+1, where 𝐶2𝑘+1 = 𝑣1 . . . 𝑣2𝑘+1. We

claim that the subgraph 𝐻 B 𝐺 [{𝑣1, . . . , 𝑣2𝑘+1}] is the graph 𝐶2𝑘+1 with exactly one additional

edge. If there is no additional edge in 𝐻 , then it follows that 𝐻 = 𝐶2𝑘+1. This contradicts the

assumption that 𝐺 is chordal and hence perfect. If there are two or more additional edges, then

there are at least three vertices in𝑊 ∩ 𝑉 (𝐻 ). Since all the edges between the vertices in𝑊 are

deleted to obtain 𝐺 ′
, 𝐶2𝑘+1 cannot be an induced subgraph of 𝐺 ′

(in an odd antihole, out of any

three vertices, at least two are connected by an edge).

So assume that the additional edge in 𝐻 is between 𝑣2 and 𝑣3. This implies that the vertices 𝑣2

and 𝑣3 are the only vertices of𝑉 (𝐶2𝑘+1) in𝑊 . Then the cycle𝐶 = 𝑣2𝑣3𝑣1𝑣4𝑣2 is contained in𝐺 and

has length four but no chord. Again this contradicts the assumptions and hence 𝐺 ′
has no odd

antihole.

Corollary 6.15. Simultaneous Domination of Spanning Trees restricted to instances with

graphs that are chordal, bipartite or have bounded treewidth is contained in P.

We now regard two graph classes, claw free and perfect graphs, for which Corollary 6.12 does

not apply directly. The results on these two graph classes are not included in [JKS18] and have not

been published yet.

We begin by regarding the class of claw free graphs. Recall that a graph 𝐺 is claw free if it does

not contain a claw as an induced subgraph. Claw free graphs are hereditary, but the deletion of

edges of an induced subgraph may create claws. Further, it is currently unknown if Min Vertex

Cover is polynomial time solvable on the class of graphs that consists of all claw free graphs and

all graphs obtained from a claw free graph by deleting all edges of an induced subgraph. It is well

known, however, that Vertex Cover restricted to claw free graphs is contained in P, cf. [GJ79].
Before we prove that we can solveMin-SDST on claw free graphs in polynomial time, we establish

two lemmata which are the foundations for the proof.

Lemma 6.16. Let 𝐺 be a claw free graph. If 𝑣 ∈ 𝑉 (𝐺) is a cut vertex of 𝐺 , then it is contained in

exactly two blocks, say 𝐵1 and 𝐵2. Further, 𝑁𝐵1
(𝑣) and 𝑁𝐵2

(𝑣) induce cliques in 𝐺 .
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Proof. If 𝑣 was only contained in one block, it would not be a cut vertex. Further, if 𝑣 is con-

tained in three blocks, say 𝐵1, 𝐵2 and 𝐵3, then for any choice of 𝑤𝑖 ∈ 𝑁𝐵𝑖
(𝑣) for 𝑖 ∈ {1, 2, 3}, the

set {𝑣,𝑤1,𝑤2,𝑤3} induces a claw in 𝐺 .

Let 𝐵1 and 𝐵2 be the two blocks in 𝐺 that contain 𝑣 . If there exist two vertices 𝑤1,𝑤2 ∈ 𝑁𝐵1
(𝑣)

such that the edge 𝑤1𝑤2 ∉ 𝐸 (𝐺), then the set {𝑣,𝑤1,𝑤2,𝑤3} induces a claw in 𝐺 for any 𝑤3 ∈
𝑁𝐵2

(𝑣).

Lemma 6.17. Let 𝐺 be a 2-connected graph and 𝑓 : 𝑉 (𝐺) →
{
1, 0, 0̂

}
be a coloring of the vertices,

such that for all 𝑣 ∈ 𝑉 (𝐺) with 𝑓 (𝑣) = 0 it holds true that

�̂� (𝑣) B
{
𝑤 ∈ 𝑁𝐺 (𝑣) : 𝑓 (𝑤) = 0̂

}
induces a clique in𝐺 . Then there exists a minimum 𝑓 -respecting simultaneous dominating set 𝑆 in𝐺 ,

such that �̂� (𝑣) ⊆ 𝑆 for all 𝑣 ∈ 𝑉 (𝐺) with 𝑓 (𝑣) = 0.

Proof. Let 𝑆 be a minimum 𝑓 -respecting sd-set in 𝐺 and assume there exists some 𝑣 ∈ 𝑉 (𝐺) with
𝑓 (𝑣) = 0 such that �̂� (𝑣) is not completely contained in 𝑆 . Then there exists 𝑤 ∈ �̂� (𝑣) such that

𝑤 ∉ 𝑆 . As 𝑓 (𝑤) = 0̂, by Definition 6.7 and Proposition 6.2 all neighbors of𝑤 are contained in 𝑆 . In

particular 𝑣 ∈ 𝑆 and as �̂� (𝑣) induces a clique in 𝐺 , also �̂� (𝑣) \ {𝑤} ⊆ 𝑆 . It is now easy to see that

the set 𝑆 \ {𝑣} ∪ {𝑤} is also an 𝑓 -respecting sd-set in 𝐺 and has the same cardinality.

Theorem 6.18. Simultaneous Domination of Spanning Trees restricted to instances with claw

free graphs is in P.

Proof. As claw free graphs are hereditary, any block of a given graph is claw free. Regard any call

to crSDS in Algorithm 2 and denote by 𝐵 and 𝑓 the block and the coloring passed to crSDS. Define

a new coloring 𝑓 ′ : 𝑉 (𝐵) →
{
1, 0, 0̂

}
by setting

𝑓 ′(𝑣) =
{

1, if there exists 𝑣𝑤 ∈ 𝐸 (𝐵) such that 𝑓 (𝑣) = 0̂ and 𝑓 (𝑤) = 0

𝑓 (𝑣), else.

(6.1)

First note that any 𝑓 ′-respecting simultaneous dominating set is also an 𝑓 -respecting simultaneous

dominating set. Further, as Algorithm 2 only assigns colors 0 and 1 to vertices that were once

cut vertices, by Lemma 6.16, we know that the neighborhood of any vertex 𝑤 with 𝑓 (𝑤) = 0

induces a clique. Thus, by Lemma 6.17 any vertex 𝑣 with 𝑓 ′(𝑣) = 1 and 𝑓 (𝑣) = 0̂ can be assumed

to be contained in a minimum 𝑓 -respecting simultaneous dominating set. This implies that the

cardinality of a minimum 𝑓 ′-respecting sd-set is the same as the cardinality of a minimum 𝑓 -

respecting sd-set. Thus, we can replace a coloring 𝑓 in a call to crSDS by the coloring 𝑓 ′. Now, in

the procedure crSDS at first all vertices with color 1 are deleted from the graph. As the regarded

block is claw free and claw free graphs are hereditary, the remaining graph is also claw free. After

the deletion of vertices of color 1, all vertices𝑤 with color 𝑓 ′(𝑤) = 0 only have neighbors that are

also colored 0 by 𝑓 ′. Thus, after deleting the edges between vertices of color 0 each vertex with

color 0 has degree 0. Vertices of degree 0 can be disregard for computing a minimum vertex cover.
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𝑣 𝑥1 𝑥2 𝑥3 𝑥4 𝑤

𝑦1

𝑦2

𝑧1

𝑧2

𝑣 𝑥1 𝑥2 𝑥3 𝑥4 𝑤

𝑦1

𝑦2

𝑧1

𝑧2

Figure 6.3.: Two sd-sets in the graph 𝐻𝑣𝑤 from the proof of Theorem 6.19.

The remaining graph is still claw free as it only contains vertices of color 0̂ and we did not delete

any edges between these vertices. As Vertex Cover is contained in P on claw free graphs we

can implementMinVertexCover in Algorithm 1 to run in polynomial time for the given class of

graphs.

As of now, we did not see any difference in the complexity of SDST and Vertex Cover. Note

that we did not show that SDST is contained in P, when restricted to perfect graphs. We know

Vertex Cover is contained in P on perfect graphs. Corollary 6.12 cannot be applied in this case as

deleting the edges of an induced subgraph of a perfect graph does not preserve the perfectness and

it is currently unknown (and, in fact, unlikely as we see in the following) if Min Vertex Cover

can be solved in polynomial time on the obtained class of graphs.

Johann showed, that SDST is NP-complete, when restricted to perfect graphs, cf. [Joh20]. As

the result is not published as of yet, we give a simplified version of Johann’s proof here.

Theorem 6.19 ([Joh20]). Simultaneous Domination of Spanning Trees is NP-complete when

restricted to instances with perfect graphs.

Proof. By Theorem 6.4, SDST restricted to instances with perfect graphs is contained in NP.
It is well known that Vertex Cover is NP-complete when restricted to 2-connected graphs. So

let𝐺 be a simple, 2-connected graph and 𝐵′
the integer of an instance of Vertex Cover. For each

edge 𝑣𝑤 ∈ 𝐸 (𝐺), denote by 𝐻𝑣𝑤 the graph with

𝑉 (𝐻𝑣𝑤) = {𝑣,𝑤, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2, 𝑧1, 𝑧2} and

𝐸 (𝐻𝑣𝑤) = {𝑣𝑥1, 𝑥1𝑥2, 𝑥2𝑥3, 𝑥3𝑥4, 𝑥4𝑤, 𝑥1𝑥3, 𝑥1𝑦1, 𝑦1𝑦2, 𝑥3𝑧1, 𝑧1𝑧2} ,

where we assume that any vertex in 𝐻𝑣𝑤 except 𝑣 and𝑤 is unique to that graph. For the construc-

tion of a graph 𝐻𝑣𝑤 see also Figure 6.3. We then regard the graph

𝐻 =
⋃

𝑣𝑤∈𝐸 (𝐺)
𝐻𝑣𝑤

and show that it is perfect. First note that the only vertices in 𝐻 that can possibly have degree

larger than 5 are the ones also contained in 𝐺 . As none of these are adjacent in 𝐻 there does not

exist an odd antihole of size 7 or larger. Further, the only cycle completely contained inside some
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𝐻𝑣𝑤 for some 𝑣𝑤 ∈ 𝐸 (𝐺) is 𝑥1𝑥2𝑥3𝑥1 and therefore of length 3. Whenever a chordless cycle passes

through a graph𝐻𝑣𝑤 it must contain the subpath 𝑣𝑥1𝑥3𝑥4𝑤 as it otherwise contains the chord 𝑥1𝑥3.

This subpath has length 4 and thereby, all chordless cycles of 𝐻 with length larger than 3 are of

even length. Thus, 𝐻 does not contain any odd holes and as any odd hole of size 5 is also an odd

antihole of size 5 we get that 𝐻 is perfect by the strong perfect graph theorem.

In the following we prove that 𝐻 contains an sd-set of cardinality at most 𝐵 B 𝐵′ + 4 |𝐸 (𝐺) | if
and only if 𝐺 contains a vertex cover of cardinality at most 𝐵′

.

So let 𝑆 ′ ⊆ 𝑉 (𝐺) be a vertex cover in 𝐺 with |𝑆 ′ | ≤ 𝐵′
. Consider the set 𝑆 that contains all

vertices in 𝑆 ′ and for each graph 𝐻𝑣𝑤 the vertices 𝑥1, 𝑥3, 𝑦1, 𝑧1 if 𝑣 ∉ 𝑆 ′ and 𝑥2, 𝑥4, 𝑦1, 𝑧1 if 𝑣 ∈ 𝑆 ′.
It is |𝑆 | ≤ 𝐵′ + 4 |𝐸 (𝐺) | and we claim that 𝑆 simultaneously dominates the graph 𝐻 . To this end,

regard some 𝑣𝑤 ∈ 𝐸 (𝐺). As 𝑦1, 𝑧1 ∈ 𝑆 and 𝑥1 and 𝑥3 are cut vertices in 𝐻 , by Proposition 6.2, 𝑥1

and 𝑥3 are simultaneously dominated by 𝑆 . For 𝑥 ∈ {𝑥2, 𝑥4, 𝑦1, 𝑦2, 𝑧1, 𝑧2} it holds true that either

𝑥 itself is contained in 𝑆 or all neighbors of 𝑥 are contained in 𝑆 . Thus, all vertices in 𝐻𝑣𝑤 except

possibly 𝑣 and 𝑤 are simultaneously dominated by 𝑆 by Proposition 6.2. If 𝑣 ∉ 𝑆 , by definition of

𝑆 , all neighbors of 𝑣 in 𝐻 are contained in 𝑆 and 𝑣 is simultaneously dominated. If𝑤 ∉ 𝑆 it must be

the case that 𝑣 ∈ 𝑆 as 𝑆 ′ is a vertex cover in 𝐺 . Again by the definition of 𝑆 all neighbors of 𝑤 are

then contained in 𝑆 and𝑤 is simultaneously dominated by 𝑆 . We conclude that 𝑆 is an sd-set in 𝐻 .

Now let 𝑆 ⊆ 𝑉 (𝐻 ) be a simultaneously dominating set in 𝐻 , such that |𝑆 | ≤ 𝐵 = 𝐵′ + 4 |𝐸 (𝐺) |.
We begin by showing that for each 𝑣𝑤 ∈ 𝐸 (𝐺) we have |𝑆 ∩ (𝑉 (𝐻𝑣𝑤) \ {𝑣,𝑤}) | ≥ 4. To this end

note that

|𝑆 ∩ {𝑦1, 𝑦2, 𝑧1, 𝑧2}| ≥ 2. (6.2)

Further, 𝑥2 and 𝑥4 are not cut vertices in𝐻 as𝐺 is 2-connected. Thus, by Proposition 6.2, we either

have 𝑥3 ∉ 𝑆 in which case 𝑥2, 𝑥4 ∈ 𝑆 , or 𝑥3 ∈ 𝑆 in which case 𝑥1 ∈ 𝑆 or 𝑥2 ∈ 𝑆 . We conclude that

for each 𝑣𝑤 ∈ 𝐸 (𝐺), it holds true that

|𝑆 ∩𝑉 (𝐻𝑣𝑤) \ {𝑣,𝑤}| ≥ 4. (6.3)

Now assume there exists an edge 𝑣𝑤 ∈ 𝐸 (𝐺), such that 𝑣,𝑤 ∉ 𝑆 . As 𝐺 is 2-connected, neither

𝑣 nor 𝑤 are cut vertices in 𝐻 . By Proposition 6.2, this implies that 𝑥1, 𝑥4 ∈ 𝑆 . As 𝑥2 is not a cut

vertex in 𝐻 we also have 𝑥2 ∈ 𝑆 or 𝑥3 ∈ 𝑆 . By (6.2) we therefore have 𝑆 ∩𝑉 (𝐻𝑣𝑤) ≥ 5. Replacing

the elements in 𝑆 ∩𝑉 (𝐻𝑣𝑤) by the elements in the set {𝑣, 𝑥2, 𝑥4, 𝑦1, 𝑧1} yields an sd-set of no larger

cardinality which contains 𝑣 . Thus, we may assume that

for each 𝑣𝑤 ∈ 𝐸 (𝐺) we have 𝑣 ∈ 𝑆 or𝑤 ∈ 𝑆 . (6.4)

Set 𝑆 ′ = 𝑆 ∩𝑉 (𝐺). By (6.3), it is |𝑆 ′ | ≤ 𝐵′
and by (6.4), 𝑆 ′ is a vertex cover in 𝐺 .

The result of Theorem 6.19 is somewhat surprising, as it proves that allowing cut vertices in a

graph increases the complexity. In fact SDST can be solved in polynomial time on 2-connected,

perfect graphs as a direct consequence of Corollary 6.3. Also the result distinguishes SDST from
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Vertex Cover complexity wise, which makes the investigation of the problem worth the while.

6.5. A 2-Approximation

It is well known that Dominating Set may not be approximated within a constant factor,

cf. [Fei98]. On the other hand Vertex Cover can be approximated by a factor of 2 using all

end vertices of edges in a maximal matching, cf. [Sch03]. Using this approximation combined with

Theorem 6.6 we directly get a 4-approximation for SDST. In the following we see that there also

exists a 2-approximation for SDST.

The following idea is deduced from a 2-approximation of Vertex Cover using the LP-relaxation

of an IP-formulation for the problem, cf. [Sch03]. The approximation forMin-Simultaneous Do-

mination of Spanning Trees is more involved than the approximation for the vertex cover prob-

lem and is therefore worth to be described in detail. We begin by formulating an integer program

for Min-SDST. Then we use the solution of its LP relaxation to obtain an integral solution of at

most twice the optimal objective value of the LP and, thus, also at most twice the optimal objective

value of the IP.

The following IP describes Min-SDST for a graph 𝐺 . Let CV(𝐺) be the set of cut vertices in 𝐺 ,
NCV(𝐺) := 𝑉 (𝐺) \CV(𝐺) and for each 𝑣 ∈ CV denote by B𝑣 the set of all blocks of𝐺 containing 𝑣 .

In the solution the variable 𝑥𝑣 states if the vertex 𝑣 is in the sd-set or not. The variable 𝑦𝑣𝐵 is only

used if 𝑣 is a cut vertex and states if 𝑣 is simultaneously dominated by the block 𝐵, i.e., 𝑥𝑤 = 1 for

all𝑤 ∈ 𝑁𝐵 (𝑣) if 𝑦𝑣𝐵 = 1.

(IP 6.5) min

𝑥,𝑦

∑︁
𝑣∈𝑉

𝑥𝑣 (6.5a)

s.t. 𝑥𝑣 + 𝑥𝑤 ≥ 1 ∀𝑣 ∈ NCV(𝐺), 𝑤 ∈ 𝑁𝐺 (𝑣) (6.5b)

𝑥𝑤 ≥ 𝑦𝑣𝐵
∀𝑣 ∈ CV(𝐺), 𝐵 ∈ B𝑣 , 𝑤 ∈
𝑁𝐵 (𝑣)

(6.5c)∑︁
𝐵∈B𝑣

𝑦𝑣𝐵 + 𝑥𝑣 ≥ 1 ∀𝑣 ∈ CV(𝐺) (6.5d)

𝑥𝑣, 𝑦𝑣𝐵 ∈ {0, 1} ∀𝑣 ∈ 𝑉 . (6.5e)

Lemma 6.20. Let 𝐺 = (𝑉 , 𝐸) be a graph and let 𝑥 ∈ {0, 1} |𝑉 |
. Then the set 𝑆 = {𝑣 ∈ 𝑉 : 𝑥𝑣 = 1}

is a simultaneous dominating set of minimum size in𝐺 if and only if there exists 𝑦 such that (𝑥,𝑦) is
an optimal solution for (IP 6.5).

Proof. The lemma follows if we show that the set 𝑆 = {𝑣 ∈ 𝑉 : 𝑥𝑣 = 1} is an sd-set of𝐺 if and only

if there is a 𝑦 such that (𝑥,𝑦) is a feasible solution of (IP 6.5).

First let (𝑥,𝑦) be a feasible solution for (IP 6.5) and set 𝑆 = {𝑣 ∈ 𝑉 : 𝑥𝑣 = 1}. Note that by (6.5e)

the entries in 𝑥𝑣 and 𝑦𝑣𝐵 can only be 0 or 1. By (6.5b) we have for every non-cut vertex that either

itself or all its neighbors are contained in 𝑆 which implies condition (i) of Proposition 6.2. For a cut
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vertex 𝑣 , conditions (6.5d) ensure that 𝑣 is contained in 𝑆 or that for at least one block 𝐵 containing

𝑣 it is 𝑦𝑣𝐵 = 1. By (6.5c) we have 𝑥𝑤 = 1 for all 𝑤 ∈ 𝑁𝐵 (𝑣) if 𝑦𝑣𝐵 = 1. Thus, condition (ii) of

Proposition 6.2 is also implied and it follows that 𝑆 is a feasible sd-set.

Now suppose that 𝑆 is a feasible sd-set. Set 𝑥𝑣 = 1 if 𝑣 ∈ 𝑆 and 𝑥𝑣 = 0 otherwise. For every

cut vertex 𝑣 we have that 𝑣 itself is in 𝑆 or it is simultaneously dominated, i.e. there is a block 𝐵

such that all neighbors of 𝑣 in 𝐵 are in 𝑆 . We set 𝑦𝑣𝐵 = 1 if and only if the latter case is true. This

immediately shows that (6.5c) and (6.5d) are fulfilled. The conditions (6.5b) are also satisfied by

condition (i) of Proposition 6.2. This shows that (𝑥,𝑦) is a feasible solution for (IP 6.5).

In the LP-relaxation of (IP 6.5), we require the variables 𝑥 and 𝑦 to have real values greater or

equal to 0 and less or equal to 1. We refer to the LP-relaxation by (LP 6.5). In the following we

describe a procedure that rounds non-integral variables in an optimal solution to (LP 6.5) yielding

an integral solution to (IP 6.5) that has objective value at most twice as large.

Let (𝑥,𝑦) be an optimal solution for the LP. Before we start, let us describe the outline of the

rounding procedure. At first we round up at least one of the two variables in each constraint (6.5b).

Afterwards we regard (6.5c) and (6.5d) and ensure their validity for the cut vertices of 𝐺 . To do

so we use the block-cutpoint tree 𝑇 of 𝐺 . We regard the cut vertices of 𝐺 bottom up in the tree

𝑇 and if necessary round up the variable of the cut vertex itself, while decreasing some values of

neighbors of the cut vertex in order to maintain the approximation quality. During all rounding

steps we ensure that the current solution remains feasible for (LP 6.5) such that after making all

variables integral the resulting solution automatically induces an sd-set. Any variable that is at

some point set to 1 is never changed again, implying that only fractional variables are rounded

down. We will now formally describe the three different rounding steps.

First Rounding Step For all 𝑣 ∈ 𝑉 we round up all 𝑥𝑣 to 1 which have a value greater or equal

to 1/2. Moreover for each cut vertex 𝑣 and each block 𝐵 with 𝑣 ∈ 𝑉 (𝐵) we set

𝑦𝑣𝐵 := min {𝑥𝑤 : 𝑤 ∈ 𝑁𝐵 (𝑣)} . (6.6)

Whenever we change the value of a variable 𝑥𝑣 in any rounding step we update all respective vari-

ables 𝑦𝑤𝐵 , such that (6.6) remains valid throughout the whole procedure. We ensure the following

statement throughout the rounding procedure.

Any variable with a value larger or equal to 1/2 has value 1. (6.7)

In any solution to (LP 6.5) one of the two variables in a constraint (6.5b) has value at least 1/2. Thus,

after the first rounding step and by the fact that we never round down any variable 𝑥𝑣 that is set to

1, constraints (6.5b) remain valid throughout the whole rounding procedure. Further, as we always

update the 𝑦 variables according to (6.6), constraints (6.5c) are never violated by (𝑥,𝑦) at any stage
of the rounding procedure.

Now regard the block-cutpoint tree 𝑇 of 𝐺 and root it at any cut vertex 𝑟 ∈ CV(𝐺). It is easily
observed that we may now iteratively choose a cut vertex 𝑣 such that all descendants of 𝑣 in𝑇 that
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are cut vertices have already been regarded. If for some block 𝐵 containing 𝑣 we have 𝑦𝑣𝐵 ≥ 1

2
,

by (6.7), it holds true that 𝑦𝑣𝐵 = 1. This implies that vertex 𝑣 is simultaneously dominated by block

𝐵 and we can safely go to the next cut vertex. So assume that 𝑦𝑣𝐵 < 1

2
for all blocks containing 𝑣 .

We denote by 𝐵′
the parent of 𝑣 in𝑇 and by 𝐵1, . . . , 𝐵𝑘 its children. As𝑦𝑣𝐵′ < 1

2
, by constraint (6.5d)

it holds true that

𝑥𝑣 +
𝑘∑︁
𝑖=1

𝑦𝑣𝐵𝑖
≥ 1

2

. (6.8)

Second Rounding Step For every cut vertex 𝑣 moving bottom up in the block-cutpoint tree 𝑇

of𝐺 , test if 𝑦𝑣𝐵 = 1 for some block 𝐵 containing 𝑣 . If none such block exists, set 𝑥𝑣 = 1 and 𝑥𝑤𝑖
= 0

for all 𝑖 = 1, . . . , 𝑘 and some𝑤𝑖 ∈ 𝑁𝐵𝑖
(𝑣) with 𝑥-value min

{
𝑥𝑤 : 𝑤 ∈ 𝑁𝐵𝑖

(𝑣)
}
= 𝑦𝑣𝐵𝑖

.

Note that any cut vertex𝑤 that is a descendant of 𝑣 in𝑇 was processed in the rounding procedure

before 𝑣 . Thus, if 𝑥𝑤 has a fractional value when rounding 𝑥𝑣 , it must be the case that 𝑦𝑤𝐵 = 1 for

some block 𝐵 containing 𝑤 , as otherwise we would have set 𝑥𝑤 to 1. Decreasing the 𝑥 variables

during the second rounding step does therefore not violate any constraint (6.5d) and the solution

(𝑥,𝑦) is still feasible for (LP 6.5).

Third Rounding Step Decrease all remaining fractional variables to 0.

After processing the root 𝑟 of 𝑇 in the second rounding step, for each cut vertex 𝑣 in 𝐺 it holds

true that 𝑥𝑣 = 1 or 𝑦𝑣𝐵 = 1 for some block 𝐵 containing 𝑣 . Thus, constraints (6.5d) are fulfilled after

the third rounding step and (𝑥,𝑦) is feasible for (IP 6.5).

Theorem 6.21. The procedure that solves (LP 6.5) and applies the described three rounding steps to

the solution is a 2-approximation algorithm forMin-Simultaneous Domination of Spanning Trees.

Proof. Let𝐺 be a graph and denote by (𝑥,𝑦) a solution of (LP 6.5) for𝐺 that was rounded according

to the three rounding steps described before. We already argued above, that applying the three

rounding steps to the solution of (LP 6.5) maintains feasibility of the solution. As all values of (𝑥,𝑦)
are integral after rounding, it holds true that (𝑥,𝑦) is a solution to (IP 6.5). In the first rounding step
we only increase variables that have value larger or equal to 1/2. In the second rounding step, if we

increase a variable 𝑥𝑣 to 1, we also decrease a set of variables

{
𝑥𝑤1

, . . . , 𝑥𝑤𝑘

}
to 0. By (6.8) the total

value of the affected variables before the rounding is at least 1/2. Thus, the rounding at most doubles

their summed up value. The third rounding step then only decreases the objective value. Thus,

The obtained solution (𝑥,𝑦) induces a simultaneously dominating set 𝑆 = {𝑣 ∈ 𝑉 (𝐺) : 𝑥𝑣 = 1} such
that for any minimum simultaneous dominating set 𝑆★ it holds true that |𝑆 | ≤ 2

��𝑆★��.
We can compute an optimal solution to (LP 6.5) in polynomial time, cf. [GLS88]. It is easy to see

that the rounding steps can also be implemented to run in polynomial time, taking into account

that we can obtain the block-cutpoint tree of a graph 𝐺 in linear time in the size of the graph 𝐺 ,

cf. [HT73].
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Conclusion In this chapter we thoroughly investigated Simultaneous Domination of Span-

ning Trees. On 2-connected graphs the problem revealed itself to be equivalent to Vertex Cover.

After providing an algorithm that reduces the problem to finding a Vertex Cover on subgraphs

of the blocks of a graph, we argued how we can use this to prove Simultaneous Domination of

Spanning Trees to be contained in P when restricted to graphs that are bipartite, chordal, claw

free or have bounded treewidth. Somewhat surprisingly we saw, that Simultaneous Domination

of Spanning Trees is NP-complete when restricted to perfect graphs, whereas Vertex Cover is

contained in P on the very same class of graphs. Finally we showed that for general graphs wemay

approximate Min-Simultaneous Domination of Spanning Trees by a factor of 2. A direction

of further research could be to regard simultaneous domination of other classes. For example it

could be interesting to consider the problem of finding a minimum size set on all cycles in a graph.

It is very likely that some of the techniques described in this chapter can be transferred to other

simultaneous dominating set problems.
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Uncertainty in the Demand:
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and Facility Location Problems
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Chapter 7.

q-Multiset Multicover

In this chapter we discuss 𝑞-Multiset Multicover which is a covering problem in which every

set may only cover 𝑞 of its elements. We prove that it is NP-complete in the strong sense for

any fixed 𝑞 ≥ 3, but polynomial time solvable for 𝑞 ∈ {1, 2}. We introduce a robust version

of 𝑞-Multiset Multicover, and prove that this version is NP-hard in the strong sense for any

𝑞 ∈ N>0. Further we discuss general solution techniques based on integer programming and

constraint generation. For specific choices of uncertainty sets, we see that Robust 1-Multiset

Multicover remains NP-hard even when the uncertainty set is restricted to contain only three

elements. We regard further common uncertainty sets, analyze their complexity, and discuss

possible improvements in the solution process.

The results of this chapter have partially been published in [KSS19]. In particular this applies to

the results on 𝑞-Multiset Multicover and the results on Robust 𝑞-Multiset Multicoverwith

budgeted uncertainty. All of the results in this chapter are joint work with Eva Schmidt and Sven

O. Krumke.

As the literature reviews for Chapter 7 and 8 overlap in large parts, it is presented in the intro-

duction to Part II.

Outline We begin this chapter with the formal definition, integer programming formulations

of the problem and classify it by complexity class for all 𝑞 ∈ N>0. In Section 7.2 we repeat this

process for 𝑞-Multiset Multicover including uncertainty in the demand of the elements to be

covered, where we only make very rough assumptions on the given uncertainty sets. Before we

discuss complexity and solution approaches for specific uncertainty sets in Section 7.4, we briefly

discuss general solution approaches independent of the choice of uncertainty set in Section 7.3.

7.1. Problem Definition and Classification

In the first section of this chapter we formally define 𝑞-Multiset Multicover, give different inte-

ger programming formulations for the problem and classify it by complexity class for all integers

𝑞 ∈ N>0, where we give polynomial time algorithms whenever the problem is contained in P.
Given a finite ground set and a collection of subsets, in 𝑞-Multiset Multicover we ask if there
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exist 𝐵 subsets with multiple choices being allowed, such that the demand of each element is cov-

ered, when each subset may only cover up to 𝑞 of its elements (again multiple choices are allowed).

We now formally define 𝑞-Multiset Multicover for a fixed integer 𝑞 ∈ N>0.

q-Multiset Multicover (q-MsMc).

Instance: A finite set 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a collection of subsets J ⊆ 2
𝐽
, and an

integer 𝐵 ∈ N.
Question: Does there exist 𝑥 ∈ N |J |

with 𝑥 (J) ≤ 𝐵 such that there exists 𝑦 ∈ N |J |×| 𝐽 |

satisfying ∑︁
𝐴∈J : 𝑗 ∈𝐴

𝑦𝐴𝑗 ≥ 𝑑 𝑗 ∀𝑗 ∈ 𝐽 and

∑︁
𝑗 ∈𝐴

𝑦𝐴𝑗 ≤ 𝑞 · 𝑥𝐴 ∀𝐴 ∈ J?

For a fixed subset 𝐴, the integer 𝑦𝐴𝑗 in the problem definition models the amount of demand

of element 𝑗 covered by the subset 𝐴. If, instead of regarding the subsets 𝐴 ∈ J , we regard all

multisets of cardinality 𝑞 of𝐴, we get an instance of Multiset Multicover, raising the input size

only by a polynomial factor as 𝑞 is not part of the input. Thereby, 𝑞-MsMc is a representation of

certain Multiset Multicover instances having smaller input size.

In the sequel, it is useful to model an instance of 𝑞-MsMc as a bipartite graph with weights. We

set𝐺 to be the simple bipartite graph with bipartition 𝐼 ·∪ 𝐽 , where 𝐼 is an index set for the collection
J = {𝐴𝑖 : 𝑖 ∈ 𝐼 } and the neighborhood of 𝑖 ∈ 𝐼 in 𝐺 is exactly 𝐴𝑖 . Using this we get the following

alternative definition of 𝑞-MsMc. This definition eases notation in many cases and, in the author’s

opinion, gives the better intuition for the problem.

q-Multiset Multicover (q-MsMc).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),
and an integer 𝐵 ∈ N.

Question: Does there exist 𝑥 ∈ N |𝐼 |
with 𝑥 (𝐼 ) ≤ 𝐵 such that there exists𝑦 ∈ N |𝐼 |× | 𝐽 |

satisfying∑︁
𝑖∈𝑁 ( 𝑗)

𝑦𝑖 𝑗 ≥ 𝑑 𝑗 ∀𝑗 ∈ 𝐽 and

∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼?

Let us regard a small example so we may better grasp the equivalence of the two definitions of

𝑞-MsMc.

Example 7.1. Regard a collection of subsets J = {{1, 2, 3} , {2, 4, 6} , {5, 6}} on the ground set

𝐽 = {1, . . . , 6}. If these are part of an instance of 𝑞-MsMc, we may also regard them as the bipartite

graph 𝐺 depicted in Figure 7.1. Instead of choosing integers 𝑥𝐴 for the subsets 𝐴 ∈ J we now

choose integers 𝑥𝑖 for the vertices 𝑖 ∈ 𝐼 that belong to the left partition in Figure 7.1.

Arising from facility location problems we use the following notations for the remainder of this

thesis.
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{1, 2, 3}

{2, 4, 6}

{5, 6}

1

2

3

4

5

6

Figure 7.1.: Graph of 𝑞-MsMc instance from Example 7.1.

Notation 7.2. For an instance of 𝑞-MsMcwe call the set 𝐼 locations and the set 𝐽 regions. Further,

𝑑 𝑗 describes the number of clients or the demand in region 𝑗 ∈ 𝐽 . The integers 𝑥𝑖 denote the number

of suppliers in location 𝑖 ∈ 𝐼 . The number 𝑞 is interpreted as the number of clients a single supplier

may serve.

In the optimization version Min-𝑞-Multiset Multicover (Min-𝑞-MsMc) we aim for a mini-

mum number of suppliers. It can readily be seen that the following integer program modelsMin-

𝑞-MsMc. We label the MIP in dependence on a demand vector 𝑑 ∈ N | 𝐽 |
for reference purposes.

(MIP 7.1)(𝑑) min

𝑥,𝑦

∑︁
𝑖∈𝐼

𝑥𝑖 (7.1a)

s.t.
∑︁

𝑖∈𝑁 ( 𝑗)
𝑦𝑖 𝑗 ≥ 𝑑 𝑗 ∀𝑗 ∈ 𝐽 (7.1b)∑︁

𝑗 ∈𝑁 (𝑖)
𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 (7.1c)

𝑦𝑖 𝑗 ≥ 0 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (7.1d)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (7.1e)

Note that the variables𝑦𝑖 𝑗 are not forced to be integral. Lemma 7.5 argues why this is no restriction.

Looking at (MIP 7.1) another resemblance to awell known optimization problem is revealed: The

capacitated facility location problem. One could think of 𝑞-MsMc as a facility location problem,

where the facility capacities are all fixed to a constant 𝑞 ∈ N>0. Another difference to standard

capacitated facility location problems is that in 𝑞-Multiset Multicover the variables 𝑦 do not

appear in the objective function. This will be of importance for the subsequent reformulation of

(MIP 7.1). Also, this is the main reason why we deem 𝑞-MsMc a covering rather than a facility

location problem.

As the 𝑦 variables do not appear in the objective function they can be interpreted as auxiliary

variables, which are not necessarily interesting for a solution to the problem. This fact leads us to
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𝑞 · 𝑥𝑖

∞
𝑑 𝑗

𝑠
...

... 𝑡

𝐽𝐼

Figure 7.2.: Flow network from Definition 7.4.

the alternative integer programming formulation (IP 7.2)(𝑑) of 𝑞-Multiset Multicover, which is

proved to be equivalent to (MIP 7.1)(𝑑) in Lemma 7.5.

(IP 7.2)(𝑑) min

𝑥

∑︁
𝑖∈𝐼

𝑥𝑖 (7.2a)

s.t.
∑︁

𝑖∈𝑁 (𝑆)
𝑞 · 𝑥𝑖 ≥

∑︁
𝑗 ∈𝑆

𝑑 𝑗 ∀𝑆 ⊆ 𝐽 (7.2b)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (7.2c)

Before we prove the equivalence of the two formulations, we observe trivial lower and upper

bounds for an optimal solution and define a flow network that will be used in the proof of

Lemma 7.5 and again later on in this chapter.

Observation 7.3. Let an instance ofMin-𝑞-Multiset Multicover be given and let 𝑥★ be an opti-

mal solution to the instance. It holds true that∑︁
𝑖∈𝐼

𝑥★𝑖 ≥
⌈∑

𝑗 ∈𝐽 𝑑 𝑗

𝑞

⌉
and 𝑥★𝑖 ≤

⌈∑
𝑗 ∈𝑁 (𝑖) 𝑑 𝑗

𝑞

⌉
∀𝑖 ∈ 𝐼 .

Definition 7.4. Let an instance I of 𝑞-Multiset Multicover be given. We define the flow

network corresponding to I to be the directed graph

𝐻I = (𝐼 ∪ 𝐽 ∪ {𝑠} ∪ {𝑡} , 𝑅 ∪ 𝑅𝑠 ∪ 𝑅𝑡 ),

where 𝑅 = {𝑖 𝑗 : 𝑖 𝑗 ∈ 𝐸 (𝐺)}, 𝑅𝑠 = {𝑠𝑖 : 𝑖 ∈ 𝐼 } and 𝑅𝑡 = { 𝑗𝑡 : 𝑗 ∈ 𝐽 }. Further we define a capacity

84



Chapter 7. q-Multiset Multicover

function 𝑐 : 𝑅(𝐻I) → Z ∪ {∞} by setting

𝑐 (𝑟 ) =


∞, 𝑟 ∈ 𝑅,
𝑞 · 𝑥𝑖 , 𝑟 ∈ 𝑅𝑠 ,
𝑑 𝑗 , 𝑟 ∈ 𝑅𝑡 .

for each 𝑟 ∈ 𝑅(𝐻I). See also Figure 7.2 for the construction of 𝐻I .

Lemma 7.5. The LP-relaxations of (MIP 7.1) and (IP 7.2) are equivalent in the following sense: For

an instance ofMin-𝑞-MsMc it holds true that 𝑥 ∈ R |𝐼 |
is a feasible solution to the LP-relaxation of (IP

7.2)(𝑑) if and only if there exists𝑦 ∈ R |𝐼 |× | 𝐽 |
≥0

such that (𝑥,𝑦) is a feasible solution for the LP-relaxation
of (MIP 7.1)(𝑑). If in this case 𝑥 ∈ N, the values of the variables 𝑦 can also be chosen integral.

Proof. We denote by (LP 7.1) and (LP 7.2) the LP-relaxations of (MIP 7.1) and (IP 7.2). Let I be

an instance of 𝑞-MsMc. If (𝑥,𝑦) is a feasible solution for (LP 7.1)(𝑑) then 𝑥 is also feasible for

(LP 7.2)(𝑑), as for any 𝑆 ⊆ 𝐽 we have:

∑︁
𝑖∈𝑁 (𝑆)

𝑞 · 𝑥𝑖 ≥
∑︁

𝑖∈𝑁 (𝑆)

∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 =
∑︁

𝑖∈𝑁 (𝑆)

©«
∑︁

𝑗 ∈𝑁 (𝑖)∩𝑆
𝑦𝑖 𝑗 +

∑︁
𝑗 ∈𝑁 (𝑖)\𝑆

𝑦𝑖 𝑗
ª®¬

≥
∑︁

𝑖∈𝑁 (𝑆)

∑︁
𝑗 ∈𝑁 (𝑖)∩𝑆

𝑦𝑖 𝑗 =
∑︁
𝑗 ∈𝑆

∑︁
𝑖∈𝑁 ( 𝑗)

𝑦𝑖 𝑗 ≥
∑︁
𝑗 ∈𝑆

𝑑 𝑗 .

Now assumewe are given a feasible solution 𝑥 for (LP 7.2)(𝑑). Let𝐻 B 𝐻I be the flow network cor-

responding to I, cf. Definition 7.4. We claim that any maximum 𝑠-𝑡-flow in 𝐻 has flow value 𝑑 (𝐽 ).
Note that given an 𝑠-𝑡-flow 𝑓 with flow value 𝑑 (𝐽 ) the solution (𝑥,𝑦) with 𝑦𝑖 𝑗 = 𝑓 (𝑖 𝑗) for all 𝑖 𝑗 ∈ 𝑅
is feasible for (LP 7.1)(𝑑).

The flow value of any 𝑠-𝑡 flow cannot be larger than 𝑑 (𝐽 ) (consider the 𝑠-𝑡 cut with 𝑇 = {𝑡}).
Thus, it suffices to show that a maximum 𝑠-𝑡 flow in 𝐻 has flow value no less than 𝑑 (𝐽 ). To this

end let 𝑆,𝑇 ⊆ 𝑉 (𝐻 ) be any 𝑠-𝑡 cut in𝐻 . Let 𝐽 ′ = 𝐽 \𝑆 , possibly being the empty set. If any location

in the neighborhood of 𝐽 ′ is contained in 𝑆 , the cut contains an arc with infinite capacity. Thus, we

may assume 𝑁 −
𝐻
(𝐽 ′) ∩ 𝑆 = ∅, which implies 𝑁 −

𝐻
(𝐽 ′) ⊆ 𝑇 . Since 𝑥 is a feasible solution to (IP 7.2)(𝑑)

we obtain for any subset 𝑄 ⊆ 𝐽 ∑︁
𝑖∈𝑁 −

𝐻
(𝑄)
𝑞 · 𝑥𝑖 =

∑︁
𝑖∈𝑁𝐺 (𝑄)

𝑞 · 𝑥𝑖 ≥
∑︁
𝑗 ∈𝑄

𝑑 𝑗 .

This in turn implies

𝑐 (𝑆,𝑇 ) ≥
∑︁
𝑗 ∈𝐽∩𝑆

𝑑 𝑗 +
∑︁

𝑖∈𝑁 −
𝐻
( 𝐽 ′)

𝑞 · 𝑥𝑖 ≥
∑︁
𝑗 ∈𝐽∩𝑆

𝑑 𝑗 +
∑︁
𝑗 ∈𝐽 ′

𝑑 𝑗 =
∑︁
𝑗 ∈𝐽

𝑑 𝑗 .

Thus, every 𝑠-𝑡 cut has capacity larger or equal to 𝑑 (𝐽 ) and by theMax-Flow-Min-Cut Theorem we

obtain the desired result, cf. [AMO93].
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Note that the capacities of the arcs in𝑅𝑠 and𝑅𝑡 fromDefinition 7.4 are integral. Thus, there exists

an integral 𝑠-𝑡 flow 𝑓 in 𝐻 if and only if there exists a continuous 𝑠-𝑡 flow 𝑓 ′ in 𝐻 , cf. [AMO93].

Thereby, for any optimal solution (𝑥,𝑦) to (MIP 7.1), we can find an optimal solution (𝑥,𝑦 ′), where
𝑦 ′ is integral.

We now have valid integer programming formulations for 𝑞-MsMc. Note that Lemma 7.5 still

holds if we do not require the 𝑥 variables to have integral values. Thus, the LP-relaxations of

(MIP 7.1) and (IP 7.2) also have the same objective value. One might raise the question, why a re-

formulation of polynomial many constraints (7.1b)-(7.1d) to exponentially many constraints (7.2b)

is of any use. In fact, for 𝑞-MsMc the reformulation is rather of theoretical interest. However,

when regarding demand uncertainty in the subsequent sections of this chapter, the reformulation

is useful in the solution process of 𝑞-MsMc.

As of now, we may still hope for polynomial time algorithms solving 𝑞-MsMc, as we know

nothing about the complexity of the decision problem. In the remainder of this section we see that

for all 𝑞 ≥ 3 we will most likely not be able to find polynomial time algorithms, as 𝑞-MsMc turns

out to be NP-complete in the strong sense in this case. We give polynomial time algorithms for

solvingMin-1-MsMc andMin-2-MsMc though.

Proposition 7.6. Min-1-Multiset Multicover is solvable in time O(|𝐼 | + |𝐽 |).

Proof. Given an instance forMin-1-MsMc in any solution each client needs to be assigned a unique

supplier. This means for each client in some region 𝑗 ∈ 𝐽 wemay put a single supplier in some loca-

tion 𝑖 ∈ 𝑁 ( 𝑗). We get a feasible solution with 𝑑 (𝐽 ) suppliers, which is optimal by Observation 7.3.

We can find this solution in time O (|𝐼 | + |𝐽 |).

Regarding Min-2-MsMc we observe that placing a supplier in some location 𝑖 ∈ 𝐼 could be

interpreted as choosing two regions in the neighborhood of 𝑖 . There seems to be a close relation to

edge covers. Recall that for a graph 𝐺 = (𝑉 , 𝐸) an edge cover is a subset of the edges 𝐸 ′ ⊆ 𝐸 such

that each vertex 𝑣 ∈ 𝑉 is incident to at least one edge 𝑒 ∈ 𝐸 ′. In fact we can use an algorithm for

Edge Cover in order to find an optimal solution toMin-2-MsMc.
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Theorem 7.7. Min-2-Multiset Multicover can be solved in O(|𝐼 |5/2 |𝐽 |5/2).

Proof. Let an instance of Min-2-MsMc be given. We begin by arguing that for any 𝑗 ∈ 𝐽 we may

assume that 𝑑 𝑗 ≤ |𝐼 |. Suppose 𝑑 𝑗 ≥ |𝐼 | + 1 for some 𝑗 ∈ 𝐽 . Then, in any optimal solution (𝑥,𝑦) to
(MIP 7.1) there is some region 𝑗 and location 𝑖 ∈ 𝑁 ( 𝑗) such that 𝑦𝑖 𝑗 ≥ 2. Removing one supplier

from such a location 𝑖 yields an optimal solution to the same instance with the demand of region 𝑗

being 𝑑 𝑗 − 2. As a consequence we may also solve this instance and then afterwards add a supplier

to some location connected to 𝑗 in order to get an optimal solution of the original problem. We

can therefore decrease the demand of all 𝑗 with 𝑑 𝑗 ≥ |𝐼 | + 1 to |𝐼 |, respectively |𝐼 | − 1 by adding⌈
1/2

(
𝑑 𝑗 − |𝐼 |

)⌉
suppliers to some location connected to 𝑗 . This can be done in constant time for any

region 𝑗 ∈ 𝐽 .
Now regard the following procedure: For a given instance of the problem, duplicate each region

𝑗 ∈ 𝐽 exactly 𝑑 𝑗 times yielding a set 𝑉𝑗 for each 𝑗 ∈ 𝐽 . Regard the graph 𝐻 = (𝑉 , 𝐸 ′) with vertex

set 𝑉 =
⋃

𝑗 ∈𝐽 𝑉𝑗 where, for two vertices 𝑢 ∈ 𝑉𝑗1 and 𝑣 ∈ 𝑉𝑗2 , the edge 𝑢𝑣 is contained in 𝐸 ′ if

𝑁𝐺 ( 𝑗1) ∩𝑁𝐺 ( 𝑗2) ≠ ∅. Note that this implies that the graph induced by some set𝑉𝑗 is the complete

graph. Next, compute a minimum edge cover 𝐹 ⊆ 𝐸 ′ in 𝐻 and initially set 𝑥𝑖 = 0 for all 𝑖 ∈ 𝐼 . For
each edge 𝑢𝑣 ∈ 𝐹 , with 𝑢 ∈ 𝑉𝑗1 , 𝑣 ∈ 𝑉𝑗2 we increase 𝑥𝑖 by 1 for some 𝑖 ∈ 𝑁𝐺 ( 𝑗1) ∩𝑁𝐺 ( 𝑗2), meaning

we add a supplier in location 𝑖 who serves one client in region 𝑗1 and one in region 𝑗2.

We first prove the correctness of the procedure. Let 𝐻 = (𝑉 , 𝐸 ′) be the graph and 𝑥 be the

solution defined in the procedure above. Denote by 𝐹 the minimum edge cover from the procedure.

As there is a vertex in 𝐻 for every client and the vertices corresponding to the clients are covered

by the edges in 𝐹 it is clear that 𝑥 defines a feasible solution for Min-𝑞-MsMc. It remains to show

that, given a solution 𝑥 ∈ N |𝐼 |
to Min-𝑞-MsMc, there is an edge cover with 𝑥 (𝐼 ) edges. As 𝑥 is a

solution toMin-𝑞-MsMc we can find 𝑦𝑖 𝑗 ∈ N for all 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 fulfilling∑︁
𝑖∈𝑁 ( 𝑗)

𝑦𝑖 𝑗 ≥ 𝑑 𝑗 ∀𝑗 ∈ 𝐽 and
∑︁

𝑗 ∈𝑁 (𝑖)
𝑦𝑖 𝑗 ≤ 2𝑥𝑖 ∀𝑖 ∈ 𝐼 .

Further, we may assume equality in the latter set of equations and can thereby determine for each

supplier 𝑖 ∈ 𝐼 the two regions 𝑗1, 𝑗2 ∈ 𝐽 he serves. We initially set 𝐹 to the empty set. For each

supplier, we now select an edge between two vertices of 𝑉𝑗1 and 𝑉𝑗2 , and add it to 𝐹 . As for each

𝑗 ∈ 𝐽 it holds true that ∑︁
𝑖∈𝑁 ( 𝑗)

𝑦𝑖 𝑗 ≥ 𝑑 𝑗

we may choose the edges, such that 𝐹 is an edge cover of 𝐻 with 𝑥 (𝐼 ) edges. This proves the

correctness of the procedure.

To see the running time of the procedure note that the preprocessing step reducing each 𝑑 𝑗 for

𝑗 ∈ 𝐽 to at most |𝐼 | can be implemented to run in time O(|𝐽 |). The constructed graph then has at

most 𝑁 := |𝐽 | · ( |𝐼 | + 1) vertices whereas the number 𝑀 of edges is upper bounded by 𝑂 ( |𝐼 |2 |𝐽 |2).
A minimum edge cover in a graph with 𝑁 vertices and𝑀 edges can be obtained by first solving a
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maximum matching problem in time𝑂 (
√
𝑁𝑀 log𝑁 (𝑁 2/𝑀)) [GK95] and then using𝑂 (𝑀) time to

augment the matching [Sch03; LP86]. This gives the claimed running time.

The NP-completeness of 𝑞-MsMc for 𝑞 ≥ 3 is a consequence of its close resemblance to Set

Cover, which is well known to be NP-complete,cf. [GJ79]. We give a formal proof for the sake of

completeness.

Theorem 7.8. For any fixed 𝑞 ≥ 3, 𝑞-Multiset Multicover is NP-complete in the strong sense.

Proof. Let 𝑞 ∈ N with 𝑞 ≥ 3. As a consequence of Lemma 7.5, for a given instance of 𝑞-MsMc,

we may test if a given solution 𝑥 is feasible in polynomial time by one Max-Flow computation.

Therefore, 𝑞-MsMc is contained in NP.
To see that the problem is NP-hard in the strong sense we illustrate a reduction from Exact

Cover by 3-sets, which is known to be NP-hard in the strong sense, cf. [GJ79]. Let an instance

of Exact Cover by 3-sets be given. We create an instance of 𝑞-MsMc in the following way. Let

𝐼 = S, 𝐽 := 𝑈 and define the graph of the instance via 𝑁 (𝑆) = 𝑆 for all 𝑆 ∈ S. Further, let 𝑑 𝑗 = 1 for

all 𝑗 ∈ 𝐽 and 𝐵 = |𝑈 |/3. Now, let S′
be a solution to the instance of Exact Cover by 3-sets. Setting

𝑥𝑆 to one if and only if 𝑆 ∈ S′
and zero else yields a feasible solution to 𝑞-MsMc with 𝑥 (S) = 𝐵.

On the other hand, note that in any feasible solution 𝑥 to 𝑞-MsMc with 𝑥 (S) ≤ 𝐵, it is 𝑥𝑆 ≤ 1 for

all 𝑆 ∈ S. Thus, S′ = {𝑆 : 𝑥𝑆 > 0} is a solution to Exact Cover by 3-sets.

We already observed before that Multiset Multicover is a generalization of 𝑞-MsMc. It is

well known thatMin-Multiset Multicover can be approximated within a factor of log(𝑠) where
𝑠 is the size of the largest multiset of an instance, cf. [Dob82]. If we regard Min-𝑞-MsMc as Min-

Multiset Multicover problem, all multisets have fixed size 𝑞. We therefore automatically get a

log(𝑞)-approximation for Min-𝑞-MsMc:

Observation 7.9. There is a log(𝑞)-approximation for Min-𝑞-MsMc.

7.2. Problem Definition and Classification Including Demand Uncertainty

In this section, we extend 𝑞-Multiset Multicover to include uncertainty in the number of

clients 𝑑 𝑗 of each region 𝑗 ∈ 𝐽 . In particular this means that, instead of being given one fixed

demand vector in an instance, the demand vectors are now subject to uncertainty and are only

known to be contained in some uncertainty setU. In a solution to Robust 𝑞-MsMcwe are looking

for a distribution of suppliers, such that the demand can be satisfied in every possible scenario

b ∈ U. It now becomes evident that the 𝑦 variables can be considered to be auxiliary as we are

not interested in the actual assignment of clients to suppliers in every possible scenario. We are

merely looking for a certificate that when the actual scenario reveals itself we are able to find such

an assignment.

Here and in Section 7.3, we make very rough restrictions on the given uncertainty set such as

its encoding length or its polynomial time enumerability. In Section 7.4 we then discuss specific

uncertainty sets in order to improve our results for general uncertainty sets. As is customary in
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robust optimization, we are looking for solutions that are feasible for all possible realizations of

the uncertainty setU. This results in the definition of the following robust version of 𝑞-Multiset

Multicover.

Robust q-Multiset Multicover (Robust q-MsMc).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , an uncertainty setU ⊆ N | 𝐽 |
, a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),

and a positive integer 𝐵 ∈ N>0.

Question: Does there exist 𝑥 ∈ N |𝐼 |
with 𝑥 (𝐼 ) ≤ 𝐵 such that for each b ∈ U there exists

𝑦 (b) ∈ N |𝐼 |× | 𝐽 |
satisfying∑︁

𝑖∈𝑁 ( 𝑗)
𝑦 (b)𝑖 𝑗 ≥ b 𝑗 ∀𝑗 ∈ 𝐽 , b ∈ U and∑︁

𝑗 ∈𝑁 (𝑖)
𝑦 (b)𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U?

We begin by providing integer programming formulations for Robust Min-𝑞-MsMc. Observe

that (MIP 7.3) is a valid formulation for Robust Min-𝑞-MsMc.

(MIP 7.3)(U) min

𝑥,𝑦

∑︁
𝑖∈𝐼

𝑥𝑖 (7.3a)

s.t.
∑︁

𝑖∈𝑁 ( 𝑗)
𝑦𝑖 𝑗 (b) ≥ b 𝑗 ∀𝑗 ∈ 𝐽 , b ∈ U (7.3b)∑︁

𝑗 ∈𝑁 (𝑖)
𝑦𝑖 𝑗 (b) ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U (7.3c)

𝑦𝑖 𝑗 (b) ≥ 0 ∀𝑖 ∈ 𝐼 , ∀𝑗 ∈ 𝐽 , b ∈ U (7.3d)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (7.3e)

In a next step we reformulate (MIP 7.3) in the same manner as (MIP 7.1) in the previous section.

Although it is a direct consequence of Lemma 7.5, we prove the equivalence of the two formulations

for the sake of completeness.

(IP 7.4)(U) min

𝑥

∑︁
𝑖∈𝐼

𝑥𝑖 (7.4a)

s.t.
∑︁

𝑖∈𝑁 (𝑆)
𝑞 · 𝑥𝑖 ≥

∑︁
𝑗 ∈𝑆

b 𝑗 ∀𝑆 ⊆ 𝐽 , ∀b ∈ U (7.4b)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (7.4c)

Theorem 7.10. The LP-relaxation of (MIP 7.3) and (IP 7.4) are equivalent in the following sense:

Given an instance of Robust Min-𝑞-MsMc it holds true that 𝑥 ∈ R |𝐼 |
is a feasible solution to the

89



Chapter 7. q-Multiset Multicover

LP-relaxation of (IP 7.4) if and only if for each b ∈ U, there exists 𝑦 (b) ∈ R |𝐼 |× | 𝐽 |
≥0

such that (𝑥,𝑦) is
a feasible solution to the LP-relaxation of (MIP 7.3). If in this case the values of the 𝑥 variables are

integral, the values of the 𝑦 variables can also be chosen integral.

Proof. Denote by (LP 7.3) and (LP 7.4) the LP-relaxations of (MIP 7.3) and (IP 7.4). Assume 𝑥 ∈ R |𝐼 |

is a feasible solution to (LP 7.4). We fix some scenario b ∈ U. Then 𝑥 is also feasible for (LP 7.2)(b).

By Lemma 7.5 there exist𝑦 (b) ∈ R |𝐼 |× | 𝐽 |
≥0

such that (𝑥,𝑦 (b)) is feasible for (LP 7.1)(b). Defining such
variables𝑦 (b) for all b ∈ U we get a feasible solution (𝑥,𝑦) for (LP 7.3). Reversing these arguments

we can also show that for any feasible solution (𝑥,𝑦) for (LP 7.3) it holds true that 𝑥 is feasible for

(LP 7.4).

Looking at the constraints (7.4b) in (IP 7.4) we can see that, for fixed 𝑆 ⊆ 𝐽 , there is only one

relevant scenario b ∈ U, namely the one maximizing the sum b (𝑆). This leads to the following

observation.

Observation 7.11. Replacing the constraints (7.4b) in (IP 7.4) by∑︁
𝑖∈𝑁 (𝑆)

𝑞 · 𝑥𝑖 ≥ max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
∀𝑆 ⊆ 𝐽 ,

does not change the set of feasible solutions of (IP 7.4).

Observation 7.11 gives us a new integer programming formulation for Robust 𝑞-MsMc. We

state it here for the sake of completeness and reference purposes. As it will be of use later on, we

define the integer program for any collection of subsets J ⊆ 2
𝐽
. To get a valid formulation for

Robust 𝑞-MsMc, we set J = 2
𝐽
.

(IP 7.5)(J) min

𝑥

∑︁
𝑖∈𝐼

𝑥𝑖 (7.5a)

s.t.
∑︁

𝑖∈𝑁 (𝑆)
𝑞 · 𝑥𝑖 ≥ max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
∀𝑆 ∈ J (7.5b)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (7.5c)

We are now ready to analyze the complexity of Robust 𝑞-MsMc. As we already proved 𝑞-MsMc

to be NP-complete for any fixed 𝑞 ≥ 3 it is not surprising that the robust version of the problem

is also NP-complete for 𝑞 ≥ 3. Unfortunately, the polynomial time solvability for the cases 𝑞 = 1

and 𝑞 = 2 does not transfer.

Theorem 7.12. Robust 𝑞-Multiset Multicover is NP-hard in the strong sense for any fixed 𝑞 ∈
N>0.

Proof. We show that there exists a polynomial time reduction from Dominating Set to Robust

𝑞-MsMc. Recall that a dominating set in a graph is a subset of the vertices, such that each vertex is
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Figure 7.3.: An example of the construction of the graph 𝐺 ′
given the displayed graph 𝐺 in the

proof of Theorem 7.12.

either in the set or has a neighbor in the set. To this end, let an undirected graph 𝐺 with 𝑉 (𝐺) =
{1, . . . , 𝑛} and an integer 𝑘 ∈ N from an instance of Dominating Set be given. To construct

an instance of Robust 𝑞-MsMc we set 𝐼 = {1, . . . , 𝑛} and 𝐽 = {𝑛 + 1, . . . , 2𝑛}. For every edge

𝑢𝑣 ∈ 𝐸 (𝐺), we add the edges 𝑢 (𝑣 + 𝑛) and 𝑣 (𝑢 + 𝑛) to the bipartite graph 𝐺 ′
with vertex set 𝐼 ∪ 𝐽 .

Additionally, for every 𝑣 ∈ 𝑉 , the edge 𝑣 (𝑛 + 𝑣) is added to the edge set of𝐺 ′
. For the construction

of 𝐺 ′
see also Figure 7.3. Moreover, we define the uncertainty set to be the set of unit vectors

U =
{
b ∈ N | 𝐽 |

: b (𝐽 ) = 1

}
and set 𝐵 = 𝑘 .

Let 𝑇 ⊆ 𝑉 (𝐺) = 𝐼 be a dominating set in 𝐺 such that |𝑇 | ≤ 𝑘 . We set 𝑥𝑖 = 1 for all 𝑖 ∈ 𝑇 and

𝑥𝑖 = 0 else. As 𝑥 fulfills 𝑥 (𝐼 ) ≤ 𝐵, by Observation 7.11 it remains to be shown that, for each subset

𝑆 ⊆ 𝐽 , we have ∑︁
𝑖∈𝑁𝐺′ (𝑆)

𝑞 · 𝑥𝑖 ≥ max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
. (7.6)

If 𝑆 = ∅ the constraint is trivially fulfilled. So assume 𝑆 ≠ ∅ and choose some arbitrary element

𝑛 + 𝑣 ∈ 𝑆 . As 𝑣 is dominated in 𝐺 there exists some 𝑢 ∈ 𝑁𝐺 (𝑣) ∪ {𝑣} that is contained in 𝑇 and

therefore 𝑥𝑢 = 1. By the construction of the graph we also have 𝑢 ∈ 𝑁𝐺′ (𝑛 + 𝑣). Thus, it holds true
that ∑︁

𝑖∈𝑁𝐺′ (𝑆)
𝑞 · 𝑥𝑖 ≥

∑︁
𝑖∈𝑁𝐺′ (𝑛+𝑣)

𝑞 · 𝑥𝑖 ≥ 𝑞 ≥ 1.

As b (𝑆) ≤ b (𝐽 ) = 1 for all scenarios b ∈ U, equation (7.6) holds for all 𝑆 ⊆ 𝐽 .

Conversely, assume that 𝑥 is a solution of Robust 𝑞-MsMc such that 𝑥 (𝐼 ) ≤ 𝐵. We define 𝑇 to

contain all vertices 𝑣 ∈ 𝑉 (𝐺) such that 𝑥𝑣 ≥ 1. By this definition, we clearly have |𝑇 | ≤ 𝐵 = 𝑘 . So

let 𝑢 ∈ 𝑉 (𝐺) be arbitrary and regard the scenario b ∈ U with b 𝑗 = 1 if and only if 𝑗 = 𝑢 + 𝑛. By
constraints (7.4b) for 𝑆 = {𝑢 + 𝑛} there exists some 𝑣 ∈ 𝑁𝐺′ (𝑢 + 𝑛) such that 𝑥𝑣 ≥ 1. Thus, there

exists 𝑣 ∈ 𝑁𝐺 (𝑢) ∪ {𝑢} with 𝑣 ∈ 𝑇 , which is what we needed to show.
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Note that we did not show that Robust 𝑞-MsMc is contained inNP. In fact, it is not a priori clear
if feasibility of a solution may be decided in polynomial time. Deciding this is the complement of

the separation problem corresponding to the set of constraints (7.3b) and (7.3c) in (MIP 7.3) which

is of interest for solving Robust 𝑞-MsMc. We give formal definitions of both problems here for

the sake of completeness.

co-q-Multiset Multicover-Sep (co-q-MsMc-Sep).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , a finite set U ⊆ N | 𝐽 |
, a bipartite graph 𝐺 = (𝐼 ·∪ 𝐽 , 𝐸), and

integers 𝑥𝑖 ∈ N for 𝑖 ∈ 𝐼 .
Question: Are there 𝑦 (b) ∈ N |𝐼 |× | 𝐽 |

for every b ∈ U satisfying∑︁
𝑖∈𝑁 ( 𝑗)

𝑦 (b)𝑖 𝑗 ≥ b 𝑗 ∀𝑗 ∈ 𝐽 , b ∈ U and∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b)𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U?

q-Multiset Multicover-Sep (q-MsMc-Sep).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , a finite set U ⊆ N | 𝐽 |
, a bipartite graph 𝐺 = (𝐼 ·∪ 𝐽 , 𝐸), and

integers 𝑥𝑖 ∈ N for 𝑖 ∈ 𝐼 .
Question: Does there exist a b ∈ U, such that for all 𝑦 (b) ∈ N |𝐼 |× | 𝐽 |

with∑︁
𝑖∈𝑁 ( 𝑗)

𝑦 (b)𝑖 𝑗 ≥ b 𝑗 ∀𝑗 ∈ 𝐽 ,

there exists an 𝑖 ∈ 𝐼 with ∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b)𝑖 𝑗 > 𝑞 · 𝑥𝑖?

Regarding the complexity of co-𝑞-MsMc-Sep and 𝑞-MsMc-Sep the size of the uncertainty set in

comparison to its encoding length is of importance. The next two results handle the case in which

the we may enumerate the uncertainty set in polynomial time.

Theorem 7.13. co-𝑞-Multiset Multicover-Sep, as well as 𝑞-Multiset Multicover-Sep, re-

stricted to instances whereU is polynomial time enumerable are contained in P.

Proof. Given an instance of co-𝑞-MsMc-Sep, we construct for each b ∈ U the flow network from

Definition 7.4, where we set the arc capacities of all arcs 𝑟 ∈ 𝑅𝑡 to 𝑐 (𝑟 ) = b 𝑗 . After one max-flow

computation we can either decide that the desired 𝑦 (b) do not exist for this scenario or we obtain

it in the same manner as in the proof of Lemma 7.5. Thus, after |U| max-flow computations we

can decide co-𝑞-MsMc-Sep. This procedure is polynomial as we may enumerate the elements of

U in polynomial time. As 𝑞-MsMc-Sep is the complement of co-𝑞-MsMc-Sep it is contained in P
as well.
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Corollary 7.14. Robust 𝑞-Multiset Multicover is contained in NP for any fixed 𝑞 ∈ N>0 when

restricted to instances whereU is polynomial time enumerable.

If we may not enumerateU in polynomially time, the procedure from the proof of Theorem 7.13

does not run in polynomial time. In fact, if we simply remove this restriction on the uncertainty set

U 𝑞-Multiset Multicover-Sep becomes NP-complete and as a direct consequence co-𝑞-Multi-

set Multicover-Sep becomes coNP-complete.

Theorem 7.15. 𝑞-Multiset Multicover-Sep is NP-complete in the strong sense for any fixed 𝑞 ∈
N>0.

Proof. Given a fixed scenario b ∈ U, as in the proof of Theorem 7.13, we can use the flow network

from Lemma 7.5 to verify the validity of b by one max-flow computation. This implies that 𝑞-

MsMc-Sep is contained in NP.
Let 𝐻 be the graph and 𝑘 ≥ 1 the integer of an Independent Set instance. Without loss of

generality let 𝑉 (𝐻 ) = {1, . . . , 𝑛} . We create an instance of 𝑞-MsMc-Sep as follows. Let 𝐽 = 𝑉 (𝐻 ),
𝐼 = {𝑛 + 1} and

U = {b ∈ {0, 𝑞}𝑛 : b𝑢 + b𝑣 ≤ 𝑞,𝑢𝑣 ∈ 𝐸 (𝐻 )} .

Further let 𝐺 = (𝐼 ∪ 𝐽 , {(𝑛 + 1) 𝑗 : 1 ≤ 𝑗 ≤ 𝑛}) and 𝑥𝑛+1 = 𝑘 − 1.

First note that, as the created 𝑞-MsMc-Sep instance only contains one location, which is con-

nected to all regions, the question reduces to: Does there exist a b ∈ U such that b (𝐽 ) > 𝑞 · 𝑥𝑛+1.

Now assume there exists an independent set 𝑇 of size at least 𝑘 in 𝐻 . We define a scenario b by

setting b 𝑗 = 𝑞 if 𝑗 ∈ 𝑇 and b 𝑗 = 0 else. It is b ∈ U and b (𝐽 ) ≥ 𝑞 · 𝑘 = 𝑞 · (𝑥𝑛+1 + 1) > 𝑞 · 𝑥𝑛+1.

On the other hand assume we are given a scenario b ∈ U such that b (𝐽 ) > 𝑞 · 𝑥𝑛+1. We set

𝑇 = {𝑣 ∈ 𝑉 (𝐻 ) : b𝑣 = 𝑞}. This set is independent and fulfills

|𝑇 | =
∑

𝑗 ∈𝐽 b 𝑗

𝑞
>
𝑞 · 𝑥𝑛+1

𝑞
= 𝑘 − 1,

which finishes the proof.

Corollary 7.16. co-𝑞-Multiset Multicover-Sep is coNP-complete in the strong sense for any

fixed 𝑞 ∈ N>0.

Note that the uncertainty set in the proof of Theorem 7.15 is not polyhedral. However, the proof

can be adjusted, such that the regraded uncertainty set is polyhedral. We refrain from doing this

here, as it does not give further insight to the problem and decreases readability of the proof.

Although the initial analysis of the complexity of Robust 𝑞-Multiset Multicover does not

seem very promising, we still take a shot at solving it. The most promising approach at this point

is using (IP 7.5). To achieve this, of course, it is of interest to compute the maximum in the con-

straints (7.5b). Although the term looks innocent enough, the part b ∈ U makes it unlikely to

be computable efficiently in general, as it generalizes many NP-hard optimization problems. We

formalize the computation of the maximum as the decision problemMaxSum.
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MaxSum.

Instance: A set U ⊆ N𝑛 for some positive integer 𝑛 and an integer 𝐵 ∈ N.
Question: Does there exist a b ∈ U such that

𝑛∑︁
𝑗=1

b 𝑗 ≥ 𝐵?

Observation 7.17. IfMaxSum is restricted to instances in whichU is polynomial time enumerable

it is contained in P.

Theorem 7.18. MaxSum is NP-complete in the strong sense.

Proof. Given an element b ∈ U we can test if b (𝐽 ) ≥ 𝐵 in time O(𝑛). Thus, MaxSum is contained

in NP.
To showNP-hardness, we reduce Independent Set toMaxSum. Given a graph𝐺 and an integer

𝑘 from an instance of Independent Set we define an instance of MaxSum by setting 𝑛 = |𝑉 (𝐺) |,

U = {b ∈ {0, 1}𝑛 : b𝑢 + b𝑣 ≤ 1, 𝑢𝑣 ∈ 𝐸 (𝐺)}

and 𝐵 = 𝑘 . As an independent set in 𝐺 corresponds to an element of U and vice versa we proved

thatMaxSum is NP-hard.

In this section we analyzed the complexity of Robust 𝑞-MsMc and the subproblems appearing

in the problem definition. Further, we gave three different integer programming formulations

for the problem. Directly inputting these formulations for large uncertainty sets leads to very

large integer programs, that possibly take up too much time simply being defined. In the next

section we describe and analyze a general solution approach, based on the method of generating

the constraints during the solution process on the fly.

7.3. General Solution Approaches

In the previous section we classified Robust 𝑞-Multiset Multicover and some of the appearing

subproblems complexitywise. Althoughmost of the regarded problems areNP-hard, in this section
we are looking into general solution techniques, that work for arbitrary uncertainty sets. In the

next chapter we then have a look at specific uncertainty sets to see whether we can improve the

solution methods.

When aiming at solving Robust 𝑞-MsMc Theorem 7.12, stating that the problem is NP-hard in

the strong sense, justifies the solution approach using an MIP or IP formulation. As for different

types of uncertainty sets, the performance of (MIP 7.3) and (IP 7.4) might differ considerably, we

regard both formulations.

The size of U as well as the size of the subsets 𝑆 in (IP 7.4) may very well be exponential in

the encoding size of the problem. Thus it seems to be a valid approach to generate constraints on
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the fly, hoping that most of them are redundant. To this end, we define the notions of violating

scenarios and violating subsets.

Definition 7.19 (Violating scenarios and subsets). Let an instance of Robust 𝑞-Multiset Mul-

ticover be given.

(i) LetU ′ ⊆ U be a subset of the scenarios and let 𝑥 ∈ N |𝐼 |
be a feasible solution to (IP 7.4)(U ′).

In this context we call a scenario b ∈ U violating, if 𝑥 is not feasible for (IP 7.4)(U ′ ∪ {b}).

(ii) Let J ⊆ 2
𝐽
be a collection of subsets of the regions and let 𝑥 ∈ N |𝐼 |

be a feasible solution

to (IP 7.5)(J). In this context we call a subset 𝑆 ′ ⊆ 𝐽 violating, if 𝑥 is not feasible for

(IP 7.5)(J ∪ {𝑆 ′})

The following observation clarifies why the definitions of violating subsets and scenarios are of

interest for the computation of optimal solutions for Robust 𝑞-MsMc.

Observation 7.20. Let an instance of Robust 𝑞-Multiset Multicover be given. The following

holds true.

(i) Let a subset of the scenariosU ′ ⊆ U and a feasible solution 𝑥 to (IP 7.4)(U ′) be given. Assume

b ∈ U is a violating scenario, then there is no feasible solution for (MIP 7.3)(U) using the vector
𝑥 .

(ii) Let a subset of the scenarios U ′ ⊆ U and an optimal solution 𝑥★ to (MIP 7.3)(U ′) be given.
Then 𝑥★ is optimal for (MIP 7.3)(U) if and only if, there does not exist a violating scenario.

(iii) Let a collection of the regions J ⊆ 2
𝐽
and an optimal solution 𝑥★ to (IP 7.5)(J) be given. Then

𝑥★ is optimal for (IP 7.5)(2𝐽 ) if and only if, there does not exist a violating subset.

Since to any violating subset 𝑆 ′, in some sense, there is a corresponding scenario, namely the

one that maximizes the sum b (𝑆 ′), we will also give those scenarios a name.

Definition 7.21 (Violating extreme scenario). We call a violating scenario b ′ violating extreme

scenario if there exists some violating subset 𝑆 ′ such that

b ′ = argmax

b ∈U

{∑︁
𝑗 ∈𝑆′

b 𝑗

}
.

Lemma 7.22. Let an instance of Robust 𝑞-Multiset Multicover, a subset of the scenarios U ′ ⊆
U and an optimal solution 𝑥★ to (IP 7.4)(U ′) be given. Then 𝑥★ is optimal for (IP 7.4)(U) if and only
if there does not exist a violating extreme scenario.

Proof. If 𝑥★ is optimal for (IP 7.4)(U), then by Observation 7.20 (ii), there does not exist a violat-

ing scenario and therefore no violating extreme scenario. Assume on the other hand, that there

does not exist a violating extreme scenario. By definition this implies that there does not exist a

violating subset. By Observation 7.20 (iii) this implies, that 𝑥★ is optimal for (IP 7.5)(2
𝐽
) and by

Observation 7.11 we get that 𝑥★ is optimal for (IP 7.4)(U).
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Lemma 7.22 basically states that, when generating constraints in the solution process of an

instance of Robust 𝑞-MsMc, we can restrict ourselves to finding violating extreme scenarios and

violating subsets. An interesting question remains: Can we, given a violating extreme scenario,

also compute the corresponding violating subset efficiently and vice versa. The complexity of

finding violating extreme scenarios, when given violating subsets is, of course, highly dependent

on the structure of the uncertainty set. As theMaxSum problem from the previous section is NP-
complete, however, it is unlikely, that we can provide a polynomial time algorithm that does the

job in general.

On the other hand we see in the following that, given a violating scenario, it is always possible

to compute a violating subset efficiently.

Theorem 7.23. Let an instance of Robust 𝑞-Multiset Multicover and a vector 𝑥 ∈ N |𝐼 |
that is

feasible for (IP 7.4)(U ′) and (IP 7.5)(J) with sets U ′ ⊆ U and J ⊆ 2
𝐽
. Given a violating scenario

b ′ ∈ U we can compute a violating subset in time O((|𝐼 | + |𝐽 |)3).

Proof. Given an instance I of Robust 𝑞-MsMc, denote by 𝐻 B 𝐻I the flow network from Def-

inition 7.4. We set the corresponding arc capacities in 𝑅𝑠 to 𝑞 · 𝑥𝑖 and in 𝑅𝑡 to b
′
𝑗 and compute a

minimum 𝑠-𝑡 cut {𝑆,𝑇 }. By the proof of Lemma 7.5 and the fact that b ′ is violating, the capacity

of the cut is less than b ′(𝐽 ). We define a subset of the regions 𝑆 ′ = 𝑇 ∩ 𝐽 . As 𝑐 (𝑆,𝑇 ) < b ′(𝐽 ) it is
𝑆 ′ ≠ ∅.

We claim that 𝑆 ′ is violating. Suppose this is not the case. Then∑︁
𝑖∈𝑁 (𝑆′)

𝑞 · 𝑥𝑖 ≥ max

b ∈U

{∑︁
𝑗 ∈𝑆′

b 𝑗

}
≥

∑︁
𝑗 ∈𝑆′

b ′𝑗 . (7.7)

As the edges with infinite capacity cannot be contained in the cut, it holds true that all arcs 𝑠𝑖 for

𝑖 ∈ 𝑁𝐺 (𝑆 ′) are contained in the cut. Replacing these edges with all arcs 𝑗𝑡 for 𝑗 ∈ 𝑆 ′ also yields an
𝑠-𝑡 cut {{𝑠} ∪ 𝐼 ∪ 𝐽 , {𝑡}}. The capacity of the new cut is clearly b ′(𝐽 ). By equations (7.7), we get∑︁

𝑗 ∈𝐽
b ′𝑗 = 𝑐 (({𝑠} ∪ 𝐼 ∪ 𝐽 , {𝑡})) ≤ 𝑐 (𝑆,𝑇 ) <

∑︁
𝑗 ∈𝐽

b ′𝑗 .

This is a contradiction. Thus, the set 𝑆 ′ is violating.

To see the running time of the above procedure, note that the minimum 𝑠-𝑡 cut can be computed

in timeO((|𝐼 | + |𝐽 |)3), by using a push-relabel algorithm for computing amaximum flow and using

the Max-Flow-Min-Cut theorem, cf. [AMO93].

We now turn to the actual computation of violating scenarios and violating subsets. By Theo-

rem 7.15 we should not hope for a polynomial time algorithm, finding either one of them in general.

In fact, if we do not make any assumptions on the structure of the uncertainty set, it is unlikely

that we come up with a better algorithm, than the one given in the proof of Theorem 7.13. Thus,

as most of the regarded uncertainty sets in the next section are polyhedral, we restrict ourselves

to polyhedral uncertainty sets for the remainder of this section.
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Assumption. All uncertainty sets U regarded in the remainder of this section are polyhedral,

i.e. U = {b ∈ N𝑛 : 𝐴b ≤ 𝑏} for some matrix 𝐴 ∈ R𝑛×𝑚 and vector 𝑏 ∈ R𝑛 .

Under this assumption we can formulate the following integer program.

(IP 7.8)(𝑥,U) min

b, `, a, 𝜔

∑︁
𝑖∈𝐼

𝑞 · 𝑥𝑖 · `𝑖 −
∑︁
𝑗 ∈𝐽

𝜔 𝑗 (7.8a)

s.t. 𝜔 𝑗 ≤ b 𝑗 ∀𝑗 ∈ 𝐽 (7.8b)

𝜔 𝑗 ≤ max

[∈U

{∑︁
𝑗 ∈𝐽

[ 𝑗

}
· a 𝑗 ∀𝑗 ∈ 𝐽 (7.8c)

`𝑖 ≥ a 𝑗
∀𝑗 ∈ 𝐽 ,
𝑖 ∈ 𝑁 ( 𝑗) (7.8d)

b ∈ U (7.8e)

`𝑖 , a 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . (7.8f)

Note that the maximum in equation (7.8c) is merely an upper bound for the sum of all entries of

any scenario. For polyhedral uncertainty sets, this could be set to the quotient of the largest entry

in 𝑏 and the smallest entry in 𝐴, which can be computed in linear time.

Theorem 7.24. Let an instance of Robust 𝑞-Multiset Multicover be given. Then, 𝑥 ∈ N |𝐼 |
is

feasible for (IP 7.5)(2𝐽 ) if and only if, for the optimal objective value 𝑧★ of (IP 7.8)(𝑥,U), it holds true
that 𝑧★ ≥ 0. Further, if 𝑧★ < 0 and b★, a★ are part of an optimal solution to (IP 7.8), then b★ is a

violating extreme scenario and 𝑆★ =

{
𝑗 ∈ 𝐽 : a★𝑗 = 1

}
is a violating subset.

Proof. Assume 𝑥 is feasible for (IP 7.5)(2𝐽 ) and denote by (b★, `★, a★, 𝜔★) an optimal solution to

(IP 7.8)(𝑥,U). We set 𝑆 ′ =

{
𝑗 ∈ 𝐽 : a★𝑗 = 1

}
. Note that by constraints (7.8d) and the fact that

in any optimal solution the ` variables are set to zero whenever possible, we also get 𝑁 (𝑆 ′) ={
𝑖 ∈ 𝐼 : `★𝑖 = 1

}
. As it holds true that 𝜔★

𝑗 = 0 for all 𝑗 ∉ 𝑆 ′ and 𝜔★
𝑗 = b★𝑗 for all 𝑗 ∈ 𝑆 ′, we conclude

𝑧★ =
∑︁
𝑖∈𝐼

𝑞 · 𝑥𝑖 · `★𝑖 −
∑︁
𝑗 ∈𝐽

𝜔★
𝑗 =

∑︁
𝑖∈𝑁 (𝑆′)

𝑞 · 𝑥𝑖 −
∑︁
𝑗 ∈𝑆′

b★𝑗 ≥ 0,

where the last inequality follows from the fact that b★ ∈ U and that 𝑥 is feasible for (IP 7.4).

On the other hand, if 𝑥 is not feasible for (IP 7.5), there exists a subset 𝑆 ′ ⊆ 𝐽 such that equa-

tion (7.5b) does not hold. We define a solution for (IP 7.8) by setting

a★𝑗 =

{
1, if 𝑗 ∈ 𝑆 ′

0, else,

`★𝑖 =

{
1, if 𝑖 ∈ 𝑁 (𝑆 ′)
0, else,

b★𝑗 = argmax

b ∈U

∑︁
𝑗 ∈𝑆′

b 𝑗
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and

𝜔★
𝑗 =

{
b★𝑗 , if 𝑗 ∈ 𝑆 ′

0, else.

We get

𝑧★ =
∑︁
𝑖∈𝐼

𝑞 · 𝑥𝑖 · `★𝑖 −
∑︁
𝑗 ∈𝐽

𝜔★
𝑗 =

∑︁
𝑖∈𝑁 (𝑆′)

𝑞 · 𝑥𝑖 −
∑︁
𝑗 ∈𝑆′

b★𝑗 < 0,

where the last inequality follows from the fact that equation (7.5b) does not hold for 𝑆 ′. It is a direct

consequence of these arguments that 𝑆 ′ and b★ as defined in the theorem statement are violating.

To see that b★ is also a violating extreme scenario, note that increasing the value of any entry 𝑗 ∈ 𝑆 ′
of b★ will lead to a smaller objective value. Thus, for all b ∈ U, it holds true that b (𝑆 ′) ≤ b★(𝑆 ′).
As 𝑆 ′ is a violating subset, this makes b★ a violating extreme scenario.

We now have a general tool at hand, which we can use to find violating subsets and scenarios.

If we are only looking for violating subsets, we may also use this somewhat smaller formulation.

(IP 7.9)(𝑥,U) min

`, a

∑︁
𝑖∈𝐼

𝑞 · 𝑥𝑖 · `𝑖 − max

b ∈U

{∑︁
𝑗 ∈𝐽

b 𝑗a 𝑗

}
(7.9a)

s.t. `𝑖 ≥ a 𝑗 ∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑁 ( 𝑗) (7.9b)

`𝑖 , a 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . (7.9c)

Theorem 7.25. Let an instance of Robust 𝑞-Multiset Multicover be given. Then, 𝑥 ∈ N |𝐼 |
is

feasible for (IP 7.5)(2𝐽 ) if and only if, for the optimal objective value 𝑧★ of (IP 7.9)(𝑥,U), it holds
true that 𝑧★ ≥ 0. Further, if 𝑧★ < 0 and a★ is part of an optimal solution to (IP 7.9), then 𝑆 ′ ={
𝑗 ∈ 𝐽 : a★𝑗 = 1

}
is a violating subset.

Proof. The proof is along the same lines as the one for Theorem 7.24 and therefore not repeated at

this point.

The interesting part of (IP 7.9) is, of course, the computation of the maximum in the objective

function. For general uncertainty sets, we will not be able to compute this maximum without

computing the actual extreme scenario b , which simply brings us back to (IP 7.8). Nevertheless, as

we see in the next section, there are uncertainty sets in which the computation of the maximum

is much easier, which justifies the presence of (IP 7.9).

7.4. Specific Uncertainty Sets

By the results of the previous sections, Robust 𝑞-Multiset Multicover and the corresponding

separation problem 𝑞-Multiset Multicover-Sep are NP-hard if we do not restrict the uncer-
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b1

𝑗

∞
b2

𝑗

...

...

𝐽𝐼

𝑠
...

...

𝑡

𝐽 ′𝐽

Figure 7.4.: Flow network construction from the proof of Theorem 7.27.

tainty set and the most promising tool for solving the problem in general is integer programming

combined with constraint generation. In this section we regard different specific uncertainty sets,

classify the complexity of the corresponding covering problems, and see if we can improve the

solution methods given in Section 7.3. To this end we regard the concepts Discrete Uncertainty,

Interval Uncertainty and Budgeted Uncertainty, which are widely spread and often used in the lit-

erature. Further we examine Subset Budgeted Uncertainty in order to decrease the conservatism of

the solutions.

7.4.1. Discrete Uncertainty

Recall the definition of discrete uncertainty. Applied to Robust 𝑞-MsMc, this means that the

uncertainty sets under consideration in this section are of the form U = {b1, . . . , b𝑘 } for some

𝑘 ∈ N. In particular this implies that we may enumerate the elements of U in linear time. This

fact directly gives us the first result by Corollary 7.14.

Observation 7.26. Robust 𝑞-Multiset Multicover with discrete uncertainty is contained in NP.

We already know that Robust 𝑞-MsMc is NP-hard in the strong sense for any fixed 𝑞 ≥ 3, even

if the uncertainty set only contains one element. Further, we know that we may solve Robust 𝑞-

MsMc in polynomial time if𝑞 ≤ 2 and the uncertainty set contains only one element, cf. Section 7.1.

Thus, the interesting remaining cases are the ones, where 𝑞 ≤ 2 and |U| ≥ 2. To this end note, that

many polynomial time solvable problems become NP-hard when regarding robust counterparts

of the problem. For example, the robust shortest path problem is NP-complete even when the

uncertainty set contains only two scenarios, cf. [YY98]. We now use a similar idea to the one in

Theorem 7.7 to show that we may solve Robust 𝑞-MsMc for 𝑞 = 1 and |U| = 2 in polynomial

time.

Theorem 7.27. Robust Min-1-Multiset Multicover restricted to uncertainty sets with two ele-

ments can be solved in time O(|𝐼 | + |𝐽 |3).
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Proof. Given an instance of Robust Min-1-MsMc with 𝐽 = {1, . . . , 𝑛} andU =
{
b1, b2

}
, we define

a directed graph 𝐻 = (𝑉 , 𝑅), similar to the one in Definition 7.4. We set𝑉 (𝐻 ) = 𝐽 ∪ 𝐽 ′ ∪ {𝑠} ∪ {𝑡},
where 𝐽 ′ = {𝑛 + 1, . . . , 2𝑛} and 𝑠, 𝑡 ∉ 𝐽 ∪ 𝐽 ′. Further we set 𝑅 = 𝑅𝑠 ∪𝑅𝑡 ∪𝑅′

, where 𝑅𝑠 = {𝑠 𝑗 : 𝑗 ∈ 𝐽 },
𝑅𝑡 = {(𝑛 + 𝑗)𝑡 : 𝑗 ∈ 𝐽 } and 𝑅′ = { 𝑗 (𝑛 + 𝑗 ′) : 𝑗, 𝑗 ′ ∈ 𝐽 , 𝑁𝐺 ( 𝑗) ∩ 𝑁𝐺 ( 𝑗 ′) ≠ ∅}. Intuitively there is an

arc from 𝑗 to 𝑛 + 𝑗 ′ if there exists a supplier 𝑖 that can serve clients in regions 𝑗 and 𝑗 ′. Further we

set the arc capacities 𝑐 : 𝑅 → R as

𝑐 (𝑟 ) =


b1

𝑗 , if 𝑟 = 𝑠 𝑗,

b2

𝑗 , if 𝑟 = (𝑛 + 𝑗)𝑡,
∞, else.

For the construction of 𝐻 , see also Figure 7.4.

In a next step, we compute an integral maximum 𝑠-𝑡 flow 𝑓 in 𝐻 and define a solution to Ro-

bust Min-1-MsMc iteratively, beginning with 𝑥𝑖 = 0 for all 𝑖 ∈ 𝐼 . For each 𝑗 (𝑛 + 𝑗 ′) ∈ 𝑅′
we

increase 𝑥𝑖 by 𝑓 ( 𝑗 (𝑛 + 𝑗 ′)) for some 𝑖 ∈ 𝑁𝐺 ( 𝑗) ∩ 𝑁𝐺 ( 𝑗 ′). Further for each 𝑗 ∈ 𝐽 we increase 𝑥𝑖 by
max

{
b1

𝑗 − 𝑓 (𝑠 𝑗), b2

𝑗 − 𝑓 ( 𝑗𝑡)
}
for some 𝑖 ∈ 𝑁𝐺 ( 𝑗). We claim that 𝑥 defined in this way is an optimal

solution to the given instance of Robust Min-1-MsMc.

The feasibility of the solution is easily verified, considering that each unit of flow on an arc 𝑗 (𝑛+
𝑗 ′) can be considered as a supplier serving a client in 𝑗 in scenario b1

and a client in 𝑗 ′ in scenario

b2
. To prove the optimality of the procedure, let 𝑥 be a feasible solution to Robust Min-1-MsMc.

Denote by 𝑦 (b𝑘 ) ∈ N |𝐼 |× | 𝐽 |
for 𝑘 = 1, 2 with∑︁
𝑖∈𝑁 ( 𝑗)

𝑦 (b𝑘 ) = b𝑘𝑗 ∀𝑗 ∈ 𝐽 , 𝑘 = 1, 2 and∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b𝑘 ) ≤ 𝑥𝑖 ∀𝑖 ∈ 𝐼 , 𝑘 = 1, 2
(7.10)

the corresponding assignment variables. These exist as 𝑥 is a feasible solution to Robust Min-

1-MsMc and we may assume equality in the first set of equations without loss of generality. We

define an 𝑠-𝑡 flow ˆ𝑓 : 𝑅 → N in 𝐻 iteratively, where we set 𝑓 (𝑟 ) = 0 for all 𝑟 ∈ 𝑅 at the start.

While there still is some 𝑖 ∈ 𝐼 and 𝑗, 𝑗 ′ ∈ 𝐽 with 𝑦𝑖 𝑗 (b1) > 0 and 𝑦𝑖 𝑗 ′ (b2) > 0, we increase 𝑓 (𝑟 ) by
min

{
𝑦𝑖 𝑗 (b1), 𝑦𝑖 𝑗 ′ (b2)

}
for all 𝑟 ∈ {𝑠 𝑗, 𝑗 (𝑛 + 𝑗 ′), (𝑛 + 𝑗 ′)𝑡} while at the same time decreasing 𝑦𝑖 𝑗 (b1)

and 𝑦𝑖 𝑗 ′ (b2) by the same value. By Equations (7.10), this defines a feasible 𝑠-𝑡 flow ˆ𝑓 . Thus, we can

also write the objective value for the solution 𝑥 as∑︁
𝑗 ∈𝐽

𝑥 𝑗 = val( ˆ𝑓 ) +
∑︁
𝑗 ∈𝐽

(
b1

𝑗 − ˆ𝑓 (𝑠 𝑗)
)
+

∑︁
𝑗 ∈𝐽

(
b2

𝑗 − ˆ𝑓 ((𝑛 + 𝑗)𝑡)
)
.

100



Chapter 7. q-Multiset Multicover

Further note that for the sum of the demands in both scenarios it holds true that∑︁
𝑗 ∈𝐽

(
b1

𝑗 + b2

𝑗

)
= 2 val(𝑓 ′) +

∑︁
𝑗 ∈𝐽

(
b1

𝑗 − 𝑓 ′(𝑠 𝑗)
)
+

∑︁
𝑗 ∈𝐽

(
b2

𝑗 − 𝑓 ′((𝑛 + 𝑗)𝑡)
)
,

for any feasible 𝑠-𝑡 flow 𝑓 ′ in 𝐻 . Recall that 𝑓 is a maximum 𝑠-𝑡 flow and that the above equations

also hold for 𝑓 . We get, that∑︁
𝑗 ∈𝐽

𝑥 𝑗 =
∑︁
𝑗 ∈𝐽

(
b1

𝑗 + b2

𝑗

)
− val( ˆ𝑓 ) ≥

∑︁
𝑗 ∈𝐽

(
b1

𝑗 + b2

𝑗

)
− val(𝑓 ) =

∑︁
𝑗 ∈𝐽

𝑥 𝑗 .

As 𝑥 was an arbitrary feasible solution, this proves the optimality of 𝑥 .

To see the running time of the above procedure, we note that the initialization of the 𝑥𝑖 takes time

O(|𝐼 |), the maximum flow can be computed in time O(|𝐽 |3), cf.[AMO93], and the augmentation

of the maximum flow in the second step can be realized in time O(|𝐽 |). This leads to the overall

running time of O(|𝐼 | + |𝐽 |3).

One might be tempted to try extending the idea in the proof of Theorem 7.27 to cases where

|U| ≥ 3. This does not work in the straight forward way, as adding another layer to the flow

network destroys the correspondence of a doctor to a single arc. In fact we see in the following

that it is unlikely that the idea extends in any way, as Robust 𝑞-Multiset Multicover remains

NP-hard in the strong sense for all other remaining cases of discrete uncertainty.

Theorem 7.28. Robust 1-Multiset Multicover restricted to instances where the uncertainty set

U has 3 elements is NP-complete in the strong sense.

Proof. By Observation 7.26, the problem is contained in NP.
Let 𝐴 = {𝑎1, . . . , 𝑎𝑘 }, 𝐵 = {𝑏1, . . . , 𝑏𝑘 }, 𝐶 = {𝑐1, . . . , 𝑐𝑘 } and 𝑀 ⊆ 𝐴 × 𝐵 × 𝐶 be an instance

of Exact 3-Dimensional Matching. We define an instance of Robust 1-MsMc in the following

way. Let 𝐼 = 𝑀 , 𝐽 = 𝐴 ∪ 𝐵 ∪𝐶 and set 𝐺 = (𝐼 ∪ 𝐽 , 𝐸), where we have 𝑖 𝑗 ∈ 𝐸 if 𝑗 is an element in

the tuple 𝑖 . Further we set 𝐵 = 𝑘 and U =
{
b𝐴, b𝐵, b𝐶

}
where

b𝑆𝑗 =

{
1, if 𝑗 ∈ 𝑆
0, else.

for each 𝑆 ∈ {𝐴, 𝐵,𝐶}.
Assume we are given a subset 𝑀 ′ ⊆ 𝑀 with 𝑘 elements, such that no element of 𝐴 ∪ 𝐵 ∪ 𝐶

appears in two tuples in 𝑀 ′
. We define a solution for Robust 1-MsMc by setting 𝑥𝑖 = 1 if 𝑖 ∈ 𝑀 ′

and 𝑥𝑖 = 0 else. As |𝑀 ′ | = 𝑘 = 𝐵, this solution fulfills 𝑥 (𝐼 ) ≤ 𝐵. Further, for each 𝑆 ∈ {𝐴, 𝐵,𝐶} we
set 𝑦 (b𝑆 )𝑖 𝑗 = 1 if 𝑗 ∈ 𝑆 and 𝑥𝑖 = 1. All remaining variables are set to zero. We can now verify that

𝑥 and 𝑦 fulfill the required equations.

Assume on the other hand that we are given integers 𝑥𝑖 ∈ N with 𝑥 (𝐼 ) ≤ 𝐵 = 𝑘 representing a

solution of Robust 1-MsMc. We set𝑀 ′ = {𝑖 ∈ 𝐼 : 𝑥𝑖 = 1}. As for example b𝐴 (𝐽 ) = 𝑘 , we know that
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|𝑀 ′ | = 𝑘 . Suppose for the sake of contradiction that for two different elements 𝑖1 = (𝑎, 𝑏, 𝑐), 𝑖2 =

(𝑎′, 𝑏 ′, 𝑐 ′) ∈ 𝑀 ′
we have 𝑎 = 𝑎′. As |𝑁 (𝑖) ∩𝐴| = 1 for all elements 𝑖 ∈ 𝐼 this directly implies

𝑥 (𝐼 ) ≥ 𝑘 + 1. A contradiction. If for the elements above it holds true that 𝑏 = 𝑏 ′ or 𝑐 = 𝑐 ′ the

argument still works, as no 𝑖 ∈ 𝐼 may serve more than one client from 𝐵 or 𝐶 .

Observe that the proof from above extends to cases with 𝑘 > 3 by adding 𝑘−3 dummy scenarios,

regions, and locations. Each of the dummy regions is connected to a unique dummy location and

the corresponding dummy scenario has demand 1 in that particular region and 0 else. The resulting

problem is essentially the same as the problem with 𝑘 = 3. We get the following corollary.

Corollary 7.29. Robust 1-Multiset Multicover restricted to instances where the uncertainty set

U has 𝑘 elements for any fixed 𝑘 ∈ N with 𝑘 ≥ 3 is NP-complete in the strong sense.

Theorem 7.30. Robust 2-Multiset Multicover restricted to instances where the uncertainty set

U has 2 elements is NP-complete in the strong sense.

Proof. By Observation 7.26, the problem is contained in NP.
The proof for NP-hardness is along the same lines as the one for Theorem 7.28. Nevertheless

we state it here for the sake of completeness.

Let 𝐴 = {𝑎1, . . . , 𝑎𝑘 }, 𝐵 = {𝑏1, . . . , 𝑏𝑘 }, 𝐶 = {𝑐1, . . . , 𝑐𝑘 } and 𝑀 ⊆ 𝐴 × 𝐵 × 𝐶 be an instance

of Exact 3-Dimensional Matching. We define an instance of Robust 2-MsMc in the following

way. Let 𝐼 = 𝑀 , 𝐽 = 𝐴 ∪ 𝐵 ∪𝐶 and set 𝐺 = (𝐼 ∪ 𝐽 , 𝐸), where we have 𝑖 𝑗 ∈ 𝐸 if 𝑗 is an element in

the tuple 𝑖 . Further we set 𝐵 = 𝑘 and U =
{
b1, b2

}
where

b1

𝑗 =

{
1, if 𝑗 ∈ 𝐴,
0, else

and b2

𝑗 =

{
1, if 𝑗 ∈ 𝐵 ∪𝐶,
0, else.

Assume we are given a subset 𝑀 ′ ⊆ 𝑀 with 𝑘 elements, such that no element of 𝐴 ∪ 𝐵 ∪ 𝐶
appears in two tuples in𝑀 ′

. As in the previous proof we define a solution for Robust 2-MsMc by

setting 𝑥𝑖 = 1 if 𝑖 ∈ 𝑀 ′
and 𝑥𝑖 = 0 else. By setting 𝑦𝑖 𝑗 (b𝑘 ) = b𝑘𝑗 for 𝑘 ∈ {1, 2} if 𝑗 is contained in 𝑖

and 𝑥𝑖 = 1, and 𝑦𝑖 𝑗 (b𝑘𝑗 ) = 0 else, we verify the feasibility of 𝑥 for Robust 2-MsMc.

Assume on the other hand that we are given integers 𝑥𝑖 ∈ N with 𝑥 (𝐼 ) ≤ 𝐵 = 𝑘 representing a

solution of Robust 2-MsMc. We set 𝑀 ′ = {𝑖 ∈ 𝐼 : 𝑥𝑖 = 1}. As b2(𝐽 ) = 2𝑘 it holds true that |𝑀 ′ | =
𝑘 . Now suppose for the sake of contradiction, that for two different elements 𝑖1 = (𝑎, 𝑏, 𝑐), 𝑖2 =

(𝑎′, 𝑏 ′, 𝑐 ′) ∈ 𝑀 ′
we have 𝑎 = 𝑎′. By the definition of 𝑀 ′

this implies that there exists some 𝑗 ∈ 𝐴
such that 𝑥𝑖 = 0 for all 𝑖 ∈ 𝑁 ( 𝑗) contradicting the fact that 𝑥𝑖 is a solution to Robust 2-MsMc.

With similar arguments we verify that each 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 is covered exactly once by𝑀 ′
.

As with Robust 1-MsMc we can easily extend the proof above to uncertainty sets with 𝑘 ≥ 3

elements by simply adding dummy scenarios, locations, and regions.

Corollary 7.31. Robust 2-Multiset Multicover restricted to instances where the uncertainty set

U has 𝑘 elements for any fixed 𝑘 ∈ N with 𝑘 ≥ 2 is NP-complete in the strong sense.
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As a final remark in this section we note that 𝑞-Multiset Multicover-Sep, co-𝑞-Multiset

Multicover-Sep and MaxSum are all contained in P when restricted to instance where the un-

certainty set is given explicitly. This is due to Theorem 7.13 and Observation 7.17. In particular,

in the solution process for Robust 𝑞-Multiset Multicover we may generate violating extreme

scenarios or violating subsets in polynomial time.

7.4.2. Interval Uncertainty

Applying the concept of interval uncertainty to Robust𝑞-MsMc yields uncertainty sets of the form

U =
{
b ∈ N | 𝐽 |

: 𝑎 𝑗 ≤ b 𝑗 ≤ 𝑏 𝑗 , ∀𝑗 ∈ 𝐽
}
for vectors 𝑎, 𝑏 ∈ N | 𝐽 |

. Loosely speaking, we give upper and

lower bounds on the possible number of clients in each region.

Assume we are given an instance of Robust 𝑞-MsMc with interval uncertainty. For any subset

of the regions 𝑆 ⊆ 𝐽 , we can easily compute

max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
=

∑︁
𝑗 ∈𝑆

𝑏 𝑗 .

Thus, (IP 7.5) is now the same as (IP 7.2)(𝑏) and all complexity results from𝑞-MsMc directly transfer.

As it seems very conservative to allow the worst case in every region at the same time, in the

next section we try not only to give a bound on each region, but also on the total number of clients.

7.4.3. Budgeted Uncertainty

Recall that for problems with budgeted uncertainty, in addition to the bounds induced by interval

uncertainty, we bound the sum of all values of entries of a scenario b . This leads to uncertainty

sets of the form

U =

{
b ∈ N | 𝐽 |

: 𝑎 𝑗 ≤ b 𝑗 ≤ 𝑏 𝑗 , b (𝐽 ) ≤ Γ
}

for vectors 𝑎, 𝑏 ∈ N | 𝐽 |
and an integer Γ ∈ N for Robust 𝑞-MsMc. This can be interpreted as having

lower and upper bound on the number of clients in each region and additionally having a bound

on the total number of clients in the instance.

As Robust 𝑞-MsMc with budgeted uncertainty is a restriction of Robust 𝑞-MsMc, it is not

immediate that it is also NP-hard. Nevertheless we see that Robust 𝑞-MsMc with budgeted un-

certainty remains NP-hard.

Theorem 7.32. Robust 𝑞-Multiset Multicover with budgeted uncertainty is NP-hard in the

strong sense for any 𝑞 ∈ N>0.

Proof. Regarding the proof of Theorem 7.12, we observe that the constructed uncertainty setU ={
b ∈ N | 𝐽 |

:

∑
𝑗 ∈𝐽 b 𝑗 = 1

}
fits into the framework of budgeted uncertainty by setting Γ = 1 and, for

all 𝑗 ∈ 𝐽 , setting 𝑎 𝑗 = 0 and 𝑏 𝑗 = 1. Thus, the reduction used in Theorem 7.12 also works for

budgeted uncertainty and we get the desired result.
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Although we may not hope for an efficient algorithm solving Robust 𝑞-MsMc with budgeted

uncertainty, there are some improvements in contrast to the general solving techniques introduced

in the last section.

We begin by computing the maximum from Observation 7.11 for budgeted uncertainty.

Lemma 7.33. Given a budgeted uncertainty set

U =

{
b ∈ N | 𝐽 |

: 𝑎 𝑗 ≤ b 𝑗 ≤ 𝑏 𝑗 , b (𝐽 ) ≤ Γ
}

for some index set 𝐽 and a subset 𝑆 ⊆ 𝐽 of these indices. It is

max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
= min


∑︁
𝑗 ∈𝑆

𝑏 𝑗 , Γ −
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗

 .
Proof. Let 𝑆 ⊆ 𝐽 . We define the scenario b ′ by setting b ′𝑗 = 𝑏 𝑗 if 𝑗 ∈ 𝑆 and b ′𝑗 = 𝑎 𝑗 else. If b

′ ∈ U
we have

max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
=

∑︁
𝑗 ∈𝑆

𝑏 𝑗 =
∑︁
𝑗 ∈𝑆

𝑏 𝑗 +
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗 −
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗

=
∑︁
𝑗 ∈𝐽

b ′𝑗 −
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗

≤ Γ −
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗 .

If otherwise b ′ ∉ U, it is

Γ <
∑︁
𝑗 ∈𝐽

b ′𝑗 =
∑︁
𝑗 ∈𝑆

𝑏 𝑗 +
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗

and thereby 𝑏 (𝑆) > Γ − 𝑎(𝐽 \ 𝑆). We then easily verify that

max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
= Γ −

∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗 ,

as 𝑎(𝑆) ≤ Γ − 𝑎(𝐽 \ 𝑆).

A direct consequence of Lemma 7.33 is that for uncertainty sets representing budgeted uncer-

tainty we can solveMaxSum in time linear in the size of the vectors in the uncertainty set.

Corollary 7.34. MaxSum is contained in P for budgeted uncertainty.

Using Lemma 7.33, we get the following formulation of Robust 𝑞-MsMc for budgeted uncer-
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tainty, with J = 2
𝐽
.

(IP 7.11)(J) min

𝑥

∑︁
𝑖∈𝐼

𝑥𝑖

s.t.
∑︁

𝑖∈𝑁 (𝑆)
𝑞 · 𝑥𝑖 ≥ min


∑︁
𝑗 ∈𝑆

𝑏 𝑗 , Γ −
∑︁
𝑗 ∈𝐽 \𝑆

𝑎 𝑗

 ∀𝑆 ∈ J

𝑥𝑖 ∈ Z≥0 ∀𝑖 ∈ 𝐼 .

As the number of constraints is still exponential in the number of regions, we are interested in

the complexity of the separation problem. Although the reduction from Theorem 7.15 does not

transfer, we get the following result.

Theorem 7.35. 𝑞-Multiset Multicover-Sep with budgeted uncertainty is NP-complete.

Proof. 𝑞-MsMc-Sep restricted to budgeted uncertainty is contained in NP as a restriction of 𝑞-

MsMc-Sep.

We show that Knapsack reduces to 𝑞-MsMc-Sep. Let an arbitrary instance of Knapsack with

a set 𝑈 = {1, . . . , 𝑛}, sizes 𝑠𝑢 ∈ N and profits 𝑝𝑢 ∈ N associated with each element 𝑢 ∈ 𝑈 and

two integers 𝐵, 𝐾 ∈ N>0 be given. For the instance of 𝑞-MsMc-Sep, we set 𝐼 = {1, . . . , 𝑛, 2𝑛 + 1} =
𝑈 ∪ {2𝑛 + 1} and 𝐽 = {𝑛 + 1, . . . , 2𝑛}. We define a bipartite graph 𝐺 = (𝐼 ∪ 𝐽 , 𝐸), where

𝐸 = {{𝑢, 𝑛 + 𝑢}, {2𝑛 + 1, 𝑛 + 𝑢} for 𝑢 = 1, . . . , 𝑛} .

Furthermore, we set 𝑥𝑢 = 𝑠𝑢 and 𝑏𝑛+𝑢 = 𝑞 · (𝑝𝑢 +𝑠𝑢) for all𝑢 ∈ 𝑈 and 𝑥2𝑛+1 = 𝐾−1, Γ = 𝑞 · (𝐵+𝐾).
Finally, we set 𝑎 𝑗 = 0 for all 𝑗 ∈ 𝐽 .
Now given a solution 𝑈 ′ ⊆ 𝑈 ⊆ 𝐼 of Knapsack with 𝑠 (𝑈 ′) ≤ 𝐵 and 𝑝 (𝑈 ′) ≥ 𝐾 , we choose

𝑆 = {𝑛+𝑢 : 𝑢 ∈ 𝑈 ′} ⊆ 𝐽 . Then, 𝑆 is nonempty since𝑈 ′ ≠ ∅ andwe have Γ/𝑞−𝑥 (𝑈 ′) = 𝐵+𝐾−𝑠 (𝑈 ′) ≥
𝐵 + 𝐾 − 𝐵 = 𝐾 and

𝑏 (𝑆)
𝑞

−
∑︁
𝑖∈𝑈 ′

𝑥𝑖 =
∑︁
𝑢∈𝑈 ′

𝑏𝑛+𝑢
𝑞

−
∑︁
𝑢∈𝑈 ′

𝑥𝑢 =
∑︁
𝑢∈𝑈 ′

𝑝𝑢 + 𝑠𝑢 −
∑︁
𝑢∈𝑈 ′

𝑠𝑢

=
∑︁
𝑢∈𝑈 ′

𝑝𝑢 ≥ 𝐾,

yielding min {𝑏 (𝑆)/𝑞, Γ/𝑞} − 𝑥 (𝑈 ′) ≥ 𝐾 . Subtracting 𝐾 − 1 = 𝑥2𝑛+1 on both sides we obtain:

min {𝑏 (𝑆)/𝑞, Γ/𝑞} − 𝑥 (𝑈 ′) − 𝑥2𝑛+1 ≥ 1 > 0

⇔ min {𝑏 (𝑆)/𝑞, Γ/𝑞} − 𝑥 (𝑁 (𝑆)) ≥ 1 > 0,

i.e., min {𝑏 (𝑆), Γ} − 𝑞 · 𝑥 (𝑁 (𝑆)) > 0. As this means, that 𝑥 is not feasible for (IP 7.11), we know
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that there exists a b ′ ∈ U, fulfilling the conditions of 𝑞-MsMc-Sep, namely

b ′ B argmax

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
.

On the other hand, given a solution b ′ to 𝑞-MsMc-Sep. Then 𝑥 is not feasible for (MIP 7.3) and

by Theorem 7.10 it is not feasible for (IP 7.4). Thus, by Observation 7.11, there exists some 𝑆 ⊆ 𝐽

with the property that

𝑞 ·
∑︁

𝑖∈𝑁 (𝑆)
𝑥𝑖 < max

b ∈U

{∑︁
𝑗 ∈𝑆

b 𝑗

}
= min

{∑︁
𝑗 ∈𝑆

𝑏 𝑗 , Γ

}
. (7.11)

Set 𝑆 ′ B 𝑆 and 𝑈 ′ = {𝑢 : 𝑛 + 𝑢 ∈ 𝑆 ′} ⊆ 𝑈 . Our aim is to show that 𝑈 ′
is a solution for Knapsack.

We have 𝑆 ′ ≠ ∅ and 𝑁 (𝑆 ′) = 𝑈 ′ ∪ {2𝑛 + 1}. Reformulating the left hand side of (7.11) we get

𝑥 (𝑁 (𝑆 ′)) = 𝑥 (𝑈 ′)+𝑥2𝑛+1 = 𝑥 (𝑈 ′)+𝐾−1, so that in total we havemin{𝑏 (𝑆 ′), Γ}−𝑞·𝑥 (𝑈 ′) > 𝑞·(𝐾−1),
i.e., min{𝑏 (𝑆′)/𝑞, Γ/𝑞} − 𝑥 (𝑈 ′) ≥ 𝐾 . When inserting the above definitions this expression becomes

min {𝑝 (𝑈 ′) + 𝑠 (𝑈 ′), 𝐵 + 𝐾} − 𝑠 (𝑈 ′) ≥ 𝐾. (7.12)

Now, we need to differentiate between two cases: If 𝑝 (𝑈 ′) + 𝑠 (𝑈 ′) ≤ 𝐵 + 𝐾 , equation (7.12) yields

𝑝 (𝑈 ′) = 𝑝 (𝑈 ′)+𝑠 (𝑈 ′)−𝑠 (𝑈 ′) ≥ 𝐾 and 𝑠 (𝑈 ′) ≤ 𝐵+𝐾−𝑝 (𝑈 ′) ≤ 𝐵+𝐾−𝐾 = 𝐵. If 𝑝 (𝑈 ′)+𝑠 (𝑈 ′) > 𝐵+𝐾 ,
(7.12) yields 𝐵+𝐾−𝑠 (𝑈 ′) ≥ 𝐾 , i.e., 𝑠 (𝑈 ′) ≤ 𝐵. Furthermore, 𝑝 (𝑈 ′) > 𝐵+𝐾−𝑠 (𝑈 ′) ≥ 𝐵+𝐾−𝐵 = 𝐾 .

Thus,𝑈 ′
is a solution for Knapsack.

We now know, that separation for budgeted uncertainty is most likely not be solvable in poly-

nomial time. But as computing the maximum from Observation 7.11 can be done efficiently, it is

sufficient to compute violating subsets in the solution process of Robust 𝑞-MsMc and solely use

formulation (IP 7.5). To compute violating subsets, we regard the following IP.

(IP 7.13)(𝑥,U) min

`, a,𝛾

∑︁
𝑖∈𝐼

𝑞 · 𝑥𝑖 · `𝑖 − 𝛾 (7.13a)

s.t. 𝛾 ≤
∑︁
𝑗 ∈𝐽

𝑏 𝑗 · a 𝑗 (7.13b)

𝛾 ≤ Γ −
∑︁
𝑗 ∈𝐽

𝑎 𝑗 +
∑︁
𝑗 ∈𝐽

𝑎 𝑗a 𝑗 (7.13c)

`𝑖 ≥ a 𝑗 ∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑁 ( 𝑗) (7.13d)

`𝑖 , a 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . (7.13e)

Theorem 7.36. Let an instance of Robust 𝑞-Multiset Multicover with budgeted uncertainty be

given. Then, 𝑥 ∈ N |𝐼 |
is feasible for (IP 7.5)(2𝐽 ) if and only if, for the optimal objective value 𝑧★ of
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(IP 7.13)(𝑥,U), it holds true that 𝑧★ ≥ 0. Further, if 𝑧★ < 0 and a★ is part of an optimal solution to

(IP 7.9), then 𝑆 ′ =
{
𝑗 ∈ 𝐽 : a★𝑗 = 1

}
is a violating subset.

Proof. By Theorem 7.25 it is enough to prove that in any optimal solution (`★, a★, 𝛾★) we have

𝛾★ = max

b ∈U

{∑︁
𝑗 ∈𝐽

b 𝑗a
★
𝑗

}
.

By Lemma 7.33 we have

max

b ∈U

{∑︁
𝑗 ∈𝐽

b 𝑗a
★
𝑗

}
= min

{∑︁
𝑗 ∈𝐽

𝑏 𝑗a
★
𝑗 , Γ −

∑︁
𝑗 ∈𝐽

(1 − a★𝑗 )𝑎 𝑗

}
Using constraints (7.13b) and (7.13c) the desired equality follows directly.

7.4.4. Subset Budgeted Uncertainty

Last but not least we turn to subset budgeted uncertainty. In the previous section we bounded

the total number of clients in all regions. For some applications this approach might still be too

conservative. Let us think of the regions being distributed on a geographic map that is split into

many areas that each contain a subset of the regions. Then the budgeted uncertainty approach

does not necessarily forbid the worst case to happen in all regions of a given area, although this

might be considered unrealistic. To tackle this problem, in subset budgeted uncertainty, we give

additional bounds on a collection of subsets of the regions. In the context of Robust 𝑞-MsMc this

means that the uncertainty sets are of the form

U =

{
b ∈ N | 𝐽 |

: 𝛼𝑆′ ≤
∑︁
𝑗 ∈𝑆′

b 𝑗 ≤ 𝛽𝑆′, ∀𝑆 ′ ∈ S
}

for a collection of subsets of the regions S ⊆ 2
𝐽
and integers 𝛼𝑆′, 𝛽𝑆′ ∈ N for each 𝑆 ′ ∈ S.

As Robust 𝑞-MsMc with subset budgeted uncertainty generalizes Robust 𝑞-MsMc with bud-

geted uncertainty by setting S = {{ 𝑗} : 𝑗 ∈ 𝐽 } ∪ {𝐽 }, the first two results in this section are imme-

diate.

Theorem 7.37. Robust 𝑞-Multiset Multicover with subset budgeted uncertainty is NP-hard in
the strong sense for any fixed 𝑞 ∈ N>0.

Theorem 7.38. 𝑞-Multiset Multicover-Sep with subset budgeted uncertainty is NP-complete in

the strong sense for any fixed 𝑞 ∈ N>0.

In contrast to budgeted uncertainty, we there is no nice characterization for the maximum in

Observation 7.11. This is due to the fact thatMaxSum isNP-complete for sets from subset budgeted

uncertainty.
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Theorem 7.39. MaxSum is NP-complete in the strong sense when restricted to sets of the form

U =

{
b ∈ N𝑛 : 𝛼𝑆′ ≤

∑︁
𝑗 ∈𝑆′

b 𝑗 ≤ 𝛽𝑆′, ∀𝑆 ′ ∈ S
}
,

for a collection of subsets S ∈ 2
{1,...,𝑛}

and integers 𝛼𝑆′, 𝛽𝑆′ ∈ N for each 𝑆 ′ ⊆ S.

Proof. MaxSum with subset budgeted uncertainty is contained in NP as a restriction of a problem

in NP, cf. Theorem 7.18.

To see that MaxSum with subset budgeted uncertainty is also NP-hard we show that the set

U used in the proof of Theorem 7.18 can be modeled in the framework of subset budgeted un-

certainty. For a graph 𝐺 with vertex set 𝑉 (𝐺) = {1, . . . , 𝑛} we set S = {{𝑢, 𝑣} : 𝑢𝑣 ∈ 𝐸 (𝐺)} ∪
{{𝑢} : 𝑢 ∈ 𝑉 (𝐺)}, 𝛼𝑆′ = 0 and 𝛽𝑆′ = 1 for all 𝑆 ′ ∈ S. Using these parameters we get the set

U =
{
b ∈ N𝑛 : 0 ≤ b 𝑗 ≤ 1, ∀𝑗 ∈ {1, . . . , 𝑛} and 0 ≤ b𝑢 + b𝑣 ≤ 1, ∀𝑢𝑣 ∈ 𝐸 (𝐺)

}
which is the same as the one in the proof of Theorem 7.18.

Theorem 7.39 shows that it is unlikely that we find an algorithm computing the maximum in

Observation 7.11 efficiently. Thus, in order to do a separation step in the solution process for Ro-

bust 𝑞-MsMcwith subset budgeted uncertainty we use (IP 7.8) adjusted to the specific uncertainty

set.

(IP 7.14)(𝑥,U) min

b, `, a, 𝜔

∑︁
𝑖∈𝐼

𝑞 · 𝑥𝑖 · `𝑖 −
∑︁
𝑗 ∈𝐽

𝜔 𝑗

s.t. 𝜔 𝑗 ≤ b 𝑗 ∀𝑗 ∈ 𝐽

𝜔 𝑗 ≤ max

[∈U

{∑︁
𝑗 ∈𝐽

[ 𝑗

}
· a 𝑗 ∀𝑗 ∈ 𝐽

`𝑖 ≥ a 𝑗
∀𝑗 ∈ 𝐽 ,
𝑖 ∈ 𝑁 ( 𝑗)

𝛼𝑆′ ≤
∑︁
𝑗 ∈𝑆′

b 𝑗 ≤ 𝛽𝑆′ ∀𝑆 ′ ∈ S

`𝑖 , a 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 ,
𝑗 ∈ 𝐽 .

This concludes our study on specific uncertainty sets for Robust 𝑞-Multiset Multicover.

We improved the general solution techniques for all regarded uncertainty concepts. In particular

we were able to find a polynomial time algorithm for the case that the uncertainty set contains

only two scenarios and proved that separation for discrete uncertainty can be done in polynomial

time. Further, we showed that solving Robust Min-𝑞-MsMc with interval uncertainty is the same

as solving Min-𝑞-MsMc. For budgeted uncertainty we could show that MaxSum can be solved
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U Robust 𝑞-MsMc 𝑞-MsMc-Sep co-𝑞-MsMc-Sep MaxSum

General NP-hard NP-complete coNP-complete NP-
complete

Discrete 𝑞 |U| ≤ 2 P P P P
𝑞 |U| ≥ 3 NP-complete P P P

Interval 𝑞 ≤ 2 P P P P
𝑞 ≥ 3 NP-complete P P P

Budgeted NP-complete NP-complete coNP-complete P
Subset

budgeted

NP-hard NP-complete coNP-complete NP-
complete

Table 7.1.: Summarized complexity results for Robust 𝑞-MsMc and the corresponding separation

problems.

efficiently and gave a condensed inter programming formulation for the separation step and for

subset budgeted uncertainty we were able to give an integer programming formulation.

Conclusion We conclude this chapter with a summary of the achieved complexity results. For

a complete overview of these see Table 7.1. The polynomial time solvability of 2-MsMc and Ro-

bust 1-Multiset Multicover restricted to discrete uncertainty sets of cardinality two are the

highlights of the positive results. It is also interesting that the 𝑞-Multiset Multicover-Sep can

be solved in polynomial time for discrete uncertainty. The problem Robust 𝑞-Multiset Multi-

cover has turned out to be very challenging. As a consequence of the proved results it is NP-hard
when restricted to discrete uncertainty and 𝑞 · |U| ≥ 3. It also remains NP-hard for budgeted and

subset budgeted uncertainty. Up to this point it is unclear if Robust 𝑞-Multiset Multicover is

even contained in NP. A direction of further research to examine this question or even prove that

Robust 𝑞-Multiset Multicover is ΣP
2
-complete.

We discussed different solution approaches based on constraint generation and integer program-

ming. We formulated models for each of the discussed problem and gave various improvement

possibilities for specific uncertainty sets. Here, it could be of interest to discuss transferability of

approximation algorithms of 𝑞-Multiset Multicover to the robust versions of the problem.
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q-Multiset Multicover with Unsteerable Demand

In the problem setting of 𝑞-Multiset Multicover defined in Chapter 7 the choice of which client

is served by which supplier was up to the planner. Here we focus on two related problems called

𝑞-freeClient and 𝑞-orderedClient, in which we allow the clients to choose the supplier they

are served by. In 𝑞-freeClient the choice of the clients is unrestricted, whereas in 𝑞-ordered-

Client the client is assumed to have a known preference list of locations. While we prove that

𝑞-orderedClient is NP-complete for any fixed 𝑞 ≥ 2, 𝑞-freeClient turns out to be linear time

solvable for all 𝑞 ∈ N>0. Introducing uncertainty in the demand of both problems significantly

complicates the problems to the point, that Robust 𝑞-freeClient is NP-hard in the strong sense

for any fixed 𝑞 ∈ N>0. For commonly used uncertainty sets, such as discrete uncertainty sets,

we show that Robust 𝑞-freeClient is contained in P, whereas 1-orderedClient remains NP-
complete even when restricted to uncertainty sets of cardinality 2.

A mixed version of 𝑞-Multiset Multicover and 𝑞-orderedClient has previously been re-

garded in [Büs+20]. Some of the proofs and ideas are published in similar form in that publication

and are therefore joint work with Christina Büsing, Martin Comis, and Eva Schmidt. In particular

this applies to the IP-formulation of 𝑞-orderedClient and the results on budgeted uncertainty.

All of the results in this chapter are joint work with Eva Schmidt.

We refer to the introduction of Part II for a literature review on the topic, as it overlaps with the

one of Chapter 7.

Outline The organization of this chapter is very similar to the one of Chapter 7. We begin by

formally defining the problems and classifying them by their complexity class. In Section 8.2 we

introduce uncertainty in the demand and analyze the influence on the complexity of the problems.

Finally, in Section 8.3, we regard specific uncertainty sets for both problems and discuss changes

to the complexity of the problems.

8.1. Including Unsteerable Clients into q-Multiset Multicover

Up till now, within the problem setting of 𝑞-Multiset Multicover, we assumed that all clients

can be served by any supplier that is adjacent. One might wonder how the situation changes, if

110



Chapter 8. q-Multiset Multicover with Unsteerable Demand

the client is given a choice by which of the adjacent supplier it wants to be served. This gives rise

to the following problem definition.

q-freeClient (q-fC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),
and an integer 𝐵 ∈ N.

Question: Does there exist 𝑥 ∈ N |𝐼 |
with 𝑥 (𝐼 ) ≤ 𝐵 such that for all 𝑦 ∈ N |𝐼 |× | 𝐽 |

with∑
𝑖∈𝑁 ( 𝑗) 𝑦𝑖 𝑗 = 𝑑 𝑗 for all 𝑗 ∈ 𝐽 , it is ∑︁

𝑗 ∈𝑁 (𝑖)
𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼?

Although 𝑞-fC may, at first glance, look like a challenging optimization problem, it turns out,

that solving𝑞-fC is rather trivial. In the optimization version of𝑞-freeClient,Min-𝑞-freeClient,

we are looking for a minimum number of suppliers.

Theorem 8.1. Min-𝑞-freeClient can be solved in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |) for any fixed 𝑞 ∈ N>0.

Proof. Given an instance of Min-𝑞-fC, for each 𝑖 ∈ 𝐼 , we set

𝑥𝑖 =

⌈
𝑑 (𝑁 (𝑖))

𝑞

⌉
and claim that this is an optimal solution. To show this, for each 𝑖 ′ ∈ 𝐼 , regard 𝑦𝑖′ ∈ N |𝐼 |× | 𝐽 |

with

𝑦𝑖
′
𝑖 𝑗 =

{
𝑑 𝑗 , if 𝑖 = 𝑖 ′,

0, else,

for all 𝑗 ∈ 𝐽 . It holds true, that ∑𝑖∈𝑁 ( 𝑗) 𝑦
𝑖′
𝑖 𝑗 = 𝑑 𝑗 for all 𝑖

′ ∈ 𝐼 and 𝑗 ∈ 𝐽 . Furthermore, for each 𝑖 ′ ∈ 𝐼
we have ∑︁

𝑗 ∈𝑁 (𝑖′)
𝑦𝑖

′
𝑖′ 𝑗 =

∑︁
𝑗 ∈𝑁 (𝑖′)

𝑑 𝑗 .

As 𝑞 · 𝑥𝑖′ needs to be larger or equal than this sum, we directly get that 𝑥 is the optimal solution to

Min-𝑞-fC.

Although it seems like an interesting approach to let the client decide which supplier it chooses,

after looking at the proof of Theorem 8.1 the approach might be too conservative. In the remainder

of this section we also consider the following alternative of 𝑞-fC in which for each region, addi-

tionally, we are given an ordering of the adjacent locations. Each client in a region would like to

be served by the supplier at the front of the ordered locations. Of course, this is only possible if

at least one supplier is available in the corresponding location. Such a setting might for example
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make sense when regarding a geographic setup in which each client wants chooses the closest

available supplier.

q-orderedClient (q-oC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),
for each 𝑗 ∈ 𝐽 an ordering 𝜎 𝑗 : {1, . . . , |𝑁 ( 𝑗) |} → 𝑁 ( 𝑗), and an integer 𝐵 ∈ N.

Question: Does there exist 𝑥 ∈ N |𝐼 |
for 𝑖 ∈ 𝐼 with 𝑥 (𝐼 ) ≤ 𝐵 such that for each 𝑗 ∈ 𝐽 there

exists an 𝑖 ∈ 𝑁 ( 𝑗) with 𝑥𝑖 ≥ 1 and∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 ,

where 𝑦 ∈ N |𝐼 |× | 𝐽 |
is defined by setting

𝑦𝑖 𝑗 =


𝑑 𝑗 , if 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
,

0, else,

for 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽?

The description of 𝑞-oC seems more challenging and less conservative than 𝑞-fC. In the opti-

mization versionMin-𝑞-orderedClientwe are again looking for aminimumnumber of suppliers.

We begin by regarding the problem for 𝑞 = 1.

Theorem 8.2. Min-1-orderedClient can be solved in time O(|𝐼 | + |𝐽 |).
Proof. Given an instance of Min-1-oC we know that we need at least 𝑑 (𝐽 ) suppliers. We define a

solution iteratively in the following way. At the start we set 𝑥𝑖 = 0 for all 𝑖 ∈ 𝐼 . For each 𝑗 ∈ 𝐽

we now increase the value of 𝑥𝜎 𝑗 (1) by 𝑑 𝑗 . This procedure produces a valid solution with 𝑑 (𝐽 )
suppliers and is therefore optimal. It can clearly be implemented to run in time O(|𝐼 | + |𝐽 |).

The reason why the solution to Min-1-oC is so simple is that we know the exact locations the

clients choose. In fact this observation generalizes a bit further. If we know the subset of opened

locations, i.e., the locations 𝑖 ∈ 𝐼 with 𝑥𝑖 ≥ 1, the values 𝑦𝑖 𝑗 in the problem definition become fixed.

This fact motivates the following definitions.

Definition 8.3 (Induced solutions). Let an instance of 𝑞-orderedClient and a subset 𝐼 ′ ⊆ 𝐼 of

the locations be given. For each 𝑗 ∈ 𝐽 with 𝑁 ( 𝑗) ∩ 𝐼 ′ ≠ ∅ we call

argmin

𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑖 ′ ∈ 𝐼 ′
}

the closest location with respect to 𝐼 ′. Further we call

𝑁 ′(𝑖) =
{
𝑗 ∈ 𝑁 (𝑖) : 𝑖 = argmin

𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑖 ′ ∈ 𝐼 ′
}}
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the active neighborhood of 𝑖 induced by 𝐼 ′. Finally we call the solution 𝑥 ∈ N |𝐼 |
with

𝑥𝑖 =

⌈
𝑑 (𝑁 ′(𝑖))

𝑞

⌉
for 𝑖 ∈ 𝐼 the solution induced by 𝐼 ′.

Observation 8.4. Let an instance of Min-𝑞-orderedClient and a subset of the locations 𝐼 ′ ⊆ 𝐼 be

given. If 𝑁 ( 𝑗) ∩ 𝐼 ′ ≠ ∅ for all 𝑗 ∈ 𝐽 , then Ï
𝑖∈𝐼 ′ 𝑁

′(𝑖) = 𝐽 and the solution 𝑥 induced by 𝐼 ′ is feasible.

Denote by L the set of all feasible solutions 𝑥 such that

{𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1} ⊆ {𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1} ⊆ 𝐼 ′. (8.1)

If 𝑥 is feasible, it holds true that 𝑥 is the unique solution fulfilling

𝑥 = argmin

𝑥 ∈L

{∑︁
𝑖∈𝐼

𝑥𝑖

}
.

In particular, any optimal solution 𝑥★ to an instance ofMin-𝑞-orderedClient is induced by the subset

𝐼★ B
{
𝑖 ∈ 𝐼 : 𝑥★𝑖 ≥ 1

}
.

At first glance it might not be clear why the first inclusion in (8.1) is necessary for the statement

in Observation 8.4 to hold. The reason for this is that it might be necessary to keep a location

closed in order to prevent clients from choosing this location. To clarify this, regard the following

situation. We are given two regions and two locations. Assume 𝑞 = 2 and each region contains one

client. If each of the two clients prefers a different location, the solution induced by all locations

places one supplier in each location. But in an optimal solution we would only place a single

supplier in any of the two locations.

A consequence of Observation 8.4 is that we may actually bound the number of clients in any

region by a 1 as we see in Lemma 8.5.

Lemma 8.5. Let ALG be an algorithm that solves instances of Min-𝑞-orderedClient with 𝑑 𝑗 = 1

for all 𝑗 ∈ 𝐽 in time O(T ). Then we can solve instances ofMin-𝑞-orderedClient in time O(T + |𝐼 | +
|𝐽 |).

Proof. Let an arbitrary instance I of Min-𝑞-oC be given, where we assume that 𝑑 𝑗 ≥ 1 for all

𝑗 ∈ 𝐽 . For each region 𝑗 ∈ 𝐽 , we denote by 𝑟 𝑗 , 𝑘 𝑗 ∈ N the unique integers fulfilling 1 ≤ 𝑟 𝑗 ≤ 𝑞 and

𝑞 · 𝑘 𝑗 + 𝑟 𝑗 = 𝑑 𝑗 . Assume we are given an optimal solution 𝑥 to a new instance I ′
with the same

input data as I except that the demand in each region 𝑗 ∈ 𝐽 is set to be 𝑑 ′𝑗 = 𝑟 𝑗 . By Observation 8.4,
we may assume that 𝑥 is induced by some subset of the locations 𝐼 ′ ⊆ 𝐼 . We now claim that the

solution 𝑥 for I that is induced by 𝐼 ′ is optimal for I. By Observation 8.4 it is enough to prove that

any feasible, induced solution has objective value at least 𝑥 (𝐼 ). So let 𝜒 be any feasible solution

for I induced by some subset 𝐼 ′′ ⊆ 𝐼 . We denote by 𝜒 the solution for I ′
that is induced by 𝐼 ′′ and

113



Chapter 8. q-Multiset Multicover with Unsteerable Demand

1
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8

Figure 8.1.: Graph of theMin-2-oC instance in Example 8.6. Solid lines represent arcs of preference

order 1 and dashed lines of preference order 2.

by 𝑁 ′′(𝑖) the active neighborhood of 𝑖 ∈ 𝐼 , induced by the set 𝐼 ′′ and calculate∑︁
𝑖∈𝐼

𝜒𝑖 =
∑︁
𝑖∈𝐼

⌈∑
𝑗 ∈𝑁 ′ (𝑖) 𝑑 𝑗

𝑞

⌉
=

∑︁
𝑖∈𝐼

∑︁
𝑗 ∈𝑁 ′ (𝑖)

𝑘 𝑗 +
⌈
𝑟 𝑗

𝑞

⌉
=

∑︁
𝑖∈𝐼

∑︁
𝑗 ∈𝑁 ′ (𝑖)

𝑘 𝑗 +
∑︁
𝑖∈𝐼

∑︁
𝑗 ∈𝑁 ′ (𝑖)

⌈
𝑟 𝑗

𝑞

⌉
=

∑︁
𝑗 ∈𝐽

𝑘 𝑗 +
∑︁
𝑖∈𝐼

𝜒𝑖 ≥
∑︁
𝑗 ∈𝐽

𝑘 𝑗 +
∑︁
𝑖∈𝐼

𝑥𝑖 =
∑︁
𝑖∈𝐼

𝑥 .

Thus, 𝑥 is optimal for I.
Now note, that 𝑟 𝑗 ≤ 𝑞 and therefore constant. Thus, instead of solving an instance with demands

𝑟 𝑗 we can equivalently solve in instance in which each region 𝑗 ∈ 𝐽 is duplicated 𝑟 𝑗 times and

assigned the demand 1. This can be realized in time O(|𝐽 |). The above procedure, provided we are
given an optimal solution to I ′

, can then be implemented to run in time O(|𝐼 | + |𝐽 |) yielding the

desired result.

The difference between 𝑞-MsMc and 𝑞-oC is that in the latter we may not force the clients to

choose the supplier we would like them to choose. This is the main reason why the procedure

used to solveMin-2-MsMc in Theorem 7.7 does not work forMin-2-oC, as the following example

shows.

Example 8.6. Regard an instance of Min-2-oC with the following properties. Let 𝐼 = {1, 2, 3},
𝐽 = {4, 5, 6, 7, 8} and set

𝐺 = (𝐼 ∪ 𝐽 , {14, 15, 25, 26, 27, 37, 38}) .

Further, set 𝑑 𝑗 = 1 for all 𝑗 ∈ 𝐽 , 𝜎5(1) = 2, 𝜎5(2) = 1, 𝜎7(1) = 2 and 𝜎7(2) = 3. The orderings

𝜎4, 𝜎6 and 𝜎8 are already determined, as all of these regions only have one adjacent location. For

the construction of the instance, see also Figure 8.1. As for any solution 𝑥 and all 𝑗 ∈ 𝐽 there
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𝑋1 𝑋 1
𝑋2 𝑋 2

𝑋3 𝑋 3

Φ1 Φ1
Φ2 Φ2

Φ3 Φ3

Γ1 Λ1

1
Λ2

1
Λ3

1
Λ1

2
Λ2

2
Λ3

2
Γ2

𝐶1 𝐶2

Figure 8.2.: Construction of the 2-oC instance in the proof of Theorem 8.7 given the 1-in-3-SAT

instance with the formula

(
𝑋 1 ∨ 𝑋2 ∨ 𝑋 3

)
∧

(
𝑋 3 ∨ 𝑋 2 ∨ 𝑋1

)
. Circle nodes are locations

and square nodes are regions. Solid lines indicate preference order 1, dashed lines

indicate preference order 2 and dotted lines indicate preference order 3.

must be an 𝑖 ∈ 𝑁 ( 𝑗) with 𝑥𝑖 ≥ 1, we get that every solution fulfills 𝑥𝑖 ≥ 1 for all 𝑖 ∈ 𝐼 . Thus,

by Observation 8.4, an optimal solution to Min-2-oC is given by 𝑥1 = 1, 𝑥2 = 2 and 𝑥3 = 1. If we

try to solve the instance using Edge Cover as in the procedure for 2-Multiset Multicover in

Theorem 7.7, we get the solution that has one supplier in each location. This solution, though, is

infeasible for Min-2-oC.

Example 8.6 shows thatMin-2-oC cannot be solved with the same techniques asMin-2-MsMc.

In fact, unless P = NP, there is no polynomial time solving Min-2-oC as the following theorem

shows.

Theorem 8.7. 2-orderedClient is NP-complete in the strong sense.

Proof. We can verify a given possible solution to 2-oC in polynomial time using Observation 8.4.

Therefore 2-oC is contained in NP.
We reduce 1-in-3-SAT to 2-oC to see that it is also NP-hard. So let 𝑋1, . . . , 𝑋𝑛 be the variables of

a 1-in-3-SAT instance and 𝐶1, . . . ,𝐶𝑚 be the clauses. Further denote by 𝐿
𝑗

𝑖
for 𝑖 ∈ {1, . . . ,𝑚} and

𝑗 ∈ {1, 2, 3} the jth literal of clause 𝑖 . We may assume that each variable, as well as its negation,

appear an even number of times in the given formula. Otherwise simply duplicate each clause.

We define an instance of 2-oC. By 𝐼 = 𝐼𝑋 ∪ 𝐼𝐶 we denote the set of locations, where the
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first set 𝐼𝑋 =

{
𝑋𝑘 , 𝑋𝑘 : 𝑘 ∈ {1, . . . , 𝑛}

}
contains each variable and its negation and the sec-

ond set 𝐼𝐶 = {𝐶𝑘 : 𝑘 ∈ {1, . . . ,𝑚}} contains each clause. The set of regions we set to be 𝐽 =

𝐽𝑋 ∪ 𝐽𝐶 ∪ 𝐽𝐿 , where 𝐽𝑋 =

{
Φ𝑘 ,Φ𝑘 : 𝑘 ∈ {1, . . . , 𝑛}

}
contains an element for each variable and

its negation, 𝐽𝐶 = {Γ𝑘 : 𝑘 ∈ {1, . . . ,𝑚}} contains an element for each clause and, finally, the set

𝐽𝐿 =
{
Λ𝑙
𝑘

: 𝑘 ∈ {1, . . . ,𝑚} , 𝑙 ∈ {1, 2, 3}
}
contains an element for each literal in each clause. The

graph of the instance is then set to 𝐺 = (𝐼 ∪ 𝐽 , 𝐸𝑋 ∪ 𝐸𝐶 ∪ 𝐸
𝐶
∪ 𝐸𝐿), where

𝐸𝑋 =

𝑛⋃
𝑘=1

{
𝑥𝜙 : 𝑥 ∈

{
𝑋𝑘 , 𝑋𝑘

}
, 𝜙 ∈

{
Φ𝑘 ,Φ𝑘

}}
, 𝐸𝐶 =

𝑚⋃
𝑘=1

{
𝐶𝑘Λ

𝑙
𝑘

: 𝑙 ∈ {1, 2, 3}
}
,

𝐸
𝐶
=

𝑚⋃
𝑘=1

{
𝐿
𝑙

𝑘Γ𝑘 : 𝑙 ∈ {1, 2, 3}
}
, 𝐸𝐿 =

𝑚⋃
𝑘=1

{
𝐿𝑙
𝑘
Λ𝑙
𝑘

: 𝑙 ∈ {1, 2, 3}
}
.

For each 𝑗 ∈ 𝐽 we denote the ordering of its neighborhood 𝜎 𝑗 as an ordered tuple. The 𝑖th entry of

the tuple corresponds to 𝜎 𝑗 (𝑖). We set

𝜎 𝑗 =


(𝑋𝑘 , 𝑋𝑘 ), if 𝑗 = Φ𝑘 ∈ 𝐽𝑋 ,
(𝑋𝑘 , 𝑋𝑘 ), if 𝑗 = Φ𝑘 ∈ 𝐽𝑋 ,
(𝐿𝑙

𝑘
,𝐶𝑘 ), if 𝑗 = Λ𝑙

𝑘
∈ 𝐽𝐿,

(𝐿1

𝑘 , 𝐿
2

𝑘 , 𝐿
3

𝑘 ), if 𝑗 = Γ𝑘 ∈ 𝐽𝐶 ,

and 𝑑 𝑗 =

{
2, if 𝑗 ∈ 𝐽𝐶 ,
1, else.

Finally we set

𝐵 =
5𝑚 + 2𝑛

2

=
1

2

∑︁
𝑗 ∈𝐽

𝑑 𝑗 .

Note that 𝐵 ∈ N as all variables appear an even amount of times and therefore the number of

clauses is also even. For the construction of the instance, see also Figure 8.2.

Now assume the given 1-in-3-SAT formula is satisfiable. We define a set of locations 𝐼 ′, the set

of locations we want to open, by setting 𝐼 ′ = 𝐼𝐶 ∪
{
𝐿𝑘 ∈

{
𝑋𝑘 , 𝑋𝑘

}
: 𝑘 = 1, . . . , 𝑛, 𝐿𝑘 = true

}
. We

begin by proving that for each 𝑗 ∈ 𝐽 , there exists some 𝑖 ∈ 𝑁 ( 𝑗) with 𝑖 ∈ 𝐼 ′. If 𝑗 ∈ 𝐽𝐿 , there is some

𝑖 ∈ 𝐼𝐶 ∩𝑁 ( 𝑗) and thus, 𝑖 ∈ 𝐼 ′. If 𝑗 ∈ 𝐽𝑋 it is𝑋𝑘 , 𝑋𝑘 ∈ 𝑁 ( 𝑗) for some 𝑘 ∈ {1, . . . , 𝑛} and by definition
of 𝐼 ′ either 𝑋𝑘 ∈ 𝐼 ′ or 𝑋𝑘 ∈ 𝐼 ′. Finally assume 𝑗 ∈ 𝐽𝐶 . As exactly one literal in each clause is

satisfied, this means that the negations of the two other literals are set to true and therefore there

exist two elements in 𝑁 ( 𝑗) that are also contained in 𝐼 ′. We now show that the solution 𝑥 induced

by 𝐼 ′, cf. Definition 8.3, fulfills 𝑥 (𝐼 ) = 𝐵. To this end it is enough to show that 𝑑 (𝑁 ′(𝑖)) is even for

each 𝑖 ∈ 𝐼 ′, where 𝑁 ′(𝑖) denotes the active neighborhood of 𝑖 induced by 𝐼 ′.

So let 𝑖 ∈ 𝐼 ′ be given. We begin with the case that 𝑖 ∈ 𝐼𝐶 , say 𝑖 = 𝐶𝑘 for some 𝑘 ∈ {1, . . . ,𝑚}.
The vertex 𝐶𝑘 has the three neighbors Λ𝑙

𝑘
for 𝑙 ∈ {1, 2, 3}. All of those, according to 𝜎 , prefer the

connection to their respective literal location 𝐿𝑙
𝑘
. As exactly one literal in the clause is set to true,
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only one of these locations is contained in 𝐼 ′, say 𝐿3

𝑘
. Thus, the clients in Λ1

𝑘
and Λ2

𝑘
are served by

𝐶𝑘 , which is an even number.

Now let 𝑖 ∈ 𝐼𝑋 , say 𝑖 = 𝐿𝑘 for some 𝑘 ∈ {1, . . . , 𝑛}. By the definition of 𝐼 ′ we have 𝐿𝑘 = true.

Thus, 𝐿𝑘 = false and 𝐿𝑘 ∉ 𝐼 ′ and it is 𝑁 ′(𝑖) ∩ 𝐽𝑋 =

{
Φ𝑘 ,Φ𝑘

}
. Further, 𝑁 ′(𝑖) ∩ 𝐽𝐿 contains an

element for each time 𝐿𝑘 appears in the given 1-in-3-SAT formula, which is an even amount. We

conclude that ∑︁
𝑗 ∈𝑁 ′ (𝑖)

𝑑 𝑗 = |𝑁 ′(𝑖) ∩ 𝐽𝑋 | + |𝑁 ′(𝑖) ∩ 𝐽𝐿 | + 2 · |𝑁 ′(𝑖) ∩ 𝐽𝐶 | (8.2)

is even.

Now let 𝑥 be a solution to 2-oC with 𝑥 (𝐼 ) ≤ 𝐵 and denote by 𝐼 ′ = {𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1} the set of open
locations for 𝑥 . By Observation 8.4 we may assume without loss of generality that 𝑥 is the solution

induced by 𝐼 ′. Note that 𝑑 (𝑁 ′(𝑖)), where 𝑁 ′(𝑖) is the active neighborhood of 𝑖 induced by 𝐼 ′, must

be even for all 𝑖 , as otherwise 𝑥 (𝐼 ) > 𝐵.

We begin by showing that, for each 𝑘 ∈ {1, . . . , 𝑛}, it is either 𝑋𝑘 ∈ 𝐼 ′ or 𝑋𝑘 ∈ 𝐼 ′, but not both.
As 𝑁 (Φ𝑘 ) =

{
𝑋𝑘 , 𝑋𝑘

}
it is clear, that at least one of the two is contained in 𝐼 ′. So suppose both 𝑋𝑘

and 𝑋𝑘 are contained in 𝐼 ′. Then equation (8.2) holds for 𝑖 = 𝑋𝑘 but |𝑁 ′(𝑋𝑘 ) ∩ 𝐽𝑋 | is odd, while
the other two summands are even. This contradicts the fact that 𝑑 (𝑁 ′(𝑋𝑘 )) is even. We may now

formally define a truth assignment to the variables. We set 𝑋𝑘 = true if and only if 𝑋𝑘 ∈ 𝐼 ′. Note
that by the above arguments this definition implies that 𝑋𝑘 = true if and only if 𝑋𝑘 ∈ 𝐼 ′.
In a next step we will prove that 𝐼𝐶 ⊆ 𝐼 ′. Suppose for the sake of contradiction that for some

clause 𝐶𝑘 we have 𝐶𝑘 ∉ 𝐼 ′. As, for each 𝑙 ∈ {1, 2, 3}, the only other neighbor of Λ𝑙
𝑘
is 𝐿𝑙

𝑘
, we must

have 𝐿𝑙
𝑘
∈ 𝐼 ′ and therefore 𝐿𝑙

𝑘
= true. This implies that 𝐿

𝑙

𝑘 = false and therefore 𝐿
𝑙

𝑘 ∉ 𝐼 ′ for all

𝑙 ∈ {1, 2, 3}. As 𝑁 (Γ𝑘 ) =
{
𝐿

1

𝑘 , 𝐿
2

𝑘 , 𝐿
3

𝑘

}
, this is a contradiction to the fact that 𝑥 is a feasible solution.

Thus, for each 𝑘 there is some 𝑙 ∈ {1, 2, 3} such that 𝐿𝑙
𝑘
= false. If exactly one or three of these

literals were to be false, then 𝑑 (𝑁 ′(𝐶𝑘 )) would be odd, which is not possible. Thus, exactly one

literal in each clause is set to true, which is what we wanted to prove.

Note that if we were to repeat the proof of Theorem 8.7 for any fixed 𝑞 ≥ 3, we would have to

make some adjustments. In fact as we already know that 𝑞-Multiset Multicover is NP-hard for
𝑞 ≥ 3 it is possible to simplify the proof. In the following proof we ensure that the clients only

have one choice of supplier. This way the problem becomes, in some sense, equivalent to 𝑞-MsMc.

In turn this means that the preference ordering is not needed in the proof.

Theorem 8.8. 𝑞-orderedClient isNP-complete in the strong sense for any fixed 𝑞 ∈ Nwith 𝑞 ≥ 3.

Proof. Given a possible solution to𝑞-oC, we can verify it in polynomial time using Observation 8.4.

Thus, 𝑞-oC is contained in NP.
Similarly to the proof of Theorem 7.8 we reduce Exact Cover by 3-sets to 𝑞-oC in order to

prove NP-hardness. From an Exact Cover by 3-sets instance, let 𝑋 be the finite ground set and

S a collection of subsets of 𝑋 , where |𝑆 | = 3 for all 𝑆 ∈ S.
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Set 𝐼 = S, 𝐽 = 𝑋 and define the graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸), where an edge 𝑆 𝑗 ∈ 𝐸 (𝐺), if 𝑗 ∈ 𝑆 for 𝑆 ∈ 𝐼
and 𝑗 ∈ 𝐽 . The ordering of the regions 𝑗 ∈ 𝐽 is defined as an arbitrary bijection. Finally set 𝑑 𝑗 = 1

for all 𝑗 ∈ 𝐽 and 𝐵 = |𝑋 |/3.

Assume we are given a solution S′
to Exact Cover by 3-sets. We set 𝑥𝑆 = 1 if 𝑆 ∈ S′

and

𝑥𝑆 = 0 else. As S′
is a solution to Exact Cover by 3-sets, for each 𝑗 ∈ 𝐽 there exists 𝑖 ∈ 𝑁 ( 𝑗)

with 𝑥𝑖 = 1. Let now 𝑖 ∈ 𝐼 and assume 𝑥𝑖 = 1. We have∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖

as 𝑞 ≥ 3, |𝑁 (𝑖) = 3| and 𝑑 𝑗 = 1 for all 𝑗 ∈ 𝐽 . If 𝑥𝑖 = 0 by the very definition of the vector 𝑦, it is

𝑦𝑖 𝑗 = 0 for all 𝑗 ∈ 𝑁 (𝑖) and the equation holds as well.

Assume now that we are given a solution 𝑥 to 𝑞-oC with 𝑥 (𝐼 ) ≤ |𝑋 |/3. Then for all 𝑖 ∈ 𝐼 it holds
true that 𝑥𝑖 ≤ 1 by the feasibility of 𝑥 . We set S′ = {𝑆 ∈ S : 𝑥𝑆 = 1}. This is a solution to Exact

Cover by 3-sets, as |𝑆 ′ | = | 𝐽 |/3 and for each 𝑗 ∈ 𝐽 there exists some 𝑆 ∈ 𝑁 ( 𝑗) with 𝑥𝑆 = 1 and

𝑗 ∈ 𝑆 .

This finishes the classification of the complexity of 𝑞-oC. In contrast to 𝑞-MsMc, the problem

is NP-hard even when 𝑞 = 2. This confirms the intuition that 𝑞-oC is the harder problem regard-

ing complexity. Nevertheless the problem remains polynomial time solvable for 𝑞 = 1. As it is

NP-complete for any fixed 𝑞 ≥ 2, we present an integer linear programming formulation of the

problem. In the literature there are different approaches to model the orderings for each client,

cf. [HP87]. As we do not compare various formulations here, we only supply one possibility here.

(IP 8.3)(𝑑) min

𝑣, 𝑥, 𝑧

∑︁
𝑖∈𝐼

𝑥𝑖 (8.3a)

s.t.
∑︁

𝑗 ∈𝑁 (𝑖)
𝑑 𝑗 · 𝑧𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 (8.3b)∑︁

𝑖∈𝑁 ( 𝑗)
𝑣𝑖 ≥ 1 ∀𝑗 ∈ 𝐽 (8.3c)

𝑣𝑖 −
𝜎−1

𝑗
(𝑖)−1∑︁

𝑘=1

𝑣𝜎 𝑗 (𝑘) ≤ 𝑧𝑖 𝑗 ∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑁 ( 𝑗) (8.3d)

𝑣𝑖 , 𝑧𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (8.3e)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (8.3f)

The variables of (IP 8.3) can be interpreted in the following way, where the meaning of the
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variables 𝑥 should be clear from the definition of 𝑞-oC.

𝑣𝑖 =

{
1, if 𝑥𝑖 ≥ 1,

0, else.

(8.4)

𝑧𝑖 𝑗 =


1, if 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
,

0, else.

(8.5)

Strictly speaking, conditions (8.4) and (8.5) are not always true. The next theorem shows that we

may safely ignore these cases.

Theorem 8.9. Let an instance of Min-𝑞-orderedClient be given and let 𝑥 ∈ N |𝐼 |
. 𝑥 is an optimal

solution toMin-𝑞-orderedClient if and only if there exist 𝑣 ∈ {0, 1} |𝐼 | and 𝑧 ∈ {0, 1} |𝐼 |× | 𝐽 | such that
(𝑣, 𝑥, 𝑧) is optimal for (IP 8.3)(𝑑).

Proof. First assume that 𝑥 is an optimal solution toMin-𝑞-oC. For 𝑖 ∈ 𝐼 we set 𝑣𝑖 = 1 if 𝑥𝑖 ≥ 1 and

𝑣𝑖 = 0 else. Recall the definition of 𝑦 in the problem description of 𝑞-oC. For 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝑁 ( 𝑗) it
is

𝑦𝑖 𝑗 =


𝑑 𝑗 , if 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
,

0, else,

For 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝑁 ( 𝑗), we set 𝑧𝑖 𝑗 = 1 if 𝑦𝑖 𝑗 = 𝑑 𝑗 and 𝑧𝑖 𝑗 = 0 else. The only equation that is now

not trivially fulfilled is equation (8.3d). If the left hand side of the equation is less or equal to zero,

it is also trivially fulfilled. So assume

𝑣𝑖 −
𝜎−1

𝑗
(𝑖)−1∑︁

𝑘=1

𝑣𝜎 𝑗 (𝑘) = 1

for some 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝑁 ( 𝑗). This is only the case if 𝑣𝑖 = 1 and 𝑣𝜎 𝑗 (𝑘) = 0 for all 𝑘 ∈{
1, . . . , 𝜎−1

𝑗 (𝑖) − 1

}
. But this implies that

𝑖 = argmin

𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
and therefore 𝑦𝑖 𝑗 = 𝑑 𝑗 . By the definition of 𝑧, it is therefore 𝑧𝑖 𝑗 = 1 and the equation is fulfilled.

Assume now that we are given an optimal solution (𝑣, 𝑥, 𝑧) to (IP 8.3)(𝑑). We begin by proving

that, if 𝑥𝑖 ≥ 1 we also have 𝑣𝑖 = 1. If 𝑥𝑖 ≥ 1, there exist 𝑗 ∈ 𝑁 (𝑖) such that 𝑧𝑖 𝑗 = 1, as otherwise we

would set 𝑥𝑖 to zero yielding a better objective value. Let 𝐽 ′ =
{
𝑗 ∈ 𝑁 (𝑖) : 𝑧𝑖 𝑗 = 1

}
. If 𝑣𝑖 is not 1,

then the solution remains feasible if for all 𝑗 ∈ 𝐽 ′ we set 𝑧𝑖 𝑗 = 0 and also set 𝑥𝑖 = 0, again yielding

a better objective value. Thus, we get that 𝑣𝑖 = 1.

Next suppose there exists some 𝑗 ∈ 𝐽 such that 𝑥𝑖 = 0 for all 𝑖 ∈ 𝑁 ( 𝑗). By constraints (8.3b)
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this implies 𝑧𝑖 𝑗 = 0 for all 𝑖 ∈ 𝑁 ( 𝑗). This, in turn, implies by constraints (8.3d) that 𝑣𝑖 = 0 for all

𝑖 ∈ 𝑁 ( 𝑗), which is a contradiction to constraints (8.3c). Thus, for each 𝑗 ∈ 𝐽 there exists some

𝑖 ∈ 𝑁 ( 𝑗) with 𝑥𝑖 ≥ 1.

Now let 𝑗 ∈ 𝐽 be arbitrary and set 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
. If we can show that

𝑧𝑖 𝑗 = 1, the second condition of Min-𝑞-oC is fulfilled by constraints (8.3b) and we are done. By

the very definition of 𝑖 we have 𝑥𝑖 ≥ 1. We already argued above that this implies 𝑣𝑖 = 1. Now let

𝑘 ∈
{
1, . . . , 𝜎−1

𝑗 (𝑖)
}
be minimal with the condition that 𝑣𝜎 𝑗 (𝑘) = 1. Suppose 𝑘 < 𝜎−1

𝑗 (𝑖) for the sake
of contradiction. By constraints (8.3d) this implies 𝑧𝜎 𝑗 (𝑘) 𝑗 = 1, which in turn implies 𝑥𝜎 𝑗 (𝑘) ≥ 1

by constraints (8.3b) in contradiction to the definition of 𝑖 . Thus, we get that 𝑣𝜎 𝑗 (𝑘) = 0 for all

𝑘 < 𝜎−1

𝑗 (𝑖) and by constraints (8.3d), this implies 𝑧𝑖 𝑗 = 1.

This concludes the classification of the complexity of 𝑞-fC and 𝑞-oC. For the remainder of this

chapter we regard robust versions of both problems and analyze the influences of the uncertainty

in the data on the complexity of the problem.

8.2. Free and Ordered Client Including Demand Uncertainty

As in the chapter about Robust 𝑞-Multiset Multicover we now regard instances of the two

problems 𝑞-freeClient and 𝑞-orderedClient in which the number of clients in the regions is

not exactly known in advance. For 𝑞-fC this leads to the following definition.

Robust q-freeClient (Robust q-fC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , an uncertainty setU ⊆ N | 𝐽 |
, a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),

and an integer 𝐵 ∈ N.
Question: Does there exist 𝑥 ∈ N |𝐼 |

with 𝑥 (𝐼 ) ≤ 𝐵 such that for all 𝑦 ∈ N |𝐼 |× | 𝐽 |
with∑

𝑖∈𝑁 ( 𝑗) 𝑦𝑖 𝑗 = b 𝑗 for some b ∈ U and all 𝑗 ∈ 𝐽 , it is∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼?

The solution to Robust Min-𝑞-fC turns out to be not much more complicated than the one

for Min-𝑞-fC. In fact it is fairly obvious that for each location we have to compute the maximum

amount of clients that may choose this location among all scenarios.

Theorem 8.10. Let an instance of Robust Min-𝑞-freeClient be given. Then 𝑥 ∈ N |𝐼 |
, defined by

setting

𝑥𝑖 =

⌈
maxb ∈U {b (𝑁 (𝑖))}

𝑞

⌉
,

is an optimal solution to the given instance.
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Proof. For each 𝑖 ∈ 𝐼 the term maxb ∈U {b (𝑁 (𝑖))} is the maximum number of clients that may have

to be served by location 𝑖 . Thus, 𝑥 is feasible and 𝑥 (𝐼 ) is a lower bound on the optimal solution to

Robust Min-𝑞-fC. This directly implies that 𝑥 is optimal.

Although writing down the solution is not very complicated, as the computation of the max-

imum in Theorem 8.10 is essentially MaxSum, which is NP-complete, the next corollary is an

immediate consequence.

Corollary 8.11. Robust 𝑞-freeClient is NP-hard in the strong sense for any fixed 𝑞, even when

restricted to instances with a single location.

Nevertheless, it is a direct consequence of Theorem 8.10 that we can solve Robust 𝑞-fC in

polynomial time whenever we can compute

max

b ∈U
{b (𝑁 (𝑖))}

in polynomial time. Next, we turn to a robust version of 𝑞-orderedClient.

Robust q-orderedClient (Robust q-oC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , an uncertainty setU ⊆ N | 𝐽 |
, a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),

for each 𝑗 ∈ 𝐽 an ordering 𝜎 𝑗 : {1, . . . , |𝑁 ( 𝑗) |} → 𝑁 ( 𝑗), and an integer 𝐵 ∈ N.
Question: Does there exist 𝑥 ∈ N |𝐼 |

with 𝑥 (𝐼 ) ≤ 𝐵 such that for each 𝑗 ∈ 𝐽 there exists an

𝑖 ∈ 𝑁 ( 𝑗) with 𝑥𝑖 ≥ 1 and ∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b)𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U,

where 𝑦 (b) ∈ N |𝐼 |× | 𝐽 |
is defined by setting

𝑦 (b)𝑖 𝑗 =

b 𝑗 , if 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
,

0, else,

for 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽?

As in the non-robust case, we introduce the notion of induced solutions, cf. Definition 8.3, which

are, in some sense, the only interesting solutions.

Definition 8.12 (Robust Induced Solutions). Let an instance of Robust Min-𝑞-oC be given, and

let 𝐼 ′ ⊆ 𝐼 be a subset of the locations of the instance. We call 𝑥 ∈ N |𝐼 |
the solution induced by 𝐼 ′ if

it fulfills

𝑥𝑖 =

⌈
maxb ∈U

{∑
𝑗 ∈𝑁 ′ (𝑖) b 𝑗

}
𝑞

⌉
,
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where 𝑁 ′(𝑖) denotes the active neighborhood of 𝑖 induced by 𝐼 ′, cf. Definition 8.3.

Lemma 8.13. Let an instance of Robust Min-𝑞-oC and a subset 𝐼 ′ ⊆ 𝐼 be given. The solution 𝑥

induced by 𝐼 ′ is feasible if and only if 𝐼 ′ ∩ 𝑁 ( 𝑗) ≠ ∅ for all 𝑗 ∈ 𝐽 . Denote by L the set of all feasible

solutions 𝑥 such that {𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1} ⊆ {𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1} ⊆ 𝐼 ′. If 𝑥 is feasible, it is the unique solution

fulfilling

𝑥 = argmin

𝑥 ∈L

{∑︁
𝑖∈𝐼

𝑥𝑖

}
.

In particular any optimal solution 𝑥★ is induced by the set

{
𝑖 ∈ 𝐼 : 𝑥★𝑖 ≥ 1

}
.

Proof. Observe that b (𝑁 ′(𝑖)) is the number of clients that will have to be served by location 𝑖

in scenario b provided that 𝐼 ′ is the set of open locations, cf. Observation 8.4. Thus, in this case

maxb ∈U {b (𝑁 ′(𝑖))} is the largest amount of clients that will have to be served by location 𝑖 . This

immediately implies that 𝑥𝑖 is the minimum possible number of suppliers needed in location 𝑖 .

Further we observe, that if 𝐼 ′ ∩ 𝑁 ( 𝑗) ≠ ∅ for all 𝑗 ∈ 𝐽 , then 𝑥 is also a feasible solution.

Lemma 8.13 basically states that verifying a solution takes aMaxSum computation to be done. In

a next step we prove NP-hardness of Robust 𝑞-oC. The proof is similar to the one in Theorem 7.8.

Nevertheless, we state it here for the sake of completeness.

Theorem 8.14. Robust 𝑞-orderedClient is NP-hard in the strong sense for any fixed 𝑞 ∈ N>0.

Proof. Let a graph 𝐻 with 𝑉 (𝐻 ) = {1, . . . , 𝑛} and an integer 𝑘 from an instance of Dominating

Set be given. We construct an instance of Robust 𝑞-oC by setting 𝐼 B 𝑉 (𝐻 ), 𝐽 = {𝑛 + 1, . . . , 2𝑛},
𝐵 = 𝑘 and𝐺 = (𝐼 ·∪ 𝐽 , 𝐸), where we have 𝑢 (𝑛 + 𝑣) ∈ 𝐸 if 𝑢 = 𝑣 or 𝑢𝑣 ∈ 𝐸 (𝐻 ). Further, for each 𝑗 ∈ 𝐽 ,
we set 𝜎 𝑗 : {1, . . . , |𝑁 ( 𝑗) |} → 𝑁 ( 𝑗) to be any bijection andU =

{
b ∈ N | 𝐽 |

: b (𝐽 ) = 1

}
.

Assume 𝑆 ⊆ 𝑉 (𝐻 ) is a dominating set in 𝐻 , with |𝑆 | ≤ 𝑘 . We set 𝑥𝑖 = 1 if 𝑖 ∈ 𝑆 and 𝑥𝑖 = 0 else.

It is obvious that 𝑥 (𝐼 ) ≤ 𝐵. Further, as 𝑆 is dominating for each 𝑗 ∈ 𝐽 there exists an 𝑖 ∈ 𝑁 ( 𝑗)
with 𝑥𝑖 ≥ 1. Finally note, that for each b ∈ U there exists exactly one 𝑗 ∈ 𝐽 and one 𝑖 ∈ 𝑁 ( 𝑗)
with 𝑦 (b)𝑖 𝑗 = 1. For this 𝑖 , we also have 𝑥𝑖 = 1 and thereby 𝑥 fulfills the remaining conditions for

Robust 𝑞-oC.

Now assume 𝑥 fulfills the conditions of Robust 𝑞-oC. We define 𝑆 ′ = {𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1}. We have

|𝑆 ′ | ≤ 𝑥 (𝐼 ) ≤ 𝐵 = 𝑘 . Now let 𝑢 ∈ 𝑉 (𝐻 ) = 𝐼 be any node in 𝐻 . We know by the conditions of

Robust 𝑞-oC that there exists some 𝑢 ′ ∈ 𝑁𝐺 (𝑢 + 𝑛) such that 𝑥𝑖 ≥ 1 and thereby 𝑢 ′ ∈ 𝑆 ′. By the

definition of 𝐺 we also have 𝑢 ′ ∈ {𝑢} ∪ 𝑁𝐻 (𝑢) and 𝑆 ′ is a dominating set in 𝐻 .

Regardless of the NP-hardness of Robust 𝑞-oC, we still would like to have the means to solve
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the problem. Therefore we give a valid integer programming formulation for Robust Min-𝑞-oC.

(IP 8.6)(U) min

𝑥, a, 𝑧

∑︁
𝑖∈𝐼

𝑥𝑖 (8.6a)

s.t.
∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗 · 𝑧𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , ∀b ∈ U (8.6b)∑︁

𝑖∈𝑁 ( 𝑗)
𝑣𝑖 ≥ 1 ∀𝑗 ∈ 𝐽 (8.6c)

𝑣𝑖 −
𝜎−1

𝑗
(𝑖)−1∑︁

𝑘=1

𝑣𝜎 𝑗 (𝑘) ≤ 𝑧𝑖 𝑗 ∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑁 ( 𝑗) (8.6d)

𝑣𝑖 , 𝑧𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (8.6e)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 . (8.6f)

The correctness of the formulation is immediate from Theorem 8.9.

Theorem 8.15. Let an instance of Robust Min-𝑞-orderedClient be given. Then 𝑥★ ∈ N |𝐼 |
is an

optimal solution to the instance if and only if there exist a★ ∈ {0, 1} |𝐼 | and 𝑧★ ∈ {0, 1} |𝐼 |× | 𝐽 | such that

(𝑥★, a★, 𝑧★) is an optimal solution to (IP 8.6).

Regard the separation problem for (IP 8.6): Given a solution (𝑥, â, 𝑧) to (IP 8.6)(U ′
) forU ′ ⊆ U,

does there exist a b ∈ U such that ∑︁
𝑗 ∈𝑁 (𝑖)

b 𝑗 · 𝑧𝑖 𝑗 > 𝑞 · 𝑥𝑖 .

This is essentiallyMaxSum and we cannot hope to be able to separate in polynomial time in gen-

eral. However, in the following we see cases in which we may separate in polynomial time.

The first such case, of course, is the one, when we may enumerate U in polynomial time, as

MaxSum is contained in P for these cases.

The more interesting case is the one of polyhedral uncertainty sets. The constraints (8.6b) are

the ones that we would like to replace as these are possibly exponentially many. The easiest way

of doing so would be to replace for each 𝑖 ∈ 𝐼 the set of constraints∑︁
𝑗 ∈𝑁 (𝑖)

b 𝑗 · 𝑧𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 , ∀b ∈ U

by the single constraint

max

b ∈U


∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗 · 𝑧𝑖 𝑗

 ≤ 𝑞 · 𝑥𝑖 . (8.7)

Unfortunately the result is in general not an integer program because of the maximum in (8.7).
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For a special case in polyhedral uncertainty we may reformulate that maximum in order to get a

new integer programming formulation with polynomially many constraints. This is exactly the

case when the underlying polyhedron is integral. This procedure has been used various times in

the literature, see e.g. [BS04].

Let us formalize what we have just described. We are given an instance of Robust Min-𝑞-oC

for some 𝑞 ∈ N>0 with a polyhedral uncertainty set U =
{
b ∈ N | 𝐽 |

: 𝐴b ≤ 𝑏
}
for some integral

polyhedron 𝑃 (𝐴,𝑏) with 𝐴 ∈ Z𝑛×| 𝐽 | and 𝑏 ∈ Z𝑛 for some 𝑛 ∈ N>0. Then, for some 𝑖 ∈ 𝐼 and fixed

𝑧𝑖 𝑗 ∈ {0, 1} for 𝑗 ∈ 𝐽 the following holds true by duality of linear programming and the fact that 𝑃

is integral.

max

b ∈N| 𝐽 |

{∑︁
𝑗 ∈𝐽

b 𝑗 · 𝑧𝑖 𝑗 : 𝐴b ≤ 𝑏
}
= min

[𝑖 ∈R𝑛
{
𝑏⊤[𝑖 : 𝐴⊤[𝑖 ≥ 𝑧𝑖 ·

}
. (8.8)

Thus, we may equivalently reformulate (IP 8.6) as (MIP 8.9).

(MIP 8.9) min

𝑥, a, 𝑧, [

∑︁
𝑖∈𝐼

𝑥𝑖 (8.9a)

s.t. 𝑏⊤[𝑖 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 (8.9b)

𝐴⊤[𝑖 ≥ 𝑧𝑖 · ∀𝑖 ∈ 𝐼 (8.9c)∑︁
𝑖∈𝑁 ( 𝑗)

𝑣𝑖 ≥ 1 ∀𝑗 ∈ 𝐽 (8.9d)

𝑣𝑖 −
𝜎−1

𝑗
(𝑖)−1∑︁

𝑘=1

𝑣𝜎 𝑗 (𝑘) ≤ 𝑧𝑖 𝑗 ∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑁 ( 𝑗) (8.9e)

𝑣𝑖 , 𝑧𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (8.9f)

𝑥𝑖 ∈ N ∀𝑖 ∈ 𝐼 (8.9g)

[𝑖 ∈ R𝑛≥0
∀𝑖 ∈ 𝐼 . (8.9h)

Theorem 8.16. Let an instance of Robust Min-𝑞-orderedClient restricted to polyhedral uncer-

tainty sets whose underlying polyhedra are integral be given. Then 𝑥★ ∈ N |𝐼 |
is an optimal solution

to the instance if and only if there exist a★ ∈ {0, 1} |𝐼 | , 𝑧★ ∈ {0, 1} |𝐼 |× | 𝐽 | and [★ ∈ R𝑛×|𝐼 |≥0
such that

(𝑥★, a★, 𝑧★, [★) is an optimal solution to (IP 8.9).

Proof. We argued above why (MIP 8.9) is a valid formulation for Robust Min-𝑞-oC. Note that the

minimum in equations (8.9b) can be left out, as the minimum of a set of numbers is smaller or equal

to a number 𝑝 if and only if there exists some number in the set that is smaller than 𝑝 . Further, the

variables [ can be chosen continuous as 𝑃 is integral.
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Corollary 8.17. Robust 𝑞-orderedClient is contained in NP for any fixed 𝑞 ∈ N>0 when re-

stricted to polyhedral uncertainty sets whose underlying polyhedra are integral.

We can also use equation 8.8 to separate in (IP 8.6). As a consequence of the polynomial time

solvability of linear programming, cf. [GLS88], the minimum on the left hand side of the equation

can be computed in polynomial time. Thus, given a solution to (IP 8.6), we can decide in polynomial

time, if there exists a scenario violating a constraint from (8.6b).

In the last section of this chapter we regard specific uncertainty sets and analyze the changes in

the complexity of the problems.

8.3. Specific Uncertainty Sets

In the previous sections we analyzed the complexity of Robust 𝑞-freeClient and Robust 𝑞-

orderedClient for very general uncertainty sets. Further, we gave two different integer pro-

gramming formulations for Robust 𝑞-oC. In this section we restrict the uncertainty sets further,

and see if we can improve the results of the previous section.

8.3.1. Discrete Uncertainty

Recall the definition of discrete uncertainty. Applied to Robust 𝑞-fC and Robust 𝑞-oC this means

that the uncertainty sets in this section are of the formU = {b1, . . . , b𝑘 } for some 𝑘 ∈ N.

Theorem 8.18. Robust 𝑞-freeClient with discrete uncertainty is in P for any fixed 𝑞 ∈ N>0.

Proof. By Theorem 8.1, we can compute an optimal solution 𝑥 to Robust Min-𝑞-fC by setting

𝑥𝑖 =

⌈
maxb ∈U

{∑
𝑗 ∈𝑁 (𝑖) b 𝑗

}
𝑞

⌉
for all 𝑖 ∈ 𝐼 . As the maximum can clearly be computed in linear time for discrete uncertainty, the

result follows immediately.

Considering the complexity of 𝑞-oC with discrete uncertainty, we note that the negative com-

plexity results from 𝑞-MsMc with discrete uncertainty all directly transfer, as in the reductions

the instances and solutions of 𝑞-MsMc were constructed in a way that each client had only one

unique choice of supplier making the two problems equivalent. Thus, the following can be proved

analogously to Theorems 7.28, 7.30 and 8.7.

Theorem 8.19. Let 𝑞, 𝑘 ∈ N>0 with 𝑞 ≥ 2 or 𝑘 ≥ 3. Robust 𝑞-orderedClient with discrete

uncertainty isNP-complete in the strong sense, even when restricted to instances where the uncertainty

set U has 𝑘 elements.

As Robust 1-oC with exactly one scenario is simply the non-robust version of the problem the

only remaining case is Robust 1-oCwith two scenarios. In Chapter 7 we saw that Robust 1-MsMc
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𝑋1 𝑋 1
𝑋2 𝑋 2

𝑋3 𝑋 3

Φ1

Φ1

Φ2

Φ2

Φ3

Φ3

Λ1

1
Λ2

1
Λ3

1
Λ1

2
Λ2

2
Λ3

2

𝐶1 𝐶2

Δ1 Δ2Γ1 Γ2

Figure 8.3.: Construction of the Robust 1-oC instance in the proof of Theorem 8.20 given the 1-

in-3-SAT instance with the formula (𝑋1 ∨ 𝑋2 ∨ 𝑋3) ∧
(
𝑋 1 ∨ 𝑋 2 ∨ 𝑋3

)
. Circle nodes are

locations and square nodes are regions. Solid lines indicate preference order 1, dashed

lines indicate preference order 2 and dotted lines indicate preference order 3. Regions

above the gray dashed line contain clients in scenario b1
, regions below the line contain

clients in scenario b2
.

with two scenarios has parallels to 2-MsMc. And indeed, we see that using a similar reduction as

in the proof of Theorem 8.7 we can prove NP-hardness for Robust 1-oC with two scenarios.

Theorem 8.20. Robust 1-orderedClient with discrete uncertainty restricted to uncertainty sets

of cardinality 2 is NP-complete in the strong sense.

Proof. We can verify a given solution of Robust 1-oC using Lemma 8.13 in polynomial time. Thus,

Robust 1-oC is contained in NP.
To see that it is also NP-hard, we reduce 1-in-3-SAT to Robust 1-oC. Let 𝑋1, . . . , 𝑋𝑛 be the

variables of an 1-in-3-SAT instance and 𝐶1, . . . ,𝐶𝑚 be the clauses. Further denote by 𝐿
𝑗

𝑖
for 𝑖 ∈

{1, . . . ,𝑚} and 𝑗 ∈ {1, 2, 3} the 𝑗 ’th literal of clause 𝑖 .

We define an instance of Robust 1-oC in the following way. We denote by 𝐼 = 𝐼𝑋 ∪ 𝐼𝐶 the

set of locations, where 𝐼𝑋 =

{
𝑋𝑘 , 𝑋𝑘 : 𝑘 ∈ {1, . . . , 𝑛}

}
contains each variable and its negation and

𝐼𝐶 = {𝐶𝑘 : 𝑘 ∈ {1, . . . ,𝑚}} contains each clause. The set of regions we set to be 𝐽 = 𝐽𝑋 ∪ 𝐽𝐶∪ 𝐽𝐿∪ 𝐽𝐷 ,
where 𝐽𝑋 =

{
Φ𝑘 ,Φ𝑘 : 𝑘 ∈ {1, . . . , 𝑛}

}
contains an element for each variable and its negation, 𝐽𝐶 =
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{Γ𝑘 : 𝑘 ∈ {1, . . . ,𝑚}} and 𝐽𝐷 = {Δ𝑘 : 𝑘 ∈ {1, . . . ,𝑚}} both contain an element for each clause and

𝐽𝐿 =
{
Λ𝑙
𝑘

: 𝑘 ∈ {1, . . . ,𝑚} , 𝑙 ∈ {1, 2, 3}
}
contains an element for each literal in each clause. The

graph of the instance is then set to 𝐺 = (𝐼 ∪ 𝐽 , 𝐸𝑋 ∪ 𝐸𝐶 ∪ 𝐸𝐷 ∪ 𝐸Γ ∪ 𝐸𝐿), where

𝐸𝑋 =

𝑛⋃
𝑘=1

{
𝑥𝜙 : 𝑥 ∈

{
𝑋𝑘 , 𝑋𝑘

}
, 𝜙 ∈

{
Φ𝑘 ,Φ𝑘

}}
,

𝐸𝐶 =

𝑚⋃
𝑘=1

{
𝐶𝑘Λ

𝑙
𝑘

: 𝑙 ∈ {1, 2, 3}
}
, 𝐸𝐷 =

𝑚⋃
𝑘=1

{𝐶𝑘Δ𝑘 } ,

𝐸Γ =

𝑚⋃
𝑘=1

{
𝐿𝑙
𝑘
Γ𝑘 : 𝑙 ∈ {1, 2, 3}

}
, 𝐸𝐿 =

𝑚⋃
𝑘=1

{
𝐿𝑙
𝑘
Λ𝑙
𝑘

: 𝑙 ∈ {1, 2, 3}
}
.

For each 𝑗 ∈ 𝐽 we denote the ordering of its neighborhood 𝜎 𝑗 as an ordered tuple. The 𝑖th entry

of the tuple corresponds to 𝜎 𝑗 (𝑖). For each 𝑗 ∈ 𝐽 we set

𝜎 𝑗 =



(𝑋𝑘 , 𝑋𝑘 ), if 𝑗 = Φ𝑘 ∈ 𝐽𝑋 ,
(𝑋𝑘 , 𝑋𝑘 ), if 𝑗 = Φ𝑘 ∈ 𝐽𝑋 ,
(𝐿𝑙

𝑘
,𝐶𝑘 ), if 𝑗 = Λ𝑙

𝑘
∈ 𝐽𝐿,

(𝐿1

𝑘
, 𝐿2

𝑘
, 𝐿3

𝑘
), if 𝑗 = Γ𝑘 ∈ 𝐽𝐶 ,

(𝐶𝑘 ), if 𝑗 = Δ𝑘 ∈ 𝐽𝐷 ,

b1

𝑗 =


2, if 𝑗 ∈ 𝐽𝐷 ,
1, if 𝑗 ∈ 𝐽𝐶 ∪ {Φ𝑘 : 𝑘 ∈ {1, . . . , 𝑛}} ,
0, else,

and

b2

𝑗 =


1, if 𝑗 ∈ 𝐽𝐿 ∪

{
Φ𝑘 : 𝑘 ∈ {1, . . . , 𝑛}

}
0, else.

Finally we set

𝐵 = 3𝑚 + 𝑛 =
1

2

∑︁
𝑗 ∈𝐽

b1

𝑗 + b2

𝑗 =
∑︁
𝑗 ∈𝐽

b1

𝑗 =
∑︁
𝑗 ∈𝐽

b2

𝑗 .

For the construction of the instance, also see Figure 8.3.

Assume the given 1-in-3-SAT is satisfiable. We define a set of locations 𝐼 ′, the set of locations
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we want to open, by setting

𝐼 ′ = 𝐼𝐶 ∪
{
𝐿𝑘 ∈

{
𝑋𝑘 , 𝑋𝑘

}
: 𝑘 ∈ {1, . . . , 𝑛} , 𝐿𝑘 = true

}
.

By the construction of the instance it is immediately seen that for each 𝑗 ∈ 𝐽 there exists some

𝑖 ∈ 𝑁 ( 𝑗) ∩ 𝐼 ′. Recall that 𝑁 ′(𝑖) denotes the active neighborhood of 𝑖 ∈ 𝐼 induced by the set 𝐼 ′,

cf. Definition8.3. If we can show that, for each location 𝑖 ∈ 𝐼 ′, the equality b1(𝑁 ′(𝑖)) = b2(𝑁 ′(𝑖))
holds, we are done, as in this case we can find a feasible solution with at most 𝐵 suppliers.

So let 𝑖 ∈ 𝐼 ′ be given. We begin with the case that 𝑖 ∈ 𝐼𝑋 , say 𝑖 = 𝐿𝑘 for some 𝑘 ∈ {1, . . . , 𝑛}. As
𝑖 ∈ 𝐼 ′ the literal 𝐿𝑘 is set to true and thereby (𝑁 (𝐿𝑘 ) ∩ 𝐽𝐿) ⊆ 𝑁 ′(𝑖). In each clause𝐶𝑘 in which 𝐿𝑘

appears, all other literals are set to false. Thus, (𝑁 (𝐿𝑘 ) ∩ 𝐽𝐶 ) ⊆ 𝑁 ′(𝑖). Finally we have 𝐿𝑘 = false

and therefore also (𝑁 (𝐿𝑘 ) ∩ 𝐽𝑋 ) ⊆ 𝑁 ′(𝑖). We can now easily calculate b1(𝑁 ′(𝑖)) = b2(𝑁 ′(𝑖)). If
on the other hand 𝑖 ∈ 𝐼𝐶 , the desired equation follows directly from the fact that exactly one literal

in each clause is satisfied and therefore |𝑁 ′(𝑖) ∩ 𝐽𝐿 | = 2

Now assume on the other hand, that we are given a solution 𝑥 to Robust 1-oC fulfilling 𝑥 (𝐼 ) ≤ 𝐵.

We define a subset 𝐼 ′ of the regions by setting 𝐼 ′ = {𝑖 ∈ 𝐼 : 𝑥𝑖 ≥ 1}. Suppose there is a location 𝑖 ∈ 𝐼
with b1(𝑁 ′(𝑖)) ≠ b2(𝑁 ′(𝑖)), where again 𝑁 ′(𝑖) denotes the active neighborhood of 𝑖 with respect

to 𝐼 ′. Then 𝑥 (𝐼 ) > 𝐵, which is a contradiction. Thus, we may assume that in both scenarios, the

same amount of clients are served by any fixed location 𝑖 ∈ 𝐼 ′. As b1(𝑁 ′(𝐶𝑘 ) ∩ 𝐽𝐷 ) = 2 for all

𝑘 ∈ {1, . . . ,𝑚}, we must also have b2(𝑁 ′(𝐶𝑘 ) ∩ 𝐽𝐿) = 2. Thus, for each clause, exactly one of its

literals is contained in 𝐼 ′.

Let 𝑘 ∈ {1 . . . , 𝑛}. By the previous arguments it is b1(𝑁 ′(𝑋𝑘 ) \ 𝐽𝑋 ) = b2(𝑁 ′(𝑋𝑘 ) \ 𝐽𝑋 ). Thus,
to get equality for the complete active neighborhoods, it must hold true that b1(𝑁 ′(𝑋𝑘 ) ∩ 𝐽𝑋 ) =

b2(𝑁 ′(𝑋𝑘 ) ∩ 𝐽𝑋 ). If 𝑥𝑖 ≥ 1 for both 𝑖 = 𝑋𝑘 and 𝑖 = 𝑋𝑘 , this is not the case. This means setting

𝐿𝑘 = true if and only if 𝐿𝑘 ∈ 𝐼 ′ is a valid truth assignment to the variables. Further, as pointed

out above, in each clause there is exactly one literal contained in 𝐼 ′ and therefore set to true,

completing the proof.

8.3.2. Interval Uncertainty

Recall that in interval uncertainty all components of the scenarios have lower and upper bounds.

For Robust 𝑞-fC and Robust 𝑞-oC this means that the uncertainty sets are of the form U ={
b ∈ N | 𝐽 |

: 𝑎 𝑗 ≤ b 𝑗 ≤ 𝑏 𝑗 , ∀𝑗 ∈ 𝐽
}
for vectors 𝑎, 𝑏 ∈ N | 𝐽 |

.

Loosely speaking, we give upper and lower bounds on the possible number of clients in each

region. Intuitively, the unique worst case scenario is the one where in each region 𝑗 ∈ 𝐽 there are
𝑏 𝑗 clients. We see in the following that the intuition is correct in this case and the problems reveal

to be the same as their non-robust version with demand vector 𝑏.
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For Robust 𝑞-fC we observe that for each 𝑖 ∈ 𝐼 it is

max

b ∈U


∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗

 =
∑︁

𝑗 ∈𝑁 (𝑖)
𝑏 𝑗 .

Thus, by Theorem 8.10, we get the following result.

Theorem 8.21. Let an instance of Robust Min-𝑞-freeClient with interval uncertainty be given.

Then 𝑥 ∈ N |𝐼 |
, defined by setting

𝑥𝑖 =

⌈∑
𝑗 ∈𝑁 (𝑖) 𝑏 𝑗

𝑞

⌉
for all 𝑖 ∈ 𝐼 , is an optimal solution to the given instance. In particular, Robust 𝑞-freeClient with

interval uncertainty is in P.

For Robust 𝑞-oC we observe that for any 𝑧 ∈ {0, 1} |𝐼 |× | 𝐽 | we have

max

b ∈U


∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗 · 𝑧𝑖 𝑗

 =
∑︁

𝑗 ∈𝑁 (𝑖)
𝑏 𝑗 · 𝑧𝑖 𝑗 .

Thus, (IP 8.3)(𝑏) is a valid formulation for Robust Min-𝑞-oC, cf. Equation 8.7 and Robust 𝑞-oC

with interval uncertainty is essentially the same problem as 𝑞-oC.

8.3.3. Budgeted Uncertainty

Recall that in addition to the bounds given in interval uncertainty, here we are given a bound on the

sum of demands in all regions. Thus, the regarded uncertainty sets for Robust 𝑞-fC and Robust

𝑞-oC are of the form U =
{
b ∈ N | 𝐽 |

: 𝑎 𝑗 ≤ b 𝑗 ≤ 𝑏 𝑗 , b (𝐽 ) ≤ Γ
}
for vectors 𝑎, 𝑏 ∈ N | 𝐽 |

and Γ ∈ N.
Again, we begin by analyzing Robust 𝑞-fC. By Theorem 8.10 we need to compute the value

maxb ∈U {b (𝑁 ( 𝑗)} for each 𝑖 ∈ 𝐼 . By Lemma 7.33, this can be computed by

max

b ∈U


∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗

 = min


∑︁

𝑗 ∈𝑁 (𝑖)
𝑏 𝑗 , Γ −

∑︁
𝑗 ∈𝐽 \𝑁 (𝑖)

𝑎 𝑗

 .
We get the following result immediately.

Theorem 8.22. Let an instance of Robust Min-𝑞-freeClient with budgeted uncertainty be given.

Then 𝑥 ∈ N |𝐼 |
, defined by setting

𝑥𝑖 =

⌈
min {𝑏 (𝑁 (𝑖)) , Γ − 𝑎 (𝐽 \ 𝑁 (𝑖))}

𝑞

⌉
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for all 𝑖 ∈ 𝐼 , is an optimal solution to the given instance. In particular, Robust 𝑞-freeClient with

budgeted uncertainty is in P.

Let us turn to Robust 𝑞-oC with budgeted uncertainty. The problem turns out to be NP-hard,
which perhaps is not surprising, as the reduction from Theorem 8.14 also works for budgeted

uncertainty.

Theorem 8.23. Robust 𝑞-orderedClient with budgeted uncertainty is NP-complete in the strong

sense for any 𝑞 ∈ N>0.

Proof. As uncertainty sets from budgeted uncertainty are polyhedral and their underlying polyhe-

dra are integral, we get that Robust 𝑞-oC is contained in NP by Corollary 8.17.

Regarding the proof of Theorem 8.14, we observe that the constructed uncertainty set U ={
b ∈ N | 𝐽 |

: b (𝐽 ) = 1

}
can be modeled as a budgeted uncertainty set by setting Γ = 1 and 𝑎 𝑗 = 0 and

𝑏 𝑗 = 1 for all 𝑗 ∈ 𝐽 . Thus, the reduction used in Theorem 8.14 also works for budgeted uncertainty

and we get the desired result.

In the proof of Theorem 8.23 we already observed that the regarded uncertainty sets are poly-

hedral and their underlying polyhedra are integral. Thus, by Theorem 8.16, we conclude that the

following is a valid mixed integer programming formulation for Robust Min-𝑞-oC with budgeted

uncertainty.

(MIP 8.10) min

𝑥, a, 𝑧, [, 𝜋

∑︁
𝑖∈𝐼

𝑥𝑖

s.t. 𝜋𝑖Γ +
∑︁
𝑗 ∈𝐽

[1

𝑖 𝑗𝑏 𝑗 −
∑︁
𝑗 ∈𝐽

[2

𝑖 𝑗𝑎 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼

𝜋𝑖 + [1

𝑖 𝑗 − [2

𝑖 𝑗 ≥ 𝑧𝑖 𝑗 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽∑︁
𝑖∈𝑁 ( 𝑗)

𝑣𝑖 ≥ 1 ∀𝑗 ∈ 𝐽

𝑣𝑖 −
𝜎−1

𝑗
(𝑖)−1∑︁

𝑘=1

𝑣𝜎 𝑗 (𝑘) ≤ 𝑧𝑖 𝑗
∀𝑗 ∈ 𝐽 ,
𝑖 ∈ 𝑁 ( 𝑗)

𝑣𝑖 , 𝑧𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽
𝑥𝑖 ∈ Z≥0 ∀𝑖 ∈ 𝐼
𝜋𝑖 ∈ R≥0 ∀𝑖 ∈ 𝐼

[1

𝑖 𝑗 , [
2

𝑖 𝑗 ∈ R≥0 ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 .

Theorem 8.24. Let an instance of Robust Min-𝑞-orderedClient with budgeted uncertainty be

given. Then 𝑥★ ∈ N |𝐼 |
is an optimal solution to the instance if and only if it can be extended to an

optimal solution of (MIP 8.10).
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8.3.4. Subset Budgeted Uncertainty

We now turn to subset budgeted uncertainty. In the previous section we bounded the total number

of clients in all regions. As described in the last chapter, for some applications this approach might

still be too conservative. To tackle this problem, in subset budgeted uncertainty, we give additional

bounds on a collection of subsets of the regions. This means that the uncertainty sets in this section

are of the form

U =

{
b ∈ N | 𝐽 |

: 𝛼𝑆′ ≤
∑︁
𝑗 ∈𝑆′

b 𝑗 ≤ 𝛽𝑆′, ∀𝑆 ′ ∈ S
}

for a collection of subsets of the regions S ⊆ 2
𝐽
and integers 𝛼𝑆′, 𝛽𝑆′ ∈ N for each 𝑆 ′ ∈ S.

Theorem 7.39 states that MaxSum is NP-complete in the strong sense for subset budgeted un-

certainty. As explained in the previous chapter, subset budgeted uncertainty generalizes budgeted

uncertainty. Thus, we get the following complexity results.

Theorem 8.25. Robust 𝑞-freeClient with subset budgeted uncertainty is NP-hard in the strong

sense for any fixed 𝑞 ∈ N>0.

For the solution process of Robust Min-𝑞-fC with subset budgeted uncertainty we may still

use Theorem 8.10. We note that

max

b ∈U


∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗


is a valid integer programming formulation, which we may use in the solution process.

Theorem 8.26. Robust 𝑞-orderedClient with subset budgeted uncertainty is NP-hard in the

strong sense for any fixed 𝑞 ∈ N>0.

Further, as U is polyhedral, but its underlying polyhedron is not integral we may not use the

reformulation (MIP 8.9) for Robust Min-𝑞-oC and separation for (IP 8.6) is hard, as MaxSum is

NP-hard. Nevertheless, for fixed 𝑧 ∈ {0, 1} |𝐼 |× | 𝐽 | and 𝑥 ∈ Z |𝐼 |≥0
the maximum

max

b ∈U


∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗𝑧𝑖 𝑗


is an integer programming formulation, which we can use to find violating constraints of the form∑︁

𝑗 ∈𝑁 (𝑖)
b 𝑗𝑧𝑖 𝑗 > 𝑞 · 𝑥𝑖

for (IP 8.6).
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U Robust 𝑞-orderedClient Robust 𝑞-freeClient

General NP-hard NP-hard
Discrete 𝑞 = |U| = 1 P P

max {𝑞, |U|} ≥ 2 NP-complete P
Interval 𝑞 ≤ 1 P P

𝑞 ≥ 2 NP-complete P
Budgeted NP-complete P

Subset budgeted NP-hard NP-hard

Table 8.1.: Summarized complexity results for Robust 𝑞-fC and Robust 𝑞-oC.

Conclusion We conclude this chapter by giving a summary of the proved complexity results on

𝑞-freeClient and 𝑞-orderedClient. For an overview of all complexity results see Table 8.1. Note

that the results for the non-robust versions are also included in the table, as these problems corre-

spond to discrete uncertainty with only one scenario. The most surprising result from the table is

that 2-oC and Robust 1-oC restricted to discrete uncertainty sets containing only 2 elements are

NP-complete. Regarding complexity, this is the only difference between 𝑞-orderedClient and

𝑞-Multiset Multicover. This observation confirms the intuition that 𝑞-orderedClient is the

harder problem to solve. Regarding 𝑞-freeClient, we get polynomial time solvability in almost

all cases. The solutions to Min-𝑞-freeClient may be too conservative for practical applications.

For further research, it might be interesting to consider a variant of 𝑞-freeClient in which the

clients are allowed to choose freely, but may only choose locations which are actually opened. This

intuitively decreases conservatism of the problem and increases the complexity.

Another research direction could be to regard approximation procedures for the regarded prob-

lems. As we only proved Robust 𝑞-oC to be NP-hard but not to be contained in NP, it could be

interesting to verify that the problem is contained in NP or even ΣP
2
-complete.
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Conclusion

The most significant contribution of this thesis is the proof of the Beineke Harary Conjecture for

𝑙 = 2. The techniques used for the proof are novel and focus on moving along a single one of the

searched paths. The statement has previously not been proved for 𝑙 = 2 and any 𝑘 ≥ 2. Thus, with

our results we provided a further step towards proving the conjecture in general. Another key

finding of this thesis is the classification of Eulerian graphs that decompose into a unique number

of cycles. It is exactly the class of Eulerian graphs in which no two edge-disjoint cycles share more

than three vertices. The result is a stand-alone result and illustrates very nicely the practicability of

2.5-connected components regarding cycle decomposition problems. Regarding further research it

is an interesting task to classify graphs whose maximum and minimum cycle decomposition only

vary by a constant.

The canonical decomposition into 2.5-connected components is a powerful tool as we illustrated

in Chapter 5. A direction for further research could be to extend the definition of a supporting split

to a split whose corresponding virtual edge is contained in a 3-edge separator and see if results

transfer. This, however, is far from immediate which underlines the fact that the results on the

uniqueness of the 2.5-connected components are interesting and surprising.

In Chapter 6 we saw an example for a well known optimization problem, Dominating Set,

extended by structural uncertainty. We proved that on 2-connected graphs, a set is dominating in

each spanning tree of a graph if and only if it is a vertex cover in the same graph. Nevertheless we

proved that Simultaneous Domination of Spanning Trees remains NP-hard on perfect graphs,

whereas Vertex Cover is polynomial time solvable on the same class. This illustrates that the

problems are not computationally equivalent. Simultaneous domination is a very broad topic and

has not been considered for many interesting classes of graphs.

We also examined the computational complexity of robust approaches to three covering prob-

lems with uncertainty in the demand. In all cases the problems areNP-hard in the strong sense for

arbitrary uncertainty sets. In particular this is true for 𝑞-freeClient, which is almost trivial in a

non-robust setting. We classified the complexity of the problems restricted to various uncertainty

sets and discussed solution approaches based on constraint generation and integer programming.

All considered problems were motivated by applications in the health sector. As this thesis’ fo-

cus is on the theoretical aspects of the problems we did not describe the practical applications. A

first step in this direction has been taken in [KSS19] and [Büs+20]. More research connecting the

three regarded covering problems to practical applications is currently underway in the research
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projects ONE PLAN and HealthFaCT.
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1. Decision Problems

1-in-3-SAT.

Instance: A boolean formula in conjunctive normalform containing three literals in each

clause.

Question: Is there a truth assignment to the variables, such that exactly one literal in each

clause is assigned the value true.

Complexity: NP-complete [GJ79]. RemainsNP-complete, when restricted to instances where

each variable and each negation of each variable appears an even amount of times in each

clause.

co-q-Multiset Multicover-Sep (co-q-MsMc-Sep).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , a finite set U ⊆ N | 𝐽 |
, a bipartite graph 𝐺 = (𝐼 ·∪ 𝐽 , 𝐸), and

integers 𝑥𝑖 ∈ N for 𝑖 ∈ 𝐼 .
Question: Are there 𝑦 (b) ∈ N |𝐼 |× | 𝐽 |

for every b ∈ U satisfying∑︁
𝑖∈𝑁 ( 𝑗)

𝑦 (b)𝑖 𝑗 ≥ b 𝑗 ∀𝑗 ∈ 𝐽 , b ∈ U and∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b)𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U?

Complexity: coNP-complete in the strong sense for any fixed 𝑞 ∈ N>0 (Corollary 7.16). Con-

tained in P if cardinality of U is polynomial in the encoding size of the instance (Theo-

rem 7.13).

Connectivity Pair (CP).

Instance: An undirected graph 𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), and 𝑘, 𝐵 ∈ N.
Question: Does 𝑙 ∈ N with 𝑙 ≤ 𝐵 exist such that (𝑘, 𝑙) is a connectivity pair for 𝑠 and 𝑡 in 𝐺?

Complexity: NP-complete (Theorem 3.18).
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Dominating Set.

Instance: An undirected simple graph 𝐺 and an integer 𝐵 ∈ N.
Question: Is there a subset 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝐵 such that for all 𝑣 ∈ 𝑉 (𝐺) it is 𝑣 ∈ 𝑆 or

𝑢 ∈ 𝑆 for some 𝑢 ∈ 𝑁 (𝑣)?
Complexity: NP-complete [GJ79].

Edge Cover.

Instance: An undirected graph 𝐺 and an integer 𝐵 ∈ N.
Question: Is there a subset of the edges 𝐸 ′ ⊆ 𝐸 (𝐺), such that each vertex in 𝑉 (𝐺) is incident
to an edge in 𝐸 ′ and |𝐸 ′ | ≤ 𝐵?

Complexity: Contained in P [Sch03].

Exact 3-Dimensional Matching.

Instance: Finite, disjoint sets 𝐴, 𝐵,𝐶 with |𝐴| = |𝐵 | = |𝐶 | = 𝑘 for some 𝑘 ∈ N and a subset

𝑀 ⊆ 𝐴 × 𝐵 ×𝐶 .
Question: Does there exist a subset 𝑀 ′ ⊆ 𝑀 with |𝑀 ′ | = 𝑘 , such that for each two different

elements (𝑎, 𝑏, 𝑐), (𝑎′, 𝑏 ′, 𝑐 ′) ∈ 𝑀 ′
, we have 𝑎 ≠ 𝑎′, 𝑏 ≠ 𝑏 ′ and 𝑐 ≠ 𝑐 ′?

Complexity: NP-complete [GJ79].

Exact Cover by 3-sets.

Instance: An integer 𝑛 ∈ N, a finite set 𝑈 with |𝑈 | = 3𝑛, and a collection of subsets S ⊆ 2
𝑈
,

such that |𝑆 | = 3 for all 𝑆 ∈ S.
Question: Is there a subset S′ ⊆ S, such that |S′ | = 𝑛 and

⋃
𝑆 ∈S′ 𝑆 = 𝑈 ?

Complexity: NP-complete [GJ79].

Independent Set.

Instance: An undirected simple graph 𝐺 and an integer 𝐵 ∈ N.
Question: Is there a subset 𝑆 ⊆ 𝑉 (𝐺) of the vertices of 𝐺 , with |𝑆 | ≥ 𝐵, such that there is no

edge in 𝐺 with both endvertices in 𝑆?

Complexity: NP-complete [GJ79].
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Knapsack.

Instance: A finite set 𝑈 , for each 𝑢 ∈ 𝑈 integer values 𝑠𝑢, 𝑝𝑢 ∈ N, and two more integers

𝐵, 𝐾 ∈ N.
Question: Does there exist a subset𝑈 ′ ⊆ 𝑈 such that∑︁

𝑢∈𝑈 ′
𝑠𝑢 ≤ 𝐵 and

∑︁
𝑢∈𝑈 ′

𝑝𝑢 ≥ 𝐾?

Complexity: NP-complete [GJ79].

Large Cycle Decomposition (LCD).

Instance: An even graph 𝐺 and an integer 𝐵 ∈ N.
Question: In 𝐺 , does there exist a cycle decomposition with at least 𝐵 cycles?

Complexity: NP-complete [Hei20].

MaxSum.

Instance: A set U ⊆ N𝑛 for some positive integer 𝑛 and an integer 𝐵 ∈ N.
Question: Does there exist a b ∈ U such that

𝑛∑︁
𝑗=1

b 𝑗 ≥ 𝐵?

Complexity: NP-complete in the strong sense (Theorem 7.18).

Multiset Multicover.

Instance: A finite set𝑈 , integers 𝑑𝑢 ∈ N for all 𝑢 ∈ 𝑈 , a collection of multisets S over𝑈 , and

an integer 𝐵 ∈ N.
Question: Does there exist a subcollection S′ ⊆ S with |𝑆 |′ ≤ 𝐵 such that for each 𝑢 ∈ 𝑈 we

have

∑
𝑆 ∈S′𝑚𝑆 (𝑢) ≥ 𝑑𝑢 , where𝑚𝑆 (𝑢) denotes the multiplicity of 𝑢 in 𝑆?

Complexity: NP-complete in the strong sense as a generalization of Set Cover.

Partial Vertex Cover.

Instance: An undirected graph 𝐺 and integers 𝑞, 𝐵 ∈ N
Question: Does there exist a partial vertex cover 𝐶 in 𝐺 with respect to 𝑞 such that |𝑆 | ≤ 𝐵?

Complexity: NP-complete, even when restricted to instances with bipartite graphs [CS13].
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q-freeClient (q-fC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),
and an integer 𝐵 ∈ N.

Question: Does there exist 𝑥 ∈ N |𝐼 |
with 𝑥 (𝐼 ) ≤ 𝐵 such that for all 𝑦 ∈ N |𝐼 |× | 𝐽 |

with∑
𝑖∈𝑁 ( 𝑗) 𝑦𝑖 𝑗 = 𝑑 𝑗 for all 𝑗 ∈ 𝐽 , it is ∑︁

𝑗 ∈𝑁 (𝑖)
𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼?

Complexity: Can be decided in time O(|𝐼 | + |𝐽 | + |𝐸 (𝐺) |) (Theorem 8.1).

q-Multiset Multicover (q-MsMc).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),
and an integer 𝐵 ∈ N.

Question: Does there exist 𝑥 ∈ N |𝐼 |
with 𝑥 (𝐼 ) ≤ 𝐵 such that there exists𝑦 ∈ N |𝐼 |× | 𝐽 |

satisfying∑︁
𝑖∈𝑁 ( 𝑗)

𝑦𝑖 𝑗 ≥ 𝑑 𝑗 ∀𝑗 ∈ 𝐽 and

∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼?

Complexity: NP-complete in the strong sense for any fixed 𝑞 ∈ N≥3 (Theorem 7.8). Can be

decided in O(|𝐼 | + |𝐽 |) for 𝑞 = 1 (Proposition 7.6). Contained in P for 𝑞 = 2 (Theorem 7.7).

q-Multiset Multicover-Sep (q-MsMc-Sep).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , a finite set U ⊆ N | 𝐽 |
, a bipartite graph 𝐺 = (𝐼 ·∪ 𝐽 , 𝐸), and

integers 𝑥𝑖 ∈ N for 𝑖 ∈ 𝐼 .
Question: Does there exist a b ∈ U, such that for all 𝑦 (b) ∈ N |𝐼 |× | 𝐽 |

with∑︁
𝑖∈𝑁 ( 𝑗)

𝑦 (b)𝑖 𝑗 ≥ b 𝑗 ∀𝑗 ∈ 𝐽 ,

there exists an 𝑖 ∈ 𝐼 with ∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b)𝑖 𝑗 > 𝑞 · 𝑥𝑖?

Complexity: NP-complete in the strong sense for any fixed 𝑞 ∈ N>0 (Theorem 7.15). Con-

tained in P if cardinality of U is polynomial in the encoding size of the instance (Theo-

rem 7.13).

138



Decision Problem Index

q-orderedClient (q-oC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , weights 𝑑 𝑗 ∈ N for all 𝑗 ∈ 𝐽 , a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),
for each 𝑗 ∈ 𝐽 an ordering 𝜎 𝑗 : {1, . . . , |𝑁 ( 𝑗) |} → 𝑁 ( 𝑗), and an integer 𝐵 ∈ N.

Question: Does there exist 𝑥 ∈ N |𝐼 |
for 𝑖 ∈ 𝐼 with 𝑥 (𝐼 ) ≤ 𝐵 such that for each 𝑗 ∈ 𝐽 there

exists an 𝑖 ∈ 𝑁 ( 𝑗) with 𝑥𝑖 ≥ 1 and∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 ,

where 𝑦 ∈ N |𝐼 |× | 𝐽 |
is defined by setting

𝑦𝑖 𝑗 =


𝑑 𝑗 , if 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
,

0, else,

for 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽?
Complexity: Can be decided in time O(|𝐼 | + |𝐽 |) for 𝑞 = 1, Theorem 8.2. NP-complete in the

strong sense for any fixed 𝑞 ∈ N with 𝑞 ≥ 2. (Theorems 8.7, 8.8).

Set Cover.

Instance: A finite set𝑈 , a collection of subsets S ⊆ 2
𝑈
, and an integer 𝐵 ∈ N.

Question: Does there exist a subset S′ ⊂ S such that |S′ | ≤ 𝐵 and

⋃
𝑆 ∈S′ 𝑆 = 𝑈 ?

Complexity: NP-complete [GJ79].

Simultaneous Domination of Spanning Trees (SDST).

Instance: A graph 𝐺 and an integer 𝐵 ∈ N.
Question: Does there exist a subset 𝑆 ⊆ 𝑉 (𝐺) of the vertices of 𝐺 with |𝑆 | ≤ 𝐵 such that 𝑆 is

a dominating set in each spanning tree of 𝐺?

Complexity: NP-complete (Theorem 6.4). Remains NP-complete when restricted to perfect

graphs (Theorem 6.19). On 2-connected graphs equivalent to Vertex Cover (Corollary 6.3).

Polynomial time solvable when restricted to bipartite graphs, graphs of bounded treewidth

and chordal graphs (Corollary 6.12). Polynomial time solvable when restricted to claw free

graphs (Theorem 6.18).

Small Cycle Decomposition (SCD).

Instance: An even graph 𝐺 and an integer 𝐵 ∈ N.
Question: In 𝐺 , does there exist a cycle decomposition with at most 𝐵 cycles?

Complexity: NP-complete [Hei20].
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Vertex Cover.

Instance: A graph 𝐺 and an integer 𝐵 ∈ N.
Question: Does there exist a subset 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝐵, such that each edge is incident to

at least one vertex in 𝑆?

Complexity: NP-complete [GJ79]. RemainsNP-complete on 2-connected graphs. Polynomial

time solvable when restricted to bipartite graphs, graphs of bounded treewidth, claw free

graphs and perfect graphs [Sch03].

2. Robust Decision Problems

Robust q-freeClient (Robust q-fC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , an uncertainty setU ⊆ N | 𝐽 |
, a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),

and an integer 𝐵 ∈ N.
Question: Does there exist 𝑥 ∈ N |𝐼 |

with 𝑥 (𝐼 ) ≤ 𝐵 such that for all 𝑦 ∈ N |𝐼 |× | 𝐽 |
with∑

𝑖∈𝑁 ( 𝑗) 𝑦𝑖 𝑗 = b 𝑗 for some b ∈ U and all 𝑗 ∈ 𝐽 , it is∑︁
𝑗 ∈𝑁 (𝑖)

𝑦𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼?

Complexity: NP-hard in the strong sense for any fixed 𝑞 ∈ N>0 (Theorem 8.11). Contained

in P if cardinality of U is polynomial in the encoding size of the instance (Theorem 8.10).

Robust q-Multiset Multicover (Robust q-MsMc).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , an uncertainty setU ⊆ N | 𝐽 |
, a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),

and a positive integer 𝐵 ∈ N>0.

Question: Does there exist 𝑥 ∈ N |𝐼 |
with 𝑥 (𝐼 ) ≤ 𝐵 such that for each b ∈ U there exists

𝑦 (b) ∈ N |𝐼 |× | 𝐽 |
satisfying∑︁

𝑖∈𝑁 ( 𝑗)
𝑦 (b)𝑖 𝑗 ≥ b 𝑗 ∀𝑗 ∈ 𝐽 , b ∈ U and∑︁

𝑗 ∈𝑁 (𝑖)
𝑦 (b)𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U?

Complexity: NP-hard in the strong sense for any fixed 𝑞 ∈ N>0 (Theorem 7.12).
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Robust q-orderedClient (Robust q-oC).

Instance: Finite, disjoint sets 𝐼 , 𝐽 , an uncertainty setU ⊆ N | 𝐽 |
, a bipartite graph𝐺 = (𝐼 ·∪ 𝐽 , 𝐸),

for each 𝑗 ∈ 𝐽 an ordering 𝜎 𝑗 : {1, . . . , |𝑁 ( 𝑗) |} → 𝑁 ( 𝑗), and an integer 𝐵 ∈ N.
Question: Does there exist 𝑥 ∈ N |𝐼 |

with 𝑥 (𝐼 ) ≤ 𝐵 such that for each 𝑗 ∈ 𝐽 there exists an

𝑖 ∈ 𝑁 ( 𝑗) with 𝑥𝑖 ≥ 1 and ∑︁
𝑗 ∈𝑁 (𝑖)

𝑦 (b)𝑖 𝑗 ≤ 𝑞 · 𝑥𝑖 ∀𝑖 ∈ 𝐼 , b ∈ U,

where 𝑦 (b) ∈ N |𝐼 |× | 𝐽 |
is defined by setting

𝑦 (b)𝑖 𝑗 =

b 𝑗 , if 𝑖 = argmin𝑖′∈𝑁 ( 𝑗)

{
𝜎−1

𝑗 (𝑖 ′) : 𝑥𝑖′ ≥ 1

}
,

0, else,

for 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽?
Complexity: NP-hard in the strong sense for any fixed 𝑞 ∈ N>0 (Theorem 8.14). Contained in

NP when restricted to polyhedral uncertainty sets whose underlying polyhedra are integral

(Corollary 8.17).
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