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ABSTRACT 
 

Amino acids, apart from being building blocks of proteins, serve various cellular and 

metabolic functions1,2. Changes in amino acid handling have been observed in a wide 

range of human pathologies, including diabetes and various metabolic disorders 

(aminoacidopathies)3–5. Saccharomyces cerevisiae is used as a model to investigate 

how increase in amino acid content (in the form of amino acid dropout mix: AAM) in 

growth medium influences cell growth. Intriguingly, it was observed that increasing the 

concentration of AAM in the media (double or triple times; 2 X AAM and 3 X AAM 

respectively), severely affects the growth of auxotrophic but not of prototrophic yeast 

strains in presence of glucose as carbon substrate. Increased concentration of Ehrlich 

amino acids, which are degraded to fusel acidic/alcoholic compounds, induced the 

observed slow growth phenotype of BY4742. These phenotypes can be rescued by 

either re-establishing the functional leucine biosynthetic pathway in BY4742 (leucine 

auxotroph) or increasing leucine in proportion to the increased AAM. Interestingly, the 

amino acid dependent growth phenotypes are absent when cells grow in media 

containing non-fermentable carbon sources. Furthermore, the deletion of ILV2 or ILV3 

(genes encoding enzymes involved in the leucine biosynthetic pathway) also rescues 

the growth phenotype of BY4742 on 2 X AAM and 3 X AAM growth media. It was found 

that Ilv3 is the potential switching point and links cellular growth to redox homeostasis. 

The possibility of leucine limitation per se or transport competition between different 

Ehrlich amino acids and leucine, as a cause for the observed phenotypes, is ruled out. 

Upregulation of the branched-chain amino acid pathway inhibits cell growth of BY4742 

on 2 X AAM. Although we could not detect KIV, the α-keto acid intermediate formed 

by the Ilv3. It is proposed that KIV itself (or its unknown downstream product) leads to 

the onset of the observed phenotypes. Different studies suggest that oxidative stress 

(due to accumulation of branched-chain amino acids (BCaa) and their α-keto acids) 

contributes to the neurological damage of MSUD patients6–9. It was also observed that 

the trigger of the BCaa bio-synthesis pathway on 2 X AAM growth conditions also 

contributes to the significant oxidative stress in the cell. In conclusion, we propose that 

yeast can be used as a suitable model system to study how accumulation of BCaa and 

their α-keto acids are lead to oxidative stress that is potentially toxic to cells. Further, 

this knowledge and the underlying molecular mechanisms will enhance our 

understanding of MSUD in humans. 
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ZUSAMMENFASSUNG 
 

Aminosäuren sind nicht nur Bausteine von Proteinen, sondern dienen auch 

verschiedenen zellulären und metabolischen Funktionen1,2. Veränderungen im 

Umgang mit Aminosäuren wurden bei einer Vielzahl von menschlichen Pathologien 

beobachtet, darunter Diabetes und verschiedene Stoffwechselstörungen 

(Aminosäureopathien)3–5. Saccharomyces cerevisiae wird als Modell verwendet, um 

zu untersuchen, wie eine Erhöhung des Aminosäuregehalts (in Form von Aminosäure-

Dropout-Mix: AAM) im Wachstumsmedium das Zellwachstum beeinflusst. 

Interessanterweise wurde beobachtet, dass eine Erhöhung der Konzentration von 

AAM im Medium (das Doppelte oder Dreifache; 2 X AAM bzw. 3 X AAM) das 

Wachstum von auxotrophen, aber nicht von prototrophen Hefestämmen in Gegenwart 

von Glukose als Kohlenstoffsubstrat stark beeinflusst. Erhöhte Konzentration von 

Ehrlich-Aminosäuren, die zu fuselsauren/alkoholischen Verbindungen abgebaut 

werden, induzierten den beobachteten langsamen Wachstumsphänotyp von BY4742. 

Dieser Phänotyp kann entweder durch die Wiederherstellung des funktionalen Leucin-

Biosynthesewegs in BY4742 (Leucin-Auxotrophie) oder durch die Erhöhung von 

Leucin im Verhältnis zur erhöhten AAM gerettet werden. Interessanterweise sind die 

aminosäureabhängigen Wachstumsphänotypen nicht vorhanden, wenn die Zellen in 

Medien wachsen, die nicht fermentierbare Kohlenstoffquellen enthalten. Darüber 

hinaus rettet die Deletion von ILV2 oder ILV3 (Gene, die für Enzyme kodieren, die am 

Leucin-Biosyntheseweg beteiligt sind) auch den Wachstumsphänotyp von BY4742 auf 

2 X AAM und 3 X AAM Wachstumsmedien. Es wurde festgestellt, dass Ilv3 der 

potentielle Schaltpunkt ist und das zelluläre Wachstum mit der Redox-Homöostase 

verbindet. Die Möglichkeit einer Leucin-Limitierung per se oder einer 

Transportkonkurrenz zwischen verschiedenen Ehrlich-Aminosäuren und Leucin, als 

Ursache für die beobachteten Phänotypen, wird ausgeschlossen. Die Hochregulierung 

des verzweigtkettigen Aminosäurewegs hemmt das Zellwachstum von BY4742 auf 2 

X AAM. Obwohl wir KIV, das α-Ketosäure-Zwischenprodukt, das von der Ilv3 gebildet 

wird, nicht nachweisen konnten. Es wird vorgeschlagen, dass KIV selbst (oder sein 

unbekanntes Downstream-Produkt) zum Auftreten der beobachteten Phänotypen 

führt. Verschiedene Studien legen nahe, dass oxidativer Stress (aufgrund der 

Akkumulation von verzweigtkettigen Aminosäuren (BCaa) und deren α-Ketosäuren) zu 

den neurologischen Schäden von MSUD-Patienten beiträgt6–9. Es wurde auch 

beobachtet, dass die Auslösung des BCaa-Biosyntheseweges unter 2 X AAM-

Wachstumsbedingungen ebenfalls zu dem signifikanten oxidativen Stress in der Zelle 

beiträgt. Zusammenfassend schlagen wir vor, dass Hefe als geeignetes Modellsystem 

verwendet werden kann, um zu untersuchen, wie die Akkumulation von BCaa und 

deren α-Ketosäuren zu oxidativem Stress führt, der potenziell toxisch für Zellen ist. 

Außerdem werden dieses Wissen und die zugrunde liegenden molekularen 

Mechanismen unser Verständnis von MSUD beim Menschen verbessern. 
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1 INTRODUCTION 

1.1 Yeast: an eukaryotic model organism  

Yeast is a unicellular eukaryotic organism classified as a member of the Kingdom 

Fungi10. They are known for use in bread making, wine production and as a core aspect 

in breweries since ancient times11. The earliest anecdotes of yeast being used for beer 

making by human civilization dates to 6000 BCE in Sumaria, present-day Iran12. The 

term yeast is often mistaken for Saccharomyces cerevisiae. Instead, based on their 

cell physiology, colony, and ascospore features, yeasts are classified into two separate 

phyla: Ascomycota and Basidiomycota. Saccharomyces cerevisiae, which is also 

known as budding yeast, belongs to the phylum Ascomycota under the order 

Saccharomycetales13. It is found diversely in nature, for example, on plant leaves or 

fruits or in the soil. Yeasts usually divide by asexual (S. cerevisiae: budding-

asymmetric division; S. pombe: fission-direct division) or sexual reproduction. 

However, under nutrient depletion conditions, diploid yeasts can also undergo 

sporulation, forming haploid spores, which mate and form the diploid cell once normal 

growth conditions are restored14. They are also known to be found in the intestines of 

warm-blooded animals and also on their skin surfaces. Candida albicans, present in 

human gut flora, can become an opportunistic pathogen and pose a serious threat to 

immunocompromised patients in some circumstances15.  

In 1857, Louis Pasteur discovered that yeast can convert glucose into ethanol during 

the fermentation process, and later, this phenomenon was famously called as 

respiration without air16. In the late 19 century, Eduard Buchner isolated a collection of 

enzymes "Zymases", catalyzing the entire fermentation process as cell-free extracts 

from grounded yeast cells. He was awarded the Nobel prize in 1907 for his discovery17. 

Earlier experiments performed by Øjvind Winge at the Carlsberg Laboratory in 

Denmark established that budding yeasts are heterothallic organisms. They require 

two haploid yeast cells to form one diploid yeast cell. 

Moreover, it is also common for budding yeasts to alternate between the two forms. 

Winge et al. also established that the different yeast strains could be effectively crossed 

over for having desirable brewing traits in the end. For all his pioneering work and 

contribution in yeast research, Winge is popularly known as the Father of Yeast 

Genetics18. Since it is easy to grow yeast in liquid cultures overnight (doubling time of 

90 min) with easy accessibility to select for desirable traits, it made yeasts a very 

popular and cost-effective entity for use in the biology research field from the mid to 

late 20 century till now. Many outstanding research works were carried out using yeast 

as the model organism which includes the discovery of cell cycle-related genes by 

Leland Hatwell19 and Paul Nurse20. The protein vesicular trafficking studies and 

discovery of related SEC genes made by Randy Schekman21 were also done using S. 

cerevisiae. Further, the discovery of autophagy, and the associated genes involved in 

the process, was made in S. cerevisiae by Yoshinori Ohsumi22,23. Scientific literature 

is full of many more ground-breaking discoveries that employed classical yeast 

genetics24.  
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There have also been significant advancements in molecular mechanistic 

understanding of different human diseases by several labs across the world using 

budding yeast as model organism25. The most important contributions include works 

from Jared Rutter's lab for studying the role of the SDH5 gene (human homologue 

PGL2), which is mutated in the inherited paraganglioma cancer type and is responsible 

for modifying different respiratory proteins26. Another example is included from work 

done in Susan Lindquist's lab, where they studied the role of protein aggregates in 

neurodegenerative diseases and their implications using the budding yeast27. Many of 

such examples are illustrated in the literature, exemplifying the use of classical yeast 

genetics to address several biological questions. It is also believed in the scientific 

community that budding yeast can also be used as a surrogate model platform to study 

human diseases25.  

From the early days of research using S. cerevisiae, the reference strain S288c and 
its derivatives have been used in different labs across the world, where S288c was 
obtained by crossing different parental strains. The ability to be stable in the haploid 
state made it popular to work with budding yeasts in different research platforms across 
the world16,28–30. Subsequently, it was the S288c strain of S. cerevisiae that became 
the first eukaryotic organism to have its entire genome sequenced in 199631. Later 
various libraries were also developed with a collection of the strains that were deleted32 
for single non-essential genes or had single encoded protein either overexpressed33 
or tagged with a reporter gene34. Such libraries led to many publications and enhanced 
our understanding of different aspects of biological research.  

1.2 Amino acids-elixir of life 

Proteins account for 50% of the dry cellular weight and play many essential roles and 

diverse functions in the cell35. They are made of one or more long polypeptide chains 

of twenty amino acids connected by a special covalent peptide linkage. The unique 

sequence of amino acids, encoded and inherited in the form of DNA, further defines 

specific structure and function of a protein1. In addition to their role as monomeric 

building blocks of proteins, few amino acids (or modified forms) also function as 

neurotransmitters, nitrogen donors for purine and pyrimidine synthesis. They serve as 

precursors for synthesis of many important molecules2.  

1.2.1 What is an amino acid? 

An amino acid is a simple organic molecule consisting of an alpha asymmetric carbon 

atom (chiral) linked to a basic amino group (NH2), carboxyl group (COOH), the 

hydrogen atom and a particular side chain denoted by 'R'. This R group is unique and 

imparts different properties to every amino acid. Glycine amino acid is an exception 

with symmetric carbon atom (non-chiral) since it has an 'H' atom as the R group. There 

are twenty proteogenic amino acids that are present in proteins in all organisms1. 

However, two amino acids- pyrrolysine and selenocysteine occur in proteins in 

exceptional cases. Selenocysteine is a cysteine analogue and is present in the active 

site of many enzymes like glutathione peroxidases, thioredoxins reductases etc., in 

some lineages and pyrrolysine is found only in a few methanogenic archaea and 
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bacteria36,37. Figure 1 illustrates the structures of twenty proteogenic amino acids, 

selenocysteine and pyrrolysine, along with their alphabetical letter representations. 

 

Figure 1: The structural representation of twenty proteogenic and two special case 
amino acids. An amino acid consists of an asymmetric carbon atom linked to the amino group, 
carboxyl group, the hydrogen atom, and a side residue group denoted by R. The R group 
imparts different properties to an amino acid. Thus, amino acids are broadly classified as non-
polar, polar, and charged (negatively or positively charged) amino acids.   
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1.2.2 Classification of amino acids 

Polar vs non-polar amino acids 

Based on the properties of the side 'R' side group, they are classified as hydrophilic 

polar and hydrophobic non-polar amino acids (fig: 1). Polar hydrophilic amino acids 

include either uncharged (threonine, serine, cysteine, tyrosine, glutamine, and 

asparagine) or charged amino acids (positively charged: lysine, histidine, and arginine; 

negatively charged: glutamic acid and aspartic acid). Non-polar hydrophobic amino 

acidscan be aromatic (tryptophan and phenylalanine) or aliphatic (valine, leucine, 

isoleucine, glycine, alanine, proline, and methionine) in nature2. Leucine, valine, and 

isoleucine are also referred to as branched-chain amino acids since they have 

branched aliphatic side chains.  

Essential vs non-essential amino acids 

Unlike bacteria, yeast and plants, humans cannot synthesize some of the 20 amino 

acids such as leucine, isoleucine, valine, threonine, methionine, tryptophan, 

phenylalanine, and lysine. Hence, they are termed essential amino acids for human 

growth and must be supplied in the diet38–41. However, certain amino acids are also 

classified as semi-essential or conditionally essential, especially for children since they 

are not synthesized in enough quantities at the appropriate growth phase, thus must 

be supplied through diet40.  These amino acids are arginine, histidine, cysteine, glycine, 

tyrosine, glutamine, and proline.  

Proteogenic vs non-proteogenic amino acids 

Next to the proteogenic amino acids, several non-proteogenic amino acids are found 

in nature. As the name suggests, non-proteogenic amino acids are not part of proteins. 

Instead, they serve several other vital functions in the cell: as ornithine and citrulline 

are key intermediates in the urea cycle. γ-Aminobutyric acid (GABA)-derived from 

glutamic acid, melatonin and serotonin derived from tryptophan etc., acts as a 

neurotransmitter. Further, β-alanine: is found to be a crucial precursor during Vit B5 

synthesis. These amino acids are also referred to as non-standard amino acids. A few 

proteogenic amino acids are not produced directly. However, they are post-

translationally modified like 4-hydroxyproline, hydroxylysine (by hydroxylation of 

proline and lysine, respectively) and γ-carboxy glutamic acid (carboxylation of glutamic 

acid). These modifications are generally essential for the function and structure of 

respective proteins containing them.  

Ketogenic vs glucogenic amino acids 

Based on the catabolism pattern in humans, amino acids are also classified as 

ketogenic, glucogenic or mixed types42. The cell recycles the carbon skeleton of an 

amino acid after removing the amino group to form intermediates which can be fuelled 

further to either Kreb's cycle or can be used to form glucose via glucogenesis. The 

degradation products of ketogenic amino acids: lysine and leucine form acetyl CoA 

and aceto-acetyl CoA, which are funnelled to form ketone bodies and fatty acids but 

cannot be made into glucose. On the other hand, degradation of glucogenic amino 

acids to pyruvate or Kreb's cycle intermediates such as α-ketoglutarate, oxaloacetate, 

succinyl-CoA, or fumarate are used to form phosphoenolpyruvate (PEP) or glucose. 
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Lysine and leucine are the only two ketogenic amino acids, along with phenylalanine, 

tyrosine, isoleucine, tryptophan, and threonine belonging to the mixed type, and the 

remaining thirteen amino acids are glucogenic. Following figure 2 summarizes the fate 

of carbon atoms when a deaminated amino acid is degraded inside the cell.  

 

 

Figure 2: Schematic representation of the catabolism pattern of ketogenic and 
glucogenic amino acids in humans. Ketogenic, glucogenic and both ketogenic and 
glucogenic amino acids are represented by purple, green and pink colours, respectively. 
(Adapted and modified from Biochemistry 5th edition. 20021). 

 

Ehrlich vs non-ehrlich amino acids 

In yeasts, degradation of amino acids such as leucine, valine, isoleucine, tyrosine, 

tryptophan, phenylalanine, and methionine lead to the formation of iso-amyl alcohols 

or acids, which are also known as Fusel acids or Fusel alcohols. This pathway was 

discovered by the scientist Felix Ehrlich, and hence they are also referred to as Ehrlich 

amino acids43. These fusel compounds are known to add valuable flavour and aroma 

to yeast fermented foods and beverages. Thus, making this Ehrlich pathway of high 

industrial relevance and research interest in the scientific community. In general, an 

Ehrlich amino acid is transaminated (reversible reaction step) to an alpha-keto acid 

along with the concomitant conversion of 2-oxoglutarate to glutamate. 
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Further, the alpha-keto acid is decarboxylated to its respective fusel aldehyde. 

Afterwards, depending upon whether the fusel aldehyde is either oxidized or reduced, 

fusel acids or fusel alcohols are produced, respectively, which are known to impart 

quality and flavours to the yeast fermented products43. The following figure 3 

represents the detailed Ehrlich amino acid degradation pathway in S. cerevisiae.        

 

 

Figure 3: A schematic representation of the degradation pattern of Ehrlich amino acids 
inside the S. cerevisiae. The different genes, whose proteins products catalyze similar steps 
for different Ehrlich amino acids, are represented in the red colour (Adapted and modified from 
Hazelwood et al., 200843). 

 

1.3 Amino acid sensing in yeast 

1.3.1 SPS signalling 

S. cerevisiae has a special pathway, known as the SPS pathway44,45, to sense 

extracellular amino acids, which in turn further induces transcription of various amino 

acid permeases and genes related to amino acid metabolism. SPS stands for Ssy1-

Ptr3-Ssy5, where Ssy1 is an extracellular amino acid receptor46, Ssy5 is a 

chymotrypsin-like endoprotease. Ptr3 is a phosphoprotein that acts as an adaptor for 

Ssy1 and Ssy5 is a chymotrypsin-like endoprotease47. When extracellular amino acids 

bind to Ssy1, it leads to confirmational change and hyper-phosphorylation of Ptr3. 

Ultimately this activates the proteolytic activity of Ssy5, masking its active C-terminal 

catalytic domain from the N-terminal pro-domain48. The Hyper-phosphorylation state 
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of Ptr3 is further positively regulated by two casein kinases Yck1, 2 and negatively 

regulated by SCFGrr1 E3 ubiquitin ligase and PP2A phosphatase49–51. Stp1 and Stp2 

are the two transcription factors responsible for inducing transcription of amino acid 

permeases genes, which are transcribed as inactive precursors49,52,53. Due to the 

presence of cytoplasmic retention signals, Stp1,2 are sequestered in the cytoplasm 

and cannot enter the nucleus until they are processed. Even if a small part of inactive 

Stp1 and Stp2 reaches the nucleus, Asi1-3 proteins (present in the nucleus) bind to it 

and prevent its downstream action54,55. The presence of extracellular amino acids 

activates proteolytic activity of Ssy5, which cleaves retention signals of Stp1 and 

Stp247. The small length Stp1 and Stp2 enter the nucleus, bind to the promoters, and 

induce expression of their target genes. Thus, Stp1-2 are key players in mediating the 

signal from extracellular amino acids to downstream, leading to expression of amino 

acid permeases on the plasma membrane, which in turn aids in importing these amino 

acids48. The following figure 4 describes SPS mediated signalling in brief. It has also 

been shown that rapamycin-induced Stp1 degradation from the nucleus is mediated in 

Sit4 dependent manner56. Thus, establishing that the SPS sensing system is linked to 

TOR signalling.  

 

 

 

 

Figure 4: A schematic representation of SPS signalling in S. cerevisiae. SPS stands for 
Ssy1-Ptr3-Ssy5, where Ssy1 is the plasma membrane amino acid sensor, Ptr3 is a 
phosphoprotein, and Ssy5 is an endoprotease. Further, the activity of Ssy5 is enhanced due 
to hyperphosphorylation of Ptr3. P indicated by yellow highlighted colour represents the 
phosphorylation. The two casein kinases Yck1-2 and PP2A phosphatases are known to 
phosphorylate or dephosphorylate the Ptr3respectively. A: In the absence of amino acids, Ptr3 
is partially phosphorylated, and Ssy5 is inactive and cannot cleave the latent Stp1 and Stp2. 
Even if the full-length in-active Stp1 and Stp2 can escape to the nucleus, Whi1-3 proteins bind 
and inhibit its action. B: Binding of amino acids on Ssy1 leads to conformational changes and 
activation of Ssy5 protease, which cleaves and processes the in-active latent Stp1 and Stp2 
to an active form, which enters the nucleus and binds to promoter regions of its target genes 
like AAP genes. Thus, inducing the expression of AAP on the plasma membrane and 
enhancing the import of amino acids. NM: nuclear membrane; PM: plasma membrane. 
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1.3.2 Role of Gcn4 mediated GAAC control 

General Amino Acid Control (GAAC) is one of the classical examples of how a cell 

responds to different environmental stresses, for example, amino acid limitation by 

activation of Gcn2-Gcn4 mediated pathway57–59. Independent of which amino acid is 

limiting, induction of GAAC pathway leads to expression of several amino acid 

biosynthetic genes60. In brief, GAAC functions in three steps: first, activation of Gcn2 

kinase by uncharged tRNAs; second induction and stable expression of Gcn4 mRNA; 

and last, Gcn4 induced gene expression of several downstream targets, mainly amino 

acid biosynthetic genes61. 

Gcn4 (General control non-depressible 4), a highly conserved protein belonging to the 

leucine zipper family of proteins, is a master transcription regulator of amino acid 

biosynthetic genes in S. cerevisiae62. Unlike its mammalian analogue Atf463, induction 

of Gcn4 in environmental stress and amino acids starved conditions decreases global 

protein synthesis capacity64 and increases the lifespan of a yeast cell65. However, the 

mechanism is still unclear as to how Gcn4 mediated signalling contributes to cell's 

longevity via diminished protein synthesis64, depletion of 60S ribosomal subunits66 and 

activating various amino acids biosynthesis pathway60. In amino acid starved 

conditions, induction of amino acid biosynthetic genes depends on transcriptional 

regulator Gcn4, which operates via binding at upstream activating sequence elements 

located in promoter regions of its target genes67.  

Translational control of GCN4 mRNA abundance is well characterized. In normal 

growth conditions, elF2B stimulates and activates elF2 (GTP bound, active) through 

its GEF activity68. Further, elF2B (GTP bound) associates with charged methionyl 

initiator tRNA and forms a tertiary complex (TC). This TC associates with the 40S small 

ribosomal subunit and other elFs, which together are also known as 43S preinitiation 

complex (PIC)68,69. The PIC further scans mRNA and recruits the larger 60S ribosomal 

subunit when it encounters the AUG start codon and thus leads to initiation of 

translation69. GCN4 mRNA is preceded by four upstream open reading frames 

(uORFs) located at its 5' UTR region, which prevents its translation by blocking the 

arrival of ribosomal machinery at GCN4 mRNA and thus limiting Gcn4 abundance. 

Upon nutrient depletion (glucose or purines) or stress conditions such as amino acid 

starvation. Gcn2 kinase gets dephosphorylated and activated due to increased 

uncharged tRNA70,71 or TOR inactivation72. Active Gcn2 subsequently phosphorylates 

and inactivates its only substrate- alpha subunit of elongation factor 2 (elF2α), which 

binds more tightly to elF2B upon phosphorylation and is sequestered mainly in GDP 

bound inactive state. This leads to a massive drop in TC formation, thereby inhibiting 

the global protein synthesis and reducing the consumption of amino acids60. Lack of 

availability of TC further favours scanning of GCN4 ORF over the uORFs region. Gcn4 

subsequently enters the nucleus, binds at UAS elements of its target genes and thus 

enhances their transcription48. Abundance of GCN4 mRNA in the cell is tightly 

controlled by both translational control mechanisms, proteasomal degradation 

mediated by phosphorylation and ubiquitylation. Rawal et al. showed that two cyclin-

dependent kinases: Srb10/Cdk8 and Pho85, are known to phosphorylate the activation 

domain of Gcn4, ultimately targeting it for proteasomal degradation in non-starving 

growth conditions. Srb10 or Cdk8 is known to remove the inactive Gcn4 species which 
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are enriched for SUMOylation in the promoter regions. Pho85 is responsible for 

clearing the highly active unsumoylated along with the defective Gcn4 species73.  

Gcn4 expression in response to amino acid starved conditions induces transcription of 

539 genes, which are known to perform varied functions such as nitrogen utilization, 

gene expression and downstream signalling and out of which only 57 genes belong to 

amino acid biosynthetic pathways60,74,75. Gcn4 induction is also reported to occur even 

under depletion of single amino acid74. This is a good example of crosstalk among 

different pathways in response to stress conditions. Expression of Gcn4, in response 

to stress conditions, is known to exert its transcriptional role via five different levels60,62. 

First, induction of biosynthetic pathways of 19 amino acids, with cysteine as an 

exception, where formation of intermediates from serine and homocysteine synthesis 

contributes to cysteine synthesis. Second, it activates the transcription of different 

genes involved in synthesizing vitamins, amino acid permeases, mitochondrial carrier 

proteins, peroxisomal proteins, and purines that indirectly contribute to amino acid 

biosynthesis. Third, it represses translation of certain transcriptional factors and 

ribosomal proteins, leading to reduced global protein synthesis, supporting the growth 

of cells in amino acid starved conditions. Fourth, it induces the expression of certain 

genes that are fundamental for the processes of autophagy and glycogen 

accumulation. Last, Gcn4 mediated transcription further enhances stress responses 

operating at different levels in the cell. 
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Figure 5: Mechanism of Gcn4 translation in response to amino acids. Gcn4 mRNA is 
preceded by four uORFs in the 5' UTR region, which prevents the arrival of ribosomal 
machinery on Gcn4 mRNA. Thus, controlling the translation rate and abundance of Gcn4 in 
the cell. A: In the presence of amino acids or non-starved conditions equivalent to normal 
growth conditions, elF2B stimulates the eukaryotic translation initiation factor elF2 with its GEF 
activity, which forms a ternary complex (TC) in association with Met-tRNA. TC gets associated 
with the 40S and 60S ribosomal units, forming a functional ribosome, and starts scanning the 
mRNA. Since the four uORFs halt and controls the translation rates, the abundance of Gcn4 
is very limited. B: In the absence of amino acids or starved conditions, the presence of 
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uncharged tRNA's increases, which further stimulates Gcn2 kinase, which phosphorylates 
elF2 such that it gets bounded to elF2B very tightly. This elF2-GDP-elF2B complex leads to a 
rapid decrease in TC levels and global protein synthesis in the cell. When the TC levels are 
dropped, the ribosomes can reach now the Gcn4 mRNA and translate it efficiently to protein. 
The newly synthesized Gcn4 transcription factor further binds to promoter regions and 
stimulates the expression of amino acids biosynthetic genes.  

 

1.4 Amino acid permeases/transporters 

S. cerevisiae is known to express 24 amino acid permeases or transporters (AAP or 

AAT respectively), which are specialized to import either some or several amino acids 

at different rates76. AAT contains twelve transmembrane domains and cytoplasmic 

oriented N and C terminal77,78. Based on their regulation and expression conditions, 

AAP in yeast is broadly divided into two subfamilies79. One that are expressed 

constitutively at the plasma membrane, and the other that is known to be expressed 

highly under nitrogen starved conditions. The former category includes Aat1, Aat2, 

Agp1, Bap2 etc. The latter category of AAPs includes Gap1, Put4, that scavenge 

extracellular amino acids more efficiently and support the growth of the cell80. Thus, 

under nutrient-depleted or nitrogen starved conditions, Gap1 and Put4 are targeted to 

the plasma membrane to actively uptake amino acids. Likewise, when nutrients are 

replenished, these amino acid transporters are ubiquitinated and targeted for vacuolar 

degradation81.  

  

Table 1: Amino acid transporters and transported substrates. The values mentioned in the 

brackets indicate the respective Michaelis constants (Km) of the individual amino acids. The 

table is directly adapted from Ruiz et al. 202082.  

 

Transporters Transported substrates  

Agp1 His, Asp, Glu, Ser, Thr, Asn (0.29 mM), Gln (0.79 mM), Cys, Gly, Pro, 
Ala, Val, Ile (0.6 mM), Leu (0.16 mM), Met, Phe (0.6 mM), Tyr, Trp 

Bap2 Cys, Ala, Val, Ile, Leu (37 µM), Met, Phe, Tyr, Trp 

Can1 His, Arg (10–20 µM), Lys (150–250 µM), Orn 

Dip5  Glu (48 µM), Asp (56 µM), Ser, Asn, Gln, Gly, Ala 

Gnp1  Ser, Thr, Asn, Gln (0.59 mM), Cys, Pro, Leu, Met 

Lyp1  Lys (10–25 µM), Met 

Put4  Gly, Pro, Ala 

Tat2  Gly, Ala, Phe, Tyr, Trp, Cys 

 

1.4.1 Regulation of AAT 

The amino acid permeases or transporters are subjected to a tight regulation at the 

gene transcription level or during intracellular trafficking and transport to the plasma 

membrane and lastly by its intrinsic activity48. The expression of these AATs is highly 

dependent on extracellular amino acids (quality of nitrogen source) and is mediated by 
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SPS signalling. In the absence of nitrogen sources, transcription of AAT genes is 

activated48. The transporters are co-translationally transported to the endoplasmic 

reticulum first, where they are further processed and modified. Further, these AATs 

are targeted to the plasma membrane via Golgi apparatus77. Once normal growth 

conditions (good nitrogen source) are restored and the PM localized AATs are not 

required anymore, AATs are internalized by the arrestin-like adaptor proteins Bul1 and 

Bul283,84. These internalized transporters are ubiquitylated by HECT family ubiquitin 

ligase- Rsp5 and are ultimately targeted for vacuolar degradation via multivesicular 

body pathway85–87. Moreover, the Golgi-located newly synthesized transporters are 

ubiquitylated, translocated and degraded in the vacuole48.   

There are several studies that describe regulation of different permeases in presence 

of different substrates. Regulation of Gap1 permease is one of the best-studied 

examples and is explained briefly in the following section. 

 

1.4.2 Role of Gap1 in amino acids starved condition 

Gap1 permease belongs to the high-affinity broad permeases that can transport most 

of the amino acids88. Gap1 permease is also known as a transceptor, meaning while 

transporting amino acids across the PM, it also senses and detects the abundance of 

amino acids that can further regulate its expression and activity89,90. Gap1 is also 

studied for its function to mediate the signals downstream to the PKA pathway91 and 

elucidate the mechanism of how membrane transporters are trafficked and regulated 

at different levels in response to various stimuli in a yeast cell83. Under amino acids 

starved conditions or non-preferred nitrogen sources, its expression is positively or 

negatively regulated by Gln3p, Gat1p and Ure2p transcription factors, respectively48. 

In the presence of poor nitrogen sources such as urea and proline, Gap1 is not 

ubiquitylated and is sorted to the plasma membrane with high activity. Since Arrestin-

like adaptor proteins, Bul1 and Bul2 (that mediate the ubiquitylation and targeting of 

Gap1 for vacuolar degradation) are phosphorylated and inactivated by Npr1 kinase, 

they further get associated to 14-3-3 proteins in the phosphorylated stage83.  

Conversely, in the presence of amino acids or preferred nitrogen source growth 

conditions (such as ammonium), the active Tor1 kinase phosphorylates and inactivates 

Npr1 kinase, leading to dephosphorylation and concomitant activation of Bul1 and Bul2 

proteins92,93. The dephosphorylated Bul1 proteins get disassociated from 14-3-3 

proteins and ubiquitinate the Gap1 permease (at Lys9 and Lys16 residue) in Rsp5 

dependent manner94. Further, this polyubiquitylated Gap1 is endocytosed and targeted 

to the vacuole for degradation. However, when TORC1 activity is inhibited due to 

certain stress factors or presence of rapamycin, the arrestin proteins Aly1 and Aly2, 

together with Bul1 and Bul2, ubiquitylate and further downregulate the Gap183,95. 

These Bul1 and Bul2 arrestin proteins might still be in phosphorylated and bound to 

14-3-3 and might target the ubiquitinated Gap1 via C-terminal for vacuolar degradation, 

indicating that they undergo different mechanisms to assist the Rsp5 mediated 

ubiquitinoylation of Gap1 when TORC1 is active or in-active in response to different 

stimulus. Therefore, mutations in genes that help the ubiquitination of Gap1 leads to 

stable sorting of Gap1 on the plasma membrane. Further, it was shown that 
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ubiquitylation-mediated endocytosis of permeases like Gap1 and Can1 happen due to 

the signalling mediated by their transport-associated proteins instead of the pre-

assumed idea of intracellular accumulation of their respective transport substrates 

(amino acids)83,94.  

 

1.5 Cross talk between TOR signalling and amino acids  

1.5.1 TOR activation in S. cerevisiae  

First discovered in budding yeast S. cerevisiae, the target of rapamycin (TOR), a 

serine-threonine kinase, is the master regulator of eukaryotic cell growth. It quickly 

responds to nutrients, promotes anabolic activities (protein, lipid, and nucleotide 

synthesis), and inhibits catabolic activities (autophagy), leading to an increase in the 

cell size. Its mammalian counterpart, the mechanistic target of rapamycin (mTOR), 

also contributes to cellular and organismal growth. The de-regulation of this pathway 

is known to cause various human pathologies, including cancer, diabetes, and obesity. 

Therefore, (m)TOR pathway has been of active interest for researchers over the 

decades96,97.  

S. cerevisiae, unlike all other eukaryotes, consists of two TOR kinases: Tor1 and Tor2, 

which are 67 % identical to each other and 37% to mTOR in terms of sequence 

similarity98. TOR pathway comprises of two structurally and functionally distinct multi-

protein complexes: TORC1 and TORC2, where TORC1 is rapamycin-sensitive and 

comprises either Tor1 or Tor2 kinase, Kog1, Lst8 and Tco89 subunits. TORC2 is 

rapamycin-insensitive and comprises Tor2 kinase, Avo1-3, Bit61 and Lst8 subunits48. 

Upon inactivation of TORC1, cellular activities such as protein synthesis, ribosomes 

biogenesis, transcription, cell cycle, autophagy, and nutrient uptake are highly 

affected96,99. Cellular activities such as lipid synthesis, endocytosis, actin cytoskeleton 

organization and cell viability are impacted upon TORC2 inactivation. Unlike in 

mammals, TORC1 in yeast is already tethered to the vacuolar membrane with the help 

of Ego1-3, which is known as EGO tertiary complex (EGOC)100. Its activity is mediated 

by Gtr1 and Gtr2, which are the Ras family GTPases. In nutrient-rich conditions, such 

as in the presence of preferable nitrogen sources-glutamine and glutamate or other 

amino acids (especially leucine or arginine), GTP-bound Gtr1 heterodimerizes with 

GDP-bound Gtr2 and stimulates TORC1101,102. Active TORC1 further exerts its 

downstream signalling by phosphorylating and activating Sch9 and Tap42 

kinases96,103. Once activated, Sch9 kinase promotes ribosome biogenesis and 

translation initiation, and Tap42 inhibits protein phosphatases, namely Sit4, PP2A, 

respectively. Secondly, this also reinforces hyperphosphorylation of Ure2 protein and 

subsequently sequestering of Gln3 and Gat1 in the cytoplasm and causing repression 

of NCR (nitrogen catabolite repression) and stress-responsive genes104. Thirdly, 

TORC1 dependent phosphorylation of Mks1 bounded to Bmh1 prevents nuclear 

localization of transcription factors Rtg1 and Rtg3 and thus inhibiting retrograde RTG 

signalling pathway and synthesis of glutamate and glutamine by TCA cycle105. 

Fourthly, phosphorylation and inactivation of Npr1 via TORC1 activity lead to Bul1-
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mediated endocytosis of Gap1 and stabilization of specific amino acid permeases like 

Tat2 on the plasma membrane83. 

 

 

Figure 6: Mechanism of TORC1 signalling in response to preferred nitrogen sources. 

The presence of preferred nitrogen sources in the medium like glutamate or glutamine, leads 

to transcriptional repression of genes responsible for the metabolism of less preferred nitrogen 

sources, commonly known as nitrogen catabolite repression (NCR), by hyperphosphorylation 

and retention of transcriptional factors like Ure2, Gln3, and Gat1 in the cytoplasm. Also, the 

presence of glutamine or amino acids stimulates the vacuolar membrane-associated EGO 

complex, which consists of regulator proteins Ego1,3 and Ras GTPases: GTP bound Gtr1, and 

GDP bound Gtr2. The guanine nucleotide exchange factors (GEF's): Vam6 and Leu tRNA 

synthetase (LeuRS), stimulates the activity of Gtr1 by the GTP loading of Gtr1 is also 

negatively affected by the GAP activity of SEACIT complex, further activity of SEACIT is 

impacted by SEACAT and type 2 phosphatases. The stimulated EGOC gets associated with 

and activates the vacuolar membrane located TORC1 complex. The active Tor1 kinase further 

phosphorylates its downstream targets like Sch9 kinase, Mks1, Rtg1-3, Npr1, and Tap42, 

where the latter inactivates several downstream phosphatases. Thus, transcriptional factors 

like Ure2, Gln3 and Gat1 can no longer be dephosphorylated and sequestered in the 

cytoplasm, along with Rtg1-3, in the hyperphosphorylated state. Phosphorylation of Npr1 also 

inactivates it and leads to increased expression of Tat2 permease on the plasma membrane 

and mediates vacuolar targeting and subsequent degradation of general amino acid permease 

Gap1. Conversely, in the presence of the non-preferred nitrogen sources, SEACIT complex 

stimulates the GDP loading of Gtr1 and thus inactivates the EGOs and subsequently cannot 

activate the TORC1, which leads to cytoplasmic release and activation of Tap42-phosphatase 

protein complex. The active phosphatases dephosphorylate the cytoplasmic Mks1, Ure2, Gln3, 

and Gat1 proteins. The former and the latter two lead to nuclear localisation Rtg1-3 and Gln3 
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and Gat1, respectively, and subsequent activation and expression of genes related to RTG 

and NCR signalling. RTG signalling promotes the synthesis of glutamate and glutamine via the 

TCA cycle, and NCR signalling promotes the synthesis of genes involved in the metabolism of 

non-preferred nitrogen sources. Also, the phosphatases de-phosphorylates and activate Npr1, 

where it phosphorylates the Bul1/2 proteins which get associated with Bmh1/2 proteins, 

leading to stable expression of Gap1 permease on the plasma membrane. The components 

which affect positively or negatively the activity of TORC1 are represented by green and red 

colour, respectively. The transcriptional factors whose activity gets affected by active TORC1 

are represented by yellow colour. (Adapted and modified from Conrad et al. 48). 

 

1.5.2 TOR signalling under the light of amino acids 

Several studies report different ways through which the activity of the EGO complex is 

affected in the presence of amino acids (mainly by leucine and arginine in mammals 

and leucine and glutamine in yeasts). As a key to TORC1 activation, the amino acids 

are known to bind and affect the guanine nucleotide-binding state of RagA-

RagB/Gtr148.  

In yeast, leucine seems to affect the TORC1 activity strongly, firstly by positively 

affecting the activity of Vam6 or Vps39, which is known to be the guanine nucleotide 

exchange factor of Gtr1100. Secondly, the non-essential amino acid editing domain of 

the Cdc60: the leucyl-tRNA synthetase (LeuRS), is also reported to bind and interact 

with the yeast Gtr1 in leucine dependent manner106, thus making this interaction 

necessary for TORC1 activation in response to leucine availability106. Thirdly, it has 

been reported that amino acid limitation induces the transient interaction of Iml1, which 

is a component of SEACIT (SEAC subcomplex inhibiting TORC1 signalling) complex 

along with the protein subunits Npr2 and Npr3, and Gtr1 at the vacuolar membrane. 

This interaction activates the GAP activity of ImI1 towards GTP bound Gtr1, thus 

inactivating the TORC1 activity107,108. This GAP activity of the SEACIT complex (or the 

GATOR1 complex in mammals) acting towards the GTP bound Gtr1 (or RagA/RagB 

in mammals), is conserved from yeast to humans109. Furthermore, the Seh1-

associated complex (SEAC) complex, which is also known as SEAC activating the 

TORC1 signalling (SEACAT), influences the activity of SEACIT complex by inhibiting 

it and hence positively regulates the TOR signalling107,108. In mammals, leucine binds 

to its cytoplasmic sensor, Sestrin2, leading to its disassociation from GATOR2, thus 

causing the free GATOR2 to interact and inhibit GATOR1. Thus, leading to 

translocation of mTORC1 to lysosomes and its subsequent activation. However, the 

budding yeast lacks orthologues of Sestrin proteins110. Additionally, Whi2 has been 

shown to interact with plasma membrane phosphatases Psr1-2 and inhibit the TORC1 

mediated signalling in the presence of low amino acid conditions (mainly leucine)111. 

Although, the mechanism remains elusive.  

Glutamine is known to be the preferred nitrogen substrate for the growth of the cell. It 

is converted to glutamate and α-ketoglutarate via the action of glutaminase (GLS) and 

glutamate dehydrogenase (GDH), respectively, where GDH requires leucine as a 

cofactor. In mammals, α-ketoglutarate further activates RagA/B via the action of prolyl 

hydroxylase (PHD). Though PHDs are known to be conserved from mammals to yeast, 

there is no evidence available in the literature so far depicting whether yeast PHDs are 
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also capable of activating Gtr1110. However, how the presence of glutamine activates 

the m/TORC1 in a Rag/Gtr1 independent manner, remains elusive. 

The lysosomal transmembrane protein-SLC38A9 has been characterized and 

proposed as the arginine transporter in lysosomes that affects mTORC1 activity in an 

arginine-dependent fashion112,113. However, there is no evidence for the most closely 

related yeast homologues of SLC38A9 so far- the amino acid vacuolar transporters, 

Avt1-7, whether they also regulate TORC1 activity or not110,114. Additionally, there are 

studies reporting the presence of cytoplasmic arginine sensors in mammals: the 

CASTOR1 and CASTOR2 proteins that bind to arginine similar to leucine binding to 

Sestrin2. Arginine binds to homo-dimers of CASTOR1 or heterodimer of CASTOR1 

and CASTOR2 and disrupts its disassociation with GATOR2110. This leads to 

translocation and activation of mTORC1, similarly to the Sestrin2 mechanism. 

Sutter and his colleagues showed that methionine is also known to activate the Gtr1 in 

S-adenosylmethionine (SAM) dependent manner, which is a methyl donor. Synthesis 

of SAM inhibits autophagy and leads to methylation and subsequent activation of the 

type 2A protein phosphatase PP2A via the action of the methyltransferase Ppm1p. The 

activated methylated PP2A dephosphorylates and inactivates the Npr2 kinase, which 

is a component of SEACIT complex, and thus eventually activates the TORC1 

siganlling115.  

 

1.6 Aminoacidopathies 

Aminoacidopathy, also known as inborn error of amino acid metabolism, is a term used 

to collectively refer to the various inherited disorders or syndromes caused by impaired 

enzymatic activity associated with amino acid metabolism or transport within the cell. 

This, results in either accumulation of amino acid(s) or its by-product that further affects 

several downstream signalling pathways and organ functions116. Nowadays, 1 out of 

1000 people is reported to suffer from amino acid-related disorders. They are sub-

grouped as organic acidurias, urea cycle related disorders and aminoacidopathies, 

where the latter comprises all the remaining amino acid-related disorders3. The most 

common aminoacidopathies include phenylketonuria, maple syrup urine disease 

(MSUD), homocystinuria, argininosuccinic aciduria, and tyrosinemia type 1. 

Depending on the age upon onset of the disease or the degree of the defect in related 

enzymatic function, the resulting clinical symptoms vary from individual to individual. 

People affected by such disorders are usually treated with special diets either restricted 

to natural protein content or combined with an exclusive protein diet that excludes the 

amino acid that has detrimental effects. Also, diet supplementing the essential amino 

acids due to loss of enzymatic activity, is one treatment prescribed frequently117,118. 

Since these disorders can also commence from the neonatal stage, screening of such 

conditions at neonatal stage and in newborn babies (4-7 days old) is widely adopted 

worldwide. For detailed understanding of clinical symptoms, outcomes, and current 

therapeutic approaches for these aminoacidopathies, one can refer to the article 

"Disorders of branched-chain amino acid metabolism" by Manoli et al.119. 
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1.6.1 Organic acidurias  

Individuals suffering from organic acidurias tend to accumulate carboxylic acids (mono, 

di or tri) in their blood (or excreted with abnormal levels in urine) along with 

corresponding metabolites such as coenzyme A, carnitine with or without glycine 

esters that are also proven to be toxic when they exceed a particular threshold limit120. 

Most studied organic acid metabolic disorders include propionic acidemia, 

methylmalonic acidemia (methylmalonyl-CoA mutase deficiency), isovaleric acidemia, 

beta-ketothiolase deficiency, 3-methylcrotonyl-CoA carboxylase deficiency, 3-

hydroxy-3-methylglutaric aciduria, holocarboxylase synthase deficiency, and glutaric 

acidemia type 1.  

 

1.6.2 Urea cycle related disorders 

Individual affected by Urea cycle disorders generally can be deficient (or have 

mutations) in any of the enzymes related to the urea cycle. Here, nitrogen is not able 

to convert into urea, leading to the accumulation of ammonia, beyond a permissive 

level causing to brain damage, coma or in extreme cases death. The disorders are 

also named according to the deficient enzymes of the urea cycle, such as ornithine 

transcarbamylase (OTC), argininosuccinic acid synthetase or citrullinemia, arginase, 

argininosuccinase acid lyase or argininosuccinic aciduria, carbamoyl phosphate 

synthetase, and N-acetylglutamate synthetase. OTC is a sex chromosome-linked 

disorder and the treatment strategy focuses on reducing the exposure of highly toxic 

ammonia in the brain121. 

1.6.3 BCaa related pathologies 

Overview of the biochemical pathway for BCaa's catabolism is represented in figure 7. 

The subsequent aminoacidopathies resulting from loss of the particular enzymatic 

function from the BCaa's catabolism pathway include: maple syrup urine disease, 

isovaleric acidemia, 3-methylcrotonyl-CoA carboxylase deficiency, 3-hydroxyisobutyric 

aciduria, methylmalonic semialdehyde dehydrogenase deficiency, propionic acidemia, 

methylmalonic acidemia, 3-methylglutaconic aciduria, 3-hydroxy-3- methylglutaryl-

CoA lyase deficiency, 2-methyl-3-hydroxyisobutyric aciduria, isobutyrl-CoA 

dehydrogenase deficiency, and 3-hydroxyisobutyryl- CoA deacylase deficiency122.  

Out of all described BCaa aminoacidopathies, MSUD is the only disorder that can be 

easily diagnosed (using plasma of the affected individuals) since it is caused due to 

loss (or reduced) of branched-chain alpha-keto-dehydrogenase (BCKDH) activity, 

leading to detectable accumulation of BCaa (primary leucine) and their respective keto 

acids123.   
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Figure 7: Branched-chain amino acids' catabolism pathway in humans. Enzymes 

(represented in maroon colour) catalyzing the production of different intermediates are: BCAT: 

branched-chain amino acid aminotransferase; BCKDH: branched-chain alpha-keto-

dehydrogenase; IVD.: isovaleryl dehydrogenase; 3MCC: 3-methylcrotonyl-CoA carboxylase; 

3MGA: 3-methylglutaconic-CoA hydratase; HMG lyase: 3-hydroxy-3-methyl glutaryl-CoA 

lyase; SBCAD: methylbutyryl CoA dehydrogenase; MHBD: 2-methyl-3-hydroxyisobutric acid 

dehydrogenase; T2 or BKT: mitochondrial acetoacetyl-CoA thiolase; IBDH: isobutyrl-CoA 

dehydrogenase; HIBDA: 3-hydroxyisobutyrl-CoA deacylase (hydrolase); HIBDH: 3-

hydroxyisobutyrate dehydrogenase; MMSHD: methylmalonic semialdehyde; PCC: propionyl-

CoA carboxylase; MUT: methylmalonyl-CoA mutase; SUCLA: succinyl-CoA ligase. This figure 

is adapted from Manoli et al. 2016119.    

 

Maple Syrup Urine Disease 

MSUD is a rare autosomal recessive metabolic disorder119. As the name suggests, 

urine in the affected infants (with chronic infection) has a peculiar sweet maple syrup 

odour123. It is reported to affect nearly 1:185,000 infants worldwide124 and 1:200,000 

infants in the United States. Whereas its occurrence rate is relatively higher in 

Mennonite populations, with a frequency of 1:350 live births; in the Ashkenazi Jewish 

population, it is estimated to be 1:26,000125, and in the Galician population of Spain 

with a frequency of 1:52,500 births126. This clinical condition arises due to missing 

activity (or incomplete) of branched chain alpha-keto dehydrogenase (BCKDH) 

enzyme complex, which catalyzes the second step in the BCaa catabolism pathway. 

This, leads to accumulation of leucine, isoleucine, valine and their respective alpha-

keto acids in the blood of affected infants127. 
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In the mitochondria of skeletal muscle cells, kidney, liver, and brain tissues, the BCaa 

leucine, isoleucine and valine are reversibly converted to KIC, KMV and KIV 

respectively, by aminotransferases (BCAT), with the formation of glutamate from alpha 

keto-glutarate (fig: 8). Further, these alpha-keto acids are catalyzed by branched-chain 

alpha-keto dehydrogenase enzyme complex (BCKDH) to isovaleryl, or isobutyrl Co-A, 

which are degraded to acetyl Co-A and intermediates, and fed to Kreb's cycle128. The 

BCKDH is located in the inner mitochondrial membrane along with pyruvate 

dehydrogenase and alpha-keto dehydrogenase in a super complex. It consists of E1: 

alpha-keto dehydrogenase (α and β), E2: dihydrolipoyl transacylase, and E3: 

dihydrolipoamide dehydrogenase subunits119,123. Its activity is further reported to be 

tightly regulated by BCKDH phosphatase and kinase. E1 decarboxylates alpha-keto 

acids in the presence of thiamine pyrophosphate, E2 catalyzes the transfer of acyl 

group from E1 to CoA and E3 re-oxidizes and regenerates the lipoic acid residue of 

E2, using FAD as a cofactor. E1α, E1β and E2 enzymes are encoded by BCKDHA, 

BCKDHB and DBT genes, respectively. 

. 

 

Figure 8: Overview of human branched-chain amino acids' catabolism. Deficiency in the 

activity of BCKDH leads to accumulation of BCaa, i.e., leucine, valine, and isoleucine, and their 

α-keto acids KIC, KIV and KMV, respectively. The activity of BCKDHC is further known to be 

regulated negatively and positively by phosphorylation and de-phosphorylation mediated by 

BCKD kinase and PP2Cm phosphatase, respectively. BCAT: branched-chain amino acid 

aminotransferase; BCKDHC: branched-chain alpha-keto-dehydrogenase complex. This figure 

was modified from Blackburn et al., 2017128. 

 

MSUD is classified as the classic, intermediate, intermittent, thiamine responsive and 

E3 deficient  depending upon the residual activity of BCKDH. In the classical (severe) 

form of MSUD, with less than 2% of residual activity of BCKDH, the BCaa and their α-

keto acids levels are reported to increase abnormally in the blood of asymptomatic 

infants immediately after a few hours of their birth. If not treated immediately, the early 



31 
 

symptoms begin with irritability, anorexia, lethargy, encephalopathy, and apnea to 

critical cerebral edema, coma, and central respiratory failure. The onset of remaining 

MSUD types: intermediate, intermittent and the thiamine responsive types is reported 

to be variable with 3 to 30%, 5 to 20%, and 2 to 40% of residual activity BCKDH, 

respectively123.  

The treatment options include first-aid like approaches to reduce or eliminate the 

branched-chain amino acids from the diet. Techniques such as peritoneal dialysis, 

exchange transfusions, and haemodialysis are possible but not recommended for 

infants. Positive results reported for MSUD management after administering balanced 

solutions (with minus BCaa formulations, electrolytes, and calories) intravenously or 

using very slow nasogastric drips to patients127. 

Patients suffering from MSUD have profound brain damage, but the underlying 

mechanism remains elusive129. Several studies have been done on larvae of zebrafish 

and mice models to understand the neurological consequence of the disease. These 

studies report the presence of oxidative stress, brain energy deprivation, reduced 

antioxidants defences, decreased levels of glutamate, possibly contributing to aberrant 

CNS function6,130,131. Also, high levels of lipid peroxidation and protein oxidation have 

been detected in the plasma of MSUD patients132,133. In a study with C6 glioma cells, 

chemical induction of MSUD phenotype using 5 mM of BCaa(s) induced actin 

cytoskeleton re-organization causing reduction in GSH levels and increased NO 

production9. These findings increased our understanding of the underlying neurological 

impact in MSUD patients. 

 

1.7 Branched-chain amino acids 

Leucine, valine, and isoleucine are also called branched-chain amino acids (BCaa) 

since they have branched side chain (R group). Only archaebacteria, eubacteria, fungi 

and plants can synthesize BCaa needed for growth134–138. hence, they are also 

classified as essential amino acids for human beings and must be supplied in the 

diet40,41. Since mammals cannot synthesize BCaa, the BCaa pathway genes serve as 

an attractive solution and are studied extensively as potential targets for drug 

development against fungal pathogens139. During evolution, functions of the enzymes 

catalyzing different steps remained largely the same. However, localization, 

organization, compartmentalization, and regulation of the enzymes varied from 

organism to organism. For example, the BCaa pathway genes are organized in the 

form of operons in E. coli; in spinach, these genes are located in chloroplasts137, 

whereas in yeast and other fungi140, these genes are located on different 

chromosomes in the nucleus. 

BCaa accounts for 14% of the total amino acids content in the skeletal muscles. When 

genes involved in the catabolism of BCaa are disrupted, it leads to various diseases in 

humans119, which were briefly described in the above section. Thus, the study of BCaa 

metabolism holds high importance in the scientific community. 
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1.7.1 BCaa synthesis in a yeast cell 

The BCaa share the first few steps of their bio-synthesis pathway in the yeast cell, 

mainly the Ilv2, Ilv5 and Ilv3 catalyzed steps140,141. Valine and isoleucine are 

synthesized in the mitochondria from two molecules of pyruvate and ketobutyrate, 

respectively142. The intermediates KIV or KMV can also be transported outside the 

mitochondria and transaminated to valine and isoleucine by Bat2143. Inside the 

mitochondria, KIV is converted to α-IPM by the action of α-isopropyl malate synthase, 

encoded by Leu4 and Leu9, and is further transported to the cytoplasm to convert into 

leucine144. Also, KIV present in the cytoplasm can be converted to α-IPM by the short 

form of Leu4p, eventually forming leucine. In the absence of leucine in the medium, 

Leu3 acts as a transcriptional activator of the BCaa synthesis pathway145. In 

physiological or leucine replete conditions, the activation domain of Leu3 is masked 

due to its intramolecular interactions and is present in the inactive state in the 

nucleus146. The binding of α-IPM to Leu3 leads to unmasking of its activation 

domain147,148. This α-IPM-leu3 complex further acts as a positive regulator for the 

expression of target genes: BCaa pathway genes (ILV2, ILV5, LEU4, LEU1 and LEU2), 

ultimately leading to the synthesis of BCaa149. The detailed synthesis mechanism of 

the BCaa in S. cerevisiae is depicted in figure 9.  

The LEU4 and LEU9, encoding the α-isopropyl malate synthase I and II, share 83% 

sequence similarity, where the former is known to account for 80% of the total α-

isopropyl malate synthase activity in the wild-type yeast cell150. Since LEU4 mRNA 

contains two starting AUG codons, it is known to be translated in two versions, long 

and short (l and s), where l contains N-terminal mitochondrial targeting sequence 

(MTS) and thus is localized in the mitochondria and the s form devoid of the MTS is 

localized in the cytoplasm151,152. 

It is quite interesting to note that primarily leucine synthesis is compartmentalized in a 

yeast cell144. There are many explanations available in the scientific literature regarding 

the compartmentalization of leucine biosynthesis in a yeast cell. Firstly, the first 

intermediates of leucine biosynthesis, KIV and acetyl-CoA, are primarily formed (and 

probably accumulated) in the mitochondria142, making it evident for α-IPM synthase I 

and II to be present in the mitochondria as well. Secondly, the presence of two isoforms 

of α-IPM synthase (l and s) is equally intriguing. It is speculated that under conditions 

like glucose repression, anaerobic growth conditions, where the yeast cells have few 

and poorly developed mitochondria153, Leu4l, and Leu9 might not be stable. The 

presence of Leu4s in the cytoplasm can easily overtake and suffice the α-IPM synthase 

activity and the cellular needs of leucine synthesis since other leucine biosynthetic 

enzymes are also located in the cytoplasm144.  
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Figure 9: Schematic diagram showing the branched-chain amino acid biosynthetic 

pathway in S. cerevisiae. Leucine and valine are synthesized from pyruvate, and isoleucine 

is synthesized from ketobutyrate, derived from threonine. The intermediates KIV or KMV can 

be transported out of mitochondria and converted to valine and isoleucine, respectively. KIV 

can also be converted to α-IPM in the mitochondria, which is further converted to leucine in 

the cytoplasm. The blue coloured labelled are the enzymes that catalyze the different steps 

during the synthesis of the BCaa. The double arrow depicts that the respective enzymes Bat1 

and Bat2 can catalyze the reaction in both directions. The enzymes and the intermediates 

involved and formed respectively, in the BCaa pathway are as follows: Ilv1: threonine 

deaminase, Ilv2: acetohydroxy acid synthase-catalytic subunit, Ilv5: acetohydroxy acid 

reductoisomerase, Ilv3: dihydroxy acid dehydratase, Bat1 and Bat2: mitochondrial and 

cytosolic branched-chain amino acid aminotransferases, Leu4 and Leu9: α-isopropyl malate 

synthase I and II respectively where l and s represent the long and the short form of Leu4, 

Leu1: α-isopropyl malate isomerase, Leu2: β-isopropyl malate dehydrogenase, AL: 

acetolactate, DHIV: α,β-dihydroxyisobutyrate, KB: α-ketobutyrate, AHB: α-aceto α-

hydroxybutyrate, DHMV: α,β-dihydroxy β-methyl valerate, KIV: α-keto-isovalerate, KMV: α-

keto β-methyl valerate, α-IPM: α-isopropyl malate, β-IPM: β-isopropyl malate and KIC: α-keto-

isocaproate. Mpc1 and Oac1: mitochondrial pyruvate carrier and oxaloacetate carrier1 are the 

membrane transporters for pyruvate and α-IPM, respectively.  

1.7.2 BCaa and Diabetes 

The elevated blood plasma levels of BCaa and phenylalanine and tyrosine, aromatic 

amino acids, are predicted to be the early-biomarkers for type-2 diabetes (T2D) with 

more pronounced correlation found in men compared to women4,5,154. The exact 

mechanism remains elusive but is investigated to be partly mediated via insulin 

resistance with ramifications such as hyperglycemia, oxidative stress and 

dyslipidaemia155–157. Interestingly, a plant-based diet has shown tremendous results in 

decreasing the blood plasma levels of the BCaa compared to the animal protein-based 

diet in humans158–160. Furthermore, intake of a low protein (LP) diet not only reduces 

the plasma BCaa levels but also promotes metabolic health and extends lifespan in 

mice when supplemented from an early development stage161–163.  Western diet, which 
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is rich in sugars, calories and saturated fats, is investigated to be linked with high rates 

of obesity and Type- 2 Diabetes (T2D). It is also shown that reducing the dietary levels 

of either total proteins (all amino acids) or specifically BCaa, can reverse the 

pathological conditions of the diet-induced obese mice by transiently inducing the 

expression of FGF21 (Fibroblast growth factor 21) and increasing the energy 

expenditure. This study strongly elicited that it was possible to circumvent the 

complications associated with metabolic diseases such as T2D by reducing the intake 

of the BCaa while maintaining adequate nutrition (without calorie restriction) in the 

diet164. In conclusion, all these data indicate relevance of BCaa in sustaining metabolic 

health of an individual. 

So far, many of the studies have investigated the physiological impact of the three 

BCaa. However, there is recent evidence emerging which states that the three BCaa 

might have different effects on the metabolic health of an individual. A recent study 

found that restricting the dietary valine and isoleucine content, but not leucine, is 

sufficient and necessary to recapitulate the beneficial effect of the LP-based diet to a 

diet-induced obesity mice model, where the latter has a more pronounced effect. They 

also found that increased content of isoleucine in the diet promotes increased body-

mass index in humans, whereas restricting isoleucine in the diet promotes FGF21 

expression, browning of the white adipose tissues and the energy expenditure165. 

1.8 Effect of auxotrophies in yeast research  

There are several examples in the literature that talk about correlation between the 

growth phenotypes and the choice of auxotrophic marker used to delete the yeast 

gene. Meaning that the resulting phenotypes are mediated not due to abolishment of 

gene function per se but rather is dependent on the background of the antibiotic casette 

or auxotrophic marker gene used to delete the gene166. In the latter case, the 

secondary effects are usually caused by limitation of the auxotrophically required 

nutrients in the growth medium. For example, cells deleted for ATH1, the vacuolar acid 

trehalase, exhibited increased growth rate and biomass yields, which were not due to 

deletion of ATH1 but rather due to introduction of URA3 for generating the ATH1 

deletion strain167. Further, in cells deleted for PDA1, the E1α subunit of pyruvate 

dehydrogenase complex (PDH), along with the abolishment of PDH activity, the 

deletion strain had an increased rate of petite colonies (rho0) and experienced a slow 

growth rate which was rescued by increased leucine supplementation in the growth 

medium168. When grown in the presence of 80 mg/mL of leucine concentration in the 

medium, leucine limited or auxotroph cells grew not only slower (arrested at late G1 

cell cycle stage) but also exhibited altered cell and vacuolar morphology169. It was also 

shown that the expression of SPT15-300 dominant mutant allele in BY4741, the 

leucine auxotrophic yeast strain, enhanced its growth on the defined medium with low 

leucine levels and improved its ethanol tolerance compared to the wild type with 

SPT15. It was found to be associated with enhanced leucine uptake and or its 

utilisation170,171. It was observed that the growth defect of ero1-1 leu2 strain could be 

rescued by supplementing increased leucine concentration (180 mg/mL) in the 

synthetic growth medium or by transforming the strain with wild type LEU2172. 

Restoring the missing LEU2 in strain background leu2Δura3Δhis3Δ 

or leu2Δura3Δmet15Δ, but not in strain background of leu2Δura3Δhis3Δmet15Δ, 



35 
 

resulted in a positive effect on the growth rate of the auxotrophic strains173. All these 

studies suggest that auxotrophic markers, especially leucine auxotrophy, have a 

profound impact on the growth of yeast cells in undefined medium conditions. Extreme 

precautions should be employed while designing/choosing growth medium to avoid the 

growth artefacts. The background differences due to auxotrophic markers have a 

profound impact on the gene expression and metabolism, where the genetic 

background affected 83% of the coding genome. They still retained a strong metabolic 

signature even though the normal growth rate is restored by enough supplementation 

of auxotrophically required nutrients174. Rather prototrophic yeast strains should be 

employed instead of auxotrophic yeast strains to eliminate the biases in the metabolic 

and physiological studies until the auxotrophy is the subject of study173,175.   

Proteins account for 40% of the total dry cellular weight in a yeast cell, wherein leucine 

accounts for 10% of the total protein biomass175. It is shown experimentally that at least 

a minimum concentration of 240 mg/mL leucine in the growth medium is required to 

support the growth (with maximum cell density) of S. cerevisiae leucine auxotrophs176. 

Later Dijken et al. proposed to use nearly 25% extra amounts of experimentally derived 

concentrations of auxotrophically required nutrients to grow auxotrophic yeast cells in 

the synthetic growth medium. For example, 400 mg/mL of leucine must be 

supplemented in the growth medium for cultivating leucine auxotrophs to rule out the 

leucine limitation case and avoid non-specific results177.  

Effects of leucine auxotrophy have also been extensively studied. It is known that 

auxotrophic yeast strains grew slowly on synthetic complete (SC) medium 

(supplemented with 76 mg/L of all 20 amino acids) in comparison to YPD medium. 

Further, this growth phenotype could be rescued upon overexpression of LEU2, BAP2 

or TAT1 genes in auxotrophic yeast cell178. It was shown that defective leucine 

transport was the underlying cause for slow growth of auxotrophic strains, which could 

be overcome by either re-establishing functional leucine biosynthetic pathway or 

enhancing the leucine transport across the plasma membrane178. Further, Gomes et 

al. showed that starvation of essential amino acids (the auxotrophy complementing 

amino acids) leads to the production of oxidative stress in S. cerevisiae, premature 

ageing phenotypes, shorter life span, and G2/M cell cycle arrest of cells with 

appearance of sub population with G0-G1 phase. The results indicated that cells 

experienced cell death possibly due to starvation of essential amino acids, especially 

leucine, which was successfully rescued by five times supplementation of the essential 

amino acids in the growth medium179.  

It is quite well established that different auxotrophies, particularly leucine auxotrophy, 

has a strong impact on the transcription and metabolism of the auxotrophs174. In the 

current study, similar findings are observed where growth of BY4742 S. cerevisiae 

strain was severely impacted upon increase in the amino acid content in the growth 

medium. Further, this growth phenotype is rescued by either re-establishing the 

functional leucine biosynthetic pathway in BY4742 (leucine auxotroph) or increasing 

leucine in proportion to the increased amino acid content in the growth medium. 

Though, the initial findings spoke for the leucine limitation case underlying this 

observation. This assumption was also ruled out after studying the intracellular amino 

acids levels. Therefore, I decided to investigate the mechanistic underpinnings of this 

slow growth phenotype in detail as a part of my doctoral study. 
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1.9 Aim of the study 

We observed that the growth of the lab wild type S. cerevisiae strain- BY4742 (MATα 

his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) was impacted in response to increase in the total amino 

acid concentration in the growth medium. This fascinating observation intrigued me to 

study the molecular mechanistic basis underlying the slow growth phenotype as part 

of my doctoral study in more detail. The following objectives are addressed during this 

study. 

 

a) To investigate whether the observed amino acid dependent growth phenotype 

is common to all budding yeast strains. 

 

b) To investigate whether the auxotrophic background of the yeast strain is 

relevant for this growth phenotype.  

 

c) To address the plausible role of leucine limitation as the underlying cause of 

the observed phenotype by studying the role of specific AATs and interrogating 

the intracellular amino acids pool. 

 

d) Specifically, which amino acid(s) from amino acid dropout mix contribute to 

slow growth of BY4742 in the presence of increased amino acid in the growth 

medium. 

 

e) To study activation of the BCaa pathway under growth conditions with 

increased amino acid content in the media and look for its upstream partners. 

 

f) To study the effect of increased amino acid content in the growth conditions on 

transcriptional and translational level, cell division and possibly at the oxidative 

stress handling capacity of the cell. 

 

g) To investigate the potential causative key intermediate leading to onset of these 

phenotypes. 
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2 MATERIALS AND METHODS 

2.1 Molecular and Cell Biology Methods  

2.1.1 Plasmid DNA isolation from E.Coli 

MH1 strain of E. coli was cultivated in liquid LB medium (Sigma Aldrich) or on LB agar 

plates (or plus 100 µg/ml ampicillin). Plasmids that were used in the study were 

transformed into E. coli using the standard bacterial transformation protocol. A single 

colony from transformation plates was inoculated in LB (supplemented with 100 µg/ml 

ampicillin) medium and incubated overnight at 37°C, 230 rpm. The next day, cells from 

3 mL of culture were harvested and processed with NucleoSpin Plasmid-Kit 

(Macherey-Nagel) kit using the instructions as described by the manufacturer. The 

concentration and purity of isolated plasmid DNA were further checked using the 

Nanodrop. 

 

2.1.2 Yeast media and growth 

During this study yeast cells were cultured either in complex, rich YP(D) medium or 

synthetic, defined Hartwell Complete (HC) medium (or selective medium) depending 

upon experimental requirements. The detailed recipes of the medium (or plates) are 

as follows: 

YP media: The respective amount of 1% (w/v) Yeast extract, 2% (w/v) Peptone was 

weighed, dissolved in water (pH adjusted to 5.5 using HCl), and was autoclaved. 2% 

(w/v) sugar (D: Dextrose, G and E: glycerol and ethanol, Gal: Galactose: usually made 

as 40% (w/v) stock solutions) was added as a carbon source in the autoclaved media. 

For having YP-plates, 2% (w/v) of agar was added to the YP media before autoclaving, 

and afterwards, the mix was poured in petri plates under sterile conditions. For 

antibiotics YPD plates: 100 µg/mL cloNAT, 150 µg/mL G418, or 200 µg/mL 

Hygromycin as final concentration were supplemented in the YPD media before 

pouring plates.  

Hartwell Complete (HC) media: This media was initially used in Lee Hartwell's lab and 

later used by various yeast biology labs worldwide. It comprises sugar as a carbon 

source, Yeast nitrogen base as the nitrogen source, amino acid dropout mix. 

Nucleotides (Uracil and Adenine) and few amino acids (Lysine, Leucine, Tryptophan, 

and Histidine) are added from the top, which could be subsequently dropped out from 

the medium for plasmid selection. Amino acid dropout mix consists of 10 amino acids 

(listed in the table below) is referred to as amino acid mix (AAM) in this study.  
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Table 2: Composition of the dropout mix. Amino acids were weighed, added to 1 litre of 

sterile water, heated up to 70°C, and then filter sterilized. 

 

 

 

 

 

 

 

 

 

Yeast nitrogen base (YNB): 67 g of YNB mix was weighed, as stated by the supplier 

for making 10X stock. 

Glucose solution: 40% (w/v) 

Uracil solution: 1 g/L 

Adenine solution: 1 g/L 

Lysine solution: 10 g/L 

Tryptophan solution: 10 g/L 

Leucine solution: 20 g/L 

Histidine solution: 10 g/L 

All above components were weighed accordingly and were added to 1 litre of distilled 

water separately, sterile filtered and stored at RT.  

 

Table 3: Recipe of Hartwell Complete media. 

 
 

 

 

 

 

 

 

 

10 x Dropout mix (AAM) 10 x (g/L) 

L-Methionine 0.2 

L-Tyrosine 0.6 

L-Isoleucine 0.8 

L-Phenylalanine  0.5 

L-Glutamic acid  1.0 

L-Threonine 2.0 

L-Aspartic acid 1.0 

L-Valine 1.5 

L-Serine  4.0 

L-Arginine 0.2 

Hartwell Complete Media (1 L) mL 
10 x Dropout mix (AAM) 

 100  

10 x YNB 100 

40% Glucose  50 

Uracil 35 

Adenine 20 

L-Lysine 12 

L-Tryptophan 8 

L-Leucine 4 

L-Histidine  2 

Sterilized H2O 669 
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For having HC-plates (or selection), 2% (w/v) of agar was added to the water and 

autoclaved separately. Afterwards, all the above sterile-filtered components were 

added, and the mix was stirred and poured into Petri plates under sterile conditions. 

Depending on the selection marker, amino acids were left out accordingly to have HC 

(selective medium) plates for plasmid selection. 

Yeast strains were freshly streaked from glycerol stocks after three weeks on YPD 

agar plates. Cells were inoculated from plates either into YPD or HC (or minus amino 

acid for selection) media and cultivated at 30°C, 140 rpm. All the plates were incubated 

at 30°C. 

2.1.3 Yeast transformation 

In order to transform the yeast cells with the required plasmid, the standard lithium-

acetate based transformation protocol was followed, which is described below180. Cells 

(800 µL) from an overnight yeast culture were harvested by centrifugation (3000 rpm, 

1560 x g, 3 min at RT) and were subsequently washed with 1 mL of miliQ H2O. The 

pellet was redissolved in 100 µL of one-step buffer (0.2 M lithium acetate, 40% PEG 

3350 (50% w/v), 100 mM DTT). Then, 5 µL of 10 mg/mL single-stranded salmon sperm 

DNA (already heat-denatured at 96°C for 10 min and cooled on ice) and 1 µL of ~500 

ng/µL plasmid DNA were added to the mix. The transformation mix was vortexed briefly 

and was incubated at 42°C for 30 min. Further, cells were harvested (3000 rpm, 1560 

x g, 3 min at RT) and resuspended in 150 µL of miliQ H2O and plated on appropriate 

selective medium plates. The plates were incubated at 30°C for 2-3 days. 

 

Table 4: Plasmids transformed in BY4742 and mutant strains during this study. 

 
 

S. No. Plasmid Auxotrophic markers Source 
1. p415 TEF empty LEU2 Dominik et al.181; ATCC 87366 

2. p416 TEF empty URA3 Dominik et al.181; ATCC 87368 

3. pHLUK HIS3, LEU2, URA3, LYS2 Muelleder et al.182; (Addgene # 64181) 

4. pHUK HIS3, URA3, LYS2 Muelleder et al.182; (Addgene # 64183) 

5.  pHluorin HIS3 Miesenboeck et al.183; Maresová et al.184 

 

 

For homologous recombination and for integrating the DNA cassette at the desired 

location, cells (~2-3 mL) from exponential phase yeast culture were harvested, 

washed, and resuspended in 200 µL of One-step buffer. 10 µL of ss-DNA and 10 µL 

of PCR amplified cassette (instead of plasmid DNA) were used following the same 

procedure described in the above paragraph. Next, the appropriate volume of 

transformed mix or cells were plated as 90% and 10% on YPD agar plates containing 

the suitable antibiotics for selection.  
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2.1.4 Drop dilution assay 

Yeast cells were cultured in HC complete medium (or selective medium for 

transformed cells) with a normal amount of amino acid dropout, i.e.,1 X AAM, overnight 

at 30°C, 140 rpm and diluted 1:10 in fresh medium next morning and further incubated 

for 3-4 hours till the cells reach the logarithmic growth phase. Further, 2 O.D.600 units 

of cells were harvested, washed, and resuspended in 1 mL of ddH2O. Cells were five-

fold serially diluted and spotted in the form of drops of 5 µL on agar plates which were 

incubated for 42 hours at 30°C. The first drop in every row corresponded to the number 

of cells from the culture with 2 O.D.600 units, and the following drops were derived from 

its fivefold serial dilutions. All experiments were performed at least three times (or 

unless mentioned) using independent cultures made on separate days. 

2.1.5 Growth curve assay 

Unlike drop dilution assay, growth curve assay is a quantitative assay that can also be 

used to determine the doubling rate of yeast cells under different conditions. For this 

assay: yeast cells were cultured overnight at 30°C, 140 rpm in the liquid medium 

(Hartwell Complete or selective medium) with the usual amount of amino acid dropout, 

i.e.,1 X AAM. 1 O.D.600 units of cells were harvested, washed, and resuspended in 1 

mL of ddH2O. Further, 90 µL of fresh HC medium and 10 µL of above cell suspension 

were added in 96 well plates (with round bottom) to reach the starting O.D.600 0.1. The 

plate was sealed using an easy breath membrane and placed in ELx808™ Absorbance 

Microplate Reader (BioTek®, BMG Labtech). The absorbance (OD600) of the cells was 

measured after every 10 min intervals at 30°C for 72 hours, with continous shaking 

conditions. The data was exported and plotted using MS excel. All experiments were 

performed at least three times using independent cultures made on separate days. 

The graphs represent the average of three independent repeats, where error bars 

represent the standard deviation. 

2.1.6 Halo assay 

Halo assay is used to study the effect of different chemicals on the growth of yeast 

cells. In the current study, I performed a Halo assay to study the impact of the 

exogenous addition of H2O2 on the growth of yeast cells under different growth 

conditions. The radius of the Halo formed elucidates the sensitivity or resistance of the 

strain in response to the addition of the chemical on the filter disc (9mm, Carl Roth, 

Germany) in the centre of the plate. The different yeast strains were cultured overnight 

in HC (or selective medium to maintain the plasmid selection), diluted the next day, 

and grown to log phase, cells were harvested and washed. Subsequently, 100 μL of 

cell suspension containing 0.001 O.D.600 units of cells were spread uniformly using the 

sterile glass beads on plates containing either normal [1 X AAM] or double [2 X AAM] 

amount of amino acid dropout mix, supplemented with 2% glucose as carbon 

substrate. 10 μL of 6 M H2O2 was added to the filter disc kept in the middle of the plate. 

The plates were scanned following incubation at 30°C for two days. 
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2.1.7 Polymerase chain reaction (PCR) 

PCR thermocycler was used to amplify the DNA fragments, which was further used as 

a template for homologous recombination or to confirm the site-specific integration of 

the DNA cassettes.  

Standard PCR using S1 and S2/S4 primers 

This PCR was used to amplify NatNT2 or KanMX4 or hphNT2 cassette using either S1 

and S2 primers (resulting in gene deletion) or S1 and S4 primers (resulting in N 

terminal tagging or promoter exchange). S1, S2 and S4 primers were synthesized as 

described by Janke et al.185. For one reaction of PCR (50 µL):  10 µL of 5 X buffer, 

1.25 µL of each 1:10 diluted primers (100 µM), 1.25 µL of dNTPs (10 mM), 1-1.5 µL of 

pDNA (~100 ng), 0.45 µL of Phusion polymerase, MiliQ H2O up to 50 µL were taken. 

For amplifying the NatNT2 cassette, GC rich buffer was used, and for KanMX4 and 

hphNT2 cassette, the HF buffer was used. Gene-specific PAGE purified primers used 

are enlisted in the table. The standard PCR program mentioned in the table followed 

was used. Further, PCR amplified products were analyzed using an agarose gel 

electrophoresis run.   

Confirmation PCR 

This PCR was used to confirm the integration of the above-integrated cassettes at the 

specific gene locus either using gene-specific confirmation primers (forward and 

reverse) or one of the gene-specific primers (forward or reverse) along with the 

integrated cassette confirmation primer (reverse or forward). The primers are enlisted 

in the table. The standard PCR program mentioned in the table followed was used with 

30 X cycles and 5 mins final elongation time. For one reaction of PCR (25 µL):  5 µL of 

5 X buffer, 0.75 µL of each 1:10 diluted primers (100 µM), 0.75 µL of dNTPs (10 mM), 

1-1.5 µL of DNA (~100-200 ng),  0.25 µL of Phusion polymerase, MiliQ H2O up to 25 

µL were taken. DNA from each colony was obtained by simply heating a tip full of cells 

dissolved in 30 µL volume of 0.2% SDS in an Eppendorf tube for 10 mins at 96°C and 

centrifugation >10,000 X g for 1 min. Further, PCR amplified products were analyzed 

using an agarose gel electrophoresis run.   

Table 5: Program used in the thermocycler to amplify DNA in PCR. 

 
Temperature Time Cycle Number Reaction 
96°C 1 min  Initial denaturation of DNA 

96°C 30 s  DNA denaturation 

55-60°C 1 min 35 X Primer annealing 

72°C 1min/kb  Elongation 

72°C 10 min  Final elongation 

4°C   Cooling 
 

The following table enlists the Primers, which were synthesized as described by Janke 

et al.185 and were used to generate the mutant yeast strains used in this study (enlisted 

in the table) by replacing the functional ORF with the desired antibiotic gene cassette 

by Homologous recombination.  
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Table 6: The primers used during the study. All the primers were ordered from Sigma 

Aldrich. S1/2/4 primers had oligonucleotides sequences upstream or downstream of specific 

genes followed by standard S1, S2, or S4 sequences as described by Janke et al.185. The 

oligonucleotides sequences "CC_FP or CC_RP" primers corresponded to sequences 100-200 

base pair upstream or downstream regions of the respective genes. 

NO. Name Sequence 5' --> 3' Comment 

P1 natNT2_CC_FP GCGCTCTACATGAGCATGCC Confirmation of Nat-Cassette insertion 

P2 natNT2_CC_RP CATCCAGTGCCTCGATG Confirmation of Nat-Cassette insertion 

P3 KanMX4_CC_FP TGATTTTGATGACGAGCGTAAT Confirmation of KanMx4 Confirmation 

P4 KanMX4_CC_RP CTGCAGCGAGGAGCCGTAAT Confirmation of KanMx4 Confirmation 

P5 hphtNT1_CC_FP GGAAGGAGTTAGACAACCTG 
Confirmation of hphNTI-cassette 
insertion 

P6 hphtNT1_CC_RP GATAAACATAACGATCTTTGTAG 
Confirmation of hphNTI-cassette 
insertion 

P7 ILV5-S1 

AACCTATTCCTAGGAGTTATATTTTTTTACCCTACCAGCA
ATATAAGTAAAAAATAAAACATGCGTACGCTGCAGGTC
GAC Deletion of ILV5 

P8 ILV5-S2 

TGATGTTGCAAAAATTCCAAGAGAAAAAGTTTCCAGCA
CTTGATATTATTTTCCTCTTTAATCGATGAATTCGAGCTC
G Deletion of ILV5 

P9 ILV5_CC_FP GGCTTTTACACCCAGTATTTTCCCTTT Confirmation of ILV5 deletion  

P10 ILV5_CC_RP CAGAAAAACAGGGCTTCCTAGTGTACA Confirmation of ILV5 deletion  

P11 ILV2-S1 
CCCTTTGAGCTAAGAGGAGATAAATACAACAGAATCAA
TTTTCAAATG CGTACGCTGCAGGTCGAC Deletion of ILV2 

P12 ILV2-S2 
GTCTGCATTTTTTACTGAAAATGCTTTTGAAATAAATGTT
TTTGAAATTCA ATCGATGAATTCGAGCTCG Deletion of ILV2 

P13 CC_ILV2_FP  CCCTAATTAATAATTCAGATCTACGTCACACCG Confirmation of ILV2 deletion 

P14 CC_ILV2_RP CGAGTTAAAACACACCATTTGAATACATATGCTACG Confirmation of ILV2 deletion 

P15 ILV3-S1 

GCGCCTGTAATCTTTAGTAACGGATTCTTGTATTTTTTTG
TAAACAGCCAAGAAAAAAGTAGAGATGCGTACGCTGC
AGGTCGAC Deletion (or promoter exchange) of ILV3 

P16 ILV3-S2 

GCGAACAAAAAAGATGATGGAAAAGGAGAATCTCTAT
ATATATATTCATCGATTGGGGCCTATAATGCATCAATCG
ATGAATTCGAGCTCG Deletion of ILV3 

P17 ILV3-S4 
TAGAGAATTGTCTAGATGTAGCAACTTTCGTTAACAAGC
CCATCGATGAATTCTCTGTCG Promoter exchange of ILV3 

P18 ILV3_CC_FP CTTGTATCCATTCCGTCCTCGCTGAACCC Confirmation of ILV3 deletion 

P19 ILV3_CC_RP GGCTTTAGTGGCAGCAAAGCAGAGTTAATTTCGTAG Confirmation of ILV3 deletion 

P20 LEU4-S1 

GGATTCTCACACTAGAAGTTTACTGTAGACTTTTTCCTT
ACAAAAAGACAAGGAACAATCATGCGTACGCTGCAGG
TCGAC Deletion (or promoter exchange) of LEU4 

P21 LEU4-S2 

GGAAGTAAATAAATAAGTATAGAAATAAATAGAAGCG
AATAAGTCCTGAAATACAGAAAAGTTCTTAATCGATGA
ATTCGAGCTCG Deletion of LEU4 

P22 LEU4-S4 
AGGCCGCATGCTCAGCAAGAGCAATAATACTCTCTTTA
ACCATCGATGAATTCTCTGTCG Promoter exchange of LEU4 

P23 LEU4_CC_FP GGTTCGATGTTTTCTCCTCTTGGGTCAGCC Confirmation of LEU4 deletion 

P24 LEU4_CC_RP CGGGTCACCCCACACGTATTTGGTTCAAG Confirmation of LEU4 deletion 

P25 LEU9-S1 

CGGCTTATAAGGGTCTTCTCCTTAGGATAATACTATCGG
CACATTATCATTTAGCCGCGTAGCCATGCGTACGCTGCA
GGTCGAC Deletion (or promoter exchange) of LEU9 

P26 LEU9-S2 

GCCATTTATAAATAAAAATACATATATATATAACATGAG
TAATCATAAGCTACTCCTTTCTATTAATCGATGAATTCGA
GCTCG Deletion of LEU9 

P27 LEU9-S4 
TACTAGCATGCTCAGCTAGCGCTATGAACGAATGTTTTA
CCATCGATGAATTCTCTGTCG Promoter exchange of LEU9 
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P28 LEU9_CC_FP GAATGACTCATATTTTTCCATCTCTTTCGGCCTTGCC Confirmation of LEU9 deletion 

P29 LEU9_CC_RP GGTGGGTGGGCCTGGGTAAAATGTTTCACG Confirmation of LEU9 deletion 

P30 LEU1-S1 

GCAGTCAACAAATATAAAGAATATTGAAATTGACAGTT
TTTGTCGCTATCGATTTTTATTATTTGCTGTTTTAAATCA
TGCGTACGCTGCAGGTCGAC Deletion of LEU1 

P31 LEU1-S2 

GGTGTGCTTGTCGCTGAGACACATGTTATTGACGCCAG
GTTTGGACGTTGTTTTTCACTGTCTAATCGATGAATTCG
AGCTCG Deletion of LEU1 

P32 LEU1_CC_FP GGCTTCATGAGTCGGCTTCAATAGTAGTTG Confirmation of LEU1 deletion 

P33 LEU1_CC_RP GAGGGATAATGTTGCATTTAAAGTACATGTTCC Confirmation of LEU1 deletion 

P34 BAT1-S1 

CGTTAGAATAAATCACCCTATAAACGCAAAATCAGCTA
GAACCTTAGCATACTAAAACATGCGTACGCTGCAGGTC
GAC Deletion (or promoter exchange) of BAT1 

P35 BAT1-S2 

CCTCTGAGAGGAATTCTCGTTTTTTTTTTTTGGGGGGGG
AGGGGATGTTTACCTTCATTATCATTAATCGATGAATTC
GAGCTCG Deletion of BAT1 

P36 BAT1-S4 
TGATGGAGAATTTCCCCAACTTCAAGGAATGTCTCTGCA
ACATCGATGAATTCTCTGTCG Promoter exchange of BAT1 

P37 BAT1_CC_FP GGCCCATCCGATCCATATTGCCTTCTTATGACTC Confirmation of BAT1 deletion 

P38 BAT1_CC_RP GGTCAACAATTTCAAAAAGCGTAAGAAGCCGC Confirmation of BAT1 deletion 

P39 BAT2-S1 

GACTAACTACTAAAATTTTAGAAATTTAAGGGAAAGCA
TCTCCACGAGTTTTAAGAACGATATGCGTACGCTGCAG
GTCGAC Deletion (or promoter exchange) of BAT2 

P40 BAT2-S2 
CGCTCTAGTTTTATTCTTTTTAACTTTTAATTACTTTACGT
AGCAATAGCGATACTTCAATCGATGAATTCGAGCTCG Deletion of BAT2  

P41 BAT2-S4 
TAGTTATCTTAACTTTGGAGGCGTCTAGGGGTGCCAAG
GTCATCGATGAATTCTCTGTCG Promoter exchange of BAT2 

P42 BAT2_CC_FP 
GATCCGACTCTTTTTCTTTTTGGTGTCGTTCTTCTATGTC
CG Confirmation of BAT2 deletion 

P43 BAT2_CC_RP GCTTCTAAGGTATGTATGGGCCCTTTTCTATCCGCGC Confirmation of BAT2 deletion 

P44 GCN4-S1 
CTAAAGTTTTGTTTACCAATTTGTCTGCTCAAGAAAATA
AATTAAATACAAATAAAATGCGTACGCTGCAGGTCGAC 

Deletion (or promoter exchange) of 
GCN4 

P45 GCN4-S2 
CGTTATACACGAGAATGAAATAAAAAATATAAAATAAA
AGGTAAATGAAATCAATCGATGAATTCGAGCTCG Deletion of GCN4 

P46 GCN4-S4 
CCATTGGATTTAAAGCAAATAAACTTGGCTGATATTCGG
ACATCGATGAATTCTCTGTCG Promoter exchange of GCN4 

P47 GCN4_CC_FP  GTTACCAATTGCTATCATGTACCCGTAGAA Confirmation of GCN4 deletion 

P48 GCN4_CC_RP  CCTAACCAGTAAATACCAGAACATACGGCAG Confirmation of GCN4 deletion 

P49 ECM1-S1 
AGCTTGCCATAAAATTAGGGAAATTTTTACTCACAATAT
GCGTACGCTGCAGGTCGAC 

Deletion (or promoter exchange) of 
ECM31 

P50 ECM1-S2 
GTTTTTTTCCCTATGCAGTGATTTTTATCTATATATTTTAA
TCGATGAATTCGAGCTCG Deletion of ECM31 

P51 
ECM31-S4 

ATCGCTTAGAGGAGGTGCATAATTGTCTTTTCATTATAT
TCATCGATGAATTCTCTGTCG Promoter exchange of ECM31 

P52 ECM1_CC_FP CTCTTACAGTTGCTCGATGG Confirmation of ECM31 deletion 

P53 ECM1_CC_RP ATACAATTCGGGTTCCTACC 
Confirmation of ECM31 deletion 

P54 CIR2-S1 
TAAGCTAGACAGGAAAATCCACTCTGGGAAAGGGAAA
ATGCGTACGCTGCAGGTCGAC Deletion (or promoter exchange) of CIR2 

P55 CIR2-S2 
ATGAATAAAATAATTAAATAAATAATGAATCCTGTGATT
AATCGATGAATTCGAGCTCG Deletion of CIR2 

P56 
CIR2-S4 

TTCGGATCCCTCTAATTAAGTTCTCGTTAGTGAACTTAA
TCATCGATGAATTCTCTGTCG Promoter exchange of CIR2 

P57 CIR2_CC_FP CTAAACCGTTAGAGGTGGAC Confirmation of CIR2 deletion 

P58 CIR2_CC_RP AATATGCCGTACAAACTTGC Confirmation of gene deletion of CIR2 

P59 AIM45-S1 
CTACCATTAACGGTAAAGCAGCTAATTGTTAATTTCTAT
GCGTACGCTGCAGGTCGAC 

Deletion (or promoter exchange) of 
AIM45 
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P60 AIM45-S2 
GCGAAGAGATGAATATATTTAGAAGTTAAGAATTTATT
TAATCGATGAATTCGAGCTCG Deletion of AIM45 

P61 
AIM45-S4 

CCTTGCTAGCTCTAGGCAAGACAGCAGCCAATGATTTA
AACATCGATGAATTCTCTGTCG Promoter exchange of AIM45 

P62 AIM45_CC_FP ATGCTTTACATGGATTGAGC Confirmation of gene deletion of AIM45 

P63 AIM45_CC_RP TGTATTATTGGTGCATCCTG Confirmation of gene deletion of AIM45 

P64 LEU2-S1 
ACTAAAGGGAATGGTCAGATCATCAGGCCAACGGCAA
ATGCGTACGCTGCAGGTCGAC Deletion of LEU2 

P65 LEU2-S2 
AACATTTTGATGGACAATGAATTTCTCTAATTTTAACTCA
ATCGATGAATTCGAGCTCG Deletion of LEU2 

P66 LEU2_CC_FP CACTTGCCAGTAAGTGATTG Confirmation of LEU2 deletion 

P67 LEU2_CC_RP TGATCGAGAACATATTGAAGG Confirmation of LEU2 deletion 

P68 ILV1-S1 
GCCACATTTAAACTAAGTCAATTACACAAAGTTAGTGAT
GCGTACGCTGCAGGTCGAC Deletion of ILV1 

P69 ILV1-S2 
AAGTTGTTGCGTAAATTTATAAAGTAAATTGTCGGTTTT
AATCGATGAATTCGAGCTCG Deletion of ILV1 

P70 ILV1_CC_FP CCTTTTCCTGACTACCAAGAC Confirmation of ILV1 deletion 

P71 ILV1_CC_RP ACATGGCTATGTGGAAGAAG Confirmation of ILV1 deletion 

P72 ELM1-S1 
TTTGAACGCCAGGTTAACAATAATTACTTAGCATGAAAT
GCGTACGCTGCAGGTCGAC 

Deletion (or promoter exchange) of 
ELM1 

P73 ELM1-S2 
CTAACCCAATCCGACAGATATCATCCTGTAGTTTCATCT
AATCGATGAATTCGAGCTCG Deletion of ELM1 

P74 ELM1-S4 
CCCATTCCGGAATTAATGTCGGTATAAGCTGTCGAGGT
GACATCGATGAATTCTCTGTCG Promoter exchange of ELM1 

P75 ELM1_CC_FP  TCGAGGAACTTACTTGATCC Confirmation of ELM1 deletion 

P76 ELM1_CC_RP  CAATTTACTTCCGCGATTTC Confirmation of ELM1 deletion 

P77 IML1-S1 
GAAATAACTCAGCACTGACAAGGGACACTTTTTAAGGA
TGCGTACGCTGCAGGTCGAC Deletion (or promoter exchange) of IML1 

P78 IML1-S2 
TACTTTGTGAAGAAACTCATCCATGTCATGGGGCTACTC
AATCGATGAATTCGAGCTCG Deletion of IML1 

P79 IML1-S4 
AAGAAATTGGTCTTTGTTTCTTCCCATGCAATTTAGCGA
ACATCGATGAATTCTCTGTCG Promoter exchange of IML1 

P80 IML1_CC_FP  TGGGGAAGGGTACTAGATTC Confirmation of IML1 deletion 

P81 IML1_CC_RP  CCATTGGAATCTGTCAAGTC Confirmation of IML1 deletion 

P82 SIT4-S1 
AAGCTCAAAAACATCCATAATAAAAGGAACAATAACAA
TGCGTACGCTGCAGGTCGAC Deletion (or promoter exchange) of SIT4 

P83 SIT4-S2 
TTTTTATTCGTCGAGTTAGGGAGGGCATGCCGTCGTGTT
AATCGATGAATTCGAGCTCG Deletion of SIT4 

P84 SIT4-S4 
TCTTTATTGTTTCAAGCCATTCGTCGGGGCCTCTAGATA
CCATCGATGAATTCTCTGTCG Promoter exchange) of SIT4 

P85 SIT4_CC_FP  CTTTCTGCGGGTAATAAGTC Confirmation of SIT4 deletion 

P86 SIT4_CC_RP  CTCCCGAGTGTTGATTAAAG Confirmation of SIT4 deletion 

P87 LEU3-S1 
CAACCTGCCTCAAGTAAAAATCGCTTCGTAACATTAATA
CAAATTCTTTTTGCAATTATGCGTACGCTGCAGGTCGAC Deletion (or promoter exchange) of LEU3 

P88 LEU3-S2 

CATTACATAACATTTTTTCGAGGGTAAGTAAACATTACG
CAAAAAAAGAAAAGGACTTTAATCGATGAATTCGAGCT
CG Deletion of LEU3 

P89 LEU3-S4 

TTCACTATGGCTCATTTCACTTCCGGACTGTGAAGTCGC
CACAAAATCTGATCTTCCTTC’CATCGATGAATTCTCTGT
CG Promoter exchange of LEU3 

P90 LEU3_CC_FP  GACTCGCTGCGTAAAACCTCTCTTC Confirmation of LEU3 deletion 

P91 LEU3_CC_RP  GTGAGCGCTTACGAATCTTCGC Confirmation of LEU3 deletion 
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Table 7: The yeast strains used during the study. The wild-type strains of S. cerevisiae 

used were obtained from the resource of the Biochemistry Department, University of Saarland. 

The mutant strains were obtained by homologous recombination in BY4742 background during 

this study.  

Prototrophic strains 

CEN.PK113-1A  

CEN.PK113-7D  

SGA query 
Matα his3∆0 leu2∆ lys2+/lys2+ met15∆ ura3∆  
can1::STE2pr-spHis5 lyp1::STE3pr-LEU2 

D273-10 b  

Auxotrophic strains Genotype 

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

YPH499  
MATa ura3-52 lys2-801_amber ade2-101_ochre  
trp1-Δ63 his3-Δ200 leu2-Δ1 

W303 
MATa/MATα {leu2-3,112 trp1-1 can1-100 ura3-1  
ade2-1 his3-11,15} [phi+] 

  
The following mutant strains were made by  
homologous recombination in  
BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) background  

Mutants Genotype 

∆ilv1 ILV1:: HphNTI 

∆ilv2 ILV2::natNT2 

∆ilv5 ILV5::natNT2 

∆ilv3 ILV3::natNT2 

Δleu4 Δleu9 LEU4::KanMx4 LEU9::HphNTI 

Δleu1 LEU1::HphNTI 

∆leu3 LEU3::natNT2 

Δbat1 BAT1::HphNTI 

∆bat2 BAT2::kanMX4 

∆ecm31 ECM31::natNT2 

∆aim45 AIM45::natNT2 

∆cir2 CIR2::natNT2 

Δelm1 ELM1:: natNT2 

∆gcn4 GCN4::natNT2  

∆sit4 SIT4::natNT2 

∆iml1 IML1:: KanMX4 

∆agp1 AGP1::natNT2 

∆gap1 GAP1::natNT2 

∆bap2 BAP2::natNT2 

ILV3 OE KanMX4-pTEF ILV3 

LEU4 OE KanMX4-pTEF LEU4 

LEU9 OE KanMX4-pTEF LEU9 

BAT1 OE natNT2-pTEF BAT1 

BAT2 OE KanMX4-pTEF BAT2 

ECM31 OE natNT2-pTEF ECM31 

AIM45 OE KanMX4-pTEF AIM45 

CIR2 OE KanMX4-pTEF CIR2 



46 
 

 

 

 

 

 

 

2.2 Biochemistry Methods 

2.2.1 Whole-cell Glutathione (GSH/GSSG) analysis  

This assay was developed by Biswas et al.186 and modified by Morgan et al.187 to 

determine whole-cell GSSG/GSH levels in yeast. Total glutathione (GSX) and oxidized 

glutathione (GSSG) levels were measured using a simple DTNB (5,5′-dithio-bis(2-

nitrobenzoic acid or Ellman's reagent) recycling assay. This assay works on the 

principle that two molecules of GSH react with DNTB, forming free TNB chromophore 

(which absorbs at 412 nm) and TNB-GS molecule recycled back to GSH and TNB via 

the action of Glutathione Reductase (GR) in the presence of NADPH. The rate of 

formation of yellow-coloured TNB in the reaction (linear range for change in the 

absorbance nm min-1 is convenient to calculate) is linearly proportional to the 

concentration of GSH present in the sample. 

The detailed method is summarized as follows. Yeast strains (or transformed) were 

inoculated (using a preculture) and cultured overnight in liquid medium (Hartwell 

Complete or selective medium) with normal and double amount of amino acid dropout, 

i.e.,1 X AAM or 2 X AAM, at 30°C, 140 rpm overnight until cells reached the late 

exponential growth phase (O.D.600 in the range of 3-3.5). The next day, 50 O.D.600 units 

of cells were harvested, washed, resuspended in SSA-HCl buffer (1.3% w/v 

sulfosalicylic acid, 8mM HCl), and cells were opened using 0.5 mm beads and 

mechanical shearing. The lysate collected after cell debris removal via centrifugation 

(3000 rpm, 1560 x g, 1 min at RT) was further incubated for 15 min on ice (for 

precipitating proteins) and centrifuged (>16,000 x g, 15 min at 4°C) to obtain a clear 

cell lysate (it was carefully harvested from middle of the organic phase to another fresh 

Eppendorf tube). For measuring GSSG in the samples, 100 µl of this cell lysate and 

the known GSSG standards (also made in SSA-HCl buffer) were further incubated with 

2 µl of Vinyl pyridine and 40 µl 1 M MES/TRIS buffer (pH 7.0) for 60 mins with 

intermittent vortexing to slowly alkylate the reduced glutathione (GSH) such that only 

the GSSG present in the sample could be analyzed. Meanwhile, for determining the 

total whole-cell glutathione concentration (GSX) in the sample, the above lysate was 

diluted 1:100 in KPE buffer (100 mM K2HPO4, 5 mM EDTA, pH 7.5 set by the addition 

of 100 mM KH2PO4) and was further used.  

20 µl volume of samples (GSH or GSSG fraction) and respective known GSH or GSSG 

standard were incubated with 120 µl DNTB and NADPH mix in 96 well plates. The 

reaction started with the addition of glutathione reductase, and the rate of yellow-

coloured TNB reaction by-product was recorded. The whole-cell concentrations of 

ELM1 OE KanMX4-pTEF ELM1 

LEU3 OE natNT2-pTEF LEU3 

GCN4 OE KanMX4-pTEF GCN4 

SIT4 OE KanMX4-pTEF SIT4 

IML1 OE KanMX4-pTEF IML1 

AGP1 OE KanMX4-pTEF AGP1 

GAP1 OE KanMX4-pTEF GAP1 

BAP2 OE natNT2-pTEF BAP2 
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GSX/GSSG in unknown samples were calculated using the regression curve 

generated from the known GSH and GSSG standards. The amounts of GSH were 

further calculated by subtracting double GSSG values from GSX values since GR also 

reduces GSSG to 2 molecules of GSH. 

2.2.2 Quantification of Amino acids (intracellular amino acids or 13C enrichment 
studies): 

The different yeast strains (or transformed) were inoculated (using a preculture) and 
cultured in liquid medium (Hartwell Complete) with normal and double amount of amino 
acid dropout, i.e.,1 X AAM or 2 X AAM, at 30°C, 140 rpm overnight and were processed 
next day (O.D.600 at the time of harvest was in the range of 3-3.5) as described below. 
Also, only in the case of 13C labelled enrichment amino acids analysis, yeast cells were 
fed with 2% (w/v) of 13C labelled glucose (Cambridge Isotope Laboratories, Tewksbury, 
MA, USA) while inoculating for the main culture. 

 
For quantification of either intracellular amino acids (iAA) or 13C labelled enrichment 
amino acids studies, the fast filtration sampling method was adapted for sample 
harvesting. 4 mL (for iAA) or 12 mL (13C enrichment analysis) of cell suspension was 
very quickly pipetted from flasks to another flask equipped with filter paper (25 mm 
cellulose nitrate, 0.2 μm pore size, Sartorius, Göttingen, Germany) and vacuum pump. 
The filter membrane was also quickly washed with MiliQ water, harvested, and 
incubated with 2 mL of MiliQ water (supplemented with 220.63 µM of alpha 
Aminobutyric acid as an internal standard for quantification of iAA studies only, as 
described by Bolten et al. 188 at 100 °C for 15 min for extraction of cellular metabolites. 
The whole sampling time for each sample from harvesting till boiling took less than a 
minute. Subsequently, the cellular lysate was cooled on ice for 10 min, collected in 2 
mL Eppendorf tubes, and centrifuged at high speed 16,000 X g for 5 min at 4 °C. The 
clear lysate was carefully transferred to another fresh tube. For each test condition, at 
least three independent samples were harvested and measured. These samples were 
further processed by Dr Michael Kohlstedt (Wittman group, University of Saarland) 
using the following protocol, as part of the collaboration work.  
 
In the case of determination of intracellular amino acids, 500 µL of harvested lysate 
was directly used for injection (during injection itself, the samples were mixed with 
reagents and derivatized in an automated way) and quantified using HPLC as 
described by Wittmann et al.189. For 13C labelled enrichment amino acids analysis, the 
cell lysates were dried under Nitrogen stream, pre-derivatized, and quantified using 
GC-MS. The co-relation factor CDW = 0.50 O.D.600 × g L-1) as described for S. 
cerevisiae was used for normalizing and represent the data in µmol/CDW units190. 
 

2.2.3 RNA Sequencing 

The RNA samples were prepared from the BY4742 and ILV3 mutant strain grown on 
1 X AAM and 2 X AAM growth conditions using the procedure described below. 
Subsequent sample processing, RNA sequencing and subsequent data analysis was 
performed by Dr Kathrin Kattler (Walter's group, University of Saarland) as a part of 
collaboration work. The following protocol followed and provided by Dr Kathrin is 
quoted exactly for this thesis work and the manuscript. 
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RNA isolation 

The different yeast strains were cultured overnight, in the medium with normal and 
double amount of amino acid dropout, i.e.,1 X AAM or 2 X AAM and harvested in the 
late exponential phase the next day. 2 O.D.600 units of cells were harvested, washed, 
and snap-frozen at -80°C. Further, the cell pellet was dissolved in 1 mL of TRI Reagent 
(Zymo Research), homogenized using FastPrep homogenizer (3 cycles of 20 s, speed 
8.0 m/s) and centrifuged (highest speed, 5 min, 2°C) to obtain clear lysate. The clear 
lysate was added to the spin column provided in the kit. Further, the protocol, as 
instructed by the supplier (Zymo Research), was followed to isloate RNA from the 
above isolated cell lysate. The concentration of isolated RNA samples was checked 
using Nano-drop and was quickly frozen to -80°C.  

mRNA-seq library preparation and Next Generation Sequencing (NGS) 

cDNA synthesis was carried out based on a SMARTseq2-like protocol191 modified for 
bulk RNA sequencing. Briefly, at least 100 ng total RNA was used for reverse 
transcription with 6 cycles of cDNA pre-amplification. Libraries were prepared using 
the Nextera DNA Library Prep Kit (Illumina) with 7 cycles of enrichment PCR followed 
by 0.9 X Ampure XP Beads (Beckman Coulter) purification. Normalized libraries were 
sequenced on a HiSeq2500 (Illumina) using TruSeq SBS Kit v3 – HS Chemistry in 
single read runs with read lengths of 94 bp. 

NGS data processing 

Reads were trimmed using Trim galore! (v0.4.2) to remove 3' ends with base quality 
(http//www.bioinformatics.babraham.ac.uk/projects/trim_galore/) below 20 and 
adaptor sequences. Reads were aligned to Saccharomyces cerevisiae S288C genome 
assembly R64 using STAR192 with per sample 2-pass mapping strategy. PCR 
duplicates were detected using MarkDuplicate from Picard tools (version 1.115; 
httP//broadinstitute.github.io/picard/). Gene-wise read counts for RNA-seq data were 
estimated using RSEM193.  

RNA-seq data analysis 

Expression values were normalized as log CPM + 1 (counts per million). Genes with 
average log CPM < 0.5 were excluded. The 1000 most variable genes were used for 
Principal Component Analysis (PCA). EdgeR194 was used for the calculation of scaling 
factors and robust estimation of dispersion in order to detect differentially expressed 
genes with significance thresholds of maximal FDR adjusted p-value of 0.01 and 
minimal absolute logFC of 1. Gene ontology overrepresentation analysis was done 
using DAVID195 with at least 3 genes per GO term and p < 0.05. 

 

2.2.4 Annexin-V staining and Microscopy 

I prepared the microscopic slides (as described in the following paragraph) in the 
laboratory of Storchovà group, TU-Kaiserslautern. These slides were further 
processed for imaging and data analysis by Dr Galal Metwally as a part of the 
collaboration work.  

The different yeast strains were cultured overnight in the liquid medium (Hartwell 
Complete) with regular and double amounts of amino acid dropout, i.e.,1 X AAM or 2 
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X AAM.  The next day, 1 O.D.600 units of cells were harvested (700 X g, 3 min) in the 
late exponential phase, washed using sorbitol buffer (1.2 M sorbitol, 0.5 mM MgCl2, 35 
mM potassium phosphate, pH 6.8). Further, the pellet was dissolved in 400 µl of 
Tris/DTT Buffer (100 mM Tris/Cl, pH 9.4, 10 mM DTT) and incubated at 30°C for 15 
min (with mild shaking conditions). Afterwards, the cell suspension was centrifuged 
(700 X g, 3 min), the resultant pellet was rewashed and resuspended in sorbitol buffer 
containing Zymolase (3 mg/gm wet weight of pellet) and incubated for 30-40 mins at 
30°C (with mild shaking conditions). The incubated mix was centrifuged (100 X g, 1-2 
min), the resultant protoplast pellet was carefully washed with and resuspended in 30 
µL volume of binding sorbitol buffer (0.6 M sorbitol, 10 mM Hepes/NaOH, pH 7.4, 140 
mM NaCl, 2.5 mM CaCl2). Further, 50 µl volume of the pre-diluted Annexin-V and 
Propidium Iodide (PI) stain (Annexin-V-FLUOS staining kit, Sigma Aldrich) was added 
to the protoplast suspension. Meanwhile, incubation of this suspension mix in the dark 
for 20 mins, the wells of the microscopic slides were coated using 1:1 poly-lysine 
solution (50 mg/ml stock solution) for 20 mins and subsequent PBS (1 X) wash. 
Afterwards the incubation step, the stained cells were washed with PBS (1 X) (100 X 
g, 1-2 min) and were further incubated with 50 µl of DAPI (1 µg/ml) staining solution 
for 10 mins in the dark. Afterwards, the stained cell suspension was washed and added 
to the poly-lysine coated slides. Following incubation for 15-20 minutes in the dark, the 
wells were very carefully washed with PBS (1 X) and were sealed using coverslips. 
Further, these slides were imaged using a Zeiss inverted microscope (AxioObserver 
Z1) equipped with a CSU-X1 spinning disk confocal head (Yokogawa). Either 40X air 
or 60X oil objective lens was used to acquire images using the CoolSnap HQ camera 
(Roper Scientific), which were further processed for quantification using the Slidebook 
software, version 6.0.6 (Intelligent Imaging Innovations). For each test condition, at 
least three independent biological replicates were processed and subsequently 
imaged. 

2.2.5 Quantification of cellular metabolites  

For measuring KIV, α-IPM, Valine, and α-KG in the yeast, the cold quenching sampling 
method was employed196. The yeast strains were inoculated (using a preculture) and 
cultured in the liquid medium (Hartwell Complete) with normal and double amounts of 
amino acid dropout, i.e.,1 X AAM or 2 X AAM, at 30°C, 140 rpm overnight. 7-12 mL 
(O.D.600 of at the time of harvest was around ~ 3) of culture was quickly pipetted in the 
pre-cooled falcon tubes containing quenching buffer (95% Acetonitrile, 25 mM formic 
acid, pre-cooled at -20 °C) in the ratio of ~1:4. The appropriate amount of internal 
standard (keto caproic acid) was added to the above mix immediately. The mix was 
incubated on ice for 15 min, vortexed thoroughly in between, and was clarified of cell 
debris (15,000 x g, 4 °C, 5 min).  The supernatant was harvested, and the pellet fraction 
was further washed with supercooled deionized water, and the supernatant was 
harvested again. Afterwards, the two supernatant fractions were combined, frozen at -
80 °C. These samples were further processed by Dr Michael Kohlstedt (Wittman 
group, University of Saarland) using the following protocol, as part of the collaboration 
work. The frozen lysates were lyophilized, re-dissolved in 200 µL volume of 
resuspension buffer (100 µL MeOX + 100 µL MSTFA, 4 °C), and filtered before 
injecting to GC-MS. Quantification of the analyzed metabolites (KIV, Valine, α-KG, and 
IPM) was done using the standard curves generated from known concentration of 
these purified compounds (bought from Sigma Aldrich), which were also treated and 
injected to GC-MS like other samples. Since, the whole-cell broth (with no separation 
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of biomass and supernatant fraction) was harvested during the extraction process. 
Thus, the concentration of the cellular metabolites is representative of the intracellular 
plus extracellular fraction of metabolite. 
 

2.2.6 Translational studies  

The following experiments with puromycin incorporation, budding index, and FACS 
were performed by Dr Galal Metwally (Storchovà group, TU-Kaiserslautern) as a part 
of the collaboration work. The protocol followed by Dr Galal is described below in brief. 

Puromycin incorporation 

The different yeast strains were cultured overnight, in liquid medium (Hartwell 
Complete) with the average and double amount of amino acid dropout, i.e.,1 X AAM 
or 2 X AAM, diluted in the morning. While growing in the exponential phase, cultures 
were treated with puromycin (final con. 10 µM) for 15 min (30 min, 140 rpm). Further, 
cells equivalent to 5 O.D.600 were harvested (3000 rpm, 3 min), washed twice, and cell 
lysates were prepared for western blot. 

Flow cytometry analysis of DNA content (FACS) 

The different yeast strains were cultured overnight (30 min, 140 rpm) in liquid medium 
(Hartwell Complete) with normal and double amount of amino acid dropout, i.e.,1 X 
AAM or 2 X AAM, diluted in the morning, and were grown to mid-exponential growth 
phase for 3-4 hours. Further, cells equivalent to 1 O.D.600 were harvested (6000 rpm, 
1 min), resuspended in 1 mL of 70% (v/v) ethanol overnight. The next day, cells were 
harvested, washed, and resuspended in 250 μL FxCycle™ PI/RNase staining solution 
(Life Technologies, #F10797). The cell suspension was incubated in the dark for 30 
min at RT and then subsequently stored for 72 hours at 4°C. After 3 days, samples 
were sonicated for 20 secs at 30 % amplitude and run on an Attune™ Flow Cytometer. 
The FlowJo™ software, version 10, was used to analyze the data. A histogram of cell 
count against PI intensity was plotted, and samples were gated for single cells. The 
percentage of cells with 1C DNA and 2C DNA content, where C represents the copy 
number of DNA, were determined using the area under the histogram where for 1N: 0 
– 2.7 x 105 PI intensity and 2N: 2.7 x 105 – 4.5 to 7 x 105 PI intensity, values of area 
under the histogram were used, respectively. 
  
Budding index determination 

The different yeast strains were cultured overnight (30 min, 140 rpm) in liquid medium 
(Hartwell Complete) with normal and double amount of amino acid dropout, i.e.,1 X 
AAM or 2 X AAM, diluted in the morning, and were grown to mid-exponential growth 
phase for 3-4 hours. Further, cells equivalent of 1 O.D.600 were harvested (3000 rpm, 
3 min), resuspended in 1 mL of 70% (v/v) ethanol for 30 min, washed two times with 
PBS (1 X). These samples were used to count budded and non-budded cells in several 
random fields using a Zeiss inverted microscope (AxioObserver Z1) equipped with a 
CSU-X1 spinning disk confocal head (Yokogawa). Further, the 40X air or 60X oil 
objective lens was used to acquire images using the CoolSnap HQ camera (Roper 
Scientific), which were further processed for computing the budding index using the 
Slidebook software, version 6.0.6 (Intelligent Imaging Innovations). 
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3 RESULTS 

3.1 Growth of Saccharomyces cerevisiae in the presence of 

increased amino acid content in the growth medium 

3.1.1 The foundation stone observation 

A former student helper made this serendipitous observation where she saw the 

unexpectedly slow growth of S. cerevisiae BY4742 wild type strain using the drop 

dilution assay. It was later figured out that it resulted from an experimental mistake 

where instead of the usual amount of amino acid dropout mix, accidentally, the double 

amount of dropout mix was used to make the solid agar medium plates. This exciting 

observation raised many questions, such as why the yeast cell grows slow in response 

to the extra amino acid content in the growth medium? And what is the molecular basis 

of this phenotype? When I further increased the amounts of amino acid dropout mix by 

three times in the medium (fig: 10), it further impaired the growth of the cell. This 

observation intrigued my interest and motivated me to study and explore the 

mechanisms and underpinnings behind this observation as a part of my doctoral study. 

The straightforward question "Why is this so?" for the slower growth of the BY4742 

strain under condition with increased amino acid content in the medium became the 

foundation stone of my doctoral study.  

 

 

 

Figure 10: Increased amino acid content (AAM) in the medium severely impacts the 

growth of BY4742 yeast strain as shown by Drop dilution assay. BY4742 strain was 

cultured overnight in HC medium, diluted next day and grown to log phase, cells were 

harvested and washed, fivefold serially diluted and spotted on plates containing normal [1 X 

AAM], double [2 X AAM] or triple [3 X AAM] amount of amino acid dropout mix, containing 2% 

glucose as carbon substrate. The plates were scanned following incubation at 30°C for 42 

hours. The top black bar corresponds to the decreasing cell density from left to right. This figure 

is one of the representative examples from at least three independent experiments performed 

on different days. 
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3.1.2 The growth of auxotrophic yeast strains is severely impacted in response 

to an increase in amino acid content in the solid agar and liquid growth medium 

During this study, Hartwell Complete medium was used to grow the yeast cells. It 

consists of glucose as carbon substrate, yeast nitrogen base as nitrogen source and 

amino acid dropout mix of ten amino acids (which is represented as [AAM]). 

Additionally, four amino acids (histidine, leucine, lysine, and tryptophan) and 

nucleotides (uracil and adenine) were added separately from the amino acid dropout 

mix since they could be dropped out from the medium to maintain the plasmid 

selection. 

 

Table 8: Recipe for the liquid medium composition used during the study. 1 X AAM 

represents the exact Hartwell Complete medium recipe. However, when the amount of amino 

acid dropout mix is increased to either two or three times in the medium from its usual normal 

amount, it is represented as 2 X AAM and 3 X AAM, respectively. While making the solid agar 

plates with 1 X AAM, 2 X AAM, or 3 X AAM medium composition, 2% (w/v) agar was added to 

the water and autoclaved separately. Afterwards, all the above sterile-filtered components 

were added, and the mix was stirred and poured into petri plates under sterile conditions. 

 

Medium components 1 X AAM (mL) 2 X AAM (mL) 3 X AAM (mL) 

10 X Dropout mix (AAM) 100 200 300 

10 X YNB 100 100 100 

40% Glucose  50 50 50 

Uracil (1 g/L) 35 35 35 

Adenine (1 g/L) 20 20 20 

L-Lysine (10 g/L) 12 12 12 

L-Tryptophan (10 g/L) 8 8 8 

L-Leucine (20 g/L) 4 4 4 

L-Histidine (10 g/L) 2 2 2 

Sterilized H2O 669 569 469 

 

As the first step to gain insights into the amino acid dependent slow growth phenotype, 

I asked whether this phenotype is strain-specific or not? For addressing this question: 

The amount of amino acid dropout mix only in the Hartwell Complete medium was 

increased to double and triple amounts of its normal concentration (referred to as [2 X 

AAM] and [3 X AAM] respectively, from now onwards (refer to the table: 8)). The growth 

of seven different laboratory yeast strains were compared by performing a drop dilution 

assay on the HC agar plates. The HC plates were supplemented with either the usual 

amount (which is represented as [1 X AAM] from now onwards) or double ([2 X AAM]) 

and triple amount ([3 X AAM]) of amino acid dropout mix, respectively. The drop dilution 

assay is a qualitative growth assay. 2 O.D.600 units (where 1 O.D.600 unit is equivalent 

to 1 ml of culture with 1.5 x 107 cells) of cells were harvested from an exponential 

phase culture. The cells were washed, resuspended in 1 mL of distilled water, and 

serially diluted 1:5 with every fold dilution. 5 µL of the undiluted and these five serial 

dilutions were spotted left to right on the HC medium agar plates. These plates were 



53 
 

incubated at 30°C for 42 hours and were scanned afterwards. All yeast strains were 

observed to grew similar to each other on 1 X AAM growth condition. Except for the 

YPH499, which was observed to grow slower when harvested from exponential phase 

culture than stationary phase culture (data not shown). 

Interestingly, significant growth differences of distinct yeast strains were observed on 

the 2 X AAM growth condition as compared to their growth on 1 X AAM (fig: 11). The 

growth of three yeast strains: BY4742, YPH499, and W303, were severely impaired by 

the increase in amino acid concentration: while the growth of the other four yeast 

strains: SGA, D270-10b, CEN.PK strains were not changed. Also, further increasing 

the amounts of amino acid dropout mix to three times ([3 X AAM]) severely impacted 

the growth of BY4742, YPH499, and W303 strains whilst the growth of SGA, D270-

10b, CEN.PK strains were not affected. The striking difference in the growth pattern of 

these different yeast strains was that BY4742, YPH499, and W303 yeast strains are 

auxotrophic while SGA, D270-10b, CEN.PK strains are prototrophic in nature. The 

auxotrophic strains have few genes missing from their amino acid or nucleotide 

biosynthetic pathway, which are generally used as selection markers to maintain the 

plasmid selection. Thus, the auxotrophic yeast strains are not able to synthesize a few 

of their amino acids or nucleotides, unlike the prototrophic strains, which can 

synthesize all their amino acids or nucleotides. As the next step, I, therefore, asked 

whether one or more amino acid or nucleotide auxotrophies underlie the observed 

growth phenotype in the presence of increased amino acid content in the medium?  

 

 

Figure 11: Auxotrophic wild-type yeast strains were sensitive to increase amino acid 

content, unlike prototrophic wild-type strains in the presence of a fermentable carbon 

source. Prototrophic yeast strains (CEN.PK 113-1A/7D, SGA, and D273-10 b) were 

unaffected by increased amino acid content. In contrast, the growth of auxotrophic yeast 

strains (BY4742, YPH499, and W303) was severely impacted in the presence of glucose as a 

carbon substrate. All strains were cultured overnight in HC medium, diluted the next day, and 

grown to log phase. Cells were harvested, washed, fivefold serially diluted, and spotted on 

plates containing normal [1 X AAM], double [2 X AAM] or triple [3 X AAM] amount of amino 



54 
 

acid dropout mix, containing 2% glucose as carbon substrate. The plates were scanned 

following incubation at 30°C for 42 hours. The top black bar corresponds to the decreasing cell 

density from left to right. This figure is one of the representative examples from at least three 

independent experiments performed on different days. 

 

The next intriguing question to address was if the amino acid dependent impaired 

growth phenotype of auxotrophic yeast strains is limited to the solid HC agar plates or 

is it  also present in liquid growth medium. Therefore, the auxotrophic BY4742 was 

also cultured in the liquid growth medium, and its growth was monitored at 30°C for 

nearly 72 hours using BioTek microplate reader (ELx808, BioTek instruments). It was 

observed that the growth of BY4742 in liquid culture medium (graph, fig: 12) was also 

negatively impacted, like its growth on solid HC medium agar plates in response to the 

increased amino acid content in the liquid medium.  

 

 

 

Figure 12: Increased amino acid content (AAM) in the medium severely impacts the 

growth of BY4742 yeast strain as shown by Drop Dilution assay (A) and Growth Curve 

assay (B) in fermentable carbon substrate. A: BY4742 strain was cultured overnight in HC 

medium, diluted the next day, and grown to log phase. Cells were harvested, washed, fivefold 

serially diluted, and spotted on plates containing normal [1 X AAM], double [2 X AAM], or triple 

[3 X AAM] amount of amino acid dropout mix, containing 2% glucose as carbon substrate. The 

plates were scanned following incubation at 30°C for 42 hours. The top black bar corresponds 

to the decreasing cell density from left to right. This figure is one of the representative examples 

from at least three independent experiments performed on different days. B: Cells from an 

overnight culture were inoculated in different mediums (containing different amounts of amino 

acid dropout mix) in a 96 well plate supplemented with 2% glucose as carbon substrate. Cell 

growth was continuously monitored at 30°C for 72 hours under constant shaking conditions, 

using BioTek microplate reader (ELx808, BioTek instruments). The graphs represent the 

average of three independent repeats performed on different days, where error bars represent 

standard deviation. 
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3.1.3 Restoring only the leucine auxotrophy in BY4742 rescues the impaired 

growth phenotype 

Since the growth of prototrophic yeast strains, which can make all amino acids, was 

unaffected by increased amino acid content in the medium. I wondered whether 

restoring the missing auxotrophies in an auxotrophic yeast strain would render it 

insensitive to the increased amino acid content in the growth medium? If yes, which 

auxotrophy or auxotrophies are important for the observed slow growth phenotype?  

 

 

 

Figure 13: Restoring the auxotrophic markers in BY4742 affects the amino acid 

dependent growth phenotype. BY4742 cells and or transformed with either pHLUK or pHUK 

plasmids or p415 empty vector (containing LEU2 as selection marker) were cultured overnight 

in respective selective (or complete) HC medium, diluted the next day, and grown to log phase. 

Cells were harvested, washed, fivefold serially diluted, and spotted on plates containing normal 

[1 X AAM], double [2 X AAM] or triple [3 X AAM] amount of amino acid dropout mix (and without 

Leucine or Uracil to maintain the selection for cells transformed with plasmids), containing 2% 

glucose as carbon substrate. The plates were scanned following incubation at 30°C for 42 

hours. The top black bar corresponds to the decreasing cell density from left to right. This figure 

is one of the representative examples from at least three independent experiments performed 

on different days. 

 

As a first step to address this question, I transformed the BY4742 yeast strain with 

pHLUK plasmid166, which encoded all its missing auxotrophic genes: HIS3, LEU2, 

LYS2 and URA3. Interestingly, the pHLUK transformed BY4742 strain became 

resistant to the increased amino acid content in the growth medium in comparison to 

non-transformed BY4742 (fig: 13; row 1and 2). This clearly shows that either one or 

more auxotrophic markers underlie the slow growth phenotype in response to changes 

in the amino acid content in the growth medium. The next question I asked was which 

specific auxotrophy or combination of auxotrophies was essential for this growth 

phenotype? It was also noticed that the three auxotrophic strains, which exhibited 
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amino acid dependent growth phenotype, have common auxotrophies for leucine, 

uracil, and histidine (fig: 11). Therefore, there are chances that any of these or all of 

these three in combination are leading to the growth phenotype. To gain further 

insights, the BY4742 was transformed with pHUK166 plasmid, which replaced the 

auxotrophic genes HIS3, LYS2, URA3, but not the LEU2. Surprisingly, we observed 

that the pHUK plasmid could not rescue the growth of BY4742, unlike the pHLUK 

plasmid upon increased amino acid content in the medium. This result clearly pointed 

out that leucine auxotrophy is the reason for the observed slow growth phenotype. The 

pHUK transformed BY4742 strain (selected using uracil as selection marker) grew 

relatively slower than the non-transformed BY4742 (fig: 13; row 1 and 3) in response 

to the increased amino acid content in the medium. This slower growth phenotype was 

observed several times during this study (data not shown) when transformed yeast 

cells were forced to synthesize uracil and maintain the respective plasmid containing 

the URA3 gene. The mechanistic basis of this phenotype is not clear at this moment 

and was not investigated during this study. Thus, to avoid the uracil dependent effects 

in the following experiments, pHUK transformed yeast cells were selected using 

histidine.  

As a final proof of principle to confirm that leucine auxotrophy is essential for the 

observed growth phenotype: BY4742 was transformed with p415 TEF plasmid181 

(which had the LEU2 as a selection marker gene) was alone able to rescue the slow 

growth phenotype (fig: 13; row 4). In conclusion, the slow growth phenotype of BY4742 

auxotrophic yeast strain upon supplementation of increased amino acid content in the 

medium is linked to leucine auxotrophy.  

 

3.1.4 Increasing leucine in proportion to the increase of amino acid content in 
the growth medium also rescues the impaired growth phenotype 

So far, it was established that leucine auxotrophy is the only important auxotrophy 

underlying the growth phenotype. The Hartwell Complete growth medium also has 

leucine and nucleotides (uracil and adenine) along  with the other amino acids 

(histidine, lysine, and tryptophan), which are added separately along with the amino 

acid dropout mix to the medium. I further wondered how the amount of these 

nucleotides and amino acids in the growth medium, especially the leucine, affects the 

observed growth phenotype?  

To address this question, the growth of the BY4742 strain was tested on HC plates 

supplemented with double the usual amounts of the amino acids: lysine, histidine, 

tryptophan, and leucine which were increased either individually or all together in 

combination with 2 X AAM. Interestingly, the growth of BY4742 was rescued in all 

situations where leucine was supplemented twice to its normal amounts (fig 14A). 

Remarkably, the growth phenotype of BY4742 was also rescued on [3 X AAM] when 

the leucine amount was increased to three times its normal amount in the HC medium 

(Second row, fig 14B). It was concluded from these findings that the ratio of leucine to 

the other amino acids present in the medium is significant for the growth of an 

auxotrophic yeast cell.  
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Figure 14: Increase in extracellular leucine amounts relative to increase in AAM, also 

rescues the growth phenotype. A: Other medium components, along with a double amount 

of amino acid dropout mix [2 X AAM], were increased two folds either individually or all together 

with uracil and adenine. B: In addition to the increase in amino acid dropout mix, the amount 

of leucine was also increased in proportion to the AAM while making the plates. In the top row, 

which served as a control, the amount of Leucine was kept constant. BY4742 strain was 

cultured overnight in HC medium, diluted the next day, and grown to log phase. Cells were 

harvested, washed, fivefold serially diluted, and spotted on different plates (as described 

above), containing 2% glucose as carbon substrate. The plates were scanned following 

incubation at 30°C for 42 hours. The top black bar corresponds to the decreasing cell density 

from left to right. This figure is one of the representative examples from two independent 

experiments performed on different days. 

 

So far, it was observed that the re-establishment of the leucine biosynthetic pathway 

or increasing leucine in proportion to the increase in amino acid dropout mix (AAM) in 

the medium could rescue the observed slow growth phenotype. These results further 

raised the possibility that whether the observed phenotypes could be explained by the 

fact that cells cannot import enough leucine? Is there a leucine limitation under such 

growth conditions?  
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3.1.5 Deletion or overexpression of amino acid permeases does not affect the 

amino acid dependent observed growth phenotype  

To gain more insights into the possibility of leucine limitation, which might explain the 

observed growth phenotype, genes encoding different amino acid permeases (AAPs), 

responsible for transporting specific or general amino acids across the plasma 

membrane in a yeast cell, were either deleted or overexpressed.  

The high-affinity branched-chain AAP Bap2 with its paralog Bap3 is known to transport 

the branched-chain amino acids leucine, isoleucine and valine across the plasma 

membrane197. It is also reported that in wild-type yeast, Bap2 also transports 

phenylalanine in the presence of leucine198. Agp1 is a low-affinity broad-spectrum 

amino acid transporter whose expression is also induced by the presence of several 

extracellular amino acids199. Both Agp1 and Gap1 play a substantial role in the 

transport and utilization of several amino acids, unlike the Put4 or Can1 amino acid 

transporters which transports selected amino acids (proline and arginine, 

respectively)199. As mentioned before, expression of Gap1 permease is induced upon 

the presence of poor nitrogen source and is further tightly controlled at post-

translational level198,200. With these insights from literature about the expression of 

amino acid permeases in yeast, I chose to initially delete and overexpress the AGP1, 

GAP1 and BAP2 genes and study their effect on the observed growth phenotype. 

 

 

Figure 15: Deletion and overexpression of genes encoding the amino acid permeases 

Agp1, Gap1 or Bap2 have no striking effect on the observed growth phenotype. Strains 

with either deletion or over-expression of amino acid permeases genes AGP1, GAP1 and 

BAP2 were generated using homologous recombination. All the different yeast strains were 

cultured overnight in HC medium, diluted the next day, and grown to log phase. Cells were 

harvested, washed, fivefold serially diluted, and spotted on different plates (as described 

above), containing 2% glucose as carbon substrate. The plates were scanned following 

incubation at 30°C for 42 hours. The top black bar corresponds to the decreasing cell density 

from left to right. This figure is one of the representative examples from at least three 

independent experiments performed on different days. 
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As observed from figure 15, knockout and overexpression of AAP's Agp1 and Gap1 

had no striking effect on the growth phenotype upon the increase in amino acid content 

in the growth medium. Further, both deletion and overexpression of Bap2 resulted in 

more slow growth of the yeast cell. It was complicated to interpret this result. It is known 

that the transcriptional regulation of several amino acid permeases is influenced by the 

presence of different nitrogen sources in the medium. Additionally, several adaptor 

proteins for different permeases whose expression levels and activity are further 

known to regulate the post-translational targetting of amino acid permeases to the 

plasma membrane48. Hence, simply overexpressing an amino acid permease gene 

doesn't ensure overexpression of these transporters on the plasma membrane. 

Further, different experimental approaches are needed to confirm and validate the over 

expression of AAP's on the plasma membrane. It is still complicated to rule out 

transport competition of several amino acids like phenylalanine with leucine in the 

current growth conditions. Surprisingly, the deletion of Agp1 and Gap1 did not further 

influence the observed growth phenotype. If limited leucine import would have led to 

the observed growth phenotype, the deletion of genes encoding Agp1 and Gap1 would 

severely impact the growth phenotype upon the increase in amino acid content in the 

medium. However, these results nonetheless hinted that the observed growth 

phenotype might not be the result of the leucine limitation case per se. 

 

3.1.6 The main bad guys: Ehrlich amino acids are inducing the impaired growth 

phenotype 

So far, it was interesting to observe that how the presence of increased amino acid 

dropout mix affected the growth of auxotrophic yeast cells. Also, either restoration of 

functional leucine pathway or increasing leucine in proportion to that of the amino acid 

dropout mix could rescue this growth phenotype. I further wondered how the 

composition of the amino acid dropout mix contributed to this growth phenotype. Is the 

growth phenotype dependent on one or more specific amino acids, or is it simply an 

effect of amino acid mix in general? The amino acid dropout mix consists of ten amino 

acids: threonine, arginine, serine, glutamate, aspartate, methionine, isoleucine, valine, 

phenylalanine, and tyrosine. The growth of the BY4742 yeast strain was determined in 

the growth conditions where all the ten amino acids (present in the amino acid dropout 

mix) were either omitted individually (fig: 16) or increased to three times individually 

(fig: 17).   

Interestingly, missing only a few amino acids (namely Ehrlich amino acids: methionine, 

phenylalanine, tyrosine, isoleucine, and valine) from the amino acid dropout mix 

contributed slightly to rescuing the growth phenotype of BY4742 (fig: 16) as compared 

to control (top row HC; fig: 16), where all amino acids were present. Also, omitting 

glutamate from the growth medium severely impacts the growth of BY4742.  
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Figure 16: Removing Ehrlich amino acids individually from the amino acid mix affects 

cell growth. Ehrlich and non-Ehrlich amino acids were removed individually from the amino 

acid dropout mix, and plates were made further with these respective conditions. The top row 

HC, where all the ten amino acids were present in the amino acid dropout mix, served as a 

control. BY4742 strain was cultured overnight in HC medium, diluted the next day, and grown 

to log phase. Cells were harvested, washed, fivefold serially diluted, and spotted on different 

plates (as described above), containing 2% glucose as carbon substrate. The plates were 

scanned following incubation at 30°C for 42 hours. The top black bar corresponds to the 

decreasing cell density from left to right. This figure is one of the representative examples from 

at least three independent experiments performed on different days. 

 

Likewise, increasing concentration of individual Ehrlich amino acids only in the growth 

medium to three times, where others were present in a standard concentration, also 

had a minor impact on the growth phenotype of the BY4742 yeast strain (fig: 17). These 

results gave a strong hint that Ehrlich amino acids could be the real causative agents 

inducing the observed growth phenotype on 2 X AAM and 3 X AAM growth conditions.  

Amino acids like phenylalanine, methionine, tyrosine, tryptophan, and branched-chain 
amino acids: isoleucine, valine, and leucine are classified as Ehrlich amino acids. 
Ehrlich amino acids were proposed by the famous German Biochemist Felix Ehrlich 
since they all share a common degradation pathway in the cell201. Inside the yeast cell, 
these amino acids are transaminated, decarboxylated, and further degraded to fusel 
acids or alcohols, which add flavour and aroma to fermented yeast products43,202. This 
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pathway is of utmost interest and research value in the food and beverage industry. 
However, the Ehrlich amino acids tryptophan and leucine do not belong to the amino 
acid dropout mix composition but were added separately to the medium. Therefore, 
they were excluded from the Ehrlich amino acid description in the following text and 
were used in usual amounts as described for the composition 1 X AAM condition (refer 
to table 3), unless specified.  

 

 

Figure 17: Increasing the amino acids of AAM individually to three times affects cell 

growth. Ehrlich or non-Ehrlich amino acids' concentration was increased individually to three 

times in the amino acid dropout mix, and plates were made further with these respective 

conditions. The top row 1 X AAM, where all the ten amino acids in the dropout mix were present 

in a standard concentration, served as a control. BY4742 strain was cultured overnight in HC 

medium, diluted the next day, and grown to log phase. Cells were harvested, washed, fivefold 

serially diluted, and spotted on different plates (as described above), containing 2% glucose 

as carbon substrate. The plates were scanned following incubation at 30°C for 42 hours. The 

top black bar corresponds to the decreasing cell density from left to right. This figure is one of 

the representative examples from two independent experiments performed on different days. 

 

While investigating the effect of the composition of amino acid dropout mix on the 

growth of the cell, it was observed that the Ehrlich amino acids could potentially 

contribute to the slow growth phenotype (fig: 17; right column) of BY4742 in 2 X AAM 

and 3 X AAM growth conditions. To further validate this preliminary hypothesis, the 

effect of the composition of Ehrlich amino acids on the observed growth phenotype 

was studied in detail in the following section. 
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Figure 18: Increasing concentration of Ehrlich amino acids in dropout amino acid mix 

to three times affects cell growth. Ehrlich or non-Ehrlich amino acids' concentration was 

increased three times in the amino acid dropout mix, and plates were made further with these 

respective conditions. The second column [1 X AAM] + 3 X Leu, where leucine was added 3 

times that of the usual concentration, served as a control. BY4742 strain was cultured overnight 

in HC medium, diluted the next day, and grown to log phase. Cells were harvested, washed, 

fivefold serially diluted, and spotted on different plates (as described above), containing 2% 

glucose as carbon substrate. The plates were scanned following incubation at 30°C for 42 

hours. The top black bar corresponds to the decreasing cell density from left to right. This figure 

is one of the representative examples from at least three independent experiments performed 

on different days. 

 

Firstly, the concentration of all Ehrlich amino acids was increased to three times while 

keeping the concentration of the non-Ehrlich amino acid constant as present in [1 X 

AAM] condition and vice versa. Interestingly, when the concentration of Ehrlich amino 

acids only was increased to three times in the growth medium, it resulted in a similar 

slow growth phenotype of BY4742. As expected, when the concentration of non-

Ehrlich amino acids only was increased to three times in the growth medium, it did not 

affect the growth of BY4742 (fig: 18; first column, top row). As observed earlier, the 

increase in leucine concentration in proportion to the increase in Ehrlich amino acids 

in the growth medium rescued the observed growth phenotype (fig: 18; second column, 

bottom row) and thus served as the control. 

From these findings, it was concluded that the ratio of leucine to the Ehrlich amino 

acids (namely methionine, isoleucine, valine, phenylalanine, and tyrosine referred to 

as Ehrlich amino acids in this study) was essential for the growth of the cell. Probably, 

any disturbance to this ratio resulted in the observed growth phenotype. 

The next question to address was to figure out whether the increased concentration of 

which single Ehrlich amino acid or combination of which two or more Ehrlich amino 

acids contribute to the observed growth phenotype of BY4742? Since the 

concentration of these amino acids in the medium is very different (refer to table: 9, 

second column), it was complicated to address this question. Therefore, a new medium 

composition was designed which had the same components (and their concentrations) 
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as that of HC medium except for namely five Ehrlich amino acids (M, I, V, F, Y), whose 

concentration was fixed to 600 µM in the new medium (the table: 9, third column). 

Table 9: The concentration of the individual Ehrlich amino acid (M, I, V, F, Y) present in 

HC medium supplemented with either normal [1 X AAM] and triple amount [3 X AAM] 

of amino acid dropout mix or in the new medium. 

 

 

As expected, supplementation of standard, double, or triple amounts of Ehrlich amino 

acids in the new growth medium condition also severely impacted the growth of 

BY4742 (fig: 19A, 1 X leu). As observed earlier, the simultaneous increase in leucine 

concentration in proportion to the increase in Ehrlich amino acids in the new growth 

medium also rescued the growth phenotype (fig 19A, 2 X leu, 3 X leu) and served as 

the control.  

Further, each of these five Ehrlich amino acids (M, I, V, F, Y) were increased 

individually either to five times (3000 µM, [5 X aa]) or to ten times (6000 µM, [10 X aa]) 

(fig: 19B). The concentration of the rest of the Ehrlich amino acids was kept constant 

to 600 µM, and that of non-Ehrlich amino acids was also kept the same as present 

originally in HC medium amino acid dropout mix [1 X AAM] (refer to the table: 2 from 

methods section 2.1.2). The [5 X aa] + 5 X leu condition also served as the control 

condition, where leucine concentration was increased to five times in proportion to the 

increase in individual Ehrlich amino acid in the medium. Excess of phenylalanine and 

tyrosine and, to a minor extend, isoleucine impacted the growth of BY4742 (fig: 19B, 

1st and 2nd column). As expected, in control conditions where leucine was increased 

in proportion to the increase in the individual Ehrlich amino acids ([5 X aa] + 5 X leu), 

the BY4742 grew normally (fig: 19B, 3rd column). 

Hence, it was concluded from these findings that the ratio of leucine, particularly to that 

of phenylalanine and tyrosine, is important for the growth of the cell.  
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Figure 19: The concentration of Ehrlich amino acids is critical for the growth of the cell. 

A: A new medium was made where the concentration of all Ehrlich amino was set to 600 µM. 

Further, average, double, or triple amounts of this new dropout mix were added while making 

plates, where leucine concentration was kept constant. The second row, where leucine's 

concentration was increased proportionally along with the new dropout mix while making 

plates, served as a control. B: Further different dropout mixes were made. The concentration 

of all Ehrlich amino acids was set to five times (5 X corresponding to 3000 µM) or ten times 

(10 X corresponding to 6000 µM) individually. The remaining amino acids were present in their 

average concentration. Further, plates were made with these respective dropout mixes, where 

leucine concentration was kept constant. The third column served as a control where leucine 

concentration was increased proportionally along with a new dropout mix while making plates. 

BY4742 strain was cultured overnight in HC medium, diluted the next day, and grown to log 

phase. Cells were harvested, washed, fivefold serially diluted, and spotted on different plates 

(as described above), containing 2% glucose as carbon substrate. The plates were scanned 

following incubation at 30°C for 42 hours. The top black bar corresponds to the decreasing cell 

density from left to right. This figure is one of the representative examples from two 

independent experiments performed on different days. 

 

3.1.7 Deep insights about intracellular amino acids levels of BY4742 strain 

So far, it was observed that the increased presence of Ehrlich amino acids in the 

growth medium, namely phenylalanine and tyrosine, contributed to the observed 

growth phenotype of the BY4742. This result further leads to an intriguing question: 
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whether the leucine transport across the plasma membrane is hampered, possibly due 

to competition between leucine and the Ehrlich amino acids (mainly phenylalanine and 

tyrosine), which could be leading to the observed growth phenotype? It is also known 

that the leucine transport across the human blood-brain barrier is competitively 

inhibited by the transportation of the large neutral amino acids (tyrosine, phenylalanine, 

isoleucine, valine, histidine, methionine, glutamine, and threonine) through their 

common transporter, the Lat1119,131,203. From our previous observations, even though 

we already have the hint that it is probably not the leucine limitation case from deletion 

of AAP's Agp1 and Gap1 (section 3.1.5: fig: 15). It was crucial to address the possibility 

of transport competition for leucine and other Ehrlich amino acids by investigating the 

amino acid levels in the current study. 

To gain further insights into the relevance of leucine limitation possibility underlying the 

observed growth phenotype upon the increase in the amino acid content in the growth 

medium. The imported versus de novo synthesized fraction and total free intracellular 

amino acid levels in the cells were investigated in collaboration with the Wittman group 

at the Saarland University. Since BY4742 transformed with p415 empty vector (LEU2) 

did not exhibit the growth phenotype (fig: 13), it was used as a control for these studies.  

3.1.7a Imported versus de novo synthesized amino acids  

The BY4742 and BY4742+LEU2 were grown in a medium supplemented with 13C 

labelled glucose until they reached the required cell density and then were harvested 

using a fast filtration procedure and processed for 13C enrichment analysis. Amino 

acids (fig: 20), which were synthesized de novo, incorporated labelled 13C (represented 

by blue coloured bars), and the amino acids which were imported from the medium 

remained unlabelled (represented by grey coloured bars). Keeping in mind that this 

approach was a qualitative analysis, one cannot get information about the absolute 

levels of amino acids that were either synthesized de novo or imported. Nevertheless, 

these results indicated that under 2 X AAM growth condition, the yeast cell synthesized 

more amino acids, such as alanine, glycine, valine, methionine, serine, threonine, 

cysteine, and tyrosine de novo, relative to the amounts imported from the medium as 

compared to the 1 X AAM condition (fig: 20). Since the BY4742 yeast strain of S. 

cerevisiae is auxotrophic for lysine, histidine, and leucine, they were imported 

completely from the medium. 

Interestingly, BY4742 synthesized massive levels of valine, as compared to BY4742 

+LEU2, which synthesized both valine and leucine on 2 X AAM. It was inferred that on 

2 X AAM growth condition, BY4742 cells tried to make leucine, but since they missed 

LEU2 and could not synthesize leucine. Therefore, they ended up synthesizing 

massive levels of valine instead. Whereas for BY4742+LEU2, which had the leucine 

biosynthetic pathway restored, synthesized more of leucine and relatively fewer levels 

of valine on 2 X AAM growth condition. In conclusion, these results firmly pointed out 

that the leucine and valine synthesis pathway are triggered on 2 X AAM growth 

condition. Nonetheless, it could still be the case of transport competition between 

leucine and Ehrlich amino acids, which could possibly be leading to the observed slow 

growth phenotype.  
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Figure 20: Relative fraction of proteinogenic amino acids synthesized de novo versus 

imported fraction from the medium when cells were fed with 13C glucose for BY4742 and 

wt+LEU2 on 1 X AAM and 2 X AAM. BY4742 and BY4742 transformed with p415 empty 

vector (LEU2) were cultured overnight in HC medium and were inoculated in fresh HC medium 

the next day (with normal [1 X AAM] and double amount [2 X AAM] of amino acid dropout mix), 

supplemented with 13C glucose and grown to late exponential phase. The following day, using 
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a fast filtration procedure, cells were harvested on a filter membrane, which was quickly 

collected in a box (with 2 mL of dH2O) and further subjected to incubation at 100 °C for 15 min 

and subsequently cooled on ice for 10 min. The cell lysate was collected and cleared of cell 

debris by centrifugation. Further, the free amino acids present in the cellular lysate were dried 

under Nitrogen stream, pre-derivatized with MBDSTFA, and 13C enrichment was quantified 

using GC-MS. The graphs represent labelled and unlabelled fractions of individual amino 

acids, in the form of percentages normalized to total levels, generated from the average of 

three independent biological replicates. The unlabelled fraction of amino acid imported from 

the medium is represented in grey. In contrast, labelled fraction, which is de novo synthesized 

in the cell, is represented in blue. Data were corrected for naturally occurring isotopes. In this 

experiment, I prepared the different cell lysates, which were further processed and analyzed 

by Dr Michael Kohlstedt (Wittman's group, at the Saarland University) as a part of the 

collaboration work. 

 

3.1.7b Total intracellular arginine levels are increased as an effect of 2 X AAM 

It was not possible to quantify the absolute amounts of both de novo synthesized and 

the imported fraction of amino acids from 13C enrichment studies. The total free 

intracellular amino acid levels in the cells were investigated. The cells were grown to 

reach the required cell density, harvested using a fast filtration procedure and 

processed for intracellular amino acid analysis. Alpha-amino butyric acid was used as 

an internal standard during the harvesting procedure to quantify amino acid levels. Sky 

blue, orange, dark blue and green coloured bars in figure: 21, represented the free 

intracellular amino levels from BY4742 [1 X AAM], BY4742 [2 X AAM], BY4742+LEU2 

[1 X AAM] and BY4742+LEU2 [2 X AAM] respectively. Interestingly, there was no 

change in the total intracellular amounts of leucine and valine in BY4742 and BY4742 

+LEU2 on 1 X AAM vs 2 X AAM growth condition. If Ehrlich amino acids were 

competing with leucine during cellular import, there would have been a drop in the total 

intracellular levels of leucine, which was not the case. This finding completely ruled out 

the possibility of leucine limitation and its potential contribution towards the observed 

growth phenotype. Secondly, only the levels of arginine changed significantly on 2 X 

AAM growth condition in BY4742 cells. In combination with the relative information for 

imported versus the synthesized fraction of amino acids in the cells (fig: 21), it was 

inferred that BY4742 imported massive arginine levels on 2 X AAM growth condition. 

Secondly, these results also supported the idea that leucine and valine synthesis was 

triggered on 2 X AAM growth condition. 
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Figure 21: Total free intracellular amino acid levels in BY4742 and BY4742+LEU2 on 1 X 

AAM and 2 X AAM. BY4742 and BY4742 transformed with p415 empty vector (LEU2) were 

cultured overnight in HC medium and inoculated in fresh HC medium (with normal [1 X AAM] 

and double amount [2 X AAM] of amino acid dropout mix) the next day were and grown till late 
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exponential phase. The following day, using a fast filtration procedure, cells were harvested 

on a filter membrane, which was quickly collected in a box (with the appropriate amount of 

alpha-amino butyric acid, as internal standard, in 2 mL of dH2O) and further subjected to 

incubation at 100 °C for 15 min, cooled on ice for 10 min. The cell lysate was collected and 

cleared of cell debris by centrifugation. The clear lysate was injected and simultaneously was 

mixed with reagents and derivatized in an automated way and quantified using HPLC. The 

graphs represent individual amino acid levels (µmol per cell density weight) generated from an 

average of three independent biological replicates. Sky blue, orange, dark blue and green 

coloured bars represent free intracellular amino levels from BY4742 [1 X AAM], BY4742 [2 X 

AAM], BY4742+LEU2 [1 X AAM] and BY4742+LEU2 [2 X AAM] respectively. In this 

experiment, I prepared the different cell lysates, which were further processed and analyzed 

by Dr Michael Kohlstedt (Wittman's group, at the Saarland University) as a part of the 

collaboration work. 

  

3.2 Activation of branched-chain amino acid biosynthetic pathway 
correlates positively with the amino acid dependent growth 
phenotype of the yeast cell 

Leucine, valine, and isoleucine are known as branched-chain amino acids and share 

partial steps of their synthesis in mitochondria and cytosol140 (fig: 22). Interestingly, 

both leucine and valine pathways seem to be activated in the presence of [2 X AAM]. 

Further, the growth of different yeast strains were studied in response to the increased 

amino acid content in the growth medium on non-fermentable carbon sources glycerol. 

 

Figure 22: Schematic diagram showing the branched-Chain amino acid biosynthetic 

pathway in Saccharomyces cerevisiae. Leucine and valine are synthesized from pyruvate, 

and isoleucine is synthesized from ketobutyrate, derived from threonine. The intermediates 

KIV or KMV can be transported out of mitochondria and converted to valine and isoleucine, 

respectively. KIV can also be converted to α-IPM in the mitochondria, which is further 

converted to leucine in the cytoplasm. The blue coloured labels are the enzymes that catalyze 
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the different steps during the synthesis of the BCaa. The double arrow depicts that the 

respective enzymes Bat1 and Bat2 can catalyze the reaction in both directions. The enzymes 

and the intermediates involved and formed respectively, in the BCaa pathway are as follows: 

Ilv1: threonine deaminase, Ilv2: acetohydroxy acid synthase-catalytic subunit, Ilv5: 

acetohydroxy acid reductoisomerase, Ilv3: dihydroxy acid dehydratase, Bat1 and Bat2: 

mitochondrial and cytosolic branched-chain amino acid aminotransferases, Leu4 and Leu9: α-

isopropyl malate synthase I and II respectively where l and s represent the long and the short 

form of Leu4, Leu1: α-isopropyl malate isomerase, Leu2: β-isopropyl malate dehydrogenase, 

AL: acetolactate, DHIV: α,β-dihydroxyisobutyrate, KB: α-ketobutyrate, AHB: α-aceto α-

hydroxybutyrate, DHMV: α,β-dihydroxy β-methyl valerate, KIV: α-keto-isovalerate, KMV: α-

keto β-methyl valerate, α-IPM: α-isopropyl malate, β-IPM: β-isopropyl malate and KIC: α-keto-

isocaproate. Mpc1 and Oac1: mitochondrial pyruvate carrier and oxaloacetate carrier1 are the 

membrane transporters for pyruvate and α-IPM. 

 

 

Figure 23: The growth phenotype is lost when cells are forced to respire. All strains were 

cultured overnight in HC medium, diluted the next day, and grown to log phase. Cells were 

harvested, washed, fivefold serially diluted, and spotted on plates containing normal [1 X AAM], 

double [2 X AAM] or triple [3 X AAM] amount of amino acid dropout mix, containing 2% glycerol 

as carbon substrate. The plates were scanned following incubation at 30°C for 42 hours. The 

top black bar corresponds to the decreasing cell density from left to right. This figure is one of 

the representative examples from at least three independent experiments performed on 

different days. 

 

Interestingly, unlike in the presence of glucose, when cells are forced to respire using 

glycerol as a carbon substrate, all the auxotrophic, and prototrophic strains grew 

similar to each other on 2 X AAM and 3 X AAM growth condition (fig: 23). Auxotrophic 

yeast strains tend to lose their amino acid dependent growth phenotype while 

consuming the non-fermentable carbon source. As expected, all the yeast strains grew 

comparatively slower on glycerol than on glucose as fermentation is known to promote 

faster growth204,205. However, why and how the amino acid dependent slow growth 

phenotype is lost when cells are forced to respire, unlike in the presence of glucose as 

the carbon substrate, cannot be explained at this moment.  
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3.2.1 Role of valine and isoleucine on the growth of cell 

Despite the presence of increased extracellular amino acids in the growth medium, 

BY4742 synthesized massive levels of valine on 2 X AAM. Either restoration of 

functional leucine biosynthetic pathway or extra supplementation of leucine in the 

medium rescued the cells from the observed growth phenotype. These findings 

indicated that the branched-chain amino acid biosynthetic pathway must play an 

essential role in response to the increased amino acid content in the growth medium. 

Therefore, I further investigated the relevance of the BCaa pathway towards the 

observed growth phenotype. 

The other two branched-chain amino acids- namely valine and isoleucine, are also 

present in the amino acid dropout mix. As a first approach, I omitted these two amino 

acids (in combination) from the amino acid mix and studied the effect on cell growth. 

Surprisingly, removing valine and isoleucine from the medium made the growth of 

BY4742 better on 2 X AAM and 3 X AAM (fig: 24), as compared to the control where 

valine and isoleucine were still available in the growth medium. These results 

enormously strengthen the idea that the BCaa pathway plays an important role in the 

growth of auxotrophic yeast cells in response to increased amino acid content in the 

medium.  

 

 

Figure 24: Removing isoleucine and valine from the medium rescues the growth 

phenotype. Isoleucine and valine were removed from the amino acid dropout mix, and other 

plates were made using the double or triple amount of this dropout mix. The top row HC, with 

all the ten amino acids in the amino acid dropout mix, served as a control. BY4742 strain was 

cultured overnight in HC medium, diluted the next day, and grown to log phase. Cells were 

harvested, washed, fivefold serially diluted, and spotted on different plates (as described 

above), containing 2% glucose as carbon substrate. The plates were scanned following 

incubation at 30°C for 42 hours. The top black bar corresponds to the decreasing cell density 

from left to right. This figure is one of the representative examples from at least three 

independent experiments performed on different days. 
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3.2.2 Deleting either ILV2 or ILV3 rescues the growth phenotype 

The branched-chain amino acid biosynthetic pathway is conserved in yeast, plants, 

and bacteria134–138. During evolution, humans have lost the capability to make BCaa. 

As they are essential amino acids, they have become indispensable in the human diet. 

Synthesis of isoleucine and valine occur in mitochondria or the cytoplasm140. However, 

leucine synthesis only occurs in the cytoplasm after its key intermediate alpha-

isopropyl malate (α-IPM) is transported across the mitochondrial membrane via 

oxaloacetate carrier 1 (Oac1) transporter206. The detailed steps of the BCaa synthesis 

pathway are summarized in figure 23. 

To gain more insights into the role of the BCaa biosynthetic pathway in response to 

the increased extracellular amino acids, I sequentially deleted the genes encoding 

proteins that catalyzed the different enzymatic steps in the BCaa pathway and studied 

their effect on the observed growth phenotype. Thus, several mutants of the BCaa 

pathway were made during this study via homologous recombination. 

Since these mutants were constructed in a BY4742 genetic background (which also 

lacks LEU2, whose product is known to be involved in the leucine biosynthesis 

pathway), it was necessary to transform all these mutants with a plasmid containing 

the missing LEU2. This control assured that the growth effect observed corresponded 

to a single-gene deletion and is not due to the additive effect of the LEU2 deletion. I 

transformed all the BCaa mutants with pHLUK plasmid166 and selected them using the 

histidine (HIS3) marker gene. Further, pHUK plasmid166 transformed yeast deletion 

strains served as a control for the corresponding pHLUK transformed cells. As 

observed from figure 25, the growth of either pHUK or pHLUK transformed BCaa 

mutants depicted an exciting pattern. Deleting either ILV2 or ILV3 rescued the slow 

growth phenotype of BY4742 on 2 X AAM or 3 X AAM growth conditions. 

Similarly, deletion of any gene downstream of ILV3 exhibited the observed growth 

phenotype like BY4742 in 2 X AAM and 3 X AAM growth conditions. Interestingly, the 

mutant Δilv1 also retained the slow growth phenotype like BY4742, implying that 

isoleucine synthesis or its intermediates have no contribution towards the observed 

phenotype. Deleting ILV5 also made the cell grow better on 2 X AAM and 3 X AAM but 

not entirely as compared to Δilv2 and Δilv3 deletion cells. This is plausible as Ilv5 

performs a dual function inside the cell, i.e., alongside its role in the BCaa synthesis 

pathway, it is also known to bind and stabilize the mt DNA207. It was also observed that 

only the pHUK transformed double mutant Δleu4 Δleu9 grew better than its BY4742 

counterpart, but not comparable to Δilv2 and Δilv3 deletions. To understand the growth 

of the double mutant Δleu4 Δleu9 more clearly, the growth of these BCaa mutants was 

also monitored after 24 hours. I observed that after 24 hours of growth, only the Δilv2 

and Δilv3 strains but not the Δleu4 Δleu9 strain were growing faster than BY4742 

(supplementary figure 57). Hence, we could conclude that deleting any gene upstream 

and including ILV3 rescued the amino acid dependent growth phenotype of BY4742 

on 2 X AAM and 3 X AAM. This result also strengthened our previous idea that leucine 

starvation is not the underlying cause for the observed growth phenotype. If a transport 

competition between leucine and Ehrlich amino acids in the current scenario had 

occurred, Δilv3 mutant would have suffered like BY4742 upon increasing amino acid 

content in the growth medium, which was not the case. 
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Figure 25: Deleting ILV2 or ILV3 rescues the growth of cells in conditions with increased 

amino acid content. Several mutants of the BCaa pathway were made during this study via 

homologous recombination. To restore the missing LEU2, which also belongs to this BCaa 
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pathway, the BY4742 and all mutants were transformed with either pHUK or pHLUK plasmids. 

All the transformed strains were cultured overnight in HC (minus histidine, to maintain the 

plasmid selection), diluted the next day, and grown to log phase. Cells were harvested, 

washed, fivefold serially diluted, and spotted on plates containing normal [1 X AAM], double [2 

X AAM] or triple [3 X AAM] amount of amino acid dropout mix (without histidine to maintain the 

selection for cells transformed with plasmids), containing 2% glucose as carbon substrate. The 

plates were scanned following incubation at 30°C for 42 hours. The top black bar corresponds 

to the decreasing cell density from left to right. This figure is one of the representative examples 

from at least three independent experiments performed on different days. 

There seems to be a switch point around the Ilv3 catalyzed step that could completely 

switch the observed growth phenotype of BY4742 on 2 X AAM and 3 X AAM growth 

conditions on or off. If this preliminary hypothesis holds true, the overexpression of 

ILV3 must be able to exhibit the previously observed growth phenotype in contrast to 

the deletion of ILV3. Interestingly, when Ilv3 was expressed under the control of the 

TEF promoter, the overexpression of ILV3 leads to even slower growth of cells than 

BY4742 on 2 X AAM and 3 X AAM (fig: 26).  

 

 

 

Figure 26: ILV3 as a potential switch point for the growth phenotype. To verify the 

rescuing phenotype of the ILV3 deletion, an ILV3 overexpression strain was generated using 

homologous recombination. All strains were cultured overnight in HC medium, diluted the next 

day, and grown to log phase. Cells were harvested, washed, fivefold serially diluted, and 

spotted on plates containing normal [1 X AAM], double [2 X AAM] or triple [3 X AAM] amount 

of amino acid dropout mix, containing 2% glucose as carbon substrate. The plates were 

scanned following incubation at 30°C for 42 hours. The top black bar corresponds to the 

decreasing cell density from left to right. This figure is one of the representative examples from 

at least three independent experiments performed on different days. 

 

Thus, it was concluded that the Ilv3 catalyzed step is the potential switch point for the 

growth phenotype in response to the increased amino acid content in the growth 

medium. Therefore, in the following experiments, a Δilv3 strain was used as a positive 

control, whose growth is unaffected in 2 X AAM or 3 X AAM growth condition compared 

to the growth of BY4742. Next, I also investigated the imported versus the de novo 

synthesized amino acids fraction and the total intracellular amino acid levels in a Δilv3 

deletion strain compared to BY4742, grown on 1 X AAM and 2 X AAM. 
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Figure 27: Relative fraction of proteinogenic amino acids synthesized de novo versus 

imported fraction from the medium when cells were fed with 13C glucose for BY4742 and 

Δilv3 deletion strain on 1 X AAM and 2 X AAM. BY4742 and Δilv3 deletion strains were 

cultured overnight in HC medium and were inoculated in fresh HC medium the next day (with 

normal [1 X AAM] and double amount [2 X AAM] of amino acid dropout mix), supplemented 

with 13C glucose and grown to late exponential phase. The following day, using a fast filtration 

procedure, cells were harvested on a filter membrane, which was quickly collected in a box 

(with 2 mL of dH2O) and further subjected to incubation at 100 °C for 15 min and subsequently 

cooled on ice for 10 min. The cell lysate was collected and cleared of cell debris by 

centrifugation. Further, the free amino acids present in the cellular lysate were dried under 

Nitrogen stream, pre-derivatized with MBDSTFA, and 13C enrichment was quantified using 

GC-MS. The graphs represent labelled and unlabelled fractions of individual amino acids, in 

the form of percentages normalized to total levels, generated from the average of three 

independent biological replicates. The unlabelled fraction of amino acid imported from the 

medium is represented in grey. In contrast, the labelled fraction, which is de novo synthesized 

in the cell, is rep resented in blue. Data were corrected for naturally occurring isotopes. In this 

experiment, I prepared the different cell lysates, which were further processed and analyzed 

by Dr Michael Kohlstedt (Wittman's group, at the Saarland University) as a part of the 

collaboration work. 

 

From the first glance, unlike the BY4742, Δilv3 imports a larger fraction of its amino 

acids than synthesizing them de novo (fig: 27) on both 1 X AAM and 2 X AAM. 

Interestingly, the previous observation regarding the synthesis of amino acids (like 

alanine, glycine, valine, methionine, serine, threonine, cysteine, and tyrosine), rather 

than importing from the medium, in BY4742 on 2 X AAM, as compared to 1 X AAM 

was not observed for Δilv3. The co-relation of these findings to the observed growth 

phenotype upon increased amino acid content in the growth medium cannot be 

explained yet. Surprisingly, the total amino acid levels also did not change in Δilv3 as 

compared to BY4742 when grown on 1 X AAM versus 2 X AAM growth condition (fig: 

28) except for arginine levels as observed previously in the case of BY4742.  
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Figure 28: Total free intracellular amino acid levels in BY4742 and Δilv3 on 1 X AAM and 

2 X AAM. BY4742 and Δilv3 deletion strain were cultured overnight in HC medium and 

inoculated in fresh HC medium (with normal [1 X AAM] and double amount [2 X AAM] of amino 

acid dropout mix) the next day were and grown till late exponential phase. The following day, 

using a fast filtration procedure, cells were harvested on a filter membrane, which was quickly 

collected in a box (with the appropriate amount of alpha-amino butyric acid, as internal 

standard, in 2 mL of dH2O) and further subjected to incubation at 100 °C for 15 min, cooled on 

ice for 10 min. The cell lysate was collected and cleared of cell debris by centrifugation. The 

clear lysate was injected and simultaneously was mixed with reagents and derivatized in an 

automated way and quantified using HPLC. The graphs represent individual amino acid levels 

(µmol per cell density weight) generated from an average of three independent biological 

replicates. Sky blue, orange, dark blue and green coloured bars represent free intracellular 

amino levels from BY4742 [1 X AAM], BY4742 [2 X AAM], BY4742+LEU2 [1 X AAM] and 

BY4742+LEU2 [2 X AAM] respectively. In this experiment, I prepared the different cell lysates, 

which were further processed and analyzed by Dr Michael Kohlstedt (Wittman's group, at the 

Saarland University) as a part of the collaboration work. 

 

3.2.3 BCaa pathway NON-ACTIVATION supports the growth of BY4742 on 2 X 

AAM condition 

It was interesting to see that the auxotrophic BY4742 yeast strain instead synthesized 

more of the amino acids itself than simply importing them from the medium on 2 X AAM 

growth condition. However, this was not the case for Δilv3, which was observed to 

import the majority fraction of its amino acids from the growth medium. It was also 

observed from the 13C amino acid labelling studies that there is possibly no trigger for 

amino acid synthesis in Δilv3, especially that of the BCaa, on 2 X AAM. This 

observation is plausible since the Δilv3 deletion strain lacks the Ilv3 enzyme, which 

catalyzes the third step in the BCaa synthesis pathway and thus, it cannot produce its 

BCaa. As the next step, to confirm the initial idea that the BCaa bio-synthesis pathway 

is triggered on 2 X AAM growth condition in BY4742: I intended to study the observed 

growth phenotype of BY4742 in a way where the BCaa pathway is not activated on 2 

X AAM growth condition. 

It is established that under nutrient depletion and amino acids starvation conditions, 

Gcn4 kinase is activated upon activation by Gcn2 kinase by uncharged tRNA's60. Gcn4 

further activates the biosynthesis of several amino acids, independent of which amino 

acid is depleted from the growth medium74. Next, I intended to verify the role of Gcn4 

in mediating the activation of the BCaa pathway on 2 X AAM growth condition. It was 

fascinating to observe that the deletion of GCN4 renders the cell to grow better than 

BY4742 (fig: 29) on 2 X AAM and 3 X AAM growth conditions. This result strongly 

suggested that Gcn4 activity mediates the activation of the BCaa pathway on 2 X AAM 

condition. Its subsequent signalling is probably the cause of the observed growth 

phenotype of BY4742.  
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Figure 29: Deleting GCN4 also rescues the growth phenotype. To verify the rescue of the 

growth phenotype from non-activation of BCaa pathway, Δgcn4 deletion strain was generated 

by homologous recombination. BY4742 and GCN4 deletion strain were cultured overnight in 

HC medium, diluted the next day, and grown to log phase. Cells were harvested, washed, 

fivefold serially diluted, and spotted on plates containing normal [1 X AAM], double [2 X AAM] 

or triple [3 X AAM] amount of amino acid dropout mix, containing 2% glucose as carbon 

substrate. The plates were incubated at 30°C for 42 hours. The top black bar corresponds to 

the decreasing cell density from left to right. This figure is one of the representative examples 

from at least three independent experiments performed on different days. 

 

3.2.4 Sit4 and Gcn4 act upstream to the activation of the BCaa pathway  

Following the previous observation that Gcn4 leads to the activation of the BCaa 

pathway on 2 X AAM growth condition, the following questions were raised: what 

comes upstream for activation of Gcn4? Does the TORC1 pathway have any putative 

role upstream of Gcn4 in activating the BCaa pathway in BY4742 on 2 X AAM growth 

condition? Sit4 and Iml1 were chosen as potential candidates to address this question 

since Sit4 is a type 2A-related serine/threonine phosphatase known to play diverse 

roles in the cellular processes ranging from TOR signalling, DNA repair to actin 

cytoskeleton organization, G1/S phase transition during mitosis, etc208,209. Iml1 acts as 

GTPase activating protein (GAP) for Gtr1p (EGOC subunit) and is a subunit of Seh1-

associated complex or SEACIT complex along with other subunits Npr2p and Npr3p, 

leading to the inactivation of TORC1 signalling107–109. Therefore, strains with either 

deletion or overexpression of SIT4 and IML1 were generated by homologous 

recombination. 
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Figure 30: Sit4 and Gcn4 act upstream to possibly activate of the BCaa pathway. To 

verify upstream partners leading to the activation of the BCaa pathway, strains with either 

deletion or overexpression of IML1 and SIT4 were generated by homologous recombination. 

All strains were cultured overnight in HC medium, diluted the next day, and grown to log phase. 

Cells were harvested, washed, fivefold serially diluted, and spotted on plates containing normal 

[1 X AAM], double [2 X AAM] or triple [3 X AAM] amount of amino acid dropout mix, containing 

2% glucose as carbon substrate. The plates were incubated at 30°C for 42 hours. The top 

black bar corresponds to the decreasing cell density from left to right. This figure is one of the 

representative examples from at least three independent experiments performed on different 

days. 

 
As observed from the figure: 30, knockout of SIT4 rescued, whereas its overexpression 

further worsened the observed growth phenotype indicating that Sit4 is potentially 

acting upstream of Gcn4. It is also known that the activation of Sit4 phosphatase upon 

TOR inactivation phosphorylates and activates the Gcn2 kinase, which further 

phosphorylates and inactivates elf2αB72. The inactive elf2αB further inhibits the global 

translation and thus leading to the increased transcription rates of Gcn4 and resultant 

Gcn4 mediated signalling60. Also, the knockout of IML1 could not rescue the growth 

phenotype in response to the increased amino acid content in the growth medium. It 

indicated that it was not possible to activate the TORC1 mediated signalling by 

diminishing the GAP activity of the SEACIT complex, which in turn could rescue the 

observed growth phenotype. However, the overexpression of IML1 further worsened 

the growth phenotype due to higher GAP activity of SEACIT complex, probably 

completely diminished the TORC1 mediated signalling (if present). Though, we need 

more experimental evidence to establish the potential role of TORC1 inactivation on 2 

X AAM growth condition. Nonetheless, these findings gave us an initial hint that the 

TORC1 inactivation underlies the observed growth phenotype, where possibly the 

active Sit4 phosphatase (activated upon inactivation of TORC1) further activates the 

Gcn2 kinase, leading to stable expression of Gcn4 mRNA. Further, the Gcn4 

transcription factor binds to promotors of  several amino acid genes leading to the 

synthesis of different amino acids, especially that of the BCaa. 
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3.3 Effect of AAM on the transcriptional and translational level 

So far, we observed how the increased presence of Ehrlich amino acids in the growth 

medium illicit the slow growth phenotype for leucine auxotrophic yeast strain BY4742. 

Also, establishing the functional leucine bio-synthesis pathway or deleting any gene 

upstream of or ILV3 rescued the observed growth phenotype. We also observed that 

activation of Sit4 phosphatase (possibly due to diminished TORC1 signalling) and 

resultant activation of the Gcn4 transcription factor underlies the observed growth 

phenotype. In summary, we learned about the factors responsible for contributing or 

rescuing the observed growth phenotype. However, we still lack the detailed 

mechanistic understanding of this growth phenotype on transcriptional and 

translational levels upon increased amino acid content in the growth medium. To gain 

more insights into the underlying mechanism, I also studied the transcriptional changes 

by performing RNA sequencing studies for BY4742 on 1 X AAM versus 2 X AAM 

growth conditions compared to Δilv3.  

 

3.3.1 BCaa genes are upregulated on 2 X AAM  

I prepared the RNA samples from the BY4742 and Δilv3 grown on 1 X AAM and 2 X 

AAM growth conditions. Further, the samples were processed, RNA sequencing and 

subsequent data analysis were performed in collaboration with Dr Kathrin Kattler, from 

the Walter group, at the Saarland University.  

The PCA analysis is a commonly used method to reduce the dimensionality of the 

generated data. It makes it easier to detect the variability between different test 

conditions and biological or technical outliers. As observed from figure: 31, one could 

see the variance in differential expression of genes among the different biological 

replicates, which is frequently observed in such experimental analysis. These 

variances are considered while normalizing and processing the raw data. It is also 

good to observe that all the replicates are clustered together. The heat map shows z 

scores or the relative expression changes for all differentially expressed genes (DEG) 

in the dataset (DEG roughly ~650 genes for the current study). A correlation between 

different samples further clusters the DEG, and accordingly, we could see an evident 

separation between the different replicates and comparison groups (BY4742 and Δilv3; 

1 X AAM and 2 X AAM) during the study. 

Interestingly, we observed the upregulation of the BCaa biosynthetic pathway in 

BY4742 when grown on 2 X AAM (fig: 32) in comparison to 1 X AAM growth condition, 

which was not the case for Δilv3 (data not shown). This observation makes sense since 

the ILV3 deletion lacks a dihydroxy-acid dehydratase enzyme, catalysing the BCaa 

intermediates DHMV or DHIV to KMV or KIV, respectively. Therefore, it cannot 

synthesize its BCaa and possibly could not upregulate this pathway. Further, we also 

observed how the expression levels of the individual BCaa genes changed for BY4742 

and Δilv3 on 1 X AAM vs 2 X AAM growth conditions (fig: 33).  
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Figure 31: The PCA analysis and heat map representing BY4742 and Δilv3 

transcriptional changes on 1 X AAM vs 2 X AAM growth condition. A: The individual 

circles represent one biological replicate. B: Every column in the heat map represents a 

biological replicate. It shows the relative expression changes for all differentially expressed 

genes in the dataset. BY4742 and Δilv3 cells grown in 1 X AAM and 2 X AAM growth conditions 

are represented by different colors. In this experiment, I prepared the RNA samples, which 

were processed for RNA sequencing. The subsequent data analysis was performed by Dr 

Kathrin Kattler (Walter's group, Saarland University) as a part of the collaboration work. 

 

 

Figure 32: The GO plot summarizing the GO enrichment of the transcriptional changes 
in BY4742 on 1 X AAM versus 2 X AAM growth condition. The GO enrichment analysis 
was done on all differentially expressed genes with |logFC|>1 and FDR<0.01. The y axis 
represents -log10 p-value. The x-axis represents an enrichment z-score that means a relative 
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enrichment of the GO enrichment term's genes. A positive Z score represents higher 
enrichment of GO term in the first test condition under observation and vice versa. The size of 
the bubble corresponds to the number of differential genes associated with the GO term. 

 
 
This observation further strengthened our previous idea that BCaa biosynthetic 
pathway is upregulated in BY4742 on 2 X AAM, compared to the 1 X AAM growth 
condition. Furthermore, we did not see any striking changes at the transcription level 
for other related pathways (data not shown), which could have increased our 
understanding of the observed growth phenotype. 
 
 

 

 

 Figure 33: The expression levels for the BCaa pathway genes in BY4742 and Δilv3 in 1 

X AAM and 2 X AAM growth conditions. The genes involved in the synthesis of BCaa and 

GCN4 expression levels are represented in violin plots. The expression levels of respective 

genes in individual biological replicates across the different samples under investigation can 

also be observed. 

 

3.3.2 Increased amino acid content affects the cell division 

We observed from the drop dilution and the growth curve assay (fig: 12) that BY4742 

is growing slower on 2 X AAM in comparison to 1 X AAM. There is almost no or poor 

growth of BY4742 on 3 X AAM growth condition compared to 1 X AAM growth condition 

(control). This amino acid dependent slow growth (2 X AAM) and almost no growth (3 

X AAM) observation of BY4742 further raised an exciting question: Are these cells 

viable and cell cycle arrest, or are the cells dead? 
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3.3.2a Increased amino acid content induces apoptosis in a fraction of the yeast 

population 

To address how increased amino acid content in the growth medium affects the cell 

division cycle and results in the slow growth phenotype of BY4742: I decided to perform 

Annexin-V/PI staining of BY4742 when cultured in 1 X AAM and 2 X AAM liquid 

medium. Since we also observed that the Δilv3 deletion was resistant to the increased 

amino acid content and did not exhibit the slow growth phenotype, Δilv3 cells were 

used as a positive control. Annexin-V binding assay is a fast, precise, and reliable 

method to identify and quantify the apoptotic cells from a population via microscopic or 

flow cytometry analysis210–212.The phospholipid: Phosphatidylserine (PS) residue is 

present usually on the inner PM leaflet but is transitioned to the upper PM leaflet in 

response to the early apoptotic signals. Thus, PS gets exposed to the plasma 

membrane and acts as an early apoptotic marker213,214. Annexin-V is known to bind to 

the exposed PS residue on the outer plasma membrane. 

Further, co-staining the cells with the propidium iodide (PI) helps to distinguish 

between the early apoptotic and late apoptotic stage. PI binds to the DNA only in the 

later apoptotic stage or necrosis. Thus, Annexin-V positive, PI negative: indicates early 

apoptosis stage; Annexin-V negative, PI-positive: indicates necrosis; and Annexin-V 

positive, PI-positive: indicates late apoptosis stage, where apoptosis gradually resulted 

in necrosis215. I prepared the microscopic slides for annexin-V stained BY4742 and 

Δilv3 cells grown on 1 X AAM and 2 X AAM growth conditions (using the protocol 

described in detail under section 2.2.4). Further, these slides were imaged, processed 

and subsequent data analysis was performed by Dr Galal Metwally (Storchovà group, 

TU-Kaiserslautern) as a part of the collaboration work.  

Interestingly, a significant percentage of BY4742 cells (nearly 20 %) were stained with 

apoptotic stain Annexin-V when grown on 2 X AAM (fig: 34) in comparison to 1 X AAM 

growth condition. Further, there was no significant change in the percentage of 

annexin-V stained Δilv3 cells for 1 X AAM versus 2 X AAM growth condition, which 

served as a control. It was fascinating to observe that the increased amino acid 

content, mainly Ehrlich amino acids, in the growth medium resulted in apoptosis of 

~20% of the cell population of BY4742. The exact mechanism by how the increased 

amino acid content resulted in apoptosis of leucine auxotrophic BY4742 is still elusive. 
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Figure 34: Increase in the amino acid content in growth medium results in apoptosis of 
BY4742. BY4742 and Δilv3 deletion strains were cultured overnight in HC medium and were 
inoculated in fresh HC medium the next day (with either normal [1 X AAM] or double amount 
[2 X AAM] of amino acid dropout mix) and grown till late exponential phase. The following day, 
1 O.D.600 units of cells were harvested, washed using sorbitol buffer; the resultant pellet was 
dissolved in Tris/DTT Buffer and further incubated at 30°C for 15 min. Afterwards, the cell 
suspension was rewashed and resuspended in sorbitol buffer containing zymolase and 
incubated for 30-40 mins at 30°C. The resultant protoplast pellet was carefully washed with 
and resuspended in binding sorbitol buffer.  Further, the pre-diluted Annexin-V and Propidium 
Iodide (PI) stain (Annexin-V-FLUOS staining kit, Sigma Aldrich) was added to the protoplast 
suspension and incubated in the dark for 20 mins. These stained cells were washed with PBS 
(1 X) and were further incubated with DAPI staining solution for 10 mins in the dark. Afterwards, 
the stained cell suspension was washed, added to the poly-lysine coated slides, and incubated 
for 15-20 min in the dark, washed with PBS, and sealed using coverslips. Further, these slides 
were imaged using either 40X air or 60X oil objective lens on a Zeiss inverted microscope 
(AxioObserver Z1), equipped with CSU-X1 spinning disk confocal head (Yokogawa) and the 
CoolSnap HQ camera (Roper Scientific). The Slidebook software, version 6.0.6 (Intelligent 
Imaging Innovations), was used to quantify and analyze the acquired images. The bar graph 
represents the average percentage of apoptotic cell populations derived from three 
independent biological replicates, where error bars represent standard deviation and '*', '**',' 
***' represents <0.05, <0.005, and <0.001 p-values, respectively. In this experiment, I prepared 
the microscopic slides, which were imaged, processed, and analyzed by Dr Galal Metwally 
(Storchovà group, TU-Kaiserslautern) as a part of the collaboration work.  

 

After learning that increased amino acid content in the growth medium resulted in the 
apoptosis of BY4742 (by nearly 20 % of the cell population). Then what happens to the 
remaining cell population? To address this question, I decided to look at 2 N copy of 
DNA and the budding index of BY4742 and Δilv3 when grown on 1 X AAM versus 2 X 
AAM growth conditions. 
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Figure 35: Increase in the amino acid content in growth medium results in G1 cell cycle 
arrest of BY4742. A: The flow cytometry histograms represent the count of cells having either 
1N or 2N copy of DNA. B: The graph represents the average percentage of a population 
containing a 2N copy of DNA derived from three independent biological replicates, where error 
bars represent standard deviation. C: The box plot represents the budding index of BY4742 
and Δilv3 cells computed from three independent experiments. BY4742 and Δilv3 were 
cultured overnight in HC medium and were inoculated in fresh HC medium the next day (with 
either normal [1 X AAM] or double amount [2 X AAM] of amino acid dropout mix) and grown 
till late exponential phase. The following day, 1 O.D.600 units of cells were harvested in 2 sets 
(one for computing budding index, the other for PI/FACS analysis), resuspended in 1 mL of 
70% (v/v) ethanol. One set of samples was processed directly to count budded and non-
budded cells in several random fields using the Zeiss inverted microscope (AxioObserver Z1), 
which was equipped with a CSU-X1 spinning disk confocal head (Yokogawa). Further, the 40X 
air or 60X oil objective lens was used to acquire images using the CoolSnap HQ camera 
(Roper Scientific), which were further processed for computing the budding index using the 
Slidebook software, version 6.0.6 (Intelligent Imaging Innovations). In contrast, the other set 
of samples was stored overnight for the PI/FACS analysis. The next day, cells were further 
washed and resuspended in 250 μL FxCycle™ PI/RNase staining solution (Life Technologies, 
#F10797). The cell suspension was incubated in the dark for 30 min at RT and then 
subsequently stored for 72 hours at 4°C. After three days, samples were sonicated for 20 secs 
at 30 % amplitude and run on an Attune™ Flow Cytometer. The FlowJo™ software, version 
10, was used to analyze the data. A histogram of cell count against PI intensity was plotted, 
and samples were gated for single cells. The percentage of cells with 1C DNA and 2C DNA 
content, where C represents the copy number of DNA, were determined using the area under 
the histogram where for 1N: 0 – 2.7 x 105 PI intensity and 2N: 2.7 x 105 – 4.5 to 7 x 105 PI 
intensity, values of area under the histogram were used, respectively. The ‘*’, ‘**’,’***’ 
represents the <0.05, <0.005, and <0.001 p-values, respectively. This experiment set was 
performed by Dr Galal Metwally (Storchovà group, TU-Kaiserslautern) as a part of the 
collaboration work. 
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This experiment set was performed by Dr Galal Metwally (Storchovà group, TU-
Kaiserslautern) as a part of the collaboration work. As observed from fig: 35, BY4742 
grown on 2 X AAM growth condition had significant less percentage of cells with 2N 
copy of DNA along with quite a significant percentage of cells with fewer buds 
(computed using the budding index), in comparison to the cells grown on 1 X AAM 
growth condition. However, for Δilv3 cells, there was no change in the percentage of 
cells with 2N copy of DNA and for budding index when cells were grown in 1 X AAM 
versus 2 X AAM growth condition.  
 
As a conclusion, we observed that the presence of increased amino acid content in the 
growth medium (2 X AAM) resulted in apoptosis for a significant percentage of BY4742 
cells. Also, a significant percentage of the BY4742 cell population had fewer buds 
which perfectly correlated with the observation of a smaller percentage of cells with a 
2N copy of DNA, indicating that cells were probably arrested at the G1 stage of cell 
division. 
 

 

3.3.2b Increased amino acid content decreases the global translation levels 

We observed that increased amino acid content in the growth medium resulted in 

apoptosis of BY4742 by nearly 20 %. Also, a significant percentage of cells were 

arrested in the G1 stage of cell division. I further decided to study the effect of 

increased amino acid content in the growth medium on the global protein translation 

rate. Puromycin is an antibiotic produced by Streptomyces alboniger, which acts as a 

translation inhibitor for prokaryotes and eukaryotes216–218. Thus, puromycin uptake by 

the cells disrupts the peptide transfer on ribosomes, thus causing the premature 

termination of protein synthesis. Dr Galal Metwally (from Storchovà group, TU-

Kaiserslautern performed this experiment as a part of the collaboration work) studied 

the relative incorporation of puromycin during the exponential growth phase of BY4742 

and Δilv3 on 1 X AAM versus 2 X AAM growth condition.  

As observed from fig: 36, BY4742 grown on 2 X AAM growth condition had significantly 
less incorporation of puromycin compared to growth of cells on 1 X AAM. However, 
there was no significant change in the relative rate of puromycin incorporation for Δilv3 
for 1 X AAM versus 2 X AAM growth condition. These results indicated that BY4742 
cells, when grown on 2 X AAM, already had less protein synthesis and therefore 
incorporated a relatively less fraction of the puromycin. 
 
Since we also observed that activation of the Gcn4 transcription is involved on 2 X 

AAM growth conditions (fig: 29), which is also contributing to the observed growth 

phenotype. Further, it is also known that induction of the Gcn4 mediated signalling 

inhibits the global protein translation in the cell64. Therefore, the current observation of 

lower protein synthesis in BY4742 on 2 X AAM growth condition makes complete 

sense and is probably an effect of active Gcn4 mediated signalling in response to the 

increased amino acid content in the growth medium.  
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Figure 36: Increase in the amino acid content in growth medium results in decreased 

global protein translation in BY4742. A: The western blot performed using α-puromycin 

antibody after the addition of puromycin to the liquid culture of BY4742 and Δ ilv3 and the 

corresponding Ponceau staining. B: The bar graph represents the average of the quantified 

data from the relative puromycin incorporation generated from three independent biological 

replicates, where error bars represent standard deviation. BY4742 and Δilv3 were cultured 

overnight in HC medium (with either normal [1 X AAM] or double amount [2 X AAM] of amino 

acid dropout mix). They were diluted 1:10 in the fresh medium the following day. While growing 

in the exponential phase, cultures were supplemented with puromycin (final con. 10 µM) for 15 

min (30 min, 140 rpm). Further, cells equivalent to 5 O.D.600 units were harvested, washed 

twice, and cell lysates were prepared for western blot. The relative levels of puromycin 

incorporation in wt under 1 X AAM growth condition was normalised and taken as value 1, 

which was used as a reference to plot other values. The ‘*’, ‘**’,’***’ represents the <0.05, 

<0.005, and <0.001 p-values, respectively. This experiment set was performed by Dr Galal 

Metwally (Storchovà group, TU-Kaiserslautern) as a part of the collaboration work. 

 

3.4 Increased amino acid content induces redox phenotype 

One of the exciting aspects that I wanted to investigate further was to see how the cells 

grown on 2 X AAM responded to other stress conditions such as oxidative stress. As 

a first step, I performed a halo assay for BY4742 or the BY4742 transformants 

(transformed with either pHLUK, pHUK or p415 TEF plasmids). A halo assay is an 

informative assay to study the effect of different chemicals on the growth of yeast cells. 

The chemical is added to the centre of the filter disc, where it diffuses radially in a 

concentration dependent manner around the disc and could potentially affect the 

growth of the yeast cells. Thus, the radius of the halo-zone elucidates the sensitivity of 
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the strain in response to the exogenous addition of the chemical on the filter disc (which 

is usually kept in the centre of the plate). I looked at the effect of the addition of oxidant 

H2O2 when cells are grown on either 1 X AAM or 2 X AAM growth conditions. As 

observed from figure 37, it was interesting to note that cells grown on 2 X AAM growth 

condition, were very sensitive to H2O2 and had a bigger halo zone in comparison to 

the cells grown on 1 X AAM. It seems that cells grown on 2 X AAM growth condition 

were already experiencing oxidative stress and further couldn’t handle the additional 

oxidative stress in the form of H2O2. As observed earlier, the restoration of the 

functional leucine biosynthetic pathway helped rescue the observed growth phenotype 

upon increased amino acid content in the growth medium. Likewise, restoring the 

available leucine pathway in the leucine auxotrophic yeast strain was also able to 

rescue the oxidative stress, induced probably due to the increased amino acid content 

in the growth medium.  

 

 

 

Figure 37: Restoring the available Leucine biosynthetic pathway rescues cells from the 

oxidative stress-induced due to 2 X AAM growth condition. All yeast strains were cultured 

overnight in HC (or selective medium to maintain the plasmid selection), diluted the next day, 

and grown to log phase, cells were harvested and washed, and subsequently, 0.001 O.D.600 

unit of cells were spread uniformly using the sterile glass beads on plates containing either 

normal [1 X AAM] or double [2 X AAM] amount of amino acid dropout mix, supplemented with 

2% glucose as carbon substrate. 10 μL of 6 M H2O2 was added to the filter disc in the middle 

of the plate. The plates were scanned following incubation at 30°C for two days. This figure is 

one of the representative examples from at least three independent experiments performed on 

different days. 
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3.4.1 Restoring the leucine auxotrophy in BY4742 also rescues the redox 

phenotype 

It was shown with in-vitro studies using mice model for MSUD that the BCaa and their 

α-keto acids reduced the anti-oxidative capacity in the brain isolates and stimulated 

lipid peroxidation, possibly by increased production of free-radicals. Thus, 

strengthening the potential contribution of oxidative stress towards the neurological 

damage to MSUD patients6–9. It was also observed from the halo assay results (fig: 

37) that BY4742, when grown on 2 X AAM growth condition were more sensitive 

towards additional oxidative stress in the form of H2O2. It was quite fascinating to 

observe that increased amino acid content in the medium also induced oxidative 

stress, likewise reported for patients (and animal models) suffering from MSUD. I 

further decided to study this redox phenotype of the cells in detail and see how it 

correlates with the growth of leucine auxotrophic BY4742 yeast cells in different growth 

conditions.  

There are several ways to determine the oxidative state of the cell by investigating and 

studying the dynamics of H2O2 or GSH levels in-vivo in separate cell compartments 

using genetically-encoded sensors roGFP2-Tsa2ΔCr or roGFP2-GRX1 respectively or 

looking at the total whole-cell levels of glutathione187,219. As a first step to address this 

question, I chose to look at the whole-cell levels of glutathione under the different 

growth conditions in this study, where oxidized glutathione (GSSG) levels are an 

indication of oxidative stress to the cell220.  

 

 

Figure 38: Increased amino acid content (2 X AAM) in the medium leads to a redox 

phenotype. BY4742 cells were cultured overnight in 1 X AAM and 2 X AAM liquid medium to 

log phase. Total glutathione (GSX) and oxidized glutathione (GSSG) levels were measured 

using a DTNB recycling assay. The whole-cell concentrations of the total and the oxidized 

glutathione were calculated using the regression curve generated from the known GSH and 

GSSG standards. The amounts of GSH were further calculated by subtracting double GSSG 

values from GSX values.  
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Surprisingly, there was a massive increase in GSSG levels (with no significant changes 

in the total GSH levels) for BY4742 when cultured in 2 X AAM liquid medium compared 

to 1 X AAM (fig: 38). It was intriguing to observe that increased amino acid content in 

the medium (2 X AAM) also had a redox phenotype effect. These observations of 

growth and redox phenotype further raised several questions, such as whether these 

phenotypes are linked to each other in such a pattern where either of them could be 

causing the other one? Or there could be a third unknown factor that is simultaneously 

leading to both growth and redox phenotypes independently of each other on 2 X AAM 

growth condition. 

Since on 2 X AAM cells had massive GSSG levels indicating cells were experiencing 

oxidative stress, I decided to supplement DTT in the medium and see whether it could 

rescue the growth effect, which was only possible if growth phenotype was caused due 

to oxidative stress. The presence of 1 mM DTT in the HC agar plates couldn't rescue 

this growth effect. It could be very well possible that oxidative stress is not leading to 

growth effect or even the presence of 1 mM DTT in the agar plates (supplemented with 

double or triple amounts of amino acid dropout mix) was not enough to rescue this 

growth effect (fig: 39). The correlation between growth and redox phenotype couldn't 

be addressed with this experiment.  

 

 

 

Figure 39: DTT supplementation could not rescue the growth phenotype. BY4742 was 

cultured in HC medium to log phase, fivefold serially diluted and spotted on plates containing 

normal [1 X AAM], double [2 X AAM] or triple [3 X AAM] amount of amino acid dropout mix, 

containing 2% glucose as carbon substrate. The plates were incubated at 30°C for 42 hours. 

The top black bar corresponds to the decreasing cell density from left to right. This figure is 

one of the representative examples from two three independent experiments performed on 

different days. 

 

Likewise, for the growth phenotype, either establishing functional leucine biosynthetic 

pathway or increasing leucine amounts in proportion to the increased amino acid 

content in the growth medium rescued the cells from this redox phenotype (fig: 40). As 

observed previously, pHUK transformed yeast cells grew slower in the liquid medium. 

Interestingly, they also accumulated massive levels of GSSG as compared to the 

untransformed BY4742 when grown in 2 X AAM (fig: 40).  
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Figure 40: Establishment of functional leucine biosynthetic pathway or extra Leucine 

supplementation in the medium rescued the redox phenotype. BY4742 cells and or 

transformed with either p415 empty vector (containing LEU2 as selection marker) or with 

pHLUK or pHUK plasmids were cultured overnight in 1 X AAM and 2 X AAM liquid medium (or 

with increased Leucine in proportion to AAM) or respective selective HC medium to log phase. 

Total glutathione (GSX) and oxidized glutathione (GSSG) levels were measured using a DTNB 

recycling assay. The whole-cell concentrations of the total and the oxidized glutathione were 

calculated using the regression curve generated from the known GSH and GSSG standards. 

The amounts of GSH were further calculated by subtracting double GSSG values from GSX 

values.  
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3.4.2 Removing isoleucine and valine from the medium partially rescue the redox 

phenotype 

It was also observed that by removing valine and isoleucine from the medium, the 

amino acid dependent growth phenotype of BY4742 was rescued (fig: 24). 

Interestingly, the redox phenotype was partially rescued when cells were cultured in 

the medium with minus isoleucine and valine (fig: 41). These results further gave a hint 

that, like growth phenotype in the presence of increased amino content in the medium, 

redox phenotype might also be linked to the BCaa pathway.  

 

 

Figure 41: Removing isoleucine and valine from the medium partially rescued the redox 

phenotype. BY4742 cells were cultured overnight in 1 X AAM and 2 X AAM liquid medium 

and in -I, V (minus isoleucine and valine) medium to log phase. Total glutathione (GSX) and 
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oxidized glutathione (GSSG) levels were measured using a DTNB recycling assay. The whole-

cell concentrations of the total and the oxidized glutathione were calculated using the 

regression curve generated from the known GSH and GSSG standards. The amounts of GSH 

were further calculated by subtracting double GSSG values from GSX values.  

 

3.4.3 Deleting ILV3 rescues the redox phenotype 

With our previous observation that the growth phenotype is related to the BCaa 

biosynthetic pathway, the next step to address was to check whether the redox 

phenotype is also related to the BCaa biosynthetic pathway or not? As the next step, 

the whole-cell GSX and GSSG levels were determined in BCaa pathway mutants 

grown on 1 X AAM and 2 X AAM growth conditions. Interestingly, like for growth 

phenotype, a similar pattern was observed in the whole-cell GSSG levels of BCaa 

mutants. Compared to BY4742, deletion of ILV2 and ILV3 decreases the GSSG levels 

(fig: 42) significantly on 2 X AAM, where deletion of the latter had a profound effect on 

GSSG levels. As mentioned before, Ilv5 has dual roles in mitochondria, and its deletion 

leads to the other secondary products, thus possibly elevating the GSSG levels in 

general. There was no significant change in the total glutathione levels of these BCaa 

mutants when grown on 1 X AAM versus 2 X AAM growth conditions. Therefore, it was 

inferred that deleting ILV2 or ILV3 rescued the redox phenotype. Deleting the genes 

downstream to ILV3 in the BCaa pathway exhibited the same redox phenotype as 

BY4742 on 2 X AAM growth condition. In conclusion, like for the observed growth 

phenotype, the Ilv3 catalyzed step acted as a switching point for the redox phenotype 

upon increasing the amino acid content in the growth medium. 
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Figure 42: Deleting ILV3 rescued the redox phenotype. BY4742 and all the BCaa mutants 

were cultured overnight in 1 X AAM and 2 X AAM liquid medium to log phase. Total glutathione 

(GSX), and oxidized glutathione (GSSG) levels were measured using a DTNB recycling assay. 

The whole-cell concentrations of the total and the oxidized glutathione were calculated using 

the regression curve generated from the known GSH and GSSG standards. The amounts of 

GSH were further calculated by subtracting double GSSG values from GSX values.  

 

The next question I wanted to investigate was: what happens to redox phenotype when 

the BCaa pathway is non-activated on 2 X AAM? Because it was previously observed 

that with GCN4 deletion (which is needed for BCaa pathway activation on 2 X AAM 

growth condition), the observed growth phenotype was rescued (fig: 29). Surprisingly, 

the non-activation of BCaa with GCN4 deletion also rescued the cell from the observed 

redox phenotype on 2 X AAM growth condition (fig: 43). These findings indicated that 

either the activation of the BCaa pathway or the unknown upstream component leads 

to both the redox phenotype and the observed growth phenotype. In summary, both 

growth and redox phenotype are not caused by each other but rather by a third 

component, which is probably causing both (either directly or indirectly) in response to 

the increased amino acid content in the growth medium. 
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Figure 43: Deleting GCN4 rescues the redox phenotype. BY4742 and ΔGcn4 were cultured 

overnight in 1 X AAM and 2 X AAM liquid medium to log phase. Total glutathione (GSX) and 

oxidized glutathione (GSSG) levels were measured using a DTNB recycling assay. The whole-

cell concentrations of the total and the oxidized glutathione were calculated using the 

regression curve generated from the known GSH and GSSG standards. The amounts of GSH 

were further calculated by subtracting double GSSG values from GSX values.  

We also observed that overexpression of Bat1p was able to rescue the growth 

phenotype on 2 X AAM, but surprisingly, it could not rescue the cell from the redox 

phenotype (fig: 44). This result proved that redox and growth phenotype are not linked 

to each other directly. There is a third unknown factor leading to both growth and redox 

phenotypes independently of each other. Nevertheless, we could still conclude that the 
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activation of BCaa pathway synthesis leads to the onset of the redox phenotype in 

response to the increased amino acid content in the growth medium.  

 

    

Figure 44: Overexpressing BAT1 does not rescue the redox phenotype. BY4742 and 

BAT1 OE strains were cultured in 1 X AAM and 2 X AAM liquid medium to log phase. Total 

glutathione (GSX) and oxidized glutathione (GSSG) levels were measured using a DTNB 

recycling assay. The whole-cell concentrations of total and oxidized glutathione were 

calculated using the regression curve generated from the known GSH and GSSG standards. 

The amounts of GSH were further calculated by subtracting double GSSG values from GSX 

values.  
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3.5 The potential intermediate behind the growth phenotype  

3.5.1 ILV3 is potentially the switching point for observed growth phenotype 

The previous observations suggest that Ilv3 seems to be the pivot for both growth and 

redox phenotype. Thus, I asked whether the intermediate keto-isovalerate (KIV) 

formed during the ILV3 catalyzed step is causing the observed growth and redox 

phenotype? There was an equal possibility that instead of KIV or in combination with 

it, keto-methyl valerate (KMV) could also be contributing to the amino acid dependent 

growth and redox phenotypes. The latter's contribution was already ruled out since the 

deletion of ILV1 (where KMV could not be synthesised; and formation of KIV was the 

only possibility) did not rescue the growth of BY4742 in the presence of increased 

amino acid content in the medium.  

Looking from the broader view, KIV or 2-oxo-butyrate or deaminated valine are 

involved in several cellular pathways (fig: 45). In order to investigate the potential 

pseudo-toxic role (for emphasizing its effect on the growth of cells) of KIV, I either 

deleted or overexpressed the genes, whose products could be metabolizing KIV 

(ECM31, BAT1, and BAT2) in the first place or are speculated to play a substantial role 

(CIR2 and AIM45) during downstream signalling in the cell.  

 

 

 

Figure 45: Schematic diagram showing the possible routes and proteins involved where 

keto-isovalerate (KIV) can be metabolized downstream. KIV can either form valine with 

Bat1p catalyzed step inside mitochondria or converted to α-IPM leading to leucine synthesis 

in the cytoplasm. KIV can be exported out of mitochondria via Leu5 transporter where it can 

again be aminated to valine by Bat2p, or it can be catalyzed by Ecm31 to 2-dehydropantoate, 

ultimately leading to pantothenate formation via series of reactions. Also, it can be catabolized 

via the Ehrlich pathway to Isobutanol.  
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KIV has several possibilities to function downstream inside the cell depending upon its 

localization and probably also depending upon the local concentration, which no one 

has reported so far. As a first step, I deleted and overexpressed the genes ILV3, LEU4, 

and LEU9, whose encoded proteins metabolise KIV inside the mitochondria. As 

observed from the figure: 46, knockout and overexpression of Leu4 and Leu9 proteins 

had no additional striking effect on the observed growth phenotype in response to the 

increased amino acid content in the growth medium. Since the conversion of KIV to 

IPM is mediated by isopropyl malate synthase, encoded by genes LEU4 and 

LEU9140,206. Thus, overexpressing both LEU4 and LEU9 together could also be a good 

idea to study its resulting combined effect on the observed growth phenotype. It was 

also not surprising to observe the variability in the growth phenotype of strains such as 

BY4742, ILV3 OE strain, etc., in the current experimental conditions during this study, 

which might arise due to several technical reasons. Nonetheless, the respective strains 

exhibited a similar growth pattern as observed from different repeats performed during 

this study.  

 

Figure 46: Deleting or overexpressing LEU4 and LEU9 has no rescue effect on the 

growth of cells in conditions with increased amino acid content in the medium. All strains 

were cultured overnight in HC medium, diluted the next day, and grown to log phase. Cells 

were harvested, washed, fivefold serially diluted, and spotted on plates containing normal [1 X 

AAM], double [2 X AAM] or triple [3 X AAM] amount of amino acid dropout mix, containing 2% 

glucose as carbon substrate. The plates were incubated at 30°C for 42 hours. The top black 

bar corresponds to the decreasing cell density from left to right. This figure is one of the 

representative examples from at least three independent experiments performed on different 

days. 
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Since knocking out and overexpressing LEU4 and LEU9 did not affect the observed 

growth phenotype. I further decided to look at the growth phenotype of BY4742 with 

deletion and overexpression of branched-chain aminotransferases, BAT1 and BAT2, 

which catalyses the conversion of KIV to valine in mitochondria and cytoplasm, 

respectively143. I also chose another potential candidate, Ecm31, which metabolises 

cytoplasmic KIV to 2-dehydropantoate, ultimately leading to pantothenate formation 

via series of downstream reactions221.  

 

 

Figure 47: Overexpressing BAT1 rescues the growth of cells in conditions with 

increased amino acid content in the medium. All strains were cultured overnight in HC 

medium, diluted the next day, and grown to log phase. Cells were harvested, washed, fivefold 

serially diluted, and spotted on plates containing normal [1 X AAM], double [2 X AAM] or triple 

[3 X AAM] amount of amino acid dropout mix, containing 2% glucose as carbon substrate. The 

plates were incubated at 30°C for 42 hours. The top black bar corresponds to the decreasing 

cell density from left to right. This figure is one of the representative examples from at least 

three independent experiments performed on different days. 

 

The drop dilution assay (fig: 47) showed that deleting the genes ECM31, BAT1, and 

BAT2 further negatively impacted the growth of cells in response to the increased 

amino acid content in the growth medium. Interestingly, an increased rate of 

consumption of KIV in the mitochondria mediated by the action of over-expressed 

Bat1p rescues the growth phenotype. These results strongly indicate that at the first 

instance, KIV formation (in mitochondria) is creating the problem for the cell (though 

not quantified yet), which is probably directly leading to the growth phenotype, in an 

unknown manner so far, on 2 X AAM and 3 X AAM. There is also another possibility, 
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which cannot be ruled out at this stage, i.e., it could be the downstream product of KIV 

instead of KIV itself, the actual causative agent, mediating these phenotypes in an 

undisclosed manner so far.   

So far, our results suggested that KIV formation in mitochondria leads to the slow 

growth phenotype since the overexpression of BAT1 rescued the observed growth 

phenotype. As the next step, I also looked at the cytosolic pathway for metabolising 

KIV that might affect the observed growth phenotype. I deleted or overexpressed CIR2, 

AIM45 and ELM1 and studied its impact on the observed growth phenotype. 

In mammalian cells, the electron transfer flavoprotein (ETF) transfers electrons from 

the primary acyl-CoA dehydrogenases to the mitochondrial inner membrane located- 

ETF dehydrogenases (ETF-DH), which ultimately passes electrons to Ubiquinone in 

mitochondrial electron transport chain222. The acyl Co-A dehydrogenases participate 

in several pathways such as β-oxidation223, amino acid catabolism224, choline 

catabolism225. In yeast, the cytoplasmic KIV is converted to Isobutanol via iso-

butyraldehyde, which is catalyzed by acyl-CoA dehydrogenase. According to the 

literature, Cir2 is proposed to be the putative ortholog of human ETF-DH. Similarly, 

Aim45 is proposed to be the putative ortholog of human ETF-α, the subunit of ETF. 

Both Cir2 and Aim45 are also known to play a role in oxidative stress response222. If 

this pathway in a yeast cell has some substantial contribution towards the observed 

growth phenotype, one must see its contribution (if any) with deletion or 

overexpression of the ETF or ETF-DH (Aim45 or Cir2, respectively). 

Further, Elm1 is a serine-threonine kinase known to phosphorylate and inactivate the 

α subunit of G-protein, Gpa1, in response to branched-chain α-keto acids or their 

hydroxy derivatives. Thus, dampening the Gpa1 mediated downstream osmotic stress 

or pheromone signalling226. One could also observe whether cytoplasmic KIV (or its 

hydroxy derivatives) act as a second messenger and recapitulate the osmotic stress 

response (in Elm1 dependent manner), thus contributing towards the amino acid 

dependent observed growth phenotype. 

As observed from figure: 48, surprisingly, both deletion and overexpression of CIR2, 

AIM45, and ELM1 further worsen the growth phenotype. Since both deletion and 

overexpression of these genes resulted in a further similar slow growth phenotype 

compared to BY4742 on 2 X AAM and 3 X AAM. These results indicate that Cir2, 

Aim45, and Elm1 have no possible contribution mediated by either KIV or its hydroxy 

derivatives towards the observed growth phenotype upon increased amino acid 

content in the growth medium.  
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Figure 48: Elm1, Aim45, and Cir2 have no role in plausible signalling mediated via KIV 

or its downstream intermediates to the growth of the cell in conditions with increased 

amino acid content. All strains were cultured overnight in HC medium, diluted the next day, 

and grown to log phase. Cells were harvested, washed, fivefold serially diluted, and spotted 

on plates containing normal [1 X AAM], double [2 X AAM] or triple [3 X AAM] amount of amino 

acid dropout mix, containing 2% glucose as carbon substrate. The plates were incubated at 

30°C for 42 hours. The top black bar corresponds to the decreasing cell density from left to 

right. This figure is one of the representative examples from at least three independent 

experiments performed on different days. 
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3.5.2 Quantification of intracellular KIV/α-IPM levels 

So far, we observed that Ilv3 catalyzed step seems to be the pivot point for growth 

phenotype and redox phenotype in response to the increased amino acid content in 

the growth medium. Also, overexpression of Bat1p could rescue the observed growth 

phenotype but not the redox phenotype. Thus, at this step, it was quite interesting to 

investigate which is the key intermediate(s), possibly from the BCaa biosynthetic 

pathway, leading to the onset of these phenotypes in response to the increased amino 

acid content in the growth medium.  

 

 
 

Figure 49: Schematic diagram highlighting the biochemical reactions around the Ilv3 

catalyzed step. The by-product of Ilv3 catalyzed KIV can either form valine by Bat1p catalyzed 

action inside mitochondria or converted to α-IPM via LEU4 and can lead to leucine synthesis 

in the cytoplasm. Since BY4742 is missing the LEU2, it cannot synthesise its leucine. KIV can 

also be further exported out of mitochondria where it can again aminated to valine by Bat2p. 

The potential metabolites that might be involved in inducing the observed phenotypes are 

represented by pink colour. The red arrows represent the export of the intermediate outside 

the mitochondria. The dotted grey colour arrow represents the subsequent reaction steps. The 

yellow (BY4742 or deleting LEU4 LEU9) or green coloured (deleting ILV3 or transforming the 

BY4742 cells with missing LEU2) represents the conditions, which exhibits or rescues the 

observed growth phenotype of BY4742 in response to 2 X AAM growth condition, respectively. 

 

After studying the reaction step (fig: 49) around the potential pivot point (Ilv3 catalyzed 

step) for the observed growth and redox phenotypes, I shortlisted four downstream 

metabolites of the Ilv3 catalyzed step, including KIV. Since these metabolites might be 

involved in playing a direct or indirect role in inducing the above phenotypes. As the 
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next step, I investigated the cellular metabolite levels of KIV, valine, α-KG and IPM, in 

the different yeast strains which either exhibited (BY4742 and Δleu4Δleu9) or rescued 

(Δilv3 and BY4742 transformed with missing LEU2) the observed growth phenotype 

on 2 X AAM and 3 X AAM growth conditions.  

The different yeast strains were grown overnight in 1 X AAM and 2 X AAM liquid 

medium. The following day appropriate volumes of cell broths were processed using 

the cold extraction protocol (as described in detail under methods section 2.2.5) and 

were analysed using GC-MS. Thus, the metabolites' levels analysed in different yeast 

strains represented the combined intracellular plus supernatant concentration (if 

excreted out by the cell) of the metabolites since there was no separation of biomass 

and the supernatant during the extraction procedure. Therefore, we observed different 

valine levels than the previously determined total intracellular valine levels in the 

BY4742 when grown on 1 X AAM versus 2 X AAM growth conditions. 

 

 

Figure 50: The total cellular metabolites levels. BY4742, Δilv3, Δleu4Δleu9, and wt 

transformed with p415 empty vector (containing LEU2) were cultured overnight in HC medium, 

inoculated in fresh 1 X AAM and 2 X AAM liquid medium the next day and were grown till late 

exponential phase. The following day, using a cold quenching extraction procedure, an 

appropriate volume of cell broth (O.D.600 of at the time of harvest was around ~ 3) was 

harvested in a pre-cooled falcon tube. Immediately 35 mL of quenching buffer (95% 

Acetonitrile, 25 mM formic acid, pre-cooled at -20 °C) was added to the above cell suspension 

(with the appropriate amount of keto caproic acid, as internal standard, in 2 mL of dH2O) and 

was further subjected to incubation on ice for 15 min, vortexed thoroughly in between, and was 

clarified of cell debris. The supernatant was harvested. The pellet fraction was further washed 

with supercooled deionized water. The supernatant was harvested again, combined with the 

first collected fraction, and subsequently frozen at -80 °C. The frozen lysates were lyophilized, 

re-dissolved in 200 µL volume of resuspension buffer (100 µL MeOX + 100 µL MSTFA, 4 °C), 

and filtered before injecting to GC-MS. The graphs represent individual metabolite levels (µmol 

per cell density weight) from an average of three independent biological replicates. Orange, 
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and yellow, green, and maroon-coloured bars represent cellular levels (intracellular plus 

possibly excreted supernatant fraction) of KIV, Valine, α-KG, and IPM, respectively, in different 

yeast strains grown on 1 X AAM and 2 X AAM growth condition. In this experiment, I prepared 

the various cell lysates, which were further processed, analysed by Dr Michael Kohlstedt 

(Wittman’s group, at the Saarland University) as a part of the collaboration work. 

 

Surprisingly, nearly no KIV levels were detected in the yeast strains (fig: 50). It could 

probably mean that KIV is either readily converted to either IPM, valine or any other 

unknown downstream product in the mitochondria or transported out to the cytoplasm 

and converted to valine by Bat2. Interestingly, there was approximately 2, 3 and a 4-

fold increase in valine, α-KG, and IPM levels, respectively, in BY4742 on 2 X AAM 

compared to 1 X AAM growth condition (fig: 50). With the previous observation of 

increased valine synthesis and activation of BCaa pathway genes in BY4742 under 2 

X AAM growth conditions, the observation of 4-fold accumulation of IPM levels also is 

quite convincing. IPM is known to bind to the Leu3 transcription factor in the nucleus, 

where the Leu3-IPM complex binds to the BCaa pathway genes, ILV2, ILV5, LEU4, 

LEU1, LEU2 and enhance their expression by many folds140. It is very likely that 

massive levels of IPM formed in BY4742 on 2 X AAM growth condition could be 

activating the BCaa bio-synthesis pathway resulting in a never-ending loop, which 

could result in a severe problem for the yeast cell which could be leading to the onset 

of the growth phenotype.  

It was also good to observe that since the double mutant LEU4 LEU9 lacks the α-

isopropyl synthase activity, we could not detect any IPM levels in this yeast mutant 

strain. However, it was observed to still exhibit the growth phenotype on 2 X AAM 

growth condition. This result implied that IPM might not be the primary causative agent 

per se leading to the observed growth phenotype of BY4742 on 2 X AAM. 

I also observed that on 2 X AAM growth condition, levels of α-KG looked similar in 

amounts for BY4742 and the double mutant LEU4 LEU9, which were nearly half in 

Δilv3 and BY4742 + LEU2 strains (fig: 51), which did not exhibit the observed growth 

phenotype. This observation indicated that α-KG might have some underlying role in 

the observed growth phenotype. It was challenging to explain the significance of this 

α-KG accumulation and its plausible contribution towards the growth phenotype at this 

point. However, this observation contradicted the previous rescuing growth phenotype 

of Bat1 overexpression in the mitochondria. Where theoretically, one expects that the 

Bat1p overexpression diverts the flux from KIV, via Ilv3 catalyzed step, to valine 

synthesis (thus favouring the forward reaction) and concomitant α-KG formation, rather 

than diverting the flux to the Leu4 Leu9 catalyzed step with IPM formation and 

subsequent BCaa pathway activation (in a continuous loop). 

Nevertheless, the quantification of the potential metabolites: KIV, valine, α-KG, and 

IPM, strengthen our previous idea that KIV formation via the Ilv3 catalyzed step is a 

very crucial step and is a potential switching point for the observed growth and redox 

phenotypes. Even though we could not detect KIV in the present experimental 

conditions, KIV might be readily converted to IPM or valine within the mitochondria or 

an unknown downstream product, ultimately leading to the onset of these phenotypes. 

Thus, all the results taken together proposed that KIV (or its downstream product) 
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could still be responsible for triggering the onset of the observed phenotypes (growth 

and redox both) in response to the increased concentration of Ehrlich amino acids in 

the growth medium.  

 

 

Figure 51: The total cellular alpha-ketoglutarate levels. BY4742, Δilv3, Δleu4Δleu9, and wt 

transformed with p415 empty vector (containing LEU2) were cultured overnight in HC medium 

and the next day were inoculated in fresh HC medium (with either normal [1 X AAM] or double 

amount [2 X AAM] of amino acid dropout mix) and were grown till late exponential phase. The 

following day, using a cold quenching extraction procedure, an appropriate volume of cell broth 

(O.D.600 of at the time of harvest was around ~ 3) was harvested in a pre-cooled falcon tube. 

Immediately 35 mL of quenching buffer (95% Acetonitrile, 25 mM formic acid, pre-cooled at -

20 °C) was added to the above cell suspension (with the appropriate amount of keto caproic 

acid, as internal standard, in 2 mL of dH2O) and was further subjected to incubation on ice for 

15 min, vortexed thoroughly in between, and was clarified of cell debris. The supernatant was 

harvested. The pellet fraction was further washed with supercooled deionized water. The 

supernatant was harvested again, combined with the first collected fraction, and subsequently 

frozen at -80 °C. The frozen lysates were lyophilized, re-dissolved in 200 µL volume of 

resuspension buffer (100 µL MeOX + 100 µL MSTFA, 4 °C), and filtered before injecting to 

GC-MS. The graphs represent α-KG levels (µmol per cell density weight) from an average of 

three independent biological replicates.  
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4 DISCUSSION 
 

Cells are remarkably tuned to sense extracellular nutrients and adapt to changing 

nutrient availability by modulating several downstream molecular processes. The 

rewiring of metabolic processes in non-physiological conditions can be short or long-

term, depending upon the exposure time. We know so much about yeast cell growth 

in various kinds of carbon and nitrogen sources, amino acid-rich or poor conditions and 

stress factors like high salt, etc. However, there are still many unanswered questions 

whose insights would positively impact our understanding of various human 

pathologies (metabolic disorders or aminoacidopathies) and their remedies. The 

findings of the current study tried to address the impact of the presence of increased 

amino acids on the growth of a leucine auxotrophic yeast strain. 

 

4.1 The case of leucine limitation   

In a recent study, it was shown in mice that the animal's lifespan highly depends on 

the quality of the amino acid content present in the diet. If the diet is based 100% on 

essential amino acids, it positively affects the lifespan. The mice lived longer but with 

the lowest body weight compared to the mice fed with the control diet. Any disturbance 

to the ratio of essential/non-essential amino acids in the diet resulted in a severe 

catabolite imbalance response, further resulting in the premature death of the mice227. 

When mice were fed with a leucine deprived diet, it activates several physiological 

responses in the body. It down-regulates the adipose tissue's and liver's lipogenic 

genes, increases the energy expenditure, and up-regulates oxidative genes in the 

white adipose tissues and the thermogenic genes. It also decreases the food intake of 

the animal by 20-30%. Further, 85% leucine restricted diet exhibits a few similar 

responses like that of methionine restricted diet. It is fascinating to note that the body 

can sense the minute changes in the concentration of the various essential amino acids 

in the diet in either restriction or deprivation and arouses both common and unique 

types of physiological responses in the body228–230.  

Interestingly, I also observed a similar observation where leucine auxotrophs 

experienced a slow growth phenotype and possibly be starved of leucine (and not due 

to other essential amino acids) in the presence of increased Ehrlich amino acid content 

in the growth medium, in comparison to the growth of leucine prototrophs. Further, 

when leucine was increased in proportion to the increase in the Ehrlich amino acids, 

this rescued the cell from all of the observed phenotypes. Thus, considering all the 

above findings from the literature and our current observations, it suggests that the 

limitation of leucine (which is an essential amino acid for the auxotrophs employed 

during the study) could be the underlying governing factor for the observed 

phenotypes.  

There was a plausible case of leucine starvation since the concentration of leucine in 

the HC medium (80 mg/mL) was just one-fourth of the previously reported minimum 

concentration of leucine to support the maximal cell growth of leucine auxotrophs176. 
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However, I found out that this slow growth phenotype did not result particularly due to 

the leucine limitation per se since Δilv3, a mutant from the leucine biosynthetic pathway 

didn’t exhibit the observed growth phenotype, and there was no change in the leucine’s 

total intracellular levels on 1 X AAM versus 2 X AAM growth conditions. Instead, when 

the leucine auxotroph BY4742 tried to upregulate its leucine biosynthetic pathway in 

the first place, it resulted in the slow growth phenotypes.  

 

4.2 The potential role of leucine underlying the observed phenotype 

We observed that excess of Ehrlich amnio acids in the growth medium results in the 

slow growth phenotype of leucine auxotroph BY4742. Either re-establishing functional 

leucine biosynthetic pathway or increasing leucine in proportion to increasing AAM in 

the medium (X [AAM + Leu]) could also rescue the cells from the slow-growth 

phenotype. Interestingly, we also observed that Sit4 activation and resultant enhanced 

Gcn4 transcription underlies upstream to the observed phenotype. The following 

intriguing question we came across during the study was what underlies upstream of 

Sit4 and Gcn4 activation? According to the literature, Sit4 phosphatase is activated 

upon TOR inhibition. Although, we already addressed and ruled out the possibility of 

leucine limitation as to the underlying cause for the observed growth phenotype. It was 

still interesting to figure out how Sit4 is activated in the current growing conditions. 

Secondly, how increasing leucine content in proportion to increasing AAM in the 

medium rescues the cells from the slow-growth phenotype? Is there any possible link 

between leucine availability and TOR-mediated signalling in response to the increase 

in the amino acid content in the growth medium? 

Various studies have underlined the role of amino acids, especially leucine, in 

mediating and activating the TOR signalling. Conversely, upon amino acids or leucine 

starvation TORC1 mediated signalling is inhibited. The leucine availability is known to 

affect the binding of Vam6, which is one of the GEFs for Gtr1, and thus positively 

modulate the TORC1 signalling in a Gtr1-dependent manner100. Similarly, Cdc60, the 

leucine binding LRS is also known to positively regulate TORC1 signalling in leucine's 

dependent manner. In the abundance of leucine, the CP1 domain of Cdc60 interacts 

with Gtr1 bounded to GTP. However, when cells are starved of leucine, Cdc60, instead 

of interacting with Gtr1, turns to proof read the mischarged tRNALeu. Thus, GTP bound 

to Gtr1 is easily susceptible to GAP activity resulting in inhibition of TOR signalling106. 

In another study, Sabatini et al. showed that Iml1 could interact transiently with GTP 

loaded Gtr1, which is also supported by other SEACIT complex components during 

the leucine deprivation conditions. These transient interactions activate the GAP 

activity of SEACIT complex towards the Gtr1GTP, converting it to Gtr1GDP and thus 

inhibiting the TOR signalling109.  

With these deep insights from the literature about the role of leucine in activating TOR 

signalling, it was quite intriguing to explore the contribution of leucine underlying the 

observed growth phenotype. As the next step, I looked at the phenotype of the BY4742 

deleted for or overexpressing the IML1 gene under the control of the TEF promotor. 

As expected, overexpressing Iml1 enhanced the GAP activity of SEACIT complex, 

subsequently leading to diminished TOR signalling and retarding the growth of cells. 
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However, unexpectedly deleting IML1 contributed to the even slower growth of cells 

rather than rescuing it in response to an increase in amino acid content in the growth 

medium. These results again strongly proved that leucine deprivation had no possible 

contribution towards the observed growth phenotype.  

We also observed the activation of the BCaa biosynthetic pathway using 13C glucose 

labelling and RNA seq studies on 2 X AAM growth conditions. Interestingly, leucine is 

also reported to inhibit the α-isopropyl malate synthase (Leu4) activity via the negative 

feedback mechanism, leading to reduced IPM levels and thus ultimately 

downregulating the BCaa biosynthesis pathway134,140. Thus, implying that 

supplementation of leucine in the growth medium, in proportion to an increase in the 

AAM content, should also inhibit the BCaa biosynthetic pathway. Thus one could 

conclude that rescue of the observed growth phenotype by supplementation of leucine 

in proportion to the increase in the AAM content in the medium was probably due to 

inhibition of the potential activation of the BCaa biosynthetic pathway, which is 

triggering the onset of this phenotype.  

 

4.3 The plausible contribution of the Gap1 permease towards the 
observed growth phenotype 

Interestingly, the increase in amino acids due to mutations leading to increased 

glutamate/glutamine synthesis de-novo or the abundance of extracellular amino acids 

in the growth medium induces sorting of the Gap1 permease to the vacuole231. 

Conversely, the gene mutations affecting this intracellular trafficking of Gap1 permease 

to the vacuole should be able to sort the Gap1 to the plasma membrane instead. 

Additionally, it is also studied that the arrestin like adaptor proteins: Bul1 and Bul2, 

which assist the vacuolar degradation of Gap1 permease, are phosphorylated and 

inactivated by Npr1 kinase in the presence of poor nitrogen sources in the growth 

medium. Upon replete nitrogen conditions, further Sit4 phosphatase de-phosphorylate 

and activates Bul1 and Bul2 proteins, mediating the Gap1 endocytosis and 

degradation83.   

This idea was quite interesting since yeast cells are also exposed to increased 

extracellular amino acids in the growth medium in the current experimental conditions. 

This raised several questions like, whether Gap1 also downregulated or not expressed 

on PM in our current growth conditions and thus leads to the observed growth 

phenotype. If this holds true, does having the stable expression of broad-spectrum 

Gap1 amino acid transporter on the plasma membrane could rescue the cells from the 

observed growth phenotype? To address this possibility, I initially tried to express the 

Gap1 AAT under the strong TEF promotor's control (fig: 15), which did not exhibit any 

striking rescuing phenotype.  

Since it is well understood that the expression and localization of these AATs are tightly 

controlled at transcriptional and post-transcriptional level43–45, over-expressing the 

AAT itself does not ensure stable expression of these transporters at PM ultimately. 

Further, in the presence of the preferred nitrogen sources, PM sorted Gap1 is rapidly 

polyubiquitinated by Rsp5p ubiquitin ligase and is targeted for vacuolar degradation by 
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Bul1 and Bul2 adaptor proteins81,92,232. Further, Bul1 and Bul2 deleted strains were 

also observed as the top hits (were resistant to increased amino acid concentration in 

the growth medium) from the preliminary results from the yeast genetic screen, where 

the entire yeast deletion library was plated on 1, 2, 3 X AAM containing HC medium 

plates using the robotic arm (done in collaboration with Blanch Schwappach group, 

University of Göttingen, Germany). As the next step, a former bachelor student Basile 

Christou established BUL1 and BUL2 deleted BY4742 strains (obtained from the yeast 

deletion library) and studied their effect on the observed growth phenotype. Deleting 

Bul1 and Bul2 could not rescue the growth of the BY4742 in response to the increase 

in amino acid content in the growth medium (2 and 3 X AAM: data not shown).  

Secondly, if we also have a look at the total intracellular amino acid levels in a yeast 

cell grown in 1 X AAM vs 2 X AAM growth conditions, there was no striking decrease 

in the total amino acid levels of amino acids apart from arginine (imported more on 2 

X AAM). By combining all these above observations, one could conclude that Gap1 

downregulation has no possible contribution underlying the observed growth 

phenotype in response to the increase in amino acid content in the growth medium. 

 

4.4 pH-dependent activation of PKA pathway and TORC1 mediated 
signalling 

The activation of the PKA and TORC1 pathway in response to Glucose promotes yeast 

cell growth and viability103. Inactivation of either of these essential pathways severely 

impacts the growth of the cells leading to cell-cyle arrest at the G1 phase233. It is also 

reported that cytosolic pH changes, indirectly induced in response to quality and 

quantity of the carbon source, such as Glucose, leads to activation of V-ATPase by 

protonated of its 'a' subunit, which acts as the cytosolic pH sensor234,235. The activated 

V-ATPase further interacts with two different GTPases Arf1 and Gtr1, thus regulating 

the Ras/PKA pathway and TORC1 signalling235. This idea was quite intriguing since 

the presence of increased amino acid content in the growth medium could argue that 

possibly the downregulation of TORC1 mediated signalling, which we speculate to be 

the upstream factor for the observed phenotype, could potentially stem from the drop 

in the cytosolic pH. To investigate this idea, I also looked at the changes in the cytosolic 

pH in the cell in response to increased amino acid content in the growth medium. 

Surprisingly, there was no considerable change in the cytosolic pH levels in BY4742 

and ILV3 mutant studied using the pHluroin probe when growth in 1 X AAM versus 2 

X AAM growth conditions.  
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Figure 52: No significant change in the cytosolic pH in BY4742 (wt) and Δilv3 due to 

increased amino acid content in the growth medium. All strains (transformed with empty 

vector and the cytosolic pHluorin probe183,184) were cultured overnight in HC medium (-

histidine) and inoculated to fresh medium (1 X AAM and 2 X AAM) the next day. Cells were 

harvested (in the O.D. range ~3), resuspended and incubated in the different pH buffers (pH 6 

to 7.5) with 0.1% digitonin (for generating the calibration plot) and in the medium (for steady-

state value) in a 96 well plate. The cells were settled at the bottom of the plate using the plate 

centrifuge (15xg; 5 min). Further, the fluorescent response of the pHluorin probe was 

measured using CLARIOstar plate reader (BMG Labtech) in a time-dependent manner. The 

histogram represents the average of three independent repeats performed on different days, 

where error bars represent standard deviation. 

 

In another set of experiments, I also investigated the growth phenotype of mutants 

(PDE1, PDE2, MSN2, and MSN4 mutant strains) for the PKA signalling pathway in the 

presence of increased amino content in the growth medium. Cells deleted for 

phosphodiesterase Pde1, or Pde2 maintains high cAMP levels and hence have 

hyperactive PKA signalling236. Msn2 and Msn4 transcription factors, regulating the 

general stress responses in a yeast cell, are known to be the downstream effectors of 

PKA-mediated signalling237,238. As observed from figure 53, PDE1, PDE2, MSN2, and 

MSN4 mutant strains didn't alter the observed growth phenotype upon increasing 

amino acid content in the growth medium. These results gave us a hint that PKA 

signalling has no substantial role underlying the observed growth phenotype. 
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Figure 53: PKA signalling components have no plausible contribution towards the 

impaired growth phenotype of BY4742 in growth conditions with increased amino acid 

content. All strains were cultured overnight in HC medium, diluted the next day, and grown to 

log phase. Cells were harvested, washed, fivefold serially diluted, and spotted on plates 

containing normal [1 X AAM], double [2 X AAM] or triple [3 X AAM] amount of amino acid 

dropout mix, containing 2% glucose as carbon substrate. The plates were incubated at 30°C 

for 42 hours. The top black bar corresponds to the decreasing cell density from left to right. 

This figure is one of the representative examples from two independent experiments performed 

on different days. 

 

4.5 The role of branched-chain aminotransferases 

We observed that Ilv3 catalyzed step in the BCaa biosynthetic pathway acts as a 

potential switch point for the observed growth phenotype. Further, Bat1 overexpression 

was also able to rescue the slow growth phenotype in response to the increase in the 

amino acid content in the growth medium. The role of branched-chain amino 

transaminases, affecting (either directly or indirectly) various cellular processes, is 

nicely elucidated in the literature and is described below. 

Bat1 was initially identified in a genetic screen as a high-copy suppressor for the 

mitochondrial ABC transporter- Atm1143. It was also shown that the yeast Bat1, but not 

Bat2, physically interacts with certain BCaa biosynthetic (Ilv5, Ilv3, leu4) and TCA 

pathway (Aco1, Pdh) enzymes and might exists in a multi-protein metabolon complex 

like the mammalian BCAT, Pyruvate carboxylase and BCKDC supercomplex. These 

experimental pieces of evidence further propose that branched-chain 

aminotransaminase might couple BCaa pathway (leucine and KIC availability), TCA-

pathway flux to activating TOR signalling97.  

The yeast Taz1 is the human orthologue of the TAZ (taffazin) gene encoding the 

monolysocardiolipin (MLCL) transacylase enzyme, which is involved in the metabolism 

of mitochondrial-specific phospholipid cardiolipin (CL)239. Mutations in the human TAZ 

gene, conserved from yeasts to humans, leads to the onset of Barth syndrome (BTHS). 
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The BTHS patients suffer from skeletal, cardio-myopathy and neutropenia and have a 

characteristic accumulation of MLCL, aberrant CL species and overall reduced CL 

levels in their fibroblasts and platelets240. Rapaport et al. showed that overexpression 

of the mitochondrial aminotransaminase Bat1 could rescue the severe growth 

phenotype of Δtaz1 when grown on the synthetic medium using ethanol as a sole 

carbon source241. The findings of this study clearly indicated that Bat1 overexpression 

did not restore the reported defects of Δtaz1 cells, such as reduced mitochondrial 

membrane potential or increased MLCL to CL ratio. Instead, it increased the levels of 

specific Kreb cycle's metabolites (fig: 54). 

Interestingly, valine supplementation in the medium also recapitulated the same 

growth rescue effect for Δtaz1 yeast cells and TAZ-knockdown mouse embryonic 

fibroblasts cells. In a nutshell, these results strengthen the idea that amino acid 

metabolism plays an essential role in such disease-relevant mutated cells. Also, 

supplementation of amino acids such as valine, histidine could help reduce the 

symptoms of BTHS patients241. All these findings from different studies exemplify the 

role of the BCaa pathway associated with Bat1p in other cellular processes. 

 

 

 
 
Figure 54: The levels of some metabolites are altered in taz1Δ cells and restored upon 

overexpression of BAT1. The indicated metabolites were extracted from the specified cells 

grown in ethanol-containing medium and were analyzed by LC-MS. The relative peak area of 

each metabolite was determined, and the levels in control WT cells were taken as 100%. Mean 

values ± S.D. of six independent experiments is shown. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

This figure and legends are directly adapted from its source: Rapaport et al. 241. 



114 
 

It was quite fascinating to observe that the overexpression of Bat1 in Δtaz1 cells 

probably catalyzing the reversible enzymatic reaction of KIV and glutamate towards 

the α-KG and valine formation (as interpreted from massive valine levels; fig: 50). 

Additionally, levels of specific TCA-cycle metabolites are also increased (fig: 54), which 

subsequently aids in rescuing the observed severe growth phenotype of Δtaz1 cells241. 

Does this mean that favouring the Bat1 catalyzed reaction towards valine synthesis 

and fueling metabolites and driving the TCA cycle could enhance the overall 

mitochondrial functional state, ultimately preparing the cell to adapt better and 

overcome the growth defects observed for Δtaz1 cells? 

Interestingly findings from the current study also reported a similar observation. We 

also observed the slow growth phenotype of BY4742 and increased valine synthesis 

on 2 X AAM growth conditions. Further, this growth phenotype was rescued by 

knockdown of Ilv3 or with overexpression of Bat1. Does this imply that the α-keto acid: 

KIV (or its downstream product) could be the actual causative agent?  

 

4.6 The role of α-keto acids 

The α-keto acids or 2-oxo acids have a ketone group next to the carboxylic acid group. 

These organic compounds are generally the intermediates in the glycolysis or TCA 

cycle. The deaminated leucine, valine and isoleucine products, i.e., KIC, KIV, and 

KMV, respectively, as per the structure, are also known as branched-chain α-keto 

acids (BCKA). Lill et al. also proposed that mitochondrial branched-chain α-keto acids 

could play the role of the iron chelator, enabling iron transport through Atm1 transporter 

in the soluble state from the mitochondrial matrix to cytosol, where it can be 

incorporated into Fe-S clusters or used for other cellular processes143.  

As described before, MSUD is a rare metabolic disorder with either zero or reduced 

BCKDH activity leading to accumulation of the BCaa's and their BCKAs in plasma of 

the affected individuals. Many clinical studies showed that accumulation of BCaa and 

their BCKA in mice models of MSUD impacted their brain function and observed lipid-

peroxidation in their brain homogenates. So, far we don't understand the 

pathomechanism behind how BCaa's and their respective BCKA's contributes to 

neurological damage. Further, in-vitro studies with these mouse brain homogenates 

indicated that cells experienced high oxidative stress levels and had a less anti-

oxidative defence mechanism.  

Interestingly, we also observed during this study that the leucine auxotrophic BY4742 

exhibited an unusual redox phenotype (high GSSG levels) along with the severe 

growth phenotype when grown in the presence of increased amino acid content in the 

growth medium consuming glucose as a sole carbon source. We also observed that 

both growth and redox phenotypes arose due to the activation of the BCaa biosynthetic 

pathway on 2 X AAM growth conditions. If the formation of KIV (the potential causative 

agent) was somehow inhibited (Δilv3 or Δsit4), it rescued both growth and redox 

phenotype. However, we could not detect the accumulation of KIV levels in our study.  

Our findings indicate that yeast could be used as a simple eukaryotic model organism 

to study the mechanisms of how α-keto acids accumulation leads to oxidative stress 
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and damage to the cell. Such insights would increase our knowledge of the 

pathomechanism of MSUD. 

 

4.7 The interplay between amino acid homeostasis, mitochondrial 
function and the cell growth 

The mitochondrial TCA cycle not only provides electron donors for ATP production but 

also fulfils an additional function by synthesizing certain amino acids and other 

biomolecules such as glutamic acid, aspartate, arginine, and α-ketoglutarate derived 

amino acids242–244. Further, the blocked respiration activity can be rescued by pyruvate 

supplementation, which restores the respiration mediated aspartate bio-synthesis in 

the proliferating mammalian cells242,245. Therefore, the TCA cycle derived products 

could act as a growth-limiting factor for proliferating mammalian cells. However, some 

single-celled organisms, such as S. cerevisiae, are known to grow with the absence of 

respiration activity (and even without the mitochondrial genome) under the anaerobic 

growth conditions246. Under fermentative growth conditions, S. cerevisiae utilises the 

glyoxylate cycle to replenish the TCA cycle intermediates247,248. This in turn, eliminates 

the need of succinate dehydrogenase activity and further maintains the redox 

homeostasis under non-respiratory conditions249. These molecular adaptations help 

budding yeast to cope with non-functional oxidative phosphorylation. On the other 

hand, Schizosaccharomyces pombe has still higher respiration activity under 

fermentative growth conditions250. Blocking the respiratory activity leads to TOR 

activity inhibition, amino acids auxotrophy, indicating that respiration activity is 

essential to support the amino acid metabolism in S. pombe251. Budding yeast also 

exhibits a similar phenotypic response for blockage of the TCA cycle but not towards 

the respiration activity block97. It is also known that the cellular mitochondrial function 

is required for cell survival during the laboratory-induced leucine starvation in S. 

cerevisiae252. These findings suggest that the mitochondrial function, but probably not 

its respiration activity, is essential for sustaining the amino acid metabolism in S. 

cerevisiae.  

Interestingly, it is also shown that overexpression of Bat1-the mitochondrial BCAT or 

excess supplementation of valine was able to enhance the TCA flux. Thus, increased 

TCA metabolites levels could rescue the ethanol sensitivity and the growth phenotype 

of the TAZ1 deletion strains, where it encodes for the highly conserved phospholipid 

transacylase enzyme involved in cardiolipin remodelling241. Further, both BCATs are 

also known to activate the TORC1 mediated signalling. Mutations in BCAT lead to a 

decrease in the TCA metabolites, ATP production and hampered the TOR signalling97. 

Collectively these findings implied that enhanced amino acid metabolism could rescue 

some of the cellular and mitochondrial dysfunctions by increasing the TCA flux and 

indirectly by affecting the TORC1 mediated signalling. Furthermore, amino acid 

metabolism and homeostasis play an essential disease-relevant role in mitochondrial 

related pathologies119,123,253. 

Results from the current study also exhibited similar observations. It was observed that 

the presence of increased amino acid content, namely Ehrlich amino acids, in the 

fermentative growth medium induced a slow growth phenotype for leucine auxotrophs, 
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which was absent in the non-fermentative growth conditions. Further, it was observed 

that the BCaa biosynthetic pathway was upregulated under these growth conditions, 

which was plausibly leading to the observed growth phenotypes. There was also a 

concomitant increase in the α-ketoglutarate levels on 2 X AAM, which is also a by-

product of the BCaa pathway along with the TCA cycle. Since, deletion of ILV3, 

encoding for a BCaa pathway enzyme-dihydroxyacid dehydratase, rescued the growth 

of leucine auxotroph BY4742 on 2 X AAM and 3 X AAM growth conditions. Surprisingly 

either removing isoleucine and valine from the growth medium or overexpression of 

mitochondrial BCAT- Bat1 only could also rescue the observed growth phenotype. Our 

findings suggest that the KIV, α-ketoacid formed during the Ilv3 catalysed step in the 

mitochondria, or its unknown downstream product is probably the actual causative 

agent leading to the onset of the observed phenotypes. However, we could not detect 

the accumulation of KIV in the current experimental conditions and technical setup. 

Clearly, with observations from the present study, it seems that the mitochondrial BCaa 

homeostasis is tightly linked and affecting the other cellular functions in an unknown 

manner due to the increased presence of Ehrlich amino acids in the growth medium. 

Hence, all these observations mentioned above and the findings of the current study 

establish a link between cellular amino acid homeostasis, mitochondrial function and 

cell growth. 
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WORKING MODEL 

 

 

Figure 55: Schematic representation summarising the plausible mechanism 

contributing to the slow growth phenotype of leucine auxotroph BY4742 on 2 X AAM 

growth condition. The leucine auxotrophic strain's growth is severely impacted in response 

to the increased amino acids in the growth medium, especially Ehrlich amino acids. 13C glucose 

labelling RNA sequencing studies indicated the activation of the BCaa pathway on 2 X AAM 

growth conditions, probably because of Gcn4 mediated signalling. Deleting either ILV2 or ILV3 

or overexpressing the Bat1 makes the cell resistant to the observed growth phenotype. These 

results indicated that Ilv3 catalysed step acted as the potential switch point. There is a massive 

accumulation of IPM, valine and α-KG in BY4742 when grown on 2 X AAM. IPM is known to 

bind to Leu3p in the nucleus and further enhances the transcription of its downstream BCaa 

gene targets, shown in red colour. Though we could not detect the accumulation of KIV in the 

current setup, we could not also overlook the possibility that there could be a downstream 

product X, which could lead to this phenotype. The dotted black arrows indicate the plausible 

links which are not proven experimentally.  
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CONCLUSION 
 

We observed that the leucine auxotrophic BY4742 strain exhibited slow growth and 

redox phenotypes compared to leucine prototrophic yeast strains in response to an 

increase in Ehrlich amino acids in the growth medium. However, establishing a 

functional leucine biosynthetic pathway or increasing the concentration of leucine in 

proportion to the increase in the concentration of amino acid dropout mix in the medium 

helped rescue the observed slow growth phenotype. Interestingly, from the 13C glucose 

labelling studies, we also observed that in BY4742, valine synthesis is triggered on 2 

X AAM. Total intracellular levels of arginine are also increased tremendously in 

BY4742 in response to 2 X AAM growth conditions. The idea of upregulation of the 

BCaa bio-synthesis pathway was also further strengthened by RNA sequencing 

analysis. It was observed that deleting any gene upstream or ILV3 could rescue the 

cell from the observed phenotypes. 

Conversely, overexpressing ILV3 leads to slower growth, probably leading to 

enhanced IPM production and upregulation of the BCaa bio-synthesis pathway. The 

activation of the Gcn4 transcription factor upon Sit4 phosphatase activation (possibly 

due to TORC1 inactivation via an unknown mechanism) resulted in the upregulation of 

the BCaa bio-synthesis pathway. The presence of increased amino acid content in the 

growth medium also resulted in apoptosis of BY4742 with a concomitant decrease in 

global protein synthesis and G1 cell cycle arrest for the remaining live cells. Since IPM, 

intermediate from the leucine bio-synthesis pathway, binds to Leu3 TF in the nucleus. 

This Leu3-IPM complex acts as an activator for transcription of BCaa pathway genes149 

(shown in red; figure: 56). Thus, the accumulation of IPM possibly results in continuous 

hyper-activation of the BCaa pathway, which seems detrimental for the cell. 

Interestingly, we also saw the simultaneous accumulation of α-KG in the yeast strains 

(BY4742 and Δleu4 Δleu9), which exhibited slow growth phenotype on 2 X AAM growth 

conditions. This observation is quite challenging to interpret and correlate with the 

observed growth phenotype. Even though we could not detect KIV in the current 

conditions, it was difficult to rule out the possibility that an unknown downstream 

product of KIV could be the actual causative agent inducing the observed phenotypes. 

In conclusion, the Ilv3 catalyzed step seems to be the switching point for the growth 

and redox phenotypes in response to the increased Ehrlich amino acid content in the 

growth medium. 
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Figure 56: Schematic representation summarizing the observations of the current 

study. A: The aberrant activation of the BCaa pathway possibly contributing to the slow growth 

phenotype in response to the increased amino acid, especially Ehrlich amino acids, content in 

the growth medium. B: Extra supplementation of leucine in proportion to increase in the amino 

acid content (AAM) or re-establishment of functional leucine biosynthetic pathway rescues the 

cell from this phenotype. C: Deleting the genes (SIT4, GCN4, ILV2, or ILV3), which is observed 

to lie upstream of the potential switch point, contributed towards the observed growth 

phenotype of BY4742 on 2 X AAM. Further, overexpression of Bat1 or removing isoleucine 

and valine from the growth medium also made BY4742 resistant to the observed growth 

phenotype. 
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SUPPLEMENTARY FIGURES  
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C 

 

 

Figure 57: Deleting ILV2 or ILV3, and not LEU4 LEU9, rescues the growth of cells in 

conditions with increased amino acid content. Several mutants of the BCaa pathway were 

made during this study via homologous recombination. To restore the missing LEU2, which 

also belongs to this BCaa pathway, the BY4742 and all mutants were transformed with either 

pHUK or pHLUK plasmids. All the transformed (pHLUK-A and pHUK-B) and non-transformed 

(C) strains were cultured overnight in HC (minus histidine, to maintain the plasmid selection), 

diluted the next day, and grown to log phase. Cells were harvested, washed, fivefold serially 

diluted, and spotted on plates containing normal [1 X AAM], double [2 X AAM] or triple [3 X 

AAM] amount of amino acid dropout mix (without histidine to maintain the selection for cells 

transformed with plasmids), containing 2% glucose as carbon substrate. The plates were 

scanned following incubation at 30°C after 24 and 48 hours of the incubation time. The top 

black bar corresponds to the decreasing cell density from left to right. This figure is one of the 

representative examples from at least three independent experiments performed on different 

days. 
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LIST OF ABBREVIATIONS 
 

aa Amino acid 

AAM Amino acid mix 

AAP Amino acid permease 

AAT Amino acid transporter 

AHB α-aceto α-hydroxybutyrate 

AL Acetolactate 

BCaa Branched chain amino acid 

BCAT Branched chain aminotransferases 

DAPI  4,6-diamidino-2-phenylindole  

ddH2O  
 

Double distilled water  
 

DHIV α,β-dihydroxyisobutyrate 

DHMV α,β-dihydroxy β-methylvalerate 

DNA  Deoxyribonucleic acid  

dNTP  Deoxyribonucleotide triphosphate  

DTT  Dithiothreitol  

E. coli  Escherichia coli  

EDTA  Ethylene diamine tetraacetate  

g Gravity of earth 

GSH  Reduced glutathione  

GSSG Oxidized glutathione 

GSX Total glutathione 

H2O2  Hydrogen peroxide  

HC  Hartwell’s Complete  

HEPES  4-(2-hydroxyethyl)-1-piperazine-ethane sulfonic acid  

kb  Kilobase  

KB α-ketobutyrate 

KIC  α-keto-isocaproate 

KIV α-keto-isovalerate 

KMV α-keto β-methylvalerate 

L  litre  

mL Milli litre 

LB  Lysogeny broth media  

M  Molarity  

mg  Milligram  

milliQ-H2O  Double distilled water  

min  Minute  

ml  Millilitre  

mM  Millimolar  

MSUD Maple syrup urine disease 

NADH  Nicotinamide adenine dinucleotide  

NADPH  Nicotinamide adenine dinucleotide phosphate  

NEM  N-Ethylmaleimide  

Oac1 Oxaloacetate carrier 1 

O.D.600  Optical density at 600 nm  

PCR  Polymerase chain reaction  
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PI Propidium iodide 

PKA  Protein kinase A  

PM Plasma membrane 

PS Phospatidylserine 

RNA  Ribonucleic acid  

roGFP2 Redox sensitive green fluorescent protein 2 

ROS Reactive oxygen species 

rpm  Revolutions per minute  

RT  Room temperature  

S. cerevisiae  Saccharomyces cerevisiae  

S. pombe  Saccharomyces pombe  

T2D Type-2 diabetes 

TOR Target of rapamycin 

TORC1 Target of rapamycin complex1 

Tris  Tris-(hydroxymethyl)-aminomethane  

U  Units  

UV  Ultraviolet  

v/v  Volume per volume  

w/v  Weight per volume  

α-IPM α-isopropylmalate 

β-IPM β-isopropylmalate 

°C  Grade Celsius  

μg  Microgram  

μl  Microlitre  

μM  Micromolar  
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ਜਪੁ ॥ 

ਆਦਿ ਸਚੁ ਜੁਗਾਦਿ ਸਚੁ ॥ 

ਹੈ ਦਿ ਸਚੁ ਨਾਨਕ ਹੋਸੀ ਦਿ ਸਚੁ ॥੧॥ 

 

Source: Sri Guru Nanak Dev ji, Raag Gauri, page 1, 

Sri Guru Granth Sahib Ji 

 

Translation: 

 

You should meditate on Truth, 

 “Truth is, Truth was before time, Truth is now, and Nanak, Truth shall ever be.”  

 

 


