
Fachbereich Mathematik

Linear Algebra
over Finitely Generated Fields and Rings

Mannaperuma Herath Mudiyanselage,
Jayantha Suranimalee

1. Gutachter: Prof. Dr. Claus Fieker
2. Gutachter: Prof. Dr. Mohamed Barakat

Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur Verleihung des
akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

Datum der Disputation: 29. April 2021

D386





Linear Algebra
over Finitely Generated Fields and Rings

Mannaperuma Herath Mudiyanselage,
Jayantha Suranimalee

1. Reviewer: Prof. Dr. Claus Fieker
2. Reviewer: Prof. Dr. Mohamed Barakat

Accepted thesis (Dissertation)
of the Department of Mathematics, of the University of Kaiserslautern

for the award of the academic degree
Doctor of the natural sciences

Date of the Disputation: 29. April 2021

i



Zusammenfassung

Lineare Algebra und Arithmetik von Polynomen bilden die Grundlage von Computeralgebra. Die
letzten 20 Jahre hinweg haben sich die Algorithmen stetig weiter verbessert, so dass die aktuellen Algo-
rithmen für Matrixinvertierung, zum Lösen linear Systeme und zur Determinantenberechugn theoretisch
nicht mal eine kubische Laufzeit besitzen. In dieser Arbeit werden schnelle und praktische Algorith-
men für klassicher Probleme der linearen Algebra über Zahlkörpern und Polynomringe vorgestellt. Als
Zahlkörper bezeichnen wir eine endliche Erweiterung des Körpers der raionalen Zahlen.

Eine grundlegende Herausforderung im symbolischen Rechnen ist die Koeffizientenexplosion: Die
Bit-Größe von Zwischenergebnissen kann im Verhältnis zur Größe der Ein- und Ausgabe um ein vielfach-
es anwachsen. Die Standardstrategie, um diesem Effekt beizukommen, ist statt die Zahlen direkt zu
berechnen, die Berechnung modulo gewisser andere Zahlen durchzuführen unter Verwendung vom
Chinesischen Restsatz oder einer Variante der Newton-Hensel Lifting. Im finalen Schritt dieser Algo-
rithmen werden diese Methoden üblicherweise kombiniert mit Rekonstruktionsverfahren wie beispiel-
sweise der rationalen Rekonstruktion, um ein ganzzahliches Ergebnis in ein rationales Ergebnis umzuwan-
deln. In dieser Arbeit stellen wir Rekonstruktionsverfahren über Zahlkörper vor mit einem schnellen und
simplen Vektor-Rekonstrutkionsalgorithmus.

Die gängige Methode für die Berechnung der Determinante ganzzahliger Matritzen geht zurück auf
Storjohann [PS13]. Beim Verallgemeinern diese Methode auf Zahlkörper tat sich das Problem auf, dass
der durch die Zeilen der Zahlkörper Matrix generierte Module nicht länger freie ist, und Storjohanns
Methode deshalb nicht mehr anwendbar ist. zu betrachten waren wie bislang in Storjohann’s Theorie.
Um dieser Schwierigkeit Herr zu werden greifen wir auf die Theorie von Pseudo-Matritzen (in [Coh96])
zu. Im Zuge dessen bedurfte es einer Verallgemeinerung von unimodularen Zertifizierungsmethoden für
Pseudomatrizen: Ähnlich wie im ganzzahligen Fall überprüfen wir, ob die Determinante von gegebenen
Pseudomatrizen eine Einheit ist, indem wir mit Hilfe von höherer Ordnungen lifting die Ganzzahligkeit
des zugehörigen dualen Module testen.

Ein zentraler Algorithmus der linearen Algebra ist der Dixon Solver [Dix82] zum Lösen linearer
system. Traditionell wird dieser Algorithmus lediglich für quadratische Systeme mit eindeutiger Lö-
sung verwendet. Wir verallgemeinern den Dixon Algorithmus für nicht quadratische lineare Systeme.
Da dann das Ergebnis nicht eindeutig ist, benutzen wir eine Basis des Kerns, um die Lösung zu nor-
malisieren. Die Implementierung umfasst einen Algorithmus zur schnellen Berechnung von Kernen,
welcher in einer erweiterten Form die reduzierte Zeilenstufenform einer Matrix über Ganzzahlen und
Zahlkörpern ausrechnen kann.

Die schnelle Implementierung zur Berechnung charakteristischer Polynome und Minimalpolynome
über Zahlkörper verwendet einen modularen, auf dem Chinesischen Restsatz aufbauenden Ansatz.
Schließlich präsentieren wir eine Verallgemeinerung Storjohann’s Algorithmus zur Determinanten-
berechnung auf Polynomringe über endlichen Körpern, Teile derer aus Rekonstruktionen und unimod-
ularen Zertifikaten bestehen. Das in diesem Fall auftretende Anwachsen der Grade bekommen wir in
den Griff mit Hilfe von Hebungen höherer Ordnungen im unimodularen Zertifizierungsalgorithmus. Er-
folgreich verwendeten wir einen halb-ggT Ansatz für die Optimierung der Rekonstruktion rationaler
Polynome.
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Abstract

Linear algebra, together with polynomial arithmetic, is the foundation of computer algebra. The
algorithms have improved over the last 20 years, and the current state of the art algorithms for matrix
inverse, solution of a linear system and determinants have a theoretical sub-cubic complexity. This
thesis presents fast and practical algorithms for some classical problems in linear algebra over number
fields and polynomial rings. Here, a number field is a finite extension of the field of rational numbers,
and the polynomial rings we considered in this thesis are over finite fields.

One of the key problems of symbolic computation is intermediate coefficient swell: the bit length
of intermediate results can grow during the computation compared to those in the input and output.
The standard strategy to overcome this is not to compute the number directly but to compute it modulo
some other numbers, using either the Chinese remainder theorem (CRT) or a variation of Newton-Hensel
lifting. Often, the final step of these algorithms is combined with reconstruction methods such as rational
reconstruction to convert the integral result into the rational solution. Here, we present reconstruction
methods over number fields with a fast and simple vector-reconstruction algorithm.

The state of the art method for computing the determinant over integers is due to Storjohann [PS13].
When generalizing his method over number field, we encountered the problem that modules generated
by the rows of a matrix over number fields are in general not free, thus Strojohann’s method cannot
be used directly. Therefore, we have used the theory of pseudo-matrices (in [Coh96]) to overcome this
problem. As a sub-problem of this application, we generalized a unimodular certification method for
pseudo-matrices: similar to the integer case, we check whether the determinant of the given pseudo
matrix is a unit by testing the integrality of the corresponding dual module using higher-order lifting.

One of the main algorithms in linear algebra is the Dixon solver for linear system solving due to
Dixon [Dix82]. Traditionally this algorithm is used only for square systems having a unique solution.
Here we generalized Dixon algorithm for non-square linear system solving. As the solution is not
unique, we have used a basis of the kernel to normalize the solution. The implementation is accompanied
by a fast kernel computation algorithm that also extends to compute the reduced-row-echelon form of a
matrix over integers and number fields.

The fast implementations for computing the characteristic polynomial and minimal polynomial over
number fields use the CRT-based modular approach. Finally, we extended Storjohann’s determinant
computation algorithm over polynomial ring over finite fields, with its sub-algorithms for reconstruc-
tions and unimodular certification. In this case, we face the problem of intermediate degree swell. To
avoid this phenomenon, we used higher-order lifting techniques in the unimodular certification algo-
rithm. We have successfully used the half-gcd approach to optimize the rational polynomial reconstruc-
tion.

Keywords: determinant, kernel, non square linear system solving, unimodular certification, charac-
teristic polynomial, minimal polynomial, reconstructions, number fields
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Abbreviations, Symbols and Nomenclature

In this thesis, we have denoted the integers, rational numbers, the real numbers and the complex
numbers respectively by Z,Q,R and C. Most often, we denote number fields by K, finite fields by F
and, all the fields in general by F. The maximal order of the number field K is denoted by O.

For a ring R and two integers m, n ∈ Z≥1, the set of all n × m matrices over R is denoted by Rn×m. A
matrix A ∈ Rn×m can be represented with respect to its entries as A = [ai j]i, j for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
where ai j is the matrix entry of i-th row and j-th column. By On×m we denote the zero-matrix in Rn×m,
and In denotes the identity matrix in Rn×n. A diagonal matrix A = [ai j]i, j ∈ Rn×n with ai, j = 0 for all
i, j with i , j is denoted by diag(a1,1, a2,2, . . . , an,n). The determinant of any square matrix A is denoted
by det(A). The transpose matrix of A is given by At. Given two matrices A ∈ Rn×m and b ∈ Rn×r the
concatenation of the two matrices is given by [A b].
|a| denotes the absolute value of a ∈ Z or a ∈ C. If A ∈ Zn×m or A ∈ Cn×m, the largest absolute

value of matrix entries is denoted by ‖A‖∞ = maxi j |Ai j|. Let ‖α‖ϕ denote the largest absolute value of
coefficients of α ∈ K. If A ∈ Kn×m, the largest absolute value of coefficients of the matrix entries of A is
denoted by ‖A‖ϕ.

For two integers a, b ∈ Z, by a ⊥ b we denotes that two integers are relatively prime.
Let a be an ideal of O. A basis of a is given as 〈a1, . . . , ad〉 for some a1, . . . , ad ∈ O and d is the

degree of K. The norm of a is denoted by norm(a) or N(a). For v ∈ Rn or Zn, the Euclidean norm of v is
given by ‖v‖.

To simplify the presentations of complexity results, we use soft-Oh notation O∼: for functions
f , g : R>0 → R>0 we have f ∈ O∼(g) if and only if there exists k ∈ Z>0 such that f ∈ O(g(log(g))k).
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Introduction
Linear algebra is central to almost all areas of mathematics. Group theory, in particular representa-

tions of finite groups is based on linear algebra. Moreover, almost all structural computations involving
number fields and their rings and ideals are rooted in linear algebra. In this thesis, we present fast
and practical algorithms for problems such as determinant computation, linear system solving, charac-
teristic polynomial computation over number fields and polynomial rings. All the computations and
experiments are carried out using the Hecke software package in Julia [FHHJ17].

The first chapter starts with an overview of modular algorithms in general. We address the problem
of intermediate coefficient swell. Specially, this computational phenomenon occurs with problems in
linear algebra and polynomial arithmetic that compute over rational numbers or finitely generated fields.
To overcome this, in particular for the rationals and integers, the standard strategy is not to compute
the number directly but to compute it modulo some other number M. This can be done using either the
Chinese remainder theorem (CRT) (M = p1 p2 · · · pm) or a variation of Newton-Hensel lifting (M = pm).
Modular algorithms are frequently combined with rational or vector reconstruction methods to convert
an integral result into a rational solution. We present reconstruction methods over number fields with a
fast and simple vector-reconstruction algorithm using algebraic-denominator reconstruction method.

We present the major work of this research project in Chapter 2: discovering a fast, practical and
deterministic algorithm for computing the determinant of matrices over number fields. We start with
Abbott’s and Mulders’ [ABM99] approach for determinant computation. Currently the fastest algo-
rithm for determinant computation over the integers is due to Storjohann [PS13]. His approach can be
interpreted by the modules spanned by the rows of the matrices. Given a square matrix A, the corre-
sponding module is enlarged through the addition of random elements, and each such step gives a factor
of the determinant. This is done by computing divisors of the determinant using denominators of the
solutions of linear systems Ax = b over the rationals for a randomly chosen vectors b. In the final step,
one needs to verify that the module is trivial, i.e. the basis matrix has determinant one. Storjohan calls
this “unimodularity certification”. The idea is that the module is trivial precisely if the matrix has an
integral inverse. When generalizing the method over number rings, we encounter the problem that the
denominator is an ideal and it is no longer a unique number which can be used to compute the deter-
minant and number rings are not Euclidean domains. Moreover, modules generated by the rows of a
matrix over number fields are in general not free, thus Strojohann’s method cannot be used directly.
Therefore, we use the theory of pseudo-matrices to overcome this problem. However, we could not use
his approach for verifying the determinant, as it was slow in our case. Therefore, we used a different
approach and obtained better run times.

Chapter 3 generalizes the problem of unimodular certification to number fields. However, due to
the use of pseudo-bases, the approach in [PS12] does not carry over to matrices over number fields
directly; here, we need the dual-module to be integral as well. The dual-module, in the pseudo-setting,
is given by the inverse of the matrix and the inverses of ideals. In the algorithm we use higher-order
lifting methods to obtain better complexity as in the integer case. The chapter ends with an outline of an
approach, to obtain competitive run times using representations for algebraic integers that are similar to
redundant number systems.

In Chapter 4, we use a modified version of the Dixon algorithm [Dix82] to address two classical
problems in linear algebra: non-square linear system solving and matrix kernel computation. We present
a deterministic algorithm for solving a non-square linear system over any fields. As the solution is
not unique, we use a basis of the kernel to normalize the solution. That is, the implementation is
accompanied by a fast algorithm to compute the kernel of a matrix of any size. We can extend this
algorithm to compute the reduced row echelon form of a matrix using a lifting technique.
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We discuss the problem of computing the characteristic polynomial and minimal polynomial of
matrices over number fields in Chapter 5. First, we compute bounds for coefficients of the minimal
polynomial and characteristic polynomial using Geršgorin theorem and bounds for the determinants of
complex matrices. The existing algorithms can be optimized using a CRT-based modular approach.
The existing minimal polynomial implementation in Hecke, which uses the Krylov method is slower
than the division-free characteristic polynomial implementation. We present an additional method to
compute the minimal polynomial computation using the characteristic polynomial algorithm, in the
time of matrix multiplication.

The goal of Chapter 6 is to extend the above mentioned Strojohann’s determinant computation
algorithm over polynomial ring over finite fields. We have addressed the required sub-algorithms such
as solving linear system, reconstructing rational polynomials and certifying unimodularity. To develop
an optimized reconstruction method, we have used successfully the half-gcd approach. Interestingly, we
were able to use higher-order lifting techniques to avoid intermediate degree explosion in the unimodular
certification algorithm.

xii



Chapter 1

Modular Algorithms

1.1 Introduction to Modular Algorithms

Many algorithms in linear algebra and polynomial arithmetic that compute over rational numbers,
number fields or other finitely generated fields face the problem called the intermediate coefficient swell.
For example, in polynomial greatest common divisor computation, there can be huge intermediate re-
sults but small outputs. The other problem is the growth in bit-length of numbers in the output compared
to those in the input. In the determinant computation of a matrix A ∈ Zn×n, Hadamard’s bound guaran-
tee that the bit-length of the determinant can only be up to n times that of entries in the input matrix.
However, we have examples with intermediate results that are much large. When we are working with
matrices over number fields, these computational phenomenons would occur the same. To overcome
this, the standard strategy is to use modular methods.

A modular method is a more indirect way of computing: instead of solving a problem directly in a
ring R, we do most of the work in one or more quotient rings R/i1,R/i2, . . . for some ideals i1, i2, . . . and
then reconstruct the answer back in R. Many algebraic computation problems over a Euclidean domain
R can be solved modulo one or several primes. There are three variants:

• Big prime (m = p for a prime p).

• Small primes using CRT (m = p1 · · · pr for pairwise distinct primes p1, . . . , pr and r ∈ Z).

• Prime power modular algorithms using Hensel/ Newton lifting (m = pr for a prime p and r ∈ Z)

The first one is conceptually the simplest. If m is chosen large enough the method will find the
correct result. Since working with numbers as large as m is still expensive, this strategy has been refined
in other two variants, which are computationally superior.

In each case, three technical problems have to be addressed:

• Proof of correctness or a bound on the solution: i.e. Hadamard’s bound.

• How to find a good moduli: CRT or lifting algorithms (i.e Dixon’s algorithm.)

• How to reconstruct the solution from modular output: rational reconstruction.

1.2 Modular Algorithms for Matrices over Z and C

In this section, we discuss some essential information that we need for modular algorithms over
integers (or R, C). Our primary goal is to develop methods for solving classical problems coming from
linear algebra.

1
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1.2.1 Chinese Remainder Theorem

In CRT based modular method, one compute result modulo many small prime numbers such that
the product of primes is large enough. Then, it combine the smaller results into big one. This method
works as long as the results are unique enough to allow combinations, one has enough primes and one
either has a bound on solution or a way to verify the result.

Theorem 1.2.1 (Chinese Remainder Theorem). Let p1, p2, ..., pk be a sequence of pairwise coprime
integers, and b1, b2, ..., bk be another sequence of integers. Then the system of simultaneous linear
congruence equations

x ≡ b1 (mod p1), x ≡ b2 (mod p2), . . . x ≡ bk (mod pk)

has an infinite number of solutions x ∈ Z which form a unique congruence class [x]p1 p2...pk ∈

Z/p1 p2...pk where [x]p = {y ∈ Z : y ≡ x (mod p)}.

In practice, there are two variants of CRT:

• CRT-iterative: given moduli p1, p2, . . . , pk a plain iteration is performed. First applying CRT to
compute the moduli p = p1 p1, then p = pp3 and so on. This method allows for early stopping of
an iteration, considering the correctness of modular results.

• CRT-tree: this strategy is asymptotically faster than the iterative method. First, it computes moduli
p1 p2, p3 p4, . . . , pk−1 pk, then it continue as a tree, combining two pairs at once. This method
requires modular images of all the primes as input.

1.2.2 P-adic Lifting

For the classical problem of computing the exact rational solution of a linear system, the modular
lifting methods can decrease the bit-complexity beyond the Chinese remainder approach. Efficient
algorithms for linear system solving are based on p-adic lifting: i.e. Dixon’s algorithm.

Dixon’s Algorithm

This is a p-adic Hensel lifting method for solving system of linear equations, which can accelerate
the bit complexity beyond the CRT approach. Given a square linear system Ax = b with a prime p
such that p - det(A), Dixon’s method computes x̄, such that Ax̄ ≡ b (mod pm) for a given precision m.
There are two phases of the algorithm. First, the inverse C = A−1 (mod p) is computed with complexity
O(n3). The second step computes a p-adic approximation x̄ with O(mn2 log n) integer operations for m
iterations. Starting from b0 = b, DixonSolver iterates xi ≡ Cbi (mod p) and bi+1 = p−1(bi − Axi)
for i = 0, . . . ,m, and obtains x̄ =

∑m−1
i=0 xi pi. Dixon’s algorithm is efficient in practice with the total

complexity of O∼(n3) ([Dix82]).

Bounds on Solutions

Hadamard’s inequality provides a bound on the determinant of a matrix over complex numbers in
terms of the length of its column vectors. Let d be the determinant of the square matrix A ∈ Cn×n.
Hadamard’s inequality says:

H =

n∏
i=1

‖Ai‖ ≥ |d| (1.2.1)



1.2. Modular Algorithms forMatrices over Z and C 3

where |d| is the absolute value of d and ‖Ai‖ represents the Euclidean length of the vector Ai, whose
coordinates are given by the i-th column (or row) of the matrix A (refer [JH85]). Hadamard’s bound is
sharp for random matrices, but not for special matrices such as huge unimodular matrices (See [ABM99,
Section 3], [AM01]).

By the Cramer’s rule, we have that the denominator and numerators of the solution of the system
Ax = b is bounded by ‖B‖

∏n
i=1 ‖Ai‖.

1.2.3 Rational Reconstruction

Often the final step of these modular algorithms is combined with reconstruction methods, such as
rational reconstruction or continued fraction to convert the modular result into the rational solution. As
modular reduction discards some of the information, additional information such as the size or nature
of the true result is required, and this necessary and complementary information has to be deduced from
the original inputs.

Reconstruction of Integers from Modular Results (from Z/m to Z)

Determine a bound B for the absolute value of the true answer using theoretical results. Then,
conduct modular computations sufficient to achieve a precision of at least B.

e.g. Hadamard’s bound gives us log | det(A)| ≤ n log n/2 + n log ‖A‖∞, where ‖A‖∞ = maxi j |Ai j|.
Hence, the bit-length of the product of primes required by a modular method to ensure the correctness
of the determinant is O(n(log n + log ‖A‖∞)).

Reconstruction of Rationals from Modular Results (from Z/m to Q)

We compute a shortest vector (x, y) of the lattice ∆ = 〈(m, 0), (r, 1)〉 ⊂ Z2 to reconstruct a
b ∈ Q from

the modular result r ∈ Z/m. If m is large enough we get x
y = a

b , under some conditions on prime divisors
of m. An error tolerant algorithm which will reconstruct the correct result even in the presence of bad
primes has been introduced in [BDFP15] with the bit-complexity of O(log2 m). This strategy is slow in
Q, but has successfully been used in algebraic reconstruction: Section 1.3.4.

We can use the lattice basis reduction L2-algorithm of Nguyen and Stehlé, which is a variant of
LLL-algorithm in [LLL82] to obtain a quadratic complexity [NS09]: Given an integer d-dimensional
lattice basis with vectors of Euclidean norm less than B in an n-dimensional space, the L2 algorithm
returns a reduced basis in O(d3n(d + log(B)) log(B) ·M(d)) bit operations, whereM(d) denotes the time
required to multiply d-bit integers.

1.2.4 Vector Reconstruction

For the final step of Dixon’s algorithm, we can extend rational reconstruction to a vector reconstruc-
tion algorithm. Many algorithms in linear algebra use vector reconstruction methods which computes
the common denominator and numerators of the entries of the solution vectors from their modular im-
ages. The cost of modular algorithm depends on the bit length of the modulus m, and the existence of
a common denominator. By Cramer’s rule we can see that there exists a common denominator in our
case. In our applications we use vector reconstruction algorithms which requires about half the size of
the bit length of m. In other words, half as many modular image computations as the standard approach
which does elementwise rational reconstruction. In this regards, most of the work has been done by A.
Storjohann and C. Bright in [BS11].
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Vector rational reconstruction methods takes as input a vector a = (a1, . . . , an) ∈ Zn of the images
modulo m, and compute a pair (`, n) ∈ (Z × Zn) such that `ai ≡ ni (mod m), for i = 1, . . . , n and
‖[` | n]‖ ≤ N. Here N is the given upper bound for the Euclidean norm of ‖[` | n]‖.

The problem of solving the vector reconstruction problem is equivalent to finding short vectors of
the lattice M.

M =



0 0 · · · 0 m
0 0 · · · m 0
...

...
...

...
...

0 m · · · 0 0
1 a1 · · · an−1 an


Storjohann and Bright in [BS11] use lattice reduction to compute a "generating set" as G = [` j | n j]1≤ j≤c

such that every solution [` | n] of the vector reconstruction problem is a Z-linear combination of G. Here,
c is the size of the generating set of the solution as explained in [BS11, Section 4] (assuming c ∈ O(1)).
Instead of applying the lattice reduction directly to the lattice M, in [BS11] they use an iterative ap-
proach to keep the row dimension bounded by c + 1 in the working lattice. They add columns of M
one by one, and after the reduction they remove rows of the lattice whose norms are larger than N (See
[BS11, Algorithm 3]). The basic idea of the algorithm can be explained as follows:

First, the lower-left 2 × 2 submatrix of M is reduced.
[
0 m
1 a1

]
T1
−−−→
LLL

[
b1 b2
b3 b4

]
Then the basis of the lower-left 2 × 3 matrix is obtained, using the same unimodular transformation

T1 as: T1

[
0
a2

]
=

[
B1
B2

]
In the next step, a row is added to have the 3 × 3 lower-left submatrix of M, and reduced basis is

computed. 0 0 m
b1 b2 B1
b3 b4 B2

 T2
−−−→
LLL

c1 c2 c3
c4 c5 c6
c7 c8 c9


Now, if it happens that the final vector [c7, c8, c9] in the Gram-Schmidt orthogonalization of this

basis has norm larger than N, then we can discard the last row due to [vHN10, Lemma 2]. We can
repeat the same process for all the columns of matrix M to find short vectors.

The cost of the vector reconstruction algorithm in [BS11] is O(n(log m)2) bit operations for a vector
of size n, using L2 algorithm with quadratic complexity [NS09]. While elementwise rational recon-
struction requires m > 2N2 with N ≥ β the magnitude of the common denominator and numerators,
the vector reconstruction algorithm requires only that m > 2(c+1)/2N1+1/c with N ≥

√
n + 1β in order to

succeed. However, this method is not fast in practice, due to the number of calls for L2 algorithm.

1.3 Computing in Algebraic Number Fields

We begin this section with an introduction of algebraic number fields and their basic properties,
which can be found in any book containing foundations of algebraic number theory, for example
[Neu99] and [Lan94]. Then, we discuss variants of some algebraic reconstruction methods and a mod-
ified version of the vector reconstruction to use in our modular approach for linear system solving.
Finally, we provide a computational model for number field arithmetic to be used in complexity anlysis
of our algorithms.
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1.3.1 Basics of Number Fields

A number field K is an finite extension of Q. We have K = Q[α] ' Q[x]/ f (x), for some monic and
integral polynomial f with the primitive element α. The degree [K : Q] of the field extension is called
degree of the number field K. Since Q is a field of characteristic zero, a number field of degree d admits
d embeddings as into C. Also, K can be considered as a Q-vector space with a basis ω1, . . . , ωd. For all
β ∈ K we have a map ϕβ : K → K : x 7→ βx which is Q-linear, hence we have that Rβ ∈ Qn×n such that

β(ω1, . . . , ωd) = (ω1, . . . , ωd)Rβ.

Rβ is called representation matrix (or (right) regular representation) of β. We define the norm and trace
of β as norm(β) = N(β) = det(Rβ) and trace(β) = trace(Rβ) respectively. The maximal order or ring of
integers of K is denoted by O, is the integral closure of Z in K. The discriminant ∆K of the number field
K is defined to be det

(
((trace(ωiω j))i, j

)
, for any Z-basis of O

A fractional ideal d E K is finitely generated O-sub-module of K. For some nonzero r ∈ O we have
rd E O, and the intuition is that r clears the denominators in d. The minimal positive integer r with
this property is defined to be the denominator of d. O is a Dedekind domain, therefore ideals can be
uniquely factorized.

Theorem/ Definition 1.3.1. The set F of fractional ideals forms a group with identity O. The product
of two ideals a, b E F is the O-module generated by the set {αβ |α ∈ a, β ∈ b}, and inverse of a is given
by a−1 = {α ∈ K |αa ⊆ O}.

Given a non-zero ideal a E O, the unique positive integer m ∈ Z≥0 with 〈m〉 = Z ∩ a is called the
minimum of a and denoted by min(a). Also, we have that min(a) = min{a ∈ Z>0 | a ∈ a}.

We can apply modular methods to solve problems in any order of K, with a canonical epimorphism
for a suitable ideal a: φ : O → O/a. Instead of looking for a solution α ∈ O, we look at the simpler
problem in O/a. Since, O is residually finite, the quotient O/a is finite for all ideals a C O. The norm of
the ideal a is |O/a|, and denoted it by N(a). Norm is multiplicative.

1.3.2 Lattices as Tools for Algebraic Reconstruction Methods

In reconstructing solutions from their modular images, we use lattice based techniques. Lattices
(denoted by ∆Z and ∆R) considered in this section are subsets of Rd and are equipped with the usual
scalar product (Euclidean norm ‖.‖) as length. We fix the basis ω1, . . . , ωd for O as a Z-module. Given
the primitive element α for K, f (x) =

∏
(x − α(i)). For i = 1, . . . , d the conjugates α(i) of α are ordered

as usual with d embeddings:

( )(i) : K → C (1.3.1)

α 7→ α(i)

where α(1), α(2), . . . , α(r1) ∈ R, α(r1+1) = α(r1+r2+1), . . . , α(r1+r2) = α(r1+r2+r2) ∈ C\R where (r1, r2) is the
signature of K, and r1 + 2r2 = d. We define two isomorphisms on Rd := ∆R and Zd := ∆Z:

δR : O → Rd

x 7→
(
x(1), . . . , x(r1),

√
2<(x(r1+1)), . . . ,

√
2<(x(r1+r2)),

√
2=(x(r1+1)), . . . ,

√
2=(x(r1+r2))

)
,

δZ : O → Zd := ∆Z : x =

d∑
i=1

xiωi 7→ (x1, . . . , xd).
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Note that the map δZ depends on the basis of O, while δR is canonical. Now, we can define two different
measures on the same orderO by applying the scalar products to the image of δZ(·) and δR(·) respectively.
We use the Euclidean norm to define ‖x‖2 :=

∑d
i x2

i which measures the size of the coefficients of x,
represented as a linear combination of ω1, . . . , ωd as x =

∑d
i=1 x1ωi ∈ O. Also, we define the norm

maximum coefficient of x as ‖x‖ϕ = max{|xi|, . . . , |xd |} to be used in cost analysis (see Section 1.3.8,
Definition 1.3.21). Working with the lattice ∆Z has the advantage that it allows operations with integers
only. But, the required bounds on solutions can only be obtained using conjugates.

T2-Norm

We define the T2-norm of x as T2(x) := ‖δR(x)‖2 =
∑d

i=1 |x
(i)|

2 (see [FF00, Section 3]). Since we
have two different norms ‖ · ‖ and

√
T2 on the same finite dimensional space, they are equivalent to each

other up to constants. This allows the T2-norm to give a bound on the coefficients using bounds on the
conjugates. Fieker in [FF00, Section 4] explains how to compute norm change constants (c1, c2) ∈ R2

>0
such that for all x =

∑d
i=1 xiωi ∈ O,

T2(x) ≤ c1 ·

d∑
i

x2
i and

d∑
i

x2
i ≤ c2 · T2(x) (1.3.2)

Throughout this paper, we fix the notation (c1, c2) for the norm change constants.

Lemma 1.3.2. T2- norm is sub-multiplicative.

Proof. Consider x, y ∈ O, where T2(x) =
∑d

i=1 |x
(i)|

2 and T2(y) =
∑d

i=1 |y
(i)|

2 with their conjugates x(i), y(i)

for 1 ≤ i ≤ d. Then the following holds:

T2(x) · T2(y) =
( d∑

i=1

|x(i)|
2)
·
( d∑

i=1

|y(i)|
2)

=

d∑
i=1

|x(i)|2|y(i)|
2

+ other terms ≥
d∑

i=1

|x(i)y(i)|
2

= T2(xy)

�

Moreover we have inequalities,√
T2(α) ≤

√
d max{|α(i)| : 1 ≤ i ≤ d}, and max{|α(i)| : 1 ≤ i ≤ d} ≤

√
T2(α) (1.3.3)

Bounds on Lattice Elements

Let us denote the sublattice of ∆Z as ∆Z(a), which corresponds to the ideal a as a submodule of the
ring O from the isomorphism δZ:

δZ : O → ∆Z

: a 7→ ∆Z(a)

Let λ1(∆Z(a)) be the square of the length of a shortest non-zero element in the sublattice ∆Z(a) (λ1(∆Z(a))
is called the 1-st successive minimum of ∆Z(a)). For applications, we need a way to estimate λ1(∆Z(a))
in terms of the norm N(a) of the ideal a ([FF00, Lemma 5]).

Lemma 1.3.3. For λ1(∆Z(a)) of ∆(a) the following lower bound holds:

λ1(∆Z(a)) ≥
d
c1

N(a)2/d
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Proof. λ1(∆Z(a)) = minz∈a\{0} ‖z‖2 ≥ minz∈a\{0} T2(z)/c1 = λ1(∆R(a))/c1 ≥ dN(a)2/d/c1. The last state-
ment is due to λ1(∆R(a)) = minz∈a\{0} T2(z) and arithmetic and geometric mean of z:

‖z‖2/d ≥ (
d∏

i=1

z(i))2/n = (N(z))2/d ≥ (N(a))2/d, since N(a)|N(z). (1.3.4)

�

Fundamental Domain

Definition 1.3.4. Let Λ be a lattice in Rd with basis b1, . . . , bd ∈ Z
d.

1. The fundamental domain (centered) associated to the basis is defined by F :=
{∑d

i=1 tibi ∈ R
d | ti ∈[

− 1/2, 1/2
)}
.

2. Let B(0, r) be the open ball of radius r, centered at 0. The radius of the largest ball inscribed in
the closure of F is rmax := sup{r ∈ R+|B(0, r) ⊂ F}.

3. A measure of the orthogonality of the basis is given by the orthogonality defect: OD(b1, . . . , bd) =∏d
j=1 ‖bi‖/d(Λ), where d(Λ) is the lattice determinant. Let M = [b1| · · · |bd] be the d × d matrix

with the basis as columns. The lattice determinant is defined as d(Λ) :=
√
| det(Mt M)|.

Due to Lenstra [Len82, Lemma 1], we have the following lemma.

Lemma 1.3.5. The fundamental domainF contains a d-dimensional ball B(0, r) with 2r ≥ mini ‖bi‖/OD,
and all the non-zero vectors x ∈ Λ have length ‖x‖ ≥ mini ‖bi‖/OD.

We can perform Gram-Schmidt orthogonalisation for the basis of Λ and obtain an orthogonal basis
b?1 , . . . , b

?
d . We have d(Λ) = det(bt

ib j) = det(T )2 det((b?i )tb?j ) =
∏d

i=1 ‖b
?
i ‖

2, for some T ∈ GL(n,Q)
where (b?1 , . . . , b

?
d ) = (b1, . . . , bd)T and det(T ) = 1 (refer [Coh13, Prop 2.5.4]). Hence, we can reinter-

pret the inequality in Lemma 1.3.5 by replacing OD as:

rmax ≥
1
2

min
i
‖bi‖ ×

d∏
i=1

‖b?i ‖
‖bi‖

. (1.3.5)

The size of OD can be bounded from above by a constant that depends on the dimension of the lattice
and the quality ratio of the basis reduction algorithm. Let θ ∈ ( 1

4 , 1] denote the quality ratio. It is used
to check the Lovàsz condition: Bi ≥ (θ − µ2

i,i−1)Bi−1. The original LLL basis reduction algorithm uses
θ = 3/4 ([LLL82], [Coh13, Section 2.6]). Take γ(θ) = (θ − 1/4)−1 ≥ 4/3. Suppose that the basis
b1, . . . , bd of the lattice Λ is LLL-reduced with quality ratio θ. From the properties of LLL reduced
basis, ([Coh13, Theorem 2.6.2] and [Len82, Theorem 1]), Lenstra obtains the upper bound for OD:

1 ≤ OD(b1, . . . , bd) ≤ γ(θ)d(d−1)/4, (1.3.6)

and a lower bound for rmax:

rmax ≥
mini ‖bi‖

2γ(θ)d(d−1)/4 . (1.3.7)

The given bound for the rmax can be sharpened using Belabas’ bound in [Bel04, Prop 3.10]:

rmax ≥
‖b1‖

2(3
√
γ(θ)/2)d−1

(1.3.8)

When the lattice dimension increases, (1.3.8) provides a better bound than (1.3.7) does. We can reinter-
pret the Lemma 1.3.5 for all the non-zero vectors x ∈ Λ, and get a bound on λ1(∆Z) as follows:
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Lemma 1.3.6. Suppose b1, . . . , bd be the LLL reduced basis of the lattice ∆Z with quality ratio θ. Then
it holds that,

λ1(∆Z) = min
x∈Λ/{0}

‖x‖2 >
‖b1‖

2

(9γ(θ)/4)d−1

This is straightforward from (1.3.8), since minx∈Λ/{0} ‖x‖ > 2rmax. We extend this idea to a lattice
corresponding to an ideal a / O to get a bound on the norm N(a).

Lemma 1.3.7. Suppose b1, . . . , bd be the LLL reduced basis of the lattice ∆Z(a) with quality ratio θ.
Then, following bound holds for N(a).

λ1(∆Z(a)) >
dN(a)2/d

c1(9γ(θ)/4)d−1

Proof. Apply the arithmetic mean- geometric mean inequality (1.3.4) for b1 ∈ a/{0} in Lemma 1.3.6
with c1 from (1.3.2): ‖b1‖

2 ≥ T2(b1)/c1. i.e. T2(b1)/d ≥ (
∏d

i=1 b(i)
1 )2/d = (N(b1))2/d ≥ (N(a))2/d (since

N(a)|N(b1)). �

This is a reinterpretation of the bound given in Lemma 1.3.3, for a reduced basis. When we use
ideals of the form pk for a fixed prime ideal p, Lemma 1.3.7 and 1.3.3 allows us to compute some k
such that λ1(∆Z(pk)) > B for a given bound B. Even though this method has the advantage of staying
in purely integral computations, we get worse bounds (k is too large in general). We can use the ideas
suggested in [FF00, Section 7] to overcome this problem in practice, i.e. computing modular images of
pk, increasing k until it stabilizes.

1.3.3 Reconstruction of Algebraic Numbers from Modular Images

In order to solve the algebraic reconstruction problem (without denominators), the following obser-
vation (Lemma 1.3.8) by Lenstra is used (refer [Len82, Section 2] and [Bel04, Lemma 3.7]).

Lemma 1.3.8. Let Λ ⊂ Rd be a lattice with F, rmax and matrix M defind as in Section 1.3.2. For x ∈ Rd

there exists at most one y ∈ Rd such that x ≡ y (mod Λ) and |y| ≤ rmax. Then, the unique element y ∈ F
is given by y = x − M

⌊
M−1x

⌉
.

Problem: Given β ∈ O, c ∈ R+ and an ideal a ⊆ O, compute α ∈ O, such that α − β ∈ a and
T2(α) < c.

We can reconstruct α from β (mod a), provided that the ideal a is large enough with respect to
the bound on α. This algebraic number reconstruction method is due to Fieker and Friedrichs [FF00,
Section 4]. He extends Lemma 1.3.8 over the ring O, using Z-isomorphism δ−1

Z : ∆Z → O and Lenstra’s
bound on rmax (1.3.7) with quality ratio θ = 3/4. Refer [FF00, Theorem 1].

We can reconstruct α from β (mod a), provided that the ideal a is large enough with respect to
the bound on α. This algebraic number reconstruction method is due to Fieker and Friedrichs [FF00,
Section 4].

Theorem 1.3.9. Let a be an ideal such that the norm of a satisfies

N(a) >
(
c1c2c 2d(d−1)/2+1

d

)d/2

for some c ∈ R, and let b1, . . . , bd be a LLL-reduced basis of the lattice ∆Z(a). Let β ∈ O be arbitrary
and β =

∑d
i=1 qiδ

−1
Z (bi) with some qi ∈ Q. If there is an α ∈ β + a such that T2(α) < c, then α = β − η,

where η :=
∑d

i=1 bqie δ
−1
Z (bi).
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Proof. Let N(a) >
(
(c1c2c 2d(d−1)/2+2)/d

)d/2
. Lemma 1.3.3 yields that λ1(∆Z(a)) >

(
c2c 2d(d−1)/2+2

)
.

We have rmax ≥
(√
λ1(∆Z(a))

)
/(2 × 2d(d−1)/2), due to λ1(∆Z(a)) = mini ‖bi‖

2 and γ(3/4) = 2. Hence,
r2

max > c2c. Now by Lemma 1.3.8 there exists a unique element α = β −
∑d

i=1 bqie δ
−1
Z (bi), given that

‖α‖ <
√

c2c. �

Belabas extens the Lemma 1.3.8 over the ring O using Z-isomorphism δ−1
Z : ∆Z → O and the bound

on N(a) is sharpened using the bound (1.3.8) on rmax ([Bel04, Lemma 3.12]). Hence, we can reinterpret
the Theorem 1.3.9 as follows:

Theorem 1.3.10. Let b1, . . . , bd be a LLL-reduced basis of the lattice ∆R(a) with respect to T2-norm
and quality ratio θ. Let β ∈ O be arbitrary and β =

∑d
i=1 qiδ

−1
Z (bi) with some qi ∈ Q. If there is an

α ∈ β + a such that T2(α) < c, then α = β −
∑d

i=1 bqie δ
−1
Z (bi), provided that

N(a) ≥
(
2
√

c/d · (3
√
γ(θ)/2)d−1)d.

Proof. We take the bound (1.3.8) on rmax for the lattice ∆R(a). Then, ‖b1‖ =
√

T2(b1) and equation
(1.3.4) can be applied directly to obtain the result. �

In his paper Belabas uses a prime ideal p and he increases the precision k of the ideal a = pk until
rmax satisfies r2

max > c1c. In practice, both Fieker and Belabas have chosen the lattice ∆Z to stay with
purely integral computations while reconstructing α. As explained in Lemma 1.3.3, one can find a lower
bound for the lengths of vectors in the lattice ∆Z(a) (which is not reduced). That is, given c the ideal
a must satisfy λ1(∆Z(a)) ≥ (d/c1) · N(a)2/d > 4c to reconstruct α such that ‖α‖2 < c holds. Hence,
we get N(a) >

(
2
√

c1c/d
)d and, we can see this is the bound in Theorems 1.3.10 without the γ(θ) term

coming from the LLL reduction. Pohst [Poh05, Lemma 2.2] has used the bound N(pk) ≥ (2
√

c/d)d

to reconstruct α, given that T2(α) < c. He enumerates short vectors in congruence class modulo pk,
using smaller k. Even though, enumeration uses comparatively smaller bounds, it is exponential in the
runtime. The usage of the lattice ∆R with conjugates, makes it numericaly unstable, and difficult to
analize with errors.

In our implementation we use a reduced basis. Since the reduced basis is as orthogonal as possible,
it contains a ball with the maximum radius. Therefore we can obtain the required ideal a with in few
steps. Enlarging the ideal by multiplying with integers would preserve the maximality of the inscribed
ball.

Example 1.3.11. Let K = Q(a) = Q(x)/x2 + 1, then the maximal order of K is: O = 〈1, a〉. We define
the isomorphism δ : O 7→ ∆ := Z2. Given β = −52 and ideal a = 〈130, 8 − 14a〉, we reconstruct α such
that α − β ∈ a with bound ‖α‖2 < c = 7.5 on the coefficients of α. We have the ideal a large enough as
the Theorem 1.3.9 suggested: T2(α) < 7.5c1, and N(a) = 130 > 15c2

1c2 = 30 (for (c1, c2) = (2.0, 0.50)
computed using Hecke).

LLL-reduced basis matrix of a is:
[
−14 −8

8 −14

]
Hence, LLL basis for the sub-lattice ∆(a) is 〈b1 = (8,−14), b2 = (−14,−8)〉, and
a:

〈
δ−1(b1) = 8 − 14a, δ−1(b2) = −14 − 8a

〉
.

Then β can be written in terms of b1 and b2 as: β = −52 = − 8
5δ
−1(b1) + 14

5 δ
−1(b2).

by rounding coefficients: η = −2δ−1(b1) + 3δ−1(b2) = −58 + 4a.
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d Now, α can be reconstructed: α = β − η =

6−4a, as explained in the figure. Since we have
chosen the fundamental domain large enough,
α is the unique point which satisfies the boun-
day condition.

1.3.4 Reconstruction with Denominators

Here we will extend the reconstruction method to non-integral algebraic numbers. For example, in
linear system solving using modular methods, we require a method for reconstructing solutions which
are not contained in the equation order. We fix the basis ω1, . . . , ωd for the ring O. The ideal a can
be represented as a Z-module in the ring O: (a1, a2, . . . , ad) = (ω1, . . . , ωd)Bt, where B ∈ Zd×d is the
transformation matrix. The columns B1, B2, . . . , Bd form a basis of the sub-lattice ∆Z(a). We define the
map τ, which extend the lattice ∆Z(a):

τ : Zd → Zd+1 : (z1, . . . , zd)t 7→ (0, z1, . . . , zd)t.

Problem: Given β ∈ O, c ∈ R+ and an ideal a ⊆ O, find α ∈ O and ` ∈ N, such that `β − α ∈ a,
‖α‖2 < c, `2 < c and ` < a.

Theorem 1.3.12. Suppose λ1(∆Z(a)) > 16c2. The lattice ∆Z is extended to a new lattice ∆̄ and

∆̄(a) :=
〈
τ(∆Z(a), (1, β1, β2, . . . , βd)t

〉
,
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where β =
∑d

i=1 βiωi. Then, a shortest vector of the lattice ∆̄(a) is given by:

(0, α1, . . . , αd) + `(1, 0, . . . , 0),

where α =
∑d

i=1 αiωi.

This is due to [FF00, Theorem 2], and also it contains purely integral computations as before. In
order to create the new lattice ∆̄(a), we can use a LLL-reduced basis of ∆Z(a) with the extension map τ.
The general case is explained in the next section.

Example 1.3.13. Consider the same ideal a = 〈130,−14a + 8〉 in the Example 1.3.11. Given β = 5+7a,

we reconstruct α/` = β (mod a). The basis matrix of a is B =

[
130 0
36 2

]
Consider the basis matrix

corresponding to the lattice ∆̄(a): M =

[
1 [β1 | β2]

Od×1 B

]
=


1 5 7
0 130 0
0 36 2


The LLL-reduced basis of ∆̄(a) is given by: L = LLL(M) =

4 0 -2
2 -4 6
1 5 7


.

Therefore, we have numerator α = −2a, denominator ` = 4, and α/` = −a/2.

1.3.5 Reconstruction with Algebraic Denominators

For an algebraic number `, consider the representation of 1/`, using the previous reconstruction in
Section 1.3.4. There, we get an integer denominator (in general the norm of `), and 1/` is reconstructed
as α/N(`), for some α ∈ K. The norm N(`) =

∏n
i=1 `

(i) and α = N(`)/` which are approximately
n-times as large as ` (See Proposition 1.3.26). This implies that the number of primes required for the
reconstruction with integer denominators is n-times more than that is required for the reconstruction
with algebraic denominators. Given β ∈ O and an ideal a, here we reconstruct an algebraic numerator
α and algebraic denominator ` for β (mod a). The method is similar to the previous method with an
extended lattice ∆′(a). Let Ma be the basis matrix, corresponding to the ideal a (similar to the column
matrix B above). We define the lattice extension ι:

ι : Zd → Z2d : (z1, . . . , zd) 7→ (0, . . . , 0, zd+1, . . . , z2d).

Let Id be the d × d identity matrix and On×m be the n × m zero matrix over Z. Take Rβ to be the
representation matrix of β. Then, we can construct the extended lattice:

∆′(a) =
〈(

Od×d | Mt
a

)
,
(
Id | Rt

β

)〉
.

Consider the Z-isomorphism: δ : O2 → ∆2
Z := Z2d, by extending the δZ isomorphism to pairs

(For a = (α, β) ∈ O2, δ(a) = (δZ(α), δZ(β)). Then, it holds that ∆′(a) ⊆ ∆2
Z. Let Q′ be the quadratic

form associated to O2, which is achieved by applying the scalar product to the image of δ. If we have
a = (α, β) ∈ O2, the quadratic form gives Q′(a) = ‖α‖2 + ‖β‖2.

Problem: Find α/` with α, ` ∈ O. Given β ∈ O such that `β − α ∈ a and bounds: ‖α‖2 < c and
‖`‖2 < c.

Lemma 1.3.14. Suppose the first successive minimum λ1(∆Z(a)) is greater than 4c2c2
1B2 for some B ∈

Z>0, then there exists at most one short vector υ ∈ ∆′(a) such that Q′(δ−1(υ)) < B.
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Proof. Suppose υ1, υ2 ∈ ∆′(a) with Q′(δ−1(υ1)),Q′(δ−1(υ2)) < B. For i = 1, 2, take fi, gi ∈ O, such
that fi =

∑d
j=1 fi, jω j and gi =

∑d
j=1 gi, jω j, where ω1, . . . ωd is the Z-basis of O. (The elements υi are

of the form υi = [ fi,1 . . . fi,d][Id Rt
β] + [gi,1 . . . gi,d][Od×d Mt

a]. This can be obtained from the first
row of the matrix: [R fi][Id Rt

β] + [Rgi][Od×d Mt
a], where R fi and Rgi are representation matrices of

fi, gi). Then, we have δ−1(vi) = ( fi, fiβ + ai) for some ai = giāi, where ai, āi ∈ a. Let fiβ + ai = αi. The
bound on δ−1(υi) follows from ‖ fi‖2 < B and ‖αi‖

2 < B. Consider the element η̄: η̄ = f2 · δ−1(υ1) −
f1 · δ−1(υ2) = (0, f2a1 − f1a2) = (0, η). Hence, we have η = f2a1 − f1a2: δZ(η) ∈ ∆Z(a), where
δ(η̄) = ι(δZ(η)) ∈ ι(∆Z(a)) ⊆ ∆′(a). Now consider the quadratic form for η:

‖η‖2 = Q′(ι(η)) = Q′( f2 · δ−1(υ1) − f1 · δ−1(υ2))

= Q′( f2 · ( f1, α1) − f1 · ( f2, α2))

≤ Q′( f2 f1, f2α1) + Q′( f1 f2, f1α2)

= ‖ f2 f1‖2 + ‖ f2α1‖
2 + ‖ f1 f2‖2 + ‖ f1α2‖

2

≤ c2
(
T2( f2 f1) + T2( f2α1) + T2( f1 f2) + T2( f1α2)

)
≤ c2

(
T2( f2) · T2( f1) + T2( f2) · T2(α1) + T2( f1) · T2( f2) + T2( f1) · T2(α2)

)
≤ c2

(
2c2

1 · ‖ f2‖
2 · ‖ f1‖2 + c2

1 · ‖ f2‖
2 · ‖α1‖

2 + c2
1 · ‖ f1‖

2 · ‖α2‖
2)

< 4c2c2
1B2

(1.3.9)

In the computation above, we have to shift from ‖.‖2 norm to T2(.), as ‖.‖2 is not sub-multiplicative.
We apply the Lemma 1.3.2 (Cauchy Schwarz inequality) on quadratic form T2(.). The (1.3.9) shows
that ‖η‖2 < 4c2c2

1B2. We conclude λ1(∆Z(a)) > 4c2c2
1B2, such that η = 0 and υ1 = υ2.

�

Theorem 1.3.15. Suppose we have λ1(∆Z(a)) > 16c2c2
1c2, and there exists α, ` ∈ O such that `β−α ∈ a

and ‖α‖2, ‖`‖2 < c. If ` =
∑d

i=0 `iωi and ei is the ith canonical basis of Z2d then the shortest vector of
the lattice ∆′(a) is υ =

∑d
i=1 `iei + ι(δ(α)).

Proof. As `β − α ∈ a there exists a ∈ a such that α = `β + a. The tuple (`, `β + a) is an element of
δ−1(∆′(a)). Take δ−1(υ) = (`, `β + a) = (`, α). Then, υ =

∑d
i=1 `iei + ι(δ(α)). Given bounds ‖α‖2 < c and

‖`‖2 < c, we have Q′(v) = ‖`‖2 + ‖α‖2 < 2c. If we let B = 2c (in Lemma 1.3.14), υ must be the shortest
vector in ∆′(a). �

We use Lemma 1.3.3 to interpret Theorem 1.3.15 in terms of norm of the ideal a.

Theorem 1.3.16. Let a be an ideal such that N(a) > (16c3
1c3

2c2/d)d/2. Given bounds T2(α),T2(`) < c
and β ∈ O such that `β − α ∈ a, α and ` can be reconstructed using a shortest vector υ of the lattice
∆′(a) (as described in Theorem 1.3.15).

Proof. Assume that N(a) > (16c3
1c3

2c2/d)d/2. Lemma 1.3.3 yields that λ1(∆Z(a)) > 16c2
1c3

2c2. Provided
that T2(η) ≤ c for any η ∈ O, we have ‖η‖2 ≤ c2c by (1.3.2). Hence, we can replace the T2-norm by
‖ · ‖2 norm if we let λ1(∆Z(a)) > 16c2c2

1c2. The rest of the proof follows from Theorem 1.3.15. �

Now we suppose the basis of ∆Z(a) is LLL reduced. While we extend above results in to this case,
the bound given in Theorem 1.3.15 does not change:

Lemma 1.3.17. The reconstructed result in Theorem 1.3.15 does not depend on the basis ∆Z(a) being
reduced.
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Proof. We fix a lattice basis reduction algorithm (e.g. LLL). Let Ma be the basis matrix of ∆Z(a)
and La be the basis matrix corresponding to the reduced basis of ∆Z(a). Consider the two extended
lattices for the two cases: ∆′(a) = 〈(Od×d | Mt

a), (Id | Rt
β)〉 and ∆′L(a) = 〈(Od×d | Lt

a), (Id | Rt
β)〉. Since,

the reduced basis matrix of (Od×d | Mt
a) is (Od×d | Lt

a), we have that the two lattices ∆′L(a) and ∆′(a)
are same. Therefore, we have same properties for reduced bases ∆′L(a) and ∆′(a), and we obtain same
bounds. �

We apply the bound improved by Belabas in Lemma 1.3.7 to interpret Theorem 1.3.15 in terms of
the norm of the ideal a.

Theorem 1.3.18. Let a be an ideal such that the basis of ∆Z(a) is LLL reduced with quality ratio θ and,

N(a) >
((

4c
√

c3
1c2/d

)
·
(
3
√
γ(θ)/2

)d−1)d
.

Given bounds ‖α‖2, ‖`‖2 < c and β ∈ O such that `β − α ∈ a, α and ` can be reconstructed using a
shortest vector υ of the lattice ∆′(a) (as described in Theorem 1.3.15).

Proof. Simplifying
(
dN(a)2/d)/(c1(9γ(θ)/4)d−1) > 16c2c2

1c2. Then Lemma 1.3.7 yields that λ1(∆Z(a)) >
16c2c2

1c2 and Theorem 1.3.15 holds due to Lemma 1.3.17. �

The bound suggested in Theorem 1.3.18 is larger than the one in Theorem 1.3.16, but it allows us
to use a LLL-reduced basis. Since this basis is as orthogonal as possible we can efficiently enlarge the
lattice ∆Z(a) to obtain the required bound on a.

Example 1.3.19. For a = 〈130,−14a + 8〉, we reconstruct 5 + 7a (mod a) with algebraic denominator
` and numerator α. The basis matrix corresponding to the lattice ∆′(a) is given by

M =

[
Id Rβ

Od×d B

]
=


1 0 5 7
0 1 −7 5
0 0 130 0
0 0 36 2

 , whre Rβ is the representation matrix of β.

Then the LLL-reduced basis of ∆′(a) is L = LLL(M) =

2 -1 3 1
1 2 -1 3
0 4 2 0
-4 0 0 2




Therefore, we have numerator α = a + 3 denominator ` = −a + 2 and `β − α ∈ a.

Given a ∈ O and p ∈ Z, a (mod p) reduces the coefficient vector of a modulo p and returns the
corresponding element. The coefficient vector of the result will have entries x with 0 ≤ x ≤ p.

Algorithm 1 reconstructs an algebraic denominator and numerator of β (mod p), based on LLL
lattice basis reduction algorithm. The algorithm would produce the principal ideal generated by p.
Therefore, the basis matrix would be p · In and it is already reduced. The same algorithm can be used
for modular reconstruction with respect to an ideal a. Then, the basis matrix p · In is replaced by some
basis matrix Ma of ideal a.
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Algorithm 1 Algebraic Reconstruction (AlgRecon)

Input: a ∈ O, p ∈ Z and basis {ω1, . . . , ωd} of O.
Output: α and d such that α

` = a (mod p)
1: Ra = representation matrix of a

M =

[
Od×d p · Id

Id Ra

]
2: Compute the LLL reduced basis L of M.
3: α =

∑d
i=1 L1,iωi

4: ` =
∑d

i=1 L1,d+iωi

5: return α, `

1.3.6 Vector Reconstruction Methods

Here, we present two vector reconstruction algorithms, which can be used in classical linear algebra
problems such as linear system solving and kernel computation over K. First, we extend the vector ratio-
nal reconstruction algorithm in [BS11] as a vector algebraic reconstruction algorithm. Then we present
a simple and fast vector reconstruction method which uses the algebraic denominator reconstruction
optimally.

Extension to Bright’s and Storjohann’s method over K

Here, we extend the vector rational reconstruction algorithm of Storjohann and Bright in [BS11] over
number fields. Given a vector A = (a1, . . . , an) ∈ On and an ideal p (or a integer), vector reconstruction
problem asks for the common denominator ` ∈ O and numerators n ∈ On such that `ai ≡ ni (mod p)
for i = 1, . . . , n. Let P be the basis matrix of the ideal p (or if it is a number p, P = pId) and Rai be the
representation matrix of ai. Then any short vector of the lattice M gives a solution for the vector rational
reconstruction problem as explained in the Section 1.2.4. The only difference is that, the removal of
rows and addition of columns happence with the size of d instead of one row (or column) at a time.

M =



0 0 · · · 0 P
0 0 · · · P 0
...

...
...

...
...

0 P · · · 0 0
Id Ra1 · · · Ran−1 Ran


We have tested [BS11, Algorithm 3] over number fields. There, we have to apply the expensive

lattice reduction n-times for matrices of size d× with the total cost of O(nd2β2) operations in Q using
L2 algorithm. Here, β is the size of the coefficients of the input. The gain here is that, we require about
the half the size of p, that is required for elementwise rational reconstruction. The experimental results
shows that this method is slower than the new approach which is presented in the next section.

Vector Reconstruction Using Common Denominator

The algebraic vector reconstruction algorithm in Algorithm 2, computes the common denominator
while reconstructing the solution. The initial assumption is that all the denominators in the solution
vector are same. Given a ∈ On, p ∈ Z>0 and a bound B, if exist, we reconstruct the vector S such that
S ≡ a mod p (that is S i ≡ ai (mod p) for each i = 1, . . . , n) and the coefficients of numerators and
denominator of S are bounded by B.
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Algorithm 2 Vector Algebraic Reconstruction (VecAlgRecon)

Input: Vector a ∈ On, an integer p and bound B.
Output: false or true with a reconstructed matrix S such that S ≡ a (mod p).

1: D = K(1) and S = On×1.
2: for i = 1, . . . , n do
3: b = aiD
4: b = b (mod p)
5: if all the coefficient of b ≤ B then
6: S i = b

D
7: else
8: α, d1 = AlgRecon(b, p)
9: D = Dd1

10: if any coefficient of D > B then
11: return false, S
12: end if
13: S i = α

D
14: end if
15: end for
16: return true, S

Theorem 1.3.20. The Algorithm 2 is correct and has the complexity O∼(βnd5) for a vector of size n with
entries of bitsize β.

Proof. Consider the vector a = (a1, . . . , an). We start algebraic reconstruction from first entry a1. Let
α1
d1
≡ a1 (mod p). Let α′2 and d′2 be the reconstructed numerator and denominator of d1a2. If D = d1 is

a common denominator then d′2 is a unit and α′2 ≡ d1a2 (mod p). If all the coefficients of α′2 ≤ B we
have obtained the correct numerator α2 = α′2 without applying the reconstruction algorithm. Otherwise,
we do the algebraic reconstruction for d1a2 to find α′2 and d′2 such that α′2/d

′
2 ≡ d1a2 (mod p). Hence,

we get the numerator α2 = α′2 and denominator d2 = d1d′2 such that α2/d2 ≡ a2 (mod p) and new
denominator is D = d1d2. Other entries of the vector a can be constructed continuing this method.
We can set a early abort condition for incorrect results, if any coefficient of D > B. Therefore, the
correctness of the algorithm follows from the construction.

If the L2-algorithm is used in the algebraic reconstruction, it runs in (at most) O∼(β2d5) operations
on number of bitsize O(β). Hence, the worst case complexity of the algorithm with respect to the bit
size of the input is O∼(nβ2d5). When the denominators of a are all equal, the bit complexity would be
O∼(β2d5). �

This is a much faster approach as we accumulate the denominator, and in practice, we observed that
typically after the second iteration, we do not have to use lattice reduction.

1.3.7 Linear System Solving Using Lifting Method

One of the main tool that we use in this thesis is the DixonSolver Algorithm 3. Here we have
extended Dixon’s algorithm to number fields.
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Algorithm 3 Dixon Solver (DixonSolver)

Input: Matrix A ∈ Kn×n, b ∈ Kn×1, a prime number p (p ⊥ det(A)) and a bound B on solutions.
Output: Solution matrix S of the linear system Ax = b.

1: C = A−1 (mod p)
2: D = b, s = 0 and p1 = p.
3: while true do
4: x ≡ Cb (mod p)
5: s = s + xp1
6: p1 = p1 p
7: if p1 > B then
8: f , S = VecAlgRecon(s, p1)
9: if f and AS = b then

10: return S
11: end if
12: end if
13: b = p−1(b − Ax)
14: end while

First we use Cramer’s rule to compute a bound on the coefficients of numerators and denominators
of the solution S of Ax = b. Since, the solution S can be written as quotients of determinants of some
matrices, we need a method to estimate sizes of determinants ( in the next section, we explain how to get
bounds on determinants). Then we can use Theorem 1.3.18 to decide the prime power that is required
to guarantee the solution.

1.3.8 Bound and Norm for Matrices over Number Fields

Let K be a number field of degree d and let A ∈ Kn×n. We can get a bound on the coefficients of the
determinant of a matrix A using Hadamard’s bound for conjugate matrices of A (conjugate matrices are
the corresponding complex matrices given by the map c(i) as defined below). Consider the map (·)(i) as
described in the Section 1.3.2:

(·)(i) : K → C : α 7→ α(i).

Assuming the conjugates of any element in K are ordered in the usual way, we can extend the map (·)(i)

for matrices over Kn×n:

c(i) : Kn×n → Cn×n

: A 7→ A(i)

The map c(i) gives the matrix A(i), where all the entries are the i-th conjugate of the entries of matrix
A. The j, k-th entry a jk of A is mapped to a(i)

jk of A(i). Now we can compute Hadamard’s bound for each
conjugate matrices A(i) as they are complex matrices. Let B(i) be Hadamard’s bound for the matrix A(i)

: | det(A(i))| ≤ B(i). Conjugation is an isomorphism, which implies that det(A(i)) = det(A)(i). Using these
facts, we can apply the T2-norm, to get a bound on the determinant with respect to B =

∑d
i=1 B(i)2 as:
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T2(det(A)) =

d∑
i=1

|det(A)(i)|
2

≤

d∑
i=1

B(i)2
= B (1.3.10)

When a bound on coefficients of the determinant is needed, we may apply the norm change constant
in (1.3.2) and obtain that ‖ det(A)‖ ≤

√
c2B. In next sections, we relate the the size of the coefficients of

det(A), with the size of the input matrix A using the measure ‖ · ‖ϕ.

Norm on the Size of Coefficients

For A(i) = [a(i)
j,k] ∈ Cn×n, let C(i) ∈ R such that C(i) ≥ max j,k{|a

(i)
j,k|}. Using the Hadamard bound on

A(i), we have that | det(A(i))| ≤ nn/2C(i)n from [GG13, Theorem 16.6]. We define the following norm for
future applications.

Definition 1.3.21. Let K be a number field of degree d with ring of integers O, by Ω = {ω1, ω2, . . . , ωd}

we denote the Z-basis of O with ω1 = 1. Given α ∈ O with respect to the integral basis Ω by its
coefficient vector (α1, . . . , αd) ∈ Zd satisfying α =

∑d
i=1 αiωi. For a matrix A ∈ On×m we extend

‖A‖ϕ = max{‖Ai j‖ϕ |1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The Lemma 1.3.22 provides a multiplicative property of the norm ‖ · ‖ϕ.

Lemma 1.3.22. For α, β ∈ O the norm ‖ · ‖ϕ satisfies ‖αβ‖ϕ ≤ dc1
√

c2‖α‖ϕ‖β‖ϕ, where c1 and c2 are the
norm change constants of O as described in (1.3.2).

Proof. First we consider the ‖ · ‖2 norm on αβ. Suppose αi and βi for i = 1, · · · , d are the coeffi-
cients of α and β respectively. Using Lemma 1.3.2, we have: ‖αβ‖2 ≤ c2T2(αβ) ≤ c2T2(α)T2(β) ≤

c2c1‖α‖
2c1‖β‖

2 = c2c2
1
∑d

i=1 α
2
i
∑d

i=1 β
2
i . From this, we can get the required relation as ‖αβ‖ϕ ≤

√
‖αβ‖2 ≤√

c2c2
1d‖α‖2ϕd‖β‖2ϕ ≤ dc1

√
c2‖α‖ϕ‖β‖ϕ. �

Bound on the Size of the Coefficients of det(A) in terms of ‖A‖ϕ

Now, Lemma 1.3.23 computes bounds on T2(det(A)) and the maximum coefficient of det(A), in
terms of the maximum coefficient of matrix entries of A.

Lemma 1.3.23. For a matrix A ∈ On×n, it holds that T2(det(A)) ≤ nn(c1d‖A‖2ϕ
)n

and ‖ det(A)‖ϕ ≤
(c1/2

2 (c1nd)n/2)‖A‖nϕ.

Proof. Consider the corresponding conjugate matrices of A as A(i) for i = 1, . . . , d. Let e be the matrix
entry of A with the maximum T2-norm. For all i = 1, . . . , d, let e(i) be the corresponding ith conjugates of
e and ei be the ith coefficient of e. From the above result, we have that | det(A(i))| ≤ nn/2|e(i)|

n. By (1.3.10)
it satisfied: T2(det(A)) ≤

∑d
i=1 nn|e(i)|

2n
≤ nn

(∑d
i=1 |e

(i)|
2)n

. Now we can change the norm and obtain a

bound on coefficients using the fact that |ei| ≤ ‖A‖ϕ:
∑d

i=1 |e
(i)|

2
≤ c1

∑d
i=1 |ei|

2 ≤ c1
∑d

i=1 ‖A‖
2
ϕ = c1d‖A‖2ϕ.

Therefore, we get: T2(det(A)) ≤ nn(c1d‖A‖2ϕ
)n

. Combining this with changing norms on det(A), we
obtain a bound on ‖ det(A)‖ϕ as follows: ‖ det(A)‖ϕ ≤

√
c2T2(det(A)) ≤ (c1/2

2 (c1nd)n/2)‖A‖nϕ. �
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1.3.9 Computational Model and Cost Functions

When we develop a computational model for number field arithmetic, we need a notion of size that
bounds the size required to represent ideals and field elements.

Presentation of Ideals

There are mainly two ways to present an ideal a of O as explained in [PZ97, Section 6.3] and [BP91,
Section 3].

Z-Basis Presentations: For every integral O-ideal a has a Z-basis representation. Since a is a free
Z-module of rank d, it can be represented as a = Zη1 + Zη2 + · · · + Zηd, with ηi ∈ O.

Two Element Presentation: Every integral and fractional ideal a can be generated by two el-
ements, one of which can be chosen randomly in a/{0}. That is: a = aO + αO, where a ∈ a
is chosen to be a positive integer. For example, the least positive integer in a, or the norm if a,
are convenient. The construction of this representation is explained in [FHHJ17, Section 6]. For
fractional ideals, we can find a presentation of the form a = aO + α/kO with a, k ∈ Z>0 and with
α ∈ O. In this thesis, two generators of an ideal a are called: gen_one(a) and gen_two(a).

Conceptually, 2-element presentation is less storage consuming and some operations are much more
efficient in this setting ([FHHJ17, Section 6]). When the storage requirements for a is considered, it
takes (d + 1) integers to store generators using two element representation. If we have picked an integral
basis for K, then it takes d2 integers to store the basis itself.

Let P be a finite set of prime numbers, and PK denote the (finite set of) prime ideals of OK that lie
over some prime in P.

Definition 1.3.24. Let a be a fractional O-ideal. We call aO + αO, with a ∈ Z≥0 and α ∈ K a P-normal
presentation for a, if a = aO + αO, and for the factorization into prime ideals in O it holds that: both a
and aO are divisible only by primes in PK , and the ideal αa−1 is not divisible by any prime in PK .

Some important properties of normal presentations, from [BP91, Section 3]:

1. Let a = aO + α/kO be a presentation for the fractional ideal a, with a, k ∈ Z>0 and α ∈ O. Then a
admits a P-normal presentation with P consisting of the prime numbers dividing ak.

2. If a = aO+αO and b = bO+βO are P-normal presentations, then ab = abO+αβO, and moreover
this is a P-normal presentation of ab.

3. If a = aO + αO is a P-normal presentation for the integral ideal a, then there exists an integer k
coprime to all primes in P (and hence coprime to a), such that a−1 = O+α−1kO. For instance, for
any positive integer r in αO the largest divisor k of r that is coprime to a will do.

Notion of Size

For a number field K of degree d, we fix the Z-basis Ω = {ω1, ω2, . . . , ωd} for the maximal-order
O with ω1 = 1. We can represent an integral element α ∈ O with respect to the integral basis Ω as
explained in Definition 1.3.21. Now, we define the size of elements and ideals as follows.
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Definition 1.3.25 (Size of Elements). We define the size of an integral element α ∈ O with respect
to the chosen integral basis Ω as size(α) = d(log(‖α‖ϕ)). For an α ∈ K, α = α̃/k with k ∈ Z>0
we define size(α) = size(α̃) + log(k), and α = α̃/k with algebraic denominator k ∈ O, we define
size(α) = size(α̃) + size(k). When α ∈ F is represented as a tuple (α̃, `) ∈ O2 such that α = α̃/` we
define size(α) = size(α̃) + size(k).

Considering the multiplicative structure of O, we can give the size bounds with respect to multi-
plicative operations as follows.

Proposition 1.3.26. For α, β ∈ O, the following holds.

(i) size(αβ) ≤ size(α) + size(β) + d log(dc1c2).

(ii) size(α−1) ≤ dsize(α) + d2 log(dc1) + d log(c2)

Proof. (i) : By Lemma 1.3.22 the norm ‖ · ‖ϕ satisfies ‖αβ‖ϕ ≤ dc1
√

c2‖α‖ϕ‖β‖ϕ. Therefore it holds:
d log(‖αβ‖ϕ) ≤ d log(‖α‖ϕ) + d log(‖β‖ϕ) + d log(dc1

√
c2).

(ii) : For α ∈ O, let α−1 = β/k with k ∈ Z>0 the denominator of α−1 and numerator β ∈ O. We have
that |k| = | den(α−1)| ≤ |N(α)|. Using (1.3.4) ‖α‖2/d ≥ (N(α))2/d, we obtain log(k) ≤ d log(‖α‖ϕ).

Considering the embeddings for i = 1, . . . , d and combining with Inequality (1.3.3) we have:

|β(i)| =
|k(i)|

|α(i)|
=
|k|
|α(i)|

≤
|N(α)|
|α(i)|)

=
∏

j∈{1,...,d}/i

|α( j)| ≤ T2(α)(d−1)/2

That is T2(β) =
∑d

i=1 |β
(i)|

2
≤ dT2(α)d−1:

T2(β) ≤ d(T2(α))d−1

1
c2

d∑
i=1

|βi|
2 ≤ d

c1

d∑
i=1

|αi|
2


d−1

d∑
i=1

|βi|
2 ≤ dc2

c1

d∑
i=1

|αi|
2


d−1

‖β‖ϕ ≤
√

c2d
( √

c1d‖α‖ϕ
)(d−1)

Therefore the size of α−1 is

d log(‖β‖ϕ) + log(k) ≤ d
(
(d − 1)

(
log(‖α‖ϕ) + log(c1d)/2

)
+ log(c2d)/2

)
+ d log(‖α‖ϕ)

≤ d2 log(‖α‖ϕ) + d2 log(dc1) + d log(c2)

�

Concerning the increase of the size of elements with multiplicative operations we define the constant
CΩ which depends on the basis Ω:

CΩ = max{d log(dc1c2), d2 log(dc1) + d log(c2)}.

Now we extend these relations for the multiplicative structure over K (for proofs and more details, see
[BFH17, Chapter 3]).
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Proposition 1.3.27. For all α, β ∈ K and m ∈ Z the following holds:

(i) size(mα) = size(α) + d log(|m|).

(ii) size(αβ) ≤ size(α) + size(β) + CΩ.

(iii) size(α−1) ≤ dsize(α) + CΩ.

(iv) size(α + β) ≤ 2(size(α) + size(β)).

An integral ideal a of K is a free Z-submodule of O with rank d, and it can be represented by a basis
matrix Ma ∈ Zn×n with respect to the basis Ω. Therefore the size required to store the ideal with the
Z-basis presentation is bounded by d2 log(‖Ma‖∞). Note that, ‖Ma‖∞ = min{a ∈ Z>0 | a ∈ a}, and denote
it by min(a). With the two-element presentation of ideals, we can save the storage as explained in the
following definition.

Definition 1.3.28 (Size of Ideals). For an integral ideal a in Z-basis presentation, the size of a is defined
as size(a) = d2 log(min(a)). If a = ã/k E F is a fractional ideal where ã is integral and k ∈ Z>0 is
the denominator of a, we define the size of a by size(a) = size(ã) + d2 log(k). With the two-elements
presentation of the ideal, the size of a E O is size(a) = (d + 1) log(min(a)), and when a E F the size is
size(a) = (d + 1) log(min(ã)) + log(k).

Considering the properties of two-elements presentation, we can provide the size bounds with re-
spect to ideal operations as follows:

Proposition 1.3.29. Let a, b be fractional ideals of K.

(i) size(ab) ≤ size(a) + size(b).

(ii) size(a−1) ≤ (d + 2) log(min(a)).

Proof. We take a = ã/k and b = b̃/l with k and l the denominators of a and b respectively. Let ã =

ãO + α̃O and b̃ = b̃O + β̃O be in P-normal presentation,

(i) We have that ãb̃ = ãb̃O + α̃β̃O, therefor size(ãb̃) = size(α̃β̃) + size(ãb̃). Since min(ãb̃) divides
min(ã) min(b̃), we have size(ãb̃) ≤ (d + 1) log(min(ã) min(b̃)) = size(ã) + size(b̃).

Let a, b E F , then size(a) = size(ã) + log(k) and size(b) = size(b̃) + log(l). In P-normal
presentation let a = aO + α/kO and b = bO + β/lO. Then ab = abO + αβ/klO and it holds
size(ab) ≤ size(a) + size(b), similar to the integral ideal case.

(ii) We have that min(ã) ∈ ã. Thus the principal ideal 〈min(ã))〉 can be divided by ã and there exists
an integral ideal c with 〈min(ã))〉 = ãc, that is ã−1 = c/min(ã). Since min(ã) ∈ c, it holds
min(c) ≤ min(ã). As min(ã) is the denominator of ã−1, we have size(ã−1) = size(c) + log(min(ã)).
That is size(ã−1) ≤ (d + 2) log(min(ã)).

When a E F , we have that a−1 = kã−1. Since the denominator of a−1 is equal to min(a) it holds
that size(a−1) = size(ã−1) + log(min(a)). Thus size(a−1) ≤ (d + 2) log(min(a)).

�

For A ∈ On×n consider the largest absolute value of coefficients of A as S A = log(‖A‖ϕ) and let B be
an upper bound on log(‖ det(A)‖ϕ). By Lemma 1.3.23, we have that ‖ det(A)‖ϕ ≤ (c1/2

2 (c1nd)n/2)‖A‖nϕ.
Therefore we have that B ∈ n(C log(nd) + S A) for some C ∈ R and B = O∼(nS A). That is size(det(A)) ∈
O∼(ndS A).
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Consider the storage requirements for O-module M (see Section 2.4.2, for a matrix A ∈ On×m

and vector of fractional ideals (ai)1≤i≤n ⊆ F
n, M =

∑n
i=1 aiAi, where Ai are the rows of A). It takes

nmd integers to store the basis A: A1, . . . , An and n(d + 2) integers to store generators for the ideals
a1, a2, . . . , an using two element representation. If we have picked an integral basis for O, then it takes
2nd2 integers to store the basis itself. Hence, the total storage space required to store M is nmd + 2nd2

integers.

Cost Function

For a number field of degree d, we define the non-decreasing function s 7→ Md(s) and an algorithm
which multiplies two number field elements in K of size at most s using at most Md(s) bit operations. For
multiplication of two elements α, β ∈ K, we take s = max{size(α), size(β)}. We assume that Md(s) = 1
for s ≤ 1, so that Md(s) ≥ 1 for all values of s. We will also have the following assumptions on Md:

1. Md(s) ∈ O∼(s).

2. Md(s1s2) ≤ Md(s1)Md(s2) for all s1, s2 ∈ R.

The classical method has O(d2) number of bit operations, for multiplication. In our applications,
we use asymptotically fast algorithms such as FFT-based methods which has the bit complexity as
O
(
d log(d) log(log(d))

)
. Since we use O∼ asymptotic notation in complexity analysis, we assume that

for Euclidean algorithm related computations has the same complexity as Md(s) for multiplication.
Consider the complexity for inversion of number field elements. Let α ∈ O and f be the defining

polynomial of the number field K. Then, we can obtain α−1 using the Bezout coefficients β, γ such that
1 = βα + γ f . The output is larger by a factor of d, therefore the total complexity for α−1 computation is
Md(β) ≈ dMd(s), where s = size(α).

We use two-elements representation of ideals in our computations. Therefore, the complexity for
ideal arithmetic follows from the properties of the normal presentation.

For linear algebra such as matrix multiplication, inverse computation, normal form computations we
use classical method with complexity O∼(n3Md(sA)) for sA = d log(‖A‖ϕ). Note that, for multiplication
of two n×n matrices over Z, the algorithm of Strassen in [SS71] has the complexity of O(42nlog2 7), and
asymptotically fastest known method allows O(n2.376).





Chapter 2

Algorithms for Computing the
Determinant of a Matrix over Number
Fields.

We present a fast and practical deterministic algorithm for computing the determinant of a non-
singular n × n matrix A over a number field K of degree d. Based on Storjohann’s [PS13] determinant
computation algorithm for integer matrices, we first solve Ax = b for a randomly chosen vector b, using
Dixon’s algorithm [Dix82]. It can be seen from Cramer’s rule that the denominators inherent in the
solution are the determinant or a large divisor of the determinant. When generalizing this to number
rings, we encounter the problem that the denominator is an ideal and it is no longer a number which
can be used to compute the determinant. To tackle this problem, we use the approach of Fieker and
Friedrichs [FF00]. We rigorously assess the complexity of this new algorithm as O∼(n4d + n3d + nd5)
operations, whereas the usual Gaussian method takes O∼(n5d2) operations in Q.

2.1 Introduction

Computation of the determinant of a non-singular n × n integer matrix is a well-studied classical
problem. The classical Gaussian elimination method takes a cubic number of operations. Here, we face
the computational phenomenon of intermediate coefficient swell, and the standard strategy to avoid this
is to use modular methods. Using a Chinese Remainder Theorem (CRT) based modular method, one
can compute the determinant modulo many small prime numbers such that the product of the primes is
large enough. This computation takes O∼(n3) number of operations in Q, with the size of determinant
O∼(n) the total complexity grows to O∼(n4).

Over time, the complexity of the determinant computation has been reduced. The first breakthrough
was the division-free algorithm by Kaltofen [Kal92]. The state-of-the-art method is due to Storjohann
[PS13], extending his technique in [Sto03] using high-order lifting and integrality certification. The
run-time of this heuristic algorithm grows to O∼(n3) approximately. His algorithm is based on the
determinant algorithm of Abbott, Bronstein and Mulders in [ABM99, Section 2]. To compute the
determinant of A ∈ Zn×n, first they compute a large divisor of the determinant. This is done by solving
linear systems Ax = b over the rationals for a randomly chosen vectors b. Then, a divisor of the
determinant (more precisely the largest elementary divisor of the matrix) can be found from the minimal
d ∈ Z>0, such that dA−1b is integral. This method can be understood by the modules (or latices) spanned
by the rows of the matrices. The module corresponding to the rows of A is enlarged through the addition
of random elements, and in each such step gives a factor of the determinant. In the final step, one

23
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needs to verify that the module is trivial, i.e. the basis matrix has determinant one, which is called
unimodularity certification. The idea is that the module is trivial if the matrix has an integral inverse.
Otherwise he repeats the same steps for a new matrix b. In Section 2.2, we discuss these determinant
computation algorithms for integer matrices.

Section 2.3 provides a fast algorithm for computing determinants over number fields. Here, we en-
counter the problem that there is no well-defined algebraic denominator. In fact, the denominator we
obtain from the solution matrix is an ideal containing all algebraic numbers that can act as a denomina-
tor. Since we have ideals as divisors, there are no unique representations for fractions. We define the
denominator ideal with respect to a solution S ∈ Kn of the linear system Ax = b as 〈{µ ∈ O | µS ∈ On}〉.
While the denominator ideal can be computed, it cannot immediately serve as an approximation to the
determinant. We combine this ideal with some CRT-based computation to obtain the determinate using
the LLL algorithm. This new deterministic algorithm uses O∼(n4d + n3d + nd5) operations in the worst
case, whereas the Gaussian method uses O∼(n5d2) operations in Q, to compute the determinant of a
non-singular n × n matrix over the number field K of degree d.

Finally, in Section 2.4, we generalizing Storjohann’s idea to the number ring situation. The problem
here is that number rings are not Euclidean domains. Moreover, module generated by the rows of a
matrix over number fields cannot be used as free-modules to apply the same theory as Storjohann does.
Therefore, we use the theory of pseudo-matrices to overcome this problem. However, we could not use
his the unimodular certification approach in [PS12], as it was slow in our case. Therefore, we used a
different approach to verify the determinant and obtain better runtimes.

2.2 Determinant computation of an Integer Matrix

2.2.1 Modular Determinant Algorithm by Abbott et el.

The determinant Algorithm 4 of Abbott, Bronstein and Mulders [ABM99, Section 2] uses two
variants of modular methods. In the first step, it solves linear systems using Dixon’s algorithm [Dix82],
which is based on Hensel lifting. Then, it uses a CRT-based modular technique to find the determinant
of a matrix A. The algorithm involves two reconstruction steps: Step-1 requires a reconstruction method
to find a rational solution from the lifting output, and Step-4 reconstruct the integer determinant from
the CRT output. There are different methods of doing the reconstruction in each case. The Algorithm 4
uses Hadamard’s bound H: if the prime product m ≥ 2H, it returns a unique result d = det(A).

Algorithm 4 Determinant (Determinant)

Input: A ∈ Zn×n.
Output: det(A).

1: Using Dixon lifting and rational reconstruction, compute solutions to Ax = b for several matrices
b ∈ Zn×1 where the entries are chosen uniformly randomly from a suitable interval I = [m,m +

1, . . . ,m + r] ⊂ Z.
2: Let D be the LCD (least common denominator) of all the solutions.
3: Compute H: a bound for the absolute value of det(A) using Hadamard’s bound.
4: Compute det(A)/D using CRT: start with values and primes used in Step 1. Since | det(A)/D| ≤

H/D, use 2H/D as the bound for the CRT modulus.
5: Compute D × det(A)/D.
6: return det(A)
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It is clear from Algorithm 4 when the factor D, computed in Step 2, is small; we have to perform
CRT in Step 4, for many primes (i.e. when A = diag(a, a, . . . , a) for some a ∈ Z). In that case, the
complexity of the algorithm is O∼(n4) operations in Q. However, in general, the expected complexity
for a randomly chosen input matrix A is O∼(n3), as we can obtain the complete determinant, either
without or with only few CRT steps (See [ABM99, Section 4]).

2.2.2 Storjohann’s Determinant Algorithm

Based on the Algorithm 4, Storjohann developed a new algorithm in [PS13], with the runtime ap-
proximately being O∼(n3) operations in Q. In order to discuss his algorithm , we need the following two
definitions regarding matrix cannonical forms.

Matrix Normal Forms

Definition 2.2.1 (Hermite normal form). A nonsingular matrix H = [hi j] ∈ Zn×n is said to be in Hermite
normal form if the following conditions are satisfied.

• H is upper triangular

• hii > 0, for 1 ≤ i ≤ n

• 0 ≤ hi j ≤ hii for all 1 ≤ i ≤ n and i < j ≤ n.

Definition 2.2.2 (Elementary Divisors). For a matrix A ∈ Zn×n and 1 ≤ i ≤ n, the i-th determinantal
divisor αi is the greatest common divisor of all i × i minors of A. The ratios of successive determinantal
divisors are the elementary divisor (invariant factors) si = αi/αi−1, with α0 = 1 for convenience.

The first determinantal divisor α1 is the greatest common divisor of the entries of A and the n-th
divisor αn is the determinant | det(A)| itself. The diagonal matrix S = diag(s1, s2, . . . , sn) is the Smith
normal form of A.

The Algorithm

The steps of determinant algorithms in general:

1. Solve the linear system Ax = b for a randomly chosen vector b ∈ Zn×1. Then, the LCD is
computed as before.

2. • Either proving the denominator is the determinant:
Construct a matrix C from the solution such that, det(C) = denominator and B = AC−1

is integral. If the new matrix B is unimodular, the determinant is complete. (This does
not work immediately for non-random diagonal matrices (i.e. A = diag(a, a, . . . , a)) as the
denominator is always a proper divisor of the determinant. Then we have to continue with
CRT method.)

• or, compute the determinant modulo more primes using CRT until the prime product achieve
enough precision with respect to Hadamard’s bound.

Definition 2.2.3. Given v ∈ Qn×1, a minimal triangular denominator of v is a nonsingular upper trian-
gular matrix T ∈ Zn×n with minimal magnitude determinant such that Tv integral.
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In Storjohann’s approach, he repeats Step 1 until the new matrix B becomes unimodular. First he
computes a minimal triangular denominator T , such that T A−1b is integral. The hcol algorithm in
[PS13, Figure 1]) constructs the matrix T based on Lemma 2.2.4.

Lemma 2.2.4. [PS13, Lemma 1] Let s ∈ Qn×1 and d ∈ Z>0 be such that w := ds is integral. Write the

Hermite form of
[

d
w In

]
∈ Z(n+1)×(n+1) as

[
∗ ∗

H

]
∈ Z(n+1)×(n+1), where In ∈ Z

n×n is the identity

matrix. Then H ∈ Zn×n is a minimal triangular denominator of s.

Let s be the solution of the linear system Ax = b, and T be the minimal triangular denominator of
s. Then, one can obtain AT−1 as an integral matrix. Here the idea (which will be used over number
fields) is that AT−1 is also a basis for the module generated by the rows of the matrix [A | b]t. This way
a matrix C is constructed from the product of matrices Ti for the solutions of different bi matrices for i =

1, 2, . . . , k, until the new matrix B = AT−1
1 T−1

2 · · · T
−1
k is unimodular. Roughly speaking, each projection

corresponds to a single elemetary divisor of the matrix A and the largest remaining elementary divisor
of the matrix B. If B is unimodular, then the determinant is complete, and the sign of the determinant
can be recovered by computing det(A) mod p for a small odd prime p. Unimodular certification is due
to UniCert algorithm in [PS12, Section 4].

2.3 Algorithm for Computing the Determinant of a Matrix over Number
Field

Similar to the integer case, we start with a solution S of a linear system Ax = b using DixonSolver
in Section 1.3.7. Then we compute the denominator of the solution as an ideal: we take the intersection
of principal ideals generated by each coordinate of S as C. There is a unique factorization for ideals
as O is a unique factorization domain. Hence, C can be represented as a quotient of two integral ideals
C = n/d: denominator ideal d and numerator ideal n. Since we can obtain the required denominator
ideal after a few intersections without computing the intersection of all the ideals, we use a modified
algorithm in the implementation.

Algorithm 5 CRT of ideals (CRT_Ideal)
Input: Two tuple of elements in coprime ideals: (r1, i1) and (r2, i2).
Output: x such that x ≡ r1 mod i1 and x ≡ r2 mod i2

1: Find elements y1 ∈ i1 and y2 ∈ i2 such that y1 + y2 = 1 using idempotents.
2: return r1y2 + r2y1
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Algorithm 6 Determinant Computation (ModularDeterminant)

Input: A ∈ Kn×n and a starting prime p ∈ Z.
Output: Determinant of matrix A.

1: O = maximal order of K and d = degree(K).
2: B = random(n × 1) matrix over K, for a suitable range of coefficients.
3: S = DixonSolver(A, b)
4: d = Denominator ideal of S .
5: DM = LLL reduced basis matrix of d.
6: DI = DM

−t

7: F = LLL reduced basis of d
8: d0 = d1 = O(0)
9: p1 = 1

10: while true do
11: dp = det(A mod p)
12: p = principal ideal of p.
13: d1 = CRT_Ideal((d1, d), (dp, p))
14: d = dp

15: p1 = p1 p
16: T = the column vector of the cordinates of d.
17: W = DI T

18: k =

d∑
i=1

Fi
⌊

Wi1
p1

⌉
19: k = p1 k
20: d1 = d1 − k
21: if d0 = d1 then
22: return d1
23: end if
24: d0 = d1
25: p = a new prime number.
26: end while

Considering the denominator ideal, we have that det(A) ≡ 0 (mod d). Next, we compute the deter-
minant modulo some prime ideals pi for i = 1, 2, . . . until we get the correct determinant using CRT and
algebraic reconstruction from a solution modulo (d

∏
pi).

In Algorithm 6, we use the constructive version of the CRT (Algorithm 5) introduced by Cohen in
[Coh96]. In order to use CRT for ideals, the construction of idempotents has to be made explicit as in
[Coh96, Prop 1.1].

The recovered determinant from the modular result can be guaranteed by Theorem 1.3.10, if the
lattice corresponding to the ideal (d

∏
pi) is large enough. In order to estimate the size of the ideal, we

compute a bound B for the determinant of the matrix A, using Hadamard’s bound for conjugate matrices
of A (As described in Section 1.3.8). Let I = d

∏
pi be the ideal computed in Step 14 of the Algorithm

6.

Theorem 2.3.1. Given bound for the determinant T2(det(A)) ≤ B, suppose the norm of the ideal I
satisfies

N(I) ≥
(
2
√

B/d · (3
√
γ(θ)/2)d−1)d.

Then, Algorithm 6 computes the correct determinant of the matrix A.
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Proof. Suppose the norm of the ideal I computed in Step 14 satisfies Belabas’ condition as above. Let
d1 be the CRT output in step 13, such that det(A) ≡ d1 (mod I). Given T2(det(A)) ≤ B, Theorem 1.3.10
guarantees that the reconstructed solution d1 − k is the correct determinant of A.

Reconstruction is clear from the Algorithm 6: Let d be the denominator ideal, then we can compute
the LLL reduced basis F of d (Step 4 and 7). Let p1 be the product of prime numbers used in the
computation and take p1 =

∏
pi for the corresponding prime ideal. Using the fact that I = d

∏
pi, a

LLL reduced basis of the ideal I is p1 · F. We compute the coordinate matrix W/p1 of d1 with respect
to the basis p1 · F, using the basis matrix DM of d (in Step 17). k is computed in Step 18 by rounding
coordinates in the matrix W/p1. In the algorithm, we do multiplication by p1 at the end to change the
basis from F to p1 · F. Finally, d1 − k gives det(A). �

Theorem 2.3.2. Overall complexity of the Algorithm 6 is O∼(n4d + n3d + nd5) log(‖A‖ϕ) number of bit
operations.

Proof. The algorithm has two main steps: linear system solving and reconstructing the determinant
using denominator of the solution. For the complexity analysis, we have used asymptotically fast op-
erations over K, but classical complexities for linear algebra. Let sA = d log(‖A‖ϕ) and B be an upper
bound on d log(‖ det(A)‖ϕ), then we have that size(det(A)) ≤ B ∈ O∼(nsA) from Section 1.3.9.

Linear system solving at Step 3:

i. Computing A−1 (mod p) takes O∼(n3Md(d log(p))) bit operations:

Because, the addition and multiplication operations for number field elements modulo p costs
O∼(Md(d log(p))) and, row column operations for the matrix A (mod p) costs O∼(n3) over K. We
can choose p such that Md(d log(p)) ≤ Md(sA) to make it easier for complexity analysis.

ii. Dixon solver computes the p-adic expansion of the solution with O∼(n3Md(sA)) bit complexity:

One lifting iteration contains matrix-vector multiplications which cost O∼(n2Md(sA)). The num-
ber of iteration required to obtain the solution is O∼(n) (See [Dix82]).

iii. Vector reconstruction to recover the solution takes O∼(d5(B/d)2) bit operations for random input
matrices (as mentioned in the Theorem 1.3.20, using L2-algorithm). Worst case the bit complexity
would be O∼(nd5(B/d)2), which is equalent to O∼(n2d5(sA/d)2).

Recovering the determinant:

i. The step 5 is using L2 algorithm to find the reduced basis of the determinant ideal. It has the bit
complexity O∼(d5(B/d)2). That is equal to O∼(nd5(sA/d)2).

ii. The last step, uses CRT which costs O∼(n3Md(P)) bit operations, to achieve the remaining number
of digits P (as the bound for the determinant): that is we need primes such that the size of the
prime product p1 satisfies P = d log(p1) ≥ (B/d log(‖min(d)‖ϕ)). For random matrices the size
of P is negligible. But worst case P = B, and the complexity grows as O∼(n3Md(B)) (that is
O∼(n4Md(sA))), in the presence of non-random (diagonal) matrices.

The total bit complexity of the algorithm in the worst case is O∼((n4 +n3)Md(sA)+n2d5(sA/d)2). That is
O∼(n4d + n3d log(‖A‖ϕ) + n2d5 log2(‖A‖ϕ)). But, for generic random matrices the bit complexity would
be O∼(n3d log(‖A‖ϕ) + nd5 log2(‖A‖ϕ)). �

While the new implementation has complexity as above, the direct Gaussian method has O∼(n5d2sA)
bit operations, because the row and column operations takes O∼(n3d2) operations, and inputs are as large
as the size of the matrix O∼(n2) (see [GG13, Sec 5.5, p.111]). The key point of the ModularDeterminant
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algorithm is that the computations are not carried out over K, except the second part of the algorithm.
The complexity O∼(n4d + n3d + n2d5) is given with bit operations. The expensive lattice reduction is
used only once for a basis matrix of the denominator ideal corresponding to the solution vector. Since
we already have a maximum possible divisor of the determinant, the CRT step does not cost much. In
the next section, we make the performance-wise comparison with [BFH17, Algorithm 3], which has bit
complexity of O∼(n4d4).

d
n

r −100 : 100 −1000 : 1000 −10002 : 10002

MDet Hecke Quot MDet Hecke Quot MDet Hecke Quot

2

10 0.007 0.001 0.17 0.005 0.001 0.12 0.015 0.001 0.07
30 0.027 0.022 0.81 0.035 0.030 0.85 0.112 0.050 0.45
50 0.117 0.16 1.34 0.11 0.21 1.83 0.14 0.34 2.32
100 0.61 2.32 3.81 0.80 3.09 3.88 0.84 6.11 7.30
150 1.82 12.29 6.74 1.93 17.17 8.89 2.88 33.29 11.57
300 14.65 4 m 16.10 15.74 5.6 m 21.19 19.69 11.6 m 35.26
500 1.1 m 38 m 32.82 1.2 m 54 m 43.94 1.6 m 2 h 73.18
1000 9.5 m 13.6 h 85.25 10.3 m 20.6 h 120.14 13. 2 m - ∞

3

50 0.15 0.35 2.30 0.17 0.41 2.42 0.32 0.66 2.06
100 1.06 4.91 4.66 1.24 6.02 4.88 1.89 11.48 6.07
150 3.19 24.14 7.57 3.69 32.61 8.84 6.09 1 m 10.56
300 22.61 7.5 m 20.02 27.68 10.6 m 23.05 37.65 22.3 m 35.52
500 1.7 m 1.2 h 42.47 2 m 1.7 h 51.97 2.9 m 3.9 h 78.19

10

50 2.91 3.23 1.11 3.86 4.35 1.13 15.74 8.37 0.53
100 15.47 55.15 3.56 24.88 75.58 3.04 1 m 2.5 m 2.33
150 26.56 5.2 m 11.64 1 m 7.3 m 7.02 1.8 m 14.5 m 8.18
300 2.6 m 1.8 h 40.66 3.5 m 2.6 h 43.96 4.6 m 5.2 h 67.57

20

10 9.32 0.03 0.00 8.97 0.04 0.00 9.84 0.07 0.01
50 42.68 13.48 0.32 58.95 18.27 0.31 3.9 m 35.15 0.15
100 3.3 m 4.3 m 1.29 4.8 m 5.8 m 1.20 10.3 m 10.7 m 1.03
150 6.3 m 23.9 m 3.79 8.9 m 32 m 3.60 36.2 m 1 h 1.78

30

10 48.62 0.2 0.00 32.50 0.13 0.00 1.4 m 0.42 0.01
50 5.7 m 52.32 0.15 5.8 m 56.13 0.16 25.9 m 1.8 m 0.07
100 21.3 m 13 m 0.58 57 m 30 m 0.52 1.2 h 47.4 m 0.65
150 38.2 m 1 h 1.67 52 m 1.4 h 1.55 1.7 h 2.4 h 1.41

50
10 4.8 m 0.62 0.00 5.6 m 0.48 0.00 48.1 m 1.13 0.00
50 56.9 m 3.5 m 0.06 1.1 h 6.6 m 0.10 4.6 h 21.2 m 0.08

Table 2.1: Timing for Determinant Computation over Number Fields.

2.3.1 Performance Analysis Based on Timing

We have implemented Algorithm 6 (see [Sur21]) using Hecke [FHHJ17] in the Julia language
[BEKS17]. To illustrate the efficiency of the new method, we have computed timings using number
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fieldsQ[x]/(x2+7x+1),Q[x]/(x3+7x+1) andQ[x]/( f ) for f = x10+
∑9

i=0 2(−x)i, f = x20+
∑19

i=0 2(−x)i,
f = x30 +

∑29
i=0 2(−x)i and f = x50 +

∑49
i=0 2(−x)i. Table 2.1 shows timing in seconds (m -for minutes and

h- for hours) for the new algorithm ModularDeterminant (MDet) for different choices of parameters:
d- degree of the number field, n- size of the matrix and r- range of the coefficients of input matrix. Com-
parison have been made with the existing implementation in Hecke based on the deterministic algorithm
[BFH17, Algorithm 3], which uses modular methods and decomposition of rings. Experimental results
(with quotient times) shows that the new algorithm works much better for big matrices in small degree
fields: For 1000 × 1000 matrix the new implementation computes the determinant, nearly 120 times
faster than the existing one. Moreover, over a field of degree 30, a 300 × 300 matrix with the size of
coefficients −100 : 100 takes 1.8-hours to compute the determinant, whereas Hecke implementation
does not terminate. The timings prove the complexity results: over fields with larger degrees, our imple-
mentation becomes slow due to the expensive basis reduction algorithm. Over fields of fixed degrees,
the modular approach performs well for large matrices.

2.3.2 Example

Consider K = Q[a] = Q[x]/x2 + 1 and maximal order O = 〈1, a〉.

A =

[
7a + 3 4a + 4
2a + 2 8a + 3

]
b =

[
4a + 3
7a + 9

]
, Solution S =

[ 443
610 a + 129

610
−271
305 a + 297

305

]
We compute the determinant of the matrix A as follows: The denominator ideal of S is computed using
Hecke as: B = 〈610, 135641a + 253507〉.

Basis matrix of B is:
[
610 0
377 1

]
LLL
−−−→

[
13 −21
21 13

]
.

−100 −50 50 100

−150

−100

−50

50

100

0

b1

b2

O

d1 −150 −100 −50 50 100 150 200

−150

−100

−50

50

100

0

b1

b2

O

d1

c1

c2

D

Therefore, we have that B: 〈21 + 13a, 13 − 21a〉
Take p1 = 3: Ideal p1 = 〈3, 3a〉 / O.
LLL basis for the ideal Bp1: 〈B1 = 63 + 39a, B2 = 39 − 63a〉.
Lattice basis of ∆(Bp1) = 〈b1 = (63, 39), b2 = (39,−63)〉
Reconstruct determinant from CRT output:
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−1220 − 2440a (mod Bp1) d1 = −1220 − 2440a − (−31B1 + 19B2) = −8 − 34a

Take p2 = 7: Ideal p2 = 〈7, 7a〉 / O.
LLL basis for the ideal Bp1p2: 〈C1 = 441 + 273a,C2 = 273 − 441a〉
Lattice basis of ∆(Bp1p2) = 〈c1 = (441, 273), c2 = (273,−441)〉
CRT output: −36608 − 128134a (mod Bp1p2)
Determinant: D = −36608 − 128134a − (−190C1 + 173C2) = −47 + 29a

2.4 Extension to Storjohann’s Determinant Algorithm

When generalizing Storjohann’s determinant computation algorithm (Section 2.2) to the number
ring O, we encounter the problem that finitely generated torsion-free O-modules are not free in general.
For this reason, matrix normal forms are more subtle than in the principal ideal domain case. Hence, we
cannot directly apply Lemma 2.2.4 to compute a minimal triangular denominator of a solution matrix.

2.4.1 Finitely Generated Modules over Dedekind Rings

In this section, we give an overview of modules over Dedekind rings in general. The results given at
the end of this section will be used in next sections with pseudo-normal forms, to compute the denomi-
nator ideal of a solution matrix.

Theorem/ Definition 2.4.1. [Coh12, Chapter 1] Let R be a Dedekind domain, and K its quotient field
(fractions). Let M denote a finitely generated R-module. We define V = KM = K⊗RM as a K-module.
Since M is finitely generated, KM is a finite-dimensional K vector space, whose dimension is called
the rank of the R-module M.

1. The torsion submodule of M is defined by

Mtors = {x ∈ M | ∃a ∈ R /{0}, ax = 0}

2. We say that M is torsion-free if Mtors = {0} and M is a torsion module if M = Mtors.

3. The R-module M is torsion-free if and only if M is a projective module.

4. There exists a torsion-free submodule N of M such that

M = Mtors ⊕ N and N ' M/Mtors.

There exist fractional ideals ai and elements αi ∈ V such that N = a1α1 ⊕ +a2α2 ⊕ · · · ⊕ arαr, and
there exist unique nonzero integral ideals di of R and (non-unique) elements ωi ∈ Mtors such that
Mtors = (R/d1)ω1 ⊕ · · · ⊕ (R/dm)ωm and di−1 ⊂ di for 2 ≤ i ≤ m.

Similar to the case of integer matrices, the definition of an elementary divisor can be generalize to
arbitrary unitary commutative rings R as follows.

Definition 2.4.2. The R-module M = R/d1 ⊕ · · · ⊕ R/dn, where d1, . . . , dn are ideals of R subject to
0 ⊆ d1 ⊆ d2 ⊆ · · · ⊆ dn ⊂ R, is said to be elementary divisor form presentation, and the ideals d1, . . . , dn
are said to be the invariant factors or the elementary divisor ideals of M

Now using the elementary divisor form presentation of a torsion-module, we can address the fol-
lowing definitions and theorem which will be used in the preceding section for modules over O.
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Theorem 2.4.3. [Coh12, Theorem 1.2.30] Every finitely generated torsion module over a Dedekind
ring R has an elementary divisor form presentation.

Definition 2.4.4. 1. The order-ideal of a finitely generated torsion module M over a Dedekind ring
R is defined as E0(M/R), which is the product of elementary divisor ideals.

2. Let M and N be two finitely generated torsion-free R-modules having the same rank and such that
N ⊂ M. The order-ideal of the torsion module M/N is called the index-ideal of N into M and
denoted [M : N].

3. The exponent ideal A(M/R) of a module M over a Dedekind ring R is defined as the ideal of R
consisting of all the elements a of R which annihilate M as aM = 0.

Lemma 2.4.5. [PZ97, Section 4.5, Lemma 5.31] For a finitely generated R-module M it holds that
E0(M/R) ⊆ A(M/R). The equality holds when M is cyclic.

O’Meara in [O’M00, Section 81C, 81D] gives the two lemmas below.

Theorem 2.4.6. Let M and N be two torsion-free R-modules of rank n in the same vector space V as
M = a1α1 ⊕ · · · ⊕ anαn and N = b1β1 ⊕ · · · ⊕ bnβn. Let T = (ti, j) be the n × n matrix giving β j in terms
of αi such that (β1, . . . , βn) = T (α1, . . . , αn). Then N ⊆ M if and only if ti jb j ⊆ ai for all i, j. Suppose
N ⊆ M, then M = N if and only if a1 · · · an = b1 · · · bn · det(T ).

Theorem 2.4.7. Let N ⊆ M be two torsion-free R-modules of rank n. Then there exist a basis (m1, . . . ,mn)
of V, fractional ideals a1, . . . , an and integral ideals d1, . . . , dn such that M = a1m1 ⊕ · · · ⊕ anmn,
N = d1a1m1 ⊕ · · · ⊕ dnanmn and di−1 ⊂ di for 2 ≤ i ≤ n. The ideals di are uniquely determined by
M and N.

It can be easily proven that the ideals di for 1 ≤ i ≤ n are the elementary divisors of M/N, and dn
is the exponent ideal of M/N over R. Using the above two theorems, we summarize this section into a
simple lemma which will be used in triangular denominator computation.

Lemma 2.4.8. Let N ⊆ M be finitely generated, torsion-free R-modules having the same rank n such
that M = a1α1 ⊕ · · · ⊕ anαn, N = b1β1 ⊕ · · · ⊕ bnβn. Suppose T ∈ Rn×n be the matrix such that
(β1, . . . , βn) = T (α1, . . . , αn). Then, the order-ideal of M/N (the index-ideal of N into M) is ba−1 det(T )
where a = a1 · · · an and b = b1 · · · bn.

Proof. Since N is a submodule of M, by Theorem 2.4.7 we can represent M and N with respect to a
single basis of V as M = g1γ1⊕ · · · ⊕ gnγn and N = d1g1γ1⊕ · · · ⊕ dngnγn. Let X = (xi, j) and Y = (yi, j) be
the transformations which change basis as (γ1, . . . , γn) = X(α1, . . . , αn) and (γ1, . . . , γn) = Y(β1, . . . , βn).
Let A = (α1, . . . , αn), B = (β1, . . . , βn) and G = (γ1, . . . , γn). Then we have that X = GA−1 and
Y = GB−1. From the Theorem 2.4.6 we have that a = g det(X) and b = dg det(Y), where g = g1 · · · gn
and d = d1 · · · dn. Since gi/digi ' R/di, we have the elementary divisor representation by Theorem 2.4.1
and 2.4.3 as M/N ' R/d1 ⊕ · · · ⊕ R/dn. Hence [M : N] = d = b det(Y)−1a−1 det(X) = ba−1 det(XY−1) =

ba−1 det(BA−1) = ba−1 det(T ). �

2.4.2 The Theory of Pseudo-matrices

In our applications, we are interested in the particular case where R = O is the maximal order of the
number field K. In order to work with matrix-normal forms over the Dedekind ring O, Cohen [Coh96]
has introduced the notion of pseudo-objects as follows.
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Definition 2.4.9. Let M ⊆ Km be a finitely generated torsion-free O-module, and set V = KM =

K⊗OM. We say that (ai, Ai)1≤i≤m form a pseudo-generating set of M if
∑m

i=1 aiAi = M where (ai)1≤i≤m
are fractional ideals of K and Ai ∈ V. (V is the vector space spanned by the rows of matrix A ∈ Km×n).
We say that it is a pseudo-basis of M if the sum is direct.

Definition 2.4.10. Let A ∈ Km×n. A pseudo-matrix is a pair A = ((ai), A) where the family (ai)1≤i≤m

of fractional ideals of K are called the coefficient ideals. If A has full rank and n = m, we define the
determinant ideal ofA as det(A) = det(A) · a1 · · · am.

Note: We define the determinant ideal of A ∈ On×n as det(A), whereA is the corresponding pseudo-
matrix with all the coefficients ideals being the unit ideal (ai = O for all i).

Definition 2.4.11. The pseudo-element av where v ∈ V and a / K is said to be integral if av ⊂ On.

Definition 2.4.12. A matrix A ∈ On×n is called unimodular if det(A) is a unit. A pseudo-matrix A =

((ai), A) is called unimodular if det(A) is a unit.

In the integer case, Lemma 2.2.4 uses Hermite form to find a minimal triangular denominator. We
will use a similar method with the notion of pseudo-Hermite normal form over Dedekind domains.

Theorem/ Definition 2.4.13. [Coh96, Theorem 2.5] Let A = ((ai), A) be a pseudo-matrix with A =

(ai, j) ∈ Om×n such that A has rank r. We say thatA is in pseudo-Hermite normal form if and only if the
following hold:

1. The first r rows of A are nonzero. For 1 ≤ i ≤ r let ai, ji be the last nonzero entry in row i. Then
1 ≤ j1 < j2 < · · · < jr ≤ m.

2. We have ai, ji = 1 for 1 ≤ i < k ≤ r.

LetA = ((ai)1≤i≤m, A) be a pseudo matrix over O with n columns. Then the O-module generated by
the pseudo-matrixA is denoted by Mod(A) =

∑m
i=1 aiAi where Ai are the rows of A.

Definition 2.4.14. Two pseudo-matrices A and B are called equivalent if and only if Mod(A) =

Mod(B).

Theorem 2.4.15. [Hop98, Lemma 3.2.3] LetA = ((ai)1≤i≤m, A) and B = ((b j)1≤ j≤m, B) be two pseudo-
matrices with n columns. Then A and B are equivalent if and only if there exists a matrix T = (ti j)i, j ∈

Km×m such that B = T A and ti jb j ⊂ ai, and there exists a matrix U = (ui j)i, j ∈ Km×m such that A = UB
and ui ja j ⊂ bi. Thus, we referred thatA and B are equivalent via T , and B andA are equivalent via U.

Now we can extend the Lemma 2.4.8 for pseudo-matrices as follows.

Theorem 2.4.16. Let A = ((ai)1≤i≤n, A) and B = ((b j)1≤i≤n, B) be two pseudo-bases of R-modules
Mod(A) and Mod(B) in a same vector space V such that Mod(B) ⊂ Mod(A). Then, the order-ideal of
the quotient module Mod(A)/Mod(B) is given by [Mod(A) : Mod(B)] = det(B)/ det(A).

Proof. Let T = (ti, j) be the n × n basis transformation matrix such that B = T A. Set a = a1 · · · an and
b = b1 · · · bn. Then [Mod(A) : Mod(B)] = ba−1 det(T ) by Lemma 2.4.8. �

Given a pseudo-matrix, Hoppe in [Hop98, Section 4.10] defines the dual pseudo-matrix.

Definition 2.4.17. LetA = ((ai), A) be a square pseudo-matrix with n rows and rank n. If M = Mod(A)
then the dual pseudo-matrix is the pseudo-matrix corresponding to the O-module MD = {x ∈ V | xt M ⊆
On}. The dual can be obtained as: AD = ((a−1

i ), A−t).
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Now, we can extend equivalence relations for dual pseudo-matrices as follows:

Lemma 2.4.18. LetA = ((ai)1≤i≤n, A) andB = ((b j)1≤ j≤n, B) be two pseudo-matrices of rank n. Suppose
they are equivalent with T : A → B, T = (ti j)i, j ∈ Kn×n and U : B → A, U = (ui j)i, j ∈ Kn×n. Then,
their duals are equivalent with T−t : AD → BD, T−t = (t′i j)i, j

∈ Kn×n and U−t : BD → AD, U−t ∈ Kn×n.

Proof. Consider the isomorphism T : A → B. From Definition 2.4.15, it follows that T A = B and
ti jb j ⊂ ai. Similarly, from the isomorphism U : B → A, we get UB = A and ui ja j ⊂ bi. Since
T,U ∈ GLn(K), it holds: T A = B ⇐⇒ AtT t = Bt ⇐⇒ T−tA−t = B−t and A = UB ⇐⇒

U−1A = B ⇐⇒ U tA−t = B−t. This implies: U t = T−t and t′i j = u ji. From the properties of U it
holds: ui ja j ⊂ bi ⇐⇒ u jiai ⊂ b j ⇐⇒ u jib

−1
j ⊂ a

−1
i ⇐⇒ t′i jb

−1
j ⊂ a

−1
i . Hence the isomorphism

T−t : AD → BD holds. Similarly, the isomorphism U−t : BD → AD can be proven. �

Definition 2.4.19. Let A = ((ai)1≤i≤n, A) be a pseudo-basis of an O-module and d be an ideal in K.
Then, we define dA := ((dai)1≤i≤n, A). For some non-zero d ∈ O we define dA := ((ai)1≤i≤n, dA).

Definition 2.4.20. The denominator of a pseudo-matrix A is the minimal natural number d such that
dA is an integral pseudo-matrix.

The denominator ideal of a pseudo-matrix A is the maximal integral ideal d such that dA is an
integral pseudo-matrix.

2.4.3 Extension to the Determinant Algorithm

In this section, we present an algorithm to compute the determinant ideal of a matrix A ∈ On×n,
generalizing the method for determinant computation over integers by Storjohann. We use pseudo-
matrices and pseudo-normal forms as tools to achieve this. The basic idea of our approach is as follows:
d = O and ai = O for i = 1, . . . , n.
A = ((ai)1≤i≤n, A)
whileA is not unimodular do

b = random matrix in Kn×1

ComputeA′ such that Mod(A′) ' Mod
(
(O, (ai)1≤i≤n), [b | A]

)
.

d = d [Mod(A′) : Mod(A)]
A = A′

end while
In the next few sections, we elaborate this idea in details. The method is theoretically attractive and

efficient in practice.

Algorithm 7 Maximal Denominator Ideal (MaximalDenominator)

Input: A pseudo-matrixA = ((ai)1≤i≤n, A), where A ∈ On×n and b ∈ On×1.
Output: M such that Mod(M) ' Ob +

∑n
1 aiAi and the maximal denominator ideal of the pseudo-

matrix ((a−1
i )1≤i≤n, s), where s is the solution of the linear system Ax = b.

1: s = Solve(A, b)
2: S =

[
1 −s

]t
and s = (O, a−1

1 , . . . , a−1
n ).

3: S = ((si)1≤i≤n+1, S )
4: H ,T = pseudo_HNF_with_transform(S)
5: M = the lower block matrix of (T−t[b | A]t) with rows from 2 to n + 1.
6: (hi)1≤i≤n+1 = Coefficient ideals of H .
7: returnM = ((h−1

i )2≤i≤n+1,M),
∏n

i=1 ai
∏n+1

i=2 h
−1
i det(AM−1)
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Given a linear system Ax = b, Algorithm 7 can compute the denominator ideal of the solution. This
is, with ideas from Posur [Pos] in private conversation. The construction works exactly as the minimal
triangular denominator computation in the integer case. Here we use pseudo_HNF_with_transform
algorithm which is implemented in Hecke [FHHJ17] based on [BFH17, Algorithm 5].

We prove that the Algorithm 7 is correct in two steps.

Theorem 2.4.21. Given a pseudo-matrix A = ((ai)1≤i≤n, A), where A ∈ On×n and b ∈ On×1, Al-
gorithm 7 constructs an equivalent pseudo-matrix M for ((a′i)1≤i≤n+1, A′) where A′ = [ b A ]t and
a′ = (O, a1, a2, . . . , an).

Proof. Let As = b, with the usual notation s = [ s1 . . . sn ]t. Consider the O-module corresponding
to the pseudo-matrix S: Mod(S) = O(1) +

∑n
i=1 a

−1
i (−si) =

∑n+1
i=1 siS i, where S = [ 1 −s ]t and

s = (O, a−1
1 , . . . , a−1

n ). We compute H , the pseudo-HNF of S with the transformation matrix T =

(ti j)i, j ∈ GLn+1(K). As a matrix multiplication equivalence:

T : S → H , where Mod(H) = h1 · 1 +
∑n+1

2 hi · 0.
From the Definition 2.4.15, as abstract modules it holds:

O ⊕

n⊕
i=1

a
−1
i =

n+1⊕
i=1

si
T

−−−−−−→

n+1⊕
i=1

hi ⇐⇒ ti j ∈ h
−1
j si

From Lemma 2.4.18, on the dual side we have a map (T−1)t
= (t′i j)i, j

∈ GLn+1(K) such that:

t′i j ∈ h js
−1
i =⇒

n+1⊕
i=1

s
−1
i = O ⊕

n⊕
i=1

ai
(T−1)t

−−−−−−→

n+1⊕
i=1

h
−1
i

Let N := (T−1)t[ b A ]t, and denote N = [ N1 . . . Nn+1 ]t
∈ On+1,n with rows Ni. We obtain a

module equivalence as:

Ob+
n∑

i=1

aiAi
(T−1)t

−−−−−−→

n+1∑
i=1

h
−1
i Ni (2.4.1)

We claim that N1 = O1×n, since

[ b A ][ 1 −s ]t
= On×1 =⇒ [ b A ]T−1T [ 1 −s ]t

= On×1

T [ 1 −s ]t
= [ 1 On×1 ]t

=⇒
(
[ b A ]T−1)t

= (T−1)
t
[ b A ]t

= [ O1×n M ]t
,

where M = [ N2 . . . Nn+1 ]t.
Since T ∈ GLn+1(K), (2.4.1) gives a transformation equivalence of two modules as Ob+

∑n
i=1 aiAi '∑n+1

i=1 h
−1
i Ni. Elementary transformations allows us to delete the first row of

∑n+1
i=1 h

−1
i Ni with its coeffi-

cient ideal, as it is a zero row. Hence, there is a module equivalence: Ob +
∑n

i=1 aiAi '
∑n+1

i=2 h
−1
i Ni =

Mod(M). In other words, Mod(M) is the module generated by the pseudo matrixA′ = ((a′i)1≤i≤n+1, A′)
where A′ = [ b A ]t and a′ = (O, a1, a2, . . . , an).

�

Theorem 2.4.22. Given a pseudo-matrix A = ((ai), A), where A ∈ On×n and b ∈ On×1, Algorithm 7
computes the maximal denominator ideal of the pseudo-matrix ((a−1

i )1≤i≤n, s), where s is the solution of
the linear system Ax = b.
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Proof. Consider the two modules corresponding to the two pseudo-matrices A1 = ((ai)1≤i≤n, A) and
A′ = ((a′i)1≤i≤n+1, A′) as: M1 = Mod(A1) =

∑n
i=1 aiAi and M′ = Mod(A′) =

∑n+1
i=1 a

′
i A
′
i . Using

Algorithm 7 with Theorem 2.4.21, we can compute a moduleM2 = Mod(A2) with a pseudo-basisA2 =

((hi)1≤i≤n, A2) for some A2 ∈ Kn×n such that Mod(A2) ' Mod(A′). Since Mod(A1) and Mod(A2) are
modules of full rank n and Mod(A1) ⊂ Mod(A2), the quotient moduleM2/M1 = Mod(A2)/Mod(A1)
is a torsionO-module. By Theorem 2.4.3 we have an elementary divisor form presentation asM2/M1 =∑n

i=1 O/di for some elementary divisor ideals di for i = 1, . . . , n.
We claim that the exponent ideal of the quotient module M2/M1 is the same as the index-ideal

[M2 :M1] =
∏n

i=1 di = d, and it is equal to the denominator ideal of S = ((a−1
i )1≤i≤n, s).

Since elementary divisor ideals are uniquely determined by the isomorphism class of the module,
we have that (M′)/(M1) ' (M2)/(M1) =

∏n
i=1 di. Since there is one additional basis element inM′

that is not inM1, the quotient moduleM′/M1 is cyclic. Therefore, by Lemma 2.4.5, the index-ideal
is the same as the exponent ideal. Hence, we get the index-ideal [M2 : M1] = A((M2/M1)/O) =

d, where d is the product of elementary divisors. We can precisely compute d using the Theorem
2.4.16, which says that the index-ideal[M2 : M1] is the same as det(A1)/ det(A2). Hence we have
d =

∏n
i=1 ai

∏n
i=1 h

−1
i det(A1A−1

2 ).
Let z be the common denominator of s. Since z is the smallest multiple of b such that s becomes

integral, it holds O(zb) ∈
∑n

i=1 OAi. Therefore it holds that a(Ozb) ∈
∑n

i=1 aiAi = M1 where a =∏n
i=1 ai. Since za is the largest possible ideal such that za(Ob) ∈ M1 holds, it is the denominator ideal of

Mod(S) =
∑n

i=1 aisi. Since the exponent ideal d is the largest possible ideal such that dM′ ⊂ M1 holds,
we have d = za.

�

Algorithm 8 Determinant Ideal (PseudoDeterminant)

Input: A ∈ On×n.
Output: Determinant ideal of matrix A.

1: O = maximal order of K
2: n = rows(A)
3: hi = O for i = 2, . . . , n + 1
4: M = A, D = In×n

5: while true do
6: b ∈ On×1, coefficients are chosen uniformly randomly from the interval [−100, 100] ⊂ Z.
7: s = DixonSolver(M, b)

8: S =

[
1 O1×n

−s In×n

]
, s = (O, h2, . . . , hn+1)

9: S = ((si)1≤i≤n+1, S ).
10: H = ((hi)1≤i≤n+1,H) = Pseudo_HNF(S), with inverse transformation U = S H−1

11: D = D(H[2:n+1,2:n+1])
12: M = ((h−1

i )2≤i≤n+1,M) for M = (U t
[

b | M
]t

)
[2:n+1,:]

13: if det(M) is a unit then
14: D = ((hi)2≤i≤n+1,D)
15: return D = det(D)
16: end if
17: end while

The Algorithm 8 PseudoDeterminant extends Algorithm 7 for determinant computation. Given
a matrix A, we apply a step of Algorithm 7 with the inputs: A = ((O)i, A) and an arbitrary row matrix
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b. Then, we iterate the Algorithm 7, with the new inputs A = M (this is M ← 〈M, b〉, the output
pseudo-matrix from the previous step) and another arbitrary matrices b, untilM becomes unimodular
(det(M) is a unit). In Section 3 we discuss a sophisticated algorithm (Algorithm 14 UniCert) to test the
unimodularity of a pseudo matrix efficiently. The pseudo-matrix M eventually becomes unimodular,
since the O-module generated by rows of A is a sub-module of Mod(M) and, in each iteration, we make
random projections to reduce the determinant of M by a (large) factor of det(A), which is computed
using denominators of the solutions of linear systems Mx = b. Then, we can obtain the determinant
ideal D from the product of denominator ideals in each step. Finally, we use the CRT approach to
recover the determinant of the matrix A from the determinant ideal D (In another word, we continue
with Algorithm 6, passing the computed D to Step 4).

We can illustrate the main idea of Algorithm 8 by the first two steps as follows:
Take A1 = A, in each iteration i, for random bi ∈ K1×n, let si ∈ K1×n be the solution matrix

of the linear system Aix = bi. In Algorithm 7, we have considered the HNF form of one column
matrix [1 | − si]t. Therefore, the transformation matrix T is not unique, and matrix entries of T can be
arbitrarily large due to the kernel space. Thus, Algorithm 8 computes the pseudo-HNF of the full rank

pseudo-matrix: Si =
O

O

[
1 O1×n

−si In×n

]
where the coefficient ideal O in the second row is an n-array

of O ideals. The coefficient ideals of the pseudo-HNF of Si are indicated by (v(i), h(i)), where v(i) is one
fractional ideal and h(i) is an n-array of fractional ideals. Similarly, we denote the n-array containing
inverses of each ideal in h(i) by h(i)−1.

S1 =
O

O

[
1 O1×n

−s1 In×n

]
T1
7−→

v(1)
h(1)

[
∗ ∗

On×1 H1

]
(2.4.2)

Let T1 be the transformation matrix, and we can compute it as follows:

T1 =

[
∗ ∗

On×1 H1

] [
1 O1×n

s1 In×n

]
=

[
∗ ∗

H1s1 H1

]
Now we consider the relation of dual pseudo-matrices and apply the Algorithm 7 as follows. We ob-

tain the pseudo-matrixA2 = (h−1
(1), A2) such that Mod(A2) ' Mod(A′) whereA′ = ((O)1≤i≤n+1, [b1 | A1]t).

O−1

O−1

[
b1

A1

]
T1
−t

7−→

v(1)
−1

h(1)
−1

[
O1×n

A2

]
If we apply the transformation T1 on matrices as follows, we can see the relation between two n × n

matrices A1 and A2.[
b1

A1

]
= T t

1

[
O1×n

A2

]
=

[
∗ H1s1

∗ H1

] [
O1×n

A2

]
=

[
∗

H1A2

]
This gives that A1 = H1A2. Let T1 = (ti, j), from 2.4.2 we have ti, j ∈ Oih(1)

−1
j for 2 ≤ i, j ≤ n + 1.

Since H = T1[2:n+1,2:n+1] we have the relation: (h−1
(1), A2)

H1
−−→ (O, A1).

By Theorem 2.4.22, the denominator ideal of S1 = (O, s1) is
∏n

i=1 h(1)iO
−1 det(H1).

If (h−1
(1), A2) is not unimodular, we continue Step 7 of Algorithm 8 with another arbitrary matrix b2,

and produce the linear system A2x = b2 with the solution matrix s2 (We repeat Algorithm 7 for the
pseudo-matrix (h−1

(1), A2) and b2). We use the coefficient ideals h(1) coming from the previous step in S2
as follows:

S2 =
O

h(1)

[
1 O1×n

−s2 In×n

]
.

O

h(1)

[
1 O1×n

−s2 In×n

]
T2
7−→

v(2)
h(2)

[
∗ ∗

On×1 H2

]
O−1

h(1)
−1

[
b2

A2

]
T2
−t

7−→

v(2)
−1

h(2)
−1

[
O1×n

A3

]
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This gives A2 = H2A3 and the relation: (h−1
(2), A3)

H2
−−→ (h−1

(1), A2). The denominator ideal of S2 =

(h(1), s2) is
∏n

i=1 h(2)i
∏n

i=1 h
−1
(1)i

det(H2).
Suppose that iteration stops at step k, when (h−1

(k), Ak+1) is unimodular. Combining all the modular
equivalences, we get:

(h−1
(k), Ak+1)

Hk
−−→ · · ·

H3
−−→ (h−1

(2), A3)
H2
−−→ (h−1

(1), A2)
H1
−−→ (O, A1)

Which can be reduced to the following relation:

(h−1
(k), Ak+1)

H1H2···Hk
−−−−−−−→ (O, A1) (2.4.3)

Let H̄ = H1H2 · · ·Hk and h̄(k) =
∏n

i=1 h(k)i. We claim that the product of the denominator ideals
h̄(k) det(H̄) is the determinant ideal of A.

From (2.4.3) we have A1 = H̄Ak+1. Then it holds:

det(A1) = det(H̄Ak+1)

det(A1)O = h̄(k)h̄
−1
(k) det(H̄Ak+1)

=
(
h̄(k) det(H̄)

)(
h̄
−1
(k) det(Ak+1)

)
.

When the pseudo-matrix (h−1
(k), Ak+1) is unimodular for some k the determinant ideal is complete and

it is D = h̄(k) det(H̄) =
∏n

i=1 h(k) det(H1H2 · · ·Hk).

Theorem 2.4.23. Algorithm 8 is correct.

Proof. It is clear from the construction that the algorithm returns the determinant ideal of a matrix as
explained in the above discussion. Compared to the discussion, in Algorithm 8 for each iteration i we
have use the notation M for the output pseudo-matrix with the corresponding matrix Ai = M. The
inverse transformation T−1

i is denoted by U and the matrix Hi = H[2:n+1,2:n+1]. �

Note that the sub-algorithm UniCert will be explained in Section 3. Practically this algorithm is
quite slow, and we discuss the obstacles to optimizing this step in Section 3.3. In our implementation, we
have tested the unimodularity of a matrix using the norm of det(A), which is computed as the determinant
of the corresponding integer matrix of representation matrices (nd × nd integer matrix). Then, we
compare norm(det(A)) with the product of norms of denominator ideals and continue the iteration until
we get the complete determinant ideal.

Similar to the integer case, in our application, we can generalize Definition 2.2.3 of the minimal
triangular denominator as follows:

Definition 2.4.24. A triangular denominator of a pseudo-matrix S = ((si), S ) is defined by any pseudo-
matrixD = ((di),D) such that ((disi),DS ) is integral and, D is a non-singular upper triangular matrix. A
minimal triangular denominator of S is a triangular denominator with minimal magnitude determinant
(i.e. min{norm(det(D))| D is a triangular denominator of S}). In another word , if D is a minimal
triangular denominator of S, then det(D) is the maximal denominator ideal.

Theorem 2.4.25. LetH = ((hi)1≤i≤n+1,H) be the pseudo-HNF of S in Step 9 of the Algorithm 8. Here,
S is corresponding to the solution matrix s of a linear system Ax = b. Then a minimal triangular
denominator of the pseudo-matrix ((si)2≤i≤n+1, s) is given by((

his
−1
i

)
2≤i≤n+1, H[2:n+1,2:n+1]

)
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Proof. Let s = (si)2≤i≤n+1, h = (hi)2≤i≤n+1 and H = H[2:n+1,2:n+1]. Then for some transformation matrix
T we have the identity:

S =
O

s

[
1 O1×n

−s In×n

]
T
7−→

h1
h

[
∗ ∗

On×1 H

]
We have the following identity by applying Algorithm 7, considering dual relations. The pseudo-

matrixA2 = (h−1, A2) satisfies the relation that Mod(A2) ' Mod(A′) whereA′ = ((O, s−1), [b | A]t).
O

s−1

[
b
A

]
T−t

7−→

h1
−1

h−1

[
O1×n

A2

]
As we have explained above, we have that A = HA2 and the relation (h−1, A2)

H
−→ (s−1, A). It holds:

As = b ⇐⇒ AH−1Hs = b ⇐⇒ A2(Hs) = b

Since, Ob ⊂ Mod(A2), we have that (h,Hs) is integral. It follows that (hs−1,H), where hs−1 =

(his−1
i )2≤i≤n+1, is a triangular denominator for S = (s, s). By Theorem 2.4.22, the maximal denominator

ideal of S = (s, s) is
∏n+1

i=2 his
−1
i det(H). The maximal denominator is the exponent ideal, from which it

follows that (hs−1,H) is the minimal triangular denominator. �

Even though Algorithm 8 PseudoDeterminant theoretically correct, it is very slow in practice. In
the next two sections, we discuss a method to replace the Pseudo_HNF computation by an optimized
algorithm. After that, we can apply the normalization and reduction steps to avoid the coefficient swell
problem (Section 2.4.6).

2.4.4 Euclidean Algorithm in O

A minimal triangular denominator is not necessary in Hermite form. Storjohann, in his algorithm
hcol [PS13], applies unimodular row operations to triangularize the input matrix using extended gcd
operations. Similarly, we use Algorithm 9 which generalizes the extended gcd to Dedekind domains
([Coh96, Theorem 1.2]). This is also a major step in pseudo-HNF algorithm and minimal triangular
denominator computation.

Algorithm 9 Euclidean Step (Euclidean_Step)

Input: Two fractional ideals a, b of F and a, b ∈ F .
Output: u, v ∈ F such that av + bu = 1.

1: Compute d = aa + bb, d−1, ad−1 and bd−1.
2: Compute v̄ ∈ aad−1 and ū ∈ bbd−1 such that v̄ + ū = 1
3: return v = v̄a−1 and u = ūb−1.

Suppose we are in the process of triangularizing the pseudo-matrix A = ((ai)i, A) and working on
the i-th column. Let ai and a j be the coefficient ideal corresponding to the i-th row Ai and j-th row A j.
We proceed as follows:

1. Set d← a j,ia j + ai,iai.

2. Compute v ∈ a jd
−1 and u ∈ aid−1 such that a j,iv + ai,iu = 1 using Euclidean_Step.

3. Set (a j, ai)← (a jaid
−1, d) and (A j, Ai)← (ai,iA j − a j,iAi, vA j + uAi).

More precisely:

ai

a j

(
∗ ai,i ∗

∗ a j,i ∗

)
T j
−−−→

d

a jaid
−1

(
∗ 1 ∗

∗ 0 ∗

)
, (2.4.4)
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where the transformation matrix is T j =

(
u v
−a j,i ai,i

)
.

Experimental results show that these idempotents u and v computed in the HNF algorithm start large
and then collapse. It is also observed in the hcol algorithm, as the gcd of arbitrary integers eventually
becomes one. In the computation of the denominator ideal (Algorithm 7) we use the inverse transfor-
mation matrix of the HNF, which involve u and v terms as entries. This results in a huge unbalanced
matrix making the computation more complicated, and we address this problem in Section 2.4.6.

2.4.5 Minimal Triangular Denominator

We can replace Step 10 in Algorithm 8 with a cheaper algorithm, as we do not need to compute
the pseudo-HNF H of S = ((si)1≤i≤n+1, S ) precisely. In this section, we first explain the structure of
H , which can be obtained by algorithm Euclidean_Step and row operations. Then, we present an
optimized algorithm, which constructs the pseudo-HNF of S as it is. Consider the matrix of S:

S =

[
1 O1×n

−s In×n

]
(2.4.5)

Let S̄ be the first column of S and take S̄ = [1, s2, . . . , sn+1]t = [1 | − s]t where s = [s2, . . . , sn+1]
is the solution of the the linear system Ax = b (Step 7). As explained in Section 2.4.4, we apply
unimodular transformations (T j in (2.4.4) for j = 2, . . . , n + 1 and i = 1) on S to reduce the first column
vector S̄ , (starting from first two rows to the last row keeping the pivot in S 1,1):

The first step of Cohen’s HNF algorithm is to create the upper-triangular matrix (See [Coh96, Al-
gorithm 2.6]). In our case, because of the structure of S , we have to reduce the first column of S and
replace coefficient ideals accordingly. In another words, we apply the transformation T = Tn+1Tn · · · T2
to S. Then, we obtain an upper-triangular matrix H of the pseudo matrix denoted by: H = ((hi),H) =

h1
h2
h3
...

h j−2
h j−1
h j
...

hn−1
hn

hn+1



1 v2 u2v3 · · · u2u3 · · · u j−1v j · · · u2u3 · · · unvn+1
0 1 −v3s2 · · · −u3u4 · · · u j−1v js2 · · · −u3u4 · · · unvn+1s2
0 0 1 · · · −u4u5 · · · u j−1v js3 · · · −u4u5 · · · unvn+1s3
...

. . .
...

...
...

0 −u j−1v js j−2 · · · −ui−1 · · · unvn+1si−2
0 −v js j−1 · · · −ui · · · unvn+1si−1
0 1 · · · −ui+1 · · · unvn+1si
...

. . .
...

0 −unvn+1sn−1
0 −vn+1sn

0 1


Now we can represent matrix entries of H with the following equation. Even though s1 = 1, in the

following presentation, we consider s1 = −1, to avoid the repetition of one more case.

Hi, j =


0 if i > j
1 if i = j
−v jsi

∏ j−1
l=i+1 ul if i < j (Note : s1 = −1)

Finally, columns of the matrix H can be reduced, using row operations as follows:
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1: for j = 1, . . . , n + 1 do
2: for i = 1, . . . , j − 1 do
3: Find ri, j ∈ h jhi

−1 such that Hi, j − ri, j is small. (See [Coh96, Corollary 2.10])
4: Set ith row of H: Hi = Hi − ri, jH j and, ith row of T : Ti = Ti − ri, jT j.
5: end for
6: end for

Now, we can define matrix entries of the pseudo-matrix H = ((hi),H), which is in pseudo-HNF as
follows:

Hi, j =


0 if i > j
1 if i = j
−v jsi − ri, j if i + 1 = j
−v jsi

∏ j−1
l=i+1 ul +

∑ j−1
k=i+1

(
v jskri,k

∏ j−1
l=k+1 ul

)
− ri, j if i + 1 < j

(2.4.6)

Note: Here also we consider s1 = −1.

The corresponding transformation matrix T can be obtained directly from row operations. Now we
present the new algorithm which computes the pseudo-HNF H of the pseudo-matrix S. Algorithm 10
is an extension of the algorithm hcol [PS13, Figure 1] which does not use explicit row operations to
compute the HNF.

Example 2.4.26. As explained in section 2.4.4, we can reduce the column vector S = [1, s2, . . . , sn+1]t

starting from first two rows:

s1
s2

(
1
s2

)
T1
−−−→

d

s2s1d
−1

(
1
0

)
,where T1 =

(
u v
−s2 1

)
and d = s2s2 + s1.

We can continue this proces upto the last row element sn to obtain the required trasformation matrix
T = Tn · · · T1 and coefficient ideals of H . Alternatively, we can do the reduction, starting from sn

to s1 and obtain T = T1T2 · · · Tn. Here we can see the construction of T for n = 3: T1T2T3 =
u2 v2
−s2 1

1
1




u3 v3
1

−s3 1
1




u4 v4
1

1
−s4 1

 =


u2u3u4 v2 u2v3 u2u3v4
−u3u4s2 1 −v3s2 −u3v4s2
−u4s3 1 −v4s3
−s4 1


When the transformation T = T1T2T3 is applied to S:

S =

s1
s2
s3
s4


1
s2 1
s3 1
s4 1

 T1T2T3
7−→

h1
h2
h3
h4


1 v2 u2v3 u2u3v4

1 −v3s2 −u3v4s2
1 −v4s3

1


After the column reduction, we have:

S
T ′

7−→

h1
h2
h3
h4


1 v2 − r1,2 u2v3 + v3s2r1,2 − r1,3 u2u3v4 + u3v4s2r1,2 + v4s3r1,3 − r1,4

1 −v3s3 − r2,3 −u3v4s2 + v4s3r2,3 − r2,4
1 −v4s3 − r2,4

1


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Algorithm 10 Pseudo Minimal Triangular Denominator (PseudoHcol)

Input: A pseudo-matrix S = ((si), S ), where S ∈ On×n as in (2.4.5).
Output: Pseudo_HNF(S).

1: h1 = s1/S 1,1
2: H = In

3: w = [1,−s]
4: for i = n, · · · , 2 do
5: d = S i,1si + h1
6: Compute vi ∈ sid

−1 and ui ∈ h1d
−1 such that viS i,1 + ui = 1 using Euclidean_Step.

7: hi = h1si/d

8: h1 = d

9: end for
10: w1 = −1
11: for j = 2, · · · , n do
12: if h j , 1 then
13: for i = 1, · · · , j − 1 do
14: Hi, j = −v jwi (mod h jhi

−1)
15: wi = wi + Hi, jw j

16: end for
17: end if
18: end for
19: returnH = ((hi),H)

Theorem 2.4.27. Algorithm 10 correctly computes the pseudo-HNF.

Proof. The first part of the algorithm computes the coefficient ideals of the matrix in pseudo-HNF,
which follows from the construction as explained above in Section 2.4.4. For the second part, we define
w( j)

i to be the updated wi at jth iteration in Step 15: w( j)
i = w( j−1)

i + Hi, j−1w j−1. Take w(1)
i = 0. We prove

by induction on j that (2.4.7) holds for a fixed i.

w( j)
i =

 wi if i + 1 = j
wi

∏ j−1
l=i+1 ul −

∑ j−1
k=i+1

(
wkri,k

∏ j−1
l=k+1 ul

)
if i + 1 < j

(2.4.7)

For the base case j = 2, we have w(2)
i = w(1)

i + H1,1w1. Hence, (2.4.7) holds because w(1)
i = 0 and

H1,1 = 1.

Now assume that (2.4.7) holds for j = t − 1 where 3 ≤ t < n + 1. Let ri,k ∈ hkh
−1
i such that

−vkw(k)
i = Hi,k + ri,k for k = i + 1, · · · , t − 1 as computed in Step 14. Then, we can show that (2.4.7)
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holds for j = t as bellow. First, consider the case i < t − 2:

w(t)
i = w(t−1)

i + Hi,t−1wt−1

= w(t−1)
i − wt−1(vt−1w(t−1)

i + ri,t−1)

= w(t−1)
i (1 − vt−1wt−1) − wt−1ri,t−1

= w(t−1)
i ut−1 − wt−1ri,t−1 (2.4.8)

= ut−1
(
wi

t−2∏
l=i+1

ul −

t−2∑
k=i+1

(
wkri,k

t−2∏
l=k

ul
))
− wt−1ri,t−1

= wi

t−1∏
l=i+1

ul −

t−1∑
k=i+1

(
wkri,k

t−1∏
l=k+1

ul
)

Now, we suppose that i = t − 2. Substituting w(t−1)
i = wi to (2.4.8), we get w(t)

i = ut−1wi − wt−1ri,t−1
which is of the form (2.4.7). This shows that (2.4.7) holds for j = t. Now we can derive matrix entries
of pseudo-HNF matrixH = ((hi),H) using Step 14 with the remainder ri, j as explained before.

Hi, j =


0 if i > j
1 if i = j
−v jwi − ri, j if i + 1 = j
−v jwi

∏ j−1
l=i+1 ul +

∑ j−1
k=i+1

(
v jwkri,k

∏ j−1
k+1 ul

)
− ri, j if i + 1 < j

This is exactly the same representation as (2.4.6), and we fixed the sign of s1 in Step 10. This shows that
Algorithm 10 is correct and it constructs the pseudo-HNF of a pseudo matrix of the form (2.4.5). �

2.4.6 Normalization and Reduction

In Algorithm 7, we compute the pseudo-HNF instead of computing the minimal triangular denomi-
nator. Experimental results show that in both approaches, the matrix T−1 becomes an unbalanced matrix
which contains entities with few big-integer coefficients and many zeros. Eventually this would result in
an expensive pseudo-HNF (Step 4) computation and linear system solving (Step 1), even for small ma-
trices. Also, faster algorithms in vector reconstruction methods fail in the presence of unbalanced linear
systems. Biasse and Fieker in their paper [BF12] provide a new polynomial-time algorithm to prevent
the coefficient explosion in the HNF computation of an O-module based on the modular approach of
Cohen [Coh12, Chaper 1].

Algorithm 11 Normalization of a one-dimensional module (Normalization)

Input: One dimensional matrix A ∈ Kn×1 and a ∈ F .
Output: A′ ∈ Kn×1, a′ ∈ O such that N(a′) ≤ γd2 √

|∆K | and aA = a′A′, and a scalar (α/k) ∈ K.
1: a = k0a, A = A/k0 where k0 is the denominator of a.
2: b = ka−1 where k is the denominator of a−1.
3: α = shortest basis element of b (the first element of a lattice reduced basis of b).
4: return a′ = (α/k)a, A′ = (k/α)A and (α/k).

The strategy to prevent the coefficient swell is normalization which is the key difference between
their approach and the one of [Coh12, Section 1.5]. The first step of Algorithm 11 ensures that the
coefficient ideals are integral. Since aiAi = αai(1/α)Ai, for each of the row as a O-module, we can
adjust the coefficient ideals by scalars from K. Hence, given an integral ideal a of K, the algorithm
finds an integral ideal b such that ab−1 is principal and N(b) is bounded by field invariants only. In this
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regards, the L2-algorithm is applied to find a small integral representative of the ideal class of a. The
given bound on the shortest basis element α depends on the discriminant ∆K of the number field K and
the constant γ which depends on the choice of the basis reduction algorithm. See [BFH17, Section 4].

Given an ideal a ∈ F and α ∈ K, Reduction(α, a) computes ᾱ ∈ K such that α−ᾱ ∈ a and
√

T2(ᾱ) is
bounded. In the pseudo-HNF computation, this reduction step helps to achieve a polynomial complexity
for the algorithm [BF12, Algorithm 3]. The algorithm Reduction which was introduced in [BF12] has
been generalized for integral ideals with a detailed complexity analysis in [BFH17, Proposition 15 &
Algorithm 1].

Algorithm 12 Reduction and normalization of a module (ReductionNormalization)

Input: A pseudo-matrix A = ((ai)1≤i≤n, A) which is in Hermit form and the inverse U ∈ Kn×n of the
corresponding transformation matrix.

Output: Normalized and reduced pseudo-matrixA with the updated inverse transformation matrix U.
1: for i = 2, . . . , rows(A) do
2: for j = 1, . . . , i − 1 do
3: if A j,i = 0 then
4: continue
5: end if
6: I = aiAi,ia

−1
j

7: α = Reduction(A j,i,I)
8: q = divexact(A j,i − α, Ai,i)
9: Add −q× i-th row of A to the j-th row of A.

10: Add q× j-th column of U to the i-th column of U.
11: end for
12: end for
13: for i = 1, . . . , rows(A) do
14: ai, Ai, s = Normalization(ai, Ai)
15: U t

i = sU t
i

16: end for
17: return ((ai)1≤i≤n, A) and U.

Since we have a special structure in the input pseudo-matrix, we don’t use the pseudo-HNF algo-
rithm. We use the optimized PseudoHcol Algorithm 10 to get the Hermit normal form on the pseudo-
matrix. Then we use the normalization and reduction steps to avoid the failures in the determinant
computation as we mentioned above. Algorithm 12 is applied to the output of the PseudoHcol algo-
rithm with the inverse of the transformation matrix, to obtain a nice pseudo-matrix (As explained in
[BF12], practically we could obtain a balanced output). Here we denote the i-th row of the matrix A as
Ai and the operation divexact(a, b) for a, b ∈ K returns a/b where the quotient is expected to be exact.

2.4.7 Completion of the Main Algorithm and Complexity Analysis

In order to optimize the Algorithm 8 for determinant ideal computation, we require one more algo-
rithm for the completion.
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Algorithm 13 Inverse of an upper-triangular matrix (InverseUTriang)

Input: Non-singular upper-triangular matrix T ∈ Kn×n

Output: Inverse matrix of T
1: V = In×n

2: for i = 1, . . . , n do
3: Vi,i = 1/Ti,i

4: for j = i + 1, . . . n do
5: Vi, j = −

(∑ j−1
k=i Vi,kTk, j

)
/T j, j

6: end for
7: end for
8: return V

Theorem 2.4.28. Algorithm 13 is correct.

Proof. Given a non-singular matrix T ∈ Kn×n, the algorithm computes the inverse of T by solving the
linear system UT = In×n. Since, U is an upper-triangular matrix, the diagonal satisfies Ui,i = 1/Ti,i for
i = 1, . . . , n. The rest follows from the construction. We compute Ui, j row wise (given i, compute Ui, j

for j = i + 1, . . . , n), by solving equations Ui,iTi, j + Ui,i+1Ti+1, j + . . . + Ui, j−1T j−1, j + Ui, jT j, j = 0. �

In the PseudoDeterminant algorithm need the inverse transformation matrix of the pseudo-HNF
of S. Since, PseudoHcol does not compute the transformation matrix, we use Algorithm 13 to compute
the inverse transformation separately. We replace Step 10 of Algorithm 8 by the following steps with
the input pseudo-matrix S = ((si)1≤i≤n+1, S ).
H = ((hi)1≤i≤n+1,H) = PseudoHcol(S)
U = S

(
InverseUTriang(H)

)
H ,U = ReductionNormalization(H ,U)
Note that even though we have used the matrix (2.4.5) in S, for better understanding of the con-

struction, it can be changed into an integral matrix as: S =

[
z O1×n

−zs In×n

]
, where z is the common

denominator of s, which can be obtained by VecAlgRecon directly. All the theorems, proofs and the
implementation work with this new form of the matrix S .

We analyze the complexity of our approach over Q. As we explained before, once we have the
complete determinant ideal D, we use CRT approach to recover the determinant of the matrix A from
units of the base field K. This is done by passing the computed D to Step 4 of Algorithm 6. Hence, the
complexity of the ModularDeterminant algorithm is as before, except for the above mentioned steps.
More details regarding size and complexities can be found in [BFH17].

Let sA = d log(‖A‖ϕ) and d log(‖ det(A)‖ϕ) ≤ B, then we have that B ∈ O(nsA).

• PseudoHcol(S): The first part of the algorithm uses ideal arithmetic which is an application of
Euclidean_Step, n times with the cost approximately O∼(ndMd(B))).

The second part computes each entry of the matrix H. The cost to compute n2/2 entries is ap-
proximately O∼(n2dMd(B)).

• InverseUTriang(H): Algorithm computes computes each entry of the inverse matrix. First the
diagonal is constructed from the inverses of existing diagonal entries with the cost O∼(ndMd(B)).
Worst case complexity for computing the strictly upper-triangular part of H−1 takes O∼(n2Md(B))
bit operations (n-number of element products with n-number of summation to compute n2/2 − n-
number of coefficients).
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• ReductionNormalization(H ,U): Reduction is done for all the non-zero entries of the matrix
H. Worst case the complexity is O∼(nd5(B/d)2) for applying the lattice reduction to n fractional
ideals. The reduction output is normalized with the same complexity, and applied the correspond-
ing changes to matrix entries with the total cost O∼(nd5(B/d)2 + ndMd(B)). Here, B is the worst
case bound on the size of matrix entries and ideals. After the redcution and normalization the
paseudo-matrix has entries of the size sA. This phenomenon has been observed in the integer case
as explained in [PS13, Section 6], without any reasoning.

• The determinant ideal D is computed as D = det(D) where D = ((hi)2≤i≤n+1,D). Since D is an
upper-triangular matrix, the computation of det(D) costs O∼(nMd(sA)). The product of two ideals
using the two-element representation takes O∼(Md(sA)) operations as the storage requirement for
one ideal is O∼((d+2) log(min(hi))) and we multiply generators. Therefore, the product of n-ideals
cost O∼(nMd(sA)) operations and the total complexity of this step is O∼(nMd(sA)) approximately.

• Unimodular certification is done by comparing norms of the product of denominator ideals in each
step with the norm of det(A). The norm(det(A)) is computed from the determinant of an nd × nd
integer matrix, which is constructed from d × d blocks of representstion-matrices for each entries
of A. The integer-determinant computation takes a runtime of approximately O∼(n3d3) log(‖A‖ϕ).
The representation matrix of any α ∈ O can be computed with the complexity O∼(d2Md(sA)), and
for the whole matrix, it cost O∼(n2d2sA).

Hence, the total complexity for determinant ideal computation is O∼(ndMd(B) + nd5(B/d)2), which
is approximately O∼(n2d2 log(‖A‖ϕ) + n2d5 log2(‖A‖ϕ)) bit operations. We need unimodular certifi-
cation only as a verification of the determinant ideal. It uses norm computation with complexity
O∼((n3d3) log(‖A‖ϕ)) bit operations, which can be replaced by the complexity of UniCert algorithm
(Algorithm 14). In the Section 3, we discuss the obstracles to use the UniCert algorithm in details.

2.4.8 Performance Analysis Based on Timings

We have implemented the above method (see [Sur21]) for determinant computation using the Hecke
[FHHJ17] software package. The timings in Table 2.2 show that the new method performs better than
the existing implementation in Hecke which is based on the deterministic algorithm [BFH17, Algorithm
3]. To illustrate the efficiency of the new method, we have computed timings using number fields:
K1 = Q[x]/(x3 + 7x + 1), K2 = Q[x]/( f2) and K3 = Q[x]/( f3) for f2 = x10 +

∑9
i=0 2(−x)i and f3 =

x20 +
∑19

i=0 2(−x)i.
Table 2.2 shows times in seconds (m -for minutes and h- for hours) for the new approach (which uses

Algorithm 8 PseudoDeterminant (PDet)) for different choices of parameters: n- size of the matrix,
r- range of the input coefficients and d- the degree of the number field. Closer inspection of the results
shows that the new algorithm works much better for big matrices in small degree fields: for 500 × 500
matrix the new implementation computes the determinant, nearly 10 times faster than the existing one.
Nevertheless, over fields with larger degrees, the implementation becomes slow, due to the expensive
basis reduction algorithm. Also, the current unimodular certification method fails when the field degree
increases, and we can solve this problem with the ideas from next sections. Over fields of fixed degrees,
our approach performs well for large matrices, proving the complexity results in the previous section.
The algorithm also includes a proof of correctness of the determinant, using unimodular certification.
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d
n

r −10 : 10 −100 : 100 −10000 : 1000
PDet Hecke Quot PDet Hecke Quot PDet Hecke Quot

3

50 0.64 0.27 0.4 0.88 0.34 0.4 0.91 0.62 0.7
100 3.65 3.63 1.0 6.81 4.84 0.7 8.77 7.93 0.9
150 12.86 17.07 1.3 17.09 24.03 1.4 19.00 41.56 2.2
200 26.50 54.47 2.1 31.98 1.3 m 2.5 58.19 2.4 m 2.4
250 52.73 2.3 m 2.6 1.2 m 3.4 m 2.8 1.6 m 6.3 m 4.0
300 1.5 m 5 m 3.3 1.9 m 7.6 m 4.1 2.6 m 14.1 m 5.3
500 7.1 m 50 m 6.6 8.2 m 1.2 h 9.0 14.7 m 2.4 h 9.6

10

50 13.81 2.65 0.2 12.59 3.23 0.3 21.67 5.26 0.2
100 1 m 35.27 0.6 1.6 m 52.85 0.6 2 m 1.6 m 0.8
150 3.2 m 3.24 m 1.0 3.8 m 5 m 1.3 6.7 m 9.2 m 1.4
200 7.7 m 11.7 m 1.5 9.2 m 17.5 m 1.9 15.8 m 32.6 m 2.1
250 16.3 m 29.4 m 1.8 19.4 m 48.1 m 2.5 43.2 m 1.5 h 2.0
300 33.6 m 1.1 h 2.0 43.2 m 1.7 h 2.4 51.5 m 3.3 h 3.9

20

50 3.7 m 8.91 0.0 2.8 m 13.12 0.1 5.3 m 23.22 0.1
100 13.3 m 2.8 m 0.2 29.7 m 4.2 m 0.1 34.5 m 7.4 m 0.2
150 1.2 h 16 m 0.2 1.3 h 28 m 0.3 2 h 40.3 m 0.3
200 2.3 h 53.9 m 0.4 5.7 h 1.6 h 0.3 3.7 h 2.3 h 0.6

Table 2.2: Timing for Determinant Computation Using Determinant Ideal.

2.4.9 Empirical Results

Here, we discuss some approaches which can be used to optimize the implementation.

Recovering Units

In the integer case, when the absolute value of the determinant is certified by the UniCert test, it
is easy to recover the sign of the determinant by computing determinant modulo an odd prime. In our
application, we can use a similar strategy to recover the missing unit, when the determinant ideal is at
the hand. Specially for small degree number fields, we can extend this idea easily by computing all the
units of K, and then recovering their exponents by CRT. This is not practical in fields of large degrees.

In our implementation, we can use a different approach. Consider Algorithm 8 for determinant ideal
computation. For a matrix A ∈ Kn×n, letD = det(D) whereD = ((hi)i,D) be the output of the algorithm.
LetM = ((h−1

i )i,M) be the unimodular pseudo matrix which is tested to be true in Step 12. Due to the
normalization and reduction steps, the coefficient ideals ofD andM becomes trivial or very small. Now
we can use the fact that A = MD, to compute det(A) easier. The matrix D ia an upper triangular matrix,
hence the computation of det(D) is cheper. We can compute the determinant of M using CRT with few
prime numbers, as det(M) is a small number or a unit. This computation is faster than we recovering
units, using the CRT with the ideal D.

Unimodular Certification as a Z-Module

Suppose we have to certify the unimodularity of a full-rank pseudo-matrixA = ((ai)1≤i≤n, A) over O
with A ∈ On×n and associated module M ⊆ On. Here, we explain a way to turn this pseudo-matrix into a
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dn×dn matrix over integers (Z-module M of rank dn), so that we can directly use the UniCert algorithm
in [PS12, Figure 2]). For coefficient ideals (ai)1≤i≤n, there is the isomorphism ai → Zd. Therefore, as a
Z-module, we have M = a1A1 + · · ·+ anAn � Z

dn. Consider the coefficient ideal ai and an element of the
i-th column of A as β ∈ O. Let α1, . . . , αd be the HNF basis of ai. Then the coefficients of the d products
βα1, . . . , βαd form a d × d integer matrix. We can obtain the dn × dn integer matrix, by applying the
same procedure for all the matrix entries of A. This construction has the complexity of O∼(n2d3) (See
[BFH17, Section 6]).

Dixon Solver without Reconstruction

In our implementation, we use norm(det(A)), which is computed using the integer matrix of repre-
sentation matrices of A as a tool for unimodular certification. We can also use this information to get
rid of the expensive lattice reduction step in the reconstruction of the solution of Ax = b. Using the fact
that, denominator is a divisor of the determinant, we can solve the linear system Ax = norm(det(A)) · b,
instead of solving Ax = b. We can use Dixon solver without the reconstruction step as we do not get
denominators for the solution. Eventually, the p-adic expansion gives the solution of the linear system,
when the required precision for the prime power is reached. However, we have to iterate Dixon lifting
steps to a higher precision than it is required for algebraic reconstruction. Therefore, in practice, we
could not observe any runtime improvement, even though the complexity gets better than before.
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Unimodular Certification

In terms of cost, both in theory and in practice, the dominant step of the determinant algorithm for
integer matrices is the unimodular certification. A deterministic unimodular certification algorithm was
presented by Storjohann in [PS12]. It uses the asymptotically fast double-plus-one lifting (which
works in the usual symmetric residue system) to compute the high-order residue. In this section, we
generalize the unimodular certification with its double-plus-one lifting over pseudo matrices.

3.1 Unimodular Certification for Matrices over Z

Given a square, non-singular, integer matrix A ∈ Zn×n along with a lifting modulus p ∈ Z relatively
prime to the determinant of A, double-plus-one lifting begins with the initial inverse B0 = A−1 (mod p)
computation, then a step of division-free quadratic lifting doubles the precision yielding B1 = A−1

(mod p2). Then a step of linear lifting corrects the overflow occurred in previous step and increases
the precision by a power of p yielding B2 = A−1 (mod p3). Alternating between quadratic and linear
lifting, at each stage, the precision of the computed inverse Bi (which is congruent to A−1 (mod pk) for
some k ∈ Z) is doubled, plus an additional power of p (yielding Bi+1 � A−1 (mod p2k+1)). (See [PS12])

The motivation to double-plus-one method is that: neither linear nor straight quadratic lifting is
ideal to compute residues of high-order. Because linear lifting computes small coefficients at each step,
but the total number of steps grows. Conversely, quadratic lifting requires only a few steps to reach the
precision, but each subsequent residue is twice the size of the last. Double-plus-one interleaves linear
and quadratic lifting such that it computes small coefficients and reach the required precision within a
few steps.

Also it produces a high-order residue R ∈ Zn×n such that A(A−1 (mod pk)) = I + Rpk. If A is a
unimodular matrix, then A−1 is integral and, it holds A−1 = A−1 (mod pk) for a large k. In other words,
A−1 has a finite p-adic expansion with symmetric residues. Then the high-order residue R becomes a
zero matrix, provided that p and k are large enough.

3.2 Unimodular Certification for Matrices over Number Fields

For the unimodular certification of pseudo matrices we apply the same argument as in the Z case.
Here, we use the two element presentation for ideals. The algorithm checks whether the corresponding
dual of the pseudo matrix A = ((ai), A) is integral: by computing a high-order residue P ∈ On×n such
that A−1D = (A−1D (mod pk)) + A−1Ppk where D is a diagonal matrix containing each generators of
(a−1

i )i on the diagonal. The basic idea is as follows:

49
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A = ((ai)1≤i≤n, A)
D1 = diag(gen_one(a−1

i )i), D2 = diag(gen_two(a−1
i )i).

Choose p and k appropriately.
for j = 1, 2 and i = 0, . . . , k do

S 0 = A−1D j (mod p)
Use double-plus-one to compute S i and Pi such that A−1D j = S i + A−1P j,i p2i+1−1.

end for
if P j,i = On×n for j = 1, 2 and i ≤ k then

return true
end if
Here also we use the modular reduction in the symmetric range: for a number field element a ∈ K

and an integer p which is relatively prime to the denominator of a, a (mod p) gives the number field
element with unique coefficients ai for 1 ≤ i ≤ d in the usual symmetric range modulo p. That is
ai (mod p) ∈ [− b(p − 1)/2c , bp/2c]. The next two lemmas which will be used in the main theorem,
directly follow from this explanation.

Lemma 3.2.1. |(a (mod p))i|/p ≤ 1/2

Lemma 3.2.2. If ai ∈ Z satisfies |ai| < p/2 then a (mod p) = a.

3.2.1 Linear and Quadratic Lifting

The following theorem provides the idea of linear lifting especially in our application (see [PS12,
Theorem 3]).

Theorem 3.2.3. Let A ∈ Kn×n be non-singular and p be relatively prime to det(A). If A−1b = S +A−1Ppk

for some b, S , P ∈ Kn×n and k ∈ Z>0, then for N ∈ Kn×n such that N = A−1P mod (pl) it holds
A−1b = S + N pk + A−1P′pk+l where P′ = (1/pl)(P − AN).

We have chosen l = 1 and N = A−1P (mod p) in this section. The Theorem 3.2.4 which gives the
idea of division free quadratic p-adic lifting in our context is a generalization of [PS12, Theorem 4]

Theorem 3.2.4. Let A and p be as before. For any b, B, S ,R, P that satisfy A−1 = B + A−1Rp and
A−1b = S + A−1Pp , we have A−1 = B(I + Rp) + A−1R2 p2 and A−1b = S + BPp + A−1RPp2.

Proof. Both side of the equation A−1 = B + A−1Rp is multiplied on the right by Rp, and we substitute in
it self replacing A−1Rp by the new equation. A−1 = B + A−1Rp = B + BRp + A−1R2 p2. Similarly, both
side of the equation A−1 = B+A−1Rp are multiplied on the right by Pp and substitute A−1b = S +A−1Pp
replacing the term A−1Pp by the new equation. �

3.2.2 Double-Plus-One Lifting

In this section we devise a modified double-plus-one lifting step over O, interleaving linear and
quadratic lifting as usual in the integer case. Define pi = p2i+1−1. Then pi+1 = p2

i p for all i ≥ 0. Here,
we compute matrix Bi ≡ A−1 (mod pi) and matrix S i ≡ A−1b (mod pi) for i = 0, 1, 2 . . . in succession,
as bellow.

We initialize with B0 = A−1 (mod p). It holds A−1 = B0 + A−1R0 p for the residue R0 = (1/p)(I −
AB0). We initialize the expansion of A−1b by computing S 0 = B0b (mod p), which is congruent to A−1b
(mod p). Then, we compute the residue P0 = (1/p)(b − AS 0), and we obtain A−1b = S 0 + A−1P0 p.
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Combining linear lifting modulo p terms of A−1b and A−1, we obtain the quadratic lifting terms as
below using the Theorem 3.2.4:

A−1b = S 0 + B0P0 p + A−1R0P0 p2

A−1 = B0(I + R0 p) + A−1R0
2 p2

Now we compute the additive terms M0 and N0 which encode a single step of linear p-adic lifting as
explained in the Theorem 3.2.3.

N0 = A−1R0P0 (mod p) = B0R0P0 (mod p)

M0 = A−1R0
2 (mod p) = B0R0

2 (mod p)

Then, it holds A−1b = S 0 + B0P0 p + N0 p2︸                   ︷︷                   ︸
S 1

+A−1P1 p3, where the residue P1 is (1/p)(R0P0 − AN0).

Similarly, A−1 = B0(I + R0 p) + M0 p2︸                    ︷︷                    ︸
B1

+A−1R1 p3, where R1 = (1/p)(R0
2 − AM0).

If, we let B1 and S 1 be as above, then we have the same format:

A−1b = S 1 + A−1P1 p3

A−1 = B1 + A−1R1 p3

Again, we can obtain the division free quadratic lifting as bellow:

A−1b = S 1 + B1P1 p3 + A−1R1P1 p6

A−1 = B1(I + R1 p3) + A−1R2
1 p6

Continuing this, we obtain the following sparse inverse expansion, as a sum of matrices having small
coefficients.

A−1 (mod pi) = (· · · ((B0(I + R0 p0) + M0 p2)(I + R1 p1) + M1 p2
1) + · · · + Mi−1 p2

i−1)
The expansion for A−1b (mod pi):

A−1b (mod pi) = S 0 + B0P0 p0 + N0 p2 + B1P1 p1 + N1 p2
1 + · · · + Ni−1 p2

i−1. (3.2.1)

3.2.3 Bounds on the Maximum Coefficient of A−1b

Let C = max{‖A‖ϕ, ‖b‖ϕ}. Here, we derive a bound for the maximum coefficient of the numerators
of matrix entries of A−1b in Lemma 3.2.5 (this is similar to the construction of Lemma 1.3.23 for
bound on ‖ det(A)‖ϕ). Then, we use Lemma 3.2.5 and Lemma 1.3.22, to explains Algorithm 14 in the
Theorem 3.2.6. Moreover, we can extend these results with (3.2.1) to a linear system solving algorithm.
We could obtain better runtime as we use high-order lifting and a faster vector-reconstruction method
(Section 1.3.6).

Lemma 3.2.5. Suppose A−1b is integral. Then, it holds ‖A−1b‖ϕ ≤ (c1/2
2 (c1nd)n/2)Cn.

Proof. Using the Hadamard bound, we can compute a bound on the size of coefficients of A−1b as
follows. Consider the corresponding conjugate matrices of A and b as A(i) and b(i) for i = 1, . . . , d. Let e
be the matrix entry of A or b with the maximum norm. For all i = 1, . . . , d, let e(i) be the corresponding
ith conjugates of e and ei be the ith coefficient of e. Since A−1b is integral, the denominators of the matrix
entries of

(
A(i))−1b(i) are all one, and the absolute values of the numerators are bounded by nn/2|e(i)|

n.
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Now we let m be the matrix entry (number field element) with the maximum coefficient of A−1b
(in another word, matrix entry which has ‖A−1b‖ϕ as a coefficient). Applying T2-norm, it satisfied:

T2(m) ≤
∑d

i=1 nn|e(i)|
2n. It is easy to see that:

∑d
i=1 nn|e(i)|

2n
= nn ∑d

i=1
(
|e(i)|

2)n
≤ nn

(∑d
i=1 |e

(i)|
2)n

Now

using the fact that |ei| ≤ C we can change the norm and obtain a bound on coefficients:
∑d

i=1 |e
(i)|

2
≤

c1
∑d

i=1 |ei|
2 ≤ c1

∑d
i=1 C2 = c1dC2. Combining above three inequalities, we get: T2(m) ≤ nn(c1dC2)n.

Let mi for 1, . . . , d be the coefficients of m. Then, we have ‖A−1b‖ϕ ≤
(∑d

i=1 mi
2)1/2

. Combining
this with changing norms on m, we obtain a bound on ‖A−1b‖ϕ as follows:

∑d
i=1 mi

2 ≤ c2T2(m) ≤
c2nn(c1dC2)n

=⇒ ‖A−1b‖ϕ ≤ (c1/2
2 (c1nd)n/2)Cn. �

Algorithm 14 Unimodular Certification (UniCert)
Input: A pseudo-matrixA = ((ai), A).
Output: true ifA is unimodular, false otherwise.

1: c1, c2 = norm_change_constants(O).
2: D1 = diag (gen_one (ai−1)i), D2 = diag (gen_two(ai−1)i)
3: C = max{‖A‖ϕ, ‖D1‖ϕ, ‖D2‖ϕ}.
4: Choose a prime p ∈ Z with p - det(A) and p ≥ max{10000, 3.61n2d2c2

1c2C}
5: Choose k such that p2

k−1 ≥ (c2(c1nd)n)1/2Cn/(n2d2C).
6: B0 = mod (A−1, p)
7: M0 = B0, R0 = I
8: for i = 1, 2 do
9: N0 = mod (B0Di, p)

10: P0 = Di

11: for j = 0 : k do
12: Tp = R2

j , Up = R jP j

13: R j+1 = 1
p (Tp − AM j)

14: P j+1 = 1
p (Up − AN j)

15: if P j+1 = O then
16: break
17: end if
18: M j+1 = mod (B0Tp, p)
19: N j+1 = mod (B0Up, p)
20: if j = k then
21: return false
22: end if
23: end for
24: end for
25: return true

3.2.4 Algorithm for Unimodular Certification

Theorem 3.2.6. Algorithm 14 is correct.

Proof. The pseudo-matrix A = ((ai), A) is unimodular if and only if dual(A) = AD = ((ai−1), A−t)
is integral. Let D be a diagonal matrix which has the generators of the ideals (ai−1)i on the diago-
nal (as explained in Section 1.3.9, generators can be computed, and in Algorithm 14 we take D1i,i =

gen_one(ai−1) and D2i,i = gen_two(ai−1) for i = 1, . . . , n). In order to decide the unimodularity of A,



3.2. Unimodular Certification forMatrices over Number Fields 53

it is sufficient to check whether DA−t is integral for both generator sets separate. Since D is diagonal
it holds DA−t = A−1D. Therefore, Algorithm 14 checks whether A−1D is integral for the two cases
D = D1 and D = D2. Now we prove the following claim for one case. Let C = max{‖A‖ϕ, ‖D‖ϕ}.

Claim: Let p ≥ max{10000, 3.61n2d2c2
1c2C}, then it holds that ‖Bi‖ϕ, ‖S i‖ϕ < 0.6pi, and

‖Ri‖ϕ, ‖Pi‖ϕ < 0.6001ndc1
√

c2 C for i, 0 ≤ i ≤ k. Moreover, if k is chosen large enough to satisfy
p2

k−1 ≥ (c2(c1nd)n)1/2Cn/(n2d2C), then A−1D is integral if and only if Pk is the zero matrix.
Here, the bound on p (i.e. p ≥ 10000) is chosen such that, the size of p does not effect to obtain

the bounds on the intermediate output as shown in the proof, and any lower bound which is greater than
10000 would work.

Using induction on i, we will prove that the following identities and bounds hold on outputs.

A−1 = Bi + A−1Ri pi and A−1D = S i + A−1Pi pi (3.2.2)

‖Bi‖ϕ < 0.6pi and ‖S i‖ϕ < 0.6pi (3.2.3)

where Bi = Bi−1(I + Ri−1 pi−1) + Mi−1 p2
i−1 and S i = S i−1 + Bi−1Pi−1 pi−1 + Ni−1 p2

i−1.
For i = 0: the identities (3.2.2) directly follows from Theorem 3.2.3 (we can consider b to be the

identity matrix in the first case). Since we use the modular reduction in symmetric range all the coeffi-
cient of matrix entries of B0 and S 0 are lie in the range [− b(p − 1)/2c , bp/2c]. Hence, the inequalities
(3.2.3) holds for i = 0 due to 3.2.1.

Now we suppose that (3.2.2) and (3.2.3) hold for some i, i ≥ 0. Applying division free quadratic
lifting step from Theorem 3.2.4, we have

A−1 = Bi(I + Ri pi) + A−1Ri
2 p2

i

A−1D = S i + BiPi pi + A−1RiPi p2
i (3.2.4)

Then, Theorem 3.2.3 gives:

A−1 = Bi(I + Ri pi) + Mi p2
i + A−1Ri+1 pi+1

A−1D = S i + BiPi pi + Ni p2
i + A−1Pi+1 pi+1

which shows that (3.2.2) is satisfied for i + 1.
Given bounds on ‖Bi‖ϕ and ‖S i‖ϕ, we can compute bounds on ‖Ri‖ϕ and ‖Pi‖ϕ using (3.2.2).

Ri = (1/pi)(I − ABi)

‖Ri‖ϕ ≤ (1/pi) + 0.6ndc1
√

c2 ‖A‖ϕ from p ≥ 10000, (3.2.3) and Lemma 1.3.22

≤ 0.6001ndc1
√

c2 ‖A‖ϕ
≤ 0.6001ndc1

√
c2 C

Pi = (1/pi)(D − AS i)

‖Pi‖ϕ ≤ (‖D‖ϕ/pi) + 0.6ndc1
√

c2 ‖A‖ϕ
≤ 0.0001‖D‖ϕ + 0.6ndc1

√
c2 ‖A‖ϕ

≤ 0.6001ndc1
√

c2C
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The computed bounds on Ri and Pi gives the following two bounds, which can be used to prove
(3.2.3) for i + 1.

‖Bi(I + Ri pi)‖ϕ ≤ ‖Bi‖ϕ + ndc1
√

c2 ‖Bi‖ϕ‖Ri‖ϕpi

< 0.6pi + ndc1
√

c2(0.6pi)(0.6001ndc1
√

c2 C)pi

= (0.6/pi + 0.36006 n2d2c2
1c2 C)p2

i

≤ 0.36012 n2d2c2
1c2 C p2

i (3.2.5)

‖S i + BiRi pi‖ϕ ≤ ‖S i‖ϕ + ndc1
√

c2 ‖Bi‖ϕ‖Ri‖ϕpi

< 0.6pi + ndc1
√

c2(0.6pi)(0.6001ndc1
√

c2 C)pi

= (0.6/pi + 0.36006n2d2c2
1c2C)p2

i

≤ 0.36012n2d2c2
1c2 Cp2

i (3.2.6)

Then, we apply computed bounds on expansions of Bi+1 and S i+1 as bellow:

‖Bi+1‖ϕ/pi+1 = ‖Bi(I + Ri pi) + Mi p2
i ‖ϕ/(p2

i p)

≤ 0.36012n2d2c2
1c2C/p + 1/2 from (3.2.5) and Lemma 3.2.1

≤ 0.6 as p ≥ 3.61n2d2c2
1c2C}

‖S i+1‖ϕ/pi+1 = ‖S i + S iRi pi + Ni p2
i ‖ϕ/(p2

i p)

≤ 0.36012n2d2c2
1c2C/p + 1/2 from (3.2.6) and Lemma 3.2.1

≤ 0.6 as p ≥ 3.61n2d2c2
1c2C

This shows that (3.2.3) holds for i + 1 and similar to the case i the bound on Ri+1 and Pi+1 can be
shown by induction.

Finally, we will show how to get the bound on number of lifting steps k needed, to certify the
integrality of A−1D. Suppose Pk is zero for the chosen k. Then, from (3.2.2) we have A−1D = S k which
shows it is integral. By Lemma 3.2.5, we have that ‖A−1D‖ϕ ≤ (c1/2

2 (c1nd)n/2)Cn. Then, we get the
bound on ‖A−1D‖ϕ with respect to the chosen pk−1 such that p2

k−1 ≥ (c2(c1nd)n)1/2Cn/(n2d2C):

‖A−1D‖ϕ ≤ n2d2Cp2
k−1 (3.2.7)

In Algorithm 14 at the step k − 1 of double-plus one lifting, we have S k−1 + Bk−1Pk−1 pk−1 � A−1D
(mod p2

k−1) from quadratic lifting. Equivalently, for some error term E we have

A−1D = S k−1 + Bk−1Pk−1 pk−1 + Ep2
k−1 (3.2.8)

The size of the error term can be bounded using the presumed size of p2
k−1 and bounds on the other

terms.
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E =
(
A−1D − (S k−1 + Bk−1Pk−1 pk−1)

)
/p2

k−1

‖E‖ϕ = ‖
(
A−1D − (S k−1 + Bk−1Pk−1 pk−1)

)
‖ϕ/p2

k−1

≤ ‖A−1D‖ϕ/p2
k−1 + ‖S k−1 + Bk−1Pk−1 pk−1‖ϕ

≤ n2d2C + 0.36012n2d2C from (3.2.6) and (3.2.7)

< p/2 as p ≥ 3.61n2d2C by assumption

Consider the quadratic lifting step: equation (3.2.4) for i = k − 1. Now we can relate the residue
Pk−1 and Rk−1 of (3.2.4) to the error E of the equation (3.2.8) and obtain:

A−1Rk−1Pk−1 = E. (3.2.9)

Using linear p-adic lifting, the last step of the double-plus one lifting computes the correction Nk−1 =

A−1Rk−1Pk−1 which is also equal to E (mod p) by (3.2.9). Since the size of the error satisfies ‖E‖ϕ <
p/2, by Lemma 3.2.2, we get E (mod p) = E. Hence Nk−1 exactly captures the error: Nk−1 = E.

Finally,

Pk = (1/p)(Rk−1Pk−1 − ANk−1) by Lemma 3.2.3

= (1/p)(Rk−1Pk−1 − AE) as Nk−1 = E

= 0 by equation (3.2.9).

�

According to Algorithm 14, the double-plus-one lifting performs k lifting steps. The cost of each
step being six multiplications of matrices in which the size of coefficients of each operands A, B0,Ri, Pi,

Mi,Ni are bounded by M = O(log(p) + log(ndC)).

Theorem 3.2.7. The complexity of Algorithm 14 is O∼(n3d2 + n2d3).

Proof. The number of steps satisfies k ∈ O(log(n)).

• The computation of A−1 (mod p) has the complexity O∼(n3d2).

• The complexity of one matrix multiplication is O∼(n2d3).

Hence the total complexity is O∼(n3d2 + n2d3) over Q. �

3.3 Residue Number System

This chapter outlines an approach to obtain an optimized (high performance) implementation of the
UniCert algorithm over number fields. As mentioned in [PS12] over integers, Storjohann’s algorithm
is efficient in practice. Even though we could expand the concept and obtain similar complexities over
number fields, practically we could not achieve better performances as in [PS12], as we do not have
access to a highly optimized library such as BLAS- Basic Linear Algebra Subprogram in [BPP+02] in
Julia.

Residue Number System (RNS) is defined by a set of coprime integers m = {m1,m2, . . . ,mk}, where
each individual members is called a module. For any given base m, the residue representation of an
integer x is the k-tuple, (x1, x2, . . . , xk), where xi are integers defined by xi = x mod mi and 0 ≤ xi < mi

for every i.
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Basic Linear Algebra Subprograms over Z

The overarching approach to the implementation is mainly due to the usage of a highly optimized
implementation called the Basic Linear Algebra Subprograms (BLAS) [BPP+02]. It provides low-level
linear algebra routines by the Automatically Tuned Linear Algebra Software (ATLAS)[WD98] which
operates only on matrices of double-precision floating-point numbers. They use CRT modular scheme to
work with matrices of arbitrary large integers. Since double-precision numbers can only be represented
by integers less than 253 (as 12 bits are used for the sign and exponent), computed values in each
stage must meet this bound to maintain the exact result. Therefore, it computes the largest value p
such that a residue number system backed with BLAS operations: the result of a product between two
matrices of dimension n must be exactly representable in the 53 bits of a double’s mantissa. Hence, each
modulus pi must satisfy n(pi − 1)2 ≤ 253 − 1 and the largest prime pk in each basis is chosen such that
pk ≤

( √
4n(253 − 1) + 1 + (2n − 1)

)
/2n.

High-Order Residue Implementation over Number Fields

In general, the idea to multiply together two integer matrix A and B over integers is:

(i) Use multi-modular reduction to get A and B in a residue number system (RNS) modulo a bunch
of primes p that satisfy n(p − 1)2 ≤ 253 − 1.

(ii) For each prime p in the residue number system compute the matrix product AB (mod p) using
the BLAS implementation.

(iii) Reconstruct AB over Z using CRT.

The main idea to obtain a highly optimized implementation is minimizing the number of calls to Step
(i) and the expensive Step (iii), and keeping all matrices in the RNS throughout the computation. For
example, in our application with the double-plus-one lifting, all matrix multiplications which are actu-
ally modulo p = p1 p2 · · · pl and q = q1q2 · · · qm, are carried out with matrices in the RNS with respect
to p and q as explained below.

As was mentioned in the previous section, in the unimodular certification we compute two more
parameters p and k (the base of the p-adic lifting and number of lifts required) to be used in the iteration
with double-plus-one lifting. As required by Theorem 3.2.6, p and k were selected to be sufficiently
large. Similar to the implementation of Storjohann, here also we employ a standard modular scheme to
allow the algorithm to work with matrices of arbitrary large integers despite the limitations coming from
the interface libraries. Using the bound on intermediate outputs Ri and Pi (Theorem 3.2.6), we choose
moduli set Q = {q1, q2, · · · , qm} with q = q1q2 · · · qm such that q ≥ 1.2002ndc1

√
c2C and n(qi − 1)2 ≤

253 − 1. Also, we use another set of prime moduli P = {p1, p2, . . . , pl} with p = p1 p2 · · · pl such that
p ≥ 3.61n2d2c2

1c2C and n(pi − 1)2 ≤ 253 − 1. Then, the p-adic lifting steps are replaced by operations
modulo pi for i = 1, . . . , l. It is required to convert between two residue systems, while working with
two co-prime bases. Hence the following conversion steps have to be introduced to Algorithm 14. The
code Convert(AP,Q) converts the array of matrices AP which is over basis P, to the basis Q and vice
versa. Methods of conversions are explained in the next sub-section.
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B0 = mod (A−1,P)
RP0 = mod (I,P), PP0 = mod (b,P)
for j = 0, · · · , k do

TP = RP2
j , UP = RPiPPi

MP j = B0TP (mod P)
NP j = B0UP (mod P)
MQ j = Convert(MP j,Q)
NQ j = Convert(NP j,Q)
RQ j+1 =

(
(RQ j − AQMQ j)/p

)
(mod Q)

PQ j+1 =
(
(PQ j − AQNQ j)/p

)
(mod Q)

RP j+1 = Convert(RQ j+1,P)
PP j+1 = Convert(PQ j+1,P)

end for
Here, P must be distinct from Q as p is required to be invertible with respect to the basis Q. More-

over, the two coprime moduli p and q must satisfy p ≥ 3.61n2d2c2
1c2C ≥ q ≥ 1.2002ndc1

√
c2C.

3.3.1 Basis conversion in a residue number system

In this section we discuss few possible methods which can be used for converting between residues
in the two co-prime residue number systems: Given a representation of x ∈ Z, as

[
[x]p1 , [x]p2 , . . . , [x]pl

]
,

in basis P move to an equivalent representation in basis Q, as
[
[x]q1 , [x]q2 , . . . , [x]qm

]
. Here, the square

brackets with indices will denote modular computation x (mod p) = [x]p. In our application, we can
take x = A, and given the residues in base P, the residue representation for the basis Q can be computed
using same methods.

Conversion using CRT

We can use the CRT to get the fixed-radix representation from RNS as:

x = [x]p =
[ l∑

i=1

si
[
[x]pi s

−1
i

]
pi

]
p
,

where si = p/pi and s−1
i the multiplicative inverse of si (mod pi), such that s−1

i si (mod pi) = 1. We
can take the use of CRT to achieve the base extension as [x]q j =

[
[x]p

]
q j

for j = 1, 2, . . . ,m. But the
usual CRT computation is expensive, as the intermediate values such as the inner sum computed to the
full precision could be arbitrary large. Hence, Shenoy and Kumaresan in [SK89] introduce an additional
redundant modulus which helps to cut-down the bit length of the arithmetic to be used.

We can slightly modify the CRT result as x =
∑l

i=1 si
[
[x]pi s

−1
i

]
pi
− Rp with an unknown error term

R. The correction term can be computed using the redundant module p̄ and the corresponding redundant
residue [x] p̄ as R =

[[ 1
p
]

p̄

([∑l
i=1 si

[
[x]pi s

−1
i

]
pi

]
p̄
− [x] p̄

)]
p̄
. The requirement that the redundant module

has to obtained independently, makes this approach unusable in some applications. So Posch and Posch
in [PP93] present a different method to compute the correction term R.

The Approximated Base Extension

Consider the equation x =
∑l

i=1 si
[
[x]pi s

−1
i

]
pi
− Rp, dividing each term by p yields: R + 1

p x =∑l
i=1

1
pi

[
[x]pi s

−1
i

]
pi

. For each i, we denote the weights wi = [s−1
i ]/pi and we can rewrite the equation

as a weighted sum of all [x]pi as: R + 1
p x =

∑l
i=1 [x]piwi. Clearly R is an integer, since x is reduced
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modulp p, A/p is a matrix having rational entries less than one. Thus we can ignore the term x/p and
get an approximated expression for R as R∗ = b

∑l
i=1 [x]piwic which gives either R or R− 1. A method to

figure-out the error term R, has been described in [PP93, Section 3] with an associate error bound ε on
R∗. In this application ε < 1/pmax, as explained in [Pau13, Section 4.2.1] for integer case. Hence, we get
the error term R as R = b

∑l
i=1 [x]piwie, and once we have R in hand we can continue the basis conversion

without reconstructing [x]p to the full precision: For j = 1, 2, . . . ,m the representation corresponding to
the basis Q is:

[x]q j =
[[ l∑

i=1

[
si
[
[x]pi s

−1
i

]
pi

]
q j

]
qi
− [pR]q j

]
q j

The Mixed Radix Number System and Conversion

Given the radices p1, p2, . . . , pl, any x ∈ Z can be uniquely represented in mixed-radix form as
x = al

∏l−1
i=1 pi + al−1

∏l−2
i=1 pi + · · · + a2 p1 + a1 where ai < pi. This particular formulation is called the

mixed radix number system and this weighted, positional number representation is also called mixed
radix representation. The coefficients ai are called the mixed radix coefficients, which can be ob-
tained recursively in l − 1 steps from the residues [x]p1 , [x]p2 , . . . , [x]pl corresponding to the modulis
p1, p2, . . . , pl. Given the residues we can briefly explain the construction of mixed-redix representation
as follows:

For i = 1, let ai = [x]p1 . To find a2, lets consider x − a1 = al
∏l−1

i=1 pi + al−1
∏l−2

i=1 pi + · · · + a2 p1
and reduction modulo p2 yields [x − a1]p2 = [a2 p1]p2

. Rearranging terms and substituting [x]p2 we get:
a2 = [[p−1

1 ]p2
([x]p2 − a1)]

p2
. Continuing this process, the mixed radix coefficient al, can be retrieved

from the residues as:

al = [[
( l−1∏

i=1

pi
)−1]pl

(
[x]pl − (al−1

l−2∏
i=1

pi + · · · + a2 p1 + a1)
)
]pl .

For computational purposes we can reform these terms to exploit some more parallelism with a
recurrence relation (refer [OP07, Section 7.2]). Thus, the residues in a base extended modulus can be
obtained by computing

[x]pl+1 =
[[

al

l−1∏
i=1

pi
]

pl+1
+

[
al−1

l−2∏
i=1

pi
]

pl+1
+ · · · +

[
a2 p1

]
pl+1

+
[
a1

]
pl+1

]
pl+1
.

3.3.2 Conclusion

Depending on the method we used for the Convert implementation, the quantities si, multiplicative
inverse s−1

i weights wi and
∏i

j=1 p j can be used throughout the algorithm as precomputed data. The new
unimodular certification algorithm uses higher-order liftings and residue number systems. The same
algorithm can be extended to solve linear systems using fast lifting methods. In our implementation,
we use residue fields of O corresponding to degree one primes(totally split primes) to obtain better
performance as in the integer case. We have been able to extend the techniques which are used in
the state of the art method for determinant computation in [PS13] to number fields. We could achieve
theoretically faster methods with better complexities. In communications with Storjohann, we figured
out that we need the access to a highly optimized low-level libraries such as such as BLAS [BPP+02],
ATLAS [WD98] or OpenBLAS, for further improvement. However, without having a highly optimized
library, it is difficult to obtain a fast implementation for unimodular certification. The purpose of this
chapter was to provide suggestions for further improvement and speculating on future directions.



Chapter 4

Algorithms for Solving Non-square Linear
Systems over Number Fields

In this chapter we present a deterministic algorithm for solving a non-square linear system over
number fields. As the solution is not unique, we compute a basis for the kernel to normalize the solution.
The implementation accompanied by a fast algorithm to compute the kernel of a matrix of any size. In
both two cases, a modified version of the Dixon algorithm is used. Preconditioning techniques can be
applied to optimize this computation using maximum rank sub-system. The algorithm works for integer
matrices as well. We rigorously assess its complexity as O∼(m3d2 + m2nd + m2d5) bit operations, where
as the Gaussian method takes O∼(m3n2d2) bit operations to solve a linear m × n system Ax = b over
number field K of degree d.

4.1 Introduction

Solving linear nonsingular, square systems is a well studied classical problem. The classical method
using Cramers rule and Gaussian elimination methods would take cubic number of operations. Here
also we face the computational phenomenon: intermediate coefficient swell. Cabay and Lam in [CL77]
introduced a CRT (Chinese Remainder Theorem) based modular method: one can compute the solution
modulo many small prime numbers such that the product of primes is large enough. This computation
takes O∼(n4) number of arithmatic operations for an n × n system Ax = b over Q. Dixon in [Dix82]
presented a p-adic Hensel lifting method for linear system solving which can accelerate the bit com-
plexity beyond CRT approach. There are two phases for the algorithm. First, the inverse C = A−1

(mod p) is computed with complexity O∼(n3). The second step computes a p-adic approximation x̄
with O(ln2 log n) integer operations for l iterations. (See Algorithm 3) Dixon’s algorithm is efficient in
practice with the total complexity O(n3 log2 n).

We have already generalized DixonâĂŹs algorithm to number fields. Here we generalize it again
to non-square underdetermined systems. We use Hadamard’s determinant estimate with an apropriate
norm, to bound rational enries in the solution as shown by the Cramer’s rule. Reduced-row echelon
form is used as a preconditioning technique to find a maximum rank subsystem.

This new deterministic algorithm takes O∼(m3d2 + m2nd + m2d5) bit operations, where as the Gaus-
sian method takes O∼(m3n2d2) bit operations to solve a linear m× n system Ax = b over number field K
of degree d. The total complexity for an integer linear system is O(m2n + m3 log2 m) in Z, same as the
Dixon algorithm.

59
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4.1.1 Reduced Row Echelon Form

The main tool we use in our linear system solving and kernel comptation algorithms is elementary
row and column operations. In this section we consider F to be any field and a matrix A ∈ Fm×n (or,
equivalently, its associated linear map fA : Fn → Fm).

Lemma 4.1.1. If A ∈ Fm×n is a matrix and R is obtained from A by a sequence of elementary row
operations, then ker(A) = ker(R).

Proof. Let R = T A, where T be the transformation matrix which is invertible, then we have
x ∈ ker(A) ⇐⇒ Ax = 0 ⇐⇒ T Ax = 0 ⇐⇒ Rx = 0 ⇐⇒ x ∈ ker(R) �

If we want to compute generators for the kernel of a matrix A ∈ Fm×n, then, according to Lemma
4.1.1, we may replace A by any row equivalent matrix. It suffices to understand how to determine
generators for the kernel of matrices in reduced row echelon form, as it is is easy to work on (See
Theorem 4.1.2 by Stoll in [Sto07, Lemma 12.12]). In particular, every matrix can be brought into row
echelon form by a sequence of elementary row operations.

Reduced Row Echelon Form

A matrix over a field F is in reduced row echelon form (rref) when it satisfies the following condi-
tions.

• All zero rows, if any, are at the bottom of the matrix.

• Each leading nonzero entry in a row is to the right of the leading nonzero entry in the preceding
row.

• Each pivot (leading nonzero entry) is equal to F(1).

• Each pivot is the only nonzero entry in its column.

Theorem 4.1.2. If A = (ai, j) ∈ Fm×n is a matrix in reduce row echelon form with r nonzero rows and
pivots in the column numbered j1 < . . . < jr, then the kernel is generated by the n − r elements

vk = ek −
∑

1≤i≤r
ji<k

aike ji , k ∈ {1, . . . , n} \ { j1, . . . , jr}

where e1, . . . en is the canonical basis of Fn.

Theorem 4.1.3. The reduced row echelon form of a matrix is unique ([HK71, p 56]).

Lemma 4.1.4. The transformation matrix of rref is not affected by non-pivot columns.

Proof. Transformation matrix is corresponding to elementary row operations. Since a non-pivot column
is dependent on previous columns it does not have a pivot element to apply row operations. �
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4.2 Solving Linear Systems

Consider the non-square linear system over a field F: Ax = b where A ∈ Fm×n and b ∈ Fm×k.
Suppose T be a transformation matrix of the reduced row echelon form AR, so that T A = AR. Now we
permute columns of the matrix A and AR using matrix S to get a nice shape, which is easy to work on.
Let r be the rank of matrix A.

T AS = ARS =

[
Ir ∗

Om−r×r Om−r×n−r

]
(4.2.1)

Here, [Ir | O(m−r,r)]t are pivot columns and [∗ | O(m−r,n−r)]t are non-pivot columns. We will get zero
rows as [O(m−r,r) | O(m−r,c−r)] in the bottom, if there are dependent rows in the matrix A.

Now we consider the modified linear system AS (S −1x) = b. Suppose AS = As = [APiv AK] which
is obtained by permuting columns of matrix A. Here columns of APiv corresponding to pivot columns
of AR and AK corresponding to non-pivot columns. Let S −1x = y then we have As y = b. For z = Tb we
have that:

T As = T
[

APiv AK
]

T As y = T
[

APiv AK
]

y = z = Tb (4.2.2)

Note: If the system has row dependencies, T AS is of the form (4.2.1). Then z =

[
z̄

Om−r×k

]
for

some z̄ ∈ Fr×k and a solution exists iff Tb =

[
z̄

Om−r×k

]
.

If n − r > 0 and m − r > 0, then:

T As y = T
[

APiv AK
] [ z̄

On−r×k

]
= z =

[
z̄

Om−r×k

]
= Tb

Define a map f : y = f (z) as follows:

y = f (z) =



[
z

On−m×k

]
add n − m zero rows to z if n − m > 0

z if m = n[
z̄

On−r×k

]
remove m − n rows from z if n − m < 0

Since x = S y, we can recover the solution x from z = Tb and map f .

4.2.1 Dixon’s Approach

In order to find a solution of non-square linear system Ax = b, we solve the linear system As y = b
using p-adic lifting. We compute ȳ where Asȳ ≡ b (mod pl) in l iterations.

• Compute the transformation matrix Tp and rref ARp of A (mod p). Then the permutation matrix
S is computed for the matrix ARp to obtain the nice shape as (4.2.1). At this point the consistency
of the system can be checked using modulo p solution.

• Compute a p- adic approximation ȳ. Take b0 = b

zi ≡ Tpbi (mod p) and yi = f (zi)
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Algorithm 15 Dixon Solver (DixonSolver)

Input: Matrix A ∈ Fm×n, b ∈ Fm×k, a prime number p and a bound B.
Output: Solution matrix X of the linear system AX = b.

1: Compute the rref ARp and transformation matrix Tp of A (mod p).
2: Compute the permutation matrix S for ARp as (4.2.1).
3: As = AS
4: p1 = 1, s = 0
5: while true do
6: z ≡ Tpb (mod p)
7: y = f (z)
8: s = s + yp1
9: p1 = p1 p

10: if p1 > B then
11: t,Y = VectorReconstruction(s, p1)
12: if t and AsY = b then
13: return X = S Y
14: end if
15: end if
16: b = p−1(b − Asy)
17: end while

The map f would add or remove zero rows from bottom of zi such that # rows(yi) = # cols(A).

bi+1 = p−1(bi − Asyi) for i = 0, . . . , l − 1.

Then ȳ =
∑l−1

i=0 yi pi.

Theorem 4.2.1. If the linear system is consistent, Algorithm 15 finds a correct solution.

Proof. The first phase computes the rref with transformation matrix Tp for A (mod p). From this we
have TpAs ≡ ARS (mod p) as (4.2.1). In other word Tp is the same rref-transformation matrix for As,
due to Lemma 4.1.4.

Phase two computes bi+1 vectors. Here we have (bi − Asyi) ≡ 0 (mod p) because: T As yi =

T APivz̄i ≡ T APivTpbi (mod p) ≡ Tpbi (mod p) implies T−1
p (T Asyi − Tpbi) ≡ 0 (mod p). In the last

step, it holds:

Asȳ =

l−1∑
i=0

piAsyi =

l−1∑
i=0

pi(bi − pbi+1) = b0 − plbl

Now we use a vector reconstruction method to reconstruct the solution y from modular image ȳ (mod p).
As As y = AS (S −1x) = b, a solution for the linear system Ax = b can be obtained as x = S y. This
permutation matrix S is due to the Theorem 4.1.2. �

4.2.2 Kernel

We present an algorithm to compute a basis for the kernel of the matrix A ∈ Fm×n. One can im-
plement Algorithm 16 as a p-adic modular algorithm. Here we used DixonSolver to facilitate the
task.

Theorem 4.2.2. Algorithm 16 is correct.
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Algorithm 16 Kernel (ModularKernel)

Input: Matrix A ∈ Fm×n, a prime number p and a bound B.
Output: Kernel matrix X of A.

1: Compute the rref ARp and transformation matrix Tp of A (mod p).
2: Compute the permutation matrix S for ARp as (4.2.1).
3: As = AS = [APiv AK]
4: z = DixonSolver(APiv,−AK) (Can be continue with Step 3 of Algorithm 15, given transformation

matrix Tp and permutation matrix Im).

5: y =

[
z

In−r

]
where r = rank(ARp).

6: return n − r, X = S y

Proof. Consider the matrix A with transformation matrix T and permutation matrix S as before: T A =

AR with rank r and AS = As = [APiv | AK]. Solve the linear system APivx = −AK using Dixon’s
algorithm: we get a solution as x = f (−T AK).

[APiv] [x] = − [AK] (4.2.3)

Then we convert the linear system and the solution back to the original system.

[
APiv AK

] [ x
In−r

]
= [On×n−r]

[
APiv AK

]
S −1S

[
x

In−r

]
= AS

[
x

In−r

]
= [On×n−r]

Hence, a basis for the kernel of A is given by S
[

x
In−r

]
. �

The role of the permutation matrix can be discribed as follows: Let v = n − r

[
APiv AK

] [ x
Iv

]
= [On×v]

In order to get the original matrix A from [APiv AK] we have to interchange columns using the

permutation matrix. Similarly, we should interchange corresponding rows of the solution vector
[

x
Iv

]
to get the kernel matrix of A. Let us number the columns of APiv according to the order of the matrix
A as {p1, . . . , pr} and non-pivot columns in AK as {k1, . . . , kv}. Also, rows in the solution matrix are
labelled as follows:

[
Ap1 . . . Apr Ak1 . . . Akt

]


x1
...

xr

e1
...

ev


= [On×v]
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where x = [x1, . . . , xr]t and Iv = [e1, . . . , ev]t. Suppose that pi < k1 < pi+1 for the first non-pivot
column Ak1 . When we shift the column Ak1 back to the original place in A, the corresponding row in the
solution vector has to be shifted accordingly.

[
Ap1 . . . Api Ak1 Api+1 . . . Apr Ak2 . . . Akv

]



x1
...

xi

e1
xi+1
...

xr

e2
...

ev



= [Om×v]

We shift columns, until we obtain the matrix A. Then, the resultant solution is the kernel of the
matrix A.

Example 4.2.3. In order to explain this idea, we provide a simple example over Q. Consider the linear
system

x1 + 2x2 + 4x3 = 2

2x1 + 3x2 + 7x3 = 3

3x1 + 3x2 + 9x3 = 3

Let A =

 1 2 4
2 3 7
3 3 9

 and b =

 2
3
3

. Now we concatenate matrix A and b and compute rref of [A b]

to find a solution for the linear system and compute kernel for the matrix A. M =

 1 2 4 2
2 3 7 3
3 3 9 3

 The

rref of the matrix M is: R =

 1 0 2 0
0 1 1 1
0 0 0 0


Non-pivot columns in the rref of A provides a basis for the kernel:

[
−2 −1 1

]t
. The last column

of M provides a solution for the linear system and it is normalized by the kernel basis:
[

0 1 0
]t

. In
this example, the permutation matrix is the identity matrix.

4.2.3 Computing Reduced Row Echelon Form

Here we present a lifting method to compute the reduced row echelon form of the matrix A ∈ Fm×n,
by extending the kernel computation algorithm. Let y1 be the solution of the linear system (4.2.2) as:

[APiv]
[
y1

]
= − [AK]

According to the previous notations, let r be the rank, S be the permutation matrix and T be the trans-
formation matrix of A as given in (4.2.1).
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Theorem 4.2.4. With the above notations,
[

Ir −y1

Om−r×r Om−r,n−r

]
S −1 is the reduced row echelon form

of A.

Proof. We apply the function f in Section 4.2 for the linear system [APiv] [x] = − [AK]. Then, by (4.2.3)
we have that:

T1APivS 1y1 = −T1AK .

Since the matrix APiv is already full rank the permutation matrix S 1 is the identity matrix Ir. We have
that T1 = T as T is only affected by pivot columns (Lemma 4.1.4). By the definition of f , we have that
−T AK = f −1(y1). That is −T AK = [y1 |Om−r,n−r]t if m − r > 0 or −T AK = y1 if m = r. Also, it holds
that T APiv = [Ir |Om−r,r]t as APiv is full rank. Therefore we have that:

T A = T AS S −1

= T [APiv | AK] S −1

= [T APiv |T AK] S −1

=

[
Ir −y1

Om−r×r Om−r,n−r

]
S −1. (4.2.4)

�

In order to compute the rref of A ∈ Fm×n, we take the output at Step 4 of Algorithm 16 as
y1 = DixonSolver(APiv,−AK). Then, the above theorem gives the rref of A. Here, the block ma-
trix

[
Om−r×r Om−r,n−r

]
at the bottom of (4.2.4) occurs only when m − r > 0.

4.2.4 Complexity Analysis and Bounds on Solutions

Consider the linear system Ax = b where A ∈ Fm×n and b ∈ Fm×1. Here, we compute complexities,
considering a solution of the linear system Asy = b. As explained before, if r is the rank of A, we have

y =

[
z̄

On−r

]
and z = Tb = T APivz̄.

Let λi denote the Euclidean length of the ith column of APiv and |b| be the length of b. If AS ub is the
maximum rank square sub-matrix of APiv, we know det(AS ub) ≤

∏r
i=1 λi. We can show that the solution

we obtain from Algorithm 15 is the same solution we get from maximum rank square sub-system of
Ax = b. Cramer’s rule shows that numerators and denominators of the solution are bounded by absolute
value of δ = |b|

∏r
i=1 λi.

First we compute the complexity of Algorithm 15 for an integer linear system. Let β be a bound on
absolute values of the entries of As and b.

i. The first phase computes the transformation matrix of the rref of A (mod p). It takes O(m2n)
operations between integers of size up to p.

ii. The second step computes a p-adic approximation ȳ to y with total of O(lm2 log(m)) operations:
The entries of bi are integers of length O(log(m) + log β) = O(log(m)). So, yi and bi computation
takes O(m2 log(m)) operations. As we do this iteration l times, construction of ȳ takes total of
O(lm2 log(m)) operations with l ≈ m log(m).

iii. The final step to find the solution y from modular result ȳ using a vector reconstruction algorithm
takes O(m2 log2(m)) operations.
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Hence the total complexity for integer matrices is O(m2n + m3 log2(m)) in Z.
When there is a linear system over number field K of degree d, we can compute a bound for the

solution using conjugate matrices (See Section 1.3.8). Using T2-norm we have: δ2 =
∑d

i=1 δ
(i)2

, where
δ(i) = |b(i)|

∏r
j=1 λ j

(i). (Here λ(i)
j is the length of jth column of the conjugate matrices APiv

(i) and |b(i)|

is the length of b(i)). A bound on coefficients of denominators and numerators of the solution can be
obtained by norm change constant (1.3.2) as c = c2δ

2. Hence by Theorem 1.3.18, we need a bound

on prime power as pl > d√N(a) >
(
4c

√
c3

1c2/d
)
·
(
3
√
γ(θ)/2

)d−1
= B to obtain a correct solution. Let

sA = d log(‖A‖ϕ), then we have the bound on determinant Bd ∈ O
∼(nsA) such that Bd ≥ d log(‖ det(A)‖ϕ).

i. Computing rref of A (mod p) takes O(m2nMd(sA)) operations.

ii. Dixon solver computes the p-adic expansion of the solution with O∼(m3Md(sA)) bit complexity:

One lifting iteration contains matrix-matrix multiplications which cost O∼(m2Md(sA)). The num-
ber of iteration required to obtain the solution is O∼(m) (See [Dix82]).

iii. Vector reconstruction to recover the solution takes O∼(d5(Bd/d)) bit operations for random input
matrices (as mentioned in the Theorem 1.3.20, using L̃1-algorithm). Worst case the bit complexity
would be O∼(md5(B/d)), which is equivalent to O∼(m2d5(sA/d)).

The total complexity of the Algorithm 15 is O(m3d + m2nd + m2d5) log(‖A‖ϕ) bit operations.
We consider the linear system APivx = −AK to compute a basis of the kernel. Similar to the above

case we can get a bound on denominators and numerators of each kernel vector using δ, if we replace
vector b by columns of AK . Also, the complexity of phase (i) to compute rref A (mod p) stays the same,
but lifting and reconstruction cost would apply for n − r many vectors.

While the new implementation has complexity as above, the direct Gaussian method to obtain the
rref takes O(m3n2d2) log(‖A‖ϕ) bit operations, because inputs are as large as the size of the matrix O(mn).

4.2.5 Performance Analysis Based on Timing

We have implemented the Algorithm 16 in [Sur21] using Hecke [FHHJ17]. To illustrate the ef-
ficiency of the new method, we have computed timings using the number fields Q[x]/(x2 + 7x + 1),
Q[x]/(x3+7x+1) andQ[x]/( f ) for f = x5+

∑4
i=0 2(−x)i, f = x10+

∑9
i=0 2(−x)i and f = x20+

∑19
i=0 2(−x)i.

Table 4.1 and 4.2 shows timing in seconds (m -for minutes and h- for hours) for the new algorithm
ModularKernel (MKer) for different choice of parameters: d- degree of the number field, size of ma-
trices (m × n) and size of coefficients. Comparisons have been made with the existing implementation
in Hecke, which is based on rref without modular methods. Experimental results (with quotient times:
Quot) shows that the new algorithm works much better for matrices with large dimensions and large
entries in large degree fields, proving the complexity results. Also, the Hecke implementation does not
terminate for very large matrices (e.g: for a matrix of dimension 300×300 over a number field of degree
2;Q[x]/(x2 + 7x + 1)).
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d
Input size -100:100 -1000:1000 -1000000 :1000000
m n MKer Hecke Quot MKer Hecke Quot MKer Hecke Quot

2

100

90 0.26 1.2 m 281 0.29 2 m 419 0.83 5.5 m 395
100 0.30 1.7 m 332 0.30 3 m 584 0.33 7.7 m 1404
110 3.45 2.2 m 38.6 4.04 3.8 m 56.3 6.95 10.1 m 87.5
120 6.53 2.8 m 25.9 7.87 4.8 m 36.2 13.69 12.6 m 55.1
130 10.54 3.4 m 19 12.47 5.7 m 27.5 21.93 15 m 41.3
140 14.96 4 m 15.7 18.17 6.6 m 21.9 30.85 17.6 m 34.3

150

140 0.84 15.6 m 1117 1.15 28 m 1461 0.70 53.3 m 4551
150 0.91 19.6 m 1281 0.90 33.5 m 2233 1.08 1.5 h 4991
160 10.29 23.5 m 137 12.55 39.5 m 189 21.12 1.7 h 295
170 19.42 27.8 m 85.9 23.89 46.5 m 117 41.72 2 h 174
180 30.37 31.8 m 62.8 36.84 53.4 m 87 62.6 2.3 h 133
190 43.31 27.2 m 51.5 51.79 1 h 69.9 89.21 2.6 h 105

300
280 6.35 - ∞ 6.17 - ∞ 6.39 - ∞

300 7.06 21.9 h 11163 6.97 - ∞ 7.49 - ∞

3

10

11 0.01 0.00 0.75 0.01 0.01 0.82 0.01 0.01 0.83
15 0.02 0.01 0.40 0.03 0.01 0.39 0.05 0.02 0.43
30 0.08 0.02 0.28 0.11 0.03 0.30 0.20 0.06 0.31
60 0.26 0.06 0.22 0.33 0.14 0.42 0.55 0.14 0.25
70 0.31 0.07 0.21 0.40 0.09 0.22 0.69 0.16 0.23
90 0.47 0.08 0.18 0.58 0.11 0.19 2.55 0.22 0.08

50

51 0.31 4.57 14.89 0.40 7.23 17.90 0.72 18.13 25.18
55 1.25 5.82 4.67 1.69 9.04 5.36 3.23 22.90 7.10
70 4.90 10.20 2.08 6.74 17.04 2.53 12.73 40.51 3.18
100 12.87 20.24 1.57 17.34 31.66 1.83 34.86 1.2 m 2.14
110 15.25 21.98 1.44 22.27 35.16 1.58 40.62 1.5 m 2.17
130 20.86 29.42 1.41 28.28 45.94 1.62 59.36 1.8 m 1.83

80

81 1.24 1.1 m 52.33 1.64 1.8 m 64.37 3.13 4.4 m 83.91
85 5.25 1.3 m 14.32 7.15 2 m 17.27 13.57 5 m 22.31
100 20.37 1.9 m 5.65 27.74 3.1 m 6.70 53.15 7.6 m 8.57
130 51.80 3.3 m 3.78 1.2 m 5.2 m 4.45 2.3 m 12.7 m 5.62
140 61.29 3.4 m 3.62 1.4 m 6 m 4.30 2.8 m 14.4 m 5.16
160 87.26 4.6 m 3.16 2 m 7.3 m 3.66 3.7 m 17.7 m 4.77

100
101 2.43 4.1 m 100.5 3.20 6.5 m 122.86 5.94 15.8 m 159.9
105 10.01 4.6 m 27.40 13.92 7.3 m 31.64 26.76 18.9 m 42.4

Table 4.1: Timing for Kernel Computation.
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d
Input size -100:100 -1000:1000 -1000000 :1000000
m n MKer Hecke Quot MKer Hecke Quot MKer Hecke Quot

5

10

11 0.01 0.01 0.83 0.11 0.01 0.14 0.04 0.03 0.73
15 0.05 0.02 0.36 0.06 0.02 0.39 0.11 0.05 0.46
30 0.18 0.05 0.25 0.25 0.06 0.26 0.63 0.12 0.19
60 0.71 0.11 0.15 0.91 0.14 0.15 1.47 0.26 0.18
70 0.84 0.11 0.13 1.28 0.17 0.13 1.96 0.31 0.16
90 1.32 0.18 0.13 1.63 0.21 0.13 2.83 0.40 0.14

50

51 0.92 11.39 12.34 1.06 18.37 17.37 2.07 45.11 21.82
55 3.71 14.33 3.87 4.79 23.00 4.80 9.25 56.53 6.11
70 14.36 25.55 1.78 18.77 40.86 2.18 35.73 1.7 m 2.78
100 37.24 47.34 1.27 48.49 1.3 m 1.57 1.5 m 3.1 m 1.99

80

81 3.25 2.8 m 51.93 4.27 4.5 m 62.86 7.52 10.6 m 84.86
85 14.09 3.3 m 14.01 18.56 5.2 m 16.68 35.95 12.2 m 20.38
100 57.13 4.9 m 5.17 1.2 m 7.7 m 6.10 2.4 m 18.8 m 7.94
130 4.6 m 8.7 m 1.91 3.2 m 13 m 4.04 8.2 m 34.6 m 4.23

100
101 2.6 m 16.4 m 6.30 45.37 17.4 m 22.96 24.65 41.1 m 100.1
105 7.5 m 21.2 m 2.82 2.7 m 19.6 m 7.23 2.8 m 52.8 m 18.66
120 27.7 m 38.7 m 1.40 11.5 m 33.8 m 2.95 27.5 m 1.5 h 3.32

10

10

11 0.15 0.08 0.53 0.11 0.12 1.11 0.10 0.31 3.10
15 0.18 0.10 0.57 0.25 0.15 0.61 0.47 0.42 0.89
30 0.92 0.20 0.22 1.08 0.29 0.27 1.87 0.70 0.38
60 2.13 0.41 0.19 2.81 0.57 0.20 4.88 1.49 0.31

50

30 0.12 8.46 67.71 0.13 13.16 104.2 0.13 31.94 248
45 0.20 35.16 175.3 0.19 55.68 287.7 0.19 2.3 m 710
51 3.00 51.84 17.27 4.06 1.4 m 19.97 7.60 3.2 m 25.42
55 13.29 1.1 m 4.85 18.16 1.7 m 5.55 35.08 4 m 6.76
70 59.11 1.9 m 1.96 1.2 m 3.1 m 2.44 2.3 m 6.7 m 2.96
100 2.3 m 3.4 m 1.46 3.1 m 5.5 m 1.74 5.9 m 12.4 m 2.11

80

75 0.72 9 m 747.5 0.57 13.8 m 1469 0.58 31.9 m 3306
81 5.3 m 15 m 2.80 18.84 17.7 m 56.34 34.48 40.3 m 70.22
85 55.12 13.1 m 14.29 1.2 m 20.1 m 16.36 2.3 m 46.2 m 19.68
100 3.7 m 21 m 5.65 9.7 m 30.2 m 3.10 10 m 1.3 h 7.78

100

95 1.04 33.1 m 1904 1.00 50.8 m 3042 1.01 1.9 h 6860
101 22.19 40 m 108.2 29.62 1 h 123.7 58.84 2.3 h 141.8
105 1.9 m 44.7 m 24.09 2.3 m 1.2 h 29.5 4.9 m 2.7 h 32.86
120 29.1 m 1.3 h 2.58 13.2 m 1.8 h 8.23 41.4 m 5 h 7.19

20

10
11 0.19 1.12 5.76 0.25 1.77 7.15 0.54 5.04 9.41
15 1.13 1.22 1.08 1.19 2.38 2.01 2.30 5.02 2.18
30 3.46 1.55 0.45 4.71 2.72 0.58 9.55 6.28 0.66

50

30 0.31 57.91 185.9 0.31 1.6 m 302.4 0.31 3.9 m 766.1
45 0.46 3.8 m 500.1 0.46 6 m 789.2 0.44 15 m 2049
51 16.19 5.5 m 20.28 21.29 8.6 m 24.37 43.01 21.3 m 29.74
55 1.2 m 6.4 m 5.20 1.6 m 9.9 m 6.10 3.2 m 27.8 m 8.71

Table 4.2: Timing for Kernel Computation.



Chapter 5

Computing Characteristic and Minimal
Polynomials

Computing the characteristic polynomial of a matrix is a classical and fundamental problem in
mathematics. This is closely related to other problems such as computing the minimal polynomial and
computing the Frobenius canonical form. There are many optimized algorithms to compute characteris-
tic polynomials and minimal polynomials for integer matrices and matrices over polynomial rings. The
goal of this chapter is to address these problems over number fields.

This chapter begins with a survey of algorithms for characteristic polynomial computation, with
their complexity improvements. Then we compute bounds for coefficients of the minimal polynomial
and characteristic polynomial using bounds for complex matrices. We use modular methods to optimize
the existing algorithms. Finally, we present an additional improvement to the minimal polynomial
implementation, that reduces the runtime.

5.1 Literature Review

5.1.1 Algorithms for Computing the Characteristic Polynomial

Let A be an n × n matrix over any field F. If Au = λu, for some λ ∈ F and u ∈ Fn×1, then λ and
u are called the eigenvalue and eigenvector of A, respectively. The eigenvalues of A are the roots of the
characteristic polynomial CA(λ) = det(λIn − A). The eigenvectors are the solutions to the homogeneous
system (λIn − A)x = 0.

Theorem 5.1.1 (Cayley-Hamilton Theorem). If CA(λ) = λn+c1λ
n−1+· · ·+cn−1λ+cn is the characteristic

polynomial of the n × n matrix A, then CA(A) = An + c1An−1 + · · · + cn−1A + cn = On×n.

The Method of Direct Expansion

Let the characteristic polynomial of A = (ai, j) ∈ Fn×n be CA(λ) = λn + c1λ
n−1 + · · · + cn−1λ + cn.

In [Gan60, Section III.7] Gantmacher shows that for i = 1, . . . , n the coefficients ci of CA(λ) are the
alternate sum of all the (n− i)× (n− i) diagonal minors of A. Therefore the coefficients can be computed
as follows:

c1 = −
∑n

i=1 ai,i = − trace(A), which is the sum of all first-order diagonal minors of A.

c2 =
∑

i< j det
(

aii ai j

a ji a j j

)
the sum of all second-order diagonal minors of A. Similarly, the coeffi-

cients c3, c4, . . . , cn−1 can be obtained from the minor sums of the matrix A and, finally cn = (−1)n det(A).
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In order to compute the coefficient ci, we need to compute determinants of
(
n
i

)
diagonal minors of A.

Hence, the direct computation of the coefficients of CA(λ) is equivalent to computing
(
n
1

)
+
(
n
2

)
+· · ·+

(
n
n

)
=

2n − 1 determinants of various orders of minor matrices. Since this computation has exponential com-
plexity it is not practical. Instead a wealth of polynomial-time methods for computing the characteristic
polynomial of matrices over integers (or any field F) can be found in the literature. In this section, we
shall explain some of these methods.

Leverrier’s Algorithm

Theorem 5.1.2 (Newton’s Identity). Let λ1, λ2, . . . , λn be the roots of the polynomial C(λ) = λn +

c1λ
n−1+· · ·+cn−1λ+cn. If sk = λk

1+λk
2+· · ·+λk

n, then ck = −(sk +sk−1c1+sk−2c2+· · ·+s2ck−2+s1ck−1)/k.

In 1840, Leverrier introduced a method to find the characteristic polynomial of any matrix A ∈ Fn×n

using the trace of the powers Ak, where k = 1, 2, . . . , n. His algorithm make the use of the Newton’s
identities (See [Lev40]). Later Souriau, Faddeev, Frame and Csanky improved Leverrier’s Algorithm in
[FF63], based on Matrix multiplications with the complexity of O(n4).

Let σ(A) = {λ1, λ2, . . . , λn}, be the set of all eigenvalues of A which is also called the spectrum of A.
Then Leverrier uses the fact that sk = trace(Ak) =

∑n
i=1 λ

k
i , for all k = 1, 2, . . . , n. The method of Souriau

(or Faddeev and Frame) in [FF63] use the recurrence relation Ai = ABi−1, ci = − trace(Ai), Bi = Ai +ciIn

with B0 = In; to compute coefficients ci of CA for i = 1, 2, . . . , n.

The Method of Danilevskii

Definition 5.1.3. Consider an n × n matrix A and let CA(λ) = λn + c1λ
n−1 + · · · + cn−1λ + cn be its

characteristic polynomial. Then the companion matrix of CA(λ):

F [A] =



−c1 −c2 −c3 · · · −cn−1 −cn

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 1 0 0
0 0 0 · · · 1 0


is similar to A is called the Frobenius form of A.

The method of Danilevskii in [Dan37] applies the Gauss-Jordan method to obtain the Frobenius
form of an n× n matrix. The algorithm successively transforms the matrix A to F [A], by applying n− 1
similarity transformations as explained bellow:

Let A =



a1,1 a1,2 a1,3 · · · a1,n−1 a1,n
a2,1 a2,2 a2,3 · · · a2,n−1 a2,n
a3,1 a3,2 a3,3 · · · a3,n−1 a3,n
...

...
...

. . .
...

...

an,1 an,2 an,3 · · · an,n−1 an,n


We begin the algorithm by computing transformation matrices to carry the n-th row of A into the

row
(
0 0 0 · · · 1 0

)
.

Assuming that an,n−1 , 0, we take the transformation matrix Un−1 and its inverse matrix Vn−1 as:
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Un−1 =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

an,1 an,2 an,3 · · · an,n−1 an,n

0 0 0 · · · 0 1


, and

Vn−1 =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

vn−1,1 vn−1,2 vn−1,3 · · · vn−1,n−1 vn−1,n
0 0 0 · · · 0 1


where vn−1,i = −an,i/an,n−1 for i , n − 1 and vn−1,n−1 = 1/an,n−1.
Multiplying the matrix A by Vn−1 and Un−1, we obtain the matrix B as B = Un−1AVn−1. Then B is

similar to A and is of the form

B =



b1,1 b1,2 b1,3 · · · b1,n−1 b1,n
b2,1 b2,2 b2,3 · · · b2,n−1 b2,n
...

...
...

. . .
...

...

bn−1,1 bn−1,2 bn−1,3 · · · bn−1,n−1 bn−1,n
0 0 0 · · · 1 0


Now, if bn−2,n−1 , 0, then similar operations can be performed on matrix B, and continue in the

same way. Finally, we obtain the Frobenius form F [A] = U1U2 · · ·Un−1AVn−1Vn−2 · · ·V1. In some
cases, these n − 1 intermediate transformations are not possible. For example: In the first step if
an,n−1 = 0, we apply unimodular transformations to obtain a similar matrix with an,n−1 , 0. If
it was found that bk,k−1 = 0 in some intermediate step, as k-th row being the last non-zero row of
the matrix B = UkUk+1 · · ·Un−1AVn−1Vn−2 · · ·Vk, then we apply apply unimodular transformations to
make bk,k−1 , 0 and, continue the algorithm as a separate block matrix considering the sub-matrix
B[1:k−1,1:k−1]. Danilevskiy method finds the characteristic polynomial, by computing F [A] with the
complexity of O(n3).

Hessenberg’s Algorithm

A square matrix M = (mi, j) ∈ Fn×n is in upper Hessenberg form if mi, j = 0 for all i ≥ j + 2, in other
words, entries below the first subdiagonal are zero.

M =



m1,1 m1,2 m1,3 · · · m1,n−2 m1,n−1 m1,n
m2,1 m2,2 m2,3 · · · m2,n−2 m2,n−1 m2,n

0 m3,2 m3,3 · · · m3,n−2 m3,n−1 m3,n
...

...
...

. . .
...

...
...

0 0 0 · · · mn−1,n−2 mn−1,n−1 mn−1,n
0 0 0 · · · 0 mn,n−1 mn,n


Any given matrix A ∈ Fn×n can be reduced in to the Hessenberg form using a series of elementary

row and column operations, over F with complexity O(n3). If M is the Hessenberg form of A, then it
holds det(λIn − A) = det(λIn − M), and the characteristic polynomial CA(λ) = CM(λ) = Pn+1(λ) ∈ F[λ]
of the matrix M in Hessenberg form can be computed from the following recurrence for Pk(λ).

Pk+1(λ) =

1 if k = 0
(λ − mk,k)Pk(λ) −

∑k−1
i=1

(∏k−1
j=i m j+1, j

)
mi,kPi(λ) if 1 ≤ k ≤ n + 1
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This can be efficiently computed using O(n2) operations in F[λ] (O(n3) operations in F). The
total complexity for transformation into quasi-upper triangular matrix and iteration of the determinant
expansion formula is approximately O(n3) over F. The original algorithm can be found in Hessenberg’s
thesis [Hes42] and the modular method has been explained in [LMW05].

5.1.2 The Berkowitz Method

The Berkowitz algorithm computes the characteristic polynomial over a commutative ring R using
O(n4) arithmetic operations over the ring. Consider the matrix A ∈ Rn×n. Let Ar = [ai j], 1 ≤ i, j ≤ r be
the principal r × r submatrix of A. The characteristic polynomial of Ar is

Cr = det(Ar − λIr) =

r∑
k=0

cr,r−kλ
k = cr,r + cr,r−1λ + · · · + cr,0λ

r.

The adjoint of the characteristic matrix satisfies

Adj(Ar − λIr) =

r−1∑
i=0

r−i−1∑
j=0

cr,r−i− j−1A j
rλ

i = −

r∑
k=1

r−k∑
j=0

cr,r−k− jA
j
rλ

k−1

= −

r∑
k=1

(
cr,r−kIr + cr,r−k−1Ar + cr,r−k−2A2

r + · · · + cr,0Ar−k
r

)
λk−1 (5.1.1)

Consider the matrix Ar+1, which is written in terms of Ar, the diagonal term ar+1,r+1, row vector Rr

and column vector S r. Then

det(Ar+1) = det
(
Ar S r

Rr ar+1,r+1

)
= det(Ar)ar+1,r+1 − Rr Adj(Ar)S r. (5.1.2)

Combining (5.1.1) and (5.1.2) on the characteristic matrix gives a recurrence formula for Cr+1(λ) in
terms of Cr(λ)

Cr+1(λ) = Cr(λ)(ar+1,r+1 − λ) +
∑r

k=1
∑r−k

j=0 cr,r−k− j
(
RrA j

rS r
)
λk−1.

The Berkowitz algorithm uses matrix and vector multiplications. Given a polynomial Cr(λ) =∑r
k=0 cr,kλ

r−k, let ~Cr = (cr,0, cr,1, . . . , cr,r)t.

For Cr(λ) =
∑r

k=0 cr,kλ
r−k, the (r + 1) × r lower triangular Toeplitz matrix is defined as

Toep(Cr) =



cr,0 0 0 · · · 0
cr,1 cr,0 0 · · · 0
cr,2 cr,1 cr,0 · · · 0

. . . . . . . . .
. . . 0

cr,r−1 cr,r−2 cr,r−3 · · · cr,0
cr,r cr,r−1 cr,r−2 · · · cr,1


.

The corresponding recurrence formula for ~Cr+1 is

~Cr+1 = Toep(Qr+1) × ~Cr, where

Qr+1 = −λr+1 + ar+1,r+1λ
r + (RrS r)λr−1 + · · · + (RrAi

rS r)λr−1−i + · · · + (RrAr−1
r S r).

Hence the characteristic polynomial is given by
~Cn = Toep(Qn) × · · · × Toep(Q3) × Toep(Q2) × ~C1.
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The Algorithm 17 explains the steps of the Berkowitz method to compute the characteristeristic
polynomial.

Algorithm 17 Characteristic Polynomial - Berkowitz Method (CharPolyBerkowitz)

Input: A = (ai, j) ∈ Rn×n.
Output: Characteristic polynomial of A (coefficients in vector form).

1: C =

(
−1
a11

)
.

2: for i = 1, 2, 3, . . . , n − 1 do
3: Obtain row vector Ri, column vector S i and principal matrix Ai.
4: Q = −λi+1 + ai+1,i+1λ

i +
∑i

j=1 RiA
j−1
i S iλ

i− j

5: C = Toep(Q) ×C
6: end for
7: return C

Nemo/Hecke Algorithm

In Hecke [FHHJ17, Section 4.2], characteristic polynomials are computed using the generic im-
plementation of division free Berkowitz algorithm in [Ber84]. Usually, fraction free algorithms can
improve performance of matrix algorithms over integral domains. The algorithm in Hecke is developed
by William Hart and, it is the fastest implemented algorithm for characteristic polynomial computation.

The State of the Art Method

The breakthrough by Keller-Gehrig uses Krylov bases (Section 5.1.3) to compute characteristic
polynomial with the complexity of O(nω log(n)) (See [KG85, Section 3]). This came after the Strassen
matrix multiplication was introduced in [SS71] with the complexity (nω). His second algorithm uses
Danilevskii’s algorithm with block matrix operations. Even though Algorithm [KG85, 6.1] has com-
plexity of O(nω), it is only valid for generic matrices. Inspired by Gehrig’s method in [PS07] Pernet and
Storjohann presented a new Las Vegas randomized algorithm for computing the characteristic polyno-
mial of a dense matrix over large fields (#F > 2n2) in O(nω) field operations. This fast and practical
implementation uses a shifted Krylov extension and Hessenberg form in block matrices. The latest de-
terministic algorithm for computing the characteristic polynomial has been introduced by Pernet and
Neiger in [NP20]. It computes the characteristic polynomial of a matrix over a field within the same
asymptotic complexity, up to constant factors, as the matrix multiplication.

5.1.3 Algorithms for Computing the Minimal Polynomial

The Method of Krylov/ Spinning

Krylov method, also known as "spinning" in [Ste97] can be used to compute the minimal polyno-
mial of a matrix A ∈ Fn×n. Furthermore, we can extend this algorithm to compute the characteristic
polynomial as we will explaine in Section 5.3.2.

The matrix A can be considered as a representation matrix of some linear operator on an n-dimensional
vector space V in some basis. For any polynomial f (x) = a0xm + a1xm−1 + · · · + am−1x + am ∈ F[x], we
can define its value at A as f (A) = a0Am + a1Am−1 + · · · + am−1A + amIn. There exists a polynomial f
such that f (A) = 0. Such a polynomial is called an annihilating polynomial of A, and the one with the
least degree is the minimal polynomial of A, and is denoted by MA.
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We use the following theorem for computing and verifying the minimal polynomial in our applica-
tions (See [Vin03, Section 6.5]).

Theorem 5.1.4. Suppose A is a linear operator on a F-vector space V, and that V = W1 +W2 + · · ·+Wr

for invariant subspaces Wi. Then the minimal polynomial of A is the LCM(MW1 , . . . ,MWr ), where MWi

is the minimal polynomial of A restricted to Wi.

Definition 5.1.5. Given a matrix A ∈ Fn×n and an n-dimensional nonzero column vector v, we define
the Krylov sequence associated to A and v as the sequence of vectors vi = Aiv (i = 0, 1, 2, . . .).

Note that at most n vectors of the sequence v0, v1, . . . are linearly independent.

Definition 5.1.6. Given a vector v in a vector space V, the linear subspace spanned by the Krylov
sequence associated to A and v is defined as the Krylov subspace KA(V, v) associated to v.

Theorem 5.1.7. Let the matrix A, v and the Krylov sequence vi for i = 0, 1, 2, . . .. Suppose for some
r (≤ n), the vectors v0, v1, . . . , vr−1 are linearly independent and it holds that arv0 +ar−1v1 + · · ·+a1vr−1 +

vr = On where ai ∈ F. If W = KA(V, v) then the monic polynomial f (λ) = ar + ar−1λ + · · · + a1λ
r−1 + λr

is the minimal polynomial MW (the minimal polynomial of A restricted to W).

Proof. W is an invariant subspace, and we have that arv0 +ar−1v1 + · · ·+a1vr−1 +vr = (c0In +c1A+ · · ·+

cr−1Ar−1 + Ar)v = On. Hence we have that f (A)(v) = 0. It follows f (A)(g(A)v) = 0 for all polynomials
g(λ) ∈ F[λ] and so f (A) annihilates all of W. Since r ≤ n is the minimum such that v0, v1, . . . , vr−1 are
linearly independent, f (λ) is the minimum polynomial MW . �

Algorithm 18 computes the minimal polynomial of matrix A. The correctness of the algorithm
follows from the Theorem 5.1.4. The Step 3 computes the minimal polynomial MW of A restricted to
W = KA(V, v). This can be computed as follows:

Consider the matrix Vi = [v, Av, A2v, . . . , Ai−2v, Ai−1v] for some 2 ≤ i ≤ n. We observed the
least i (say i = r) such that the linear system Via = −Aiv is consistent. Then the unique solution
at = [ar, ar−1, . . . , a1] gives MW as f (λ) = ar + ar−1λ + · · · + a1λ

r−1 + λr.

Algorithm 18 Minimal Polynomial (MinPoly)

Input: A ∈ Fn×n.
Output: Minimal polynomial of A.

1: v = e1 = (1, 0, . . . , 0)
2: W = KA(V, v)
3: Compute MW

4: while rank(W) = n do
5: Pick v ∈ V such that v is linearly independent of W.
6: W′ = KA(V, v)
7: Compute MW′

8: W = W + W′

9: MW = LCM(MW ,MW′)
10: end while
11: MA = MW

12: return MA

As explained in [FHHJ17, Section 4.2], Hecke uses a CRT approach to compute the minimal poly-
nomial over Z, using the Algorithm 18. In the worst case it requires O(n4) operations over Z.
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5.2 Bounds on the Coefficients of Characteristic Polynomial and Minimal
Polynomial

In practice, when we use the above algorithms, first the polynomials are computed modulo several
prime numbers and then only reconstructed via CRT (See [GG13, Theorem 10.25]). Therefore, we need
precise bounds on the coefficients of characteristic and minimal polynomials to find the required number
of primes. Here, we discuss some estimates for both two cases, as Dumas has presented in [Dum06]
for matrices over C. After that, we extend his idea to get bounds on coefficients of characteristic and
minimal polynomials of matrices over number fields.

Here we denote the characteristic polynomial of A by CA(λ) = c0λ
n + c1λ

n−1 + · · · + cn−1λ + cn and
the minimal polynomial of A by MA(λ) = m0λ

r + m1λ
r−1 + · · · + mr−1λ + mr ( for a matrix A over C or

K accordingly).

Definition 5.2.1. Let P = at xt + at−1xt−1 + · · · + a0 be a univariate polynomial over C. The 2-norm of
P is defined by

‖P‖2 =
( t∑

i=0

|ai|
2
)1/2

.

Here, |a| denotes the absolute value of a. The 1-norm is defined by

‖P‖1 =

t∑
i=0

|ai|

and the∞-norm by
‖P‖∞ = max0≤i≤t(|ai|).

We define the ∞-norm on a polynomial P = at xt + at−1xt−1 + · · · + a0 over K, with respect to the
T2-norm as ‖P‖∞ = max{T2(a j)

∣∣∣ j = 0, . . . , t}.

In order to get bounds on coefficients of CA(λ) for A = [ai, j] ∈ Cn×n, we take the use of Hadamard’s
bound on the determinants of the minor matrices. Let B ∈ R such that B ≥ maxi, j{|ai, j|}. Using
Hadamard bound on A, we have that | det(A)| ≤ nn/2Bn from [GG13, Theorem 16.6].

5.2.1 Bounds on Coefficients of the Characteristic Polynomial

Now we can use the above mentioned bounds on determinants to get bounds on coefficients of
CA(λ). As it is mentioned in the Section 5.1.1, ci, the i-th coefficient of the characteristic polynomial
of A ∈ Cn×n, is the sum of all the (n − i) × (n − i) diagonal minors of A with the sign (−1)i. Therefore

ci is bounded by
(
n
i

) √
(n − i)B2(n−i)

, where B is the upper bound for absolute value of coefficients of A.
Using this fact, the following lemma has been derived by Dumas in [Dum06, Lemma 2.1].

Lemma 5.2.2. Let A ∈ Cn×n, with n ≥ 4, ‖A‖∞ ≤ B. The coefficients of the characteristic polynomial
CA(λ) of A are denoted by c j, j = 0, . . . , n and ‖CA‖∞ = max{|c j|}. Then

log2(‖CA‖∞) ≤ n
(

log2(n) + log2(B2) + 0.21163175
)/

2

Dumas considers the function F(n, j) =
(
n
j

) √
(n − j)B2(n− j)

, in the proof of [Dum06, Lemma 2.1].
From the symmetry of the binomial coefficients, it is only necessary to explore the bn/2c to obtain the
maximum of F(n, j). The lemma is proven inductively. For j = 0 it is true by Hadamard’s bound. For
j = 1, n ≥ 2, set f (n) = 2

n

(
log2(F(n, 1)) − n

2 log2(n) − (n − 1) log2(B)
)
. Computing the first derivative
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f ′ of f , we have that f ′ is independent of B and maximum value of f (n) is 5 log2(5)/6 − 2 log2(6)/3 <
0.21163175. For j > 1, Stirling formula on binomial coefficient has been used to get a bound on the
maximum value of F(n, j) using a similar approach as before.

Dumas has presented a more precise estimate in [Dum06, Lemma 2.2] (here Lemma 5.2.3), by
locating the largest coefficient of the characteristic polynomial. Usually, the largest coefficient of the
characteristic polynomial can be found in theO(

√
n) last ones ( which follows from the proof of [Dum06,

Lemma 2.1]).

Lemma 5.2.3. Let A ∈ Cn×n, with n ≥ 4. Let the entries are bounded in absolute values by B > 1. Then

‖CA‖∞ ≤ maxi=0,...,D

(
n
i

)(
(n − i)B2)(n−i)/2

where D =
(
− 1 +

√
1 + 2δnB2))/(δB2), and δ ≈ 5.418236.

Lemma 5.2.4 gives a bound on the coefficients of characteristic polynomial over K, which immedi-
ately follows from the definition of T2-norm and properties of conjugation.

Lemma 5.2.4. Let A = [ai j] ∈ Kn×n, with n ≥ 4, then the characteristic polynomial CA satisfies

‖CA‖∞ ≤

d∑
k=1

‖C(k)
A ‖

2
∞

where A(k) for k = 1, . . . , d are the matrices with conjugate entries as A(k) = [a(k)
i j ].

5.2.2 Bounds for the Coefficients of the Minimal Polynomial.

In this section, we derive bounds for the coefficients of minimal polynomial for matrices over C and
K. When the matrix A ∈ Cn×n we have bounds for coefficients, in terms of the bounds for roots of the
MA (in other words eigenvalues of the matrix A). Also, given a bound on the coefficients of CA, we
provide an easy way to get bounds on MA.

The Size of the Factors of a Polynomial

Here, we provide some relations between sizes of coefficients and factors of a polynomial in general
(see [Mig92, Section 4.3 & 4.4 ] for more details). First we define a measure for any given polynomial
over C.

Definition 5.2.5. Let P be a polynomial with complex coefficients. P can be written in terms of its roots
zi as

P = ar xr + ar−1xr−1 + · · · + a0 = ar(x − z1) · · · (x − zr),

with ar , 0. The Mahler measure of P is defined by the formula

M(P) = |ar |

r∏
j=1

max{1, |z j|}.

The next result from [Mig92, Definition 4.4.1] is important in our application.
Let z1, . . . , zr designate the roots of the polynomial P as above. Then, the well known Newton’s

identities gives the relation between coefficients and roots of a polynomial. If the roots are counted with
their multiplicities, the formula P = ar(x − z1) · · · (x − zr) gives elementary symmetric polynomials:
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ar− j

ar
= (−1)r− j

∑
i1<...<i j

zi1 · · · zi j

(sum of products, where each product consist of r − j factors and each of these factors being a root of
P). Each of these factors is bounded by M(P). Moreover there are

(
r
j

)
of these factors for j = 1, 2, . . . , r.

Hence the inequality (5.2.1) holds.

‖a j‖ ≤

(
d
j

)
M(P). (5.2.1)

This with the Landau inequality ([Lan05]) given rise to the following theorem, which can be used to get
bounds on MA and QA in terms of CA.

Theorem 5.2.6. Let f =
∑n

i=0 fixi and h =
∑m

i=0 hixi be two polynomials such that h divides f . Then
we have

‖h‖2 ≤ ‖h‖1 ≤ 2m M(h) ≤
∣∣∣∣∣hm

fn

∣∣∣∣∣ 2m ‖ f ‖2.

For h, f ∈ Z[x] as in the Theorem 5.2.6, Mignotte’s bound gives the following inequality for coeffi-
cients of h and f (see [Maz08]).

‖h‖∞ ≤ (n + 1)1/2 2n ‖ f ‖∞. (5.2.2)

Geršgorin’s Theorem

Geršgorin Circle Theorem localizes eigenvalues in C, and it appears in the paper of Geršgorin in
[Ger31]. We use this result to get bounds on the coefficients of the minimal polynomial of A ∈ Kn×n.
The theorem says that the eigenvalues of any n × n complex matrix can be included in n disks in the
complex plain which can be easily obtained from the matrix. Let A = [ai, j] ∈ Cn×n and the collection of
all eigenvalues of A be the spectrum σ(A). i.e.,

σ(A) := {λ ∈ C | det(λIn − A) = 0}.

Now, we take N := {1, 2, . . . , n}, and define the i-th deleted absolute row sum of A as:

ri(A) :=
∑

j∈N\{i}

|ai, j| for i ∈ N.

We use the convention that r1(A) := 0 when n = 1.
For i ∈ N the i-th Geršgorin disk of A is defined as:

Γi(A) := {z ∈ C
∣∣∣ |z − ai,i| ≤ ri(A)}.

and Γ(A) := ∪i∈NΓi(A) is called the Geršgorin set. The set is closed and bounded in the complex
plane C, as it is the union of closed disks having center ai,i and radius ri(A) for i ∈ N. For any A ∈ Cn×n

we have that σ(A) ⊆ Γ(A). This is the original result of Geršgorin, which is stated in the Theorem 5.2.7
(the proof and more details can be found in [Var04, Section 1.1]).

Theorem 5.2.7. For any A = [ai, j] ∈ Cn×n and any λ ∈ σ(A), there is a positive integer k in N such that

|λ − ak,k| ≤ rk(A).

Consequently it holds that
σ(A) ⊆ Γ(A).
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Given A ∈ Cn×n, the spectral radius ρ(A) of A is defined by

ρ(A) := max{|λ|
∣∣∣ λ ∈ σ(A)}.

The next corollary ([Var04, Corollary 1.2]) is a consequence of the Theorem 5.2.7.

Corollary 5.2.8. For any A = [ai, j] ∈ Cn×n, it holds

ρ(A) ≤ maxi∈N

∑
j∈N

|ai, j|.

The corollary 5.2.9 which is stated in [Var04, Appendix B] generalizes the above result for any
arbitrary norm φ on Cn. Consider any matrix A ∈ Cn×n, so that A maps Cn into Cn. Then the induced
operator norm of A, with respect to φ is given by ‖A‖φ := supx,0

φ(Ax)
φ(x) = supφ(x)=1 φ(Ax) which is simply

the maximum absolute row sum of the matrix.

Corollary 5.2.9. Given A ∈ Cn×n, let σ(A) denote its spectrum as usual and let ρ(A) denote its spectral
radius. Then, for any norm φ on Cn, ρ(A) ≤ ‖A‖φ.

Bounds on the Coefficients of the Minimal Polynomial of A ∈ Cn×n

Similar to the case of characteristic polynomial, one can use the Hadamard bound to get bounds
on the coefficients of the minimal polynomial. But, this estimate is too pessimistic in practice, when
the degree of the minimal polynomial is smaller compared to the characteristic polynomial. Mignotte
(5.2.2) gives a bound on the coefficients of minimal polynomial MA(λ), as a factor of the coefficients of
characteristic polynomial CA(λ) as: ‖MA‖∞ ≤ (n + 1)1/22n‖CA‖∞, where n is the degree of CA. Using a
bound on the eigenvalues of A, Dummas in [Dum06, Section 3], gives a better bound on the coefficients
of the minimal polynomial as follows.

Lemma 5.2.10. Let A ∈ Cn×n with its spectral radius bounded by β ≥ 1. Let the minimal polynomial
MA(λ) =

∑r
i=0 miλ

i. Then for all i = 1, . . . , r,

|mi| ≤

βr if r ≤ β
min{

√
βrr,
√

2/rπ2rβr} otherwise.

The Lemma 5.2.10 is based on (5.2.1). Since the spectral radius is bounded by β, all the roots of
the minimal polynomial are also bounded by β. Hence it holds that |mi| ≤

(
r
i

)
βr−i for coefficients of the

MA(λ). Using this result with some other bounds and inequalities on the binomial coefficients, Dummas
has proven the above bound in [Dum06, Lemma 3.1].

Bounds on the Coefficients of the Minimal Polynomial of A ∈ Kn×n

Let MA(λ) =
∑r

i=0 miλ
i be the minimal polynomial of the matrix A ∈ Kn×n. Similar to the previous

setting, let m(i)
j be the j-th coefficient of the minimal polynomial MA(i)(λ) of the i-th conjugate matrix

A(i) for i = 1, . . . , d. Now we extend Lemma 5.2.10 to number fields as follows.
For each conjugate matrix, the coefficients of the minimal polynomial satisfies the following bound

for i = 1, . . . , d and j = 1, . . . , r.

|m(i)
j | ≤

β(i)r if r ≤ β(i)

min{
√
β(i)rr,

√
2/rπ2rβ(i)r

} otherwise.
(5.2.3)
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Here, β(i) ≥ 1 is the bound for ρ(A(i)) which can be computed using Corollary 5.2.7. Let ‖MA(i)‖∞ =

|m(i)
j | for each conjugate matrices. One can get a bound on MA, by considering the bounds on MA(i) as

follows.

‖MA‖∞ ≤

d∑
i=1

‖MA(i)‖
2
∞. (5.2.4)

5.3 Optimizing Characteristic Polynomial and Minimal Polynomial Com-
putations

In this section, we present details of our optimized implementations with their performance analy-
sis. We have done our implementations using the Hecke software package, and both our methods for
characteristic polynomial computation and minimal polynomial computation perform better than the
existing implementations in Hecke. We first discuss the details of our modular approach for computing
the characteristic polynomial. Then we extend the characteristic polynomial implementation to compute
the minimal polynomial using factorization techniques. Finally, we provide a verification method for
the minimal polynomial.

5.3.1 Modular Methods

Here, we present the details of our implementation which use modular methods for computing
characteristic polynomial CA(λ) and minimal polynomial MA(λ) of a matrix A ∈ Kn×n. The algorithm
computes the characteristic polynomial and minimal polynomial modulo a sequence of prime ideals, and
then applies CRT to recover CA(λ) and MA(λ). Here we choose good primes (i.e. primes which does not
divides coefficients of the polynomial), as the degrees of the modular result can change in the presence
of bad primes (as explained in [GS02, Lemma 2.3] for the Z case). We can detect bad primes during
the computation, checking degree sequences of modular result as explained in [FHHJ17, Section 4.2].
Algorithm 19 explains the CRT-modular approach for computing CA. Similarly, MA can be computed
replacing the bound ‖CA‖∞ by ‖MA‖∞ and the algorithm CharPoly by MinPoly.

Algorithm 19 Characteristic Polynomial (Modular_CharPoly)

Input: A ∈ Kn×n.
Output: Characteristic polynomial CA of A.

1: Computes a bound ‖CA‖∞ on the coefficients of CA using Lemma 5.2.4.
2: Choose t matching prime ideals p1, p2, . . . , pt such that

N(p) ≥
(
2
√
‖CA‖∞/d · (3

√
γ(θ)/2)d−1)d where p =

∏t
i=1 pi.

3: for i = 1, . . . , t do
4: Api = A (mod pi)
5: Compute Cpi = CharPoly(Api).
6: end for
7: Apply CRT to compute CA such that Cpi � CA (mod pi) for i = 1, . . . , t.
8: return CA

Theorem 5.3.1. Algorithm 19 is correct, and it has the complexity O∼(n4d) over Q.

Proof. The correctness follows from the construction. As we have chosen enough primes according
to Belabas’ bound in Theorem 1.3.10, CRT gives the correct output. For CharPoly in the Step 5, we
can choose any algorithm, available in the literature, as mentioned in Section 5.1.2. If we choose the
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complexity of CharPoly as O∼(n3), then one iteration cost O∼(n3d) operations in Q, with the com-
plexity O∼(d) for algebraic operations in K. Therefore the total complexity of the algorithm is O∼(n4d)
operations in Q, as the size of the output is O∼(n) according to the bound. �

However, in our implementation, we use Algorithm 19 with a probabilistic approach. We can use the
bound on coefficients to get an approximation for the required number of primes. Instead of computing
the characteristic polynomial modulo the product of several prime numbers using CRT at once, we keep
on increasing primes and compute the polynomial using CRT, until it becomes stable. We check the
stability for 5 consecutive outputs. We have also optimized the computation of minimal polynomial,
using the same strategy.

d
n

r −100 : 100 −1000 : 1000 −1000000 : 1000000
M_Char Hecke Quot M_Char Hecke Quot M_Char Hecke Quot

3

10 0.07 0.00 0.01 0.10 0.00 0.01 0.02 0.00 0.10
30 0.13 0.12 0.94 0.15 0.12 0.81 0.29 0.15 0.52
50 0.76 1.03 1.36 0.93 1.03 1.10 1.72 1.19 0.69
100 9.81 17.66 1.80 12.45 19.09 1.53 23.41 22.70 0.97
150 49.83 1.6 m 1.99 63.58 1.9 m 1.83 1.8 m 2.2 m 1.26
300 10.7 m 29.6 m 2.76 14.2 m 32.4 m 2.28 28.5 m 54.8 m 1.92
500 1.9 h 5 h 2.60 2.4 h 5.7 h 2.30 4 h 7.3 h 1.81

5

10 0.07 0.00 0.03 0.04 0.00 0.06 0.02 0.00 0.19
30 0.42 0.25 0.59 0.43 0.28 0.65 0.68 0.30 0.45
50 2.42 2.05 0.85 2.70 2.23 0.83 3.98 2.59 0.65
100 23.88 31.26 1.31 41.73 42.11 1.01 58.01 51.24 0.88
150 2.7 m 3.7 m 1.37 3.3 m 4.3 m 1.28 4.5 m 5.2 m 1.15
300 32.3 m 1.1 h 2.03 56 m 1.2 h 1.27 1.5 h 1.5 h 1.01
500 4.5 h 10.5 h 2.32 5.7 h 8.3 h 1.45 7.5 h - ∞

10

10 0.04 0.00 0.09 0.05 0.01 0.13 0.06 0.01 0.18
30 1.10 0.85 0.77 1.45 0.94 0.65 2.05 1.65 0.81
50 6.51 8.02 1.23 7.17 9.53 1.33 10.55 17.42 1.65
100 1.3 m 4.5 m 3.28 1.6 m 5.3 m 3.21 2.6 m 7.2 m 2.73
300 1.6 h 13.3 h 8.13 3 h 19.7 h 6.53 4.7 h - ∞

20

10 0.10 0.01 0.12 0.09 0.02 0.17 0.17 0.03 0.16
30 3.17 2.61 0.82 4.41 2.25 0.51 5.63 4.04 0.72
50 19.87 24.37 1.23 25.81 31.86 1.23 36.85 51.19 1.39
100 5.1 m 13.1 m 2.55 6.4 m 16.5 m 2.57 10 m 24 m 2.39
300 6.7 h 51.1 h 7.55 7.9 h 63.6 h 8.04 9.5 h - ∞

Table 5.1: Timing for Computing Characteristic Polynomial with Modular Algorithm.

Performance Analysis

To illustrate the efficiency of the new method, we have implemented a variant of Modular_CharPoly
algorithm which uses probabilistic approach as explained before (see [Sur21]). We have tested timings
for the number fields K = Q[x]/(x3 + 7x + 1), K1 = Q[x]/( f1), K2 = Q[x]/( f2) and K3 = Q[x]/( f3)
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for f1 = x5 +
∑4

i=0 2(−x)i, f2 = x10 +
∑9

i=0 2(−x)i and f3 = x20 +
∑19

i=0 2(−x)i. Table 5.1 shows timing
in seconds (m -for minutes and h- for hours), for this new approach Modular_CharPoly (in the table
as M_Char) vs the existing implementation in Hecke [FHHJ17] (Section 5.1.2). We use the parameters:
d- degree of the number field, n- size of the matrix and r- range of the coefficients of input matrix.
Experimental results (with quotient times: Quot) show that the new algorithm works much better than
the Hecke implementation for big matrices in large degree fields. When the matrix size and r increase,
Hecke fails to compute the characteristic polynomial (does not terminate).

5.3.2 Computing Minimal Polynomial Using Characteristic Polynomial

As we can see in the Section 5.1, there are highly optimized algorithms for characteristic polynomial
computing. The latest algorithms can compute it with the same asymptotic complexity as the matrix
multiplication, up to constant factors.

Characteristic polynomial computation algorithms have better complexity than minimal polynomial
computation. Here we present an algorithm to compute the minimal polynomial using the characteristic
polynomial. The strategy which we used is straightforward: first we factorize the polynomial CA as
CA = f1e1 f2e2 · · · fmem . Then we obtain the valuations of MA at the factors fi’s, by comparing the
multiplicities of the factors of MA modulo a smaller prime ideal p with fi (mod p). The prime is chosen
such that the factors are square-free. It holds MA (mod p) is the same as MA (mod p) for all but finitely
many bad primes. We choose a good prime in this application, one choice would be a prime larger than
the coefficients of MA.

Algorithm 20 Minimal Polynomial (MinPoly_Fac)

Input: A ∈ On×n.
Output: Minimal polynomial of A.

1: Compute CA = Modular_CharPoly(A)
2: Factorize CA = f1e1 f2e2 · · · fmem .
3: Choose a suitable prime ideal p of O.
4: Mp = MinPoly(A (mod p)).
5: Compute gi � fi (mod p) for i = 1, . . . ,m.
6: Compute hi = valuation(Mp, gi) for i = 1, . . . ,m.
7: return MA = f1h1 f2h2 · · · fmhm

Here, the function valuation(Mp, gi) compute the valuation of Mp at gi, that is, the largest k such
that gk

i divides Mp.
In the Algorithm 20, we use randomized factorization algorithms to obtain polynomial run times

(see [CZ81]) as deterministic algorithms such as Berlekamp’s factorization algorithm in [Ber70] are of
exponential complexity. The CharPoly algorithm in Step 1 has the complexity O∼(n4d) over Q. As
we use non-deterministic algorithms, the complexity of factorization is negligible. Therefore, the total
complexity is in polynomial time. Although we can not prove that the algorithm is asymptotically fast,
practically it behaves really well.

Theorem 5.3.2. Algorithm 20 is correct.

Proof. It is clear from the construction that the algorithm is correct as MA divides CA. �

Performance Analysis

We have implemented Algorithm MinPoly_Fac ([Sur21]) using Hecke [FHHJ17] in the Julia lan-
guage [BEKS17]. To illustrate the efficiency of the new method, we have computed timings using
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d
n

r −100 : 100 −1000 : 1000 −1000000 : 1000000
Min_F Hecke Quot Min_F Hecke Quot Min_F Hecke Quot

3

10 0.01 0.02 1.66 0.02 0.02 1.39 0.02 0.14 8.98
30 0.16 14.93 93.49 0.20 25.72 127.77 0.30 1.2 m 239.41
50 1.127 9.4 m 501.29 1.22 14.1 m 696.80 1.81 29.2 m 966.92
100 11.87 18 h 5476.01 14.46 - ∞ 23.09 - ∞

5

10 0.02 0.36 16.76 0.02 0.07 3.83 0.04 0.16 4.04
30 0.43 48.82 113.19 0.45 57.15 126.22 0.69 2.2 m 193.52
50 2.47 20.8 m 505.10 2.48 31.4 m 762.78 3.96 1.1 h 1036.90
100 26.59 37.8 h 5114.34 35.40 - ∞ 57.42 - ∞

10
10 0.12 0.36 3.06 0.09 0.53 5.56 0.10 1.32 13.16
30 1.14 3.3 m 141.05 1.60 5 m 190.53 2.25 11.8 m 317.18
50 8.26 1.4 h 642.50 9.75 2.1 h 788.60 14.44 4.5 h 1131.42

20
10 4.62 6.14 1.33 5.55 9.18 1.66 7.25 1.2 m 10.71
30 4.48 34.3 m 459.78 5.37 57.5 m 643.35 6.87 2.8 h 1477.88
50 24.97 10.6 h 1530.14 28.25 17.6 h 2248.67 42.18 - ∞

Table 5.2: Timing for Computing Minimal Polynomial Using Characteristic Polynomial.

the number field K = Q[x]/(x3 + 7x + 1), K1 = Q[x]/( f1), K2 = Q[x]/( f2) and K3 = Q[x]/( f3) for
f1 = x5 +

∑4
i=0 2(−x)i, f2 = x10 +

∑9
i=0 2(−x)i and f3 = x20 +

∑19
i=0 2(−x)i. Table 5.2 shows timing in

seconds (m -for minutes and h- for hours) for the new algorithm 20 (Min_F) for different choices of
parameters: d- degree of the number field, n- size of the matrix and r- range of the coefficients of input
matrix. Comparison have been made with the existing implementation in Hecke [FHHJ17], which uses
Krylov method as explained in Section 5.1.3. Experimental results (with quotient times) shows that the
new algorithm is slower for small examples, and superior for big matrices in large degree fields: For
100 × 100 matrix, over a field of degree 5 the new implementation computes the minimal polynomial,
nearly 5000 times faster than the existing one.

5.3.3 Certification for the Minimal Polynomial

In the previous algorithm, as a certification, we have used bounds on the coefficients of the minimal
polynomial to obtain the correct output. When we use the probabilistic approach (compute until the
output stabilizes, without using bounds) we need a method to certify the minimal polynomial.

The minimal polynomial g = MA is a monic polynomial with the minimum degree (say r) such that
g(A) = 0. Therefore, for all non-zero v ∈ V = Rn×n, it should holds that

g(A)v = 0 =⇒ g(A)
/
KA(V, v) = 0 (5.3.1)

where KA(V, v) =
〈
Aiv | i = 0, 1, . . .

〉
is the Krylov space of v. We use this fact in Algorithm 21 as a

certification or the minimal polynomial of a given A ∈ Kn×n.



5.3. Optimizing Characteristic Polynomial andMinimal Polynomial Computations 83

Algorithm 21 Certification for Minimal Polynomial (MinPoly_Cert)

Input: A ∈ Kn×n and g(λ).
Output: If the minimal polynomial of A is correct true, otherwise false.

1: v ∈ V
2: KA = KA(V, v).
3: while true do
4: if g(A)v , 0 then
5: return false
6: end if
7: if rank(KA) = n then
8: return true
9: else

10: v ∈ V\KA

11: end if
12: KA = KA ∪ KA(V, v)
13: end while

Theorem 5.3.3. The Algorithm 21 is correct and has the complexity O(n4d) over Q.

Proof. Let v1 be a random vector in V = Rn×n (i.e v1 = e1 the first canonical basis). Suppose that
(5.3.1) is satisfied for v = v1. If rank(KA(V, v1)) = n, we have that (5.3.1) is true for all the vectors in
V . Otherwise, we choose another random vector v2 ∈ V independent from the subspace KA = KA(V, v1)
and check whether (5.3.1) is satisfied for v2. We continue this process, to check if (5.3.1) is true for all
the vectors in V . That is, Algorithm 21 terminates when V = 〈KA(V, v1), . . . ,KA(V, vk)〉 for some k ≤ n.
If (5.3.1) is not true for any v ∈ V , then the g(λ) is not the minimal polynomial, and returns false.

The steps of the algorithm are similar to the minimal polynomial computation, using Krylov method.
Therefore the same complexity holds. �

5.3.4 A Factorization Free Algorithm

In this section, we present an algorithm which computes the minimal polynomial of an integer ma-
trix, in the time of characteristic polynomial computation. We have used the coprime basis computation
techniques to get rid of expensive factorization step.

Coprime Bases Computation

Here, we state the general theory of coprime bases and basic idea of the algorithm for the computa-
tion of coprime bases. Coprime base computation uses divisions and gcd computations of polynomials,
Therefore, it has a better complexity than polynomial factorization. The following definitions and re-
sults are generalizations of Bernstein’s results in [Ber05, Chapters 4, 13], over polynomial ring F[x]
over a field F (finite fields, Z or K).

Definition 5.3.4. Let S and B be subsets of F[x]. If each element of S is product of powers of elements
of B, then B is a base for S . B is called coprime, if all elements of B are pairwise coprime. B is called
a coprime base for S , if B is a base for S and B is coprime.

The existence of the coprime basis is given by the following theorem ([Ber05, Theorem 4.1]).

Theorem 5.3.5. Every finite subset of F[x] has a finite coprime base.
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In our application we need a method to compute the coprime base of two elements. We use an
algorithm for two element input, due to Bach, Driscoll and Shallit [BDS90]. It keeps track of the order
of elements and uses this to avoid superfluous computations.

Algorithm 22 Coprime Base of Two Polynomial (CoprimeBase)
Input: Two polynomials f , g ∈ F[x].
Output: List B, such that B is the coprime base of { f , g}.

1: h1 = f , h2 = g and i = 1.
2: B = {h1, h2}

3: while i < #B do
4: g = gcd(hi, hi+1)
5: if g is a unit then
6: i = i + 1
7: else
8: replace hi by hig−1 and hi+1 by hi+1g−1 in B.
9: insert g as the new i + 1-st element of B.

10: remove hi, hi+1, hi+2 if they are units.
11: end if
12: end while
13: return B

Using the same idea, Bernstein in [Ber05, Chapter 13] improves the computations by using asymp-
totically fast algorithms. Given a finite set S of monic polynomials over a finite field, his algorithm
factors S into coprimes in essentially linear time.

Algorithm for Minimal Polynomial Computation

Algorithm 23 presents a factorization free approach to obtain the minimal polynomial from the char-
acteristic polynomial. The method is straightforward: first, we compute the characteristic polynomial
using a fast approach. Then we compute the coprime factorization of Cp = CA (mod p) and Mp = MA

(mod p) over Zp for some good prime p, and valuations of Cp and Mp for each factor. We use Hensel
lifting to obtain the coprime factors of CA in characteristic 0, using a large enough prime power preci-
sion. Finally, the computed valuations are used to get the correct exponents of the coprime-factors of
MA, using fast method for root computation.

Algorithm uses multi-factor Hensel lifting to lift a factorization into arbitrary many factors, as ex-
plained in [GG13, Chapter 15.5].

Given input: a prime p ∈ F, f ∈ F[x] such that lc( f ) is a unit modulo p, monic non-constant poly-
nomials f1, . . . , fr ∈ F[x] that are pairwise coprime modulo p and satisfy f ≡ lc( f ) f1 · · · fr (mod p),
and a lift l ∈ N.

The function MultFacHensel([ f1, . . . , fr], f , p, l) computes output: monic polynomials F1, . . . , Fr ∈

F[x] with f ≡ lc( f )F1 · · · Fr (mod pl) and Fi ≡ fi (mod p) for all i.
If F = Z, p ∈ N is a prime, deg( f ) = n, ‖ f ‖∞ < pl, and ‖ fi‖∞ < p for all i = 1, . . . , r, then the

algorithm MultFacHensel takes O∼(nl log(p)) operations in Z (see [GG13, Theorem 15.18]).

Theorem 5.3.6. Algorithm 23 is correct and has the same asymptotic complexity, up to constant factors,
as the matrix multiplication.

Proof. Since coprime base computation and Hensel factorization have linear complexity, the total cost of
the algorithm is similar to the cost of characteristic polynomial computation. As stated in Section 5.1.2,
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Algorithm 23 Minimal Polynomial (MinPoly_Coprime)

Input: A ∈ Zn×n

Output: Minimal polynomial of A.
1: Compute CA = CharPoly(A)
2: Choose a small prime p ∈ Z and a prime precision k such that pk > 2ρ(A).
3: Cp = CA (mod p)
4: Mp = MinPoly(A (mod p))
5: Let B = CoprimeBase(Cp,Mp) be B = {b1, . . . , bm}.
6: for i = 1, . . . ,m do
7: ei = valuation(Cp, bi) and hi = valuation(Mp, bi)
8: end for

Then Cp = be1
1 . . . bem

m and Mp = bh1
1 . . . bhm

m .
9: if ei = hi for all i = 1, . . . ,m then

10: return CA

11: else
12: For i = 1, . . . ,m compute li ∈ Q such that ei = lihi.

That is Cp = bl1h1
1 · · · blmhm

m and Mp = bh1
1 · · · b

hm
m .

13: Compute [B1, . . . , Bm] = MultFacHensel([bl1h1
1 , . . . , blmhm

m ],CA, p, k) such that Bi = blihi
i

(mod pk).
14: For i = 1, . . . ,m, recover B̃i = bhi

i (mod pk) using the li th root of Bi.
15: return B̃1 · · · B̃m

16: end if

we have a algorithm which computes the characteristic polynomial in the time of matrix multiplication
by Neiger in [NP20]. The root computation at Step 14 is done without the complete factorization (using
gcd( f , f ′), where f ′ is the first derivative of f ). �

Extension over Number Fields as a Future Work

We can extend the same strategy to obtain a faster minimal polynomial computation algorithm over
number fields. There is also a version of Hensel’s lemma over Op (the p-adic completion of O). We can
combine this with the theory of coprime bases to compute the minimal polynomial in the time of matrix
multiplication, as explained in the previous section.





Chapter 6

Linear Algebra over Univariate
Polynomial Ring over Finite Fields

6.1 Introduction

There are many optimized algorithms in the literature for computing determinants for integer matri-
ces and matrices over polynomial rings. The aim of this chapter is to discuss determinant computation
algorithms, over polynomial ring over finite fields, using the CRT-approach and Storjohann’s approach
in [PS13]. The chapter begins with a literature survey of algorithms for determinant computation, with
their complexity improvements. Then, we develop the required sub-algorithms for solving linear sys-
tems, reconstructing rational polynomials and certifying unimodularity. To develop an optimized recon-
struction method, we have successfully used the half-gcd approach. Finally, we present a determinant
computation algorithm, as an extension of Strojohann’s determinant computation approach given for
integer matrices.

6.1.1 Preliminaries on Polynomial Matrices

Before we dive into the algorithms, we will discuss some notations and definitions which will be
used in this chapter. The algorithms in the literature use building blocks such as shifted degree, minimal
kernel and column basis of matrices. Moreover, we need to know matrix transformations into normal
forms, in particular, the Hermite form for triangularization and the Popov form for row reduction of
matrices.

Basic Notations

Let A = [ai, j] ∈ F[x]n×m, where F[x] is a univariate polynomial ring with coefficients from a finite
field F. The problem of row reduction (or lattice reduction) of a matrix A over F[x], is about finding
a basis with row degrees as small as possible for the lattice (denoted by ∆(A) ) generated by all F[x]-
linear combinations of rows of A. Two matrices A, B ∈ F[x]n×m are left equivalent (the rows of A and
B generate the same lattice) if and only if A = UB for a unimoduar matrix U. Similarly, it is right
equivalent iff A = BU. Let v ∈ F[x]n be a vector (row or column matrix over F[x]), The degree of
v denoted by deg(v), is the maximal degree of all entries of v. Similarly, we define deg(A) to be the
maximum degree of the matrix entries of A. By rdeg(A) we denote the list of deg(Ai) for each row Ai

of A. The pivot index of v, denoted by piv(v) is the index of the rightmost entry of degree deg(v). The
leading coefficient matrix of A, denoted by LC(A), is the matrix over F formed by taking the leading
coefficients (lc) of each entries of A as LC(A) = [lc(ai, j)].

87
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Normal Forms

Definition 6.1.1 (Row-reduce & Popov forms ).

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 =


a1

a2
...

an

 ∈ F[x]n×m

Matrix A is row reduced if rdeg(A) ≤ rdeg(UA) for any unimodular matrix U. If, in addition, A satisfies
the following normalization conditions it is in Popov form.

(i) The pivot indices piv(a1), . . . , piv(an) are distinct.

(ii) The pivot entries a1,piv(a1), . . . , an,piv(an) are monic.

(iii) deg(ai) ≤ deg(ai+1) for 1 ≤ i ≤ n, and if deg(ai) = deg(ai+1) then piv(ai) < piv(ai+1).

(iv) Non-pivot entries have degree less than that of the pivot entry in the same column

If A satisfies only condition (i) it is said to be in weak Popov form.

For any nonsingular A ∈ F[x]n×n, A has a unique decomposition A = UP with U unimodular and P
in Popov form, in particular it holds that deg(P) ≤ deg(A) (See [MS03] and [SS11]). There is a similar
definition for row reduce form as LC(A) being full row rank. In [Zho13, Lemma 2.14] the equivalence
of two definitions has been proven.

Example 6.1.2. Consider the matrix A ∈ F7[x]3×3.

A =

 2x + 4 5x4 + 4x2 + 5x + 1 x3 + 3x2 + x + 2
5x5 + 5x3 + 2x2 2x2 + 1 3x2 + 5x + 5
x4 + x3 + 2x + 6 5x2 + 2x + 3 4x4 + 6x3 + 6


The weak Popov form of A is given by

W =

 2x + 4 5x4 + 4x2 + 5x + 1 x3 + 3x2 + x + 2
5x5 + 5x3 + 2x2 2x2 + 1 3x2 + 5x + 5
x4 + x3 + 2x + 6 5x2 + 2x + 3 4x4 + 6x3 + 6


The Popov form of A is

P =

 6x + 5 x4 + 5x2 + x + 3 3x3 + 2x2 + 3x + 6
2x4 + 2x3 + 4x + 5 3x2 + 4x + 6 x4 + 5x3 + 5

x5 + x3 + 6x2 6x2 + 3 2x2 + x + 1


The pivot entries in each row have been underlined.

Definition 6.1.3 (Hermite normal form). A matrix A ∈ F[x]n×m is in Hermit normal form if

(i) A is upper triangular,

(ii) The diagonal elements of A are monic,

(iii) deg(ai j) < deg(a j j) for 1 ≤ i < j ≤ n.

The Hermit normal form is unique, and for every A ∈ F[x]n×m there exists a unimodular U ∈ F[x]n×n

such that UA = H in Hermit normal form (See [MS03] and [NRS18]).
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Shifted Degrees

For a vector p = [p1, . . . , pn] ∈ F[x]n the shift column degree is defined as the maximum degree
after shifting the degrees of p by a given integer vector that is known as a shift. If s = [s1, . . . , sn] ∈ Zn,
the shifted column degree of p with respect to the shift s is given as

degs(p) = max1≤i≤n[deg(pi) + si].

The shifted degrees are used for efficient multiplication of a pair of matrices with unbalanced degrees.

Kernel and Column Bases

The kernel of A ∈ F[x]m×n is the F[x]-module ker(A)

ker(A) = {p ∈ F[x]n | Ap = 0}

with a kernel basis of A being a basis of this module. Similarly, a column basis of A is a basis for the
F[x]-module as

{Ap | p ∈ F[x]n}.

Efficients algorithms for computing kernel bases in [ZLS12] and column bases in [ZL13] take the use
of shifted degrees.

Lemma 6.1.4. Let s be deg(A) of the polynomial matrix A ∈ F[x]m×n. There exists a deterministic
algorithm (in [ZL13]) which can compute the column basis of A using O∼(nmω−1s) field operations,
and kernel basis of A using O∼(nmω−1s) field operations.

Here, ω is the exponent of matrix multiplication, which satisfies 2 ≤ ω ≤ 3 as explained in [GG13,
Chapter 12].

6.1.2 Cost Model

For complexity analysis in polynomial rings over finite fields, we define a non-decreasing function
M : Z≥0 → R>0 : d 7→ M(d), which gives the number of operation in F, when two polynomials in F[x]
of degree at most d are multiplied. We will also have the following assumptions on M:

1. M(d) ∈ O∼(d).

2. M(d1d2) ≤ M(d1)M(d2) for all d1, d2 ∈ Z.

Here for polynomial multiplications, we use asymptotically fast methods such as FFT-based meth-
ods which has the complexity O

(
d log(d) log(log(d))

)
.

The cost of polynomial divisions and gcd related computations has the complexity bound M(d) log(d).
Since we use O∼ asymptotic notation in complexity analysis, we assume that for Euclidean algorithm
related computations has the same complexity as M(d) for multiplication.

In this section, for linear algebra such as matrix multiplication, inverse computation, normal form
computations, we use asymptotically fast methods with complexity O∼(nωM(d)), where d is the deg(A)
(See [Sto03, Chapter 2]).
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6.2 Determinant Computation Algorithms in the Literature

Most of the algorithms for determinant computation that we can find in the literature are based on
computing a unimodular matrix U ∈ Fn×n such that AU = H is triangular. Moreover triangulariz-
ing a matrix is useful for solving linear system and computing matrix normal forms. In this regards,
Strojohann in [Sto00, Algorithm 2.18] presents a fraction-free Gaussian elimination to triangularize a
matrix, and then he uses this in a recursive deterministic algorithm to compute the determinant with a
cost of O∼(nω+1d) operations where d = deg(A). A deterministic O∼(n3d2) algorithm was later given by
Mulders and Storjohann in [MS03] (see Section 6.2.1), modifying their algorithm for weak Popov form
computation. Later in [Sto03], Storjohann reduces the complexity to O(nω log2 nd1+ε) field operations
using higher-order lifting and probabilistic approach. The deterministic algorithm Determinant (Al-
gorithm 4), which is presented in the Section 2.2 by Abbott et al in [ABM99] can also be used over any
arbitrary commutative ring. Abbott’s algorithm has the complexity of O∼(n4) operations over F.

6.2.1 Mulders’ and Storjohann’s Method

Algorithm 24 Determinant Computation (Hecke_det)

Input: A ∈ F[x]n×n nonsingular.
Output: Determinant of A.

1: C = A and de = 1.
2: for i = n − 1, n − 2, . . . , 1 do
3: Mi = first i columns of C.
4: Vi = last columns fo C.
5:

[
Ni Vi

]
= ExtendedWeakPopovForm(Mi,Vi).

6: Let k such that k-th row of Ni is zero.
7: C = Ni with row k deleted.
8: ti = k-th entry of Wi.
9: de = (−1)k+i+1tide

10: end for
11: return C11de

Algorithm 24 computes the determinant of a non-singular matrix A ∈ F[x]n×n using the weak Popov
form. Mulders and Storjohann gave this iterative algorithm which has the complexity O∼(n3 det(A)2)
over F. It reduce the exponent of n compared to their previous algorithm in [Sto00], but at the cost of
increasing the exponent of d. The algorithm uses a variant of the weak Popov form. That is: given
two matrices M and V ExtendedWeakPopovForm(M, V) computes (N,W) such that N is a weak Popov
form of M and W is obtained by applying the same transformation on V . The figure below describes the
algorithm in detail. In Hecke, this is used for computing the determinant of polynomial matrices. At the
end of this chapter, we give a performance analysis of this algorithm versus our new approach.
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M1 V1 N1 M2 V2

N2 M3 V3
N3 W3

t3W2

t2

W1

t1

Algorithm 25 Determinant Computation (det_poly)

Input: A ∈ F[x]n×n nonsingular.
Output: Determinant of A.

1: while true do
2: if n = 1 then
3: return A
4: end if
5:

[
Au

Ad

]
= A, with Au = A[1:dn/2e,1:n] and Ad = A[bn/2c:n,1:n].

6: B1,Ur,Vu := ColumnBasis(Au)
Note: ColumnBasis(Au) returns the column basis B1 and kernel basis Ur of A, and the right

factor Vu such that Au = B1Vu.
7: B2 = AdUr

8: ur = Ur (mod x), vu = Vu (mod x).
9: Compute a matrix u∗l ∈ F

n×dn/2e, such that u∗ =
[
u∗l ur

]
is unimodular.

10: dv = det(vuu∗l )/ det(u∗)
11: dB = det_poly(B1) · det_poly(B2)
12: return dvdB

13: end while

6.2.2 Zhou’s and Labahn’s Method

Zhou and Labahn in [ZL14] present a fast and deterministic algorithm for finding the determinant
of A, with the complexity O∼(nωd) operations over the field F. They use a fast algorithm in [ZLS12] for
computing minimal kernel basis. A kernel basis computation allows to partition the input matrix A into
a block triangular form as:

A · U =

[
Au

Ad

] [
Ul Ur

]
=

[
B1 O
∗ B2

]
= B (6.2.1)

Now the problem is reduced to the computations of the determinants of B1, B2 and U as det(A) =

det(B1) det(B2)/ det(U). The determinant of U is a non-zero element in F, and it can be obtained without
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computing the entire matrix U. The computation of det(B1) and det(B2) is done recursively, until the
matrices reach smaller dimension that is easy to compute determinants, (as explained in Algorithm 25
from [LNZ17, Section 4]).

Computing Block-Diagonal Matrices

Consider (6.2.1), for AU = B: [
Au

Ad

] [
Ul Ur

]
=

[
B1 O
∗ B2

]
.

In each iteration of the algorithm, the input n × n matrix A is partitioned into two sub-matrices Au and
Ad consisting of the upper dn/2e and lower bn/2c rows of A, respectively. The column dimensions of the
sub-matrices Ul and Ur of the transformation matrix U, match with the row dimension of Au and Ad,
respectively.

With the relation AuUl = B1, we have that the block matrix B1 is a column basis of Au, therefore the
Lemma 6.1.4 can be used to compute B1.

Since AuUr = O, Ur is the right kernel basis of Au, and it can be used to compute the block-matrix
B2 where, B2 = AuUr. It is stated in [LNZ17, Lemma 3.1]) that this computation is independent of the
chosen kernel basis Ur.

Computing the Determinant of the Unimodular Matrix

Let V =
[
Vu Vd

]t
be the inverse matrix of U such that the sub-matrices Vu and Vd are compatible

with the dimensions of Au and Ad as shown below.

BV =

[
B1 O
∗ B2

] [
Vu

Vd

]
=

[
Au

Ad

]
= A.

We compute a sub-matrix U∗l such that U∗ =
[
U∗l Ur

]
is unimodular. Then, it holds that:

det(V) det(U∗) = det(VU∗) = det
( [Vu

Vd

] [
U∗l Ur

] )
= det

( [VuU∗l O
∗ I

] )
= det(VuU∗l ).

Therefore it holds that det(V) = det(VuU∗l )/ det(U∗), and the determinant of A can be computed as:

det(A) =
det(B) det(VuU∗l )

det(U∗)
.

Finally we need the following lemma for the completion of the proof of Algorithm 25.

Lemma 6.2.1. If U ∈ F[x]n×n is unimodular, then det(U) = det(U (mod x)).

More details with the complexity analysis of Algorithm 25 can be found in [ZL14] and [LNZ17].

6.2.3 The State of the Art

Neiger and Pernet in [NP20] give the first description of an algorithm achieving the complexity of
O(nωM(D/n)) operations in F, where D = deg(det(A)) is equal to the sum of the degrees of the rows of
A.

Their approach basically follows the algorithm of Zhou and Labahn in [ZL14], and it uses the
properties of reducing and normalizing matrices. Let us rewrite the (6.2.1) as
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U · A =

[
∗ ∗

U1 U2

] [
A1 A2
A3 A4

]
=

[
B1 ∗

0 B2

]
= B (6.2.2)

where the entries ∗ are not computed, B2 = U1A2 + U2A4, B1 and [U1 U2] are computed from
[A1 A3]t as a row basis and a kernel basis. Here, the kernel basis computation and the matrix mul-
tiplication giving B2 (the product U1A2 + U2A4) involves matrices with possibly unbalanced degrees.
Therefore, they use the current fastest method for this, i.e. they split the computation into O(log(n)) mul-
tiplications of smaller matrices which have balanced degrees [ZLS12, Section 3.6]). However, the com-
putation of the row basis B1 remains an obstacle which prevents the determinant algorithm of [ZL14]
from having complexity O(nωM′(D/n). This computation has a loop over log(n) iterations, each of them
calling [ZL12, Algorithm 2] for minimal approximate bases with unbalanced input. Therefore Neiger
and Pernet, in their algorithm in [NP20, Section 3] follow an approach which is more direct at first: keep
the first block row of A as in (6.2.3)

U · A =

[
In/2 ∗

U1 U2

] [
A1 A2
A3 A4

]
=

[
A1 A2
0 B

]
(6.2.3)

and rely on the identity det(A) = det(A1) det(B)/ det(U2). Algorithm has a total cost of O(nωM′(D/n))
for the three recursive calls, where the first two are (n/2)×(n/2) matrices (A1 and U2) whose determinant
has degree at most D/2, and at most D for the third.

Although this approach removes the expensive row basis computation which arises in [ZL14], it adds
a requirement that all recursive calls must be carried out with reduced matrices. The reducedness of A1
and B is achieved using [SS11, Section 3]. The fastest known algorithm in [ZLS12] for computing
kernel bases outputs a matrix in shifted reduced form (s -weak popov form in [NP20, Section 2.4]).
Since, the fastest algorithms in [SS11] are not given for shifted forms, they extend normalizing methods
for shifted forms in [NP20, Section 4].

6.3 Rational Function and Vector Reconstruction

In this section, we present a fast algorithm to find a rational function, that is congruent to some poly-
nomial modulo another polynomial. The standard strategy is to use the Extended Euclidean Algorithm
(EEA), which is also used to compute the gcd of two polynomials. Here, we take the use of Half-gcd
algorithm to optimize the implementation for rational function reconstruction. At the end of the section
we address the vector rational reconstruction problem with a literature review.

Given input a nonzero modulus f ∈ F[x], a single image polynomial g ∈ F[x] with deg(g) < deg( f ),
and degree bounds 0 ≤ N < deg( f ) and 0 ≤ D < deg( f ), the rational function reconstruction problem
asks for a pair of polynomials (r, t) such that tg ≡ r (mod f ). If gcd(t, g) = 1, then we have r/t ≡ g
(mod f ) as a valid solution (See [GG13, 5.7] and [KM06]).

The generalization to vector rational function reconstruction problem is defined similarly except
with g replaced by [g1, . . . , gn] ∈ F[x]1×n. The problem asks for a pair (t, [r1, . . . , rn]) such that tri ≡ gi

(mod f ), deg(t) ≤ D and deg(ri) ≤ N for i = 1, . . . , n. Similarly, if gcd(t, f ) = 1, we have a valid
solution as ri/t ≡ gi (mod fi) for i = . . . , n.

6.3.1 Extended Euclidean Algorithm

In this section we define three functions quot, rem and divrem which are uniquely associated to
any two elements a and b in a Euclidean domain R with b , 0 as: q = quot(a, b), r = rem(a, b) and
(q, r) = divrem(a, b) where q, r ∈ R such that a = qb + r and deg(r) < deg(b). Before we look at the
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EEA, we will see the traditional Euclidean Algorithm (EA) which computes greatest common divisors
of any given two elements f and g in an arbitrary Euclidean domain as follows.

r0 = f , r1 = g and i = 1.
while ri , 0 do

ri+1 = rem(ri−1, ri), and i = i + 1
end while
return ri−1

The EEA computes not only the gcd but also a representation of it as a linear combination of the
inputs. Here, we mention only the steps of the EEA in (6.3.1), and the algorithm can be found in [GG13,
Algorithm 3.6].

Let R be a Euclidean domain, r0, r1 ∈ R\{0}with deg(r0) ≥ deg(r1). The EEA starts with s0 = t1 = 1,
s1 = t0 = 0, and then proceed as:

r2 = r0 − q1r1,
...

ri+1 = ri−1 − qiri,
...

0 = r`−1 − q`r`,

s2 = s0 − q1s1,
...

si+1 = si−1 − qisi,
...

s`+1 = s`−1 − q`s`,

t2 = t0 − q1t1,
...

ti+1 = ti−1 − qiti,
...

t`+1 = t`−1 − q`t`.

(6.3.1)

Here, deg(ri+1) < deg(ri) for 1 ≤ i ≤ `, as in the EA. We assume that r`+1 = 0 and deg(r`+1) = −∞.

Lemma 6.3.1. Let Qi =

(
0 1
1 −qi

)
∈ R2×2 and Ri = Qi · · ·Q1 =

(
si ti

si+1 ti+1

)
for 0 ≤ i ≤ `. Then it holds

that, (
ri

ri+1

)
=

(
0 1
1 −qi

) (
ri−1
ri

)
= Qi

(
ri−1
ri

)
= Qi · · ·Q1

(
r0
r1

)
= Ri

(
r0
r1

)
.

Let mi = deg(ri) for 0 ≤ i ≤ `, then deg(qi) = mi−1−mi for 1 ≤ i ≤ `. The sequence (m0,m1, . . . ,m`)
is called the degree sequence in the Extended Euclidean Algorithm for r0 and r1.

6.3.2 Extended Euclidean Algorithm for Rational Function Reconstruction

Consider two polynomials f ∈ F[x], deg( f ) = m > 0, and g ∈ F[x] of deg(g) < m. Then we can use
the EEA to find a rational function r/t ∈ F(x), with r, t ∈ F[x], satisfying

gcd(t, f ) = 1 and rt−1 ≡ g (mod f ), deg(r) < k, deg(t) ≤ m − k, (6.3.2)

for a given k ∈ {0, . . . ,m}. Here t−1 is the inverse of t modulo f . Note that, if k = m, then clearly
r = g and t = 1 is a solution, but for other values of k, it is not obvious. Since, the degree of f is m, the
constrains on degrees of r and t as given in (6.3.2) are sensible.

In order to take the use of the EEA, we obtain a weaker condition of the (6.3.2) as follows. Since t
is a unit modulo f , we can multiply the congruence in (6.3.2) by t and obtain an equivalent condition as:

r ≡ tg (mod f ), deg(r) < k, deg(t) ≤ m − k. (6.3.3)

Despite of some exceptional cases where (6.3.2) has no solution, we can show that (6.3.3) can always
be satisfied using EEA, as mentioned in the Theorem 6.3.2 (see [GG13, Section 5.7]).

A rational function r/t ∈ F(x), with r, t ∈ F[x] is said to be in canonical form if t is monic and
gcd(r, t) = 1. Every rational function has a unique canonical form.
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Theorem 6.3.2. Let f ∈ F[x] of degree m > 0 and g ∈ F[x] of degree less than m. By applying the EEA
for f and g, consider the j-th row r j, s j, t j ∈ F[x], where j is the minimal such that deg(r j) < k (for a
given k).

(i) There exist polynomials r, t ∈ F[x] satisfying (6.3.3), namely r = r j and t = t j. If in addition
gcd(r j, t j) = 1, then r and t also solve (6.3.2).

Moreover it holds that r j = s j f + t jg.

(ii) If r/t ∈ F(x) is a canonical form solution to (6.3.2), then r = τ−1r j and t = τ−1t j, where τ ∈ F\{0}
is the leading coefficient of t j. In particular, (6.3.2) is solvable if and only if gcd(r j, t j) = 1.

(See [GG13, Theorem 5.16])

6.3.3 Half-GCD Algorithm

The basic idea leading to a fast gcd algorithm for two polynomials r0, r1 ∈ F[x] is that the first
quotients qi’s of EA only depend on the coefficients of higher degrees of r0 and r1. In this section, we
elaborate on this idea which is used in the Half-GCD (HGCD) algorithm.

Let f = fmxm + fm−1xm−1 + · · · + f0 ∈ F[x] with leading coefficient fn , 0, and k ∈ Z. Then we
define the truncated polynomial

f � k = quot( f , xm−k) = fmxk + fm−1xk−1 + · · · + fm−k.

If f = 0, then f � k = 0. Also, if k < 0 or k = −∞ we define f � k = 0.

Definition 6.3.3. Let f , g, f ∗, g∗ ∈ F[x] with f , f ∗ both non-zero, deg( f ) ≥ deg(g) and deg( f ∗) ≥
deg(g∗), and k ∈ Z. Then, we say that ( f , g) and ( f ∗, g∗) coincide up to k, if

f � k = f ∗ � k,

g �
(
k − (deg( f ) − deg(g))

)
= g∗ �

(
k − (deg( f ∗) − deg(g∗))

)
.

Consider the steps of the EA for two pairs r0, r1 and r∗0, r
∗
1 of polynomials with deg(r0) > deg(r1)

and deg(r∗0) > deg(r∗1) of lenght ` and `∗:

r0 = q1r1 + r2,
...

ri−1 = qiri + ri+1,
...
...

r`−1 = q`r`,

r∗0 = q∗1r∗1 + r∗2,
...

r∗i−1 = q∗i r∗i + r∗i+1,
...

r∗`∗−1 = q∗`∗r
∗
`∗ .

(6.3.4)

Let ni = deg(qi) for 1 ≤ i ≤ ` and n∗i = deg(q∗i ) for 1 ≤ i ≤ `∗. Then, mi = deg(ri) = m0−n1−· · ·−ni

for 0 ≤ i ≤ ` and m`+1 = −∞, similarly m∗i are defined for 0 ≤ i ≤ `∗ + 1. Given k ∈ N, we define the
number η(k) ∈ N by

η(k) = max{0 ≤ j ≤ ` :
j∑

i=1

ni ≤ k},

so that

m0 − mη(k) =

η(k)∑
i=1

ni ≤ k <
η(k)+1∑

i=1

ni = m0 − mη(k)+1. (6.3.5)



96 Chapter 6. Linear Algebra over Univariate Polynomial Ring over Finite Fields

Here, the second inequality only holds if η(k) < `, and η(k) is uniquely determined by (6.3.5). We define
η∗(k) analogously.

Now the following lemma [GG13, Lemma 11.3] gives the required relation (relation between quo-
tients and input polynomials of EA,) for the HGCD algorithm.

Lemma 6.3.4. Let k ∈ N, h = η(k), and h∗ = η∗(k). If (r0, r1) and (r∗0, r
∗
1) coincide up to 2k, then h = h∗

and qi = q∗i for 1 ≤ i ≤ h.

In our implementation for the rational polynomial reconstruction, we only need the Lemma 6.3.4.
The complete HGCD algorithm can be found in [GG13, Algorithm 11.6].

6.3.4 Half-GCD Algorithm for Rational Polynomial Reconstruction

In this section, we introduce a fast algorithm for rational polynomial reconstruction using HGCD
algorithm. In order to make the description and the proofs simpler, we have directly taken the first few
steps from [GG13, Algorithm 11.6]. The algorithm will not create the monic remainders in intermediate
steps, but it is possible to obtain monic output at the end, if desired. Given two polynomials r0, r1 ∈ F[x],
with degree m = deg(r0) ≥ deg(r1), and a bound on the degree of the denominator k ∈ N with 0 ≤ k ≤ n,
Algorithm 26 computes the polynomials r, t ∈ F[x], such that r/t � r1 (mod r0). We denote lc( f ) be the
leading coefficient of any polynomial f .

Algorithm 26 Rational Polynomial Reconstruction (RatPolyRcon)
Input: r0, r1 ∈ F[x], m = m0 = deg(r0) ≥ deg(r1) = m1, and k ∈ N with 0 ≤ k ≤ m.
Output: r and t such that r � tr1 (mod r0).

1: if r1 = 0 or k < m − m1 then
2: return r1, 1
3: end if
4: if k = 0 and m − m1 = 0 then
5: q = lc(r0)/ lc(r1)
6: return r0 − qr1, −q.
7: end if
8: R = I2
9: d = dk/2e and s = 0.

10: r = r0 � (2d − 2)
11: r̃ = r1 � (2d − 2 − (m − m1))
12: while s ≤ d − 1 and r̃ , 0 do
13: q, re = divrem(r, r̃)
14: s = s + deg(q)

15: Q =

(
0 1
1 −q

)
16: if s ≤ d − 1 then
17: R = QR
18: end if
19: r, r̃ = r̃, re

20: end while
21: r = R2,1r0 + R2,2r1, t = R2,2
22: return r, t
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Theorem 6.3.5. Algorithm 26 is correct.

Proof. If r1 = 0 or k < m−m1, then η(k) = 0. Therefore, the while loop does not have to be involved, as
s should stay 0 (the variable s keeps track on the value of η(d)). Since, R stays as the identity matrix the
algorithm returns numerator r1 and denominator 1. (Suppose that we compute denominators regardless
of considering the case k < m − m1. Then the degrees of the denominators will exceed the given bound
k, as the degree of the first quotient deg(q1) > k).

If k = 0 and m − m1 = 0, then the first quotient is q1 = lc(r0)/ lc(r1). Therefore, the only possible
denominator is ±q1 and the correct result is returned.

Otherwise, k ≥ 1 and k ≥ m − m1, and we have defined (r, r̃) from (r0, r1), such that they coincide
up to 2(d− 1). Therefore by the Lemma 6.3.4, considering the EEA outputs of two pairs of polynomials
(r, r̃) and (r0, r1), we have that the corresponding quotient polynomials in both cases are equal up to
the row η(d − 1). As described in the Lemma 6.3.1, the matrix R give the outputs of EEA. Hence, the
correct numerator and denominator is returned by the algorithm as explained in the Theorem 6.3.2(i).
Furthermore, according to the (6.3.5) we have that n1 + n2 + · · ·+ nη(d−1) ≤ d − 1 < k where ni = deg(qi)
for quotient polynomials qi.

�

Example 6.3.6. Consider two polynomials r0 and r1 over F7[x]: r0 = 6x8 + x7 + 3x6 + 5x5 + 6x4 + 4x2 +

2x + 2, r1 = 3x7 + x6 + x3 + x2 + 4x + 1. We compute r and t such that r ≡ tr1 (mod r0) using Algorithm
26 RatPolyRecon as follows:

d = deg(r0)/2 = 4.
r = r0 � (2d − 2) = 6x6 + x5 + 3x4 + 5x3 + 6x2 + 4.
r̄ = r1 � ((2d − 2) − (deg(r0) − deg(r1))) = 3x5 + x4 + x + 1.
Round 1:
q1, re1 = divrem(r, r̄) = (2x + 2, x4 + 5x3 + 4x2 + 3x + 2).

Then, s = deg(q1) = 1 and Q1 =

(
0 1
1 −q1

)
=

(
0 1
1 5x + 5

)
.

Round 2:
r, r̄ = r̄, re1 = (3x5 + x4 + x + 1, x4 + 5x3 + 4x2 + 3x + 2).
q2, re2 = divrem(r, r̄) = (3x, 2x3 + 5x2 + 2x + 1).

Then, s = deg(q1) + deg(q2) = 2, and Q2 =

(
0 1
1 −q2

)
=

(
0 1
1 4x

)
.

Round 3:
r, r̄ = r̄, re1 = (x4 + 5x3 + 4x2 + 3x + 2, 2x3 + 5x2 + 2x + 1).
q3, re3 = divrem(r, r̄) = (4x + 3, 2x2 + 6).

Then s = deg(q1) + deg(q2) + deg(q3) = 3, and Q3 =

(
0 1
1 −q3

)
=

(
0 1
1 3x + 4

)
.

Round 4:
r, r̄ = r̄, re1 = (2x3 + 5x2 + 2x + 1, 2x2 + 6).
q4, re4 = divrem(r, r̄) = (x + 6, 3x).
s = deg(q1) + deg(q2) + deg(q3) + deg(q4) = 4
Since s > d − 1, while loop terminates with:

R = Q3Q2Q1 =

(
4x 6x2 + 6x + 1

5x2 + 2x + 1 4x3 + 4x + 2

)
.

Now a numerator and a denominator can be computed as: r = R2,1r0 + R2,2r1, and t = R2,2, and
algorithm returns (r, t) = (4x4 + x2 + 4x + 4, 4x3 + 4x + 2).

The solution can be normalized by clearing denominators as (x4 + 2x2 + x + 1, x3 + x + 4).
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Algorithm 26 provides only the outputs suggested in the weaker condition (6.3.3) of the rational
polynomial reconstruction. In order to obtain an output which satisfies the (6.3.2), we extend the Algo-
rithm 26 as:

if gcd(r, t) , 1 then
return false

else
return true, (r/ lc(t), t/ lc(t))

end if
Algorithm 26 outputs the rational polynomial r/t, with the degree of the denominator polynomial

satisfying deg(t) ≤ dk/2e−1. We have r = ur0 + tr1 � tr1 (mod r0), for some u ∈ F[x]. According to the
(6.3.2), if gcd(r0, t) = 1 then (r/ lc(t), t/ lc(t)) is a canonical form solution to the rational reconstruction
problem. Here, we make the test gcd(r, t) = 1 instead of gcd(r0, t) = 1, since we have that gcd(r, t) =

gcd(r0, t) by Lemma 6.3.7 below. It is more efficient to check the coprimality of the final numerator
and denominator, instead of checking the invertibility of denominator (t (mod r0)), since the size of
deg(r) < deg(r0).

Lemma 6.3.7. Let r0, r and t be as defined above, then we have that gcd(r, t) = gcd(r0, t).

Proof. Suppose that p ∈ F[x] be a divisor of t. If p|r0, then clearly p|ur0 + tr1 = r. On the other hand,
if p|r, then p|ur0 = r − tr1, where u and t are coprime (by the properties of EEA, see [GG13, Lemma
3.8]). Hence the lemma holds. �

6.3.5 Extension to Vector Rational Function Reconstruction

Here, we present a vector rational function reconstruction algorithm, using the same approach that
we used in Section 1.3.6. First, we use a variant of the Algorithm 26 to find the common denominator
of the solution vector. Then, we use the common denominator to recover numerators of the solution
vector.

Note that for our application, we choose k = deg(r0) to be the degree bound which is mentioned
in Algorithm 26. First we introduce the sub-algorithm for denominator reconstruction as DenomRecon.
This is obtained by replacing the Steps 15 and 17 of the Algorithm 26 by the following equation:

R1,2,R2,2 = R2,2,R1,2 − qR2,2. (6.3.6)

The (6.3.6) gives the necessary computations, to recover a denominator. When the conditions of the
while loop (Step 12) are satisfied, the algorithm DenomRecon returns a suitable denominator t = R2,2
such that r � tr1 (mod r0) for some r ∈ F[x]; (we use this as a code DenomRecon(r1, r0) = t).

Computing Common Denominator and Rational Solution Vector

Let s be the solution S modulo the irreducible polynomial p, of some linear system over F[x] (i.e.
s = S (mod p)). Algorithm 27 computes the solution vector S ∈ F(x)n×1 and the common denominator
ds of S . The correctedness of Algorithm 27 follows from the Theorem 1.3.20 as we use the same idea
of Algorithm 2. The algorithm is efficient in practice.

6.3.6 Vector Rational Function Reconstruction by Storjohann and Olesh

Similar to the vector reconstruction methods over integers (Section 1.2.4), we have algorithms for
vector rational function reconstruction, which requires half of the required image computation than it is
required for element wise rational function reconstruction.
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Algorithm 27 Vector Reconstruction (VecPolyRecon)

Input: s ∈ F[x]n×1 and p ∈ F[x]
Output: S ∈ F(x)n×1 such that S = s (mod p) and common denominator ds of S .

1: B = ddeg(p)/2e
2: S = On×n and ds = 1.
3: for i = 1, . . . , n do
4: a = dssi (mod p)
5: if deg(a) ≤ B then
6: S i = a/ds

7: else
8: t = DenomRecon(a, p)
9: ds = tds

10: if deg(ds) > B then
11: return false, S , ds

12: end if
13: a = dssi (mod p)
14: S i = a/ds

15: end if
16: end for
17: return true, S , ds

In order to find a solution via element wise reconstruction, it requires deg( f ) > N + D to ensure
the uniqueness of the solution space. Storjohann and Olesh in [OS07] presents a fast algorithm for
vector rational function reconstruction problem using O(nkω−1M(deg( f ))) operations in F, with the
requirement that deg( f ) > N + D/k for a small constant k. Their algorithm is based on simultaneous
Padé approximation and minimal approximants bases computations.

Minimal Approximant Bases

We need the following definitions following [BL94] and [OS07] for minimal approximant bases
computation.

Definition 6.3.8 (defect). The defect of a vector g = (g1, g2, . . . , gn) ∈ F[x]n with respect to the fixed
multi-index w = (w1,w2, . . . ,wn) is defined by

defect(g) = defect(g,w) = min
i
{wi + 1 − deg(gi)}.

Definition 6.3.9. A matrix B = [Bt
1|B

t
2| . . . |B

t
r]

t
∈ F[x]r×m is a reduced basis of type w for A ∈ F[x]n×m

if the following conditions are satisfied.

(i) B has a full row rank and ∆(B) = ∆(A).

(ii) Each b ∈ ∆(B) admits a unique decomposition b =
∑r

i=1 ciBi with ci ∈ F[x], deg(ci) ≤ defect(Bi)−
defect(b), 1 ≤ i ≤ r.

The sub-matrix of the reduced basis B comprised of the rows with positive defect is called the positive
part of B.

Now we define the minimal approximant bases as follows. Let G ∈ F[x]n×m, w ∈ Zn, and d ∈ Z≥0.
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Definition 6.3.10. An order d minimal approximant of type w for G is a reduced basis M ∈ K[x]n×n of
type w for the lattice {y ∈ F[x]1×n | yG ≡ 0 (mod xd)}. Here, M is nonsingular, and satisfies MG ≡ 0
(mod xd).

In [GJV03, Section 2], Giorgi et al. provide an algorithm to compute M using matrix multiplications,
with the cost of O(nωM(d)) operations in F. A similar definition for M can be found in [BLV99,
Definition 5.1], which uses a kernel basis of a shifted popov form.

Given G, d and w as above, MinBasis algorithm computes the output (M, δ) ∈ (F[x]n×n,Zn), an
order d minimal approximant M of type w for G together with a tuple δ = (δ1, . . . , δn) of the defects of
rows of M. The algorithm PosMinBasis(G, d,w) computes the output of MinBasis(G, d,w) restricted
to the rows with positive defect; M could also be a 0 × n matrix.

The next two lemmas are the basic tools of the algorithm for simultaneous Padé approximation.

H[
M

Ik

] [
∗

0

]
≡ 0 (mod xd)

(6.3.7)

Lemma 6.3.11. Let H ∈ F[x]n×m have its last k rows zero and let w = (w1, . . . ,wn). If M ∈ F[x](n−k)×(n−k)

is an order d minimal approximant of type (w1, . . . ,wn−k) for the first n − k rows of H, then diag(M, Ik)
is an order d minimal approximant of type w for H as in (6.3.7).

The next lemma allows us to compute the positive part of the minimal approximant bases using
recursive approach. Here, 1 denote the vector (1, 1, . . . , 1).

Lemma 6.3.12. Let H ∈ F[x]n×m and H′ ∈ F[x]n×m′ . If (M, δ) = PosMinBasis(H, d,w) and (M′, δ′) =

PosMinBasis(MH′, d, δ − 1), then (M′M, δ′) solves the minimal approximant problem with the input
([H|H′], d,w).

Padé Approximation

An algorithm to compute the minimal approximant of an input matrix of the form (6.3.8) has been
explained in [OS07, Section 3.1].

G =



G1 G2 · · · Gn

E
E

. . .

E


∈ F[x](m+tn)×nk, (6.3.8)

Here, Gi ∈ F[x]m×k and E ∈ F[x]t×k. Let w ∈ Zm+tn such that n = (n1, n2, . . . , nn) with n1 ∈ Z
m
≥0 and

n2 = n3 = · · · = nn ∈ Z
t
≥0. The approach is to compute the positive part of an order d approximant for

each non-zero block of matrices, starting from the upper-left part of (6.3.8).
Let [M̄|∗] ∈ F[x]s×(m+t) for M̄ ∈ F[x]s×m be the positive part of an order d minimal approximant of

type (n1, n2) for [G1 |E]t ∈ F[x](m+t)×k with a vector δ ∈ Zs
>0 of defects of rows. That is

[
M̄ ∗

] [G1

E

]
≡ 0 (mod xd).

Now consider the two block of k column matrices H and H′ as
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[
H H′

]
=


G1 G2
E

E

 ∈ F[x](m+2t)×2k.

By Lemma 6.3.11 we have that diag([M̄|∗], It) with defect vector (δ, n2 + 1), as the positive part of
an order d minimal approximant of type (n1, n2, n2) of H.

H[
M̄ ∗

It

] 
G1
E
0

 ≡ 0 (mod xd)

Let (M′, δ′) = PosMinBasis(diag([M̄|∗], It)H′, d, (δ, n2 + 1) − 1), then M′ diag([M̄|∗], It) is the
positive part of an order d minimal approximant of type (n1, n2, n2) for [H|H′] by the Lemma 6.3.12.

The key observation is that, we can proceed without computing the unknown block ∗ of [M̄|∗] due
to the following result:

[
M̄ ∗

It

] 
G2

0
E

 =

[
M̄G2

E

]
,

For the rest of the block matrices in G, this can be applied recursively.
Therefore, the output of the PosMinBasis(G, d, (n1, n2, . . . , n2)) is given by the following steps,

which is also known as the Padé approximation.
(M̄, δ) = (Im, n1 + 1);
for i = 1, . . . , n do
δ = (δ, n2 + 1)

(M′, µ) = PosMinBasis
( [M̄Gi

E

]
, d, δ − 1

)
M̄ = M′M̄

end for
return (M̄, δ)
The dimension of M̄ remains bounded by k throughout the computation, therefore the cost of the

algorithm is O((nk + m)kω−1M(d)) operations in F as explained in [OS07, Section 3.1]. In [RS21]
Rosenkilde and Storjohann give a new deterministic algorithm for fast computations of minimal ap-
proximant bases and Hermite -Padé approximations using the same complexity.

Vector Rational Function Reconstruction

Consider the vector rational function reconstruction problem for the input, a non-zero modulus
f ∈ F[x], a vector g ∈ F[x]1×n with deg(g) ≤ deg( f ), and degree bounds N and D for numerators and
denominator of solutions. Let

S = {[t | r] ∈ F[x]1×(n+1) | tg ≡ r (mod f ), deg(t) ≤ D, deg(r) ≤ N}.

Consider the nonsingular matrix,

G =

[
1 g
0 f In

]
∈ F[x](n+1)×(n+1).
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If we set the degree constrains (D,N, . . . ,N), then [t |r] ∈ S if and only if [t |r] ∈ ∆(A) with defect([t |r]) >
0. Therefore, S is generated by the positive part of a reduced basis of type (D,N, . . . ,N) for G. By ex-
tending this result, an algorithm for solving the vector rational reconstruction problem is given in [OS07,
Section 4].

6.4 Linear System Solving and Bounds on Solutions

One of the major step in Storjohann’s determinant computation algorithm is linear system solving. In
this section, we present an algorithm for linear system solving based on the Dixon algorithm in [Dix82].
The algorithm computes the common denominator, so that we can use it directly in the determinant
computation. We first compute bounds on the solutions. By Cramers rule we know that the solution
of the linear system can be represented as determinants of matrices. Therefore, we compute the degree
bound for determinant of the matrix A ∈ F[x]n×n.

6.4.1 Degree Bound on the Determinant

In the cases of integers and number fields, we can use Hadamard’s bound to get a size bound on the
determinant. For matrices over polynomial rings over finite fields, we can use a similar method to get a
degree bound on the determinant of A. Given F[x]n×n, let DetBound be the algorithm, which computes
D ∈ Z such that deg(det(A)) ≤ D. We can take D as:

D =

n∑
i=1

deg(Ai) (6.4.1)

Gupta et al in [GSSV12, Corollary 2] gives a similar bound on the determinant using permutation
as in [Lan02, Proposition XIII 4-4.6]. However, the degree bound given in Algorithm 6.4.1 is easier to
compute. It is even easier to get a bound on det(A) using the Corollary 6.4.1, which immediately follows
from (6.4.1).

Corollary 6.4.1. It holds that deg(det(A)) ≤ n deg(A) where deg(A) is the maximum degree of the entries
of A.

Algorithm 28 Solving Linear Systems (SolverPolyMat)

Input: A ∈ F[x]n×n and b ∈ F[x]n×1.
Output: S ∈ F[x]n×1 such that AS = b and the common denominator ds of S .

1: Choose a suitable irreducible polynomial p0 of degree d.
2: Ap = (A (mod p))−1

3: B = DetBound(A)
4: s = On×1 and p = 1
5: for i = 1, 2, . . . , dB/de do
6: y = Apb (mod p0)
7: s = s + py
8: p = pp0
9: b = (b − Ay)/p0

10: end for
11: _, S , ds = VecPolyRecon(s, p)
12: return S , ds
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6.4.2 Linear System Solving

Algorithm 28 presents the Dixon method for solving the linear system Ax = b over F[x]. Here we
have assumed that the size of the degrees of matrix entries in b are also same as in A. In order to get a
more precise bound on denominators and numerators of the solution, we can also apply (6.4.1) for the
matrix [A|b]t. The algorithm will give the correct solution, as we have considered enough precision.

6.5 Unimodular Certification

In order to check the unimodularity of the matrix A, we can use an integrality test for A−1, using a
similar method as Storjohann explains in [PS12]. In the case of integers, he uses higher order lifting to
test whether the p-adic expansion of A−1 is finite. This is done by computing the error term of the p-adic
expansion for a given precision, without completely computing the expansion. In our case also, we can
use the double-plus-one lift which they have used to stay within small coefficients and reach the required
precision within a few steps. Over polynomial rings over finite fields, one of the useful properties of
double-plus-one lift is that we need few iterations to obtain the result and all the computations are
carried out with small degrees. The following lemma captures the essential idea of linear-lifting and
quadratic-lifting which will be used in the construction of double-plus-one in our case. Proof of the
lemma follows from theorems 3.2.3 and 3.2.4.

Lemma 6.5.1. Let A ∈ F[x]n×n be non-singular and p ∈ F[x] is an irreducible polynomial which is
relatively prime to det(A).

1. If A−1 = B + A−1Rpk for some B,R ∈ F[x]n×n and k ∈ Z>0, then for M ∈ F[x]n×n such that
M = A−1R (mod p) it holds that A−1 = B + Mpk + A−1R′pk+1 where R′ = (1/p)(R − AM).

2. For any B,R such that A−1 = B + A−1Rp, we have A−1 = B(I + Rp) + A−1R2 p2.

Algorithm 29 Unimodular Certification (UniCertPolyMat)

Input: A ∈ F[x]n×n.
Output: true if A is unimodular, false otherwise.

1: Choose an irreducible polynomial p ∈ F[x] with p - det(A) and deg(p) ≥ deg(A).
2: k = dlog2(n/2)e
3: B0 = A−1 (mod p)
4: M0 = B0, R0 = I
5: for i = 0 : k − 1 do
6: Tp = R2

i
7: Ri+1 = 1

p (Tp − AMi)
8: if Ri+1 = O then
9: break

10: end if
11: Mi+1 = B0Tp (mod p)
12: if i = k − 1 then
13: return false
14: end if
15: end for
16: return true
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The construction of the double-plus-one lift over F[x] is similar to the case of integers in [PS12, Sec-
tion 3], (or the construction of A−1 expansion in Section 3.2.2). Now we can use this in the unimodular
certification of matrices over F[x], as explained in Algorithm 29.

We can also use Algorithm 29 to get the p-adic expansion of A−1. Define pi = p2i+1−1, then pi+1 =

p2
i p. We start with A−1 (mod p0) = B0. Then for i = 0, 1, 2, .. in succession we have:

A−1 (mod p1) = B0(I + R0 p0) + M0 p2
0

A−1 (mod p2) = B1(I + R1 p1) + M1 p2
1

...

Continuing this we obtain the following sparse inverse expansion:
A−1 (mod pi) = (· · · ((B0(I + R0 p0) + M0 p2)(I + R1 p1) + M0 p2

1) + · · · + Mi−1 p2
i−1)

Before proving the correctedness of Algorithm 29, we will show that in each iteration of the algo-
rithm, matrix entries stay within a bounded degree.

Theorem 6.5.2. Given deg(p) ≥ deg(A), it holds that deg(Bi) < deg(pi), deg(Ri) < deg(A) and A−1 =

Bi + A−1Ri pi for all i, 0 ≤ i ≤ k.

Proof. Using induction on i, we will prove that the following identities and bounds hold.

A−1 = Bi + A−1Ri pi (6.5.1)

deg(Bi) < deg(pi) (6.5.2)

where Bi = Bi−1(I + Ri−1 pi−1) + Mi−1 p2
i−1.

For i = 0: the identity (6.5.1) directly follows from Lemma 6.5.1(1). The inequality (6.5.2) holds
for i = 0 from the construction that B0 = mod (A−1, p).

Now we suppose that (6.5.1) and (6.5.2) hold for some i, i ≥ 0. Applying a division free quadratic
lifting step and a linear lifting step, from Lemma 6.5.1, we have

A−1 = Bi(I + Ri pi) + A−1Ri
2 p2

i (6.5.3)

A−1 = Bi(I + Ri pi) + Mi p2
i + A−1Ri+1 pi+1

which shows that (6.5.1) is satisfied for i + 1.
Given bounds on deg(Bi), we can compute bounds on deg(Ri) using (6.5.1).

Ri = (1/pi)(I − ABi)

deg(Ri) ≤ max{deg(I), deg(A) + deg(Bi)} − deg(pi)

< deg(A) + deg(pi) − deg(pi)

= deg(A).

The computed bound on Ri can be used to prove (6.5.2) for i + 1. We have that

deg(Bi(I + Ri pi)) = deg(Bi) + max{deg(I), deg(Ri) + deg(pi)}

< 2 deg(pi) + deg(A) (6.5.4)
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Then, we apply computed bounds on expansions of Bi+1 as follows:

Bi+1/pi+1 =
(
Bi(I + Ri pi) + Mi p2

i
)
/p2

i p

deg
(
Bi+1/pi+1

)
< max{2 deg(pi) + deg(A), 2 deg(pi) + deg(p)} − 2 deg(pi) + deg(p)

≤ 0

The last two inequalities follows due to (6.5.4) and deg(p) ≥ deg(A). This shows that (6.5.2) holds
for i + 1, and similar to the case i the bound on Ri+1 can be shown by induction.

�

Theorem 6.5.3. Algorithm 29 is correct. If k is chosen large enough to satisfy 2k+1 ≥ n, then A−1 is
integral if and only if Rk is the zero matrix.

Proof. Algorithm 29 tests the integrality of A−1 by checking whether it has a finite p-adic expansion.
Assume A is unimodular, from Corollary 6.4.1, we have a bound on the degree of the determinant in
terms of the maximum degree of the entries of A. Therefore, considering A−1 as a solution matrix of the
linear system Ax = I, we can obtain a bound on the degrees of matrix entries of A−1 as

deg(A−1) ≤ (n − 1) deg(A) (6.5.5)

Now, we will show how to get the bound on number of lifting steps k, to certify the integrality of
A−1. Suppose Rk is zero for the chosen k. Then from (6.5.1) we have A−1 = Bk, and it follows that A−1

is integral. In (6.5.7) we will show that the bound on deg(A−1), with respect to the chosen k satisfies
(6.5.2) such that, deg(A−1) = deg(Bk) ≤ deg(pk). In order to obtain this bound on A−1, we choose the
number of iterations k such that (6.5.6) holds.

(n − 2) deg(A) ≤ 2 deg(pk−1) (6.5.6)

From (6.5.6) and (6.5.5) we have that:

deg(A−1) ≤ (n − 1) deg(A)

≤ 2 deg(pk−1) + deg(A)

≤ 2 deg(pk−1) + deg(p)

= deg(p2
k−1 p)

= deg(pk) (6.5.7)

Now, we rephase (6.5.6) to choose the number of steps k easily (as given in the Step 2 in Algorithm
29).

(n − 2) deg(A) ≤ 2 deg(pk−1)

= 2 deg(p2k−1)

= 2(2k − 1) deg(p)

(n − 2) deg(A) + 2 deg(p) ≤ 2k+1 deg(p)

Since deg(A) ≤ deg(p), we choose k such that (n − 2) deg(A) + 2 deg(p) ≤ n deg(p) ≤ 2k+1 deg(p). That
is n/2 ≤ 2k, and we can take k = dlog2(n/2)e.
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The quadratic lifting step at the k−1-th iteration of the double-plus-one gives that Bk−1(I+Rk−1 pk−1) �
A−1 (mod p2

k−1). Equivalently, for some error term E we have

A−1 = Bk−1(I + Rk−1 pk−1) + Ep2
k−1 (6.5.8)

Now we can get a bound on the size of the error term using presumed size of p2
k−1 and bounds on

other terms.

E =
(
A−1 − (Bk−1(I + Rk−1 pk−1)

)
/p2

k−1

deg(E) = deg(A−1 − (Bk−1(I + Rk−1 pk−1)
)
− deg(p2

k−1)

= max{deg(A−1) , deg(Bk−1(I + Rk−1 pk−1)} − 2 deg(pk−1)

< max{(n − 1) deg(A) − 2 deg(pk−1) , deg(A)} from (6.5.4) and (6.5.5)

≤ deg(A) from (6.5.6)

≤ deg(p) by assumption

Considering the quadratic lifting step (6.5.3) for i = k − 1, we can relate the residue Rk−1 of (6.5.3)
to the error E of (6.5.8) and obtain:

A−1Rk−1Pk−1 = E. (6.5.9)

Using linear p-adic lifting, the last step of the double-plus one lifting computes the correction Mk−1 =

A−1R2
k−1 which is also equal to E (mod p) by (6.5.9) (since the size of the error satisfies deg(E) <

deg(p), we get E (mod p) = E). Hence Mk−1 exactly captures the error as Mk−1 = E.
Finally, we have that

Rk = (1/p)(R2
k−1 − AMk−1) by Lemma 6.5.1

= (1/p)(R2
k−1 − AE) as Mk−1 = E

= 0 by equation (6.5.9).

�

6.6 Algorithms for Determinant Computation

6.6.1 Determinant Computation Using CRT

Algorithm 30 Determinant Computation (DetCRT)

Input: A ∈ F[x]n×n.
Output: Determinant of A.

1: Computes a bound B on the degree of det(A) using Theorem 6.4.1.
2: Choose t matching irreducible relatively prime polynomials p1, p2, . . . , pt ∈ F[x] such that∑t

i=1 deg(pi) ≥ B.
3: for i = 1, . . . , t do
4: Api = A (mod pi)
5: Compute dpi = det(Api).
6: end for
7: Apply CRT to compute dA such that dpi � dA (mod pi) for i = 1, . . . , t.
8: return dA
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Here, we present the details of our implementation which uses modular methods for computing the
determinant of a matrix A ∈ F[x]n×n. First, the algorithm computes the bound on the degree of the
determinant of A. Since the bound is quite sharp, we can use the CRT-tree method without using CRT-
iterative approach, with stability or probabilistic conditions. Algorithm 30 explains the CRT-modular
approach in details.

Theorem 6.6.1. Algorithm 30 is correct.

Proof. The correctness follows from the construction, as we have chosen,
∑t

i=1 deg(pi) ≥ B, CRT gives
the correct output. For det(Api) computation in the Step 5, we can choose any fast algorithm. �

Complexity and Performance Analysis

The complexity of one determinant computation modulo an irreducible polynomial p is approxi-
mately nω. The number of CRT steps required to achieve is t ≈ deg(det(A))/ deg(p) ≈ n, where deg(p)
is the average degree of irreducible polynomials pi. Therefore the determinant computation using CRT
approach takes O(nω+1) field operations, and this is not a good approach. Even though, the CRT-tree
method is faster than the CRT-iterative method, the complexity gain from this step is negligible due to
the expensive determinant modulo pi computation, for many steps.

6.6.2 Extension to Storjohann’s Determinant Algorithm

In this section, we presents a determinant computation algorithm for matrices over F[x], using Stor-
johann’s determinant computation algorithm in [PS13]. Theoretically, and practically we can extend his
method over F[x], and obtain similar complexities as the method given by Zhou and Lebahn.

Algorithm 31 Minimal Triangular Denominator (PolyHcol)

Input: S ∈ F[x]n×n and d ∈ F[x].
Output: Minimal triangular denominator H of S .

1: s = dS
2: w = s, g = d, H = On×n and t = On×1.
3: for i = n, n − 1, . . . , 1 do
4: Compute (gi, ∗, ti) such that gi = gcd(g, si) and gi = ∗g + tisi

5: Hii = g/gi and g = gi

6: end for
7: for i = 1, 2, . . . , n do
8: if Hii = 1 then
9: continue

10: else
11: for j = 1 : i − 1 do
12: H ji = −tis j (mod Hii)
13: s j = s j + H jisi (mod d)
14: end for
15: si = Hiisi

16: d = d/Hii and s = s/Hii

17: end if
18: end for
19: return H
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Minimal Triangular Denominator

In Storjohann’s algorithm, he uses the solution of some linear system Ax = b to obtain a minimal
triangular denominator T such that AT−1 will be a equivalent to the matrix [A | b]t as a module generated
by row vectors. In our case, the same theory can be applied as modules over F[x] are free, and matrix
operation preserves module properties.

Definition 6.6.2. Given s ∈ F(x)n×1 a minimal triangular denominator of s is a non-singular upper
triangular matrix T ∈ F[x]n×n with minimal degree determinant such that T s integral.

Since, F[x] is a Euclidean domain, the construction of a minimal triangular denominator, and its
proof are exactly follows as in [PS13, Section 2] and [Pau13, Theorem 14] for the integer case. Let s ∈
F(x)n×1 and non-zero d ∈ F[x] be such that v = ds is integral. We present Algorithm 31: PolyHcol(s, d)
which computes a minimal triangular denominator of s. This will be used in the next section.

Determinant Computation

Algorithm 32 Determinant Computation (DeterminantPoly)

Input: A ∈ F[x]n×n.
Output: Determinant of A.

1: d = 1 and B = A.
2: f = UniCertPolyMat(B)
3: while f = true do
4: Choose a matrix b ∈ F[x]n×1 with degrees of the entries chosen uniformly randomly from a

suitable interval J ⊂ Z≥0.
5: S , ds = SolverPolyMat(A, b)
6: T = PolyHcol(S , ds)
7: B = BT−1

8: d = d · det(T )
9: f = UniCertPolyMat(B)

10: end while
11: Bx = B (mod x)
12: return d · det(Bx)

The Algorithm 32 gives a determinant computation algorithm for a non-singular matrix A over F[x],
extending the integer determinant computation algorithm given in [PS13, Figure 2]. The first phase com-
putes S = A−1b for a vector b ∈ F[x]n in which the entries chosen uniformly randomly from J ⊂ Z>0. If
the degree range of the matrix A is known, we choose the same range for the interval J to obtain similar
bounds for numerator and denominator of S . Then the minimal triangular denominator captures a large
divisor of det(A), and the determinant of the updated AT−1 is reduced by a factor of det(A). In each
succession minimal triangular denominators say T1,T2, . . . are computed, and unimodular certification
of B = AT−1

1 T−1
2 verifies the completeness of the determinant of A up to a unit. For generic matrices, we

only need a single iteration to extract the determinant, similar to the cases of integers (in [PS13, Section
3]) and number fields. Finally, the determinant of A can be obtained from the product of determinants of
T and B (mod x) as explained in the Theorem 6.6.3. These det computations are efficient as B (mod x)
is a integer matrix and T is an upper triangular matrix. Also, we can use the fast inverse computation
method of Algorithm 13 at the Step 7 to compute T−1.

Theorem 6.6.3. Algorithm 32 is correct.
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Proof. The correctedness of the sub-algorithm follows from previous sections and [Pau13]. Suppose
that B is unimodular at the iteration k, with B = AT−1 where T−1 = T−1

1 T−1
2 · · · T

−1
k . Then det(A) =

det(B) det(T ), and det(B) = det(B (mod x)) by Lemma 6.2.1. �

Example 6.6.4. Consider the matrix A =

[
3x2 + 6x + 5 5 ∗ x3 + x2 + x

5x2 + 4x 3x

]
over F7[x]. The entries of

the matrix b are chosen randomly in F7[x]2 as: b =

[
1
4

]
. Now we solve the linear system Ax = b and

compute the denominator of the solution using Dixon’s algorithm and vector reconstruction.

S , den(S ) = SolverPolyMat(A, b) where S =

[
(5x2 + x + 2)/(x4 + x3 + 5)

(2x + 2)/(x5 + x4 + 5x

]
and

den(S ) = 4x5 + 4x4 + 6x.
We compute the minimal triangular denominator as T = PolyHcol(S , den(S )):

T =

[
1 2x4 + x2 + 2x
0 4x5 + 4x4 + 6x

]
T−1 = 1

4x5+4x4+6x

[
4x5 + 4x4 + 6x 5x4 + 6x2 + 5x

0 1

]
Step 7 of Algorithm 32 computes: C = AT−1 =

[
3x2 + 6x + 5 2x + 2

5x2 + 4x x + 4

]
Now we test for unimodularity of C using Algorithm 29:
First, we choose an irreducible polynomial p ∈ F7[x] such that deg(p) ≥ deg(C). Let p = x2 +4x+6.

We compute C−1 (mod p) over the field F7[x]/(p) as:

B0 = C−1 (mod p) =

[
6x + 3 2x + 2
5x + 5 6x + 6

]
.

Take M0 = B0, R0 = I, then T0 = I2. Compute R1 = (T0 −CM0)/p =

[
3x + 3 x + 1
5x + 6 4x + 2

]
.

T1 = R2
1 =

[
x + 1 5x + 5

4x + 2 6x + 3

]
.

M1 = B0T1 (mod p) =

[
0 0
4 6

]
. Then, we compute R2 = (T1 − CM1)/p =

[
0 0
0 0

]
. Since R2 = O2×2,

we have that UniCertPolyMat(C) = true.
Now we compute the determinant of A as follows:

Let Cx = C (mod x) =

[
5 2
0 4

]
. It is easy to compute determinants of T and Cx, since T is an

upper-triangular matrix and Cx is a matrix over F7. Therefore, we have: det(A) = det(Cx) det(T ) =

6(4x5 + 4x4 + 6x) = 3x5 + 3x4 + x.

Complexity Analysis

1. The complexity of solving step contains:

(a) one inverse computation A−1 (mod p) with complexity O(nωM(deg(A))), assuming that
deg(p) ≤ deg(A).

(b) d(n deg(A)/ deg(p))e lifting steps, with cost O(n2M(deg(A))).

2. PolyHcol takes O(n deg(A)2) for n-times extended-gcd computations and product of polynomi-
als.

3. UniCertPolyMat step has the complexity O(nω log(n/2)) as number of steps dlog2(n/2)e.
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Therefore, we can provide an upper bound for the complexity over F as O(nω log(n) deg(A)), which
is similar to the complexity of Zhou and Labahn approach in Section 6.2.2. The advantage here is that,
we work with small degrees, not over the full field with full degrees. Neiger and Pernet use an unusual
recursion scheme, their complexity is dropped by a factor of log(n), we expect better performance in
Storjohann’s approach, for generic matrices, as we get the required result at the first round, and we need
UniCertPolyMat only for the verification of the completeness.

Fq n
d 10-15 100-150 500-550
Det_P Hecke Quot Det_P Hecke Quot Det_P Hecke Quot

F7

10 0.15 0.00 0.02 0.59 0.15 0.26 13.84 2.75 0.20
30 0.45 0.07 0.16 3.62 4.23 1.17 22.90 61.09 2.67
50 1.87 0.33 0.18 16.41 22.18 1.35 1.7 m 4.7 m 2.69
100 15.57 2.91 0.19 1.9 m 3.3 m 1.64 11.7 m 37.9 m 3.23
150 1 m 11.76 0.20 6.7 m 10.9 m 1.63 33.2 m 1.9 h 3.51

F3511

10 0.03 0.00 0.17 1.21 0.17 0.14 21.27 2.26 0.11
30 0.55 0.08 0.15 6.17 4.91 0.80 51.45 1.2 m 1.35
50 2.17 0.37 0.17 29.04 26.46 0.91 2.9 m 5.5 m 1.86
100 16.80 3.28 0.20 3.4 m 4 m 1.14 20.5 m 43.8 m 2.13
150 1.2 m 13.63 0.19 11.9 m 12.5 m 1.05 1.1 h 2.6 h 2.42

Fq3

10 0.05 0.00 0.06 5.45 0.12 0.02 1.1 m 1.48 0.02
30 0.88 0.07 0.08 17.44 3.09 0.18 2.1 m 42.48 0.33
50 4.04 0.33 0.08 1.4 m 17.60 0.20 8.0 m 3.3 m 0.41
100 33.39 2.99 0.09 10.7 m 2.4 m 0.22 1.1 h 25.6 m 0.42
150 2 m 13.71 0.11 36.4 m 8.2 m 0.22 3.5 h 2.8 h 0.81

Table 6.1: Timing for Polynomial Determinant Computation with Proof.

Performance Analysis Based on Timings

We have implemented Algorithm 32 using the Hecke, comparison have been made with the existing
implementation in Hecke which is based on Mulders’ and Storjohann’s method as explained in Section
6.2.1. Table 6.1 shows the run-timings for Algorithm 32 DeterminantPoly (Det_P) with the proof
for the determinant (using unimodular certification). However, for random matrices denominator is the
determinant, and we do not require to test the result using UniCert step. Thus, Table 6.2 shows runtimes
without the proof in columns Det.

To illustrate the efficiency of the new method, we have computed timings over finite fields: F7, F3511
and Fq3 for q3 = 351135113521. Table 6.1 and 6.2 show times in seconds (and m -for minutes) for new
algorithms Det_P and Det, (and quotient times in columns Quot). We have considered different choices
of parameters: n- dimension of the matrix, d- degree range of the input matrix and Fq- the finite field.
Closer inspection of the timings show that the new algorithm works much better for big matrices having
large degree entries, over fields of small characteristics: over F7 for 150 × 150 matrix having entries
of degree 500 − 550 the new implementation computes the determinant, nearly 3 times faster than the
existing one with the unimodular certification, and nearly 10 times faster without the proof.



6.6. Algorithms for Determinant Computation 111

Fq n
d 10-15 100-150 500-550

Det Hecke Quot Det Hecke Quot Det Hecke Quot

F7

10 0.14 0.00 0.02 0.36 0.15 0.41 7.09 2.75 0.39
30 0.22 0.07 0.33 2.12 4.23 2.00 14.26 61.09 4.28
50 0.77 0.33 0.44 8.03 22.18 2.76 48.13 4.7 m 5.90
100 5.76 2.99 0.52 47.55 3.3 m 4.12 4.7 m 37.9 m 7.91
150 17.11 13.71 0.80 2.3 m 10.9 m 4.64 11.5 m 1.9 h 9.89

F3511

10 0.02 0.00 0.30 0.98 0.17 0.17 9.21 2.26 0.25
30 0.28 0.08 0.30 3.29 4.91 1.49 24.44 1.2 m 2.85
50 0.91 0.37 0.41 12.69 26.46 2.09 1.4 m 5.5 m 3.72
100 6.21 3.28 0.53 1.3 m 4 m 2.99 8.8 m 43.8 m 5.17
150 20.13 13.63 0.68 4 m 12.5 m 3.06 21.6 m 2.6 h 7.21

Fq3

10 0.03 0.00 0.10 1.78 0.12 0.07 54.58 1.48 0.03
30 0.40 0.07 0.18 8.37 3.09 0.37 1.3 m 42.48 0.54
50 1.60 0.33 0.21 29.97 17.60 0.59 3.6 m 3.3 m 0.91
100 11.51 2.99 0.26 3.6 m 2.4 m 0.65 25.2 m 25.6 m 1.01
150 36.70 13.71 0.37 11.5 m 8.2 m 0.71 1.3 h 2.8 h 2.13

Table 6.2: Timing for Polynomial Determinant Computation without Proof.
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Conclusions and Further Work

The implemented determinant computation Algorithm 6 (ModularDeterminant), which uses the
idea of Abbott, Bronstein and Mulders performs superior to all existing implementations. The new
unimodular certification algorithm uses higher-order lifting and residue number systems. Also, the
normal form computation of a one-dimensional module using PseudoHcol implementation is efficient
and successful (generalizing to the hcol algorithm by Storjohann). The output of the PseudoHcol
algorithm stays balanced with the size of entries similar to the input matrix, this phenomenon has been
observed in the integer case as well, but we do not know the reason why it does not grow as suggested
by the preliminary analysis in (pauderis2013computing).

We have been able to extend the techniques which are used in the state of the art method for determi-
nant computation in [PS13] to number fields. We could achieve theoretically faster methods with better
complexities. For further improvement we need the access to a highly optimized low-level libraries such
as such as BLAS [BPP+02], ATLAS [WD98] or OpenBLAS.

Over number fields of small degrees, we could recover the determinant from the denominator ideal
using the unit group. This approach for recovering the missing unit is similar to the final step of the
determinant algorithm for integers.

We could optimize the determinant computation algorithm over polynomial ring over finite fields,
by using residue number systems in the unimodular certification step.

The minimal polynomial can be computed in the time of matrix multiplications, using coprime basis
computation and Hensel lifting.
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