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Abstract

Life insurance companies are asked by the Solvency II regime to retain capital require-
ments against economically adverse developments. This ensures that they are continuously
able to meet their payment obligations towards the policyholders. When relying on an
internal model approach, an insurer’s solvency capital requirement is defined as the 99.5%
value-at-risk of its full loss probability distribution over the coming year. In the intro-
ductory part of this thesis, we provide the actuarial modeling tools and risk aggregation
methods by which the companies can accomplish the derivations of these forecasts.

Since the industry still lacks the computational capacities to fully simulate these dis-
tributions, the insurers have to refer to suitable approximation techniques such as the
least-squares Monte Carlo (LSMC) method. The key idea of LSMC is to run only a few
wisely selected simulations and to process their output further to obtain a risk-dependent
proxy function of the loss. We dedicate the first part of this thesis to establishing a theo-
retical framework of the LSMC method. We start with how LSMC for calculating capital
requirements is related to its original use in American option pricing. Then we decompose
LSMC into four steps. In the first one, the Monte Carlo simulation setting is defined.
The second and third steps serve the calibration and validation of the proxy function,
and the fourth step yields the loss distribution forecast by evaluating the proxy model.
When guiding through the steps, we address practical challenges and propose an adaptive
calibration algorithm. We complete with a slightly disguised real-world application.

The second part builds upon the first one by taking up the LSMC framework and diving
deeper into its calibration step. After a literature review and a basic recapitulation, var-
ious adaptive machine learning approaches relying on least-squares regression and model
selection criteria are presented as solutions to the proxy modeling task. The studied ap-
proaches range from ordinary and generalized least-squares regression variants over GLM
and GAM methods to MARS and kernel regression routines. We justify the combinability
of the regression ingredients mathematically and compare their approximation quality in
slightly altered real-world experiments. Thereby, we perform sensitivity analyses, discuss
numerical stability and run comprehensive out-of-sample tests. The scope of the analyzed
regression variants extends to other high-dimensional variable selection applications.

Life insurance contracts with early exercise features can be priced by LSMC as well
due to their analogies to American options. In the third part of this thesis, equity-linked
contracts with American-style surrender options and minimum interest rate guarantees
payable upon contract termination are valued. We allow randomness and jumps in the
movements of the interest rate, stochastic volatility, stock market and mortality. For the
simultaneous valuation of numerous insurance contracts, a hybrid probability measure
and an additional regression function are introduced. Furthermore, an efficient seed-
related simulation procedure accounting for the forward discretization bias and a validation
concept are proposed. An extensive numerical example rounds off the last part.





Zusammenfassung

Zur Gewährleistung ihrer Solvabilität auch in nachteiligen ökonomischen Szenarien wer-
den Lebensversicherer unter Solvency II aufgefordert, ein Solvenzkapital vorzuhalten.
Für Versicherer mit einem internen Modell ist dieses als der 99.5%-Value-at-Risk ihrer
einjährigen Verlustverteilung definiert. Im Einführungsteil dieser Dissertation werden die
Grundlagen der aktuariellen Modellierung zur Bestimmung dieser Wahrscheinlichkeitsver-
teilung einschließlich bekannter Methoden zur Risikoaggregation vorgestellt.

Derzeit verfügen die Versicherer bei Weitem nicht über die Computerkapazitäten, die
zur vollständigen Simulation ihrer Verlustverteilung notwendig wären. Deswegen müssen
sie auf Approximationstechniken wie die Least-Squares Monte Carlo (LSMC)-Methodik
zurückgreifen. Die Idee von LSMC besteht darin, nur wenige geschickt gewählte Simula-
tionen durchzuführen und daraus approximativ den Zusammenhang zwischen Verlust und
Risiken herzuleiten. Im ersten Teil dieser Dissertation wird ein theoretischer Rahmen für
den LSMC-Ansatz zur Solvenzkapitalberechnung geschaffen. Nachdem die Verbindung zur
Bewertung amerikanischer Optionen steht, wird der Ansatz in vier Schritte zerlegt. Im
ersten Schritt wird das Monte Carlo Setting definiert. Dann folgen die Schritte zwei und
drei zur Kalibrierung und Validierung der Proxyfunktion. Im vierten Schritt wird diese
zur Vorhersage der Verlustverteilung angewendet. Parallel werden die Herausforderungen
in der Praxis thematisiert sowie ein adaptiver Regressionsalgorithmus präsentiert. Ab-
schließend wird die LSMC-Methodik mit Hilfe eines praktischen Beispiels illustriert.

Der zweite Teil baut auf dem ersten auf und beleuchet den Kalibrierungsschritt tiefer-
gehend. Nach einem Literaturüberblick und methodischen Basics werden diverse adaptive
Machine Learning Ansätze basierend auf der Methode der kleinsten Quadrate und Mod-
ellwahlkriterien zur Herleitung der Proxyfunktion eingeführt. Die untersuchten Regres-
sionstechniken reichen von der gewöhnlichen und verallgemeinerten Kleinste-Quadrate-
Schätzung über GLM und GAM Methoden bis hin zur MARS Routine und Kernel-
Regression. Alle Verfahren werden mathematisch legitimiert sowie anhand von praktis-
chen Experimenten hinsichtlich ihres Verhaltens, ihrer numerischen Stabilität und Out-of-
Sample Performance analysiert. Neben dem LSMC-Kontext kommen für diese Verfahren
auch andere hochdimensionale Anwendungen mit Variablenselektion infrage.

Lebensversicherungsverträge mit der Option zur vorzeitigen Beendigung können eben-
falls durch einen LSMC-Algorithmus bewertet werden. Im dritten Teil dieser Dissertation
werden fondgebundene Verträge mit Mindestgarantiezinsen, die Rückkaufsrechte nach dem
Vorbild amerikanischer Optionen enthalten, bewertet. Die Modellierung lässt Zufall und
Sprünge in den Zins-, Volatilitäts-, Aktienmarkt- und Sterblichkeitsentwicklungen zu. Zur
gleichzeitigen Bewertung zahlreicher Versicherungsverträge wird ein hybrides Wahrschein-
lichkeitsmaß verwendet. Weiter werden eine seedbasierte Simulationsprozedur zur Kon-
trolle des Bias bei der Forwärtsdiskretisierung und ein Validierungskonzept vorgeschlagen.
Ein numerisches Beispiel rundet den letzten Teil ab.
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Introductory Part

Actuarial Modeling in Risk Management

Résumé

First of all, we give a thorough insight into the world of actuarial risk
modeling, which serves as the mathematical foundation for risk manage-
ment in the life insurance business. Thereby, five sub-areas are illumi-
nated. We start with the cash-flow-projection models as the platforms
for the actuarial modeling under Solvency II. Then, we move on to the
stochastic modeling of selected capital market variables such as interest
rates, stock indices and credit default by economic scenario generators.
Thereafter, we dive deeper into the central themes for calculating capi-
tal requirements. As the first theme, the most common scenario types
are described. This is followed by the modeling of shocks to selected
risk factors such as interest rates, equities, bonds, mortality and lapse.
Last but not least, the presented concepts are united in the outlines of
some well-known risk aggregation techniques, including the least-squares
Monte Carlo method which is the fundamental object of research of this
thesis.
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1 Cash-flow-Projection Models

1.1 Solvency II & CFP Models

Insurance companies have to derive the market values of their assets, best estimate li-
abilities, available capitals and other related balance sheet items under Solvency II by
European Parliament & European Council (2009) to calculate their solvency capital re-
quirements (SCRs). The legislative background of the Solvency II directive is EU insur-
ance regulation aiming at policyholder protection by managing the companies’ risks of
insolvency. For the computations, the insurers make assumptions about the future de-
velopments on the capital market and the actuarial factors driving the movements in the
product portfolios such as mortality, the insureds’ lapse behavior or administration costs.
Many of these assumptions are prescribed by authorities such as EIOPA.

In the life insurance business, the cash flows on the assets and liabilities sides are
interdependent. One reason are profit sharing mechanisms according to which the insureds
highly participate at generated surpluses while not equally experiencing losses due to their
minimum interest rate guarantees (asymmetry). To account for the interdependencies, the
insurers need to model the entirety of their cash flow streams in a common system. On the
liabilities side, premiums are the main cash inflow source whereas benefits to policyholders,
dividends to shareholders and administration costs are the main cash outflow sources. The
cash flows on the assets side are mainly determined by investment decisions.

Furthermore, the insurers need to project their cash flows typically between 40 and 60
years into the future to reflect the long terms of life insurance contracts appropriately.
Besides regulatory requirements, management actions should be considered for a possi-
bly realistic modeling as well. We refer to the systems in which the complex cash flow
interactions are modeled as the cash-flow-projection (CFP) models.

Figure 1: Discounted cumulative balance and net cash flow stream generated by a CFP model.

To compute the relevant balance sheet items, the CFP model has to be simulated.
We call these calculations Monte Carlo simulations. Figure 1 displays the discounted
net cash flow stream generated by the CFP model of an exemplary life insurer’s existing
portfolio over a projection horizon of 40 years. The cash flows depend on the CFP model
characteristics, the outer risk scenarios and inner capital market scenarios. For more
details on how the random ingredients of inner capital market scenarios can look like, see
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Section 2, and for more on the different scenario types, see Section 3.

1.2 Balance Sheet Items & SCR

The Solvency II directive asks insurance companies to calculate their SCRs with the stan-
dard formula approach, a partial or a full internal model approach, see Section 5. Insurers
with full internal models have to assess their available capitals ACi

1 after a one-year risk
horizon and the related balance sheet items under several hundred thousand real-world
scenarios i. Essentially, this means they must derive the market value of their assets MVAi

1

and best estimate liability BELi1, that is, the present value of expected future cash flows
to the policyholders, under each scenario. The available capital is then obtained scenario
wise as the difference between the two positions, i.e.,

ACi
1 = MVAi

1 − BELi1. (1)

While the BELi1 stem from the CFP model, the MVAi
1 are typically derived by more gran-

ular models maintained for asset management or accounting purposes. In these models,
the assets can be valued by closed-formula solutions or other numerically efficient pricing
algorithms. To keep the explanations in this thesis simple, we will sometimes implicitly
assume that the BELi1 and MVAi

1 are produced by the same model.
Furthermore, let the initial available capital or base available capital be denoted by

AC0. Kochanski (2010) formalizes AC0 as the value of the available capital at time t = 0,
that is, the available capital under the base scenario which represents the current capital
market situation and most likely actuarial model assumptions. The profit ∆i made under
scenario i is given as the difference between the discounted available capital B1ACi

1 and
initial available capital AC0, i.e.,

∆i = B1ACi
1 −AC0. (2)

Articles 122(2) and 101(3) of the Solvency II directive define the SCR in the internal model
approach as the 99.5% value-at-risk of the full loss probability distribution forecast, i.e.,

SCR = VaR99.5% (−∆) = inf {y ∈ R | P (−∆ ≤ y) ≥ 99.5%} . (3)

Here, P (−∆ ≤ y) denotes the cumulative distribution function of the loss −∆ under the
real-world probability measure P. By construction, having an initial available capital equal
to the SCR, i.e., AC0 = SCR, ensures that the insurance company will statistically default
only with probability 0.5%. For an illustration of this case see Figure 2.

1.3 Risk Factors & Stresses

Risks are sensitivities of an insurer’s business developments to adverse deviations from
the calculation principles. Solvency II takes a purely economic viewpoint and focuses on
the risks directly affecting the balance sheet items. This means, the risks associated with
the capital market and actuarial assumptions that deteriorate the investment, actuarial
and cost results need to be taken into account. An intact risk management continuously
identifies and quantifies the factors determining success or failure of the business activities.

For the quantification, risk factors, often referred to as risk drivers, are introduced in
the company’s CFP model. Risk factors are objectifiable and measurable parameters with
expectedly a significant impact on the business results. Ideal candidates for risk factors are
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Figure 2: Real-world probability distribution forecast of B1AC1 where AC0 = SCR.

shocks to publicly accessible market quotations such as equity prices or shocks to statis-
tically deducible parameters such as biometric variables, compare Investment Committee
of DAV (2015). A distinction between capital market or financial risk factors and actu-
arial risk factors is often made. Prominent examples for capital market risk factors are
shocks to the risk-free interest rates movement, equity prices or bond yields. For possible
modeling approaches, see Sections 4.1–4.3. Typical actuarial risk factors are longevity,
mortality or lapse shocks, for their modeling, see Sections 4.4 and 4.5. Mandatory risk
factors in the derivation of an insurer’s SCR are specified by Article 105 of the Solvency
II directive. Barely quantifiable risks such as operational, reputation and strategic risks
have to be treated separately and will not be considered here.

Based on historical data, probability distributions such as Student’s t-distribution or
the normal distribution are estimated for the modeling of the risk factor ranges. These
distributions reflect the realistic stress levels which the risk factors can attain. To refer to a
specific risk factor stress level, we simply use the term stress or shock. Stresses and shocks
have to interpreted as values and can be detrimental or beneficial to a balance in most risk
aggregation methods. But in the standard formula approach they are always detrimental.
The term “stress” will in some parts of this thesis be employed as just another synonym
for the term “risk factor”. In Figure 3, the outer scenarios take on different stress values.

In summary, risks constitute sensitivities of an insurer’s balance to adverse changes in
the assumptions. They are modeled by risk factors, which can attain a wide range of
stresses. Stresses can have a positive or negative impact on the business results.

1.4 Inner & Outer Scenarios

An inner scenario refers to a path of the capital market variables over the projection
horizon. It can be defined as a two-dimensional matrix with the capital market variables
in the rows and the projection times in the columns. Examples for capital market variables
are prices of zero-coupon bonds with different terms to maturity, exchange rates, stock
returns or property returns. Usually, many of these variables are also risk factors. The
evolutions of the capital market variables highly depend on the model assumptions, that is,
the outer scenarios, see the next paragraph. While an inner scenario belongs to the input
of the CFP model, a corresponding inner Monte Carlo simulation describes an actual
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path of the CFP model in which all modeled economic interdependencies are processed.
It is common to further specify inner scenarios conditional on the context. In Section 3.1,
we will distinguish stochastic scenarios from deterministic scenarios, and in Section 3.2,
we will dive deeper into risk-neutral scenarios. Later on in this thesis, we will use capital
market, stochastic and risk-neutral scenarios interchangeably.
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Figure 3: Outer and inner scenarios over the projection horizon.

By an outer scenario, we model the risk an insurer is exposed to in the first projection
year. Mathematically, we define an outer scenario as a vector of which each component
stands for a certain capital market or actuarial risk factor. Some of the capital market risk
factors affect the inner scenario paths described above. The other ones and the actuarial
risk factors take effect on other assumptions made in the CFP model. Typically, setting
all components equal to zero yields the stress-neutral base outer scenario and thus an
insurer’s actual expectations about the model. Stresses unequal to zero are either positive
or negative deviations from these expectations. In Sections 3.3–3.5, we will divide outer
scenarios into real-world scenarios, fitting scenarios and validation scenarios.

In each Monte Carlo simulation of the CFP model, an outer scenario is complemented
by an inner scenario. Figure 3 shows the relationship between N outer scenarios Xi with

respectively a inner scenarios
(
φjt
(
Xi
))

t≥1
from projection start t = 0 until projection

end t = T . While the purpose of inner scenarios is to value balance sheet items conditional
on an outer scenario assumption, the purpose of an outer scenario is to obtain a prediction
of the balance for a specific risk constellation.

2 Stochastic Modeling

2.1 Capital Market Scenarios & ESG

When using the term capital market scenarios, the focus lies on the economic meaning
of inner scenarios. Capital market scenarios are either deterministic or stochastic. The
scenarios are supposed to model the capital market evolutions over the projection horizon
according to some industry-wide standards as set out by Investment Committee of DAV
(2017) for Germany. Since this is a non-trivial requirement for insurance companies with
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complex business profiles, software solutions taking over the scenario generation task have
been developed. These software solutions are called economic scenario generators (ESGs).

ESGs need to be tailored to an insurer’s business characteristics. This means, an ESG
has to model the insurer’s asset classes and risk factors neither in a too simple nor in
a too complex way. For instance, only asset classes the insurer is invested in must be
considered and the more important a class is in the portfolio, the preciser it should be
modeled. Similarly, areas with higher risk exposures should be covered at higher levels of
detail whereas low-risk areas should be captured by models that are easier to understand.
For the modeling of the ingredients of stochastic scenarios in ESGs, see representatively
Sections 2.2–2.4 for term structures of interest rates, stock indices and credit default.
For more information on how property, commodities, foreign currencies, inflation and
volatilities can be modeled, see the aforementioned source.

The firms can choose between standard and company-specific ESGs. When it comes to
the generation of market consistent risk-neutral scenarios, ESGs include the determination
of targets, a calibration procedure, the actual scenario generation process and a validation
procedure. The targets comprise current market conditions such as, for example, the
risk-free yield curve, swaption, bond, stock and option prices or implicit volatilities, and
dependencies between these quantities. While the former targets are directly observable
in the market or can be derived from it, the dependencies need to be estimated based on
historical data. Figure 4 by the European Central Bank (2020) displays two government
bond yield curves which can be decomposed into the risk-free yield curve plus a credit
spread. In the calibration procedure, the model parameters of the ESG are fit to the
targets to achieve market consistency. The scenarios are then generated conditional on
these model parameters. If the validation indicates that the obtained scenarios are market
consistent and arbitrage-free, they can be fed into the CFP model.

2.2 Interest Rate Modeling

In this section, we describe widely spread modeling approaches for the term structures
of interest rates in ESGs according to Chapter 3.2.5.3 of Investment Committee of DAV
(2017). Typically, these term structures are modeled by short-rate models or the LIBOR
market model. Despite we present only one-factor models, multi-factor models are con-
ceivable as well. For a proper modeling of negative interest rate environments such as the
one from January 2020 illustrated in Figure 4, the possibility of negative interest rates
should be given.

The short rate rt denotes the instantaneous interest rate at time t at which money can
be borrowed for an infinitesimally short period of time. If rt is modeled as a stochastic
process under a risk-neutral probability measure Q, the price at the start year t = 0 of a
zero-coupon bond with term T to maturity and a payoff of 1 is given by

P (0, T ) = EQ
[
exp

(
−
∫ T

0
rsds

)]
, (4)

see e.g. Korn et al. (2010)[p. 276]. The interest rates or yields which correspond to these
T -dependent zero-coupon bond prices are called spot rates i (0, T ). They follow from

P (0, T ) =
1

(1 + i (0, T ))T
. (5)
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Figure 4: AAA-rated and overall Euro area government bond yield curves as of 31st of January 2020.

They form the risk-free yield curve with respect to T at the start year. Future zero-coupon
bond prices are implicitly defined by this yield curve as well so that a short-rate model not
only specifies the spot rates but also the forward rates. In this way, the zero-coupon yield
curves for all projection years t > 0 are specified by exactly the same short-rate model.
Short rates are not observable in the market.

The following popular short-rate models by Vasicek (1977), Cox et al. (1985) and Black
& Karasinski (1991) are mean-reverting towards the long-run average value δr with speed
of adjustment ζr, volatility σr, and standard Brownian motion Zr. Thereby, the variables
can be set to be constant, to vary deterministically over time, or they can be modeled as
stochastic processes. Here are the definitions of the short-rate models:

� Vasicek model: drt = ζr (δr − rt) dt+ σrdZ
r
t ,

� Cox-Ingersoll-Ross (CIR) model: drt = ζr (δr − rt) dt+ σr
√
rtdZ

r
t ,

� Black-Karasinski (BK) model: d log rt = ζrt (δrt − log rt) dt+ σrt dZ
r
t .

The short rates of the Vasicek model are normally distributed and permit thus negative
interest rates, the ones of the CIR model are chi-squared and ensure nonnegative interest
rates, and the ones of the BK model are log-normally distributed and always positive. For
an application of the CIR model, see also Section 17.3.

The LIBOR market model by Brace et al. (1997), also known as the Brace-Ga̧tarek-
Musiela (BGM) model, describes the evolutions of the LIBOR forward rates Llt on time
intervals [l, l + 1] , l = 1, . . . , L:

� LIBOR market model (LMM):
dLlt
Llt

= µltdt+ σltdZ
l
t with drift term µlt.

Here, the modeled quantities are directly observable in the market (forward LIBORs) and
the model can be calibrated such that it matches the risk-free yield curve at the start year.
The LIBOR forward rates are log-normally distributed and always positive.

2.3 Modeling of Stock Indices

Now we address the modeling of stock indices in ESGs according to Chapter 3.2.5.2 of
Investment Committee of DAV (2017). Since the prices of single stocks can be designed
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in the same way, the following holds for them as well. Stock indices are modeled by the
changes of their values over time, that is, by stochastic processes of their returns. Both
discrete and logarithmic/continuously compounded returns are conceivable. The advan-
tage of logarithmic returns is their time-additivity, meaning that the overall logarithmic
return over two successive time periods is equal to the sum of the two individual loga-
rithmic returns, see e.g. Hudson & Gregoriou (2015). Furthermore, positive and negative
logarithmic returns of the same magnitude cancel each other out.

Insurance companies barely exposed to the risk of changes in dividend cash flows only
need to model the total returns of the performance indices. If, however, dividend cash flows
are a risk factor, a more granular approach has to be taken. Either the dividend yields or
the returns of the pure price indices must be modeled in addition. For stochastic dividend
yields, mean-reverting processes are recommended. Regardless of whether a performance
or price index is set up, the same type of stochastic process can be chosen, the parameters
resulting from calibration are then just different. An adequate stochastic process has to
account for stylized facts observed on the capital market that the insurer’s balance sheet
is sensitive to. Important stylized facts of returns might be left skewed distributions with
fat tails or stochastic volatilities.

The Committee on Finance Research of Society of Actuaries (2016) proposes in Chap-
ter 13 the models by Black & Scholes (1973), Heston (1993) and Bates (1996). Let St
denote the index price level so that dSt

St
corresponds to the discrete return. Moreover,

let rt be the short rate, µt the stochastic drift term, Kt the stochastic volatility, and let
the constant parameters λS , σS , ζK , δK be given. Let ZS and ZK be standard Brownian
motions and let JS be a jump process such as of the compound Poisson type. Suitable
index models are then of the following forms:

� Black-Scholes model: dSt
St

= (rt + λSσS) dt+σSdZSt , often written with µt = rt +λSσS ,

� Heston model: dSt
St

= µtdt+
√
KtdZ

S
t and dKt = ζK (δK −Kt) dt+ σK

√
KtdZ

K
t ,

� Bates model: dSt
St

= µtdt+
√
KtdZ

S
t + dJSt and dKt = ζK (δK −Kt) dt+ σK

√
KtdZ

K
t .

In the Black-Scholes model, the instantaneous returns are normally distributed and have a
constant volatility. Differently, the Heston and Bates models embed fat tails and stochastic
volatilities as CIR models. Since the SCR is determined as the 99.5% value-at-risk of the
loss distribution under Solvency II, compare (3), it is crucial for a risk analysis to model
the tails of any potentially relevant distribution properly. Hence, if fat tails and stochastic
volatilities are distinct features of the index returns, the Heston and Bates models should
be favored. An example for an extended Bates model proposed by Bakshi et al. (1997) and
implemented by Bacinello et al. (2009) can be found in Section 17.3. Further alternatives
are (G)ARCH models, mixed Markov models, Lévy processes and other extensions of the
presented models.

When transitioning from discrete to logarithmic returns, small changes in the dynamics
of the models not affecting their general practicability have to be made, see e.g. Drǎgulescu
& Yakovenko (2002).

2.4 Modeling of Credit Default

Credit default refers in CFP models to the event that a credit borrower does not repay the
loan which the insurance company has granted him in parts or in full. Since government
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bonds are most often modeled as risk-free investments, corporate bonds can typically be
considered an insurer’s main credit default risk. By following Chapter 3.2.5.4 of Investment
Committee of DAV (2017), we limit ourselves here to credit defaults in ESGs that concern
corporate bonds. The easiest way to factor in corporate bonds is to proceed with them like
with government bonds, that is, to omit their risk of a default. Then, only their coupon
payments need to be adjusted such that the risk-neutral market values at projection start
hit the real-world ones. But only as long as the insurer’s asset portfolio comprises nearly
solely corporate bonds with a very high creditworthiness and the projection horizon is
comparatively short, such an approach is justifiable. Compare the developments associated
with the financial crisis of 2007-08.

A slightly more advanced modeling approach decomposes a corporate bond into risk-
free coupon payments, a government bond, a stock and a short call. The four components
are then calibrated such that their total market value at projection start equals the real-
world one of the corporate bond and their total final payment attains at maximum the
nominal value of the corporate bond. In addition, market consistency is required for the
government bond and the stock. Conditional on the capital market scenario, the corporate
bond can now default. Such an event occurs in scenarios in which the stock value increases
significantly, which makes the buyer of the call option execute her right to receive the stock
from the insurance company at the comparatively low pre-agreed strike price. However,
this approach lacks the modeling of credit ratings, migrations thereof and reinvestments
in new corporate bonds.

The events in connection with the financial crisis of 2007-08 have shown the high rele-
vance of an explicit modeling of these features. A popular approach incorporating them
is the Jarrow-Lando-Turnbull (JLT) model introduced by Jarrow et al. (1997). In this
model, the credit rating dynamics are characterized by a Markov chain, meaning that
future credit ratings only depend on current states but not past ones. The probabilities
of the migrations between the different states are summarized by a real-world transition
matrix. For an exemplary transition matrix, where element qij denotes the transitional
probability from state i to j, see Table 1. To achieve risk-neutrality, all transitional prob-

AAA AA A BBB BB B CCC D
AAA 0.8899 0.0984 0.0071 0.0006 0.0019 0.0009 0.0011 0.0001
AA 0.0006 0.9055 0.0842 0.0075 0.0007 0.0003 0.0010 0.0002
A 0.0004 0.0114 0.9091 0.0700 0.0034 0.0028 0.0010 0.0019

BBB 0.0001 0.0019 0.0496 0.8747 0.0635 0.0049 0.0021 0.0032
BB 0.0001 0.0010 0.0017 0.0634 0.8328 0.0835 0.0070 0.0105
B 0.0002 0.0011 0.0013 0.0031 0.0578 0.8367 0.0545 0.0453

CCC 0.0001 0.0001 0.0020 0.0030 0.0063 0.1403 0.5685 0.2797
D 0 0 0 0 0 0 0 1

Table 1: Transition matrix with credit rating migrations between AAA and D (default).

abilities are scaled individually and time wise by risk premium adjustments conditional
on each capital market scenario. Once, the Markov chain hits the default state, it stays
there until projection end but still repays the insurance company a given fraction (i.e., the
recovery rate) of its loan. Through a correlation approach, the occurrence of default can
be coupled to stock market performance. Reinvestments in new corporate bonds are also
implementable in the JLT model.
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3 Scenario Types

3.1 Deterministic & Stochastic Scenarios

Inner scenarios can be divided into deterministic scenarios and stochastic scenarios. In
dependence of the risk projection and aggregation technique, the one or the other type
is applied, see Section 5. Investment Committee of DAV (2015) states that deterministic
scenarios are capital market scenario paths relying on historical data or expert judgment
that are used in what-if analyses such as impact assessments of low interest rate environ-
ments or certainty equivalent (CE) calculations in the market consistent embedded value
(MCEV) context. Per outer scenario, a deterministic scenario is uniquely determined, in
Figure 3 this means a = 1. For instance, the inner scenarios associated with the stresses
from the Solvency II standard formula or the Swiss Solvency test are deterministic sce-
narios. In CE scenarios, all asset classes earn the risk-free interest rate proxy and reflect
the market conditions at the valuation date.

In Parts I, II and III of this thesis, we will only consider stochastic scenarios. These
kinds of scenarios are generated based on the stochastic processes modeled in the ESG,
compare Section 2. Due to the randomness, there exist infinitely many stochastic capital
market scenarios per outer scenario, in Figure 3 this means a > 1. An example of a set of
stochastically simulated yield curves at projection year t = 1 is depicted in Figure 5 and
a set of stochastically simulated total return values is depicted in Figure 6.
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Figure 5: Set of stochastically simulated zero-coupon bond yield curves at projection year t = 1.

The crucial advantage of stochastic simulations coming as a full set is their ability to deal
with uncertainty by defining various Monte Carlo paths in the CFP model. The downside
of full stochastic simulations is their high computational costs. Typical application fields
are the SCR calculations based on internal model approaches under Solvency II, asset
liability management (ALM) analyses, strategic asset allocation (SAA) examinations and
also MCEV calculations.



12 Introductory Part

3.2 Risk-neutral Scenarios

Risk-neutral scenarios are stochastic scenarios with the property that each security earns
on average the risk-free interest rate proxy so that there are no risk premiums regardless
of the investment strategy. Under a risk-neutral probability measure, any security can be
priced as the expectation of its discounted cash flows. A risk-neutral measure is therefore
a pricing measure, and the purpose of risk-neutral scenarios drawn from it is the valuation
of liabilities, assets or other balance sheet items by simulation. Risk-neutral scenarios
must always be understood as full sets of inner scenarios. The Monte Carlo paths il-
lustrated in Figures 5 and 6 belong to sets of risk-neutral scenarios. The capital market
variables and their correlations are required to be market consistent for fair valuations. To
achieve market consistency, the model parameters of the underlying stochastic processes
are calibrated to appropriate targets in the ESG, compare Section 2.1.
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Figure 6: Set of stochastically simulated logarithmic total returns of a performance index.

An application involving both CE and risk-neutral scenarios arises in the MCEV context
when calculating the time value of options and guarantees (TVOG). Since the policyholders
participate at the profits whereas they do not incur any losses in Germany, the insurers’
cash flow profiles are asymmetric so that the risk-neutral simulations yield on average a
lower present value of future profits (PVFP) than the CE simulation. The TVOG captures
this gap, i.e.,

TVOG = PVFPCE − PVFPstoch., (6)

see e.g. Gürtler (2011). An exemplary life insurance contract featuring minimum interest
rate guarantees and a surrender option can be found in Part III of this thesis.

3.3 Real-world Scenarios

In the following, real-world scenarios are outer scenarios, under which an insurer’s liabili-
ties, assets or other balance sheet items shall be projected into the future. The projection
has the purpose of assessing the insurer’s financial situation and deriving concrete busi-
ness actions from it. A prominent example for such an assessment is the real-world loss
probability distribution forecast and the SCR calculation by the internal model approach
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under Solvency II, compare Section 1.2. Like stochastic scenarios, real-world scenarios
are able to cope with uncertainty when coming in full sets. But differently, a stand-alone
real-world scenario can be interpreted reasonably (given a sufficient inner scenario valua-
tion). Real-world scenarios are drawn from a physical probability measure, which is derived
with the aid of historical data and expert judgment. Copulas are a way to model physical
probability measures, see e.g. Mai & Scherer (2012). Capturing historical patterns of the
risk factors including their correlations lies in the focus here. The challenge consists of
estimating the parameters of the physical probability measure representing the joint real-
world distribution of the insurer’s risk factors realistically. A random set of real-world
scenarios (given sufficient inner scenario valuations) lets risky assets reach on average an
excess return over the risk-free interest rate and allows thus risk premiums.

In the CFP model, the physical and risk-neutral probability measures complement each
other over two disjoint time intervals as can be seen in Figure 3 by the sequence of the
outer and inner scenario realizations. The unification of the two measures yields the hybrid
probability measure introduced by Bauer & Ha (2015) and Natolski & Werner (2016). This
measure justifies the flexibility to switch between projection and pricing within one Monte
Carlo path.

3.4 Fitting Scenarios

To transition from computationally expensive CFP models to cheap proxy models, fitting
scenarios are required. These kinds of scenarios are selected outer scenarios under which a
CFP model is simulated to obtain a representative data image. The generated fitting points
serve as regression data for the derivation of the proxy model. For this derivation, suitable
machine learning algorithms such as the least-squares Monte Carlo (LSMC) method can
be applied. Appropriately, fitting scenarios are also referred to as training or calibration
scenarios. The set of fitting scenarios has to cover a wide range of risk factor stress level
combinations densely while being allowed to be complemented by only few inner scenarios
in smart LSMC designs. In Figure 3, such a set-up corresponds to an allocation of, for
instance, N = 25, 000 outer with a = 2 inner scenarios.

Since the proxy model will be evaluated at the real-world scenarios, the fitting scenarios
have to cover their space sufficiently well. We call the space on which the fitting scenarios
are defined fitting space. Let a specific risk factor be given and let q0.1% and q99.9% denote
the 0.1%- and 99.9%-quantiles of its univariate real-world distribution. If we aim to
calculate the SCR as the 99.5% value-at-risk of the insurer’s full loss distribution forecast,
compare Equation (3), reasonable values for the fitting scenario component representing
the given risk factor should range, for example, from q0.1% to q99.9%. For a concrete
example, see Section 4.2.

The fitting scenarios are not required to be drawn from the physical probability measure
but can instead be drawn from a purely technical one. Common choices for such technical
measures are low-discrepancy sequences such as quasi-random Sobol sequences. Not only
do these sequences ensure optimal usage of the scenario budget in Monte Carlo simulations
but also they are easy to implement, for details see Niederreiter (1992).

3.5 Validation Scenarios

For a reliable transitioning from CFP models to proxy models, validation scenarios are
required in addition to the fitting scenarios. These kinds of scenarios are selected outer
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scenarios under which a CFP model is simulated to obtain a relevant data image. The
generated validation points are used to assess the absolute goodness of fit of the previously
calibrated proxy model. In smart LSMC regression set-ups, a set of validation scenarios
aims at quantifying the expectations of the economic variable with respect to a few infor-
mative risk factor stress level combinations accurately. Such a set-up entails an allocation
of, for instance, N = 50 outer with a = 1, 000 inner scenarios.

Principally, in-sample and out-of-sample validation scenarios can be chosen. Since in-
sample validation scenarios are technically not distinguishable from fitting scenarios, they
are not suitable for measuring the absolute goodness of fit of a proxy model in a risk-
neutral world. Therefore, we will only consider out-of-sample validation scenarios and
refer to them as the validation scenarios. Due to the many required inner scenarios for the
high accuracy, only few validation scenario specifications are within the scenario budget.
For the SCR calculation under Solvency II, for example, the following paradigms exist:

� Points known to be in the capital region, that is, scenarios producing a risk capital close
to the SCR estimate from previous risk capital calculations;

� Quasi-random points from the entire fitting space;

� One-dimensional risks leading to a 1-in-200 loss in the one-dimensional distribution;

� Two- or three-dimensional stresses for risk factors with high interdependency.

4 Shock Modeling

4.1 Shocks to Interest Rates

Article 105(5)a of the Solvency II directive defines the interest rate risk as

“the sensitivity of the values of assets, liabilities and financial instruments to
changes in the term structure of interest rates, or in the volatility of interest
rates.”

Shocks to interest rates concern the discounting of the cash flows with respect to the risk-
free yield curve in the CFP model. The ranges of the shocks are determined based on
historical data, which, by the way, applies to the ranges of any risk factors. The shocks to
the term structure of interest rates are required as input information for the simulations
of the short-rate model or LIBOR market model in the ESG, compare Section 2.2. This
means that a specific stressed risk-free yield curve cannot be obtained by simply applying
the shock ex post to an already existing risk-free yield curve such as the base yield curve.

While in one-factor models the shock to the pure interest rates movement is one-
dimensional, in multi-factor models it is multidimensional. For instance, a shock to a
three-factor model has been observed in practice to allow under certain conditions a com-
ponent wise interpretation as follows: The first shock component represents a parallel
shift to the base yield curve, the second component a change to the slope of that curve,
and the third component a change to its curvature. Shocks to interest rate volatility can
be modeled separately. For most currencies, the stressed risk-free yield curves with and
without volatility adjustment (VA) have to be provided. The volatility adjustment itself
can also be stressed by treating it as an additional risk factor.
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4.2 Shocks to Equities

The equity risk is defined by Article 105(5)b of the Solvency II directive as

“the sensitivity of the values of assets, liabilities and financial instruments to
changes in the level or in the volatility of market prices of equities.”

Shocks to the level of equities are modeled as percentage changes in the market values of the
equities. The simplest approach is to tackle all equities of an insurance company jointly by
applying the shocks to their total market value. Independently, shocks to equity volatility
can be modeled. As opposed to shocks to term structures of interest rates and volatility
shocks, equity level shocks are not required as input information for the simulations in the
ESG as returns reflect only changes to indices.

Let us give a numerical example for the equity level stress corresponding to the one-
dimensional 1-in-200 loss. At first, the real-world shocks need to be estimated based on
historical data. Let these be found to follow Student’s t-distribution with four degrees
of freedom and scale parameter 0.2126. If St indicates the equity index level at time t
and if the equity returns are logarithmic, compare Figure 6, the p%-quantile is given as
qp% = d logS = logS1 − logS0 = log S1

S0
. Rewriting this equation yields Xp% = S1

S0
− 1 =

exp qp% − 1 for the percentage change in equity market price. The shock leading to the
1-in-200 loss in the univariate equity distribution corresponds to the 0.5%-quantile of the
estimated t-distribution. This quantile is equal to q0.5% = −0.9789 here. The percentage
change in equity market price associated with the 1-in-200 loss is thus

X0.5% = exp q0.5% − 1 = exp (−0.9789)− 1 = −62.43%.

In Section 3.4, a reasonable fitting scenario range under Solvency II is said to correspond
to the interval [q0.1%, q99.9%]. By using q0.1% = −1.5252 and q99.9% = 1.5252, the minimum
and maximum percentage changes occurring in the fitting scenarios turn out to be

X0.1% = exp q0.1% − 1 = exp (−1.5252)− 1 = −78.24%,

X99.9% = exp q99.9% − 1 = exp (1.5252)− 1 = 359.60%.

According to Chapter 5.1.2 of EIOPA (2019), the shocks can also be provided per
country or geographical area (e.g., EU, US, ASIA) where the equity is listed. If an equity
is listed in transnational stock exchanges, either the weighted average of the shocks across
the involved countries or the shock of the country where the largest portion of the equity
is listed shall be applied. For instance, DAX shall be shocked with respect to the German
stress and EURO STOXX 50 with respect to the weighted average across the involved
European countries.

4.3 Shocks to Bonds

Article 105(5)d of the Solvency II directive defines the spread risk as

“the sensitivity of the values of assets, liabilities and financial instruments to
changes in the level or in the volatility of credit spreads over the risk-free
interest rate term structure.”
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Bonds are assets which produce fixed cash flows until they mature. Their average returns
are described by yield curves such as the ones in Figure 4. A yield curve of a risky bond
can be decomposed into the risk-free yield curve plus a credit spread on top. Typically,
the credit spread is positive to compensate the investors for taking the risk that the bond
defaults. The higher the risk of default, the higher is the credit spread, which is why the
overall bond yield curve runs above the AAA-rated bond yield curve in the figure. Shocks
to bonds per term to maturity can be modeled in the three equivalent ways: by a change
in credit spreads, a change in yield, or a change in market prices.

Let the possibly stressed risk-free yield curve be fixed. If the levels of the credit spreads
are reduced by a shock, the yield curve is shifted downwards, which represents a decrease
of yields. A decrease of yields relative to the risk-free yields lowers the attractiveness of
bonds as investments and could therefore also be modeled as a drop in bond market prices.
Simultaneously, this means that if the risk-free yield curve is stressed, the yields of the
bonds will change relative to the risk-free yields, so that a shock to the term structure of
interest rates will always be accompanied by a shock to the bonds. For more clarity, let the
risk-free yield curve be shifted upwards. Then the bonds earn less relative to the risk-free
investment and as a result their market prices drop. As already explained, equivalently,
this drop in market prices could be modeled as a downward shift of the bond yield curve
or a decline in credit spreads.

Shocks to government bonds and corporate bonds can be implemented separately. Ac-
cording to Chapter 5.1.1 of EIOPA (2019), shocks to government bonds can be grouped
in addition by credit rating, maturity, country and geographical area depending on the
granularity. While shocks to government bonds with selected maturities are provided,
the ones with missing maturities have to be interpolated by, for example, cubic splines or
extrapolated constantly by the lastly provided shock. Shocks to corporate bonds can be
clustered in addition by sector, credit rating and geographical area, and distinguished as
financial/non-financial (ESA 2010 definition). A grouping by sector can thereby account
for varying credit spread volatilities across sectors.

4.4 Shocks to Longevity & Mortality

The mortality/longevity risks are defined by Articles 105(3)a/b of the Solvency II directive
as

“the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from changes in the level, trend, or volatility of mortality rates, where
an increase/decrease in the mortality rate leads to an increase in the value of
insurance liabilities.”

While the mortality risk is related to adverse business developments caused by a decrease
in policyholders’ life expectancy, the longevity risk is related to adverse developments
resulting from an increase in life expectancy. Whether a specific shock to mortality rates
has a detrimental or beneficial impact on the balance, depends on the characteristics of the
insurer’s product portfolio. For instance, life insurers with annuity business as their largest
portion profit from a rise in mortality whereas they have to make additional payments
to the insureds if mortality declines. Differently, insurers focusing on whole life insurance
policies benefit from lower mortality and face more payments in case mortality goes up.
Since a rise in payments stands for an increase in insurance liabilities not affecting the
assets side, it entails a decrease in profits as can be seen in Equation (1).
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The mortality/longevity risks must be calibrated to the company’s individual demands
based on historical data. A suitable risk factor design in terms of level, trend, and volatility
stresses on the parameters of the insurer’s mortality model has to be found. In the
industry, the Lee-Carter model by Lee & Carter (1992) has become popular. An alternative
accounting for cohort effects is the Cairns-Blake-Dowd model by Cairns et al. (2006).
According to Chapter 5.2.1.1 of EIOPA (2019), the most frequently used mortality models
have a random component for the modeling of the number of deaths, a deterministic
component depending on age, calendar year and year of birth, and a link function relating
the aforementioned two components to each other.

Shocks to mortality rates are typically applied directly to the best estimate mortality
assumptions under which the best estimate liability (BEL) is derived. Currently, it is
common practice to implement single mortality/longevity stresses that apply to all mor-
tality rates. But EIOPA (2019) argue that a more granular approach would be needed to
reflect the composition of BEL more appropriately. Shocks per age, gender, product type,
socioeconomic factors (e.g., job, wealth) or geographical area are conceivable.

4.5 Shocks to Lapse

Article 105(3)f of the Solvency II directive defines the lapse risk as

“the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from changes in the level or volatility of the rates of policy lapses,
terminations, renewals and surrenders.”

Wherever policyholders have the option to adapt the current conditions of their insur-
ance contracts, the lapse risk comes into play. Articles 1(15) and 1(16) of the Delegated
Regulation by European Commission (2014) divide these options into discontinuity and
continuity options. The discontinuity options include all rights to fully or partly terminate,
surrender, decrease, restrict, or suspend the insurance cover, or to permit the contract to
lapse, whereas the continuity options include all rights to establish, renew, increase, extend
or resume the insurance cover.

There are two different design possibilities for the modeling of lapse shocks according
to Chapter 5.2.1.2 of EIOPA (2019). The idea of the first one is to model the shocks as
instantaneous lapse events at projection start in the form of abrupt rises of lapses. In
this case, the affected policies and levels of the lapse rates must be specified. The second
possibility consists of a permanent change in lapse rates. This kind of shock is usually
applied directly to the best estimate lapse assumptions by level and volatility adjustments
but can also be related to the surrender benefits. Generally, the stress parameters can
be modeled in dependence of policy features such as product type, financial guarantees,
or lapse penalties. The ranges of the shocks are currently determined based on expert
judgment because of a lack of market data.

The primary impact of a certain lapse stress strongly depends on the risk factor design
and the involved contracts. For instance, surrender benefits falling due for payment in-
stantaneously because of a massive lapse event require the immediate liquidation of, for
instance, cash and government bond positions on the assets side and come along with a
decrease in insurance liabilities. Differently, an instantaneous lapse event without sud-
denly due surrender benefits as well as a permanent increase in lapse rates do not affect
the assets side at projection start and cause the insurance liabilities to rise or fall condi-
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tional on the product specifics. Moreover, shocks to lapse have secondary impacts during
projection that are subject to conditions such as:

� product features like minimum interest rate guarantees;

� the capital market situation like equity performance or the risk-free yield curve;

� characteristics of the company’s CFP model like management actions or dynamic poli-
cyholder modeling.

A related application, where equity-linked insurance contracts with American-style sur-
render options and minimum interest rate guarantees are priced, can be found in Part III
of this thesis. Here, the surrender decision is modeled as time-dependent and with respect
to, for example, equity returns, the short rate, and minimum interest rate guarantees.

5 Risk Aggregation

5.1 Nested Simulations

General Remarks

As already stated in Section 1.1, the aim of Solvency II is to protect the insureds by
demanding from the insurance companies that their risk of insolvency within a one-year
time period falls below the threshold of 0.5%. The companies satisfy this condition by
keeping an available capital as a reserve that is at least equal to the SCR. In the internal
model approach, the SCR is defined as the 99.5% value-at-risk of the full loss probability
distribution forecast over a one-year risk horizon, compare Section 1.2. This 99.5% value-
at-risk is the risk measure for a company’s overall risk position here. For the quantification
of an overall risk position, all single risks a company is exposed to, compare Section 1.3,
must be aggregated.

The nested simulations approach proposed by Bauer et al. (2012) to calculate SCRs and
used by e.g. Gordy & Juneja (2010) to derive risk measures of derivative portfolios is a
risk aggregation method which is intuitively easy to understand. Such a simulation-based
approach is an obvious solution to valuation problems to which no closed-formula solutions
are known. On the way to calculating an insurer’s SCR, pricing BELs belongs to these
kinds of problems. The simulation tools in which the BEL cash flows are modeled are the
CFP models. If a life insurer’s cash flow profile is asymmetric, for example, because a profit
sharing mechanism is in place, the BEL cash flows need to be simulated stochastically.
Thereby, the randomness typically comes in by the stochastic modeling of (at least) the
capital market risk factors, compare Section 2. Under a risk-neutral probability measure,
any balance sheet item at time t = 0 can be valued by taking the expectation of its
discounted future cash flows. Similarly, at time t = 1, any balance sheet item can be
valued by taking the expectation of its discounted future cash flows conditional on the
development in the first projection year, compare Section 1.4.

Simulation Setting

In the nested simulations approach, the full loss probability distribution forecast and
SCR, see Equation (3), are generated by Monte Carlo simulation as follows. To obtain
the probability distribution forecast, each real-world profit, see Equation (2), needs to
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be derived. Since each real-world profit can be decomposed into the discounted real-
world available capital ACi

1, i = 1, . . . , R, after the one-year time period and the base
available capital AC0, the derivation requires the simulation of R real-world scenarios
Xi, i = 1, . . . , R, and of the base scenario X0. Due to the stochastic modeling, each outer

scenario Xi is complemented by a inner scenarios
(
φjt
(
Xi
))

t≥t0
, j = 1, . . . , a, so that in

total (R+1)a simulations are performed (e.g., R = 217 = 131, 072 and a = 1, 000). In each
of these risk-neutral simulations, all cash flows are projected into the future to compute
the insurer’s MVA, BEL, and resulting available capital, see Equation (1).

Full Distribution Forecast

The left panel of Figure 7 shows the scenario split for the valuation at time t = 0. As
there is no risk in the model at projection start, the base scenario X0 reflecting the current
market conditions is unique. The a risk-neutral scenarios branch out at t = 0 and yield a
Monte Carlo paths over the projection horizon. The average values of an economic variable
such as MVA, BEL, or the available capital over these paths finally provide estimates for
the expected values at t = 0.

Single nested simulations approach at t = 0 Multiple nested simulations approaches at t = 1
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Figure 7: Nested simulation approaches in two set-ups.

The right panel of Figure 7 shows the scenario split for the valuations at time t = 1. Here
the R real-world scenarios represent the shocks to the risk factors in the first projection
year. Per real-world scenario Xi, there are a risk-neutral scenarios branching out at t = 1
yielding a Monte Carlo paths over the remaining projection horizon. The average values
over these paths are now estimates for the conditional expected values at t = 1.

According to Chapter 3 of Investment Committee of DAV (2015), crucial advantages
of the nested simulations approach are the methodological consistency in the derivation
of the estimates at t = 0 and t = 1, their equally high accuracy, and their independence
from any mathematical assumptions. For these reasons, nested simulations approaches
restricted to few wisely selected scenarios are suitable for out-of-sample validation of other
risk aggregation methods. A major drawback is the tremendous computational burden
which the insurance industry is currently not able to cope with.
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5.2 Standard Formula

General Remarks

The standard formula stated by the technical specifications of EIOPA (2014) to be the
standard approach to calculate SCRs under the Solvency II regime relies on sensitivity
and deterministic scenario analyses, compare Section 3.1. It is therefore a computationally
pretty cheap risk aggregation technique. Its core idea is to divide the calculation of the
SCR into several hierarchical levels of modules and to aggregate their results from bottom
to top, see slightly adjusted Figure 8 from the technical specifications.

Figure 8: Risk classes of the modular standard formula approach.

On the lowest hierarchical level, the risk factor wise SCRs (interest rate, equity, ...) are
determined. These are grouped on the next higher level to obtain the risk module wise
SCRs (market, health, ....). Then, the obtained SCRs are passed on to the next level to
compute the basic SCR. The last level of aggregation finally yields the overall SCR.

Risk Factor Wise SCRs

The first level of aggregation provides individual SCRs for each risk factor module (interest
rate, equity, ...), usually by combining the contributions of the sub-modules via the square
root formula, i.e.,

SCR (Xl) =

√∑
g,h

ρlg,h · Sub-SCRl
g · Sub-SCRl

h, (7)

where ρlg,h denotes the correlation between sub-modules g and h, or by running determin-
istic simulations with the risk factor shock being equal to the 1-in-200 loss stress (either
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the 0.5%- or 99.5%-quantile) of the one-dimensional real-world distribution, i.e.,

SCR (Xl) = −∆ | 1-in-200 loss risk factor shock, (8)

where “−∆ | 1-in-200 loss risk factor shock” is a loss greater than zero consistent with the
notation in Equation (2). Besides (7) and (8), other module specific approaches exist.

Risk Module Wise SCRs

On the second level of aggregation, the SCRs for the risk modules (market, health, ...) are
derived by aggregating the risk factor wise SCRs obtained on the first level. This is again
achieved by the square root formula, i.e.,

SCRr (Xr1 + . . .+Xrm) =

√∑
i,j

ρri,j · SCR (Xi) · SCR (Xj). (9)

Calculation rule (9) is an application of the formula for determining the quantile of the
sum of multiple normally distributed random variables, see Chapter 4 of Investment Com-
mittee of DAV (2015). However, the underlying assumption that the loss function follows a
normal distribution is daring in CFP models with asymmetric cash flow profiles. Its degree
of validity essentially depends on the distributional properties of the one-dimensional loss
functions. Moreover, the linearity of the loss function does not properly account for over-
proportional losses under certain combined stresses. Because of these model deficiencies,
the correlations are set conservatively.

For example, let an insurance company be only exposed to the interest rate and equity
risks in the market module, and let their correlation be 0.5 according to the technical
specifications by EIOPA (2014). On the first level of aggregation, let the SCRs be found
to be 200 and 100, respectively. Then the SCR for the market module is given as

SCRmarket =
√

2002 + 1002 + 2 · 0.5 · 200 · 100 = 264.56. (10)

Except for the non-life module, where a two-stage approach is carried out (at first pre-
mium/reserve with lapse, then their result with catastrophe), all SCRs on the second
hierarchical level are computed using formula (9) with predefined correlation matrices.

Basic SCR

Thereafter, a two-stage approach is performed on the third level of aggregation. Here, the
modules “market”, “health”, “default”, “life”, and “non-life” are aggregated at first via
the square root formula, and then the module “intangibles”, representing the intangible
asset risk which is valued separately, comes on top of that via another square root formula
with correlation 1. The result is the so-called basic SCR, i.e.,

Basic SCR =

√∑
r,s

ρr,s · SCRr · SCRs + SCRintang.. (11)

For the correlation matrix of the risk modules, see Table 2.
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r
s Market Health Default Life Non-life

Market 1
Health 0.25 1
Default 0.25 0.25 1
Life 0.25 0.25 0.25 1
Non-life 0.25 0 0.5 0 1

Table 2: Correlation matrix of the third hierarchical level of aggregation (basic SCR).

Overall SCR

The last level of aggregation yields the overall SCR as the sum of the basic SCR, an
adjustment for the risk absorbing effect of technical provisions and deferred taxes, and the
capital requirement for operational risk, i.e.,

SCR = Basic SCR + Adj.TP, tax + SCROp.. (12)

The exceptionally low run time of the standard formula approach comes at the cost of the
aforementioned mathematically strong and conservative assumptions which are typically
not satisfied. Regarding validation, only capital requirements derived from simulations
of combined 1-in-200 loss shocks of all risk factors are conceivable as benchmarks for the
overall SCR.

5.3 Least-Squares Monte Carlo Method

General Remarks

The least-squares Monte Carlo (LSMC) method is a full internal model approach to derive
SCRs under Solvency II. By combining Monte Carlo simulations with regression tech-
niques, this method not only becomes computationally significantly cheaper than the
nested simulations approach but also feasible for proxy modeling of life insurance compa-
nies. Prior to its formalization by e.g. Bauer & Ha (2015) and Krah et al. (2018) for risk
aggregation, the LSMC method was spread in the area of finance by e.g. Carriere (1996),
Tsitsiklis & Van Roy (2001) and Longstaff & Schwartz (2001) to price American and
Bermudan options. While we will go into the details of LSMC for proxy modeling of life
insurance companies in Parts I and II of this thesis, we will shed light on its option pricing
application in Part III. This section shall introduce the method as a toolkit for calculating
capital requirements alongside the risk aggregation techniques presented in Sections 5.1,
5.2 and 5.4. We divide the LSMC method into four steps. The first one addresses the
simulation setting, the second and third steps respectively the proxy function calibration
and validation, and the last one the full loss probability distribution forecast.

Simulation Setting

In the first step, the life insurer has to identify the risk factors X1, . . . , Xd its business
is exposed to. These are, for example, shocks to the risk-free interest rates movement,
equity market value, etc. Furthermore, the budget for the Monte Carlo simulations needs
to be determined conditional on the complexity of the CFP model, and be split reason-
ably between the fitting and validation computations, compare Sections 3.4 and 3.5. An
important decision that has to be made involves the allocation of the computations to
inner and outer scenarios, see Figure 9.
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Fitting simulations (e.g., N=25,000 and a=2) Validation simulations (e.g., L=50 and b=1,000)
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Figure 9: Scenario allocation in the LSMC method.

To ensure optimal usage of the simulation budgets, the fitting scenarios X1, . . . , XN

can be chosen to follow a Sobol low-discrepancy sequence, see e.g. Niederreiter (1992),
whereas the validation scenarios X1, . . . , XL should be selected manually according to
certain paradigms. Like in the nested simulations approach, the Monte Carlo simulations
provide the available capitals after the one-year risk horizon as the differences between
the insurer’s MVA and BEL per simulation. Finally, by taking the averages over the
inner simulations, unique available capital, MVA and BEL values are obtained per outer
scenario. These relationships define the fitting points

(
xi, yi

)
, i = 1, . . . , N, and validation

points
(
xi, yi

)
, i = 1, . . . , L. For example, for yi = BELi see Figure 10.
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Figure 10: Fitting points and capital region points of BEL plotted in one risk factor dimension.

Proxy Function Calibration

The aim of the second step is to find a simple proxy model for the relationship between,
for example, the available capital and risk factors in the CFP model. A transition from
the “true” available capital AC (X) over the projection horizon to a proxy model or proxy

function ÂC
(K,N)

(X) conditional on outer scenario X involves two approximations in the
LSMC method. Firstly, the conditional expected value is replaced by a linear combination
of linearly independent basis functions ek (X) , k = 0, 1, . . . ,K − 1, i.e.,

AC (X) ≈ ÂC
(K)

(X) =

K−1∑
k=0

βkek (X). (13)
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For instance, monomials or Legendre polynomials can act as basis functions but principally
any functional form is conceivable. Secondly, vector β = (β0, . . . , βK−1)T is replaced by

the ordinary least-squares (OLS) estimator β̂(N) =
(
β̂

(N)
0 , . . . , β̂

(N)
K−1

)T
. As a function of

the fitting points
(
xi, yi

)
, i = 1, . . . , N , where yi = ACi, this estimator is typically given

by minimization problem

β̂(N) = arg minβ∈RK


N∑
i=1

(
yi −

K−1∑
k=0

βkek
(
xi
))2

 , (14)

to which a closed-form solution exists that is easy to compute. Finally, plugging solution
(14) into Equation (13) yields the proxy model

ÂC
(K)

(X) ≈ ÂC
(K,N)

(X) =

K−1∑
k=0

β̂
(N)
k ek (X). (15)

In the life insurance business, a major challenge of the LSMC method consists of deter-
mining the functional form and basis functions of the proxy model. Due to the complex
cash flow patterns and high risk factor dimensions there is no computationally feasible
proxy model readily available. One way of solving this calibration challenge is to rely
on adaptive model selection algorithms which automatically build up polynomial proxy
functions term by term under further mathematical assumptions, see Part I.

Moreover, there are plenty of variations to the regression methodology that can be
tailored to the statistical properties of the data sets, see Part II. As we will see, general-
ized linear models (GLMs) by Nelder & Wedderburn (1972), generalized additive models
(GAMs) by e.g. Hastie & Tibshirani (1986), or feasible generalized least-squares (FGLS)
regression, turn out to be well-suited regression methods. Amongst others, artificial neural
networks also offer a wide range of options, see e.g. Hejazi & Jackson (2017) and Krah
et al. (2020b).

An aspect which all regression techniques share is their ability to average out the high
standard errors resulting from the few inner simulations per fitting scenario.

Proxy Function Validation

In the third step, the calibrated proxy function is validated with the aid of the validation
points

(
xi, yi

)
, i = 1, . . . , L. As opposed to the fitting values, the validation values are

averages over many inner simulations and thus have by construction low standard errors.
Therefore, they are supposed to come close to the target values of the proxy function. This
makes them good reference values. Essentially, the validation constitutes an out-of-sample
test for the proxy function.

It is pivotal to define certain validation criteria which the proxy function should meet in
order to pass the validation procedure. As central ingredients serve summary statistics of
the distribution of deviations between the proxy function predictions and validation values
such as the (normalized) mean absolute error or maximum absolute error. Furthermore,
graphical analyses can be used to verify the regression assumptions and to check the
plausibility of the proxy function. For instance, a histogram of the residuals can be created,
or the one-dimensional behavior of the proxy function can be compared risk factor wise
to suitable validation values.
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As long as a proxy function does not pass the validation procedure, its regression
methodology in the calibration step has to be refined.

Full Distribution Forecast

After the proxy model has passed the validation procedure, it is used in the last step
to derive the full loss probability distribution forecast. For this purpose, the real-world
scenarios X1, . . . , XR (e.g., R = 218 = 262, 144) are drawn from the joint real-world
distribution of the risk factors, compare Section 3.3. This distribution is, for example,
modeled by a copula based on historical data and expert judgment, see e.g. Mai &
Scherer (2012). We simply take it as given. All that needs to be done then is to plug the
real-world scenarios one after the other into the proxy model to obtain predictions for the
available capitals (1), to subtract from each one the base available capital to compute the
profits (2), and to determine the SCR as the 99.5% value-at-risk of the resulting full loss
probability distribution forecast (3), compare Figure 11.

Figure 11: Histogram of real-world loss predictions.

5.4 Replicating Portfolios

General Remarks

Replicating portfolios are an internal model approach to derive SCRs under Solvency II.
The central idea of this method is to replicate the cash flows of the available capital
or BEL by portfolios consisting of financial instruments that can be valued efficiently.
Since financial instruments only depend on capital market risks, actuarial risks cannot be
captured by replicating portfolios. Therefore, this risk aggregation technique has to be
supplemented by, for example, curve fitting, see e.g. Chapter 5 of Investment Committee of
DAV (2015). For the mathematical background of replicating portfolios, see e.g. Natolski
& Werner (2014) or Beutner et al. (2016). Like the LSMC method, replicating portfolios
are currently applied by multiple large insurance companies. Moreover, the two approaches
share four analogous steps: the definition of the simulation setting, the calibration and
validation steps, and the full loss probability distribution forecast.
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Simulation Setting

After having determined the capital market risk factors X1, . . . , Xd, the insurance company
has to decide for a computation budget in the first step and allocate it to the derivations
of the fitting and validation points. In this matter, the corresponding inner and outer sce-
narios need to be specified as well. A possible scenario allocation is depicted in Figure 12.

Fitting simulations (e.g., N=5, a1=1,000, a2=250) Validation simulations (e.g., L=7 and b=1,000)
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Figure 12: Scenario allocation in replicating portfolios.

The fitting scenarios X1, . . . , XN should be chosen such that they reflect all relevant
market situations. An approach as in the LSMC method is therefore possible. Another
way, which is in coincidence with the figure, is to take only the base scenario, representing
the current market situation, and scenarios expected to yield risk capitals close to the
99.5% value-at-risk of the loss distribution, see Chapter 7 of Investment Committee of
DAV (2015). Like the validation scenarios X1, . . . , XL, each of the few fitting scenarios is
then combined with several inner Monte Carlo simulations. While the validation points(
xi, yi

)
, i = 1, . . . , L, are obtained as in the previous sections, that is, by averaging

scenario wise over all inner simulations, the fitting points
(
xi, yi

)
, i = 1, . . . ,M, with, for

example, M = a1N1 +a2N2 and N1 +N2 = N are defined pathwise this time. But scenario
wise averages can be taken into account by additional constraints in the regression as well,
see Equation (19) below. Validation scenarios that are equal to fitting scenarios need to
be complemented by inner scenarios with different seeds.

Replicating Portfolio Calibration

The objective of the second step is to derive a replicating portfolio for the relationship
between, for example, BEL and the risk factors in the CFP model. Transitioning from
the “true” best estimate liability BEL (X) to the expectation associated with the cash

flows of the replicating portfolio B̂EL
(K,M)

(X) conditional on outer scenario X involves
the following two approximations. Firstly, BEL (X) is replaced by a linear combination of
linearly independent basis instruments gk (X) , k = 0, 1, . . . ,K − 1, from the universe of
financial instruments, i.e.,

BEL (X) ≈ B̂EL
(K)

(X) =
K−1∑
k=0

βkgk (X). (16)
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Typical basis instruments are coupon bonds for modeling constant policyholder and share-
holder cash flows, swaps and swaptions for capturing interest rate guarantees and options,
and index derivatives for modeling equity and property exposures. Secondly, the portfolio

weight vector β = (β0, . . . , βK−1)T is replaced by β̂(M) =
(
β̂

(M)
0 , . . . , β̂

(M)
K−1

)T
. As a func-

tion of the fitting points
(
xi, yi

)
, i = 1, . . . ,M , where yi = BELi, this estimator is given,

for instance, by replication problem

β̂(M) = arg minβ∈RK


M∑
i=1

(
yi −

K−1∑
k=0

βkgk
(
xi
))2

 , (17)

which is easy to compute. In Chapter 7 of Investment Committee of DAV (2015), the
metric induced by the absolute-value norm is mentioned as a common alternative to the
Euclidean metric. Regularization methods such as ridge regression by Hoerl & Kennard
(1970) or the least absolute shrinkage and selection operator (LASSO) by Tibshirani (1996)
can be applied to punish solutions with large portfolio weights such as long/short positions
in options which mutually almost eliminate each other. Finally, plugging solution (17) into
Equation (16) yields the replicating portfolio, i.e.,

B̂EL
(K)

(X) ≈ B̂EL
(K,M)

(X) =

K−1∑
k=0

β̂
(M)
k gk (X). (18)

Often times, further information on the relationship between BEL and the risk factors are
available. For example, the mean values over sets of risk-neutral scenarios from market
consistent valuations or sensitivity analyses might be at disposal. These can be made use
of by additional constraints. Then problem (17) becomes

β̂(M) = arg minβ∈RK


M∑
i=1

(
yi −

K−1∑
k=0

βkgk
(
xi
))2

+

N∑
i=1

ηi
(
ȳi − ḡi

(
xi
))2 , (19)

where ȳi and ḡi
(
xi
)

are respectively the inner simulation averages over all yi and gi
(
xi
)

=∑K−1
k=0 β̂

(M)
k gk

(
xi
)

per same outer scenario xi.

Replicating Portfolio Validation

The validation of the calibrated replicating portfolio in the third step works in principle
like the proxy function validation in the LSMC context except that the scenarios of the
validation points

(
xi, yi

)
, i = 1, . . . , L, are now inserted into the calibrated replicating

portfolio to obtain the model predictions.
Beyond its purpose to wave appropriate replicating portfolios through to the fourth step,

the third step can also be used to identify the most suitable approximation techniques for
calibration by comparison. This, by the way, holds for the LSMC method as well. In
the case of replicating portfolios, the validation can give answers related to questions on
which universe of financial instruments, optimization algorithm, loss metric, regularization
method, or additional constraints to settle for.

If a replicating portfolio does not meet the specified validation criteria, it has to be
refined based on the kinds of options provided in the previous paragraph.
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Full Distribution Forecast

The fourth step can also be adopted from the LSMC method by replacing the final proxy
function by the final replicating portfolio. For a histogram capturing a real-world loss
probability distribution forecast based on R = 218 = 262, 144 scenarios following from the
LSMC method, see again Figure 11. The histogram following from a replicating portfolio
would look quite similar given it has a similar approximation quality as the final LSMC
proxy function.







Part I

A Least-Squares Monte Carlo Framework in

Proxy Modeling of Life Insurance Companies

Résumé

The Solvency II directive asks insurance companies relying on internal
models to derive their solvency capital requirements from their full loss
distributions over the coming year. While this is in general computation-
ally infeasible in the life insurance business, an application of the least-
squares Monte Carlo (LSMC) method offers a possibility to overcome this
computational burden. We start with how LSMC for risk aggregation is
related to its original use in American option pricing. Then we outline in
detail the practical challenges a life insurer faces, a theoretical framework
of the LSMC method for calculating capital requirements, the necessary
steps on the way to a reliable proxy modeling and a concrete least-squares
regression algorithm that can be implemented in the life insurance indus-
try. Finally, we illustrate this algorithm and the advantages of the LSMC
approach via a slightly disguised real-world application.
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6 Introduction

Solvency II

The Solvency II directive passed by European Parliament & European Council (2009) has
come into effect to reduce the risk of insolvency of the insurance and reinsurance companies
from EU countries. As a result, a higher degree of financial stability shall be achieved and
the policyholders’ insurance sums are expected to become safer. More specifically, the
directive demands from the insurers to keep certain amounts of reserves - the solvency
capital requirements (SCRs) - as securities against adverse market developments. These
reserves have to reflect the risks to which the insurers are exposed to.

The standards set out in the Solvency II directive mark the starting point for the recent
developments of proxy modeling to calculate SCRs in the insurance sector. Article 122(2)
of this directive states:

“Where practicable, insurance and reinsurance undertakings shall derive the
solvency capital requirement directly from the probability distribution forecast
generated by the internal model of those undertakings, using the Value-at-Risk
measure set out in Article 101(3).”

The crucial point of this quotation is that the insurers are asked to derive their full loss
distributions in case they do not want to rely on the much simpler standard formula
approach, compare Section 5.2. A common understanding is, that in order to obtain a
reasonably accurate full distribution, several hundred thousand simulations are necessary.
With the conventional nested simulations approach by Bauer et al. (2012), compare Section
5.1, for each of these simulations at least 1, 000 Monte Carlo valuations must be carried
out. This leaves the insurance companies with the task to perform hundreds of millions
of available capital calculations to generate their full loss distributions.

CFP Models

The mere fact that such an extensive calculation is anticipated in the directive shows that,
in the years preceding the Solvency II directive, it was believed that by the time Solvency II
would be introduced much lower hardware costs and increased valuation efficiency would
allow European life insurance companies to perform that many simulations. Since the
industry is currently still far away from such computational capacities, the companies face
the challenge to find suitable approximation techniques. Among them are sophisticated
techniques such as Least-Squares Monte Carlo (LSMC), which we focus on hereinafter,
or replicating portfolios, compare Sections 5.3 and 5.4, respectively. Major parts of the
following exposition on the LSMC method have already been published in Krah et al.
(2018). The central idea of LSMC is to get along with comparatively few wisely selected
Monte Carlo simulations and to derive an available capital proxy function by least-squares
regression based on the limited simulation output.

The computational challenge arises primarily from the cash-flow-projection (CFP) mod-
els, compare Section 1.1. A CFP model replicates an insurer’s contract portfolio and assets
from the administration systems and projects their cash inflows and outflows into the fu-
ture by satisfying regulatory standards like the profit sharing mechanism and implementing
company-specific management actions. Besides being a full balance sheet projection tool,
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a CFP model is also a pricing machine of a complex derivative, processing premiums, ben-
efits, costs and dividends. The more complex an insurer’s CFP model is, the higher are the
computational costs incurred for running the available capital Monte Carlo simulations.

It is our intention to shed some light on how the nested valuation problem can be
overcome by applying the LSMC approach proposed by Cathcart (2012) and Bauer & Ha
(2015). We divide the calculation process into four steps. In the first step, we allocate
the available capacities to the simulations that will be used for generating the available
capital fitting and validation data, and run the Monte Carlo simulations of the CFP model
accordingly. Conditional on the fitting data, the proxy function for the available capital
is then calibrated in the second step. This step is mathematically most demanding as it
offers a great variety of regression methods which must be chosen from. A good method
not only reliably generates proxy functions which capture the behavior of the CFP model
well, but is also transparent, flexible with regard to the characteristics of the model and
fast. In the third step, the proxy function is validated conditional on the validation data.
Once the validation has been successful, the proxy function is passed on for evaluation
to the last step, where it yields an approximation to the insurer’s full loss distribution.
Finally, the SCR is computed as the 99.5% value-at-risk of that loss distribution.

Outline

Before we give a current snapshot of why and how the companies in the life insurance
sector can use an LSMC-based approach to make their full loss probability distribution
forecasts, we offer in Section 7.1 a short excursion to the origins of the LSMC method
in American option pricing, and describe in Sections 7.2–7.4 the basic idea behind the
method to calculate capital requirements of insurance undertakings and relate the two
applications to each other. Our main objective in the next section is to close the gap
between theory and practice by designing a concrete algorithm along with a suitable
theoretical framework. After some general remarks in Section 8.1, we give a detailed
description of the simulation setting in Section 8.2, explain concepts for proxy function
calibration and validation procedures in Sections 8.3 and 8.4, respectively, and demonstrate
the actual application of the LSMC model to forecast the full loss distribution in Section
8.5. We highlight the practical considerations an insurer should make in the various
necessary steps. Even though we do not intend to give a step-by-step worked example,
we complete with a numerical illustration in which we define the approximation task in
Section 9.1, place the focus on the calibration and validation procedures in Sections 9.2
and 9.3, respectively, the loss distribution forecast in Section 9.4 and the computation
time in Section 9.5.

7 From American Option Pricing to SCR Calculation

7.1 American Option Pricing

Originally introduced in finance as a Monte Carlo alternative for pricing American or
Bermudan options, the LSMC approach combines Monte Carlo methods with regression
techniques, see e.g. Carriere (1996), Tsitsiklis & Van Roy (2001) and Longstaff & Schwartz
(2001). The basic idea is to translate a set of simulated evolutions of the paths of un-
derlying stock price(s) on a discrete time grid in suitable regression functions. While for
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standard European options it is straight forward to calculate the resulting payoffs, to av-
erage over them and consider the discounted average as an approximation for the option
price, such a procedure is not feasible for American options due to the possibility of an
early exercise.

Instead, we have to follow each path of the stock price closely and have to decide at
each future time instantly if it is better to exercise the option now or to continue holding
it. While the intrinsic value of the option is given by its actual payoff when immediately
exercised, the continuation value depends on the future performance of the stock prices.
Of course, the latter is not known at the current time. This, however, is exactly where
the regression techniques come into the game. As the continuation value can be expressed
as the discounted expectation of the future value of the American option conditional on
the current stock price given it will not be exercised immediately, it can be expressed as
a typically unknown function of the current stock price. Such a function can then be
estimated, for instance, via linear regression, that is, with the help of the least-squares
method, see e.g. Korn et al. (2010) for a detailed description of the full algorithm. Having
obtained a regression function for the payoff at future time steps conditional on the current
one, one can compare the intrinsic value of the option to the approximated continuation
value by plugging the current stock price in the regression function. In this way, one can
calculate the optimal exercise boundary of an American option backward from maturity
to its initial time.

This LSMC technique for American options has the typical Monte Carlo advantage of
beating tree methods or partial differential equation (PDE) based methods for multiple
underlyings but tends to be slow in univariate applications.

7.2 Nested Valuation Problem

As outlined in the introduction, to calculate the capital requirement of an insurance com-
pany, its assets and liabilities in the CFP model have to be projected one year into the
future under a large number of real-world scenarios. The obtained positions after one year
have to be (re-)valued. For this, conditional expectations (under a pricing measure!) have
to be calculated. To obtain a reliable estimate for those values, for each real-world scenario
numerous stochastic simulations of the CFP model of the company need to be carried out
in the conventional nested simulations Monte Carlo approach as described in Bauer et al.
(2012). This approach with simulations in the simulations typically ends up in a nested
valuation problem as it will for most life insurance companies exceed their computational
capacities. Life insurance companies would need hundreds of millions of simulations for an
acceptably accurate nested valuation, whereas due to time and hardware constraints they
typically have the capacities to perform at most a few hundred thousand simulations.

7.3 Calculating Capital Requirements

Taking up the LSMC idea from American option pricing above, Bauer & Ha (2015) have
extended the scope of the LSMC approach to the risk management activities of financial
institutions such as in particular life insurance companies. They have suggested a way
to overcome the nested valuation problem of calculating capital requirements in nested
simulations approaches. Instead of simulating paths of stock price(s) for valuing options,
they simulate paths of CFP models for valuing balance sheet items by Monte Carlo simu-
lation. Similarly to estimating conditional continuation values, they estimate the available
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capital of a company as the difference between its assets and liabilities conditional on the
real-world scenarios by ordinary least-squares regression.

Thereby, they also highlight the flexibility of the LSMC approach to switch between
pricing and projection, i.e., to simulate under different probability measures over disjoint
time intervals. Particularly, they cope with the nested valuation problem by introducing a
hybrid probability measure: While the physical measure captures the one-year real-world
scenarios under which the assets and liabilities shall be evaluated, the risk-neutral measure
concerns the valuations in the CFP model after the one-year time period. Additional
theoretical results can be found in Natolski & Werner (2016). Key to overcoming the
nested valuation problem is that the LSMC technique gets along with only few stochastic
simulations per real-world scenario. Where numerous simulations can be forgone in the
LSMC approach compared to the nested simulations approach, the approximation of the
available capital by ordinary least-squares comes in.

7.4 Least-Squares Regression

For a better understanding, suppose the number of stochastic simulations required to
estimate the available capital under an arbitrary real-world scenario in the conventional
approach is Ñ . Then, the LSMC approach takes advantage of the idea that the Ñ required
simulations do not necessarily have to be performed based on the single real-world scenario
under which the available capital shall be derived. This means that the Ñ simulations
can be carried out based on different real-world scenarios. The effects of the different
real-world scenarios just have to be excludable by ordinary least-squares regression. By
implication, we can select and perform Ñ simulations in the LSMC approach once for all
relevant real-world scenarios together and thereby decrease the required computational
capacities tremendously compared to the conventional approach.

Compare this to the American option pricing problem where we only simulate under
the risk-neutral measure. However, each scenario at time t is only followed by one price
path. Starting from maturity, the continuation values in the preceding period are simply
calculated via a regression over the cross-sectional payments from not exercising the option.
Thus, nested simulation at each time t for each single scenario is replaced by comparing the
intrinsic option value with the current stock price inserted in the just obtained regression
function. In the calculation of capital requirements, we do not even have to think about
the exercise problem.

8 Least-Squares Monte Carlo Framework

8.1 General Remarks

In the following, we adopt the LSMC technique as described in Cathcart (2012) and Bauer
& Ha (2015) and develop it further to meet the specific needs of proxy modeling in life
insurance companies. Amongst others, Barrie & Hibbert (2011), Milliman (2013) and
Bettels et al. (2014) have already given practical illustrations of the LSMC model in risk
management.

We close the gap between theory and practice by developing a practical algorithm along
with a suitable theoretical framework. Variants of this algorithm have already been applied
successfully in many European countries and different life insurance companies under the
Solvency II directive. Although this approach appears superior to other methods in the
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industry and the algorithm meets the demands for reliable derivations of SCRs, various
active research streams search for refinements of the proxy functions, see the next part of
this thesis for details.

In this section we look in detail at the necessary steps and ingredients on the way to a
reliable proxy modeling using the LSMC framework. The particular steps are:

� a detailed description of the simulation setting and required task;

� a concept for a calibration procedure for the proxy function;

� a validation procedure for the obtained proxy function; and

� the actual application of the LSMC model to forecast the full loss distribution.

We would like to emphasize that only a carefully calibrated and rigorously validated
proxy function can be used in the LSMC approach. Otherwise, there is the danger of, for
example, using an insufficiently good approximation or an overfitted model.

8.2 Simulation Setting

8.2.1 Filtered Probability Space

We adopt the simulation framework of Bauer & Ha (2015) and modify it where neces-
sary to describe the current state of implementation in the life insurance industry. Let
(Ω,F ,F,P) be a complete filtered probability space. We also assume the existence of a
risk-neutral probability measure Q equivalent to the physical probability measure P. Since
Q is supposed to concern all tradable goods in the market, it is directly related to the
insurer’s risk factors on the assets side but not necessarily on the liabilities side. By P,
we capture the real-world scenario risk an insurer faces with regard to both its assets and
liabilities.

We model the risk an insurer is exposed to in the first projection year by a vector
X = (X1, . . . , Xd), X ∈ Rd, where each component represents the stress intensity of a
financial or actuarial risk factor. We refer to X under P as an outer scenario. Conditional
on X, we model the insurer’s uncertainty under Q by a time-dependent market consistent
Markov process (φt (X))t≥0 that reflects the developments of stochastic capital market
variables over the projection horizon. We refer to Monte Carlo simulations (φt (X))t≥0

for the risk-neutral valuation as inner scenarios. Each outer scenario is assigned a set
of inner scenarios. Under Q, we can price any security by taking the expectation of its
discounted cash flows. The discounting takes place with respect to the process (Bt)t≥0 with

Bt = exp
(∫ t

s=0 rsds
)

, where rt = r (φt (X)) denotes the instantaneous risk-free interest

rate. For more details on outer and inner scenarios as well as stochastic and risk-neutral
scenarios, see respectively Sections 1.4, 3.1 and 3.2.

The filtration F = (Ft)t≥0 of the σ-algebra F contains the inner scenario sets, that is,
the sets with the financial and actuarial information over the projection horizon. The
σ-algebra Ft captures solely the sets with the accumulated information up to time t.

8.2.2 Solvency Capital Requirement

An insurance company is interested in its risk profile to assess its risks associated with
possible business strategies. With the knowledge of how its risks influence its profit, an
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insurer can steer the business using an appropriate balance between risks and profits. In
risk management, a special focus is given to an insurer’s loss distribution over a one-
year horizon due to the Solvency II directive, compare European Parliament & European
Council (2009).

We define an insurer’s available capital at time t as its market value of assets minus
liabilities and abbreviate it by ACt. Furthermore, we define its one-year profit ∆ as the
difference between its discounted available capital after one year and its initial available
capital, i.e.,

∆ = B1AC1 −AC0, (20)

where B1AC1 constitutes an after risk result and AC0 the unique before risk result. The
solvency capital requirement (SCR) is given as the value-at-risk of the insurer’s one-year
losses, that is, the negative of ∆, at confidence level ϕ. Formally, this is the ϕ-quantile of
the loss distribution, i.e.,

SCR = VaRϕ (−∆) = inf
{
y ∈ R | F P

−∆ (y) ≥ ϕ
}
, (21)

where F P
−∆ (y) = P (−∆ ≤ y) denotes the cumulative distribution function of the loss under

P. Hence, if the initial available capital AC0 is equal to SCR, the insurer is statistically
expected to default only in 1 − ϕ business years. For instance, ϕ = 99.5% as set out
in Article 101(3) of the Solvency II directive means the company will default only with
probability 0.5%, see Figure 2. Additional information on the introduced balance sheet
items can be found in Section 1.2.

8.2.3 Available Capital

Assume the projection of asset and liability cash flows occurs annually at the discrete
times t = 1, . . . , T . Let Zt denote the net profit (dividends and losses for the shareholders
after profit sharing) at time t and let T mark the projection end. At projection start, we
can express the after risk available capital conditional on outer scenario X as

AC (X) = EQ

[
T∑
t=1

B−1
t Zt | X

]
. (22)

In our modeling, we approximate the under Solvency II sought-for discounted available
capital after a one-year horizon by the after risk available capital (22), i.e., B1AC1 ≈
AC (X). We assume that an outer scenario X = (X1, . . . , Xd) realizes immediately after
projection start and not after one year. This consideration is important as an insurance
company only knows its current CFP model but not its future ones such as after one
year. Each summand B−1

t Zt in the expectation on the right-hand side is a result of
the characteristics of the underlying CFP model. Under the Markov assumption, such a
summand takes on a value conditional on the present inner scenario component φt (X) in
a simulation. Mathematically speaking, the summands can be interpreted as functionals
zt on the vector space of profit cash flows to R. Each CFP model can be represented
by an element (z1, . . . , zT ) of a suitable function space. As long as the risk-free interest
rate enters φt (X), we can write zt (φt (X)) = B−1

t Zt, t = 1, . . . , T , so that, by linearity of
expectation, Equation (22) becomes

AC (X) =
T∑
t=1

EQ [zt (φt (X)) | X] . (23)
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For the sake of completeness, if we are interested in an economic variable other than
the available capital such as the market value of assets or best estimate liability, we can
proceed in principle as described above. Essentially, we would have to adjust the cash
flows Zt of the available capital in Equations (22) and (23) such that they represent the
respective variable. Instead of the SCR, another economic variable such as the changes in
assets or liabilities would be defined in Equation (21).

8.2.4 Fitting Points

Like Cathcart (2012) but unlike Bauer & Ha (2015), we specially construct a fitting space
on which we define the outer scenarios that are fed into the CFP model solely for simulation
purposes. We call these outer scenarios fitting scenarios. The fitting scenarios should be
selected such that they cover the space of real-world scenarios sufficiently well. This is
important as the proxy function of the available capital or another economic variable
is derived based on these scenarios. See Sections 3.3 and 3.4 for more information on
fitting and real-world scenarios. To formalize the distribution of the fitting scenarios, we
introduce another physical probability measure P′ besides P. Apart from the physical
measure, we adopt the filtered probability space from above so that we refer for the fitting
scenarios to the space (Ω,F ,F,P′). We specify the fitting space as a d-dimensional cube

Sfit = Πd
l=1[al, bl] ⊂ Rd, (24)

where the intervals [al, bl], l = 1, . . . , d, indicate the domains of the risk factors. The
endpoints of these intervals correspond respectively to a very low and a very high quantile
of the risk factor distribution. For an example of a risk factor domain, see Section 4.2.

The set of fitting scenarios xi, i = 1, . . . , N , and the number of inner scenarios a per
fitting scenario need to be defined conditional on the run time of the CFP model in
the given hardware architecture. Thereby, the minimum number of scenarios required to
obtain reliable results needs to be guaranteed. Moreover, the calculation budget should be
split reasonably between the fitting and validation computations. To allocate the fitting
scenarios on Sfit, we need to specify the physical probability measure P′ and suggest an
appropriate allocation procedure.

Once the fitting scenarios have been defined, the inner scenarios
(
φjt
(
xi
))

t≥1
, j =

1, . . . , a, per fitting scenario xi, i = 1, . . . , N , must be generated. An economic scenario
generator (ESG) can be employed to take over this task. Essentially, an ESG simulates
market consistent capital market variables over the projection horizon under Q and ensures
risk neutrality. For an exemplary stochastic modeling of capital market variables, see
Section 2.

When all required inner scenarios are available, the Monte Carlo simulations of the CFP
model are performed. These simulations provide the results for the available capital, i.e.,

(
y′
)i,j

=
(
AC′

(
xi
))j

=
T∑
t=1

zt

(
φjt
(
xi
))
, j = 1, . . . , a, i = 1, . . . , N. (25)

The averages of these results over the inner scenarios yield the fitting values per fitting
scenario, i.e.,

yi = AC
(
xi
)

=
1

a

a∑
j=1

(
y′
)i,j

, i = 1, . . . , N. (26)
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Hereinafter, we call the points
(
xi, yi

)
, i = 1, . . . , N , consisting of the fitting scenarios

and fitting values fitting points.

8.2.5 Practical Implementation

We now outline how the mathematical framework presented above can actually be imple-
mented in the industry.

The first step of a life insurance company is to identify the risks its business is exposed
to. Some of these risks are not quantifiable and are hence excluded from the modeling
in the CFP models. However, if a risk is significant for the company and can also be
implemented in the CFP model, it will usually be considered. Some quantifiable risks
may not be relevant for a company: A company underwriting solely risk insurance policies
is not exposed to the longevity risk for instance.

In Table 3, we list typical risks which can be implemented in the CFP model. In
this example, d = 17 is the number of risk factors being quantifiable and relevant for the
company. While the first nine risk factors X1, . . . , X9 are shocks on the capital market, the
remaining eight X10, . . . , X17 constitute actuarial risks, compare Section 1.3. We model
the risk factors as either additive or multiplicative stresses. For each risk factor, the base
value is usually zero. Except for the mortality catastrophe stress, all actuarial risk factors
in the table can be modeled as symmetric multiplicative or additive stresses.

Component Risk Factor Description

X1 Risk-free interest rates movement
X2 Change in interest rate volatility
X3 Change in equity volatility
X4 Shock on volatility adjustment (if used by the company)
X5 Credit default
X6 Credit spread widening
X7 Currency exchange rate risk
X8 Shock on equity market value
X9 Shock on property market value

X10 Lapse stress on best estimate assumptions
X11 Mortality catastrophe stress with a one-off increase in mortality
X12 Mortality level stress on best estimate assumptions
X13 Mortality trend stress on best estimate assumptions
X14 Mortality volatility stress on best estimate assumptions
X15 Longevity level stress on best estimate assumptions
X16 Morbidity stress on best estimate assumptions
X17 Expenses stress on best estimate assumptions

Table 3: Risk factors in the CFP model.

Some of the risk factors can depend on vectors of underlying random factors. For ex-
ample, the historic interest rate movements cannot be explained reasonably well with a
one-factor model, so companies use two-factor or three-factor models for the implemen-
tation of X1. They can also include risk-free rates in different currencies which increase
the number of dimensions even further. Equally, the equity shock X8 can be the outcome
of several shocks of indices if the company is exposed to different types of equity. The
spread widening risk X6 can also be multidimensional. For additional information on the
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modeling of shocks in CFP models, see Section 4.
As far as the number of outer scenarios is concerned, it depends on the dimensionality

of the fitting space and calculation capacities. Numbers ranging from N = 5, 000 to
N = 100, 000 fitting scenarios have been seen and tested in the industry. For the inner
scenarios, the natural choice would be a = 1 as this would permit greater diversification
among the fitting scenarios (and is in line with the original LSMC approach!). However,
in the numerical examples we set a = 2 based on the observation that the benefits from
the method of antithetic variates overcompensate the drawbacks from the reduction of the
fitting scenarios. For the method of antithetic variates, see e.g. Chapter 4.2 in Glasserman
(2004).

For the practical implementations, it is important that the fitting space Sfit in Equation
(24) is a cube. This allows using low-discrepancy sequences which is a powerful tool
ensuring optimal usage of the scenario budget in Monte Carlo simulations. By far the
most widely used ones are Sobol low-discrepancy sequences which are easy to implement.
They have a big advantage in that they make sure that each new addition of fitting points
will be optimally placed in a certain sense. For details and the exact definition of what it
means that a sequence is low-discrepancy, see Niederreiter (1992). Since a Sobol sequence
is defined on the cube Πd

l=1[0, 1], we perform a linear transformation of the dimensions to
map it to our fitting space Sfit.

It is worth noting that some risk factors require an ESG for the inner scenarios con-
ditional on the fitting scenarios to be generated. The financial models determining the
dynamics of, for instance, interest rates, equity, property and credit risk are implemented
in ESGs. The first four risk factors X1, . . . , X4 from Table 3 are always modeled directly
in the ESG, the next three ones X5, . . . , X7 can be modeled in such a way as well. The
remaining risk factors are modeled directly as input for the CFP model.

As the final step, the Monte Carlo simulations of the CFP model conditional on the
inner and outer scenarios are performed leading to the non-averaged values in Equation
(25) for the available capital. After averaging, we get the fitting values in Equation (26)
per fitting scenario and thus the fitting points which enter the regression.

8.3 Proxy Function Calibration

8.3.1 Two Approximations

Now we describe how the proxy functions for the CFP model are practically obtained.
As stated before, Cathcart (2012) and Bauer & Ha (2015) have transferred the LSMC
approach from American option pricing to the field of capital requirement calculations. A
more practical outline of this approach was given by Koursaris in Barrie & Hibbert (2011).
Instead of approximating conditional continuation values, they approximate conditional
profit functions by an LSMC technique. Both application fields, option pricing and capital
requirement calculation, have in common that the proxy functions shall predict aggregate
future cash flows conditional on current states. Overall, Cathcart (2012) and Bauer & Ha
(2015) stay rather theoretical by focusing on stylized portfolios so that their considerations
regarding the calibration of well-suited proxy functions are not fully applicable to prac-
tice. Therefore, we adopt their theoretical framework and complement it by a concrete
calibration algorithm.

Due to limited computational capacities and a finite set of basis functions, we have
to make two approximations with the aim of evaluating the economic variable in Equa-
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tion (23) conditional on outer scenario X. Firstly, we replace the conditional expected
value over the projection horizon with a linear combination of linearly independent basis
functions ek (X) ∈ L2

(
Rd,B,P′

)
, k = 0, 1, . . . ,K − 1, i.e.,

AC (X) ≈ ÂC
(K)

(X) =

K−1∑
k=0

βkek (X), (27)

with e0 (X) = 1 and intercept β0. Secondly, we replace vector β = (β0, . . . , βK−1)T with

the ordinary least-squares estimator β̂(N) =
(
β̂

(N)
0 , . . . , β̂

(N)
K−1

)T
. In dependence of the

fitting points
(
xi, yi

)
, i = 1, . . . , N , derived by the Monte Carlo simulations, β̂(N) is

given by

β̂(N) = arg minβ∈RK


N∑
i=1

(
yi −

K−1∑
k=0

βkek
(
xi
))2

 . (28)

By further approximating Equation (27) in terms of Equation (28), we obtain

AC (X) ≈ ÂC
(K)

(X) ≈ ÂC
(K,N)

(X) =

K−1∑
k=0

β̂
(N)
k ek (X), (29)

which we can evaluate at any outer scenario X.

8.3.2 Convergence

According to Proposition 3.1 by Bauer & Ha (2015), the LSMC algorithm is convergent.
We split their proposition into two parts and can adapt it such that we are able to apply
their findings to our modified model setting. Since we have made the analogies and differ-
ences between their and our model setting clear above, the translation of their proposition
into our propositions is simple. Therefore, we do not prove our propositions explicitly.
For completeness, we state these main convergence results.

Proposition 1. ÂC
(K)

(X)→ AC (X) in L2
(
Rd,B,P′

)
as K →∞.

Proposition 2. ÂC
(K,N)

(X)→ ÂC
(K)

(X) as N →∞ Q-almost surely.

By conclusion, we arrive at ÂC
(K,N)

(X)→ AC (X) in probability and thus in distribu-
tion as K,N →∞. This means that a proxy function converges in probability to the true
values of the economic variable if the basis functions are selected properly. Since P′ can
be replaced with P, the propositions hold conditional on both the scenarios on the fitting
space and the real-world scenarios. The convergence in distribution implies furthermore
that the distribution of a proxy function evaluated at the real-world scenarios approxi-
mates the actual real-world distribution. A linear transformation of the available capital
finally yields the special case that the estimate for the SCR converges to the actual one
as K,N →∞. We take up these results once more later.
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8.3.3 Adaptive Algorithm

The crucial ingredient for the regression step is the choice of the basis functions. We build
up the set of basis functions according to an algorithm given in Krah (2015). To illustrate
this algorithm, we adopt a flowchart from Krah (2015) and depict a slightly generalized
version of it in Figure 13. Hereinafter, we explain a customized version comprehensively
and discuss refinements. The core idea is to begin with a very simple proxy function and
to extend it iteration by iteration until its goodness of fit can no longer be improved. We
derive a proxy function for the available capital but the process can equally be run for
other economic variables such as the best estimate liability or best estimate of guaranteed
liabilities.

The procedure starts in the upper left side in Figure 13 with the specification of the
basis functions for the start proxy function. Typically, this will be a constant function.
Then, we perform the initial ordinary least-squares regression of the fitting values against
the fitting scenarios (k = 0). With our choice of a constant function, the start proxy
function becomes the average of all fitting values.

8.3.4 Model Selection Criterion

In the last step of the initialization, we determine a model selection criterion and evaluate
it for the start proxy function. The model selection criterion serves as a relative measure
for the goodness of fit of the proxy functions in our procedure. In the applications in
the industry, one of the well-known information criteria such as the Akaike information
criterion (AIC from (Akaike 1973)) or the Bayesian information criterion (BIC) is applied.
For that it is assumed that the fitting values conditional on the fitting scenarios, or equiv-
alently the errors, are normally distributed and homoscedastic. As we cannot guarantee
this, the final proxy function has to pass an additional validation procedure before be-
ing accepted. The preference in the industry for AIC is based on its deep foundations,
easiness to compute and compatibility with ordinary least-squares regression under the
assumptions stated above. For a comparison of AIC, BIC, Mallows’s Cp, adjusted R2,
cross-validation and of model selection criteria relying on F-tests within the same LSMC
application, see e.g. Reichenwallner (2014).

AIC will help us to find the appropriate compromise between a too small and too large
set of basis functions. In our case, it has the particular form of a suitably weighted sum
of the calibration error and the number of basis functions:

AIC = N

(
log

(
2π
(
σ̂(N)

)2
)

+ 1

)
︸ ︷︷ ︸

calibration error

+ 2 (K + 1)︸ ︷︷ ︸
number of basis functions

(30)

Here, it is
(
σ̂(N)

)2
= 1

N

∑N
i=1

(
yi −

∑K−1
k=0 β̂

(N)
k ek

(
xi
))2

with the ordinary least-squares

estimator β̂(N) from Equation (28) and the fitting points
(
xi, yi

)
, i = 1, . . . , N . For the

derivation of this particular form of AIC, see Krah (2015).
This form of AIC depends positively on both the calibration error and the number of

basis functions. This permits a very intuitive interpretation of AIC. As long as the number
of basis functions is comparatively small and the model complexity thus low, the proxy
function underfits the CFP model. Under these circumstances, it makes sense to increase
the model complexity appropriately to reduce the calibration error. As a consequence,
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Figure 13: Flowchart of the calibration algorithm.
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AIC decreases. We repeat this procedure unless AIC begins to stagnate or increase as
such a behavior is a signal for a proxy function that overfits the CFP model. In this
case, reductions in the calibration error are achieved if the proxy function approximates
noise. Since such effects reduce the generalizability of the proxy function to new data,
they should be avoided. This means, the task at hand is to find a proxy function with a
comparatively low AIC score.

8.3.5 Iterative Procedure

After the initialization, the iterative nature of the adaptive algorithm comes into play. At
the beginning of each iteration (k = 1, . . . ,K − 1), the candidate basis functions for the
extension of the proxy function need to be determined according to a predefined principle.
By providing the candidate basis functions, this principle also defines the function types
which act as building blocks for the proxy function. Since we want the proxy function to
be a multivariate polynomial function with the risk factors X1, . . . , Xd as the covariates,
we let the principle generate monomial basis functions in these d risk factors. To keep
the computational costs below an acceptable limit, we further restrict the candidate basis
functions by conditioning them on the current proxy function term structures. The prin-
ciple must be designed in a way that it derives candidate basis functions with possibly
high explanatory power.

A principle which satisfies these properties and which we employ is the so-called principle
of marginality. According to this principle, a monomial basis function may be selected if
and only if all its partial derivatives are already part of the proxy function. For instance,
after the initialization (k = 1), the proxy function term structure consists only of the
constant basis function e0 (X) = 1. Since 1 = X0

l , l = 1, . . . , d, is the partial derivative
of all linear monomials, the candidate basis functions of the first iteration are ẽc1 (X) =
Xc, c = 1, . . . , d. To give another example, the monomial X2

1X2 would become a candidate
if the proxy function term structure had been extended by the basis functions X1X2 and
X2

1 in the previous iterations. These basis functions would become candidates themselves
if the linear monomials X1 and X2 had been selected before.

When the list of candidate basis functions is complete, the proxy function term struc-
ture is extended by the first candidate basis function ẽ1

k (X). An ordinary least-squares
regression is performed based on the extended structure and AIC is calculated. If and only
if this AIC score is smaller than the currently smallest AIC score of the present iteration,
the latter AIC score is updated by the former one and the new proxy function memorized
instead of the old one. This procedure is repeated separately with the remaining candidate
basis functions ẽck (X) , c = 2, . . . , C, one after the other. In Figure 13, this part of the
algorithm can be viewed on the lower left side.

If there are candidates ẽck (X) , c = 1, . . . , C, which let AIC decrease when being added
to the proxy function, the one that lets AIC decrease most, say c̃, is finally selected into
the proxy function of the present iteration, i.e., ek (X) = ẽc̃k (X). The minimum AIC score
of the entire adaptive algorithm is updated accordingly. The algorithm terminates and
provides the final proxy function if either there is no candidate which lets AIC decrease
or the prespecified maximum number of basis functions Kmax could be exceeded in an
additional iteration. Otherwise, the next iteration (k + 1) starts by an update of the list
of candidate basis functions.
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8.3.6 Refinements

The adaptive algorithm illustrated in Figure 13 is an approach for the derivation of suitable
proxy functions which has already proved its worth in practice when applied together
with some refinements. The refinements are in particular needed if the algorithm has
not generated a proxy function which passes the validation procedure. In this case, useful
refinements can be restrictions that are made based on prior knowledge about the behavior
of the CFP model. These restrictions might increase the accuracy of the proxy function
or reduce the computational costs. For example, one can restrict the maximum powers to
which the risk factors may be raised in the basis functions by defining joint or individual
limits. Thereby, it could be reasonable to apply different rules for monomials with single
and multiple risk factors. In addition, it is possible to specify a maximum allowed number
of risk factors per monomial. The principle of marginality would have to be adjusted in
accordance with these restrictions. Moreover, one could constrain the intercept or select
some basis functions manually.

If there are risk factors that have no or negligible interactions with others, one can
split the derivation of the proxy function into two or more parts to achieve better fits
on each of these parts and finally merge the partial proxy functions. However, such an
approach requires separate fitting points for each of these parts and thus an adjusted
simulation setting in the first place. As long as such modifications do not become too
time-consuming and stay transparent, they can serve as useful tools to increase the overall
goodness of fit of the final proxy function or to eventually meet the validation criteria.

8.4 Proxy Function Validation

8.4.1 Validation Points

We cannot judge the quality of the derived proxy function only on the basis of the fitting
points. In addition, we have to perform a validation on points with a lower standard
error that have not entered the calibration procedure. Only if this works satisfactory,
we can expect a good performance from the proxy function. To conduct the validation
procedure, we adopt the filtered probability space and formalization of the available capital
from the simulation setting. The idea of the validation is to check if the proxy function
provides indeed approximately the available capital in Equation (23) conditional on the
outer scenarios. Since the fitting values rely only on few inner scenarios per fitting scenario,
they usually do not come close to (23) and are therefore not suitable for measuring the
absolute goodness of fit of a proxy function. To measure the absolute goodness of fit, we
derive validation points with sufficiently many inner scenarios per validation scenario.

To specify the validation scenarios xi, i = 1, . . . , L, considerations similar to those made
above for the fitting scenarios are necessary. This means, we have to take into account the
run time of the CFP model in the given hardware architecture while ensuring to choose
enough validation scenarios for a reasonable validation. Moreover, the validation scenario
budget must be harmonized with the fitting scenario budget. Additionally, the number of
inner scenarios b per validation scenario needs to be set such that the resulting validation
values approximate the expectation in Equation (23) sufficiently well. Lastly, the rather
few validation scenarios have to be allocated in a way that the absolute goodness of fit
of the proxy function is reliably measured. See Sections 3.4 and 3.5 for more details on
fitting and validation scenarios.
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Before the Monte Carlo simulations of the CFP model can be performed, the inner
scenarios associated with the validation scenarios must be generated. Again, an ESG can
take over this task. As a result from the simulations, we obtain the validation values
yi, i = 1, . . . , L, analogously to the fitting values in Equation (26) by averaging the values
in Equation (25), where L has to be substituted for N and b for a. In the end, we obtain
the validation points

(
xi, yi

)
, i = 1, . . . , L.

The choice of validation scenarios is not an easy task. Since the number of validation
scenarios L is limited, it is important to decide which scenarios give more insight into the
quality of the fit. There exist different paradigms for their selection:

� Points known to be in the capital region, that is, scenarios producing a risk capital close
to the SCR estimate from previous risk capital calculations;

� Quasi-random points from the entire fitting space;

� One-dimensional risks leading to a 1-in-200 loss in the one-dimensional distribution of
this risk factor, that is, points which have only one coordinate changed and which ensure
a good interpretability;

� Two- or three-dimensional stresses for risk factors with high interdependency, for exam-
ple, interest rate and lapse; and

� Points with the same inner scenarios which can be used to more accurately measure a
risk capital in scenarios which do not have the ESG relevant risk factors changed.

8.4.2 Practical Implementation

The number of validation scenarios obviously depends on the computational capacities
of a company. Using more validation scenarios is always more accurate. It is important
to strike a balance between the fitting and validation scenarios as well as between the
number of outer and inner scenarios. In the industry, we have observed between L = 15
and L = 200 validation scenarios with, respectively, between b = 1, 000 and b = 16, 000
inner scenarios. This means that the fitting and validation computations can be split
in half or the validation may get up to 3/4 of the entire calculation budget. Depending
on the insurer’s complexity the choice needs to guarantee both reliable validations while
remaining feasible.

Once we have selected the validation scenarios, we produce the corresponding bL inner
scenarios by the same ESG which we have employed in the context of the fitting scenarios.
After all Monte Carlo simulations have been run, we compute the validation values per
validation scenario by averaging.

8.4.3 Out-of-Sample Test

To assess whether a proxy function reflects the CFP model sufficiently well, we specify
three validation criteria. The first two criteria will be of quantitative nature whereas
the third criterion will be more of qualitative nature. We let a proxy function pass the
out-of-sample test if it fulfills at least two validation criteria. If a proxy function fails to
meet exactly one validation criterion, in addition, a sound explanation needs to be given.
If it fails more than one criterion, the proxy function calibration has to be refined and
performed again.
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The idea of our first validation criterion is to determine thresholds which the abso-
lute deviations between the validation values and the proxy function conditional on the
validation scenarios given by

devi =

∣∣∣∣∣∣y
i − ÂC

(K,N) (
xi
)

ai

∣∣∣∣∣∣ , i = 1, . . . , L, (31)

should not exceed. Here, ÂC
(K,N) (

xi
)

is given by Equation (29). For measuring the
relative deviation we use the asset metric ai. This means that each absolute deviation is
divided by the market value of assets ai in scenario i. |·| denotes the absolute value. The
asset metric is a more suitable denominator in the fraction above than the relative metric
in the cases in which the approximated economic variable may take on very low values.
This can occur for life business that is deeply in the money and of which the available
capital can thus be very low. Another example can be a company selling exclusively term
insurances, where the technical provisions can become small in comparison to the market
value of assets.

We require that at least 90% of the validation points have deviations in Equation (31)
not higher than 0.5% and that the remaining validation points have deviations of at
maximum 1%. If a proxy function satisfies this condition, we say it satisfies the first
validation criterion. Let the insurer have an equity-to-assets ratio of about 2%. Then,
the deviations in Equation (31) for the available capital can be translated into the relative
deviations as follows. If a validation point has a deviation with respect to the asset metric
of between 0% and 0.5%, it has a relative deviation of between 0% and 25%. Accordingly,
it has a relative deviation between 25% and 50% if its deviation with respect to the asset
metric falls in between 0.5% and 1%.

For our second validation criterion, we define an overall measure for the goodness of
fit of the proxy function by the normalized mean absolute error with respect to the asset
metric, i.e.,

mae =

∑L
i=1

∣∣∣∣yi − ÂC
(K,N) (

xi
)∣∣∣∣∑L

i=1 |ai|
. (32)

We say the second validation criterion is met if mae ≤ 0.5%.
Further graphical analyses serve as a verification of the results. First, to check if the

fitting values are at least roughly normally distributed, we create a histogram of the fitting
values. Then, for each risk factor, we separately plot the fitting values together with the
curve of the proxy function to see if the proxy function follows the behavior of the fitting
values. Thereby, we vary the proxy function only in the respective risk factor and set all
other risk factors equal to their base values. In the evaluation, we have to be aware of the
fact that the proxy function usually also includes mixed monomials which might have no
effect if one of the monomials’ risk factors is equal to the base value. Additionally, for each
risk factor, we separately create plots with selected validation points and the curve of the
proxy function. These plots help us to verify if the proxy function behaves similarly to
the validation points as well. For each risk factor, we thereby select only those validation
points that are not stressed in the components different from the currently considered
risk factor. If a proxy function follows both the fitting and validation points and shows a
behavior that is consistent with our knowledge of the CFP model, we say it satisfies the
third validation criterion.



8 Least-Squares Monte Carlo Framework 49

8.5 Full Distribution Forecast

8.5.1 Solvency Capital Requirement

After the proxy function has been successfully validated, it can finally be used to pro-
duce the full loss distribution forecast. Based on this forecast, we are not only able to
calculate the SCR as a value-at-risk but also to derive statistical figures related to other
risk measures such as the expected shortfall. We take the set of real-world scenarios
xi, i = 1, . . . , R, that needs to be drawn from the joint real-world distribution of the
risk factors P as given, compare Section 3.3. A possibility to model the joint real-world
distribution of the risk factors is the use of copulas, see e.g. Mai & Scherer (2012). In our
context, P is typically modeled with the aid of historical data and expert judgment.

We obtain the real-world values of the available capital by evaluating the proxy function
in Equation (29) at the real-world scenarios, i.e.,

ŷi = ÂC
(K,N) (

xi
)

=
K−1∑
k=0

β̂
(N)
k ek

(
xi
)
, i = 1, . . . , R. (33)

Accordingly, we compute the real-world values of the profit in Equation (20), i.e.,

∆̂i = ŷi − ŷ0, i = 1, . . . , R, (34)

where ŷ0 = AC
(
x0
)
, with x0 being the stress-neutral base scenario, denotes the estimate

for the initial available capital.
We recall the definition of the SCR from the simulation setting in Equation (21) and

replace the theoretical expressions with their empirical counterparts, i.e.,

ŜCR = V̂aRϕ

(
−∆̂

)
= inf

{
y ∈

{
−∆̂1, . . . ,−∆̂R

}
| F̂ P
−∆̂

(y) ≥ ϕ
}
, (35)

where ∆̂ represents the real-world values of the profit and F̂ P
−∆̂

(y) = P
(
−∆̂ ≤ y

)
is the

empirical distribution function of the loss under P. By using the identity F̂ P
−∆̂

(y) =
1
R

∑R
i=1 1−∆̂i≤y for the empirical distribution function, Equation (35) becomes

ŜCR = inf

{
y ∈

{
−∆̂1, . . . ,−∆̂R

}
|
R∑
i=1

1−∆̂i≤y ≥ ϕR

}
. (36)

Hence, the SCR has to be greater than or equal to dϕRe real-world losses. We estimate
thus the SCR as the b(1− ϕ)Rc highest real-world loss.

8.5.2 Convergence

As already stated above, Proposition 1 and 2 for the convergence of the two approximations
of the available capital also imply convergence in probability and distribution. Since P
can be substituted for P′, the convergence results are valid under both physical probability
measures. The following two corollaries formalize the convergence in distribution.

Corollary 1. F̂ P
ÂC

(K,N) (y) = P
(

ÂC
(K,N)

≤ y
)
→ P (AC ≤ y) = F P

AC (y) as K,N → ∞

for y ∈ R.
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Corollary 2.
(
F̂ P

ÂC
(K,N)

)−1
(ϕ) →

(
F P

AC

)−1
(ϕ) as K,N → ∞ for all continuity points

ϕ ∈ (0, 1) of
(
F P

ÂC

)−1
.

Since Corollaries 1 and 2 hold as well for linear transformations of the available capital,
we conclude that ŜCR → SCR as K,N → ∞. Hence, the estimate for the SCR in
Equations (35) and (36) converges to the theoretical SCR in Equation (21).

8.5.3 Practical Implementation

To model the joint real-world distribution of the risk factors, we can use a fully specified
Gaussian copula and, for example, R = 217 = 131,072 real-world scenarios. Then, we
compute the corresponding real-world values of the available capital and profit according
to Equations (33) and (34), respectively, to obtain a full probability distribution forecast
of the loss.

The SCR is defined as the 99.5% value-at-risk of the loss distribution under the Solvency
II directive. This is the reason why we set ϕ = 99.5% in Equations (35) and (36). As
already mentioned above, this can be interpreted as a target for the insurance company
to survive 199 out of 200 business years. Eventually, we calculate an estimate for the SCR
by evaluating Equation (36). Independent of the data, we are able to characterize this
estimate under the assumption R = 131, 072 as the b(1− ϕ)Rc = 655 th highest real-world
loss.

Numerical calculations and examples illustrating our full approach can also be found in
e.g. Bettels et al. (2014).

9 Numerical Illustration

9.1 Approximation Task

In this numerical example, we demonstrate how an actual application of our proposed
LSMC-based approach might look like in practice and illustrate the convergence of the
adaptive LSMC algorithm. We take the CFP model and real-world distribution of a
German life insurer as given and stick to conveniently scaled best estimate liability (BEL)
data that have already served as illustrations in Krah (2015). The exemplary insurer is
exposed to d = 14 relevant capital market and actuarial risks from Table 3. By numbering
these risks consecutively, i.e., Xl, l = 1, . . . , d, we overwrite the notation of Table 3 for this
example and therefore mainly disguise the meaning of the risks for keeping the anonymity
of the exemplary insurer.

Let it be our task to find a proxy function for the insurer’s BEL conditional on the
specified risk factors to derive its SCR under Solvency II as the 99.5% value-at-risk of the
corresponding loss distribution. A polynomial proxy function of the insurer’s market value
of assets can thereby be assumed to be known so that the available capital results can
easily be extracted by taking the difference of the two functions. Given the complexity
of the CFP model and the insurer’s computational capacities, it is reasonable to run the
CFP model for N = 25, 000 fitting scenarios with each of these outer scenarios entailing
a = 2 inner scenarios. While the fitting scenarios are defined such that they follow a linear
transformation of the Sobol sequence, the components of the inner scenarios are partly
generated by a suitable ESG and partly modeled directly as input in the CFP model.
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9.2 Proxy Function Calibration

For the proxy function calibration, we apply the adaptive algorithm depicted in the
flowchart of Figure 13 and set the maximum number of basis functions at Kmax = 100. As
the start proxy function, we use a constant function. In Table A1, the start proxy func-
tion term structure is represented by the first row (k = 0) containing the basis function

e0(X) =
∏14
l=1X

rl0
l = 1 since r1

0 = ... = r14
0 = 0. Then, the initial regression is performed

and the selected model selection criterion, here AIC, evaluated. For the initial AIC score
in this example, see the AIC entry in the first row of Table A1. It is a high value indicat-
ing the obvious fact that a constant poorly describes the possible changes of the insurer’s
BEL.

Now that the initialization has been completed, the iterative part of the algorithm
relying on the principle of marginality is carried out. As mentioned in the previous section,
in the first iteration (k = 1), the candidate basis functions are just the linear functions of
all risk factors. The second row of Table A1 indicates that the proxy function is extended
by candidate e1(X) = X8 in this iteration, meaning that risk factor X8, the credit default
stress, has the highest explanatory power in terms of AIC among the candidates. For the
AIC score corresponding to the updated proxy function term structure e0(X) + e1(X),
see the AIC entry in the second row. In the second iteration (k = 2), in addition to the
linear functions of the remaining risk factors, the quadratic function of the credit default
stress becomes a candidate basis function. However, as we can see in the third row of
Table A1, risk factor X6, the equity market value stress, is selected next as this risk factor
complements the existing proxy function best in this iteration. The algorithm continues
this way until iteration k = 61 in which no further candidate basis function lets AIC
decrease anymore. The sequence in which the basis functions are selected into the proxy
function and the corresponding course of the AIC scores are reported in Table A1. The
coefficients denoted in this table belong to the final proxy function emerging from iteration
k = 60. We can see that, except for the risks X5 and X9, all risk factors contribute to the

explanation of BEL. With K = 61 and ek(X) =
∏14
l=1X

rlk
l , k = 0, . . . ,K − 1, the general

expression of Equation (29) for the proxy function conditional on any outer scenario X
becomes in this example

B̂EL
(K,N)

(X) =
K−1∑
k=0

(
β̂

(N)
k

14∏
l=1

X
rlk
l

)
. (37)

9.3 Proxy Function Validation

We perform the proxy function validation based on two different sets of validation points
to highlight the impact of these choices and depart for reasons of simplification slightly
from the extensive validation procedure described in the previous section. In conjunction
with the calculation budget for the fitting computations, we let Set 1 comprise L = 51
and Set 2 comprise L = 56 validation scenarios with each validation scenario entailing
b = 1, 000 inner scenarios. While Set 1 contains the stress-neutral base point, 26 properly
transformed multi-dimensional stress points and 24 one-, two- or higher dimensional points,
Set 2 contains only four equidistant one-dimensional stresses for each risk factor. Among
the two sets of validation points, Set 1 can be viewed as the more sophisticated one.

The column “Out-of-Sample MSE” on the right-hand side of Table A1 contains the
evolution of the mean squared errors associated with Set 1 and Set 2 over the iterations.
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Typically, the mean squared errors decrease together with AIC over the iterations. How-
ever, since the sets of validation points are small and incur random fluctuations, they
cannot fully reflect the goodness of fit of a proxy function. Therefore, we do not expect
the mean squared errors to decrease monotonously over all iterations. Nevertheless, Ta-
ble A1 shows well the trend of the diminishing impact of each additional basis function in
explaining the dependencies of the BEL.

The plots of the one-dimensional curves of the proxy function together with the re-
spective one-dimensional validation points confirm the good approximation quality of the
proxy function. For exemplary plots with respect to risk factors X1 and X8, see Figures
14 and 15.
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Figure 14: One-dimensional curve of the proxy function and validation points with respect to X1.
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Figure 15: One-dimensional curve of the proxy function and validation points with respect to X8.

Furthermore, by looking at descriptive statistics on the relative deviations between the
validation values and proxy function predictions (e.g., quantiles, mean, and median), the
proxy function admits a satisfying performance on the validation sets. In order to keep
the anonymity of the insurer, we do not report exact numbers here.

Whether the proxy function is successfully validated by these simplified out-of-sample
tests and can thus be passed on to the last step of the LSMC framework, or whether the
calibration needs to be repeated with some refinements depends on the exact validation
criteria which we have not further specified in this example.
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9.4 Full Distribution Forecast

As the next step, we consider the forecast of the full distribution of the losses. Taking
up the copula approach of Section 8.5, we have generated R = 217 = 131, 072 real-world
scenarios from the joint distribution of the risk factors. The evaluation at each of these
scenarios is simple, as it amounts to the evaluation of two polynomial proxy functions
(the derived one of BEL and the given one of the market value of assets) and taking their
difference. After ordering the resulting losses by size, we are able to calculate empirically
the SCR as the corresponding 99.5%-quantile.

For our setting, we have furthermore performed a comparison between the SCR deter-
mined with the LSMC approach and a partial nested simulations approach, that is, one
using an explicit valuation with the CFP model, compare Section 5.1. Krah et al. (2018)
show in Chapter 5 that for a related company the scenarios leading to the 99.5%-quantile
in the LSMC approach and nested simulations approach are similar. This means that,
based on the LSMC algorithm, we can define a set of, for instance, 50 real-world scenarios
leading to losses close to the SCR and feed them into the CFP model. Such a valuation is
similar to the out-of-sample validation which is why we use again 1, 000 inner simulations
per outer scenario. Finally, comparing the 50 LSMC-based losses with the 50 nested sim-
ulations losses unveils potential differences in the SCR estimation for the two approaches.
This difference turns out to be only about 3%, which corresponds to a 0.5% difference in
the available capital.

9.5 Computation Time

Given the required task, the number of real-world scenarios, the duration of one simulation
in the CFP model and the computational capacities of the German life insurer, we can
easily determine good estimates for the overall computation times of the two opposing
approaches. To simplify the calculation of the computation times, we merge the two
validation sets 1 and 2 to one validation set with L = 51+56 = 107 scenarios. Furthermore,
it takes τMC = 55 seconds to run one simulation of the CFP model and the simulations
can be allocated to up to νCPU = 476 CPUs.

For the nested simulations approach, we assign the same number of inner simulations to
each real-world scenario as we did in the LSMC-based approach to each validation scenario.
The computation time of the latter approach is mainly driven by two factors: the time
needed to carry out the Monte Carlo simulations of the CFP model and the time needed to
calibrate the proxy function. The calibration takes τcalib. = 45 min in our example and can
be further reduced by applying more efficient implementation techniques (e.g., recompute
only subblocks of the design matrix in the candidate loop, and use parallelization). In
contrast, the validation involves only the fast computation of selected figures in the out-of-
sample test and the full probability distribution forecast requires only the fast evaluation of
the resulting proxy function at the real-world scenarios as well as the subsequent ordering of
the available capital estimates. Together, these calculations take only a few seconds. In the
nested simulations approach, the computation time is solely driven by one factor: the time
for the Monte Carlo simulations. The ordering of the directly resulting available capital
estimates for the value-at-risk computation is negligible here as well. The computation
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times are then, respectively,

τLSMC = (aN + bM) τMC/νCPU + τcalib. < 6 h,

τnest.stoch. = bRτMC/νCPU ≈ 25 weeks,

where N = 25, 000, a = 2, L = 107, b = 1, 000 and R = 131, 072. These are pure
run times for the projections, on top of this 30–40% additional run time is needed for
splitting the runs, saving and merging the results per scenarios as well as reading out the
figures. Hence, the LSMC-based approach is even feasible for the exemplary life insurer
if the calibration and validation procedures have to be repeated several times until the
specified validation criteria are finally met, whereas the full nested simulations approach
is not feasible at all.

10 Conclusion

Summary

In the foregoing sections, we have in detail derived the theoretical foundations of the
LSMC approach for proxy modeling in the life insurance business. We have described all
the necessary steps to a reliable implementation of the LSMC method in practice. They
mainly consist of a detailed description of the simulation setting and the required task,
a concept for a calibration procedure for the proxy function, a validation procedure for
the obtained proxy function, and the actual application of the LSMC model to forecast
the full loss distribution. In addition, we have presented a slightly disguised real-world
application of the LSMC approach for illustration.

Outlook

The most intensive research is ongoing in the area of proxy modeling. In the standard
approach presented above, ordinary monomial basis functions are used. Instead, various
orthogonal polynomial basis functions such as Laguerre, Legendre, Hermite or Chebyshev
polynomials can be employed, see e.g. Teuguia et al. (2014). To model non-smooth
behaviors or other significant patterns of the underlying CFP model, the set of possible
basis functions could be extended by other function types such as rational, algebraic,
transcendental, composite or piecewise functions, where transcendental functions include
exponential, logarithmic, power, periodic and hyperbolic functions. In cases where a
function type is not compatible with the principle of marginality, an adjustment thereof
or a new principle is required.

Additionally, other model selection criteria than AIC can be implemented. Examples are
non-parametric cross-validation, the Bayesian information criterion (BIC), Mallows’s Cp
or the Takeuchi information criterion (TIC). Mallows’s Cp is named after Mallows (1973)
and has been shown by Boisbunon et al. (2014) to be equivalent to AIC under the normal
distribution assumption. TIC has been introduced by Takeuchi (1976) as a generalization
of AIC, which arises from TIC when the true distribution of the phenomenon is contained
in the assumed parametric distribution family. As already stated above, for a comparison
of AIC, BIC, Mallows’s Cp, adjusted R2, cross-validation and of model selection criteria
relying on F-tests within the same LSMC application, see e.g. Reichenwallner (2014).
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Besides these modifications, the ordinary least-squares regression method can be re-
placed by other regression techniques such as ridge, robust or feasible generalized least-
squares regression. Moreover, generalized linear models or generalized additive models
are options. Even stochastic alternatives replacing the entire adaptive algorithm such as
artificial neural networks or decision tree learning are conceivable. A deep analysis of
deterministic regression variants that are combinable with the adaptive algorithm can be
found in the next part of this thesis. Additionally, an overview of results obtained by
stochastic alternatives is given therein.





Part II

Machine Learning in Least-Squares Monte Carlo

Proxy Modeling of Life Insurance Companies

Résumé

Under the Solvency II regime, life insurance companies with internal mod-
els are asked to derive their solvency capital requirements from their full
loss distributions over the coming year. Since the industry is currently
far from being endowed with sufficient computational capacities to fully
simulate these distributions, the insurers have to rely on suitable ap-
proximation techniques such as the least-squares Monte Carlo (LSMC)
method. The key idea of LSMC is to run only a few wisely selected sim-
ulations and to process their output further to obtain a risk-dependent
proxy function of the loss. In this part of the thesis, we present and ana-
lyze various adaptive machine learning approaches that can take over the
proxy modeling task. The studied approaches range from ordinary and
generalized least-squares regression variants over GLM and GAM meth-
ods to MARS and kernel regression routines. We justify the compatibility
of their regression ingredients in a theoretical discourse. Furthermore, we
illustrate the approaches in slightly disguised real-world experiments and
perform comprehensive out-of-sample tests.
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11 Introduction

General Remarks

To keep this part self-contained, we repeat the most relevant concepts from the previous
part before we get to its edge again. We not only summarize the central themes so far but
also refine them where conducive to the research in this part. Thereby, we also point out
how this part is related to the previous one. Mainly, the repetitions concern this and the
subsequent section.

LSMC Framework under Solvency II

By the Solvency II directive of European Parliament & European Council (2009), life in-
surance companies are asked to derive their solvency capital requirements (SCRs) from
their full loss probability distributions over the coming year if they do not want to rely
on the much simpler standard formula. In order to obtain reasonably accurate full loss
distributions via a nested simulations approach as described in Bauer et al. (2012), their
cash-flow-projection (CFP) models would need to be simulated several hundred thousand
times. But the insurers are currently far from being endowed with sufficient computational
capacities to perform such expensive simulation tasks. By applying well-suited approxi-
mation techniques such as the least-squares Monte Carlo (LSMC) approach by Cathcart
(2012) and Bauer & Ha (2015), the insurers are able to overcome these computational
hurdles. For example, they can implement the LSMC framework formalized by Krah
et al. (2018), see the first part of this thesis, and applied by e.g. Bettels et al. (2014).
The central idea of this framework is to carry out a comparatively small number of wisely
chosen Monte Carlo simulations and to feed the simulation results into a supervised ma-
chine learning algorithm that translates the results into a proxy function of the insurer’s
loss (output) with respect to the underlying risk factors (input). To guarantee a certain
approximation quality, the proxy function has to pass a subsequent validation procedure
before it can finally be used for the full loss probability distribution forecast.

Machine Learning Calibration Algorithm

Apart from the calibration and validation steps, we adopt the LSMC framework from
Krah et al. (2018) and the first part of this thesis without any changes. Therefore, we
neither repeat the simulation setting nor the procedure for the full loss distribution forecast
and SCR calculation here in detail. The purpose of this part is to introduce various
deterministic machine learning methods that can be applied in the calibration step of
the LSMC framework and other high-dimensional variable selection applications, to point
out their similarities and differences and to compare their out-of-sample performances in
a slightly disguised real-world LSMC example. The majority of this part of the thesis
has already been published in Krah et al. (2020a). We describe the data basis used for
calibration and validation in Section 12.1, the structure of the calibration algorithm in
Section 12.2 and the validation approach in Section 12.3. Our focus lies on out-of-sample
performance rather than computational efficiency as the latter becomes only relevant if
the former gives reason for it. We analyze a very realistic data basis with 15 risk factors
and validate the proxy functions based on a very comprehensive and computationally
expensive nested simulations test set comprising the SCR estimate.
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The main idea of our approach is to combine classical regression methods with an adap-
tive algorithm, in which the proxy functions are built up of basis functions in a stepwise
fashion. In a four risk factor LSMC example, Teuguia et al. (2014) applied a full model
approach, forward selection, backward elimination and a bidirectional approach as, for
example, discussed in Hocking (1976) with orthogonal polynomial basis functions. They
stated that only forward selection and the bidirectional approach were feasible when the
number of risk factors or the polynomial degree exceeded 7 as then the resulting other
models exploded. Life insurance companies covering a wide range of contracts in their
portfolio are typically exposed to even more risk factors like, for instance, 15. In com-
plex business regulation frameworks such as in Germany, they furthermore often require
polynomial degrees of at least 4. In these cases, even the standard forward selection and
bidirectional approaches become infeasible as the sets of candidate terms from which the
basis functions are chosen will explode then as well. We therefore follow the suggestion
of Krah et al. (2018) to implement the so-called principle of marginality, an iteration-wise
update technique of the set of candidate terms that lets the algorithm get along with
comparatively few carefully selected candidate terms.

Regression Methods & Model Selection Criteria

Our main contribution is to identify, explain and illustrate a collection of regression meth-
ods and model selection criteria from the variety of regression design options that provide
suitable proxy functions in the LSMC framework when applied in combination with the
principle of marginality. After some general remarks in Section 13.1, we describe ordi-
nary least-squares (OLS) regression in Section 13.2, generalized linear models (GLMs)
by Nelder & Wedderburn (1972) in Section 13.3, generalized additive models (GAMs) by
Hastie & Tibshirani (1986) and Hastie & Tibshirani (1990) in Section 13.4, feasible gen-
eralized least-squares (FGLS) regression in Section 13.5, multivariate adaptive regression
splines (MARS) by Friedman (1991) in Section 13.6, and kernel regression by Watson
(1964) and Nadaraya (1964) in Section 13.7. At the end of each section, we recap the
assumptions, properties and estimation algorithms in a short summary. While some re-
gression methods such as OLS and FGLS regression or GLMs can immediately be applied
in conjunction with numerous model selection criteria such as Akaike information criterion
(AIC), Bayesian information criterion (BIC), Mallow’s CP or generalized cross-validation
(GCV), other regression methods such as GAMs, MARS, kernel, ridge or robust regres-
sion require well thought-through modifications thereof or work only with non-parametric
alternatives such as k-fold or leave-one-out cross-validation. For adaptive approaches of
FGLS, ridge and robust regression in life insurance proxy modeling, see also Hartmann
(2015), Krah (2015) and Nikolić et al. (2017), respectively.

In the theory sections, we present the models together with their assumptions, im-
portant properties and popular estimation algorithms and demonstrate how they can be
embedded in the adaptive algorithm by proposing feasible implementation designs and
combinable model selection criteria. While we shed light on the theoretical basic concepts
of the models to lay the groundwork for the application and interpretation of the later
following numerical experiments, we forgo describing in detail technical enhancements or
peculiarities of the involved algorithms and instead refer the interested reader to further
sources. Additionally we provide the practitioners with R packages containing useful im-
plementations of the presented regression routines. We complement the theory sections by
practice sections 14.1–14.7, throughout which we perform the same Monte Carlo approxi-
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mation task to make the performance of the various methods comparable. We measure the
approximation quality of the resulting proxy functions by means of aggregated validation
figures on three out-of-sample test sets. Again, we summarize the results obtained with
each routine at the end.

Stochastic Machine Learning Alternatives

Conceivable alternatives to the entire adaptive algorithm are also stochastic machine learn-
ing techniques such as artificial neural networks (ANNs), decision tree learning or support
vector machines. In particular, the classical feed forward networks proposed by Hejazi &
Jackson (2017) and applied in various ways by Kopczyk (2018), Castellani et al. (2018),
Born (2018) and Schelthoff (2019) were shown to capture the complex nature of CFP
models well. A major challenge here is to find reliable hyperparameters such as the num-
bers of hidden layers and nodes in the network, batch size, weight initializer probability
distribution, learning rate or activation function. Since the random seed used in the train-
ing of a network can be crucial for finding the global optimum, it should be considered
as a hyperparameter choice as well. Future research should thus be dedicated to hyper-
parameter search algorithms and, as a means of mitigation thereof, stabilization methods
such as ensemble methods. A starting point for this kind of research, going beyond the
scope of this thesis, can already be found in Krah et al. (2020b). As an alternative to feed
forward networks, Kazimov (2018) suggested to use radial basis function networks albeit
so far none of the tested approaches worked out well.

In decision tree learning, random forests and tree-based gradient boosting machines
were considered by Kopczyk (2018) and Schoenenwald (2019). While random forests were
outperformed by feed forward networks but did better than the least absolute shrinkage
and selection operator (LASSO) by Tibshirani (1996) in the example of the former au-
thor, they generally performed worse than the adaptive approaches by Krah et al. (2018)
with OLS regression in numerous examples of the latter author. The gradient boosting
machines, requiring more parameter tuning and thus being more versatile and demanding,
came overall very close to the adaptive approaches. The tree-based methods belong by
definition to the aforementioned ensemble methods, a modeling concept transferrable to
arbitrary regression techniques, mitigating random model artefacts through averaging.

Castellani et al. (2018) compared support vector regression (SVR) by Drucker et al.
(1997) to ANNs and the adaptive approaches by Teuguia et al. (2014) in a seven risk
factor example and found the performance of SVR placed somewhere between the other
two approaches with the ANNs getting closest to the nested simulations benchmark. As
some further non-parametric approaches, Sell (2019) tested least-squares support-vector
machines (LS-SVM) by Suykens & Vandewalle (1999) and shrunk additive least-squares
approximations (SALSA) by Kandasamy & Yu (2016) in comparison to ANNs and the
adaptive approaches by Krah et al. (2018) with OLS regression. In his examples, SALSA
was able to beat the other two approaches whereas LS-SVM was left far behind. The
analyzed machine learning alternatives have in common that they require at least to some
degree a fine-tuning of some model hyperparameters. Since this is often a non-trivial
but crucial task for generating suitable proxy functions, finding efficient hyperparameter
search algorithms should become a subject of future research.
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12 Calibration & Validation in the LSMC Framework

12.1 Fitting & Validation Points

12.1.1 Outer Scenarios & Inner Simulations

Our starting point is the LSMC approach from Part I. LSMC proxy functions are calibrated
conditional on the fitting points generated by the Monte Carlo simulations of the CFP
model. Additional out-of-sample validation points serve as a means for an assessment
of the goodness of fit. The explaining variables of a proxy function are financial and
actuarial risks the insurance company is exposed to. Examples for these risks are changes
in interest rates, equity, credit, mortality, morbidity, lapse and expense levels over the
one-year period. The dependent variable is an economic variable like the available capital,
loss of available capital or the best estimate liability over the one-year period. Figure 16
plots the fitting values of an exemplary economic variable with respect to a financial risk
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Figure 16: Fitting values of best estimate liability with respect to a financial risk factor.

factor. By an outer scenario we refer to a specific stress level combination of these risk
factors, and by an inner simulation to a stochastic path of an outer scenario in the CFP
model under the given risk-neutral probability measure. Each outer scenario is assigned
the probability weighted mean value of the economic variable over the corresponding inner
simulations. In the LSMC context, the fitting values are the mean values over only few
inner simulations whereas the validation values are derived as the mean values over many
inner simulations.

12.1.2 Different Trade-off Requirements

According to the law of large numbers, this construction makes the validation values com-
paratively stable while the fitting values are very volatile. Typically, the very limited
fitting and validation simulation budgets are of similar sizes. Hence the few inner simula-
tions in the case of the fitting points allow a great diversification among the outer scenarios
whereas the many inner simulations in the case of the validation points let the validation
values be quite close to their expectations but at the cost of only little diversification
among the outer scenarios. These opposite ways to deal with the trade-off between the
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numbers of outer scenarios and inner simulations reflect the different requirements for the
fitting and validation points in the LSMC approach. While the fitting scenarios should
cover the domain of the real-world scenarios well to serve as a good regression basis, the
validation values should approximate the expectations of the economic variable at the
validation scenarios well to provide appropriate target values for the proxy functions.

12.2 Calibration Algorithm

12.2.1 Five Major Components

The calibration of the proxy function is performed by an adaptive algorithm that can be
decomposed into the following five major components: (1) a set of allowed basis function
types for the proxy function, (2) a regression method, (3) a model selection criterion,
(4) a candidate term update principle, and (5) the number of steps per iteration and
the directions of the algorithm. For illustration, a flowchart of the adaptive algorithm
is depicted in Figure 13 of the previous part of this thesis. While components (1) and
(5) enter the flowchart implicitly through the start proxy function, candidate terms and
the order of the processes and decisions in the chart, components (2), (3) and (4) are
explicitly indicated through the labels “Regression”, “Model Selection Criterion” and “Get
Candidate Terms”.

Let us briefly recapitulate the state-of-the-art choices of components (1)–(5) in the in-
surance industry that we have introduced in Part I. As the function types for the basis
functions (1), let only monomials be permitted. Let the regression method (2) be ordinary
least-squares (OLS) regression and the model selection criterion (3) be Akaike information
criterion (AIC) from Akaike (1973). Let the set of candidate terms (4) be updated by the
principle of marginality to which we will return in greater detail below. Lastly, when
building up the proxy function iteratively, let the algorithm make only one step per itera-
tion in the forward direction (5) meaning that in each iteration exactly one basis function
is selected which cannot be removed anymore (adaptive forward stepwise selection).

12.2.2 Iterative Procedure

The algorithm starts in the upper left side of Figure 13 with the specification of the start
proxy basis functions. We specify only the intercept so that the first regression (k = 0)
reduces to averaging over all fitting values. In order to harmonize the choices of OLS
regression and AIC, we assume that the errors are normally distributed and homoscedastic
because then the OLS estimator coincides with the maximum likelihood estimator. AIC
is a relative measure for the goodness of fit of a proxy function and defined as twice the
negative of the maximum log-likelihood plus twice the number of degrees of freedom. The
smaller the AIC score, the better the fit, and thus the trade-off between a too complex
(overfitting) and too simple model (underfitting).

At the beginning of each iteration (k = 1, . . . ,K − 1), the set of candidate terms is
updated by the principle of marginality which stipulates that a monomial basis function
becomes a candidate if and only if all its derivatives are already included in the proxy
function. The choice of a monomial basis is compatible to the principle of marginality.
Using such a principle saves computational costs by selecting the basis functions condi-
tionally on the current proxy function structure. In the first iteration (k = 1), all linear
monomials of the risk factors become candidates as their derivatives are constant values
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which are represented by the intercept.
The algorithm proceeds on the lower left side of the flowchart with a loop in which all

candidate terms are separately added to the proxy function term structure and tested with
regard to their additional explanatory power. With each candidate, the fitting values are
regressed against the fitting scenarios and the AIC score is calculated. If no candidate
reduces the currently smallest AIC score, the algorithm is terminated, and otherwise, the
proxy function is updated by the one which reduces AIC most. Then the next iteration
(k + 1) begins with the update of the set of candidate terms, and so on. As long as no
termination occurs, this procedure is repeated until the prespecified maximum number of
terms Kmax is reached.

12.3 Validation Figures

12.3.1 Validation Sets

Since it is the objective of this part of the thesis to propose suitable regression methods for
the proxy function calibration in the LSMC framework, we introduce several validation fig-
ures serving as indicators for the approximation quality of the proxy functions. Primarily,
we measure the out-of-sample performance of each proxy function based on three different
validation sets by calculating five validation figures per set. In addition, we provide for
the best performing proxy functions the five validation figures based on further reduced
validation sets which allow us to draw conclusions for settings in which no extrapolation
takes place.

The three validation sets are a Sobol set, a nested simulations set and a capital region
set. Unlike the Sobol set, the nested simulations and capital region sets do not serve as
feasible validation sets in the LSMC routine as they become known only after evaluating
the proxy function for the real-world loss distribution forecast. Furthermore, they require
massive computational capacities. Yet they can be regarded as the natural benchmark
for the LSMC-based method and are thus very valuable for this analysis. Figure 17 plots
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Figure 17: Nested simulation values of best estimate liability with respect to a financial risk factor.

the nested simulation values of an exemplary economic variable with respect to a financial
risk factor. The Sobol set consists of, for example, between L = 15 and L = 200 Sobol
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validation points, of which the scenarios follow a Sobol sequence covering the fitting space
uniformly. The fitting space is the cube on which the outer fitting scenarios are defined,
and which has to cover the space of real-world scenarios used for the full loss distribution
forecast sufficiently well. For interpretive reasons, sometimes the Sobol set is extended
by points with, for example, one-dimensional risk scenarios or scenarios producing a risk
capital close to the SCR (= 99.5% value-at-risk) in previous risk capital calculations.

The nested simulations set comprises, for example, between L = 820 and L = 6, 554
validation points of which the scenarios correspond to, for example, the highest 2.5% to
5% losses from the full loss distribution forecast made by the proxy function that had
been derived under the standard calibration algorithm choices described in Section 12.2.
Like in the example of Chapter 5.2 in Krah et al. (2018), the order of these losses - which
scenarios lead to which quantiles - following from the fourth and last step of the LSMC
approach is very similar to the order following from the nested simulations approach.
Therefore the scenarios of the nested simulations set are simply chosen by the order of the
losses resulting from the LSMC approach. Several of these scenarios consist of stresses
falling out of the fitting space. Compare Figures 16 and 17 which depict fitting and nested
simulation values from the same proxy modeling task with respect to the same risk factor.
Few points with severe outliers due to extreme stresses far beyond the fitting space should
be excluded from the set. The capital region set is a subset of the nested simulations
set containing the nested simulations SCR estimate, that is, the scenario leading to the
99.5% loss, and the, for example, 64 losses above and below, which makes in total L = 129
validation points.

12.3.2 Validation Figures

The five validation figures reported in our numerical experiments comprise two normalized
mean absolute errors (MAEs), one with respect to the magnitude of the economic variable
itself and one with respect to the magnitude of the corresponding market value of assets.
They comprise further the mean error, that is, the mean of the residuals, as well as two
validation figures based on the change of the economic variable from its base value (see the
definition of the base value below): the normalized MAE with respect to the magnitude of
the changes and the mean error of these changes. While the first three validation figures
measure how well the proxy function reflects the economic variable in the CFP model, the
latter two address the approximation effects on the SCR.

The smaller the normalized MAEs are, the better the proxy function approximates the
economic variable. However, the validation values are afflicted with Monte Carlo errors
so that the normalized MAEs serve only as meaningful indicators as long as the proxy
functions do not become too precise. The mean errors should be preferably close to zero
since they indicate systematic deviations of the proxy functions.

Let us write the absolute value as |·| and let L denote the number of validation points.
Then we can express the MAE of the proxy function f̂

(
xi
)

evaluated at the validation

scenarios xi versus the validation values yi as 1
L

∑L
i=1

∣∣∣yi − f̂ (xi)∣∣∣. After normalizing

the MAE with respect to the mean of the absolute values of the economic variable or
the market value of assets, i.e., 1

L

∑L
i=1

∣∣di∣∣ with di ∈
{
yi, ai

}
, we obtain the first two

validation figures, i.e.,

mae =

∑L
i=1

∣∣∣yi − f̂ (xi)∣∣∣∑L
i=1 |di|

. (38)
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In the following, we will refer to (38) with di = yi as the MAE with respect to the relative
metric, and to (38) with di = ai as the MAE with respect to the asset metric. The mean
error is given by

res =
1

L

L∑
i=1

(
yi − f̂

(
xi
))
. (39)

Let us refer by the base value y0 to the validation value corresponding to the base
scenario x0 in which no risk factor has an effect on the economic variable. In analogy to
(38) but only with respect to the relative metric, we introduce another normalized MAE
by

mae0 =

∑L
i=1

∣∣∣(yi − y0
)
−
(
f̂
(
xi
)
− f̂

(
x0
))∣∣∣∑L

i=1 |yi − y0|
. (40)

The corresponding mean error is given by

res0 =
1

L

L∑
i=1

((
yi − y0

)
−
(
f̂
(
xi
)
− f̂

(
x0
)))

. (41)

In addition to these five validation figures, let us define the base residual which can be
used as a substitute for (41) depending on personal taste. The base residual can easily be
extracted from (39) and (41) by

resbase = y0 − f̂
(
x0
)

= res− res0. (42)

13 Machine Learning Regression Methods

13.1 General Remarks

As the main part of our work, we will compare various types of machine learning re-
gression approaches for determining suitable proxy functions in the LSMC framework.
The deterministic methods we present in this section range from ordinary and generalized
least-squares regression variants over GLM and GAM methods to multivariate adaptive
regression splines and kernel regression routines. The performance of the newly derived
proxy functions when applied to the validation sets is one way of how to judge the differ-
ent methods. Their compatibility with the principle of marginality and a suitable model
selection criterion such as AIC to compare iteration-wise the candidate models inside the
approaches is another way.

Our aim in the calibration step below is to estimate the conditional expectation of
the economic variable Y (X) under the risk-neutral probability measure Q given an outer
scenario X. In this part, we use the notation Y (X) as the economic variable does not
necessarily have to be the available capital but can instead be, for example, the best
estimate liability or market value of assets. The proxy modeling of Y (X) involves two
approximations because the sets of basis functions and fitting points are finite. The d-
dimensional fitting scenarios are always generated under the physical probability measure
P′ on the fitting space which itself is a subspace of Rd.
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13.2 Ordinary Least-Squares (OLS) Regression

13.2.1 Classical Linear Regression Model

In iteration K−1 of the adaptive forward stepwise algorithm (as given in Section 12.2), the
ordinary least-squares (OLS) approximation consists of a linear combination of suitable
linearly independent basis functions ek (X) ∈ L2

(
Rd,B,P′

)
, k = 0, 1, . . . ,K − 1, i.e.,

Y (X)
K<∞
≈ f(X) =

K−1∑
k=0

βkek (X). (43)

We call f(X) the linear predictor of Y (X) or the systematic component.
With the fitting points

(
xi, yi

)
, i = 1, . . . , N, and uncorrelated errors εi (the random

components) having the same variance σ2 > 0 (homoscedastic errors), we obtain the
classical linear regression model

yi =

K−1∑
k=0

βkek
(
xi
)

+ εi, (44)

where e0

(
xi
)

= 1 and β0 is the intercept. Then the OLS estimator β̂OLS of the coefficients,
minimizing the residual sum of squares, is given by

β̂OLS = arg min
β∈RK


N∑
i=1

(
yi −

K−1∑
k=0

βkek
(
xi
))2

 . (45)

The residuals corresponding to the OLS solution are ε̂i = yi −
∑K−1

k=0 β̂OLS,kek
(
xi
)
. By

substituting β̂OLS for β in (43), we arrive at the proxy function f̂ (X) for the economic
variable Y (X) conditional on any outer scenario X, i.e.,

Y (X)
K,N<∞
≈ f̂ (X) =

K−1∑
k=0

β̂OLS,kek (X). (46)

13.2.2 OLS Estimator & Closed-form Solution

If we use the notation zik = ek
(
xi
)
, we can replace the minimization problem (45) by

the closed-form expression of the OLS estimator in which Z = (zik) i=1,...,N
k=0,...,K−1

denotes the

design matrix and y =
(
y1, . . . , yN

)T
the response vector, i.e.,

β̂OLS =
(
ZTZ

)−1
ZTy. (47)

The system
(
ZTZ

)
β̂OLS = ZTy equivalent to (47) is in practice often solved via a QR or

singular value decomposition of Z to increase numerical stability. For a practical imple-
mentation, see, for example, function lm(·) in R package stats of R Core Team (2018).

The sample variance is obtained by s2
OLS = 1

N−K ε̂
Tε̂ where ε̂ = y−Zβ̂OLS is the residual

vector. With z = (e0 (X) , . . . , eK−1 (X))T, Equation (46) becomes in matrix notation

Y (X)
K,N<∞
≈ f̂ (X) = zTβ̂OLS. (48)
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13.2.3 Gauss-Markov Theorem, ML Estimation & AIC

We formulate the Gauss-Markov theorem in our setting conditional on the fitting scenarios
and in line with Hayashi (2000) under the assumptions of strict exogeneity E [ε | Z] = 0
(A1), a spherical error variance Var [ε | Z] = σ2IN , where IN is the N -dimensional identity
matrix (A2), and no multicollinearity, that is, linearly independent basis functions (A3).

Gauss-Markov theorem. The OLS estimator is the best linear unbiased estimator
(BLUE) of the coefficients in the classical linear regression model (44) under Assumptions
(A1)-(A3).

Akaike information criterion (AIC) needs to be evaluated at the maximum likelihood
(ML) estimators of the coefficients and variance of the errors. For this purpose, we have to
make an assumption about the distribution of the economic variable, or equivalently the
errors. In order to make AIC and OLS regression easily combinable we assume in addition
to (A1), (A2) and (A3) that the errors are normally distributed conditional on the fitting
scenarios (A4) because then Proposition 1.5 by Hayashi (2000) states the following.

Theorem 1. The ML coefficient estimator coincides with the OLS coefficient estimator
and the ML estimator of the error variance σ̂2 can be expressed as N−K

N times the OLS
sample variance s2

OLS, i.e., σ̂2 = 1
N ε̂

Tε̂, under Assumptions (A1)-(A4).

Furthermore, the OLS estimator is the efficient estimator under these assumptions ac-
cording to Greene (2002).

According to Krah et al. (2018), AIC has the form of a suitably weighted sum of the
calibration error and number of basis functions under Assumption (A4), i.e.,

AIC = −2l
(
β̂OLS, σ̂

2
)

+ 2 (K + 1) (49)

= N
(
log
(
2πσ̂2

)
+ 1
)

+ 2 (K + 1) .

More generally, the calibration error corresponds to twice the negative of the log-likelihood
l (·) of the model and the number of basis functions corresponds to the degrees of freedom
of the model. The smaller the AIC score is, the better is the fitted model supposed to
approximate the underlying data. AIC penalizes both a small log-likelihood and a high
model complexity and helps thus to select a possibly simple model with a possibly high
goodness of fit. However, since AIC is only a relative measure of the goodness of fit, the
final proxy function has to pass an additional out-of-sample validation procedure in the
LSMC algorithm.

13.2.4 Summary

The OLS regression algorithm in Section 13.2 requires the assumptions of strict exogeneity,
homoscedastic errors and linearly independent basis functions for the coefficient estimator
to be the best linear unbiased estimator by Gauss-Markov theorem. The OLS estimator
minimizes the residual sum of squares by definition and has a closed-form expression.
To evaluate AIC properly at the OLS estimator, the errors also have to be normally
distributed according to Theorem 1.
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13.3 Generalized Linear Models (GLMs)

13.3.1 Systematic & Random Components plus Link Function

Nelder & Wedderburn (1972) developed the class of generalized linear models (GLMs)
as a generalization of the classical linear model in (44). A GLM consists of a random
component, systematic component and link function and is derived by ML estimation.
According to Chapter 2.2 of McCullagh & Nelder (1989), in a GLM the economic variable
Y (X) comes from a distribution of the exponential family conditional on outer scenario
X, for instance, the normal, gamma, or inverse gaussian distribution.

With canonical parameter θ, the canonical form of this random component is given by
density function

π(y | θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (50)

where a(φ), b(θ) and c(y, φ) have particular functional forms. For example, a normally

distributed economic variable with mean µ and variance σ2 is given by a(φ) = φ, b(θ) = θ2

2

and c(y, φ) = −1
2

(
y2

σ2 + log
(
2πσ2

))
with θ = µ and φ = σ2 because then (50) becomes

π(y | θ, φ) = 1√
2πσ2

exp
(
− (y−µ)2

2σ2

)
. The equivalence between the distribution assumption

of the economic variable and raw errors ε = y − µ persists in GLMs.
For a random variable Y from a distribution of the exponential family, the canonical

parameter θ is related to the expected value while the dispersion parameter φ only affects
the variance, i.e.,

E [Y ] = µ = b′ (θ) , Var [Y ] = b′′ (θ) a(φ) =: V [µ] a(φ), (51)

whereby we refer to V [µ] as the variance function. As a simplification we consider only
equal prior weights, that is, we set a(φ) = φ to be constant over all observations.

The systematic component of a GLM coincides with the linear predictor η = f(X) of
the linear model in (43).

However, the first equality in (43) does not generally hold anymore. Instead a monotonic
link function g(·) relates now the economic variable to the linear predictor, in literature
usually formalized by g(µ) = η, here by

g(Y (X)︸ ︷︷ ︸
= µ

)
K<∞
≈ f(X)︸ ︷︷ ︸

= η

=
K−1∑
k=0

βkzk = zTβ (52)

with z = (e0 (X) , . . . , eK−1 (X))T. When the link function is the identity function as in
the normal model the extension disappears, i.e., µ = η.

Applying a link function is especially appealing when the range of the linear predictor
may deviate substantially from that of the economic variable. For instance, an economic
variable capturing service times that follow a gamma distribution can only be positive but
the linear predictor may also take on negative values. With, for example, g (·) = log (·)
such a potential inconsistency can be eliminated.

Another popular choice are the canonical link functions g̃ (·) which express the canonical
parameter θ = θ(X) with respect to the expected value µ = Y (X) if the variance is known,

i.e., g̃ (µ) = θ, hence due to (52) also θ
K<∞
≈ f(X) with g̃ (·). For instance, the canonical

link functions are g (µ) = id (µ) for the normal, g (µ) = 1
µ for the gamma, and g (µ) = 1

µ2

for the inverse gaussian distribution.
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13.3.2 GLM Estimator & ML Estimation

The log-likelihood of a single observation is given by li
(
β, φi

)
= log π(yi | θi, φi) with the

dependence θi = θi
(
µi
(
ηi
(
β, xi

)))
due to the equality µ = b′ (θ) and (52). With constant

dispersion a(φi) = φi = φ, i = 1, . . . , N, it follows l (β, φ) =
∑N

i=1 log π
(
yi | θi, φ

)
for the

log-likelihood function.
The GLM estimator β̂GLM of the coefficients is given as the ML maximizer, i.e.,

β̂GLM = arg max
β∈RK

{
N∑
i=1

(
yiθi − b(θi)

φ
+ c(yi, φ)

)}
. (53)

While for the Poisson or binomial distribution the dispersion is simply 1, for the other
distributions from the exponential family the dispersion φ is unknown. Assuming constant
dispersion/equal prior weights (A5) lets the factors a(φi) disappear in the first-order ML
condition. Therefore, we will omit the dispersion in the IRLS algorithm described below.
Once β̂GLM is known, φ can be estimated with the aid of the Pearson residual chi-squared
statistic. Using unequal prior weights might be beneficial, however it is not clear how
they should be selected in the adaptive algorithm. Furthermore, they would make the
estimation procedure more complicated.

13.3.3 GLM Estimation via IRLS Algorithm

Under Assumption (A5), there generally does not exist a closed-form solution for the GLM
coefficient estimator (53). In Chapter 2.5, McCullagh & Nelder (1989) apply Fisher’s
scoring method, a standard approach in log-likelihood maximization, to obtain an approx-
imation to the GLM estimator, i.e.,

β̂(t+1) = β̂(t) + I−1 ∂l

∂β
. (54)

Here, β̂(t) is the coefficient estimator in iteration t, ∂l
∂β the score function, and I =

E
[
− ∂2l
∂β∂βT

]
the Fisher information matrix (equal to the negative of the expected value

of the Hessian matrix) with the expectation being taken with respect to the random
component. While ∂l

∂β depends on the regressors and response values, I depends only on

the regressors due to the expectation operator. Both have to be evaluated at β̂(t).
McCullagh & Nelder (1989) justify how Fisher’s scoring method can be cast in the

form of the iteratively reweighted least squares (IRLS) algorithm. As an alternative, they
suggest the Newton-Raphson method, which coincides with Fisher’s scoring method if
canonical link functions are used since the actual value of the Hessian matrix equals its
expected value then.

The IRLS algorithm works for canonical link functions in our context as follows. Let
the dependent variable in the iterative procedure be

ŝi
(
β̂(t)

)
= η̂i(t) +

(
yi − µ̂i(t)

) dη
dµ

(
µ̂i(t)

)
, (55)

where η̂i(t) = f̂
(
xi
)

is the estimate for the linear predictor evaluated at fitting scenario xi,

compare (52), where µ̂i(t) = g−1
(
η̂i(t)

)
derived from η̂i(t) is the estimate for the economic
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variable, and dη
dµ

(
µ̂i(t)

)
= g′

(
µ̂i(t)

)
is the first derivative of the link function with respect

to the economic variable evaluated at µ̂i(t). Let ŝ(t) =
(
ŝ1
(
β̂(t)

)
, . . . , ŝN

(
β̂(t)

))T
denote

the vector of the dependent variable over all fitting points.
Moreover, let the (quadratic) weight in the iterative procedure be given by

ŵi
(
β̂(t)

)
=

(
dη

dµ

(
µ̂i(t)

))−2

V
[
µ̂i(t)

]−1
, (56)

where V
[
µ̂i(t)

]
is the variance function from above evaluated at µ̂i(t). Then the (quadratic)

weight matrix is defined by W (t) = diag
(
w1
(
β̂(t)

)
, . . . , wN

(
β̂(t)

))
.

IRLS algorithm. Perform the following iterative approximation procedure with, for ex-

ample, an initialization of µ̂i(0) = yi+0.1 and η̂i(0) = g
(
µ̂i(0)

)
as proposed by Dutang (2017)

until convergence:

β̂(t+1) = arg min
β∈RK


N∑
i=1

wi
(
β̂(t)

)−1
(
ŝi
(
β̂(t)

)
−
K−1∑
k=0

βkzik

)2


=
(
ZTW (t)Z

)−1
ZTW (t)ŝ(t). (57)

After convergence, we set β̂GLM = β̂(t+1).

For example, Green (1984) proposes to solve system
(
ZTW (t)Z

)
β̂(t+1) = ZTW (t)ŝ(t)

equivalent to (57) via a QR decomposition to increase numerical stability. For a practical
implementation of GLMs using the IRLS algorithm, see, for example, function glm(·) in
R package stats of R Core Team (2018).

By inserting (55), (56) and the GLM estimator into (57) and by using (52), we arrive
at the property

β̂GLM = arg min
β∈RK

{
N∑
i=1

V
[
µ̂iGLM

] (
yi − µ̂iGLM

)2}
, (58)

that is, the GLM estimator minimizes the squared sum of raw residuals scaled by the
estimated individual variances of the economic variable. The higher the individual variance
is, the more weight gets the point in the regression. The Pearson residuals are defined as
the raw residuals divided by the estimated individual standard deviations, i.e.,

ε̂i =
yi − µ̂iGLM√
V
[
µ̂iGLM

] . (59)

For example, in the normal model from above with mean µ and variance σ2, we have
b(θ) = θ2

2 and thus constant estimated individual variances across all observations V [µ] =
b′′(θ) = 1 so that no actual weighting takes place.
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13.3.4 AIC & Dispersion Estimation

Since AIC depends on the ML estimators, it is combinable with GLMs in the adaptive
algorithm. Here, it has the form

AIC = −2l
(
β̂GLM, φ̂

)
+ 2 (K + p) , (60)

where K is the number of coefficients and p indicates the number of the additional model
parameters associated with the distribution of the random component. For instance, in
the normal model, we have p = 1 due to the error variance/dispersion.

A typical estimate of the dispersion in GLMs is the Pearson residual chi-squared statistic
divided by N − K as described by Zuur et al. (2009) and implemented, for example, in
function glm(·) belonging to R package stats, i.e.,

φ̂ =
1

N −K

N∑
i=1

(
ε̂i
)2
, (61)

with ε̂i given by (59). Even though this is not the ML estimator, it is a good estimate
because, if the model is specified correctly, the Pearson residual chi-squared statistic di-
vided by the dispersion is asymptotically χ2

N−K distributed and the expected value of a
chi-squared distribution with N −K degrees of freedom is N −K.

13.3.5 Summary

The GLM algorithm in Section 13.3 is a generalization of the OLS regression algorithm
insofar as the errors are now permitted to come from an arbitrary distribution of the expo-
nential family and the economic variable is related to the linear predictor by a monotonic
link function. The GLM estimator maximizes the log-likelihood and can be derived by an
IRLS algorithm. Without more ado, the GLM estimator can be fed into AIC.

13.4 Generalized Additive Models (GAMs)

13.4.1 Richly Parameterized GLM with Smooth Functions

The class of generalized additive models (GAMs) was introduced by Hastie & Tibshirani
(1986) and Hastie & Tibshirani (1990) to unite the properties of GLMs and additive
models. While GAMs inherit from GLMs the random component (50) and link function
(52), they inherit from the additive models by Friedman & Stuetzle (1981) the linear
predictor with the smooth functions.

By following Wood (2006), in the adaptive algorithm we apply GAMs of the form

g(Y (X)︸ ︷︷ ︸
= µ

)
K<∞
≈ f(X)︸ ︷︷ ︸

= η

= β0 +
K−1∑
k=1

hk (zk), (62)

where zk = ek (X), β0 is the intercept and hk (·) , k = 1, . . . ,K − 1, are the smooth
functions to be estimated. In addition to the smooth functions, GAMs can also include
simple linear terms of the basis functions as they appear in the linear predictor of GLMs.
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Such an approach would be more parsimonious but also less straightforward. A smooth
function hk (·) can be written as a basis expansion

hk (zk) =

J∑
j=1

βkjbkj (zk), (63)

with coefficients βkj and known basis functions bkj (zk) , j = 1, . . . , J, which should not be
confused with their arguments, namely the first-order basis functions zk = ek (X) , k =
0, . . . ,K − 1. The slightly adapted Figure 18 from Wood (2006) depicts an exemplary
approximation of y by a GAM with a basis expansion in one dimension zk without an in-
tercept. The solid colorful curves represent the pure basis functions bkj (zk) , j = 1, . . . , J,
the dashed colorful curves show them after scaling with the coefficients βkjbkj (zk) , j =
1, . . . , J, and the black curve is their sum (63).

Figure 18: GAM with a basis expansion in one dimension.

Typical examples for basis functions are thin plate regression splines, duchon splines,
penalized cubic regression splines or Eilers and Marx style P-splines. See, for example,
function gam(·) in R package mgcv of Wood (2018) for a practical implementation of
GAMs admitting these types of basis functions and using the PIRLS algorithm, which we
present below.

In vector notation, we can write β =
(
β0,β

T
1 , . . . ,β

T
K−1

)T
with βk = (βk1, . . . , βkJ)T

and a =
(

1,b1 (z1)T , . . . ,bK−1 (zK−1)T
)T

with bk (zk) = (bk1 (zk) , . . . , bkJ (zk))
T, hence

(62) becomes

g(Y (X)︸ ︷︷ ︸
= µ

)
K<∞
≈ f(X)︸ ︷︷ ︸

= η

= aTβ. (64)

This parameterization is a richer version of (52) so that a GAM having a random compo-
nent from the exponential family (50) can be viewed as a richly parameterized GLM. In
order to make the smooth functions hk (·) , k = 1, . . . ,K − 1, identifiable, identifiability
constraints

∑N
i=1 hk (zik) = 0 with zik = ek

(
xi
)

can be imposed. According to Wood
(2006) this can be achieved by modification of the basis functions bkj (·) with one of them
being lost.
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13.4.2 GAM Estimator & Penalization

Let the deviance corresponding to observation yi be Di (β) = 2
(
lisat − li (β, φ)

)
φ where

Di (β) is independent of dispersion φ, where lisat = maxβi l
i
(
βi, φ

)
is the saturated log-

likelihood and li (β, φ) the log-likelihood. Then the model deviance can be written as
D (β) =

∑N
i=1D

i (β). It is a generalization of the residual sum of squares for ML estima-

tion. For instance, in the normal model the unit deviance is
(
yi − µi

)2
.

For given smoothing parameters λk > 0, k = 1, . . . ,K − 1, the GAM estimator β̂GAM

of the coefficients is defined as the minimizer of the penalized deviance

β̂GAM = arg min
β∈R(K−1)J+1

{
D (β) +

K−1∑
k=1

λk

∫
h′′k (zk)

2 dzk

}
, where (65)∫

h′′k (zk)
2 dzk = βT

k

(∫
b′′k (zk)b

′′
k (zk)

T dzk

)
βk = βT

k Skβk

are the smoothing penalties. The smoothing parameters λk control the trade-off between
a too wiggly model (overfitting) and a too smooth model (underfitting). The larger the λk
values are, the more pronounced is the wiggliness of the basis functions reflected by their
second derivatives in the minimization problem (65), and the higher is thus the penalty
associated with the coefficients and the smoother is the estimated model.

Similarly to how we have defined the GAM estimator as the minimizer of the penal-
ized deviance, we could have defined the GLM estimator (53) as the minimizer of the
unpenalized deviance.

13.4.3 GAM Estimation via PIRLS Algorithm

Buja et al. (1989) proposed to estimate GAMs by a backfitting procedure which can be
shown to be the Gauss-Seidel iterative method for solving a set of normal equations as-
sociated with the additive model. Their backfitting procedure works for any scatterplot
smoother so that the random component does no longer have to come from the exponen-
tial family, in fact, non-parametric models such as running-mean, running-line or kernel
smoothers are possible as well. However, their suggestions to select the degree of smooth-
ness through, for instance, graphical analyses or cross-validation are for practitioners still
difficult to implement.

Therefore, GAMs have recently been increasingly defined in the form of (62) with basis
expansions (63) of which the degree of smoothness is controlled by the smoothing penalties
(65). A major advantage of this definition is its compatibility with information criteria and
other model selection criteria such as generalized cross-validation. Besides, the resulting
penalty matrix favors numerical stability in the PIRLS algorithm.

Since the saturated log-likelihood is a constant for a fixed distribution and set of fitting
points, we can turn the minimization problem (65) into the maximization task of the
penalized log-likelihood, i.e.,

β̂GAM = arg max
β∈R(K−1)J+1

{
l (β, φ)− 1

2

K−1∑
k=1

λkβ
T
k Skβk

}
. (66)

Wood (2000) points out that Fisher’s scoring method can be cast in a penalized version of
the iteratively reweighted least squares (PIRLS) algorithm when being used to approxi-
mate the GAM coefficient estimator (66). This derivation is very similar to the one of the
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IRLS algorithm in the GLM context with the constant dispersion φ disappearing in the
first-order condition. We formulate the PIRLS algorithm based on Marx & Eilers (1998)
who indicate the iterative solution explicitly.

Let β̂(t) now be the GAM coefficient approximation in iteration t. Then the vector of

the dependent variable ŝ(t) =
(
ŝ1
(
β̂(t)

)
, . . . , ŝN

(
β̂(t)

))T
and the weight matrix given

by W (t) = diag
(
w1
(
β̂(t)

)
, . . . , wN

(
β̂(t)

))
have the same form as in the IRLS algorithm,

see (55) and (56). Additionally, let S = blockdiag (0, λ1S1, . . . , λK−1SK−1) with S11 = 0
belonging to the intercept be the penalty matrix.

PIRLS algorithm. Perform the following iterative approximation procedure with, for

example, an initialization of µ̂i(0) = yi + 0.1 and η̂i(0) = g
(
µ̂i(0)

)
in analogy to the IRLS

algorithm until convergence:

β̂(t+1) = arg min
β∈R(K−1)J+1


N∑
i=1

wi
(
β̂(t)

)−1
(
ŝi
(
β̂(t)

)
− β0 −

K−1∑
k=1

J∑
j=1

βkjbkj (zik)

)2

+

K−1∑
k=1

λkβ
T
k Skβk


=
(
ZTW (t)Z + S

)−1

ZTW (t)ŝ(t). (67)

After convergence, we set β̂GAM = β̂(t+1).

13.4.4 Smoothing Parameter Selection, AIC & GCV

The smoothing parameters λk can be selected such that they minimize a suitable model
selection criterion, for the sake of consistency, preferably the one used in the adaptive
algorithm for basis function selection. The GAM estimator (66) does not exactly maximize
the log-likelihood, therefore AIC has another form for GAMs than for GLMs. The degrees
of freedom need to be adjusted with respect to the smoothing effects of the penalties on
the coefficients. The reasoning behind this adjustment is that high smoothing parameters
restrict the coefficients more than low smoothing parameters and so that they need to be
associated with less effective degrees of freedom.

Hastie & Tibshirani (1990) propose a widely used version of AIC for GAMs, which uses
effective degrees of freedom df in place of the number of coefficients (K − 1)J + 1. This is

AIC = −2l
(
β̂GAM, φ̂

)
+ 2 (df + p) , (68)

where
df = tr

(
(I + S)−1 I

)
. (69)

The expression I = ZTWZ for the Fisher information matrix with the weight matrix W
evaluated at the GAM estimator is obtained as a by-product when casting Fisher’s scoring
method in the form of the PIRLS algorithm.

Without the penalty matrix S, we have df = tr
(
I−1I

)
= (K−1)J+1. If we follow Wood

(2006) by denoting the unpenalized GAM estimator by β̂0
GAM and the so-called shrinkage

matrix by F =
(
ZTWZ + S

)−1
ZTWZ with β̂GAM = F β̂0

GAM, we arrive at the equality
df = tr (F ) revealing the shrinkage effects on the effective degrees of freedom. After conver-

gence of the PIRLS algorithm, the dependent variable is constant, i.e., ŝ = ŝ(t), and the hat

matrix H satisfies
(
η̂1, . . . , η̂N

)T
= Zβ̂GAM = H ŝ so that H = Z

(
ZTWZ + S

)−1
ZTW .
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Due to the cyclic property of the trace, the effective degrees of freedom can also be written
as df = tr (H).

For GAMs, an estimate of the dispersion φ̂ is obtained similarly to GLMs by (61). The
parameter p is defined as in (60). For a refinement of (68) accounting for the uncertainty
of the smoothing parameters and tending to select models less prone to overfitting, see
Wood et al. (2016).

Another popular and effective smoothing parameter selection criterion invented by
Craven & Wahba (1979) is generalized cross-validation (GCV), i.e.,

GCV =
ND

(
β̂GAM

)
(N − df)2 , (70)

with the model deviance D
(
β̂GAM

)
evaluated at the GAM estimator and the effective

degrees of freedom defined just like for AIC.

13.4.5 Adaptive Forward Stagewise Selection & Performance

In situations where the economic variable depends on many risk factors and where large
sample sizes are required, the adaptive forward stepwise algorithm depicted in Figure 13
can become computationally infeasible with GAMs as opposed to, for instance, GLMs.
In iteration k, a GAM has (K − 1)J + 1 coefficients which need to be estimated while a
GLM has only K coefficients. This difference in the estimation effort is increased further
due to the iterative nature of the IRLS and PIRLS algorithms. Moreover, GAMs involve
the task of optimal smoothing parameter selection, which scales the estimation effort for
GAMs up once more tremendously.

Wood (2000) has found a way to make smoothing parameter selection more efficient.
Furthermore, Wood et al. (2015) and Wood et al. (2017) have developed practical GAM
fitting methods for large data sets. These methods involve, for example, iterative update
schemes, requiring only subblocks of the design matrix to be recomputed, and paralleliza-
tion. The suitable application of these methods in the adaptive algorithm is beyond the
scope of this analysis though since our focus does not lie on computational performance.

Besides parallelizing the candidate loop on the lower left side of Figure 13, we achieve the
necessary performance gains in GAMs by replacing the stepwise algorithm by a stagewise
algorithm. This means that in each iteration, a predefined number L or proportion of
candidate terms is selected simultaneously until a termination criterion is fulfilled. Thereby
we select in one stage those basis functions which reduce the model selection criterion of our
choice most when added separately to the current proxy function term structure. When
there are not at least as many basis functions as targeted, the algorithm is terminated
after the ones leading to a reduction of the model selection criterion have been selected.

13.4.6 Summary

The GAM algorithm in Section 13.4 acts as a generalization of the GLM algorithm and
brings in the additive models with the smooth functions as the new component. The
GAM estimator maximizes the penalized log-likelihood and can be derived by a PIRLS
algorithm. The penalization takes place with respect to smoothing parameters controlling
the trade-off between a too wiggly and too smooth model. To evaluate AIC at the GAM
estimator, the degrees of freedom are generalized such that they account for the smoothing.
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As an alternative to AIC, generalized cross-validation GCV is introduced. The smoothing
parameters are selected such that they minimize the model selection criterion. For reasons
of computational efficiency, adaptive forward stagewise selection is suggested.

13.5 Feasible Generalized Least-Squares (FGLS) Regression

13.5.1 Generalized Linear Regression Model

The linear predictor of the generalized linear regression model has the same form (44)
as in the OLS case. But while the errors were assumed to be uncorrelated and to have
the same unknown variance σ2 > 0 in the classical linear regression model, now they are
assumed to have the covariance matrix Σ = σ2Ω where Ω is positive definite and known
and σ2 > 0 is unknown.

We transform the generalized linear regression model according to Hayashi (2000) to
obtain a model (*) which satisfies Assumptions (A1), (A2) and (A3) of the classical linear
regression model. As Ω is by construction symmetric and positive definite, there exists an
invertible matrix H such that Ω−1 = HTH. The matrix H is not unique but this is not
important since any choice of H such as, for example, the Cholesky matrix works. The
generalized response vector y∗, design matrix Z∗ and error vector ε∗ are then given by

y∗ = Hy, Z∗ = HZ, ε∗ = y∗ − Z∗β = H (y− Zβ) = Hε. (71)

Strict exogeneity (A1) is satisfied by the transformed regression model (*) as E [ε∗ | Z∗] =
HE [ε | Z] = 0, the error variance is spherical (A2) because of Σ∗ = Var [ε∗ | Z∗] =

HVar [ε | Z]HT = H
[
σ2Ω

]
HT = H

[
σ2
(
HTH

)−1
]
HT = σ2IN with the N -dimensional

identity matrix IN and the no-multicollinearity assumption (A3) holds as Ω is positive
definite.

13.5.2 GLS Estimator & Closed-form Solution

In analogy to the OLS estimator, the generalized least-squares (GLS) estimator β̂GLS of
the coefficients is given as the minimizer of the generalized residual sum of squares, i.e.,

β̂GLS = arg min
β∈RK

{
N∑
i=1

(
ε∗,i
)2}

. (72)

The closed-form expression of the GLS estimator is

β̂GLS =
(
Z∗,TZ∗

)−1
Z∗,Ty∗ =

(
ZTΩ−1Z

)−1
ZTΩ−1y, (73)

and the proxy function becomes

f̂ (X) = zTβ̂GLS, (74)

where z = (e0 (X) , . . . , eK−1 (X))T. The scalar σ2 can be estimated in analogy to OLS
regression by s2

GLS = 1
N−K ε̂

∗,Tε̂∗ where ε̂∗ = y∗ − Z∗β̂GLS is the residual vector.
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13.5.3 Gauss-Markov-Aitken Theorem & ML Estimation

We formulate the Gauss-Markov-Aitken theorem conditional on the fitting scenarios in
line with Huang (1970) and Hayashi (2000) under the assumptions of strict exogeneity
(A1), no multicollinearity (A3) and a covariance matrix Σ = σ2Ω of which Ω is positive
definite and known (A6).

Gauss-Markov-Aitken theorem. The GLS estimator is the BLUE of the coefficients
in the generalized regression model (44) under Assumptions (A1), (A3) and (A6).

In order to make AIC and GLS regression combinable, we assume additionally to (A1),
(A3) and (A6) that the economic variable, or equivalently the errors, are jointly normally
distributed conditional on the fitting scenarios (A7). The transformation (*) transfers to
the ML function of the generalized regression model so that we can state the following
theorem in analogy to Theorem 1, see e.g. Hartmann (2015).

Theorem 2. The ML coefficient estimator coincides with the GLS coefficient estimator
and the ML estimator of the scalar σ̂2 can be expressed as N

N−K times s2
GLS, i.e., σ̂2 =

1
N ε̂
∗,Tε̂∗, under Assumptions (A1), (A3), (A6) and (A7).

13.5.4 FGLS Estimator & Unknown Covariance Matrix

In the LSMC framework, Ω is unknown. If a consistent estimator Ω̂ exists, we can apply
feasible generalized least-squares (FGLS) regression, of which the estimator

β̂FGLS =
(
ZTΩ̂−1Z

)−1
ZTΩ̂−1y (75)

has asymptotically the same properties as the GLS estimator (73).
Greene (2002) remarks that the asymptotic efficiency of the FGLS estimator does not

carry over to finite samples. In small sample studies with no severe deviations from the
homoscedasticity assumption, the OLS estimator has been shown to be sometimes more
efficient than the FGLS estimator. However, in cases where the deviations from this
assumption were more severe, the FGLS estimator has been shown to outperform the
OLS estimator.

With z = (e0 (X) , . . . , eK−1 (X))T the FGLS proxy function is given in analogy to (48)
and (74) as

f̂ (X) = zTβ̂FGLS. (76)

13.5.5 FGLS Estimation via ML Algorithm

For the estimation of Ω we will in the following set σ2 = 1 which can be done without
loss of generality and then consider Σ = Ω. Hereby, any specification of σ2 > 0 would be
possible as the GLS and FGLS coefficient estimators are invariant to scalings of Ω and
Ω̂, respectively. In addition to (A1), (A3) and (A7), we assume that the elements of the
covariance matrix Σ are twice differentiable functions of parameters α = (α0, . . . , αM−1)T

with K+M ≤ N so that we can write Σ = Σ (α) (A8). The following result is the basis of
the iterative ML algorithm for deriving the regression coefficients and covariance matrix.
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Theorem 3. The generalized regression model (44) under Assumptions (A1), (A3), (A7)
and (A8) has the following first-order ML conditions:

β̂ML =
(
ZTΣ̂−1Z

)−1
ZTΣ̂−1y, (77)

∂l

∂αm
=

1

2
tr

(
∂Σ−1

∂αm
Σ

)
α=α̂ML

− 1

2
ε̂T

(
∂Σ−1

∂αm

)
α=α̂ML

ε̂ = 0, (78)

where m = 0, . . . ,M − 1, Σ̂ = Σ (α̂ML) and ε̂ = y− Zβ̂ML.

The system in (77) and (78) is then solved iteratively, for example, according to Magnus
(1978). We start the procedure with β(0) and use PORT optimization routines as described
in Gay (1990) and implemented in function nlminb(·) belonging to R package stats of R
Core Team (2018). In these routines, α̂(t+1) can also be initialized, for instance, by
random numbers from the standard normal distribution.

ML algorithm. Perform the following iterative approximation procedure with, for exam-
ple, an initialization of β̂(0) = β̂OLS until convergence:

1. Calculate the residual vector ε̂(t+1) = y− Zβ̂(t).

2. Substitute ε̂(t+1) into the M equations in M unknowns αm given by (78) and solve
them. If an explicit solution exists, set α̂(t+1) = α

(
ε̂(t+1)

)
. Otherwise, select

the maximum likelihood solution α̂(t+1) iteratively, for example, by using PORT
optimization routines.

3. Calculate

Σ̂(t+1) = Σ
(
α̂(t+1)

)
,

β̂(t+1) =

(
ZT
(

Σ̂(t+1)
)−1

Z

)−1

ZT
(

Σ̂(t+1)
)−1

y. (79)

Continue with the next iteration.

After convergence, we set β̂ML = β̂(t+1) and α̂ML = α̂(t+1).

Some further regularity conditions guarantee the consistency of the ML estimators and
therefore lead to the following result.

Theorem 4. The FGLS coefficient estimator can be derived as the ML coefficient estima-
tor by the ML algorithm under Assumptions (A1), (A3), (A7) and (A8) and some further
regularity conditions stated in Theorem 5 by Magnus (1978).

13.5.6 Heteroscedasticity & Breusch-Pagan Test

Besides Assumption (A8) about the structure of the covariance matrix, we assume that
the errors are uncorrelated with possibly different variances (heteroscedastic errors), i.e.,
Σ = diag

(
σ2

1, . . . , σ
2
N

)
. We model each variance σ2

i , i = 1, . . . , N , by a twice differentiable

function in dependence of parameters α = (α0, . . . , αM−1)T and a suitable set of linearly
independent basis functions em (X) ∈ L2

(
Rd,B,P′

)
, m = 0, 1, . . . ,M − 1, with vi =(

e0

(
xi
)
, . . . , eM−1

(
xi
))T

, i.e.,

σ2
i = σ2V

[
α,vi

]
, (80)
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where V
[
α,vi

]
is referred to as the variance function in analogy to V [µ] for GLMs and

GAMs. Without loss of generality, we set again σ2 = 1. Like in minimization problem
(58) of GLMs, the individual variances determine the regression weights in generalized
least-squares problem (72).

Hartmann (2015) has already applied FGLS regression with different variance models
in the LSMC framework. In her numerical examples, variance models with multiplicative
heteroscedasticity led to the best performance of the proxy function in the validation.
Therefore, we restrict our analysis on these kinds of structures, compare e.g. Harvey
(1976), i.e.,

V
[
α,vi

]
= exp

(
vi,Tα

)
. (81)

The conceivable alternatives applied by Hartmann (2015) are variance models with addi-
tive heteroscedasticity, see e.g. Glejser (1969), heteroscedasticity with respect to powers,
see e.g. Carroll & Ruppert (1988), or heteroscedasticity with respect to the conditional
expectation.

We should only apply FGLS regression as a substitute of OLS regression if heteroscedas-
ticity prevails. If the variance function has the structure

V
[
α,vi

]
= h

(
vi,Tα

)
, (82)

where the function h(·) is twice differentiable and the first element of vi is vi0 = 1, the
Breusch-Pagan test by Breusch & Pagan (1979) can be used to diagnose heteroscedas-
ticity under the assumption of normally distributed errors. We use it in the numerical
computations to check if heteroscedasticity still prevails during the iterative procedure.

13.5.7 Variance Model Selection & AIC

Like the proxy function, the variance function (81) has to be calibrated to apply FGLS
regression, which means that the variance function has to be composed of suitable basis
functions. Again, such a composition can be found with the aid of a model selection
criterion. We stick to AIC but have to take care of the fact that the covariance matrix
now contains M unknown parameters instead of only one as in the OLS case (the same
variance for all observations). Under Assumption (A7), AIC is given as

AIC = −2l
(
β̂FGLS, Σ̂

)
+ 2 (K +M) (83)

= N log (2π) + log
(

det Σ̂
)

+
(
y− Zβ̂FGLS

)T
Σ̂−1

(
y− Zβ̂FGLS

)
+ 2 (K +M) .

When using a variance model with multiplicative heteroscedasticity, AIC becomes

AIC = N log (2π) +

(
N∑
i=1

vi,T

)
α̂+

N∑
i=1

exp
(
−vi,Tα̂

) (
ε̂i
)2

+ 2 (K +M) . (84)

As an alternative or complement, the basis functions of the variance model can be selected
with respect to their correlations with the absolute values of the final OLS residuals or
based on graphical residual analysis.

A difficulty of variance model selection poses its potential interdependency with proxy
function selection because the basis functions minimizing the model selection criterion
when being added to the proxy function might depend on the selected basis functions of
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the variance model and vice versa. There are multiple ways to tackle the interdependency
difficulty, compare Hartmann (2015), of which we implement two variants with rather
short run times and promising out-of-sample validation performances.

Our type I variant starts with the derivation of the proxy function by the standard
adaptive OLS regression approach and then selects the variance model adaptively from
the set of proxy basis functions of which the exponents sum up to at most two. The
type II variant builds on the type I algorithm by taking the resulting variance model as
given in its adaptive proxy basis function selection procedure with FGLS regression in
each iteration.

13.5.8 Summary

The FGLS regression algorithm in Section 13.5 is another generalization of the OLS re-
gression algorithm insofar as the errors are here allowed to have any positive definite
covariance matrix. For the GLS estimator to be the best linear unbiased estimator by
Gauss-Markov-Aitken theorem, the assumptions of strict exogeneity, linearly independent
basis functions and a known covariance matrix are required. The GLS estimator minimizes
the generalized residual sum of squares. When the covariance matrix is unknown but can
be estimated consistently, the FGLS estimator serves as a substitute for the GLS estimator
that has asymptotically the same properties. If furthermore the errors are jointly normally
distributed, the FGLS estimator can be derived by a maximum likelihood algorithm and
fed into AIC according to Theorem 3. Suitable implementations are multiplicative het-
eroscedasticity, adaptive variance model selection procedures and Breusch-Pagan test for
heterogeneity diagnosis.

13.6 Multivariate Adaptive Regression Splines (MARS)

13.6.1 OLS Regression/GLM with Hinge Functions

The multivariate adaptive regression splines (MARS) were introduced by Friedman (1991).
The classical MARS model is a form of the classical linear regression model (44), where
the basis functions ek

(
xi
)

are so-called hinge functions. Therefore, the theory of OLS
regression applies in this context. Since GLMs (52) are generalizations of the classical
linear regression model, they can also be applied in conjunction with MARS models. In
this case we speak of generalized MARS models.

We describe the standard MARS algorithm in the LSMC routine along the lines of
Chapter 9.4 of Hastie et al. (2017). The building blocks of MARS proxy functions are
reflected pairs of piecewise linear functions with knots t as depicted in Figure 19, i.e.,

(Xl − t)+ = max (Xl − t, 0) ,

(t−Xl)+ = max (t−Xl, 0) , (85)

where the Xl, l = 1, . . . , d, represent the risk factors which together form the outer scenario
X = (X1, . . . , Xd)

T.
For each risk factor, reflected pairs with knots at each fitting scenario stress xil, i =

1, . . . , N , are defined. All pairs are united in the following collection serving as the initial
candidate term set of the MARS algorithm, i.e.,

C1 =
{

(Xl − t)+ , (t−Xl)+

}
t∈{x1l ,x2l ,...,xNl } | l=1,...,d

. (86)
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Figure 19: Reflected pair of piecewise linear functions with a knot at t.

We call the elements of such a collection hinge functions and write them as functions h (X)
over the entire input space Rd. The initial set C1 contains in total 2dN basis functions.

The adaptive basis function selection algorithm now consists of two parts, the forward
and the backward part. An especially fast MARS algorithm was developed by Friedman
(1993) and is implemented, for example, in function earth(·) of R package earth provided
by Milborrow (2018).

13.6.2 Adaptive Forward Stepwise Selection & Forward Pass

The forward pass of the MARS algorithm can be viewed as a variation of the adaptive
forward stepwise algorithm depicted in Figure 13. The start proxy function consists only
of the intercept, that is, h0 (X) = 1. In the classical MARS model, the regression method
of choice is the standard OLS regression approach with the estimator (45), where in each
iteration a reflected pair of hinge functions is selected instead of ek

(
xi
)
. Similarly, the

regression method of choice in the generalized MARS model is the IRLS algorithm (57).
Let us denote the MARS coefficient estimator by β̂MARS. As the model selection criterion
serves the residual sum of squares, or equivalently, the negative of R squared. Note
that the theory about AIC and ML estimation cannot be transferred hereto without any
adjustments since the knots in the hinge functions act as additional degrees of freedom.

After each iteration, the set of candidate terms is extended by the products of the last
two selected hinge functions with all hinge functions in C1 that depend on risk factors
of which the last two selected hinge functions do not depend on. Let the reflected pair
selected in the first iteration (k = 1) be

h1 (X) = (Xl1 − t1)+ ,

h2 (X) = (t1 −Xl1)+ . (87)

Furthermore, let C1,− = C1\{h1 (X) , h2 (X)}. Then, the set of candidate terms is updated
at the beginning of the second iteration (k = 2) such that

C2 = C1,− ∪
{

(Xl − t)+ h1 (X) , (t−Xl)+ h1 (X)
}
t∈{x1l ,x2l ,...,xNl } | l=1,...,d, l 6=l1

∪
{

(Xl − t)+ h2 (X) , (t−Xl)+ h2 (X)
}
t∈{x1l ,x2l ,...,xNl } | l=1,...,d, l 6=l1

. (88)
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The second set C2 contains thus 2 (dN − 1)+4 (d− 1)N basis functions. Often, the order
of interaction is limited to improve the interpretability of the proxy functions. Besides the
maximum allowed number of terms, a minimum threshold for the decrease in the residual
sum of squares can be employed as a termination criterion in the forward pass. Typically,
the proxy functions generated in the forward pass overfit the data since model complexity
is only penalized conservatively by stipulating a maximum number of basis functions and
a minimum threshold.

13.6.3 Backward Pass & GCV

Due to the overfitting tendency of the proxy function generated in the forward pass, a
backward pass is executed afterwards. Apart from the direction and slight differences,
the backward pass is similar to the forward pass. In each iteration, the hinge function of
which the removal causes the smallest increase in the residual sum of squares is removed
and the backward model selection criterion for the resulting proxy function is evaluated.
By this backward procedure, we generate the “best” proxy functions of each size in terms
of the residual sum of squares. Out of all these best proxy functions, we finally select
the one which minimizes the backward model selection criterion. As a result, the final
proxy function will not only contain reflected pairs of hinge functions but also single hinge
functions of which the complements have been removed. Optionally, the backward pass
can also be omitted or alternatives which include combinations with forward steps could
be implemented.

Let the number of basis functions in the MARS model be K, the number of knots be
T and the smoothing parameter be c. With the effective degrees of freedom df = K + cT ,
the standard choice for the backward model selection criterion is GCV, i.e.,

GCV =
ND

(
β̂MARS

)
(N − df)2 , (89)

compare the definition in (70) for GAMs. For cases in which no interaction terms are
allowed, Friedman & Silverman (1989) give a mathematical argument for using c = 2. For
the other cases, Friedman (1991) concludes from a wide variety of simulation studies that
a parameter of c = 3 is fairly effective. Across all these studies, 2 ≤ c ≤ 4 was found to
give the best value of c. Alternatively, but with significantly higher computational costs,
c could be estimated by resampling techniques such as bootstrapping by Efron (1983) or
cross-validation by Stone (1974).

13.6.4 Summary

The classical and generalized MARS algorithms in Section 13.6 are special cases of re-
spectively the OLS regression algorithm and GLM algorithm, in which the basis functions
are hinge functions and variable selection is carried out subsequently in a forward and
backward pass. While in the forward pass the proxy functions are built up with respect
to the residual sum of squares as the model selection criterion, in the backward pass they
are cut back with respect to GCV where the degrees of freedom are modified to account
for the knots in the hinge functions.
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13.7 Kernel Regression

13.7.1 One-dimensional LC & LL Regression

Kernel regression is a type of locally weighted OLS regression where the weights vary with
the input variable (the target scenario). This non-parametric regression approach using a
kernel as the weighting function goes back to Nadaraya (1964) and Watson (1964).

We start with local constant (LC) and local linear (LL) regression in one dimension
along the lines of Chapter 6 of Hastie et al. (2017). Thereby we carve out the idea of
kernel regression which generalizes very naturally to more dimensions.

Let the target scenario be denoted by x0 ∈ R and let the univariate kernel with given
bandwidth λ > 0 be

Kλ

(
x0, x

i
)

= D

(∣∣xi − x0

∣∣
λ

)
, (90)

where D (·) is the specified kernel function. While, for example, the Epanechnikov (see
the green shaded areas of Figure 20 inspired by Hastie et al. (2017)), tri-cube and uniform
kernels are commonly used kernel functions with bounded support, the gaussian kernel
is one with infinite support. Moreover, the kernels can be defined with different orders,
often the second order kernels are used, see e.g. Li & Racine (2007).

The LC kernel estimator or Nadaraya-Watson kernel smoother is given at each x0 as
the kernel-weighted average over the fitting values yi, i.e.,

f̂LC (x0) = β̂LC (x0) =

∑N
i=1Kλ

(
x0, x

i
)
yi∑N

i=1Kλ (x0, xi)
. (91)

It is a continuous function since the weights die off smoothly with increasing distance
from x0. This locally constant function varies over the domain of target scenarios x0 and
therefore needs to be estimated separately at all of them. Due to the asymmetry of the

Figure 20: LC and LL kernel regression using the Epanechnikov kernel with λ = 0.2 in one dimension.

kernels at the boundaries of the domain, the LC kernel estimator (91) can be severely
biased in that region, see the left panel of Figure 20.

We can overcome this problem by fitting locally linear functions instead of locally con-
stant functions, see the right panel of Figure 20. At each target x0, the LL kernel estimator
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is defined as the minimizer of the kernel-weighted residual sum of squares, i.e.,

β̂LL (x0) = arg min
β(x0)∈R2

{
N∑
i=1

Kλ

(
x0, x

i
) (
yi − β0 (x0)− β1 (x0)xi

)2}
, (92)

with β (x0) = (β0 (x0) , β1 (x0))T. If we omit the linear term in (92) by setting β1 = 0,
the intercept β̂LL,0 (x0) of the LL kernel estimator becomes the LC kernel estimator (91).
The proxy function at x0 is given by

f̂LL (x0) = β̂LL,0 (x0) + β̂LL,1 (x0)x0. (93)

Again the minimization problem (92) must be solved separately for all target scenarios
so that the coefficients of the proxy function vary across their domain. For each target
scenario x0, (92) is a weighted least-squares (WLS) problem with weights Kλ

(
x0, x

i
)
. Its

solution is the WLS estimator

β̂LL (x0) =
(
ZTW (x0)Z

)−1
ZTW (x0)y, (94)

with y as the response vector, W (x0) = diag
(
Kλ

(
x0, x

1
)
, . . . ,Kλ

(
x0, x

N
))

as the weight

matrix and Z as the design matrix containing row-wise the vectors
(
1, xi

)T
. We call H

the hat matrix if ŷ = Hy such that ŷ =
(
f̂LL

(
x1
)
, . . . , f̂LL

(
xN
))T

contains the proxy

function values at their target scenarios.
When we use proxy functions in LL regression that are composed of polynomial ba-

sis functions with exponents greater than one, we could also speak of local polynomial
regression.

13.7.2 Multidimensional LC & LL Regression

We generalize LC regression to RK based on Chapter 2 of Li & Racine (2007) by expressing
the kernel with respect to the basis function vector z = (e0 (X) , . . . , eK−1 (X))T following
from the adaptive forward stepwise selection with OLS regression and small Kmax. At each
target scenario vector z0 ∈ RK with elements z0k, basis function vector zi ∈ RK with ele-
ments zik evaluated at fitting scenario xi and given bandwidth vector λ = (λ0, . . . , λK−1)T,
the multivariate kernel is defined as the product of univariate kernels, i.e.,

Kλ
(
z0, z

i
)

=

K−1∏
k=0

D

(
|zik − z0k|

λk

)
. (95)

The LC kernel estimator or Nadaraya-Watson kernel smoother in RK is defined at each
z0 as

f̂LC (z0) = β̂LC (z0) =

∑N
i=1Kλ

(
z0, z

i
)
yi∑N

i=1Kλ (z0, zi)
. (96)

Since we let e0 (X) represent the intercept so that zi0 = z00 = 1, the corresponding

univariate kernel D
(
|zi0−z00|

λ0

)
= D (0) is constant over all fitting points, thus cancels in

(96) and can be omitted in (95).
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The LL kernel estimator in RK is given as the multidimensional analogue of (92) at
each z0, i.e.,

β̂LL (z0) = arg min
β(z0)∈RK

{
N∑
i=1

Kλ
(
z0, z

i
) (
yi − zi,Tβ (z0)

)2}
, (97)

where β (z0) = (β0 (z0) , . . . , βK−1 (z0))T and the proxy function at z0 is given by

f̂LL (z0) = zT
0 β̂LL (z0) . (98)

The LL kernel estimator can again be computed by WLS regression, i.e.,

β̂LL (z0) =
(
ZTW (z0)Z

)−1
ZTW (z0)y, (99)

where W (z0) = diag
(
Kλ

(
z0, z

1
)
, . . . ,Kλ

(
z0, z

N
))

is the weight matrix and Z the design
matrix containing row-wise the vectors zi,T. The hat matrix H satisfies ŷ = Hy with ŷ =(
f̂LL

(
z1
)
, . . . , f̂LL

(
zN
))T

containing the proxy function values at their target scenario

vectors.

13.7.3 Bandwidth Selection, AIC & LOO-CV

The bandwidths λk in kernel regression can be selected similarly to the smoothing pa-
rameters in GAMs by minimization of a suitable model selection criterion. In fact, kernel
smoothers can be interpreted as local non-parametric GLMs with identity link functions.
More precisely, at each target scenario the kernel smoother can be viewed as a GLM (52)
where the parametric weights V

[
µ̂iGLM

]
in (58) are the non-parametric kernel weights

Kλ
(
z0, z

i
)

in (97). Since GLMs are special cases of GAMs and the bandwidths in kernel
regression can be understood as smoothing parameters, kernel smoothers and GAMs are
sometimes lumped together in one category. If the numbers N of the fitting points and K
of the basis functions are large, from a computational perspective it might be beneficial
to perform bandwidth selection based on a reduced set of fitting points.

Hurvich et al. (1998) propose to select the bandwidths λ1, . . . , λK−1 based on an im-
proved version of AIC which works in the context of non-parametric proxy functions that
can be written as linear combinations of the observations. It has the form

AIC = log
(
σ̂2
)

+
1 + tr (H) /N

1− (tr (H) + 2) /N
, (100)

where σ̂2 = 1
N (y− ŷ)T (y− ŷ) and H is the hat matrix.

As an alternative, leave-one-out cross-validation (LOO-CV) is suggested by Li & Racine
(2004) for bandwidth selection. Let us refer to

β̂LL,−j (z0) = arg min
β(z0)∈RK


N∑

i=1,i 6=j
Kλ

(
z0, z

i
) (
yi − zi,Tβ (z0)

)2 (101)

as the leave-one-out LL kernel estimator and to f̂LL,−j (z0) = zT
0 β̂LL,−j (z0) as the leave-

one-out proxy function at z0. The objective of LOO-CV is to choose the bandwidths
λ1, . . . , λK−1 which minimize

CV =
1

N

N∑
i=1

(
yi − f̂LL,−i (z0)

)2
. (102)
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13.7.4 Adaptive Forward Stepwise OLS Selection

A practical implementation of kernel regression can be found, for example, in the com-
bination of functions npreg(·) and npregbw(·) from R package np of Racine & Hayfield
(2018).

In the other sections, basis function selection depends on the respective regression meth-
ods. Since the crucial process of bandwidth selection in kernel regression takes a very long
time in the implementation of our choice, it would be infeasible to proceed here in the
same way. Therefore, we derive the basis functions for LC and LL regression by adaptive
forward stepwise selection based on OLS regression, by risk factor wise linear selection or
a combination thereof. Thereby, we keep the maximum allowed number of terms Kmax

rather small as we aim to model the subtleties by kernel regression.

13.7.5 Summary

The kernel regression algorithm in Section 13.7 is a non-parametric local regression ap-
proach using a kernel as a weighting function. While at each target point the LC ker-
nel estimator is given as the kernel-weighted average, the LL kernel estimator minimizes
everywhere the kernel-weighted residual sum of squares. To evaluate AIC at a kernel
estimator, a non-parametric version accounting for the bandwidths is presented. As an
alternative to AIC, non-parametric leave-one-out cross-validation LOO-CV is introduced.
The bandwidths are selected such that they minimize the chosen model selection criterion.
For reasons of computational efficiency, the adaptive basis function selection procedures
need to be performed prior to the kernel regression approach based on, for example, OLS
regression.

14 Numerical Experiments

14.1 General Remarks

14.1.1 Data Basis

In our slightly altered real-world example, the life insurance company has a portfolio with
a large proportion of traditional annuity business. In order to challenge the regression
techniques, the traditional annuity business features by construction very high interest
rate guarantees so that the insurer suffers huge losses in low interest rate environments.
We let the insurance company be exposed to d = 15 relevant financial and actuarial risk
factors. For the derivation of the fitting points, we run its CFP model conditional on N =
25, 000 fitting scenarios with each of these outer scenarios entailing two antithetic inner
simulations. For a subset of the resulting fitting values of the best estimate liability (BEL),
see Figure 16, for summary statistics, the left column of Table 4, and for a histogram, the
left panel of Figure 21.

The Sobol validation set is generated based on L = 51 validation scenarios with 1, 000
inner simulations, where the 51 scenarios comprise 26 Sobol scenarios, one base scenario,
15 one-dimensional risk scenarios and 9 scenarios that turned out to be capital region
scenarios in the previous year risk capital calculations.

The nested simulations set which is due to its high computational costs not available
in the regular LSMC approach reflects the highest 5% real-world losses and is based on
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Fitting Values Nested Simulation Values

Minimum: 10,883 12,479
1st quartile: 13,824 14,515
Median: 14,907 14,940
Mean: 14,922 14,922
3rd quartile: 15,989 15,330
Maximum: 19,354 17,080

Std. deviation: 1,519 610
Skewness: 0.067 -0.081
Kurtosis: 2.478 3.214

Table 4: Summary statistics of fitting and nested simulation values of BEL.

L = 1, 638 outer scenarios with respectively 4,000 inner simulations. From the 1,638 real-
world scenarios, 14 exhibit extreme stresses far beyond the bounds of the fitting space
and are therefore excluded from the analysis. For the remaining nested simulation values
of BEL, see Figure 17, for summary statistics, the right column of Table 4, and for a
histogram, the right panel of Figure 21. The corresponding data set still comprises 107
points with scenarios lying outside of the fitting space. Although these points distort
the validation figures slightly, we deliberately keep them in the data set to present a
more realistic picture of the regression techniques for prediction. As the univariate risk
factor distributions are modeled by unbounded distributions, the fitting space covers only
a subspace of the realizations of the insurer’s real-world distribution. Therefore, it is from
a practical perspective important that a proxy function also shows a reasonably good
extrapolation behavior.

Figure 21: Histograms of fitting and nested simulation values of BEL.

The capital region set consists of the L = 129 nested simulations points which correspond
to the nested simulations SCR estimate (= 99.5% highest loss) and the 64 losses above
and below (= 99.3% to 99.7% highest losses). While one point with an extreme scenario
is excluded from this data set, 24 points with scenarios lying outside of the fitting space
are kept in it.



14 Numerical Experiments 89

For the sake of completeness, we evaluate the validation figures for the four best models
from Sections 14.2–14.5 based on further reduced nested simulations and capital region
sets in Sections 14.2.6, 14.3.6, 14.4.8 and 14.5.7, and compare them to the results obtained
based on the two full sets. The reduced sets are exclusively composed of points with
scenarios lying inside the fitting space. Therefore, the corresponding validation figures
demonstrate how the four models perform in settings where extrapolation is not required.

14.1.2 Validation Figures

We will output validation figure (38) with respect to the relative and asset metric, and
figures (39), (40) and (41). In all tables of the appendix, figures (40) and (41) are evaluated
on the Sobol set, i.e., v.mae0, v.res0, with respect to base value y0

1,000 = 14, 646.7, which
is a result of averaging over 1, 000 inner simulations. On the nested simulations set, i.e.,
ns.mae0, ns.res0, and capital region set, i.e., cr.mae0, cr.res0, these figures are everywhere
computed with respect to base value y0

16,000 = 14, 661.1, which is a result of averaging over
16, 000 inner simulations. The tables in the four sections about the behavior on the reduced
validation sets also report figures v.mae0 and v.res0 with respect to the latter base value:
While the first row in these tables contains duplicates of the results from the appendix,
the second row contains the new evaluations. Since base value y0

16,000 is associated with
a lower standard error, it is supposed to be the more reliable one. Therefore, it is worth
noting that figure v.res0 from the tables in the appendix can easily be transformed such
that it is calculated with respect to y0

16,000 as well by subtracting from v.res0 the difference

of y0
16,000 − y0

1,000 = 14.4 which the two base values incur. For the majority of the derived
proxy functions such a transformation will in fact reveal a higher approximation quality
than suggested by the tables.

We will not explicitly state the base residual (42) as it is just (39) minus (41). Unlike
figures (38) and (39), figures (40) and (41) do not forgive a bad fit of the base value if
the validation values are well approximated by a proxy function. Contrariwise, if a proxy
function shows the same systematic deviation from the validation values and base value,
(40) and (41) will be close to zero whereas (38) and (39) will be not.

The residual figures (39) and (41) have to be interpreted relative to the MAE figures
(38) and (40). This means, we only speak of a bias if a residual figure is large compared
to the MAE figures. Besides that, for residual figures ns.res, ns.res0, cr.res and cr.res0, the
homogeneity resulting from the ordering of the underlying validation data sets (highest
5% losses) has to be taken into account. While a large residual implies a bias, a small
residual does not necessarily indicate no bias since a small residual might as well be caused
by a sign change of a bias along the ordering.

14.1.3 Economic Variables

We derive the OLS proxy functions for two economic variables, namely for the best
estimate liability (BEL) and available capital (AC) over a one-year risk horizon, i.e.,
Y (X) ∈ {BEL(X), AC(X)}. Their approximation quality is assessed by validation fig-
ures (38) with respect to the relative and asset metric and (39). Essentially, AC is obtained
as the market value of assets minus BEL. Since the market value of assets only depends
on financial risk factors, AC reflects the negative behavior of BEL with respect to the
actuarial risk factors. Due to the high similarity of BEL and AC, we will only derive BEL
proxy functions with the other regression methods. The profit resulting from a certain
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risk constellation captured by an outer scenario X can be computed as AC(X) minus
the base AC. Validation figures (40) and (41) address the approximation quality of this
difference. Taking the negative of the profit yields the loss and evaluating the loss at all
real-world scenarios the real-world loss distribution from which the SCR is derived as the
99.5% value-at-risk. The out-of-sample performances of two different OLS proxy functions
of BEL on the Sobol, nested simulations and capital region sets serve as the benchmark
for the other regression methods.

14.1.4 Numerical Stability

Let us discuss the subject of numerical stability of QR decompositions in the OLS re-
gression design under a monomial basis. If the weighting in the weighted least-squares
problems associated with GLMs, heteroscedastic FGLS regression and kernel regression
is good-natured, similar arguments apply as they can also be solved via QR decompo-
sitions according to Green (1984) where the weighting is just a scaling. However, the
weighting itself raises additional numerical questions that need to be taken into consider-
ation when making the regression design choices. In GLMs, these choices are the random
component (50) and link function (52), in FGLS regression it is the functional form of
the heteroscedastic variance model (80) and in kernel regression it is the kernel function
(95). The following arguments do not apply to GAMs and MARS models as these are
constructed out of spline functions, see (63) and (85), respectively. In GAMs, the penalty
matrix increases numerical stability.

McLean (2014) justifies that from the perspective of numerical stability performing a
QR decomposition on a monomial design matrix Z is asymptotically equivalent to using
a Legendre design matrix Z ′ and transforming the resulting coefficient estimator into the
monomial one. Under the assumption of an orthonormal basis, Weiß & Nikolić (2019)
have derived an explicit upper bound for the condition number of the non-diagonal matrix
1
N (Z ′)T(Z ′) forN <∞, where the factor 1

N is used for technical reasons. This upper bound
increases in (1) the number of basis functions, (2) the Hardy-Krause variation of the basis,
(3) the convergence constant of the low-discrepancy sequence, and (4) the outer scenario
dimension. The type of restriction setting which we define in Section 14.2.1 controls aspect
(1) through the specification of Kmax and aspect (2) through the limitation of exponents
d1d2d3. Aspects (3) and (4) are beyond the scope of the calibration and validation steps
of the LSMC framework and therefore left aside here.

14.1.5 Interpolation & Extrapolation

In the LSMC framework, let us refer by interpolation to prediction inside the fitting space
and by extrapolation to prediction outside the fitting space. Runge (1901) found that
high-degree polynomial interpolation at equidistant points can oscillate toward the ends
of the interval with the approximation error getting worse the higher the degree is. In a
least-squares problem, Runge’s phenomenon was shown by Dahlquist & Björck (1974) not
to apply to polynomials of degree d fitted based on N equidistant points if the inequality
d < 2

√
N holds. With N = 25, 000 fitting points the inequality becomes d < 316 so

that we clearly do not have to impose any further restrictions in OLS, FGLS and kernel
regression as well as in GLMs to keep this phenomenon under control. Splines as they
occur in GAMs and MARS models do not suffer from this oscillation issue by construction.

Since Runge’s phenomenon concerns the ends of the interval and the real-world scenarios
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for the insurer’s full loss distribution forecast in the fourth step of the LSMC framework
partly go beyond the fitting space, its scope comprises the extrapolation area as well.
High-degree polynomial extrapolation can worsen the approximation error and therefore
play a crucial role if many real-world scenarios go far beyond the fitting space.

14.1.6 Principle of Parsimony

Another problem that can occur in an adaptive algorithm is overfitting. Burnham &
Anderson (2002) state that overfitted models often have needlessly large sampling vari-
ances which means that their precision of the predictions is poorer than that of more
parsimonious models which are also free of bias. In cases where AIC leads to overfitting,
implementing restriction settings of the form Kmax - d1d2d3 becomes relevant for adhering
to the principle of parsimony.

14.2 Ordinary Least-Squares (OLS) Regression

14.2.1 Settings

We build the OLS proxy functions (46) of Y (X) ∈ {BEL(X), AC(X)} with respect to an

outer scenarioX out of monomial basis functions that can be written as ek (X) =
∏15
l=1X

rlk
l

with rlk ∈ N0 so that each basis function can be represented by a 15-tuple
(
r1
k, . . . , r

15
k

)
. The

final proxy function depends on the restrictions applied in the adaptive algorithm. The
purpose of setting restrictions is to guarantee numerical stability, to keep the extrapolation
behavior under control and the proxy functions parsimonious. To illustrate the impact
of restrictions, we run the adaptive algorithm for BEL under two different restriction
settings with the second one being so relaxed that it will not take effect in our example.
Additionally, we run the adaptive algorithm under the first restriction setting for AC to
give an example of how the behavior of BEL can transfer to AC. As the first ingredient
of our restriction setting acts the maximum allowed number of terms Kmax. Furthermore,
we limit the exponents in the monomial basis. Firstly we apply a uniform threshold to
all exponents, i.e., rlk ≤ d1. Secondly we restrict the degree, i.e.,

∑15
l=1 r

l
k ≤ d2. Thirdly

we restrict the exponents in the interaction basis functions, i.e., if there are some l1 6= l2
with rl1k , r

l2
k > 0, we require rl1k , r

l2
k ≤ d3. Let us denote this type of restriction setting

by Kmax - d1d2d3.
As the first and second restriction settings, we choose 150-443 and 300-886, respectively,

motivated by Teuguia et al. (2014) who found in their LSMC example in Chapter 4 with
four risk factors and 50, 000 fitting scenarios entailing two inner simulations that the
validation error computed based on 14 validation scenarios started to stabilize at degree
4 when using monomial or Legendre basis functions in different adaptive basis function
selection procedures. Furthermore, they pointed out that the LSMC approach becomes
infeasible for degrees higher than 12.

We apply R function lm(·) implemented in R package stats of R Core Team (2018).

14.2.2 Results

Table A2 contains the final BEL proxy function derived under the first restriction set-
ting 150-443 with the basis function representations and coefficients. Thereby reflect the
rows the iterations of the adaptive algorithm and depict thus the sequence in which the
basis functions are selected. Moreover, the iteration-wise AIC scores and out-of-sample
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MAEs (38) with respect to the relative metric in % on the Sobol, nested simulations and
capital region sets are reported, i.e., v.mae, ns.mae and cr.mae. Table A3 contains the
AC counterpart of the BEL proxy function derived under 150-443 and Table A4 the final
BEL proxy function derived under the more relaxed restriction setting 300-886. Tables A5
and A6 indicate respectively for the BEL and AC proxy functions derived under 150-443
the AIC scores and all five previously defined validation figures evaluated on the Sobol,
nested simulations and capital region sets after each tenth iteration. Similarly, Table A7
reports these figures for the BEL proxy function derived under 300-886. Here the last row
corresponds to the final iteration.

Thereafter, we manipulate the validation values on all three validation sets twice insofar
as we subtract respectively add pointwise 1.96 times the standard errors from respectively
to them (inspired by the 95% confidence interval of the normal distribution). We then
evaluate the validation figures for the final BEL proxy functions under both restriction
settings on these manipulated sets of validation value estimates and depict them in Ta-
ble A8 in order to assess the impact of the Monte Carlo error associated with the validation
values. In addition, Table 5 provides information on how the best OLS model performs
in terms of extrapolation.

14.2.3 Improvement by Relaxation

Tables A2 and A3 state that the adaptive algorithm terminates under 150-443 for both
BEL and AC when the maximum allowed number of terms is reached. This gives reason
to relax the restriction setting to, for instance, 300-886 which eventually lets the algorithm
terminate due to no further reduction in the AIC score without hitting restrictions 886,
compare Table A4 for BEL. In fact, only restrictions 224-464 are hit. Except for the already
very small figures cr.mae, cr.maea and cr.res all validation figures are further improved by
the additional basis functions, see Tables A5 and A7. The largest improvement takes place
between iterations 180 and 190. The result that at maximum degrees 464 are selected is
consistent with the result of Teuguia et al. (2014) who conclude in their numerical examples
of Chapter 4 that under a monomial, Legendre or Laguerre basis the optimum degree is
probably 4 or 5. Besides that, Bauer & Ha (2015) derive a similar result in their one risk
factor LSMC example of Chapter 6 when using 50, 000 fitting scenarios and Legendre,
Hermite, Chebychev basis functions or eigenfunctions.

According to our Monte Carlo error impact assessment in Table A8, the slight deterio-
ration at the end of the algorithm is not sufficient to indicate an overfitting tendency of
AIC. Under the standard choices of the five major components, compare Section 12.2, the
adaptive algorithm manages thus to provide a numerically stable and parsimonious proxy
function even without a restriction setting. Here, permitting a priori unlimited degrees of
freedom is beneficial to capturing the complex interactions in the CFP model.

However, the standardized residual plot in Figure 22 shows for BEL that OLS regression
is not able to fully model the variance structure. The standardized residuals ε̂i

sOLS
indicate

a decrease of the variance with respect to risk factor X1. Therefore, the assumption of
homoscedastic errors is slightly violated in this numerical example.

14.2.4 Reduction of Bias

Overall, the systematic deviations indicated by the mean errors (39) and (41) are reduced
significantly on the three validation sets by the relaxation but not completely eliminated.
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Figure 22: Standardized residual plot of the best OLS model with respect to X1 indicating a slight violation
of homoscedasticity.

For the 300-886 OLS residuals on the three sets, see the diamond-shaped residuals in
Figures 23–25. While the reduction of the bias comes along with the general improvement
stated above, the remainder of the bias indicates that sample size is not sufficiently large
or that the functional form is not flexible enough to replicate the complex interactions in
the CFP model. The polynomials might not be able to capture the sudden changes in
steepness of BEL and AC which are a consequence of regulation and management actions.

0 5 10 15 20 25 30 35 40 45 50

−100

−50

0

50

100 Best OLS model Best GLM Best GAM Best FGLS model

Figure 23: Residual plots on Sobol set.

The comparisons |v.res| <
∣∣v.res0

∣∣, |cr.res| <
∣∣cr.res0

∣∣ but |ns.res| >
∣∣ns.res0

∣∣, holding
under both restriction settings, indicate that on the Sobol and capital region sets primarily
the base value is not approximated well whereas on the nested simulations set not only
the base value but also the validation values are missed. The MAEs capture this result,
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too, i.e., v.mae, cr.mae < ns.mae but ns.mae0 < v.mae0, cr.mae0.
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Figure 24: Residual plots on nested simulations set.

14.2.5 Relationship between BEL & AC

The MAEs with respect to the relative metric are much smaller for BEL than for AC since
the two economic variables are subject to similar absolute fluctuations with, for example,
in the base case BEL being approximately 20 times the size of AC. The similar absolute
fluctuations are reflected by the iteration-wise very similar MAEs with respect to the asset
metric of BEL and AC, compare v.maea, ns.maea and cr.maea given in % in Tables A5
and A6. Furthermore, they manifest themselves in the iteration-wise opposing mean errors
v.res, v.res0, ns.res and cr.res as well as in the similarly-sized MAEs v.mae0, ns.mae0 and
cr.mae0.

14.2.6 Reduced Validation Sets

Table 5 displays the out-of-sample validation figures of the best derived OLS proxy function
of BEL evaluated based on the Sobol and the full and reduced nested simulations and
capital region sets after the final iteration. Thereby, this table reports figures v.mae0 and
v.res0 in the first row with respect to base value y0

1,000 and in the second row with respect

to more reliable base value y0
16,000.

While the MAEs are consistently improved when excluding the points with scenarios
lying outside of the fitting space, the mean errors seem to be impacted more randomly.
The reason behind this seemingly random behavior is related to the sign change of the bias
of the proxy function along the ordering of the nested simulations and capital region sets.
Take, for example, figure cr.res which is equal to 0.8 when referring to the full capital
region set, and equal to −10.3 when referring to the reduced capital region set. Now
consider the diamond-shaped residuals in Figure 25 which yield the almost ideal mean
error of 0.8 but at the same time show a systematic pattern. The residuals in the left half
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k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Best OLS model evaluated based on full validation sets

224 0.194 0.186 −8.7 6.659 34.3 0.268 0.259 −30.2 4.200 −1.6 0.168 0.165 0.8 5.007 29.4

Best OLS model evaluated based on reduced validation sets

224 0.194 0.186 −8.7 5.329 19.9 0.253 0.244 −34.6 3.608 −6.0 0.124 0.121 −10.3 4.159 18.4

Table 5: Out-of-sample validation figures of the best derived OLS proxy function of BEL. MAEs in %.

of the diagram indicate an underestimation of BEL by the proxy function whereas the
residuals in the right half indicate an overestimation. Removing the points with scenarios
lying outside of the fitting space affects more residuals in the left than in the right half
of the diagram. Therefore, the residuals in the right half dominate the mean error after
the removal of the points. As a result, the mean error on the reduced capital region set
becomes more negative and ends up at −10.3.
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Figure 25: Residual plots on capital region set.

The second row of the table reveals for the best derived OLS proxy function an actually
higher approximation quality on the Sobol set than suggested by the first row and thus all
corresponding tables in the appendix. Moreover, it follows that the proxy function loses
a part of its accuracy when extrapolating.

14.2.7 Summary

We applied the OLS regression algorithm in Section 14.2 under suitable restriction settings
and found that relaxing the setting from 150-443 to 300-886 (i.e., no actual restriction)
improved out-of-sample performance considerably. Thereby the bias indicated by the
mean errors on the three validation sets was reduced, see Tables A5 and A7, but not
eliminated so that we stated that the functional form of the proxy function still had
some flaws, see Figure 24. We concluded that overall the adaptive algorithm managed to
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provide a numerically stable and parsimonious proxy function even without imposing a
restriction setting and that the a priori unlimited degrees of freedom served to capture the
complex CFP model better. Furthermore we pointed out that BEL and AC were subject
to similar absolute fluctuations. Lastly, we showed that the best OLS model lost a part
of its accuracy when extrapolating.

14.3 Generalized Linear Models (GLMs)

14.3.1 Settings

We derive the GLMs (52) of BEL under restriction settings 150-443 and 300-886 which
we also employed for the derivations of the OLS proxy functions. Thereby, we run each
restriction setting with the canonical choices of random components for continuous (non-
negative) response variables, that is, the normal, gamma and inverse gaussian distribu-
tions, compare McCullagh & Nelder (1989). In cases where the economic variable can also
attain negative values (e.g., AC), a suitable shift of the response values in a preceding step
would be required. We combine each of the three random component choices with the

commonly used identity, inverse and log link functions, i.e., g (µ) ∈
{

id (µ) , 1
µ , log (µ)

}
,

compare Chambers & Hastie (1992). In combination with the inverse gaussian random
component, we consider additionally link function 1

µ2
. Further choices are conceivable but

go beyond this first shot.
We take R function glm(·) implemented in R package stats of R Core Team (2018).

14.3.2 Results

While Tables A9–A11 display the AIC scores and five previously defined validation figures
after each tenth iteration for the just mentioned combinations under 150-443, Tables A12–
A14 do so under 300-886 and include the final iterations. Table A15 gives an overview
of the AIC scores and validation figures corresponding to all considered final GLMs and
highlights in green and red respectively the best and worst values observed per figure.
Lastly, Table 6 comments on how the best GLM performs on extrapolated areas.

14.3.3 Improvement by Relaxation

The OLS regression is the special case of a GLM with normal random component and
identity link function. This is why the first sections of Tables A9 and A12 coincide re-
spectively with Tables A5 and A7. The adaptive algorithm terminates under 150-443 not
only for this combination but also for all other ones when the maximum allowed number
of terms is reached. Under 300-886 termination occurs due to no further reduction in the
AIC score without hitting the restrictions - the different GLMs stop between the values
208-454 and 250-574 are attained.

For all GLMs except for the one with gamma random component and identity link, the
AIC scores and eight most significant validation figures for measuring the approximation
quality, namely leftmost figure v.mae to rightmost figure ns.res in the tables, are improved
through the relaxation as can be seen in Table A15. For gamma random component with
identity link, the deteriorations are negligible. Overall, figures ns.mae0 and cr.mae0 are
deteriorated by at maximum 0.5% points and figures ns.res0 and cr.res0 by at maximum
4 units. Figures cr.mae and cr.maea are especially small under 150-443 so that slight
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deteriorations by at maximum 0.05% points under 300-886 towards the levels of v.mae
and v.maea or ns.mae and ns.maea are not surprising. Similar arguments apply to the
acceptability of the maximum deterioration of cr.res by 13 to 17 units for inverse gaussian
with 1

µ2
link. We conclude that the more relaxed restriction setting 300-886 performs

better than 150-443 for all GLMs in our numerical example. This result appears plausible
in comparison with the OLS result from the previous section and is hence also consistent
with the OLS results of Teuguia et al. (2014) and Bauer & Ha (2015).

AIC cannot be said to show an overfitting tendency according to Tables A12–A14 and
also Table A8 since the validation figures do not deteriorate in the late iterations more than
they underlie Monte Carlo fluctuations, compare the OLS interpretation. Using GLMs
instead of OLS regression in the standard adaptive algorithm, compare Section 12.2, lets
the algorithm thus maintain its property to yield numerically stable and parsimonious
proxy functions even without restriction settings.

14.3.4 Reduction of Bias

According to Table A15, inverse gaussian with 1
µ2

link shows the most significant decrease

in v.mae by −0.088% points when moving from 150-443 to 300-886. Under 300-886 this
combination even outperforms all other ones (highlighted in green) whereas under 150-
443 it is vice versa (highlighted in red). Hence, the performance of a random component
link combination under 150-443 does not generalize to 300-886. On the Sobol and nested
simulations sets, the MAEs (38) are not only considerably lower for inverse gaussian with
1
µ2

link than for all others but also the closest together even when the capital region set is
included. This speaks for a great deal of consistency.

In fact, the systematic overestimation of 81% of the points on the nested simulations
set by inverse gaussian with 1

µ2
link is certainly smaller than, for example, that of 89%

by normal with identity link but still very pronounced. On the capital region set, the
overestimation rates for these two combinations are 41% and 56%, respectively, meaning
that here the bias is negligible. Surprisingly, for most GLMs the bias is here smaller than
for inverse gaussian with 1

µ2
link but since this result does not generalize to the nested

simulations set, we regard the rather mediocre performance of inverse gaussian with 1
µ2

link as a chance event. Interpreting the mean errors (39) provides similar insights.
In particular, for inverse gaussian 1

µ2
link GLM the reduction of the bias comes along

with the general improvement by the relaxation. The small remainder of the bias indicates
not only that this GLM is a promising choice here but also that identifying well-suited
regression methods and functional forms is crucial to further improving the accuracy of
the proxy function. For the residuals on the three sets, see the triangle-shaped residuals
in Figures 23–25.

14.3.5 Major & Minor Role of Link Function & Random Component

Apart from the just considered case, for all three random components, the relaxation
to 300-886 yields the largest out-of-sample performance gains in terms of v.mae with
identity link (between −0.047% and −0.058% points), closely followed by log link (between
−0.033% and −0.047% points), and the least gains with inverse link (between −0.017%
and −0.020% points). While with identity link the largest improvements before finalization
take place for normal, gamma and inverse gaussian random components between iterations
180 to 190, 170 to 180, and 150 to 160, respectively, with log link they occur much sooner
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between iterations 120 to 130, 110 to 120, and 110 to 120, respectively, see Tables A12–
A14. As a result of this behavior, under 150-443 log link performs better than identity
link for normal and inverse gaussian whereas under 300-886 it is vice versa. Inverse link
always performs worse than identity and log links, in particular under 300-886.

Applying the same link with different random components does not bring much variation
under 300-886 with gamma and inverse gaussian being slightly better than normal for
all considered links though. This observation is in line with the slight skewness of the
distribution of BEL resulting from the asymmetric profit sharing mechanism in the CFP
model: While the policyholders are entitled to participate at the surpluses of an insurance
company, see e.g. Mourik (2003), the company has to bear its losses fully by itself. Since
the normal random component performs only slightly worse than the skewed distributions,
it should still be considered for practical reasons because it has a closed-form solution and
a great deal of statistical theory has been developed for it, compare e.g. Dobson (2002).
By conclusion, the choice of the link is more important than that of the random component
so that trying alternative link functions might be beneficial.

14.3.6 Reduced Validation Sets

Table 6 indicates the out-of-sample validation figures of the best derived GLM of BEL
evaluated based on the Sobol and the full and reduced nested simulations and capital
region sets after the final iteration. Again, figures v.mae0 and v.res0 are calculated with
respect to base value y0

1,000 in the first row and base value y0
16,000 in the second row.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Best GLM evaluated based on full validation sets

250 0.174 0.166 −12.4 5.058 25.5 0.193 0.186 −14.6 3.833 8.8 0.188 0.184 17.3 6.266 40.8

Best GLM evaluated based on reduced validation sets

250 0.174 0.166 −12.4 4.067 11.1 0.169 0.163 −19.6 3.046 3.8 0.107 0.105 2.5 4.942 26.0

Table 6: Out-of-sample validation figures of the best derived GLM of BEL. MAEs in %.

For the best GLM, we observe a similar pattern as for the best OLS model in Section
14.2.6 when excluding the extrapolation effects. While all MAEs are reduced when moving
from the first to the second row, the mean errors behave a little more randomly. But the
overall improvement for the best GLM is clearly more distinct than that of the best OLS
model. The best GLM benefits particularly from removing the extrapolated points from
the capital region set with even both mean errors cr.res and cr.res0 improving significantly.
See Figure 25 for an illustration of this result: There are comparatively many triangle-
shaped residuals indicating a strong underestimation of BEL by the best GLM in the left
two thirds of the diagram which disappear through the removal. Furthermore, the overall
bias of the best GLM is much less severe than that of the best OLS model, compare also
Figure 24, which makes the performance gains even higher.

Figures v.mae0 and v.res0 from the second row expose that the approximation quality of
the best derived GLM is also actually higher than suggested by the first row and thus all
corresponding tables in the appendix. Additionally, it can be concluded that the originally
rather mediocre performance of the best GLM on the capital region set is partially driven
by extrapolation.
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14.3.7 Summary

Like in the OLS regression algorithm, we observed in all applied GLM algorithms in Sec-
tion 14.3 that relaxing the setting from 150-443 to 300-886 (i.e., no actual restriction)
helped to improve out-of-sample performance and reduce the bias. From the small re-
mainder of the bias we deduced that identifying suitable regression methods and functional
forms is crucial to further improving the accuracy of the proxy functions. We concluded
that the adaptive algorithm maintained its property to yield numerically stable and par-
simonious proxy functions without requiring restriction settings in the GLM context. The
performance of a random component link combination under 150-443 did not generalize
to 300-886. Moreover, we saw in the variation of the results that the choice of the link
was more important than that of the random component so that regarding additional
link functions might be beneficial. While continuous skewed random components led to
slightly advantageous out-of-sample performances, the use of the normal random compo-
nent had practical advantages. Compared to the OLS regression routine, there were GLM
routine designs with better out-of-sample performances. While performing best on both
the Sobol and nested simulations set, 300-886 inverse gaussian 1

µ2
link GLM showed only

a mediocre performance on the capital region set which was partially shown to be driven
by extrapolation. For an overview of the results, see Table A15.

14.4 Generalized Additive Models (GAMs)

14.4.1 Settings

For the derivation of the GAMs (64) of BEL, we apply only restriction settings Kmax-443
with Kmax ≤ 150 in the adaptive algorithm since we use smooth functions (63) constructed
out of splines that may already have exponents greater than 1 to which the monomial first-
order basis functions are raised. As the model selection criterion we take GCV (70) used
by our chosen implementation by default. We vary different ingredients of GAMs while
holding others fixed to carve out possible effects of these ingredients on the approximation
quality of GAMs in adaptive algorithms and our application.

We rely on R function gam(·) implemented in R package mgcv of Wood (2018).

14.4.2 Results

Table A16 contains the validation figures for GAMs with varying number of spline func-
tions per smooth function, i.e., J ∈ {4, 5, 8, 10}, after each tenth and the finally selected
smooth function. In the case of adaptive forward stepwise selection the iteration numbers
coincide with the numbers of selected smooth functions. In contrast, table sections with
adaptive forward stagewise selection results do not display the iteration numbers in the
smooth function column k. In Table A17, we display the effective degrees of freedom, p-
values and significance codes of each smooth function of the J = 4 and J = 10 GAMs from
the previous table at stages k ∈ {50, 100, 150}. The p-values and significance codes are
based on a test statistic by Marra & Wood (2012) having its foundations in the frequen-
tist properties of Bayesian confidence intervals analyzed in Nychka (1988). Tables A18
and A19 report the validation figures respectively for GAMs with numbers J = 5 and
J = 10, where the type of the spline functions is varied. Thin plate regression splines,
penalized cubic regression splines, duchon splines and Eilers and Marx style P-splines are
considered. Thereafter, Tables A20 and A21 display the validation figures respectively for
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GAMs with numbers J = 4 and J = 8 and different random component link function com-
binations. As in GLMs, we apply the normal, gamma and inverse gaussian distributions
with identity, log, inverse and 1

µ2
(only inverse gaussian) link functions.

Table A22 compares by means of two exemplary GAMs the effects of adaptive forward
stagewise selection of length L = 5 and adaptive forward stepwise selection. Next, Ta-
ble A23 contains a mixture of GAMs challenging the results which we will have deduced
from the other GAM tables. Table A24 gives an overview of the validation figures cor-
responding to all derived final GAMs and highlights in green and red respectively the
best and worst values observed per figure. In addition, Table 7 shows how the best GAM
behaves in terms of extrapolation.

14.4.3 Improvement by Tailoring the Spline Function Number

Table A16 indicates that the MAEs (38) and (40) of the exemplary GAMs built up of
thin plate regression splines with normal random component and identity link tend to
increase with the number J of spline functions per dimension until k = 100. Running more
iterations reverses this behavior until k = 150. Hence, as long as comparatively few smooth
functions have been selected in the adaptive algorithm fewer spline functions tend to yield
better out-of-sample performances of the GAMs whereas many smooth functions tend to
perform better with more spline functions. A possible explanation of this observation is
that an omitted-variable bias due to too few smooth functions is aggravated here by an
overfitting due to too many spline functions. For more details on an omitted-variable bias,
see e.g. Pindyck & Rubinfeld (1998), and for the needlessly large sampling variances and
thus low estimation precision of overfitted models, see e.g. Burnham & Anderson (2002).
Differently, the absolute values of the mean errors (39) and (41) tend to become smaller
with increasing J regardless of k.

According to Table A17, the components of the effective degrees of freedom (69) associ-
ated with each smooth function tend to decrease slightly in k for J = 4 and J = 10. This
is plausible as the explanatory power of each additionally selected smooth term is expected
to decline by trend in the adaptive algorithm. Conditional on df > 1, that is for propor-
tions of at least 40% of all smooth terms, the averages of the effective degrees of freedom
belonging to k ∈ {50, 100, 150} amount for J = 4 and J = 10 to {2.494, 2.399, 2.254}
and {5.366, 4.530, 4.424}, respectively. The values are by construction smaller than or
equal to J − 1 since one degree of freedom per smooth function is lost to the identifia-
bility constraints. Hence, for at least 40% of the smooth functions, on average J = 6 is
a reasonable choice to capture the CFP model properly while maintaining computational
efficiency, compare Wood (2017). The other side of the coin here is that up to 60% of
the smooth functions are supposed to be replaceable by simple linear terms without losing
accuracy so that here tremendous efficiency gains can be realized by making the GAMs
more parsimonious. Furthermore, setting J individually for each smooth function can help
to improve computational efficiency (if J should be set below average) and out-of-sample
performance (if J should be set above average). However, such a tailored approach entails
the challenge that the optimal J per smooth function is not stable across all k, compare
row-wise the degrees of freedom in the table for J = 4 and J = 10.
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14.4.4 Dependence of Best Spline Function Type

According to Tables A18 and A19, the adaptive algorithm terminates only due to no
further decrease in GCV when the GAMs are composed of duchon splines, which are
discussed in Duchon (1977). Whether GCV has an overfitting tendency here cannot be
deduced from this example since only restriction settings with Kmax ≤ 150 are tested.
The thin plate regression splines by Wood (2003) and penalized cubic regression splines
by Wood (2017) perform similarly to each other and significantly better than the duchon
splines for both J = 5 and J = 10. For J = 5, the Eilers and Marx style P-splines
proposed by Eilers & Marx (1996) perform by far best when Kmax = 100 smooth functions
are allowed. However, for J = 10 they are outperformed by both the thin plate regression
splines and penalized cubic regression splines when between Kmax = 125 and 150 smooth
functions are allowed. This result illustrates well that the best choice of the spline function
type varies with J and Kmax, meaning that it should be selected together with these
parameters.

14.4.5 Minor Role of Link Function & Random Component

For GLMs, we have seen that varying the random component barely alters the validation
results whereas varying the link function can make a noticeable impact. While this result
mostly applies to the earlier compositions of GAMs in the adaptive algorithm as well,
it certainly does not to the later ones. See, for instance, early composition k = 40 in
Table A20. Here, identity link GAMs with gamma and inverse gaussian random compo-
nents perform more similarly to each other than identity and log link GAMs with gamma
random component or identity and log link GAMs with inverse gaussian random com-
ponent do. Log link GAMs with gamma and inverse gaussian random components show
such a behavior as well. However identity link GAM with the less flexible normal random
component (no skewness) does not show at all a behavior similar to that of identity link
GAMs with gamma or inverse gaussian random components. Now see later compositions
k ∈ {70, 80} to verify that all available GAMs in the table produce very similar validation
results.

For another example see Table A21. For early composition k = 50, identity link GAMs
with normal and gamma random components behave very similarly to each other just like
log link GAMs with normal and gamma random components do. For later compositions
k ∈ {100, 110}, again all available GAMs produce very similar validation results. A
possible explanation of this result is that the impact of the link function and random
component decreases with the number of smooth functions as the latter take over the
modeling. By conclusion, the choices of the random component and link function do not
play a major role when the GAMs are built up of many smooth functions.

14.4.6 Consistency of Results

Table A22 shows based on two exemplary GAMs constructed out of J = 8 thin plate
regression splines per dimension varying in the random component and link function that
the adaptive forward stagewise selection of length L = 5 and adaptive forward stepwise
selection lead to very similar GAMs and validation results. As a result, stagewise selection
should be preferred due to its considerable run time advantage. As we will see below, the
run time can be further reduced without any drawbacks by dynamically selecting even
more than 5 smooth functions per iteration.
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The purpose of Table A23 is to challenge the hypotheses deduced above. Like Table A16,
this table contains the results of GAMs with varying spline function number J ∈ {5, 8, 10}
and fixed spline function type. Instead of thin plate regression splines, now Eilers and Marx
style P-splines are considered. Since adaptive forward stepwise and stagewise selection do
not yield significant differences in the examples of Table A22, we do not expect that
permutations thereof affect the results much here as well. This permits us to randomly
assign three different adaptive forward selection approaches to the three exemplary proxy
function derivation procedures. As one of these approaches, we choose a dynamic stagewise
selection approach in which L is determined in each iteration as the proportion 0.25 of the
size of the candidate term set. Again we see that as long as only k ∈ {90, 100} smooth
functions have been selected, J = 5 performs better than J = 8 and J = 8 better than
J = 10. However, k = 150 smooth functions are not sufficient this time for J = 10 to catch
up with the performance of J = 5. The observed performance order is consistent with
the hypotheses of a high robustness of the GAMs with respect to the adaptive selection
procedure and random component link function combination.

14.4.7 Potential of Improved Interaction Modeling

Table A24 presents as the most suitable GAM the one with highest allowed maximum
number of smooth functions Kmax = 150 and highest number of spline functions J = 10
per dimension. The slight deterioration after k = 130 reported by Table A16 indicates that
at least one of the parameters is already comparatively high. According to Table A17, there
are a few smooth terms which might benefit from being composed of more than ten spline
functions and increasing Kmax might be helpful to capturing the interactions in the CFP
model more appropriately, particularly in the light of the fact that the best GLM, having
250 basis functions, outperforms the best GAM on both the Sobol and nested simulations
set, compare Table A15. The best GAM shows a comparatively low bias across the three
validation sets though, see the dot-shaped residuals in Figures 23–25. Variations in the
random component link function combination and adaptive selection procedure are not
expected to change the performance much. By conclusion, we recommend the fast normal
identity link GAMs (several expressions in the PIRLS algorithm simplify) with tailored
spline function numbers per smooth function and simple linear terms under stagewise
selection approaches of suitable lengths L ≥ 5 and more relaxed restriction settings where
Kmax > 150.

14.4.8 Reduced Validation Sets

Table 7 reports the out-of-sample validation figures of the best derived GAM of BEL
evaluated based on the Sobol and the full and reduced nested simulations and capital
region sets after the final iteration. As above, figures v.mae0 and v.res0 are computed
with respect to base value y0

1,000 in the first row and base value y0
16,000 in the second row.

The best derived GAM behaves very similarly to the best GLM from Section 14.3.6
regarding the extrapolation effects. Comparing the MAEs row-wise shows that the MAEs
in the second row are again consistently smaller. But the decrease of the MAEs is a little
less pronounced here than for the best GLM. The mean errors tend to get smaller as well
when excluding the extrapolated points. The improvement of the approximation quality
on the capital region set strikes again the most. While, for example, for the best GLM
figure cr.mae goes from 0.188% to 0.107%, for the best GAM it goes only from 0.173% to
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k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Best GAM evaluated based on full validation sets

150 0.212 0.203 −9.8 7.070 36.8 0.230 0.223 −24.3 3.575 7.9 0.173 0.170 8.3 6.337 40.4

Best GAM evaluated based on reduced validation sets

150 0.212 0.203 −9.8 5.837 22.4 0.220 0.212 −28.3 3.031 3.8 0.120 0.117 −3.6 5.609 28.6

Table 7: Out-of-sample validation figures of the best derived GAM of BEL. MAEs in %.

0.120%.
The second row of the table reveals this time an actually higher approximation quality

of the best derived GAM on the Sobol set than suggested by the first row and thus all
corresponding tables in the appendix. Moreover, it follows that the best GAM performs
similarly to the best OLS model from Section 14.2.6 when it comes to extrapolation.

14.4.9 Summary

We ran the different GAM algorithms in Section 14.4 only under restriction settings Kmax-
443 with Kmax ≤ 150. Whether GCV had an overfitting tendency in the adaptive algo-
rithm could therefore not be assessed. We saw that as long as comparatively few smooth
functions had been selected fewer spline functions performed better whereas many smooth
functions did better with more spline functions, compare Table A16. We gave a possi-
ble explanation of these effects by arguing that an omitted-variable bias due to too few
smooth functions might have been aggravated here by an overfitting due to too many
spline functions. In order to realize the efficiency and performance gains incentivized by
Table A17 by making the GAMs more parsimonious, we proposed to set the spline function
numbers individually for each smooth function and to use linear terms where sufficient.
Another result was that the spline function type should be selected conditional on the
spline function number(s) and number of smooth functions, see Tables A18 and A19. As
soon as the GAM had been composed of many smooth functions, the choices of both the
link and random component turned out to be less crucial which made us recommended the
fast normal identity GAMs in the exemplary application, compare Tables A20 and A21.
Since adaptive forward stagewise selection of length L = 5 and adaptive forward stepwise
selection led to very similar GAMs according to Table A22, we suggested to use the former
selection approach due to its run time advantage. From the fact that the best found GLM
had 250 terms and outperformed the best found GAM reported in Table A24, we deduced
that using more than 150 smooth functions might improve the results. Lastly, it followed
that the best GAM performed similarly good at extrapolation as the best OLS model.

14.5 Feasible Generalized Least-Squares (FGLS) Regression

14.5.1 Settings

Like the OLS proxy functions and GLMs, we derive the FGLS proxy functions (76) under
restriction settings 150-443 and 300-886. For the performance assessment of FGLS regres-
sion, we apply type I and II algorithms with variance models of different complexity, where
the type I results are obtained as a by-product of the type II algorithm since the latter
algorithm builds upon the former one. We control the complexity through the maximum
allowed numbers of variance model terms Mmax ∈ {2, 6, 10, 14, 18, 22}.
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We combine R functions nlminb(·) and lm(·) implemented in R package stats of R Core
Team (2018).

14.5.2 Results

Tables A25 and A26 display respectively the adaptively selected FGLS variance models of
BEL corresponding to maximum allowed numbers of terms Mmax based on final 150-443
and 300-886 OLS proxy functions given in Tables A2 and A4. For reasons of numerical
stability and simplicity, only basis functions with exponents summing up to at max two
are considered as candidates. Additionally, the AIC scores and MAEs with respect to the
relative metric are reported in the tables. By construction, these results are simultaneously
the type I algorithm outcomes. Tables A27 and A28 summarize respectively under 150-
443 and 300-886 all iteration-wise out-of-sample test results of the type I FGLS proxy
functions. The results of the type II algorithm after each tenth and the final iteration of
adaptive FGLS proxy function selection are respectively displayed by Tables A29 and A30
for the two restriction settings. Table A31 gives an overview of the AIC scores and
validation figures corresponding to all final FGLS proxy functions and highlights as in the
previous overview tables in green and red respectively the best and worst values observed
per figure. Lastly, Table 8 reveals how the best FGLS model performs on extrapolated
areas.

14.5.3 Consistency Gains by Variance Modeling

By looking at Tables A25 and A26 we see similar out-of-sample performance patterns
during adaptive variance model selection based on the basis function sets of 150-443 and
300-886 OLS proxy functions. In both cases, the p-values of Breusch-Pagan test indi-
cate that heteroscedasticity is not eliminated but reduced when the variance models are
extended, i.e., when Mmax is increased. For instance, the standardized residual plot in
Figure 26 confirms for the type II Mmax = 14 proxy function derived under 300-886 that
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Figure 26: Standardized residual plot of the best FGLS model with respect to X1 indicating heteroscedas-
ticity modeling.

our FGLS regression approach captures a fair amount of variance structure. Accordingly,
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as opposed to the standardized OLS residuals in Figure 22, the standardized FGLS resid-
uals ε̂i

σ̂i
, where σ̂i =

√
exp (vi,Tα̂ML), and which are exactly the residuals of transformed

regression problem (71) here, suggest independence of the variance from risk factor X1. In
fact, in a more good-natured LSMC example Hartmann (2015) shows that a type I alike al-
gorithm manages to fully eliminate heteroscedasticity. While the MAEs (38) barely change
on the Sobol set, they decrease significantly on the nested simulations set and increase
noticeably on the capital region set. Under 300-886 the effects are considerably smaller
than under 150-443 since the capital region performance of 300-886 OLS proxy function
is less extraordinarily good than that of 150-443 OLS proxy function. The MAEs on the
three sets approach each other under both restriction settings. Hence the reductions in
heteroscedasticity lead to consistency gains across the three validation sets.

Tables A27 and A28 complete the just discussed picture. The remaining validation fig-
ures on the Sobol set improve through type I FGLS regression slightly compared to OLS
regression. Like ns.mae, figure ns.res and the base residual improve a lot with increasing
Mmax under 150-443 and a little less under 300-886 but ns.mae0 and ns.res0 do not alter
much as the aforementioned two figures cancel each other out here. On the capital region
set, the figures deteriorate or remain comparatively high in absolute values. The type I
FGLS figures converge fast so that increasing Mmax successively from 10 to 22 barely af-
fects the out-of-sample performance anymore. As a result of heteroscedasticity modeling,
the proxy functions are shifted such that overall approximation quality increases. Unfortu-
nately, this does not guarantee an improvement in the relevant region for SCR estimation
as our example illustrates well.

14.5.4 Monotonicity in Complexity

Let us address the type II FGLS results under 150-443 in Table A29 now. For Mmax = 2,
figures (40) and (41) are improved on all three validation sets significantly compared to
OLS regression with the type I figures lying in-between. The other validation figures are
similar for OLS, type I and II FGLS regression, which traces the performance gains in (40)
and (41) back to a better fit of the base value. For Mmax = 6 to 22, the type II figures show
the same effects as the type I ones but more pronouncedly. These effects are by trend the
more distinct the more complex the variance models become. The type II figures stabilize
less than the type I ones because of the additional variability coming along with adaptive
FGLS proxy function selection. Hartmann (2015) shows in terms of Sobol figures in her
LSMC example that increasing the complexity while omitting only one regressor from the
variance model can deteriorate the out-of-sample performance dramatically. Intuitively,
it is plausible that the FGLS validation figures are the farther from the OLS figures away
the more elaborately heteroscedasticity is modeled.

Now let us relate the type II FGLS results under 300-886 in Table A30 to the other
FGLS results. Under 300-886 for Mmax = 2, figures (40) and (41) are already at a
comparatively good level with both OLS and type I FGLS regression so that they do
not alter much or even deteriorate with type II FGLS regression. Like under 150-443 for
Mmax = 6 to 22, the type II figures show the effects of the type I ones more pronouncedly.
Under both restriction settings, ns.mae and ns.res decrease thereby significantly. While
this barely causes ns.res0 to change under 150-443, it lets ns.res0 increase in absolute
values under 300-886. The slight improvements on the Sobol set and the deteriorations
on the capital region set carry over to 300-886. When Mmax is increased up to 22, the
type II FGLS validation figures under 300-886 do not stop fluctuating. The variability



106 Part II

entailed by adaptive FGLS proxy function selection intensifies thus through the relaxation
of the restriction setting in this numerical example. According to Breusch-Pagan test,
heteroscedasticity is neither eliminated by the type II algorithm here nor by a type II
alike approach of Hartmann (2015) in her more good-natured example.

14.5.5 Improvement by Relaxation

Among all FGLS proxy functions listed in Table A31, we consider type II with Mmax = 14
in variance model selection under 300-886 as the best performing one. Apart from nested
simulations validation under the type I algorithm, 300-886 performs better than 150-443.
Since on the other hand the type II algorithm performs better than the type I algorithm
under the respective restriction settings, 300-886 and the type II algorithm are the most
promising choices here. Differently Mmax = 14 does not constitute a stable choice due to
the high variability coming along with 300-886 and the type II algorithm.

While all type I FGLS proxy functions are by definition composed of the same basis
functions as the OLS proxy function, the compositions of the type II FGLS proxy functions
vary with Mmax because of their renewed adaptive selections. Consequently, under 300-
886 all type I FGLS proxy functions hit the same restrictions 224-464 as the OLS proxy
function, whereas the restrictions hit by the type II FGLS proxy functions vary between
224-454 and 258-564. This variation is consistent with the OLS and GLM results from the
previous sections and the OLS results of Teuguia et al. (2014) and Bauer & Ha (2015).

AIC does not have an overfitting tendency according to Tables A27–A30 as the validation
figures do not deteriorate in the late iterations more than they underly Monte Carlo
fluctuations, compare the OLS and GLM interpretations. Using FGLS instead of OLS
regression in the standard adaptive algorithm, compare Section 12.2, lets the algorithm
thus yield numerically stable and parsimonious proxy functions without restriction settings
as well.

14.5.6 Reduction of Bias

The type II Mmax = 14 FGLS proxy function under 300-886 reaches with 258 terms the
highest observed number across all numerical experiments and not only outperforms all
derived GLMs and GAMs in terms of combined Sobol and nested simulations validation, it
also shows by far the smallest bias on these two validation sets and approximates the base
value comparatively well. This observation speaks for a high interaction complexity of the
CFP model. The reduction of the bias comes again along with a general improvement
by the relaxation. Given the fact that the capital region set presents the most extreme
and challenging validation set in our analysis, the still mediocre performance here can be
regarded as acceptable for now. Nevertheless, especially the bias on this set motivates the
search for even more suitable regression methods and functional forms. For the residuals
of the best FGLS proxy function on the three sets, see the x-shaped residuals in Figures
23–25.

14.5.7 Reduced Validation Sets

Table 8 contains the out-of-sample validation figures of the best derived FGLS proxy
function of BEL evaluated based on the Sobol and the full and reduced nested simulations
and capital region sets after the final iteration. Again, figures v.mae0 and v.res0 are
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calculated with respect to base value y0
1,000 in the first row and base value y0

16,000 in the
second row.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Best FGLS model evaluated based on full validation sets

258 0.172 0.165 −14.4 4.371 10.4 0.134 0.129 −2.1 3.504 8.2 0.214 0.210 28.2 6.063 38.6

Best FGLS model evaluated based on reduced validation sets

258 0.172 0.165 −14.4 3.868 −4.0 0.114 0.110 −5.8 2.961 4.6 0.144 0.141 17.6 5.341 27.9

Table 8: Out-of-sample validation figures of the best derived FGLS proxy function of BEL. MAEs in %.

In this table, we see again a decrease in all MAEs when transitioning from the first to
the second row. Like for the best OLS model, GLM and GAM, this effect is the most
pronounced on the capital region set. For the best FGLS model, the mean errors also
behave a little more randomly but are overall reduced. The pattern following from the
exclusion of the extrapolated points is similar to the one of the best GLM because the
approximation quality on the capital region set improves considerably both in terms of
MAEs and mean errors. However, like for the best GLM, the latter can be viewed as a
comparatively likely outcome given the rather mediocre performance beforehand.

Figures v.mae0 and v.res0 from the second row show this time that the approximation
quality of the best derived FGLS model is actually higher than suggested by the first row
and thus all corresponding tables in the appendix. Furthermore, the table suggests that
the best FGLS model performs similarly good at extrapolation as the best GLM.

14.5.8 Summary

Among the applied FGLS algorithms in Section 14.5, the type I algorithms led to con-
sistency gains across the three validation sets. According to Breusch-Pagan test, they
induced at least a reduction in heteroscedasticity in the generalized least-squares problem,
which tended to be the more pronounced the more complex the variance models became
but which converged fast, compare Tables A25 and A26. Despite the overall improvement
in out-of-sample performance and the base approximation, they led to a deterioration in
the relevant region for SCR estimation. The type II algorithms showed the effects of the
type I algorithms in an amplified and more volatile way. The type II routines under 300-
886 (i.e., no actual restriction) constituted systematically the best choices except for on
the most extreme and challenging capital region set where their performances were still
acceptable. But there was no systematically best choice of variance model complexity due
to the high variability accompanied by the type II routines under 300-886. The best found
FGLS routine reached with 258 terms the highest observed number across all numerical
experiments and outperformed all considered GLM and GAM routines in terms of com-
bined Sobol and nested simulations validation. Furthermore, it had by far the lowest bias
on these two validation sets. This result spoke again for a high interaction complexity of
the CFP model. We concluded that the adaptive algorithm maintained its property to
yield numerically stable and parsimonious proxy functions without requiring restriction
settings in the FGLS context. Nonetheless, the bias of the best FGLS routine on the
capital region set motivated the search for even more suitable regression methods and
functional forms, see Figure 25. Like for the best GLM, the bias was partially shown to
be driven by extrapolation. For an overview of the results, see Table A31.
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14.6 Multivariate Adaptive Regression Splines (MARS)

14.6.1 Settings

We undertake two-step approaches to identify well-suited generalized MARS models out
of numerous possibilities conditional on smoothing parameter c ∈ {0, 2, 3}. It turns out
that, regardless of c, comparatively few basis functions are selected in the forward passes
of the numerical experiments. As higher values of c penalize the selection of additional
basis functions even more severely, we forgo testing values c > 3. Furthermore, we see
that the three applied choices of c lead to MARS models with very similar out-of-sample
performances. To keep the analysis simple, we therefore decide to limit the subsequent
reporting to the case c = 0.

In the first step, we vary several MARS ingredients over a wide range and obtain in this
way a large number of different MARS models. To be more specific, we vary the maximum
allowed number of terms Kmax ∈ {50, 113, 175, 237, 300} and the minimum threshold for
the decrease in the residual sum of squares tmin ∈ {0, 1.25, 2.5, 3.75, 5}·10−5 in the forward
pass, the order of interaction o ∈ {3, 4, 5, 6} and pruning method p ∈ {’n’, ’b’, ’f’, ’s’} with
’n’ = ’none’, ’b’ = ’backward’, ’f’ = ’forward’ and ’s’ = ’seqrep’ in the backward pass, and
the random component link function combination of the GLM extension. In addition to
the 10 random component link function combinations applied in the numerical experiments
of the GLMs, compare, for instance, Table A15, we use poisson random component with
identity, log and squareroot link functions. We work with the default fast MARS parameter
fast.k = 20 of our chosen implementation.

We use R function earth(·) implemented in R package earth of Milborrow (2018).

14.6.2 Results

In total, these settings yield 5 · 5 · 4 · 4 · 13 = 5, 200 MARS models with a lot of duplicates
in our first step. We validate the 5, 200 MARS models on the Sobol, nested simulations
and capital region sets through evaluation of the five validation figures. Then we collect
the five best performing MARS models in terms of each validation figure per set which
gives us in total 5 · 5 = 25 best performing models per first step validation set. Since the
MAEs (38) with respect to the relative and asset metric entail the same best performing
models, only 5 · 4 = 20 of the collected models per first step set are potentially different.
Based on the ingredients of each of these 20 MARS models per first step set, we define
5 · 5 = 25 new sets of ingredients varying only with respect to Kmax and tmin and derive
the corresponding new but similar MARS models in the second step. As a result, we
obtain in total 20 · 25 = 500 new MARS models per first step set. Again, we assess their
out-of-sample performances through evaluation of the five validation figures on the three
validation sets. Out of the 500 new MARS models per first step set, we collect then the
best performing ones in terms of each validation figure per second step set. Now this gives
us in total 5 · 3 = 15 best MARS models per first step set, or taking into account that the
MAEs (38) with respect to the relative and asset metric entail once more the same best
performing models, 4 · 3 = 12 potentially different best models per first step set. In total,
this makes 12 · 3 = 4 · 9 = 36 best MARS models, which can be found in Table A32 sorted
by first and second step validation sets.
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14.6.3 Poor Interaction Modeling & Extrapolation

In Table A32, the out-of-sample performances of all MARS models derived in our two-step
approach are sorted using the first step validation set as the primary and the second step
validation set as the secondary sort key. Let us address the first step second step valida-
tion set combinations by the headlines in Table A32. By construction, the combinations
Sobol set2, Nested simulations set2 and Capital region set2 yield respectively the MARS
models with the best validation figures (38), (39), (40) and (41) on the Sobol, nested sim-
ulations and capital region sets. See that in the table all corresponding diagonal elements
are highlighted in green. But the best MAEs (38) and (40) are not even close to what
OLS regression, GLMs, GAMs and FGLS regression achieve. Finding small mean errors
(39) and (41) regardless of the other validation figures is not sufficient. The performances
on the nested simulations and capital region sets, comprising several scenarios beyond the
fitting space, are especially poor. All these results indicate that MARS models do not
seem very suitable for our application. Despite the possibility to select up to 300 basis
functions, the MARS algorithm selects only at maximum 148 basis functions, which sug-
gests that without any alterations, the algorithm is not able to capture the behavior of
the CFP model properly, in particular extrapolation behavior is comparatively poor.

The MARS model with the set of ingredients Kmax = 50, tmin = 0, o = 4, p = ’b’,
inverse gaussian random component and identity link function is selected as the best one
six times out of 36, or once for each Sobol and nested simulations first step validation
set combination. Furthermore, this model performs best in terms of v.res0, ns.mae0 and
ns.maea. Since there is no other MARS model with a similarly high occurrence and
performance, we consider it the best performing and most stable one found in our two-
step approach. For illustration of a MARS model, see this one in Table A33. The fact
that this best MARS model performs worse than other ones in terms of several validation
figures stresses the infeasibility of MARS models in this application.

14.6.4 Limitations

Table A32 suggests that, up to a certain upper limit, the higher the maximum allowed
number of terms Kmax the higher tends the performance on the Sobol set to be. However,
this result does not generalize to the nested simulations and capital region sets. Since
at maximum 148 basis functions are selected here even if up to 300 basis functions are
allowed, extending the range of Kmax in the first step of this numerical experiment would
not affect the output in this regard. The threshold tmin is an instrument controlling
the number of basis functions selected in the forward pass up to Kmax which cannot be
extended below zero, meaning that its variability has already been exhausted here as well.
For the interaction order o similar considerations as for Kmax apply. The pruning method
p used in the backward pass does not play a large role compared to the other ingredients
as it only helps to reduce the set of selected basis functions. In terms of Sobol validation,
inverse gaussian random component with identity link performs best, whereas in terms of
nested simulations and capital region validation, inverse gaussian random component with
any link or log link with normal or poisson random component perform best. We conclude
that if there was a suitable MARS model for our application, our two-step approach would
have found it.
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14.6.5 Summary

By applying a great variety of MARS algorithms in Section 14.6 in a two-step approach,
we ensured that no comparatively well suited MARS model would have been missed in
our analysis. All tested MARS algorithms selected at maximum 148 basis functions and
showed rather poor out-of-sample performances as well as a weak extrapolation behavior
compared to the previously discussed regression approaches, see Table A32. The conclusion
was that MARS routines were not able to model the complex interactions in the CFP model
appropriately.

14.7 Kernel Regression

14.7.1 Settings

We make a series of adjustments affecting either the structure or the derivation process of
the multidimensional LC and LL proxy functions (96) and (98) to get as broad a picture of
the potential of kernel regression in our application as possible. Our adjustments concern
the kernel function and its order, the bandwidth selection criterion, the proportion of
fitting points used for bandwidth selection, and the sets of basis functions of which the
local proxy functions are composed of. Thereby we combine in various ways the gaussian,
Epanechnikov and uniform kernels, orders o ∈ {2, 4, 6, 8}, bandwidth selection criteria
LOO-CV and AIC, and between 2, 500 (proportion bw = 0.1) and 25, 000 (proportion
bw = 1) fitting points for bandwidth selection.

We work with R functions npregbw(·) and npreg(·) implemented in R package np of
Racine & Hayfield (2018).

14.7.2 Results

Additionally, we alternate the four basis function sets contained in Tables A34 and A35.
The first two basis function sets with Kmax ∈ {16, 27} are derived by adaptive forward
stepwise selection based on OLS regression, the third one with Kmax = 15 by risk factor
wise linear selection and the last one with Kmax = 22 by a combination thereof. All com-
binations including their out-of-sample performances can be found in Table A36. Again,
the best and worst values observed per validation figure are highlighted in green and red,
respectively.

14.7.3 Poor Interaction Modeling & Extrapolation

We draw the following conclusions based on the validation results in Table A36. The
comparisons of LC and LL regression applied with gaussian kernel and 16 basis functions
or Epanechnikov kernel and 15 basis functions suggest that LL regression performs better
than LC regression. However, even the best Sobol, nested simulations and capital region
results of LL regression are still outperformed by OLS regression, GLMs, GAMs and FGLS
regression. Possible explanations for this observation are that kernel regression is not able
to model the interactions of the risk factors equally well with its few basis functions and
that local regression approaches perform rather poorly close to and especially beyond the
boundary of the fitting space because of the thinned out to missing data basis in this region.
While the first explanation applies to all three validation sets, the latter one applies only
to the nested simulations and capital region sets on which the validation figures are indeed
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worse than on the Sobol set. While LC regression produces interpretable results with the
sets of 22 and 27 basis functions, the more complex LL regression does not in most cases.

14.7.4 Limitations

On the Sobol and capital region sets, both LC and LL regression show similar behaviors
when relying on gaussian kernel and 16 basis functions compared to Epanechnikov kernel
and 15 basis functions. But on the nested simulations set, gaussian kernel and 16 basis
functions are the superior choices. Using a uniform kernel with LC regression deteriorates
the out-of-sample performance. The results of LC regression indicate furthermore that
an extension of the basis function sets from 15 to 27 only slightly affects the validation
performance. With gaussian kernel switching from 16 to 27 basis functions barely has
an impact and with Epanechnikov kernel only the nested simulations and capital region
validation performance improve when using 27 as opposed to 15, 16 or 22 basis functions.
While increasing the order of the gaussian or Epanechnikov kernel deteriorates the valida-
tion figures dramatically, for the uniform kernel the effects can go in both directions. AIC
performs worse than LOO-CV when used for bandwidth selection of the gaussian kernel
in LC regression. For LC regression, increasing the proportion of fitting points entering
bandwidth selection improves all validation figures until a specific threshold is reached.
But thereafter the nested simulations and capital region figures are deteriorated. For LL
regression no such deterioration is observed.

Overall we do not see much potential in kernel regression for our practical example
compared to most of the previously analyzed regression methods. Nonetheless in order
to achieve comparatively good kernel regression results, we consider LL regression more
promising than LC regression due to the superior but still poor modeling close to and
beyond the boundary of the fitting space. We would apply it with gaussian, Epanechnikov
or other similar kernel functions. A high proportion of fitting points for bandwidth selec-
tion is recommended and it might be worth trying alternative comparatively small basis
function sets reflecting the risk factor interactions better than in our examples.

14.7.5 Summary

We applied numerous variants of kernel regression algorithms in Section 14.7. We found
that the LL regression algorithms performed better than the LC ones but still worse than
the previously discussed routines, see Table A36. We traced the rather poor out-of-sample
performances back to an insufficient interaction modeling by too few basis functions and
a poor behavior of local regression approaches close to and beyond the boundary of the
fitting space.

15 Conclusion

Summary

For high-dimensional variable selection applications such as the calibration step in the
LSMC framework, we have presented various deterministic machine learning regression
approaches ranging from ordinary and generalized least-squares regression variants over
GLM and GAM approaches to multivariate adaptive regression splines and kernel regres-
sion approaches. At first we have justified the combinability of the ingredients of the
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regression routines such as the estimators and proposed model selection criteria in a the-
oretical discourse. Afterwards we have applied numerous configurations of these machine
learning routines to the same slightly disguised real-world example in the LSMC frame-
work. With the aid of different validation figures, we have analyzed the results, compared
the out-of-sample performances and advised to use certain routine designs.

Outlook

In our slightly disguised real-world example and LSMC setting, the adaptive OLS regres-
sion, GLM, GAM and FGLS regression algorithms turned out to be well-suited machine
learning methods for proxy modeling of life insurance companies with potential for both
performance and computational efficiency gains by fine-tuning model hyperparameters and
implementation designs. For recommendations of specific hyperparameter settings and de-
signs, see the aforementioned suggestions. Differently, the MARS and kernel regression
algorithms were not found to be convincing in our application. To study the robustness
of our results, the approaches can be repeated in multiple other LSMC examples.

After all, none of our tested approaches was able to completely eliminate the bias ob-
served in the validation figures and to yield consistent results across the three valida-
tion sets though. Investigations on whether these observations are systematic for the
approaches, a result of the Monte Carlo error or a combination thereof help to further
narrow down the circle of recommended regression techniques. To assess the variance and
bias of the proxy functions, seed stability analyses in which the sets of fitting points are
varied and convergence analyses in which sample size is increased need to be carried out.
While such analyses would be computationally very costly, they would provide valuable
insights into how to further improve approximation quality, that is, whether additional
fitting points are necessary to reflect the underlying CFP model more accurately, whether
more suitable functional forms and estimation assumptions are required for a more ap-
propriate proxy modeling, or whether both aspects are relevant. Furthermore, one could
deduce from such an analysis the sample sizes needed by the different regression algorithms
to meet certain validation criteria. Since the generation of large sample sizes is currently
computationally expensive for the industry, algorithms getting along with comparatively
few fitting points should be striven for.

Picking a suitable calibration algorithm is most important from the viewpoint of cap-
turing the CFP model and hence the SCR appropriately. Therefore, if the bias observed in
the validation figures indicates indeed issues with the functional forms of our approaches,
doing further research on techniques not entailing such a bias or at least a smaller one is
vital. On the one hand, one can fine-tune the approaches of this thesis by trying different
configurations thereof and/or bringing in randomness such as by the method of bootstrap
aggregating, see e.g. Breiman (1994). On the other hand, one can analyze further ma-
chine learning alternatives such as the stochastic ones mentioned in the introduction, see
e.g. Krah et al. (2020b). Ideally, various approaches like adaptive OLS regression, GLM,
GAM and FGLS regression algorithms, artificial neural networks, tree-based methods and
support vector machines would be fine-tuned and compared based on the same realistic
and comprehensive data basis. Since a major challenge of machine learning calibration
algorithms is hyperparameter selection, future research should be dedicated to efficient
hyperparameter search algorithms and, as a means of mitigation thereof, stabilization
methods such as ensemble methods. As a starting point for these kinds of investigations,
going beyond the scope of this thesis, serves the aforementioned source.
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Taking the definition of hyperparameters one step further, the regression approach it-
self (OLS, GLM, GAM, FGLS, artificial neural networks, etc.) could be identified with
an additional hyperparameter which the hyperparameter search algorithm should select
from. Thereby, constraints conditional on, for example, run time, approximation quality,
complexity or certain hyperparameters could be imposed. For further reductions in run
time, amongst others, the nature of the adaptive algorithm could be taken advantage of.





Part III

A Least-Squares Monte Carlo Approach in

Valuing Life Insurance Contracts with Early

Exercise Features

Résumé

Life insurance contracts with early exercise features can be priced by
an algorithm using the least-squares Monte Carlo method. We consider
equity-linked contracts with American/Bermudan-style surrender options
and minimum interest rate guarantees payable upon contract termination.
In the simulation framework, randomness and jumps in the movements
of the interest rate, stochastic volatility, stock market and mortality are
permitted. For the simultaneous valuation of numerous insurance con-
tracts of which the initial values of the underlying stochastic processes
vary, a hybrid probability measure and an additional regression function
are introduced. An efficient seed-related simulation procedure accounting
for the forward discretization bias is presented. Furthermore, a concept
for the selection of consistent basis functions serving also as a validation
concept is proposed. We apply our suggested procedures and concepts in
an extensive numerical example.
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16 Introduction

LSMC for Pricing Contracts

In this third and last part of the thesis, we describe a different application field of the
least-squares Monte Carlo (LSMC) method in life insurance business. We take up the
setting by Bacinello et al. (2009) to price life insurance contracts with early exercise
features and extend it by a hybrid probability measure such as introduced by Bauer &
Ha (2015)and Natolski & Werner (2016) and used in the foregoing parts of this thesis for
the differentiation between the outer risk scenarios and inner Monte Carlo simulations.
This new setting combines the LSMC idea of the original application in finance to price
American or Bermudan options, see e.g. Longstaff & Schwartz (2001), with that under
the Solvency II directive to switch between pricing and projection to obtain full loss
distribution forecasts, see e.g. the first part of this thesis. Furthermore, we account for
the discretization bias according to a comparatively efficient seed-related modification of
the procedure proposed by Desmettre & Korn (2015) and present a suitable validation
concept in the new setting.

More precisely, our objective is to extend the theoretical model of equity-linked endow-
ment insurance contracts with surrender options from Bacinello et al. (2009) by a hybrid
probability measure to allow the simultaneous valuation of numerous insurance contracts
varying in the initial values of the stochastic processes of the modeled risk factors. These
initial values take over the role of the outer scenarios in the hybrid probability framework
(compare the other two parts of this thesis). Without increasing the computational effort,
we achieve the simultaneous valuation by diversifying the simulation budget across Monte
Carlo simulations with different initial values and introducing a new regression function
with respect to these initial values at contract inception. We consider randomness and
jumps in both the reference fund value to which the contract is linked and mortality. In
addition, we allow randomness in the evolutions of the interest rates and stochastic volatil-
ity. Moreover, we choose the order of the discretization bias in coincidence with the order
of the Monte Carlo error to avoid a misbalance between the number of Monte Carlo sim-
ulations and forward discretization step size. Last but not least, we present a validation
concept for the selection of the basis functions under the hybrid probability measure and
select the basis functions accordingly. We give detailed implementation instructions and
illustrate our findings by numerical examples.

Outline

At first, we introduce the theoretical model based on Bacinello et al. (2009) and modify it
where necessary to include the hybrid probability measure proposed by Bauer & Ha (2015)
or Natolski & Werner (2016). For this purpose, we formalize the insurance contract in
Section 17.1, describe the valuation framework in Section 17.2, model the financial and
demographic risk factors in Section 17.3, and deal with the valuation of the contract in
Section 17.4. We move on to the next section for the implementation of this model. Here,
we start with some general remarks in Section 18.1 and discretize the underlying continu-
ous time processes in Section 18.2. Then we define in Section 18.3 the required regression
problems and suggest a concrete LSMC algorithm for valuing the various contracts simul-
taneously. Afterwards, we discuss in Section 18.4 the implications of the discretization
bias and present in Section 18.5 a validation concept for the selection of the basis func-
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tions. We complete the last part of this thesis with a numerical example. In Section 19.1,
we explain additional model specifications and address numerical obstacles. Thereafter,
we describe in Section 19.2 how we achieve basis function consistency and balance out
the Monte Carlo error and discretization bias in a preliminary phase. In Section 19.3,
we discuss the results of our final runs. In Sections 17.5, 18.6 and 19.4, we give short
summaries.

17 Theoretical Model

17.1 Contract

In the model setup of Bacinello et al. (2009), the equity-linked endowment contract with
maturity T > 0 embeds a surrender option and minimum interest rate guarantees. The
LSMC approach will tackle here the early exercise feature coming with the surrender
option. The contract can be entered by an individual of age x at time 0, and the life
insurance policy pays a lump sum benefit F sT at time T upon survival or a benefit F dτ at
time τ ∈ (0, T ] in case the individual passes away at τ . The American-style surrender
option provides the policyholder with the option to withdraw from the contract at each
time θ ∈ (0, T ) and to obtain in return a surrender value Fwθ . The equity-linkage is reflected
in the contract through its dependence on a reference market fund value S = (St)t≥0. The
minimum guaranteed interest rate κe on the benefit payments varies with the manner
in which the contract is terminated, that is, with survival, death and surrender, i.e.,
e ∈ {s, d, w}. Additionally, we assume that the policyholder finances the contract with a
single initial premium F0 equal to the initial reference fund value S0. Contracts featuring
all of the above properties can be represented by terminal guarantees. Their values F et
follow the expression

F et = F0 max

(
St
S0
, exp (κet)

)
, e ∈ {s, d, w} . (103)

Contingent on the evolutions of the reference fund value and mortality, there might be
times at which it is more attractive for a policyholder to surrender a contract against
provision of the surrender value than to stay in the contract. In this respect, the time θ
at which an individual decides to terminate a contract before maturity can be considered
as an exercise policy. With the aid of the original LSMC approach developed for option
pricing (see also the references given in Part I of this thesis), we will determine an optimal
surrender policy θ∗ for a rational policyholder. For this purpose, we define the cumulated
benefits paid up to a fixed time t given a policy θ by

Gt (θ) = F sT 1τ>T,T≤t∧θ + F dτ 1τ≤t∧T∧θ + Fwθ 1θ≤t,θ<τ∧T . (104)

Here, the first term of the sum yields the payment at maturity if neither early withdrawal
nor death happen until T . The second term provides the death benefit if the individual
does not surrender the contract before the time of death and if death occurs until T .
The third term yields the payment upon early withdrawal if the individual surrenders the
contract before maturity and the time of death.
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17.2 Valuation Framework

In contrast to Bacinello et al. (2009) who define a filtered probability space (Ω,F ,F,Q)
with only a risk-neutral probability measure Q to capture the financial and demographic
randomness, we specify a filtered probability space (Ω,F ,F,P) with a physical probability
measure P as suggested by Bauer & Ha (2015). A frictionless securities market is assumed
so that the existence of a risk-neutral measure Q as the one defined by Bacinello et al.
(2009) and equivalent to P can be guaranteed in suitable model settings in the absence of
arbitrage. Under Q the price of any security is given by the expected value of its cumulated
dividends discounted at the risk-free rate.

The filtration F = (Ft)t≥0 captures the information flow to the insurer and the policy-
holder. Thus, the σ-algebra Ft contains all information about the market that have been
revealed up to time t. In particular, the time of death τ and the exercise policy θ are
F-stopping times, meaning that at any time t it is known whether death or surrender have
occurred by t.

We model the time of death by

τ = inf {t : Γt > ξ} , (105)

where Γ = (Γt)t≥0 is a non-decreasing process with Γt =
∫ t

0 µsds for any time t and a
nonnegative process µ = (µt)t≥0 for the intensity of mortality, and where ξ is exponentially
distributed with parameter one.

The hybrid probability measure consisting of the two equivalent measures P and Q is
introduced to enable the valuation of numerous insurance contracts at comparatively low
computational costs. Removal of the measure P would result in the setting of Bacinello
et al. (2009) who value in fact a single contract at almost the same costs. The measure
P effective at contract inception randomizes the initial values of the stochastic processes
reflecting the financial and demographic randomness. Without P, there is thus no diversi-
fication across these initial values so that no relationship between them and the contract
value is deducible and no fast valuation of numerous insurance contracts possible. The
measure Q living on [0, T ] represents the possible Monte Carlo paths. As our market is
incomplete (due to the jumps in the various risk processes), the measure Q is not unique.
However, we assume that one such Q is chosen for valuation purposes and do not consider
the arguments that led to this particular risk-neutral measure. As opposed to the risk
management applications presented in the foregoing two parts of this thesis, P is only
effective at contract inception here and not upon a time interval. We denote the cube on
which P is defined in analogy to the foregoing parts by Sfit. However, we use P instead of
P′ in this part as we do not need to distinguish between them here.

17.3 Risk Factors

Surrender decisions are driven in particular by financial and demographic risk factors.
Accordingly, Bacinello et al. (2009) focus on interest rate risk, stock market performance
and mortality risk. The financial risks are modeled by an extended Bates model. Bakshi
et al. (1997) demonstrate that this model is well-suited for simulating the price behavior
of equity derivatives.

For the term structure of interest rates, a standard Cox-Ingersoll-Ross (CIR) model is
used, i.e., the short rate rt is assumed to follow the dynamics given by

drt = ζr (δr − rt) dt+ σr
√
rtdZ

r
t , (106)



120 Part III

where ζr, δr, σr > 0 and Zr is a standard Brownian motion. This square-root process
ensures nonnegative interest rates and is mean-reverting towards the long-run value δr
with speed of adjustment ζr and volatility σr.

Similarly, the squared non-jump stochastic volatility of the stock value to which the
insurance contract is linked is modeled by a standard CIR process, i.e.,

dKt = ζK (δK −Kt) dt+ σK
√
KtdZ

K
t , (107)

with ζK , δK , σK > 0 and ZK a standard Brownian motion. Nonnegativity and mean-
reversion are guaranteed for this square-root process analogously to the interest rate dy-
namics in (106).

The evolution of the reference fund value S = exp (Y ) follows the process

dYt =

(
rt −

1

2
Kt − λY µY

)
dt+

√
Kt

(
ρY rdZ

r
t + ρY KdZKt +

√
1− ρ2

Y r − ρ2
Y KdZYt

)
+dJYt ,

(108)
where r,K,Zr, ZK stem from the processes (106), (107), ZY is a Brownian motion,
ρY r, ρY K are correlation coefficients satisfying ρ2

Y r + ρ2
Y K ≤ 1, and JY is a compound

Poisson process independent of Zr, ZK , ZY with jump arrival rate λY > 0, mean µY and
lognormally distributed jump sizes. More precisely, the jump diffusion process JY defined
by Bakshi et al. (1997) evolves according to

dJYt = jYt dqYt , (109)

where qY is Poisson distributed with parameter λY such that Pr
{

dqYt = 1
}

= λY dt and
Pr
{

dqYt = 0
}

= 1−λY dt, interpretable as a jump counter, and jYt is the percentage jump
size in case dqYt = 1 where 1+jYt is lognormally distributed with mean log (1 + µY )− 1

2σ
2
Y

and variance σ2
Y .

The intensity of mortality is modeled through the left continuous version of the process

dµt = ζµ (m(t)− µt) dt+ σµ
√
µtdZ

µ
t + dJµt , (110)

with ζµ,m (·) , σµ > 0, Zµ a Brownian motion, and Jµ a compound Poisson process inde-
pendent of Zµ with jump arrival rate λµ ≥ 0 and exponentially distributed jump sizes.
Similarly to the dynamics in (109), the jump diffusion process Jµ can be written as

dJµt = jµt dqµt , (111)

with qµ Poisson distributed with parameter λµ so that we have here Pr {dqµt = 1} =
λµdt and Pr {dqµt = 0} = 1 − λY dt, and jµt the jump size in case dqµt = 1 where jµt is
exponentially distributed with mean γµ.

The state variable process X = (Xt)t≥0 = ((rt,Kt, St, µt))t≥0 = (r,K, S, µ) generates
the filtration F introduced above. The measure P randomizes the initial values of the risk
factors X0 = (r0,K0, S0, µ0) and captures thus possible stresses. Conditional on X0, the
risk factors evolve with respect to Q. We refer to the P-randomized initial values as the
outer scenarios and to the Q-randomized risk factor evolutions as the inner scenarios in
analogy to the foregoing two parts of this thesis. If numerous complex insurance contracts
with embedded options varying in the outer scenarios were valued by a nested simulations
approach as described in Bauer et al. (2012), conditional on each outer scenario X0 a
large number of Monte Carlo simulations based on various inner scenarios (Xt)t≥0 would
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be required. By budgeting only one or few inner simulations to each outer scenario, our
extended LSMC approach is able to produce considerably less computational costs. Here,
a Q-based fair valuation of a given insurance contract is finally obtained by plugging the
corresponding outer scenario in the last regression function from the backward induction
procedure, that is, the one at contract inception. For this central idea, compare also the
second section of the first part of this thesis in which the nested valuation problem and
LSMC solution are discussed.

17.4 Valuation

The financial market consists of the investment stock S with evolution (108) and a money
market account yielding the instantaneous risk-free rate (rt)t≥0. Based on the latter, the

accumulation rate can be formalized as Bt = exp
(∫ t

0 rsds
)

for t ≥ 0. In the absence of

arbitrage, under the given choice of the risk-neutral measure Q and the assumption that
the surrender decision is based on the entire information available over time, the time-t
value of the insurance contract for a fixed exercise policy θ is given by the risk-neutral
formula

Vt (θ) = BtE
Q
[∫ ∞

t
B−1
u dGu (θ) | Ft

]
, (112)

where Gu (θ) is defined in (104). This time-t value reflects the cumulated benefits paid by
the contract at all future times u ≥ t.

The price of the insurance contract specified in (103) is given by inserting the solution
θ∗ to the optimal stopping problem

V ∗0 = V0 (θ∗) = sup
θ∈TF

V0 (θ) = sup
θ∈TF,θ≤τ

V0 (θ) , (113)

with τ denoting the time of death characterized in (105) and TF denoting the set of
finite valued F-stopping times. Since the solution θ∗ maximizes the initial arbitrage-free
insurance contract value, it is called rational exercise policy. The expectation with respect
to Q in (112) depends on the outer scenario associated with the insurance contract to be
valued. The outer scenario enters the σ-algebra Ft and defines as the only information
available at contract inception the initial σ-algebra F0.

17.5 Summary

The model includes an equity-linked endowment insurance contract with a surrender op-
tion and minimum interest rate guarantees depending upon contract termination, see
Section 17.1. By defining a filtered probability space with a hybrid probability measure
the valuation framework has been established in Section 17.2. Thereafter, the state vari-
able process has been composed of the movements of the interest rate, stochastic volatility,
stock market and mortality in Section 17.3. The interest rate and stochastic volatility risk
factors are modeled by standard CIR processes and the reference fund value and mortality
risk factors are allowed to make jumps. Moreover, inner and outer scenarios have been
introduced and the nested valuation problem addressed. In Section 17.4, the time-t value
of the insurance contract has been written with respect to the exercise policy and the
insurance contract value at inception defined as the time-0 value evaluated at the solution
to the optimal stopping problem.
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18 Least-Squares Monte Carlo Approach

18.1 General Remarks

The implementation of the theoretical model described above requires the following steps.
The continuous time processes have to be discretized in the time dimension: Besides
the forward discretization, a backward discretization is needed to replace the continuous
optimal stopping problem by a discrete one. Typically the backward discretization is
carried out on a coarser time grid. Furthermore, a regression method with a set of suitable
basis functions has to be chosen for the LSMC algorithm.

As an enhancement, we propose to select the order of the forward discretization bias
in coincidence with the order of the Monte Carlo error and to rely on consistent basis
functions. While the former helps to determine a suitable forward discretization step size,
the latter ensures consistent results with Bacinello et al. (2009) and can be considered
a validation procedure. However, an analysis of the discretization bias and a consistent
basis function selection require several complete runs of the LSMC algorithm. The final
regression function at contract inception is found when the discretization bias is accounted
for and the results show a sufficiently high basis function consistency.

The implementation algorithm which we describe in the following works in particular
for the parameter choices made in the numerical experiment by Bacinello et al. (2009).

18.2 Simulation Setting

18.2.1 Forward Discretization

For simulation, the state variable process X = (r,K, S, µ) consisting of the financial and
demographic risk factors defined by (106), (107), (108) and (110) has to be discretized in
time. As this discretization takes place from contract inception until maturity, we call it
forward discretization. We use an adapted version of the natural Euler-Maruyama method
to simulate process (108) according to Korn et al. (2010)[p. 320]. Given the initial value
Y0 = exp (S0), we obtain for each t = tl = l

LT, l = 1, . . . , L, with L standing for the
number of forward discretization steps so that one time step is of length δt = T

L ,

Yt+1 = Yt +

(
rt −

1

2
Kt − λY µY

)
δt

+
√
Kt

(
ρY rδZ

r
t + ρY KδZ

K
t +

√
1− ρ2

Y r − ρ2
Y KδZ

Y
t

)
+ δJYt . (114)

Exemplary Monte Carlo paths of stochastic process (114) are depicted in Figure 27.
To simulate the remaining processes (106), (107) and (110), we follow the proposal of

Alfonsi (2005) and use the so-called explicit scheme E(0) ensuring nonnegative values as
long as σ2

r ≤ 4ζrδr resp. σ2
K ≤ 4ζKδK resp. σ2

µ ≤ 4ζµm (t) for each t ≥ 0. These non-
negativity conditions can be immediately seen in the definitions below since the quadratic
and compound Poisson process parts are always nonnegative. Given the initial values
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Figure 27: Set of stochastically simulated reference fund values on the backward discretization time grid
conditional on S0 = 100 and forward discretization step size δt = 0.01 used for regression.

r0,K0, µ0 = m (0), we have for each t = tl = l
LT, l = 1, . . . , L,

rt+1 =

(1− ζr
2
δt

)
√
rt +

σr

2
(

1− ζr
2 δt
)δZrt

2

+

(
ζrδr −

σ2
r

4

)
δt, (115)

Kt+1 =

(1− ζK
2
δt

)√
Kt +

σK

2
(

1− ζK
2 δt

)δZKt
2

+

(
ζKδK −

σ2
K

4

)
δt, (116)

µt+1 =

(1− ζµ
2
δt

)
√
µt +

σµ

2
(

1− ζµδt
2

)δZµt
2

+

(
ζµm (t)−

σ2
µ

4

)
δt+ δJµt .(117)

Exemplary Monte Carlo paths of stochastic process (115) are depicted in Figure 28.
Thereby, we draw δZrt , δZ

K
t , δZ

Y
t and δZµt from the normal distribution with zero mean

and variance δt for each time step tl = l
LT, l = 1, . . . , L. To obtain δJYt and δJµt , we

simulate the compound Poisson process by the alternative jump time simulation in Korn
et al. (2010)[p. 312]. While we use the jump intensity λY and lognormal height distribution
specified for 1 + jYt below Equation (109) to simulate JYt , we use the jump intensity λµ
and exponential height distribution specified for jµt below Equation (111) to simulate Jµt .

The alternative jump time simulation works for b ∈ {Y, µ} as follows:

1. Draw the number of jumps N(T ) from the Poisson distribution with parameter λbT .

2. Draw N(T ) independent random variables uj from the uniform distribution U [0, T ].

3. Draw N(T ) independent random variables hj from the specified height distribution.

4. Assign the uj , j = 1, . . . , N(T ), to times tl = l
LT, l = 1, . . . , L, on the forward time

grid. We do the assignment by setting lj =
⌊
uj

L
T

⌋
and thus tlj =

⌊
uj

L
T

⌋
T
L where b·c

stands for the floor function.
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Figure 28: Set of stochastically simulated short rates on the backward discretization time grid conditional
on r0 = 0.05 and forward discretization step size δt = 0.01 used for regression.

5. Set δJbtlj
= hj , j = 1, . . . , N(T ).

6. Set δJbtl = 0 if l 6= lj , j = 1, . . . , N(T ), l = 1, . . . , L.

Since the event tlj = tli , j 6= i, is very unlikely with our parameter choices, we simply

neglect it and overwrite δJbtlj
by hi or δJbtli

by hj where applicable. The compound Poisson

process is then given by Jbtk =
∑k

l=1 δJ
b
tl
, k = 1, . . . , L.

In our extended setting, the simulated processes X do not only differ because of the
randomness in the Brownian motions and compound Poisson processes but also because
of their different initial conditions reflected by the outer scenarios X0 = (r0,K0, S0, µ0).

18.2.2 Backward Discretization

After the Monte Carlo simulations of (114), (115), (116) and (117) have been carried out
according to the forward discretization described above, the backward discretization in time
is required to solve the optimal stopping problem (113) by backward induction. From an
economic perspective, the American surrender option of the insurance contract is replaced
by a Bermudan surrender option by this discretization. To achieve consistent results, the
backward discretization time grid is selected as a subgrid of the forward discretization time
grid. Usually, the backward discretization grid is chosen to be coarser as it determines
the number of computationally expensive LSMC regression steps. Let M , a divisor of L,
be the number of backward discretization steps. Then we obtain the backward time grid
T =

{
tm = m

M T | m = M, . . . , 0
}

, and the discretized version of the continuous optimal
stopping problem becomes

sup
θ∈TF,T,θ≤τ

V0 (θ) , (118)

where TF,T denotes the family of T-valued F-stopping times. Since B0 = 1 and Gt (θ) =
const for t ≥ θ, by using (112) expression (118) reduces to

sup
θ∈TF,T,θ≤τ

V0 (θ) = sup
θ∈TF,T,θ≤τ

EQ
[∫ θ

0
B−1
u dGu (θ) | F0

]
. (119)
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Defining the function which is evaluated at t = θ and of which the expectation is taken
in (119) by

gt =

∫ t

0
B−1
u dGu (θ) (120)

provides the process (gt)t≥0. Introducing the Snell envelope (see e.g. Föllmer & Schied
(2004)[p. 280–282]) of this process allows the realization of a dynamic programming prin-
ciple involving at each time step tm = m

M T, m = M − 1, . . . , 1, a comparison between the
payoff from surrendering the insurance contract and the continuation value. By the contin-
uation value we refer to the expected payoff from not exercising the surrender option. If the
policyholder survives maturity, an approximate solution θ∗ = θ∗0 to the optimal stopping
problem (118) is computed in the LSMC algorithm through the backward procedure

θ∗M = tM ,

θ∗m = tm1gtm>Um + θ∗m+11gtm≤Um for m = M − 1, . . . , 1,

θ∗0 = θ∗1,

(121)

with the immediate payoff gtm and continuation value Um = EQ
[
gθ∗m+1

| Ftm
]

evaluated

at time tm.
At contract inception, the policyholder certainly does not surrender the contract as she

would otherwise lose V ∗0 − F0 > 0 with V ∗0 > F0. From the insurer’s perspective, such a
contract offer is expected to be profitable if its asset management is able to earn more than
V ∗0 − F0 per premium (costs neglected). Since we make a distinction between surrender
and survival benefits, the policyholder is formally not permitted to withdraw from the
contract at maturity.

18.3 Least-Squares Regression

18.3.1 Basis Functions

In this section, we estimate the continuation values from above for m = M − 1, . . . , 1 and
value the contract at inception conditional on any outer scenario.

Under the assumption of a Markovian environment, we can write the continuation

values Um from above as Um = EQ
[
gθ∗m+1

| Xtm

]
= u (tm | Xtm) for some Borel func-

tions u (tm | ·), m = M − 1, . . . , 1. The first approximation is made when replacing each
u (tm | Xtm) with a projection from L2 (Ω) onto the H-dimensional vector space generated
by a suitable set of basis functions {e1, . . . , eH , . . .}.

For fixed H and each m, let e (·) = (e1 (·) , . . . , eH (·))T be the basis function vector and

let β∗m =
(
β∗m,1, . . . , β

∗
m,H

)T
be the ordinary least-squares estimator given as the solution

to regression problem

β∗m = arg min
βm∈RH

Nm∑
i=1

(
wi (tm)− βT

me
(
Xi
tm

))2
, (122)

where Nm is the number of simulations in which the insured is alive at time tm, where

Xi
tm is the simulated value of Xtm and wi (tm) = Bi

tm

(
Bi
θ∗m+1

)−1
P i
(
θ∗m+1

)
is the simu-

lated time-tm continuation value in the i-th simulation. These time-tm continuation values
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are the results of the regressions and comparisons from the previous backward induction
steps M − 1, . . . ,m+ 1. At time tM−1, the simulated continuation value is simply the dis-
counted survival benefit given the policyholder survives maturity, otherwise the simulation
is excluded from the time-tM−1 regression.

The time-tm continuation value of the i-th simulation estimated based on (122) is given
by the second approximation

ũi
(
tm | Xi

tm

)
= β∗,Tm e

(
Xi
tm

)
. (123)

Since the policyholder does not know the future development, she has to estimate the
continuation value based on what she knows at time tm. If the surrender benefit at
tm is greater than the estimated time-tm continuation value ũi

(
tm | Xi

tm

)
, the simulated

continuation value wi (tm−1) in the next backward induction step will be this surrender
benefit after discounting.

Besides the continuation values, we estimate the contract value conditional on the outer
scenarios by regression. Technically, the contract value is a continuation value, too, and
can thus be written as V ∗0 = EQ [gθ∗0 | F0

]
= u (X0) with u (X0) being a Borel function

and X0 representing an outer scenario. Now we replace u (X0) with an approximation
from L2 (Ω) onto the H0-dimensional vector space generated by a potentially different set
of basis functions

{
e0

1, . . . , e
0
H0
, . . .

}
.

Let H0 be fixed, let e0 (·) =
(
e0

1 (·) , . . . , e0
H0

(·)
)T

be the basis function vector and let

β∗0 =
(
β∗0,1, . . . , β

∗
0,H0

)T
be the ordinary least-squares estimator solving regression problem

β∗0 = arg min
β0∈RH0

N∑
i=1

(
wi (0)− βT

0 e
0
(
Xi

0

))2
, (124)

where N is the sample size, Xi
0 is the outer scenario and wi (0) =

(
Bi
θ∗0

)−1
P i (θ∗0) is the

simulated continuation value in the i-th simulation. Similarly to the continuation values
above, the insurance contract value conditional on outer scenario X0 can be estimated by

Ṽ ∗0 (X0) = β∗,T0 e0 (X0) . (125)

18.3.2 LSMC Algorithm

Suppose that N paths of the state variable process X = (r,K, S, µ) have been simulated
according to (114), (115), (116) and (117) and that N exponential random variables ξ
with parameter one have been simulated.

Let
(
µitl
)

0≤l≤L be the i-th evolution of the intensity of mortality (110) and let ξi be the

i-th simulated exponential random variable. Then the i-th simulated time of death τ i is
obtained by definition (105) as

τ i = min
{
tl : Γitl > ξi

}
, (126)

where Γitl =
∑l

s=1 µ
i
tsδt is the simulated value of Γtl =

∫ t
0 µsds. By convention, we set

τ i =∞ if the policyholder survives maturity T .
Moreover, let

(
ritl
)

0≤l≤L,
(
Ki
tl

)
0≤l≤L and

(
Sitl
)

0≤l≤L be the i-th evolutions of the term

structure of interest rates (106), stochastic volatility (107) and reference fund value as
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the exponential of (108), respectively. We compute the simulated discount factors by

vitl,tk = Bi
tl

(
Bi
tk

)−1
= exp

(
−
∑k

s=l+1 r
i
tsδt
)

with tl < tk.

By following Equation (103), we calculate the simulated benefits paid upon death

F d,i
τ i

= F0 max

(
Si
τi

S0
, exp

(
κdτ

i
))

if τ i ≤ T , upon survival F s,iT = F0 max
(
SiT
S0
, exp (κsT )

)
otherwise, and upon surrender Fw,itm = F0 max

(
Sitm
S0
, exp (κwtm)

)
for m = M − 1, . . . , 1 in

case tm < τ i.
The insurance contract value Ṽ ∗0 can now be derived by the LSMC algorithm depicted

in Figure 29.

18.4 Forward Discretization Bias

18.4.1 Decomposition of MSE

Technically, we are now able to run the LSMC algorithm. However, some questions like
how to choose the forward discretization step size or which basis functions to use are still
unanswered. Answering these questions goes beyond the scope of Bacinello et al. (2009)
and Bauer & Ha (2015) and will be the focus of the following. To find a reasonable forward
discretization step size conditional on the number of Monte Carlo simulations, we apply
the procedure proposed by Desmettre & Korn (2015).

We aim to select the order of the forward discretization bias in coincidence with the
one of the Monte Carlo error to avoid a misbalance between the number of Monte Carlo
simulations N and the forward discretization step size δt. If these two parameters are
not balanced out, one of the two error sources dominates the other one. Both kinds of
dominations have undesirable effects: If the Monte Carlo error dominates the discretization
bias, the forward discretization step size can be increased without losing accuracy, and if
it is the other way around, the results are biased due to the discretization of the stochastic
processes. Hence we would end up either with a suboptimal computational power usage
or biased estimation results.

The decomposition of the mean squared error (MSE) into the Monte Carlo error and
discretization bias will now be presented. For reasons of simplification, we assume for
this analysis that there is no diversification across the outer scenarios, i.e., Xi

0 = X0, i =
1, . . . , N , so that the physical probability measure P vanishes and the setting of Bacinello
et al. (2009) is established. As a result, the regression (124) at contract inception reduces
to simply averaging over the continuation values wi (0) , i = 1, . . . , N . Moreover, let a
backward discretization time grid T based on which the backward induction steps are
performed be fixed. In addition, let the true insurance contract value Ṽ ∗0 (N,X) be gen-
erated by the algorithm in Figure 29 conditional on N simulations, all together indicated
by X, with an infinitesimally small forward discretization step size δt → 0. Similarly,
let Ṽ ∗0

(
N,Xδt

)
be generated by the algorithm in Figure 29 based on N simulations, all

together indicated by Xδt, with a forward discretization step size of δt > 0. Then the
expected mean squared error (MSE) made when calculating Ṽ ∗0

(
N,Xδt

)
to approximate

Ṽ ∗0 (N,X) is

MSE = E
[
Ṽ ∗0

(
N,Xδt

)
− E

[
Ṽ ∗0 (N,X)

]]2

= E
[
Ṽ ∗0

(
N,Xδt

)
− E

[
Ṽ ∗0

(
N,Xδt

)]
+ E

[
Ṽ ∗0

(
N,Xδt

)]
− E

[
Ṽ ∗0 (N,X)

]]2
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Step 1: (Initialization)
Set I = {1 ≤ i ≤ N}.
for all i ∈ I do

if τ i ≤ T then
θ∗,i = τ i and P i

θ∗,i = F d,i
θ∗,i

else
θ∗,i = T and P i

θ∗,i = F s,i
θ∗,i

Step 2: (Backward induction)
for m = M − 1 to 0 do

Set Im =
{

1 ≤ i ≤ N : τ i > tm
}
.

(1) (Simulated continuation values)
for all i ∈ Im do

witm = vi
tm,θ∗,i

P i
θ∗,i

(2) (Estimated continuation values)
if m 6= 0 then

Regress
(
witm

)
i∈Im against

(
e
(
Xi
tm

))
i∈Im .

for all i ∈ Im do
ũitm = β∗,Tm e

(
Xi
tm

)
if Fw,itm > ũitm then

θ∗,i = tm and P i
θ∗,i = Fw,i

θ∗,i

else
Regress

(
wi0
)
i∈I0 against

(
e0
(
Xi

0

))
i∈I0 .

Step 3: (Insurance contract value)
Compute the contract value for X0:
Ṽ ∗0 = β∗,T0 e0 (X0)

Figure 29: LSMC approach for valuing life insurance contracts.
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= E
[
Ṽ ∗0

(
N,Xδt

)
− E

[
Ṽ ∗0

(
N,Xδt

)]]2
+
(
E
[
Ṽ ∗0

(
N,Xδt

)]
− E

[
Ṽ ∗0 (N,X)

])2

+ 2E
[
Ṽ ∗0

(
N,Xδt

)
− E

[
Ṽ ∗0

(
N,Xδt

)]]
︸ ︷︷ ︸

= 0

(
E
[
Ṽ ∗0

(
N,Xδt

)]
− E

[
Ṽ ∗0 (N,X)

])

= Var
[
Ṽ ∗0

(
N,Xδt

)]
︸ ︷︷ ︸

Monte Carlo error

+
(
E
[
Ṽ ∗0

(
N,Xδt

)]
− E

[
Ṽ ∗0 (N,X)

])2
.︸ ︷︷ ︸

Discretization bias

(127)

18.4.2 Harmonization Algorithm

A first algorithm close to that by Desmettre & Korn (2015) with the purpose of selecting
the order of the discretization bias in coincidence with the one of the Monte Carlo error
consists of the following three steps:

1. Start with a rather large forward discretization step size δt and then increase the
number of Monte Carlo simulations N until you reach the desired accuracy of the
insurance contract value at confidence level 1− α, i.e.,[

Ṽ ∗0

(
N,Xδt

)
− z1−α

2

σ̂N√
N
, Ṽ ∗0

(
N,Xδt

)
+ z1−α

2

σ̂N√
N

]
, (128)

where z1−α
2

is the (1 − α
2 )-quantile of the standard normal distribution and σ̂N in

dependence of wi (0) , i = 1, . . . , N, is given by

σ̂2
N =

1

N − 1

N∑
i=1

(
wi (0)− Ṽ ∗0

(
N,Xδt

))2
. (129)

This variance is an estimator of the Monte Carlo error Var
[
Ṽ ∗0
(
N,Xδt

)]
given in

Equation (127). The order of the Monte Carlo error is generally equal to O
(

1
N

)
.

Our objective is to find a forward discretization step size δt at which the order of
the discretization bias O

(
ε2
)

is equal to O
(

1
N

)
.

2. Decrease the forward discretization step size δt while keeping the final number of
Monte Carlo simulations N from the first step fixed. To compensate random fluc-
tuations, repeat the calculation process with the same δt several times and take the
average over the resulting insurance contract values as the estimate. Given the for-
ward discretization step size δt is large so that the discretization bias dominates the
Monte Carlo error at the start of this step, the estimated insurance contract value
should change as δt decreases. Repeat this step until the estimate of the insurance
contract value stabilizes.

3. The stabilization indicates the completion of the search for δt at which the order of
the discretization bias O

(
ε2
)

is equal to O
(

1
N

)
. Since the discretization bias ε2 can

be written in terms of δt, that is ε2 = ε2 (δt), we can derive a relationship between
the order of the discretization bias and the order of the Monte Carlo error, namely,
ε2 (δt) = 1

N . After rearranging the terms, the forward discretization step size δt can
be expressed conditional on the number of Monte Carlo simulations N , i.e.,

δt = δt (N) . (130)

Hence, δt and N should be selected such that they satisfy this relationship whenever
the Monte Carlo error and discretization bias are supposed to be harmonized.
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18.4.3 Same Seed

Unlike Desmettre & Korn (2015), we do not run the LSMC algorithm several times with
the same forward discretization step sizes in the second step to compensate random fluc-
tuations by averaging. Instead we generate the Brownian motions Zr, ZK , ZY , Zµ and
compound Poisson processes JY , Jµ in (114), (115), (116) and (117) only once with our
smallest forward discretization step size δtmin and derive the processes for larger forward
discretization step sizes δt based on the realizations for δtmin. In this way, we use the same
seed throughout the entire harmonization procedure. Figure 30 contains exemplary Monte
Carlo paths of the intensity of mortality for different forward discretization step sizes that
have all been derived based on the realizations of the same simulation with δmin = 0.001.
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Figure 30: Stochastically simulated intensity of mortality on the backward discretization time grid condi-
tional on µ0 = m(0) for varying forward discretization step size δt.

The justification why such an approach is mathematically valid can be divided into
two parts and goes as follows. In the first part, we define constructions for all suitable
larger forward discretization step sizes based on the Brownian motions and compound
Poisson processes that we have generated based on δtmin. In the second part, we show
that these constructions have indeed the properties of Brownian motions and compound
Poisson processes. We start with the proof for the Brownian motions and complete with
the proof for the compound Poisson processes.

18.4.4 Brownian Motions

Proof. Let Zb,δtmin , b ∈ {r,K, Y, µ}, be standard Brownian motions generated with the
smallest forward discretization step size δtmin and let Lmin = T

δtmin
. Then all components

δZb,δtmin
tlmin

, lmin = 1, . . . , Lmin, are by definition independent and normally distributed with

zero mean and variance δtmin, i.e.,

δZb,δtmin
tlmin

∼ N (0, δtmin) . (131)
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Let δt = aδtmin, a ∈ N, be a larger forward discretization step size where in addition a is
a divisor of Lmin. We construct the Brownian motions for δt based on those of δtmin by

δZb,δttal
=

al∑
lmin=a(l−1)+1

δZb,δtmin
tlmin

, l = 1, . . . , L, (132)

with L = Lmin
a . Due to (131), all al− (a (l − 1) + 1) + 1 = a summands on the right-hand

side of Equation (132) are independent and identically distributed. By applying the results
of Eisenberg & Sullivan (2008), who prove once more that the sum of two independent
and normally distributed random variables is normally distributed, and by induction, it
follows that

δZb,δttal
∼ N (0, aδtmin) . (133)

By using δt = aδtmin, we obtain

δZb,δttal
∼ N (0, δt) (134)

which we wanted to show to prove that the constructions in (132) are indeed standard
Brownian motions for the larger forward discretization step size δt.

18.4.5 Compound Poisson Processes

Proof. Similarly, let Jb,δtmin , b ∈ {Y, µ}, be compound Poisson processes generated with
the smallest forward discretization step size δtmin and let Lmin = T

δtmin
. According to

the description of the alternative jump time simulation in Section 18.2.1, all components
δJb,δtmin

tlmin
, lmin = 1, . . . , Lmin, can be written as

δJb,δtmin
tlmin

=

{
hj if lmin = lj , j = 1, . . . , N(T ),

0 otherwise,
(135)

where lj =
⌊
uj

Lmin
T

⌋
and thus tlj =

⌊
uj

Lmin
T

⌋
T

Lmin
with uj uniformly distributed on [0, T ].

The compound Poisson process is then given by

Jb,δtmin
tk

=
k∑

lmin=1

δJb,δtmin
tlmin

, k = 1, . . . , Lmin. (136)

Again, let δt = aδtmin, a ∈ N, be a larger forward discretization step size where a is a
divisor of Lmin. We construct the compound Poisson processes for δt based on those of
δtmin by

δJb,δttal
=

al∑
lmin=a(l−1)+1

δJb,δtmin
tlmin

, l = 1, . . . , L, (137)

with L = Lmin
a so that we obtain

Jb,δttak
=

k∑
l=1

δJtal
b,δt =

k∑
l=1

 al∑
lmin=a(l−1)+1

δJb,δtmin
tlmin

 , k = 1, . . . , L. (138)
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Univariate (#12) Multivariate (#22)

r r2 r3 rK r2K rK2 rKS
K K2 K3 rS r2S rS2 rKµ
S S2 S3 rµ r2µ rµ2 rSµ
µ µ2 µ3 KS K2S KS2 KSµ

Kµ K2µ Kµ2

Sµ S2µ Sµ2

Table 9: Starting set of basis functions.

By employing an index transformation and using (136), this expression becomes

Jb,δttak
=

ak∑
lmin=1

δJb,δtmin
tlmin

= Jb,δtmin
tak

, k = 1, . . . , L, (139)

which is by definition a compound Poisson process, see (136), differing only in the forward
discretization step size. Hence the constructions in (137) are indeed compound Poisson
processes for the larger forward discretization step size δt.

18.5 Basis Functions Consistency

18.5.1 Principle of Parsimony

We can subsume the process according to which we select the basis functions under two
principles. The objective is to choose as few basis functions as possible and at the same
time as many basis functions as necessary to explain the continuation values adequately.
By doing so, we follow again the principle of parsimony by Burnham & Anderson (2002)
which we have already explained in the previous part of this thesis. While our first prin-
ciple ensures that no basis functions with very little or no explanatory power enter the
regressions, our second principle ensures that all basis functions with significant explana-
tory power are considered. To account for the first principle we do not use basis functions
which show very high correlations with simpler basis functions. We follow the second
principle by selecting the basis functions at times t > 0 and at time t = 0 consistently. As
we will see, the second principle also serves as a validation concept. Below, we describe
the two principles in detail.

18.5.2 Exclusion by Correlation

We start the regressions with a set of polynomial basis functions up to order three since
this is the choice of Bacinello et al. (2009). In contrast to their choice of orthogonal basis
functions, we decide for ordinary monomial basis functions and apply QR decompositions
to the design matrices. Since our model comprises the four risk factors defined in (106),
(107), (108) and (110), the starting set makes in total H = 35 basis functions including a
constant function to allow for an intercept. It is reasonable to reflect the process of the
reference fund value (108) either by polynomial basis functions with respect to S or Y .
As an implication of the second principle, we choose S. For illustration purposes, we list
our starting set of basis functions (without the constant function) in Table 9.

Throughout all t > 0 regressions m = M − 1, . . . , 1, let e (·) = (e1 (·) , . . . , eH (·))T be
the basis function vector as defined in Section 18.3.1. Then e

(
Xi
tm

)
, i = 1, . . . , N , with
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Xi
tm =

(
ritm ,K

i
tm , S

i
tm , µ

i
tm

)
is the basis function vector evaluated at the time-tm values

of the state variable process in the i-th simulation. For all pairs (eh1 (·) , eh2 (·)) of basis
functions, h1, h2 = 1, . . . ,H with h1 6= h2, we calculate Pearson’s correlation coefficients
rtmh1,h2 , i.e.,

rtmh1,h2 =

∑N
i=1

(
eh1
(
Xi
tm

)
− ēh1 (Xtm)

) (
eh2
(
Xi
tm

)
− ēh2 (Xtm)

)√∑N
i=1

(
eh1
(
Xi
tm

)
− ēh1 (Xtm)

)2√∑N
i=1

(
eh2
(
Xi
tm

)
− ēh2 (Xtm)

)2 , (140)

where ēh1 (Xtm) = 1
N

∑N
i=1 eh1

(
Xi
tm

)
and ēh2 (Xtm) = 1

N

∑N
i=1 eh2

(
Xi
tm

)
. If for a fixed

pair (h1, h2), all absolute values of the correlation coefficients |rtmh1,h2 |, m = M − 1, . . . , 1,
exceed a given threshold, we exclude the more complex basis function of (eh1 (·) , eh2 (·))
from the t > 0 regressions. In this way, we simplify the regressions, increase their numerical
stability, reduce the issue of off-setting coefficients, and make the economic interpretation
of the remaining basis functions easier.

For now, suppose that the t = 0 regression is conducted just like the t > 0 regressions
so that we have e0 (·) = e (·). We cannot tell whether the obtained basis functions
from applying the first principle explain the continuation values adequately because there
might still be basis functions with significant explanatory power missing. To cope with
this question, we introduce the second principle, a validation concept, according to which
the basis functions at times t > 0 and at time t = 0 are selected consistently.

18.5.3 Validation Concept

To apply the second principle, we define a set of validation scenarios
{
Xj

0 | j = 1, . . . , V
}

consisting of hand-picked outer scenarios. The validation scenarios should be selected such
that they represent the range of relevant outer scenarios well. Then we run the LSMC
algorithm depicted in Figure 29 exclusively for each validation scenario Xj

0 , j = 1, . . . , V ,

and therefore set Xj,i
0 = Xj

0 , i = 1, . . . , N, j = 1, . . . , V , as in the previous section. By
doing so, we establish again the setting of Bacinello et al. (2009) in which the regression at
contract inception reduces to averaging. As a result, we directly obtain all corresponding

validation insurance contract values Ṽ ∗,j0 , j = 1, . . . , V . We call the pairs
(
Xj

0 , Ṽ
∗,j

0

)
,

j = 1, . . . , V , validation points in analogy to the notion in the foregoing two parts of this
thesis. To generate V validation points, we perform the algorithm in Figure 29 V times.

In addition to the V exclusive LSMC runs, we run the extended LSMC algorithm once.
Then we validate the results from the extended LSMC run and the V exclusive runs by
comparison. We call the basis functions used in the t > 0 regressions and in the t = 0
regression consistent and the validation successful if, for the extended LSMC run and the
V exclusive LSMC runs,

� the pointwise deviations of the contract value estimates do not exhibit a massive sys-
tematic pattern over all validation scenarios;

� the contract value estimates do not deviate by more than a given threshold from each
other;

� the same basis functions per regression are used unless they need to be dropped or
replaced properly for degenerating reasons in the t = 0 regression.
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Degenerating reasons prevail if model characteristics (e.g., a return over time at inception)
or the absence of outer scenarios (e.g., averaging at inception in the exclusive LSMC runs)
cause different basis functions to take on the same values. We repeat the validation
procedure with different constellations of economically promising basis functions until
consistency is achieved and the validation is successful. In other words, the basis functions
are calibrated such that they provide consistent results in the exclusive LSMC runs and
extended LSMC run.

18.6 Summary

To apply the theoretical model, a suitable implementation algorithm has been set up after
some general remarks in Section 18.1. At first, forward discretization methods working for
the parameter values in the numerical example have been presented in Section 18.2. While
for the reference fund value an adapted version of the Euler-Maruyama method has been
used, for the remaining risk factors the so-called explicit scheme E(0) has been used to
avoid negative simulation values. Furthermore, a convenient procedure for the simulation
of compound Poisson processes has been described. Thereafter, the backward induction
procedure has been introduced as an approximation technique to find a solution to the
optimal stopping problem. Since we have only been able to simulate discrete processes,
practically, we have switched over to pricing an insurance contract with a Bermudan-
instead of an American-style surrender option. To estimate the continuation values in the
backward induction procedure at each time step, in Section 18.3, a Markovian environment
has been assumed and two approximations conditional on finite sets of basis functions and
ordinary least-squares estimators have been derived. At contract inception, the insurance
contract values with respect to infinitely many outer scenarios have been obtained by an
additional regression function. The resulting LSMC algorithm written with the aid of
pseudo-code has completed the regression theme.

In Section 18.4, we have shown that a misbalance between the number of simulations
and forward discretization step size causes either a suboptimal computational power us-
age or biased estimation results. To eliminate these undesirable effects, a harmonization
algorithm has been presented and a seed-related modification thereof for run time reduc-
tions proposed. Afterwards, the concept of consistent basis functions has been introduced
in Section 18.5. Basis functions with very little explanatory power have been excluded
based on Pearson’s correlation coefficients in accordance with the principle of parsimony.
Furthermore, only consistent basis functions have been allowed. The concept of consistent
basis functions has also been said to serve as a validation concept.

19 Numerical Example

19.1 General Remarks

19.1.1 Model Specifications

We take up the numerical experiment of Bacinello et al. (2009) so that we can use their
results as a benchmark. Let the physical probability measure P, characterizing the outer
scenarios, be the multivariate uniform distribution on a 4-dimensional cube Sfit around a
given central outer scenario X0 = (r0,K0, S0, µ0), which we call the base scenario. The
components of the base scenario are referred to as the base values. While the definitions of
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the outer scenario values r0, K0 and µ0 are unambiguous, the one of the initial reference
fund value S0 is not. It is possible to let the insured invest in the reference fund either
before it has been stressed by P or afterwards. We decide for the more interesting former
definition as it lets the insured participate at the shock and leads to a wider range of
insurance contract values. In addition, we let the single initial premium F0 be equal to
the initial reference fund value Sbefore

0 so that the insured invests in exactly one unit. After
the investment, the reference fund is stressed and its value becomes S0 := Safter

0 .
To derive the function m (·) in discretized process (117) representing the time-dependent

long-run values of the intensity of mortality we follow the suggestion in Bacinello et al.
(2009) by fitting a Weibull intensity m (t) = c−c21 c2 (x+ t)c2−1 with c1 > 0, c2 > 1 to the
survival probabilities implied by Table SIM2001 (male) employed in the Italian endowment
insurance market.

19.1.2 Forward Discretization Schemes

The parameter choices of Bacinello et al. (2009) partly demand schemes going beyond the
natural Euler-Maruyama method. For instance, the simulated values of (107) turn out
to become negative in some simulations when using the Euler-Maruyama scheme since
the Gaussian increment in this scheme is not bounded from below, see Alfonsi (2005).
This is the reason why we only use the Euler-Maruyama method to simulate process
(108), see (114), and why we use the explicit scheme E (0) to simulate the other processes
(106), (107) and (110), see (115), (116) and (117), respectively. The forward discretization
step size used to determine the final insurance contract value will depend on the analysis
undertaken to balance the Monte Carlo error and discretization bias out.

Process (110) might even become negative when simulated by the explicit scheme E (0)
as the inequality σ2

µ ≤ 4ζµm (t) from Section 18.2.1 does not hold for each t ≥ 0 in
our numerical experiment. Since the inequality is violated only marginally though, the
simulated values (117) turn negative only occasionally. For this reason, we do not search
for another scheme but deal with this issue by reversing negativity. If we have, for example,

µt+1 < 0 for t = tl, l = 1, . . . , L, we subtract the term
(
ζµm (t)− σ2

µ

4

)
δt+ δJµt which we

just added.
To derive the results for several forward discretization step sizes with the same seed

according to the procedure in Section 18.4, we simulate the Brownian motions and com-
pound Poisson processes only once with the smallest forward discretization step size
δtmin, save the paths and reaccess them for the larger forward discretization step sizes
δt = aδtmin, a ∈ N.

19.1.3 Memory Size & Parallelization

Another numerical difficulty with the parameter choices of Bacinello et al. (2009) con-
cerns the memory capacities of our hardware. Running the software 32-bit R on a 64-bit
Windows version allows to store memory sizes of at maximum 4 GB, which is exceeded
when all Brownian motions Zr, ZK , ZY , Zµ, compound Poisson processes JY , Jµ and fur-
ther required values of the stochastic processes r,K, S, µ, τ, F s, F d, Fw are supposed to be
stored N = 10, 000 times simultaneously with forward discretization step size δt = 0.001.
By applying software 64-bit R under 64-bit Windows, where maximum memory sizes of
8 TB can be achieved at the time we do the calculations, see R Documentation (2017),
we overcome this computational challenge. In settings in which the maximum values of
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obtainable memory are exceeded, one can, for instance, store N1 < N Brownian motions
and compound Poisson processes at the same time, derive the further required values of
the stochastic processes r,K, S, µ, τ, F s, F d, Fw, and finally delete the N1 Brownian mo-
tions and compound Poisson processes. Then the available memory can be allocated to the
Brownian motions and compound Poisson processes required for the derivation of the next
N2 ≤ N −N1 stochastic processes, and so on. Thereby only the values of the processes on
the backward time grid need to be stored as only these are processed in the regressions.

Run time reductions can be achieved by operating on multiple cores. The stochastic
processes corresponding to different simulations can be generated separately on multi-
ple cores. For such a parallelization, the software R provides package doParallel which
executes loops from package foreach in parallel.

19.2 Preliminary Considerations

19.2.1 Initialization of Settings

Our initial set of polynomial basis functions up to order three comprises H = 35 basis
functions of which all except for the constant function are shown in Table 9. Besides the
constant function, the initial set includes risk factor wise the univariate polynomials of
degrees one to three, and 22 additional basis functions reflecting the interactions between
the risk factors. The latter 22 basis functions are products of the univariate polynomials
with degrees summing up to at maximum three. In all regressions, we work with QR
decompositions of the resulting design matrices to ensure numerical stability, compare
Section 14.1.4.

For the derivation of consistent basis functions, our calibration procedure takes the
following course. We make first guesses for a reasonable number of simulations N and
forward discretization step size δt. Our initializations of N = 50, 000 and δt = 0.1 are
inspired by Bacinello et al. (2009) who set N = 19, 000 and δt = 0.01. We thereby decide
for a larger sample size to increase the accuracy and for a larger forward discretization step
size to decrease the run time. After we will have found a consistent set of basis functions
according to the procedure described in Section 19.2.3, we will adjust our first guesses
as shown in Section 19.2.4 to harmonize the Monte Carlo error and discretization bias.
The initializations should be made carefully to ensure that the basis functions remain
consistent until after the harmonization.

Since we set the maturity of the insurance contract equal to T = 15 years, a one-year
backward discretization step size is appropriate from both a computational and economic
perspective. With these choices, the numerical setting comprises L = 150 forward and
M = 15 backward discretization steps.

19.2.2 Validation Scenarios

We hand-pick a set of V = 29 validation scenarios on the 4-dimensional cube Sfit. Let the
set

{
Xi

0 | i = 1, . . . , N ′
}

be a realization of P with N ′ ≥ N on Sfit. For each risk factor,
we take the empirical 10%- and 90%-quantiles on

{
Xi

0 | i = 1, . . . , N ′
}

and denote them
by b−, b+, b ∈ {r,K, S, µ}. We decide for these particular quantiles as they are neither
too close to the base values nor too close to the boundaries. Furthermore, we combine
selected quantiles with selected base values r0,K0, S0, µ0. Preferably, the 29 validation
scenarios are well-distributed over Sfit. We assume that if we achieve consistent results in



19 Numerical Example 137

Base/Univariate (#9) Bi-/Trivariate (#10) Multivariate (#10)

base S+, µ− r−,K−, S−, µ−
r− K−, µ+ r−,K−, S−, µ+
r+ r−, S+ r−,K−, S+, µ−
K− r−, µ− r−,K+, S−, µ−
K+ r+, µ− r+,K−, S−, µ−
S− K−, µ+ r+,K+, S+, µ+
S+ r −K+ r+,K+, S+, µ−
µ− K+, S− r+,K+, S−, µ+
µ+ K+, S+, µ− r+,K−, S+, µ+

r−, S+, µ+ r−,K+, S+, µ+

Table 10: Set of validation scenarios.

rather extreme validation scenarios like the ones containing the 10%- and 90%-quantiles,
we do so for less extreme ones as well. In Table 10, we report the hand-picked validation
scenario selection.

As the first validation scenario, we select the base scenario X0 = (r0, K0, S0, µ0),
which has a central position on Sfit. The next eight validation scenarios comprise single
risk factor deviations from the base scenario such that for each risk factor an upwards and
downwards stress is included. These validation scenarios capture the effects of single risk
factors on the insurance contract value. Each of the subsequent ten validation scenarios
contains two or three arbitrary risk factor shocks. The last ten validation scenarios are
deviated in each risk factor dimension and are thus the most challenging scenarios of our
selection.

19.2.3 Basis Function Calibration

We run the extended LSMC algorithm under realization
{
Xi

0 | i = 1, . . . , N
}

of measure
P and use in each regression the basis functions from Table 9 plus a constant function
to allow for an intercept. Afterwards, we calculate all correlation coefficients (140) and
exclude the basis functions showing an absolute correlation of at least 0.97 with a simpler
basis function in each regression. The only remaining multivariate basis functions are rK
and rS, which means that they capture all essential interactions between r, K and S in
(108) and (114). Finally we run both the extended LSMC algorithm and the exclusive
LSMC algorithm for each of the 29 validation scenarios from Table 10 with the reduced
set of basis functions. By having in addition the exclusive LSMC runs with the basis
functions from Table 9 as reference runs available, we observe that the exclusion of highly
correlated basis functions improves indeed the validation results, compare Section 18.5.1.

However, the validation is not successful yet as the estimated insurance contract values
show a systematic pattern. The insurance contract values derived in the extended and
exclusive LSMC runs deviate from each other whenever the corresponding validation sce-
narios include the 10%- and 90%-quantiles of the reference fund value, i.e., S− and S+.
The contract values derived by the extended LSMC algorithm are smaller than the ones
derived by the exclusive LSMC algorithm if the validation scenario contains S− whereas
it is vice versa if it contains S+.

To eliminate this systematic pattern, we reconsider the economic setting and search for
economically more appropriate basis functions. By analyzing the contract value (103),
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Univariate Multivariate Excl. & Ext. Extended
(#7) (#1) t = 0 LSMC t > 0 LSMC

Regressions (#1) Regressions (#3)

r
K K2 rK

S S2 rS S
S0

(
S
S0

)2
r SS0

µ µ2

Table 11: Final set of consistent basis functions.

we recognize that not only the reference fund value St but also the return St
S0

drives
the policyholder’s surrender behavior. As long as all outer scenarios are equal, we have
Si0 = Sj0, i 6= j, for all i, j = 1, . . . , N meaning that the basis functions in terms of the
reference fund value and its return are equivalent. While the return is thus not required
for the modeling in the exclusive LSMC runs, it certainly is in the extended LSMC run.
Besides that, we find that using basis functions with respect to Yt instead of St does not
improve the results. For this test, we draw new initial values Y i

0 , i = 1, . . . , N , from a
uniform distribution around the new base value Y0 = log (S0) and assign them to the
realization of P by substituting them for Si0, i = 1, . . . , N .

After having run the extended LSMC algorithm and the exclusive LSMC algorithm
with the economically more appropriate basis functions, our validation is successful and
consistency in the basis functions is achieved. The final set of basis functions (without
the constant function) for the parameterizations κs = κd = 0.04, κw = 0 and κs =
κd = 0, κw = 0.06 is listed in Table 11. The basis functions in the first two main
columns “univariate” and “multivariate” enter all regressions of both the exclusive and
extended LSMC algorithm. The last two main columns “exclusive & extended t = 0
LSMC regressions” and “extended t > 0 LSMC regressions” contain the basis functions
exclusively used in the specified regressions. In the exclusive LSMC algorithm, the t = 0
regression reduces to averaging so that we only need to provide basis functions for the t > 0
regressions here. In the extended LSMC algorithm, the t = 0 regression plays a special
role as well because the basis functions in the last main column degenerate either into a
constant function or the univariate basis function r. The basis functions degenerating into
a constant function are simply dropped and the one degenerating into r is replaced by rS.

19.2.4 Forward Discretization Bias

Due to limited computational capacities, we use only N = 10, 000 simulations to balance
out the Monte Carlo error and discretization bias according to the three steps in Sec-
tion 18.4. A transition from, for example, 50, 000 to 10, 000 simulations is appropriate
as long as the results remain sufficiently precise. The choice of N = 10, 000 simulations
is motivated by the procedure described in Desmettre & Korn (2015). To determine a
suitable forward discretization step size δt0 conditional on N , we conduct the exclusive
LSMC algorithm for the base scenario X0 = (r0, K0, S0, µ0) with several different for-
ward discretization step sizes. In each LSMC run, we use the basis functions shown in the
left three main columns of Table 11 plus a constant function.

For the parameterizations κs = κd = 0.04, κw = 0 and κs = κd = 0, κw = 0.06, the
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Figure 31: Estimated insurance contract values with 95%-confidence intervals for varying forward dis-
cretization step sizes δt, parameterization κs = κd = 0.04, κw = 0.

estimation results from the repetitions of the second step, in which the forward discretiza-
tion step size is reduced gradually from δt = 0.1 to δt = 0.001, are depicted in Figures 31
and 32, respectively. The confidence intervals in both figures have levels of 1− α = 95%.
As the forward discretization step size decreases, the estimated insurance contract values
decrease at first and then stabilize. Since a stabilization indicates that the Monte Carlo
error and discretization bias are harmonized, one can stop the refinement at this point.
According to Figures 31 and 32, the estimated insurance contract values begin to stabilize
at δt0 = 0.01. Therefore, δt0 = 0.01 will be the forward discretization step size of our
choice in the final calculations in Section 19.3.

In deviation from Desmettre & Korn (2015), we do not perform the exclusive LSMC
algorithm multiple times with the same forward discretization step sizes to obtain average
insurance contract values. Instead we generate the Brownian motions Zr, ZK , ZY , Zµ and
compound Poisson processes JY , Jµ in (114), (115), (116) and (117) only once with our
smallest forward discretization step size δtmin and construct the realizations for larger
forward discretization step sizes based on those for δtmin. By this approach, we ensure
that we use the same seed throughout the entire harmonization procedure and eliminate
further undesirable random fluctuations.

19.3 Final Results

19.3.1 Settings

For a male individual of age x = 40 entering an equity-linked endowment insurance con-
tract with the option to surrender the contract before its maturity of T = 15 years as
defined by (103), we run N = 10, 000 simulations for two different constellations of mini-
mum interest rate guarantees (κ, κw) where we set κ := κs = κd. Even though in practice
only constellations with κw ≤ κ are reasonable, we also test a constellation with κw > κ
for numerical purposes. We decide for the two constellations κ = 0.04, κw = 0 and
κ = 0, κw = 0.06 and let the individual invest in exactly one unit of the reference fund
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Figure 32: Estimated insurance contract values with 95%-confidence intervals for varying forward dis-
cretization step sizes δt, parameterization κs = κd = 0, κw = 0.06.

and set thus F0 := S0.
On the one hand, we perform V = 29 exclusive LSMC runs where each run corresponds

to another validation scenario from Table 10 so that the different insurance contracts
associated with these validation scenarios are valued separately. This setting in which
no regression takes place at contract inception is the one introduced by Bacinello et al.
(2009). On the other hand, we carry out the extended LSMC run with the additional
regression function at contract inception once and thereby achieve the simultaneous val-
uation of infinitely many insurance contracts. For the latter task, we have drawn outer
scenarios from the the physical measure P on the 4-dimensional cube Sfit around the base
scenario X0 = (r0,K0, S0, µ0) = (0.05, 0.04, 100,m(0)) with m(0) = c−c21 c2 (x)c2−1. We
let ri0,K

i
0, S

i
0 and µi0, i = 1, . . . , N , be distributed uniformly on [0, 2r0] , [0, 2K0] , [75, 125]

and
[
m(0)− 4 · 10−4,m(0) + 4 · 10−4

]
, respectively. In the regressions, we use the final

set of consistent basis functions of which all except for the constant function are reported
in Table 11. They differ for the exclusive and extended LSMC runs only for degenerating
reasons.

As the forward discretization step size we set δt0 = T
L = 0.01 years which has been

shown in the previous section to work well with our choice of N = 10, 000 simulations.
As the backward discretization step size we set T

M = 1 year which is suitable from a
computational and economic perspective. The entire parameterization is summarized in
Table 12.

19.3.2 LSMC Runs

The insurance contract values V ∗0 estimated by the exclusive and extended versions of the
algorithm depicted in Figure 29 can be viewed for the constellations κ = 0.04, κw = 0
and κ = 0, κw = 0.06 in Tables A37 and A38, respectively. The notation of the validation
scenarios is explained in Section 19.2.2. Per constellation of guaranteed minimum interest
rates, we have performed the V = 29 exclusive LSMC runs and the single extended
LSMC run under three different Monte Carlo settings. In the first setting, we use different
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General r K S µ

N = 10, 000 r0 = 0.05 K0 = 0.04 S0 = 100.00 µ0 = m (0)
T = 15 ζr = 0.60 ζK = 1.50 ρY K = −0.70 ζµ = 0.50
L = 1500 δr = 0.05 δK = 0.04 ρY r = 0.00 σµ = 0.03
M = 15 σr = 0.03 σK = 0.40 λY = 0.50 λµ = 0.10
H = 12/10 µY = 0.00 γµ = 0.01
H0 = 10/1 σY = 0.07 c1 = 83.70
V = 29 c2 = 8.30
F0 = S0 x = 40

Table 12: Parameterization in the extended/exclusive LSMC algorithm.

realizations of the Brownian motions and compound Poisson processes across all scenarios.
We report the results in the first three connected columns “Am. - Random Seed” of
Tables A37 and A38, respectively. Differently, in the second setting, the 29 + 1 LSMC
runs per constellation of guaranteed minimum interest rates are conducted based on the
same Brownian motions and compound Poisson processes so that they have the same seed.
Besides, the LSMC runs from Section 19.2.4 for the derivation of the forward discretization
step size δt0 were performed based on this seed as well. The results can be viewed in the
second three connected columns “Am. - Same Seed” of Tables A37 and A38, respectively.
In the last three columns “Eu. - Same Seed”, we present the results of the third setting
in which the American/Bermudan option is replaced by a European option.

When replacing the American/Bermudan option by a European option in the insurance
contract, the parameter κw becomes irrelevant as the surrender option vanishes. The
insurance contract value can then be computed by executing only Steps 1 and 3 of the al-
gorithm in Figure 29. The difference between the American/Bermudan and the European
insurance contract value yields the pure American/Bermudan option value.

19.3.3 Economic Interpretation

The results allow the following economic interpretation. Conditional on a specific stress,
an insurance contract with κ = 0, κw = 0.06 is worth more than one with κ = 0.04, κw = 0
as the values associated with the former contract are greater than the ones associated with
the latter contract over all validation scenarios. This means that a minimum interest rate
guarantee of κw = 0.06 paid out upon surrender is worth more than a minimum interest
rate guarantee of κ = 0.04 paid out upon survival or death. This result is plausible
because, as long as the probability of death until maturity is very small, it is likely that
there are several times at which it is profitable for the insured to surrender the contract
whereas there is only one time at which the insured either survives maturity or dies prior
to that. Moreover, in our comparison the minimum interest rate guarantee paid upon
surrender is larger than the one paid upon survival or death.

As a plausibility check, we compare our base scenario results from the second and
third Monte Carlo settings “Am. - Same Seed” and “Eu. - Same Seed” with the results
obtained by Bacinello et al. (2009). For κ = 0.04, κw = 0, our algorithm yields for the
American version an insurance contract value of 121.10 compared to 123.09 and for the
European version a value of 121.40 compared to 122.90. The higher value obtained for the
European product thereby lies within the error tolerance for the value of the American
product and signals that early exercise is not optimal for the policyholder under the given
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parameter constellation. For κ = 0, κw = 0.06, our algorithm values the American version
by 135.55 compared to 137.13 and the European version by 105.23 compared to 107.19.
Here, early exercise clearly is optimal. We assume that the deviations arise from several
different implementation choices because, according to the confidence intervals depicted in
Figures 31 and 32 and the comparison with the results from the first Monte Carlo setting
“Am. - Random Seed”, randomness is not able to fully explain the deviations.

19.3.4 Sensitivity Analysis

Tables A37 and A38 reveal the following sensitivities of the insurance contract values to
the risk factors. While a negative shock on the interest rate r0 increases the insurance
contract value, a positive shock on r0 decreases it due to discounting effects. The higher
the interest rate is, the larger is the discounting and thus the lower the contract value. A
negative shock on the reference fund value S0 leads to a lower value whereas a positive
shock on S0 leads to a higher value. This result is reasonable because the benefits paid
upon contract termination depend on the reference fund value. If we have F0 = S0,
the benefits in (103) become F et = max (St, S0 exp (κet)) , e ∈ {s, d, w}, so that they are
proportional to the shocked value of S0 whenever S0 exp (κet) ≥ St holds. In the case of
S0 exp (κet) < St, the benefits are equal to St, which also increases with S0 according to
(114). Based on the results derived with sample size N = 10, 000, we can only state that
the effects of the stresses on the stochastic volatility K0 and the intensity of mortality
µ0 are low compared to those associated with r0 and S0. In the exclusive LSMC run for

the base scenario, the standard error
σ̂2
N√
N

with σ̂2
N from (129) turns out to be 0.48 for

κ = 0.04, κw = 0 and 0.40 for κ = 0, κw = 0.06.
Given a confidence level of 1 − α = 95%, the sample size of N = 10, 000 provides a

confidence interval length of 1.88 for κ = 0.04, κw = 0 and of 1.56 for κ = 0, κw = 0.06. To
achieve a confidence interval length of 0.2, sample sizes of N = 900, 000 and N = 600, 000,
respectively, would be necessary. We assume these sample sizes would show that the
insurance contract value increases slightly in K0. This is our expectation because with a
higher stochastic volatility, the reference fund is more likely to attain comparatively large
and small values where the large values affect the insurance contract value more than the
small ones since the benefits paid out are bounded from below by the minimum interest
rate guarantees. If κ < κw, we expect a slight fall of the insurance contract value in µ0 as
a higher intensity of mortality induces a higher probability for the insured to die before
maturity and thus less surrender opportunities so that overall lower minimum interest
rate guarantees are expected. However, if κ ≥ κw, we expect in accordance with Bacinello
et al. (2009) a slight rise of the insurance contract value in µ0 since then the value of
the standard endowment insurance contract is increased (can be shown) while there is no
effect in the opposite direction.

19.4 Summary

In Section 19.1, we have defined the shocks to the risk factors, derived a function for
the intensity of mortality based on Italian survival probabilities, and addressed numerical
obstacles incurred with our parameter choices. For instance, the explicit scheme E(0) has
been motivated and the issue of limited memory capacities discussed. Then, the basis
function selection procedure has been initialized by first guesses of a suitable number of
simulations and forward discretization step size in Section 19.2. Validation scenarios have
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been hand-picked to serve the selection of consistent basis functions in the exclusive and
extended LSMC runs. Moreover, the principle of parsimony has been ensured by excluding
basis functions showing correlations above 0.97 with simpler ones. To achieve consistency,
economically appropriate basis functions have been selected. For the harmonization of the
forward discretization step size and number of Monte Carlo simulations, a comparatively
efficient seed-related procedure has been applied. As expected, the estimated insurance
contract values have stabilized after gradually reducing the forward discretization step
size.

We have performed the final LSMC runs for two different constellations of guaranteed
minimum interest rates in Section 19.3. Per constellation, we have calculated the insurance
contract values for the three categories “American/Bermudan surrender option - different
seeds”, “American/Bermudan surrender option - same seed”, “European surrender option
- same seed” and reported them in Tables A37 and A38. We have concluded that the
insurance contract was worth more if κs = κd = 0, κw = 0.06 than if κs = κd = 0.04, κw =
0. Additionally, we have found that the insurance contract value increased if the interest
rate was stressed negatively or the reference fund positively. Moreover, we have made
statements about confidence interval lengths and described how we expected the insurance
contract value to change if the stochastic volatility or mortality were stressed.

20 Conclusion

Summary

In the third and last part of this thesis, we have described how life insurance contracts
with early exercise features can be valued by an LSMC-based approach. We have extended
the model setting in Bacinello et al. (2009) by a hybrid probability measure such as
the one introduced in Bauer & Ha (2015) and Natolski & Werner (2016), formulated
a validation concept and have taken the forward discretization bias into account. By
applying the physical probability measure we have accomplished run time reductions and
raised the question of how to select suitable basis functions. We have answered this
question by formulating a validation concept according to which the basis functions are
selected consistently. Additionally, we have broached the issue of forward discretization
biases in LSMC settings based on Desmettre & Korn (2015), confirmed the prevalence of
this issue in our model and proposed a comparatively efficient seed-related implementation
technique to find the optimal forward discretization step size conditional on a given sample
size. This seed-related technique gets along with only one Monte Carlo simulation per
stochastic process for all forward discretization step sizes together.

Outlook

In the setting above, we introduced the physical probability measure to capture variations
in the risk factors at contract inception. But the application is not limited to risk factors.
We expect that an extension to variations in other product features such as minimum
interest rate guarantees is possible. Similarly, this holds for the application in Parts I and
II: Parameters of the CFP model such as the ones steering the management actions can
be included in the LSMC model for a sensitivity analysis.

Furthermore, machine learning approaches such as from Part II or variations thereof
can be applied to value life insurance contracts with early exercise features.
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Gürtler, N. (2011), Der MCEV in der Lebens- und Schadenversicherung geeignet für die
Unternehmenssteuerung oder nicht?, in M. Heep-Altiner & M. Berg, eds, ‘Proceedings
zum 1. FaRis & DAV Symposium’, FaRis & DAV Symposium, Cologne, Germany, pp. 7–
20.

Hartmann, S. (2015), Verallgemeinerte lineare Modelle im Kontext des Least Squares
Monte Carlo Verfahrens, Master’s thesis, Katholische Universität Eichstätt-Ingolstadt,
Germany.

Harvey, A. C. (1976), ‘Estimating regression models with multiplicative heteroscedastic-
ity’, Econometrica 44(3), 461–465.

Hastie, T. & Tibshirani, R. (1986), ‘Generalized additive models’, Statistical Science
1(3), 297–318.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman & Hall, Lon-
don, UK.

Hastie, T., Tibshirani, R. & Friedman, J. H. (2017), The Elements of Statistical Learning,
2 edn, Springer Series in Statistics, New York, USA.

Hayashi, F. (2000), Econometrics, Princeton University Press, Princeton, USA.

Hejazi, S. A. & Jackson, K. R. (2017), ‘Efficient valuation of SCR via a neural network
approach’, Journal of Computational and Applied Mathematics 313, 427–439.

Heston, S. L. (1993), ‘A closed-form solution for options with stochastic volatility with
applications to bond and currency options’, The Review of Financial Studies 6(2), 327–
343.

Hocking, R. R. (1976), ‘The analysis and selection of variables in linear regression’, Bio-
metrics 32(1), 1–49.

Hoerl, A. E. & Kennard, R. W. (1970), ‘Ridge regression: Biased estimation for nonorthog-
onal problems’, Technometrics 12(1), 55–67.

Huang, D. S. (1970), Regression and Econometric Methods, John Wiley & Sons, New York,
USA.



References 149

Hudson, R. S. & Gregoriou, A. (2015), ‘Calculating and comparing security returns is
harder than you think: A comparison between logarithmic and simple returns’, Inter-
national Review of Financial Analysis 38, 151–162.

Hurvich, C. M., Simonoff, J. S. & Tsai, C.-L. (1998), ‘Smoothing parameter selection in
nonparametric regression using an improved Akaike information criterion’, Journal of
the Royal Statistical Society, Series B 60(2), 271–293.

Investment Committee of DAV (2015), ‘Proxy-Modelle für die Risikokapitalberechnung’,
Results Report. By working group Aggregation Techniques of Deutsche Aktuarvereini-
gung.

Investment Committee of DAV (2017), ‘Anforderungen an einen ökonomischen Szenari-
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äquidistanten Ordinaten’, Zeitschrift für Mathematik und Physik 46, 224–243.

Schelthoff, T. (2019), Machine learning methods as alternatives to the least squares Monte
Carlo model for calculating the solvency capital requirement of life and health insurance
companies, Master’s thesis, Universität zu Köln, Germany.
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Appendix

k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k β̂

(N)
k

AIC MSE 1 MSE 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8, 048.89 405, 920 279, 972.87 41, 918.48

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 5, 796.16 347, 122 22, 744.22 32, 479.31
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 80.08 342, 819 9, 863.42 5, 112.25
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −28.03 337, 760 4, 048.53 4, 413.39
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 26.61 336, 373 3, 003.24 4, 339.50
5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 108.73 335, 246 2, 534.24 4, 329.35
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 22.68 334, 903 2, 334.00 4, 314.37
7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −614.79 334, 579 2, 257.41 4, 308.28
8 0 0 0 2 0 0 0 0 0 0 0 0 0 0 297.50 334, 300 1, 341.89 1, 970.71
9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 32.93 334, 044 1, 376.76 1, 945.95

10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 71.60 333, 840 1, 084.23 1, 501.77

11 1 0 0 0 0 0 0 1 0 0 0 0 0 0 57.32 333, 769 1, 134.52 1, 843.88
12 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1, 636.91 333, 524 638.87 748.50
13 0 1 0 0 0 0 0 1 0 0 0 0 0 0 −58.12 333, 420 637.63 700.10
14 0 1 0 1 0 0 0 0 0 0 0 0 0 0 15.67 333, 368 645.54 699.57
15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 29.69 333, 317 327.84 172.71
16 0 0 0 1 0 0 0 0 0 0 0 1 0 0 42.48 333, 266 313.90 172.91
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 13.64 333, 223 321.78 169.47
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6.81 333, 182 280.15 167.30
19 1 0 0 1 0 0 0 0 0 0 0 0 0 0 −5.66 333, 144 292.49 166.74
20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −9.91 333, 118 285.39 167.79

21 0 0 0 2 0 0 0 1 0 0 0 0 0 0 −440.05 333, 094 259.30 178.81
22 0 0 0 0 0 1 0 1 0 0 0 0 0 0 36.14 333, 084 268.45 169.96
23 1 0 0 1 0 0 0 1 0 0 0 0 0 0 −35.76 333, 074 256.88 166.85
24 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.85 333, 067 270.83 163.39
25 0 0 0 0 0 0 0 1 0 0 1 0 0 0 −82.22 333, 059 264.46 163.59
26 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −2.32 333, 047 248.44 163.48
27 1 0 0 0 0 0 0 0 0 0 0 1 0 0 −2.21 333, 040 254.61 163.62
28 0 1 0 0 0 0 0 0 0 0 1 0 0 0 3.69 333, 033 251.67 163.51
29 0 1 0 1 0 0 0 1 0 0 0 0 0 0 −48.47 333, 027 259.06 163.76
30 0 1 0 0 0 0 0 2 0 0 0 0 0 0 126.06 333, 021 255.68 162.53

31 0 0 0 1 0 1 0 0 0 0 0 0 0 0 −20.94 333, 015 247.72 169.26
32 2 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.30 333, 011 282.84 264.54
33 2 0 0 1 0 0 0 0 0 0 0 0 0 0 −0.98 333, 001 290.84 273.88
34 0 0 0 2 0 0 0 0 0 0 0 1 0 0 51.52 332, 997 285.59 270.99
35 1 0 0 0 0 0 0 2 0 0 0 0 0 0 −93.15 332, 992 299.74 269.59
36 0 0 0 1 0 0 0 0 0 0 0 0 0 1 −3.99 332, 987 294.01 269.92
37 0 0 0 0 0 0 0 0 0 0 0 2 0 0 9.48 332, 984 244.46 193.39
38 0 0 0 0 0 0 0 0 0 0 0 3 0 0 17.52 332, 981 246.77 193.69
39 0 0 0 0 0 0 0 1 0 0 0 1 0 0 −42.29 332, 978 252.84 193.19
40 0 0 0 3 0 0 0 0 0 0 0 0 0 0 76.70 332, 976 239.20 186.54

41 0 0 0 4 0 0 0 0 0 0 0 0 0 0 −279.08 332, 972 203.89 133.62
42 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2.57 332, 970 208.28 133.57
43 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −0.62 332, 968 218.11 146.76
44 0 0 0 1 0 2 0 0 0 0 0 0 0 0 4.71 332, 965 210.39 148.32
45 0 0 0 0 0 0 0 0 0 1 0 0 0 1 13.36 332, 964 208.86 148.27
46 0 0 0 1 0 0 0 0 0 0 1 0 0 0 11.10 332, 962 198.29 148.32
47 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −5.85 332, 961 226.05 193.90
48 0 0 1 0 0 0 0 0 0 0 0 0 0 1 5.69 332, 960 222.46 193.81
49 0 0 0 0 0 0 0 1 0 1 0 0 0 0 −56.01 332, 960 207.33 198.33
50 0 0 0 0 0 0 1 1 0 0 0 0 0 0 70.44 332, 959 209.11 197.42

51 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1, 390.37 332, 958 217.77 203.07
52 1 0 0 1 0 1 0 0 0 0 0 0 0 0 −1.06 332, 958 219.21 203.00
53 0 0 0 2 0 1 0 0 0 0 0 0 0 0 −64.50 332, 958 192.10 159.88
54 0 0 0 2 0 2 0 0 0 0 0 0 0 0 17.64 332, 953 165.97 143.94
55 0 0 0 1 0 0 0 0 0 1 0 0 0 0 17.25 332, 953 169.81 137.14
56 0 0 0 1 0 0 0 0 0 1 0 0 0 1 37.24 332, 952 172.65 137.00
57 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2.00 332, 952 172.90 137.59
58 0 0 0 0 0 0 0 1 0 0 0 0 1 0 −26.38 332, 951 171.80 137.55
59 0 0 0 0 0 1 1 0 0 0 0 0 0 0 6.21 332, 951 182.94 149.27
60 0 0 0 1 0 0 0 1 0 0 0 1 0 0 −66.58 332, 951 182.17 148.10

Table A1: Construction sequence of the proxy function of BEL in the adaptive algorithm with the final coeffi-
cients. Furthermore, AIC and out-of-sample mean squared errors after each iteration.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14, 718.24 437, 251 4.557 3.231 4.027

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7, 850.17 386, 722 2.474 0.845 0.913
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −269.33 375, 144 2.065 2.139 1.831
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 145.21 366, 567 1.656 0.444 0.496
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −5.36 358, 894 1.647 1.006 0.556
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 434.04 355, 732 1.635 0.853 0.469
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1, 753.40 354, 318 1.679 0.956 0.374
7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 19, 145.78 349, 759 1.234 0.491 0.628
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.33 347, 796 0.999 0.340 0.594
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 868.25 346, 444 0.912 0.357 0.602

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 30.59 345, 045 0.839 0.389 0.650

11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.65 341, 083 0.759 0.398 0.465
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 86.79 339, 360 0.718 0.394 0.390
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 33.35 337, 731 0.574 0.653 0.512
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 49.59 336, 843 0.589 0.658 0.518
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 71.25 335, 980 0.628 0.678 0.512
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2, 667.92 335, 351 0.609 0.671 0.503
17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 96.43 334, 876 0.579 0.701 0.545
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −6.31 334, 413 0.593 0.720 0.531
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −47.09 333, 904 0.562 0.621 0.474
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 48.93 333, 447 0.565 0.597 0.454

21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −3, 412.68 333, 116 0.553 0.543 0.407
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.02 332, 806 0.562 0.478 0.358
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.12 332, 547 0.550 0.450 0.381
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 43.77 332, 294 0.545 0.468 0.378
25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 118.94 332, 042 0.530 0.464 0.362
26 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −1, 288.45 331, 687 0.522 0.453 0.355
27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −44.72 331, 405 0.525 0.444 0.343
28 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −24, 908.99 331, 136 0.499 0.405 0.327
29 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −86.88 330, 562 0.504 0.348 0.268
30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.55 330, 361 0.518 0.418 0.264

31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 77.26 330, 163 0.512 0.443 0.272
32 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 24.78 329, 988 0.508 0.443 0.264
33 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 14.33 329, 834 0.477 0.491 0.286
34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.39 329, 688 0.477 0.500 0.290
35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 28.36 329, 550 0.476 0.502 0.291
36 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −370.92 329, 442 0.472 0.499 0.288
37 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −17.90 329, 147 0.462 0.505 0.301
38 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8, 574.53 329, 043 0.472 0.518 0.300
39 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −2.17 328, 935 0.474 0.510 0.295
40 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 223.91 328, 832 0.475 0.509 0.291

41 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 −1, 801.73 328, 733 0.455 0.445 0.248
42 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −102.10 327, 927 0.372 0.345 0.237
43 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.70 327, 858 0.368 0.353 0.235
44 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.56 327, 792 0.366 0.352 0.233
45 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −3, 034.32 327, 729 0.365 0.356 0.228
46 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −13, 127.81 327, 659 0.368 0.364 0.227
47 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −17.54 327, 603 0.368 0.366 0.226
48 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −187.07 327, 537 0.374 0.367 0.226
49 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −300.54 327, 483 0.369 0.367 0.230
50 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.09 327, 432 0.368 0.391 0.221

51 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −60.84 327, 382 0.359 0.390 0.228
52 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −20.91 327, 331 0.352 0.390 0.225
53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00 327, 287 0.346 0.377 0.206
54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 −0.09 327, 149 0.339 0.357 0.185
55 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1.44 327, 105 0.315 0.321 0.173
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −0.50 327, 064 0.315 0.322 0.173
57 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −6.06 327, 025 0.322 0.317 0.175
58 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −6, 600.49 326, 986 0.317 0.310 0.172
59 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −407.57 326, 823 0.308 0.302 0.183
60 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 3, 378.82 326, 787 0.306 0.301 0.183

61 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 205.28 326, 733 0.304 0.299 0.183
62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −18.73 326, 700 0.306 0.299 0.182
63 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 175.39 326, 668 0.304 0.296 0.182
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.20 326, 638 0.304 0.298 0.181
65 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2.45 326, 610 0.301 0.296 0.183
66 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.11 326, 572 0.297 0.299 0.180
67 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −13.02 326, 545 0.292 0.286 0.169
68 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 93.69 326, 519 0.292 0.287 0.172
69 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 891.58 326, 478 0.294 0.282 0.173
70 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −6.21 326, 453 0.291 0.281 0.175

71 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −112.56 326, 428 0.289 0.281 0.176
72 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −5.27 326, 398 0.284 0.282 0.173
73 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1, 129.77 326, 374 0.276 0.264 0.162
74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 −0.29 326, 352 0.272 0.266 0.158
75 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −56.54 326, 331 0.269 0.266 0.157

Table A2: OLS proxy function of BEL derived under 150-443 in the adaptive algorithm with the final coeffi-
cients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

76 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −3.02 326, 313 0.271 0.266 0.155
77 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −10.59 326, 295 0.264 0.270 0.151
78 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −6.99 326, 278 0.264 0.275 0.153
79 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −2.25 326, 261 0.252 0.285 0.154
80 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 −14.77 326, 245 0.263 0.309 0.157

81 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.95 326, 229 0.267 0.306 0.155
82 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2, 248.54 326, 214 0.266 0.307 0.156
83 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 −111.77 326, 201 0.263 0.302 0.158
84 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.11 326, 187 0.262 0.302 0.157
85 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −0.18 326, 174 0.263 0.305 0.156
86 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 45.58 326, 161 0.265 0.303 0.157
87 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 −83, 291.89 326, 149 0.267 0.308 0.156
88 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 −56.20 326, 137 0.267 0.308 0.156
89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −5.32 326, 126 0.267 0.310 0.156
90 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 −10.87 326, 116 0.267 0.313 0.158

91 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 −32.75 326, 106 0.265 0.317 0.158
92 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 −0.09 326, 097 0.265 0.308 0.151
93 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 10.87 326, 089 0.265 0.308 0.151
94 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −48.93 326, 081 0.264 0.306 0.148
95 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 69.57 326, 073 0.256 0.288 0.141
96 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 −542, 688.19 326, 066 0.256 0.289 0.141
97 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 10.44 326, 058 0.248 0.275 0.136
98 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 −1.08 326, 051 0.248 0.276 0.136
99 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 419.05 326, 045 0.249 0.275 0.136

100 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 12.80 326, 038 0.250 0.276 0.136

101 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −3.94 326, 033 0.250 0.276 0.136
102 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −10.12 326, 027 0.248 0.281 0.138
103 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −0.36 326, 017 0.244 0.283 0.135
104 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1.74 326, 012 0.244 0.282 0.136
105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.00 326, 006 0.242 0.268 0.132
106 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −7.09 326, 001 0.238 0.265 0.131
107 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −109.46 325, 982 0.238 0.263 0.129
108 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −0.10 325, 977 0.237 0.263 0.128
109 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 5.76 325, 972 0.235 0.263 0.129
110 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 54.51 325, 968 0.237 0.264 0.129

111 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −1, 386.73 325, 963 0.235 0.264 0.129
112 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0.00 325, 959 0.237 0.265 0.130
113 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0.11 325, 955 0.235 0.265 0.130
114 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0.05 325, 951 0.234 0.266 0.130
115 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 4.30 325, 948 0.236 0.265 0.127
116 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −19.81 325, 944 0.237 0.262 0.126
117 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −0.87 325, 938 0.241 0.267 0.124
118 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.36 325, 935 0.241 0.267 0.124
119 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −80.29 325, 931 0.241 0.267 0.125
120 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 −6.95 325, 928 0.241 0.267 0.124

121 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.00 325, 925 0.243 0.259 0.121
122 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 436.56 325, 923 0.241 0.259 0.121
123 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 −0.03 325, 920 0.243 0.263 0.121
124 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2.99 325, 918 0.242 0.263 0.120
125 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.59 325, 916 0.241 0.261 0.119
126 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.02 325, 908 0.247 0.265 0.124
127 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 −4.66 325, 902 0.249 0.279 0.123
128 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 −8, 179.68 325, 900 0.249 0.280 0.124
129 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 691.40 325, 898 0.249 0.280 0.123
130 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.04 325, 896 0.250 0.281 0.122

131 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 7.04 325, 894 0.246 0.264 0.120
132 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 −27.72 325, 892 0.247 0.264 0.119
133 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1.26 325, 891 0.247 0.264 0.119
134 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −2.67 325, 889 0.249 0.265 0.118
135 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1.53 325, 887 0.250 0.266 0.119
136 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.07 325, 885 0.250 0.265 0.120
137 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 40.44 325, 884 0.251 0.265 0.119
138 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 434.50 325, 878 0.249 0.264 0.119
139 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 −5.99 325, 877 0.248 0.264 0.119
140 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 14.64 325, 873 0.246 0.263 0.120

141 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 −119.42 325, 871 0.247 0.270 0.121
142 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0.00 325, 870 0.248 0.271 0.121
143 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.07 325, 868 0.248 0.271 0.121
144 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1.06 325, 861 0.246 0.271 0.121
145 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −0.74 325, 859 0.247 0.271 0.121
146 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 −5.61 325, 858 0.246 0.271 0.121
147 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.08 325, 857 0.247 0.270 0.121
148 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 −37.16 325, 855 0.247 0.271 0.122
149 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0.41 325, 851 0.247 0.271 0.122
150 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 −7, 290.99 325, 850 0.247 0.271 0.122

Table A2: Cont.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 745.35 391, 375 60.620 97.518 257.762

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5, 766.61 382, 610 50.402 99.306 256.789
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272.75 367, 667 35.285 38.124 99.902
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5.46 359, 997 30.739 18.210 72.719
4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 128.41 356, 705 30.119 25.088 29.357
5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1, 750.72 355, 354 30.867 28.173 21.870
6 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −19, 127.27 351, 002 22.942 14.948 44.668
7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −33.25 349, 147 19.030 12.142 42.535
8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 307.32 347, 777 18.221 10.928 35.420
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −868.05 346, 423 16.662 11.527 35.941

10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −87.54 345, 025 15.987 10.264 31.461

11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −30.51 343, 570 14.858 11.187 34.502
12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1.66 339, 282 13.092 12.669 23.174
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −33.33 337, 648 10.427 20.976 30.402
14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −70.63 336, 840 11.087 21.598 29.972
15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −41.37 336, 120 11.436 21.764 30.408
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −2, 666.44 335, 495 11.088 21.543 29.890
17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −96.48 335, 022 10.545 22.479 32.334
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 6.30 334, 563 10.804 23.095 31.519
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 47.02 334, 058 10.232 19.913 28.128
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −48.77 333, 610 10.292 19.163 26.995

21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3, 412.54 333, 281 10.083 17.438 24.190
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −0.02 332, 970 10.246 15.328 21.326
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.12 332, 714 10.020 14.436 22.671
24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −120.68 332, 457 9.834 14.283 21.608
25 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1, 287.63 332, 108 9.725 13.969 21.273
26 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 44.71 331, 832 9.755 13.661 20.501
27 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 24, 899.66 331, 569 9.275 12.462 19.873
28 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 87.04 331, 004 9.292 10.757 17.022
29 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −43.38 330, 742 9.171 11.183 16.023
30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.55 330, 543 9.444 13.409 15.766

31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −77.35 330, 345 9.324 14.207 16.192
32 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −25.20 330, 161 9.246 14.203 15.692
33 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −14.37 330, 007 8.672 15.764 16.964
34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.39 329, 859 8.682 16.031 17.223
35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −27.80 329, 728 8.665 16.110 17.264
36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −8, 757.49 329, 619 8.871 16.530 17.005
37 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 2.17 329, 513 8.937 16.276 16.790
38 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 369.16 329, 408 8.842 16.169 16.738
39 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 17.97 329, 109 8.637 16.387 17.527
40 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −222.55 329, 008 8.656 16.359 17.271

41 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1, 791.70 328, 910 8.297 14.282 14.748
42 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 101.23 328, 111 6.783 11.112 14.144
43 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 −0.70 328, 041 6.713 11.355 14.013
44 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.57 327, 972 6.683 11.325 13.867
45 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3, 083.05 327, 905 6.654 11.456 13.595
46 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 12, 863.79 327, 837 6.700 11.721 13.500
47 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 17.78 327, 780 6.710 11.777 13.450
48 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 190.46 327, 711 6.824 11.818 13.468
49 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 300.76 327, 657 6.724 11.793 13.716
50 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.09 327, 607 6.718 12.565 13.182

51 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 60.83 327, 557 6.543 12.533 13.558
52 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 20.91 327, 507 6.415 12.530 13.394
53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00 327, 463 6.314 12.118 12.252
54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0.08 327, 327 6.176 11.486 11.049
55 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1.46 327, 284 5.751 10.339 10.295
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0.50 327, 242 5.746 10.367 10.287
57 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6.08 327, 203 5.871 10.211 10.450
58 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 6, 593.98 327, 165 5.780 9.973 10.274
59 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 406.73 327, 003 5.618 9.722 10.897
60 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 −3, 364.02 326, 968 5.581 9.671 10.904

61 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −204.12 326, 914 5.542 9.626 10.921
62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 18.90 326, 881 5.588 9.611 10.837
63 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 −175.17 326, 849 5.546 9.514 10.817
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.21 326, 818 5.540 9.597 10.799
65 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 −2.44 326, 791 5.494 9.532 10.896
66 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.11 326, 753 5.413 9.616 10.708
67 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 12.99 326, 726 5.317 9.215 10.046
68 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −93.57 326, 700 5.329 9.255 10.231
69 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 −890.62 326, 660 5.355 9.090 10.326
70 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 113.04 326, 635 5.313 9.095 10.357

71 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5.23 326, 605 5.231 9.101 10.164
72 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 6.20 326, 581 5.186 9.068 10.265
73 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −1, 133.83 326, 556 5.034 8.488 9.647
74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.29 326, 534 4.950 8.580 9.374
75 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 56.56 326, 513 4.908 8.559 9.323

Table A3: OLS proxy function of AC derived under 150-443 in the adaptive algorithm with the final coefficients.
Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

76 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3.02 326, 495 4.936 8.573 9.223
77 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 10.61 326, 477 4.824 8.705 8.996
78 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 6.97 326, 461 4.821 8.849 9.071
79 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2.25 326, 444 4.602 9.170 9.162
80 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.94 326, 429 4.688 9.069 8.997

81 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 −2, 257.40 326, 414 4.676 9.099 9.070
82 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 14.06 326, 399 4.853 9.831 9.278
83 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.11 326, 385 4.844 9.851 9.203
84 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.18 326, 372 4.861 9.935 9.174
85 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 111.58 326, 358 4.796 9.769 9.270
86 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 −45.11 326, 346 4.826 9.724 9.330
87 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 82, 935.66 326, 334 4.871 9.865 9.284
88 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 56.00 326, 322 4.867 9.862 9.267
89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5.35 326, 311 4.857 9.938 9.258
90 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 10.88 326, 301 4.870 10.043 9.414

91 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 32.81 326, 291 4.833 10.156 9.394
92 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 48.96 326, 283 4.812 10.085 9.185
93 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 −10.90 326, 274 4.801 10.083 9.210
94 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0.09 326, 266 4.803 9.818 8.787
95 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −69.45 326, 258 4.659 9.250 8.413
96 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 543, 840.26 326, 251 4.663 9.269 8.393
97 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −10.31 326, 244 4.510 8.841 8.101
98 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1.07 326, 237 4.523 8.847 8.091
99 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 −417.88 326, 231 4.531 8.840 8.101

100 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 −12.92 326, 224 4.546 8.847 8.081

101 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3.94 326, 219 4.558 8.866 8.072
102 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 10.10 326, 213 4.513 9.012 8.203
103 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.36 326, 204 4.453 9.084 8.035
104 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 −1.74 326, 198 4.445 9.063 8.070
105 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7.09 326, 193 4.383 8.967 8.008
106 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 109.50 326, 174 4.371 8.899 7.889
107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.00 326, 169 4.332 8.454 7.669
108 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −5.85 326, 164 4.290 8.456 7.689
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0.10 326, 159 4.282 8.457 7.657
110 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −54.88 326, 154 4.313 8.463 7.689

111 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1, 380.74 326, 150 4.291 8.489 7.700
112 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0.00 326, 146 4.315 8.498 7.751
113 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.11 326, 142 4.287 8.501 7.736
114 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −4.30 326, 138 4.320 8.461 7.558
115 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.05 326, 135 4.299 8.514 7.566
116 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 20.09 326, 131 4.320 8.417 7.498
117 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0.87 326, 125 4.393 8.561 7.371
118 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0.36 326, 122 4.389 8.564 7.409
119 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 79.51 326, 118 4.394 8.560 7.411
120 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.00 326, 115 4.430 8.304 7.187

121 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 6.91 326, 113 4.420 8.305 7.176
122 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 −435.81 326, 110 4.390 8.301 7.212
123 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0.03 326, 107 4.419 8.450 7.206
124 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −2.99 326, 105 4.407 8.434 7.163
125 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0.59 326, 103 4.394 8.366 7.095
126 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.02 326, 096 4.502 8.499 7.382
127 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 4.66 326, 089 4.543 8.962 7.340
128 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 −692.59 326, 088 4.537 8.961 7.248
129 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 8, 097.70 326, 086 4.539 8.995 7.316
130 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −0.04 326, 084 4.555 9.024 7.285

131 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2.73 326, 082 4.590 9.065 7.246
132 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −1.53 326, 080 4.612 9.097 7.280
133 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1.28 326, 078 4.616 9.086 7.251
134 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.07 326, 077 4.607 9.055 7.287
135 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −6.96 326, 075 4.533 8.527 7.230
136 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 27.74 326, 073 4.556 8.520 7.115
137 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 122.08 326, 071 4.571 8.746 7.171
138 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 6.00 326, 070 4.556 8.745 7.190
139 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 −14.50 326, 066 4.533 8.699 7.199
140 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.07 326, 064 4.532 8.722 7.227

141 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 −1.05 326, 057 4.507 8.733 7.250
142 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0.74 326, 056 4.515 8.719 7.238
143 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 5.71 326, 054 4.503 8.706 7.263
144 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −39.87 326, 053 4.499 8.715 7.244
145 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 −431.71 326, 047 4.470 8.669 7.215
146 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0.00 326, 046 4.488 8.698 7.207
147 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0.08 326, 045 4.494 8.694 7.223
148 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 37.33 326, 043 4.496 8.703 7.236
149 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 −0.42 326, 039 4.508 8.706 7.253
150 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 7, 224.25 326, 038 4.512 8.712 7.265

Table A3: Cont.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14, 689.75 437, 251 4.557 3.231 4.027

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7, 990.98 386, 722 2.474 0.845 0.913
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −274.24 375, 144 2.065 2.139 1.831
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 145.73 366, 567 1.656 0.444 0.496
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −5.11 358, 894 1.647 1.006 0.556
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 416.79 355, 732 1.635 0.853 0.469
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2, 332.91 354, 318 1.679 0.956 0.374
7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 24, 914.36 349, 759 1.234 0.491 0.628
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49.42 347, 796 0.999 0.340 0.594
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 859.49 346, 444 0.912 0.357 0.602

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 29.50 345, 045 0.839 0.389 0.650

11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.71 341, 083 0.759 0.398 0.465
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 91.65 339, 360 0.718 0.394 0.390
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 36.34 337, 731 0.574 0.653 0.512
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 51.78 336, 843 0.589 0.658 0.518
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 68.02 335, 980 0.628 0.678 0.512
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2, 661.47 335, 351 0.609 0.671 0.503
17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 109.14 334, 876 0.579 0.701 0.545
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −12.63 334, 413 0.593 0.720 0.531
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 −114.48 333, 904 0.562 0.621 0.474
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 35.40 333, 447 0.565 0.597 0.454

21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −4, 570.15 333, 116 0.553 0.543 0.407
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.02 332, 806 0.562 0.478 0.358
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.26 332, 547 0.550 0.450 0.381
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 47.17 332, 294 0.545 0.468 0.378
25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 123.47 332, 042 0.530 0.464 0.362
26 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −1, 240.44 331, 687 0.522 0.453 0.355
27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −43.82 331, 405 0.525 0.444 0.343
28 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −32, 661.61 331, 136 0.499 0.405 0.327
29 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −140.90 330, 562 0.504 0.348 0.268
30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0.56 330, 361 0.518 0.418 0.264

31 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 87.33 330, 163 0.512 0.443 0.272
32 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 25.31 329, 988 0.508 0.443 0.264
33 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 14.22 329, 834 0.477 0.491 0.286
34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.44 329, 688 0.477 0.500 0.290
35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 26.88 329, 550 0.476 0.502 0.291
36 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −391.81 329, 442 0.472 0.499 0.288
37 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −18.58 329, 147 0.462 0.505 0.301
38 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 11, 959.32 329, 043 0.472 0.518 0.300
39 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −2.15 328, 935 0.474 0.510 0.295
40 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 228.32 328, 832 0.475 0.509 0.291

41 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 −1, 938.37 328, 733 0.455 0.445 0.248
42 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −112.83 327, 927 0.372 0.345 0.237
43 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.71 327, 858 0.368 0.353 0.235
44 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0.72 327, 792 0.366 0.352 0.233
45 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −4, 230.29 327, 729 0.365 0.356 0.228
46 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −10, 720.30 327, 659 0.368 0.364 0.227
47 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −18.39 327, 603 0.368 0.366 0.226
48 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −212.78 327, 537 0.374 0.367 0.226
49 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −177.64 327, 483 0.369 0.367 0.230
50 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.09 327, 432 0.368 0.391 0.221

51 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −57.40 327, 382 0.359 0.390 0.228
52 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −23.55 327, 331 0.352 0.390 0.225
53 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.00 327, 287 0.346 0.377 0.206
54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 −0.08 327, 149 0.339 0.357 0.185
55 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1.15 327, 105 0.315 0.321 0.173
56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −0.65 327, 064 0.315 0.322 0.173
57 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −4.41 327, 025 0.322 0.317 0.175
58 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −6, 095.97 326, 986 0.317 0.310 0.172
59 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −332.88 326, 823 0.308 0.302 0.183
60 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 3, 624.77 326, 787 0.306 0.301 0.183

61 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 191.46 326, 733 0.304 0.299 0.183
62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −17.49 326, 700 0.306 0.299 0.182
63 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 183.68 326, 668 0.304 0.296 0.182
64 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.20 326, 638 0.304 0.298 0.181
65 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2.55 326, 610 0.301 0.296 0.183
66 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.13 326, 572 0.297 0.299 0.180
67 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 −29.57 326, 545 0.292 0.286 0.169
68 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 95.55 326, 519 0.292 0.287 0.172
69 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 922.48 326, 478 0.294 0.282 0.173
70 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −6.22 326, 453 0.291 0.281 0.175

71 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 −134.95 326, 428 0.289 0.281 0.176
72 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4.47 326, 398 0.284 0.282 0.173
73 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 −26, 186.72 326, 374 0.276 0.264 0.162
74 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 −0.29 326, 352 0.272 0.266 0.158
75 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −58.01 326, 331 0.269 0.266 0.157

Table A4: OLS proxy function of BEL derived under 300-886 in the adaptive algorithm with the final coeffi-
cients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

76 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −3.11 326, 313 0.271 0.266 0.155
77 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −2.10 326, 295 0.264 0.270 0.151
78 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −8.73 326, 278 0.264 0.275 0.153
79 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −1.93 326, 261 0.252 0.285 0.154
80 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 −14.90 326, 245 0.263 0.309 0.157

81 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.22 326, 229 0.267 0.306 0.155
82 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3, 341.29 326, 214 0.266 0.307 0.156
83 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 −43.84 326, 201 0.263 0.302 0.158
84 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −0.12 326, 187 0.262 0.302 0.157
85 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −0.18 326, 174 0.263 0.305 0.156
86 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 67.19 326, 161 0.265 0.303 0.157
87 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 −432, 954.98 326, 149 0.267 0.308 0.156
88 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 −34.58 326, 137 0.267 0.308 0.156
89 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −5.10 326, 126 0.267 0.310 0.156
90 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 −10.78 326, 116 0.267 0.313 0.158

91 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 −66.99 326, 106 0.265 0.317 0.158
92 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 −0.09 326, 097 0.265 0.308 0.151
93 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0.35 326, 089 0.265 0.308 0.151
94 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −93.83 326, 081 0.264 0.306 0.148
95 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 70.45 326, 073 0.256 0.288 0.141
96 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 −1, 073, 454.04 326, 066 0.256 0.289 0.141
97 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −21.59 326, 058 0.248 0.275 0.136
98 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 −1.10 326, 051 0.248 0.276 0.136
99 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 398.94 326, 045 0.249 0.275 0.136

100 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 22.03 326, 038 0.250 0.276 0.136

101 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −4.12 326, 033 0.250 0.276 0.136
102 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1.30 326, 027 0.248 0.281 0.138
103 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.20 326, 017 0.244 0.283 0.135
104 1 0 0 0 0 0 0 3 0 0 0 0 0 0 1 351.11 326, 009 0.245 0.289 0.138
105 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1.09 326, 003 0.244 0.288 0.139
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0.00 325, 997 0.242 0.274 0.136
107 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −7.78 325, 992 0.239 0.271 0.134
108 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −126.28 325, 973 0.238 0.269 0.132
109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −0.10 325, 968 0.238 0.269 0.131
110 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 57.61 325, 963 0.239 0.269 0.132

111 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 9.91 325, 959 0.237 0.269 0.132
112 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 −1, 698.92 325, 954 0.236 0.270 0.132
113 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 −0.01 325, 950 0.237 0.270 0.133
114 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0.10 325, 946 0.236 0.271 0.133
115 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0.05 325, 942 0.234 0.272 0.132
116 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 5.00 325, 939 0.236 0.271 0.129
117 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 −17.60 325, 935 0.238 0.268 0.127
118 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −0.79 325, 929 0.242 0.273 0.128
119 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.55 325, 925 0.241 0.273 0.128
120 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −119.81 325, 922 0.242 0.273 0.129

121 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 −7.16 325, 919 0.241 0.273 0.128
122 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.00 325, 916 0.243 0.265 0.124
123 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 497.02 325, 914 0.241 0.265 0.125
124 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 −0.03 325, 911 0.243 0.269 0.125
125 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −0.58 325, 909 0.242 0.267 0.123
126 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.02 325, 901 0.248 0.271 0.129
127 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 −4.48 325, 895 0.251 0.286 0.129
128 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2.93 325, 893 0.250 0.285 0.128
129 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 −5, 069.15 325, 891 0.250 0.286 0.128
130 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.03 325, 889 0.251 0.287 0.127

131 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 2, 631.07 325, 887 0.251 0.287 0.125
132 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 30.03 325, 885 0.246 0.270 0.124
133 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 −27.79 325, 883 0.248 0.270 0.123
134 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 −2.68 325, 881 0.249 0.271 0.122
135 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2.18 325, 879 0.251 0.272 0.123
136 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.07 325, 878 0.250 0.271 0.124
137 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 52.06 325, 876 0.251 0.272 0.123
138 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 507.79 325, 870 0.250 0.270 0.123
139 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0.09 325, 869 0.248 0.270 0.123
140 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 14.53 325, 865 0.246 0.269 0.123

141 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0.00 325, 864 0.247 0.270 0.122
142 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1.48 325, 862 0.247 0.269 0.121
143 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 −98.06 325, 861 0.248 0.276 0.122
144 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 −0.68 325, 859 0.248 0.276 0.122
145 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0.08 325, 858 0.248 0.276 0.122
146 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1.10 325, 850 0.247 0.277 0.122
147 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 −5.64 325, 849 0.247 0.276 0.123
148 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 −0.08 325, 847 0.247 0.276 0.123
149 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 20.58 325, 846 0.246 0.277 0.123
150 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 −60.89 325, 841 0.242 0.274 0.123

Table A4: Cont.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k β̂OLS,k AIC v.mae ns.mae cr.mae

151 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 −26.95 325, 840 0.242 0.275 0.123
152 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0.42 325, 835 0.243 0.275 0.123
153 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 −10, 592.62 325, 834 0.243 0.275 0.123
154 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.93 325, 833 0.243 0.275 0.125
155 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2.96 325, 832 0.244 0.275 0.124
156 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −3.87 325, 830 0.244 0.275 0.125
157 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 −68.29 325, 829 0.243 0.277 0.125
158 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 −9, 773.54 325, 828 0.243 0.278 0.125
159 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 120.51 325, 822 0.242 0.278 0.125
160 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.03 325, 821 0.243 0.278 0.127

161 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 −19.68 325, 820 0.243 0.278 0.127
162 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −24.62 325, 819 0.240 0.261 0.127
163 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0.00 325, 818 0.239 0.261 0.128
164 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 −5.28 325, 817 0.239 0.262 0.128
165 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2.36 325, 816 0.240 0.262 0.129
166 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 −0.02 325, 814 0.238 0.264 0.129
167 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 −5.06 325, 813 0.238 0.264 0.129
168 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 20.18 325, 812 0.238 0.263 0.129
169 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 −461.05 325, 812 0.239 0.264 0.130
170 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 6.14 325, 811 0.238 0.265 0.130

171 0 0 0 1 0 0 0 2 0 0 0 0 0 0 1 2, 708.64 325, 810 0.237 0.265 0.130
172 0 0 0 1 0 0 0 3 0 0 0 0 0 0 1 9, 307.25 325, 805 0.239 0.265 0.129
173 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 −0.17 325, 805 0.238 0.265 0.129
174 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 5.94 325, 804 0.238 0.264 0.128
175 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 −0.07 325, 804 0.238 0.264 0.127
176 0 0 1 0 0 0 1 2 0 0 0 0 0 0 0 −1, 367.33 325, 803 0.238 0.264 0.128
177 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1, 133.78 325, 803 0.237 0.264 0.128
178 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −1.86 325, 802 0.237 0.264 0.128
179 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 325, 802 0.241 0.274 0.131
180 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.01 325, 766 0.241 0.300 0.149

181 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −0.68 325, 744 0.248 0.335 0.172
182 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −70.02 325, 727 0.245 0.326 0.157
183 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −1, 883.77 325, 700 0.238 0.313 0.144
184 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.21 325, 672 0.231 0.327 0.173
185 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 −157, 391.76 325, 655 0.225 0.309 0.175
186 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 2, 127.74 325, 644 0.221 0.303 0.176
187 2 0 0 0 0 0 0 2 0 0 0 0 0 0 1 21.17 325, 583 0.206 0.296 0.190
188 3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.62 325, 524 0.198 0.268 0.164
189 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 5, 216, 336.05 325, 515 0.199 0.270 0.166
190 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −0.54 325, 506 0.201 0.275 0.173

191 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.01 325, 500 0.195 0.281 0.184
192 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 136.68 325, 499 0.193 0.279 0.182
193 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 −526.83 325, 498 0.194 0.280 0.182
194 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −32.63 325, 494 0.192 0.270 0.178
195 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 −2, 791.14 325, 492 0.190 0.261 0.176
196 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 11.06 325, 491 0.191 0.265 0.178
197 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0.09 325, 491 0.190 0.265 0.179
198 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 13.23 325, 490 0.186 0.258 0.178
199 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 143.48 325, 488 0.187 0.261 0.179
200 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0.46 325, 488 0.186 0.262 0.181

201 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.98 325, 487 0.185 0.262 0.181
202 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 8.97 325, 487 0.185 0.263 0.180
203 0 0 0 1 0 0 0 4 0 0 0 0 0 0 1 −33, 222.10 325, 487 0.184 0.263 0.179
204 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.01 325, 487 0.184 0.264 0.180
205 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.32 325, 487 0.184 0.263 0.178
206 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20 325, 486 0.183 0.264 0.177
207 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −2.44 325, 486 0.185 0.265 0.179
208 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −1.76 325, 485 0.184 0.261 0.173
209 2 0 0 0 0 1 1 1 0 0 0 0 0 0 0 −12.48 325, 482 0.183 0.260 0.173
210 2 0 0 0 0 2 0 1 0 0 0 0 0 0 0 3.93 325, 482 0.184 0.258 0.170

211 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 −495.92 325, 481 0.184 0.257 0.168
212 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 −434.12 325, 481 0.185 0.260 0.169
213 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 −2, 854.58 325, 479 0.185 0.260 0.167
214 2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 6.58 325, 479 0.184 0.261 0.167
215 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 7.08 325, 479 0.183 0.257 0.167
216 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 −20.06 325, 479 0.184 0.257 0.167
217 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 11.90 325, 468 0.186 0.257 0.166
218 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0.20 325, 468 0.186 0.257 0.166
219 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 18.33 325, 468 0.186 0.257 0.165
220 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 9.56 325, 468 0.185 0.258 0.165

221 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 37.24 325, 463 0.194 0.265 0.168
222 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 17.46 325, 460 0.196 0.265 0.168
223 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 −5.47 325, 460 0.194 0.266 0.166
224 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 −11.21 325, 459 0.194 0.268 0.168

Table A4: Cont.
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k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 0.237 0.226 −18 8.494 48 0.264 0.255 −34 4.144 18 0.129 0.126 −2 7.634 50
120 0.241 0.230 −16 8.896 50 0.267 0.258 −34 4.153 18 0.124 0.122 −2 7.679 51
130 0.250 0.239 −18 9.839 57 0.281 0.272 −37 4.810 24 0.122 0.120 −1 8.900 59
140 0.246 0.235 −15 9.855 57 0.263 0.254 −33 4.809 24 0.120 0.117 1 8.822 58
150 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

Table A5: Out-of-sample validation figures of the OLS proxy function of BEL under 150-443 after each tenth
iteration. MAEs in %.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 60.620 3.178 −296 100.000 −207 97.518 2.936 −453 100.000 −369 257.762 4.251 −653 100.000 −568
10 15.987 0.838 −1 29.161 −110 10.264 0.309 −6 32.492 −119 31.461 0.519 −67 31.704 −180
20 10.292 0.540 10 21.029 −82 19.163 0.577 75 12.240 −21 26.995 0.445 39 13.324 −57
30 9.444 0.495 −1 21.971 −100 13.409 0.404 47 15.583 −56 15.766 0.260 −1 18.759 −105
40 8.656 0.454 10 21.197 −98 16.359 0.492 67 12.740 −46 17.271 0.285 26 15.434 −87
50 6.718 0.352 15 16.655 −78 12.565 0.378 50 12.938 −47 13.182 0.217 9 15.666 −88
60 5.581 0.293 17 13.506 −62 9.671 0.291 36 12.985 −48 10.904 0.180 −5 15.640 −88
70 5.313 0.279 19 13.026 −59 9.095 0.274 34 13.289 −49 10.357 0.171 −8 15.975 −90
80 4.688 0.246 21 11.326 −51 9.069 0.273 36 11.131 −41 8.997 0.148 0 13.590 −77
90 4.870 0.255 24 11.525 −53 10.043 0.302 42 10.995 −41 9.414 0.155 7 13.285 −75

100 4.546 0.238 18 11.471 −53 8.847 0.266 35 11.041 −41 8.081 0.133 0 13.308 −76
110 4.313 0.226 18 10.650 −48 8.463 0.255 34 9.999 −37 7.689 0.127 2 12.181 −69
120 4.430 0.232 16 11.350 −51 8.304 0.250 33 10.596 −39 7.187 0.119 −1 12.763 −73
130 4.555 0.239 18 12.345 −57 9.024 0.272 37 11.491 −42 7.285 0.120 1 13.663 −78
140 4.532 0.238 15 12.470 −57 8.722 0.263 35 11.282 −42 7.227 0.119 0 13.448 −76
150 4.512 0.237 14 12.459 −57 8.712 0.262 35 11.136 −41 7.265 0.120 1 13.242 −75

Table A6: Out-of-sample validation figures of the OLS proxy function of AC under 150-443 after each tenth
iteration. MAEs in %.

k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 0.239 0.229 −18 9.132 52 0.269 0.260 −35 4.577 22 0.132 0.129 −1 8.358 55
120 0.242 0.231 −16 9.519 54 0.273 0.263 −35 4.569 21 0.129 0.126 −1 8.380 55
130 0.251 0.240 −18 10.506 61 0.287 0.277 −37 5.421 27 0.127 0.125 0 9.724 64
140 0.246 0.235 −15 10.530 61 0.269 0.260 −34 5.329 27 0.123 0.120 2 9.526 63
150 0.242 0.232 −14 10.556 61 0.274 0.265 −35 5.119 26 0.123 0.120 0 9.261 61
160 0.243 0.232 −15 10.483 60 0.278 0.268 −36 5.018 25 0.127 0.124 0 9.144 60
170 0.238 0.228 −13 10.140 58 0.265 0.256 −33 4.968 24 0.130 0.127 2 8.884 59
180 0.241 0.230 −12 10.128 57 0.300 0.290 −37 4.552 18 0.149 0.146 2 8.716 58
190 0.201 0.192 −13 6.458 32 0.275 0.266 −33 4.124 −2 0.173 0.169 −4 4.721 27
200 0.186 0.178 −9 6.111 29 0.262 0.254 −29 4.460 −4 0.181 0.177 3 4.920 27
210 0.184 0.176 −9 6.210 30 0.258 0.249 −28 4.337 −3 0.170 0.167 3 4.846 28
220 0.185 0.177 −8 6.433 32 0.258 0.250 −28 4.286 −3 0.165 0.161 3 4.850 28
224 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

Table A7: Out-of-sample validation figures of the OLS proxy function of BEL under 300-886 after each tenth
and the final iteration. MAEs in %.
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k v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

150-443 figures based on validation values minus 1.96 times standard errors

150 0.286 0.273 −30 9.878 57 0.330 0.319 −46 3.915 16 0.151 0.148 −13 7.473 49

150-443 figures based on validation values

150 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

150-443 figures based on validation values plus 1.96 times standard errors

150 0.231 0.221 1 9.977 57 0.219 0.212 −24 5.473 28 0.130 0.127 11 9.591 64

300-886 figures based on validation values minus 1.96 times standard errors

224 0.236 0.225 −24 6.757 34 0.325 0.314 −41 4.610 −8 0.191 0.187 −11 4.307 22

300-886 figures based on validation values

224 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

300-886 figures based on validation values plus 1.96 times standard errors

224 0.184 0.177 7 6.625 35 0.218 0.211 −19 3.982 4 0.173 0.169 13 5.813 37

Table A8: Out-of-sample validation figures of the derived OLS proxy functions of BEL under 150-443 and
300-886 after the final iteration based on three different sets of validation value estimates. Thereby
emerges the first set of validation value estimates from pointwise subtraction of 1.96 times the
standard errors from the original set of validation values. The second set is the original set. The
third set is the addition counterpart of the first set.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Normal with identity link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 045 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 333, 447 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 330, 361 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 328, 832 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 327, 432 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 326, 787 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 326, 453 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 326, 245 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 326, 116 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 326, 038 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 325, 968 0.237 0.226 −18 8.494 48 0.264 0.255 −34 4.144 18 0.129 0.126 −2 7.634 50
120 325, 928 0.241 0.230 −16 8.896 50 0.267 0.258 −34 4.153 18 0.124 0.122 −2 7.679 51
130 325, 896 0.250 0.239 −18 9.839 57 0.281 0.272 −37 4.810 24 0.122 0.120 −1 8.900 59
140 325, 873 0.246 0.235 −15 9.855 57 0.263 0.254 −33 4.809 24 0.120 0.117 1 8.822 58
150 325, 850 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

Normal with inverse link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 426 1.036 0.990 1 33.705 192 0.650 0.628 −63 21.481 114 0.391 0.382 44 33.482 221
20 334, 985 0.689 0.659 −6 21.313 118 0.515 0.498 −62 10.319 49 0.324 0.317 −4 16.493 107
30 331, 426 0.512 0.490 −16 18.836 109 0.393 0.380 −45 12.277 65 0.248 0.243 15 18.960 125
40 328, 875 0.433 0.414 −5 14.354 82 0.317 0.306 −26 9.312 47 0.294 0.288 26 15.188 99
50 327, 877 0.383 0.366 −8 12.959 76 0.285 0.276 −24 8.961 46 0.271 0.265 25 14.592 95
60 327, 274 0.337 0.323 −16 12.572 73 0.328 0.316 −37 7.636 38 0.219 0.215 10 13.087 85
70 326, 875 0.290 0.277 −14 11.248 64 0.271 0.261 −32 6.233 31 0.156 0.153 6 10.588 70
80 326, 603 0.259 0.248 −16 9.976 58 0.287 0.278 −38 5.042 22 0.158 0.155 −8 8.014 52
90 326, 390 0.254 0.243 −20 8.462 47 0.392 0.379 −51 4.451 1 0.220 0.215 −17 5.676 36

100 326, 225 0.270 0.258 −21 8.884 49 0.393 0.379 −51 4.454 5 0.219 0.215 −12 6.732 44
110 326, 152 0.272 0.260 −20 8.558 47 0.375 0.363 −48 4.441 4 0.208 0.204 −10 6.545 42
120 326, 094 0.267 0.255 −19 8.418 47 0.380 0.367 −49 4.414 3 0.209 0.205 −12 6.194 40
130 326, 058 0.266 0.254 −19 8.638 48 0.379 0.367 −49 4.329 4 0.203 0.199 −11 6.362 41
140 325, 982 0.258 0.247 −17 8.353 45 0.363 0.351 −46 4.380 2 0.197 0.193 −10 6.059 38
150 325, 952 0.258 0.247 −16 8.468 45 0.353 0.341 −44 4.282 3 0.192 0.188 −8 6.088 39

Normal with log link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 342, 325 0.879 0.840 26 25.171 132 0.422 0.408 −17 15.628 74 0.530 0.519 52 22.034 143
20 334, 417 0.661 0.632 −5 22.474 125 0.532 0.514 −64 10.764 51 0.330 0.323 −3 17.317 112
30 330, 901 0.560 0.536 −3 21.780 126 0.474 0.458 −55 11.199 59 0.266 0.261 3 17.802 117
40 328, 444 0.411 0.393 −10 13.639 78 0.315 0.304 −29 8.610 44 0.264 0.258 19 14.162 92
50 327, 574 0.341 0.326 −16 12.936 75 0.334 0.323 −35 8.294 42 0.262 0.257 12 13.642 89
60 327, 029 0.315 0.302 −17 11.991 69 0.312 0.301 −36 7.024 36 0.192 0.188 10 12.465 82
70 326, 637 0.279 0.267 −16 10.620 61 0.266 0.257 −31 6.142 31 0.162 0.158 9 10.797 71
80 326, 449 0.266 0.254 −21 10.069 59 0.304 0.294 −40 5.195 25 0.153 0.149 −4 9.234 61
90 326, 287 0.273 0.261 −22 9.742 57 0.300 0.290 −40 5.082 25 0.141 0.138 −5 8.990 59

100 326, 082 0.269 0.257 −23 8.052 45 0.370 0.358 −48 4.094 6 0.210 0.205 −13 6.314 41
110 326, 021 0.258 0.247 −19 8.043 44 0.343 0.331 −43 4.102 5 0.198 0.193 −7 6.381 41
120 325, 950 0.252 0.241 −17 7.891 42 0.329 0.318 −41 4.086 3 0.191 0.187 −7 5.883 37
130 325, 881 0.251 0.240 −18 8.049 45 0.359 0.347 −46 4.238 2 0.194 0.190 −10 5.924 38
140 325, 849 0.245 0.234 −17 7.978 44 0.340 0.328 −43 4.045 4 0.183 0.179 −7 6.131 40
150 325, 823 0.240 0.229 −15 7.980 44 0.316 0.305 −38 4.014 6 0.170 0.167 −2 6.434 42

Table A9: AIC scores and out-of-sample validation figures of the normal GLMs of BEL with identity, inverse
and log link functions under 150-443 after each tenth iteration. MAEs in %.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gamma with identity link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 605 0.872 0.834 1 23.485 114 0.315 0.304 6 19.861 105 0.530 0.519 68 25.266 167
20 333, 911 0.553 0.529 −12 16.265 79 0.599 0.579 −76 8.268 0 0.464 0.454 −43 9.895 34
30 330, 707 0.503 0.481 0 17.404 99 0.425 0.411 −49 7.754 35 0.267 0.262 −2 12.959 82
40 328, 589 0.376 0.359 −13 13.317 76 0.341 0.330 −39 7.187 35 0.238 0.233 6 12.341 80
50 327, 668 0.348 0.333 −15 13.173 77 0.356 0.344 −44 6.656 34 0.227 0.222 −4 11.348 74
60 327, 135 0.305 0.292 −16 11.190 65 0.304 0.294 −37 6.059 30 0.175 0.172 3 10.843 71
70 326, 686 0.273 0.261 −15 9.730 55 0.257 0.249 −30 5.364 26 0.165 0.161 9 9.928 65
80 326, 461 0.268 0.257 −21 9.471 54 0.287 0.277 −36 5.151 25 0.149 0.146 2 9.549 63
90 326, 328 0.259 0.248 −23 8.889 52 0.304 0.293 −40 4.373 20 0.148 0.145 −6 8.255 55

100 326, 246 0.238 0.227 −20 8.321 48 0.262 0.253 −34 4.279 19 0.137 0.134 −1 7.845 52
110 326, 184 0.233 0.223 −18 8.045 45 0.255 0.246 −33 3.907 16 0.130 0.127 −1 7.182 47
120 326, 135 0.228 0.218 −16 8.191 46 0.253 0.245 −33 3.696 15 0.129 0.126 −2 6.870 45
130 326, 093 0.244 0.233 −17 9.530 55 0.272 0.263 −35 4.628 22 0.124 0.122 0 8.596 57
140 326, 068 0.238 0.228 −17 9.416 54 0.271 0.261 −35 4.523 22 0.125 0.123 −1 8.371 55
150 326, 041 0.236 0.226 −14 9.329 53 0.260 0.251 −33 4.321 20 0.121 0.118 1 8.206 54

Gamma with inverse link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 969 1.037 0.991 0 33.818 193 0.661 0.639 −64 21.601 115 0.397 0.389 44 33.752 223
20 335, 495 0.679 0.649 −7 20.888 115 0.530 0.512 −65 9.637 43 0.335 0.328 −9 15.410 99
30 332, 646 0.627 0.600 −9 26.098 152 0.621 0.600 −82 12.361 64 0.346 0.339 −24 18.470 122
40 329, 192 0.409 0.391 −10 14.061 81 0.317 0.306 −27 9.719 50 0.289 0.283 23 15.405 101
50 328, 114 0.339 0.324 −12 12.599 73 0.313 0.302 −30 8.084 40 0.271 0.265 15 13.146 85
60 327, 513 0.328 0.313 −16 12.247 71 0.294 0.284 −29 8.341 43 0.240 0.235 18 13.902 91
70 327, 115 0.285 0.272 −12 11.127 64 0.251 0.243 −28 6.463 33 0.166 0.162 11 10.915 72
80 326, 795 0.252 0.241 −17 8.376 45 0.315 0.305 −39 4.069 9 0.196 0.192 −8 6.416 40
90 326, 615 0.250 0.239 −20 8.113 45 0.384 0.371 −51 4.414 0 0.218 0.213 −16 5.478 34

100 326, 445 0.263 0.252 −20 8.724 48 0.382 0.369 −49 4.410 5 0.211 0.206 −11 6.595 43
110 326, 370 0.266 0.255 −19 8.251 45 0.369 0.357 −47 4.494 2 0.205 0.201 −9 6.288 40
120 326, 310 0.258 0.247 −17 8.003 44 0.357 0.345 −45 4.435 2 0.196 0.192 −8 6.087 39
130 326, 277 0.259 0.248 −17 8.331 47 0.357 0.344 −45 4.356 4 0.187 0.183 −7 6.509 42
140 326, 246 0.262 0.250 −17 8.583 48 0.357 0.345 −45 4.304 5 0.183 0.179 −7 6.620 43
150 326, 222 0.254 0.243 −15 8.410 46 0.327 0.316 −40 4.111 7 0.171 0.167 −3 6.722 44

Gamma with log link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
1 388, 234 2.365 2.261 −4 67.494 277 0.773 0.747 22 54.214 287 1.193 1.168 170 65.932 435

10 342, 942 0.870 0.832 21 24.998 131 0.440 0.425 −24 15.145 71 0.505 0.494 43 21.396 138
20 334, 881 0.649 0.621 −5 19.899 110 0.519 0.501 −65 8.283 36 0.312 0.306 −11 14.105 90
30 331, 227 0.544 0.520 −4 21.752 126 0.479 0.463 −57 11.010 58 0.262 0.257 0 17.458 115
40 328, 727 0.374 0.357 −10 14.009 81 0.329 0.318 −33 8.553 43 0.268 0.263 15 13.990 91
50 327, 806 0.328 0.313 −16 12.750 74 0.327 0.316 −33 8.325 42 0.272 0.266 14 13.779 90
60 327, 270 0.302 0.289 −15 11.825 68 0.297 0.287 −33 7.147 37 0.197 0.193 14 12.637 83
70 326, 866 0.264 0.253 −15 10.159 58 0.249 0.241 −28 6.071 31 0.165 0.162 12 10.693 70
80 326, 669 0.255 0.244 −19 9.819 57 0.288 0.279 −37 5.085 24 0.146 0.143 −2 9.090 60
90 326, 433 0.266 0.254 −23 8.891 51 0.327 0.316 −45 4.079 15 0.171 0.167 −12 7.353 48

100 326, 302 0.265 0.253 −23 7.839 44 0.361 0.349 −47 4.030 5 0.205 0.201 −12 6.246 40
110 326, 224 0.256 0.244 −18 8.139 45 0.335 0.324 −41 4.211 8 0.191 0.187 −3 7.043 46
120 326, 147 0.250 0.239 −18 7.817 43 0.340 0.328 −43 4.122 4 0.188 0.184 −6 6.247 41
130 326, 111 0.247 0.236 −17 7.750 43 0.341 0.329 −43 4.115 3 0.186 0.183 −7 6.060 39
140 326, 050 0.247 0.236 −17 7.730 43 0.336 0.324 −42 4.073 4 0.179 0.176 −6 6.117 40
150 326, 022 0.243 0.232 −15 7.820 43 0.323 0.312 −40 4.040 3 0.174 0.170 −4 6.010 39

Table A10: AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity, inverse
and log link functions under 150-443 after each tenth iteration. MAEs in %.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

inverse gaussian with identity link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 346, 132 0.871 0.833 1 23.559 115 0.314 0.304 7 20.269 107 0.534 0.523 70 25.673 169
20 334, 430 0.549 0.524 −13 15.996 77 0.599 0.579 −77 8.273 −1 0.468 0.458 −44 9.809 32
30 331, 453 0.488 0.467 −4 15.939 89 0.517 0.499 −67 6.532 11 0.413 0.405 −40 9.280 38
40 328, 985 0.370 0.354 −13 13.279 76 0.338 0.327 −39 7.193 35 0.238 0.233 6 12.301 80
50 328, 064 0.332 0.317 −15 12.727 74 0.338 0.327 −40 6.871 35 0.232 0.227 1 11.664 76
60 327, 533 0.298 0.285 −17 10.994 64 0.304 0.294 −37 5.868 29 0.172 0.168 3 10.646 69
70 327, 082 0.274 0.262 −15 9.387 53 0.243 0.235 −27 5.535 27 0.171 0.167 13 10.253 67
80 326, 849 0.267 0.255 −20 9.426 54 0.278 0.268 −34 5.271 25 0.152 0.148 5 9.783 65
90 326, 715 0.247 0.236 −21 8.546 49 0.275 0.266 −35 4.399 20 0.140 0.137 −1 8.302 55

100 326, 630 0.236 0.225 −20 7.879 45 0.262 0.253 −34 3.979 16 0.140 0.137 −2 7.249 48
110 326, 564 0.225 0.215 −17 7.728 43 0.243 0.235 −31 3.850 15 0.129 0.126 0 6.958 46
120 326, 507 0.237 0.226 −18 8.776 50 0.270 0.260 −35 4.120 19 0.130 0.127 −3 7.710 51
130 326, 475 0.240 0.230 −17 9.225 53 0.265 0.256 −34 4.516 21 0.123 0.120 0 8.400 55
140 326, 447 0.241 0.230 −16 9.415 54 0.270 0.261 −35 4.543 21 0.124 0.122 −1 8.426 56
150 326, 352 0.249 0.238 −17 9.375 54 0.337 0.326 −44 4.224 12 0.150 0.146 −4 7.930 52

Inverse gaussian with inverse link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 458 1.129 1.079 −25 35.685 202 1.138 1.099 −150 14.423 63 0.639 0.626 −63 22.713 149
20 336, 004 0.682 0.652 −5 21.011 117 0.534 0.516 −67 8.866 41 0.321 0.314 −12 14.895 95
30 333, 060 0.626 0.598 −10 24.463 142 0.623 0.602 −83 10.859 55 0.376 0.369 −31 16.233 107
40 329, 632 0.412 0.394 −14 15.912 93 0.345 0.333 −29 12.096 64 0.318 0.311 28 18.446 121
50 328, 515 0.335 0.320 −12 12.387 71 0.305 0.295 −29 8.122 40 0.276 0.270 18 13.333 86
60 327, 916 0.321 0.307 −15 11.970 70 0.286 0.276 −27 8.385 44 0.247 0.241 20 13.973 91
70 327, 543 0.278 0.266 −12 10.488 60 0.246 0.238 −28 6.106 31 0.164 0.161 9 10.331 67
80 327, 196 0.249 0.238 −17 8.227 45 0.308 0.297 −38 4.037 9 0.193 0.189 −7 6.381 40
90 327, 012 0.247 0.236 −19 8.016 44 0.376 0.363 −49 4.390 −1 0.212 0.207 −15 5.407 33

100 326, 837 0.261 0.250 −20 8.469 46 0.375 0.363 −48 4.428 4 0.208 0.204 −10 6.569 43
110 326, 762 0.262 0.250 −18 8.090 44 0.365 0.353 −46 4.505 2 0.201 0.197 −8 6.242 40
120 326, 699 0.259 0.248 −18 8.106 45 0.367 0.355 −47 4.402 2 0.192 0.188 −9 6.082 39
130 326, 667 0.259 0.247 −17 7.987 44 0.352 0.340 −44 4.303 2 0.187 0.183 −8 5.958 38
140 326, 642 0.258 0.246 −16 8.243 46 0.340 0.328 −42 4.228 6 0.173 0.169 −5 6.602 43
150 326, 617 0.253 0.242 −15 8.152 44 0.324 0.313 −39 4.148 5 0.172 0.169 −3 6.476 42

Inverse gaussian with log link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 530 0.866 0.828 19 24.925 131 0.450 0.435 −28 14.940 69 0.494 0.484 39 21.122 136
20 335, 355 0.644 0.616 −5 19.653 109 0.526 0.509 −67 7.947 33 0.318 0.311 −14 13.490 85
30 331, 675 0.536 0.512 −4 21.697 125 0.482 0.465 −58 10.885 57 0.262 0.256 −2 17.245 113
40 329, 140 0.366 0.350 −10 13.913 80 0.325 0.314 −32 8.604 44 0.269 0.264 16 14.011 91
50 328, 190 0.324 0.310 −16 12.640 73 0.319 0.308 −32 8.482 43 0.274 0.268 16 13.966 91
60 327, 666 0.296 0.283 −15 11.626 67 0.290 0.280 −31 7.181 37 0.201 0.197 15 12.695 83
70 327, 263 0.261 0.250 −15 9.948 57 0.244 0.236 −27 6.042 30 0.172 0.168 12 10.531 69
80 327, 061 0.251 0.240 −18 9.746 56 0.284 0.275 −37 4.988 24 0.145 0.142 −1 8.964 59
90 326, 825 0.263 0.251 −23 8.769 51 0.321 0.310 −44 4.059 15 0.168 0.165 −11 7.316 48

100 326, 695 0.261 0.249 −22 7.727 43 0.352 0.340 −45 4.048 6 0.203 0.199 −10 6.341 41
110 326, 598 0.239 0.229 −17 7.408 40 0.343 0.332 −43 4.444 −1 0.185 0.181 −7 5.572 35
120 326, 530 0.249 0.238 −18 7.520 41 0.343 0.331 −43 4.247 1 0.191 0.187 −7 5.928 38
130 326, 494 0.246 0.235 −17 7.602 42 0.337 0.326 −43 4.108 2 0.183 0.179 −6 5.964 39
140 326, 471 0.246 0.235 −17 7.772 43 0.332 0.321 −42 4.068 4 0.177 0.173 −6 6.092 39
150 326, 413 0.247 0.237 −15 7.716 42 0.324 0.313 −40 4.095 2 0.172 0.168 −4 5.892 38

Inverse gaussian with 1
µ2

link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 467 0.985 0.941 −14 31.473 176 0.993 0.959 −130 12.573 46 0.561 0.549 −52 18.986 124
20 336, 815 0.668 0.639 −7 21.404 122 0.591 0.571 −75 9.506 38 0.372 0.364 −22 14.521 91
30 331, 792 0.478 0.457 −5 15.821 90 0.367 0.354 −28 10.573 53 0.373 0.365 33 17.496 114
40 330, 089 0.421 0.403 −1 15.183 89 0.295 0.285 −19 10.660 56 0.316 0.309 34 16.657 109
50 329, 020 0.376 0.359 −10 14.443 85 0.300 0.290 −21 11.439 60 0.320 0.313 34 17.553 115
60 328, 452 0.330 0.316 −12 12.905 75 0.290 0.280 −24 9.196 48 0.273 0.267 25 14.952 98
70 327, 925 0.316 0.302 −16 11.733 69 0.301 0.291 −35 7.090 35 0.200 0.195 6 11.701 76
80 327, 639 0.262 0.250 −18 8.128 43 0.298 0.288 −35 4.425 11 0.208 0.203 −1 7.205 45
90 327, 265 0.278 0.266 −22 8.311 46 0.355 0.343 −44 4.383 9 0.202 0.197 −7 7.090 46

100 327, 148 0.288 0.275 −22 8.166 44 0.357 0.345 −44 4.408 8 0.207 0.203 −6 7.039 46
110 327, 078 0.274 0.262 −20 7.943 43 0.354 0.342 −44 4.451 4 0.196 0.192 −7 6.434 41
120 326, 920 0.269 0.257 −18 8.350 46 0.374 0.361 −47 4.579 3 0.198 0.193 −9 6.419 41
130 326, 887 0.270 0.258 −18 8.437 47 0.360 0.348 −44 4.544 6 0.196 0.192 −4 7.151 46
140 326, 807 0.267 0.255 −18 8.193 45 0.345 0.333 −43 4.318 5 0.188 0.184 −5 6.661 43
150 326, 778 0.262 0.250 −16 8.258 44 0.332 0.321 −41 4.238 5 0.177 0.174 −3 6.518 42

Table A11: AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with identity,
inverse, log and 1

µ2 link functions under 150-443 after each tenth iteration. MAEs in %.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Normal with identity link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 045 0.839 0.802 0 21.468 104 0.389 0.376 23 21.659 113 0.650 0.636 89 27.112 179
20 333, 447 0.565 0.540 −10 16.780 82 0.597 0.577 −75 8.274 2 0.454 0.445 −40 10.083 38
30 330, 361 0.518 0.496 1 17.501 100 0.418 0.404 −47 7.970 37 0.264 0.259 1 13.378 85
40 328, 832 0.475 0.454 −10 16.888 98 0.509 0.492 −66 6.234 27 0.291 0.285 −26 10.497 68
50 327, 432 0.368 0.352 −15 13.268 78 0.391 0.378 −50 6.060 29 0.221 0.217 −9 10.674 69
60 326, 787 0.306 0.293 −17 10.760 62 0.301 0.290 −36 5.863 29 0.183 0.179 5 10.651 69
70 326, 453 0.291 0.278 −18 10.451 60 0.281 0.272 −33 6.060 30 0.175 0.171 8 10.958 72
80 326, 245 0.263 0.251 −23 9.389 54 0.309 0.298 −41 4.837 22 0.157 0.154 −4 8.945 59
90 326, 116 0.267 0.256 −24 9.196 54 0.313 0.303 −42 4.689 22 0.158 0.155 −7 8.587 57

100 326, 038 0.250 0.239 −18 9.152 53 0.276 0.266 −35 4.637 22 0.136 0.133 0 8.606 57
110 325, 963 0.239 0.229 −18 9.132 52 0.269 0.260 −35 4.577 22 0.132 0.129 −1 8.358 55
120 325, 922 0.242 0.231 −16 9.519 54 0.273 0.263 −35 4.569 21 0.129 0.126 −1 8.380 55
130 325, 889 0.251 0.240 −18 10.506 61 0.287 0.277 −37 5.421 27 0.127 0.125 0 9.724 64
140 325, 865 0.246 0.235 −15 10.530 61 0.269 0.260 −34 5.329 27 0.123 0.120 2 9.526 63
150 325, 841 0.242 0.232 −14 10.556 61 0.274 0.265 −35 5.119 26 0.123 0.120 0 9.261 61
160 325, 821 0.243 0.232 −15 10.483 60 0.278 0.268 −36 5.018 25 0.127 0.124 0 9.144 60
170 325, 811 0.238 0.228 −13 10.140 58 0.265 0.256 −33 4.968 24 0.130 0.127 2 8.884 59
180 325, 766 0.241 0.230 −12 10.128 57 0.300 0.290 −37 4.552 18 0.149 0.146 2 8.716 58
190 325, 506 0.201 0.192 −13 6.458 32 0.275 0.266 −33 4.124 −2 0.173 0.169 −4 4.721 27
200 325, 488 0.186 0.178 −9 6.111 29 0.262 0.254 −29 4.460 −4 0.181 0.177 3 4.920 27
210 325, 482 0.184 0.176 −9 6.210 30 0.258 0.249 −28 4.337 −3 0.170 0.167 3 4.846 28
220 325, 468 0.185 0.177 −8 6.433 32 0.258 0.250 −28 4.286 −3 0.165 0.161 3 4.850 28
224 325, 459 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

Normal with inverse link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 426 1.036 0.990 1 33.705 192 0.650 0.628 −63 21.481 114 0.391 0.382 44 33.482 221
20 334, 985 0.689 0.659 −6 21.313 118 0.515 0.498 −62 10.319 49 0.324 0.317 −4 16.493 107
30 331, 426 0.512 0.490 −16 18.836 109 0.393 0.380 −45 12.277 65 0.248 0.243 15 18.960 125
40 328, 875 0.433 0.414 −5 14.354 82 0.317 0.306 −26 9.312 47 0.294 0.288 26 15.188 99
50 327, 877 0.383 0.366 −8 12.959 76 0.285 0.276 −24 8.961 46 0.271 0.265 25 14.592 95
60 327, 274 0.337 0.323 −16 12.572 73 0.328 0.316 −37 7.636 38 0.219 0.215 10 13.087 85
70 326, 875 0.290 0.277 −14 11.248 64 0.271 0.261 −32 6.233 31 0.156 0.153 6 10.588 70
80 326, 603 0.259 0.248 −16 9.976 58 0.287 0.278 −38 5.042 22 0.158 0.155 −8 8.014 52
90 326, 390 0.254 0.243 −20 8.462 47 0.392 0.379 −51 4.451 1 0.220 0.215 −17 5.676 36

100 326, 224 0.269 0.257 −21 9.365 53 0.403 0.389 −52 4.500 7 0.225 0.220 −12 7.174 47
110 326, 135 0.266 0.254 −19 8.894 49 0.377 0.364 −49 4.334 5 0.205 0.201 −12 6.497 42
120 326, 069 0.266 0.254 −19 8.564 48 0.381 0.368 −50 4.271 4 0.204 0.200 −14 6.102 39
130 326, 033 0.265 0.253 −19 8.498 47 0.386 0.373 −50 4.445 2 0.212 0.207 −14 5.917 38
140 325, 950 0.253 0.242 −17 8.151 44 0.358 0.346 −46 4.345 1 0.189 0.185 −11 5.598 35
150 325, 924 0.255 0.244 −17 8.485 46 0.364 0.352 −46 4.288 3 0.192 0.188 −11 5.894 38
160 325, 886 0.258 0.247 −15 8.842 48 0.349 0.337 −44 4.199 5 0.178 0.174 −8 6.359 41
170 325, 869 0.249 0.238 −14 8.503 46 0.331 0.320 −40 4.254 5 0.174 0.171 −5 6.182 40
180 325, 850 0.248 0.237 −12 8.505 45 0.312 0.302 −37 4.099 6 0.164 0.161 −3 6.095 40
190 325, 820 0.238 0.228 −12 8.240 43 0.313 0.303 −37 4.137 4 0.169 0.166 −3 5.825 38
200 325, 803 0.244 0.234 −13 8.458 45 0.320 0.309 −38 4.073 6 0.171 0.167 −4 6.132 40
210 325, 800 0.241 0.231 −13 8.376 45 0.313 0.302 −36 4.059 6 0.171 0.167 −2 6.248 41
213 325, 797 0.241 0.230 −12 8.325 44 0.310 0.299 −36 4.063 6 0.171 0.167 −1 6.284 41

Normal with log link

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 342, 325 0.879 0.840 26 25.171 132 0.422 0.408 −17 15.628 74 0.530 0.519 52 22.034 143
20 334, 417 0.661 0.632 −5 22.474 125 0.532 0.514 −64 10.764 51 0.330 0.323 −3 17.317 112
30 330, 901 0.560 0.536 −3 21.780 126 0.474 0.458 −55 11.199 59 0.266 0.261 3 17.802 117
40 328, 444 0.411 0.393 −10 13.639 78 0.315 0.304 −29 8.610 44 0.264 0.258 19 14.162 92
50 327, 574 0.341 0.326 −16 12.936 75 0.334 0.323 −35 8.294 42 0.262 0.257 12 13.642 89
60 327, 029 0.315 0.302 −17 11.991 69 0.312 0.301 −36 7.024 36 0.192 0.188 10 12.465 82
70 326, 637 0.279 0.267 −16 10.620 61 0.266 0.257 −31 6.142 31 0.162 0.158 9 10.797 71
80 326, 449 0.266 0.254 −21 10.069 59 0.304 0.294 −40 5.195 25 0.153 0.149 −4 9.234 61
90 326, 287 0.273 0.261 −22 9.742 57 0.300 0.290 −40 5.082 25 0.141 0.138 −5 8.990 59

100 326, 082 0.269 0.257 −23 8.052 45 0.370 0.358 −48 4.094 6 0.210 0.205 −13 6.314 41
110 326, 021 0.258 0.247 −19 8.043 44 0.343 0.331 −43 4.102 5 0.198 0.193 −7 6.381 41
120 325, 950 0.252 0.241 −17 7.891 42 0.329 0.318 −41 4.086 3 0.191 0.187 −7 5.883 37
130 325, 743 0.208 0.199 −13 6.208 30 0.310 0.299 −38 4.994 −10 0.191 0.187 −8 4.273 21
140 325, 693 0.211 0.202 −13 6.620 34 0.302 0.292 −36 4.522 −3 0.186 0.182 −3 5.037 30
150 325, 665 0.210 0.200 −13 6.729 35 0.298 0.288 −36 4.385 −2 0.180 0.176 −3 5.168 31
160 325, 626 0.214 0.205 −14 6.549 33 0.302 0.292 −36 4.410 −3 0.183 0.179 −4 5.076 30
170 325, 610 0.214 0.204 −14 6.590 33 0.291 0.281 −35 4.273 −3 0.173 0.169 −2 5.028 30
180 325, 584 0.214 0.204 −13 6.587 33 0.296 0.286 −35 4.386 −4 0.176 0.172 −2 4.973 29
190 325, 575 0.212 0.203 −12 6.502 32 0.283 0.273 −33 4.363 −4 0.173 0.170 0 4.950 29
200 325, 567 0.201 0.192 −9 6.272 30 0.264 0.255 −29 4.491 −4 0.171 0.168 3 4.863 27
210 325, 553 0.205 0.196 −9 6.655 32 0.267 0.258 −29 4.398 −2 0.176 0.173 3 5.165 30
214 325, 552 0.206 0.197 −10 6.640 32 0.267 0.258 −29 4.402 −2 0.177 0.173 3 5.180 30

Table A12: AIC scores and out-of-sample validation figures of the normal GLMs of BEL with identity, inverse
and log link functions under 300-886 after each tenth and the final iteration. MAEs in %.



Appendix 175

k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Gamma with identity link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 345, 605 0.872 0.834 1 23.485 114 0.315 0.304 6 19.861 105 0.530 0.519 68 25.266 167
20 333, 911 0.553 0.529 −12 16.265 79 0.599 0.579 −76 8.268 0 0.464 0.454 −43 9.895 34
30 330, 707 0.503 0.481 0 17.404 99 0.425 0.411 −49 7.754 35 0.267 0.262 −2 12.959 82
40 328, 589 0.376 0.359 −13 13.317 76 0.341 0.330 −39 7.187 35 0.238 0.233 6 12.341 80
50 327, 668 0.348 0.333 −15 13.173 77 0.356 0.344 −44 6.656 34 0.227 0.222 −4 11.348 74
60 327, 135 0.305 0.292 −16 11.190 65 0.304 0.294 −37 6.059 30 0.175 0.172 3 10.843 71
70 326, 686 0.273 0.261 −15 9.730 55 0.257 0.249 −30 5.364 26 0.165 0.161 9 9.928 65
80 326, 461 0.268 0.257 −21 9.471 54 0.287 0.277 −36 5.151 25 0.149 0.146 2 9.549 63
90 326, 328 0.259 0.248 −23 8.889 52 0.304 0.293 −40 4.373 20 0.148 0.145 −6 8.255 55

100 326, 244 0.240 0.229 −20 9.273 54 0.282 0.273 −37 4.759 22 0.144 0.141 −2 8.662 57
110 326, 178 0.236 0.225 −18 8.837 51 0.262 0.254 −34 4.454 20 0.135 0.132 0 8.139 54
120 326, 117 0.237 0.226 −18 9.668 56 0.275 0.266 −36 4.845 24 0.129 0.126 −1 8.799 58
130 326, 084 0.245 0.235 −17 10.148 59 0.270 0.260 −35 5.236 26 0.122 0.120 1 9.375 62
140 326, 058 0.243 0.232 −17 10.153 58 0.273 0.264 −35 5.092 25 0.125 0.122 −1 9.122 60
150 326, 031 0.239 0.229 −14 10.130 58 0.263 0.254 −33 4.914 24 0.121 0.118 2 9.014 60
160 325, 871 0.232 0.222 −15 7.898 44 0.317 0.307 −39 3.918 5 0.174 0.170 −4 6.237 40
170 325, 729 0.199 0.190 −13 6.235 30 0.280 0.271 −34 4.288 −5 0.176 0.172 −2 4.684 27
180 325, 718 0.201 0.192 −13 6.171 30 0.279 0.270 −34 4.253 −5 0.172 0.169 −2 4.623 27
190 325, 703 0.197 0.189 −12 6.158 30 0.278 0.268 −33 4.269 −5 0.171 0.168 −3 4.521 26
200 325, 697 0.194 0.185 −11 5.943 28 0.264 0.255 −30 4.416 −5 0.169 0.165 0 4.470 25
210 325, 689 0.190 0.181 −10 5.992 28 0.261 0.252 −29 4.381 −5 0.169 0.165 1 4.534 25
212 325, 689 0.189 0.180 −11 5.975 28 0.261 0.252 −29 4.384 −5 0.169 0.165 1 4.545 25

Gamma with inverse link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 969 1.037 0.991 0 33.818 193 0.661 0.639 −64 21.601 115 0.397 0.389 44 33.752 223
20 335, 495 0.679 0.649 −7 20.888 115 0.530 0.512 −65 9.637 43 0.335 0.328 −9 15.410 99
30 332, 646 0.627 0.600 −9 26.098 152 0.621 0.600 −82 12.361 64 0.346 0.339 −24 18.470 122
40 329, 192 0.409 0.391 −10 14.061 81 0.317 0.306 −27 9.719 50 0.289 0.283 23 15.405 101
50 328, 114 0.339 0.324 −12 12.599 73 0.313 0.302 −30 8.084 40 0.271 0.265 15 13.146 85
60 327, 513 0.328 0.313 −16 12.247 71 0.294 0.284 −29 8.341 43 0.240 0.235 18 13.902 91
70 327, 115 0.285 0.272 −12 11.127 64 0.251 0.243 −28 6.463 33 0.166 0.162 11 10.915 72
80 326, 795 0.252 0.241 −17 8.376 45 0.315 0.305 −39 4.069 9 0.196 0.192 −8 6.416 40
90 326, 615 0.250 0.239 −20 8.113 45 0.384 0.371 −51 4.414 0 0.218 0.213 −16 5.478 34

100 326, 445 0.263 0.252 −20 9.213 52 0.387 0.374 −50 4.469 8 0.219 0.214 −10 7.316 48
110 326, 355 0.272 0.260 −21 8.812 49 0.384 0.371 −50 4.313 5 0.209 0.205 −14 6.489 42
120 326, 297 0.267 0.255 −20 8.378 46 0.377 0.365 −48 4.470 2 0.206 0.202 −11 6.140 39
130 326, 248 0.259 0.248 −17 8.210 45 0.365 0.352 −46 4.437 1 0.200 0.196 −10 5.933 38
140 326, 214 0.258 0.247 −17 8.212 45 0.355 0.343 −45 4.404 3 0.192 0.188 −9 6.077 39
150 326, 190 0.260 0.248 −17 8.701 49 0.349 0.337 −44 4.217 7 0.180 0.176 −7 6.781 44
160 326, 147 0.247 0.236 −15 8.556 47 0.329 0.317 −40 4.091 7 0.174 0.170 −4 6.643 43
170 326, 070 0.247 0.236 −15 8.355 46 0.332 0.321 −41 4.077 5 0.173 0.169 −6 6.182 40
180 326, 045 0.243 0.233 −14 8.143 43 0.307 0.297 −37 4.001 6 0.164 0.160 −3 6.107 40
190 326, 026 0.236 0.225 −13 7.996 42 0.305 0.295 −36 4.039 5 0.165 0.161 −2 5.973 39
200 325, 979 0.239 0.229 −12 8.320 45 0.284 0.274 −31 4.162 11 0.154 0.151 5 7.110 47
208 325, 969 0.234 0.223 −11 8.162 44 0.288 0.278 −31 4.185 9 0.158 0.154 5 6.832 45

Gamma with log link

0 437, 243 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 342, 942 0.870 0.832 21 24.998 131 0.440 0.425 −24 15.145 71 0.505 0.494 43 21.396 138
20 334, 881 0.649 0.621 −5 19.899 110 0.519 0.501 −65 8.283 36 0.312 0.306 −11 14.105 90
30 331, 227 0.544 0.520 −4 21.752 126 0.479 0.463 −57 11.010 58 0.262 0.257 0 17.458 115
40 328, 727 0.374 0.357 −10 14.009 81 0.329 0.318 −33 8.553 43 0.268 0.263 15 13.990 91
50 327, 806 0.328 0.313 −16 12.750 74 0.327 0.316 −33 8.325 42 0.272 0.266 14 13.779 90
60 327, 270 0.302 0.289 −15 11.825 68 0.297 0.287 −33 7.147 37 0.197 0.193 14 12.637 83
70 326, 866 0.264 0.253 −15 10.159 58 0.249 0.241 −28 6.071 31 0.165 0.162 12 10.693 70
80 326, 669 0.255 0.244 −19 9.819 57 0.288 0.279 −37 5.085 24 0.146 0.143 −2 9.090 60
90 326, 433 0.266 0.254 −23 8.891 51 0.327 0.316 −45 4.079 15 0.171 0.167 −12 7.353 48

100 326, 302 0.265 0.253 −23 7.839 44 0.361 0.349 −47 4.030 5 0.205 0.201 −12 6.246 40
110 326, 224 0.256 0.244 −18 8.139 45 0.335 0.324 −41 4.211 8 0.191 0.187 −3 7.043 46
120 326, 015 0.220 0.210 −17 6.898 36 0.317 0.306 −40 4.411 −1 0.194 0.190 −7 5.364 33
130 325, 973 0.216 0.207 −15 6.654 33 0.307 0.296 −37 4.544 −4 0.196 0.192 −4 5.114 30
140 325, 919 0.212 0.203 −15 6.334 31 0.302 0.292 −37 4.556 −5 0.191 0.187 −4 4.883 28
150 325, 878 0.215 0.205 −14 6.486 33 0.297 0.287 −36 4.375 −3 0.181 0.177 −3 4.968 29
160 325, 858 0.216 0.206 −14 6.619 34 0.299 0.289 −35 4.442 −2 0.181 0.177 −1 5.275 32
170 325, 826 0.213 0.203 −14 6.485 33 0.302 0.292 −36 4.464 −4 0.183 0.180 −3 5.109 30
180 325, 816 0.213 0.204 −14 6.505 33 0.300 0.290 −36 4.468 −3 0.179 0.176 −1 5.238 31
190 325, 797 0.210 0.201 −14 6.580 33 0.295 0.285 −35 4.406 −3 0.179 0.176 −2 5.157 31
200 325, 783 0.208 0.199 −13 6.496 32 0.290 0.280 −34 4.421 −3 0.178 0.174 −1 5.140 30
210 325, 777 0.200 0.191 −10 6.260 30 0.263 0.254 −28 4.471 −3 0.176 0.173 4 5.107 30
220 325, 774 0.199 0.190 −10 6.248 30 0.264 0.255 −28 4.541 −3 0.179 0.175 4 5.085 29
226 325, 767 0.198 0.189 −8 6.256 29 0.249 0.241 −24 4.532 −1 0.184 0.180 8 5.417 32

Table A13: AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity, inverse
and log link functions under 300-886 after each tenth and the final iteration. MAEs in %.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Inverse gaussian with identity link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 346, 132 0.871 0.833 1 23.559 115 0.314 0.304 7 20.269 107 0.534 0.523 70 25.673 169
20 334, 430 0.549 0.524 −13 15.996 77 0.599 0.579 −77 8.273 −1 0.468 0.458 −44 9.809 32
30 331, 453 0.488 0.467 −4 15.939 89 0.517 0.499 −67 6.532 11 0.413 0.405 −40 9.280 38
40 328, 985 0.370 0.354 −13 13.279 76 0.338 0.327 −39 7.193 35 0.238 0.233 6 12.301 80
50 328, 064 0.332 0.317 −15 12.727 74 0.338 0.327 −40 6.871 35 0.232 0.227 1 11.664 76
60 327, 533 0.298 0.285 −17 10.994 64 0.304 0.294 −37 5.868 29 0.172 0.168 3 10.646 69
70 327, 082 0.274 0.262 −15 9.387 53 0.243 0.235 −27 5.535 27 0.171 0.167 13 10.253 67
80 326, 849 0.267 0.255 −20 9.426 54 0.278 0.268 −34 5.271 25 0.152 0.148 5 9.783 65
90 326, 715 0.247 0.236 −21 8.546 49 0.275 0.266 −35 4.399 20 0.140 0.137 −1 8.302 55

100 326, 627 0.234 0.224 −20 8.454 49 0.266 0.257 −34 4.414 20 0.144 0.141 −1 8.023 53
110 326, 557 0.225 0.215 −17 8.350 47 0.246 0.238 −31 4.337 19 0.132 0.129 2 7.841 52
120 326, 505 0.233 0.223 −17 8.897 51 0.256 0.247 −33 4.428 21 0.125 0.123 0 8.106 54
130 326, 465 0.243 0.232 −16 9.965 58 0.265 0.256 −34 5.126 26 0.122 0.120 1 9.216 61
140 326, 442 0.244 0.233 −16 10.175 59 0.273 0.264 −35 5.079 25 0.125 0.122 0 9.098 60
150 326, 357 0.252 0.241 −16 10.133 58 0.352 0.340 −45 4.601 15 0.169 0.166 −1 8.831 58
160 326, 130 0.206 0.197 −15 6.294 31 0.293 0.283 −36 4.360 −5 0.187 0.183 −4 4.711 26
170 326, 112 0.204 0.195 −15 6.173 30 0.289 0.279 −35 4.284 −5 0.179 0.175 −4 4.688 27
180 326, 099 0.203 0.194 −14 6.130 30 0.283 0.273 −34 4.277 −5 0.177 0.173 −3 4.654 26
190 326, 088 0.204 0.195 −14 6.143 30 0.282 0.272 −34 4.280 −5 0.178 0.174 −3 4.699 27
200 326, 076 0.204 0.195 −14 6.172 30 0.286 0.276 −34 4.347 −4 0.184 0.180 −3 4.823 27
210 326, 071 0.199 0.190 −12 6.140 30 0.273 0.264 −32 4.277 −4 0.183 0.179 0 4.868 28
217 326, 069 0.191 0.183 −11 5.967 28 0.261 0.252 −29 4.364 −5 0.178 0.175 2 4.779 27

Inverse gaussian with inverse link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 458 1.129 1.079 −25 35.685 202 1.138 1.099 −150 14.423 63 0.639 0.626 −63 22.713 149
20 336, 004 0.682 0.652 −5 21.011 117 0.534 0.516 −67 8.866 41 0.321 0.314 −12 14.895 95
30 333, 060 0.626 0.598 −10 24.463 142 0.623 0.602 −83 10.859 55 0.376 0.369 −31 16.233 107
40 329, 632 0.412 0.394 −14 15.912 93 0.345 0.333 −29 12.096 64 0.318 0.311 28 18.446 121
50 328, 515 0.335 0.320 −12 12.387 71 0.305 0.295 −29 8.122 40 0.276 0.270 18 13.333 86
60 327, 916 0.321 0.307 −15 11.970 70 0.286 0.276 −27 8.385 44 0.247 0.241 20 13.973 91
70 327, 543 0.278 0.266 −12 10.488 60 0.246 0.238 −28 6.106 31 0.164 0.161 9 10.331 67
80 327, 196 0.249 0.238 −17 8.227 45 0.308 0.297 −38 4.037 9 0.193 0.189 −7 6.381 40
90 327, 012 0.247 0.236 −19 8.016 44 0.376 0.363 −49 4.390 −1 0.212 0.207 −15 5.407 33

100 326, 836 0.261 0.250 −20 9.073 51 0.382 0.369 −49 4.438 8 0.215 0.211 −9 7.237 47
110 326, 750 0.268 0.257 −21 8.679 47 0.386 0.373 −50 4.510 4 0.217 0.212 −12 6.490 42
120 326, 674 0.263 0.251 −19 8.191 45 0.378 0.365 −49 4.499 1 0.207 0.203 −12 6.011 38
130 326, 636 0.261 0.250 −18 8.380 46 0.373 0.360 −48 4.402 2 0.198 0.193 −12 5.985 38
140 326, 607 0.258 0.247 −17 8.253 46 0.349 0.337 −44 4.289 4 0.185 0.181 −8 6.277 40
150 326, 581 0.258 0.246 −17 8.437 47 0.350 0.338 −44 4.228 6 0.183 0.179 −7 6.505 42
160 326, 538 0.246 0.235 −15 8.445 47 0.326 0.315 −40 4.077 7 0.173 0.169 −4 6.572 43
170 326, 522 0.249 0.238 −15 8.148 45 0.322 0.311 −39 4.119 6 0.175 0.172 −2 6.603 43
180 326, 468 0.245 0.234 −14 8.583 47 0.298 0.288 −34 4.303 13 0.162 0.159 4 7.724 51
190 326, 455 0.243 0.233 −14 8.506 47 0.299 0.289 −34 4.290 13 0.163 0.160 4 7.641 50
200 326, 399 0.231 0.221 −12 7.918 42 0.286 0.277 −31 4.208 9 0.158 0.155 6 6.856 45
210 326, 365 0.233 0.223 −12 7.983 43 0.288 0.279 −31 4.208 9 0.159 0.155 5 6.765 45
219 326, 363 0.233 0.223 −11 8.040 43 0.283 0.274 −31 4.130 9 0.153 0.150 5 6.786 45

Table A14: AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with identity,
inverse, log and 1

µ2 link functions under 300-886 after each tenth and the final iteration. MAEs in

%.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Inverse gaussian with log link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 343, 530 0.866 0.828 19 24.925 131 0.450 0.435 −28 14.940 69 0.494 0.484 39 21.122 136
20 335, 355 0.644 0.616 −5 19.653 109 0.526 0.509 −67 7.947 33 0.318 0.311 −14 13.490 85
30 331, 675 0.536 0.512 −4 21.697 125 0.482 0.465 −58 10.885 57 0.262 0.256 −2 17.245 113
40 329, 140 0.366 0.350 −10 13.913 80 0.325 0.314 −32 8.604 44 0.269 0.264 16 14.011 91
50 328, 190 0.324 0.310 −16 12.640 73 0.319 0.308 −32 8.482 43 0.274 0.268 16 13.966 91
60 327, 666 0.296 0.283 −15 11.626 67 0.290 0.280 −31 7.181 37 0.201 0.197 15 12.695 83
70 327, 263 0.261 0.250 −15 9.948 57 0.244 0.236 −27 6.042 30 0.172 0.168 12 10.531 69
80 327, 061 0.251 0.240 −18 9.746 56 0.284 0.275 −37 4.988 24 0.145 0.142 −1 8.964 59
90 326, 825 0.263 0.251 −23 8.769 51 0.321 0.310 −44 4.059 15 0.168 0.165 −11 7.316 48

100 326, 695 0.261 0.249 −22 7.727 43 0.352 0.340 −45 4.048 6 0.203 0.199 −10 6.341 41
110 326, 589 0.240 0.230 −19 7.484 41 0.342 0.330 −44 4.124 1 0.192 0.188 −11 5.484 35
120 326, 409 0.216 0.207 −16 6.397 32 0.299 0.289 −37 4.534 −2 0.195 0.191 −4 5.170 30
130 326, 363 0.216 0.207 −15 6.314 31 0.308 0.298 −37 4.693 −6 0.201 0.196 −4 4.957 28
140 326, 331 0.218 0.208 −15 6.537 33 0.303 0.292 −36 4.505 −3 0.195 0.191 −1 5.362 32
150 326, 270 0.216 0.207 −14 6.457 32 0.302 0.291 −36 4.524 −4 0.189 0.185 −2 5.049 30
160 326, 249 0.217 0.208 −14 6.596 34 0.298 0.288 −36 4.418 −2 0.182 0.178 −1 5.291 32
170 326, 231 0.217 0.207 −15 6.492 32 0.296 0.286 −35 4.391 −3 0.179 0.175 −2 5.189 31
180 326, 206 0.214 0.205 −15 6.426 32 0.302 0.291 −36 4.466 −4 0.179 0.175 −3 4.950 29
190 326, 191 0.206 0.197 −13 6.472 33 0.288 0.279 −34 4.422 −3 0.173 0.170 0 5.149 31
200 326, 176 0.208 0.199 −13 6.545 33 0.286 0.276 −33 4.430 −2 0.179 0.175 0 5.288 31
210 326, 161 0.208 0.199 −13 6.501 33 0.286 0.276 −33 4.439 −2 0.184 0.180 1 5.318 32
220 326, 153 0.202 0.193 −10 6.280 30 0.260 0.251 −27 4.455 −2 0.178 0.174 5 5.190 31
222 326, 153 0.201 0.192 −10 6.291 30 0.261 0.252 −28 4.494 −3 0.180 0.177 5 5.176 30

Inverse gaussian with 1
µ2 link

0 437, 338 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 344, 467 0.985 0.941 −14 31.473 176 0.993 0.959 −130 12.573 46 0.561 0.549 −52 18.986 124
20 336, 815 0.668 0.639 −7 21.404 122 0.591 0.571 −75 9.506 38 0.372 0.364 −22 14.521 91
30 331, 792 0.478 0.457 −5 15.821 90 0.367 0.354 −28 10.573 53 0.373 0.365 33 17.496 114
40 330, 089 0.421 0.403 −1 15.183 89 0.295 0.285 −19 10.660 56 0.316 0.309 34 16.657 109
50 329, 020 0.376 0.359 −10 14.443 85 0.300 0.290 −21 11.439 60 0.320 0.313 34 17.553 115
60 328, 452 0.330 0.316 −12 12.905 75 0.290 0.280 −24 9.196 48 0.273 0.267 25 14.952 98
70 327, 925 0.316 0.302 −16 11.733 69 0.301 0.291 −35 7.090 35 0.200 0.195 6 11.701 76
80 327, 639 0.262 0.250 −18 8.128 43 0.298 0.288 −35 4.425 11 0.208 0.203 −1 7.205 45
90 327, 265 0.278 0.266 −22 8.311 46 0.355 0.343 −44 4.383 9 0.202 0.197 −7 7.090 46

100 327, 148 0.288 0.275 −22 8.166 44 0.357 0.345 −44 4.408 8 0.207 0.203 −6 7.039 46
110 327, 077 0.275 0.262 −20 7.965 42 0.366 0.353 −45 4.676 2 0.207 0.202 −7 6.410 40
120 326, 916 0.274 0.262 −18 8.313 45 0.393 0.380 −47 5.133 1 0.228 0.223 −5 6.790 43
130 326, 876 0.269 0.257 −18 8.133 43 0.396 0.382 −47 5.217 0 0.234 0.229 −5 6.625 42
140 326, 789 0.259 0.248 −18 8.149 44 0.395 0.381 −47 5.074 1 0.249 0.244 −6 6.697 42
150 326, 576 0.227 0.217 −15 6.896 34 0.341 0.329 −39 5.291 −5 0.221 0.217 −3 5.510 31
160 326, 479 0.214 0.205 −16 6.274 29 0.291 0.281 −35 4.571 −6 0.206 0.202 −8 4.617 22
170 326, 451 0.210 0.201 −15 6.035 26 0.285 0.275 −34 4.611 −8 0.202 0.198 −8 4.441 19
180 326, 426 0.196 0.187 −13 5.753 25 0.250 0.242 −28 4.373 −6 0.187 0.183 −2 4.426 21
190 326, 408 0.195 0.187 −13 5.682 24 0.249 0.241 −28 4.360 −6 0.188 0.184 −2 4.464 21
200 326, 397 0.193 0.184 −13 5.686 24 0.245 0.237 −27 4.252 −5 0.186 0.182 −3 4.382 20
210 326, 305 0.187 0.179 −13 5.721 27 0.237 0.229 −26 3.811 0 0.162 0.159 2 4.510 27
220 326, 172 0.176 0.168 −14 5.110 26 0.197 0.191 −22 3.346 4 0.146 0.143 6 4.919 31
230 326, 160 0.175 0.168 −14 4.994 25 0.206 0.199 −21 3.583 3 0.159 0.155 8 5.114 32
240 326, 141 0.166 0.159 −11 5.012 24 0.197 0.190 −16 3.909 5 0.182 0.178 14 5.560 35
250 326, 124 0.174 0.166 −12 5.058 25 0.193 0.186 −15 3.833 9 0.188 0.184 17 6.266 41

Table A14: Cont.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Normal with identity link under 150-443

150 325, 850 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

Normal with inverse link under 150-443

150 325, 952 0.258 0.247 −16 8.468 45 0.353 0.341 −44 4.282 3 0.192 0.188 −8 6.088 39

Normal with log link under 150-443

150 325, 823 0.240 0.229 −15 7.980 44 0.316 0.305 −38 4.014 6 0.170 0.167 −2 6.434 42

Gamma with identity link under 150-443

150 326, 041 0.236 0.226 −14 9.329 53 0.260 0.251 −33 4.321 20 0.121 0.118 1 8.206 54

Gamma with inverse link under 150-443

150 326, 222 0.254 0.243 −15 8.410 46 0.327 0.316 −40 4.111 7 0.171 0.167 −3 6.722 44

Gamma with log link under 150-443

150 326, 022 0.243 0.232 −15 7.820 43 0.323 0.312 −40 4.040 3 0.174 0.170 −4 6.010 39

Inverse gaussian with identity link under 150-443

150 326, 352 0.249 0.238 −17 9.375 54 0.337 0.326 −44 4.224 12 0.150 0.146 −4 7.930 52

Inverse gaussian with inverse link under 150-443

150 326, 617 0.253 0.242 −15 8.152 44 0.324 0.313 −39 4.148 5 0.172 0.169 −3 6.476 42

Inverse gaussian with log link under 150-443

150 326, 413 0.247 0.237 −15 7.716 42 0.324 0.313 −40 4.095 2 0.172 0.168 −4 5.892 38

Inverse gaussian with 1
µ2 link under 150-443

150 326, 778 0.262 0.250 −16 8.258 44 0.332 0.321 −41 4.238 5 0.177 0.174 −3 6.518 42

Normal with identity link under 300-886

224 325, 459 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

Normal with inverse link under 300-886

213 325, 797 0.241 0.230 −12 8.325 44 0.310 0.299 −36 4.063 6 0.171 0.167 −1 6.284 41

Normal with log link under 300-886

214 325, 552 0.206 0.197 −10 6.640 32 0.267 0.258 −29 4.402 −2 0.177 0.173 3 5.180 30

Gamma with identity link under 300-886

212 325, 689 0.189 0.180 −11 5.975 28 0.261 0.252 −29 4.384 −5 0.169 0.165 1 4.545 25

Gamma with inverse link under 300-886

208 325, 969 0.234 0.223 −11 8.162 44 0.288 0.278 −31 4.185 9 0.158 0.154 5 6.832 45

Gamma with log link under 300-886

226 325, 767 0.198 0.189 −8 6.256 29 0.249 0.241 −24 4.532 −1 0.184 0.180 8 5.417 32

Inverse gaussian with identity link under 300-886

217 326, 069 0.191 0.183 −11 5.967 28 0.261 0.252 −29 4.364 −5 0.178 0.175 2 4.779 27

Inverse gaussian with inverse link under 300-886

219 326, 363 0.233 0.223 −11 8.040 43 0.283 0.274 −31 4.130 9 0.153 0.150 5 6.786 45

Inverse gaussian with log link under 300-886

222 326, 153 0.201 0.192 −10 6.291 30 0.261 0.252 −28 4.494 −3 0.180 0.177 5 5.176 30

Inverse gaussian with 1
µ2 link under 300-886

250 326, 124 0.174 0.166 −12 5.058 25 0.193 0.186 −15 3.833 9 0.188 0.184 17 6.266 41

Table A15: AIC scores and out-of-sample validation figures of the normal, gamma and inverse gaussian GLMs
of BEL with identity, inverse, log and 1

µ2 link functions under 150-443 and 300-886 after the final

iteration. MAEs in %. Highlighted in green and red respectively the best and worst AIC scores
and validation figures.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

4 Thin plate regression splines under normal with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.632 0.604 28 22.019 116 0.345 0.334 −8 13.247 65 0.479 0.469 66 21.072 139
20 150 0.406 0.388 0 11.330 44 0.375 0.362 −42 7.254 −12 0.341 0.334 −6 7.709 24
30 150 0.399 0.382 −11 12.268 59 0.465 0.449 −61 5.744 −6 0.314 0.307 −26 6.116 29
40 150 0.371 0.355 −8 11.415 53 0.480 0.463 −64 6.380 −16 0.340 0.332 −34 5.283 13
50 150 0.392 0.375 −13 12.079 59 0.520 0.503 −70 5.961 −12 0.365 0.358 −39 5.368 19
60 150 0.306 0.292 −15 9.833 48 0.405 0.391 −51 5.283 −2 0.273 0.267 −10 6.484 39
70 150 0.272 0.260 −15 9.896 56 0.321 0.310 −35 5.227 22 0.232 0.228 12 10.460 69
80 150 0.249 0.238 −17 8.627 49 0.308 0.297 −36 4.588 16 0.205 0.201 9 9.100 60
90 150 0.261 0.250 −17 9.262 54 0.325 0.314 −39 4.639 18 0.195 0.191 5 9.340 62

100 150 0.254 0.243 −18 9.593 55 0.340 0.328 −42 4.626 17 0.196 0.192 3 9.312 62
110 150 0.255 0.244 −18 9.407 54 0.336 0.324 −40 4.640 18 0.207 0.203 4 9.325 62
120 150 0.243 0.233 −16 8.474 48 0.307 0.296 −38 4.023 13 0.186 0.182 1 7.819 51
130 150 0.241 0.230 −16 8.481 49 0.308 0.298 −37 4.108 13 0.183 0.179 2 8.075 53
140 150 0.235 0.225 −15 8.018 45 0.295 0.285 −35 3.865 10 0.173 0.169 2 7.182 47
150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

5 Thin plate regression splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 27 23.278 125 0.344 0.332 −6 15.238 78 0.493 0.483 69 23.151 153
20 100 0.387 0.370 1 10.371 35 0.364 0.352 −40 7.855 −20 0.335 0.328 −6 7.454 14
30 100 0.382 0.366 −10 11.235 50 0.454 0.439 −60 6.247 −14 0.317 0.310 −28 5.603 18
40 100 0.368 0.352 −11 10.931 48 0.463 0.447 −61 6.266 −16 0.337 0.329 −33 5.343 12
50 100 0.355 0.339 −11 10.086 40 0.481 0.465 −64 7.752 −28 0.351 0.344 −37 5.481 0
60 100 0.344 0.329 −9 10.015 40 0.490 0.474 −66 8.152 −30 0.364 0.356 −38 5.593 −3
70 100 0.339 0.324 −6 10.035 45 0.476 0.460 −64 7.578 −27 0.345 0.337 −37 5.078 0
80 100 0.295 0.282 −11 9.397 49 0.404 0.390 −51 5.513 −6 0.241 0.236 −11 5.820 34
90 100 0.296 0.283 −12 9.694 52 0.393 0.380 −49 5.155 0 0.206 0.202 −7 6.605 41

100 100 0.287 0.274 −11 9.431 48 0.397 0.383 −50 5.402 −5 0.202 0.198 −9 5.945 36

8 Thin plate regression splines under normal with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.639 0.611 27 23.176 125 0.340 0.329 −3 15.517 80 0.516 0.505 73 23.627 156
20 150 0.375 0.359 3 9.604 26 0.334 0.322 −33 8.378 −24 0.341 0.333 1 7.711 10
30 150 0.361 0.345 −7 10.444 41 0.415 0.401 −52 6.961 −19 0.304 0.297 −21 5.871 13
40 150 0.356 0.340 −5 10.098 36 0.425 0.410 −54 7.920 −28 0.311 0.304 −27 5.647 −1
50 150 0.339 0.324 −7 9.712 33 0.418 0.404 −53 7.746 −27 0.311 0.304 −26 5.596 0
60 150 0.325 0.311 −6 9.037 26 0.411 0.397 −52 8.706 −34 0.310 0.304 −26 5.850 −8
70 150 0.325 0.311 −4 9.180 31 0.429 0.414 −55 8.773 −34 0.326 0.319 −30 5.912 −9
80 150 0.309 0.296 −5 8.618 29 0.430 0.415 −55 8.984 −35 0.336 0.329 −29 6.382 −9
90 150 0.313 0.299 −5 8.981 32 0.384 0.371 −48 7.390 −26 0.300 0.293 −26 5.430 −4

100 150 0.328 0.313 −6 9.910 47 0.400 0.387 −51 5.572 −12 0.291 0.285 −25 5.064 13
110 150 0.256 0.245 −10 7.985 38 0.326 0.315 −40 4.655 −6 0.201 0.197 −6 5.002 28
120 150 0.253 0.242 −9 7.340 30 0.321 0.310 −39 5.542 −14 0.209 0.204 −5 4.541 20
130 150 0.252 0.241 −9 7.767 34 0.326 0.315 −40 5.197 −11 0.205 0.201 −5 4.770 24
140 150 0.245 0.234 −8 7.592 33 0.322 0.311 −41 5.315 −15 0.197 0.193 −7 4.317 20
150 150 0.217 0.208 −11 6.477 32 0.239 0.231 −26 3.652 2 0.179 0.175 6 5.578 34

10 Thin plate regression splines under normal with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.642 0.614 27 23.354 126 0.344 0.332 −5 15.463 80 0.509 0.499 71 23.654 156
20 150 0.382 0.365 2 10.101 33 0.341 0.329 −34 7.780 −18 0.338 0.331 1 7.728 18
30 150 0.370 0.354 −7 10.922 45 0.416 0.402 −52 6.497 −14 0.305 0.299 −20 6.103 18
40 150 0.354 0.338 −7 10.412 39 0.404 0.391 −51 6.747 −20 0.308 0.301 −24 5.600 8
50 150 0.347 0.331 −7 10.119 38 0.426 0.412 −54 7.258 −24 0.310 0.304 −27 5.467 4
60 150 0.342 0.327 −4 9.766 34 0.400 0.387 −50 7.600 −26 0.298 0.292 −23 5.615 0
70 150 0.334 0.319 −4 9.601 35 0.428 0.414 −55 8.158 −30 0.318 0.311 −29 5.618 −5
80 150 0.315 0.301 −5 9.093 35 0.432 0.418 −55 8.113 −29 0.334 0.327 −29 6.087 −3
90 150 0.323 0.309 −5 9.436 38 0.388 0.375 −49 6.558 −20 0.297 0.291 −26 5.194 2

100 150 0.309 0.296 −6 8.722 27 0.409 0.395 −54 8.780 −36 0.261 0.255 −27 4.994 −9
110 150 0.309 0.295 −6 8.542 26 0.411 0.397 −54 8.711 −37 0.284 0.278 −33 4.768 −15
120 150 0.206 0.197 −9 5.768 25 0.216 0.209 −23 3.806 −4 0.164 0.161 5 4.519 24
130 150 0.205 0.196 −10 5.759 24 0.226 0.218 −24 3.952 −5 0.175 0.172 4 4.579 24
140 150 0.214 0.205 −10 6.761 34 0.228 0.220 −25 3.363 5 0.167 0.163 6 5.762 36
150 150 0.212 0.203 −10 7.070 37 0.230 0.223 −24 3.575 8 0.173 0.170 8 6.337 40

Table A16: Out-of-sample validation figures of selected GAMs of BEL with varying spline function number per
dimension and fixed spline function type under 150-443 after each tenth and the finally selected
smooth function. MAEs in %.
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J = 4, k = 50 J = 4, k = 100 J = 4, k = 150 J = 10, k = 50 J = 10, k = 100 J = 10, k = 150
k df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign

1 2.858 2−16 *** 2.350 2−16 *** 1.948 2−16 *** 9.000 2−16 *** 8.941 2−16 *** 7.724 2−16 ***
2 3.000 2−16 *** 2.104 2−16 *** 1.000 2−16 *** 7.857 2−16 *** 4.436 2−16 *** 1.000 2−16 ***
3 3.000 2−16 *** 2.901 2−16 *** 2.922 2−16 *** 5.600 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
4 2.997 2−16 *** 2.962 2−16 *** 2.998 2−16 *** 7.073 2−16 *** 6.791 2−16 *** 7.288 2−16 ***
5 2.729 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 8.679 2−16 *** 8.870 2−16 *** 8.210 2−16 ***
6 3.000 2−16 *** 3.000 2−16 *** 1.043 2−16 *** 3.417 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
7 3.000 2−16 *** 2.806 2−16 *** 2.841 2−16 *** 7.990 2−16 *** 8.608 2−16 *** 1.000 2−16 ***
8 3.000 2−16 *** 2.956 2−16 *** 2.961 2−16 *** 8.282 2−16 *** 8.292 2−16 *** 8.122 2−16 ***
9 1.000 2−16 *** 1.000 2−16 *** 2.223 2−16 *** 7.710 2−16 *** 6.510 2−16 *** 6.549 2−16 ***

10 2.991 2−16 *** 2.924 2−16 *** 3.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***

11 2.587 2−16 *** 2.922 2−16 *** 2.889 2−16 *** 6.535 2−16 *** 7.014 2−16 *** 5.672 2−16 ***
12 2.645 2−16 *** 1.874 2−16 *** 1.000 2−16 *** 7.235 2−16 *** 7.284 2−16 *** 8.346 2−16 ***
13 2.244 2−16 *** 2.425 2−16 *** 1.000 2−16 *** 2.372 2−16 *** 2.531 2−16 *** 1.000 2−16 ***
14 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
15 3.000 2−16 *** 1.000 2−16 *** 2.285 2−16 *** 5.430 2−16 *** 5.640 2−16 *** 4.437 2−16 ***
16 1.000 2−16 *** 1.000 2−16 *** 2.783 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
17 2.344 2−16 *** 1.670 2−16 *** 1.646 2−16 *** 3.886 2−16 *** 1.610 2−16 *** 1.624 2−16 ***
18 3.000 2−16 *** 3.000 2−16 *** 3.000 2−16 *** 8.751 2−16 *** 8.620 1.4−5 *** 5.367 6.9−5 ***
19 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
20 1.497 2−16 *** 1.501 2−16 *** 2.148 2−16 *** 1.754 2−16 *** 1.000 2−16 *** 3.141 8.1−16 ***

21 1.441 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
22 1.770 2−16 *** 2.192 2−16 *** 1.400 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 3.985 1.9−9 ***
23 2.395 2−16 *** 2.746 2−16 *** 2.911 2−16 *** 2.057 2−16 *** 1.428 2−16 *** 2.663 2−16 ***
24 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 2.964 2−16 *** 1.000 3.3−13 *** 1.000 1.1−13 ***
25 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
26 1.000 2−16 *** 1.485 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
27 1.000 2−16 *** 1.000 2−16 *** 1.000 2.2−10 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 1.6−10 ***
28 1.000 2−16 *** 2.607 2−16 *** 1.839 2−16 *** 1.000 2−16 *** 2.780 2−16 *** 1.914 2−16 ***
29 1.000 2−16 *** 1.000 2−16 *** 1.809 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
30 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 6.740 2−16 *** 6.416 2−16 *** 6.508 2−16 ***

31 1.000 2−16 *** 1.000 2−16 *** 1.000 2.4−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
32 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 ***
33 1.000 2−16 *** 2.055 4.9−15 *** 1.893 2.2−15 *** 7.111 2−16 *** 7.175 6.3−12 *** 6.728 2−16 ***
34 1.000 3.2−16 *** 1.000 2.9−16 *** 1.000 8.7−11 *** 1.000 2−16 *** 1.213 2−16 *** 1.635 4.9−16 ***
35 3.000 2−16 *** 1.000 2−16 *** 1.000 2.5−16 *** 4.780 2−16 *** 4.013 2−16 *** 4.224 2−16 ***
36 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 7.825 4.8−16 *** 7.867 1.1−15 *** 7.738 2.3−3 **
37 1.000 2−16 *** 1.000 2−16 *** 1.000 2−16 *** 1.000 4.6−16 *** 1.000 7.5−16 *** 1.000 2−16 ***
38 2.512 1.1−14 *** 2.303 2−16 *** 2.057 2−16 *** 1.233 2−16 *** 1.000 2−16 *** 1.000 1.1−4 ***
39 1.000 2.7−12 *** 1.000 1.2−13 *** 1.000 1.9−13 *** 1.000 1.1−15 *** 1.000 2.6−16 *** 1.000 1.2−14 ***
40 1.826 6.4−11 *** 1.000 2−16 *** 1.915 3.6−15 *** 1.000 1.2−13 *** 1.514 2−16 *** 1.000 2−16 ***

41 2.668 7.5−16 *** 2.701 5.3−15 *** 1.787 9.8−7 *** 1.823 8.1−12 *** 1.319 9.4−15 *** 1.000 2−16 ***
42 1.000 1.1−15 *** 1.000 2−16 *** 1.000 2−15 *** 1.000 2.9−12 *** 1.000 8−12 *** 5.275 3.8−4 ***
43 1.000 3.8−10 *** 1.000 9.5−10 *** 1.000 2−9 *** 1.000 3.3−10 *** 1.000 7.7−11 *** 1.000 1.1−10 ***
44 1.713 1.3−8 *** 1.887 8.2−9 *** 1.892 6.2−9 *** 2.109 6−8 *** 1.779 5.3−8 *** 2.061 3.4−8 ***
45 1.000 5.7−9 *** 1.000 6.4−9 *** 1.000 1.9−8 *** 1.000 8−9 *** 1.000 2.1−8 *** 1.000 8.8−9 ***
46 1.917 3.5−9 *** 1.000 2−16 *** 1.000 1.3−15 *** 1.305 1.9−6 *** 1.610 1.1−6 *** 1.000 8.7−8 ***
47 1.451 1.2−6 *** 1.507 5.8−7 *** 1.234 1−6 *** 1.000 7.7−13 *** 1.000 5.5−13 *** 1.000 7.4−12 ***
48 2.753 3.2−7 *** 2.863 6.5−8 *** 2.804 2.1−8 *** 1.000 2.4−8 *** 1.000 7.8−8 *** 1.000 2.9−6 ***
49 1.000 5.5−7 *** 1.000 4.7−14 *** 1.000 1.6−11 *** 1.000 6.9−7 *** 1.000 9.6−12 *** 1.000 1.6−12 ***
50 1.000 9.2−7 *** 1.372 8.3−11 *** 1.000 1.1−12 *** 1.000 1.1−6 *** 1.000 2−10 *** 1.000 2−11 ***

51 1.004 2−16 *** 1.000 2−16 *** 1.000 1.1−6 *** 1.000 1.3−6 ***
52 2.839 2−16 *** 1.334 2−16 *** 1.000 4.3−13 *** 1.000 3−13 ***
53 2.640 2−16 *** 2.421 2−16 *** 1.000 4.7−10 *** 1.000 7.1−11 ***
54 2.664 2−16 *** 1.000 2−16 *** 3.237 2.8−6 *** 3.168 4.9−6 ***
55 1.000 9.2−9 *** 1.000 3.1−6 *** 3.906 5.8−8 *** 3.493 1−9 ***
56 1.000 2.8−9 *** 2.376 2.3−8 *** 1.098 3.5−5 *** 3.513 2−16 ***
57 1.000 3.3−15 *** 1.000 2.8−13 *** 5.574 5.1−3 ** 5.019 6.7−2 .
58 1.000 2−16 *** 1.000 2−16 *** 1.000 7.3−5 *** 1.000 1−5 ***
59 1.000 1.2−11 *** 1.000 2−11 *** 1.000 1.8−6 *** 1.000 8.8−8 ***
60 1.000 2−16 *** 1.000 2−16 *** 3.717 5.2−4 *** 3.286 5.6−3 **

61 1.000 7.5−11 *** 1.000 7.1−11 *** 1.000 6.7−5 *** 1.000 1.5−5 ***
62 2.613 4.2−4 *** 2.868 2−16 *** 1.000 1.1−5 *** 1.000 4.6−6 ***
63 1.000 7.9−15 *** 1.867 1.6−14 *** 4.210 6.6−3 ** 3.543 7.3−4 ***
64 1.000 2.4−6 *** 1.000 1.2−6 *** 1.000 1.7−4 *** 1.000 3.4−4 ***
65 2.960 2.3−13 *** 2.976 2−16 *** 2.799 7.1−3 ** 2.861 3−3 **
66 1.904 2−16 *** 2.115 2−16 *** 3.054 1.7−3 ** 3.159 8.8−6 ***
67 2.859 9.1−14 *** 2.778 1.1−13 *** 3.671 7.6−3 ** 3.788 8.4−4 ***
68 1.000 2.9−1 1.000 5.2−11 *** 1.000 4−4 *** 1.000 1.2−4 ***
69 2.797 2.8−3 ** 2.954 2.2−3 ** 1.000 2.8−3 ** 1.000 3.3−3 **
70 1.000 2.4−6 *** 1.000 1.5−6 *** 1.000 6.7−3 ** 1.000 1.1−3 **

71 2.957 6−14 *** 2.996 6.1−15 *** 1.000 8.6−3 ** 1.000 5−3 **
72 2.612 1.4−13 *** 2.101 6.3−11 *** 1.000 1.2−2 * 1.000 8.9−3 **
73 1.196 2−16 *** 3.000 2−16 *** 1.000 1.5−2 * 1.000 6.1−5 ***
74 2.994 3.8−6 *** 2.559 1.8−3 ** 3.644 1.2−1 2.988 1.4−1
75 1.000 1.7−14 *** 1.000 3−14 *** 1.000 1.7−2 * 1.000 1.8−2 *

Table A17: Effective degrees of freedom, p-values and significance codes per dimension of GAMs of BEL built
up of thin plate regression splines with normal random component and identity link function under
150-443 for spline function numbers J ∈ {4, 10} per dimension at stages k ∈ {50, 100, 150}. The
confidence levels corresponding to the indicated significance codes are ’***’ = 0.001, ’**’ = 0.01,
’*’ = 0.05, ’.’ = 0.1, ’ ’ = 1.
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J = 4, k = 50 J = 4, k = 100 J = 4, k = 150 J = 10, k = 50 J = 10, k = 100 J = 10, k = 150
k df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign df p-val sign

76 1.000 4.4−13 *** 2.334 3.8−14 *** 2.469 1−1 2.077 1.8−1
77 1.353 4−9 *** 1.411 8.8−9 *** 1.000 2.5−2 * 1.000 1.1−2 *
78 1.000 1.5−5 *** 1.000 6.5−6 *** 1.000 2−16 *** 1.000 1.6−4 ***
79 1.000 3−5 *** 1.000 1.5−5 *** 5.186 1.5−6 *** 1.000 2−16 ***
80 1.000 1−7 *** 1.000 7.8−8 *** 1.892 2.2−2 * 1.795 1.9−2 *

81 2.725 1.3−4 *** 2.739 7.1−5 *** 1.000 5.2−6 *** 1.000 5.8−1
82 1.000 7.6−5 *** 2.175 1.4−5 *** 1.000 1.8−3 ** 1.000 5.1−1
83 2.240 1.3−3 ** 2.075 9−4 *** 7.020 2−16 *** 4.809 2.9−3 **
84 1.000 6.8−5 *** 2.902 1.5−5 *** 4.003 1.5−1 4.722 9.8−3 **
85 1.000 7.5−5 *** 1.000 4−6 *** 1.000 1−9 *** 1.000 1.8−4 ***
86 1.000 3.7−4 *** 1.000 7.7−4 *** 3.115 1.2−1 2.748 1.2−1
87 1.000 3.4−4 *** 1.000 9.1−5 *** 5.294 1.4−1 5.598 1.3−1
88 1.000 1.9−4 *** 1.000 9.6−5 *** 2.263 1.5−1 1.788 2.5−1
89 2.828 2.1−3 ** 3.000 6−5 *** 1.000 3.4−4 *** 1.000 3.3−4 ***
90 1.000 7.8−4 *** 1.000 5.6−4 *** 1.000 3.7−2 * 1.000 3.8−2 *

91 1.000 2.5−3 ** 1.000 2.9−3 ** 1.000 1.8−3 ** 1.000 1.2−3 **
92 1.000 3.8−3 ** 1.000 3.5−3 ** 1.000 1.7−2 * 1.000 1.2−2 *
93 1.000 1.8−3 ** 1.000 1.1−3 ** 1.000 3.8−2 * 1.000 2.8−2 *
94 2.776 3.6−5 *** 1.000 1.8−7 *** 5.921 4.2−3 ** 3.962 2−16 ***
95 2.103 4.9−2 * 1.974 1.3−1 8.154 2−16 *** 2.290 2−16 ***
96 2.023 1.2−4 *** 1.000 4.6−10 *** 1.000 2.8−12 *** 1.000 1.6−5 ***
97 2.811 1.5−2 * 2.873 5.9−3 ** 3.748 7.1−4 *** 1.000 1.2−6 ***
98 1.000 7.1−3 ** 1.000 1.1−2 * 1.000 3.9−6 *** 7.349 2.8−1
99 1.000 1.4−2 * 1.000 1.9−2 * 2.149 1.2−3 ** 1.000 2.8−8 ***

100 2.764 2.9−2 * 2.321 9−2 . 1.000 3.1−3 ** 1.000 2.1−1

101 1.000 1.1−4 *** 1.000 8.2−10 ***
102 1.000 7.7−2 . 1.000 1.6−2 *
103 1.000 2.9−3 ** 4.084 5.8−4 ***
104 1.000 6.8−5 *** 1.000 3.2−2 *
105 1.000 9.3−3 ** 1.000 6.8−2 .
106 1.000 2.1−9 *** 1.000 5.2−3 **
107 1.000 1.9−2 * 3.397 1−1
108 2.187 9.6−2 . 1.248 3.4−1
109 1.000 2.1−3 ** 3.079 3.9−1
110 1.000 4.6−2 * 1.000 3.9−4 ***

111 1.000 2−16 *** 0.979 4.3−8 ***
112 1.000 2.9−2 * 8.555 2−16 ***
113 1.000 9.5−1 8.952 1.7−12 ***
114 1.644 9.6−2 . 1.000 2−16 ***
115 1.000 2−2 * 1.000 2−16 ***
116 1.000 1.8−2 * 1.000 1.7−13 ***
117 1.000 4.8−3 ** 2.988 3.4−13 ***
118 1.000 2.4−2 * 8.401 1.2−10 ***
119 2.704 8.3−2 . 2.493 4.7−5 ***
120 1.000 1.8−2 * 1.000 4.1−7 ***

121 1.413 6.7−1 1.000 9−5 ***
122 1.886 6.2−1 2.745 1.2−3 **
123 1.000 1.4−5 *** 1.000 3.4−3 **
124 2.499 1.8−1 1.000 1.5−2 *
125 1.000 3.6−2 * 1.000 1.4−2 *
126 2.416 1−1 1.000 5.8−3 **
127 1.000 5.1−5 *** 3.120 5.7−2 .
128 1.000 3.8−2 * 1.000 9.2−4 ***
129 1.000 1.3−3 ** 1.000 3.9−3 **
130 1.000 5.7−2 . 3.778 1.7−1

131 1.000 1.3−2 * 2.752 2.7−2 *
132 1.000 1.2−2 * 1.000 6.9−3 **
133 1.970 2.5−1 1.000 4.8−3 **
134 1.000 3.5−2 * 1.000 5.5−2 .
135 1.000 5.9−4 *** 1.000 3.8−2 *
136 1.176 7.1−3 ** 5.289 1.4−1
137 2.357 3.4−1 1.000 3.7−2 *
138 1.000 6.7−2 . 1.000 2−4 ***
139 1.000 7.9−2 . 1.000 5.1−3 **
140 1.000 6.9−2 . 1.000 1.6−1

141 1.000 4.7−2 * 8.453 2.5−3 **
142 1.000 1.3−3 ** 1.000 4−2 *
143 2.602 4.1−2 * 3.975 1.4−1
144 1.631 4.6−1 1.000 4.2−4 ***
145 1.000 8.3−2 . 1.000 3.7−3 **
146 1.000 1−2 * 2.147 1.9−1
147 1.000 3.6−2 * 1.000 5−2 .
148 1.251 1.6−1 1.000 4.1−2 *
149 2.376 2.1−1 1.000 5.4−2 .
150 1.482 2−1 1.000 6.3−2 .

Table A17: Cont.



182 Appendix

k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

5 Thin plate regression splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 27 23.278 125 0.344 0.332 −6 15.238 78 0.493 0.483 69 23.151 153
20 100 0.387 0.370 1 10.371 35 0.364 0.352 −40 7.855 −20 0.335 0.328 −6 7.454 14
30 100 0.382 0.366 −10 11.235 50 0.454 0.439 −60 6.247 −14 0.317 0.310 −28 5.603 18
40 100 0.368 0.352 −11 10.931 48 0.463 0.447 −61 6.266 −16 0.337 0.329 −33 5.343 12
50 100 0.355 0.339 −11 10.086 40 0.481 0.465 −64 7.752 −28 0.351 0.344 −37 5.481 0
60 100 0.344 0.329 −9 10.015 40 0.490 0.474 −66 8.152 −30 0.364 0.356 −38 5.593 −3
70 100 0.339 0.324 −6 10.035 45 0.476 0.460 −64 7.578 −27 0.345 0.337 −37 5.078 0
80 100 0.295 0.282 −11 9.397 49 0.404 0.390 −51 5.513 −6 0.241 0.236 −11 5.820 34
90 100 0.296 0.283 −12 9.694 52 0.393 0.380 −49 5.155 0 0.206 0.202 −7 6.605 41

100 100 0.287 0.274 −11 9.431 48 0.397 0.383 −50 5.402 −5 0.202 0.198 −9 5.945 36

5 Cubic regression splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.637 0.609 28 22.739 122 0.337 0.326 −4 14.733 75 0.505 0.494 71 22.781 150
20 100 0.388 0.371 2 10.094 32 0.358 0.346 −40 8.256 −25 0.319 0.313 −5 7.161 10
30 100 0.389 0.372 −6 11.426 50 0.436 0.421 −55 6.652 −14 0.289 0.283 −19 5.849 22
40 100 0.359 0.343 −9 10.508 41 0.448 0.433 −59 7.171 −23 0.310 0.303 −29 5.175 6
50 100 0.345 0.330 −9 9.906 35 0.476 0.460 −63 8.736 −34 0.328 0.321 −34 5.373 −5
60 100 0.338 0.323 −7 9.817 34 0.475 0.459 −63 9.192 −37 0.330 0.324 −34 5.491 −8
70 100 0.307 0.294 −8 9.341 47 0.430 0.416 −58 6.081 −18 0.234 0.229 −26 3.871 15
80 100 0.289 0.277 −13 10.157 55 0.410 0.396 −53 5.106 0 0.237 0.232 −11 6.939 43
90 100 0.283 0.271 −13 10.307 56 0.407 0.394 −53 5.067 1 0.229 0.224 −10 7.035 44

100 100 0.268 0.256 −12 9.903 52 0.399 0.386 −51 5.182 −2 0.226 0.221 −9 6.533 40

5 Duchon splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.753 0.720 −4 20.570 98 0.428 0.413 −39 11.806 49 0.408 0.399 6 15.241 93
20 100 0.704 0.673 −22 17.488 74 0.441 0.426 −51 8.606 31 0.380 0.372 −16 11.600 66
30 100 0.661 0.632 −32 19.699 95 0.376 0.363 −40 14.235 73 0.319 0.312 11 19.168 124
40 100 0.663 0.634 −21 18.426 84 0.292 0.282 −18 14.138 73 0.377 0.370 33 19.007 123
50 100 0.666 0.636 −17 18.534 86 0.287 0.277 −12 14.785 76 0.410 0.402 41 19.896 130
56 100 0.666 0.636 −18 18.532 86 0.288 0.279 −14 14.643 75 0.406 0.397 40 19.757 129

5 Eilers and Marx style P-splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 29 22.836 123 0.344 0.332 −9 13.951 70 0.471 0.461 65 21.854 144
20 100 0.389 0.372 1 10.496 37 0.365 0.353 −41 7.778 −20 0.336 0.329 −8 7.402 13
30 100 0.384 0.367 −9 11.377 53 0.459 0.444 −60 6.138 −13 0.320 0.313 −30 5.512 17
40 100 0.371 0.354 −10 10.977 49 0.454 0.439 −60 6.095 −16 0.327 0.320 −34 5.092 11
50 100 0.357 0.341 −9 10.459 45 0.467 0.451 −62 6.909 −22 0.335 0.328 −34 5.059 6
60 100 0.339 0.324 −10 9.932 43 0.492 0.476 −66 7.640 −28 0.365 0.357 −40 5.155 −2
70 100 0.343 0.328 −10 10.523 52 0.546 0.527 −75 7.681 −27 0.366 0.358 −46 4.576 2
80 100 0.334 0.319 −7 9.920 45 0.520 0.503 −67 8.655 −29 0.346 0.339 −36 5.036 1
90 100 0.228 0.218 −10 6.973 35 0.279 0.269 −31 4.299 0 0.208 0.204 3 5.810 34

100 100 0.225 0.215 −11 6.897 34 0.256 0.248 −30 3.716 2 0.164 0.161 1 5.212 32

Table A18: Out-of-sample validation figures of selected GAMs of BEL with varying spline function type and
fixed spline function number of 5 per dimension under 100-443 after each tenth and the finally
selected smooth function. MAEs in %.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

10 Thin plate regression splines under normal with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.642 0.614 27 23.354 126 0.344 0.332 −5 15.463 80 0.509 0.499 71 23.654 156
20 150 0.382 0.365 2 10.101 33 0.341 0.329 −34 7.780 −18 0.338 0.331 1 7.728 18
30 150 0.370 0.354 −7 10.922 45 0.416 0.402 −52 6.497 −14 0.305 0.299 −20 6.103 18
40 150 0.354 0.338 −7 10.412 39 0.404 0.391 −51 6.747 −20 0.308 0.301 −24 5.600 8
50 150 0.347 0.331 −7 10.119 38 0.426 0.412 −54 7.258 −24 0.310 0.304 −27 5.467 4
60 150 0.342 0.327 −4 9.766 34 0.400 0.387 −50 7.600 −26 0.298 0.292 −23 5.615 0
70 150 0.334 0.319 −4 9.601 35 0.428 0.414 −55 8.158 −30 0.318 0.311 −29 5.618 −5
80 150 0.315 0.301 −5 9.093 35 0.432 0.418 −55 8.113 −29 0.334 0.327 −29 6.087 −3
90 150 0.323 0.309 −5 9.436 38 0.388 0.375 −49 6.558 −20 0.297 0.291 −26 5.194 2

100 150 0.309 0.296 −6 8.722 27 0.409 0.395 −54 8.780 −36 0.261 0.255 −27 4.994 −9
110 150 0.309 0.295 −6 8.542 26 0.411 0.397 −54 8.711 −37 0.284 0.278 −33 4.768 −15
120 150 0.206 0.197 −9 5.768 25 0.216 0.209 −23 3.806 −4 0.164 0.161 5 4.519 24
130 150 0.205 0.196 −10 5.759 24 0.226 0.218 −24 3.952 −5 0.175 0.172 4 4.579 24
140 150 0.214 0.205 −10 6.761 34 0.228 0.220 −25 3.363 5 0.167 0.163 6 5.762 36
150 150 0.212 0.203 −10 7.070 37 0.230 0.223 −24 3.575 8 0.173 0.170 8 6.337 40

10 Cubic regression splines under normal with identity link

0 125 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 125 0.638 0.610 27 23.397 127 0.341 0.329 −3 15.829 82 0.519 0.509 73 23.960 158
20 125 0.380 0.364 2 10.038 34 0.339 0.328 −34 7.650 −16 0.345 0.338 0 7.865 18
30 125 0.377 0.360 −6 11.458 53 0.411 0.397 −50 6.035 −5 0.309 0.302 −14 6.976 30
40 125 0.364 0.348 −10 10.929 47 0.421 0.407 −53 5.791 −10 0.315 0.308 −25 5.824 18
50 125 0.348 0.333 −11 10.437 44 0.436 0.421 −56 6.263 −15 0.319 0.312 −27 5.636 13
60 125 0.342 0.327 −5 9.791 36 0.403 0.389 −50 7.282 −23 0.308 0.302 −23 5.789 4
70 125 0.355 0.340 −3 10.502 48 0.442 0.427 −56 7.001 −20 0.327 0.320 −30 5.570 6
80 125 0.349 0.334 −2 10.275 46 0.434 0.419 −55 7.159 −22 0.326 0.319 −29 5.592 4
90 125 0.282 0.269 −5 7.978 37 0.275 0.266 −30 4.426 −3 0.215 0.210 −2 5.088 25

100 125 0.263 0.251 −5 7.109 29 0.301 0.291 −37 5.637 −17 0.200 0.196 −8 3.969 12
110 125 0.255 0.244 −7 6.999 30 0.303 0.292 −37 5.435 −15 0.202 0.198 −6 4.230 16
120 125 0.257 0.246 −7 7.052 30 0.304 0.294 −37 5.371 −14 0.200 0.196 −6 4.232 17
125 125 0.254 0.243 −7 7.139 31 0.299 0.289 −36 5.189 −13 0.197 0.192 −6 4.228 17

10 Duchon splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.786 0.752 −5 22.143 110 0.445 0.430 −44 12.588 57 0.406 0.397 1 16.238 102
20 100 0.783 0.749 −32 20.489 101 0.494 0.477 −62 11.319 58 0.357 0.350 −21 15.316 98
30 100 0.782 0.748 −39 21.134 98 0.538 0.520 −59 12.715 64 0.422 0.413 −3 18.621 121
40 100 0.816 0.780 −45 22.125 98 0.559 0.540 −63 13.071 65 0.450 0.440 −10 18.616 119
50 100 0.823 0.787 −45 21.473 96 0.555 0.536 −63 12.672 63 0.451 0.441 −10 18.114 116
53 100 0.821 0.785 −44 21.348 94 0.545 0.526 −61 12.593 62 0.446 0.437 −8 18.091 116

10 Eilers and Marx style P-splines under normal with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.648 0.619 27 23.688 128 0.349 0.337 −7 15.566 80 0.506 0.495 71 23.889 158
20 150 0.398 0.380 1 10.946 45 0.358 0.346 −37 7.063 −7 0.338 0.331 1 8.102 31
30 150 0.393 0.376 −9 11.983 59 0.435 0.421 −55 5.575 −2 0.299 0.293 −17 6.928 36
40 150 0.371 0.355 −8 11.374 55 0.449 0.434 −57 5.738 −9 0.314 0.308 −26 5.770 23
50 150 0.363 0.347 −9 10.956 50 0.460 0.444 −60 6.249 −14 0.315 0.308 −28 5.492 17
60 150 0.349 0.334 −8 10.479 46 0.443 0.428 −56 6.526 −17 0.305 0.298 −26 5.427 14
70 150 0.349 0.333 −6 10.629 51 0.464 0.449 −60 6.687 −17 0.325 0.318 −29 5.501 13
80 150 0.350 0.335 −7 10.465 48 0.468 0.452 −60 7.036 −19 0.335 0.328 −29 5.563 11
90 150 0.350 0.335 −7 10.639 51 0.470 0.454 −60 6.683 −17 0.330 0.323 −29 5.453 14

100 150 0.334 0.319 −8 9.960 46 0.468 0.452 −60 7.170 −20 0.339 0.332 −29 5.835 11
110 150 0.337 0.323 −9 10.249 48 0.450 0.435 −58 6.171 −15 0.329 0.322 −31 5.267 12
120 150 0.339 0.324 −7 10.283 45 0.433 0.419 −55 6.420 −17 0.320 0.313 −28 5.340 10
130 150 0.269 0.257 −13 8.912 43 0.365 0.352 −46 4.891 −4 0.244 0.238 −12 5.503 30
140 150 0.255 0.244 −12 8.157 36 0.356 0.344 −44 5.415 −10 0.246 0.241 −10 5.196 24
150 150 0.261 0.250 −12 8.514 39 0.368 0.355 −46 5.267 −9 0.245 0.240 −12 5.162 25

Table A19: Out-of-sample validation figures of selected GAMs of BEL with varying spline function type and
fixed spline function number of 10 per dimension under between 100-443 and 150-443 after each
tenth and the finally selected smooth function. MAEs in %.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

4 Thin plate regression splines under normal with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.632 0.604 28 22.019 116 0.345 0.334 −8 13.247 65 0.479 0.469 66 21.072 139
20 150 0.406 0.388 0 11.330 44 0.375 0.362 −42 7.254 −12 0.341 0.334 −6 7.709 24
30 150 0.399 0.382 −11 12.268 59 0.465 0.449 −61 5.744 −6 0.314 0.307 −26 6.116 29
40 150 0.371 0.355 −8 11.415 53 0.480 0.463 −64 6.380 −16 0.340 0.332 −34 5.283 13
50 150 0.392 0.375 −13 12.079 59 0.520 0.503 −70 5.961 −12 0.365 0.358 −39 5.368 19
60 150 0.306 0.292 −15 9.833 48 0.405 0.391 −51 5.283 −2 0.273 0.267 −10 6.484 39
70 150 0.272 0.260 −15 9.896 56 0.321 0.310 −35 5.227 22 0.232 0.228 12 10.460 69
80 150 0.249 0.238 −17 8.627 49 0.308 0.297 −36 4.588 16 0.205 0.201 9 9.100 60
90 150 0.261 0.250 −17 9.262 54 0.325 0.314 −39 4.639 18 0.195 0.191 5 9.340 62

100 150 0.254 0.243 −18 9.593 55 0.340 0.328 −42 4.626 17 0.196 0.192 3 9.312 62
110 150 0.255 0.244 −18 9.407 54 0.336 0.324 −40 4.640 18 0.207 0.203 4 9.325 62
120 150 0.243 0.233 −16 8.474 48 0.307 0.296 −38 4.023 13 0.186 0.182 1 7.819 51
130 150 0.241 0.230 −16 8.481 49 0.308 0.298 −37 4.108 13 0.183 0.179 2 8.075 53
140 150 0.235 0.225 −15 8.018 45 0.295 0.285 −35 3.865 10 0.173 0.169 2 7.182 47
150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

4 Thin plate regression splines under normal with log link in stagewise selection of length 5

0 40 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 40 0.788 0.754 8 23.011 114 0.423 0.408 26 22.471 118 0.700 0.685 94 28.248 186
20 40 0.452 0.432 −4 12.761 50 0.421 0.406 −48 7.626 −9 0.360 0.352 −11 8.166 29
30 40 0.462 0.442 −10 14.180 72 0.527 0.509 −68 6.209 −1 0.368 0.360 −32 7.116 36
40 40 0.438 0.419 −7 13.382 66 0.524 0.506 −69 6.189 −10 0.373 0.365 −39 5.913 20

4 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

0 70 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 70 0.625 0.598 31 21.068 110 0.332 0.321 −5 12.421 60 0.486 0.475 68 19.997 132
20 70 0.394 0.377 1 10.887 41 0.357 0.345 −39 7.283 −15 0.340 0.333 −6 7.641 19
30 70 0.383 0.367 −10 11.985 56 0.467 0.451 −62 5.853 −10 0.331 0.324 −30 5.742 22
40 70 0.289 0.277 −11 9.447 45 0.346 0.335 −41 5.159 0 0.256 0.250 −2 6.682 39
50 70 0.307 0.293 −11 10.339 53 0.389 0.376 −50 4.922 0 0.252 0.247 −11 6.294 38
60 70 0.308 0.295 −14 10.455 56 0.372 0.360 −49 4.377 7 0.222 0.218 −9 7.143 46
70 70 0.270 0.259 −16 9.999 57 0.325 0.314 −36 5.280 23 0.245 0.240 10 10.416 69

4 Thin plate regression splines under gamma with log link in stagewise selection of length 5

0 120 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 120 0.780 0.745 12 22.104 101 0.436 0.421 35 21.150 110 0.736 0.720 101 26.692 175
20 120 0.497 0.475 −1 14.721 71 0.457 0.442 −55 6.794 2 0.360 0.352 −16 8.605 41
30 120 0.437 0.418 −7 13.581 66 0.483 0.467 −61 6.042 −3 0.364 0.357 −28 7.018 31
40 120 0.418 0.400 −7 12.575 58 0.505 0.488 −67 6.530 −16 0.382 0.374 −40 5.844 11
50 120 0.416 0.397 −11 12.456 58 0.522 0.505 −70 6.310 −15 0.392 0.384 −42 5.536 12
60 120 0.407 0.390 −11 12.201 59 0.547 0.529 −74 6.706 −19 0.411 0.403 −47 5.476 8
70 120 0.407 0.390 −7 12.104 59 0.480 0.464 −64 5.741 −13 0.356 0.349 −39 5.173 12
80 120 0.274 0.262 −9 10.461 60 0.319 0.309 −31 5.409 23 0.257 0.251 16 10.636 70
90 120 0.252 0.241 −10 9.362 52 0.289 0.279 −31 4.594 17 0.195 0.191 9 8.753 58

100 120 0.239 0.229 −13 8.404 46 0.254 0.245 −26 4.423 18 0.182 0.178 13 8.710 57
110 120 0.251 0.240 −15 8.307 46 0.256 0.248 −28 4.442 19 0.174 0.171 11 8.708 57
120 120 0.252 0.241 −16 8.368 47 0.263 0.254 −29 4.585 20 0.171 0.167 9 8.830 58

4 Thin plate regression splines under inverse gaussian with identity link in stagewise selection of length 5

0 85 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 85 0.622 0.595 33 20.643 108 0.328 0.317 −3 12.034 57 0.488 0.478 68 19.473 129
20 85 0.443 0.423 0 13.176 63 0.412 0.398 −49 6.644 −1 0.336 0.329 −11 8.149 37
30 85 0.390 0.373 −10 12.087 60 0.481 0.465 −65 5.771 −9 0.334 0.327 −33 5.777 23
40 85 0.280 0.268 −9 9.655 48 0.339 0.327 −39 5.079 4 0.255 0.250 1 7.154 44
50 85 0.296 0.283 −10 9.742 48 0.374 0.362 −48 4.933 −3 0.242 0.237 −10 5.768 34
60 85 0.310 0.297 −14 10.405 54 0.367 0.354 −48 4.592 6 0.232 0.227 −8 7.165 46
70 85 0.272 0.260 −12 10.279 58 0.313 0.303 −34 5.205 22 0.249 0.244 12 10.286 67
80 85 0.247 0.236 −14 8.583 48 0.293 0.283 −33 4.594 15 0.217 0.213 10 8.776 58
85 85 0.250 0.239 −17 8.739 50 0.325 0.314 −38 4.585 14 0.218 0.213 6 8.871 58

4 Thin plate regression splines under inverse gaussian with log link in stagewise selection of length 5

0 75 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 75 0.778 0.744 14 21.780 95 0.446 0.431 40 20.520 106 0.756 0.740 104 25.969 170
20 75 0.491 0.470 −1 14.542 69 0.452 0.437 −55 6.759 0 0.362 0.355 −17 8.423 38
30 75 0.425 0.407 −7 13.142 62 0.472 0.456 −60 6.123 −5 0.366 0.358 −27 6.854 27
40 75 0.406 0.388 −7 12.151 54 0.499 0.482 −66 6.757 −19 0.389 0.381 −41 5.920 7
50 75 0.412 0.394 −11 12.543 56 0.513 0.495 −69 6.309 −16 0.396 0.388 −42 5.655 10
60 75 0.298 0.285 −12 9.519 47 0.392 0.379 −50 5.298 −4 0.265 0.260 −10 6.172 36
70 75 0.263 0.251 −13 9.789 56 0.298 0.288 −31 5.406 23 0.227 0.222 16 10.673 70
75 75 0.258 0.246 −14 9.181 52 0.300 0.290 −33 5.049 19 0.223 0.219 13 9.837 65

4 Thin plate regression splines under inverse gaussian with 1
µ2 link in stagewise selection of length 5

0 55 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 55 0.803 0.768 2 23.425 117 0.383 0.370 −24 15.197 76 0.435 0.426 27 19.713 127
20 55 0.448 0.428 8 12.645 61 0.331 0.320 −29 7.088 10 0.330 0.323 18 9.983 56
30 55 0.387 0.370 1 12.458 64 0.331 0.320 −29 6.701 20 0.311 0.304 22 11.099 70
40 55 0.341 0.326 −5 11.661 61 0.339 0.328 −35 5.920 17 0.271 0.266 11 9.851 63
45 55 0.343 0.328 −9 10.928 55 0.361 0.349 −38 6.111 12 0.300 0.294 9 9.451 59
50 55 0.336 0.321 −7 10.645 55 0.355 0.343 −40 5.319 8 0.250 0.245 7 8.525 54
55 55 0.328 0.314 −9 10.595 56 0.328 0.317 −35 5.325 15 0.241 0.236 16 10.249 67

Table A20: Out-of-sample validation figures of selected GAMs of BEL with varying random component link
function combination and fixed spline function number of 4 per dimension under between 40-443
and 150-443 after each tenth and the finally selected smooth function. MAEs in %.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

8 Thin plate regression splines under normal with identity link

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.639 0.611 27 23.176 125 0.340 0.329 −3 15.517 80 0.516 0.505 73 23.627 156
20 150 0.375 0.359 3 9.604 26 0.334 0.322 −33 8.378 −24 0.341 0.333 1 7.711 10
30 150 0.361 0.345 −7 10.444 41 0.415 0.401 −52 6.961 −19 0.304 0.297 −21 5.871 13
40 150 0.356 0.340 −5 10.098 36 0.425 0.410 −54 7.920 −28 0.311 0.304 −27 5.647 −1
50 150 0.339 0.324 −7 9.712 33 0.418 0.404 −53 7.746 −27 0.311 0.304 −26 5.596 0
60 150 0.325 0.311 −6 9.037 26 0.411 0.397 −52 8.706 −34 0.310 0.304 −26 5.850 −8
70 150 0.325 0.311 −4 9.180 31 0.429 0.414 −55 8.773 −34 0.326 0.319 −30 5.912 −9
80 150 0.309 0.296 −5 8.618 29 0.430 0.415 −55 8.984 −35 0.336 0.329 −29 6.382 −9
90 150 0.313 0.299 −5 8.981 32 0.384 0.371 −48 7.390 −26 0.300 0.293 −26 5.430 −4

100 150 0.328 0.313 −6 9.910 47 0.400 0.387 −51 5.572 −12 0.291 0.285 −25 5.064 13
110 150 0.256 0.245 −10 7.985 38 0.326 0.315 −40 4.655 −6 0.201 0.197 −6 5.002 28
120 150 0.253 0.242 −9 7.340 30 0.321 0.310 −39 5.542 −14 0.209 0.204 −5 4.541 20
130 150 0.252 0.241 −9 7.767 34 0.326 0.315 −40 5.197 −11 0.205 0.201 −5 4.770 24
140 150 0.245 0.234 −8 7.592 33 0.322 0.311 −41 5.315 −15 0.197 0.193 −7 4.317 20
150 150 0.217 0.208 −11 6.477 32 0.239 0.231 −26 3.652 2 0.179 0.175 6 5.578 34

8 Thin plate regression splines under normal with log link in stagewise selection of length 5

0 50 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 50 0.757 0.724 10 21.570 101 0.444 0.429 39 22.141 116 0.755 0.739 106 27.693 182
20 50 0.401 0.383 1 10.278 23 0.359 0.347 −35 9.154 −28 0.362 0.354 −1 8.110 7
30 50 0.396 0.379 −5 11.249 43 0.438 0.424 −53 7.692 −20 0.339 0.332 −19 6.803 14
40 50 0.382 0.365 −5 11.036 45 0.470 0.454 −60 7.846 −25 0.351 0.344 −31 6.234 4
50 50 0.370 0.353 −8 10.487 39 0.464 0.448 −60 8.000 −28 0.340 0.333 −32 5.901 0

8 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.637 0.609 29 22.743 123 0.334 0.323 −3 14.941 77 0.510 0.500 72 22.871 151
20 100 0.370 0.354 4 9.537 27 0.324 0.313 −31 8.076 −22 0.340 0.333 1 7.725 10
30 100 0.359 0.344 −8 10.558 44 0.414 0.400 −52 6.415 −15 0.305 0.298 −22 5.909 16
40 100 0.329 0.314 −9 9.643 37 0.402 0.388 −51 6.673 −21 0.321 0.314 −26 5.702 4
50 100 0.342 0.327 −7 9.631 33 0.409 0.395 −52 7.553 −27 0.326 0.320 −28 5.863 −3
60 100 0.324 0.310 −6 9.114 28 0.409 0.395 −52 8.421 −32 0.327 0.320 −28 6.067 −9
70 100 0.328 0.314 −6 9.617 41 0.451 0.435 −59 7.631 −26 0.349 0.342 −35 5.796 −2
80 100 0.270 0.258 −9 7.944 37 0.324 0.313 −38 5.068 −7 0.221 0.217 −2 5.461 29
90 100 0.279 0.267 −10 8.926 47 0.341 0.329 −40 4.595 2 0.224 0.219 −2 6.713 41

100 100 0.272 0.260 −11 8.654 44 0.335 0.324 −40 4.532 0 0.216 0.211 −2 6.397 38

8 Thin plate regression splines under gamma with log link in stagewise selection of length 5

0 110 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 110 0.762 0.729 13 21.360 95 0.458 0.443 45 21.527 112 0.773 0.756 108 26.743 176
20 110 0.442 0.422 2 12.416 49 0.396 0.382 −44 7.515 −12 0.349 0.342 −8 8.083 24
30 110 0.387 0.370 −3 11.147 45 0.414 0.400 −49 7.058 −16 0.338 0.331 −18 6.847 16
40 110 0.372 0.356 −6 10.826 43 0.458 0.442 −59 7.546 −24 0.360 0.352 −34 6.225 1
50 110 0.357 0.342 −9 10.240 36 0.458 0.443 −60 7.977 −29 0.357 0.349 −36 6.073 −5
60 110 0.351 0.336 −5 9.866 30 0.439 0.424 −56 9.066 −36 0.353 0.346 −35 6.537 −15
70 110 0.354 0.339 −5 10.130 37 0.458 0.442 −59 8.442 −31 0.364 0.356 −37 6.271 −9
80 110 0.359 0.344 −6 10.122 37 0.463 0.447 −60 8.529 −32 0.371 0.363 −37 6.412 −9
90 110 0.282 0.270 −10 9.017 47 0.364 0.352 −44 4.991 −2 0.249 0.244 −6 6.286 36

100 110 0.268 0.256 −11 7.807 37 0.320 0.309 −38 4.748 −5 0.209 0.204 −1 5.604 32
110 110 0.259 0.247 −11 7.373 34 0.312 0.302 −37 4.801 −7 0.201 0.197 0 5.354 31

Table A21: Out-of-sample validation figures of selected GAMs of BEL with varying random component link
function combination and fixed spline function number of 8 per dimension under between 50-443
and 150-443 after each tenth and the finally selected smooth function. MAEs in %.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

8 Thin plate regression splines under normal with log link

0 25 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 25 0.663 0.634 26 23.298 123 0.341 0.330 1 16.218 84 0.547 0.536 78 24.370 161
20 25 0.398 0.381 2 10.221 23 0.361 0.349 −35 9.380 −28 0.375 0.367 −1 8.460 6
25 25 0.411 0.393 2 11.892 47 0.410 0.397 −47 7.709 −17 0.324 0.317 −11 7.120 19

8 Thin plate regression splines under normal with log link in stagewise selection of length 5

0 50 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 50 0.757 0.724 10 21.570 101 0.444 0.429 39 22.141 116 0.755 0.739 106 27.693 182
20 50 0.401 0.383 1 10.278 23 0.359 0.347 −35 9.154 −28 0.362 0.354 −1 8.110 7
30 50 0.396 0.379 −5 11.249 43 0.438 0.424 −53 7.692 −20 0.339 0.332 −19 6.803 14
40 50 0.382 0.365 −5 11.036 45 0.470 0.454 −60 7.846 −25 0.351 0.344 −31 6.234 4
50 50 0.370 0.353 −8 10.487 39 0.464 0.448 −60 8.000 −28 0.340 0.333 −32 5.901 0

8 Thin plate regression splines under gamma with identity link

0 71 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 71 0.637 0.609 29 22.743 123 0.334 0.323 −3 14.941 77 0.510 0.500 72 22.871 151
20 71 0.386 0.369 8 10.141 31 0.310 0.299 −26 7.904 −18 0.358 0.350 8 8.140 16
30 71 0.359 0.344 −8 10.558 44 0.414 0.400 −52 6.415 −15 0.305 0.298 −22 5.909 16
40 71 0.329 0.314 −9 9.643 37 0.402 0.388 −51 6.673 −21 0.321 0.314 −26 5.702 4
50 71 0.338 0.324 −7 9.543 32 0.412 0.399 −53 7.748 −28 0.324 0.318 −29 5.805 −4
60 71 0.324 0.310 −6 9.114 28 0.409 0.395 −52 8.421 −32 0.327 0.320 −28 6.067 −9
70 71 0.327 0.313 −5 9.417 36 0.434 0.419 −56 8.017 −29 0.342 0.335 −32 5.967 −5
71 71 0.291 0.278 −4 8.639 41 0.341 0.329 −43 5.205 −12 0.196 0.192 −17 3.898 14

8 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.637 0.609 29 22.743 123 0.334 0.323 −3 14.941 77 0.510 0.500 72 22.871 151
20 100 0.370 0.354 4 9.537 27 0.324 0.313 −31 8.076 −22 0.340 0.333 1 7.725 10
30 100 0.359 0.344 −8 10.558 44 0.414 0.400 −52 6.415 −15 0.305 0.298 −22 5.909 16
40 100 0.329 0.314 −9 9.643 37 0.402 0.388 −51 6.673 −21 0.321 0.314 −26 5.702 4
50 100 0.342 0.327 −7 9.631 33 0.409 0.395 −52 7.553 −27 0.326 0.320 −28 5.863 −3
60 100 0.324 0.310 −6 9.114 28 0.409 0.395 −52 8.421 −32 0.327 0.320 −28 6.067 −9
70 100 0.328 0.314 −6 9.617 41 0.451 0.435 −59 7.631 −26 0.349 0.342 −35 5.796 −2
80 100 0.270 0.258 −9 7.944 37 0.324 0.313 −38 5.068 −7 0.221 0.217 −2 5.461 29
90 100 0.279 0.267 −10 8.926 47 0.341 0.329 −40 4.595 2 0.224 0.219 −2 6.713 41

100 100 0.272 0.260 −11 8.654 44 0.335 0.324 −40 4.532 0 0.216 0.211 −2 6.397 38

Table A22: Out-of-sample validation figures of selected GAMs of BEL in adaptive forward stepwise and stage-
wise selection of length 5 under between 25-443 and 100-443 after each tenth and the finally selected
smooth function. MAEs in %.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

5 Eilers and Marx style P-splines under normal with identity link

0 100 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 100 0.643 0.615 29 22.836 123 0.344 0.332 −9 13.951 70 0.471 0.461 65 21.854 144
20 100 0.389 0.372 1 10.496 37 0.365 0.353 −41 7.778 −20 0.336 0.329 −8 7.402 13
30 100 0.384 0.367 −9 11.377 53 0.459 0.444 −60 6.138 −13 0.320 0.313 −30 5.512 17
40 100 0.371 0.354 −10 10.977 49 0.454 0.439 −60 6.095 −16 0.327 0.320 −34 5.092 11
50 100 0.357 0.341 −9 10.459 45 0.467 0.451 −62 6.909 −22 0.335 0.328 −34 5.059 6
60 100 0.339 0.324 −10 9.932 43 0.492 0.476 −66 7.640 −28 0.365 0.357 −40 5.155 −2
70 100 0.343 0.328 −10 10.523 52 0.546 0.527 −75 7.681 −27 0.366 0.358 −46 4.576 2
80 100 0.334 0.319 −7 9.920 45 0.520 0.503 −67 8.655 −29 0.346 0.339 −36 5.036 1
90 100 0.228 0.218 −10 6.973 35 0.279 0.269 −31 4.299 0 0.208 0.204 3 5.810 34

100 100 0.225 0.215 −11 6.897 34 0.256 0.248 −30 3.716 2 0.164 0.161 1 5.212 32

8 Eilers and Marx style P-splines under inverse gaussian with 1
µ2 link in dynamically stagewise selection of prop. 0.25

0 91 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
5 91 1.574 1.505 −18 41.688 233 0.732 0.708 −75 30.201 161 0.384 0.376 42 42.135 278

11 91 0.817 0.781 −3 22.381 113 0.396 0.383 −34 13.475 68 0.412 0.404 23 19.322 124
21 91 0.679 0.650 −9 24.203 138 0.763 0.738 −102 8.222 31 0.424 0.415 −44 13.548 89
37 91 0.525 0.502 1 15.485 79 0.521 0.504 −63 6.154 0 0.397 0.389 −30 7.461 33
62 91 0.505 0.482 −1 14.208 64 0.507 0.490 −61 6.842 −10 0.418 0.410 −33 7.405 18
91 91 0.309 0.296 −11 9.688 45 0.335 0.324 −36 5.239 6 0.279 0.273 2 7.420 43

10 Eilers and Marx style P-splines under normal with identity link in stagewise selection of length 5

0 150 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 150 0.648 0.619 27 23.688 128 0.349 0.337 −7 15.566 80 0.506 0.495 71 23.889 158
20 150 0.398 0.380 1 10.946 45 0.358 0.346 −37 7.063 −7 0.338 0.331 1 8.102 31
30 150 0.393 0.376 −9 11.983 59 0.435 0.421 −55 5.575 −2 0.299 0.293 −17 6.928 36
40 150 0.371 0.355 −8 11.374 55 0.449 0.434 −57 5.738 −9 0.314 0.308 −26 5.770 23
50 150 0.363 0.347 −9 10.956 50 0.460 0.444 −60 6.249 −14 0.315 0.308 −28 5.492 17
60 150 0.349 0.334 −8 10.479 46 0.443 0.428 −56 6.526 −17 0.305 0.298 −26 5.427 14
70 150 0.349 0.333 −6 10.629 51 0.464 0.449 −60 6.687 −17 0.325 0.318 −29 5.501 13
80 150 0.350 0.335 −7 10.465 48 0.468 0.452 −60 7.036 −19 0.335 0.328 −29 5.563 11
90 150 0.350 0.335 −7 10.639 51 0.470 0.454 −60 6.683 −17 0.330 0.323 −29 5.453 14

100 150 0.334 0.319 −8 9.960 46 0.468 0.452 −60 7.170 −20 0.339 0.332 −29 5.835 11
110 150 0.337 0.323 −9 10.249 48 0.450 0.435 −58 6.171 −15 0.329 0.322 −31 5.267 12
120 150 0.339 0.324 −7 10.283 45 0.433 0.419 −55 6.420 −17 0.320 0.313 −28 5.340 10
130 150 0.269 0.257 −13 8.912 43 0.365 0.352 −46 4.891 −4 0.244 0.238 −12 5.503 30
140 150 0.255 0.244 −12 8.157 36 0.356 0.344 −44 5.415 −10 0.246 0.241 −10 5.196 24
150 150 0.261 0.250 −12 8.514 39 0.368 0.355 −46 5.267 −9 0.245 0.240 −12 5.162 25

Table A23: Out-of-sample validation figures of selected GAMs of BEL with varying spline function number per
dimension and fixed spline function type under between 91-443 and 150-443 after each tenth and
the finally selected smooth function or after each dynamically stagewise selected smooth function
block. Furthermore, a variation in the random component link function combination. MAEs in %.
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k Kmax v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

4 Thin plate regression splines under normal with identity link

150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

5 Thin plate regression splines under normal with identity link

100 100 0.287 0.274 −11 9.431 48 0.397 0.383 −50 5.402 −5 0.202 0.198 −9 5.945 36

8 Thin plate regression splines under normal with identity link

150 150 0.217 0.208 −11 6.477 32 0.239 0.231 −26 3.652 2 0.179 0.175 6 5.578 34

10 Thin plate regression splines under normal with identity link

150 150 0.212 0.203 −10 7.070 37 0.230 0.223 −24 3.575 8 0.173 0.170 8 6.337 40

5 Cubic regression splines under normal with identity link

100 100 0.268 0.256 −12 9.903 52 0.399 0.386 −51 5.182 −2 0.226 0.221 −9 6.533 40

5 Duchon splines under normal with identity link

56 100 0.666 0.636 −18 18.532 86 0.288 0.279 −14 14.643 75 0.406 0.397 40 19.757 129

5 Eilers and Marx style P-splines under normal with identity link

100 100 0.225 0.215 −11 6.897 34 0.256 0.248 −30 3.716 2 0.164 0.161 1 5.212 32

10 Cubic regression splines under normal with identity link

125 125 0.254 0.243 −7 7.139 31 0.299 0.289 −36 5.189 −13 0.197 0.192 −6 4.228 17

10 Duchon splines under normal with identity link

53 100 0.821 0.785 −44 21.348 94 0.545 0.526 −61 12.593 62 0.446 0.437 −8 18.091 116

10 Eilers and Marx style P-splines under normal with identity link in stagewise selection of length 5

150 150 0.261 0.250 −12 8.514 −39 0.368 0.355 −46 5.267 9 0.245 0.240 −12 5.162 −25

8 Thin plate regression splines under normal with log link

25 25 0.411 0.393 2 11.892 47 0.410 0.397 −47 7.709 −17 0.324 0.317 −11 7.120 19

8 Thin plate regression splines under normal with log link in stagewise selection of length 5

50 50 0.370 0.353 −8 10.487 39 0.464 0.448 −60 8.000 −28 0.340 0.333 −32 5.901 0

8 Thin plate regression splines under gamma with identity link

71 71 0.291 0.278 −4 8.639 41 0.341 0.329 −43 5.205 −12 0.196 0.192 −17 3.898 14

8 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

100 100 0.272 0.260 −11 8.654 44 0.335 0.324 −40 4.532 0 0.216 0.211 −2 6.397 38

4 Thin plate regression splines under normal with identity link in stagewise selection of length 5

150 150 0.240 0.229 −15 8.192 46 0.291 0.281 −35 3.907 13 0.176 0.172 3 7.641 50

4 Thin plate regression splines under normal with log link in stagewise selection of length 5

40 40 0.438 0.419 −7 13.382 66 0.524 0.506 −69 6.189 −10 0.373 0.365 −39 5.913 20

4 Thin plate regression splines under gamma with identity link in stagewise selection of length 5

70 70 0.270 0.259 −16 9.999 57 0.325 0.314 −36 5.280 23 0.245 0.240 10 10.416 69

4 Thin plate regression splines under normal with log link in stagewise selection of length 5

120 120 0.252 0.241 −16 8.368 47 0.263 0.254 −29 4.585 20 0.171 0.167 9 8.830 58

4 Thin plate regression splines under inverse gaussian with identity link in stagewise selection of length 5

85 85 0.250 0.239 −17 8.739 50 0.325 0.314 −38 4.585 14 0.218 0.213 6 8.871 58

4 Thin plate regression splines under inverse gaussian with log link in stagewise selection of length 5

75 75 0.258 0.246 −14 9.181 52 0.300 0.290 −33 5.049 19 0.223 0.219 13 9.837 65

4 Thin plate regression splines under inverse gaussian with 1
µ2 link in stagewise selection of length 5

55 55 0.328 0.314 −9 10.595 56 0.328 0.317 −35 5.325 15 0.241 0.236 16 10.249 67

8 Thin plate regression splines under gamma with log link in stagewise selection of length 5

110 110 0.259 0.247 −11 7.373 34 0.312 0.302 −37 4.801 −7 0.201 0.197 0 5.354 31

8 Eilers and Marx style P-splines under inverse gaussian with 1
µ2 link in dynamic stagewise selection of proportion 0.25

91 91 0.309 0.296 −11 9.688 45 0.335 0.324 −36 5.239 6 0.279 0.273 2 7.420 43

Table A24: Maximum allowed numbers of smooth functions and out-of-sample validation figures of all derived
GAMs of BEL under between 25-443 and 150-443 after the final iteration. MAEs in %. Highlighted
in green and red respectively the best and worst validation figures.
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m r1m r2m r3m r4m r5m r6m r7m r8m r9m r10
m r11

m r12
m r13

m r14
m r15

m BP.p-val AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 325, 850 0.247 0.271 0.122

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 322, 452 0.238 0.246 0.122
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1−20 315, 980 0.239 0.255 0.153

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1−20 314, 077 0.237 0.226 0.165
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1−20 312, 280 0.231 0.206 0.184
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1−20 312, 114 0.231 0.205 0.185
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1−20 311, 949 0.231 0.203 0.186

7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 311, 794 0.232 0.202 0.187
8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1−20 311, 700 0.235 0.200 0.190
9 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1−20 311, 610 0.233 0.198 0.190

10 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1−20 311, 363 0.227 0.194 0.195

11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1−20 311, 293 0.229 0.194 0.197
12 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1−20 311, 237 0.228 0.193 0.198
13 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1−20 311, 196 0.230 0.193 0.198
14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1.5−20 311, 161 0.231 0.193 0.200

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7.1−19 311, 136 0.231 0.191 0.202
16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 5−15 311, 091 0.228 0.189 0.201
17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5.8−13 311, 067 0.228 0.188 0.203
18 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 8.3−13 311, 048 0.228 0.187 0.204

19 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 3.2−12 311, 030 0.228 0.188 0.204
20 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2.7−12 311, 003 0.230 0.188 0.205
21 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1.3−11 310, 988 0.230 0.188 0.206
22 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 9.4−11 310, 974 0.230 0.187 0.207

Table A25: FGLS variance models of BEL corresponding to Mmax ∈ {2, 6, 10, 14, 18, 22} derived by adaptive
selection from the set of basis functions of the 150-443 OLS proxy function given in Table A2 with
exponents summing up to at max two. Furthermore, p-values of Breusch-Pagan test, AIC scores
and out-of-sample MAEs in % after each iteration.

m r1m r2m r3m r4m r5m r6m r7m r8m r9m r10
m r11

m r12
m r13

m r14
m r15

m BP.p-val AIC v.mae ns.mae cr.mae

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 325, 459 0.194 0.268 0.168

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 322, 077 0.199 0.273 0.166
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1−20 315, 615 0.196 0.275 0.175

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1−20 313, 659 0.195 0.255 0.175
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1−20 311, 864 0.198 0.239 0.182
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1−20 311, 704 0.198 0.236 0.182
6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 311, 554 0.200 0.240 0.183

7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1−20 311, 454 0.199 0.241 0.183
8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1−20 311, 360 0.199 0.238 0.186
9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1−20 311, 318 0.201 0.236 0.188

10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1−20 311, 287 0.203 0.234 0.189

11 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1−20 311, 260 0.203 0.233 0.189
12 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1−20 311, 237 0.203 0.232 0.189
13 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3.7−17 311, 001 0.200 0.223 0.192
14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.7−16 310, 980 0.200 0.222 0.194

15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 7.6−13 310, 934 0.200 0.220 0.196
16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4.2−11 310, 912 0.200 0.218 0.197
17 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1.3−10 310, 895 0.200 0.219 0.198
18 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2.3−10 310, 881 0.200 0.217 0.198

19 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 7.6−10 310, 867 0.200 0.218 0.197
20 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 3.4−9 310, 854 0.200 0.218 0.196
21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 9.9−9 310, 843 0.200 0.218 0.196
22 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3.1−8 310, 832 0.200 0.217 0.196

Table A26: FGLS variance models of BEL corresponding to Mmax ∈ {2, 6, 10, 14, 18, 22} derived by adaptive
selection from the set of basis functions of the 300-886 OLS proxy function given in Table A4 with
exponents summing up to at max two. Furthermore, p-values of Breusch-Pagan test, AIC scores
and out-of-sample MAEs in % after each iteration.
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m v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 0.247 0.237 −14 9.924 57 0.271 0.262 −35 4.612 22 0.122 0.120 −1 8.537 56

1 0.238 0.228 −15 8.668 49 0.246 0.238 −30 4.120 19 0.122 0.120 3 7.873 52
2 0.239 0.229 −16 8.147 46 0.255 0.246 −30 4.032 17 0.153 0.149 2 7.489 49

3 0.237 0.226 −15 7.789 43 0.226 0.218 −24 4.423 20 0.165 0.162 10 8.117 54
4 0.231 0.221 −13 7.684 42 0.206 0.199 −18 4.817 22 0.184 0.180 17 8.756 58
5 0.231 0.221 −13 7.666 42 0.205 0.198 −18 4.803 22 0.185 0.181 17 8.740 58
6 0.231 0.221 −13 7.577 41 0.203 0.196 −18 4.762 22 0.186 0.183 17 8.637 57

7 0.232 0.222 −12 7.661 42 0.202 0.195 −17 4.787 22 0.187 0.183 18 8.691 57
8 0.235 0.225 −12 7.774 42 0.200 0.193 −17 4.914 23 0.190 0.186 19 8.912 59
9 0.233 0.223 −11 7.692 42 0.198 0.191 −16 4.838 23 0.190 0.186 19 8.763 58

10 0.227 0.217 −10 7.460 40 0.194 0.188 −15 4.708 21 0.195 0.191 20 8.537 56

11 0.229 0.219 −10 7.447 40 0.194 0.187 −15 4.686 21 0.197 0.193 20 8.455 56
12 0.228 0.218 −10 7.426 40 0.193 0.186 −14 4.687 21 0.198 0.194 20 8.444 56
13 0.230 0.220 −9 7.513 41 0.193 0.187 −14 4.696 21 0.198 0.194 21 8.491 56
14 0.231 0.221 −9 7.527 41 0.193 0.186 −14 4.701 21 0.200 0.195 21 8.497 56

15 0.231 0.221 −9 7.523 41 0.191 0.185 −13 4.742 21 0.202 0.197 22 8.569 57
16 0.228 0.218 −9 7.437 40 0.189 0.182 −13 4.730 21 0.201 0.197 22 8.557 56
17 0.228 0.218 −9 7.421 40 0.188 0.182 −13 4.747 21 0.203 0.199 22 8.568 56
18 0.228 0.218 −9 7.433 40 0.187 0.181 −13 4.780 22 0.204 0.200 22 8.621 57

19 0.228 0.218 −9 7.435 40 0.188 0.182 −13 4.786 22 0.204 0.200 22 8.628 57
20 0.230 0.219 −9 7.442 40 0.188 0.182 −13 4.796 22 0.205 0.201 22 8.650 57
21 0.230 0.220 −9 7.466 40 0.188 0.181 −13 4.800 22 0.206 0.201 23 8.648 57
22 0.230 0.220 −8 7.436 40 0.187 0.180 −12 4.802 22 0.207 0.203 23 8.639 57

Table A27: Iteration-wise out-of-sample validation figures in adaptive variance model selection of BEL corre-
sponding to Mmax ∈ {2, 6, 10, 14, 18, 22} based on the 150-443 OLS proxy function given in Table A2
with exponents summing up to at max two. MAEs in %. Simultaneously type I FGLS regression
results.

m v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

0 0.194 0.186 −9 6.659 34 0.268 0.259 −30 4.200 −2 0.168 0.165 1 5.007 29

1 0.199 0.190 −9 6.648 34 0.273 0.263 −31 4.272 −3 0.166 0.162 1 5.005 30
2 0.196 0.187 −9 6.527 33 0.275 0.266 −30 4.564 −3 0.175 0.171 5 5.401 32

3 0.195 0.186 −9 6.487 33 0.255 0.247 −27 4.350 1 0.175 0.171 9 5.916 37
4 0.198 0.189 −9 6.305 32 0.239 0.231 −23 4.262 4 0.182 0.178 13 6.303 40
5 0.198 0.190 −9 6.298 32 0.236 0.228 −22 4.252 4 0.182 0.178 14 6.336 40
6 0.200 0.191 −9 6.399 33 0.240 0.232 −23 4.292 4 0.183 0.179 13 6.389 40

7 0.199 0.190 −9 6.364 32 0.241 0.233 −23 4.304 4 0.183 0.179 13 6.324 40
8 0.199 0.190 −8 6.381 32 0.238 0.230 −22 4.313 4 0.186 0.182 14 6.407 40
9 0.201 0.193 −8 6.432 33 0.236 0.228 −22 4.313 5 0.188 0.184 15 6.521 41

10 0.203 0.194 −8 6.473 33 0.234 0.226 −21 4.310 5 0.189 0.185 16 6.621 42

11 0.203 0.195 −8 6.492 33 0.233 0.225 −21 4.303 5 0.189 0.185 16 6.628 42
12 0.203 0.194 −8 6.476 33 0.232 0.224 −21 4.294 5 0.189 0.186 16 6.641 42
13 0.200 0.191 −7 6.254 32 0.223 0.216 −19 4.252 5 0.192 0.188 17 6.615 42
14 0.200 0.191 −7 6.246 31 0.222 0.214 −19 4.257 6 0.194 0.190 18 6.697 42

15 0.200 0.191 −7 6.216 31 0.220 0.213 −18 4.243 6 0.196 0.192 19 6.773 43
16 0.200 0.191 −7 6.180 31 0.218 0.211 −18 4.239 6 0.197 0.193 19 6.753 43
17 0.200 0.192 −7 6.197 31 0.219 0.211 −18 4.249 6 0.198 0.194 19 6.804 43
18 0.200 0.191 −7 6.194 31 0.217 0.210 −18 4.250 6 0.198 0.194 19 6.801 43

19 0.200 0.191 −7 6.207 31 0.218 0.210 −18 4.238 6 0.197 0.193 19 6.787 43
20 0.200 0.191 −7 6.229 32 0.218 0.211 −18 4.226 6 0.196 0.192 19 6.793 43
21 0.200 0.192 −7 6.240 32 0.218 0.211 −18 4.224 7 0.196 0.192 19 6.814 43
22 0.200 0.192 −7 6.256 32 0.217 0.210 −18 4.223 7 0.196 0.192 19 6.844 44

Table A28: Iteration-wise out-of-sample validation figures in adaptive variance model selection of BEL corre-
sponding to Mmax ∈ {2, 6, 10, 14, 18, 22} based on the 300-886 OLS proxy function given in Table A4
with exponents summing up to at max two. MAEs in %. Simultaneously type I FGLS regression
results.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 2 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 336, 390 1.786 1.708 184 44.082 198 1.402 1.354 209 39.152 209 2.290 2.242 344 52.033 344
20 323, 883 0.826 0.790 25 22.007 111 0.424 0.409 −28 10.764 44 0.437 0.428 28 16.424 99
30 319, 958 0.465 0.445 3 12.876 55 0.288 0.278 2 9.650 40 0.467 0.457 57 15.234 96
40 318, 945 0.401 0.384 −16 11.036 51 0.357 0.345 −37 7.158 16 0.330 0.323 3 10.127 55
50 318, 206 0.355 0.339 −24 9.270 35 0.336 0.324 −36 6.611 8 0.339 0.332 −8 8.602 36
60 317, 485 0.323 0.309 −25 8.407 36 0.309 0.298 −36 5.548 11 0.279 0.273 −11 7.244 36
70 317, 197 0.306 0.293 −28 7.631 28 0.345 0.334 −43 5.405 −1 0.272 0.266 −17 5.899 25
80 316, 263 0.272 0.260 −24 6.946 32 0.320 0.310 −42 4.051 0 0.227 0.222 −17 4.898 25
90 316, 021 0.260 0.249 −23 7.143 39 0.298 0.288 −37 3.854 10 0.173 0.169 −5 6.461 42

100 315, 871 0.256 0.245 −23 7.424 41 0.294 0.284 −35 4.078 14 0.186 0.182 0 7.443 49
110 315, 784 0.256 0.245 −22 7.396 41 0.302 0.292 −37 3.962 12 0.189 0.185 −3 7.013 46
120 315, 719 0.257 0.245 −23 6.923 38 0.296 0.286 −36 3.870 11 0.181 0.177 −2 6.872 45
130 315, 675 0.258 0.247 −25 6.506 35 0.295 0.285 −36 3.760 9 0.188 0.184 −3 6.461 42
140 315, 649 0.252 0.241 −23 6.424 34 0.283 0.274 −34 3.749 9 0.184 0.180 −1 6.399 42
150 315, 629 0.239 0.229 −21 6.467 34 0.261 0.252 −30 3.796 10 0.177 0.173 3 6.654 44

Mmax = 6 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 332, 479 2.014 1.926 259 49.098 213 2.000 1.933 298 44.745 238 2.964 2.901 445 58.341 385
20 320, 873 0.881 0.842 51 22.821 115 0.341 0.329 16 13.428 66 0.622 0.609 84 20.790 134
30 316, 187 0.429 0.410 19 10.875 32 0.308 0.297 29 8.537 28 0.561 0.549 73 12.633 72
40 315, 132 0.366 0.350 6 10.243 45 0.254 0.246 1 7.853 25 0.401 0.393 36 11.221 61
50 314, 473 0.303 0.289 3 9.346 46 0.229 0.222 0 7.543 28 0.361 0.353 34 10.776 62
60 313, 643 0.307 0.293 −18 7.567 28 0.251 0.242 −21 5.808 11 0.266 0.261 9 7.676 41
70 313, 301 0.280 0.268 −17 7.768 30 0.222 0.214 −12 6.229 21 0.268 0.262 23 9.315 56
80 313, 060 0.270 0.258 −20 7.092 28 0.230 0.222 −13 6.273 22 0.280 0.274 25 9.554 59
90 312, 883 0.262 0.251 −22 6.754 29 0.239 0.231 −17 5.977 20 0.253 0.248 19 9.077 56

100 312, 100 0.246 0.235 −19 6.177 29 0.202 0.195 −14 4.814 18 0.221 0.216 21 8.305 54
110 311, 656 0.231 0.221 −16 6.446 33 0.189 0.182 −12 4.827 22 0.211 0.206 25 8.964 59
120 311, 574 0.236 0.225 −16 6.545 34 0.209 0.202 −16 4.594 19 0.207 0.202 22 8.637 57
130 311, 511 0.238 0.227 −17 6.551 35 0.207 0.200 −16 4.797 21 0.204 0.200 23 9.104 60
140 311, 461 0.231 0.221 −16 6.026 31 0.189 0.183 −12 4.726 21 0.216 0.212 25 8.853 58
150 311, 426 0.224 0.215 −14 5.904 31 0.177 0.171 −9 4.756 22 0.226 0.221 29 9.005 59

Mmax = 10 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 328, 519 2.120 2.027 288 50.524 221 2.206 2.132 329 46.563 248 3.194 3.127 480 60.396 399
20 319, 481 0.971 0.928 95 24.185 105 0.439 0.424 53 11.839 49 0.821 0.803 117 18.086 112
30 316, 529 0.655 0.627 56 16.560 74 0.420 0.406 57 12.301 61 0.780 0.764 113 18.285 117
40 314, 460 0.379 0.362 19 10.089 42 0.268 0.259 19 8.120 28 0.473 0.463 54 11.608 63
50 313, 842 0.324 0.310 2 8.422 33 0.229 0.221 −4 6.420 12 0.339 0.331 20 8.600 36
60 313, 022 0.297 0.284 −13 7.619 31 0.223 0.215 −13 6.123 17 0.277 0.271 14 8.292 43
70 312, 692 0.282 0.269 −17 7.494 26 0.221 0.213 −5 6.762 24 0.326 0.319 35 10.467 64
80 312, 443 0.271 0.259 −19 7.171 27 0.218 0.211 −7 6.625 25 0.303 0.297 33 10.306 65
90 312, 264 0.261 0.249 −21 6.610 27 0.222 0.215 −11 6.300 23 0.278 0.272 28 9.806 62

100 312, 187 0.262 0.250 −21 6.568 26 0.216 0.208 −10 6.265 23 0.272 0.266 28 9.707 61
110 312, 108 0.256 0.244 −21 6.031 23 0.203 0.196 −5 6.324 25 0.288 0.282 31 9.754 61
120 312, 043 0.261 0.250 −23 5.989 20 0.200 0.194 −4 6.287 25 0.293 0.287 33 9.857 62
130 311, 078 0.226 0.216 −18 5.466 25 0.160 0.155 −4 5.115 24 0.244 0.239 32 9.192 60
140 310, 918 0.220 0.210 −16 5.451 25 0.153 0.148 −4 4.820 23 0.233 0.228 31 8.859 58
150 310, 868 0.212 0.203 −14 5.375 25 0.148 0.143 0 5.098 25 0.256 0.250 36 9.296 61

Table A29: AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL under
150-443 with variance models of varying complexity Mmax after each tenth iteration. MAEs in %.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 14 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 326, 308 2.120 2.027 290 50.306 220 2.215 2.141 331 46.129 246 3.197 3.130 480 59.909 396
20 319, 199 1.024 0.979 100 26.049 137 0.527 0.509 75 18.639 98 1.044 1.022 155 27.142 178
30 316, 093 0.702 0.671 67 17.574 79 0.503 0.486 73 13.745 70 0.901 0.882 133 20.208 131
40 314, 155 0.393 0.376 24 10.363 44 0.282 0.273 25 8.426 31 0.505 0.494 62 12.131 68
50 313, 562 0.327 0.313 6 8.561 34 0.225 0.217 1 6.535 15 0.352 0.345 27 8.936 41
60 312, 811 0.298 0.285 −10 7.608 29 0.203 0.196 4 7.086 29 0.336 0.329 37 10.283 62
70 312, 455 0.289 0.276 −15 7.409 26 0.219 0.211 −2 6.863 25 0.343 0.335 38 10.612 65
80 312, 235 0.273 0.261 −17 7.222 28 0.215 0.208 −4 6.738 26 0.322 0.316 37 10.662 67
90 312, 057 0.264 0.253 −22 6.680 27 0.222 0.214 −10 6.406 24 0.283 0.277 28 9.981 63

100 311, 953 0.255 0.244 −21 6.117 24 0.201 0.194 −5 6.381 25 0.290 0.284 31 9.780 61
110 311, 898 0.252 0.241 −20 5.929 22 0.200 0.193 −4 6.236 24 0.293 0.287 32 9.583 60
120 311, 832 0.263 0.251 −23 5.962 19 0.198 0.192 −3 6.300 25 0.303 0.296 34 9.878 62
130 310, 916 0.223 0.213 −17 5.363 23 0.154 0.149 −1 5.233 25 0.263 0.257 36 9.305 61
140 310, 757 0.215 0.206 −15 5.339 24 0.147 0.142 0 4.954 24 0.251 0.246 35 8.972 59
150 310, 714 0.214 0.205 −14 5.368 25 0.146 0.141 −1 4.857 23 0.244 0.239 34 8.906 59

Mmax = 18 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 326, 125 2.127 2.034 292 50.425 220 2.226 2.151 332 46.222 246 3.209 3.142 482 60.019 396
20 318, 762 1.036 0.991 111 25.668 113 0.538 0.520 75 13.429 64 0.983 0.962 144 20.708 133
30 315, 995 0.710 0.679 69 17.741 80 0.523 0.505 76 13.963 72 0.925 0.906 137 20.465 133
40 314, 060 0.401 0.383 27 10.529 45 0.292 0.282 28 8.560 33 0.521 0.510 66 12.341 70
50 313, 483 0.329 0.315 9 8.687 35 0.225 0.217 4 6.620 16 0.362 0.354 31 9.120 43
60 312, 938 0.316 0.302 −5 7.840 30 0.209 0.202 5 6.855 26 0.347 0.340 41 10.297 62
70 312, 363 0.270 0.258 −10 6.960 21 0.215 0.207 11 7.089 28 0.389 0.381 48 10.795 65
80 312, 166 0.259 0.248 −12 6.558 22 0.204 0.198 9 7.008 29 0.369 0.361 47 10.718 67
90 311, 963 0.234 0.223 −15 6.141 24 0.196 0.189 1 6.432 26 0.313 0.306 37 9.844 61

100 311, 883 0.241 0.231 −18 6.031 24 0.194 0.187 −1 6.449 26 0.299 0.293 34 9.777 61
110 311, 830 0.239 0.229 −18 5.836 22 0.193 0.187 0 6.298 25 0.303 0.296 35 9.610 60
120 311, 766 0.244 0.234 −19 5.713 18 0.191 0.184 3 6.340 26 0.321 0.314 39 9.866 62
130 311, 045 0.225 0.215 −15 5.396 23 0.148 0.143 0 5.061 24 0.259 0.254 35 8.950 59
140 310, 694 0.213 0.204 −13 5.314 24 0.139 0.134 1 4.855 24 0.245 0.240 34 8.672 57
150 310, 644 0.211 0.202 −14 5.131 23 0.139 0.135 1 4.816 23 0.250 0.245 35 8.618 57

Mmax = 22 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 325, 988 2.127 2.034 292 50.414 220 2.226 2.151 332 46.259 246 3.210 3.143 482 60.061 397
20 318, 926 1.034 0.988 105 26.160 137 0.569 0.550 83 19.043 101 1.098 1.075 163 27.621 181
30 315, 805 0.712 0.681 71 17.763 79 0.537 0.519 78 14.063 72 0.943 0.923 140 20.603 134
40 313, 973 0.409 0.391 29 10.730 46 0.301 0.291 31 8.709 34 0.539 0.527 70 12.589 72
50 313, 411 0.349 0.334 7 8.950 34 0.223 0.216 3 6.618 16 0.357 0.349 30 9.081 42
60 312, 873 0.308 0.295 −2 8.205 37 0.203 0.196 8 7.490 33 0.350 0.343 43 10.853 67
70 312, 286 0.271 0.260 −9 6.950 21 0.217 0.210 12 7.124 28 0.398 0.389 50 10.856 66
80 312, 091 0.261 0.249 −11 6.557 22 0.207 0.200 10 7.051 29 0.377 0.369 48 10.793 68
90 311, 893 0.235 0.225 −15 6.043 23 0.196 0.189 1 6.367 25 0.314 0.307 36 9.683 60

100 311, 815 0.238 0.228 −17 5.970 23 0.194 0.187 1 6.462 26 0.311 0.304 37 9.829 61
110 311, 761 0.237 0.227 −17 5.780 21 0.194 0.188 2 6.364 25 0.313 0.307 37 9.694 60
120 311, 697 0.243 0.232 −19 5.818 18 0.191 0.185 2 6.325 25 0.320 0.313 39 9.885 62
130 311, 655 0.232 0.222 −17 5.688 18 0.195 0.188 8 6.714 29 0.353 0.346 46 10.509 67
140 310, 748 0.215 0.206 −14 5.206 23 0.148 0.143 5 5.578 27 0.293 0.287 42 9.788 64
150 310, 590 0.208 0.199 −13 5.209 23 0.139 0.134 5 5.193 26 0.275 0.270 40 9.256 61

Table A29: Cont.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 2 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 336, 390 1.786 1.708 184 44.082 198 1.402 1.354 209 39.152 209 2.290 2.242 344 52.033 344
20 323, 883 0.826 0.790 25 22.007 111 0.424 0.409 −28 10.764 44 0.437 0.428 28 16.424 99
30 319, 958 0.465 0.445 3 12.876 55 0.288 0.278 2 9.650 40 0.467 0.457 57 15.234 96
40 318, 945 0.401 0.384 −16 11.036 51 0.357 0.345 −37 7.158 16 0.330 0.323 3 10.127 55
50 318, 206 0.355 0.339 −24 9.270 35 0.336 0.324 −36 6.611 8 0.339 0.332 −8 8.602 36
60 317, 485 0.323 0.309 −25 8.407 36 0.309 0.298 −36 5.548 11 0.279 0.273 −11 7.244 36
70 317, 197 0.306 0.293 −28 7.631 28 0.345 0.334 −43 5.405 −1 0.272 0.266 −17 5.899 25
80 316, 263 0.272 0.260 −24 6.946 32 0.320 0.310 −42 4.051 0 0.227 0.222 −17 4.898 25
90 316, 021 0.260 0.249 −23 7.143 39 0.298 0.288 −37 3.854 10 0.173 0.169 −5 6.461 42

100 315, 871 0.256 0.245 −23 7.424 41 0.294 0.284 −35 4.078 14 0.186 0.182 0 7.443 49
110 315, 784 0.256 0.245 −22 7.396 41 0.302 0.292 −37 3.962 12 0.189 0.185 −3 7.013 46
120 315, 719 0.257 0.245 −23 6.923 38 0.296 0.286 −36 3.870 11 0.181 0.177 −2 6.872 45
130 315, 675 0.258 0.247 −25 6.506 35 0.295 0.285 −36 3.760 9 0.188 0.184 −3 6.461 42
140 315, 641 0.250 0.239 −23 6.441 34 0.284 0.275 −34 3.741 9 0.182 0.178 −2 6.338 41
150 315, 622 0.238 0.228 −20 6.433 34 0.258 0.250 −29 3.821 11 0.177 0.174 4 6.740 44
160 315, 599 0.233 0.223 −20 6.578 35 0.256 0.247 −28 3.920 12 0.183 0.179 6 6.988 46
170 315, 573 0.232 0.222 −19 6.616 35 0.254 0.246 −28 3.880 12 0.181 0.178 5 6.927 45
180 315, 535 0.225 0.215 −19 6.502 35 0.252 0.243 −28 3.773 11 0.172 0.169 5 6.797 44
190 315, 523 0.229 0.219 −19 6.809 37 0.244 0.236 −26 4.020 15 0.164 0.161 9 7.607 50
200 315, 507 0.215 0.206 −18 6.738 36 0.243 0.235 −26 3.969 14 0.164 0.161 9 7.387 49
210 315, 500 0.214 0.205 −18 6.704 35 0.234 0.226 −24 3.989 14 0.162 0.159 10 7.323 48
220 315, 492 0.217 0.207 −18 6.769 35 0.239 0.231 −26 3.930 14 0.159 0.155 9 7.277 48
224 315, 491 0.209 0.199 −17 6.584 34 0.226 0.219 −22 3.999 14 0.165 0.161 12 7.290 48

Mmax = 6 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 332, 479 2.014 1.926 259 49.098 213 2.000 1.933 298 44.745 238 2.964 2.901 445 58.341 385
20 320, 873 0.881 0.842 51 22.821 115 0.341 0.329 16 13.428 66 0.622 0.609 84 20.790 134
30 316, 187 0.429 0.410 19 10.875 32 0.308 0.297 29 8.537 28 0.561 0.549 73 12.633 72
40 315, 132 0.366 0.350 6 10.243 45 0.254 0.246 1 7.853 25 0.401 0.393 36 11.221 61
50 314, 473 0.303 0.289 3 9.346 46 0.229 0.222 0 7.543 28 0.361 0.353 34 10.776 62
60 313, 643 0.307 0.293 −18 7.567 28 0.251 0.242 −21 5.808 11 0.266 0.261 9 7.676 41
70 313, 301 0.280 0.268 −17 7.768 30 0.222 0.214 −12 6.229 21 0.268 0.262 23 9.315 56
80 313, 060 0.270 0.258 −20 7.092 28 0.230 0.222 −13 6.273 22 0.280 0.274 25 9.554 59
90 312, 883 0.262 0.251 −22 6.754 29 0.239 0.231 −17 5.977 20 0.253 0.248 19 9.077 56

100 312, 100 0.246 0.235 −19 6.177 29 0.202 0.195 −14 4.814 18 0.221 0.216 21 8.305 54
110 311, 656 0.231 0.221 −16 6.446 33 0.189 0.182 −12 4.827 22 0.211 0.206 25 8.964 59
120 311, 574 0.236 0.225 −16 6.545 34 0.209 0.202 −16 4.594 19 0.207 0.202 22 8.637 57
130 311, 507 0.234 0.223 −16 6.706 36 0.206 0.199 −16 4.801 21 0.204 0.200 23 9.094 60
140 311, 456 0.226 0.216 −16 6.102 32 0.189 0.182 −12 4.717 21 0.215 0.211 25 8.827 58
150 311, 419 0.224 0.214 −15 5.899 31 0.178 0.172 −10 4.712 22 0.213 0.209 27 8.971 59
160 311, 355 0.217 0.207 −15 5.536 29 0.160 0.154 −4 5.013 25 0.246 0.241 33 9.420 62
170 311, 308 0.198 0.189 −13 5.090 23 0.141 0.137 −4 4.144 19 0.221 0.216 27 7.491 49
180 311, 266 0.202 0.193 −14 5.112 24 0.132 0.127 −3 4.433 22 0.218 0.213 27 7.868 52
190 311, 248 0.208 0.198 −16 5.287 23 0.143 0.138 −5 4.163 19 0.213 0.208 25 7.630 50
200 311, 228 0.202 0.193 −14 5.269 24 0.137 0.133 −4 4.148 20 0.213 0.209 27 7.639 50
210 311, 196 0.192 0.184 −14 5.032 20 0.125 0.121 4 4.655 23 0.253 0.248 32 7.919 52
220 311, 164 0.195 0.187 −15 5.079 21 0.122 0.118 1 4.620 23 0.237 0.232 31 8.070 53
230 311, 148 0.194 0.185 −15 5.146 22 0.122 0.118 1 4.571 23 0.236 0.231 29 7.949 52
237 311, 144 0.196 0.188 −15 5.342 23 0.125 0.121 0 4.765 24 0.235 0.230 30 8.243 54

Mmax = 10 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 331, 056 2.073 1.982 273 50.085 216 2.113 2.041 315 45.714 244 3.090 3.025 464 59.451 393
20 320, 199 0.924 0.884 76 23.133 101 0.375 0.362 25 10.921 35 0.655 0.641 82 15.999 92
30 316, 044 0.543 0.519 31 14.068 56 0.372 0.359 45 11.729 56 0.742 0.727 107 18.450 118
40 314, 821 0.385 0.368 11 10.626 47 0.256 0.248 6 8.118 28 0.424 0.415 43 11.685 65
50 314, 201 0.327 0.313 2 9.206 41 0.240 0.232 −8 6.713 17 0.336 0.329 21 9.103 45
60 313, 386 0.269 0.257 −5 7.831 34 0.220 0.213 6 7.506 31 0.365 0.357 46 11.223 71
70 312, 986 0.290 0.278 −17 7.316 26 0.210 0.203 −4 6.646 25 0.310 0.304 33 9.955 61
80 312, 722 0.280 0.268 −18 7.425 31 0.223 0.215 −8 6.792 27 0.300 0.293 33 10.652 68
90 312, 545 0.270 0.259 −22 7.110 32 0.233 0.225 −13 6.634 26 0.273 0.267 27 10.450 67

100 312, 469 0.265 0.253 −21 6.800 29 0.224 0.217 −11 6.420 25 0.274 0.268 29 10.128 64
110 312, 397 0.254 0.243 −19 6.136 25 0.202 0.195 −4 6.360 25 0.290 0.284 33 9.940 63
120 312, 346 0.247 0.236 −19 5.940 22 0.193 0.187 1 6.468 27 0.307 0.301 38 10.078 64
130 312, 299 0.240 0.230 −17 5.784 21 0.192 0.185 4 6.563 28 0.329 0.322 43 10.369 66
140 312, 274 0.247 0.236 −18 5.811 22 0.193 0.186 5 6.870 31 0.338 0.331 45 10.944 71
150 312, 243 0.249 0.238 −19 5.950 24 0.193 0.186 3 6.872 31 0.324 0.317 43 10.984 71
160 312, 222 0.255 0.244 −19 6.162 25 0.198 0.191 1 6.859 30 0.324 0.318 42 11.092 72
170 311, 204 0.228 0.218 −14 5.957 31 0.161 0.156 −1 5.874 30 0.276 0.270 40 10.703 71
180 311, 040 0.223 0.213 −13 6.021 31 0.154 0.149 −1 5.594 29 0.265 0.259 39 10.356 68
190 310, 996 0.222 0.213 −13 6.152 32 0.154 0.149 −2 5.584 28 0.258 0.253 38 10.311 68
200 310, 968 0.206 0.197 −10 6.163 32 0.144 0.139 3 5.924 31 0.285 0.279 42 10.568 70
210 310, 953 0.211 0.202 −10 5.930 30 0.143 0.138 3 5.615 29 0.276 0.270 41 10.153 67
220 310, 927 0.208 0.199 −11 6.353 33 0.147 0.142 −1 5.602 29 0.252 0.247 37 10.225 67
230 310, 919 0.211 0.202 −11 6.454 34 0.149 0.144 −1 5.702 29 0.259 0.253 38 10.376 69
240 310, 908 0.210 0.201 −11 6.559 35 0.152 0.147 −3 5.570 28 0.251 0.245 36 10.218 67
244 310, 905 0.208 0.199 −11 6.577 35 0.153 0.147 −2 5.617 29 0.252 0.247 37 10.259 68

Table A30: AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL under
300-886 with variance models of varying complexity Mmax after each tenth and the final iteration.
MAEs in %.
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k AIC v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Mmax = 14 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 327, 049 2.133 2.039 292 50.561 222 2.233 2.157 333 46.686 249 3.222 3.154 484 60.524 400
20 318, 965 1.020 0.976 108 25.288 111 0.507 0.490 69 12.759 57 0.931 0.912 136 19.634 124
30 316, 262 0.694 0.663 65 17.386 78 0.484 0.468 69 13.341 68 0.872 0.853 128 19.643 127
40 314, 272 0.392 0.375 23 10.373 44 0.277 0.268 23 8.322 30 0.493 0.483 59 11.941 66
50 313, 691 0.349 0.333 1 8.772 32 0.228 0.220 −5 6.440 12 0.335 0.328 19 8.633 36
60 312, 860 0.289 0.276 −10 7.475 30 0.204 0.197 −2 6.583 24 0.302 0.295 28 9.218 53
70 312, 542 0.286 0.273 −16 7.501 26 0.219 0.211 −3 6.802 24 0.334 0.327 37 10.548 64
80 312, 337 0.281 0.269 −18 7.254 27 0.215 0.207 −4 6.834 27 0.323 0.316 37 10.655 67
90 312, 126 0.261 0.250 −21 6.672 27 0.221 0.213 −10 6.384 23 0.286 0.280 29 9.942 62

100 312, 046 0.268 0.256 −22 6.695 27 0.222 0.215 −12 6.317 24 0.270 0.265 26 9.779 61
110 311, 961 0.257 0.245 −22 5.979 23 0.200 0.193 −5 6.316 25 0.284 0.278 31 9.695 61
120 311, 903 0.252 0.241 −21 5.892 19 0.193 0.186 1 6.411 26 0.311 0.304 37 9.977 63
130 311, 860 0.244 0.233 −19 5.886 20 0.190 0.184 3 6.562 28 0.322 0.315 41 10.344 66
140 311, 824 0.243 0.232 −20 5.880 19 0.190 0.183 5 6.758 30 0.335 0.328 44 10.696 69
150 311, 800 0.247 0.236 −21 6.011 20 0.185 0.179 2 6.452 28 0.309 0.303 40 10.365 66
160 310, 806 0.218 0.208 −16 5.451 25 0.140 0.135 0 5.234 27 0.255 0.249 37 9.596 63
170 310, 710 0.210 0.201 −15 5.473 25 0.137 0.132 0 5.077 26 0.249 0.244 36 9.359 62
180 310, 682 0.206 0.197 −14 5.303 24 0.136 0.131 2 5.064 26 0.266 0.260 39 9.492 63
190 310, 661 0.200 0.191 −13 5.285 23 0.144 0.139 5 5.163 26 0.298 0.292 44 9.843 65
200 310, 639 0.201 0.192 −13 5.413 22 0.143 0.138 4 5.088 25 0.293 0.287 44 9.726 64
210 310, 606 0.203 0.194 −13 5.599 23 0.145 0.141 6 5.459 27 0.314 0.307 47 10.294 68
220 310, 525 0.183 0.174 −13 4.672 12 0.148 0.143 −3 3.744 7 0.221 0.217 30 6.238 40
230 310, 513 0.179 0.171 −14 4.668 13 0.153 0.148 −6 3.729 7 0.206 0.202 27 6.113 40
240 310, 475 0.172 0.164 −14 4.347 10 0.130 0.126 −1 3.523 9 0.219 0.214 30 6.154 39
250 310, 462 0.171 0.163 −14 4.307 10 0.134 0.130 −2 3.480 8 0.211 0.206 28 5.958 38
258 310, 443 0.172 0.165 −14 4.371 10 0.134 0.129 −2 3.504 8 0.214 0.210 28 6.063 39

Mmax = 18 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 325, 846 2.112 2.020 290 50.142 221 2.201 2.127 328 46.153 246 3.183 3.116 478 59.925 396
20 318, 985 1.027 0.982 104 25.991 136 0.566 0.547 82 18.748 99 1.089 1.066 162 27.261 179
30 315, 896 0.705 0.674 69 17.595 79 0.526 0.508 76 13.871 71 0.928 0.908 137 20.356 132
40 314, 044 0.404 0.386 28 10.602 45 0.296 0.286 30 8.630 34 0.531 0.519 68 12.462 71
50 313, 483 0.330 0.316 9 8.715 35 0.225 0.217 5 6.643 17 0.365 0.358 32 9.177 44
60 312, 939 0.316 0.302 −5 7.833 31 0.210 0.203 5 6.895 26 0.352 0.345 42 10.382 63
70 312, 359 0.270 0.258 −10 6.927 21 0.216 0.208 11 7.084 27 0.393 0.385 49 10.781 65
80 312, 165 0.260 0.248 −12 6.555 22 0.206 0.199 10 7.018 29 0.373 0.365 48 10.721 67
90 311, 964 0.233 0.223 −15 6.130 24 0.196 0.189 1 6.433 26 0.313 0.307 37 9.838 61

100 311, 882 0.237 0.227 −17 5.756 20 0.190 0.183 2 6.218 24 0.305 0.298 36 9.431 58
110 311, 827 0.239 0.229 −18 5.733 21 0.190 0.184 1 6.305 25 0.303 0.296 36 9.588 60
120 311, 769 0.245 0.234 −20 5.762 18 0.189 0.183 3 6.425 27 0.319 0.313 39 9.924 62
130 311, 716 0.224 0.214 −16 5.502 15 0.190 0.183 10 6.403 27 0.350 0.342 46 9.993 63
140 311, 005 0.216 0.206 −13 5.222 21 0.142 0.137 6 5.361 26 0.291 0.285 42 9.416 62
150 310, 660 0.203 0.194 −12 5.094 21 0.133 0.129 7 5.158 26 0.284 0.278 42 9.129 60
160 310, 611 0.201 0.192 −12 5.033 21 0.137 0.133 8 5.360 27 0.303 0.297 45 9.568 63
170 310, 586 0.196 0.187 −11 4.994 21 0.136 0.132 10 5.548 28 0.316 0.310 47 9.821 65
180 310, 550 0.193 0.184 −12 4.987 21 0.135 0.130 1 4.264 20 0.241 0.236 35 8.200 54
190 310, 535 0.196 0.187 −14 5.087 21 0.139 0.135 −3 4.049 18 0.217 0.212 31 7.884 52
200 310, 511 0.182 0.174 −11 4.965 21 0.131 0.127 0 3.992 18 0.231 0.226 34 7.810 52
210 310, 467 0.185 0.177 −12 5.011 20 0.131 0.127 0 3.967 17 0.231 0.226 34 7.741 51
220 310, 463 0.181 0.173 −12 5.059 20 0.130 0.125 2 4.181 19 0.246 0.241 36 8.110 54
230 310, 454 0.181 0.173 −11 5.409 23 0.138 0.133 1 4.405 20 0.246 0.241 36 8.436 56
240 310, 440 0.182 0.174 −11 5.398 23 0.138 0.133 1 4.457 21 0.250 0.245 37 8.559 57
250 310, 431 0.181 0.173 −11 5.509 23 0.138 0.133 1 4.525 21 0.251 0.246 37 8.638 57
252 310, 425 0.185 0.176 −11 5.515 23 0.138 0.133 1 4.548 22 0.253 0.248 37 8.700 57

Mmax = 22 in variance model selection

0 437, 251 4.557 4.357 −238 100.000 38 3.231 3.121 0 100.000 261 4.027 3.942 106 100.000 367
10 325, 796 2.115 2.023 290 50.203 222 2.206 2.131 329 46.238 246 3.189 3.121 479 60.021 396
20 318, 940 1.026 0.981 112 25.965 135 0.666 0.644 98 20.243 107 1.199 1.174 179 28.606 188
30 315, 849 0.708 0.677 70 17.681 79 0.532 0.514 77 14.005 72 0.936 0.917 139 20.526 133
40 314, 001 0.407 0.389 28 10.712 46 0.299 0.289 31 8.710 34 0.536 0.524 69 12.589 73
50 313, 413 0.348 0.332 10 9.025 36 0.223 0.216 5 6.616 17 0.364 0.356 32 9.225 44
60 312, 897 0.316 0.302 −4 7.866 31 0.211 0.203 6 6.983 27 0.358 0.351 44 10.549 65
70 312, 317 0.271 0.259 −9 6.969 22 0.217 0.210 12 7.185 28 0.399 0.391 50 10.961 67
80 312, 120 0.260 0.249 −11 6.565 23 0.207 0.200 10 7.119 30 0.379 0.371 49 10.896 69
90 311, 920 0.235 0.224 −15 6.091 24 0.196 0.189 1 6.427 26 0.313 0.306 37 9.791 61

100 311, 842 0.238 0.228 −16 6.034 23 0.194 0.187 1 6.531 27 0.311 0.304 37 9.949 63
110 311, 784 0.241 0.230 −18 5.900 24 0.192 0.185 1 6.554 28 0.304 0.297 36 10.004 63
120 311, 737 0.241 0.230 −18 5.809 21 0.189 0.182 2 6.395 27 0.310 0.303 38 9.924 63
130 311, 690 0.227 0.217 −16 5.653 18 0.187 0.181 8 6.468 28 0.339 0.332 45 10.100 64
140 310, 925 0.213 0.203 −13 5.206 22 0.140 0.136 7 5.430 27 0.293 0.286 43 9.548 63
150 310, 604 0.202 0.193 −11 5.131 22 0.133 0.129 7 5.286 27 0.289 0.283 42 9.321 61
160 310, 559 0.200 0.192 −11 5.063 22 0.139 0.134 9 5.507 28 0.310 0.304 46 9.791 65
170 310, 532 0.189 0.181 −10 4.999 22 0.134 0.129 8 5.194 26 0.297 0.291 44 9.438 62
180 310, 503 0.193 0.185 −12 5.222 24 0.132 0.128 4 5.137 26 0.270 0.264 40 9.462 62
190 310, 481 0.194 0.186 −13 5.113 22 0.140 0.136 −2 4.124 19 0.220 0.215 32 8.019 53
200 310, 454 0.189 0.181 −13 5.164 21 0.135 0.130 −1 4.033 18 0.224 0.220 33 7.836 52
210 310, 412 0.185 0.177 −12 5.038 20 0.132 0.128 0 4.019 18 0.231 0.226 34 7.805 52
220 310, 406 0.185 0.176 −12 5.067 20 0.132 0.128 1 4.062 18 0.239 0.234 35 7.981 53
224 310, 404 0.184 0.176 −12 5.112 20 0.132 0.128 1 4.076 18 0.239 0.234 35 7.934 52

Table A30: Cont.
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k Mmax AIC v.maev.maea v.resv.mae0 v.res0 ns.maens.maeans.resns.mae0 ns.res0 cr.maecr.maea cr.rescr.mae0 cr.res0

Type I algorithm under 150-443

150 2315, 980 0.239 0.229 −16 8.147 46 0.255 0.246 −30 4.032 17 0.153 0.149 2 7.489 49

150 6311, 949 0.231 0.221 −13 7.577 41 0.203 0.196 −18 4.762 22 0.186 0.183 17 8.637 57

150 10311, 363 0.227 0.217 −10 7.460 40 0.194 0.188 −15 4.708 21 0.195 0.191 20 8.537 56

150 14311, 161 0.231 0.221 −9 7.527 41 0.193 0.186 −14 4.701 21 0.200 0.195 21 8.497 56

150 18311, 048 0.228 0.218 −9 7.433 40 0.187 0.181 −13 4.780 22 0.204 0.200 22 8.621 57

150 22310, 974 0.230 0.220 −8 7.436 40 0.187 0.180 −12 4.802 22 0.207 0.203 23 8.639 57

Type I algorithm under 300-886

224 2315, 615 0.196 0.187 −9 6.527 33 0.275 0.266 −30 4.564 −3 0.175 0.171 5 5.401 32

224 6311, 554 0.200 0.191 −9 6.399 33 0.240 0.232 −23 4.292 4 0.183 0.179 13 6.389 40

224 10311, 287 0.203 0.194 −8 6.473 33 0.234 0.226 −21 4.310 5 0.189 0.185 16 6.621 42

224 14310, 980 0.200 0.191 −7 6.246 31 0.222 0.214 −19 4.257 6 0.194 0.190 18 6.697 42

224 18310, 881 0.200 0.191 −7 6.194 31 0.217 0.210 −18 4.250 6 0.198 0.194 19 6.801 43

224 22310, 832 0.200 0.192 −7 6.256 32 0.217 0.210 −18 4.223 7 0.196 0.192 19 6.844 44

Type II algorithm under 150-443

150 2315, 629 0.239 0.229 −21 6.467 34 0.261 0.252 −30 3.796 10 0.177 0.173 3 6.654 44

150 6311, 426 0.224 0.215 −14 5.904 31 0.177 0.171 −9 4.756 22 0.226 0.221 29 9.005 59

150 10310, 868 0.212 0.203 −14 5.375 25 0.148 0.143 0 5.098 25 0.256 0.250 36 9.296 61

150 14310, 714 0.214 0.205 −14 5.368 25 0.146 0.141 −1 4.857 23 0.244 0.239 34 8.906 59

150 18310, 644 0.211 0.202 −14 5.131 23 0.139 0.135 1 4.816 23 0.250 0.245 35 8.618 57

150 22310, 590 0.208 0.199 −13 5.209 23 0.139 0.134 5 5.193 26 0.275 0.270 40 9.256 61

Type II algorithm under 300-886

224 2315, 491 0.209 0.199 −17 6.584 34 0.226 0.219 −22 3.999 14 0.165 0.161 12 7.290 48

237 6311, 144 0.196 0.188 −15 5.342 23 0.125 0.121 0 4.765 24 0.235 0.230 30 8.243 54

244 10310, 905 0.208 0.199 −11 6.577 35 0.153 0.147 −2 5.617 29 0.252 0.247 37 10.259 68

258 14310, 443 0.172 0.165 −14 4.371 10 0.134 0.129 −2 3.504 8 0.214 0.210 28 6.063 39

252 18310, 425 0.185 0.176 −11 5.515 23 0.138 0.133 1 4.548 22 0.253 0.248 37 8.700 57

224 22310, 404 0.184 0.176 −12 5.112 20 0.132 0.128 1 4.076 18 0.239 0.234 35 7.934 52

Table A31: AIC scores and out-of-sample validation figures of all derived FGLS proxy functions of BEL under
150-443 and 300-886 after the final iteration. MAEs in %. Highlighted in green and red respectively
the best and worst AIC scores and validation figures.
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k Kmax tmin o p glm v.maev.maea v.res v.mae0 v.res0 ns.maens.maea ns.res ns.mae0 ns.res0 cr.mae cr.maea cr.res cr.mae0 cr.res0

Sobol set2

148 206 0 6 s inv.g, id 0.265 0.253 −24 10.317 55 0.575 0.555 −40 16.234 −56 0.822 0.805 80 17.657 64

49 50 0 3 n inv.g, log 0.370 0.354 0 9.168 19 0.705 0.681 −12 29.477 −102 0.525 0.514 25 16.891 −65

60 66 0 4 s inv.g, id 0.324 0.310 −11 8.517 16 1.712 1.654 151 44.504 132 0.917 0.897 102 19.877 83

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

Sobol set and nested simulations set

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

17 19 0 4 b inv.g, id 0.834 0.797 25 24.673 124 0.480 0.464 −4 41.356 −243 0.763 0.747 108 21.398 −132

70 81 0 4 b inv.g, id 0.335 0.320 −22 10.872 52 0.554 0.535 −35 14.073 −38 0.875 0.857 102 18.250 99

33 34 0 3 n inv.g, id 0.426 0.407 −10 10.871 21 1.565 1.512 108 52.384 1 0.662 0.648 32 20.997 −75

Sobol set and capital region set

45 50 0 3 b pois, log 0.379 0.362 0 9.556 28 0.480 0.464 −43 24.878 −139 0.510 0.500 28 16.938 −69

31 34 0 3 b pois, log 0.476 0.455 −13 12.752 46 0.593 0.573 −54 31.148 −175 0.661 0.647 18 23.088 −103

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

59 66 0 3 b pois, log 0.428 0.439 40 16.674 98 0.760 0.734 −12 22.511 −41 0.809 0.792 68 18.403 39

Nested simulations set and Sobol set

134 1441.6−5 5 n gaus, log 0.273 0.261 −22 10.255 54 1.025 0.990 −1 28.192 −23 1.515 1.484 179 32.616 157

45 50 0 4 s inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

60 66 0 4 s inv.g, id 0.324 0.310 −11 8.517 16 1.712 1.654 151 44.504 132 0.917 0.897 102 19.877 83

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

Nested simulations set2

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

146 1599.4−6 5 n gaus, log 0.279 0.267 −24 10.008 53 1.025 0.990 0 26.779 −11 1.498 1.467 174 31.702 163

76 973.8−5 4 b inv.g, log 0.344 0.329 −17 10.676 52 0.538 0.520 −37 11.874 −24 0.804 0.787 88 16.584 100

107 113 0 4 n gaus, log 0.321 0.307 −20 11.976 63 0.997 0.963 8 25.694 0 1.529 1.496 191 32.148 182

Nested simulations set and capital region set

45 50 0 4 s pois, id 0.353 0.338 −3 8.891 18 0.449 0.434 −36 23.634 −131 0.504 0.493 36 16.079 −58

31 34 0 4 s pois, id 0.437 0.418 −11 11.254 32 0.548 0.530 −45 28.444 −157 0.648 0.634 29 21.374 −84

72 823.1−5 4 b inv.g, inv 0.365 0.349 −16 11.181 53 0.579 0.560 −49 14.528 −51 0.700 0.685 65 14.619 64

45 50 0 4 b inv.g, id 0.347 0.332 −2 8.686 11 0.447 0.431 −36 22.702 −125 0.511 0.500 35 15.785 −54

Capital region set and Sobol set

125 144 0 5 f inv.g, inv 0.283 0.271 −20 10.336 54 0.630 0.608 −63 17.245 −76 0.675 0.660 45 14.737 32

45 50 0 4 s gaus, log 0.382 0.365 −1 9.916 32 0.469 0.453 −41 25.487 −144 0.495 0.485 32 16.868 −71

114 1441.9−5 5 s inv.g,1/µ2 0.313 0.299 −12 9.414 40 0.708 0.684 −77 20.115 −97 0.626 0.612 36 14.095 17

45 50 0 4 b gaus, log 0.382 0.365 −1 9.916 32 0.469 0.453 −41 25.487 −144 0.495 0.485 32 16.868 −71

Capital region set and nested simulations set

45 50 0 4 f gaus, log 0.386 0.369 −1 10.095 34 0.468 0.452 −41 25.709 −145 0.496 0.486 32 17.077 −73

64 66 0 4 n inv.g,1/µ2 0.420 0.401 −3 11.506 39 0.840 0.811 3 25.969 −38 1.298 1.271 146 29.110 105

148 175 0 6 s inv.g,1/µ2 0.311 0.297 −16 10.447 52 0.576 0.556 −55 14.565 −57 0.611 0.598 30 12.844 27

77 81 0 4 n inv.g,1/µ2 0.387 0.370 −11 11.519 52 1.029 0.994 −28 25.831 −32 1.279 1.252 148 26.700 145

Capital region set2

45 50 0 4 s gaus, log 0.382 0.365 −1 9.916 32 0.469 0.453 −41 25.487 −144 0.495 0.485 32 16.868 −71

33 34 0 3 n inv.g,1/µ2 0.564 0.539 −14 15.693 64 0.827 0.800 −54 38.645 −185 0.745 0.729 −2 26.338 −134

148 175 0 6 s inv.g,1/µ2 0.311 0.297 −16 10.447 52 0.576 0.556 −55 14.565 −57 0.611 0.598 30 12.844 27

148 1754.7−6 5 f inv.g, inv 0.296 0.283 −20 10.416 53 0.549 0.530 −54 18.260 −87 0.664 0.650 32 16.307 −1

Table A32: Settings and out-of-sample validation figures of best performing MARS models of BEL derived in
a two-step approach sorted by first and second step validation sets. MAEs in %. Highlighted in
green and red respectively the best and worst validation figures.
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k hk (X) β̂MARS,k

0 1 15, 397.13

1 h (X8 − 0.104892) 7, 901.89

2 h (0.104892−X8) −8, 165.64

3 h (0.205577−X1) · h (0.104892−X8) 688.83

4 h (X6 − 1.17224) 265.08

5 h (1.17224−X6) −280.94

6 h (X15 − 53.8706) −2.11

7 h (53.8706−X15) 1.16

8 h (X7 −−0.147599) −60.90

9 h (−0.147599−X7) −334.77

10 h (X8 −−0.0456197) 3, 183.07

11 h (0.205577−X1) · h (0.104892−X8) · h (X15 − 64.6262) −9.48

12 h (0.205577−X1) · h (0.104892−X8) · h (64.6262−X15) 29.85

13 h (X1 − 0.945371) −64.88

14 h (0.945371−X1) 124.45

15 h (X6 − 1.56058) · h (0.104892−X8) −815.20

16 h (1.56058−X6) · h (0.104892−X8) 1, 085.80

17 h (1.44218−X2) −60.23

18 h (X1 −−1.61447) · h (1.56058−X6) · h (0.104892−X8) −233.14

19 h (−1.61447−X1) · h (1.56058−X6) · h (0.104892−X8) 415.92

20 h (X8 − 0.0159508) · h (53.8706−X15) 8.94

21 h (0.0159508−X8) · h (53.8706−X15) 47.99

22 h (X9 − 0.247192) 47.72

23 h (0.247192−X9) −82.58

24 h (0.993896−X12) −63.61

25 h (X1 − 0.0195594) · h (0.0159508−X8) · h (53.8706−X15) −12.58

26 h (0.0195594−X1) · h (0.0159508−X8) · h (53.8706−X15) −42.25

27 h (X7 −−0.147599) · h (X8 −−0.191689) 2, 124.93

28 h (X7 −−0.147599) · h (−0.191689−X8) 1, 510.41

29 h (X3 − 0.323352) · h (0.104892−X8) 948.86

30 h (0.323352−X3) · h (0.104892−X8) −577.61

31 h (X1 −−1.26627) · h (X7 −−0.147599) 101.15

32 h (−1.26627−X1) · h (X7 −−0.147599) −10.00

33 h (X14 − 0.684998) 109.76

34 h (0.684998−X14) −37.89

35 h (1.17224−X6) · h (X8 −−0.12538) 216.62

36 h (1.17224−X6) · h (−0.12538−X8) 2, 076.18

37 h (0.945371−X1) · h (X8 − 0.0019988) −156.79

38 h (0.945371−X1) · h (0.0019988−X8) 1, 262.56

39 h (X1 −−1.58818) · h (X6 − 1.56058) · h (0.104892−X8) 137.60

40 h (1.56058−X6) · h (0.104892−X8) · h (X15 − 76.9327) −4.87

41 h (1.56058−X6) · h (0.104892−X8) · h (76.9327−X15) 2.11

42 h (0.205577−X1) · h (X2 − 1.43028) · h (0.104892−X8) 24, 003.07

43 h (0.205577−X1) · h (1.43028−X2) · h (0.104892−X8) −161.88

44 h (X1 − 0.945371) · h (X8 −−0.0165546) −224.18

45 h (X1 − 0.945371) · h (−0.0165546−X8) −987.47

Table A33: Best MARS model of BEL derived in a two-step approach with the final coefficients.
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k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k

Kmax = 16 in adaptive basis function selection

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Kmax = 27 in adaptive basis function selection

17 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
19 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
21 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
23 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
25 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
27 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table A34: Basis function sets of LC and LL proxy functions of BEL corresponding to Kmax ∈ {16, 27} derived
by adaptive OLS selection.

k r1k r2k r3k r4k r5k r6k r7k r8k r9k r10
k r11

k r12
k r13

k r14
k r15

k

Kmax = 15 in risk factor wise basis function selection

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Kmax = 22 in combined risk factor wise and adaptive basis function selection

16 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
22 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Table A35: Basis function sets of LC and LL proxy functions of BEL corresponding to Kmax ∈ {15, 22} derived
by risk factor wise or combined risk factor wise and adaptive OLS selection.
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k bw o v.mae v.maea v.res v.mae0 v.res0 ns.mae ns.maea ns.res ns.mae0 ns.res0 cr.maecr.maea cr.res cr.mae0 cr.res0

LC regression with gaussian kernel and LOO-CV

16 0.1 2 0.55 0.52 −44 13 50 0.70 0.68 −86 12 −7 0.55 0.54 −35 12 45
16 0.2 2 0.40 0.38 −26 11 47 0.52 0.50 −51 11 7 0.44 0.43 5 13 63
16 0.3 2 0.37 0.35 −25 11 45 0.45 0.44 −37 11 19 0.44 0.43 5 12 60
27 0.2 2 0.39 0.38 −26 11 43 0.51 0.49 −51 11 3 0.43 0.43 4 12 58
16 0.1 4 2.80 2.68 −155 84 −407 8.05 7.78 −558 247 −825 5.04 4.94 −96 128 −363

LL regression with gaussian kernel and LOO-CV

16 0.1 2 0.38 0.36 −11 12 57 0.57 0.55 −68 10 −15 0.41 0.40 −22 9 31
16 0.2 2 0.34 0.33 −6 11 59 0.45 0.43 −49 8 2 0.37 0.36 5 10 55
27 0.1 2 210.30 201.06−30, 682 5, 209−30, 589 131.04 126.61 −18, 981 3, 670−18, 902 4.09 4.00 −82 92 −3
27 0.2 22, 726.472, 606.74 400, 254 67, 487 400, 3063, 502.24 3, 383.85 422, 443 98, 081 422, 481 1.85 1.81 −25 41 13

LC regression with gaussian kernel and AIC

16 0.1 2 0.57 0.55 −43 14 55 0.65 0.62 −72 12 12 0.50 0.49 −12 14 72
16 0.2 2 1.63 1.55 38 41 73 1.94 1.88 266 57 286 2.57 2.51 384 61 404
27 0.1 2 0.56 0.54 −42 14 56 0.64 0.62 −72 12 12 0.50 0.49 −12 14 72

LC regression with Epanechnikov kernel and LOO-CV

15 0.1 2 0.53 0.50 −36 13 41 1.05 1.02 −38 22 24 0.51 0.50 −29 11 33
15 0.2 2 0.41 0.39 −31 10 33 1.14 1.10 3 26 53 1.18 1.16 97 27 146
15 0.3 2 0.40 0.38 −30 9 23 0.96 0.93 16 23 54 0.46 0.45 −6 11 33
15 0.4 2 0.35 0.33 −22 9 18 1.11 1.08 12 28 39 0.47 0.46 −2 11 25
15 0.5 2 0.34 0.33 −18 9 37 1.24 1.20 6 30 46 0.51 0.50 −22 11 18
15 0.6 2 0.33 0.32 −17 10 50 1.16 1.12 21 27 74 0.46 0.45 −2 11 50
15 0.7 2 0.33 0.32 −16 10 41 1.17 1.13 18 28 61 0.44 0.43 −14 9 28
15 0.8 2 0.33 0.31 −16 10 45 1.21 1.17 29 29 76 1.16 1.13 101 26 148
15 0.9 2 0.32 0.30 −20 12 61 1.14 1.10 40 27 107 1.14 1.11 111 29 178
15 1.0 2 0.32 0.31 −22 10 49 1.19 1.15 52 29 109 1.13 1.11 106 27 163
16 0.1 2 0.53 0.50 −40 13 43 1.20 1.16 2 28 71 0.51 0.50 −20 12 49
16 0.2 2 0.41 0.39 −26 11 50 1.16 1.12 27 28 88 0.44 0.43 2 12 64
16 0.3 2 0.36 0.34 −27 9 29 1.07 1.03 41 27 83 0.44 0.43 1 11 43
16 0.4 2 0.33 0.32 −19 8 22 1.16 1.12 27 30 53 0.45 0.44 4 10 30
16 0.5 2 0.32 0.31 −16 9 36 1.34 1.30 30 33 67 1.22 1.19 101 27 138
16 0.1 4 0.45 0.43 −26 13 34 0.74 0.71 −68 16 −23 0.59 0.57 5 15 51
16 0.2 4 3.29 3.15 −104 160 891 7.50 7.24 −14 329 966 8.06 7.89 176 295 1, 157
16 0.1 6 3.31 3.16 −32 84 68 5.74 5.55 −96 158 −10 6.62 6.48 −53 148 32
16 0.2 6 3.32 3.18 −71 85 −217 9.37 9.06 73 268 −87 13.18 12.90 246 304 86
16 0.1 8 3.94 3.77 146 105 −119 10.71 10.35 −191 308 −470 8.84 8.65 −312 205 −591
16 0.2 8 8.53 8.16 397 286 −639 7.79 7.52 70 347 −980 12.37 12.11 1, 365 390 315
22 0.1 2 0.50 0.48 −37 12 44 1.07 1.03 −41 22 25 0.52 0.50 −30 11 37
22 0.2 2 0.42 0.40 −28 10 39 1.07 1.03 −3 25 50 1.20 1.17 106 29 159
22 0.3 2 0.39 0.37 −29 9 23 0.89 0.86 6 22 43 0.45 0.44 −3 11 34
22 0.4 2 0.35 0.33 −21 8 16 1.05 1.02 3 27 26 0.49 0.48 −4 11 19
22 0.5 2 0.33 0.31 −14 9 32 1.17 1.13 −2 28 29 0.47 0.46 −15 10 16
22 0.6 2 0.33 0.32 −17 10 46 1.09 1.06 11 25 60 0.45 0.44 −1 11 48
22 0.7 2 0.32 0.31 −15 9 39 1.23 1.18 26 29 66 1.17 1.14 99 26 139
22 0.8 2 0.32 0.30 −15 10 46 1.19 1.15 32 28 78 1.12 1.10 106 26 152
22 0.9 2 0.31 0.30 −19 11 58 1.15 1.11 39 27 102 1.12 1.10 111 28 174
22 1.0 2 0.31 0.30 −21 10 48 1.13 1.09 41 27 96 1.12 1.10 107 27 162
27 0.2 2 0.40 0.38 −26 11 45 1.15 1.12 26 28 83 0.44 0.43 1 12 58
27 0.3 2 0.38 0.36 −28 9 24 0.90 0.87 7 22 45 0.46 0.45 −2 11 36
27 0.4 2 0.35 0.33 −21 9 17 1.05 1.02 2 27 26 0.48 0.47 −4 11 20

LL regression with Epanechnikov kernel and LOO-CV

15 0.1 2 0.45 0.43 −49 10 40 1.22 1.18 −100 22 −26 0.78 0.77 −104 11 −30
15 0.2 2 0.36 0.34 −34 8 13 1.59 1.53 −145 40 −112 0.60 0.58 −54 11 −21
15 0.3 2 0.32 0.31 −36 7 17 1.91 1.85 134 48 173 0.60 0.58 −36 11 3
15 0.4 2 0.34 0.33 −40 8 33 1.83 1.76 −164 42 −106 0.43 0.42 −49 6 9
15 0.5 2 0.33 0.31 −40 8 34 2.20 2.12 −219 53 −160 0.41 0.41 −45 6 15
15 0.6 2 0.30 0.29 −33 7 29 0.94 0.91 8 19 56 0.33 0.32 −28 5 21
15 0.7 2 0.31 0.30 −40 7 23 0.94 0.91 −13 19 36 0.36 0.35 −40 5 8
15 0.8 2 0.29 0.28 −38 5 8 0.86 0.83 4 19 36 0.32 0.32 −29 5 3
22 0.1 2 731.51 699.39 2, 738 85, 172 479, 6121, 564.87 1, 511.98−111, 628 127, 410 365, 231 492.49 482.11−19, 404 76, 575457, 455
22 0.2 2 0.34 0.33 −34 8 0 0.83 0.80 −15 21 4 0.42 0.41 −25 8 −5
22 0.3 2 98.03 93.73 14, 396 148 −250 101.69 98.25 15, 174 147 513 100.00 97.89 15, 028 100 367
22 0.4 2 98.05 93.75 14, 399 147 −248 113.99 110.14 13, 158 495 −1, 503 100.00 97.89 15, 028 100 367
22 0.5 2 100.00 95.61 14, 685 100 38 118.95 114.93 14, 984 651 323 100.00 97.89 15, 028 100 367
22 0.6 2 99.72 95.34 14, 644 106 −3 100.59 97.19 15, 004 120 343 100.00 97.89 15, 028 100 367
22 0.7 2 100.00 95.61 14, 685 100 38 100.00 96.62 14, 922 100 261 100.00 97.89 15, 028 100 367
22 0.8 2 0.29 0.28 −39 5 9 152.43 147.27 22, 622 4, 264 22, 655 0.31 0.30 −35 5 −2

LC regression with uniform kernel and LOO-CV

16 0.1 2 0.75 0.71 −56 18 46 1.53 1.48 −52 32 36 0.73 0.72 −59 15 29
16 0.5 2 1.22 1.17 −78 29 16 2.60 2.51 301 82 381 10.45 10.23 1, 419 242 1, 498
27 0.1 2 0.64 0.61 −38 16 31 1.30 1.26 13 32 68 0.59 0.58 −2 15 53
27 0.5 2 0.35 0.34 −16 12 53 1.34 1.30 25 33 79 1.40 1.37 117 32 171
16 0.1 4 0.71 0.68 −33 17 47 1.27 1.23 −1 31 65 0.67 0.65 −23 15 43
16 0.5 4 1.85 1.76 −139 39 50 2.29 2.22 18 51 193 7.09 6.94 769 157 943
27 0.1 4 0.66 0.63 −38 15 32 1.32 1.27 7 32 63 0.58 0.57 −15 14 40
27 0.5 4 0.39 0.37 −13 13 67 1.26 1.21 16 31 82 0.52 0.51 −10 13 56
16 0.1 6 1.83 1.75 −165 38 100 1.95 1.88 −178 29 72 1.55 1.51 −190 24 60
16 0.5 6 1.83 1.75 −6 56 271 1.08 1.04 80 65 344 1.66 1.63 225 74 488

Table A36: Settings and out-of-sample validation figures of LC and LL proxy functions of BEL using basis
function sets from Tables A34 and A35. MAEs in %. Highlighted in green and red respectively the
best and worst validation figures.
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Am. - Random Seed Am. - Same Seed Eu. - Same Seed

Scenario excl. ext. % excl. ext. % excl. ext. %

base 121.88 121.07 -0.67 120.75 121.10 0.29 122.25 121.40 -0.69

r− 124.60 124.76 0.13 124.04 124.00 -0.03 125.51 123.27 -1.78
r+ 117.87 117.36 -0.44 118.05 118.19 0.12 119.51 119.52 0.01
K− 120.18 120.90 0.60 120.36 120.29 -0.06 121.74 121.73 -0.01
K+ 121.71 121.34 -0.30 121.23 122.09 0.70 122.46 124.86 1.96
S− 97.78 95.44 -2.39 96.70 95.62 -1.11 98.03 97.68 -0.36
S+ 146.77 146.35 -0.29 144.75 143.22 -1.06 146.69 143.84 -1.94
µ− 121.56 120.18 -1.14 120.83 121.30 0.39 122.13 121.91 -0.18
µ+ 121.27 121.46 0.16 120.91 120.91 0.00 122.11 122.19 0.07

S+, µ− 145.61 145.46 -0.10 144.91 143.42 -1.03 146.59 144.35 -1.53
K−, µ+ 120.35 121.29 0.78 120.22 120.09 -0.10 121.97 122.52 0.45
r−, S+ 148.98 149.82 0.56 148.44 145.99 -1.65 150.46 145.03 -3.61
r−, µ− 124.20 123.87 -0.27 123.78 124.20 0.34 125.56 123.78 -1.42
r+, µ− 119.14 116.47 -2.24 118.22 118.39 0.14 119.60 120.03 0.36
K−, S− 120.96 121.29 0.27 120.29 120.09 -0.17 121.80 122.52 0.60
r−,K+ 124.84 125.62 0.62 124.19 124.67 0.39 125.74 126.22 0.39
K+, S− 97.35 95.72 -1.68 96.81 96.61 -0.21 98.19 101.14 3.01
K+, S+, µ− 145.94 145.74 -0.14 145.36 144.40 -0.66 147.08 147.81 0.50
r−, S+, µ+ 149.17 150.21 0.70 148.72 145.79 -1.97 150.51 145.83 -3.11

r−,K−, S−, µ− 98.60 97.73 -0.89 98.84 98.35 -0.50 100.09 101.57 1.48
r−,K−, S−, µ+ 99.55 99.01 -0.54 98.85 97.96 -0.90 100.06 101.85 1.79
r−,K−, S+, µ− 148.78 148.18 -0.40 148.20 145.68 -1.70 150.29 146.38 -2.60
r−,K+, S−, µ− 100.52 99.32 -1.19 99.50 99.52 0.02 100.81 103.68 2.85
r+,K−, S−, µ− 95.01 91.03 -4.18 94.07 91.65 -2.58 95.53 95.45 -0.08
r+,K+, S+, µ+ 143.47 142.96 -0.36 142.00 141.55 -0.32 143.70 147.41 2.58
r+,K+, S+, µ− 143.23 141.68 -1.08 142.01 141.94 -0.05 143.72 147.13 2.37
r+,K+, S−, µ+ 94.66 91.59 -3.24 94.71 93.68 -1.08 95.87 99.90 4.20
r+,K−, S+, µ+ 142.54 143.68 0.80 140.89 139.13 -1.25 142.68 143.25 0.40
r−,K+, S+, µ+ 149.26 151.06 1.21 148.92 146.46 -1.65 150.82 148.78 -1.35

Table A37: Insurance contract values obtained from simulation with κ = 0.04, κw = 0.



Appendix 201

Am. - Random Seed Am. - Same Seed Eu. - Same Seed

Scenario excl. ext. % excl. ext. % excl. ext. %

base 135.03 134.65 -0.28 134.55 135.55 0.74 106.44 105.23 -1.14

r− 140.85 140.42 -0.30 139.85 140.25 0.28 107.28 104.81 -2.30
r+ 130.30 128.86 -1.10 130.02 130.83 0.62 105.84 105.66 -0.17
K− 135.60 135.14 -0.34 134.21 135.43 0.91 106.47 106.07 -0.38
K+ 134.88 136.54 1.23 135.14 137.12 1.46 106.73 108.49 1.65
S− 108.61 107.14 -1.35 107.86 108.63 0.71 85.33 84.57 -0.89
S+ 162.56 159.07 -2.15 161.31 159.51 -1.12 127.91 125.02 -2.26
µ− 135.84 135.04 -0.59 134.59 135.40 0.61 106.56 106.32 -0.23
µ+ 135.90 136.20 0.22 134.54 134.74 0.15 106.61 106.11 -0.46

S+, µ− 163.13 159.46 -2.25 161.64 159.37 -1.40 127.93 126.11 -1.43
K−, µ+ 134.73 136.69 1.46 134.30 134.62 0.24 106.58 106.95 0.34
r−, S+ 169.17 164.97 -2.48 167.42 164.15 -1.95 128.99 123.38 -4.35
r−, µ− 141.06 140.81 -0.18 139.78 140.10 0.23 107.39 105.89 -1.40
r+, µ− 130.90 129.25 -1.26 130.05 130.68 0.49 105.83 106.74 0.86
K−, S− 135.08 136.69 1.19 133.82 134.62 0.60 106.31 106.95 0.60
r−,K+ 140.51 142.74 1.59 140.25 141.50 0.89 107.60 107.59 -0.01
K+, S− 109.18 109.03 -0.14 108.05 110.20 1.99 85.29 87.83 2.98
K+, S+, µ− 162.79 161.35 -0.89 161.83 160.94 -0.55 127.83 129.36 1.20
r−, S+, µ+ 169.66 166.53 -1.85 167.77 163.34 -2.64 128.80 124.26 -3.52

r−,K−, S−, µ− 112.64 113.22 0.51 111.79 113.45 1.48 85.98 87.75 2.06
r−,K−, S−, µ+ 113.05 114.38 1.17 111.76 112.79 0.92 85.87 87.55 1.96
r−,K−, S+, µ− 168.13 165.41 -1.62 167.60 164.21 -2.03 128.57 125.78 -2.17
r−,K+, S−, µ− 112.34 115.48 2.80 112.39 114.50 1.88 86.13 89.23 3.59
r+,K−, S−, µ− 104.25 102.79 -1.40 103.81 103.26 -0.52 84.78 85.23 0.54
r+,K+, S+, µ+ 156.97 156.15 -0.52 156.20 155.95 -0.16 126.83 131.28 3.50
r+,K+, S+, µ− 157.36 154.99 -1.50 156.44 156.61 0.11 126.80 131.48 3.69
r+,K+, S−, µ+ 104.90 104.49 -0.39 104.38 104.93 0.53 84.76 88.40 4.29
r+,K−, S+, µ+ 156.88 155.62 -0.81 155.68 153.61 -1.33 126.86 127.91 0.83
r−,K+, S+, µ+ 169.11 168.84 -0.16 167.70 164.59 -1.85 129.02 127.05 -1.53

Table A38: Insurance contract values obtained from simulation with κ = 0, κw = 0.06.
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