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ABSTRACT

Business-relevant domain knowledge can be found in plain text across message exchanges

among customer support tickets, employee message exchanges and other business transac-

tions. Decoding text-based domain knowledge can be a very demanding task since traditional

methods focus on a comprehensive representation of the business and its relevant paths. Such

a process can be highly complex, time-costly and of high maintenance effort, especially in

environments that change dynamically.

In this thesis, a novel approach is presented for developing hybrid case-based reasoning

(CBR) systems that bring together the benefits of deep learning approaches with CBR ad-

vantages. Deep Knowledge Acquisition Framework (DeepKAF) is a domain-independent

framework that features the usage of deep neural networks and big data technologies to de-

code the domain knowledge with the minimum involvement from the domain experts. While

this thesis is focusing more on the textual data because of the availability of the datasets, the

target CBR systems based on DeepKAF are able to deal with heterogeneous data where a

case can be represented by different attribute types and automatically extract the necessary

domain knowledge while keeping the ability to provide an adequate level of explainability.

The main focus within this thesis are automatic knowledge acquisition, building similarity

measures and cases retrieval.

Throughout the progress of this research, several sets of experiments have been conducted

and validated by domain experts. Past textual data produced over around 15 years have

been used for the needs of the conducted experiments. The text produced is a mixture

between English and German texts that were used to describe specific domain problems

with a lot of abbreviations. Based on these, the necessary knowledge repositories were built

and used afterwards in order to evaluate the suggested approach towards effective monitoring

and diagnosis of business workflows. Another public dataset has been used, the CaseLaw

dataset, to validateDeepKAF when dealing with longer text and cases with more attributes.



The CaseLaw dataset represents around 22 million cases from different US states.

Further work motivated by this thesis could investigate how different deep learning models

can be used within the CBR paradigm to solve some of the chronic CBR challenges and be

of benefit to large-scale multi-dimensional enterprises.
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Chapter One

Introduction & Motivation

"Case-based reasoning is a methodology, not a technology" I. Watson, 1999. Case-

based reasoning (CBR) is a way of thinking, imitating how the human brain works naturally.

Every person has a unique way of thinking and reasoning by recalling memories and relating

them to the present. Problems or challenges can be solved similarly regardless of the domain,

for example, whether they are in medicine, law or a specialized technical field. Similar

situations from the past are recalled and "adapted" to find an appropriate solution to the

experienced case and its context. This ability, combined with the knowledge of a plethora

of cases usually obtained from a long professional life, defines the human experience. CBR

is an artificial intelligence technique and methodology that can provide a system with the

ability to simulate exactly the aforementioned behavior (Aamodt and E. Plaza, 1994). For a

newly emerging problem, the most similar known problem from the "empirical knowledge"

- the so-called case base - is sought. CBR then applies a solution analogous to the known

case to the new problem. Then, like a human expert would do, each new problem together

with its successful solution is added to the case base, so that future problem-solving would

be based on an even greater experience pool and thus a future problem could converge to a

solution faster.

CBR is efficient in building structured procedures to simulate typical human behaviors.

However, it is prone to failures in text domains if the case representation is not robust
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enough to support its operations (cases representation, retrieval, adaptation and similarity

assessment). Therefore, finding an ideal textual case representation is the top priority for

a CBR system. The choice of an ideal representation can be "extracted" from the domain

characteristics and the complexity of its cases, an area where traditional text representation

and machine learning techniques struggle to cope with. Recently, the explosion of deep

learning techniques and other forms of vectorized representations have provided a new source

for case insights. Richer text features can be extracted and used for each case if required,

indicating a potential solution to a long-standing problem.

This thesis presents a novel framework (Deep Knowledge Acquisition Framework (DeepKAF))

based on recent work in the area of combining deep learning approaches with the CBR

paradigm to generate richer case representations and automatically acquiring domain knowl-

edge from unstructured multilingual textual data.

This thesis describes how hybrid CBR systems can obtain their representation vectors

from stemmed words and improve these vectors iteratively, suggesting high quality outputs

and relevance to domain experts based on the available past knowledge. For the needs of the

evaluation of this research extensive work has been done in the area of automotive engineer-

ing conducting several sets of experiments and using a combination of different approaches.

For generalization purposes, the legal domain was chosen in addition to demonstrate how

DeepKAF performs in long, complex and hard-to-read documents. The results from both

domains show an enhanced CBR approach that is more efficient compared to existing im-

plementations in the literature, whereas still is able to provide substantial explainability

compared to pure deep learning approaches. The evaluation of this work shows that CBR

can be applied efficiently to complex textual challenges that were not easy to tackle prior

to this work. Using DeepKAF, highly usable text representation and similarity measures

were built automatically with minimum efforts from the experts. This has been based on the

assumption that the provided cases are accompanied by the necessary past experience given

by domain experts. These experiments along with their produced results will be thoroughly
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discussed throughout this thesis.

This work investigates whether there can be a sufficiently generic methodology to dynam-

ically inject deep learning models into the CBR paradigm without affecting the explainability

advantage that CBR systems have. This approach along with its architecture can be general-

ized and integrated with other non-CBR systems without affecting their structural integrity

as well as their functionality.

1.1 Rationale - CBR Applications in the Industrial Do-

main

In the course of obtaining my master’s degree, I worked on building an indexing algorithm

demonstrating that retrieval processes can be improved substantially (400%) compared to

traditional retrieval process within a case base of 300,000 cases (El-Bahnasy, Amin, and

Aref, 2014). However, demonstrable challenges were identified during the implementation

and motivation behind the indexing algorithm. A prominent challenge emerging from that

work was to be able to scale-up traditional CBR systems by indexing cases. Further to

scaling, prominent Artificial Intelligence (AI) solutions like neural networks are considered

black-box approaches since they cannot explain their results in a human-readable approach.

Compared to theses, CBR has the advantage of being able to provide explainability. Later

on, when I started my PhD studies, I spotted the gap that AI black-box approaches have and

the advantage that CBR is having, namely explainability. I started to think differently

in the way of how to handle large amounts of data and being able to answer queries in

real-time by building distributed and large-scale CBR systems. Motivated by the findings

and challenges from (El-Bahnasy, Amin, and Aref, 2014) the work presented in this thesis

presents a different approach in the way of how to handle large amounts of data and being

able to query and explain findings in real-time by building distributed and large-scale CBR
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systems.

The growth of intensive data-driven decision-making has led to extensive use of AI tech-

nologies, (Brynjolfsson and McElheran, 2016) since they seem capable to augment it further.

CBR has several examples where data-driven methods can improve business decision-making

dynamically. Following the business needs, industries that deal with customer experience

(e.g., customer support) have also adopted data-centric approaches to optimize their business

workflows and the quality of their services(Brynjolfsson and McElheran, 2016).

Customer support relies on teams of qualified experts and technicians who define, monitor

and decide what is the best action / re-action to a problem and what should be avoided.

Their role is to pin down with accuracy how tasks, products and company resources should

be used to achieve the organization goals. Customer support relies on intelligent systems

and data to provide high quality services as well as identify potential bottlenecks, improve

processes and rationalize complex cases.

CBR provides a variety of options and architectures to implement applications. That is

the reason it holds a prominent position within the intelligent systems sector and has been

used by several organizations. Since "reasoning" is a top-sought feature and AI applications

tend to XAI (Explainable AI) (Arrieta et al., 2020) CBR is a high profile solution since

it offers explainability as its core feature out-of-the-box.

CBR is regarded a bridge to machine learning [automated knowledge generation] and

knowledge-based systems [manual and semi-automatic knowledge modelling]. As such, it

is regarded a natural candidate for finding domain or task-specific approaches to integrate

automated knowledge generation [using machine learning] with manual knowledge modeling

[using knowledge-intensive CBR]. The following list shows potential application areas on

which CBR can have a substantial impact, provided there can be a way to handle the

challenges of dealing with big data.

1. Internet of Things (IoT) applications (autonomous cars).
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2. Ticketing systems and customer support applications.

3. Medical diagnosis systems (from images or text).

4. Server logs anomaly detection applications.

5. Condition monitoring applications like what most oil and gas companies have.

This work is motivated by the opportunities CBR offers to industrial domains and the

challenges it experiences when applied to real applications. CBR is highly applicable to novel

applications, however limited when being confronted with real industry requirements. This

work investigates how CBR can be enhanced and augmented to be a solid methodology for

high intensity tasks in the area of Natural Language Processing (NLP). This work intends

to be a reference point for future research in the areas of: CBR, natural language processing

and big data. It provides enhanced evaluation in two different industry domains, which can

be regarded a further contribution of this thesis. Motivated by the current CBR limitations,

the following section will present the research questions this work is addressing.

1.2 Research Questions

This work investigates whether: "do we need to understand the text before processing it?",

or "whether is it possible to process and understand text with minimal understanding". The

research questions that are going to be answered in the next chapters are:

1. Can we have automatic knowledge acquisition from fuzzy, incomplete and unstructured

knowledge?

2. Can we achieve sufficient explainability using knowledge-intensive techniques for het-

erogeneous textual domains?

3. Can we automatically decode domain knowledge with the minimum possible effort from

domain experts?
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1.3 Thesis Contributions

The main contribution of this thesis is the conclusion that ensemble learning based on text-

based CBR and Deep Learning can be used to process large amounts of complex textual data

in real-time and provide accurate solutions. This work proves that deep learning models can

decode textual domain knowledge automatically and build effective similarity measures. It is

shown that similarity can be measured across different text cases with minimum involvement

required from the domain experts.

A further contribution is the formulation, design, and implementation of a novel frame-

work which is used in explainability of heterogeneous domains based on extending exist-

ing big data frameworks with ElasticSearch and Keras to build deep learning models.

This framework provides a generic environment to facilitate building an integrated CBR-

BigData-DeepLearning system in addition to its Knowledge Repository Layer (KRL).

The KRL can contain limitless experience regarding the inspected cases and serves as a

reference case base that can be used for reasoning and explanation.

A final contribution of this thesis is the extensive and thorough literature research of

current CBR challenges, explainable AI, deep learning, and big data architectures covering

the amalgamated cross-discipline areas. This review has been exhaustive and detailed and

has led to a lot of insights.

1.4 The Approach

This thesis presents Deep Knowledge Acquisition Framework (DeepKAF), which was de-

signed for developing distributed large-scale CBR systems. DeepKAF employs several deep

learning models to overcome the limitations of a textual-CBR system. The deep learning

models have been used for two main purposes, namely to decode textual domain knowl-

edge (mixed-language text), and semi-automate the building of similarity measures. The
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knowledge acquisition layer is based on a word embeddings model that is an unsupervised

learning approach to build relationships within text. Later on, the word embeddings model

is later on used in the similarity measures layer where a Siamese network architecture is

being applied. The pre-processing layer used a Long Short-Term Memory (LSTM) model

to eliminate unnecessary parts from the text and made it ready to be fed to the Siamese

network, which is responsible for the retrieval. The LSTM has been replaced with an au-

toencoder in a later stage of the implementation when we changed the use-case and faced a

long text that needed to be summarized somehow. Autoencoders helped in finding a lower

dimensional representation to text and thus improving the retrieval results with less effort.

The Siamese model main function was to measure similarity between two distinctive ob-

jects. Siamese networks are the state of the art in the area of comparing two objects, and

showed significant improvements concerning the retrieved results. The Siamese architecture

was selected after many experiments using other architectures and a lot of user experience

influencing the entire approach. The DeepKAF approach tries to minimize the required

effort of domain experts to decode the domain knowledge.

The entire approach looks like a long deep learning pipeline where the output of one

model is an input to the next one, and this pipeline is contained and controlled within a

CBR system that rules how the models are being used together.

In the course of this thesis, state of the art (and beyond) technologies have been integrated

in a novel architecture for creating similarity assessment methods (semi-)automatically,

rather than consulting experts. Instead, I am using deep learning models to understand

the domain knowledge and retrieve similar cases fast. Experts were involved to evaluate and

validate the retrieved results and give recommendations on how to improve the retrieved

results.
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1.5 Required Knowledge

The reader of this thesis will be introduced to CBR challenges, deep learning models and the

big data Hadoop eco-system. However, basic knowledge in the areas of software engineering

and deep learning is assumed. In-depth knowledge of CBR systems and challenges would be

of great benefit.

1.6 Thesis Structure

This thesis is divided into eight chapters. Chapter 1 introduces the thesis topic with an

abstract motivation and challenges that CBR currently is facing. Since this thesis is bridging

gaps among CBR, deep learning and big data, Chapters 2, 3 and 4 define the state of

the art in CBR, deep learning and big data. They are showing the advantages of intensively

using deep learning within the CBR paradigm to solve complex problems, which might be

faced by any CBR system implementation in the industrial domain. Chapter 2 answers

the question of "Can CBR be effectively applied in industrial domains?"; to answer this

question, some literature and traditional approaches have to be mentioned and introduced

because they will be used later on in this thesis. Chapter 2 also covers the literature

of the traditional CBR cycle, along with the challenges that CBR faces when it to comes

to industrial implementations. Chapter 2 also presents three CBR approaches, namely

distributed, large-scale and hybrid systems. These approaches are the main focus of this

thesis, since DeepKAF is using "big data and deep learning as a hybrid approach" to build

distributed and large-scale CBR systems.

Chapter 3 is an in-depth literature survey of CBR sub-processes, with the most popular

frameworks and architectures tackling the same problem DeepKAF is covering. The state

of the art in the CBR area is defined in Chapter 3 by showing how recent work relates

to DeepKAF, what the differences are between one another, and showing how DeepKAF
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can overcome repetitive chronic challenges presented in this literature.

Starting from Chapter 4, the "bridge" between the three areas (CBR, big data and

deep learning) is being built. Chapter 4 focuses on showing why CBR can be a successful

approach in industrial domains.Chapter 4 also introduces the deep learning models that

being used within DeepKAF implementation, including justifications why specific models

are chosen.

Chapters 5 and 6 are the core chapters describing DeepKAF and presenting the find-

ings in relation to the most relevant related work. Chapter 5 looks at DeepKAF from an

architectural perspective. The architecture describes where to use the deep learning models

and for which purposes, along with their training processes. The state-of-the-art literature

in Chapter 5 is related to building similarity measures and hybrid approaches that used

deep learning in CBR. Chapter 5 also explains the differences between the former literature

approaches and DeepKAF. In addition, DeepKAF explainability is going to be explained

and compared with ML approaches and how DeepKAF is a generic methodology and can

be applied in different use-cases with the same or different models depends on the type of

the problem. , Lastly, Chapter 5 explains the competitive advantage of DeepKAF over

the other approaches and provide ideas for future uses of DeepKAF Based on the architec-

ture described. Chapter 6 continues with the experiments and validation of DeepKAF.

Chapter 6 also focuses on the history of the experiments that were carried out amid the

implementation of DeepKAF. These experiments include the final version that gives the

optimal results. Finally, the technical details, frameworks, and cloud provider that were used

throughout the implementation. Chapter 7 concludes the entire work that has been done

in this thesis and presents ideas for the future work with DeepKAF.

9



Chapter Two

CBR Applications in the Industrial

Domain

Decisions under pressure are a common characteristic of modern processes and real-time

industrial applications. With a constant flow of valuable data points, processes are called to

perform better and faster whilst the decision time remains the same if not shorter. Over the

past years we have seen impressive work in the areas of neural networks and deep learning,

enabling faster reasoning over constantly working data flows. However, there has been less

work done in the areas of reasoning under fuzziness, incomplete information and uncertainty.

For example, decision support systems dealing with customers based on text information have

a high degree of fuzziness and uncertainty. This situation becomes more challenging when

their available text contains abbreviations, missing words, or is multilingual. Motivated from

the above challenges, this work presents the Deep Knowledge Acquisition Framework

(DeepKAF), a case-based reasoning framework for rapid application prototyping on nat-

ural language processing workflows. DeepKAF presents an end-to-end natural language

framework, and it has remarkable applicability and acceptance in industrial applications

that share multi-languages, mixed notations, and content fuzziness. The key idea behind

its inception has been the observation that processes can be represented as workflows and

workflow states can be inferred from text flows (signals) using historical knowledge (cases).
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Workflow signals can be inferred to workflow processes (Kapetanakis, Miltos Petridis, et al.,

2010), (Kapetanakis and Miltos Petridis, 2014) and processes to experiences leading to ap-

propriate mitigation policies. This work has been evolved over a number of real applications

(Amin et al., 2018c), (Amin et al., 2018a), (Amin et al., 2020) and this thesis presents its

core concepts, architecture and implementation using deep learning models and similarity

metrics.

2.1 About this Chapter

This chapter presents the motivation behind DeepKAF by describing the CBR potential

in the industrial domain, as well as explaining the current challenges that a CBR system

is facing. It is important to discuss the challenges that any CBR implementation may face

in the industrial domain, since DeepKAF’s work investigates how CBR can scale in an

industrial domain and against traditional ML approaches. This chapter investigates three

generic types of CBR systems, namely distributed CBR, large-scale CBR, and hybrid CBR

approaches. These three types are the most relevant to what DeepKAF is doing and what

would help a CBR system to "survive" in an industrial domain.

The following sections present the general CBR methodology, architecture as well as the

challenges that face CBR shown within the CBR literature and challenges that the CBR

community has faced over the years. Several approaches, tools and architectures were intro-

duced to solve some common problems, but they are all very domain-specific. DeepKAF is

an approach towards building a more generic CBR architecture that can handle the current

requirements for any industrial implementation.
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2.2 Case-Based Reasoning

When systems grow in size and become more complex in nature, Artificial Intelligence (AI)

is seen as a mean of automation, efficient management and coordination. AI brings together

the underlying infrastructure, the models built and the fundamental machine intelligence to

handle resources and workload efficiently. AI techniques are being used widely in the fields

of banking, finance, engineering, medical, military and education in order to solve complex

problems. Among the AI techniques, the Rule-Based Systems (RBSs) can also be referred

to as Rule-Based Expert Systems (RBESs) and the Artificial Neural Networks (ANNs) are

the most prominent in the development of applications. These methods, while popular and

well known, are difficult to avoid downsides.

Starting with the RBESs and briefly exploring their application model, it is found that,

in order for the RBES to function effectively, a series of rules must be specified that depicts

the overall domain As a consequence of the RBES method, the entire domain knowledge has

to be compiled in advance in order to be able to function. This can be a daunting challenge

for applications that have been in service for a number of years. Existing knowledge can

be transferred to the RBES by very basic guidelines, something that cannot be readily

achieved if the system spans a broad operational range. In those cases, the number of rules

will be huge. Maintaining such a system could prove to be a difficult challenge, too, if the

rules continually change or new rules appear, not to mention the rules that include overlaps

between them. Over all, if there is no fixed rule for a given problem, there is no chance of

finding a solution to that particular problem (Kersten and Meister, 1996). Artificial neural

networks do not require the entire domain knowledge acquisition from the domain model in

order to present a solution to the addressed problem, an advantage over the RBSs. However,

they are faced with substantial limitations since they are numeric restricted (Arditi and

Tokdemir, 1999) and their way of operating remains hidden while producing the solution.

As a consequence, the solution given cannot be easily verified as crucial information is lacking
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such as: the technical information, the parameter weights, the learning rules and the internal

functionality of the ANN. Therefore, it is not straightforward to provide explanations, making

ANNs general applicability challenging in many domains.

Case- based Reasoning (CBR), a modern computational model, could be proposed to-

wards the elimination of the above-mentioned drawbacks. CBR is fast in construction com-

pared to typical RBESs, easier to maintain and can cope with complex structures. This

is an advantage in comparison with ANNs that use numeric input or symbolic patterns to

deal with the complexity of structures. CBR can also work with some cases, an advantage

compared to the domain-knowledge acquisition requirements of the RBESs (Prentzasm and

Hatzilygeroudis, 2007) and the exhaustive domain requirements of the ANN learning phase.

2.2.1 CBR Methodology – Architecture

AI systems are proven to be an efficient approach to handling, evaluating and supporting

large-scale enterprise systems. CBR is an AI set of techniques that work together to solve

problems similarly to the human brain, based on previous experience. Ian Watson (1997) in

his book Applying Case-Based Reasoning: Techniques for Enterprise Systems states: "Case-

based reasoning (CBR) is an intelligent-systems method that enables information managers

to increase efficiency and reduce cost by substantially automating processes such as diagnosis,

scheduling and design". As Watson indicates, CBR can be regarded as a computational

methodology rather than a technique. CBR can use a variety of AI techniques towards

the solution attainment during its Retrieval and Adaptation phases. There are innumerable

examples in real life that show how experts in technology fields work: familiarize themselves

with the domain, collect specimens, define a methodology, etc. These techniques could

be generalized. A medical practitioner gathers the symptoms of a disease, and based on

prior experiences, is likely to determine the potential cause of the disease. Depending on

the experiences of the past, a medicine can be created, and if the condition appears to be
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approached, the confirmation comes, and the rest of the medicine is developed with certainty.

In the case of non-successful treatment, the drug switches to the next potential condition

suggested by the clinical practice, often depending on the experienced symptoms.

Professionals in the fields of law, mechanical engineering, industrial environments and

even ordinary people in everyday life find solutions to problems based on analogy making

(Mitchell, 1993; Hofstadter, 1985). CBR is based on the experience obtained over the years,

rather than the overall knowledge available in the investigated domain. As a consequence, the

cases involve either problems with proven solutions or problems with unsuccessful attempts

to fix them. In all cases, the user of the CBR system is of value as an explanation is always

given. As a result, he/she knows what to do if the proposed solution was good or what to

do in some other situation.

2.2.2 Case-based Reasoning Cycle

CBR is a series of artificial intelligence techniques that uses existing and past knowledge

in order to find a possible solution to a given problem. This knowledge can be stored in

repositories and formed in definite cases. In CBR, problems are characterized from regularity

and recurrence (Aamodt and E. Plaza, 1994). Regularity means that, if a problem reappears,

the knowledge learned from one previous problem will potentially be applied to the new

problem. Re-occurrence refers to the fact that problems tend to have recurred over time,

either continuously or occasionally. These problems can be classified by their type. The

solution that works for one problem may, after applying the necessary changes, work for

another problem of the same type.

CBR techniques can be generalized in a formal way into four-step processes (Aamodt

and E. Plaza, 1994). This is generally referred to as the CBR cycle or the four R’s processes

where R’s stand for Retrieve, Reuse, Revise and Retain (See Figure 2.1. The procedures

carried out by each stage deals with knowledge memory represented in the form of cases. A
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Figure 2.1 The CBR Cycle [Aamodt & Plaza, 1994]

case in CBR usually involves a problem and a known solution for that, as well as the related

information that contributed to the addressed solution.

The stages of a CBR process are explained briefly below.

1. Retrieve: Whenever a problem is forwarded to the CBR system, the system treats it

as a new case - problem with an undefined solution. The role of the CBR system, when

investigating a new case, is to scan the knowledge repository for related cases to the

one under review. The method then retrieves cases from the repository on the basis of

the highest similarity to the case under review. The similarity measures applied will

range from very basic ones (if they have to do with numbers, marks, and dates) to

sophisticated ones (if the cases represent whole architectural structures or mechanical

models).

2. Reuse: If a similar case has been identified from the repository, the solution suggested

in that case would be followed as the one recommended for the case under review. There

is a strong possibility that the desired solution would not be specifically applicable to

the incoming case. In any case, the alternative solution must be tailored to satisfy the
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particular criteria of the case under review.

3. Revise: If a solution has been provided for the case in query, this solution must be

verified either in the context of a simulation or directly in a real-world test scenario.

This solution frequently has to be revised in order to satisfy the needs of the case under

review.

4. Retain: If the above processes have been successfully completed and a validated

solution to the problem under review has been given, a new case can be formulated.

This new case would be made up of the imported problem, its proven solution, plus

any available knowledge on the environment. This latest, complete case can then be

retained in the knowledge repository for potential use.

The CBR cycle (four R’s) can be used across a wide variety of applications due to its

generic features and the versatility of adaptation across systems. The next section refers to

the relevant work as it is being illustrated from the literature.

2.3 CBR Challenges in the Industrial Domain

Each industrial domain has its unique challenges, however there are some common challenges

that most of the applications will face regardless of what domain it is being implemented at.

In this thesis, different industrial challenges will be mentioned. Those challenges drove the

implementation of DeepKAF.

1. Heterogeneous Data types. In industrial applications, data that should be used to

build an AI system can have different types. There could be a data attribute that is

textual and another attribute that is an image or set of images. CBR systems need to

be able to handle different data types within one case and still being able to retrieve

most similar cases (Amin et al., 2019).

16



2. CBR systems require a huge effort to be exerted from Domain Experts to help in

understanding domain knowledge, which costs organization a lot of money.

3. CBR systems are slow to respond to queries, comparing to other AI approaches. The

querying process involves many underlying sub-processes in order to answer the query

at the end.

4. CBR systems are computationally expensive because the algorithm has to search the

entire case base to find accurate solutions, then adapt them to the query.

5. The case base needs to regularly maintained and cleansed from noisy data or unneces-

sary cases.

6. CBR systems consume a huge storage space to store the entire case base and the new

cases that are coming.

7. CBR systems are not designed to cope with the data-in-move as most of the industrial

applications need (Jalali and D. Leake, 2015)

8. CBR literature does not show a scalable CBR system implementation in the industrial

domain that satisfies the current Big Data Era challenges.

9. Last but not least, CBR approaches are not popular because it does not have a big

community as other approaches. The smaller community leads to less research and less

implementations accordingly.

2.4 Distributed CBR

Distributed computation is a general topic in Computer Science. In CBR, there is a promi-

nent direction towards building distributed CBR systems. In principle, the distribution of

resources within any system can have a significant impact on the overall system performance.
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CBR needs efficient techniques to manage its sub-tasks such as collecting and formatting

data, case base maintenance, cases retrieval, cases adaptation and retaining new cases. From

this point of view, the need to build distributed CBR systems for maximum efficiency in-

creased. Multiple Agent CBR systems are widely used and very well known in Distributed

CBR systems area, a lot of frameworks and related work have been carried out elaborating

different architectures and techniques to manage the CBR sub-tasks.

Most researches in Distributed CBR concentrated more on distributing resources within

the CBR architecture, but not on distributing the case base itself. One of the successful

distributed CBR platforms is jCOLIBRI (Bello-Tomás, González-Calero, and Díaz-Agudo,

2004). It supports the development of wide range of CBR software, it provides the required

infrastructure to implement CBR systems (Belén Diaz-Agudo et al., 2007). jCOLIRBI is

depending on multiple agents to perform the subtasks associated with CBR. Multi-Agent

Systems (MAS) distribute the case base itself and/or some aspects of the reasoning among

several agents (E. Plaza and Mcginty, 2005). I can categorize the research efforts in the area

of distributed CBR using two criteria:

1. How knowledge is organized/managed within the system (i.e. single vs. multiple case

bases).

2. How knowledge is processed by the system (i.e. single vs. multiple processing agents).

There are many architectures and frameworks that built their strategy based on a dis-

tributed approach like SEASALT architecture Reichle, Bach, and K.-D. Althoff, 2009 and

jCOLIBRI (Bello-Tomás, González-Calero, and Díaz-Agudo, 2004) which are going to be

discussed in more details in Chapter 3.

DeepKAF is not mainly designed as a distributed framework, however, we have done

some tests to build small agents that are responsible for specific tasks. For example, having

an agent who is the coordinator that will get the query and decide to which agent this query

is going to be passed on some parameters. we have built an agent that is responsible for the
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text pre-processing before communicating the results to other agents). It was a successful

small experiment without moving forward and implement a wider experiment across a set

of agents. Conceptually, DeepKAF can be applied in a distributed approach with slight

tweaks.

In the literature, there are many successful distributed CBR implementations (E. Plaza

and Mcginty, 2005). Interesting research has explored distributed, multi-agent system frame-

works whereby individual agents are willing, but are expected, to draw on the experiences

of other agents for problems which do not lie within their own field of expertise. Plaza et

al. (E. Plaza and Ontanon, 2001) has suggested many forms of coordination between CBR

agents. In CBR, Plaza et al. (E. Plaza and Ontanon, 2001) ensemble, they research the

"ensemble effect" which improves the accuracy of any person by the selection of agents with

unrelated cases. Ensemble effect decreases when individual agents have a case base with a

partial sample of the case region, but it shows that agents may barter cases using different

policies to enhance output individually and collectively.

Generally, CBR and MAS have proved efficiency with different successful distributed

CBR systems. Currently, systems are getting more complex and agents need to be smarter

to be able to deal with its environments. MAS bring a lot of advantages and benefits to

CBR, but also have a lot of challenges and issues that should be taken into consideration

while building systems:

1. How do we design our algorithms to decompose tasks to agents and allocate problems

to them?

2. If systems are widely distributed, how are agents going to communicate and what

communication protocols will they use?

3. What if we lost the communication between agents?

4. How do we ensure that agents are working properly, and every single agent is doing its
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task in the perfect manner?

5. How do we troubleshoot issues across all agents?

More literature in the area of Distributed CBR is being discussed in (E. Plaza and

Mcginty, 2005)

2.5 Large-Scale CBR

Data is being generated extremely fast — a process that never stops, like the data generated

from social media networks. Facebook, the most active of social network, with over 1.4

billion active monthly users, generates the most amount of social data – users like over 4

million posts every minute – 4,166,667 to be exact, which adds up to 250 million posts per

hour (Carey-Simos, 2019). With the volume of data growing at unprecedented rate; CBR

has a new challenge to deal with this large amount of data. In the industrial domain, all

companies now have a lot and different data sources, over the days the size of data is getting

bigger and the need to deal with this amount of data seamlessly is also increasing (e.g.,

electronic manuals, history of failure, electronic medical records) (G.-H. Kim, Trimi, and

Chung, 2014) (Jalali and D. Leake, 2015). Therefore, the key factor for the next generation

of CBR applications is the ability to deal with the complex and large amount of data that

is generated every day and every moment.

Vahid Jalali and David Leake have explained in details the idea behind Large-Scale CBR

(Jalali and D. Leake, 2015). In the CBR literature, most of the work focused on compressing

the Case Base and other Case Base maintenance activities which are essential activities,

however, by compressing or deleting some cases, we might lose an opportunity to retrieve a

case that can help in giving a potential solution for adaptation. Therefore, from this thesis

point of view, we look at large-scale CBR systems as CBR systems that can work efficiently

with the Big Data Challenges which are going to be discussed in Chapter 4. Instead of
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trying to compress cases only, with the new emerging big data technologies, we are able to

retain more cases without affecting the retrieval time (Amin et al., 2018a).

2.6 Hybrid CBR Approaches

Conceptually, hybrid approaches are approaches where we bring the best from two or more

different worlds and put them together to solve a specific problem. There are so many

examples of Hybrid CBR approaches that have been used to build different applications,

especially Recommender Systems (Alshammari et al., 2017) and (Gedikli, Jannach, and Ge,

2014) (Im and Park, 2007) (Simić et al., 2018).

DeepKAF as a hybrid CBR approach is bringing the best from ANN world to the CBR

world.

2.6.1 Combined CBR and ANN Approaches

Combination between CBR and ANN has been explored over the last 30 years. (Lees and

Corchado, 1999) explained in 1999 a hybrid-CBR approach where ANN was employed to

do specific tasks. By that time in 1999 the amount of available data and knowledge along

with the processing power were not enough to give good results. Nevertheless, the available

systems at that time that were presented in (Lees and Corchado, 1999) gave very promising

results and revealed the power of using CBR-ANN approaches, which become very popular

since the revolution of Deep Learning and NVIDIA GPUs started.

ANNs are commonly used for learning and the generalization of knowledge and patterns.

They are not appropriate for expert reasoning, and their abilities for explanation are ex-

tremely weak. Therefore, many applications of ANNs in CBR systems tend to employ a

loosely integrated approach where the separate ANN components have specific objectives

such as classification and pattern matching. Neural networks offer benefits when used for

retrieving cases because case retrieval is essentially the matching of patterns.
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During the implementation of DeepKAF, the main focus was on integrating ANN and

use the advantages that this combination brings to CBR retrieval and similarity measure

processes. The use of ANN within the CBR is not new and have been used for certain

purposes.In (Dieterle and Bergmann, 2014), authors used CBR with ANN to predict internet

domain name price which applied an innovative hybrid-CBR approach and used ANN for

tasks to decode domain knowledge, which in this case is the domain names. Authors used

ANN to perform the core text pre-processing tasks like stemming, eliminating stopping words

and then transform the case base into to a numeric vector that have improved the retrieval

process and helped in measuring similarities.

The problem about ANNs that they are very application-dependent. There is no one

architecture that is going to be always applied. However, there are some recommendations

for architectures that can help in fixing specific problems. DeepKAF is providing an entire

integrated CBR architecture that shows where ANN can be used efficiently. Additionally,

DeepKAF (Amin et al., 2019) is also introducing a combination of ANN that can help

in decoding a textual domain knowledge. However, ANN domain is moving fast, and new

innovations are coming every day. The idea is to bring ANN within the CBR paradigm

without hiding the wining explainability feature of CBR.

2.7 Summary

This chapter elaborated the idea behind the CBR paradigm with focus on challenges that any

CBR system will face if it is being implemented in an industrial domain. We have discussed

distributed CBR approaches with MAS and large-scale CBR as an introduction to the new

approaches in the CBR world that can handle big data, which are going to be discussed in

details in Chapter 4. The approaches being mentioned last are the hybrid CBR approaches

that are currently sky-rocketing according to CBR literature. Although CBR includes many

other approaches, I want to focus here on the approaches that DeepKAF benefits from
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mostly.

In the remainder of this thesis, the chapters will focus on what could stop CBR from

being a prominent AI approach in the industrial domain, along with defining how to overcome

some of these issues by merging other AI approaches within the CBR paradigm.
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Chapter Three

CBR Foundations and State of the Art

3.1 About this Chapter

This chapter discusses the CBR state of the art and foundational concepts. DeepKAF

experiments are focused on Textual CBR, however, I believe that it could be applied to other

CBR types as well. Therefore, the common CBR types are described and explained in this

chapter, along with the state of the art work related to the implementations that approached

those specific types. At the end of each section, it is explained how the presented work

(theoretically) relates to DeepKAF and what are the advantages/disadvantages of using

DeepKAF. It also explains in detail the popular CBR architectures, frameworks, and tools

being on the top of the state of the art CBR approaches and can be directly compared to

DeepKAF.

3.2 CBR Types

CBR can be categorized in a number of types depending on their operational domain, context,

and data. These CBR types could be generalized in three categories. These are: Structural,

Textual and Conversational CBR. These categories are drawn from the essence of the CBR

application domain and briefly illustrated below.
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3.2.1 Structural CBR

Structural CBR approaches are based on cases that represented using attributes and their

corresponding values. Structural CBR systems are responsible for organizing attributes in

different ways, e.g., as flat attribute lists, as relational tables, or in an object-oriented way

T. R. Roth-Berghofer, 2004a. For cases where additional information, such as complex

similarity measures, is needed, the structural CBR approach is helpful in order to produce

good outcomes and where the domain model is easily obtainable.

3.2.2 Textual CBR

Text is used to express knowledge. Text is a collection of words in any well-known language

that can convey a meaning (i.e., ideas) when interpreted in aggregation(Richter and Weber,

2013). Text processing and analysis is considered a "must-have" capability due to the im-

mense amount of text data available on the internet. Textual CBR is Structural CBR at its

core, where semi-structured text are transformed into a structured representation. The text

representation brings several challenges when the text is unstructured or has grammatically

incorrect sentences. The task of the approach described in our research can be compared to

the work presented in (Stram, Reuss, and K. Althoff, 2017; Reuss, Witzke, and K. Althoff,

2017; Reuss, Stram, et al., 2016), the authors used a hybrid CBR approach where they com-

bined CBR with NLP frameworks to be able to process the knowledge written in free text.

They mentioned to the issues they faced with the free text or to extract features and build

accurate similarity measures. In our work, NLP frameworks were not able to process text

spanned across different languages and there were several issues related to accurate sentence

parsing. Therefore, we applied a different approach using Deep Neural Networks (DNN) to

ease the task of finding similarities between cases and automate the knowledge from textual

cases.

Finding the relation between text and extract features are key criteria in the success
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of any textual CBR system. These tasks require a lot of effort and normally can take a

long time to be done accurately. Different approaches have been presented to build text

similarities and find higher order relationships (Öztürk, Prasath, and Moen, 2010). The

work of automating knowledge extraction using Neural Networks can be compared to the

work presented in (Sizov, Öztürk, and Štyrák, 2014) where authors represented the text

using dubbed Text Reasoning Relevant work has been seen in Graph (TRG), a graph-based

representation with expressive power to represent the chain of reasoning underlying the

analysis as well as facilitate the adaptation of a past analysis to a new problem. The atuhors

have used manually constructed lexico-syntactic patterns developed by Khoo (S. G. Khoo,

1996) to extract the relations between texts.

Nowadays, most real-world applications are more complex than the examples given above.

They are typically composed of several attributes in nature, which are not easy to interpret.

3.2.3 Conversational CBR

A considerable amount of research in CBR has recently focused on conversational CBR as

a means of providing more effective support for interactive problem-solving. Conversational

CBR is a type of CBR systems where users can have a kind of "conversation" with the

system before submitting the query. In typical CBR systems, users are given a form where

they fill some details and description, then submit it to get the answer. If the user is not able

to describe the problem in a way that the system can understand, the system will not answer

the query correctly. Conversational CBR systems are more flexible and dynamic in building

the query process. The user is given an opportunity to get some questions and answers to

formulate the query before submitting it to the CBR system (Richter and Weber, 2013). In

other words, as Aha et al (Aha, Breslow, and Muñoz-Avila, 2001). defined Conversational

CBR, "in conversational CBR (CCBR), a query describing a target problem is incrementally

elicited in an interactive dialogue with the user, often with the aim of minimizing the number
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Figure 3.1 Example CCBR (and related) systems and tools, Reference: (Aha,
McSherry, and Yang, 2005)

of questions the user is asked before a solution is reached (McSherry, 2002).

Conversational CBR approaches have been used intensively in the industrial CBR appli-

cations due to their ability to formulate the problem correctly based on a dialogue with the

user, as described earlier. Figure 3.1 shows different successful CCBR systems.
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3.3 Temporal concept in CBR systems

In a certain number of application domains, the concept of temporal reasoning is important,

since actions that take place within certain time frames may have a totally different meaning.

Time can also define events in terms of importance. An example could be how a monitoring

system conceptualizes a 5-minute time span in a police emergency system. If this time

span is the response time from a crew conducting a routine patrol, it can be regarded as

acceptable. However, if this time span is the response time in the middle of a critical

rescue operation , it definitely means that something does not go as well as it was expected.

During the latest years, there is an emerging need for temporal reasoning in CBR systems.

There are mainly two trends for this (Jære, Aamodt, and Skalle, 2002): The first is that

CBR systems are called to solve real, challenging problems where there is need for extensive

temporal reasoning (such as medical diagnosis). The second is that CBR systems have

become more interactive and transparent to users. Consequently, the problems are moving

away from their container, towards user-interactive assistants. In this case, the sequence

of actions is of relative importance. The literature can show several examples in the area

of CBR systems where the temporal concepts are being taken into consideration. In the

area of diagnosis and possible prediction of adverse events before they occur, work has been

conducted by (Netten, 1998). The focus of that work was on the incorporation of time-

dependent cases and temporal reasoning while attempting to configure and establish the

operational conditions for technical applications. The outcome of that was the BRIDGE

project whose objective was to improve performance of operational diagnosis systems as

a means to improve safety, availability, reliability, maintainability and life cycle costs of

large technical applications" (Netten, 1998). (Likhachev, Kaess, and Arkin, 2002) have

conducted research work on the behavioral parameterization of robots using both spatial and

temporal CBR. The aim of their research was to help robots learn the optimum behavior for

autonomous navigation tasks, either by having the robots under (ordinary) training or by
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following a mission-based training. During the latter, the robots could learn while trying and

making mistakes during their assigned missions. Both temporal and spatial characteristics

were taken into account in this research in order to be able to match the best case for a

robot within its operating environment. In the area of oil drilling, temporal sequences can

indicate a number of situations where call to action may be necessary. An example could be

a situation where a drill string gets stuck in the borehole, and stops the drilling process. This

can be an exceedingly costly problem since drilling operation hours are of high cost and the

freeing of a stuck pipe is a lengthy process. As a result, a stuck pipe is one of the costliest

drilling problems. (Jære, Aamodt, and Skalle, 2002) have used a CBR system which based

on temporal domain representation could advise the users where and when to stop a drilling

operation. Experience could show similar cases that led to stuck pipes. Possible explanation

for the cause of that case was also given based on the general domain knowledge. The

implemented system has used Allen’s temporal theory which is based on intervals in order to

have representation close to the way the human expert "reasons in domains where qualitative

changes of parameters over time are important" (Jære, Aamodt, and Skalle, 2002). A more

advanced approach to the problems faced in drilling industry has been given by (Skalle

and Aamodt, 2005). This approach has combined both CBR components and model based

components within the Troll Creek architecture. The overall objective of the work was to

increase the efficiency and safety of the drilling process. In order to do that, past temporal

experience was used to support fault diagnosis and prediction of possible undesirable events

in a domain that is characterized from "uncertainty, incompleteness, and change" (Skalle and

Aamodt, 2005). Additional research on Temporal CBR (TCBR) was conducted to support

dam technicians in decision-making (Mohd-Hassin, Md Norwawi, and Ab Aziz, 2006). The

decision to open or shut one or more spillway gates for water reservoirs is vital to safety.

Dam -Specialized technicians also have to determine which reservoir spillway gate should

be opened or closed to release excess water in order to ensure a safe water level. (Mohd-

Hassin, Md Norwawi, and Ab Aziz, 2006) have designed a CBR engine that could support
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temporal data mining. The implemented prototype has integrated CBR techniques used in a

temporal data application for decision recommendation, based on historical data. Temporal

hydrology data was used to evaluate the decision recommended by the prototype versus the

dam’s expert. For this research, in order to capture the time pattern plus delays, sliding

window was used as a segmentation technique for this analysis.

In the area of CBR, expert systems (Floyd and Esfandiari, 2011) have worked on ex-

tracting the temporal relationships between sensory stimuli and expert actions. Their in-

vestigation was focused on how a CBR agent system (Wooldridge, 2009) could learn from

the reactions of experts to specific events by observing them over a period of time. Be-

havior learning would be the optimum when the agent was able to perform like an expert

on a specific input. (Julián and Corchado Rodríguez, 2012)have investigated the provision

of temporal bounded reasoning in multi-agent systems that manage security in industrial

environments. Their proposed approach facilitates the automatic reorganization of tasks

in combination with possible faced environmental changes. Key insight of the research is

the optimization of security tasks performed and the solution of problems with temporal

constraints.

3.4 Uncertainty in CBR

The strength of CBR is utilized for building a situation dependent decision model without

complete domain knowledge (Xiong and Funk, 2009). This strength comes from the ability

of deriving decisions based on similarity measures and general utility function from the

case library. In opposite to other machine learning techniques, which always come with

the question "how much should we trust this decision?" (Hammer and Villmann, 2007).

Artificial software for enterprises faces the problem of dealing with partial and often uncertain

information. The information available in a system may be unreliable, e.g. "a patient may

mis-remember when a disease started, or may not have noticed a symptom that is important

30



to a diagnosis" (D. B. Leake, 2002). Additionally, the rules governing a system cannot take

into account all the possible parameters that may make their conclusions inapplicable, e.g.

"the correctness of basing a diagnosis on a lab test depends on whether there were conditions

that might have caused a false positive, on the test being done correctly, on the results being

associated with the right patient, etc." (D. B. Leake, 2002). As a consequence, an artificial

monitoring system should be able to have adequate reasoning for the probability of events

based on their available knowledge.

The effective artificial intelligence application faces challenges in the case of flexible and

adaptable work environment. The management team of a can find any information available

in the form of timed event logs of actions that have been generated during its execution.

Any workflow actions, communication messages as well as system generated messages can be

found there. A challenge in the monitoring of workflows is that even with well-designed, well-

defined workflows, the actual contextual information that affected the decisions taken can be

missing. This can happen in many cases, although the system has managed to capture any

provided information or even the actual event path that the system has followed. Another

factor that makes more difficult the monitoring of workflows, with interfered human roles, is

the inability to capture the overall contextual information and communications behind any

posterior actions. Some system actions may take place in an unofficial way (e.g., manual

interventions) based on informal verbal communications or meetings among actors. These

actions may not be captured from the system in the form of a logged event. The structure

and orchestration of a workflow does not necessarily define exclusively the final choreography

and operation of the monitored workflow. As a result, in order to achieve effective monitoring

of workflows, the factor of uncertainty has to be taken into consideration and effectively be

dealt. The case of uncertainty will be extensively discussed later on in Section 3.5.
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3.5 CBR Explainability

The explanation topic is an essential part in this thesis. Since, DeepKAF is combining

an "explainable approach" (CBR) (M. T. Keane and Kenny, 2019) with an "unexplainable

approach" (Deep Learning models) (Weerts, Ipenburg, and Pechenizkiy, 2019). Explanation

is an important field in the area of intelligent systems. An approximate definition of system

explanation is a set of logical arguments that could persuade the end-user to follow proposed

conclusions, suggestions and even decisions to a certain degree.

In the field of artificial intelligence, and in particular in the field of case-based reason-

ing, systems are capable of extracting the knowledge of explanation from the available past

knowledge. This can be presented afterwards to their human stakeholders in order to provide

reasoning and justification for any system recommendations and/or decisions. The availabil-

ity of explanations improves confidence in any artificial intelligence system and helps to build

trust between AI and its users. Everyone’s personal experience shows that building trust

between people is a challenging job.

Explainability is one of the main advantages of CBR (Craw, 2010). DeepKAF inves-

tigates the explainability part of CBR because by using ANN, there will some sub-process

within the CBR paradigm that are not explainable. However, DeepKAF and by applying

the CBR paradigm will be able to provide adequate level of explainability that is enough to

validate the retrieved solution (see Chapter 5).

3.5.1 The Concept of Explanation

Explanation presents a prominent topic in science (Schurz, 2000), often referred to as sci-

entific explanations. Scientific explanations attempt to give answers to why questions by

using existing facts and applying general rules. Nonetheless, these answers can be different

regarding the application domain and as a result, explanations can differ. Also, there is a

distinction between cause giving explanations and reason giving justifications (Schurz, 2000),
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referring to the equivalent ’why’ questions respectively. The first category of the above, ques-

tions why something has taken place like that, what was its cause or reason for being. An

example of that could be:

Child’s Question: Why is the water in the lake frozen?

Father’s Answer: Because the water temperature is below 0o Celsius.

The second category explores the explanation for the cause of an incident. Explanations

in this category may be applied as the explanation of the cause for why an incident occurred

in a particular manner. An example follows:

Wife’s Question: Why did not you call me the whole day?

Husband’s Answer: Because I had too much work in the office, darling. I did

not have the time even to get some lunch...

Although explanation seems a self-descriptive concept which reveals the answer to in-

tended knowledge questions, in reality explanation can be literally false (T. Roth-Berghofer,

2004). This is being done deliberately due to moral, pedagogical, social and other context-

dependent reasons (Cohnitz, 2002). These explanations are being provided in the context of

satisfying the questioner, and not necessarily fulfil the purpose the questioner expects them

to. An example can be a question from a seven-year old girl to her mother on how her

little brother came to life. The most prominent answer that she could get is that the stork

brought him home, when everybody was asleep, or some variants of the above. Explana-

tions are heavily dependent on the background context of a given environment. Schank has

characterized explanation as the most common method used by humans to support under-

standing and decision-making. An explanation should describe a solution to a problem, as

well as which is the path that has to be followed in order to reach the solution. Therefore,

explanations are characterized as both inclusive and instructive (T. Roth-Berghofer, 2004).

A system can explain its actions both to humans and/or services that inquire how it works,

as well as to itself. In such a way, according to Schank, it becomes an understanding system.

The range of cognitive understanding of such a system can vary from making sense to com-
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plete empathy (C. Schank, 1986). AI reasoning stands in the direction of the logical edge of

the above spectrum, seeking to persuade its users rather than blindly leading them.

Explanation, according to Schank, can be divided into three main classes. These are the

physical world, the social world and the individual behavior patterns. An artificial agent can

give sufficient reasoning to a case that fits in to one of the above classes. Especially for the

first class of explanation (physical world) reasoning can be derived from the laws of physics.

Having those as a basis, more complicated explanations can derive for other (presumably)

more complicated fields. Explanations for the social world and behavior patterns seem the

most complicated ones being of high importance in the modern world. For the needs of the

explanation to those areas, advanced techniques like data mining, user profiling, and machine

learning could be used. These techniques attempt to extract the followed behavior patterns

in an investigated discipline. The reasoning given by itself is not adequate to persuade a user

of the clarity and accuracy of the decision made by an AI system. Therefore, trust in any

AI system should be established in order to be effective for its individual users. Intelligent

systems should include meaningful explanations before providing findings or feedback in

order to improve the user trust in them. In order to do this with any particular device,

output should be sent to its consumers in order to provide sufficient rationale for output.

Users are often more persuaded of the accuracy of the approach because, next to the output

(whether it is positive or bad), there is proof of how this output was derived (R. Swartout,

1983). While attempting to formulate explanation, certain goals should be fulfilled. To

achieve that, (Sørmo, Cassens, and Aamodt, 2005) have identified five distinct explanation

goals. These goals either isolated or in combination could be used to construct explanations.

These are:

1. How did the System reach the answer? (Transparency)

2. Explain why the answer is a good answer. (Justification)

3. Explain why a question asked is relevant. (Relevance)
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4. Clarify the meaning of concepts. (Conceptualization)

5. Teach the user about the domain. (Learning)

Usually, explainable systems are satisfying one or more of the above goals while attempt-

ing to provide sufficient explanation.

3.5.2 Explanation in Systems

As seen in the previous section, an explanation is required to address questions about the

cause, the reason for existence or the outcome of an event. Artificial intelligence technologies

are now being used in the field of problem-solving, in the same manner as human experts.

Trust must be established for individual users in order to be able to determine whether to

approve or deny an automated AI-based recommendation. The user must be able to dig

down to a particular system-output and be able to verify, if necessary, what led the system

to that direction. Due mainly to the requirement for adequate reasoning, the need for an

effective explanation has been intensified.

The explanation that can be extracted from a system is based on the nature and the

contextual background of the system itself. An example can be an artificial neural network,

which by its nature contains the knowledge inside its internal structure. As a result, it

works as a black box and cannot provide sufficient explanation to support its outcomes,

since its knowledge cannot be extracted. A system that uses genetic algorithms to calculate

its output and come up with recommendations faces similar explanation limitations. Rule-

based systems can perform better since they can resort to the reasoning provided by their

rules. However, several restrictions apply: In order for this to be efficient, the domain should

be limited for the user to be able to follow and evaluate the explanation. In any different

case, the complexity of the correlated rules can be unmanageable, since even experienced

users are not usually able to follow such stated explanations (T. Roth-Berghofer, 2004).

Another constraint rule-based systems face is a substantial growth in the number of rules
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they have to contain in order to operate in a dynamic domain. This number, as well as

the effort to collect them, makes them a relatively complicated approach to offer adequate

explanations. Case-based reasoning systems can offer a solution to the faced limitations of

ANNs and rule-based systems. This is due to their ability to present the information of

their cases in order to provide support to a certain system output. Therefore, cases can be

descriptive in terms of a problem and its surrounding information. However, cases do not

provide information in terms of their selection criteria and the rationale behind that. As a

result, a different entity is required that connects the related knowledge to a case and its

available structure. This can be related to the concept of knowledge containers. Knowledge

containers, introduced by Richter (1995), refer to both the knowledge in cases as well as the

structure of that knowledge. Due to its structural generalization, a knowledge container can

refer to a number of tasks combining their related characteristics to possibly one schema.

Richter has introduced four knowledge categories for CBR systems. These are presented in

Section 3.9.1 and are: the vocabulary, the similarity measures, the solution transformation

(or adaptation) containers, and the case base.

As an example for an explainable application that can be related to CBR in general

and similarity measures in specific, Björn Forcher et al. (Forcher et al., 2014), presented a

generic explanation facility Kalliope, which is integrated in a search engine KOIOS++ to

enable semantic search on medical Wikipedia articles. Kalliope uses reconstructive expla-

nations in order to provide justifications for medical semantic search results. This work is

deeply connected with CBR from the similarity measures side and how to build similarities

from domain-specific knowledge. Kalliope focuses on the selection of the most understand-

able rationale for medical lay-people. Björn Forcher also demonstrated that there are many

possibilities for explaining one and the same search outcomes due to several marking al-

ternatives and the inference of more relations between terms (transitive closure of is-a and

part-of). The authors designed an interpretation of the weighting mechanism based on two

basic principles, namely the semantic frequency class and semantic co-occurrence class.
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The first can be used to predict if users are aware of the preceding concept, and the second

can be used to predict if users are aware of relations between concepts. Both hypotheses

have been verified by means of various user experiments, which have also been mentioned in

this work.

3.6 Case Representation

In a representative paper on case representation (Bergmann, Kolodner, and E. Plaza, 2005),

“Improving human decision-making through case-based decision aiding,” Janet Kolodner fo-

cuses on the role cases can play in helping people make decisions and on the content cases

need to have to play that role. Kolodner does not try to comment on the form that a case

should take, but rather focuses on the kinds of things that should be represented in a case

so that it can be productively used for reasoning. Kolodner recommends that cases include

a problem situation description, the solution that was proposed (often including how that

solution was derived), and the outcome, including the state of the world after the solution

was carried out, how close that was to what was expected, and explanations, if necessary

and available, of why it might not have worked as well as expected.

Case representation is the first step in any CBR system. The case-based reasoner has

to decide how domain knowledge is going to be represented for reasoning purposes. The

case representation stage is critical because it has direct effect on the retrieval process. The

representation technique should be able to accommodate all pieces of information and store

this information in a way that makes it easy to build relationships with each other (Similarity

Measures).

3.6.1 Basic Representation Methodologies

Feature Vector Representation is used for domains with weak or intractable theories.

A category is extensionally represented as a collection of cases called exemplars. A new case
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is classified into a category if a match can be found between an exemplar and the new case.

This matching process is knowledge intensive and tries to build an explanation that connects

the features of the new case with an exemplar. Since each explanation is a path constructed

inside a semantic net, retrieval is the process of explaining the (similarity) relation between

a new case and an exemplar (Bergmann, Kolodner, and E. Plaza, 2005).

Object-oriented representation make use of the data modeling approach of the object-

oriented paradigm, including is-a and part-of relations as well as the inheritance principle.

Cases are represented as collections of objects, each of which is described by a set of attribute-

value pairs. The structure of an object is described by an object class. Several object-oriented

case representation languages have been developed. Object-oriented representations are

particularly suitable for complex domains in which cases with different structures occur

(Bergmann, Kolodner, and E. Plaza, 2005).

Textual Representation decomposes the text that constitutes a case into information

entities (IEs). An IE is a word or a phrase contained in the text that is relevant to determine

the reusability of the episode captured in the case. Given a vocabulary of the relevant words

or phrases, text cases can be mined for IEs, allowing case acquisition to be automated. The

set of cases that form the case base is organized in the form of a case retrieval net (CRN),

which is a directed graph with nodes representing cases and their IEs. These nodes are linked

according to their similarity. Hence, knowledge about similarity is encoded into the strength

of the links between the nodes in the CRN (Bergmann, Kolodner, and E. Plaza, 2005).

Frame-based representation Frame based representations have been (partially) formal-

ized by description logic. The notion of “cases as terms” argues that viewing structured cases

as terms in feature logic (a particular brand of description logic) helps to better understand

several aspects of case-based reasoning. Domain knowledge can be implemented by means

of a sort hierarchy, and the problem of composite cases (cases that tie together certain ob-
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jects or sub-cases) is clarified by the assumption that a sub-term is often a term. Lastly,

the notion of similarity between two cases is linked to the concepts of subsumption and

anti-unification of terms. This notion also bridges relational cases in CBR with relational

learning in inductive ML, where subsumption and anti-unification are basic building blocks.

3.7 Similarity Measures

Similarity measures are the heart of CBR because retrieval is dependent on it. Building

similarity measures process is highly domain-dependent and used to describe how cases are

related to each other. In CBR, comparison of cases can be performed along multiple im-

portant dimensions (Ashley, 1991; Brüninghaus and Ashley, 1998). Cases that only match

partially, can be adapted to a problem situation, using domain knowledge contained in the

system (Aleven, 1998). Thus, methods, like in particular Information Retrieval, which are

based only on statistical inferences over word vectors, are not appropriate or sufficient. In-

stead, mechanisms for mapping textual cases onto a structured representation are required.

A basic assumption for applying the principle for similarity measures is that both argu-

ments of the measure follow the same construction process. This allows us comparing the

corresponding sub-objects in a systematic way. For our system, we defined the two types

of similarity measures: Local Similarity Measures and Global Similarity Measures. Local

Similarity Measures describe the similarity between two attributes, and the Global Similar-

ity Measures describe the similarity between two complete cases. In the next section, we

elaborate how we applied the Local Similarity Measures followed by the Global Similarity

Measures.

Local Similarity Measures: Based on the collected data and the discussions with

experts, we defined the local similarity measures. We have mainly four attributes which are

distinctive, except for the email subject and content. For the Priority (integer) and Sending
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Groups (distinctive strings) we used distance functions. For the email subject and content,

we counted upon the Word2Vec model to give us the similarity degrees between different

texts, after applying all the aforementioned prepossessing tasks.

Global Similarity Measures: The Global Similarity Measure defines the relations

between attributes and gives an overall weight to the retrieved case. The weight of each

attribute demonstrates its importance within the case. The weight of each attribute has

been defined in collaboration with the domain experts.

3.7.1 Taxonomic Similarities

Taxonomies are commonly used structures to approach a variety of domains like ontologies.

Nevertheless, building similarities using taxonomic graphs have been widely used in CBR.

Taxonomies are used to link objects to each other in a hierarchical representation. The

intention is to do this in a hierarchical way, from general to more specific objects. This

means that branching leads to objects that have more in common (Richter and Weber,

2013). Reuss et al. (Reuss, Stram, et al., 2016)have used taxonomies to build similarities in

the aircraft domain. They used the keywords, phrases, and hypernyms to generate taxonomy

similarity measures that are used in the retrieval process. The work presented in FEATURE-

TAK framework is highly relevant to DeepKAF. Despite taxonomies similarity measures

are efficient in the ambiguous domains, the effort needed to decode domain knowledge and

build the taxonomies was a big obstacle in building the CBR system. DeepKAF intention

as described in this thesis is mainly to minimize the effort required to build CBR system

compared to other approaches and methodologies.
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3.7.2 Graph Similarities

In certain applications, it is also required to compare objects represented as graphs and to

decide how similar the objects are.

Similarities between graphs representing molecules have an important role to play in

many areas of chemistry and, increasingly, biology. Examples include the database search-

ing (Peter Willett, 1999), the analysis of biological activity (Carletti, Foggia, and Vento,

2013), the architecture of mixture synthesis (Lewis, Mason, and McLay, 1997) and the in-

terpretation of molecular spectra(L. Chen and Robien, 1994). In (Raymond, Gardiner, and

P. Willett, 2002), Raymond et al. proposed a brilliant inexact graph matching procedure,

RASCAL (Rapid Similarity CALculation). The screening procedure is intended to deter-

mine rapidly whether the graphs being compared exceed some specified minimum similarity

threshold (without resulting in any false dismissals) in order to avoid unnecessary calls to

the more computationally demanding, graph matching procedure. The screening procedure

is described in Section 2 along with an example calculation. The latter graph matching

process consists of an efficient determination of the MCS using the graph similarity concept.

Graph similarities is extremely relevant to DeepKAF since the entire framework depends

on representing text as graph and calculate distances. The main difference in DeepKAF

is how DeepKAF is using ANN to find the best graph representation to the text before

comparing them.

3.8 Retrieval

The main objective behind any problem-solving technique is to attain an accurate solution

to the problem, ideally even the best. In CBR, retrieval is the process of attaining suitable

solutions for the new case. That retrieved case should have similarities based on the simi-

larities measures to the new case. Although retrieval process always implies the "finding"

process of the cases, it differs from one CBR system to another based on the CBR system

41



type and problem domain. Therefore, several retrieval approaches have been introduced to

cope with different problems from different domains.

3.8.1 Index-Based Retrieval

Case indexing refers to assigning indexes to cases for future retrieval and comparison. The

choice of indexes is important to enable retrieval of the right case at the right time. This

is because the indexes of a case will determine in which context it will be retrieved in the

future, indexes must be predictive in a useful manner. This means that indexes should reflect

the important features of a case and the attributes that influence the outcome of the case,

and describe the circumstances in which a case is expected to be retrieved in the future (Shiu

and Pal, 2004).

Indexes should be abstract enough to allow retrieval in all the circumstances in which a

case will be useful, but not too abstract. When a case’s indexes are too abstract, the case

may be retrieved in too many situations or too much processing is required to match cases.

Use inductive techniques for learning local weights of features by comparing similar cases in

a case base. This method can determine the features that are more important in predicting

outcomes and improving retrieval (Shiu and Pal, 2004).

Indexing cases is one of the most challenging tasks in CBR. The index structure is

supposed to guide the search for the most similar case(s) (see Figure 3.2 (Richter and Weber,

2013). Therefore, two steps have to be performed: 1. Generating the index, 2. The retrieval

itself. The index generation for the whole case base takes place offline while the retrieval

is online. The performance of retrieving similar cases in large-scale CBR was seldom been

discussed. When the number of cases in the case base becomes large, the processing time

for retrieving similar cases rapidly increases. The process of retrieving similar cases thus

becomes a critical task of CBR. That brings the index-based retrieval to the table.

Cases indexing can significantly improve the retrieval process in two dimensions: 1. The
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Figure 3.2 Cases Indexing Design Steps
Reference: (Richter and Weber, 2013)

speed of retrieval 2. If it is a conversational CBR, a good indexing approach can minimize

the number of questions required to be able to retrieve the most similar cases

In (El-Bahnasy, Amin, and Aref, 2014), the authors introduced a novel CBR indexing

approach based on Power Set Tree. Cases were represented in an attribute-value form.

Power Set tree was built to find the unique combination of attributes-values per each case,

and use that unique combination as an index to the entire case. A solution to find the unique

combinations for each case in a Case Base has been designed and built, and then use these

unique combinations to build the Indexed Case Base (ICB). Using that approach, authors

were able to make the retrieval process three times faster than the case base without index.

3.8.2 kd-Trees

Trees are classic examples of Index Structure discussed in the former section. The basic

idea is searching top-down and eliminating all other branches when taking a specific branch

(Richter and Weber, 2013). Trees are not directly related to CBR. Using a tree structure

is a huge advantage, since it is possible to eliminate so many candidate cases by only one
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step in the tree. In the previous section, the work presented by Kareem Amin et al. (El-

Bahnasy, Amin, and Aref, 2014) used Power Set Tree (PST) for both indexing and retrieval,

which has significantly improved the retrieval process. The challenge with building Trees

comes from the way of how the tree is going to be structured and what attributes will be

in the leaves and if the tree connectors will have weights or relevancy or not (El-Bahnasy,

Amin, and Aref, 2014). In CBR, there are so many tree types have been used like kd-trees

(Wess, K.-D. Althoff, and Derwand, 1994) and binary trees (Bentley, 1975) , but kd-Trees

are the most common (Richter and Weber, 2013). The kd-tree is the index structure that

one constructs in the preprocessing step. Building a tree can be a very exhaustive and

time-consuming process (Wess, K.-D. Althoff, and Derwand, 1994). The average case effort

(Mehlhorn, 1984) to generate a k -d tree is O(k ∗ n log2 n), for the worst case O(log2 n). The

average costs for retrieving the most similar case costs are O(n). For small case bases, trees

can be of high benefit to the retrieval process while with larger CBR systems, building the

tree itself takes long time (El-Bahnasy, Amin, and Aref, 2014). Therefore, while using trees

in the retrieval process has many advantages, the time and effort consumed to build them

accurately are a drawback.

3.9 Adaptation

CBR systems are greatly relying on adaptation in order to be able to provide firm reasoning

to a current state of the system. Since CBR systems relate to analogy, it is essential to be able

to adapt past cases in order to provide profound human-acceptable arguments. However,

this states a relative challenge in complex systems, since adaptation is getting more difficult.

Adaptation has been always a hot and challenging area of CBR (A. Goel and Belen Diaz-

Agudo, 2017). Advanced adaptation strategies have been introduced in the last years of

CBR research, focusing on CBR in the big data era (Jalali and D. Leake, 2015). While

retrieval is mainly focusing on narrowing down the candidate solutions based on similarity
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measures, adaptation ensures that the most similar cases are being adapted correctly to the

new case based on adaptation rules.

The literature provides a number of CBR systems where adaptation is prominent. Espe-

cially over the last years the Computer Cooking Competition (CCC), present in International

Conferences (International Conference for Case-Based Reasoning have shown several systems

that are keen to successive adaptation of their cases. Cooking CBR systems are using sets

of ontologies along with their cases in order to be able to rectify and adjust their existing

recipes to the user requirements.

The literature provides a number of CBR systems where adaptation is prominent. Es-

pecially over the last years the CCC, present among others at ICCBR 2009/2010/2011, has

shown several systems that are keen to successive adaptation of their cases. Cooking CBR

systems are using sets of ontologies along with their cases in order to be able to rectify and

adjust their existing recipes to the user requirements.

An example given from the CCCs is the Taaable system, (Cordier et al., 2014) where

a whole architecture has been designed and deployed to support the successful adaptation

of recipes. Taaable is backboned by a semantic wiki, which works as a central module to

manage all the available data and their inclusive knowledge along the system. On top of

that, Taaable is using opportunistic adaptation knowledge discovery in an approach to gain

interactive and semi-automatic learning of adaptation knowledge triggered by user-provided

feedback.

Another example is ColibriCook software (DeMiguel, L. Plaza, and Díaz-Agudo, 2008),

developed for the cooking domain. ColibriCook is an ontology-based CBR system which aims

to the retrieval and adaptation of cookingrecipes. The systemis based on the robustness

of jCOLIBRI2 (Belén Diaz-Agudo et al., 2007) CBR framework, which provided a basic

ontology extension. The ontology was adapted accordingly to meet the requirements of the

cooking domain.

DeepKAF as a framework is not focusing on adaptation, but rather retrieval. However,
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the used ANN within DeepKAF can be reused to implement adaptation rules, and this

part from the future work described in Chapter 8.

3.9.1 Adaptation Rules

As Richter mentioned in his book, (Richter and Weber, 2013) "adaptations are special

kinds of actions, described formally by rules". A rigorous formalism is important for the

systematic use of adaptation. Adaptation is a form of action that is done based on some

preconditions. Those preconditions are the rules controlling what actions are going to be

performed. An adaptation rule can be represented in the following form:

φ1 ∧ φ2 ∧ φ3 ∧ .... ∧ φn ⇒ Action

where φn is the precondition.

3.9.2 Adaptation Approaches

In principle, there are three main types of adaptation: 1.Structural adaptation, where

rules are predefined and applied directly to cases, 2.Derivational adaptation where adap-

tation rules are being derived and generated from the case base and 3.Compostional Adap-

tation where the case solutions is obtained by combining elements from several similar cases,

we combine with the most similar one (Chun-Guang et al., 2004). Structural adaptation tech-

niques have been popular by predefined some adaptation rules to be used. However, with

the complexity of data and application domains, pre-defining the adaptation rules cannot

survive alone as an adaptation technique. It should be combined with other adaptation

techniques in order to be able to propose accurate solutions for the new case (Jalali and

D. Leake, 2015). As an example of Derivational Adaptation, the approach that Huan Li et

al. introduced in (H. Li et al., 2007) where authors used a learning process to update their

adaptation rules set with guidance from the domain knowledge experts. In another work

by Hanney et al. (Hanney and M. T. Keane, 1997), authors proposed a technique which
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learned adaptation knowledge from case comparison and applied the technique in a house

price case-base. Another example of derivational adaptation was introduced by Jalali et al

(Jalali and D. Leake, 2014). The authors introduced AGCBM, an approach to condensing

the case base size for domains in which adaptation knowledge is generated from cases, in

which retention decisions reflect both cases’ usefulness as source cases and their usefulness

for generating adaptation rules on demand.

Adaptation approaches are still a hot topic to research in CBR. In the last years, new

approaches have been introduced that use ML and DL approaches to combine adaptation

rules or generate new solutions that were not existing before.
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3.10 CBR Systems and Applications

we need to do something for that. Due to the generalization of processes and the CBR- cycle

portability across systems, the concept of CBR can be applied to a remarkable number of

applications in a wide range of environments. This can be seen from the early days of CBR,

in the early 1980s, where its application included a variety of fields like those of dynamic

memory (Schank, 1983), analogy (Carbonell, 1983) and legal reasoning (Rissland, 1983).

This work on CBR has been continued with Hammond and Collins on case-based planning

(Hammond, 1986; Hammond, 1990; Hammond, 1989) and the work of Ashley and Rissland

on HYPO legal reasoning system (Ashley and Rissland, 1987).

At the same time, CBR started being used in systems like the CYRUS computer sys-

tem. CYRUS was a question-answering system that contained information regarding the

life (travels, meetings) of the former United States Secretary of State Cyrus Vance. CBR

has been used in the CYRUS system to represent the memory cases that were afterwards

retrieved to answer a relevant question. Based on the implementation presented in CYRUS

the systems of CASEY (Phyllis, 1988) and MEDIATOR (Simpson, 1985) were built.

CASEY, a pioneer system in the application field of diagnosis, has been used for diagnos-

ing heart problems on patients. Its CBR mechanism was based on the existing knowledge

of known heart-problem diagnoses. MEDIATOR was specialized in mediation, trying to

solve disputes by adapting existing dispute solutions over the new proposed ones. Michael

Lebowitz has also used a CBR system to create the Integrated Partial Parser (IPP) which

was "a computer system designed to read and generalize from large numbers of news stories"

(Lebowitz, 1983). () Modern industrial approaches that use CBR can also be seen in the

literature. An indicative example of those is the CLAVIER system. CLAVIER CBR

system (Hinkle and Toomey, 1994) has been developed and used from Lockheed Corporate

aircraft manufacturing company as an advisory system for their qualified personnel. The

role of the system was to maximize their efficiency and ensuring the quality of composite

48



aerospace parts before finalizing them and sending them to the convection oven. Other

systems like JULIA, an earlier system, has been designed to plan meals (Hinrichs, 1988;

Hinrichs, 1989); KRITIK was designing mechanical assemblies by using a combination of

CBR and MBR (Model-based reasoning)(A. K. Goel, 1989) whereas CYCLOPS has been

used for landscape design (Navinchandra, 1988). Form Tool, (Cheetham, 2005) a decision

support application based on CBR, was designed for the Plastic Industry to retrieve the spec-

ified color formulas that meet colors requests from customers (Plastic Color Matching tool).

ShapeCBR a system designed for metal casting was created to "automate the process of

creation and selection of cases to populate a CBR system for retrieval of 3D shapes to assist

with the design of metal castings" (Miltos Petridis, Saeed, and Knight, 2010). ShapeCBR

was using graph similarity algorithms towards the efficient retrieval of similar components

from the case repository, based heavily on its CBR mechanism. Another family of appli-

cations that heavily uses CBR are the so-called help-desk applications. These applications

are designed to support company customers by providing relative services, starting primarily

with the contact security which is frequently needed by customers. Help may also be needed

regarding the issues that they face. The importance of help desk applications can be rather

significant since apart from supporting customers, it can work as a monitoring tool for the

company to a large extent (Marcella and Middleton, 1996). The operational spectrum of

help-desk applications can vary: starting from the detailed area of technical issues and going

towards the areas of customer satisfaction, user interface experience, etc. Applications like

the SMART: Support Management Automated Reasoning Technology (Acorn and Walden,

1992), the Appliance Call Centre automation at General Electric (Cheetham and Goebel,

2007) and the HOMER: CAD/CAM help-desk application at Daimler Chrysler(Bergmann,

2002a) were built with the focus on the customer help and support. CBR can be extremely

useful in systems that require a direct answer to a number of predefined questions. Literature

has already shown a number of systems using it towards that direction.
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3.11 Architectures, Frameworks, Tools

The development of a simple case-based reasoning application includes a mixture of steps,

such as case and background knowledge collection, modeling the appropriate case represen-

tation, implementing the retrieval functionality and implementing user interfaces. Compared

to other AI methods, CBR reduces the work needed for knowledge acquisition and representa-

tion, which is undoubtedly one of the key factors for the market success of CBR applications.

To standardize the good practices of implementing CBR domains, several frameworks and

architectures were introduced with advantages and disadvantage for each approach. This

section covers the most popular CBR frameworks and architectures that can be compared

to DeepKAF. The idea of providing an architecture and common practices to build CBR

systems is not new. It started with CBR becoming well-known as an AI sub-field, which

brought the need to share experiences and practices to make CBR systems able to survive

in the research field along with the industrial domain.

3.11.1 SEASALT Architecture

Agent-based systems technology has generated lots of excitement in recent years because

of its promise as a new paradigm for conceptualizing, designing, and implementing soft-

ware systems (Sycara, 1998). In (Bach, Reichle, and K.-D. Althoff, 2007) and (Reichle,

Bach, and K.-D. Althoff, 2011) the SEASALT architecture is an application-independent

architecture to work with heterogeneous data repositories and modularizing knowledge to be

structured. It was proposed based on the CoMES approach to develop collaborative multi-

expert systems. SEASALT aims to provide a coherent multi-agent CBR architecture that

can define the outlines and interactions to develop multi-agent CBR systems (see Figure 3.3).

The SEASALT team has applied it in (Reichle, Bach, and K.-D. Althoff, 2011) to travel

medicine as part of the docQuery project. It was as a textual CBR application domain to

showcase how SEASALT could be used. In (Pla et al., 2013) Albert Pla et al. have provided
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Figure 3.3 The SEASALT Architecture

a user-friendly tool for medical prognosis (eXiT*CBRv2). They proposed an innovative

multi-agent system architecture, in which they have a coordinator agent that is responsible

for receiving new cases, then pass it to n agents. Each agent is connected with case base to

retrieve cases based on different retrieval calculations. Afterwards, they all pass the results

again to the coordinator agent to assess and compare results and at the end it gives the final

results. They illustrated the use of the tool through several experiments carried out with

a breast cancer database, and they show how easy it is to compare distributed approaches

that maintain naturally distributed clinical organization, compared to centralized systems.

Generally, CBR and MAS have proved efficiency with different successful distributed

CBR systems. Currently, systems are getting more complex and agents need to be smarter

to be able to deal with its environments. MAS bring a lot of advantages and benefits to
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CBR, but also have a lot of challenges and issues that should be taken into consideration

while building systems:

1. How do we design our algorithms to decompose tasks to agents and allocate problems

to them?

2. If systems are widely distributed, how are agents going to communicate and what

communication protocols will they use?

3. What if we lost the communication between agents?

4. How do we ensure that agents are working properly, and every single agent is doing its

task in the perfect manner?

5. How do we troubleshoot issues across all agents?

SEASALT consists mainly of five layers, Knowledge Source, Knowledge Formalization,

Knowledge Representation, Knowledge Provision, and Individualized Knowledge. Every

layer contains several software agents designated for several tasks. The following paragraphs

describe SEASALT in a bottom-up manner (Reichle, Bach, and K.-D. Althoff, 2011).

Knowledge Sources Layer Connecting to different data sources and being able to collect

data is essential for any software. In addition, SEASALT relies on Web 2.0 platforms as main

data sources rather than the traditional data sources such as databases and static web pages.

The SEASALT architecture is especially tailored for the acquisition, handling and provi-

sion of experiential knowledge as provided by the communities of experience and represented

on Web 2.0 platforms. The SEASALT architecture may also provide external knowledge

sources by equipping the individual collectors with database or web server protocols or

HTML crawling capabilities.
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Knowledge Formalization Layer In order for the collected knowledge in the knowledge

sources layer to be easily usable within the knowledge line, the collected contributions have

to be formalized from their original representation into a more modular, structured rep-

resentation. This task is mainly carried out by the knowledge engineer. This Layer is big

intersection point betweenDeepKAF and SESALT.DeepKAF uses several deep learning

approaches in order to formalize the collected knowledge and make it usable with minimum

effort from the knowledge engineer.

Knowledge Provisioning Layer The knowledge provisioning layer of SEASALT is car-

ried out using the knowledge line method described in (Bach, Reichle, Reichle-Schmehl, et

al., 2008). The fundamental concept of the Knowledge Line is the modularization of knowl-

edge, analogous to the modularization of applications in the product line approach within

Software Engineering. Within the SEASALT architecture, this knowledge modularization

takes place with respect to the individual subjects represented in the respective knowledge

domain.

Knowledge Representation Layer The knowledge representation in SEASALT has been

created based on general resources like WordNet and further developed during the runtime

of the application. SEASALT’s knowledge representation includes rules, vocabulary, on-

tologies and taxonomies. Since the multiple agents working on the community platform.

The tools of the Knowledge Engineer and the CBR systems for the individual topic agents

handle the same Information Domain(s). This does not only significantly encourage the

preservation of the information model, but also promotes the interoperability of the individ-

ual components.

Individualized Knowledge Layer Any application that is built based on SEASALT

has a web-based user interface. The web-based interface offers a semi-structured input in

the form of different text fields used for entering information about the case. That interface
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Figure 3.4 The SEASALT – Big Data Oriented Architecture

is used to get queries from the CBR system user and go through the Knowledge Provision

Layer to get the most relevant results.

SEASALT is the heart of this DeepKAF and this thesis, and the idea of that thesis

was to extend the SEASALT architecture with a Knowledge-stream layer (see Figure 3.4).

DeepKAF can be integrated with SEASALT by adding more agents to handle the deep

learning and data streaming parts.

The Knowledge Stream Management layer (see Figure 3.4 has two main tasks, the first is

processing the streams of data coming from Knowledge Sources in real time, and the second

is to give real-time analysis to data patterns found within the streams. The Knowledge

Stream Management layer will contain software agents designated for the prescribed tasks.

One key innovation of the integration between SEASALT and DeepKAF is to enhance
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Figure 3.5 Knowledge Provision Layer

the CBR systems that are built based on SEASALT and be able to tackle problems that

come with any Big Data implementation. DeepKAF adds more flexibility and scalability

to SEASALT by applying the state of the art techniques to handle different types of data.

Figure 3.5 depicts the Knowledge Provision Layer in SEASALT, in which the coordination

agent is connected with a number of topic agents. Every topic agent is considered as a

standalone CBR system with its own case factory. Figure 2. Illustrates the changes made

to the Knowledge Provision layer and the new Knowledge Stream Management layer. The

Knowledge Stream Management layer is getting two types of input, one from the Knowledge

Formalization layer that is related to new data insertion, and the other input is coming as a

stream of questions from the Individualized Knowledge layer. According to our architecture,

system nodes would be the available processing power – Node = Single Processing Power.

The Knowledge Provision layer will be distributed across several nodes, and hence each

node contains Knowledge Provision agents. The Coordination Agent will act as the system

manager who is aware of all the system nodes and responsible for the whole system control.

He will be the data tap that uses the underlying framework to distribute the incoming

requests across the system nodes. Normally, I have two kinds of nodes, one for Queries

processing to retrieve results and the second for New Cases processing. I can have up to

N nodes in the system according to the hardware availability. The more nodes I have, the

better performance I can get. In every node, I have a Classification Agent to classify the

received data and assign it to the intended Topic Agent. Each Classification Agent is aware
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of the knowledge map gathered from knowledge sources and classify the incoming requests

according to predefined classes. Then, the Classification Agent assigns the request to the

intended Topic Agent(s). The Topic Agent is performing queries to retrieve the most similar

cases. Since I use distributed nodes in the hardware cluster, the Case Base will be replicated

to avoid data integrity, using the replication channels to replicate data between the Case

Base instances (see Figure 3.4). Since our Case Base will be distributed among several

nodes, the Case Factory agents will be centralized. Therefore, the Case Factory will have

only one instance that performs case maintenance on a single Case Base. Afterwards, the

results will be distributed to the whole system nodes using the replication channels.

3.11.2 CBR-WIMS Framework

Any system that can intelligently monitor workflows has to be able to provide flexibility

and agility in a continuously changing environment. A suitable architecture is needed to be

able to accommodate that. As a plausible consequence of the above, a proposed architecture

for a monitoring system has to be flexible, agile and easily adapted to a workflow managed

process. Usually such architecture should be accompanied by a resilient software framework

which could provide generic functionality. Subsequently, this functionality should be selec-

tively adapted on demand, hence providing a modular software approach which at the same

time is application explicit. In the case of business processes, such a framework should be

able to accommodate different systems with equivalently different business rules. Modern

enterprise systems are advanced, that is why a proposed architecture has to be equivalently

radical in order to satisfy the escalated complexity of business processes at its utmost. In or-

der to deal with the above stated needs of the intelligent business process monitoring, a new

framework has been developed. The framework, named Case-Based Reasoning Work-

flow Intelligent Monitoring System (CBR-WIMS) (Kapetanakis, Miltiadis Petridis,

Ma, and Bacon, 2009; Kapetanakis, Miltiadis Petridis, Ma, and Bacon, 2010; Kapetanakis,
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Figure 3.6 The Intelligent Workflow Management System Architecture

Miltiadis Petridis, Ma, and Knight, 2010), consists of a series of tools and services that are

encapsulated and presented under one framework to its specialized users. The aim of the

development of CBR–WIMS is to provide automatic monitoring, diagnosis and explana-

tion to workflow managers and stakeholders (see Figure 3.6. The framework gives emphasis

on a number of facets such as:

1. the identification of potential problems within a workflow

2. the analysis of workflow information

3. the retrieval of past information which is similar to an investigated case

4. the assembly of suggestions, recommendations that could lead to the restoration of the

workflow state to an acceptable, stable (healthy) condition.

CBR-WIMS has been designed as a generic workflow monitoring framework which

facilitates a number of flexible services, control modules and adaptors. CBR-WIMS can
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offer an interoperable environment for workflow monitoring and diagnosis. This chapter

has presented the architectural backbone and has revealed how its collaborative components

could accommodate that. An alternative system orchestrated, choreographed and operated

via a workflow has been used as a test bed for the evaluation of CBR-WIMS. WIMS

have shown efficient in terms of its adaptation capabilities on the different system. The

applicability of CBR-WIMS to different business processes has shown that it can establish

intelligent workflow monitoring. An interesting finding from its application on BTS is that

heedful knowledge acquisition leads to its reusability across workflows.

CBR-WIMS has revealed how it can be expanded, adapting its monitoring function-

ality across systems. However, the provided functionality was accompanied by a number

of explanation elements that enhanced its monitoring, reasoning and diagnosis on workflow

systems.

CBR-WIMSis able to explain the context or the probable cause of a problem through

the clustering classification. This has shown to enhance the confidence of its users overall

on making successful monitoring and diagnosis on particular cases. WIMS was called to

explain its provisional judgements in more than one system that both of which were dealing

with uncertainty. This can be seen from the conducted experiments, which demonstrated

with success the explanation provision at both micro level (individual cases) and macro level

(case justification among the case-base overall). Several challenges have been raised while

attempting to offer interoperable explanation provision, but were dealt successfully with the

application of diverse techniques.

3.11.3 COLIBRI

COLIBRI as platform provides a well-defined design architecture for a multi-annual expe-

rience CBR system, a reference to that architecture: the jCOLIBRI framework and several

development tools which help users implement and share new CBR systems and components.
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Figure 3.7 jCOLIBRI Framework Structure
Reference: (Belén Diaz-Agudo et al., 2007)

The methods were incorporated into the production sense of COLIBRI Studio. All instru-

ments are built by the COLIBRI architecture of two layers (Bello-Tomás, González-Calero,

and Díaz-Agudo, 2004). COLIBRI is designed to provide a collaborative environment, in

which users can engage in the implementation of CBR applications. It’s an open platform

where users can contribute to various designs or components that other users can reuse (see

Figure 3.7

COLIBRI installation or Interface based configuration tools allow the building of the

CBR system without the need to write a line of code. Nonetheless, COLIBRI is flexible and

could program new methods and integrate them into the framework if we were to construct a

highly complex CBR system or if we wanted problem-solving methods that are unable to be

used in the framework. As depicted in COLIBRI Architecture, the tool has several layers of

building any CBR system to ensure consistency and persistence of any implemented system.

It provides different connectors to structured and unstructured data sources, then a layer

to build similarity measures. The tool also provides different ways to structure cases and
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problem-solving, as explained in their publication (Bello-Tomás, González-Calero, and Díaz-

Agudo, 2004). The following bullets explain in details the philosophy behind how COLIBRI

provides an eco-system to build CBR applications.

1. CBR systems must provide secure and appropriate access to the stored cases with the

increasing size of the case base. In two separate yet related concerns, COLIBRI splits

the Case Base management problem: persistence mechanism through connectors and

in memory organization. Various in-memory logins and data structures are given.

2. Cases can be depicted, depending on the system, as simple plain attribute-value cases,

text cases or complex hierarchical structures (object-oriented), where their attributes

are interconnected. Different similarity functions can be used to compare attributes of

cases, depending on the case structure.

3. At the knowledge level, a CBR application is described in COLIBRI as a sequence of

tasks that have to be resolved through the resolution or decomposition process. Meth-

ods of decomposition divide a job into several tasks. Task examples include Pre-Process

Cases, Query, Recall, Reuse, Review, Retain, Similarity Calculators and many more.

Their approach to PSM competent specifications (post-condition) and criteria (pre-

condition) incorporates ontologies and offers all major advantages. For each mission,

the designer of CBR configures the method that addresses them. First, it allows for

formal specifications that add accurate meaning and support reasoning. Furthermore,

it gives us valuable benefits in terms of reuse, as activities and methodologies can be

shared by different systems.

4. COLIBRI provides a method library that includes at the knowledge level the operating

level (i.e. implementation) of the problem-solving methods. If the library does not

contain the required resolution method, a system designer must write Java code. The

aid functions promote the development of new methods and functions of similarity.
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5. Note that this is both the application generator and architecture for the CBR appli-

cation constructed with COLIBRI. This is an application generator architecture. By

specifying case structure, login settings and task structure, COLIBRI tools allow one

to create a new application. In XML files, configuration data will be saved as an input

to the CBR application’s system heart. The framework core also plays a role in the

design process because it can be interactively tested by a partially configured system.

Based on the understanding of how COLIBRI as a framework works to implement CBR

systems, DeepKAF is providing the technical details of how to approach CBR systems in

the industrial domain without forcing a structure like how COLIBRI works. DeepKAF can

be considered as a complement to how COLIBRI works in general by providing the technical

details and models that help in collecting data and building similarities.

3.11.4 myCBR

myCBR is an open-source, software development (SDK) tool for similarity-based retrieval.

With myCBR Workbench, highly advanced, knowledge-intensive similarity measures can be

modeled and checked in a powerful Interface and easily integrated into your own applications

using myCBR SDK (Bahls and T. Roth-Berghofer, 2007). myCBR is a joint effort of the

Competence Centre CBR at German Research Center for Artificial Intelligence (DFKI), Ger-

many, and the School of Computing and Technology at University of West London (UWL),

UK.

myCBR Features:

1. Powerful GUIs for modelling knowledge-intensive similarity measures

2. Perspectives: If you have used the integrated development environment eclipse, you

are already familiar with this feature. The myCBR Workbench provides task-oriented

configurations for modelling your knowledge model, information extraction, and case

base handling.
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Figure 3.8 myCBR Architecture - Reference: (Bach and K.-D. Althoff, 2012a)

3. Similarity-based retrieval functionality

4. Extension to structured object-oriented case representations, including helpful taxon-

omy editors

5. Rapid prototyping via CSV

The last release of myCBR was in 2014 (myCBR 3) (Bach and K.-D. Althoff, 2012b). In

myCBR 3, Workbench offers efficient GUIs for knowledge intensive similarity measures mod-

eling. The Workbench also offers task-oriented settings for modeling the knowledge model,

information retrieval, and case-base management. A similarity-based retrieval mechanism

for knowledge model validation is included within the Workbench. Editing a knowledge

model enables the ability to use standardized object-oriented case representations, including

helpful taxonomy editors, as well as case import using CSV files. The myCBR 3 Software

Development Kit (SDK) provides a simple-to-use data model that makes it easy to create

applications on. The retrieval cycle as well as case loading, even from significantly large case
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bases, is fast and thus makes seamless use in applications designed on top of the knowledge

model of myCBR 3. Each attribute can have multiple similarity measures within myCBR 3.

This function enables the exploration and testing of similarity measures in order to record

variations. Because you can pick a suitable similarity measure via the API at runtime, you

can easily accommodate divergent circumstances or various types of users (Bach and K.-D.

Althoff, 2012b).

3.11.5 CAKE

Collaborative Agent-based Knowledge Engine (CAKE) provides unified access to knowledge

available within an organization, and CBR technology is used throughout the system to

distribute this knowledge to agents as required (Bergmann, Freßmann, et al., 2006). Since

2004, CAKE has been started as an ongoing research group project. Many R&D projects

supported by various organizations have so far contributed to its growth. CAKE’s principal

components are (Bergmann, Freßmann, et al., 2006):

1. The agile workflow engine that interweaves modeling and execution of workflows and

enables versatile collaboration between different workflow participants.

2. A knowledge engine that uses case-based process-based thought methods to retrieve

and adapt semanticized workflows to enable business users to create and adapt work-

flows according to demand.

3. A common storage layer to access and update all workflow information consistently

and to obtain web contents workflows.

4. A browser-based user interface for streamlined access to all CAKE elements.

CBR technology is used for two different purposes within CAKE. First, when a new

job has to begin, it is used for the collection of appropriate jobs. Furthermore, when a

conversation with an agent is initiated, it is used to pick suitable agents. To order to resolve
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Figure 3.9 CAKE Architecture - Reference: (Bergmann, Freßmann, et al., 2006)
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the need to rely on static job assignments for workers, CAKE uses CBR for these tasks. Job

properties and agents are thus known as cases, whose characteristics are stored in the WD

and Agent Classification Case Base (see Figure 3.9. In order to execute both retrieval tasks,

CAKE implements the same generic CBR feature. The study of demands strongly supported

the need for an overall domain ontology for a systematic definition of the relevant domains.

Its aim is to attach meaning to different sources of knowledge, things and activities which

have to be taken into account.

ProCAKE There is another more specific release of CAKE for process oriented CBR

called ProCAKE (Bergmann, Grumbach, et al., 2019). ProCAKE, a generic framework

for building structural and process-oriented CBR applications. The software is developed at

the Department of Business Information Systems II at the University of Trier. ProCAKE

integrates various similarity syntactics and semantics for different types of data. Most of

the acts are defined officially in (Bergmann, 2002b). For instance, the measures used for

numerical classes use linear, exponential and threshold functions while Levenshtein or reg-

ular expressions apply to String classes measures. For semanticized similarity evaluation,

there are many taxonomic steps. A metric that graphs with an A * search algorithm is

implemented for the NESTGraph class (Bergmann and Gil, 2014). Multiple algorithms are

implemented for recovery: In order to facilitate retrieval with a broad case base, multiple

MAC/FAC approaches and an A * parallel recovery method are introduced besides k-NN

recovery. According to the research team, there is no other framework that provides the

same functionality that ProCAKE is providing in the area of POCBR.

ProCAKE Features:

1. generic and domain-independent framework

2. tailored for developing structural and process-oriented CBR applications

3. comprehensive and extendable data types for knowledge modeling
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4. various syntactic and semantic similarity measures

5. several retrieval algorithms (k-NN, MAC/FAC, . . . )

6. generic adaptation framework for integrating adaptation methods

7. modular and pattern-driven architecture

To summarize, CAKE is a powerful well-developed and maintained multiple-agent frame-

work that can be used in different domains. The main intersection point between CAKE and

DeepKAF is the similarity measures and how they are built. DeepKAF is more flexible

in the area of domain knowledge acquisition using different deep learning models, then use

the acquired knowledge to train other models to build similarity measures, while CAKE is

counting on the traditional search algorithms like A* or a classification algorithm like KNN.

On the other hand, CAKE is more complete and mature than DeepKAF, since it has an

ongoing project for years with accumulated research experience.

3.12 Summary

Chapter 3 showed some CBR concepts that are a must to mention before going through

the rest of this thesis. This chapter summarized CBR types and differences, with focus on

Textual CBR that DeepKAF is targeting. The chapter showed different research in the

literature defining the state of the art architectures and frameworks that have been developed

over the past years in the CBR community. The literature presented in this chapter was

chosen based on the popularity of the work in the CBR community, along with successful

industrial implementations that used those architectures and tools. The main goal of this

chapter was to highlight the concepts that DeepKAF will focus on in the next chapters,

along with the main strengths that DeepKAF is adding, compared to the work presented

in the literature.
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Chapter Four

CBR, Big Data, and Deep Learning

Artificial Intelligence (AI) has been getting increasingly popular throughout the last decade.

As big data is a key trend in the tech industry at the time this thesis is written, machine

learning approaches seem adequately positioned to make predictions and automated sugges-

tions based on large amounts of data. Common examples of machine learning can be seen

in Netflix’s algorithms for movie recommendations based on the user’s favorite genre(s) or

Amazon’s algorithms for book recommendations based on previous purchases and others.

In such a demanding and constantly evolving environment, CBR appears as a competing

technique that can deal with the demands of a data-intensive era (Aamodt and E. Plaza,

1994; A. Goel and Belen Diaz-Agudo, 2017). Large-scale real-time data collection creates a

need for advanced data acquisition, management, and rigid mechanisms for analytics.

Large-scale systems are part of most medium and large enterprises following an ongoing

demand for building systems that are able to process data streams. Current big data strate-

gies tend to process in-motion data and can offer a variety of scenarios to work with. The

term big data refers to dynamic, large, structured and unstructured volumes of digitized

data, generated from different sources that can differ substantially in formats (Labrinidis

and Jagadish, 2012a). CBR is a problem-solving paradigm that is different from the major

AI approaches since: Unlike other approaches that rely solely on the general knowledge of a

problem domain or associate along inferred relationships between problem descriptors and
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conclusions, CBR utilizes specific knowledge of previously experienced problem situations.

CBR has been applied successfully in a variety of applied solutions across different domains.

Recent AI trends clearly focus on data-driven methods. Yet, many decision support systems

are regarded usually as "black boxes", since they provide little or no reasoning evidence

for their processes (Herlocker, Konstan, and Riedl, 2001). CBR eliminates the "black-box"

perspective since by design it is able to provide sufficient arguments for its outputs, allowing

domain experts to reason upon its decisions.

The ability of CBR to reason upon individual examples and its inertia-free learning makes

it a natural approach for big-data problems such as predicting on top of very large example

sets (Smyth and McKenna, 1999). The literature shows increasing work on CBR and big data

with the majority of cases on case base maintenance methods, aiming to reduce the case-base

size while preserving competence (Smyth and M. Keane, 1997; Smyth and McKenna, 1999).

Few CBR projects have focused on the case base size, considering scales up to a million of

cases (Daengdej et al., 1996; Beaver and Dumoulin, 2013).

4.1 About this Chapter

As shown in Chapter 3, with the different approaches and architectures that the main

goal was always to standardize the CBR implementation process along with some tools that

can facilitate the similarity measures building and retrieval processes. However, none of

those frameworks tackled any deep learning or big data frameworks that can leverage CBR

implementations on large-scale. This chapter differentiates CBR from black-box approaches,

which motivated the presented work in this thesis. The following sections present different

neural network approaches that were extensively tested throughout this thesis, and advocate

the selected approaches and techniques used in DeepKAF.

Details about each deep learning approach are provided because these approaches are the

ones that eventually have been used in building DeepKAF. The deep learning architectures

68



used in DeepKAF are the outcomes of the implementation journey. Before selecting any of

those approaches, an extensible literature survey has been done and presented on the three

dimensions that DeepKAF is covering, namely CBR, big data, and deep learning. This

survey goes through the research that has been carried out in these directions, presenting the

rising impact of integrating these three methodologies and how they were used all together

up to this point of time.

4.2 CBR VS Black-box Approaches

Pressing requests for precise and reliable classification tools in machine learning research

has led to increasingly complex algorithms. Ensemble approaches and algorithms like Sup-

port Vector Machines (SVM) and neural networks have achieved an unpredictable level of

complexity. These approaches and those like them, because they are not transparent in the

logic behind the predictions they create, are commonly referred to as "black-box" Algo-

rithms. The motivation behind most CBR systems is to provide some form of evidence or

argument for any proposed solution. In (Nugent and Cunningham, 2005), authors showed

the importance of CBR systems and the advantage of providing a proof for each proposed

solution. Authors built a CBR explanation system for regression tasks and compared the re-

sults with other "black-box" regression approaches, and CBR excelled the other approaches

in performance while keeping the ability to provide explanation. CBR is best suited in a lot

of domains where experts will never follow an AI approach without having explanation.

CBR still suffers from the chronic complications when it comes to build CBR systems

in industrial domains as described in Chapters 1 and 4, which DeepKAF is solving by

incorporating "black-box" approaches within the CBR paradigm instead of avoiding using

such approaches.

Black-box approaches have so many advantages that cannot be ignored, and that’s why

they are heavily applied in so many industrial applications, regardless of the inability to
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provide accurate explanations. Therefore, we believe that DeepKAF as a framework can

leverage CBR systems to be used in industrial application along with "black-box" approaches.

This combination between CBR and black-box approaches brings the best of both worlds.

CBR with its strength to make use of the historical data, and black-box approaches with

the proven track of how to decode a domain knowledge.

4.3 Big Data

Big data systems have gained substantial focus in recent years and still continue having rapid

development. Such systems cover many industrial and public service areas such as search

engines, social networks, e-commerce sites and multimedia, as well as a variety of scientific

research areas such as bioinformatics, environment, meteorology, and complex simulations

of physics. Conceptually, big data are characterized by very large data volume and velocity,

highly variety (diversity) in data types and sources, and stringent requirements of data

veracity (fidelity) (R. Han et al., 2015).

Technically, a big data system can be characterized in terms of its data (4V’s, as we

will explain) and its related workflows on top of its input data. We first explain the 4V’s

properties as follows. Volume - Volume represents the amount/size of data in terms of units

such as Terabytes (TBs), Petabytes (PBs) or Zetabytes (ZBs). Today, data are generated

faster than ever. For example, about 2.5 quintillion bytes of data are created every day and

this speed is expected to increase exponentially over the next decade according to research

from the International Data Corporation (IDC). Velocity - Data arrival rate is real-time

or almost real-time. Variety - Data can vary significantly in terms of format, including

non-standard schema as well as BLOBs and CLOBs inside data. Veracity - one of the

most challenging aspects in data generation. In many benchmarks such as GridMix , SWIM,

HiBench and YCSB, the generation process of synthetic data is independent of real raw data

(Huang et al., 2010; Y. Chen, Alspaugh, and Katz, 2012; Cooper et al., 2010).
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4.3.1 Big Data, Big Challenges

Big data management has very big challenges and opportunities, since almost every-thing

today is generating data. Big data management is not any more driven by computer scientists

or researchers; it is a must for companies today to benefit from their data. Otherwise, they

will not be able to survive in the current fast changing business environment. Big Data

management plays a major role in the competition between companies.

Large enterprises like SAP, IBM, Google, Microsoft, SAS, and EMC are running now

with maximum speed to build the most advanced big data platforms, not only from the

software side, but also from the hardware one. They aim to attract new customers and help

companies to gain the maximum benefit from their data. The new amount of data requires

new, innovative technologies to be able to give the results in a reasonable time (Desarkar

and Das, 2017). The big data term refers to dynamic, large, structured and unstructured

volumes of data generated from (Labrinidis and Jagadish, 2012b):

1. Traditional data sources – includes the transnational data created from ERP systems,

CRMs, web store transactions, etc.

2. Machine generated data – includes sensors data, smart meters, web logs, etc.

3. Social data – includes data generated from social networks like Facebook, Twitter,

LinkedIn, etc.

4.3.2 CBR and Big Data

In most of the up-to-date CBR research, with regard to the increased data sizes, the primary

focus has been on the compression of existing data rather than scaling-up. Considerable

CBR research has focused on the efficiency issues arising from case base growth. As the

case base grows, the swamping utility problem can adversely affect case retrieval times,

degrading system performance (Jalali and D. Leake, 2015). CBR and big data collaboration
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is an emerging topic, some researches have been carried out focusing mainly on case base

maintenance methods, aiming to reduce the case base size while preserving competence

(Smyth and M. Keane, 1997; Smyth and McKenna, 1999).

Few CBR projects have considered scales up to a million of cases (Daengdej et al., 1996;

Beaver and Dumoulin, 2013; Agorgianitis, Kapetanakis, et al., 2017). The ability of CBR

to reason from individual examples and its inertia-free learning makes it a natural approach

to be applied to big-data problems such as predicting on top of very large example sets

(Jalali and D. Leake, 2015). A capability to handle very large data sets could facilitate

CBR research on very large data sources already identified as interesting to CBR, such as

cases harvested from the Experience Web (E. Plaza, 2008), cases resulting from large-scale

real-time capture of case data from instrumented systems (Ontanon et al., 2014), or cases

arising from case capture in trace-based reasoning (Mille et al., 2013).

Since the growth of digital data is widely heralded. A 2014 article estimates that "Almost

90% of the world’s data was generated during the past two years, with 2.5 quintillion bytes

of data added each day" (G.-H. Kim, Trimi, and Chung, 2014). In (Xu and Tian, 2015/11),

Yu-Hui X & Xiao-Yun Tian provided a CBR model NT-CBR based on the data mining

technology NT-SMOTE. They have tried to solve the problems associated with enterprise

risk man-agement and compared their results with different methodologies. The NT-CBR

model used big internet data to do the forecasting of risks and give smarter and faster

solutions to the risk. In (Jalali and D. Leake, 2015) Vahid Jalali & David Leake have

initially developed ensembles of adaptation for regression (EAR), a family of methods for

generating and applying ensembles of adaptation rules for case-based regression. That model

suffered from high computational complexity and therefore they decided to go to big data

techniques (Map Reduce) to improve their model performance, and they called it BEAR.

BEAR uses MapReduce and Locality Sensitive Hashing (LSH) for finding nearest neighbors

of the input query. It consists of two main modules: LSH for retrieving similar cases and EAR

for rule generation and value estimation. As a conclusion, they got very promising results
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that encourage them to perform bigger experiments to ensure that the model is reacting in

the perfect manner.

From the CBR-big data literature, the CBR-big data systems can be classified as large-

scale, real-time, stream management systems and hybrid techniques in combination with

artificial neural networks. The following sections will summarize the literature in chrono-

logical order, some CBR systems developed over the years that tackle the current big data

arising issues. Also, it classifies these systems according to their objectives and attempts to

find out the extent up to which CBR and big data are used in these systems.

The following two classes describe the CBR systems that tackle the aforementioned Big

Data V’s:

1. Large-scale CBR (Volume): Systems that focus on dealing with large case bases

and trying to improve retrieval and/or indexing processes.

2. Real-time CBR (Velocity, Veracity): Systems that focus on processing stream of

data coming from different sources in real-time. These systems deal with problems like

fast retrieval and pattern matching to carry out some proactive tasks.

Large-scale CBR

This section shows CBR systems that were designed to work with large case bases. I will

show the main focus of the CBR systems and the problems that authors tried to solve.
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RICAD In RICAD (Daengdej et al., 1996), authors have built a solution that

applies an efficient indexing and retrieving methodologies. They worked

with a real world case base consists of 2 million incomplete insurance cases

with thirty different attributes per case. Authors got inspired by database

engines and how data is being queried, and aimed to build a system that

can intelligently improve the retrieval processes with noisy data.

Bit-wise Bit-wise (W.-C. Chen et al., 2002) is designed to work with large-scale

CBR, and focused more on an indexing method that that is able to speed

up the retrieving process for similar cases in case of large case bases.

PST-Indexing In (El-Bahnasy, Amin, and Aref, 2014), I worked on an indexing approach

that depends on the Power Set Tree (PST). I used the PST to find a unique

combination of attributes for cases and used these unique attributes as a

key for each case. Using the PST approach, I was able to build huge trees

and search within billions of possible unique combinations. I was able to

speed up the retrieval process four times better than the case base without

the PST approach.

BEMD-GGD In (Jai-Andaloussi et al., 2013), authors focused on analyzing medical

images and built a CBR system based on a distributed Hadoop comput-

ing environment. This CBR system (BEMD-GGD) is used for content

based image retrieval. Two methods were proposed to characterize the

numerical content of medical images: the first method is BEMD-GGD

and the second method is BEMD-HHT. The experiments showed that the

MapReduce model is more efficient when the target image data is large.
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4DSS The 4DSS (Marling et al., 2015) is a prototypical hybrid-CBR system that

aims to help T1D patients achieve and maintain good BG control. As cases

and data have accumulated over ten years, the research emphasis has shifted

toward using the accumulated data to build machine learning models for BG

prediction. Authors mentioned to the potential of collecting data in the future

from fitness bands that can help in improving the prediction accuracy.

BEAR The work presented in (Jalali and D. Leake, 2015) illustrated the practicality

of a big-data version of ensembles of adaptation for regression, implemented

in BEAR, which uses MapReduce and Locality Sensitive Hashing for finding

nearest neighbors of the input query.

IDGARD In (Bedué et al., 2015), authors have presented a novel approach to integrate

a high security cloud storage (sealed-cloud) in Business Process Management

(BPM). A new model has been implemented for using a sealed-cloud multi-

media data storage for their workflow contents. Authors focused on building a

scalable CBR approach and therefore, they focused on the cloud technologies.

WHAP (M. L. Han et al., 2016), WHAP implementation tackled the retrieval problem

with large case bases. Authors implemented WHAP. A profiling system that

uses CBR. Authors verified WHAP’s usefulness by analyzing large scale of

web defacement cases including North Korean hacker’s attacks against South

Korea, and unveiling a relationship between those attacks and another set of

attacks against Sony Pictures Entertainment.

EACH (Jalali and D. Leake, 2017) have presented a different CBR approach based

on learning itineraries. Learning itineraries are abstract representations of the

user interactions that consider the order in which the problems were solved.

In this work, authors have described a case-based recommender that leverages

the implicit learning itineraries that emerge from the online judge submissions.

75



Smart-grid In Smart-grid (Troiano, Vaccaro, and Vitelli, 2016), authors have built a solu-

tion based on CBR to optimize smart grid operations. The solutions acquire

real time data from grid sensors and analyze them based on the historical

data. Due to time constraints, the search of similar patterns requires to face

the large size of the historical smart grid data, which increase dynamically

once new measured information is available. Therefore, they used the big

data technologies to help them achieve the system purposes.

The aforementioned CBR systems were focusing mainly on building a large-scale CBR

system. These methodologies have applied different approaches to be able to handle the

problems that will come with any large-scale CBR system. The research presented in (Agor-

gianitis, Miltos Petridis, et al., 2016) argues that the current perspective of distribution in

CBR does not take into consideration the importance of data volume as a key prerequisite in

the integration of distribution in CBR for business process workflows. The authors proposed

a new categorization of distributed CBR systems where the data volume aspect is the focus

of the distribution effort, introducing a number of prerequisites.

Real-time CBR

This section focuses on the CBR systems that focused on real-time analysis and cases re-

trieval. The following systems are the best to my knowledge that showed advanced ap-

proaches in handling the real-time CBR systems efficiently.
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CBR-RTS CBR-RTS (Coello and Santos, 1999) has a modular architecture that

easily supports evolution. The current structure of the case base and the

corresponding retrieval algorithm seem adequate for case bases storing

a moderate number of small cases. New organizations and retrieval

strategies might have to be considered when dealing with case bases

storing a high number of complex cases. The CBR-RTS architecture

aims to build CBR systems that supports real-time retrieval. CBR-RTS

focused on indexing the case base in order to perform fast retrieval.

D-HS+PSR(II) In (Patterson, Galushka, and Rooney, 2003), Authors have presented

two novel indexing schemes called DHS and D-HS+PSR(II). D-HS is

based on a matrix of cases indexed by their discretized attribute val-

ues. D-HS+PSR(II) extends D-HS by combining the matrix with an

additional tree-like indexing structure to facilitate solution reuse. The

experiments showed accuracy, speed and ability to facilitate efficient

real-time maintenance of retrieval knowledge as the size of the case base

grows.

N/A The work presented in (Floyd, Davoust, and Esfandiari, 2008) focuses

on spatially-aware systems such as mobile robotic applications and the

particular challenges in representing the systems’ spatial environment.

They select and combine techniques for feature selection, clustering and

prototyping that are applicable in this particular context. The results

demonstrated that prepossessing such case bases can significantly im-

prove the imitative ability of an agent.
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ExPeCo PeFoot ExPeCo is a multi-agent CBR system (De Loor, Bénard, and

Chevaillier, 2011). Authors have proposed a solution that stems

from arborescent case bases, which enable the similarity between

a target situation and all the cases in the base to be calculated

at any time. In accordance with psychological considerations, the

longer the time allowed, the better the evaluation of a situation.

Some preliminary tests confirmed the credibility of the resulting

behavior in CoPeFoot.

SIEVE-STREAMING In comparison to the former papers that focus on the retrieval pro-

cess. In (Y. Zhang, S. Zhang, and D. Leake, 2017), authors experi-

ment within this paper, authors have extensively evaluated SIEVE-

STREAMING algorithm on a Travel Agent Case Base benchmark

within the CBR community, with comparison between several tra-

ditional methods.

DrillEdge DrillEdge is a prominent solution in the area of real-time CBR sys-

tems. It has been developed and improved by different researchers

(Bach, Gundersen, et al., 2014; Gundersen et al., 2013). DrillEdge

has showed an advanced technique for automatic case capturing in

the oil and gas domain. Authors have showed how the acquisition

of cases in a knowledge intensive application can be supported by

event detection and clustering. They introduced a method that

automatically scans oil-well drilling logs for problematic situations

and marks a case window on time series data. They evaluated their

approach against domain experts doing the same task and found

out that their approach reliably chooses correct areas for a mechan-

ical stuck pipe that can be refined by experts.
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N/A In (Wender and Ian Watson, 2014), authors have presented a navigation

component based on a hybrid-CBR and Reinforcement Learning (RL) ap-

proach for an AI agent in a Real-time Strategy (RTS) game. Spatial envi-

ronment information is abstracted into a number of influence maps. These

influence maps are then combined into cases that are managed by the CBR

component.

CBR-FTIMS In (Adedoyin et al., 2016), authors have proposed a multi-intelligent fraud

detection system using logistic regression, neural network, and CBR. To

prove the efficiency of their method, they used synthetic simulated data

in evaluating their performance. The recognition performance shown by

LR classifier is better compared to NN and CBR, with a steady increase in

precision, sensitivity and specificity as the percentage ratio for the training

and test data was varied.

O-MaSE In (Rekik, Elkosantini, and Chabchoub, 2017), authors have introduced a

new multi-agent architecture for the real-time container stacking in sea-

port terminals is presented. The allocation structure is based on CBR. In

this context, a CBR system is developed and integrated in the proposed

MAS. The proposed approach allows also the control of the storage system

in a real-time manner by including the different unexpected events and

disturbances that may occur during the allocation process.

4.4 Word Embedding Models and Why they are impor-

tant

Deep learning models are not able to process strings or plain text. They require numbers as

inputs to perform any sort of job, classification, regression, etc. Many current NLP systems
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and techniques treat words as atomic units, therefore, in order to apply a deep learning model

to NLP, we need to convert words to vectors first (Amin et al., 2018a). Word embedding

is the process of converting text into a numerical representation for further processing. The

different types of word embeddings can fall into two main categories:

1. Frequency-based embedding (FBE):

FBE algorithms focus mainly on the number of occurrences for each word, which

requires a lot of time to process and exhaustive memory allocation to store the co-

occurrence matrix. A severe disadvantage of this approach is that quite important

words may be skipped since they may not appear frequently in the text corpus.

2. Prediction-based embedding (PBE):

PBE algorithms are based on neural networks. These methods are prediction based

in the sense that they assign probabilities to seen words. PBE algorithms seem the

present state of the art for tasks like word analogies and word similarities.

PBE methodologies were known to be limited in their word representations until Mitolov

et al. introduced Word2Vec to the NLP community (Mikolov, K. Chen, and Corrado, 2013).

Word2vec consists of two neural network language models: A Continuous Bag of Words

(CBOW) and skip-gram. In both models, a window of predefined length is moved along the

corpus, and in each step the network is trained with the words inside the window. Whereas

the CBOW model is trained to predict the word in the center of the window based on the

surrounding words, the skip-gram model is trained to predict the context based on the central

word. Once the neural network has been trained, the learned linear transformation in the

hidden layer is regarded as the word representation. InDeepKAF, skip-gram model is being

applied since it demonstrates better performance in semantic task identification (Altszyler,

Sigman, and Fernández Slezak, 2016).
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Text Pre-Processing

In the text pre-processing stage, raw text corpus preparation tasks are taking place in an-

ticipation of text mining or NLP. In DeepKAF ticket management implementation, we

trained our Word2Vec model over the ticket corpus to build an embedding model that will

be used in the similarity measures. As any text pre-processing tasks, we have two main

components: 1. Tokenization, 2. Normalization. Tokenization is a step which splits longer

strings of text into smaller pieces, or tokens. Normalization generally refers to a series of

related tasks meant to put all text on the same standard level: converting all text to the same

case (upper or lower), removing punctuation, converting numbers to their word equivalents,

and so on. Normalization puts all words on equal footing, and allows processing to proceed

uniformly. Normalizing text can mean performing a number of tasks, but for our approach,

we will apply normalization in four steps: 1. Stemming, 2. Lemmatization 3. Eliminating

any stopping words (German or English) 4. Noise Removal (e.g., greetings and signatures).

In essence we can consider the Word2Vec model or any other model that could be built as

a substitution to the traditional taxonomies.

4.4.1 2Vec Models

2Vec models is a family of different Word Embeddings models that are being used for different

NLP problems. In this section, three 2Vec models are going to be presented and explained

because they are the main models that are being used in DeepKAF

Word2Vec

Word2Vec was introduced by Mikolov in 2013 (Mikolov, K. Chen, and Corrado, 2013).

Word2Vec is a shallow two-layer neural network that processes text by giving a numerical

representation, "vectorizing" for each word. This takes a broad corpus of terms as its input

and creates a vector space, generally several hundred dimensions, with a corresponding vector
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Figure 4.1 CBOW VS Skip-Gram
Source: (Mikolov, K. Chen, and Corrado, 2013)

of space allocated to each specific word in the corpus. Word vectors are arranged in vector

space such that terms that share similar meanings in the corpus are placed in close proximity

to each other in space. Word2Vec is an especially computationally powerful predictive model

for learning word embedding from raw text.

Although Word2vec is not a deep neural network, it transforms text into a numeric

form that deep neural networks can understand. Word2Vec representation is built using

two popular algorithms: 1. CBOW and 2. Skip-gram model (see Figure 4.1). There are

two primary teaching methods, the Distributed Words Bag and the skip-gram model. One

involves predicting context terms using a core phrase, while the other involves predicting the

term using context words.

Continuous Bag-of-Words The false function in CBOW is very similar to skip-gram,

in the sense that we also take a pair of words and show the model that they co-occur, but

instead of inserting the mistakes, we apply the input terms to the same target word. The
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size of the hidden layer and the output layer will stay the same. Only the size of the input

layer and the calculation of hidden layer activation functions will change, if there are four

context words for a single target word, there will be four input vectors of 1xV. Each will be

multiplied by returning 1xE vectors to the hidden VxE layer. All four 1xE vectors will be

combined as an element-wise to achieve the final activation of the layer, which will then be

fed to the softmax activation function.

Skip-gram For skip-gram, an alternative to "CBOW" rather than combining background

terms, each is used as an example of pairwise instruction. That is, instead of a single

CBOW example, such as [predict ’ate’ from average(’The’, ’animal’,’ ’the’,’ ’mouse’)], the

network is faced with four skip-gram examples [predict ’ate’ from ’The’], [predict ’ate’ from

’cat’], [predict ’ate’ from ’the’], [predict ’ate’ from ’mouse’]. (The same spontaneous window-

reduction happens, but half the time it will be just two samples of the closest words.)

Impressions about CBOW and Skip-gram Skip-gram: fits best with a limited vol-

ume of training data, describing only unusual terms or phrases.

CBOW: many times quicker than skip-gram preparation, marginally higher accuracy

for repeated phrases.

It all depends on the use case and the available data to decide which approach to use.

Best case would be to build both models to benchmark and continue with the one that has

higher accuracy.

Sequence2Sequence (seq2seq)

The Seq2seq model was introduced by Google in 2014 (Sutskever, Vinyals, and Le, 2014).

Seq2seq model is designed to compare a fixed-length input with a fixed-length output, where

the length of input and output can vary (see Figure 4.2). There are so many popular

applications powered by the seq2seq model, for example, Google Translate started using
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Figure 4.2 Seq2Seq Model

such a model in production in late 2016.

The Seq2seq model consists of three parts: encoder, intermediate (encoder) vector, and

decoder. The encoder collects the background of the input sequence in the form of a hidden

state vector and sends it to the decoder that produces the output sequence. As the function

is focused on the list, both the encoder and the decoder use some types of RNNs, LSTMs,

GRUs, etc. The hidden vector can be of any dimension, but in most situations it is used as

a power of 2 and a large number (256, 512, 1024) and will in any way reflect the complexity

of the full sequence as well as the scope (Sutskever, Vinyals, and Le, 2014).

The outputs are being calculated using the hidden state at the current timestamp together

with the corresponding W(S) weight. Softmax activation function is then used to construct a

probability vector that will help to evaluate the final outcome (e.g., word in question-answer

problem).

The strength of the seq2seq model lies in the fact that it can map sequences of different

lengths to one another. As any sequences in different languages, inputs and outputs are not
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identical and their lengths can differ. This opens up a whole new collection of problems

that can now be solved by such an architecture (Dai et al., 2017). Despite the strength of

the seq2seq model, it did not work very well on a mixed-language text as per the case in

DeepTMS which is one of the DeepKAF applications that will be explained in details in

Chapter 6.

Doc2Vec

The idea behind Doc2vec is inspired by Word2vec and was introduced by the same team

(Le & Mikolov) in their publication (Le and Mikolov, 2014a). In other words, Paragraph

Vector (Doc2Vec) is intended to be an extension of Word2Vec such that Word2Vec learns

to project words into a latent d-dimensional space, while Doc2Vec aims to learn how to

project a text into a latent d-dimensional space. In Word2vec, the embeddings model is

built based on that words retain a logical structure, but documents do not have any logical

structures. To solve that problem, another vector (Paragraph ID) needed to be added to

the Word2vec model. That’s the only difference between Word2vec and Doc2Vec. There

are two document embeddings models from Paragraph Vector (more popularly known as

Doc2Vec): 1. Distributed Memory (PV-DM) and 2. Distributed Bag Of Words (DBOW)

4.4.2 fastText

fastText is another popular method to construct word embeddings that was created by

Facebook’s AI Research (Joulin et al., 2016). fastText is considered as an extention to

Word2Vec and Miklov, who introduced Word2Vec, is the main contributor to the fastText

concept as well. Unlike Word2Vec, instead of learning vectors for words directly, fastText

represents each word as an n-gram of characters. So the vector for a word is made of the

sum of this character n-grams. The character n-gram approach helps to capture the meaning

of shorter words and enables the embeddings to recognize suffixes and prefixes. Once the
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word is represented using the character n-grams, the skip-gram model is trained to learn the

embeddings. This model is known to be a model word bag with a sliding window over a

word, since no internal structure of the word is taken into account. As long as the characters

are within this frame, the order of the n-grams does not matter.

fastText is working well with unusual words. And even though a term had not been

used during preparation, it could be broken down into n-grams to get its embeddings.

Word2vec on the other hand fails to have any vector representation of terms that are

not in the standard dictionary. This is a great advantage of fastText over Word2Vec.

4.4.3 Word Embeddings - Conclusion

Word embeddings is an ongoing research field that aims to find better word representations

than the current ones. There are different word embeddings available that can be used

to solve many NLP tasks. Over time, the embeddings have become broad in number and

more complex. There is no one model that can solve all problems, but rather a model that

fits the best to a specific problem with specific characteristics. In the word embeddings

sections, many word embeddings approaches have been introduced with a comparison of

how they work. In Chapters 5 and 6, the word embeddings layer in DeepKAF is going

to be explained along with the models that have been used to benchmark the experimental

results’ accuracy.

4.5 Deep Learning Architectures

Deep learning algorithms and applications are growing fast. The deep neural network archi-

tecture has a proven record of successful implementations in so many domains. The main

advantage is that there is always various models and architectures that can fit any data type.

This section explains the most popular deep neural networks (CNN, RNN, and LSTM) with
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focus on Siamese Networks architecture as it is going to be used within DeepKAF.

4.5.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (ConvNets or CNNs) are a sub-group of deep neural networks

that have proved to be very powerful in fields such as image recognition and classification

(Oord, Dieleman, and Schrauwen, 2013). Additionally, ConvNets have been succesfully

applied in many other AI applications like recommender systems, natural language processing

(Collobert and Weston, 2008), and financial time series (Tsantekidis et al., 2017).

4.5.2 Siamese Network Architecture

Siamese networks usually contain two or more identical sub-networks that share the same

configuration with the same parameters and weights (see Figure 4.3. Siamese Neural Net-

works (SNNs) are known for their ability to find similarities or relationships among distinct

objects. Typically, two identical sub-networks are used to process similar inputs, and an-

other module will take their outputs to conclude with a final output (Bromley et al., 1993a).

We chose SNN as our experimental setup since they provide the following advantages:

1. They are more robust compared to Convolutional Neural Networks (CNNs) and Re-

current Neural Networks (RNNs) in processing complex text.

2. They can provide better text embeddings.

3. By sharing weights across sub-networks, they reduce the number of parameters to train

for, which in turn means less data required and less tendency to over-fit.

During building DeepKAF, several Siamese Networks have been tested, but Siamese

Manhattan LSTM Model outperformed all the tested models.
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Figure 4.3 Siamese Network Sample

4.5.3 Deep Autoencoders

Autoencoders are artificial neural networks capable of learning efficient representations on

data inputs, called codings, in an unsupervised way. Typically, these codings have a sub-

stantially lower dimensionality compared to their input(s) (Géron, 2017) by ’interpreting’

them into a condensed output via latent representation views. Autoencoders were initially

proposed as a method for unsupervised pre-training in (Ballard, 1987). Traditionally, au-

toencoders were used for data dimensionality reduction or feature extraction. Denoising by

following an autoencoder approach was initially introduced by LeCun in (Lecun, 2001) as

an alternative to Hopfield neural networks (Hopfield, 2018).

Autoencoders are a kind of neural network designed for dimensionality reduction; in other

words, representing the same information with fewer numbers. The basic premise is simple

— we take a neural network and train it to put out the same information it is given. By

doing so, we ensure that the activation function of each layer must, by definition, be able to

represent the entirety of the input data (if it is to be successfully recovered later on). If each

layer is the same size as the input, this becomes trivial, and the data can simply be copied

over from layer to layer to the output. But if we start changing the size of the layers, the
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network inherently learns a new way to represent the data. If the size of one of the hidden

layers is smaller than the input data, it has no choice but to find some way to compress the

data.

Figure 4.4 shows a typical autoencoder architecture. However, modern applied autoen-

coder networks can have a substantially more complex layer topology.

Figure 4.4 Autoencoders Architecture

Typically, an autoencoder architecture comprises three main components:

C1: An Encoding Function: A function that converts the network’s input to an

internal representation, ultimately reducing the input to a latent view representation.

C2: A Compressed Feature Vector (Latent View Representation): Latent view

represents the lowest level space in which the inputs are reduced and information is preserved.

C3: A Decoding Function: A function that mirrors the encoding function and reverses

the internal representation to formulate a readable output.

4.5.4 Autoencoders VS Word Embeddings

Both autoencoders and word embedding models have conceptual similarities in terms of

how both techniques do the dense representation of text, and they are both fully connected

feed forward networks. However, they have several differences in terms of their architecture,
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learning method and input data. These differences position each technique to different areas,

as problem solvers, since their application performance can vary significantly. Table 4.1

shows a detailed comparison matrix between Word Embeddings models and Autoencoders.

Criteria Autoencoders Neural Word Embeddings

Architecture A Deep Autoencoder (DAE) is

composed of two, symmetrical

deep-belief networks. Typically,

they comprise four or five shallow

layers representing the encoding,

and a second set of four or five lay-

ers that make up the decoding.

Neural Word Embeddings

(NWEs)are shallow, two-layer

neural networks that are trained

to reconstruct linguistic contexts

of words or phrases. NWEs can

model a large corpus of text as

input and can produce a vector

space of several hundred dimen-

sions. Throughout the process,

each unique word in the corpus

being assigned a corresponding

vector in the space (Mikolov,

K. Chen, and Corrado, 2013)

Learning Type DAEs are unsupervised learning

techniques that use the input

dataset as also the output label.

Their design focuses on input re-

construction

NWEs are an unsupervised learn-

ing technique which uses a cor-

pus of unlabeled text to recon-

struct linguistic contexts of words

or sentences (Mikolov, K. Chen,

and Corrado, 2013)
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Input Data Autoencoder models are ’flexible’.

They can be applied to any kind

of data where learning dense rep-

resentation is useful

NWE models can only be used

on textual data in NLP where

learning the context and the con-

nections between words and sen-

tences is important

Use Cases - Image Search

- Text Search

- Topic Modeling

- Dimensionality Reduction

- Denoising

- Text Similarities

- Text Representation

Table 4.1 Autoencoders VS Word Embeddigs

4.5.5 Skip-thought Vectors

Skip-thought autoencoder vectors is an approach that was introduced by (Kiros et al.,

2015). The authors describe a methodology for unsupervised learning of a both generic and

distributed sentence encoder. That is, an encoder maps words to a sentence vector and a

decoder is used to generate the surrounding sentences. In this setting, an encoder is used

to map, for example, an English sentence into a vector. The decoder then conditions on

this vector to generate a translation for the source English sentence. Sentences that share

semantic and syntactic properties are mapped to similar vector representations, see Figure

6.7 for a typical skip-thought model architecture. Consequently, the authors introduce a

simple and rigid vocabulary expansion method to encode words that were not seen as part

of training, allowing the skip-thought model the ability to process any unknown words.

Skip-thought models are inspired by the skip-gram structure used in Word2Vec (Mikolov,

K. Chen, and Corrado, 2013), however, the authors propose an objective function that
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Figure 4.5 Skip-thought Model Architecture

abstracts this idea to sentence level instead of individual words. (see Figure 6.7).

Encoder. Let wi
1, ..., w

i
N be the words in a sentence si where N is the number of words

in the sentence. At each time step, the encoder produces a hidden state hit which can

be interpreted as their presentation of the sequence wi
1, ..., w

i
t. The hidden state hiN thus

represents the full sentence.

Decoder. The decoder is a neural language model which conditions on the encoder

output hi. The computation is similar to that of the encoder except introducing matrices

Cz, Cr and C that are used to bias the update gate, reset gate and hidden state computation

by the sentence vector. One decoder is used for the next sentence, si+1 while a second decoder

is used for the previous sentence si−1. Separate parameters are used for each decoder, except

for the vocabulary matrix V, which is the weight matrix connecting the decoder’s hidden

state for computing a distribution over-words.
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4.6 Advantages of Combining CBR with Big Data and

Deep Learning - Related Work

As explained in the former sections, deep learning algorithms are effective when dealing with

learning from large amounts of structured or unstructured data. Big data represent a large

spectrum of problems and techniques used for application domains that collect and maintain

large volumes of raw data for domain-specific data analysis. Within the CBR paradigm, deep

learning models can benefit from the available amounts of data, but the integration between

CBR, big data and deep learning faces challenges that propagated from each research field (X.

Chen and Lin, 2014). The age of big data poses novel ways of thinking to address technical

challenges. While deep learning can be applied to learn from large volumes of labeled data,

it can also be attractive for learning from large amounts of unlabeled/unsupervised data

(Yoshua Bengio, 2013; Lecun, 2001; Yoshua Bengio, A. C. Courville, and Pascal Vincent,

2012), making it attractive for extracting meaningful representations and patterns from big

data.

Substantial literature ((X. Chen and Lin, 2014; Yoshua Bengio, 2013; Lecun, 2001; Y.

Bengio, A. Courville, and P. Vincent, 2013; M. Chen, Mao, and Liu, 2014; Labrinidis and

Jagadish, 2012a; Chaudhuri, Dayal, and Narasayya, 2011)) expresses in detail the obstacles

in the development of big data and deep learning applications. The key challenges are listed

as follows (see Table ??):

1. High volumes of data bring great challenges in all applications. Big data often possess

numerous examples (inputs), large varieties of class types (outputs), and very high

dimensionality (attributes).

2. The processing power required to train deep learning models, and the time consumed

to get models ready to be used (e.g., DistBelief (Dean et al., 2012) can learn with very

large models (more than one billion parameters), its training requires 16,000 CPU
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cores, which are not commonly available to most researchers). Furthermore, GPUs

are being utilized to implement a parallel scheme model: each GPU is only used for a

different part of the model optimization with the same input example but also GPUs

are not cheap or available to all researchers.

3. Data quality: Big data is often incomplete, noisy and unlabeled because it comes

from different sources with different formats which make it complicated to capture the

important data. Advanced deep learning methods are required to deal with noisy data

and to be able to tolerate data inconsistencies.

4. Data Representation: Many datasets have certain levels of heterogeneity in type, struc-

ture, semantics, organization, granularity, and accessibility. Traditional Relational

Database Management Systems (RDBMS) cannot handle the huge volume and hetero-

geneity of big data, which leads to the distributed File Systems and NoSQL databases

as alternatives to the classical data storage systems. The choice of data representation

technique varies based on the purpose of the whole solution. NoSQL databases have

different types (graph, column based, key value, document, etc. . . ) based on how we

need to represent and query the data.

5. Data life cycle management: same like any normal data-based solution, we should

define the data retention rate. The difference that in big data applications we are

confronted with a lot of pressing challenges, one of which is that the current storage

system cannot support extensive volumes of data. Therefore, a data importance prin-

ciple related to the analytical value should be developed to decide which data shall be

stored and which data shall be discarded.

6. Emerging challenges for big data learning also arose from high velocity: data are

generated at extremely high speed and need to be processed in a timely manner. One

solution for learning from such high velocity data is online learning approaches. Online
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learning learns one instance at a time and the true label of each instance will soon be

available, which can be used for refining the model (Bottou, 1999) (Blum and Burch,

2000) (Cesa-Bianchi et al., 1996) (Freund and Schapire, 2000) (Littlestone, Warmuth,

and Long, 1995) (Shalev-Shwartz, 2012). This sequential learning strategy particularly

works for big data, as current machines cannot hold the entire dataset in memory.

7. Data distribution is changing over time: Non-stationary data are normally separated

into chunks with data from a small time interval. The assumption is that data close

in time are piece-wise stationary and may be characterized by a significant degree

of correlation and, therefore, follow the same distribution (Chien and Hsieh, 2013)

(Sugiyama and Kawanabe, 2011) (Elwell and Polikar, 2009) (Elwell and Polikar, 2011)

(Alippi and Roveri, 2008) (Alippi and Roveri, 2009) (Rutkowski, 2004) (Oliveira, 2007).

CBR and Deep Learning

Most of the CBR with deep learning literature have been produced during 2017 and after.

In this section, I give the most recent research papers that used deep learning architectures

within the CBR paradigm.
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N/A In (O. Li et al., 2017), authors have combined the strength of deep learning

and the interpretability of CBR to make an interpretable deep neural network

model. The prototypes can provide useful insight into the inner workings

of the network, the relationship between classes, and the important aspects

of the latent space, as demonstrated here. Although their model does not

provide a full solution to problems with accountability and transparency of

black box decisions, it does allow to partially trace the path of classification

for a new observation.

SelfBACK In (Sani et al., 2017), authors have presented a novel nearest neighbor sam-

pling approach for personalized HAR that selects examples from a subject-

independent training set that are most similar to a small number of user

provided examples. The model is personalized to the user, and accuracy

is improved. Evaluation showed that their approach outperforms a general

model by up to 5% of F1 score. Another advantage of their approach is that

it avoids the practical limitation of subject-dependent training by reducing

the data collection burden on the user.

4.6.1 Potential Modern CBR Data in-Motion Apps

1. Real-Time Cyber-security: protects systems with superior threat detection.

2. Smart Manufacturing: dramatically improves yields by managing more variables in

greater detail.

3. Support Ticketing Systems: solve and route voiced or texted customer tickets inside

the organization.

4. Future Farming: optimizing soil, seeds and equipment to measured conditions on each

square foot.
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5. Automatic Recommendation Engines: match products to preferences in milliseconds.

4.7 Summary

The major philosophy behind the DeepKAF system was to develop modern CBR appli-

cations that can compete with other AI approaches in the industrial domain. This chapter

emphasized the intersection area between CBR, big data, and deep learning. Based on

the work experience, CBR has a strong edge over a lot of other AI approaches, however,

the problem was to develop CBR applications that are scalable and that can handle large

amounts of data. Chapter 4 defined what big data is and when to call data "Big Data"

along with various deep learning architectures being used in DeepKAF. Chapter 4 has

justified why DeepKAF is combining CBR, big data, and deep learning. In this chapter, I

have also covered the literature that relates CBR with big data or CBR with deep learning

and summarized the contribution for each developed approach. Chapter 4 is essential in

understanding chapters 5, 6, and 7, because it justifies many decisions that have been

made during the DeepKAF research and development.
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Chapter Five

DeepKAF: Deep Knowledge Acquisition

Framework

Finding an appropriate case representation is important, and finding an appropriate orga-

nization of the case base. If, in addition, the available knowledge sources consist (mainly)

of textual data, knowledge representation is even more challenging (Aamodt and E. Plaza,

1994). To do this, the choice of an ideal representation is guided by the domain character-

istics and the complexity of its cases. Recently, the increased availability of deep learning

techniques and other forms of vectorized representations has provided a new source for case

insights. Richer text features can be extracted and used for each case if required. Deep-

KAF is built based on continuous research in the area of deep learning and CBR.DeepKAF

generates richer case representations by automatically acquiring domain knowledge from un-

structured sentences using different deep neural networks architecture.

5.1 About this Chapter

This chapter presents the DeepKAF architecture that is based on the conclusions from

the previous chapter. A more detailed state of the art is provided, closely related to what

DeepKAF is achieving, to show the main difference between DeepKAF and the other
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architectures and frameworks presented in the literature. This chapter describes the generic

architecture of DeepKAF. The main challenge when it comes to the DeepKAF implemen-

tation is what models to be used, and for what purposes, and how to incorporate all these

things within the CBR system without hiding the explainability of the results. Above all

the deep learning and big data frameworks used is their orchestration, which is essential for

a successful use of DeepKAF. It will be described how DeepKAF is obtaining its repre-

sentation vectors from stemmed words, improving these vectors iteratively, and suggesting

high quality outputs being relevant for domain experts based on either explicit queries or

their experiences.

5.2 Related Work and State of the Art

The literature covers several methods that can help to construct similarity measures for tex-

tual CBR, particularly when textual data include abbreviations or domain specific language.

The related work in this section has been divided into two main parts: 1. Building similarity

measures 2. Using Siamese neural networks (SNNs) to find similarities.

5.2.1 Building Similarity Measures Challenges

Finding relations among different sentences is a key factor in building text similarity mea-

sures. This process can encounter different challenges varying from: the complexity of de-

coding the domain knowledge, the domain-specific abbreviations, incorrect sentences and

multi-lingual text to the unavailability of the domain experts (Stram, Reuss, and K. Al-

thoff, 2017; Reuss, Witzke, and K. Althoff, 2017; Reuss, Stram, et al., 2016). The authors

tried several approaches to build similarity measures in a domain where there are too many

abbreviations and textual descriptions of issues, which were written by technicians and engi-

neers. Finding relations among cases and understanding the textual data provided using the

traditional NLP frameworks can be a tedious process since NLP frameworks have limited
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functionality in parsing the text accurately due to incorrect sentences or abbreviations.

5.2.2 Cases Similarity using Siamese Neural Networks

The Literature shows a successful approach in using trained Siamese neural networks to build

CBR similarity measures. Martin et al.(2017) have used them to identify appropriate simi-

larity metrics for the selfBACK dataset (Martin et al., 2017). In this work, convolutional

Siamese network implementations were used to build similarities between different cases in

a dataset that contained time series data. Results were base-lined against a typical convolu-

tional neural network, and the Siamese architecture outperformed the CNN implementation.

The difference between the implementation mentioned in (Martin et al., 2017) and the work

presented in this paper is in how Siamese networks are being used and trained. The self-

BACK dataset does contain numerical time series data and not textual data. Comparing to

DeepKAF, in (Martin et al., 2017) the authors have trained the Siamese architecture over

the entire case and not on specific attributes. For DeepKAF, an explicit model for every

attribute has been trained to generate the local similarities and then combine them into a

global similarity.

The work of automating knowledge extraction using neural networks can be compared

to the work presented in (Sizov, Öztürk, and Štyrák, 2014). In this work, the authors

represented the knowledge extracted from text in a graph-based approach which dubbed as

Text Reasoning Graph (TRG). Relevant work has been seen in a graph-based representation

with expressive power to represent the chain of reasoning underlying the analysis, as well

as facilitate the adaptation of a past analysis to a new problem. The authors have used

manually constructed lexico-syntactic patterns developed by Khoo (S. G. Khoo, 1996) to

extract the relations between text elements. In DeepKAF, a Siamese neural network has

been used to automatically detect these relations between text elements instead of doing it

manually. Chapter 6 shows an example of how I trained and used the Siamese network to
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build similarities along with the evaluation results.

One major advantage of a DeepKAF compared to other approaches, is that it uses

deep neural networks to build relationships and extract features from text, which contains

domain-specific knowledge, or mixed languages and still use CBR to provide justification

for the reached conclusions. Although the literature shows some early successes in the field,

there is still further potential to decide accurately whether to use Siamese networks either

on the attribute level, or on an entire case level basis, or on both.

5.3 DeepKAF Processes

DeepKAF is defining the procedure of implementing a CBR system and injecting deep

learning models while still being able to provide an adequate level of explainability (see

Figure 5.1).

Automatic knowledge extraction from natural language data can be a challenge since

language expressions within business context are usually unstructured, permuted and con-

voluted. Text can be extracted from various, unrelated sources and can be complex enough

to make traditional natural language processing techniques inadequate while processing it.

This can be mainly due to grammatically incorrect text, the presence of different languages,

or due to implied concepts that lead to domain ambiguity. Examples of such lexical content

ambiguity can be differences in intended meaning for the same word, as a result of word

synonymity (different terms have similar meaning, or context can vary). Natural text can

also contain different languages, which increases the scarcity of satisfactory results while

processing it. Unsupervised text processing techniques are increasingly used nowadays to

provide users with the right information at the right time. They do this by processing and

profiling large quantities of textual information over time and use it to filter out items for

presentation based on user queries and preferences that are collected at almost real time.

In a customer support setting, unsupervised text pre-processing and processing endeavor to
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learn from the past cases in order to identify solutions to present problems that customers

wish to solve in an efficient and usually urgent manner. Getting this right can mean im-

proved problem-solving ability for a service provider and increased satisfaction levels for a

service user and customer. More satisfied users improve the likelihood of choosing the same

provider again, increase the brand loyalty, and result in a win-win case for customer and

service provider alike.

Figure 5.1 depicts the CBR processes in DeepKAF. Each process has a number with a

letter as a prefix. This prefix represents the respective stage: K denotes knowledge acqui-

sition stage, S denotes building similarities stage, and R denotes the retrieval stage. Each

process is going to be described in details and the task number will be used for reference

purposes. The DeepKAF architecture is flexible enough that we can use the processes

described below processes to work on building global similarities, local similarities or both.

In other words, the deep learning models can be built on an attribute level or a case level

based on the domain and task in hand. The recommended approach is to use it on the

attribute level. Train models on the attribute level and having a specific models pipeline

ensures higher accuracy but a more complex building architecture.
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Figure 5.1 DeepKAF Processes
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K1: Objective: Build the word embeddings model from all available textual data. This

word embeddings model will be used with all the other deep learning models that

have been used in DeepKAF. The word embeddings model is the first step in

acquiring the domain knowledge.

Input: The input layer for the word embeddings neural network takes a larger

corpus of text to build a vector space that has multiple dimensions. Every unique

word in the text corpus is assigned a corresponding vector in the space.

Output: A vector space that contains the vector per word. The context of each

word vector influences the distance between the vectors. If some words are coming

together very often in sentences, they will have closer vectors.

K2: Objective: Do the text pre-processing tasks for the input text. Text can not be

processed directly, or it will give bad accuracy. During the pre-processing process,

the important parts from the text has to be highlighted and ignore the rest. The

aim for DeepKAF is to work with real-time applications, and normally the input

text will have some noise that needs to be eliminated before processing the text

(the experiments in Chapter 6 show this process in details).

Input: The input for this process is the trained word embeddings we built in K1

and a training dataset that shows the important words or text that the model should

look for and ignore the rest. Based on the experiments, a LSTM model showed the

best results in being able to identify the most important parts from the text.

Output: A trained model that is able to find the important parts in the text and

feed it to the next process.
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K3: Objective: Generate a low-dimensional representation to the text while keeping

the most essential properties. The main objective of this process is to find the

optimal representation for the input text without knowing the exact meaning of

it. This is important in complicated domains, where the knowledge engineer has

to understand the domain jargon in order to decide how to represent the text.

However, with process K3, the aim is to build a model that is able to find this

representation automatically in an unsupervised learning approach. Based on our

experiments, auto-encoder neural networks showed exceptional results in finding the

best representation of the text.

Input: The important parts from the text based on the trained model in K2.

Output: A lower-dimensional text based on the input.

S1: Objective: S1 is the first process in building similarities measures. The objective

of this process is to start preparing the training dataset that is going to be used to

train the Siamese network.

Input: The input for this process will be the low-dimensional text coming from

K3. The training dataset should contain two texts from the historical cases and a

degree of similarity. The target variable for this Siamese network is to be able to

predict how similar two texts are.

Output: A dataset with three columns, two texts and one for degree of similarity.

S2: Objective: The objective of this process is to train the Siamese network and make

it ready to predict text similarities. Throughout my research, I have tried several

techniques to build the similarity measures, but the Siamese network model sur-

passed all the other techniques.

Input: The training dataset that was prepared in S1 along with the word embed-

dings model that was built in K1.

Output: A trained Siamese network model that is able to identify the domain text

and predict the similarity degree between two texts.
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S3: Objective: The objective of this task is to find the optimal or near optimal hyper-

parameters for the Siamese network that would allow the model to achieve good

generalization/out-of-sample performance. There are several techniques to find the

optimal hyper-parameters, which can be applied based on the type of data and

data attributes (Claesen and De Moor, 2015). In Chapter 6, I provide the hyper-

parameters I used for each implemented deep neural network model.

Input: The model accuracy.

Output: Optimized hyper-parameters.

S4: Objective: Store the trained models, the autoecnoder, LSTM, word embeddings

and Siamese network in a usable format like PMML (Predictive Model Markup

Language). These models will be used later during the retrieval process.

Input: The trained models.

Output: The trained models will be used during the retrieval process to do the

text pre-processing, dimensionality reduction, and then similarity prediction.

R1: Objective: In the retrieval phase, the trained models are used that have been

trained during the knowledge acquisition and building similarities. The objective of

this process is to receive the queries and do the pre-processing.

Input: The new query.

Output: The textual data in the new text after performing the pre-processing.

R2: Objective: The objective of this process is to find a low-dimensional representation

for the incoming query before pushing it to R3

Input: The new case after pre-processing.

Output: A low-dimensional representation of the query.

R3: Objective: The objective of this process is to use the trained Siamese network

model to retrieve the most similar cases.

Input: The new case after pre-processing and dimensionality reduction.
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R3 Output: A list of retrieved cases that have the highest similarity degrees. We can

decide to retrieve the top ten similar cases or any other number based on the needs.

R4: Objective: The objective of this process is to sort out the retrieved results based

on the similarity degree that was calculated by the Siamese network.

Input: The retrieved cases with similarity degrees.

Output: A sorted cases list.

R5: Objective: The objective of this process is to show the retrieved cases for the end

user and get feedback. Based on the feedback, a new case is going to be added to

the case base

Input: The sorted retrieved cases.

Output: A new case to be added to the case base

M1: Objective: The objective of this process is to keep the case-based reasoning system

efficient and accurate. Therefore, case base maintenance and models maintenance

should be carried away on a regular basis based on how many new cases are being

added to the case base. Models have to be re-trained based on the techniques

described in Chapter 4 to ensure high accuracy.

Input: The historical case base

Output: Retrained models

5.4 DeepKAF Technical Architecture

The DeepKAF framework has been designed and implemented to leverage case-based rea-

soning as an explainable AI approach by using various deep learning models to overcome and

mitigate the limitations of CBR implementations. According to their survey about what’s

hot in the CBR domain (A. Goel and Belen Diaz-Agudo, 2017), case acquisition from raw

data, including text and diagrams is on the top of the list along with implementing CBR

approaches that can deal with high velocity / veracity / data volumes. This section ex-
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plains the technical architecture to build a DeepKAF-based system. As described earlier,

DeepKAF involves using approaches from three domains, CBR, big data, and deep learn-

ing. Therefore, Figure 5.2) depicts the tools and frameworks I have used to build several

DeepKAF-based systems. These systems are described in details in Chapter 6.

Within specific industrial domains where tacit knowledge is present, deep learning ap-

proaches alone cannot cover and satisfy the expert needs completely. DeepKAF is showing

how CBR can be extended in dealing with up-to-date industrial application challenges, like

decoding large amounts of unstructured text, multi-language content, and mixed data types,

for example numeric, categorical, etc..

Figure 5.2 DeepKAF Technical Architecture

DeepKAF is mainly improving two key elements of CBR components, namely similarity

measurement and retrieval.
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5.4.1 Similarity Measures Component

Within any CBR system, building similarity measures is considered one of the most tedious

and complicated tasks((Stram, Reuss, and K. Althoff, 2017; Reuss, Witzke, and K. Althoff,

2017; Reuss, Stram, et al., 2016)). Similarity measures are highly domain-dependent and

used to describe how cases are related to each other. Therefore, an intensive involvement

from the domain expert is required to be able to decode the domain knowledge and being

able to describe how cases and attributes can relate to one another. In DeepKAF, the main

goal is to semi-automate the building of similarity measures in CBR systems using textual

data sources.

The similarity assessment component in DeepKAF is divided into two stages: 1. Build-

ing and training the deep learning models stage; 2. Application stage.

In the building and training stage, several models are used to decode the domain knowl-

edge in a combination of unsupervised (word embeddings), semi-supervised (autoencoders)

and supervised (Siamese network) training approaches.

As showed earlier in Figure 5.1, the process of building similarity measures within Deep-

KAF consists of the below steps:

Step 1: Use denoising and dimensionality reduction autoencoders on the input data.

Step 2: Build word embeddings for the text.

Step 3: Split the dataset into training/test data.

Step 4: Train the Siamese neural networks.

Step 5: Check the accuracy with the test data.

Step 6: If the accuracy is not high enough, do hyper-parameters tuning, check the data

quality (if possible), and re-run the entire process.

In the application stage, the trained models which were built in stage 1 are being used
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to measure similarities between two cases in the retrieval process.

In the next section, the retrieval component is described in detail.

5.4.2 Retrieval Component

In the retrieval component, the models that have been built and trained are going to be

used in order to clean the input text first and then retrieve the most similar cases via the

trained Siamese network. The Siamese network gives a range between 0 (no similarity) and

1 (identical) to how similar the cases are. Lastly, the retrieved results will be sorted based

on the global and local similarity measures.

Figure 5.1 showed the retrieval process within the CBR paradigm combined with the

trained deep learning models. In CBR, the typical retrieval strategy uses similarity knowl-

edge and is therefore called similarity-based retrieval (SBR) (Kang, Krishnaswamy, and

Zaslavsky, 2011). In DeepKAF, the traditional similarity matrix is replaced by the trained

models that can give degrees of similarities between two distinctive textual cases. The notion

of a metric or distance in similarity measures, d(c1, c2), between cases c1 and c2 has been

used in many contexts during a CBR system implementation. There are many techniques

to calculate this distance between two cases, and the outcomes is a similarity matrix that

shows how each attribute relates to each other and defines the relation between the cases

(Finnie and Sun, 2002). Normally, building the similarity measures matrix is tedious and

involves so much work, therefore, DeepKAF uses the trained siamese neural network to give

the similarity measures on the attribute level instead of building the traditional similarity

matrix.

The retrieval process consists of the following steps:

Step 1: Use denoising and dimensionality reduction autoencoders on the input data (exactly

as in the building similarity measures phase).
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Step 2: Use the trained Siamese network to retrieve the most similar cases.

Step 3: Calculate the local similarity (attribute-based), and the global similarity (case-

based) based on the similarity degrees that are given by the siamese network.

Step 4: Rank the retrieved cases according to the domain preferences.

Step 5: Get the end user feedback on the retrieved results.

Step 6: Retrain the models according to the methodologies described in "Section 5.4.3"

Step 7: Store the new case in the case base along with its associated potential solutions.

5.4.3 Feedback and Models Retraining

Means to provide feedback and "back-input" are essential processes for any industrial CBR

system. Within a traditional CBR cycle, constant user feedback is used for this purpose.

Typically, a new case and its solution are added to the case base as part of the "lazy" learning

process that CBR systems use to improve. For DeepKAF the feedback process leads to

ongoing deep learning model retraining that extends the used vector space. This is being

used respectively to measure similarities more accurately and increase the coverage of word

embeddings model by increasing its vocabulary.

In this section, different re-training approaches that can be used within DeepKAF will

be described.

Word Embedding Model Retraining

DeepKAF uses a word embedding constructed during its training phase, which is provided

from the available case content, vocabulary, and metadata. Any new case provides acts as

feedback input, having as a result the retraining of the existing word embeddings model on

new terms, available words and sentences. In other words, continuous training of the word

embeddings model with every new case that is added to the case-base is essential to maintain
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high accuracy in the retrieval process. However, retraining the word embeddings model with

every new case is a tedious and time-consuming process. Therefore, in my opinion, the best

approach is usually to expand the initial word corpus with as much domain data as possible,

so that the word embeddings model has "enough" examples of every word important to that

domain. Several word embeddings models have been used throughout DeepKAF (Amin

et al., 2018a), with no specific model prevailing and thus recommended over another one.

An observation from the authors is that embeddings are affected from the nature of the text.

For example, if the text is grammatically correct, has abbreviations, or does not have enough

text to sufficiently train the model enough. The training process of any word embeddings

model should be based on high coverage of available words and sentences and hence having

a strong embeddings model with all necessary links between words and sentences. There are

two main retraining approaches on this, namely incremental learning and transfer learning.

Incremental training techniques differ based on the model to be retrained. DeepKAF

has tested several word embedding models among which word2vec (Mikolov, K. Chen, and

Corrado, 2013) and its descendants (e.g., sentence2vec, sentence2sentence etc...) seemed

most applicable. Word2vec models do not offer an option for direct, incremental training.

They have to be re-implemented extensively and heavily modified from source code to be

able to build a model that can be retrained.

Transfer learning is the improvement of learning in a new task through the transfer of

knowledge from a related task that has already been learned (Verwimp and Bellegarda,

2019). In DeepKAF, transfer learning has been used in retraining a word2vec model with

new words derived from the new cases. Word embeddings have been a key component in the

success of the entire approach because they are used by a full range of the neural network

topologies to measure similarities like LSTMs and MaLSTM, which will be described in the

following sections. DeepKAF delegates the training to a new model by propagating back to

word vectors (word vector inputs can be fixed, in which case the issue below does not apply).

If the LSTM training corpus is sufficiently large such as that the vocabulary in the training
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phase retrains all the word2vec vectors, this is regarded as a successful retraining phase. If

the training corpus does not retrain all vectors, and we get a sentence in the testing phase

that has a word that was not seen before, there is a risk of lowering the model accuracy,

since untrained vectors will be mixed along with the ones that were trained. This specific

case requires extra attention. In summary, if word vectors are chosen for transfer learning,

and the word vectors are retrained in the new space, the framework needs to ensure the

training moves all the words in the original vector space - that is the new corpus should have

all the words in the original word2vec vector output. To summarize the retraining process,

retraining is crucial in DeepKAF because there are several neural networks depending on

each other, and the common model is the word embeddings model that being used in all the

neural networks. Therefore, retraining of one word embeddings model without ensuring that

other models are also trained on the same word corpus and having the same vector space

can negatively affect the entire DeepKAF similarity measures component.

Siamese Networks Retraining

Unlike other neural networks that learn to predict over different classes, Siamese neural

networks can learn how similar or dissimilar two objects are. Hence, with every new case,

the SNN model needs to be retrained on the whole dataset, which is an exhaustive task

in terms of time and processing power. Based on several experiments to establish the most

appropriate similarity degree, it was observed that the top ten retrieved results (seeChapter

6 on DeepKAF Evaluation) can be used in data augmentation techniques to reproduce a

small dataset that consists of similar objects and use transfer learning for the retraining

process.
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5.5 How DeepKAF is Generic and Explainable?

The research onDeepKAF provides arguments that the complications of building similarity

measures, decoding unstructured domain knowledge, and the tricky adaptation methods

are road-blockers for CBR to penetrate the industrial market on larger scale. Henceforth,

DeepKAF is providing an approach that by using it, CBR systems are able to cope with

whatever any AI system is confronted with. The essential objective of developingDeepKAF

is to build an AI solution that is generic and explainable.

This section illustrates how the DeepKAF approach is using generic DL models that

can be re-used and applied with other use-cases and still being able to provide explanations

of its results.

5.5.1 Explainability

Explanation is an important sub-field of intelligent systems. An approximate definition of

explanation in systems is the collection of logical arguments that could convince a user to

adopt proposed assumptions, recommendations and even decisions up to a certain extent. In

artificial intelligence, and especially in the area of case-based reasoning, systems are able to

extract explanation knowledge from the available past information. This can be presented

afterwards to their human stakeholders in order to provide reasoning and justification for

any system recommendations and/or decisions. The explanation provision increases the

confidence in an artificial intelligent system and has as a target the development of trust

between itself and its users. Everybody’s personal experience shows that building trust

among humans is a difficult task. Therefore, if this task is applied to an artificial environment,

it can be even more difficult.

In DeepKAF the deep learning models are being used in a way that makes the retrieved

cases traceable. The black-box ML techniques are being used in classification, clustering, or

prediction problems, and it is not easy to provide reasons why a specific value was predicted
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or chosen (Weerts, Ipenburg, and Pechenizkiy, 2019). On the other hand, the problem to

be solved in the CBR retrieval phase is a search problem where there are already historical

cases stored, and the most similar cases should be retrieved. That means, whenever cases

are retrieved, a similarity degree will be provided of how similar the retrieved cases are to the

new case. The Siamese network that is being used in the retrieval layer within DeepKAF is

trained on finding similar cases from the historical case base and provides a local similarity

degree per attribute, and in the end it is the human decision to decide which is the best

solution to be applied.

This section will give a detailed view on how explainability works within DeepKAF and

what DeepKAF is adding to this point, however, in Chapter 6, there is an experiment

on a ticket management system that is receiving new tickets by emails and the CBR system

extracts the important parts from the text and finds the most similar cases from the case

base.

Figure 5.3 depicts how a ticket management system can be implemented with a CBR

based on DeepKAF, and a machine-learning only approach.

As an AI Engineer, to build such a system, there are many possible approaches and

methodologies to apply. Machine and deep learning approaches are prominent and can

successfully be applied. A CBR approach can shine in such use cases as well because of the

ability to provide explainability for each solution, which is essential in some domains. To

give the same level of explainability for the machine learning models, different approaches

have to be used, and more complexity will be added to the system overall.

In the CBR only approach (without DeepKAF), we will face problems in extracting

important attributes from the input text that will be used in the retrieval phase. Traditional

CBR will go through the traditional similarity measures building process that has been

described before. Thus, building a CBR system would not be an easy task.

In the machine learning only approach, the system might provide good results eventually,

but it is not able to provide any level of explainability to the domain experts. The system
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Figure 5.3 A comparison between CBR-DeepKAF and Machine Learning Ap-
proaches
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will be predicting the solution instead of finding it from the historical cases. The Siamese

network would play no role in this approach because there is no comparison process to be

included. Machine learning approaches exploit the historical data in the training phase and

then ignores them, while CBR approaches exploits every single case stored in the case base.

In the CBR based on DeepKAF approach, the trained neural networks extract the

important attributes from the incoming email and the Siamese network uses these attributes

to retrieve the most similar cases from the case base, and then calculate the similarity degrees

as described earlier in the architecture. The main difference here is that in this approach, the

CBR system is finding the solution from the historical data and providing a solution based

on the findings. If a domain expert wants to validate the retrieved results, a list of relevant

cases is provided to prove how the current solution is derived by former solutions stored in

the case base. DeepKAF as an approach can use Siamese networks to be trained on the

attribute level and this supports heterogeneous cases where cases can consist of an attribute

that is an image and another attribute is a text. DeepKAF uses different deep learning

models, which definitely hides some explainability. However, DeepKAF uses these models

not for the task but for very specific sub-tasks like computing similarity for one attribute.

As a consequence, DeepKAF’s cases maintain a certain level of transparency and, therefore,

the retrieved cases are still providing a sufficient level of explainability and justification to

the domain experts.

5.5.2 Genericity

Although the provided models within DeepKAF are not generic themselves, however, the

generic "part" is that anyone can follow the architecture and tailor each DL model to given

domain-specific needs. For instance, autoencoders as an artificial neural network architecture

are generic for data dimensionality reduction and denoising, but the skip-thought autoen-

coder that has been used in the implementations is popular in the NLP domain. The Siamese
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networks are very efficient in finding similarity between two objects, but the MaLSTM that

has been used is mainly applied for textual data. Word embeddings are more generic because

they can be re-used easily if you are dealing with standard textual data from any languages,

and there are many pre-trained word embeddings models (Yamada et al., 2020).

To conclude, having a generic approach is never an easy task. If we look at each domain

from the outside, we will see each application is very domain-dependent and each domain has

its own unique problems and challenges, which is definitely correct to some extent. However,

throughout the past years with combined business, technical, and academic experiences,

there were specific problems and challenges that always come with specific data types. These

problems are not technical challenges. Those problems are related to how to understand this

domain data and how to decode such an amount of domain knowledge in a manual way?

How to handle data that is moving and being updated fast? How to build a solution that

is able to find similarities without a real understanding of the data content; that data could

be an image, a text, or a sound?.

DeepKAF is grounded based on the leading questions that brought all that NN models

to be used together within the CBR paradigm. The main competitive advantage of CBR is,

besides its cognitive plausibility, its explainability capability that comes naturally with any

CBR application (see Chapter 3). But on the other hand, there are so many challenges

that face any CBR system implementation in terms of building similarity measures, and

that’s what DeepKAF aimed to improve.

5.6 DeepKAF Extended View

This section presents an extended view differentiating DeepKAF from other techniques in

Textual-CBR and explains the competitive advantages of using deep learning models within

the CBR paradigm. Section 1 compares DeepKAF as an approach with the traditional

Textual CBR approaches. Section 2 shows how DeepKAF is able to handle complex NLP
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tasks like the ones mentioned in the former chapters. Sections 3 and 4 explain how Siamese

neural networks and autoencoders architectures have added huge value toDeepKAF. Given

that the genericity of DeepKAF is one of the main advantages, Section 7 is highlighting

how DeepKAF is generic and can be used with various CBR use-cases.

5.6.1 DeepKAF VS Traditional Textual CBR

Text is a unique way of expressing knowledge. Text can be denoted as a collection of

words in a well-known language, which transmits meaning (i.e. ideas) when interpreted

in agglomeration (Richter and Weber, 2013). Those collections are not organized in easy

to interpret performances, for example, attribute-value pairs. Textual CBR is used when

sources of knowledge for CBR knowledge containers are in textual format.

In traditional TCBR systems, the textual formulations can be used for queries, problems,

and solutions.The lack of explicit formal structures means that they cannot be automatically

understood by the computer system. In (Orecchioni et al., 2007), the authors were building a

CBR system to analyze air investigation incident reports. Different bag of words and Word-

net techniques were applied to decode the domain knowledge. The authors mentioned the

challenges they faced with extracting the domain knowledge and used ML techniques to sup-

port understanding the incidents reports. It was challenging to obtain similar reports because

investigators may typically want to obtain reports based on multiple factors such as weather

conditions, aircraft type, geographic location, or cause of the incident. The number of in-

cidents and sentences makes this a daunting task, to be extracted manually from sentences

(Orecchioni et al., 2007). In (Brüninghaus and Ashley, 2001), the main motivation behind

the research was that most TCBR approaches are limited to the degree that they are based

on efficient, but weak information retrieval (IR) methods. These do not allow for reasoning

about the similarities between cases, which is mandatory for many CBR tasks beyond text

retrieval, including adaptation or argumentation. The authors introduced an IR approach
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that is called AutoSlog (Riloff, 2000). They worked on manually building the classification

tree to extract and build the features that they were going to use. Given the number of

textual data that CBR systems have to handle, building such a tree in a manual process

would be an excessive process. The results presented in the aforementioned research papers

were promising and showed a significant improvement to the domain knowledge decoding.

However, the two researches, and many others in the area of TCBR, were not confronted with

mixed-languages, domain-specific abbreviation, or grammatically incorrect text. However,

these three common characteristics are essential for nearly any potential industrial CBR

system. DeepKAF has been built to deal specifically with those kinds of problems with

text processing. Another relevant work has been seen in text reasoning graph, a graph-based

representation with expressive power to represent the chain of reasoning underlying the anal-

ysis as well as facilitate the adaptation of a past analysis to a new problem. The authors

have used manually constructed lexico-syntactic patterns developed by Khoo (S. G. Khoo,

1996) to extract the relations between texts. Khoo and the co-authors built manual lexico-

syntactic patterns in order to be able to generate similarities. The major disadvantage of all

the aforementioned techniques is that they involve so much manual work that would be very

costly to provide in case there is more complicated textual data or mixed-language text. By

contrast, DeepKAF and the unsupervised learning approach contribute to overcoming the

main drawbacks of what is presented in the previous researches. In (Öztürk, Prasath, and

Moen, 2010), the authors presented a brilliant approach based on Holographic Reduced Rep-

resentations(HRR), which have been extensively used in image and signal processing (Plate,

1995). HRR uses a vector operation called circular convolution, which is a multiplicative

operation that allows two or more different types of information about a feature. The dif-

ference between HRR and other approaches presented in the literature is that it is forming

the syntactic relations between words and works in an unsupervised learning approach. Syn-

tactic relations are important, and works perfectly fine when the text is from one language

and grammatically correct. Word embeddings, in contrast, can capture relations between
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words based on their sequence and that specific words appear after other words (semantic

relations), regardless of the language or grammar. Word embedding is actually seen as one

of the popular applications of unsupervised learning. They do not need annotated corpora.

Embedding takes advantage of a lower-dimensional space while retaining semantic relations.

Using word embeddings was the key to build relationships between words and sentences in

text without the need to understand the text content. With other deep learning models,

the domain knowledge decoding process was semi-automated with a high accuracy in the

retrieval results and minimum effort from domain experts or knowledge engineers. Using

word embeddings combined with autoencoders helped in building more precise and correct

relationships between only the important words and sentences, which affected the end results

of DeepKAF.

5.6.2 DeepKAF and Complex NLP Tasks

NLP copes with the construction of computational algorithms for the automatic analysis

and representation of human language. The history of natural language processing (NLP)

generally started in the 1950s, although work can be found from earlier periods. The his-

tory of natural language processing (NLP) generally began in the 1950s, though work from

earlier periods can be found. In 1950 Alan Turing published an article entitled "Computing

Machinery and Intelligence" (TURING, 1950) proposing what is now called the Turing test

as an intelligence criterion. In this section, the NLP methods that DeepKAF is using are

going to be explained and why those methods in specific were chosen and how they are giving

DeepKAF an edge in the area of Textual CBR.

For a long time, most approaches used to study NLP problems applied shallow ma-

chine learning models and time-consuming, hand-crafted features. This leads to problems

such as the curse of dimensionality because linguistic knowledge with sparse representations

(high-dimensional characteristics) was present. Neural-based models, however, have achieved
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superior results on various language-related tasks compared to traditional machine learning

models such as SVM or logistic regression, with the recent popularity and success of word

embeddings (low-dimensional, distributed representations).

Why is NLP difficult? The processing of natural language is considered a difficult prob-

lem in computer science. It is the existence of the human tongue that complicates NLP. It

is not easy for computers to understand the rules which govern the passage of information

using natural languages. Some of those rules may be high-level and abstract; for instance,

when someone uses a personal remark to impart knowledge. Some of these laws, on the other

hand, might be low-level; for example, using the character "s" to denote the plural of ob-

jects. Although humans can quickly learn a language, what makes NLP difficult for machines

to implement is the complexity and imprecise characteristics of the natural languages. The

primary methods used to complete natural language processing tasks are syntactic analysis

and semantic analysis.

Syntax refers to word structure in a phrase in such a manner that it makes grammatical

sense.

Here are some syntax techniques that can be used:

1. Lemmatization: For easy analysis, it involves reducing the different inflected forms of

a word into one form.

2. Morphological segmentation: It includes the division of words into single units, called

morphemes.

3. Word segmentation: It includes the division of a broad piece of continuous text into

separate units.

4. Part-of-speech tagging: It includes defining the spoken element for every word, and

different meanings for the same word based on its position in the sentence.
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5. Parsing: For the given sentence, it requires performing grammatical analysis.

6. Stemming: It involves cutting the inflected words to their root form.

Semantics refers to the interpretation of a text. Semantic analysis is one of natural

language processing’s complicated aspects that has not yet been entirely overcome. Here are

some techniques in semantic analysis:

1. Named entity recognition (NER): It includes deciding which sections of a text can be

categorized and divided into preset classes. Examples of such groups include individual

names and place names.

2. Word sense disambiguation: It involves giving a context-based word meaning.

3. Natural language generation: This includes using databases to extract and translate

abstract thoughts into human language.

Both text semantics and syntax are important in order to build accurate similarity mea-

sures. Hence, it is essential to use the right techniques in any framework that intends to

deal with such NLP difficulties. The strong points about DeepKAF are that DeepKAF

is designed with the aforementioned NLP challenges in mind, combining neural networks

for text processing as described before. With the complexity of NLP problems and the ap-

proaches that are available, the pre-processing layer in DeepKAF is using the combination

of autoencoders and word embeddings (Amin et al., 2019) models to be able to capture the

most important parts from the text and build word embeddings with the optimized text

representation.

In the process of finding the right approach that is able to find a representation for text

without the need of understanding the content, there were several frameworks like Twit-

terNLP (Owoputi et al., 2013) and StanfordNLP (Manning et al., 2014). Both frame-

works have been applied successfully with all NLP problems. Both frameworks provided a
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tokenizer, a part-of-speech tagger, hierarchical word clusters, and a dependency parser for

tweets, along with annotated corpora and web-based annotation tools. However, they were

not able to give good results with grammatically incorrect and mixed-language text as ex-

plained in Amin et al., 2018a. Therefore, finding another approach that is able to overcome

these issues that traditional NLP frameworks have was necessary. The word embeddings

approach was chosen based on the state-of-the-art discussions in the area of neural networks

and NLP problems (Goldberg, 2017). Goldberg in his survey (Goldberg, 2017) discussed

several neural network approaches that are able to solve different NLP problems. Word em-

beddings models in general outperformed the other approaches in representing relationships

between different words in the text and later between sentences (e.g., sentence2vec) and

documents (e.g., doc2vec) as described in (Le and Mikolov, 2014b).

Word embedding is a class of techniques in which individual words are interpreted as

real-valued vectors in a predefined vector space. When input to a neural network includes

semantic categorical features (e.g., features that take one of k’s distinct terms, such as

words from a closed vocabulary), it is normal to equate each conceivable feature meaning

(e.g., each word in the vocabulary) with a d-dimensional vector for any d. Instead, these

vectors are called model parameters, and trained along with the other parameters (Goldberg,

2017). That explains why word embeddings can outperform the traditional NLP frameworks.

Traditional NLP frameworks count mainly on parsing sentences to extract the text features,

but word embeddings count on the dense vector representation of the text regardless of how

the text is really structured.

Given the above explanations, DeepKAF is using word embeddings to be able to tackle

more text representations challenges. Autoencoders that are part from the pre-processing

layer are going to be explained in the next sections.
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5.6.3 DeepKAF and Siamese Networks

A systematic approach to building similarity measures between textual cases is important

for effective CBR applications. In order to ease the task of building similarity measures,

DeepKAF had been experimentally compared with several neural network architectures

(Amin et al., 2018c), using the straightforward cosine distance and averaging word vectors

trained using word2vec and its descendants (Amin et al., 2018a). Each approach had its own

pros and cons, as described in Chapter 6 during the evaluation process. The Siamese neural

network architecture was the extraordinary solution that boosted the overall performance of

the applications built on top of DeepKAF. SNN algorithm was first introduced in (Bromley

et al., 1993b) to verify signatures written on a touch-sensitive pad. The twin fully identical

sub-networks approach has been used intensively in many high-performance real-time object

tracking tasks like CFnet (Valmadre et al., 2017), StructSiam (Yunhua Zhang et al., 2018a),

SiamFC-tri (Dong and Shen, 2018), DSiam (Guo et al., 2017), SA-Siam (He et al., 2018),

SiamRPN (B. Li et al., 2018), DaSiamRPN (Zhu et al., 2018), Cascaded SiamRPN (Fan

and Ling, 2018), SiamMask (Wang et al., 2018), SiamRPN (Bo Li et al., 2018), Deeper and

Wider SiamRPN (Z. Zhang, Peng, and Wang, 2019). As shown, SNNs are very popular

in finding what makes two objects similar. The SNN can find similarity or a relationship

between two comparable objects, and most of the historical work is in image similarities.

Siamese architecture is perfectly suited to situations where there are just a few samples per

class, as in the DeepTMS use case described in Chapter 6.

Based on the experiments that have been carried out in this research, SNN with two

LSTM sub-networks, excelled in the area of finding text similarities. In the CBR literature,

to the best of my knowledge, Siamese networks have not been applied in TCBR applications.

Interesting research has been carried out using SNNs to build similarity measures in CBR

as part of a project to generate the similarity knowledge on the SelfBACK dataset (Martin

et al., 2017). In this work convolutional Siamese network implementations have been used to
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build similarities between different cases in a dataset that contains time series data. Results

were baselined against a typical CNN, and the Siamese architecture outperformed the CNN

implementation. The difference between the implementation mentioned in (Martin et al.,

2017) and the work presented in this paper is in how Siamese Networks are being used and

trained. The SelfBACK dataset does contain numerical time series data and not textual data.

Comparing to DeepKAF, in (Martin et al., 2017) authors trained the Siamese architecture

over the entire case not on specific attributes. This is different from theDeepKAF approach,

which trains and dedicates a model for every attribute to generate the local similarities and

then calculate the global similarity, as described inChapter 5. Using a Siamese Network per

attribute helped in having a model that preserves relevant information about each attribute

and not be distracted by other information that might decrease the accuracy. Long-short

term memory is very successful in solving NLP problems, as shown in (X. Li and Wu, 2014;

Yunhua Zhang et al., 2018b). LSTM architectures use the internal memory to remember

or use information across long input sequences. They can evaluate, classify and retain the

related information about each part of the sentence and in the whole paragraph. The local

context of any input sentence turned out to be useful for additional details on a word in a

sentence and to eventually enhance the interpretation of the sentences. In our tests, the local

context enhanced the estimation of the consistency of the sentence by reducing the mean

squared error (MSE) and increasing the correlation value.

5.6.4 DeepKAF and Autoencoders

One of the very challenging tasks that the DeepKAF implementation has faced was the

pre-processing of the input text. Text pre-processing is simply the task of putting the text

into the shape that is analyzable for the intended purpose. Text pre-processing is difficult

because what could be applied to an input text can be the worst to be done for a different

task.
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During experimenting with DeepKAF implementations, the main pre-processing chal-

lenges can be summarized in the following:

1. Noisy input text with unnecessary parts, for example, signatures and greetings

2. Highly dimensional input text (too long) like what is described in the CaseLaw exper-

iment presented in Chapter 6

Before using autoencoders as a core part in theDeepKAF pre-processing layer, an LSTM

model was used to help in identifying the unnecessary parts of the input text and then use

the traditional principal component analysis (PCA) to reduce the text dimensionality. This

approach worked perfectly fine and very promising results were achieved. However, to train

the LSTM to be able to identify the unnecessary parts in the text was a road-blocker. It

was an excessive task to prepare a dataset that has a sufficient number of cases to train the

LSTM model. Therefore, the idea came up of following an unsupervised learning approach

to do that task of finding the best representation of the input text and do the dimensionality

reduction at the same time. Autoencoder is a certain form of an unsupervised feed forward

neural network that encodes input x into hidden layer h and then decodes it back from its

hidden representation. Autoencoders are popular in the tasks of dimensionality reduction

and denoising data regardless of the data type. Autoencoders have applications in image

processing (Mabu et al., 2018); S. Chen et al., 2017, acoustic analysis (Abeßer et al., 2017)

and NLP (Miao, Yu, and Blunsom, 2015; X. Zhang et al., 2019; Fu et al., 2018).

DeepKAF is targeting mainly TCBR applications, and in TCBR, sequence processing

can be very challenging, not only because the length of the input sequence may vary. This

is difficult since machine learning algorithms, and neural networks in particular, are built

to operate with fixed-length inputs. An additional problem with textual data is that the

timing of measurements can make it challenging to extract features that are appropriate for

use as inputs to supervised learning models, frequently involving specific expertise in the

field or in the field of signal processing. Finally, certain predictive modeling issues involving
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sequences involve a guess that they themselves are indeed sequences. Hence, it is essential

to have an approach that is able to put the input text in the shape that other deep learning

models within DeepKAF can process. There were two main candidates for text denoising

and dimensionality reduction, namely PCA and autoencoders

How autoencoders are different from PCA: In essence, PCA is restricted to a linear

representation, while autoencoders can have nonlinear encoder/decoders. Hence, autoen-

coders can be exactly the same as PCA if the linear encoder and decoder are being used

with square error loss function and normalized inputs Plaut, 2018. In (Almotiri, K. Elleithy,

and A. Elleithy, 2017), authors mentioned that the AE approach achieved 98% accuracy

compared to 97% accuracy using PCA. Given that the training time for AE was 9+ hours,

comparing to less than an hour to train a PCA model, the authors chose to follow the PCA

approach. However, based on the work in (Plaut, 2018), with a growing number of input

features, PCA would result in slower performance relative to autoencoders.

Based on the literature and understanding of the challenges that DeepKAF implemen-

tations have to deal with to improve the state of the art, autoencoders were chosen as the

approach to denoise the input text and decrease dimensionality. Chapter 6 will show how

the combination of skip-thought autoencoders and Siamese MaLSTM improved the retrieved

results. Autoencoders helped in minimizing the effort required to prepare datasets to train

the models that are going to eliminate the unnecessary part of the text.

5.7 Summary

This chapter presented the architectural view of DeepKAF and the models applied. It has

been explained how each CBR process is executed via a deep learning model. The underlying

decisions being made have been justified based on the process of developing the respective

components. As we are dealing with a highly dynamic AI sub-field, the related state-of-
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the-art literature in the area of using deep learning in CBR has been demonstrated with

clarification how this work is different fromDeepKAF. The architecture helps in abstracting

the idea behind DeepKAF because the technical details and deep learning models can

change based on the domain knowledge. Therefore, abstracting DeepKAF as described in

this chapter is important for the reproducibility of this research (and for going beyond). In

the following chapters, more technical details are provided, together with the experimental

evaluation that shows how DeepKAF was able to improve the efficiency/quality of a CBR

system.

This chapter also explained the competitive advantage of DeepKAF over other CBR

approaches in general and TCBR in specific. The discussion in the chapter started with

comparing DeepKAF with traditional textual CBR approaches and how DeepKAF can

provide an edge to any CBR system. A review from the literature and popular work in

the area of TCBR has been presented to show the difference between DeepKAF and those

approaches. The chapter continued with covering the another important part of DeepKAF,

namely complex NLP tasks. Section 5.5 explained how DeepKAF is using DL models

without hiding the explanation advantage of any CBR system. Section 5.6.2 explained why

NLP tasks are challenging and what makes an NLP task a complex one. The section also

showed how DeepKAF is designed with such complex NLP tasks in mind and how to solve

them. Sections 5.6.3 and 5.6.4 clarified why specific decisions were made and why specific

models were chosen. In those sections, a glimpse of history was provided and comparison

with other approaches was introduced.
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Chapter Six

DeepKAF Experiments and Validation

6.1 About this Chapter

Chapter 5 described the architecture and the processes within DeepKAF. In order to

apply DeepKAF effectively and show the real benefits, three requirements have to be ful-

filled: First having domain-specific textual data, second having a stream of textual data that

requires real-time analysis, and third having domain experts that can validate the retrieved

cases. This chapter provides the technical view of the DeepKAF implementation and the

experiments that have been carried out to evaluate the efficiency. For the evaluation of

DeepKAF, two experiments have been carried out to investigate the cross-domain applica-

bility of the framework. Two different use cases and two different data sets have been used:

one from a private automotive industry (DeepTMS) (Amin et al., 2018a) and the second

one is from the law domain (Caselaw Access Project 2018), respectively. Both have been

implemented using a dedicated cloud server hosted on Google Cloud Platform (Google Cloud

Platform 2018) that allowed me to cope with the amount of data that were not able to be

used on a desktop PC. For both experiments, Keras and NLTK python frameworks have

been used to build and train the models, along with other frameworks that will be explained

with each experiment.
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6.2 Experiment 1 - Deep Ticket Management System

(DeepTMS)

DeepTMS is the software name that is built on top of DeepKAF. This experiment has

been focused on implementing a ticket management system by using a hybrid approach,

CBR with DNN and big data technologies. The aim was to improve the response time to

any "incoming’ tickets by identifying and presenting the most relevant solutions from similar

problems using a historical knowledge base. Any retrieved solutions were presented and

recommended in real-time support cases to a help-desk engineer.

Work on DeepKAF has been already experimenting extensively on trials to improve the

accuracy of the framework as well as minimize the efforts to acquire new knowledge (Amin

et al., 2018c; Amin et al., 2020); (Amin et al., 2018a; Amin et al., 2018b).

All historical research along with the findings of each experiment will be discussed to

demonstrate various solutions and why some models have been chosen over others.

For this work, the implemented application and any used data were a joint application

between the German Research Center for Artificial Intelligence (DFKI) and a multinational

automotive company located in Germany with branches all over the world.

6.2.1 DeepTMS - Application Domain

Most companies have a dedicated internal help-desk team for customer support, since service

quality is usually measured via customer satisfaction. Inside the company, most of the help-

desk tickets come through emails to a dedicated help-desk team. Once received help-desk

agents prioritize the tickets and assign them to specialist engineers inside the team to work

on it. The company had several historical datasets describing a plethora of issues that have

happened in the past along with proposed solutions to those.

A historical case could be represented in the form of problem description, solution, and
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keywords. When new tickets arrive, a help-desk engineer should search within the company’s

knowledge base to confirm whether any solution(s) exist(s) or not. As reported by domain

experts, their processes in place were suffering from the following issues:

1. A help-desk agent prioritizes or routes the ticket in the wrong way. Such an action can

lead to longer times to a successful ticket resolution.

2. Lack of enough experience or deep knowledge of the help-desk engineer

3. It is not easy to find proposed solutions from a historical knowledge base and engineers

find it detrimentally time-consuming and not always leading to a solution

The main aim of DeepTMS was to improve the response time to any "new", incoming

tickets by identifying and presenting the most relevant solutions from similar problems using

a historical knowledge base. These solutions then were presented and recommended in

production to a help-desk engineer.

Cases representation: Historical cases were represented in the form of problem de-

scription, problem solution, relevant department, case classification, and keywords. A data

audit on the historical cases reported: cases written in both German and English languages,

grammar with errors and substantial amount of used domain-specific abbreviations. This

pertained to the most common help-desk management systems challenges that usually are:

1. Large volumes of demand/ incident / support tickets coming in different formats and

from a variety of channels

2. Very specialized and usually restrictive Service Level Agreements (SLA) that enforce

help-desk departments to solve tickets in specific amount of time based on the company

priorities

3. Error-prone prioritization or routing of tickets which can lead to imminent breach of

SLA(s)
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4. Substantial limitations in finding a suitable solution from a historical knowledge base.

The vast majority of engineers have found it detrimentally time-consuming and not

always been capable of finding a solution.

The following section will present our approach to this domain and the contribution in

terms of SNNs

6.2.2 Related Work - CBR State-of-the-art in Ticket Management

Systems

One of the most popular help-desk CBR system isHOMER (Göker et al., 1998). HOMER

(T. R. Roth-Berghofer, 2004b) is a help-desk support system designer for the same purpose

of DeepTMS. HOMER used an object-oriented approach to represent cases and used a

question-answering approach to retrieve cases. HOMER showed very good results when it

first presented in 1998. In 2004, it got even further improvements and gave better results

than the first version. However, any existing fast-pace work environments demand solutions

that are able to deal with big amounts of data in real-time with minimum human inter-

ference. Comparing to DeepTMS, we focused more on how to automate the extraction

of similarities and deal with unstructured or mixed-languages text, but this approach also

cannot be automated to be integrated in the real business environments.

6.2.3 The Dataset

A mixed-language customer support tickets’ dataset that was collected from the automotive

company in Germany (Amin et al., 2018a). The dataset contained German and English

textual descriptions of problems along with their associated solutions and several other at-

tributes, like the sender group, the department in question, and others.
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6.2.4 The Challenges

After analyzing the application domain and the data we received, we identified the following

challenges:

1. Building cases was a tedious and extremely time-consuming task for domain experts.

Experts were not able to add much effort, and hence we resorted to as much automation

during the build-up of the CBR system as possible.

2. Any existing knowledge base and new tickets were received in a bilingual format (En-

glish, German, or both), which added more complexity in the text analysis and pre-

processing to build cases or retrieve similar cases.

3. Tickets were primarily written by non-native English or German speakers, and they

could have contained several grammar mistakes or vague domain abbreviations.

speakers,

Due to the last two challenges, it was not possible to use any traditional NLP frameworks

for text understanding like TwitterNLP and Stanford NLP, since their application did not

lead to promising results. Therefore, we decided to use DNNs and word embeddings to

improve the text pre-processing and similarity measures.

6.2.5 The Methodology

Text is used to express knowledge. Text is a collection of words in any well-known language

that can convey a meaning (i.e., ideas) when interpreted in aggregation(Richter and Weber,

2013). To build a textual CBR system, we discussed the system process and how normally

the help-desk agents prioritize and route tickets. From this process, four attributes were

identified as key ones to make a decision. These were: 1. Email Subject 2. Email Content

3. Email Sender Group (the company was organized internally in different groups and each

group had its own applications and systems). 4. The initial priority of the ticket assigned
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by the team who reported it. Based on the above attributes, a help-desk agent would decide

how to proceed with this ticket. Based on those discussions with experts, the decided CBR

approach was as follows:

1. Case Generation: Since there were not too many attributes, cases were generated with

flat attribute-value representation features

2. Case Retrieval: Due to the complexity of the NLP, case similarities needed a rich

context-aware similarity measure. As such, a trained neural network for identifying

and recommending solutions from the historical case base was selected.

3. Case Adaptation: Adaptation rules are not included during this implementation, but

should be added in the next phases.

6.2.6 DeepTMS: The Solution Architecture

DeepTMS solution architecture consists of three main modules (see Figure 6.1):

1. Input Process (Data Generation) Module: This module is responsible for generating

and simulating the emails (tickets) stream.

2. Map/Reduce-Hadoop-Cluster (Data Processing and Retrieval): This module is respon-

sible for receiving the tickets and doing the ticket content pre-processing/processing,

then retrieve the similar tickets from the Case Base (Case Generation, Retrieval and

Retain).

3. Graphical User Interface (Data Visualization): This module is responsible for visual-

izing the results to the system end-users.
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Figure 6.1 DeepTMS Solution Architecture

6.2.7 The Hybrid CBR Approach based on DeepKAF

The first decision we had to make in the development of DeepTMS was how we are going

to handle the challenges mentioned before, and which approach we should apply. The se-

lected approach combines a deep neural network with CBR to capture and decode domain

knowledge. Our approach uses deep learning algorithms in the context of NLP. More specif-

ically it applies them throughout the task of prioritizing emails based on their content and

it measures text similarity based on their semantics. We, therefore, presented several neural

network types to represent a sequence of sentences as a convenient input for our different

models. First, we divided the emails into sub-groups based on the business sectors they were

coming from. The first stage was the ticket pre-processing, which divided into five main

processes (see Figure 6.2)

1. P1: Input Process (Data Generation): was responsible for generating and simulating
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Figure 6.2 Ticket Pre-processing

the emails (tickets) stream

2. P2: Prioritization process: was prioritizing incoming tickets based on historical cases

and their recorded priorities

3. P3: Greetings filter: which identified and eliminated any unnecessary text (e.g., greet-

ings, signatures, etc.) from any email

4. P4: Stemming and stop words elimination: in either German or English language

5. P5: Text vectorization

Vocabulary Containers

Vocabulary is one of the knowledge containers and represents the information collected from

the domain to express knowledge (Richter and Weber, 2013). By filling in this container,

137



I identify terms that are useful for the main system tasks. The acquisition of the domain

vocabulary has direct effect on the system performance, and that’s why it is usually done

with intensive help from domain experts. As mentioned in Section 3.2 utilizing several

experts to manually assist with decoding domain knowledge was rather expensive, therefore

an alternative was sought. In order to improve the acquired vocabulary, I followed the typical

three methods described in (Richter and Weber, 2013). Deep neural networks have been used

to remove irrelevant words and extracted the main features that represent certain text using

the Word2Vec models (Mikolov, K. Chen, and Corrado, 2013). In the next section, I describe

how exactly Word2Vec worked to build neural word embeddings.

Neural Word Embedding

Most of the deep learning models are not able to process strings or plain text. They require

numbers as inputs to perform any sort of job, classification, regression, etc... Many current

NLP systems and techniques treat words as atomic units, therefore, in order to apply a

deep learning model to NLP, we need to convert words to vectors first. Word embedding is

the process of converting text into a numerical representation for further processing. The

different types of word embeddings can fall into two main categories:

1. Frequency-based embedding (FBE):

FBE algorithms focus mainly on the number of occurrences for each word, which

requires a lot of time to process and exhaustive memory allocation to store the co-

occurrence matrix. A severe disadvantage of this approach is that quite important

words may be skipped since they may not appear frequently in the text corpus.

2. Prediction-based embedding (PBE):

PBE algorithms are based on neural networks. These methods are prediction based

in the sense that they assign probabilities to seen words. PBE algorithms seem the

present state-of-the-art for tasks like word analogies and word similarities.
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PBE methodologies were known to be limited in their word representations until Mitkolov

et al. introduced Word2Vec to the NLP community (Mikolov, K. Chen, and Corrado, 2013).

Word2vec consists of two neural network language models: A continuous bag of words and

skip-gram. In both models, a window of predefined length is moved along the corpus, and

in each step the network is trained with the words inside the window. Whereas the CBOW

model is trained to predict the word in the center of the window based on the surrounding

words, the skip-gram model is trained to predict the context based on the central word.

Once the neural network has been trained, the learned linear transformation in the hidden

layer is regarded as the word representation. In this work we have used skip-gram model

since it demonstrates better performance in semantic task identification (Altszyler, Sigman,

and Fernández Slezak, 2016).

Text Pre-Processing

In the text pre-processing stage, raw text corpus preparation tasks are taking place in antici-

pation of text mining or NLP. We trained our Word2Vec model over the ticket corpus overall

to build cases used in similarity measures. As any text pre-processing tasks, we have two

main components: 1. Tokenization, 2. Normalization. Tokenization is a step which splits

longer strings of text into smaller pieces, or tokens. Normalization generally refers to a series

of related tasks meant to put all text on a level playing field: converting all text to the same

case (upper or lower), removing punctuation, converting numbers to their word equivalents,

and so on. Normalization puts all words on equal footing, and allows processing to proceed

uniformly. Normalizing text can mean performing a number of tasks, but for our approach,

we will apply normalization in four steps: 1. Stemming, 2. Lemmatization 3. Eliminating

any stopping words (German or English) 4. Noise Removal (e.g. greetings and signatures).

In essence, we can consider the Word2Vec model or any other model that could be built as

a substitution to the traditional taxonomies.
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Similarity Measures

Similarity measures are highly domain-dependent and used to describe how cases are related

to each other. In CBR, comparison of cases can be performed along multiple important

dimensions (Ashley, 1991; Brüninghaus and Ashley, 1998). Cases that only match partially,

can be adapted to a problem situation, using domain knowledge contained in the system

(Aleven, 1998). Thus, methods, like in particular information retrieval, which are based

only on statistical inferences over word vectors, are not appropriate or sufficient. Instead,

mechanisms for mapping textual cases onto a structured representation are required. A basic

assumption for applying the principle for similarity measures is that both arguments of the

measure follow the same construction process. This allows us comparing the corresponding

sub-objects systematically. For the system, I defined the two types of similarity measures:

Local similarity measures and global similarity measures. Local similarity measures describe

the similarity between two attributes, and the global similarity measures describe the sim-

ilarity between two complete cases. In the next section, we elaborate how we applied the

local similarity measures followed by the global similarity measures.

Local similarity measures: Based on the collected data and the discussions with

experts, we defined the local similarity measures. We have mainly four attributes which are

distinctive, except for the email subject and content. For the Priority (integer) and Sending

Groups (distinctive strings) we used distance functions. For the email subject and content,

we counted upon the Word2Vec model to give us the similarity degrees between different

texts, after applying all the aforementioned prepossessing tasks.

Global similarity measures: The global similarity measure defines the relations be-

tween attributes and gives an overall weight to the retrieved case. The weight of each

attribute demonstrates its importance within the case. The weighted Euclidean distance
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Figure 6.3 DeepKAF similarities per attributes

was chosen for the calculation of the global similarity, as applied in (Bach, K. Althoff, et al.,

2011) . The weight of each attribute has been defined in collaboration with the domain

experts. We decided to use a weight range between 1 and 5. The most important values are

weighted with 5.0 and 4.0 determined by the experts on which attribute value they would

use to evaluate the case. They have decided to give the following weights to the attributes:

Priority = 2.0, email content = 4.0 or 5.0, email subject = 2.0 or 3.0, sending group = 3.0

or 4.0). After giving the weights to the attributes, we then sum up the given weights then

normalize the result to get a value between 0.0 and 1.0 and come up with the overall global

case similarity.
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6.2.8 Experiment 1 - Evaluation Results

For experiment 1, three approaches with different combination of deep learning models have

been used in the aim of improving the retrieval results. The four paths are going to be

described as the following:

1. LSTM and Word2Vec

2. LSTM and fastText

3. Siamese Networks and Word2Vec

4. Autoencoders and Siamese Networks and Word2vec

LSTM and Word2Vec - Evaluation Results

In the beginning, our approach was to use SVM and vectorization to prioritize emails (Amin

et al., 2018a). Early results from this approach were promising, but not in sub-group cases.

When we performed a more intensive test with a large volume of emails, it failed to prioritize

with high accuracy. Therefore, we decided to build several states of the art neural network

models: CNNs, RNNs, and LSTMs (Hochreiter and Schmidhuber, 1997) to test and compare

their results. Deep neural network applications seemed to perform substantially better on

all sub-groups.

This evaluation is divided into two parts:

1. The case priority given by the neural network

2. The retrieved cases and suggested solutions to the new case

During our system testing and evaluation phase, we decided to use different neural net-

work models to explore, validate and compare accuracy results for each and every model. We

applied three neural network models: CNNs, RNNs, and LSTMs (Hochreiter and Schmid-

huber, 1997). Word2Vec was applied to vectorize text input and build word representations
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Figure 6.4 Text Vectorization

in the vector space (See Figure 6.4). Sequences of such vectors were processed using various

neural net architectures.

Word2Vec was built using 300,000 historical tickets in an unsupervised training mode.

All networks were built with one hidden layer, and utilized the Word2Vec model we have

already built. To train the three different neural net models, we have also used 300,000 old

tickets with known priorities in a supervised learning process. An additional 10,000 tickets

were used to evaluate the models in prioritizing the test tickets automatically. Table 6.1

summarizes the prioritizing stage results.

Table 6.1 Prioritization Results

Neural Network

Model

Accuracy Precision Recall F1

Convolutional Neural

Network (CNN)

82.67% 82.52% 82.64% 82.58%

Recurrent Neural Net-

work (RNN)

89.28% 89.19% 89.27% 89.23%

Long Short-Term Mem-

ory Network (LSTM)

92.35% 92.13% 92.23% 92.16%

The second evaluation part is retrieving similar cases based on the similarity measures

we defined before, and using Word2Vec model to give the degree of similarity between two

texts. Since the LSTM model showed the best results in prioritizing the tickets, we continued

to build our solution with LSTM models.

In the Results Discussion section, we are presenting details about the difference be-

tween the three applied models. The evaluation was done with company experts and tech-

nicians. DeepTMS suggested ten solutions to a new ticket, and then experts were called to
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Figure 6.5 DeepKAF - Query

decide where the most relevant solution was positioned among the retrieved ten. We defined

also four levels that the most relevant solution could belong to. These were: 1. one:three

2. four:seven 3. eight:ten 4. Not Listed. For the evaluation we used the same 10000

test tickets that were used in the prioritization stage. Table 6.2 shows the results for this

stage.

Table 6.2 LSTM and Word2vec Retrieval Results

Level Number of Cases Percentage

One : Three 7764 77.64%

Four : Seven 1468 14.68%

Eight : Ten 692 6.92%
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Table 6.2 LSTM and Word2vec Retrieval Results

Level Number of Cases Percentage

Not Listed 76 0.76%

Results Discussion and Lessons Learned From the first evaluation results and during

the implementation, there were lessons learnt that led to the enhancements that are going to

be demonstrated in the next evaluations. During the implementation of DeepTMS, neural

networks have been used in tickets pre-processing to eliminate the redundant text and pass

the most relevant text to deep neural networks for prioritization purposes. For both tasks,

LSTMs outperformed all the other neural network models we used. It is recommended to

use LTSM for text related tasks, but it is also important to mention that it takes longer time

both for its training phase, and for text processing afterwards. CNNs are more appropriate

for image-related tasks. However, we investigated them since the literature suggests them

as appropriate to areas where changes take place in the network architecture and can give

promising results in text processing as well (Y. Kim, 2014). CNNs are faster in training and

processing phases than RNNs and LSTMs. Since an LSTM is a special RNN case, it seemed

to perform well on text tasks, better than standard CNNs and worse than LSTMs. In terms

of training and processing performance, they take longer than CNNs and less time compared

to LSTMs.

For building the Word Embedding using Word2Vec and use them within the neural

networks models, the performance is pretty good, and it can get improved with more text

we use in building the model, since it expands the word corpus and improves the ability

to find relationships between words. We started building the Word2Vec model with 50000

tickets, and the results were worse compared to training with six times more tickets.
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LSTM and fastText - Evaluation Results

In this evaluation (Amin et al., 2018b), fastText (Joulin et al., 2016) word embeddings

model has been used instead of Wrod2vec. As mentioned in section 6.2, LSTM model is

used to do the pre-processing tasks and prioritize the incoming tickets, and it scored a total

F1 score: 92.16% in prioritizing tickets correctly, which is exactly the same as the previous

evaluation. The new experiment carried out in this research is to use the fastText model

in the retrieval process and compare it with the Word2vec model that was used before.

fastText was built using 300,000 historical tickets in an unsupervised training mode.

To train the LSTM model, we needed a labeled dataset containing pairs of sentences and

an attribute to identify the similarity degree between those two sentences. For that goal,

a manually generated dataset was prepared based on historical data which contained 5000

pairs of sentences and have assigned a degree of similarity that varied between 1:5 for each

pair. Table 6.3 shows a comparison in retrieval results between the Word2vec model that was

implemented and fastText model. DeepTMS suggested ten solutions to a new ticket, and

then experts were called to decide where the most relevant solution was positioned among

the retrieved ten. We defined also four levels that the most relevant solution could belong

to. These were: 1. one:three 2. four:seven 3. eight:ten 4. Not Listed. For the evaluation we

used 10000 Test Tickets that were used in the Prioritization stage.

Table 6.3 fastText vs Word2vec Retrieval Results

fastText Word2vec

Level Number of Cases Percentage Number of Cases Percentage

One : Three 5144 51.44% 7764 77.64%

Four : Seven 1431 14.31% 1468 14.68%

Eight : Ten 1682 16.82% 692 6.92%

Not Listed 1743 17.43% 76 0.76%
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Results Discussion and Lessons Learned From Table 1, we can summarize the findings

as the following:

1. From a practical perspective, the choice of hyper-parameters for generating fastText

embeddings becomes key since the training is at character n-gram level. That’s one of

the reasons why fastText might be giving worse results than Word2vec

2. fastText training takes longer to generate embeddings compared to Word2vec

Based on the above findings, DeepKAF implementation continued with Word2vec as

the word embeddings model to be used.

Siamese Network and Word2Vec - Evaluation Results

Towards the goal of improving the overall DeepTMS accuracy and minimize the effort

needed from the domain experts. In this evaluation (Amin et al., 2020) the LSTM model

that has been applied to do the retrieval task is going to be replaced by a Siamese Network

Architecture, but there is still another LSTM model that is still being used to do the pre-

processing task which outperformed all the other models that were used. before, Why

Siamese Networks? Siamese networks typically contain two or more identical sub-networks

which share parameters and weights of the same configuration. Siamese neural networks are

capable of identifying similarities or connections between different objects. Typically, two

identical sub-networks are used to process similar inputs, and another module will take its

outputs to a final output(Bromley et al., 1993a). A Siamese neural network architecture was

chosen as for the experimental setup since it provides the following advantages:

1. It is robust compared to CNNs and RNNs in processing complex text

2. It can provide better text embeddings
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Figure 6.6 MaLSTM Network Architecture

3. By sharing weights across sub-networks, they reduce the number of parameters to train

for. This practice reduces the need for training data required and is less possible to

overfit

Siamese Manhattan LSTMModel (MaLSTM): Manhattan LSTM (MaLSTM) model

was introduced in (Mueller and Thyagarajan, 2016) and showed remarkable results in find-

ing the Semantic Relatedness among sentences and outperformed any existing baselines for

semantic relatedness. This performance is achieved by using specific hidden units (i.e. di-

mensions of the sentence representation) to encode specific sentence characteristics, having

as a result a trained MaLSTM that infers semantic relevance among sentences by simply

aggregating their differences across a set of characteristics (see Figure 6.6).

MaLSTM model has two networks LSTMa and LSTMb correspondent to two sentences

respectively in any chosen sentence-pair. In this work we have selected Siamese architectures

with "tied" weights such as that LSTMa = LSTMb. The general untied version of this model

seems more useful for applications in asymmetric domains such as information retrieval

(where search queries are stylistically distinct from stored documents). MaLSTM has

been tested among different tasks like Sentence Representation, semantic sentences similarity

measures and sentences paraphrase detection.
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In DeepTMS there are mainly two deep neural networks applied: 1. An LSTM model

to do the pre-processing and prioritization 2. A MaLSTM Siamese model to measure

similarities between two distinct sentences. For (1) previous work has presented a LSTM

model with efficient results in doing pre-processing and prioritization tasks correctly. An

LSTM model with Word2Vec was used to measure similarities that although they showed

good results in measuring distance between sentences, they did not give high accuracy when

tested with more complex sentences, To improve this, Siamese networks were adopted and

applied. Hence, for (2) a MaLSTM model is applied and its results are compared with the

old LSTM model implemented to measure similarities. The experiment carried out in this

evaluation is to use theMaLSTM model in the retrieval process and compare it with the

results presented in previous work.Word2Vec is still being applied to vectorize text and

build dense word representations in the vector space.

The Applied Model Structure: Model optimization is one of the greatest challenges

in the implementation of machine learning solutions. Hyper-parameters are variables that

determine both the network structure as well as how the network is trained. During building

the MaLSTM model and based on previous work on DeepTMS, the hyper-parameters

have been adjusted to be as the following:

1. Neuron Activation Function = Relu

2. Learning Rate = 0.1

3. Regularization = L2 (.001)

4. LSTM Layer Size = 200

5. Batch Size = 32

6. Epochs = 47
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7. For the output layer we used Loss Function = MCXENT andActivation Func-

tion = SOFTMAX

These hyper-parameters are defined after several trials upon which we have been com-

paring the outcomes. The above combination seemed to yield the most accurate results.

Models Training and Sentences Pair Creation: Word2Vec was built using 300,000

historical tickets in an unsupervised training mode. To train theMaLSTMmodel, a labelled

dataset was required containing pairs of sentences and an attribute to identify similarity

degrees between those two sentences. For that goal, a manually generated dataset was

prepared based on historical data and containing 5000 pairs of sentences and assigned a

degree of similarity varies between 1:5 to each pair.

For the evaluation, 10000 Test Tickets were used as a stream of new tickets that required

a solution. Table 1 presents a comparison in retrieval results between the old LSTM model

and MaLSTM. The evaluation process was done with company domain experts and tech-

nicians. DeepTMS suggested ten solutions to a new ticket, and then experts were called

to decide where the most relevant solution was positioned among the retrieved ones. We

defined also four levels that the most relevant solution could belong to. These were: 1.

one:three 2. four:seven 3. eight:ten 4. not listed.

Table 6.4 LSTM vs MaLSTM Retrieval Results

LSTM MaLSTM

Level Number of Cases Percentage Number of Cases Percentage

One : Three 7764 77.64% 8354 83.54%

Four : Seven 1468 14.68% 1510 15.1%

Eight : Ten 692 6.92% 30 0.3%

Not Listed 76 0.76% 106 1.06%
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Results Discussion and Lessons Learned From Table 6.4, the findings are as the

following:

1. MaLSTM model gives better results in retrieving the most suitable cases among the

top three and seven retrieved ones. However, MaLSTM was not able to provide any

correct solution in the top ten results in more cases than the old LSTM. From these

results, more investigation should be carried out on whether there are any further

improvements that could be implemented with MaLSTM to get better results.

2. MaLSTM took longer training time than the LSTM model and required more pro-

cessing power in order to get trained.

3. MaLSTM took longer to retrieve cases and measure similarities than the LSTM

model.

4. Word2Vec is outperforming in terms of building dense word embeddings model that

is applied on multi-lingual text. Word2Vec performance always gets improved with

more text is being during the training phase, since it expands the word corpus and the

ability to find relationships. Word2Vec was initially built with 50,000 tickets, and

the results were worse compared to training with full 300,000 training set.

Autoencoders and Siamese Networks and Word2vec - Evaluation Results

In this evaluation (Amin et al., 2019), autoencoders have been used as a self-supervised learn-

ing approach that can find the best representation for the input text without the need for the

pre-processing task that was done earlier by the LSTM model. Throughout the implemen-

tation of DeepTMS, the accuracy has improved by applying and comparing several models

to determine the best candidate to decode complex domain knowledge. Word embeddings

models combined with several deep neural networks models have shown promising results
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Amin et al., 2018c;Amin et al., 2018a;Amin et al., 2020. However, some of the previously

applied deep neural networks models require substantial supervised training over consider-

ably large amounts of data to start being regarded as reliable, especially the models used

to predict relevance between two distinct sentences. To minimize the degree of supervised

learning in this work, LSTMs are replaced with autoencoders self-trained models that can

summarize and extract features from text. The use of autoencoders can have a further ad-

vantage, this of capturing linguistic phenomena (such as word-level dependency) that Word

Embeddings models are not able to capture. An observation that derived throughout our

experimentation was that changing the type of input information has a profound effect on

the kind of similarities the vectors will eventually capture. In such case the application of

autoencoders can help to improve the quality of the input data which leads to better model

accuracy. The experiment carried out in this research is to combine the MaLSTM with

autoencoders (skip-thought) model in the text pre-processing and retrieval processes

and compare it with the results presented in the previous work which used the MaLSTM

alone.

Skip-thought autoencoder vectors is an approach that was introduced by Kiros et al.

(2015) (Kiros et al., 2015). The authors describe a methodology for unsupervised learning

of a both generic and distributed sentence encoder. That is, an encoder maps words to a

sentence vector and a decoder is used to generate the surrounding sentences. In this setting,

an encoder is used to map, for example, an English sentence into a vector. The decoder then

conditions on this vector to generate a translation for the source English sentence. Sentences

that share semantic and syntactic properties are mapped to similar vector representations,

see Figure 6.7 for a typical skip-thought model architecture. Consequently, the authors

introduce a simple and rigid vocabulary expansion method to encode words that were not

seen as part of training, allowing the skip-thought model the ability to process any unknown

words. skip-thought models are inspired by the skip-gram structure used in Word2Vec

(Mikolov, K. Chen, and Corrado, 2013) however, the authors propose an objective function
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Figure 6.7 Skip-thought Model Architecture

that abstracts this idea to sentence level instead of individual words.

Encoder. Let wi
1, ..., w

i
N be the words in a sentence, si where N is the number of

words in the sentence. At each time step, the encoder produces a hidden state hit which can

be interpreted as their presentation of the sequence wi
1, ..., w

i
t. The hidden state hiN thus

represents the full sentence.

Decoder. The decoder is a neural language model which conditions on the encoder

output hi. The computation is similar to that of the encoder except we introduce matrices

Cz, Cr and C that are used to bias the update gate, reset gate and hidden state computation

by the sentence vector. One decoder is used for the next sentence, si+1 while a second decoder

is used for the previous sentence si−1. Separate parameters are used for each decoder, except

for the vocabulary matrix V, which is the weight matrix connecting the decoder’s hidden

state for computing a distribution over-words.
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Training During the Training Phase, three models were used, each of them being trained

in a different way.

1. Skip-thought autoencoder: Through a self-supervised training mode, the autoen-

coder was trained with over 300,000 tickets to find an intermediate low-dimensional

representation for the content of each available support ticket.

2. Word2Vec: A Word2Vec model was trained by using an unsupervised training mode

in order to build the required neural word embeddings from the word corpus (Amin

et al., 2018a).

3. Siamese MaLSTM: A Siamese Network was then trained in a supervised training

mode in order to learn the semantic similarities among different sentences (Amin et al.,

2020).

Model optimization is one of the greatest challenges in any implementation of deep learning

solutions. Hyper-parameters are variables that determine both the network structure as well

as how the network is trained. After a substantial amount of different configuration settings

and based on previous work on DeepTMS, the hyper-parameters with the optimum output

were identified and are shown in Table 6.5:
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Table 6.5 Models hyper-parameters

Skip-thought Autoen-

coder

Word2Vec MaLSTM

Embedding Dimension

= 150

Latent Dimension = 128

Batch Size = 64

Epochs= 76

Optimizer = Nadam

Learning Rate = 0.0001

Decoder Activation

Function = SOFTMAX

Word Vectors

Dimensioality = 150

Window = 10

Min Word Frequency =

10

Epochs = 34

Learning Rate = 0.0001

Activation Function =

SOFTMAX

Neuron Activation

Function = Relu

Learning Rate = 0.0001

Regularization = L2

(.001)

LSTM Layer Size = 200

Batch Size = 64

Epochs = 47

Output Layer Loss

Function = MCXENT

Activation Function =

SOFTMAX

Experiment Results

The system is evaluated by the ability to provide better solutions in the top 10 and decreasing

the probability of not recommending any solutions. To evaluate the model, 10,000 test

tickets were simulated as a stream of new tickets (as an industrial prerequisite) that required

a solution in real-time. Table 6.6 presents a comparison in retrieval results between using

MaLSTM alone (the old approach) and the new approach skip-thought MaLSTM. The

evaluation process was done both with company business domain experts, help-desk engineers

and domain technicians.DeepTMS suggested ten solutions to each ticket, and then experts
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were called to decide where the most relevant solution was positioned among the retrieved

ones. To ease the task of solution ranking in terms of accuracy, we defined four levels of

relevance that a solution could belong to. These were: 1.Very relevant one:three 2. Relevant

four:seven 3.Low-confidence eight:ten 4. Not Listed.

Table 6.6 MaLSTM VS Skip-thought + MaLSTM Retrieval Results

MaLSTM Skip-thought + MaLSTM

Level Cases Percentage Cases Percentage

One:Three 8354 83.54% 8832 88.32%

Four:Seven 1510 15.1% 942 9.42%

Eight:Ten 30 0.3% 215 2.15%

Not Listed 106 1.06% 11 0.11%

Results Discussion and Lessons Learned The results show that skip-thought autoen-

coder helped in improving the overall accuracy of DeepTMS in finding the best solutions

for the tickets in the top ten and decreasing the number of Not Listed solutions. The

domain experts confirmed that if the desktop agent is able to find a solution within the first

ten recommended solutions, that should be acceptable. However, the major advantage of

using autoencoder models over LSTM models to denoise the data is the reduction in training

effort. The LSTM model required a training set built on the full text, with both the nec-

essary parts and the unnecessary ones in order to find the best representation for the email

text. On the other hand, the AE training did not require such an effort since it was directly

trained over all the text we had in a self-supervised learning process. AE helped speeding

up the overall model training process of and improved the overall retrieval time as well.
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6.3 DeepTMS Experiment - Conclusion

DeepTMS introduced a hybrid approach for Textual CBR system based on DeepKAF

framework. DeepTMS uses DNNs to assist in automatic feature extractions from text and

define similarity across text. DeepTMS is able to automate the building of text similarity

without exhaustive expert involvement and work in real-time on new tickets to suggest the

most relevant solutions. However, such an approach hides part of the explainability capability

of CBR approaches. The main goal from that project was to show how a hybrid approach

using deep learning and CBR can ease in dealing with complex tasks. Such an approach

seems appropriate to deal with high volume data that need to be processed fast and in real-

time.As explained in the previous parts, DeepTMS implementation was an ongoing project

to achieve the best accuracy while minimizing the Domain Experts’ effort and the time

required to prepare the training datasets. Basic word embeddings and LSTM were applied

at the first evaluation, and results were very promising to continue in the same direction. The

second evaluation was a comparison between various word embedding models (Word2vec and

fastText) and the results showed that Word2vec outperformed fastText in finding out how

two sentences are similar. The third evaluation focused on improving the similarity measures,

using a more advanced architecture like Siamese networks. Based on the Siamese networks

architecture literature, MaLSTM has been found among the best models that can achieve

high accuracy in terms of sentences similarities compared to other architectures. The overall

system performance has greatly improved following the introduction of MaLSTM. The effort

needed to create and train a Siamese network, however, was tedious as there was a need to

prepare a dataset with sentence pairs to determine whether they are identical or not, which

led to DeepTMS’ fourth evaluation. In the fourth evaluation, autoencoders were added in

the pre-processing stage to find an optimized text representation in a self-learning approach.

Combining a Siamese network with an autoencoder and Word2vec showed the best results

comparing to any other tested approaches.
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To conclude, the presented work in this evaluation showed that an unsupervised skip-

thought autoencoder has been combined with MaLSTM on large scale unstructured text

and has seemed to improve the overall framework performance in terms of less training time,

faster retrieval and more accurate results. Siamese networks and autoencoders with word

embeddings are able to help TCBR systems by building stronger relationships across cases

and measure similarities with minimal input from domain experts.

6.4 Experiment 2 - Finding Similarities - CaseLaw Access

System

The CaseLaw Access system implemented in experiment 2 is based on the best combination

of architectures that proved high accuracy in Experiment 1. The main goal of experiment

2 is to show the efficiency of the DeepKAF architecture and its genericity over different

use cases and challenges. In the CaseLaw Dataset there is a very long description of each

case which will be a test for autoencoders concept in data dimensionality reduction and case

representation. Figure 6.8 shows a sample case description from the CaseLaw Dataset.

6.4.1 The Dataset

Parts from the United States (US) CaseLaw dataset Caselaw Access Project 2018 were used.

The dataset is following 360 years of US case-law. Its Caselaw Access Project (CAP)

API and bulk data services include 40 million pages of U.S. court decisions and almost

6.5 million unique cases. The CAP team has created metadata for each volume, including

unique barcodes, reporter names, titles, jurisdictions, publication dates and other volume-

level information. Key metadata fields, like case name, citation, court and decision date,

were amended for accuracy, while the text of each case was left as a raw Optical Character

Recognition (OCR) output. The dataset was regarded as a great application domain for
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Figure 6.8 Sample Case Body content

CBR, both for our evaluation and for possible future research.

6.4.2 Training

Due to the very high volume of data in this dataset (over 40 million pages) and the limi-

tations of our infrastructure, we used 30,000 law cases split into a training (20,000 cases)

and testing (10,000 cases) dataset. The training dataset contained a total of 36,831,400

Words and 2,643,000 Sentences. We used a combined architecture of skip-thought and

Doc2vec (an instance from Word2vec) and MaLSTM in order to automate the process

of building similarities. Each case was represented with the following attributes:- a. case

body b. reporter full name c. court name d. majority. For the purpose of model evaluation,

we simulated a dataset of 5000 of low-dimensional cases generated by the skip-thought

autoencoder (2500 similar cases and 2500 not similar cases). This dataset was then used

to train the MaLSTM to classify whether certain investigated cases were similar or not.
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Hyper-parameters for the models were adjusted to fit to the new data. All hyper-parameters

were found based on consequent experimentation runs. The training was stopped when the

model seemed to converge to acceptable results. The used hyper-parameters are shown in

Table 6.7:

Table 6.7 Models hyper-parameters

Skip-thought Autoen-

coder

Doc2Vec MaLSTM

Embedding Dimension

= 400

Latent Dimension =

400

Batch Size = 64

Epochs= 44

Optimizer = Nadam

Learning Rate = 0.0001

Decoder Activation

Function = SOFTMAX

Word Vectors

Dimensionality = 300

Window = 10

Min Word Frequency

= 50

Epochs = 53

Learning Rate =

0.0001

Activation Function

= SOFTMAX

Neuron Activation

Function = Relu

Learning Rate =

0.0001

Regularization = L2

(.001)

LSTM Layer Size =

400

Batch Size = 64

Epochs = 22

Output Layer Loss

Function = MCXENT

Activation Function

= SOFTMAX
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6.4.3 Experiment Results

The accuracy and F1 Score of the overall approach in finding if two cases are similar or not

is shown in Table 6.8

Table 6.8 CaseLaw Experiment Results

Skip-thought and MaL-

STM

Accuracy 87.23%

F1 87.44%

Results Discussion and Lessons Learnt From the results, the combination of deep

learning models that have been used showed high accuracy in the retrieval process. With a

self-supervised learning approach, autoencoders helped reduce the text dimensionality, which

helped a lot with training the Siamese Network on an optimized text rather than the long.

Experiment 2, proved that DeepKAF can handle different dataset characteristics and

the models involved within the CBR paradigm are able to semi-automate the building of

similarity measures.

6.5 Conclusion

As the latest version of DeepKAF, the skip-thought autoencoder architecture has replaced

the DeepKAF LSTM model which was responsible for the text pre-processing and showed

better performance in text denoising and low-dimensional representation with less training

effort compared to the LSTM model. The approach of building a word embeddings model

(Word2Vec) using the output of the autoencoder and use this model within a Siamese network
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(MaLSTM) gives the best results in automating the process of finding textual similarity

measures with minimum effort from both domain experts and knowledge engineers and

preparing training datasets.

We have demonstrated different deep learning models that are being used and experi-

mented that they give the best results (Word2vec and skip-thought and MaLSTM). Based on

the above results, these models can be specialized further by increasing the number of layers

and their nodes per layer to be able to learn more complex codings. However, this approach

has to be used with caution since, for instance, the autoencoder may tend to simply copy

its inputs to the output, without learning any internal text representation.

To conclude, although DeepKAF is predominantly developed and experimented with

textual data, DeepKAF can be applied from a theoretical point of view to more complex,

heterogeneous data sources, such as mixed textual and image data. With DeepKAF, CBR

systems will hit new grounds where data is unstructured and heterogeneous when it comes

to industrial implementations.

6.6 Summary

Chapter 6 discussed the validity of DeepKAF approach. DeepKAF has been imple-

mented and tested on two distinctive use cases to prove its genericity. The two use cases

were selected specially to test two main metrics: 1. Scalability, 2. Genericity. The ticket

management system (DeepTMS) is a real domain application where CBR as an approach fits

the most. However, the implementation faced many in terms of domain knowledge decoding

and building similarity measures. DeepKAF as a hybrid-CBR approach showed excellent

results in the ability to understand the domain jargon without extensive interference from

the domain experts. The second use case was on the law cases, where cases were described

in a very long text with millions of cases. DeepKAF has been able to process the long text

and build similarity measures from millions of cases. At the end, DeepKAF was able to
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tell which cases are similar to each other and hence should get almost the same verdict.
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Chapter Seven

Conclusion & Future Work

7.1 Conclusion

CBR has a competitive advantage over the other ML techniques, namely being "explainable

by nature". That gives CBR confidence in any crucial domains where explainability is a

must like healthcare, aerospace, and mortgage approvals.

This thesis proposes the use of deep learning approaches within the CBR paradigm to

overcome the CBR challenges in building similarity measures and retrieval systems in order

to answer the main research questions posed in Chapter 1 (Section 1.6). By combining

CBR, big data, and deep learning approaches, the benefits of the three techniques have been

brought together to solve complex problems in a real industrial domain. Based on the related

work shown in this thesis, despite the substantial benefits that a CBR implementation can

bring to an organization, CBR has been always suffering from being unable to be utilized

easily in an industrial market since its both its implementation and maintenance are long

and exhausting processes. On the other hand, deep learning approaches have proven their

efficiency in solving several problems but lacking the explainability part which is the main

benefit of using CBR. Putting CBR and deep learning together, CBR can hide the deep

learning explainability problem, while deep learning can hide the need to exert too much

effort to decode a domain knowledge.
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This chapter presents the conducted research work in pursuit of the answers to the

questions stated at the introduction, the contributions of this thesis as well as the arisen

questions for possible future research work.

The literature survey has shown the state-of-the-art in the related disciplines of hybrid

CBR approaches and highlighted the challenges that any CBR system can face. However,

a good practice and unified approach towards combining CBR and deep learning in the

textual CBR domain does not explicitly exist. Therefore, a concrete qualitative and then

quantitative research approaches were formulated (research methods) in order to address the

given problem.

Although, this research can be been applied with Textual CBR but can be used with

different CBR applications in the industrial domain where the available data amounts are

too large and complicated to be manually decoded by domain experts (e.g., videos, images

or sound files). This can be done by eliminating the obstacles that come with processing

textual data written with wrong grammar or mixed languages, improving the insights of

the similarity calculations using unsupervised learning approaches, as well as providing an

accurate retrieval of cases based on available past solutions to similar cases. In order to

achieve this, different experiments with different approaches have been applied in order to

come up with the good practice of how deep learning can effectively work with CBR.

Experiment results and models accuracy have shown how DeepKAF can significantly

help towards the improving the presence of CBR in the industrial domain, namely by tackling

real industrial problems and deriving a standard methodology of how to approach them

using the DeepKAF approach for successful automatic decoding of domain knowledge and

building similarity measures.

As set out in the introduction, the principal research question was whether CBR can

deal with the huge amounts of unstructured data in the industrial domain and use deep

learning approaches to assist effectively in automatically decoding the domain knowledge

with minimum efforts from the experts?.

165



Since decoding domain knowledge processes are intensively engaging the domain experts,

the unavailability of the domain experts and the costs of involving them into any activities

were taken into account. As described throughout the introduction, the main aims of this

research were:

1. To understand what is a suitable representation of unstructured textual cases

2. To understand how similarity measures among mixed-language text can be built

3. To define how the explanation of a suggested solution can be presented to users along

with any related insights

4. To investigate appropriate technical architecture and tools to support a CBR system

to effectively deal with millions of cases and being able to find similar cases and provide

solutions in real-time

Towards the investigation of the above aims, a Hadoop eco-system along with Elastic-

Search, Kafka, Keras and a workflow orchestrator Apache Oozie were chosen to build the

framework that has been used in the research overall. The selected tools presented charac-

teristics of modern frameworks that can handle huge amounts of data in real-time.

As seen from the exhaustive literature research, the data is getting more complex in terms

of sources and sizes. Domain experts are not available all the time to provide help in how

to understand the data.

7.2 Future Work

The work presented in this thesis was a leap towards the future of CBR. Besides the thesis

contributions stated above, the future research paths that it motivates can also be regarded

as a real contribution. The main future improvements are summarized below, including a

brief discussion upon them.
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1. A more in-depth investigation of the knowledge interoperability that the developed

architecture offers. More combinations of deep learning approaches should be applied

and tested against different datasets with different approaches.

2. A deep learning model can be built per case attribute to measure the local similarities,

then use the outputs as input for another deep learning model to measure global

similarities.

3. Investigate how the knowledge acquisition and decoding can be exploited efficiently

and be of benefit to systems of a larger scale, or systems that may have been recently

deployed and might not contain a robust past knowledge representation because of any

challenges mentioned in this thesis.

4. Taking a step ahead but based on the architecture proposed, further work can look

into the challenge of hiding some explainability by using different deep learning models

for different tasks and combining contextual information to enhance the explainability

process.

5. Finally, the provenance of any used cases and their associated solutions should be

investigated further, identifying up to which extent they could assist and augment the

explanation process.

As for this thesis, the main focus was automatic decoding of domain knowledge and

building similarity measures, the future research should focus on expanding the usage of

using deep learning models for other purposes, like improving the retrieval results, generate

adaptation rules, generate new cases based on the collected knowledge.

To put it in Alan Turing’s words: “We can only see a short distance ahead, but we can

see plenty there that needs to be done.”
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