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Abstract

Today, information systems are often distributed to achieve high availability
and low latency. These systems can be realized by building on a highly avail-
able database to manage the distribution of data. However, it is well known
that high availability and low latency are not compatible with strong consis-
tency guarantees. For application developers, the lack of strong consistency
on the database layer can make it difficult to reason about their programs and
ensure that applications work as intended.

We address this problem from the perspective of formal verification. We
present a specification technique, which allows specifying functional properties
of the application. In addition to data invariants, we support history prop-
erties. These let us express relations between events, including invocations of
the application API and operations on the database.

To address the verification problem, we have developed a proof technique
that handles concurrency using invariants and thereby reduces the problem
to sequential verification. The underlying system semantics, technique and
its soundness proof are all formalized in the interactive theorem prover Is-
abelle/HOL. Additionally, we have developed a tool named Repliss which
uses the proof technique to enable partially automated verification and test-
ing of applications. For verification, Repliss generates verification conditions
via symbolic execution and then uses an SMT solver to discharge them.
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Zusammenfassung

Informationssysteme werden mittlerweile oft als verteilte Systeme gebaut, um
hohe Verfügbarkeit und geringe Latenz zu erreichen. Zur Realisierung solcher
Systeme kann auf hochverfügbare Datenbanken zurückgegriffen werden, wel-
che die Verteilung der Daten übernehmen. Allerdings ist auch bekannt, dass
hohe Verfügbarkeit und geringe Latenz nicht kompatibel mit starken Garan-
tien bezüglich Datenkonsistenz sind. Für Anwendungsentwickler kann dieser
Verzicht auf starke Konsistenz es erschweren, alle Vorgänge im System präzi-
se zu verstehen und somit sicherzustellen, dass Anwendungen wie gewünscht
arbeiten.

Wir gehen dieses Problem von der Seite der formalen Verifikation von Soft-
ware an. Dazu stellen wir eine Spezifikationstechnik vor, die es erlaubt, funk-
tionale Eigenschaften einer Anwendung zu spezifizieren. Neben Invarianten
auf den Daten, unterstützt diese Technik auch die Formulierung von History-
Eigenschaften. Diese ermöglichen es, bestimmte Ereignisse aus dem Ausfüh-
rungsverlauf einer Anwendung miteinander in Bezug zu bringen. Zu den Er-
eignissen gehören Aufrufe der Anwendungsschnittstelle und Operationen, die
auf der Datenbank ausgeführt wurden.

Um das Verifikationsproblem zu lösen, haben wir eine spezielle Beweistech-
nik entwickelt, welche den Aspekt der Nebenläufigkeit mithilfe von Invarianten
behandelt und damit das Problem auf den sequentiellen Fall reduziert. Die
zugrundeliegende Semantik des Systems, die Beweistechnik und der Beweis
dessen Korrektheit sind im interaktivem Theorembeweiser Isabelle/HOL for-
malisiert. Des Weiteren haben wir ein Programmierwerkzeug namens Repliss
entwickelt, welches die Beweistechnik verwendet, um die Verifikation und das
Testen von Anwendungen teilweise zu automatisieren. Zur Verifikation ver-
wenden wir eine Form der symbolischen Auswertung, welche mathematische
Beweisverpflichtungen erzeugt, die dann durch einen SMT-Solver bewiesen
werden können.
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Chapter 1
Introduction

It is challenging to build information systems that are highly available, fast,
and correct. The design space obviously is huge, but some constraints do ap-
ply: To achieve high availability, one cannot rely on a single physical machine.
Even relying on several machines in the same location means that a single re-
gional event can render the system unavailable. Therefore, high availability
requires to replicate the system at several locations.

When we look at the aspect of performance, we also arrive at the same con-
clusion, albeit for different reasons. If we want low latency in an interactive
application, the processing must take place close to the client so that the effect
of network latencies is minimized. For an application with clients around the
globe this requires geo-distribution, i.e., the deployment of different machines
close to clients around the globe. For applications with unreliable connectiv-
ity, for example in mobile applications, it might even be necessary to have a
working copy of the data on the local device.

When it comes to correctness, developers must decide which correctness
guarantees they want to provide to clients and which consistency level they
in turn require from the infrastructure they use. Both can be split into two
classes: properties that require synchronous communication with a quorum
of machines and properties that can be fulfilled without synchronous commu-
nication. For example linearizable registers cannot be implemented without
synchronization, as stated by the CAP theorem [GL02]. Weaker consistency
models like causal consistency [Llo+11] can be achieved without synchroniza-
tion as it poses no restriction on the staleness of data. If we want high avail-
ability in the sense that every node should be able to respond to queries
independently of the state of other nodes, and low latency in the sense that
we only want to pay the cost of the delay to the closest available node, then we
are required to choose a model without synchronized operations and therefore
with weaker consistency.

Obviously, it becomes harder to build a correct application when the under-
lying infrastructure provides fewer guarantees. Therefore, many application
developers choose a strongly consistent backend for their application and thus
loose the benefits of high availability and low latency. Stemming from this
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Chapter 1: Introduction

situation, we have to ask: Is there a set of rules or guidelines that would al-
low developers to ensure the correctness of their applications even under weak
consistency?

In this thesis we address this question from a formal perspective, asking
how we can formally verify the correctness of an application that runs on in-
frastructures with weak consistency guarantees. More precisely, we consider
deductive software verification [Fil11], where the correctness of a program is
specified in a formal language. A set of logical rules then allows to combine
the specification and the program and derive mathematical statements, such
that the program is correct if the mathematical statements are correct. These
statements are called verification conditions and are automatically generated
from the specification and the program text through a process called verifica-
tion condition generation.

Existing techniques and tools for deductive verification are not directly ap-
plicable to applications with concurrency and weak consistency (see Section 3.3
for related work). If they support concurrency, they usually handle access
to shared memory via mutual exclusion, which requires synchronization and
therefore is not applicable in our scenario.

We therefore have developed our own proof technique, which reduces the
problem of verifying a concurrent application with weak consistency down to
the verification problem of a sequential program. This problem can then be
tackled using existing techniques and tools. The reduction is possible, because
we restrict the architecture and expressiveness of our invariants such that
concurrently running processes are mostly independent. The remaining points
where processes can interfere with each other are handled by user defined
invariants and generic history invariants that are true for all programs or can
be automatically derived from the program.

An aspect that distinguishes our approach from many other verification
techniques lies in the specification language. In a sequential setting, effects
of program parts like procedures can be specified by relating the pre- and
the post-states using pre- and post-conditions. However, this is difficult when
the state can also be affected by other, concurrently running, processes. We
address this challenge by integrating events into our specification language.
These events include low level operations on the underlying infrastructure, as
well as higher level events of clients interacting with the application. Thus,
we can describe the effect of procedures based on events instead of the shared
database state, which avoids the problem of concurrent changes. After all,
the structure of events is mostly immutable (the past cannot change). The
event-oriented approach also makes specifications more expressive than purely
state-based ones.

1.1. Contributions

This thesis develops a tool supported, formalized proof technique for highly
available applications. The thesis provides the following contributions:

2



1.2. Outline

1. A specification technique for highly available applications based on his-
tory invariants.

2. A proof technique for highly available applications, which has been fully
formalized in Isabelle/HOL.

a) We use a small-step operational semantics to describe the system.
The semantics is parameterized over a concrete program for the
application and a semantics for replicated data types (CRDTs) used
in the application.

b) We developed a formalized theory for combining CRDT semantics.
c) We show that it is sufficient to check correctness in a simpler se-

mantics, the so-called single-invocation semantics.
d) From the single-invocation semantics we derive proof rules for de-

ductive program verification. The soundness of the proof rules is
certified using Isabelle.

3. We developed a tool called Repliss, which uses our proof technique to
partially automate the process of verifying highly available applications.
This includes implementations of automated testing procedures and a
symbolic execution engine for verification.

4. We evaluated our technique and tool on several case studies.

1.2. Outline
We begin with a high-level introduction to our approach in Chapter 2, in
which we show how the Repliss tool can be used from a user’s perspective
for developing and verifying highly available applications. In Chapter 3 we
present background information, including current state of the art for building
highly available applications, related work in verification of such applications
and on verification tools in general, and a short overview of the Isabelle/HOL
notations we use in the remainder of the thesis.

We then present our Isabelle formalization of replicated data types specifi-
cations in Chapter 4. Chapter 5 presents the core part of our proof technique
and its soundness proof starting from an operational small-step semantics. In
Chapter 6, we then further develop this technique towards the proof automa-
tion we want to achieve with the Repliss tool. To this end, we present proof
rules tailored towards symbolic execution and prove their correctness.

Finally, Chapter 7 presents the design and implementation of the Repliss
tool and Chapter 8 presents case studies modelled with our framework in
Isabelle and with the Repliss tool.

3





Chapter 2
The Repliss Approach

In this section we present our approach for building verified highly available ap-
plications. Obviously, considering distributed applications in general is hard,
so we restrict our scope to an application architecture for which we can develop
specialized techniques.

As we want to focus on the aspects of weak consistency, we will try to
contain all consistency aspects within a data layer of the application, which
handles the updating and retrieving of all persistent data. This ensures that
we do not have to verify the user interface and other code that is unrelated to
verifying the consistency aspects of the application. Of course, the UI is not
negligible when talking about consistency aspects. For example a web form
that initially loads some data, which then can be edited and submitted is often
found in web applications. In a strongly consistent system, editing conflicts
can be resolved when submitting the form, for example by comparing versions
of the underlying data and rejecting a submission if the underlying data has
changed. In a weakly consistent system this is not possible and so the UI is
responsible for recording more information on how the data was edited so that
we get meaningful change-sets on the data that can be applied asynchronously.
Also, the UI might have to display additional information about conflicting
changes with mechanisms to resolve them in the UI. While these UI changes
are challenging, the data layer API can be designed in a way so that we can
still keep all consistency aspects contained.

With this first decision to focus on a data layer, we are left with the task of
getting this component right. However, this is also a challenging task and there
already are many databases that solve the problem of data synchronization,
e.g. Antidote1, Cassandra2, or Redis Enterprise3. We want to leave generic
mechanisms for synchronization and basic consistency guarantees to the data-
base, such that we can focus on the specifics of the application. We assume
that the database provides us with a certain consistency level and a set of
replicated datatypes with builtin strategies for handling concurrent updates,

1https://www.antidotedb.eu/
2https://cassandra.apache.org/
3https://redislabs.com/redis‐enterprise/
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Chapter 2: The Repliss Approach

Client Client Client Client Client

App App App

DB DB DB

Figure 2.1.: Visualization of architectural assumptions.

so called CRDTs [Sha+11b]. Since all synchronization aspects are delegated
to the database, this implies that the application itself should be stateless.
Only the database should store persistent state and only the database should
be used for synchronization between different invocations by possibly distinct
clients of the API.

Overall, this leaves us with a high level application architecture as depicted
in Figure 2.1. In the following we only consider the data layer, when we talk
about applications. On top of the applications, we have clients that invoke
the API of the application. We also consider the UI and other code unrelated
to data management to be part of the client.

The application itself is co-located with a database replica, which allows fast
local data access. The arrows in Figure 2.1 represent communication. We can
see, that the different application instances can only communicate through
the database. Clients are out of our control, but we have to account for the
possibility that clients communicate, which we denote with dashed lines. For
example, one person could send a link to a page within the application to
another person via Email.

The architectural design introduced above, enabled us to develop a special-
ized proof technique and the accompanying Repliss tool. In the following case
study, we show how Repliss can be employed in developing an application with
verified correctness.
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1 crdt chat: Set_aw[MessageId]
2 crdt message: Map_uw[MessageId, {
3 author: Register[UserId],
4 content: MultiValueRegister[String]}]
5
6 def sendMessage(from: UserId, text: String): MessageId {
7 var m: MessageId
8 atomic
9 m = new MessageId
10 call message(NestedOp(m, author(Assign(from))))
11 call message(NestedOp(m, content(Assign(text))))
12 call chat(Add(m))
13 return m
14
15 def editMessage(id: MessageId, newContent: String)
16 atomic
17 if messageQry(ContainsKey(id))
18 call message(NestedOp(id, content(Assign(newContent))))
19
20 def deleteMessage(message_id: MessageId)
21 atomic
22 if messageQry(ContainsKey(message_id))
23 call chat(Remove(message_id))
24 call message(DeleteKey(message_id))
25
26 def getMessage(m: MessageId): getMessageResult
27 atomic
28 if messageQry(ContainsKey(m))
29 return found(
30 messageQry(NestedQuery(m, authorQry(ReadRegister))),
31 messageQry(NestedQuery(m, contentQry(ReadFirst))))
32 else
33 return notFound()

Figure 2.2.: Model of the Chat application in Repliss containing the original bug.

2.1. Case Study

To illustrate our approach, we use an example of a highly available chat appli-
cation. This example is inspired by an experience report from Discord [Vis],
who migrated their chat service from a single centralized database to the repli-
cated and weakly consistent database Cassandra [LM10]. Although the code
had been well tested prior to deployment, when the new solution was first
used in production, some messages ended up with missing metadata, e.g., the
author field of a chat entry was empty. We now show how such a problem
could have been ruled out by checking and statically verifying the application
with Repliss before deployment.

The program of the chat app in Repliss is shown in Figure 2.2. In general,
a Repliss program consists of three parts: (1) a data model (lines 1-4 in the
example), (2) a list of procedures implementing the application (starting from
line 6), and (3) some invariants specifying properties of the application (not
shown in Figure 2.2, presented below).
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2.1.1. Data modelling with CRDTs

In a highly available application, it is inevitable that database updates occur
concurrently in different data centers without synchronization. Some updates
are inherently independent of each other, for example, if they address different
parts of the database state. For other cases, the application must be designed
to handle concurrent updates in a meaningful way without loosing data. To
achieve this, we use conflict-free replicated data types (CRDTs [Sha+11a;
Sha+11b]) for modeling the data. CRDTs are abstract data types with a
builtin strategy for asynchronously resolving concurrent updates. The use
of CRDTs does not restrict the applicability of our technique, since typical
synchronization free databases can be described in terms of CRDTs. For
example many databases use a last-writer-wins strategy, which is just a special
kind of CRDT.

Besides choosing the correct data types for the application data (e.g. maps,
sets, lists, registers, …), programmers also have to decide how concurrent up-
dates should be resolved. For example, the Set datatype comes in two vari-
ants that can be distinguished in the way how concurrent add- and remove

operations of the same element are handled. The add-wins variant, which we
denote with suffix _aw (cf. Fig. 2.2), prefers the effect of the add-operation.
More precisely, a remove operation only affects the add operations that have
happened before the remove and not the concurrent adds. Another variant of
the Set datatype is called remove-wins (suffix _rw). Here, the strategy is re-
versed and an add operation only overwrites remove operations that happened
before it. Similar to sets, the Map-datatype also comes in a variant where
updates win over concurrent deletions of entries (suffix _uw), and a variant
where delete-operations win (suffix _dw). Map CRDTs can be recursive such
that the embedded values are again CRDTs, which can only be updated and
queried by going through the Map interface. For simple, atomic values, Register
CRDTs can be used. The Register simply resolves concurrent updates arbi-
trarily (e.g. by timestamp) and returns one of the latest written values. In
contrast, the MultiValueRegister stores the set of all latest concurrently written
values (which is a singleton set if there are no concurrent assignments).

For the data model of our chat application (lines 1-4), we use an add-wins
set of message identifiers named chat to store the set of all messages. For
storing the individual messages, we use a map with the update-wins semantics.
The keys of the map are message identifiers and the values are again CRDTs
combining a register for the author and a multi-value register for the content.

2.1.2. Implementation Language

In Repliss, the interface and behavior of an application is realized by a set
of procedures. The procedures are implemented in a simple imperative pro-
gramming language. The procedures for the chat application are shown in
Figure 2.2 starting from line 6. Besides the usual language constructs, like if-
statements, variables, or return-statements, the language contains some con-
structs specific for database interaction code.

8



2.1. Case Study

A procedure can generate new unique identifiers using the new keyword.
To interact with the database, a call-statement is used, which starts with the
keyword call followed by an update operation. The update operation typically
is expressed using datatype constructors for the operations. For example,
operations to the CRDT named chat are constructed with a constructor of
the same name, which takes the nested update operation as a parameter.
Database reads do not require a call-statement. Queries use the suffix Qry

to be distinguishable from update operations. Several database operations
can be bundled in a transaction by using an atomic block. A transaction
guarantees that other clients interacting with the database can always see
either all operations in the transaction or none of them. It should be noted
however, that transactions do not provide any total order guarantees, so two
transactions can be concurrent and not aware of each other.

2.1.3. Specification Language

The desired properties of the application can be specified by invariants. In
Repliss, an invariant is a logical condition that must be true at any point during
the execution, however invariants cannot observe changes from uncommitted
transactions. Repliss supports automated testing to quickly check an invariant
and verification to prove that an invariant is never violated.

To illustrate the process of using Repliss to verify an application, we con-
sider a typical invariant of the Chat application. We require that if there is
an invocation g of procedure getMessage for a message identifier m in our ex-
ecution history that returns a message (author, content), then a client must
have invoked sendMessage with the same author auth:

Invariant 1
forall g: InvocationId, m: MessageId, author: UserId, content: String ::

g.info == getMessage(m)
&& g.result == getMessage_res(found(author, content))
==> (exists s: InvocationId, content2: String ::

s.info == sendMessage(author, content2))

This invariant demonstrates an essential feature of Repliss, which we call
history invariants. The history comprises procedure invocations, database
calls, and the relation between them. In the above invariant, we only address
procedure invocations. The type InvocationId identifies a procedure invocation
and ranges over all procedure invocations issued in the current execution. With
the expression g.info we obtain the invocation information for invocation g,
which is the name of the invoked procedure and the value of the arguments.
Correspondingly, g.result refers the result of the procedure invocation.

Making the history available in invariants, allows us to express the effects of
procedures (like sendMessage here) based on their influence on other procedures.
This lets us avoid a state-based description, where the effect of procedures
would be described by changes on a global state. That approach would be
difficult in our setting, since there is no global state as in a centralized system,
where everyone sees the same version of the state.
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message(NestedOp(m1, author(Assign(u2))))
message(NestedOp(m1, content(Assign(s2))))
chat(Add(m1))

sendMessage(u2, s2)→m1

messageQry(ContainsKey(m1))
chat(Remove(m1))
message(DeleteKey(m1))

deleteMessage(m1)
messageQry(ContainsKey(m1))
message(NestedOp(m1, content(Assign(s2))))

editMessage(m1, s2)

messageQry(ContainsKey(m1))
messageQry(NestedQuery(m1, authorQry(ReadRegister)))
messageQry(NestedQuery(m1, contentQry(ReadFirst)))

getMessage(m1)→found(u0, s2)

Figure 2.3.: Counter example produced by Repliss showing an execution with con-
current deletion and updating of the same message.

2.1.4. Tool Support

The Repliss Tool includes an automatic testing method for finding bugs and
a verifier to prove the absence of bugs. We now show how these can be used
on the Chat application.

When we check the application property defined in Invariant 1 with Repliss,
it fails to verify the getMessage procedure and produces the execution in Fig-
ure 2.3 as a counter example. The example is generated by the automated
testing method and shows a scenario where a user edits a message while it is
concurrently deleted. When the message is read afterwards, the corresponding
map-entry exists since there is a map-update that is not followed by a delete
operation. However, the concurrent delete operation has removed the value
from the register holding the author’s name with the result that the author
name is set to the default value of the register (u0). Thus, getMessage reads u0

– a user that never sent any message. This corresponds to the bug described
in Discords experience report [Vis], where the same scenario would lead to the
value null for the author field4.

4The Repliss language does not include a null value, so the automated testing tool will find
another value. The CRDT specification would allow any value to be returned by the read
operation in the given case.
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messageQry(ContainsKey(m0))
message(NestedOp(m0, content(Assign(s0)))))

editMessage(m0, s0)

messageQry(ContainsKey(m0)))
messageQry(NestedQuery(m0, authorQry(ReadRegister)))
messageQry(NestedQuery(m0, contentQry(ReadFirst)))

getMessage(m0)

Figure 2.4.: Verification counter example produced by Repliss (version 1).

Once the problem is identified, we can apply a simple fix by changing the
data type of message from Map_uw to Map_dw, so that the CRDT resolves concur-
rent update- and delete-operations on the map by letting the delete overwrite
all concurrent updates.

With this change, Repliss is still unable to verify the correctness of the
application, but the automatic testing component of Repliss no longer finds
a counter example. However, the verifier of Repliss produces the counter
example shown in Figure 2.4. Unlike the example produced via testing, this
time we do not get a complete execution starting from the initial state. The
verifier just considers one invocation (in this case getMessage) and the pre-state
is constructed such that it satisfies the invariant, which obviously is the case
since there is no invocation of getMessage in the pre-state. However, in the post-
state, after executing getMessage, the invariant is violated. Therefore, we need
to exclude situations like this with additional invariants. As experience shows,
finding the right invariants is often the most challenging part when verifying
applications. Repliss assists users in this task by visualizing a counter model
for the verification condition.

The important aspect to prove our original invariant is that there cannot
be an update of a message’s content field without a prior assignment to the
author field. Note that this is a history property as it relates different data
base calls in the execution history of the system. We express this with the
following invariant:
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message(NestedOp(m0, author(Assign(u0))))
message(NestedOp(m0, content(Assign(s0))))
chat(Add(m0))

sendMessage(u0, s0)
messageQry(ContainsKey(m0))
chat(Remove(m0))
message(DeleteKey(m0)

deleteMessage(m0)

messageQry(ContainsKey(m0))
message(NestedOp(m0, content(Assign(s0)))

editMessage(m0,s0)

messageQry(ContainsKey(m0))
messageQry(NestedQuery(m0, authorQry(ReadRegister)))
messageQry(NestedQuery(m0, contentQry(ReadFirst)))

getMessage(m0)

Figure 2.5.: Verification counter example produced by Repliss (version 2).

Invariant 2
forall c1: CallId, m: MessageId, s: String ::

c1.op == Op(message(NestedOp(m, content(Assign(s)))))
==> (exists c2: CallId, u: UserId ::

c2.op == Op(message(NestedOp(m, author(Assign(u)))))
&& c2 happened before c1)

We refer to database calls using the type CallId. Note that we use the word
calls when referring to the database and the word invocations at the level of
procedures.

After strengthening the specification with this invariant, Repliss produces
the counter example in Figure 2.5, showing us that our invariant is still not
strong enough. In this example, we see that the message has been deleted,
but a subsequent invocation of editMessage adds data to the message again.
Therefore, the message_exists check in getMessage returns true, but the author
information is still deleted and therefore reading the author value may return
an arbitrary value.

In a real execution, the check for message_exists in editMessage would have
returned false, preventing the update after delete. However, Repliss does not
perform this inductive reasoning and therefore we need to express it as an
invariant. With the following invariant, we state that there can be no update-
operations on a message after it has been deleted:
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Invariant 3
!(exists write: CallId, delete: CallId, m: MessageId, upd ::

write.op == Op(message(NestedOp(m, upd)))
&& delete.op == Op(message(DeleteKey(m)))
&& delete happened before write)

With this addition, Repliss can automatically verify the correctness of the
application in 1 minute and 36 seconds. The Chat example is an instance
of a typical architecture, where all communication between clients is handled
via a database. This architectural restriction together with a careful choice
concerning the expressiveness of invariants enables us to reduce the verification
problem to a sequential one and thereby facilitates the automation described
above.

In the remainder of this thesis, we will describe the theory behind the Repliss
tool, which we introduced here based on an example. We will precisely define
the semantics of the system, the proof technique, and we will show that our
technique is sound.
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Chapter 3
Background: Distributed
Information Systems & Verification

This thesis combines two general fields of research: distributed systems and
formal verification. As discussed in Chapter 2, our work focuses on a certain
kind of distributed system. In Section 3.1 we illustrate where this subset fits
into the bigger picture of related systems.

From the point of view of formal verification, there also is a tremendous
amount of existing approaches. Our work can be put into the general area
of deductive verification of concurrent software, for which we give a short
overview in Section 3.2. In Section 3.3 we then give an overview of verification
techniques in the domain of highly available applications.

Finally, we give a short introduction to the Isabelle/HOL interactive theo-
rem prover and its notations in Section 3.4, as we make heavy use of it in the
following chapters.

3.1. Distributed Information Systems

In this thesis, we consider information systems that use replication. This
means that the data of the application exists as copies at several locations.
Replication can be used to improve availability, fault tolerance, or perfor-
mance.

Many systems used in production today are built using ad-hoc methods to
implement the replication and scaling. One well known example is Facebook,
which published information about its database backend called TAO [Bro+13].
The system uses sharding to distribute the data to multiple MySQL databases.
To scale geographically, the system uses a master-slave replication where up-
dates can only occur on the slave, but reads can also be served by slaves. Ad-
ditionally, there are multiple levels of caches for speeding up read-operations.
Since caches and slaves are updated asynchronously after an update, there can
be stale reads though. One special case is reading a value after a write from
the same node.
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Fault tolerance is achieved by trying to detect failures. If a failure of a
master database node is detected, one of its slaves becomes the new master.
However, such a case can lead to split brain scenarios and inconsistencies.
The TAO papers mentions Googles Spanner [Cor+12] as an alternative with
consistency guarantees, but state that it could not handle the necessary num-
ber of requests. Moreover, Spanner needs special hardware support (GPS and
atomic clocks) to guarantee some upper bounds on clock uncertainty. Other
strongly consistent alternatives that support updates at multiple replicas use
consensus protocols like Paxos [Lam98] or Raft [OO14] and suffer from high
latency and reduced availability when network partitions occur.

The applications we consider in this thesis use a different kind of database
systems that lie between the two extremes introduced above. In these data-
bases, updates can be performed on all replicas like in Spanner but unlike
strongly consistent databases, updates do not need to wait for synchroniza-
tion. In contrast to the two types of database systems above, this implies that
there can be concurrent updates that are not aware of each other and that
must be merged asynchronously.

There are several options to implement this merging. The easiest solution
is to use timestamps and to just keep the latest version. For example, this
is the default option for Amazon S3 [Ser20a]. To prevent data-loss, one can
also keep versions of earlier updates. This option is also available on Amazon
S3 [Ser20b]. Other options are specific to certain data structures, like opera-
tional transformation [EG89] or Conflict-Free Replicated Data Types (CRDTs)
[Sha+11b]. From an application’s perspective, all of these techniques can be
seen as instances of replicated data types, which we handle in detail in Chap-
ter 4.

Another aspect how highly available databases distinguish themselves, are
the consistency levels they support. There are a few orthogonal aspects in
consistency models. A good overview of non-transactional models is given by
Viotti and Vukolic [VV16]. We focus here on session models and causal models,
as these are the models that can be implemented in a highly available way,
i.e. without updates waiting for synchronization. In fact, Attiya, Ellen, and
Morrison showed that no consistency model stronger than observable causal
consistency can be implemented in such a way [AEM17].

One aspect of consistency models are the provided session guarantees [Ter+94].
These are guarantees related to the session order, which is the order in which
a single client or process performs operations. In our case, a session is given
by a procedure invocation. We assume a consistency model that satisfies all
session guarantees. However, this is not an essential choice for our technique
and it could be changed to weaker session models.

Another aspect of consistency models are restrictions on the order of opera-
tions. In this thesis, we use the causal consistency model [Llo+11]. This model
provides the following guarantee: If the effect of an operation x is visible and
the effect of an operation y was visible when executing x, then the effect of
y must also be visible. In other words, the happens-before relation must be
transitive. Our restriction to causal consistency model is not necessary for
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all parts of our technique. Stronger models can still be expressed by order
constraints in the invariants, but handling mutual exclusion efficiently would
require different proof techniques. Our techniques could be adapted to weaker
consistency models. However, in weaker models even fewer properties would
hold and while weaker models can provide better performance, there would be
no benefit in terms of availability. So we did not consider it worth the effort
to parameterize our whole system model and technique with a consistency
model.

Finally, there is the aspect of transactions in consistency models. Trans-
actions are a mechanism to group a set of operations and provide certain
guarantees about the visibility of these operations. Typically, they guarantee
atomicity, which means that either all or none of the operations in a trans-
action are visible to other observers. Transactions also provide some form of
isolation from concurrent operations, with different levels of strictness and or-
dering guarantees [CBG15]. In our work, we consider transactions that work
on a fixed snapshot [ASS13] and thus cannot observe concurrent updates.
This choice still allows modelling of systems without transactional support,
by simply using one transaction per operation.

3.2. Specification and Verification

When we talk about software verification, we mean the process of proving
that an implementation or model of the software satisfies a specification. This
adds some redundancy to the software development process, as some of the
behavior is described at least twice. Often, it is an executable implementation
and a specification describing parts of the intended behavior at a higher level.
Software quality is increased because the behavior of the system is described
from different perspectives, and because the high level specification is often
easier to understand and relate to the informal specification of the software.

There are two main approaches to software verification: Fully automated
methods (model checking) and deductive techniques [Pel01]. Model checking is
restricted to certain kind of systems, for which the state space can be explored
automatically. This often means that the system must be representable using
a finite state system or one, where certain abstractions can be used to make
the state space finite. In contrast to this, deductive verification derives logical
formulas, so-called verification conditions, from the program code. If these
formulas can be proven to be valid in general (or unsatisfiable, depending on
the formalization of the problem), then it is implied that the program satisfies
this specification. This approach is more flexible in the kind of systems and
the power of specifications it can support. However, deductive verification
may require some user interaction and cannot be fully automated for all cases.
In this thesis we follow the deductive approach to benefit from this flexibility.
Like others, we aim to automate parts of the process by relying on SMT solvers
[MB08; Bar+11].
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Concurrency in Deductive Program Verification

A central challenge of our work is the handling of concurrency. Distributed
systems are inherently concurrent, since they involve processes running on
multiple machines, and we do not want to restrict the system to only have one
machine executing code at a time. Concurrency is challenging in normal soft-
ware development as well as in software verification because the interleaving
of concurrent processes increases the number of possible executions that must
be considered.

Early work by Ashcroft [Ash75] uses invariants to reason about all possible
interleavings. We tried this simple method to verify a small example of a
user database (see Section 8.2) but failed to do so because the complexity of
invariants increased with every additional statement in a process.

More recent techniques for verifying concurrent systems exploit that con-
current programs are often programmed to behave similar to sequential pro-
grams. In particular, when two processes share no mutable memory, they can
be reordered to an equivalent sequential execution. When they need to com-
municate, mechanism like locks can be used to guarantee exclusive access to
one process. Probably the first proof system for exploiting noninterference in
concurrent processes was developed by Owicki and Gries [OG76].

This method was later defined to be easier to compose in rely-guarantee
techniques [Jon83]. Another central idea is the concept of ownership. One
instance of a logic with ownership is separation logic [Rey02], which can also
be combined with rely-guarantee reasoning [Vaf08]. There are several tools
that use ownership to reason about concurrency, for example Spec# [Jac+08],
Chalice [LMS09], Verifast [Jac+11], or Viper [MSS16].

We looked at ways to transfer the ideas from these techniques to our setting.
However, one essential difference is that we do not have specifications, which
relate the concurrent executions to some sequential execution. For example,
when concurrent edits of the same register should result in storing all the latest
concurrent values (see multi-value register in Section 4.1), then no sequential
execution could explain such an outcome.

This is different, even from work on weak memory models, for which the
specification of verified software typically includes a relation to a sequential
model, as in causal linearizability [Doh+18].

Besides the state-based techniques for compositionality discussed above,
there also are techniques that focus on events. An early work in this area
was for verifying networks of processes [MC81]. Here assertions are predicates
on traces of send- and receive-events, instead of predicates on states. Similar
to the rely-guarantee approach, specifications consist of an assumed condition
and an established condition. The specification states that if the assumed
condition holds up to the k-th point of a trace, then the established condition
holds up to the (k+1)-th point of the trace. This allows compositional reason-
ing, similar to the rely-guarantee style. Additionally, it is similar to ownership
based techniques, since each communication channel can only be used by one
process for sending and one process for receiving messages.

We follow a similar approach, also focussing on events instead of state.
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However, additional steps are required for better representing the partial order
of events required for reasoning about distributed databases. This aspect, as
well as features like transactions, are challenging when simply working with
specifications based on linear traces.

Specification of Concurrent Behavior

While in sequential applications, the effect of a piece of code can be described
by a simple predicate relating the pre- and post-state, the situation is more
complex for concurrent code. This is because concurrently executed code can
change the same state. Therefore, it is necessary to isolate the changes from
other code. In rely-guarantee [Jon83] this aspect is handled by using 2-state
predicates. A postcondition describes the overall effect of the procedure on
the state, while the guarantee-condition describes the possible effects of the
individual atomic actions in the code. We use a similar technique of relating
two states in our technique (see Section 5.2). However, for our specifications it
is not sufficient to be able to relate two global states, since there is no notion
of a global state.

So, instead of focussing on states, we follow a specification technique by
Gotsman and Yang [Bur+14; GY15a], where the focus is on events and rela-
tions between events. Event histories are also used for specifying actor systems
in ABS [DO14] or in temporal logics like in TLA+ [Lam02]. However, these
do not use a partial happens-before relation which is important for our appli-
cations.

3.3. Related Work
The challenge of weak consistency in verification is well known and has been
approached with a number of different techniques. Weak memory models have
been studied in depth in the context of concurrent programming for multi-core
machines [DD15]. However, the techniques in this area usually target lineariz-
ability as a correctness criterion and employ hardware-supported synchroniza-
tion mechanisms such as memory fences or CAS-operations. In distributed
systems, it is neither feasible to consider linearizability as consistency notion
nor to implement the same concurrency control mechanisms as in weak mem-
ory system. This precludes the direct applicability of these techniques to our
scenario. In the following, we therefore focus on related work that shares our
application domain.

Composite Replicated Data Types [GY15b] allow to compose basic data
types into application-specific data representations that are synchronized atom-
ically. Their area of application is similar to our setting, though our approach
is more widely applicable as we model procedures involving several transac-
tions on arbitrary combinations of objects. More importantly, their approach
is axiomatic and based on a denotational semantics, which is more difficult to
adapt in a tool implementing the technique.

CISE [Got+16; Naj+16] is a tool, which can automatically determine the
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procedures in an application, which require stronger consistency guarantees
for correctness. This line of work focuses on combining weak consistency with
strong synchronization for some operations, whereas our work only considers
weak consistency. CISE does not consider features like transactions or repli-
cated data types directly. Instead, application procedures are assumed to have
a single atomic effect which is applied on every replica asynchronously. This
is similar to the implementation technique of operation-based CRDTs, where
effects have to be commutative to ensure convergence. Soteria [NPS19] is a
similar tool which is based on state-based implementations of CRDTs instead.
In contrast, our model handles data types as components with a high-level
(axiomatic) specification and not their concrete implementation.

QUELEA [SKJ15] is another tool supporting the development of applica-
tions on top of weakly consistent databases. Unlike our approach and the
previously discussed approaches, the specifications in QUELEA are not given
as invariants. Instead, the user specifies constraints on the order between
operations and the tool automatically chooses the necessary consistency level.

Carol [Lew+19] is a programming language which automatically manages
consistency levels based on consistency guards. For example a consistency
guard on a read operation can require that no concurrent operation decreases
the value of a counter below the value that was read. In this case, the system
would prevent all decrement operations until the operations depending on the
read are completed. Thus, similar to QUELEA, the tool does not work with
specifications given as invariants, but with constraints that the programmer
must choose correctly.

Q9 [Kak+18] is a symbolic execution engine for finding bugs in programs
written on top of weakly consistent databases. The tool only supports bounded
verification, where the number of concurrent effects is limited, so unlike Repliss,
it cannot be used to prove the absence of errors in the general case. Weak con-
sistency is modeled using commutative effects, which works well for symbolic
execution, but is less suitable when working with invariants as we do.

Chapar [LBC16] is a framework for verifying causally consistent, replicated
databases and applications employing such databases. The development is
formally verified using Coq and the goal of verifying application is similar to
ours. Their approach is different, though. They have implemented a model
checker for applications, thus providing automation. However, the kind of ap-
plications which can be analyzed is restricted, since the model checker can only
check all possible reorderings of one concrete execution where all parameters
have fixed values.

None of the work discussed so far handles the integration of transactions into
a technique to reason about programs. This aspect has been tackled in work
in different contexts, for example in a program logic for handling Java Card’s
transaction mechanism [BM03]. Transactions in Java Card provide atomicity,
but do not handle concurrency. We are not aware of other work integrating
weakly consistent transactions into a deductive verification technique.
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Type Values Description
bool True, False Boolean values
nat 0, 1, 2 Natural numbers
int -1, 0, 42 Integers
’a ⇒ ’b λx. x + 1 Function from ’a to ’b
’a × ’b (x, y) Pairs
’a option None, Some x Optional values
’a set {1, 2, 3} Sets
’a ⇀ ’b [x↦ a, y ↦ b] Maps (synonym for ’a ⇒ ’b option)
’a list [1, 2, 3] Lists
’a rel {(1, 2), (2, 3)} Relations (syn. for (’a × ’a) set)

Figure 3.1.: Basic types defined in the Isabelle standard library.

3.4. Isabelle/HOL

Isabelle/HOL [NPW02] is an interactive theorem prover, which we use in this
thesis to formalize the semantics and for writing machine checked proofs. In
this section, we give a short overview of the Isabelle notation we use in the
following chapters.

At its core, Isabelle’s syntax for terms and types is similar to languages like
ML [MTH90]. Function application is written without parenthesis, e.g. f x y.
Function abstractions are written as λx. e. Besides these basic constructs,
Isabelle supports user defined mixfix syntax [Fut+85] with custom binders,
which is used by Isabelle’s standard library to define some basic language
constructs. This includes conditional expressions (if c then e1 else e2), let
bindings (let x = e1 in e2) and pattern matching (case e of p1 ⇒ e1 . . . ∣ pn ⇒
en).

Type annotations are given with the syntax e ∶∶ T , stating that expression e
has type T . If no type annotations are given, types are inferred.

3.4.1. Standard Types and Functions

Isabelle’s has a Hindley-Milner style type system [Hin69; Mil78] with type
classes [WB89] and records with row polymorphism [Wan91].

The basic types of Isabelle are bool for Boolean values and T1 ⇒ T2 for func-
tions. Type variables are prefixed with an apostrophe as in ’a. Parameterized
types are written with the type parameters before the type name as in ’a list.

The Isabelle standard library provides some commonly used types. In Figure
3.1 we give an overview of the types we use in this thesis. Below we show the
common operations on these types:

Functions The syntax f(a ∶= b) denotes function updates. It is equivalent to
(λx. if x = a then b else f x).
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Booleans The type bool supports the standard operations conjunction (∧),
disjunction (∨), implication (→), equivalence (↔), and negation (¬). We also
have existential (∃) and universal (∀) quantifiers. The notation uses a dot to
separate variables from the quantified formulas as in ∀x. P x for one variable
x or ∀x y. P x y for two variables. Note that the quantification implicitly
ranges over all values belonging to the type of the variable, which is usually
not given explicitly.

Pairs Tuples are constructed with the usual syntax (a, b, c). All tuples are
represented by pairs. The expression (a, b, c) is equivalent to (a, (b, c)). The
functions fst and snd are used to extract the first or second component of a
pair.

Optional Values The two constructors for optional values are None and
Some. We use the shorthand x ≜ y for x = Some y.

Sets Isabelle supports the standard set operators: inclusion of elements (∈),
subsets (⊆), proper subsets (⊂), union (∪), intersection (∩), complements (−S),
and cartesian products (×).

Quantification can be limited to the elements of a set. The expression
∀x ∈ S. P x is equivalent to ∀x. x ∈ S → P x and ∃x ∈ S. P x is equivalent
to ∃x. x ∈ S ∧ P x. This syntax can be used with patterns for pairs as in
∀(x, y) ∈ S. x < y.

Maps Maps are functions to an option type. Since they are functions, we
can use the same update syntax. In addition, we use f(x↦ y) as a shorthand
for f(x ∶= Some y).

The function dom returns the domain of a map m, i.e. all the values x, such
that m x ≠ None. Similarly, range returns the range of a map m, i.e. all values
y, such that there is an x with m x ≜ y.

A map m can be restricted to a given set S with the expression m↾S , which
is equivalent to (λx. if x ∈ S then Some (m x) else None).

Relations A relation is a set of pairs and as such supports all set operators.
Isabelle supports predicates trans to check if a relation is transitive, refl for
reflexivity, acyclic for the absence of cycles, and antisym for checking whether
a relation is antisymmetric.

A relation R can be restricted to a set S with the syntax R ∣r S, which is
equivalent to R ∩ (S × S).

Lists Lists are finite datatypes with constructors Nil (also written []) and
Cons (also written x#xs or x ⋅ xs). The operator @ appends to lists, the
function length returns the length of the list and the function set converts a
list to a set. The expression xs!i (also written as xs[i]) returns the element
at position i in the list, where the first element is at index 0. The function
distinct checks whether all elements in a list are distinct.
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3.4.2. Type Definitions
There are three basic ways to define new types, which we use in this thesis:
type synonyms, data types, and records.

Type synonyms allow to define a new name for an existing type. For example
the following type synonym is the definition for the type rel:

type-synonym ′a rel = ( ′a × ′a) set

Datatype definitions consist of one or more constructors. The constructors can
have parameters, which can optionally be named to generate the respective
selector functions. As an example consider the definition for the option type:

datatype ′a option =
None
∣ Some (the∶ ′a)

Records consist of one or more fields. The field names are also selector func-
tions for the field. The following example shows two record definitions, where
the second record extends the first:

record product =
name ∶∶ string
price ∶∶ nat

record food = product +
calories ∶∶ nat

A record definition defines two types: The record type itself (e.g. product)
and a type for the record-scheme (e.g. product-scheme) which is similar to
the record type, but contains an additional slot of a type ’a which stands
for possible extensions to the record. A function that takes a product-scheme
parameter can be used with both type product and type food.

A record is constructed using banana brackets (for example b ≡ (∣name =
′′Banana ′′, price = 55, calories = 89∣)). Fields are updated with a syntax
similar to function updates as in b ′ ≡ b(∣price ∶= 53∣).

3.4.3. Type Classes
Isabelle supports type classes [WB89]. Polymorphic definitions can restrict
type parameters to types that belong to certain type classes. A type class can
require that a type provides specific constants and functions. Unlike program-
ming languages like Haskell a type class can also require that the type satisfies
certain properties. Type classes can also extend other type classes, inheriting
the respective constraints.

The following example defines a class named valueType, which extends
the countable and default type classes. It requires that there is a function
uniqueIds, which assigns a set of unique identifiers to all elements belonging
to the class. Furthermore, it restricts this function by stating that the default
value of the type must contain no unique identifiers.
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class valueType = countable + default +
fixes uniqueIds ∶∶ ′a ⇒ uniqueId set
assumes default-none∶ uniqueIds default = {}

Type classes can be used wherever a type variable can be used. To restrict
a type variable, it can be annotated with a type class as in ′a::valueType. Sev-
eral type class restrictions are notated using curly braces (e.g. ′a::{countable,
default}).

3.4.4. Definitions
In this thesis, we use three different kinds of definitions available in Isabelle.
First there are simple constant definitions. We denote such definitions with
the (≡) symbol, as in f x ≡ x + 1.

Second, we use recursive function definitions. There are marked with the
keyword fun and can consist of one or more cases (separated by a vertical
bar). The implementation of the cases can include recursive function calls.
Each recursive function definition must be proven to be well-defined, which
Isabelle can often do automatically.

The other kind of definition we use, are inductive predicates. These consist
of one or more cases, which are implications of the form A1 ∧ . . .An Ô⇒ P .
The semantics of inductive predicates is the least fixedpoint for the predicate
that is induced by the implications. Isabelle enforces that the implications are
monotone which guarantees the existence of the least fixed point.

3.4.5. Theorems
A theorem is marked by the keywords lemma or theorem. For theorems,
there are variants for some logical operators which are relevant for how the-
orems can be used in proofs. We call these operators of the meta logic. We
use ⋀ instead of ∀ for universal quantification and Ô⇒ instead of → for im-
plication. Free variables in a theorem are implicitly quantified universally.
Moreover, double square brackets with semicolons can be used to group sev-
eral assumptions in implications: The theorem [[A;B]]Ô⇒ C is equivalent to
A Ô⇒ B Ô⇒ C. On the top-level the keywords fixes, assumes, shows, with
the conjunction and can be used instead of the meta operators. This syntax
also allows naming the assumptions of the theorem. For example, the theorem
⋀x ∶∶ int. [[A x;B x]]Ô⇒ C x can be written as:

lemma example∶
fixes x ∶∶ int
assumes foo∶ A x

and bar∶ B x
shows C x

Each Lemma is followed by a proof using the methods provided by Isabelle.
However, this document does not contain the Isabelle proofs and just gives
the outlines of the formal proofs.
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The use of replicated data types (CRDTs) [Sha+11b; Sha+11a; Pre18] is a
major aspect of our technique for developing and verifying highly available
applications. The main idea of CRDTs is that they are data types with a
builtin strategy for replication. Each replica of a datatype can be deployed
on a different machine and operations can be performed on each replica with-
out waiting for synchronization with other replicas. Communication between
replicas can be done completely asynchronously and concurrent updates are
resolved automatically according to some well-defined strategy. This strategy
ensures that two replicas end up in the same observable state when they have
synchronized the same set of updates. Because all concurrent updates must be
resolved by the strategy of the CRDT, they are sometimes called conflict-free,
which is one of the origins of the “C” in the abbreviation “CRDT”. Other
origins of the “C” depend on the implementation technique, of which there
are two major variants:

1. State-based implementations are also called Convergent Replicated Data
Types. The main idea of this technique is that replica states form a
join-semilattice and all updates result in bigger states with respect to
the semilattice. For synchronization, replicas send their state to other
replicas where the join with the local state is applied. The properties of
the semi-lattice ensures that replicas always end up in the same state af-
ter exchanging their states. Variants of this technique [ASB18; Ene+19]
only exchange fragments of the state affected by updates.

2. Operation based implementations are also called Commutative Repli-
cated Data Types. Here, the main idea is that replicas transform each
update operation into a so-called downstream operation. This down-
stream operation is then applied to the local replica and to all other
replicas. To ensure convergence, the downstream operations must be
commutative with all concurrent downstream operations.

However, our technique is not dependent on any specific implementation
technique for the data types. Instead, we base our technique only on the spec-
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c1 Add y

c2 Add x

c3 Remove z
c4 Add x

c5 Remove x

c6 Add z

c7 Contains x → True

tim
e

c1 Add y

c2 Add x

c3 Remove z
c4 Add x

c5 Remove x

Figure 4.1.: Illustration of an event graph (left) and the extracted operation con-
text for query c7 (right).

ification of the functional behavior of CRDT based on event graphs. This spec-
ification technique was first introduced by Gotsman and Burckhardt [Bur14]
and since then used in other publications [ZBP14b; Att+16; GY15a; GY15b;
Bur+14]. In particular, our own work [ZBP14b] uses Isabelle/HOL to formally
show the correspondence of some state-based implementations to a specifica-
tion based on event-graphs.

As an example, consider Figure 4.1, which shows an event graph of an
execution involving a replicated set. Each call to the database is represented
by a node. Several calls can be bundled together in a transaction (boxes with
dashed line). We add an edge from a call c1 to a call c2 if call c1 happened
before call c2. Calls that are not reachable from each other, such as c2 and c5,
are concurrent. The result of a read operation, like c7 in the example, depends
only on the calls that happened before. The subgraph of calls that happened
before an operation is called the operation context. For query c7, the operation
context is visualized on the right part of Figure 4.1. In the operation context,
details like transactions are no longer present. Given an operation context
and the parameters of the database operation, the specification (querySpec
in the formal model) of the corresponding data type yields the result of the
operation. For example, the specification of a Contains operation on an add-
wins replicated data type is defined as:
set-aw-spec (Contains x) ctxt res =
(res =
from-bool
(∃a. Op ctxt a ≜ Add x ∧

(∄ r. Op ctxt r ≜ Remove x ∧ (a, r) ∈ happensBefore ctxt)))

Here Op is an abbreviation to retrieve the operation for a database call from
the operation context and from-bool is a function to convert a boolean to the
value type ’any. Since no remove of x happened after the add(x) in c2, the
read operation c7 of our example returns a set containing x. Though we do
not model replicas explicitly, they are represented as concurrent events in the
event graph.
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Composing CRDT semantics The main challenge in formalizing CRDT se-
mantics lies in the composition of CRDTs, in particular with data types that
can have arbitrary nested data types. The most common case is a map data
type, where the values in the map are again replicated data types.

One option to handle nested data types is to calculate a view of the event
graph that focuses on the nested operations. This leads to relatively straight
forward specifications. We present a corresponding collection and framework
for CRDT semantics in the first Subsection 4.1.

The downside of this approach is that it leads to complex higher-order for-
mulas in the generated verification conditions. These formulas are hard to
handle with the automatic tools of Isabelle and even more difficult to use with
an off-the-shelf SMT solver, which only supports first-order formulas. In par-
ticular, when calculating the sub-context, the mapping back to the original
context is lost, so it is hard to reconstruct the original calls from the calls in
an embedded context.

We will therefore present a slightly different approach to composing CRDT
semantics in Subsection 4.2. This approach does not explicitly calculate a sub-
context. Instead, specifications now depend on additional arguments, which
define which events are visible and how events have to be transformed.

4.1. Higher-Order CRDT Specifications
We now present our first formalization of CRDT specifications in Isabelle.
We call the specifications in this section higher-order, since they implement
composition of CRDTs by applying the specification of embedded CRDTs on
transformed operation contexts. This technique can easily be expressed in
Isabelle’s higher order logic, but is difficult to translate to first order logic.

A CRDT specification is a predicate of type ′op ⇒ ( ′op, ′res) operationContext
⇒ ′res ⇒ bool. The type parameter ′op is the type of operations and ′res is the
type of operation results. The parameter ′res will always be instantiated to the
value type of programs, which we refer to as ′any in the following chapters. The
shape of an operation context is described by the following type definitions:

datatype ( ′op, ′any) call = Call (call-operation∶ ′op) (call-res∶ ′any)

record ( ′op, ′any) operationContext =
calls ∶∶ callId ⇀ ( ′op, ′any) call
happensBefore ∶∶ callId rel

type-synonym ( ′op, ′res) crdtSpec = ′op ⇒ ( ′op, ′res) operationContext ⇒ ′res ⇒
bool

A database call contains the issued operation and the returned result. Each
call is identified by a callId. The operationContext record contains the map-
ping calls with the information for each call visible in the context and the
happensBefore relation on these calls, which is a strict partial order (transitive
and irreflexive).
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datatype counterOp =
Increment int
∣ GetCount

definition
increments op ≡ case op of Increment i ⇒ i ∣ - ⇒ 0

definition counter-spec ∶∶ (counterOp, ′a∶∶{default,from-int}) crdtSpec where
counter-spec oper ctxt res ≡

case oper of
Increment i ⇒ res = default
∣ GetCount ⇒ res = from-int (∑ (-,c)←m calls ctxt. increments (call-operation c))

Figure 4.2.: Specification of Counter CRDT

Definition of CRDTs. To specify a new replicated datatype we have to define
a new type for the operations provided by the replicated data type. This
type has to provide certain operations that are required by our verification
framework and for composing specifications.

To make an operation type usable with our verification framework, it must
be possible to enumerate the unique identifiers used in an operation. We
therefore make each operation type an instance of the valueType typeclass.
In addition to this, for the purpose of composition we need to distinguish
update operations from query operations. To this end, we introduce another
type class named crdt-op, which extends the valueType class and provides a
predicate is-update to check whether an operation is an update operation.

We now present a collection of CRDT specifications using the above tech-
nique.

Counter

A counter is an integer value that can be manipulated with an Increment
operation. This operation can also take a negative value to decrement the
counter. The GetCount operation returns the current count of the counter.
For the specification, we simply sum the increments from all database calls in
the given context.

The formalization of the specification is given in Figure 4.2. The result
type ′a of the specification needs to implement two typeclasses: The default
typeclass is required to provide a default value for operations that do not
return a result, which in case of the counter is the Increment operation. For
specifying the GetCount operation, we need to convert the counter value to
the value type ′a. To this end, we use the from-int type class which provides
the needed conversion function with the same name.

Registers

A register stores a single value of some arbitrary type. The value can be
updated with the Assign operation and retrieved with the Read operation.
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The formal specification is given in Figure 4.3. The returned value depends
only on the latest assignments in the operation context, which are the Assign
operations that have not yet been overridden by other Assign operations. The
definition latestAssignments formalizes this selection of the relevant database
calls.

We then specify two kinds of registers. In both cases the specification is
parameterized by the initial value of the register, which is returned by Read if
there are no Assign operations in the context.

In the first specification (register-spec), we define the result to be some value
from the set of latest values. This means that the result is not deterministic
if there is more than one latest value.

This is improved in the specification lww-register-spec. Here, we use the
function firstValue to get the value from the latest assignments which has
the smallest callId. In practice, the total order on calls is often given by a
combination of a timestamp with a site identifier. For our specification, we
simply use an arbitrary, but fixed total order on callIds1.

Multi-value Register

The multi-value register uses the same operations as the previously described
registers, but it returns a value containing all the latest values instead of a
single value from this set. The formal specification for this is given in Figure
4.4. The specification requires that the result type ′a can represent finite sets
of elements. To this end we use the type class is-set, which provides a predicate
with the same name. The predicate is-set v S checks that the value v of type
′a is a set containing all the values in the set S.

We use a predicate here to allow more flexibility when using the specification.
For example, the concrete value type could have a case for lists, but not for sets
and could still implement the is-set type class. In that case, all orderings of
the list would be valid return values as long as they contain the same elements
as the latest values assigned to the register.

Flags

A flag stores a single boolean value. It provides two operations to Enable
or Disable the flag. There are several semantics possible for flags. Unlike
registers, which store a value transparently and thus cannot use properties of
the stored values to resolve conflicts, flags can give precedence to Enable or
to Disable operations. We call these Enable-wins (ew) and Disable-wins (dw)
strategies. In addition to this choice, we can specify the initial value of the flag
to be True or False. For our specifications, we chose False as the initial value
to be consistent with the default value for Booleans in most programming
languages.

In addition, there are at least two sensible ways to give precedence to an
operation, where one is stronger than the other. Since one variant gives a

1Such an order always exists which is proven as a corollary of Zorn’s Lemma in
HOL/Zorn.thy of Isabelle’s standard library.
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datatype ′a registerOp =
Assign ′a
∣ Read

definition
latestAssignments-h c-ops s-happensBefore ≡

λc. case c-ops c of
Some (Assign v) ⇒

if ∃ c ′ v ′. c-ops c ′ ≜ Assign v ′ ∧ (c,c ′)∈s-happensBefore then None else Some v
∣ - ⇒ None

definition latestAssignments ∶∶ ( ′a registerOp, ′r) operationContext ⇒ callId ⇀ ′a
where
latestAssignments ctxt ≡ latestAssignments-h (Op ctxt) (happensBefore ctxt)

definition
latestValues ctxt ≡ Map.ran (latestAssignments ctxt)

definition register-spec ∶∶ ′a∶∶default ⇒ ( ′a registerOp, ′a) crdtSpec where
register-spec initial oper ctxt res ≡

case oper of
Assign x ⇒ res = default
∣ Read ⇒ if latestValues ctxt = {} then res = initial else res ∈ latestValues ctxt

definition lww-register-spec ∶∶ ′a∶∶default ⇒ ( ′a registerOp, ′a) crdtSpec where
lww-register-spec initial oper ctxt res ≡

case oper of
Assign x ⇒ res = default

∣ Read ⇒ res = firstValue initial (latestAssignments ctxt)

Figure 4.3.: Specification of Register CRDTs

definition mv-register-spec ∶∶ ( ′a registerOp, ′a∶∶{default,is-set}) crdtSpec where
mv-register-spec oper ctxt res ≡

case oper of
Assign x ⇒ res = default

∣ Read ⇒ is-set res (latestValues ctxt)

Figure 4.4.: Specification of Multi-Value CRDTs
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c1 Disable c2 Enable

ReadFlag
(a)

c1 Disable c2 Disable

c3 Enable c4 Enable

ReadFlag
(b)

c1 Enable c2 Enable

c3 Disable c4 Disable

ReadFlag
(c)

(a) (b) (c)
ew 1 1 0

sew 1 1 1
dw 0 1 0

sdw 0 0 0

Figure 4.5.: Different semantics for Flag CRDTs.

stronger precedence to an operation, we add an s prefix to the stronger variant
(sew and sdw). We illustrate these alternatives with the examples in Figure
4.5. In example (a) we only have two updates: a Disable operation concurrent
with an Enable operation. Here, the stronger variant yields the same result
as the weaker one. The difference only materializes in longer executions as in
example (b) and (c).

The weaker variant is similar to registers in the sense that only the latest
operations, i.e. the operations that have not been overridden by other updates,
are relevant for the result. The Disable-wins strategy (dw), where the value of
the register is False if the set of latest operations contains a Disable operation,
and the Enable-wins strategy (ew), where the value is True if it contains a
Enable operation.

The reasoning behind the stronger variant is different. Here, we state that
the preferred operation overrides all previous and all concurrent operations.
For the strong Disable-wins (sdw) strategy, this means that an Enable oper-
ation only has an effect if it was executed after all Disable operations in the
context. So in example (b), the enabling in c3 has no effect since it was not
aware of the concurrent disabling in c2 and c4 has no effect because of c1.
Thus, the sdw semantics yields a different result from the weaker one.

The formalization of our flag specifications is given in Figure 4.6. Note that
the Disable-wins semantics are slightly longer because we want the initial value
to be False for all semantics. If it were not for the initial value, the enable-
and disable-wins would be completely symmetric.

Of course other semantics are possible as well:

G-flag It is possible to define a flag that can only be enabled and never dis-
abled afterwards. We call this the grow-only flag.

2P-flag As a slight extension of the previous point, we can define a flag that
can be disabled only once and then never be disabled again. The value
is True if and only if there is an Enable operation in the context and no
Disable operation. We call this the 2-phase-flag.
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datatype flagOp = Enable ∣ Disable ∣ ReadFlag

definition
latestOps ctxt ≡
{op ∣ c op.

Op ctxt c ≜ op
∧ is-update op
∧ (∄ c ′ op ′. Op ctxt c ′ ≜ op ′

∧ is-update op ′
∧ (c, c ′)∈happensBefore ctxt)}

definition flag-dw-spec ∶∶ (flagOp, ′a∶∶{default,from-bool}) crdtSpec where
flag-dw-spec oper ctxt res ≡

case oper of
ReadFlag ⇒ res = from-bool (Enable ∈ latestOps ctxt ∧ Disable ∉ latestOps ctxt)
∣ - ⇒ res = default

definition flag-ew-spec ∶∶ (flagOp, ′a∶∶{default,from-bool}) crdtSpec where
flag-ew-spec oper ctxt res ≡

case oper of
ReadFlag ⇒ res = from-bool (Enable ∈ latestOps ctxt)
∣ - ⇒ res = default

definition flag-sdw-spec ∶∶ (flagOp, ′a∶∶{default,from-bool}) crdtSpec where
flag-sdw-spec oper ctxt res ≡

case oper of
ReadFlag ⇒ res = from-bool (∃ e. Op ctxt e ≜ Enable

∧ (∀d. Op ctxt d ≜ Disable Ð→ (d,e)∈happensBefore ctxt))
∣ - ⇒ res = default

definition flag-sew-spec ∶∶ (flagOp, ′a∶∶{default,from-bool}) crdtSpec where
flag-sew-spec oper ctxt res ≡

case oper of
ReadFlag ⇒ res = from-bool ((∃ e. Op ctxt e ≜ Enable)

∧ (∄d. Op ctxt d ≜ Disable
∧ (∀ e. Op ctxt e ≜ Enable Ð→ (e,d)∈happensBefore ctxt)))

∣ - ⇒ res = default

Figure 4.6.: Specification of Flag CRDTs
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Lww-flag We can use an arbitration order like timestamps to resolve conflicts.
This is similar to the last-writer wins register. In contrast to registers it
is sound to use non-unique timestamps (i.e. the arbitration order can be
any acyclic ordering relation) if updates with equal timestamp (i.e. equal
or incomparable w.r.t. arbitration order) are resolved deterministically,
for example using a precedence on values.

C-flag One can count the numbers of Enable and Disable operations and define
the flag value to be true if there are more Enable than Disable operations.
This corresponds to the counter CRDT. A problem with this approach
is that it is not guaranteed that the flag value is False after executing
Disable. If there were multiple, possibly concurrent, Enable operations
it is necessary to execute the same number of Disable operations. To
circumvent this problem, it is possible to increment or decrement the
counter exactly by the number that is necessary to change the value
locally.

We do not formalize them here since they can be implemented using previ-
ously introduced datatypes.

Sets

In principle, a set can be seen as a collection of flags, one flag for each element.
Accordingly, we have the same possibilities for resolving conflicting updates
(i.e. concurrent Add and Remove of the same element).

Many of the variants discussed above can actually be found in the literature
and in real world implementations. In Figure 4.7 we give an overview of
the different semantics and their appearance. An overview paper by Shapiro
et al [Sha+11a] describes 5 different semantics for sets. Gotsman and Yang
[GY15b] give 3 different semantics for sets. Interestingly, they chose the weaker
semantics for the add-wins set and the stronger for the remove-wins set. In an
CRDT overview paper, Preguiça [Pre18] specifies the same variants. Baquero
et al. [Baq+17] also specify an enable-wins and an remove-wins set, but choose
the weaker semantics in both cases. Interestingly, it appears to be the case
that papers focussing on implementations tend to use the weak semantics
for the delete-wins set and papers focussing on specification tend to use the
stronger variant. This might be due to the fact that the weaker form allows
a more efficient implementation, while the stronger form is easier to specify.
For the strong add-wins semantics, we found neither an implementation nor
a specification in the literature. In this case, the weaker version has an easier
specification as well as a more efficient and straight-forward implementation.

In Figure 4.8 we formalize the specification for sets based on flag-semantics.
To this end, we define a partial function set-to-flag that takes an element v
and converts a set operation on element v to a corresponding flag operation.
The operation Add(v) is converted to Enable and Remove(v) to Disable. For
all other operations, the function is undefined.

The generic set-spec then takes a flag operation. The result of a Contains(v)
query is computed by transforming the context using restrict-ctxt-op with the
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Flag-semantics Appearance in literature and implementations
ew [Sha+11a; GY15b; Baq+17; Pre18]
sew
dw [Baq+17]
sdw [GY15b; Pre18]
G [Sha+11a]
2P [Sha+11a]
lww [GY15b; Pre18]
C [Sha+11a]
C’ [Sha+11a]

Figure 4.7.: Different set semantics in the literature and real implementations.

datatype ′v setOp =
Add ′v
∣ Remove ′v
∣ Contains ′v

definition set-to-flag where
set-to-flag v op ≡ case op of

Add x ⇒ if x = v then Some Enable else None
∣ Remove x ⇒ if x = v then Some Disable else None
∣ - ⇒ None

definition set-spec ∶∶ (flagOp, ′r ∶∶{default,from-bool}) crdtSpec ⇒ ( ′v setOp, ′r) crdt-
Spec where
set-spec F op ctxt res ≡

case op of
Add - => res = default
∣ Remove - ⇒ res = default
∣ Contains v ⇒ F ReadFlag (restrict-ctxt-op (set-to-flag v) ctxt) res

definition set-aw-spec ≡ set-spec flag-ew-spec

definition set-rw-spec ≡ set-spec flag-dw-spec

Figure 4.8.: Specification of Set CRDTs
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set-to-flag function and then applying the flag specification for ReadFlag on
the resulting context. The function restrict-ctxt-op (not shown here) takes a
partial function on operations and transforms the context with this function.
Operations for which the function is not defined are removed from the context
and its happens-before relation.

With the generic set-spec, we can derive the different set semantics from the
flag semantics as shown in Figure 4.8 for the aw and rw variants.

Maps

In our specification framework, maps are a basic mechanism for composing
CRDTs. The keys of the map are of some type ′k and values in the map
are again CRDTs with operations of type ′v. A basic map only supports the
execution of operations on the nested value for a given key. The respective
operation is NestedOp ′k ′v. There is no explicit operation for adding entries to
the map. All entries implicitly exist with their initial value from the beginning.
We call this form of the map the grow-only map (gmap). The semantics are
straight-forward: We can just create a nested operation context for each key
and apply the specification of the nested CRDT on this context to get the
result of an operation.

Matters become more complicated, if we consider two additional operations:
An update operation DeleteKey ′k to delete an entry from the map and a query
KeyExists ′k to check if an entry exists.

The existence of an entry can be seen as another Flag CRDT. Performing an
update operation on a key enables the flag and deletion is like Disable. Thus,
the same semantics discussed above for flags can be used again for maps.
Some implementations have a more complex behavior, where the existence of
an entry depends on the current value of the entry. In these implementations,
an entry with an empty set as value can be considered as non-existent. For
example, the implementation of Maps in Antidote2 removes an entry, if the
internal state of a value is equal to the initial state. For simplicity, we will not
consider these special cases of implementations here.

However, a map semantics also needs to describe how a DeleteKey call affects
the nested contexts used to evaluate query operations. We discuss three basic
strategies here:

1. The nested context is not affected by DeleteKey.

2. A call to DeleteKey can add a special Reset call to the nested context.

3. Calling DeleteKey filters a certain subset from the nested contexts.

In alternative 1, deleting an entry from a map would just mark it as deleted
but still keep the underlying value for the case that it is updated again. This
can lead to a situation where a map appears to be empty, but incrementing

2Antidote’s CRDT library is available at https://github.com/AntidoteDB/antidote_
crdt
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a counter in the map by 1 results in an entry with value 100. This does not
respect the local sequential semantics of a map, which makes this choice rather
unintuitive.

In alternative 2, the effect of DeleteKey depends on the semantics of the
Reset operation of the nested datatype. However, there is no unified semantics
for the Reset operation. In general, the expected behavior would be that
the Reset operation of the nested data type filters a certain subset from the
operation context, which would give us a semantics like in alternative 3 for
a given composition of CRDTs. To keep the semantics unified and mostly
independent of the nested datatype, we therefore focus on alternative 3 here.

To specify the shape of filtered contexts in alternative 3, we again have
similar choices as we already discussed for flag CRDTs. The choices are slightly
more complicated though – instead of a single Boolean result, we have to
specify the set of updates that are affected by delete operations. There are
two obvious choices for which updates are eliminated by deleting an entry:

uw All previous updates.

sdw All previous and concurrent updates.

The first choice corresponds to the enable-wins semantics of flags and the
second to the strong disable-wins strategy on flags. The other two strategies
are less obvious:

suw All previous updates, but ignore all deletes that have concurrent updates.

dw All previous updates and for the deletes, that are not followed by updates,
also the concurrent updates.

These variants correspond to the strong enable-wins and the disable-wins
strategies of flags. Before we formalize these four strategies, we consider their
behaviors on 4 minimal examples where we nest a counter CRDT in a map.
The examples and results are shown in Figure 4.9. For brevity, we omit the
keys in the example and write Delete for DeleteKey(k), +1 for the nested
update NestedOp(k, Increment), and GetCount for NestedOp(k, GetCount).

In example (a) we have two concurrent deletions where one delete is followed
by an increment. Here, both delete-wins strategies would ignore the increment
operation as it is concurrent to a delete that was not followed by an update.
Thus, the overall count is 0. Both update-wins strategies yield 1 since the
increment is not followed by a deletion.

Example (b) shows an example where the two delete-wins strategies dif-
fer. The sdw strategy ignores both increments, since both have a concurrent
deletion. The dw strategy sees that both deletions have been overridden by
increments, so both increments count.

Examples (c) and (d) show the similar cases but with deletions and incre-
ments swapped. This shows the difference between the uw and suw strategies.

We now present the formalization of the map semantics. Figure 4.10 shows
the generic definitions which are common for all strategies. First, we define
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c1 Delete c2 Delete

c3 +1

GetCount
(a)

c1 Delete c2 Delete

c3 +1 c4 +1

GetCount
(b)

c1 +1 c2 +1

c3 Delete

GetCount
(c)

c1 +1 c2 +1

c3 Delete c4 Delete

GetCount
(d)

(a) (b) (c) (d)
uw 1 2 1 0

suw 1 2 2 2
dw 0 2 0 0

sdw 0 0 0 0

Figure 4.9.: Different semantics for Map CRDTs, illustrated by nesting a counter
in a map.

how to compute a sub-context for a given key, where a certain subset of deleted
database calls is removed from the context. The function sub-context takes a
partial function C-in for transforming operations and a set of database calls Cs
to which to restrict the context. The function then first restricts the context
to the calls in Cs by using the function ctxt-restrict-calls. Then, the function
C-in is used to transform the operations and remove all operations where C-in
is undefined.

The concrete C-in function we use for maps is nested-op-on-key(k). It is
parameterized with a key k and transforms operations of the form NestedOp(k,
op) to op and removes all other operations.

Finally, the generic map-spec takes two initial parameters: 1. A function
that computes the set of deleted calls from a context. 2. The specification for
the nested datatype. For a KeyExists(k) query, we check whether there is an
update operation on the given key k that has not been deleted. The predicate
is-update is part of the type class crdt-op.

For a nested operation on a key (NestedOp k op), we compute the sub-
context by restricting the context to the complement of the deleted-calls and
the nested-op-on-key(k) function to extract the inner operation from all op-
erations on the given key k. We then apply the nested specification on this
context.

In Figure 4.11 we then instantiate the generic map-spec with the four dif-
ferent variants we discussed earlier. This boils down to defining the set of
deleted calls for each variant. In the definitions we use the abbreviation is-
concurrent ctxt c c’, which is short for:

c ≠ d ∧ {(c, c′), (c′, c)} ∩ happensBefore ctxt = ∅

The variants uw and sdw are straight forward to formalize. For the suw variant,
we consider a call as deleted if there exists a delete operation that happens
after it and for this delete operation, there is no concurrent update operation.
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datatype ( ′k, ′v) mapOp =
NestedOp ′k ′v
∣ KeyExists ′k
∣ DeleteKey ′k

definition restrict-ctxt-op ∶∶ ( ′op1 ⇀ ′op2)⇒ ( ′op1, ′r) operationContext ⇒ ( ′op2,
′r) operationContext where
restrict-ctxt-op f ≡

restrict-ctxt (λc.
map-option (λop ′. Call op ′ (call-res c)) (f (call-operation c)))

definition ctxt-restrict-calls ∶∶ callId set ⇒ ( ′op, ′r) operationContext ⇒ ( ′op, ′r)
operationContext where
ctxt-restrict-calls Cs ctxt = (∣

calls = calls ctxt ∣‘ Cs,
happensBefore = happensBefore ctxt ∣r Cs∣)

definition sub-context ∶∶ ( ′c ⇒ ′a option) ⇒ callId set ⇒ ( ′c, ′b) operationContext
⇒ ( ′a, ′b) operationContext where
sub-context C-in Cs ctxt ≡
(restrict-ctxt-op C-in (ctxt-restrict-calls Cs ctxt))

definition
nested-op-on-key k op ≡

case op of NestedOp k ′ op ′ ⇒ if k = k ′ then Some op ′ else None
∣ - ⇒ None

definition map-spec ∶∶ ((( ′k, ′v∶∶crdt-op) mapOp, ′r ∶∶{default,from-bool}) opera-
tionContext ⇒ ′k ⇒ callId set) ⇒ ( ′v, ′r) crdtSpec ⇒ (( ′k, ′v) mapOp, ′r) crdtSpec
where
map-spec deleted-calls nestedSpec oper ctxt res ≡

case oper of
DeleteKey k ⇒ res = default
∣ KeyExists k ⇒ res = from-bool (∃ c op r. calls ctxt c ≜ Call (NestedOp k op) r

∧ is-update op ∧ c ∉ deleted-calls ctxt k)
∣ NestedOp k op ⇒

nestedSpec op (sub-context (nested-op-on-key k) (− deleted-calls ctxt k) ctxt) res

Figure 4.10.: Infrastructure for specification of Map CRDTs
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definition
deleted-calls-uw ctxt k ≡ {c∈dom (calls ctxt).

∃d. Op ctxt d ≜ DeleteKey k ∧ (c,d)∈happensBefore ctxt}

definition
deleted-calls-suw ctxt k ≡ {c∈dom (calls ctxt).

∃d. Op ctxt d ≜ DeleteKey k ∧ (c,d)∈happensBefore ctxt
∧ (∄u u-op. Op ctxt u ≜ NestedOp k u-op ∧ is-update u-op ∧ is-concurrent ctxt u

d)}

definition
deleted-calls-dw ctxt k ≡ {c∈dom (calls ctxt).
∃d. Op ctxt d ≜ DeleteKey k ∧
((c,d)∈happensBefore ctxt
∨ is-concurrent ctxt c d
∧ (∄u u-op. Op ctxt u ≜ NestedOp k u-op ∧ is-update u-op

∧ (d,u)∈happensBefore ctxt))}

definition
deleted-calls-sdw ctxt k ≡ {c∈dom (calls ctxt).
∃d. Op ctxt d ≜ DeleteKey k ∧ (d,c)∉happensBefore ctxt}

definition map-uw-spec ∶∶ ( ′v∶∶crdt-op, ′r ∶∶{default,from-bool}) crdtSpec ⇒ (( ′k, ′v)
mapOp, ′r) crdtSpec where
map-uw-spec ≡ map-spec deleted-calls-uw

definition map-suw-spec ∶∶ ( ′v∶∶crdt-op, ′r ∶∶{default,from-bool}) crdtSpec ⇒ (( ′k, ′v)
mapOp, ′r) crdtSpec where
map-suw-spec ≡ map-spec deleted-calls-suw

definition map-dw-spec ∶∶ ( ′v∶∶crdt-op, ′r ∶∶{default,from-bool}) crdtSpec ⇒ (( ′k, ′v)
mapOp, ′r) crdtSpec where
map-dw-spec ≡ map-spec deleted-calls-dw

definition map-sdw-spec ∶∶ ( ′v∶∶crdt-op, ′r ∶∶{default,from-bool}) crdtSpec ⇒ (( ′k, ′v)
mapOp, ′r) crdtSpec where
map-sdw-spec ≡ map-spec deleted-calls-sdw

Figure 4.11.: Specification of concrete Map CRDTs
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In the dw variant we distinguish two cases how a call c can be considered
deleted by a DeleteKey operation d: 1. The call c is before d. 2. The calls c
and d are concurrent and there is no update operation after d.

Structs

Like a map, a struct also is a composition of multiple CRDT instances. The
difference is that a map is a homogenous composition – all values in the map
must be of the same type. A struct can have fields with different types, yet
the fields are static whereas a map supports dynamic addition and removal of
entries.

Unfortunately, the possibility to have different types in the same struct
prevents us from giving the specification of structs in the same way as the
previously introduced datatypes. Instead, we merely provide an auxiliary
function named struct-field that can be used to specify a structs’ semantics.
With the help of this function, a new struct can be defined with the following
steps.

1. Define a datatype representing the operations on the struct. The data-
type has one case for every field of the struct and each case has one
parameter, which is the operation type for the field.
For example, if we want a struct with a field A containing a counter
CRDT and a field B containing a set of integers, we would define the
following datatype:
datatype structOp =

A counterOp
∣ B ⟨int setOp⟩

2. Define the specification for the struct by using the struct-field helper
function. This function takes the datatype constructor of the field, which
was defined in step 1, as the first parameter and the specification for the
field as the second parameter. Multiple fields can be combined with the
(. ∨ .) operator.
definition crdtSpec ∶∶ (structOp, val) crdtSpec where
crdtSpec ≡

struct-field A counter-spec
.∨. struct-field B set-rw-spec

The relevant building blocks for structs are defined in Figure 4.12. First we
have the definition of select-field, which takes a unary function and inverts it,
returning None if no inverse exists. We use this function to define struct-field,
which takes the constructor of the field (type ′i⇒′ o) and the specification of
the field. The spec returns False for operations that are not part of the field.
For other operations, it restricts the context to all operations nested under
the field and applies the nested specification.

Since struct-field specifications return False for other fields, we can compose
disjoint fields by simply taking the disjunction of multiple specifications, which
is how the operator (. ∨ .) is defined.
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definition select-field f x ≡
if ∃ y. x = f y then Some (inv f x) else None

definition struct-field ∶∶ ( ′i ⇒ ′o) ⇒ ( ′i, ′r) crdtSpec ⇒ ( ′o, ′r) crdtSpec where
struct-field f spec ≡ λop ctxt r.

case select-field f op of
Some i-op ⇒ spec i-op (restrict-ctxt-op (select-field f ) ctxt) r
∣ None ⇒ False

definition compose-struct ∶∶ ( ′o, ′r) crdtSpec ⇒ ( ′o, ′r) crdtSpec ⇒ ( ′o, ′r) crdtSpec
(infixr .∨. 30) where
A .∨. B ≡ λop ctxt r. A op ctxt r ∨ B op ctxt r

Figure 4.12.: Specification of Struct CRDTs

type-synonym ( ′op, ′opn, ′res) cOperationResultSpec =
callId set — visible calls
⇒ (callId ⇒ ′op) — call information
⇒ callId rel — happens-before
⇒ ( ′opn ⇒ ′op) — mapping back
⇒ ′res
⇒ bool

type-synonym ( ′op, ′opn, ′res) ccrdtSpec =
′opn ⇒ ( ′op, ′opn, ′res) cOperationResultSpec

Figure 4.13.: Type definitions for first-order CRDT specifications.

4.2. First-order CRDT Specifications
The CRDT specifications we have considered so far cannot be easily expressed
with first-order formulas, which is important for automating verification with
the help of automated theorem provers. The main problem lies in the compo-
sition of CRDTs in maps, where the map specification takes the specification
of the nested type as a parameter and applies it on a sub-context. The way
in which sub-contexts are computed makes it hard to transform the nested
specification so that it again works on the outer context, which would make
the specification first-order again.

We address this problem with a different format for specifications, which is
less elegant for specifying CRDTs, but leads to simpler formulas in the case of
nested specifications. The type definitions for these specifications are given in
Figure 4.13.

Given an operation, the type cOperationResultSpec is the predicate that
determines the possible results for a given context. The specification depends
on three type parameters:

1. ’op is the type of top-level operations.

2. ’opn is the type of nested operations.
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definition crdt-spec-rel ∶∶ ( ′opn, ′res) crdtSpec ⇒ ( ′op, ′opn, ′res) ccrdtSpec ⇒ bool
where
crdt-spec-rel spec cspec ≡
∀C-in∶∶ ′op ⇀ ′opn. ∀C-out∶∶ ′opn ⇒ ′op.

is-reverse C-in C-out
Ð→
(∀ ctxt (outer-op∶∶ ′op) (op∶∶ ′opn) r Cs.

C-in outer-op ≜ op
Ð→ Cs ⊆ (dom (calls ctxt))
Ð→ operationContext-wf ctxt
Ð→
(spec op (sub-context C-in Cs ctxt) r

←→ cspec op Cs (extract-op (calls ctxt)) (happensBefore ctxt) C-out r))

Figure 4.14.: Relation between first-order and higher-order CRDT specifications.

3. ’res is the result type.

The presence of two operation types hints at the first difference compared
to previous specifications. The specifications describe the nested operations,
but they work on the top-level context which has operations of type ’op.

In the previous specifications, we used an operation context that only in-
cluded the call information and the happens-before relation. We restricted
both to the set of visible calls when applying the specification. In the first-
order specifications, we get rid of the need to restrict the context. Instead,
we include the set of visible calls as an explicit parameter and pass the full
happens-before relation and the information about all call operations. We omit
the results of call operations since it is not needed for most specifications.

Finally, we have one additional parameter of type ’opn⇒ ’op which allows
us to map nested operations back to the top-level context.

Relating Specifications. We now show how to relate the first-order specifi-
cation style to our previous specifications. To this end, we define the predicate
crdt-spec-rel which is given in Figure 4.14 and relates two CRDT specifications
given in the two different formats.

For two specifications to be considered equivalent, they must behave equiv-
alently in all nested contexts. This means that the equivalence must hold
for any mapping functions C-in and C-out, where C-in maps operations from
the outer context to the nested operations and C-out is the reverse function.
We then quantify over all well-formed operation contexts. Here, an operation
context is considered well-formed if it satisfies the following conditions:

1. The happens-before relation must be transitive and irreflexive.

2. The happens-before relation may only relate calls that exist in the con-
text, i.e. the field of the relation must be a subset of the domain of the
context’s call map.
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lemma set-rw-spec-Contains∶
assumes spec∶ set-rw-spec (Contains x) ctxt res

and wf ∶ operationContext-wf ctxt
shows res = from-bool ((∃a. Op ctxt a ≜ Add x)

∧ (∀ r. Op ctxt r ≜ Remove x
Ð→ (∃a. Op ctxt a ≜ Add x

∧ (r,a)∈happensBefore ctxt)))

definition set-rw-spec ′ ∶∶ ( ′op, ′v setOp, ( ′r ∶∶{default,from-bool})) ccrdtSpec where
set-rw-spec ′ oper vis op hb C res ≡

case oper of
Add - => res = default
∣ Remove - ⇒ res = default
∣ Contains v ⇒ res = from-bool

(∃a∈vis. op a = C (Add v)
∧ (∀ r∈vis. op r = C (Remove v)

Ð→ (∃a ′∈vis. op a ′ = C (Add v) ∧ (r,a ′)∈hb)))

Figure 4.15.: Comparison of different specifications of the Remove-wins Set
CRDT. The original specification is given above, the first-order spec-
ification in the definition below.

3. There must only be finitely many calls in the context.

Finally, we take some subset of calls Cs from the set of all calls in the
context, such that all calls in Cs map into the nested context via C-in. We
then demand that the two specifications yield the same result, when we use
Cs to calculate a sub-context for the higher-order specification or when we use
Cs as a parameter to the first-order specification with the original call and
happens-before data.

Note that the higher-order specification is only passed the information re-
lated to the calls in Cs but the higher-order specification is passed the complete
information. Thus, a first-order specification can only be in relation with a
higher-order specification if it internally discards the extra information it is
given and only accesses the operations and happens-before information for
calls in Cs.

Example: Remove-wins Set

To illustrate the style of first-order specifications, we now consider the speci-
fication of the remove-wins set CRDT given in Figure 4.15.

As a first step, we simplify the original definition (see Figure 4.8 on page
34), which was based on flag CRDTs. In Lemma set-rw-spec-Contains we
remove this dependency on the flag semantics and express the specification
of the Contains query directly. Recall that the flag semantic was based on
the latest operations, i.e. operations that have not been overridden by other
updates. We defined that the result is true if there is an Enable operation
and no Disable operation in the set of latest operations. We can translate
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this to the set query Contains(x) by stating that there is at least one Add(x)
operation in the context and all Remove(x) operations have been overridden
by a later call to Add(x). To prove this equality, we need the well-formedness
of the context. In particular, we need the finiteness of the context since for
infinite contexts the set of latest operations might be empty, in which case the
two specifications would differ.

In the second step, we transform the specification to the first-order format.
The basic structure of the formula is the same. There are just a few differences:

1. When quantifying over database calls, we now quantify over the set of
visible calls (vis). In the original specification, this aspect is captured
by the fact that Op is a partial function that is only defined for visible
calls. In first-order specifications, op is a total function, so we cannot
use the ≜ comparison and need to guard every use of op with a check
that the call is visible.

2. Since Op in the original specifications contains the set operations at the
outermost level, we can directly use operations like Add in the specifi-
cation. In the first-order specifications, we instead have to transform all
set-operations to the outermost level by calling the conversion function
C.

Example: Delete-wins Map

We now consider the sdw-map specification in Figure 4.16 as an example of
an CRDT with nesting. This specification corresponds to the original specifi-
cation in Figure 4.11 on page 39.

First, we define the function restrict-calls, which restricts the set of visible
calls to only those calls that are nested operations on a given key. This is
simpler than in the original definition, since we only need to restrict the visible
calls instead of the complete context.

Then we define the generic map specification map-spec’. Like in the original
definition this depends on a parameter to calculate the deleted calls and a
parameter for the nested specification. For a KeyExists query we check that
there exists an update that has not been deleted. To define NestedOp, we
simply call the nested specification, where we restrict the set of visible calls
to the operations on the given key minus the set of deleted calls. For the
conversion function, we use the C from the map itself and add another level
of NestedOp to it.

Finally, we can use the above definition to define a concrete strategy. The
definition of deleted-calls-sdw’ is similar to the original definition, but uses the
parameter C to shift operations to the outermost context.

Example: Generated Verification Conditions

Let us now again consider our running example of the chat application to
see how the generated verification conditions differ between the two styles
of CRDT specifications. The CRDT in the chat application consists of a
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definition
restrict-calls vis op C k ≡
{c∈vis. ∃u. op c = C (NestedOp k u) }

definition map-spec ′ ∶∶
(callId set ⇒ (callId ⇒ ′op) ⇒ callId rel ⇒ (( ′k, ′opn) mapOp ⇒ ′op) ⇒ ′k ⇒

callId set)
⇒ ( ′op, ′opn∶∶crdt-op, ′r) ccrdtSpec
⇒ ( ′op, ( ′k, ′opn) mapOp, ( ′r ∶∶{default,from-bool})) ccrdtSpec where

map-spec ′ deleted-calls nestedSpec oper vis op hb C res ≡
case oper of

DeleteKey k ⇒ res = default
∣ KeyExists k ⇒ res = from-bool (∃ c∈vis. ∃upd-op. op c = C (NestedOp k upd-op)

∧ is-update upd-op ∧ c ∉ deleted-calls vis op hb C k)
∣ NestedOp k nested-op ⇒

nestedSpec nested-op (vis − deleted-calls vis op hb C k) op hb (λx. C (NestedOp
k x)) res

definition deleted-calls-sdw ′ ∶∶ callId set ⇒ (callId ⇒ ′op) ⇒ callId rel ⇒ (( ′k, ′opn)
mapOp ⇒ ′op) ⇒ ′k ⇒ callId set where
deleted-calls-sdw ′ vis op hb C k ≡ {c∈vis. ∃d∈vis. op d = C (DeleteKey k) ∧ (d,c)∉hb}

definition
map-sdw-spec ′ ≡ map-spec ′ deleted-calls-sdw ′

Figure 4.16.: First-order specification of the sdw-map.
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obtain a
where a ∈ vis

and ∀d∈vis. op d = Message (DeleteKey msg) Ð→ (d, a) ∈ hb
and op a = Message (NestedOp msg (Author (Assign (String author))))
and ∀ c ′. c ′ ∈ vis Ð→

(∃d∈vis. op d = Message (DeleteKey msg) ∧ (d, c ′) ∉ hb)
∨ (∀ v ′. op c ′ /= Message (NestedOp msg (Author (Assign v ′))))
∨ (a, c ′) ∉ hb

Figure 4.17.: Resulting formula for first-order specifications.

sub-ctxt ≡
(restrict-ctxt-op (select-field Author)

(sub-context (nested-op-on-key msg)
(− deleted-calls-sdw (restrict-ctxt-op (select-field Message)

(∣calls = cs, happensBefore = hb∣)) msg)
(restrict-ctxt-op (select-field Message)

(∣calls = cs, happensBefore = hb∣))))

obtain c where Op sub-ctxt c ≜ Assign (String author)
and ∀ c ′. (∀ v ′. Op sub-ctxt c ′ /= Some (Assign v ′))

∨ (c, c ′) ∉ happensBefore sub-ctxt

Figure 4.18.: Resulting formula for higher-order specifications.

struct, where one field stores the messages in a map from message identifier
to another struct, which contains registers for the author and the content of
the message. In this context, we consider the case where reading the author
field of a message msg returns the string author:

crdtSpec ′ (Message (NestedOp msg (Author Read))) vis op hb id (String author)

This query comes up in the verification of the getMessage procedure. If we
take this query and unfold all the specifications, we get to the facts shown in
Figure 4.17. There are at the level of the database history. We are able to
obtain a database call a which is visible and has the operation that assigned
the string author to the register. Moreover, we know that all visible calls that
would delete the entry for the message msg from the map happened before a.
Finally, we can derive that the assignment a has not been overridden, so any
other visible call c′ is either deleted, is no assignment to the register, or does
not come after a.

This example shows that by simply unfolding the relevant definitions, we can
get a succinct representation in terms of the database history, which enables
us to easily reason about the results. On the other hand, the original higher-
order specifications do not produce these nice results. Figure 4.18 shows the
resulting facts after unfolding the basic definitions but before unfolding the
sub-context generated for the query.

We can already see that the formula for the sub-context is quite complicated.
As soon as we try to unfold the definitions related to this sub-context the size
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of the formula increases substantially, so we cannot show it here on one page.
All definitions transforming the context work with functions, but since we have
no information about the inverse of these functions, their composition cannot
be automatically simplified to a similar representation as we have seen for the
first-order specifications.
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Chapter 5
A Formalized Proof Technique

In this chapter we present a formalized approach for verifying the correctness
of highly available applications. All definitions and proofs in this chapter have
been formalized and checked in Isabelle/HOL [NPW02]. The Isabelle theories
are available on Github1.

To precisely define correctness of applications, we introduce an operational,
small-step, interleaving semantics in Section 5.1. In principle, we could directly
verify an application in Isabelle using these definitions. However, without a
more systematic approach, this is very tedious. The goal of the Repliss proof
technique is to simplify the verification problem.

To handle the fine-grained concurrency we reduce the verification problem
to the verification against a simplified semantics, which we call the single-
invocation semantics. This semantics only considers a single procedure invo-
cation and uses invariants to reason about the effects of other invocations.
With this step, we eliminate the need to reason about fine-grained concurrent
interactions. We describe this single-invocation semantics and its relation to
the interleaving semantics in Section 5.2. In Section 5.3, we present our sound-
ness proof which shows that we can use the simpler semantics for verification.
Finally, in Section 5.4 we discuss completeness of this reduction.

5.1. Interleaving Semantics
In this section, we formalize the system semantics in the form of an opera-
tional small-step semantics. Concurrency is handled by interleaving of actions
of different procedure invocations. In the following we therefore call this se-
mantics the interleaving semantics. Procedures define the external interface
(API) of a program. Clients invoke the procedures of a program which creates
a new concurrent process. As there is no other mechanism to introduce concur-
rency, there is a one-to-one correspondence between concurrent processes and
procedure invocations. Each procedure invocation is executed as a sequential
process, interleaved with the other concurrent invocations.

1https://github.com/peterzeller/repliss‐isabelle
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Figure 5.1 shows the definitions regarding system state that we use in our
formalization. The semantics is parameterized by four type parameters:

’op The type of operations that can be performed on the database.

’proc The procedures provided by the application. The type includes the
procedure arguments.

’any The type of values used by programs, which is also the type of values
returned by database calls and procedure invocations.

’ls The local state of a procedure invocation. At this step we do not assume
a fixed programming language in which procedures are implemented.
Instead, we model a procedure implementation using an abstract state
transition system with states of type ’ls. Later, in Section 6.1 we instan-
tiate this abstract state machine with programs written in a concrete
programming language.

The system state is organized as a hierarchy of records, which allows us to
precisely restrict a definition to certain parts of the state.

The first definition is the operationContext, which represents the database
state and thus is also the only part of the state that is used in database query
specifications later on. An operation context comprises a map containing the
operation and result of each database calls and a happens-before relation on
the calls.

The operationContext is extended to an invContext, which is the part of
the state that can be addressed by invariants. Here, we also have informa-
tion about database transactions, the procedure invocation history, and about
unique identifiers.

Finally, state defines the remaining fields. Here, we include the status of
transactions, the generated unique identifiers, and the local state for each
procedure invocation. We will explain these fields in detail below, together
with the rules for the semantics.

The rules of our semantics are shown in Figure 5.2 and 5.3. We write
S

i,a
Ð→ S′ to denote that the system makes a step from state S to S′ by executing

action a in procedure invocation i. In every step, a different invocation can
progress, resulting in a fine-grained interleaving semantics. S

trÐ→*S′ denotes
the reflexive, transitive closure with the trace tr. The trace is the sequence of
(invocId,action) pairs of the individual steps.

Each rule describes the complete effect of a single action which includes some
orthogonal aspects of our semantics. In the following we therefore describe the
different aspects and how they manifest in the rules.

Procedure invocations. In our semantics, a procedure invocation is triggered
by an application request from some client. Clients may invoke procedures
concurrently, but each single invocation executes sequentially.

Programs (record prog) are modeled with a function (field procedure) that
takes the procedure name and the arguments (’proc) of the invocation and
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record ( ′op, ′any) operationContext =
calls ∶∶ callId ⇀ ( ′op, ′any) call
happensBefore ∶∶ callId rel

record ( ′proc, ′op, ′any) invContext = ( ′op, ′any) operationContext +
callOrigin ∶∶ callId ⇀ txId
txOrigin ∶∶ txId ⇀ invocId
knownIds ∶∶ uniqueId set
invocOp ∶∶ invocId ⇀ ′proc
invocRes ∶∶ invocId ⇀ ′any

record ( ′proc, ′ls, ′op, ′any) state = ( ′proc, ′op, ′any) invContext +
prog ∶∶ ( ′proc, ′ls, ′op, ′any) prog
txStatus ∶∶ txId ⇀ txStatus
generatedIds ∶∶ uniqueId ⇀ invocId
localState ∶∶ invocId ⇀ ′ls
currentProc ∶∶ invocId ⇀ ( ′ls, ′op, ′any) procedureImpl
visibleCalls ∶∶ invocId ⇀ callId set
currentTx ∶∶ invocId ⇀ txId

record ( ′proc, ′ls, ′op, ′any) prog =
querySpec ∶∶ ′op ⇒ ( ′op, ′any) operationContext ⇒ ′any ⇒ bool
procedure ∶∶ ′proc ⇒ ( ′ls × ( ′ls, ′op, ′any) procedureImpl)
invariant ∶∶ ( ′proc, ′op, ′any) invContext ⇒ bool

datatype ( ′op, ′any) call = Call (call-operation∶ ′op) (call-res∶ ′any)

type-synonym ( ′ls, ′op, ′any) procedureImpl =
′ls ⇒ ( ′ls, ′op, ′any) localAction

datatype ( ′ls, ′op, ′any) localAction =
LocalStep bool ′ls
∣ BeginAtomic ′ls
∣ EndAtomic ′ls
∣ NewId ′any ⇀ ′ls
∣ DbOperation ′op ′any ⇒ ′ls
∣ Return ′any

datatype ( ′proc, ′op, ′any) action =
ALocal bool
∣ ANewId ′any
∣ ABeginAtomic txId (callId set)
∣ AEndAtomic
∣ ADbOp callId ′op ′any
∣ AInvoc ′proc
∣ AReturn ′any
∣ ACrash
∣ AInvcheck bool

Figure 5.1.: Type definitions for the formalizing the system semantics.
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invocation:

localState S i = None ∧
procedure (prog S) proc = (initialState, impl) ∧
uniqueIds proc ⊆ knownIds S ∧ invocOp S i = None Ô⇒
S

(i, AInvoc proc)
ÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ initialState),

currentProc ∶= currentProc S(i ↦ impl),
visibleCalls ∶= visibleCalls S(i ↦ ∅),
invocOp ∶= invocOp S(i ↦ proc)∣)

return:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧ f ls = Return res ∧ currentTx S i = None Ô⇒
S

(i, AReturn res)
ÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= (localState S)(i ∶= None),

currentProc ∶= (currentProc S)(i ∶= None),
visibleCalls ∶= (visibleCalls S)(i ∶= None),
invocRes ∶= invocRes S(i ↦ res),
knownIds ∶= knownIds S ∪ uniqueIds res∣)

local:

localState S i ≜ ls ∧ currentProc S i ≜ f ∧ f ls = LocalStep ok ls ′ Ô⇒
S

(i, ALocal ok)
ÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ ls ′)∣)

newId:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = NewId ls ′ ∧
generatedIds S uid = None ∧
uniqueIds uidv = {uid} ∧ ls ′ uidv ≜ ls ′′ ∧ uid = to-nat uidv Ô⇒
S

(i, ANewId uidv)
ÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ ls ′′),

generatedIds ∶= generatedIds S(uid ↦ i)∣)

Figure 5.2.: Interleaving semantics, Part 1.
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beginAtomic:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = BeginAtomic ls ′ ∧
currentTx S i = None ∧
txStatus S t = None ∧
visibleCalls S i ≜ vis ∧ chooseSnapshot snapshot vis S Ô⇒
S

(i, ABeginAtomic t snapshot)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ ls ′),

currentTx ∶= currentTx S(i ↦ t),
txStatus ∶= txStatus S(t ↦ Uncommitted),
txOrigin ∶= txOrigin S(t ↦ i),
visibleCalls ∶= visibleCalls S(i ↦ snapshot)∣)

endAtomic:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧ f ls = EndAtomic ls ′ ∧ currentTx S i ≜ t Ô⇒
S

(i, AEndAtomic)
ÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ ls ′),

currentTx ∶= (currentTx S)(i ∶= None),
txStatus ∶= txStatus S(t ↦ Committed)∣)

dbop:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = DbOperation Op ls ′ ∧
currentTx S i ≜ t ∧
calls S c = None ∧
querySpec (prog S) Op (getContext S i) res ∧ visibleCalls S i ≜ vis Ô⇒
S

(i, ADbOp c Op res)
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ ls ′ res),

calls ∶= calls S(c ↦ Call Op res),
callOrigin ∶= callOrigin S(c ↦ t),
visibleCalls ∶= visibleCalls S(i ↦ vis ∪ {c}),
happensBefore ∶= happensBefore S ∪ vis × {c}∣)

crash:

localState S i ≜ ls Ô⇒
S

(i, ACrash)
ÐÐÐÐÐÐÐ→ S(∣localState ∶= (localState S)(i ∶= None),

currentTx ∶= (currentTx S)(i ∶= None),
currentProc ∶= (currentProc S)(i ∶= None),
visibleCalls ∶= (visibleCalls S)(i ∶= None)∣)

invCheck:

invariant-all S = res Ô⇒ S
(i, AInvcheck res)
ÐÐÐÐÐÐÐÐÐÐÐ→ S

Figure 5.3.: Interleaving semantics, Part 2.
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returns the initial local state of the procedure and its implementation. The
implementation is represented by an abstract state machine with states of type
’ls. The implementation (procedureImpl) is given by a function which calcu-
lates the next action based on the current invocation state. Possible actions
are represented by the type localAction and comprise local evaluations (local),
generating unique identifiers (newId), database related actions (beginAtomic,
endAtomic, dbOp) and returning from an invocation (return). In the system
state, we use the fields currentProc to store the implementation and the field
localState to store the local invocation state.

The rule invocation describes the start of a procedure invocation. The
precondition of the rule enforces that the procedure is defined for the given
arguments. The remaining aspects of this rule are related to tracking the
history and handling of unique identifiers (see below). The return rule is
similar.

For local actions in a procedure invocation we have the rule (local), which
represents local computations and state changes in a programming language,
for example changing variable values. Local actions may fail, which we denote
by the ok flag in the rule being False. This allows us to model local assertions
as well as runtime errors, like dereferencing an invalid reference.

Database operations. Instead of modeling the database state explicitly and
thus assuming a concrete implementation of the database, we represent the
current state using event graphs of the database calls, as described in Chap-
ter 4. A program has a CRDT specification of the format introduced in that
chapter.

In the formal model, each database call is identified by a callId; the partial
function call in the system state stores information about each call. The
callInfo consists of the arguments to the operation and its return value. The
happensBefore relation records the partial order between calls and callOrigin
stores the transaction each call originated from. Transactions are identified
by a txId, and its txStatus can be uncommitted or committed. The procedure
invocation that started a transaction is stored in txOrigin. Together, this
information represents the history of database calls. Additionally, the field
visibleCalls keeps the set of database calls that are visible at a procedure
invocation and currentTransaction the currently running transaction (if any)
for an invocation.

The rule beginAtomic describes what happens on the database when starting
a new transaction. The rule picks a fresh transaction identifier t. In the new
state the status for t is set to uncommitted, the current transaction is changed
to t for invocation i, and we record the origin of the transaction as i.

Recall that we here consider databases in which transactions work on causally
consistent snapshots, modeled as a set of visible updates on the database. At
the start of transaction, a snapshot is chosen. The corresponding chooseSnap-
shot predicate is defined in Figure 5.4. To obtain the snapshot, we choose an
arbitrary set of committed transactions newTxns which are to become visible.
From this we get the set of newly visible calls newCalls, by taking the calls in
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chooseSnapshot snapshot vis S =
(∃newTxns newCalls.
(∀ txn∈newTxns. txStatus S txn ≜ Committed) ∧
newCalls = callsInTransaction S newTxns ↓ happensBefore S ∧
snapshot = vis ∪ newCalls)

(x ∈ S ↓ R) = (x ∈ S ∨ (∃ y∈S. (x, y) ∈ R))

callsInTransaction S newTxns = {c ∣ ∃ txn∈newTxns. callOrigin S c ≜ txn}

Figure 5.4.: Choosing transaction snapshts.

the chosen transactions and calculating the downwards closure (denoted by ↓)
with respect to the happens-before relation. In our model, the happens-before
relation is by construction transitive, so that the definition of the downwards-
closure itself does not need to include transitively related elements. The new
snapshots then is the union of the old snapshot vis and the newly added calls.

When ending the current transaction (rule commit), its txStatus is set to
committed. This allows it to be included in new snapshots, which eventually
makes the database calls in the transaction visible to others. As the atomic
rule can only pick committed transactions and no new calls can be added to
it after committing, transactions are atomic.

When executing a database operation (rule DB-operation), we extract the
operationContext from the current state using the getContext function. As
described in Chapter 4, the operation context consists of the currently visible
calls and the happens-before relation restricted to the visible calls. Formally,
if visibleCalls S i ≜ vis then getContext is defined as:

getContext S i =
(∣calls = calls S↾vis, happensBefore = happensBefore S ∣r vis∣)

We then nondeterministically pick a result res, which satisfies the query
specification (querySpec) of the program in the operation context. The data-
base call is then recorded in the state by adding the operation with its argu-
ments and result to the existing calls. We also record the current transaction
as the originating transaction for the new call. The happens-before relation is
also updated by making the new call causally depend on all currently visible
calls. The new call is then added to the set of visible calls, such that following
operations depend on it.

History Recording. As for the database, we also store a history of invoca-
tions of API-procedures including the respective arguments (invocationOp)
and the result for completed invocations (invocationRes). By using these in
specifications, we can relate different procedure invocations and link procedure
invocation with their corresponding changes in the database state. The rules
invocation and return update this information accordingly.
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Unique Identifiers. In practice, unique identifiers are often generated using
UUIDs or using a replica-specific identifier together with a locally unique iden-
tifier. For example, the replicated database Cassandra includes a type named
timeuuid and a function now that guarantees to generate a globally unique
value2.

Since identifiers for database entries appear in most applications, we include
a builtin action, which lets applications generate globally unique identifiers
(see rule new-id). With this extension, we avoid proving the correctness of
an identifier generator for every application. Moreover, it allows us to handle
generated identifiers as special values, which cannot be forged by clients.

To model unique identifiers, we require that the type any comes with a
function uniqueIds : any → uniqueId set extracting the unique identifiers of
a value. A uniqueId is simply modelled as a natural number. The new-id
rule ensures that the generated value includes exactly one unique identifier,
which is the same number as we get when converting the generated value to a
natural number using to-nat. The NewId action takes a parameter ls’, which
is a partial function that takes the newly generated identifier and returns the
next local state. The new-id rule demands that the generated identifier must
be in the domain of the ls’ function. This allows us to include a kind of
type-check in the action to generate a unique identifier of a specific form.

To describe the semantics, we keep track of all generated unique identifiers
in generatedIds. The set knownIds represents the identifiers which could be
known to clients, i.e. identifiers which have been returned from an invocation
of the application API (see rule return). In the invocation rule, we enforce
that clients can only invoke the API with known identifiers.

Partial Failures. Since we are considering a distributed application, it is nec-
essary to handle partial failures. We are following the crash-stop failure model
[CGR11] in our model. This is captured in the semantics with the rule crash,
which models a crash of a single procedure invocation and loses all locally
stored information. Afterwards, the invocation cannot continue, since there is
no local state.

Invariants. We use invariants to specify the application. Invariants can refer
to the database state as well as the history of procedure invocations, which
makes the specification language more expressive than related work where
invariants can only refer to the database state.

Formally, rule inv is always enabled so the invariant can be checked (and
therefore must hold) at all times. However, the invariant cannot involve ar-
bitrary aspects of the current state. The function invariant-all checks the
invariant in an invariant context that is restricted to the set of committed
calls. All information local to a particular procedure invocation (i.e. txStatus,
generatedIds, localState, currentProc, currentTransaction, and visibleCalls) is

2Cassandra documentation: UUID and timeuuid functions https://docs.datastax.com/
en/archived/cql/3.3/cql/cql_reference/timeuuid_functions_r.html
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not included in the invariant context. These restrictions are essential for sim-
plifying the verification efforts, which we discuss in the next section. Formally,
the invariant-all predicate is defined as:

invariant-all S =
invariant (prog S)
(∣calls = calls S↾committedCalls S,

happensBefore = happensBefore S ∣r committedCalls S,
callOrigin = callOrigin S↾committedCalls S,
txOrigin = txOrigin S↾committedTransactions S, knownIds = knownIds S,
invocOp = invocOp S, invocRes = invocRes S ∣)

committedCalls S =
{c ∣ ∃ tx. callOrigin S c ≜ tx ∧ txStatus S tx ≜ Committed}

Expressiveness of Invariants As mentioned above, specifications in our proof
framework are by design limited to invariants about so-called invariant con-
texts. The invariant context does not include parts of the state that are local
to individual procedure invocations. Thus, certain functional properties can-
not be expressed as invariants in our framework, while they can be expressed
as properties in Isabelle/HOL when directly using the interleaving semantics.

One class of properties not expressible with our invariants are liveness prop-
erties, i.e. statements about infinite executions [AS85]. Neither can probabilis-
tic properties like fairness or properties about the running time and resource
consumption of programs be expressed.

However, we can express many temporal properties as invariants can access
the history and relation between procedure invocations and database opera-
tions. This makes our specifications more expressive than classical invariants
on states, where such properties can only be defined using ghost variables to
record the necessary history information.

The restriction on global states is not a restriction for the expressiveness
of specifications, as it does not concern the externally observable behavior.
The externally observable behavior is available in the history of procedure
invocations, although some aspects as timing and total order of procedure
invocations is not available in specifications.

For verification however, the question is, whether it is possible to formulate
sufficiently strong invariants such that all verification steps can be completed.
Here, the limitation on invariant contexts might be a problem, which we need
to address when developing our proof technique in the following sections.

One known limitation concerns reasoning about unique identifiers. Informa-
tion about the generated unique identifiers is not part of the invariant context.
However, there are some implicit dependencies between different procedure in-
vocations due to the uniqueness constraint. This cannot be expressed with our
invariants. However, in most cases we can still reason about programs with
unique identifiers through the generic properties about well-formed programs
that we discuss in Section 6.3.
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5.1.1. Correct Programs

Using the invariant checks in our transition relation S
trÐ→*S′, we can define

program correctness as follows:

traces program ≡ {tr ∣ ∃S ′. initialState program trÐÐ→* S ′}

actionCorrect a ≡ a /= AInvcheck False ∧ a /= ALocal False

traceCorrect trace ≡ ∀ (i, a)∈trace. actionCorrect a

programCorrect program ≡ ∀ trace∈traces program. traceCorrect trace

The set traces includes all traces admitted by a program; the predicate
traceCorrect defines that a trace is correct if it only contains correct actions.
There are two cases of actions we consider as incorrect: 1. Invariant checks
with result False 2. Local steps with check False. Using the definition of correct
traces, we define a program to be correct if all its traces are correct.

With these definitions we are in principle ready to verify the correctness of
applications in Isabelle. The naive approach of using the definition with an
induction over the possible steps is however not very practical. We have to
consider all possible traces, which includes the interleavings of several concur-
rent procedure invocations that are allowed by the transition relation. Thus,
the invariant required for the induction would need to characterize every sin-
gle program state of a procedure invocation, leading to invariants which are
at least linear in the number of steps in a procedure.

5.2. Reduction to Single-invocation Semantics
To address the challenge of handling concurrency in our setting, we have de-
veloped a proof technique, which reduces the formal verification problem to a
simpler problem, where we can reason about only one procedure invocation at
a time.

Our proof technique is based on invariants and reduces the proof obliga-
tions to checking that the initial system state satisfies the invariant and that
each procedure invocation maintains the invariant. When verifying a single
procedure invocation, the effects of other invocations only need to be con-
sidered at specific program points, namely at the procedure invocation and
before the start of transactions. We use the invariant and generic properties
of executions to reason about possible state changes at these program points.
For the procedure to be verified, we must then guarantee that the invariant
is maintained at the end of transactions, right after the start of a procedure
invocation, and after returning from a procedure invocation. The latter two
are necessary because at these program points the information stored in the
history of procedure invocations is updated.

Technically, we formalize the reduction using a second operational seman-
tics, the single-invocation semantics, which we present in this section. In Sec-
tion 5.3, we then prove that reduction from the interleaving semantics to the

58



5.2. Reduction to Single-invocation Semantics

single-invocation semantics is sound: If a program is correct with respect to
the single-invocation semantics, it is also correct in the interleaving semantics.

The main difference between the two semantics is that the single-invocation
semantics only allows steps in a single invocation. Effects from different in-
vocations are reflected by nondeterministic steps in the rules for starting a
procedure invocation and beginning a transaction. In these cases, the rules
of the single-invocation semantics allow an arbitrary state change, assuming
that the invariant is maintained, the new state is well-formed, and the history
of the new state is an extension of the former history.

Moreover, the single-invocation semantics does not include a dedicated step
to check the invariant. The invariant has to be checked in the following three
steps: directly after a procedure invocation (S-invocation), after the end of a
transaction (S-commit), and after a procedure invocation returns to the client
(S-return).

Correspondingly, we adapted the transition relation to be S
i,a,v
ÐÐ→. S′ for

a single step. The value v is True if the step fulfills the necessary invariant
checks. In the following we will often abbreviate the pair (a, v) using a single
variable and write S

i,a
Ð→. S′, where a contains both the action and the cor-

rectness indicator v (c.f. Isabelle’s handling of tuples introduced in Section
3.4.1).

We again define S
trÐ→. *S′ as the transitive closure. However, all steps must

be on the same invocation now and the traces only include the action a and
the value v. Formally, the construction of the transitive closure and the trace
is described by the two rules below:

1. S
(i, [])
ÐÐÐÐÐ→. * S

2. S
(i, tr)
ÐÐÐÐÐ→. * S ′ ∧ S ′

(i, a)
ÐÐÐÐÐ→. S ′′ Ô⇒ S

(i, tr @ [a])
ÐÐÐÐÐÐÐÐÐ→. * S ′′

A program is correct with respect to the single-invocation semantics if for all
possible executions the trace contains only actions for which v is true. Thus,
the correctness of a program with respect to the single-invocation semantics
can be formalized as:

traceCorrect-s trace ≡ ∀a. (a, False) ∉ trace

programCorrect-s program ≡
∀ trace i S. initialState program

(i, trace)
ÐÐÐÐÐÐÐ→. * S Ð→ traceCorrect-s trace

Figures 5.5 and 5.6 show the rules of the single-invocation semantics. The
rules local, DB-operation, and new-id are almost identical to the rules of the
interleaving semantics, so we do not elaborate on them here. The interesting
differences between the two semantics are in the handling of invocations and
transactions. We explain these differences below.
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s-invocation:

invocOp S i = None ∧
procedure (prog S) proc = (initState, impl) ∧
uniqueIds proc ⊆ knownIds S ′ ∧
state-wellFormed S ′ ∧
(∀ tx. txStatus S ′ tx /= Some Uncommitted) ∧
invariant-all S ′ ∧
invocOp S ′ i = None ∧
prog S ′ = prog S ∧
S ′′ = S ′
(∣localState ∶= localState S ′(i ↦ initState),

currentProc ∶= currentProc S ′(i ↦ impl),
visibleCalls ∶= visibleCalls S ′(i ↦ ∅),
invocOp ∶= invocOp S ′(i ↦ proc)∣) ∧

valid = invariant-all S ′′ ∧ (∀ tx. txOrigin S ′′ tx /= Some i) Ô⇒
S

(i, AInvoc proc, valid)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S ′′

s-return:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = Return res ∧
currentTx S i = None ∧
S ′ = S
(∣localState ∶= (localState S)(i ∶= None),

currentProc ∶= (currentProc S)(i ∶= None),
visibleCalls ∶= (visibleCalls S)(i ∶= None),
invocRes ∶= invocRes S(i ↦ res),
knownIds ∶= knownIds S ∪ uniqueIds res∣) ∧

valid = invariant-all S ′ Ô⇒
S

(i, AReturn res, valid)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S ′

s-local:

localState S i ≜ ls ∧ currentProc S i ≜ f ∧ f ls = LocalStep ok ls ′ Ô⇒
S

(i, ALocal ok, ok)
ÐÐÐÐÐÐÐÐÐÐÐÐ→. S(∣localState ∶= localState S(i ↦ ls ′)∣)

s-newId:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = NewId ls ′ ∧
generatedIds S uid = None ∧
uniqueIds uidv = {uid} ∧ ls ′ uidv ≜ ls ′′ ∧ uid = to-nat uidv Ô⇒
S

(i, ANewId uidv, True)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S(∣localState ∶= localState S(i ↦ ls ′′),

generatedIds ∶= generatedIds S(uid ↦ i)∣)

Figure 5.5.: Single-invocation semantics (Part 1).
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s-beginAtomic:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = BeginAtomic ls ′ ∧
currentTx S i = None ∧
txStatus S t = None ∧
prog S ′ = prog S ∧
state-monotonicGrowth i S S ′ ∧
invariant-all S ′ ∧
(∀ tx. txStatus S ′ tx /= Some Uncommitted) ∧
state-wellFormed S ′ ∧
state-wellFormed S ′′ ∧
localState S ′ i ≜ ls ∧
currentProc S ′ i ≜ f ∧
currentTx S ′ i = None ∧
visibleCalls S i ≜ vis ∧
visibleCalls S ′ i ≜ vis ∧
chooseSnapshot vis ′ vis S ′ ∧
consistentSnapshot S ′ vis ′ ∧
txStatus S ′ t = None ∧
(∀ c. callOrigin S ′ c /= Some t) ∧
txOrigin S ′ t = None ∧
S ′′ = S ′
(∣txStatus ∶= txStatus S ′(t ↦ Uncommitted), txOrigin ∶= txOrigin S ′(t ↦ i),

currentTx ∶= currentTx S ′(i ↦ t), localState ∶= localState S ′(i ↦ ls ′),
visibleCalls ∶= visibleCalls S ′(i ↦ vis ′)∣) Ô⇒

S
(i, ABeginAtomic t vis ′, True)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S ′′

s-endAtomic:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = EndAtomic ls ′ ∧
currentTx S i ≜ t ∧
S ′ = S
(∣localState ∶= localState S(i ↦ ls ′), currentTx ∶= (currentTx S)(i ∶= None),

txStatus ∶= txStatus S(t ↦ Committed)∣) ∧
state-wellFormed S ′ ∧ valid = invariant-all S ′ Ô⇒
S

(i, AEndAtomic, valid)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S ′

s-dbop:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = DbOperation Op ls ′ ∧
currentTx S i ≜ t ∧
calls S c = None ∧
querySpec (prog S) Op (getContext S i) res ∧ visibleCalls S i ≜ vis Ô⇒
S

(i, ADbOp c Op res, True)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S(∣localState ∶= localState S(i ↦ ls ′ res),

calls ∶= calls S(c ↦ Call Op res),
callOrigin ∶= callOrigin S(c ↦ t),
visibleCalls ∶= visibleCalls S(i ↦

vis ∪ {c}),
happensBefore ∶=

happensBefore S ∪ vis × {c}∣)

Figure 5.6.: Single-invocation semantics (Part 2).
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Rule S-invocation. An invocation can only be executed at the beginning
of the trace, since the rule demands that the invocation i is not yet used in
the current state S. The rule then nondeterministically chooses a state S′

which satisfies the invariant and starts the procedure invocation, which yields
state S′′. The rule also allows us to assume that there are no uncommitted
transactions at the start of an invocation and that we start from a well-formed
state. A state is defined to be well-formed if it is reachable from the initial
state.

We then check whether the invariant holds in S′′ and record the result in the
trace. This is necessary, because invariants can refer to unfinished procedure
invocations, so starting an invocation can cause an invariant violation.

Rule S-return. For a return statement, we check the invariant in the state
after completing the invocation.

Rule S-beginAtomic At the beginning of a transaction a new snapshot is
determined, which means that this is a place where changes from concur-
rent invocations might become visible to the current invocation. We model
this with a nondeterministic state change from the current state S to a
new state S′. The state S′ is restricted by the invariant and the predicate
state-monotonicGrowth(i, S, S′). Moreover, we can assume that there are no
uncommitted transactions in state S′.

The idea of the state-monotonicGrowth predicate is to capture generic prop-
erties that can be derived from the fact that the history grows monotonically
and past events cannot change. Formally, we define it to mean that state S′

is reachable from state S with steps on invocations other than i and without
any crashes:

state-monotonicGrowth i S S ′ ≡
state-wellFormed S ∧
(∃ tr. S trÐÐ→* S ′ ∧ (∀ (i ′, a)∈tr. i ′ /= i) ∧ (∀ i ′. (i ′, ACrash) ∉ tr))

This definition allows us to use any general property we can prove about
steps taken in other invocations.

The remaining aspects of the s-beginAtomic rule describe the other state
changes and are equivalent to the interleaving semantics, or they are additional
invariants that we make available in the rule to help with verification.

Rule S-endAtomic When a transaction is committed, we check the invariant
in the state after the commit and record the result of the invariant check in the
trace. This ensures that an execution is considered incorrect if a transaction
breaks the invariant.

5.3. Formalized Soundness Proof
We now show that it is in fact sufficient to prove a program correct with
respect to the single-invocation semantics in order to ensure correctness in all
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possible concurrent executions according to the interleaving semantics.

5.3.1. Proof Overview
We start with a high level overview of the proof and then dive into the details
in the subsections of this chapter. Figure 5.7 illustrates the main steps in our
proof with an example, which we will pick up in the definitions below.

The first step is to limit the possible interleavings of invocations in a trace.
We show that for verifying correctness, it is sufficient to consider only traces
where all context switches from one invocation to another occur at specific
actions. We call such traces packed.

Definition 5.3.1.1 (Allowed Context Switches) Only invocations and the
start of a transaction are allowed context switches:

allowed-context-switch action ≡
(∃ txId txns. action = ABeginAtomic txId txns) ∨ (∃p. action = AInvoc p)

Definition 5.3.1.2 (Packed traces) A trace tr is packed for a procedure
invocation i if it only switches to invocation i with an action that is an allowed
context switch:

packed-trace-i tr i ≡
∀ k. 0 < k ∧ k < ∣tr ∣ ∧ get-invoc tr[k] = i ∧ get-invoc tr[k − 1 ] /= i Ð→

allowed-context-switch (get-action tr[k])

We say a trace is packed if it is packed for all procedure invocations:

packed-trace tr = (∀ i. packed-trace-i tr i)

Lemma 5.3.1.3 (Reduction to packed traces) A program is correct if all
its traces that are packed and do not contain crash-steps are correct.
(The formalization and extended proof are given in 5.3.5.2 on page 73)

Proof (sketch) The proof is essentially a reduction argument [Lip75] which
uses commutativity of actions performed on different invocations.

Let tr be a failing trace of the program, i.e. a trace containing a failing
invariant check. We show that we can then construct a packed trace which is
also failing. We consider the prefix of tr up to the first failing invariant check.
We then can reorder the actions in this prefix to get a packed trace.

We prove this by induction over the number of procedure invocations, which
are not yet packed. To show that a single invocation i can be packed without
unpacking any other invocation, we use another induction over the minimal
index k with a not-allowed invocation switch. This cannot be the first action
for invocation i, since invoc is an allowed invocation switch. Thus, let k′

be the last action on invocation i before k. We then split the trace into
tr = tr[..k′−1] ⋅ trk′ ⋅ tr[k′+1..k−1] ⋅ trk ⋅ tr[k+1..] and reorder it by moving trk to
the front to get tr′ = tr[..k′−1] ⋅ trk′ ⋅ trk ⋅ tr[k′+1..k−1] ⋅ tr[k+1..]. By changing the
order of the trace, we have eliminated all unwanted invocation switches up to
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Trace actions: begin a procedure invocation, return from an invocation,

start a transaction, commit a transaction, . database operation,
j create a new unique identifier, local steps, and 7 a failing invariant.

We annotate each start of a transaction with a transaction id and the set of
transactions that are visible to this transaction.

Step 1: Assume we have a failing trace in the interleaving semantics, for
example:

i1

i2

i3

j
t1

{}
.

t2

{}
.

t3

{t1}
.

t4

{t1}
. .

.

t5

{t1, t2, t3, t4}
. . 7

Step 2: In Lemma 5.3.1.3, we show that in this case there is an equivalent
packed trace that is also failing. We construct this packed trace by moving
actions to the front. This reordering does not invalidate any snapshots and
since snapshots are fixed in the trace, the effect of the trace is preserved. For
the example above, we can construct the following packed trace which ends
with a failing invariant:

i1

i2

i3

j
t1

{}
.

t2

{}
.

t3

{t1}
. .

t4

{t1}
. .

t5

{t1, t2, t3, t4}
. . 7

Step 3: In Lemma 5.3.1.4, we show that there is a corresponding trace in the
single invocation semantics, where we only consider procedure invocation i1
while actions from other invocations are summarized using invariants (visual-
ized by “lightcones” in the dotted lines). The proof obligation for the single
invocation semantics is to check the invariant after an invocation return and
after each transaction commit. In the picture below, the proof obligation is
always to check that the actions between a light source and a check mark
preserve the invariant.

i1
. . .3 3 7

Thus, if we prove that no invariant check ever fails in the single invocation
semantics, we have shown the correctness of the application.

Figure 5.7.: Overview of our soundness proof applied to an exemplary trace.
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index k. We can show that the action of trk commutes with the actions it is
swapped with, which are all from a different invocation.

The commutativity proof involves a case distinction over all possible actions
in the system. An interesting case here is moving an endAtomic action to the
front. In principle, this could affect other transactions, but since we do not
change the transaction snapshots when reordering the trace, we are guaranteed
to get the same results. Recall, that this behavior is valid in our semantics
of weak consistency, where the chosen snapshot does not need to include all
committed transactions. ◻

Lemma 5.3.1.4 (Simulation) Let tr be a packed trace of an execution
starting in state S and ending in state S′ where S is well-formed (i.e. reach-
able from the initial state) and satisfies the invariant and S′ does not satisfy
the invariant. Moreover, assume that tr is packed and does not contain any
crashes. Then, there is an execution with a trace tr′ in the single-invocation
semantics starting with state S such that tr′ is not a correct trace.
(The formalization and extended proof are given in 5.3.8.3 on page 82)

Proof (Proof sketch) We show that the single-invocation semantics can
simulate the distributed (interleaving) semantics. To this end, we define a
coupling relation between a state Sd of the distributed execution and a state
Si of a single-invocation execution with invocation i. The coupling invariant
distinguishes two cases: 1) When the last step in the distributed execution
was in invocation i, then the states must be equal. 2) When the last step
was on an invocation different from i, it must hold that Si is greater than Sd

with respect to the growing relation and that the local state of invocation i is
equivalent in Si and Sd.

In the simulation proof, the case of switching between invocations can only
occur at the beginning of invocations or at the start of a transaction (because
we assumed the trace is packed). In both cases, the single-invocation semantics
allows nondeterministic state-transitions, which enable the single-invocation
execution to catch up with the distributed invocation. The remaining cases
are straight-forward. ◻

Theorem 5.3.1.5 (Soundness of verification technique)
When a program is correct with respect to the single-invocation semantics
and the initial state satisfies the invariant, then the program is correct with
respect to the interleaving semantics.
(The formalization and extended proof are given in 5.3.8.4 on page 83)

Proof (Proof sketch) We show that all executions are correct. Because
of Lemma 5.3.1.3, it is sufficient to consider executions with packed traces
without crashes. Let tr be a trace for such an execution.

For the sake of a contradiction assume tr is not a correct trace, i.e. there
is a failing invariant check in the trace. We now consider the first time when
an invariant-violating state is reached and the prefix of tr leading to this
state. As the state does not satisfy the invariant, though the initial state

65



Chapter 5: A Formalized Proof Technique

does (by assumption), we can apply Lemma 5.3.1.4 and obtain a failing trace
in the single-invocation semantics. However, this is a contradiction to the
assumption that the program is correct in the single-invocation semantics. ◻

This completes the overview of our soundness proof. In the following sec-
tions, we will present the steps in the proof in more detail. We first prove some
general invariants that are true for all executions in Section 5.3.2. Then we
prove the commutativity of certain actions in Section 5.3.3. With this com-
mutativity results we show how we can reorder traces to be packed (Section
5.3.4). We then show that we can exclude crashes for verification (Section
5.3.5), and that we do not need to handle invariant checks in transactions
(Section 5.3.6). Finally, we refine the property of packed traces such that
context switches between different procedure invocations may only happen at
certain actions (Section 5.3.7). With this, we can then prove the soundness of
the reduction to the single-invocation semantics in Section 5.3.8.

5.3.2. Execution Invariants

In this subsection, we prove some general properties that hold for each execu-
tion of the interleaving semantics. These Lemmata have two purposes:

1. Some properties are required for the proof steps below. In particular, the
rules of the single-invocation semantics include additional assumptions,
which are not directly expressed in the interleaving rules.

2. The single-invocation semantics allows one to assume the wellformed
property for states during the execution. The Lemmata in this section al-
low deriving higher level properties from the wellformed predicate, which
can be useful when verifying concrete programs. It is also the basis of
the predicate abstraction we choose for the Repliss tool (see Section 7.5).

Consistency

We now show that every wellformed state satisfies certain consistency guar-
antees. More precisely, we want to show that the happens-before relation is
a strict partial order and that all snapshots are causally and transactionally
consistent.

Remember that we defined a snapshot to be a set of database calls. We say
that a snapshot is causally consistent if it downwards-closed with respect to
the happens-before relation. So, if a call c1 is in the snapshot and a call c2
happened before c1, then c2 must also be in the snapshot:

causallyConsistent hb vis ≡ ∀ c1 c2. c1 ∈ vis ∧ (c2, c1) ∈ hb Ð→ c2 ∈ vis

Transactional consistency of a snapshot can be divided into two cases. The
first condition is that all calls in the snapshot must be from committed trans-
actions:
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transactionConsistent-committed origin txSt vis ≡
∀ c tx. c ∈ vis ∧ origin c ≜ tx Ð→ txSt tx ≜ Committed

The second condition is that transactions must be atomic. If a call c1 is in
the snapshot, then all other calls c2 from the same transaction must also be
included:

transactionConsistent-atomic origin vis ≡
∀ c1 c2. c1 ∈ vis ∧ origin c1 = origin c2 Ð→ c2 ∈ vis

A consistent snapshot is a subset of all database calls in the history that
satisfies the three properties introduced above:

consistentSnapshot S vis =
(vis ⊆ dom (calls S) ∧
causallyConsistent (happensBefore S) vis ∧
transactionConsistent-committed (callOrigin S) (txStatus S) vis ∧
transactionConsistent-atomic (callOrigin S) vis)

In order to prove that the steps of the interleaving semantics guarantee
that all snapshots are consistent, we start by proving that the happens-before
relation is always transitive and that snapshots are always causally consistent.
We prove both properties by an induction over the steps. Since they depend
on each other, we cannot easily split them into separate proofs.

5.3.2.1 lemma wellFormed-state-causality∶
assumes wf ∶ state-wellFormed S
shows ⋀s vis. visibleCalls S s ≜ vis Ð→ causallyConsistent (happensBefore S) vis

and trans (happensBefore S)

Next, we show that snapshots are always transactional consistent.

5.3.2.2 lemma wellFormed-state-transaction-consistent∶
assumes wf ∶ state-wellFormed S
— contains only committed calls and calls from current transaction:
shows ⋀s vis c tx. [[visibleCalls S s ≜ vis; c∈vis; callOrigin S c ≜ tx]] Ô⇒ txStatus S
tx ≜ Committed ∨ currentTx S s ≜ tx
— contains all calls from a transaction

and ⋀s vis c c ′. [[visibleCalls S s ≜ vis; c∈vis; callOrigin S c = callOrigin S c ′]] Ô⇒
c ′∈vis
— happens-before consistent with transactions

and ⋀x y x ′ y ′. [[callOrigin S x /= callOrigin S y; callOrigin S x = callOrigin S
x ′; callOrigin S y = callOrigin S y ′ ]] Ô⇒ (x,y) ∈ happensBefore S ←→ (x ′, y ′) ∈
happensBefore S
— happens-before only towards committed transactions or to the same transaction

and ⋀x y tx tx ′. [[(x,y)∈happensBefore S; callOrigin S y ≜ tx; callOrigin S x ≜ tx ′]]
Ô⇒ txStatus S tx ′ ≜ Committed ∨ tx ′ = tx

We again prove this by induction over the step and need a few additional
properties for the induction to succeed. Besides the two properties for transac-
tional consistency that we defined above, we also show that the happens-before
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relation is consistent with transactions and that calls cannot happen before
calls from other transactions that are not yet committed.

Finally, we can combine the results above to show that all snapshots are
consistent when not inside of a transaction:

5.3.2.3 lemma wellFormed-state-consistent-snapshot∶
assumes wf ∶ state-wellFormed S
assumes vis∶ visibleCalls S s ≜ vis
assumes noTx∶ ⋀c tx. currentTx S s ≜ tx Ô⇒ callOrigin S c /= Some tx
shows consistentSnapshot S vis

Further Properties

In the following we list some additional properties about well-formed states,
which we will need in later sections. All of these can be proven with a simple
induction over the steps in the system, so we omit details about the proofs
below.

5.3.2.4 lemma wf-no-invocation-no-origin∶
assumes state-wellFormed S

and invocOp S i = None
shows txOrigin S tx /= Some i

By induction over steps.

5.3.2.5 lemma wf-no-txStatus-origin-for-nothing∶
assumes wf ∶ state-wellFormed S

and txStatusNone∶ txStatus S tx = None
shows callOrigin S c /= Some tx

By induction over steps.

5.3.2.6 lemma wellFormed-currentTx-unique-h∶
assumes a1∶ state-wellFormed S
shows ∀ sa sb t. currentTx S sa ≜ t Ð→ currentTx S sb ≜ t Ð→ sa = sb

and ∀ sa t. currentTx S sa ≜ t Ð→ txStatus S t ≜ Uncommitted

By induction over steps.

5.3.2.7 lemma wellFormed-visibleCallsSubsetCalls-h∶
assumes a1∶ state-wellFormed S
shows happensBefore S ⊆ dom (calls S) × dom (calls S)

and ⋀vis s. visibleCalls S s ≜ vis Ô⇒ vis ⊆ dom (calls S)

By induction over steps.

5.3.2.8 lemma wellFormed-visibleCallsSubsetCalls2∶
assumes ⟨state-wellFormed S⟩

and ⟨visibleCalls S sb ≜ visa⟩
and ⟨calls S c = None⟩

shows ⟨c∉visa⟩

This is a direct consequence of Lemma 5.3.2.7.
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5.3.3. Commutativity

The basis of the soundness proof is the commutativity of actions. This allows
us to reorder actions in an interleaved trace, such that transactions are grouped
together and context switches only appear at certain points in the trace.

We define a predicate canSwap for two actions a and b. The predicate
states that action b can be swapped with a and executed before it without
changing the resulting state, given that both actions are executed on different
invocations and the initial state is well-formed:

canSwap t a b ≡
∀C1 C2 i1 i2.

i1 /= i2 ∧ C1
[(i1, a), (i2, b)]
ÐÐÐÐÐÐÐÐÐÐ→* C2 ∧ state-wellFormed C1 Ð→

C1
[(i2, b), (i1, a)]
ÐÐÐÐÐÐÐÐÐÐ→* C2

For technical reasons, the definition also requires the parameter t, which is
the type of local states in C1 and C2.

We can then show that this predicate holds for most action pairs:

Lemma 5.3.3.1 (CanSwap Cases)

lemma canSwap-cases∶
assumes no-begin-atomic∶ ⋀txId txns. b /= ABeginAtomic txId txns

and no-invoc∶ ⋀p. b /= AInvoc p
and no-invcheck-a∶ ¬is-AInvcheck a
and no-invcheck-b∶ ¬is-AInvcheck b
and no-fail-a∶ a /= ACrash
and no-fail-b∶ b /= ACrash

shows canSwap t a b

The proof is done by case distinction over a and b. Most cases can be
solved automatically by unfolding the definitions. Below, we only present the
interesting cases which are the ones requiring the well-formedness of the initial
state.

1. Case (i1, beginAtomic(tx, txns)) ⋅ (i2, endAtomic):

In this case the swap would fail, if the current transaction in i2 would be
equal to tx. Then the endAtomic action would set the txStatus to com-
mitted, which would violate the precondition of beginAtomic. However,
this situation cannot occur in a wellformed state. The precondition of
endAtomic demands that the current transaction is tx and with well-
formedness (Lemma 5.3.2.6) we get that the txStatus is uncommitted.
Thus the beginAtomic cannot use the same transaction.

Moreover, moving the endAtomic to the front cannot changed the snap-
shot induced by the txns in beginAtomic, since the new transaction can-
not come before any of the already committed transaction in the txns
set.
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2. Case (i1, beginAtomic(tx, txns)) ⋅ (i2,dbOp(c, op, r)):
The beginAtomic action determines the snapshot of the new transaction.
We have to show that this does not change if the database operation
in i2 is executed earlier. First, the call c from i2 cannot be included in
the snapshot, since the precondition of dbOp requires it to be a fresh
call. Secondly, after swapping the two actions, the call c cannot be
included in the snapshot since it cannot have happened before any of
the transactions in txns.

3. Case (i1,dbOp(c1, op1, r1)) ⋅ (i2,dbOp(c2, op2, r2)):
Here, we can show that the operation contexts are equivalent after chang-
ing the order. This is easy to show using well-formedness properties
(Lemma 5.3.2.8), since neither c1 nor c2 can be in the set of visible calls
in the initial state.

The definition of canSwap only allows swapping of a single action-pair in
the trace. We now show that this can be generalized to swap an action in the
trace with a whole subsequence of the trace.

Lemma 5.3.3.2 (CanSwap Sequence)
Let tr ⋅ (i, a) be a trace, where no action in tr is from invocation i, every

action in tr can be swapped with a, and where tr contains no crashes. We can
then move the last action (i, a) to the front resulting in trace (i, a) ⋅ tr, which
results in the same state when started from a wellformed initial state.

lemma swapMany∶
fixes C1 ∶∶ ( ′proc∶∶valueType, ′ls, ′op, ′any∶∶valueType) state

and t ∶∶ ′ls itself
assumes steps∶ C1

tr @ [(i,a)]
ÐÐÐÐÐÐÐÐ→* C2

and tr-different-session∶ ⋀x. x∈set tr Ô⇒ get-invoc x /= i
and tr-canSwap∶ ⋀x. x∈set tr Ô⇒ canSwap t (get-action x) a
and wf ∶ state-wellFormed C1
and noFail∶ ⋀i. (i, ACrash) ∉ set tr

shows C1
[(i,a)] @ tr
ÐÐÐÐÐÐÐÐ→* C2

The proof is by reverse induction over tr. When tr is the empty sequence,
the statement is trivial. Otherwise, we can swap the last action in tr with
(i, a). This is possible since by assumption all actions in tr are swappable with
action a, are on a different invocation and because the state is wellformed. To
prove well-formedness, we use the fact that the initial state is well-formed and
that the trace does not contain crashes. Then we can apply the induction
hypothesis to complete the proof.

5.3.4. Packed Traces
A packed trace is a trace with limited interleaving: In a packed trace a con-
text switch from one procedure invocation to another is only allowed at a
beginAtomic or invoc action. We formalize this with the following definitions:
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allowed-context-switch(action) ≡ (∃txId, txns. action = beginAtomic(txId, txns))
∨ (∃p. action = invoc(p))

packed-trace(tr) ≡ ∀i. 0 < i < length(tr) ∧ get-invoc(tri−1) ≠ get-invoc(tri)
Ð→ allowed-context-switch(get-action(tri))

In this section, we show that it is sufficient to consider packed traces when
reasoning about application correctness: If there is an incorrect trace with no
crashes, then there also is an incorrect and packed trace with no crashes.

Lemma 5.3.4.1 (Packed Traces)

lemma pack-incorrect-trace∶
assumes steps∶ initialState program trÐÐ→* C

and noFail∶ ⋀s. (s, ACrash) ∉ set tr
and notCorrect∶ ¬traceCorrect tr

shows ∃ tr ′ C ′. packed-trace tr ′

∧ (initialState program tr ′ÐÐ→* C ′)
∧ (∀ s. (s, ACrash) ∉ set tr ′)
∧ ¬traceCorrect tr ′

For the proof we proceed in two steps. We first show that we can transform
the trace to be packed for a single invocation, then we repeat this step to show
that we can have a packed trace for all invocations.

We say that a trace is packed for an invocation i, if all context switches in
the trace from another invocation to i occur at an action with allowed-context-
switch (i.e. the start of invocation i or the start of a new transaction).

packed-trace-i tr i ≡
∀ k. 0 < k ∧ k < ∣tr ∣ ∧ get-invoc tr[k] = i ∧ get-invoc tr[k − 1 ] /= i Ð→

allowed-context-switch (get-action tr[k])

Obviously, a trace is packed if it is packed for all invocations:

packed-trace tr = (∀ i. packed-trace-i tr i)

We now prove the Lemma that allows us to transform a single invocation into
a packed invocation. The transformed trace also maintains some important
properties of the original trace. All previously packed invocations are still
packed and the new trace also dos not contain any crashes or invariant checks.
This allows us to repeatedly apply this Lemma to pack all invocations.

Lemma 5.3.4.2 (Pack trace for one invocation)
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lemma pack-trace-for-one-session∶
assumes steps∶ initialState program tr1ÐÐÐ→* C

and noFail∶ ⋀s. (s, ACrash) ∉ set tr1 (is ⋀s. - ∉ set ?tr)
and noInvcheck∶ ⋀s a. (s, a)∈set tr1 Ô⇒ ¬is-AInvcheck a

shows ∃ tr ′. packed-trace-i tr ′ s
∧ (initialState program tr ′ÐÐ→* C)
∧ (∀ s. packed-trace-i tr1 s Ð→ packed-trace-i tr ′ s)
∧ (set tr ′ = set tr1)

Proof Assume the trace is not yet packed for invocation s and let i be the
smallest index with a problematic context switch. We show that we can con-
struct a trace with no problematic context switch up to index i + 1, while
maintaining the other properties of the trace relevant for the Lemma. By
repeating this step, we can construct a trace that is packed for invocation s.

We assumed that the action at i is an action in invocation s which is not
an allowed context switch. This implies that the action is not the start of
invocation s and thus there must be a previous action in invocation s in the
trace. Let prev be the last action in s before i. We can now split the trace
into 5 parts:

1
s

prev 2
s
i 3

We then consider the trace tr′, where action i is moved to the front, directly
following prev:

1
s

prev
s
i 2 3

Now, in tr′ we only have allowed context switches on invocation s up to
and including index i. It remains to show that tr′ maintains all the relevant
properties requires for the Lemma.

1. As we only changed the order of the trace and not the contents, tr′ does
not contain any crashes or invariant checks.

2. If an invocation was already packed in tr, it is still packed in tr′. The
only new context switch newly introduced in tr′ can be at the beginning
of part 3 of the trace. If this action is from a session that is packed in
tr, then it must already have been an allowed context switch, since we
were coming from invocation s. So the corresponding invocation is still
packed.

3. The execution of trace tr′ ends in the same state as the execution of tr.
For this we use Lemma 5.3.3.2 from our commutativity results. Since
the action at i is no allowed context switch by assumption and the trace
contains no invariant checks or crashes, all actions in part 2 of the trace
satisfy the canSwap predicate with respect to the action at position i
(see Lemma 5.3.3.1).
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5.3.5. No Crashes

We now show that it is sufficient to consider executions without crashes when
verifying a program. The intuition behind this is that it is not possible to
distinguish a crashed invocation from an invocation that executes no further
steps.

Lemma 5.3.5.1 (Can Ignore Crashes) All traces of a program are cor-
rect, if and only if all traces without crashes are correct.

lemma can-ignore-fails∶
shows (∀ tr∈traces program. traceCorrect tr)
←→ (∀ tr∈traces program. (∄ s. (s, ACrash) ∈ set tr) Ð→ traceCorrect tr)

For the proof, assume we have an incorrect trace tr that contains crashes.
We show that the trace tr′ where we remove all crashes also is a trace of the
program. So for the given trace tr with Sinit

trÐ→*S′ we show that there is a
state S′′ such that Sinit

tr′Ð→*S′′. In the simulation proof, we use the following
coupling invariant relating S′ and S′′: The two states are equivalent except
in the invocations i where (i, crash) ∈ tr. For these invocations the fields
localState, currentTransaction, currentProc, and visibleCalls may differ.

The differences in these fields is not relevant, as they are only used in actions
on the respective invocations. In particular, they cannot be accessed from
invariants. It remains to show that there can be no further action on an
invocation after an crash, which follows from the precondition of the respective
actions. ◻

We can combine the results from Lemma 5.3.5.1 with Lemma 5.3.4.1 to get
the following Lemma:

Lemma 5.3.5.2 theorem show-programCorrect-noTransactionInterleaving∶
assumes packedTracesCorrect∶
⋀trace s. [[

initialState program traceÐÐÐÐ→* s;
packed-trace trace;
⋀s. (s, ACrash) ∉ set trace
]] Ô⇒ traceCorrect trace

shows programCorrect program

5.3.6. No Invariant Checks

We now show that we do not have to consider traces with invariant checks
inside of transactions when verifying a program. Obviously, an invariant check
has no effect on the state, so checks where the invariant evaluates to true can be
removed from a trace. The resulting trace remains its packed property, since
the filtering does not remove the allowed context switches. If we combine this
with Lemma 5.3.5.2, we get:

Lemma 5.3.6.1
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theorem show-programCorrect-noTransactionInterleaving-no-passing-invchecks∶
assumes packedTracesCorrect∶
⋀trace s. [[

initialState program traceÐÐÐÐ→* s;
packed-trace trace;
⋀s. (s, ACrash) ∉ set trace;
⋀s. (s, AInvcheck True) ∉ set trace
]] Ô⇒ traceCorrect trace

shows programCorrect program

Next, we show that we do not have to consider invariant checks inside trans-
actions.

Lemma 5.3.6.2 No Invariant Checks in Transactions
Assume we are given a nonempty trace of the program ending in a fail-

ing invariant. Moreover, the trace contains no other invariant checks and no
crashes. Then there also is a trace with the aforementioned properties, which
additionally does not contain any invariant checks inside a transaction.

lemma move-invariant-checks-out-of-transactions∶
assumes initialState program traceÐÐÐÐ→* S

and packed-trace trace
and ⋀s. (s, ACrash) ∉ set trace
and ⋀s. (s, AInvcheck True) ∉ set trace
and length trace > 0
and last trace = (s, AInvcheck False)
and ⋀i s ′. i<length trace − 1 Ô⇒ trace!i /= (s ′, AInvcheck False)

shows ∃ trace ′ s ′.
(∃S ′. initialState program trace ′ÐÐÐÐ→* S ′)

∧ packed-trace trace ′
∧ (∀ s. (s, ACrash) ∉ set trace ′)
∧ (∀ s. (s, AInvcheck True) ∉ set trace ′)
∧ (last trace ′ = (s ′, AInvcheck False))
∧ length trace ′ > 0
∧ (no-invariant-checks-in-transaction trace ′)

For the proof, we use induction over the length of the trace. Since the
trace only contains a single invariant check by assumption, we only have to
consider the case where this invariant check is inside a transaction. In that
case we can show that we can move the invariant check one position to the
front, obtaining a shorter trace. The invariant check will still fail since local
actions in a transaction cannot have any influence on invariants.

Using this result, we can again limit the kind of traces that have to be
considered to verify that a program is correct:

Lemma 5.3.6.3

theorem show-programCorrect-noTransactionInterleaving ′∶
assumes packedTracesCorrect∶
⋀trace s. [[
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initialState program traceÐÐÐÐ→* s;
packed-trace trace;
⋀s. (s, ACrash) ∉ set trace;
⋀s. (s, AInvcheck True) ∉ set trace;
no-invariant-checks-in-transaction trace]]

Ô⇒ traceCorrect trace
shows programCorrect program

To prove this we use Lemma 5.3.6.1. Thus, let tr be a trace with the
properties given in the Lemma. To show that the trace is correct, we use a
proof by contradiction. Assume tr is not correct and let i be the position of
the first failing invariant. We then consider only the trace up to and including
position i. This trace satisfies the preconditions of Lemma 5.3.6.2, so we
can obtain a failing trace with no invariants in transactions. However, this
contradicts the assumption that all such traces are correct. ◻

5.3.7. No Context Switches in Transaction
In this section we further refine our argument about packed traces. We show we
only have to consider traces that have no context switches inside transactions.
We formalize this with the predicate contextSwitchesInTransaction, which we
define as follows:

contextSwitchInTransaction tr i-begin i-switch ≡
∃ invoc tx txns.

i-begin < i-switch ∧
i-switch < ∣tr ∣ ∧
tr[i-begin] = (invoc, ABeginAtomic tx txns) ∧
(∀ j. i-begin < j ∧ j < i-switch Ð→ tr[j ] /= (invoc, AEndAtomic)) ∧
allowed-context-switch (get-action tr[i-switch])

contextSwitchesInTransaction tr ≡
∃ i-begin i-switch. contextSwitchInTransaction tr i-begin i-switch

A trace that is packed does not automatically fulfill this property. A context
switch to another invocation is allowed inside a transaction, although the old
invocation would never be allowed to do another step and therefore would not
be able to complete the transaction.

Lemma 5.3.7.1 (Remove context switches in transactions)

lemma remove-context-switches-in-transactions∶
assumes a1∶ initialState program traceÐÐÐÐ→* S

and a2∶ packed-trace trace
and a3∶ ⋀s. (s, ACrash) ∉ set trace
and a4∶ ⋀s. (s, AInvcheck True) ∉ set trace
and a5∶ no-invariant-checks-in-transaction trace
and a6∶ ¬traceCorrect trace

obtains trace ′ S ′

where initialState program trace ′ÐÐÐÐ→* S ′
and packed-trace trace ′
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and ⋀s. (s, ACrash) ∉ set trace ′
and ⋀s. (s, AInvcheck True) ∉ set trace ′
and no-invariant-checks-in-transaction trace ′
and ¬traceCorrect trace ′
and ¬contextSwitchesInTransaction trace ′

We prove this Lemma by an induction over the length of the trace. Without
loss of generality, we can assume that the trace is incorrect only because of
the last action in the trace (otherwise we can remove everything after the first
incorrect action and apply the induction hypothesis).

Next, let iswitch be the position of the first context switch in a transaction.
We can then remove the action at position iswitch − 1 from the trace. This
yields a shorter trace which maintains the required properties and thus allows
us to use the induction hypothesis. As mentioned earlier, it is safe to remove
the action as the same invocation can never do another step without violating
the packed property.

◻
With this result we can refine Lemma 5.3.6.3 to also exclude context switches

in the transactions that must be considered for correctness checks:

Lemma 5.3.7.2

theorem show-programCorrect-noTransactionInterleaving ′′∶
assumes packedTracesCorrect∶
⋀trace s. [[

initialState program traceÐÐÐÐ→* s;
packed-trace trace;
¬contextSwitchesInTransaction trace;
⋀s. (s, ACrash) ∉ set trace;
no-invariant-checks-in-transaction trace
]] Ô⇒ traceCorrect trace

shows programCorrect program

The major consequence of not having context switches in transactions is
captured in the following Lemma:

Lemma 5.3.7.3 (At most one current transaction) We show that the
only invocation that can contain an active transaction is the invocation that
did the last action in the trace, if we have a trace tr starting from a state S
and going to a state S′, such that:

• The initial state S is wellformed and contains no uncommitted transac-
tions.

• The trace is packed and contains no context switches in transactions.

• The trace contains no crashes.

lemma at-most-one-current-tx∶
assumes steps∶ S trÐÐ→* S ′
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and noCtxtSwitchInTx∶ ¬contextSwitchesInTransaction tr
and packed∶ packed-trace tr
and wf ∶ state-wellFormed S
and noFails∶ ⋀s. (s, ACrash) ∉ set tr
and noUncommitted∶ ⋀tx. txStatus S tx /= Some Uncommitted

shows ∀ i. currentTx S ′ i /= None Ð→ i = get-invoc (last tr)

The proof is done by induction over the steps in the trace. If the trace is
empty, there are no open transactions by assumption. Next, we consider a
nonempty trace to which we add an action a.

If action a is not an allowed context switch, then the invocation of the last
action in tr must be equal to the invocation of a since the trace is packed by
assumption.

On the other hand, if a is an allowed context switch, then there is no active
transaction: By the induction hypothesis the only invocation that might have
an open transaction is the invocation of the last action in tr. However, we
assumed there are no context switches in transactions, so that case is ruled
out by the fact that a is an allowed context switch.

The remainder of a proof is a straight forward case analysis over the possible
cases. ◻

5.3.8. Reduction to Single-invocation Semantics
We now show that the verification problem on the interleaving semantics can
be reduced to verification with respect to the single invocation semantics (see
Section 5.2). To connect the two semantics we define a coupling relation be-
tween states in the one and states in the other. The coupling relation is param-
eterized by the invocation i on which the single-invocation semantics focuses.
Moreover, the coupling relation takes a boolean parameter sameInvoc, which is
true if the last step in the trace was executed on invocation i. If this is the case,
the coupling relation demands that both states are equivalent. Otherwise, the
predicate state-monotonicGrowth must hold for the two states, meaning that
the state in the interleaving semantics might be ahead of the state in the
single-invocation semantics. More precisely, state-monotonicGrowth(i, S, S′)
is true if there is a trace tr from S to S′ and that trace contains no crashes
and no actions on invocation i:

state-coupling S S ′ i sameInvoc ≡
if sameInvoc then S ′ = S else state-monotonicGrowth i S ′ S

Using this coupling invariant, we can now show how to transform a trace
in the interleaving semantics to a corresponding trace in the single-invocation
semantics such that both executions terminate in coupled states. In this first
step, we only consider correct executions, which means that the invariant is
maintained in all intermediate states of the execution.

Lemma 5.3.8.1 (Convert to single-invocation trace) If we have an exe-
cution in the interleaving semantics starting with state satisfying the invariant,
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then we can convert this trace to a single-invocation trace leading to coupled
state. For this, the trace must satisfy the following properties: It must be
packed, contain no context switches in transactions, and contain no crashes.
Moreover, there must not be any uncommitted transactions in the starting
state and the program invariant must hold in all states of the trace.

lemma convert-to-single-session-trace∶
fixes tr ∶∶ ( ′proc∶∶valueType, ′op, ′any∶∶valueType) trace

and i ∶∶ invocId
and S S ′ ∶∶ ( ′proc, ′ls, ′op, ′any) state

assumes steps∶ S trÐÐ→* S ′
and S-wellformed∶ state-wellFormed S
and packed∶ packed-trace tr
and noFails∶ ⋀s. (s, ACrash) ∉ set tr
and noUncommitted∶ ⋀tx. txStatus S tx /= Some Uncommitted
and noCtxtSwitchInTx∶ ¬contextSwitchesInTransaction tr
— invariant holds on all states in the execution
and inv∶ ⋀S ′ tr ′. [[isPrefix tr ′ tr; S tr ′ÐÐ→* S ′]] Ô⇒ invariant-all S ′
and noAssertionFail∶ ⋀a. a∈set tr Ô⇒ get-action a /= ALocal False

shows ∃ tr ′ S2. (S
(i, tr ′)
ÐÐÐÐÐ→. * S2)

∧ (∀a. (a, False)∉set tr ′)
∧ (state-coupling S ′ S2 i (tr = [] ∨ get-invoc (last tr) = i))

For the proof we use induction over the steps taken in the interleaving
semantics. The case for the empty trace is trivial: The coupling relation holds
for the state with itself.

For the induction step we consider a nonempty trace with last action a.
First, we consider the case where action a is not from invocation i. Here, we
make no step in the single-invocation semantics and use the state from the
previous step. The coupling invariant is then trivially preserved, since the
definition of state-monotonicGrowth allows steps to be taken in other invoca-
tions.

Now we get to the interesting case where we take a step in the same invo-
cation. We continue using a case distinction on the executed action.

Case 1: Start of invocation. If the action is invoc, we choose the single-
invocation trace to consist only of this action. Below we reproduce the rules
for invoc in the interleaving and in the single-invocation semantics.
invocation:

localState S i = None ∧
procedure (prog S) proc = (initialState, impl) ∧
uniqueIds proc ⊆ knownIds S ∧ invocOp S i = None Ô⇒
S

(i, AInvoc proc)
ÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ initialState),

currentProc ∶= currentProc S(i ↦ impl),
visibleCalls ∶= visibleCalls S(i ↦ ∅),
invocOp ∶= invocOp S(i ↦ proc)∣)

s-invocation:
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invocOp S i = None ∧
procedure (prog S) proc = (initState, impl) ∧
uniqueIds proc ⊆ knownIds S ′ ∧
state-wellFormed S ′ ∧
(∀ tx. txStatus S ′ tx /= Some Uncommitted) ∧
invariant-all S ′ ∧
invocOp S ′ i = None ∧
prog S ′ = prog S ∧
S ′′ = S ′
(∣localState ∶= localState S ′(i ↦ initState),

currentProc ∶= currentProc S ′(i ↦ impl),
visibleCalls ∶= visibleCalls S ′(i ↦ ∅),
invocOp ∶= invocOp S ′(i ↦ proc)∣) ∧

valid = invariant-all S ′′ ∧ (∀ tx. txOrigin S ′′ tx /= Some i) Ô⇒
S

(i, AInvoc proc, valid)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S ′′

If we choose S′ in the single-invocation semantics to be the pre-state in
interleaving semantics, we get that the resulting states are equal. It remains
to be shown that the additional assumptions in the S-invocation rule compared
to the invocation rule are fulfilled.

Well-formedness of S′ is given as it is reachable in the interleaving semantics.
Likewise, the invariant holds in S′ as we assumed this initially.

We can also show that there are no uncommitted transactions: As our trace
is packed and does not contain any context switches in transactions, the only
active transaction can be in the invocation of the last action in the trace.
However, we are considering an invoc in the next step, so there cannot yet be
an active transaction on invocation i. Thus, there can be no active transaction.
The other preconditions of rule S-invocation can be shown from the fact that
it also is the start of an invocation in the interleaving semantics.

Case 2: Start of transaction. From the coupling invariant we know that
the state-monotonicGrowth predicate holds between the state of the single-
invocation semantics and the state of the interleaving semantics and with
respect to invocation i. This allows us to use the beginAtomic rule of the
single-invocation semantics (see Figure 5.8 for a comparison of the two rules),
instantiating S′ in the rule with the state of the interleaving semantics before
starting the transaction. The state S′′ after starting the transaction is then
again equivalent for both executions.

We then need to show that the remaining prerequisites of the S-atomic rule
are fulfilled.

a) There are no uncommitted transactions in S′. Since the trace is packed
and does not contain any context switches, by Lemma 5.3.7.3 there can
be at most one current transaction in state S′′. As this is the newly
started transaction, there cannot be any uncommitted transaction in
state S′.

b) The states S′ and S′′ are wellformed. This follows from the fact that
they are part of the execution in the interleaving semantics.
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beginAtomic:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = BeginAtomic ls ′ ∧
currentTx S i = None ∧
txStatus S t = None ∧
visibleCalls S i ≜ vis ∧ chooseSnapshot snapshot vis S Ô⇒
S

(i, ABeginAtomic t snapshot)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ S(∣localState ∶= localState S(i ↦ ls ′),

currentTx ∶= currentTx S(i ↦ t),
txStatus ∶= txStatus S(t ↦ Uncommitted),
txOrigin ∶= txOrigin S(t ↦ i),
visibleCalls ∶= visibleCalls S(i ↦ snapshot)∣)

s-beginAtomic:

localState S i ≜ ls ∧
currentProc S i ≜ f ∧
f ls = BeginAtomic ls ′ ∧
currentTx S i = None ∧
txStatus S t = None ∧
prog S ′ = prog S ∧
state-monotonicGrowth i S S ′ ∧
invariant-all S ′ ∧
(∀ tx. txStatus S ′ tx /= Some Uncommitted) ∧
state-wellFormed S ′ ∧
state-wellFormed S ′′ ∧
localState S ′ i ≜ ls ∧
currentProc S ′ i ≜ f ∧
currentTx S ′ i = None ∧
visibleCalls S i ≜ vis ∧
visibleCalls S ′ i ≜ vis ∧
chooseSnapshot vis ′ vis S ′ ∧
consistentSnapshot S ′ vis ′ ∧
txStatus S ′ t = None ∧
(∀ c. callOrigin S ′ c /= Some t) ∧
txOrigin S ′ t = None ∧
S ′′ = S ′
(∣txStatus ∶= txStatus S ′(t ↦ Uncommitted), txOrigin ∶= txOrigin S ′(t ↦ i),

currentTx ∶= currentTx S ′(i ↦ t), localState ∶= localState S ′(i ↦ ls ′),
visibleCalls ∶= visibleCalls S ′(i ↦ vis ′)∣) Ô⇒

S
(i, ABeginAtomic t vis ′, True)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→. S ′′

Figure 5.8.: Comparison of the rules for starting a transaction in the interleaving
semantics (top) and single-invocation semantics (bottom).
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c) The transaction snapshot is a consistentSnapshot. We can first prove
that the snapshot is consistent in S′′ using Lemma 5.3.2.3. From this it
follows that the snapshot is also consistent in S′.

d) There are not yet any calls in the new transaction. This follows from
the fact that the txStatus is undefined in state S′ and Lemma 5.3.2.5.

Case 3: Invariant check. In the case of an invariant check in the interleaving
semantics, there is no state-change and therefore we simply reuse the single-
invocation trace from the induction hypothesis and are done.

Other cases. The action is not a valid context switch – start of invocations
and transactions are already handled above. As the trace is packed by as-
sumption, we therefore know that the previous action in the trace was also on
the same invocation i. Using the coupling invariant we thus know that the
interleaving semantics and single-invocation semantics are both in the same
state S′ before executing the current action.

The interleaving semantics now takes a step to state S′′ using action a. We
then show that the single-invocation semantics also goes to the same state S′′

using the same action a. Since in the remaining cases, the rules for the single-
invocation semantics are similar to the rules of the interleaving semantics, the
proof is straightforward. ◻

We have now shown, that we can convert a trace with no invariant viola-
tions to the single-invocation semantics. Next we show that we can convert a
single step which makes the invariant fail to an equivalent step in the single-
invocation semantics.

Lemma 5.3.8.2 (Convert step with failing invariant) Assume we have
a step in the interleaving semantics where the pre-state satisfies the invariant
but the post-state does not. Then we can perform the same step in the single-
invocation semantics starting from a coupled state, leading to the same state,
and also producing an invariant-violation.

Moreover, we assume the same properties of the trace that we assumed in
Lemma 5.3.8.1, albeit reduced to a single action.

lemma convert-to-single-session-trace-invFail-step∶
fixes tr ∶∶ ( ′proc∶∶valueType, ′op, ′any∶∶valueType) trace

and i ∶∶ invocId
and S S ′ ∶∶ ( ′proc, ′ls, ′op, ′any) state

assumes step∶ S
(i,a)
ÐÐÐÐ→ S ′

and S-wellformed∶ state-wellFormed S
and noFails∶ a /= ACrash
— invariant holds in the initial state
and inv∶ invariant-all S
— invariant no longer holds
and not-inv∶ ¬invariant-all S ′
and coupling∶ state-coupling S S2 i sameSession
and ctxtSwitchCases∶ ¬sameSession Ô⇒ allowed-context-switch a
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and noUncommitted∶ ⋀p. a = AInvoc p Ô⇒ ∀ tx. txStatus S tx /= Some
Uncommitted
shows (S2

(i, a, False)
ÐÐÐÐÐÐÐÐ→. S ′)

We prove the lemma by case distinction over action a. For most actions the
value of the invariant cannot change, since invariants may only refer to global
state from committed transactions. Therefore, we only need to consider the
cases for invoc, return, and endAtomic in detail.

Case invoc: Because of the coupling invariant we get that localState and
invocationOp are undefined for invocation i in state S2, like they are in S.
With Lemma 5.3.2.4 we also infer that there are not yet any transactions in
state S. With these prerequisites, we can show that the step in the single-
invocation semantics is possible.

Case return: Since return is not an allowed context switch, sameSession
must be true. From the coupling invariant we thus get that S2 = S. Then, it
is straightforward to show that the step can be done in the single-invocation
semantics.

Case endAtomic: Similar to the case above, endAtomic is not an allowed
context switch, and thus S2 = S. Again, the corresponding step in the single-
invocation semantics can then be shown automatically. ◻

The next Lemma is similar to the Lemma we just proved, but works with a
trace instead of a single action.

Lemma 5.3.8.3 (Convert trace with failing invariant)

lemma convert-to-single-session-trace-invFail∶
fixes tr ∶∶ ( ′proc∶∶valueType, ′op, ′any∶∶valueType) trace

and S S ′ ∶∶ ( ′proc, ′ls, ′op, ′any) state
assumes steps∶ S trÐÐ→* S ′

and S-wellformed∶ state-wellFormed S
and packed∶ packed-trace tr
and noFails∶ ⋀s. (s, ACrash) ∉ set tr
and noUncommittedTx∶ ⋀tx. txStatus S tx /= Some Uncommitted
and noContextSwitches∶ ¬contextSwitchesInTransaction tr
— invariant holds in the initial state
and inv∶ invariant-all S
— invariant no longer holds
and not-inv∶ ¬ invariant-all S ′
and noAssertionErrors∶ ⋀a. a∈set tr Ô⇒ get-action a /= ALocal False

shows ∃ tr ′ S2 s. (S
(s, tr ′)
ÐÐÐÐÐ→. * S2)

∧ (∃a. (a, False)∈set tr ′)

For the proof, let tr1 be the longest prefix of the trace tr not containing an
invariant violation, S1 be the state after executing tr1, a be the action in tr
after tr1 and Sfail the state after executing a. This means that a is the action
making the invariant fail and Sfail is the first state breaking the invariant.
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We can now use Lemma 5.3.8.1 to convert tr1 to a single-invocation execu-
tion with trace tr′1 and final state S′1. We use the invocation of action a as the
invocation of the execution. According to the Lemma, the state S′1 is in the
coupling relation with state S1.

Next we can use Lemma 5.3.8.2 to convert the step S1
aÐ→ Sfail to a step in

the single-invocation semantics S′1
a,False
ÐÐÐÐ→. Sfail. To apply the Lemma, we have

to show that there are no uncommitted transactions in the case that a is the
start of an invocation.

To show this we again use the fact that we have a packed trace without
context switches in transactions. Therefore, the only active transaction in
state Sfail could be on the invocation that just started with action a. However,
the initial state of an invocation cannot contain any active transactions. ◻

We can now use this Lemma to show that it is sufficient to consider the
single-invocation semantics for verifying programs.

Lemma 5.3.8.4 (Show correctness via single-invocation semantics)
If a program is correct with respect to the single-invocation semantics and the
invariant holds in the initial state of the program, then the program is also
correct with respect to the interleaving semantics.

theorem show-correctness-via-single-session∶
assumes works-in-single-session∶ programCorrect-s program

and inv-init∶ invariant-all (initialState program)
shows programCorrect program

We first use Lemma 5.3.7.2 to reduce the verification problem to a single
trace tr that is packed, does not contain crashes, and where all transactions
end. We show that this given trace is correct using a proof by contradiction.

Assume tr contains an invariant violation and let Sfail be the first state
in the execution of tr violating the invariant. With this prefix of tr, we can
use Lemma 5.3.8.3 to obtain a failing trace in the single-invocation semantics.
However, we assumed that all single-invocation executions are correct so we
have a contradiction. ◻

5.4. Completeness
We have now derived a proof technique for highly available applications and
proven its soundness. This begs to ask the question: Is the technique complete
as well?

We now show that the reduction from the interleaving semantics to the
single-invocation semantics preserves correctness. If a program is correct with
respect to the interleaving semantics (programCorrect), then it is also correct
with respect to the single-invocation semantics (programCorrect-s).

theorem completeness∶
assumes correct∶ programCorrect program

shows programCorrect-s program
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Thus, if we can prove correctness with respect to the interleaving semantics
in Isabelle, we can always use this Lemma to obtain an Isabelle proof for the
correctness with respect to the single-invocation semantics.

We prove this theorem by contraposition. First, assume the program is not
correct with respect to the single-invocation semantics. Then we can find a
single-invocation execution with an incorrect trace. Let a be an action in the
trace containing an error and let S be the state before action a.

We can then show that the state S is wellformed because every state reach-
able in the single-invocation semantics is also reachable in the interleaving
semantics. This is a result of how we designed the single-invocation seman-
tics. Every rule that could otherwise violate this property (which are the
rule for starting a procedure invocation and for starting a transaction) has an
additional assumption that the state is wellformed.

We now have the situation that executing the step S
i,a,false
ÐÐÐÐ→. S′ in the

single-invocation semantics either causes an assertion failure (a = local(False))
or the state S′ does not satisfy the program invariant. We then have to show
that we can also produce an error in the interleaving semantics.

As errors in the single-invocation semantics can only occur when the action
is invoc, endAtomic, local, or return, we only have to consider these four cases.
In the case of a procedure invocation (invoc), we have the assumption that
there is a well-formed state Si, from which the new state S′ is constructed.
We can show that the step from Si to S′ corresponds to an invocation step in
the interleaving semantics. Thereby we can reproduce the error. For the other
cases, the situation is similar: In these cases, it even is possible to reproduce
the exact same step and get S

i,a
Ð→ S′ in the interleaving semantics.

◻
With this we have shown that the essential step of our technique main-

tains completeness of the technique. However, one needs to consider that an
essential step in the completeness proof is that every state reachable in the
single-invocation semantics is well-formed, i.e. reachable in the interleaving
semantics. We achieved this by including it as an explicit premise in the rules
for invoc and beginAtomic. Yet in the tool implementation (see Chapter 7) we
cannot include this semantic property and have to over-approximate it with
first-order formulas. Thereby we loose some completeness depending on how
precisely we can capture the reachability property. As this is hard to quantify
formally, we have not researched this in more detail.
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Chapter 6
Proof Automation in Isabelle

In the previous chapter we have formalized the system semantics and the core
of our proof technique. As a step towards tool supported verification, in this
chapter we develop proof rules suitable for symbolic execution. To this end we
first define a concrete programming language embedded in Isabelle in Section
6.1. Then we define the proof rules for symbolic execution in Section 6.2.
Finally, we discuss the handling of unique identifiers in Section 6.3 and end
the chapter with a discussion about the completeness aspects of the proof rules
in Section 6.4.

6.1. A Shallow Embedding of a Programming Language

In Chapter 5 we considered a semantics that leaves the actual implementation
language for procedures abstract. We merely modeled procedure implementa-
tions as arbitrary, deterministic state machines, with a function that takes the
current local state and produces an action and, where required, a continuation
to take the results of the actions and produce a new local state.

In order to apply our technique to concrete examples, we now concretize the
state machine by defining a language that can be translated to the abstract
state machine framework. To define the language, we use a shallow encoding
using Isabelle’s Monad syntax.

Using concrete language constructs allows us to then define proof rules for
each language construct. Our proof rules are structured such that they can
be used to simulate symbolic execution [Sch16]. This allows us to derive ver-
ification conditions from a given procedure implementation and the program
invariants.

The programming language we use for the embedding is a minimal impera-
tive language. We give an informal abstract syntax for the language in Figure
6.1. The language contains two basic control flow constructs: An if statement
and a universal looping construct. To support mutable variables, we include a
construct to create mutable references, which can then be updated in assign-
ments (∶←) and read with the respective constructs (read). Finally, we include
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two constructs for interacting with databases: Atomic blocks group the en-
closed database operations into an atomic transaction and the call statement
is used to perform calls to the database.

Stmt→ if Expr then Stmt else Stmt
∣ while Expr Stmt
∣ return Expr
∣ Stmt; Stmt
∣ Var←makeRef Expr
∣ Expr ∶← Expr
∣ Var← read Expr
∣ atomic Stmt
∣ Var← call Expr
∣ Var← new Expr

Figure 6.1.: Informal abstract syntax of the embedded programming language.

6.1.1. Shallow vs Deep Embeddings

There are two styles for embedding a language within Isabelle/HOL: deep and
shallow embedding [WN04]. In a deep embedding, the language is modelled
using datatypes and the semantics of the language is defined separately. In
the shallow embedding style, the language constructs are directly defined using
constructs of the host language.

Shallow embeddings typically have more concise definitions as the interme-
diate syntactical level is skipped. For users, it also has the benefit that all
features of the host language can be used.

However, shallow embeddings do not provide a programmatic representation
of the program structure. Therefore, it is not possible to write functions that
take a syntax tree as input – all definitions need to work on the semantic
level. Deep embeddings also have the benefit that they can be independent of
constraints in the host language, whereas shallow embeddings need to follow
the usual typing rules.

For modeling our language, we chose a shallow embedding, mostly in order
to keep the definitions more concise. The lack of a syntactic representation of
programs is negligible for our use case: We are interested in the structure when
applying proof rules, but those can still work on the structure of Isabelle terms
and thereby on the program structure. Using Isabelle’s method definition
language Eisbach [MMW16], we can even write methods operating on the
structure of terms by combining other methods.

To keep the representation of programs close to the imperative program
text as shown in Section 2.1, we use Isabelle’s monadic syntax [Bul+08]. For
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definition getMessage-impl ∶∶ val ⇒ (val,operation,val) io where
getMessage-impl m ≡ do {
atomic (do {

exists ← call (Message (KeyExists m));
if exists = Bool True then do {

author ← call (Message (NestedOp m (Author Read)));
content ← call (Message (NestedOp m (Content Read)));
return (Found author content)
} else do {

return NotFound
}
})
}

Figure 6.2.: Implementation of getMessage in Isabelle using monad syntax.

example, the function getMessage from our case study can be modelled in
Isabelle as shown in Figure 6.2. While this choice allows us to reuse existing
syntactical definitions from Isabelle, it gives rise to some challenges regarding
Isabelle’s limited type system. In the following, we show how we can work
around these limitations while still guaranteeing that programs are type safe.

6.1.2. Language Definition as a Monad
A monad in functional programming is a type m that takes one type parameter
and supports two operations:

• The bind operation has type α m⇒ (α ⇒ β m)⇒ β m and is denoted
by the infix operator >>=.

• The return operation has type α⇒ α m.

These operations must satisfy the three monad laws [Wad90]:

Left identity : (return a >>= f) ≡ f a

Right identity : (m >>= return) ≡m

Associativity : ((m >>= f) >>= g) ≡ (m >>= (λx. f x >>= g))

The equivalence operator ≡ above is defined as observational equivalence,
i.e. A ≡ B if A and B can be replaced with each other in any program context
without changing the behavior of the program.

One typical example for monads are container types. In this case, return x
produces a container holding a single value x and m >>= f applies f on all values
in m and combines the resulting containers to a new container. For example
lists form a monad with return x = [x] and ([x1, . . . , xn] >>= f) = f x1 ⋅ ... ⋅f xn.

Another typical example for monads are actions like the IO monad in
Haskell. Here, return x transforms a pure value into an action computing
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value x and the bind operation composes two actions sequentially, using the
result of the first action to determine the second action.

The support for monads in Isabelle/HOL is limited. As there is no higher
kinded polymorphism, it is not possible to define a Monad typeclass as Haskell
does and it is not possible to write generic functions on monads. However, the
concept is still part of the standard library and supports a common notation
for monads. The bind operator (>>=) can be set up to use ad-hoc overloading
which allows it to be used with different types of monads. Moreover, there is
a Haskell-like do notation [Pey03]. This allows to use the bind-notation in a
way that is more similar to imperative programming languages. In Figure 6.3
we summarize the notation and translations used by Isabelle’s monad syntax.

Syntax:

S → do {B}
B → Pattern← Expression
B → let Pattern = Expression
B → Expr
B → B; B

Transformations:

do {e1; e2} ⇀ e1>>=(λ_. e2)
do {p← e1; e2} ⇀ e1>>=(λp. e2)

do {let p = e1; bs} ⇀ let p = e1 in do {bs}
do {b; c; cs} ⇀ do {b; do {c; cs}}
let p = e1; e2 ⇀ let p = e1 in e2

do {e} ⇀ e

Figure 6.3.: Isabelle’s Monad Syntax (see Monad_Syntax.thy in the Isabelle dis-
tribution [NPW02]).

For embedding our language into Isabelle, we define a monadic type io.
Unfortunately, Isabelle imposes some restrictions on the definition of datatypes
which slightly obscures our formalization. For this reason we first present a
simplified version of the datatype in Haskell to make the concepts and our
design decisions clear. The corresponding type is shown in Figure 6.4. A
value of type Io describes actions working on a procedure-local data store of
type Store, which represents the state of mutable local variables. We will later
extend the datatype to also include actions for interacting with the distributed
database, however that is an orthogonal aspect and can thus be omitted for
the discussion here. The simplified datatype definition consists of four cases:

LocalStep This case handles interactions with the local store. It includes a
function that takes the complete store as input and computes a new
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store and a result value. Higher level operations like updating a single
variable can then be defined on top of this construct.

Loop There are two approaches for modelling loops within a monad. One
approach is to use the recursion from the host language to construct
infinite monadic values. This is the idea behind the looping constructs
offered by Haskell’s Control.Monad.Loops package [Coo15]. However, this
approach would not be transferable to Isabelle, where we cannot work
with recursive functions without a proof of well-definedness (e.g. termi-
nation). We therefore chose the second approach, which is to equip the
monadic type with a construct for loops.
As in the previous case, we want to use the loop statement as a basis
and later define higher level constructs on top. Therefore, the loop con-
struct must be general enough to allow all other typical loop constructs
to be translated to it. While while-loops are worthwhile to be consid-
ered as universal looping constructs, it would require additional mutable
variables to translate something like a foreach-loop to a while-loop. We
want to avoid this, since it would affect invariants expressed over the
local variable store. Instead, we allow a value to be passed between loop
iterations. If the loop body produces a value Continue x, then the loop
is repeated with value x. To end iterating, the loop body must produce
a value Break x, in which case the value x is also the result of the overall
loop construct. This is similar to the loop function from Haskell’s extra
package [Mit20].
To show how typical loop constructs can be translated, Figure 6.4 in-
cludes examples for a while- and a foreach-loop in line 35.

Seq This constructs enables sequential composition of two actions and can
thus be directly used as the implementation of the >>=operation. When
executed, the result of the first action is used to determine the second
action.

Return This case allows us to transform pure values into the type Io.

Finally, we want to execute a program stepwise, when it is given as an Io-
value. This way, we can interleave executions of several concurrent procedure
invocations, and we can later add interaction with the external world (e.g. the
database) between steps. To show that stepwise execution is possible with our
datatype definition, we give a function ioStep in line 21 of Figure 6.4.

As mentioned earlier, this Haskell definition of the Io type cannot be directly
transferred to Isabelle. Even in Haskell, it requires to enable the generalized
algebraic datatypes (GADT) extension to work. There are two places where
simple datatypes are not sufficient:

1. The Seq case contains values of type Io a in the first action and Io b in
the second.
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1 data Io a where
2 LocalStep :: (Store ‐> (Store, a)) ‐> Io a
3 Loop :: b ‐> (b ‐> Io (LoopResult b a)) ‐> Io a
4 Seq :: Io b ‐> (b ‐> Io a) ‐> Io a
5 Return :: a ‐> Io a
6
7 instance Functor Io where
8 fmap f x = Seq x (\x ‐> Return (f x))
9

10 instance Applicative Io where
11 pure = Return
12 liftA2 f x y = Seq x (\xr ‐> Seq y (\yr ‐> Return (f xr yr)))
13
14 instance Monad Io where
15 (>>=) = Seq
16
17 data LoopResult a b = Continue a | Break b
18
19 type Store = Map Int Dynamic
20
21 ioStep :: Store ‐> Io a ‐> (Store, Either (Io a) a)
22 ioStep store (LocalStep f) =
23 let (store', res) = f store in
24 (store', Right res)
25 ioStep store (Loop i bdy) =
26 (store, Left (Seq (bdy i) cont))
27 where cont (Continue x) = Loop x bdy
28 cont (Break x) = Return x
29 ioStep store (Seq a b) =
30 case ioStep store a of
31 (store', Left a') ‐> (store', Left (Seq a' b))
32 (store', Right a) ‐> (store', Left (b a))
33 ioStep store (Return x) = (store, Right x)
34
35 ‐‐ Syntactic sugar for loops:
36 while :: Io Bool ‐> Io () ‐> Io ()
37 while condition body = Loop () $ \_ ‐> do
38 c <‐ condition
39 if c then do
40 body
41 return (Continue ())
42 else
43 return (Break ())
44
45 foreach :: [a] ‐> (a ‐> Io ()) ‐> Io ()
46 foreach list body = Loop list $ \list ‐> do
47 case list of
48 [] ‐> return (Break ())
49 (x:xs) ‐> do
50 body x
51 return (Continue xs)

Figure 6.4.: Definition of our Io type in Haskell.
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2. The Loop case contains a value of type Io (LoopResult a b) in the loop
body.

We need to rewrite these two cases to express the Io type in Isabelle. One
way to avoid limitations in the type system is to fall back to dynamic types.
Haskell includes a type Dynamic with functions toDyn :: Typeable a => a ‐>

Dynamic and fromDynamic :: Typeable a => Dynamic -> Maybe a!, which
can be used to do this. The Typeable a constraint requires that a runtime
representation can be generated for the type a, which can be used for dynamic
type checking in fromDynamic. Using the Dynamic type, we can rewrite the
case for loops from Loop :: b ‐> (b ‐> Io (LoopResult b a))‐> Io a to Loop

:: Dynamic ‐> Dynamic ‐> Io a. Here, we have replaced the type parameter b

with the type Dynamic. Also, we replaced the complete loop body with a value
of Dynamic that represents a function (Dynamic ‐> Io (LoopResult Dynamic a)).

While it is not possible to have a type like Dynamic in Isabelle1, there are
some less powerful alternatives: The typeclass countable includes all types with
an injective function into the natural numbers. This means that it includes
all types where all values have a finite representation. However, it does not
contain function types where the domain is infinite and the range contains
more than one element. As our datatype Io contains such functions, it is not
itself countable and therefore we cannot encode the loop body using a single
natural number.

An alternative is offered by Paulson’s formalization of Zermelo Fraenkel Set
Theory Isabelle/HOL [Pau19]. This development adds a new type V, which
is big enough to allow injective mappings from basically any HOL type into
V. As such a type cannot be defined using conservative extensions, the theory
uses axioms to describe the type. The axioms follow the axioms of Zermelo
Fraenkel Set Theory, which should ensure that no inconsistencies arise from
the additional axioms2.

For our purposes, the relevant restrictions are given using the two typeclasses
small and embeddable. Intuitively, the class small contains all HOL types that
do not contain the type V itself. In contrast, the class embeddable may contain
the type V. In particular, V itself is embeddable and functions with a small

domain and an embeddable range are embeddable. Of course, finite combinations
like product and sum types of embeddable types are also embeddable.

For our type Io, this means that we can make the type Io a member of
the type class embeddable and thus encode the loop body as a value of type V.
However, we cannot use type V for the input value of the loop body as that
would put V into the range of a function we want to embed into V. We therefore

1The function toDyn can be instantiated to type (Dynamic ‐> Bool)‐> Dynamic and it
must be injective as the reverse function fromDynamic exists. However the existence
of such a function would immediately lead to an inconsistency using Cantor’s theorem
(theorem Cantors_paradox in the Isabelle standard library): There can be no surjective
function from a set to its powerset and vice versa there can be no injective function from
the powerset to the set itself. Haskell avoids this inconsistency because all values have a
finite representation (their value in memory), so the type a ‐> Bool is not actually the
powerset of a.

2However, I am not aware of a proof for this when combined with the HOL axioms.
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resort to the typeclass countable to keep the type of this value flexible. Since
this value is typically only used for program values, which tend to have a finite
representation, this is not a major restriction.

We could use a similar solution for the Seq case. However, this would restrict
the bind operation and only allow values of a countable type to be passed from
the first action to the second. Instead, we use a continuation passing style for
encoding sequential composition. We do this by adding a continuation of
type Io to each case of the datatype. For example the type for LocalStep is
changed from “(Store ‐> (Store, a))‐> Io a” to “(Store ‐> (Store, Io a))‐>

Io a”. With this change, there are no longer any additional type parameters in
the cases of the datatype and every recursive occurrence of Io has an unchanged
type parameter a.

This allows us to express the datatype in Isabelle. The resulting definition
is shown in Figure 6.5. The Isabelle type is parameterized by the return type
( ′a) of the action, the type for database operations ( ′operation), and the type
of program values ( ′any).

Besides the features of the simplified Io type introduced above, this type also
contains actions for interacting with the database and for generating unique
identifiers. The actions correspond to the actions that can be taken by the
abstract state machine as defined in Section 5.1. Only the Loop construct
is added since arbitrary loops cannot be expressed otherwise with a finite
datatype3. We briefly recap the purpose of each case:

WaitLocalStep This action performs an operation, which can read and update
the local variable store. The computation is expressed with a function
that takes the current store as input and returns a boolean, the new
state of the store, and an action to continue with. The boolean is used
to model local assertions and is false if there is an assertion violation in
the local action.

WaitBeginAtomic This action starts an atomic transaction.

WaitEndAtomic This action commits an atomic transaction.

WaitDbOperation This action performs an operation on the database. The
result of the database operation is passed into a continuation that de-
termines the next action.

WaitNewId This action generates a fresh, globally unique identifier. The
first parameter is a predicate, which restricts the unique identifier to
be generated. This can be used to generate only identifiers of a certain
type. The second parameter is a continuation that takes the generated
identifier and uses it to compute the next action.

WaitReturn This case is for returning a value.
3It might be possible with a co-datatype [Bla+14], but this would complicate the definition

of the bind operation and related proofs.
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Loop This action implements loops with a loop state of type 'any. The first
parameter defines the initial loop state. The second parameter is defined
using the type V, but actually represents a value of type 'any => ('any

LoopResult, 'operation, 'any)io. It takes the current loop state and
returns the action for the loop body. If this action returns Continue x,
the loop is repeated with x as the new loop state. Otherwise, if the
action returns Break x, the loop is finished and the value x is passed to
the continuation in the last parameter of the Loop case to determine the
next action.

type-synonym iref = nat
type-synonym ′v store = iref ⇀ ′v

datatype ( ′a, ′op, ′any) io =
WaitLocalStep ′any store ⇒ bool × ′any store × ( ′a, ′op, ′any) io
∣ WaitBeginAtomic ( ′a, ′op, ′any) io
∣ WaitEndAtomic ( ′a, ′op, ′any) io
∣ WaitNewId ′any ⇒ bool ′any ⇒ ( ′a, ′op, ′any) io
∣ WaitDbOperation ′op ′any ⇒ ( ′a, ′op, ′any) io
∣ WaitReturn ′a
∣ Loop ′any V ′any ⇒ ( ′a, ′op, ′any) io

function bind (infixl >>=io 54) where
WaitLocalStep n >>=io f = (WaitLocalStep (λs. let (a,b,c) = n s

in (a, b, bind c f )))
∣ WaitBeginAtomic n >>=io f = (WaitBeginAtomic (n >>=io f ))
∣ WaitEndAtomic n >>=io f = (WaitEndAtomic (n >>=io f ))
∣ WaitNewId P n >>=io f = (WaitNewId P (λi. n i >>=io f ))
∣ WaitDbOperation op n >>=io f = (WaitDbOperation op (λi. n i >>=io f ))
∣ WaitReturn s >>=io f = (f s)
∣ Loop i body n >>=io f = (Loop i body (λx. n x >>=io f ))

Figure 6.5.: Definition of the monadic type io and its bind operation.

As we no longer have a Seq case as in the simplified version of Io, the bind
(>>=) operation must do more work than previously: It is now implemented
recursively, by binding the right action into the continuation of the first ac-
tion. This terminates as datatypes are finite in Isabelle and therefore we will
eventually reach the return case. The corresponding implementation is shown
in Figure 6.5.

We can then show that our definition of bind and return (defined here as
WaitReturn) satisfy the monad laws introduced at the beginning of the section
(page 87). The proof is done by induction over the leftmost variable.

We also define these laws as automatic simplifications. This ensures that
programs are always in a normalized form, either as a single action a or an
atomic action followed by a remaining program (a>>=S). This makes it easier
to define proof rules on the program structure in the next Section 6.2.

Using the definition of io monad above, we can now define higher level
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language constructs as monadic values by using simple definitions. Figures
6.6 and 6.7 show the basic language constructs of the Repliss language. For
the continuation in the io datatype, we use a simple WaitReturn action that
returns the result of the action (or unit if there is no result). Note that this
continuation is later changed when combining several actions via bind. As the
while-loop does not require a loop variable, its definition uses the expression
“???” in its place, which stands for an undefined value.

For interacting with the local variable store, we use typed references. A
typed reference can be created for every countable type. The assign action
updates a reference and the read action reads the current value of a reference.

beginAtomic ≡ WaitBeginAtomic (WaitReturn ())

endAtomic ≡ WaitEndAtomic (WaitReturn ())

newId P ≡ WaitNewId P WaitReturn

call op ≡ WaitDbOperation op WaitReturn

return x ≡ WaitReturn x

skip ≡ return default

atomic f ≡ beginAtomic >>= (λ-. f >>= (λr. endAtomic >>= (λ-. return r)))

makeRef v ≡
WaitLocalStep
(λs. let r = freshRef (dom s)

in (True, s(r ↦ intoAny v), WaitReturn (Ref r)))

read ref ≡
WaitLocalStep
(λs. case s (iref ref ) of None ⇒ (False, s, WaitReturn (from-nat 0))

∣ Some v ⇒ (True, s, WaitReturn (fromAny v)))

ref ∶← v ≡
WaitLocalStep
(λs. case s (iref ref ) of None ⇒ (False, s, WaitReturn ())

∣ Some x ⇒ (True, s(iref ref ↦ intoAny v), WaitReturn ()))

update ref upd ≡
WaitLocalStep
(λs. case s (iref ref ) of None ⇒ (False, s, WaitReturn ())

∣ Some v ⇒
(True, s(iref ref ↦ intoAny (upd (fromAny v))), WaitReturn ()))

Figure 6.6.: Definition of language constructs using the io monad.

To see how the language constructs work together in the io monad, con-
sider again the example from Figure 6.2. If we desugar the do-notation, then
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loop init body ≡
Loop (intoAny init)
(loop-body-to-V
(λacc. body (fromAny acc) >>=

(λres. return
(case res of Continue x ⇒ Continue (intoAny x)
∣ Break x ⇒ Break (intoAny x)))))

(return ○ fromAny)

while body ≡
Loop ???
(loop-body-to-V
(λ-. body >>= (λx. return ((if x then Break else Continue) ???))))
(return ○ (λ-. ()))

forEach elements body ≡
loop (elements, [])
(λ(elems, acc).

case elems of [] ⇒ return (Break (rev acc))
∣ x ⋅ xs ⇒ body x >>= (λr. return (Continue (xs, r ⋅ acc))))

Figure 6.7.: Definition of language constructs for loops using the io monad.

getMessage-impl m simplifies to the term in Figure 6.8.

getMessage-impl m ≡
atomic
(call (Message (KeyExists m)) >>=
(λexists.

if exists = Bool True
then call (Message (NestedOp m (Author Read))) >>=

(λauthor.
call (Message (NestedOp m (Content Read))) >>=
(λcontent. return (Found author content)))

else return NotFound))

Figure 6.8.: Desugared version of getMessage from Figure 6.2.

To make the above definitions usable in our generic framework, we need to
convert a value of type io to a state machine. Remember that we defined a
procedure implementation as a function that takes a local state ′ls and returns
an action to perform:

type-synonym ( ′ls, ′op, ′any) procedureImpl =
′ls ⇒ ( ′ls, ′op, ′any) localAction

We now represent the local state using a triple of type store×uniqueId set×
’any io. The first component of the triple is the state of the procedure’s local
variables. The second component is a set of unique identifiers that are locally
known. We use this to ensure that no unique identifiers can be created out of
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thin air. Finally, the last component of the triple is an io-action representing
the part of the procedure implementation that is still to be executed.

The procedure implementation must then be a function that takes such a
triple and produces a localAction. To this end we define a function toImpl (see
Figure 6.9). Besides the straight-forward translation of io actions to actions
of the state machine, the definition of toImpl handles some additional aspects:

fun toImpl ∶∶ (( ′val store × uniqueId set × (( ′val, ′op∶∶{small,valueType},
′val∶∶{small,valueType}) io)), ′op, ′val) procedureImpl where

toImpl (store, knownUids, WaitLocalStep n) = (
let (ok, store ′, n ′) = n store
in LocalStep (ok ∧ (finite (dom store) Ð→ finite (dom (store ′))))

(store ′, knownUids, n ′))
∣ toImpl (store, knownUids, WaitBeginAtomic n) =

BeginAtomic (store, knownUids, n)
∣ toImpl (store, knownUids, WaitEndAtomic n) =

EndAtomic (store, knownUids, n)
∣ toImpl (store, knownUids, WaitNewId P n) =

NewId (λi. if P i then Some (store, knownUids ∪ uniqueIds i, n i) else None)
∣ toImpl (store, knownUids, WaitDbOperation op n) = (

if uniqueIds op ⊆ knownUids then
DbOperation op (λr. (store, knownUids ∪ uniqueIds r, n r))

else
LocalStep False (store, knownUids, WaitDbOperation op n))

∣ toImpl (store, knownUids, WaitReturn v) = (
if uniqueIds v ⊆ knownUids then

Return v
else

LocalStep False (store, knownUids, WaitReturn v))
∣ toImpl (store, knownUids, Loop i body n) =

LocalStep True
(store, knownUids, (loop-body-from-V body i) >>=io (λr.

case r of Break x ⇒ n x
∣ Continue x ⇒ Loop x body n))

Figure 6.9.: Definition of toImpl, which transforms an io-action into a state ma-
chine.

1. The state of the local variables is threaded through the cases and updated
for local steps.

2. We keep track of the unique identifiers that are locally known. In the
case of a database operation or when a new unique identifier is generated,
this set is updated accordingly.

3. When the procedure interacts with the outside, we check that only locally
known unique identifiers are included in the output. If that is not the
case, we produce an assertion error via LocalStep.

4. For executing loops, we unfold the loop for one iteration. This step to
enter the loop is encoded as a separate LocalStep that has no other effect.
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With this definition of toImpl we can now use our monadic language defi-
nition to implement our programs. Next, we will develop proof rules to verify
programs written in this language.

6.2. Proof Rules
Proof rules are used to derive verification conditions in the form of mathemat-
ical formulas from a program. This can be done by traversing the program
in execution order or in reverse order [GC10]. When using the reverse order,
one starts with a post-condition for the program and then derives a necessary
precondition. It is then checked whether the actual precondition implies the
derived precondition. Since this is a check on a purely mathematical formula
(i.e. it no longer contains Io-values), it is then possible to use an automatic
solver. If the formula is first order and only uses supported constants, a tool
like an SMT solver can be used. To ensure completeness, one usually computes
the weakest precondition.

The corresponding approach for the forward direction is the strongest post-
condition calculation. It starts from a given precondition of the program and
then derives the strongest postcondition. It can then be checked that this
derived postcondition implies the actually required postcondition.

In both cases, we generate a single formula to characterize the correctness
of the program. The formulas derived using weakest preconditions is logi-
cally equivalent to the formula derived via strongest postcondition. However,
the structure of the formula is different. Experiments by Grigore and others
[Gri+09] have shown that this difference in the structure can have a signifi-
cant effect on the running time of SMT solvers. Some programs are several
times faster with one method compared to the other, but overall only a slight
advantage for the weakest precondition approach was observed. This disad-
vantage of strongest postconditions is often attributed to additional existential
quantifiers, which are required when calculating the strongest postcondition
of assignments.

Instead of calculating the strongest postcondition as a single formula derived
from the precondition, it is also possible to use symbolic execution. The main
idea of symbolic execution is to represent the program state with symbolic
variables. In particular, one symbolic variable is introduced for each input
of the program. As a result, the aforementioned introduction of existential
quantifiers at variable assignments is no longer necessary since every variable
already has a symbolic value. More importantly though, further techniques
become available when working on a symbolic state. A comparison by Kassios,
Müller, and Schwerhoff [KMS12] shows that these techniques can result in a
clear advantage of symbolic execution.

The most relevant techniques resulting in this advantage are the following:

1. The symbolic state can have more structure than a simple formula. In
some cases this allows to perform checks directly on this structure with-
out involving an SMT solver. It can also be used to simplify formulas,
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resulting in verification conditions that are easier to process by SMT
solvers.

2. Instead of invoking the solver only once, with the final formula, the solver
can be invoked earlier. For example, in a branching construct, it can be
invoked to check which branches are feasible. Also, program assertions
can be checked immediately.

3. For handling branching constructs, symbolic execution allows for two
variants. One option is to split the symbolic execution and check all
branches separately. The other option is to split the execution only
temporarily, and merge the symbolic states of the different branches
again for the common statements following the branching constructs. In
the worst case, the former can lead to an exponential number of paths
that need to be executed. In return, the individual branches result in
smaller formulas sent to the SMT solver.

For these benefits, we will formulate our proof rules in symbolic execution
style. In particular, we want to use the symbolic state to generate simpli-
fied verification conditions. To this end, we keep track of some additional
information in the symbolic state.

6.2.1. Symbolic State
There are two main goals behind defining a separate symbolic state and se-
mantics on these states.

1. The state is organized such that it is easier to generate verification con-
ditions. In particular, we exploit the structure of database updates in
individual transactions to simplify the formulas for updating the data-
base state. We also add more bookkeeping for unique identifiers, which
allows us to automatically derive some properties about them from the
state.

2. In the concrete state, the program control state (i.e. the remaining io-
command to be executed) is part of the local state. We now separate
the control state from the local variables, which is beneficial for reason-
ing about loop constructs. In loops, we want to formulate statements
about the loop body in isolation, which is easier when the io-command
is separated from the state.

The symbolic state is described by the record proof-state defined in Figure
6.10. It extends the record invariant-context, which includes the fields of
the system state that can be used in invariants. This includes the history
of database calls (call, happensBefore, callOrigin, txOrigin), the history of
procedure invocations (invocationOp, invocationRes), and the set of unique
identifiers known to clients (knownIds).

For the remaining parts of the system state (see Figure 5.1 on page 51), we
include only the information of a single invocation. This invocation is given
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record ( ′proc, ′any, ′op) proof-state = ( ′proc, ′op, ′any) invContext +
ps-i ∶∶ invocId
ps-generatedLocal ∶∶ uniqueId set
ps-generatedLocalPrivate ∶∶ uniqueId set
ps-localKnown ∶∶ uniqueId set
ps-vis ∶∶ callId set
ps-localCalls ∶∶ callId list
ps-tx ∶∶ txId option
ps-firstTx ∶∶ bool
ps-store ∶∶ ′any store
ps-prog ∶∶ ( ′proc, ( ′any store × uniqueId set × ( ′any, ′op, ′any) io), ′op, ′any) prog

Figure 6.10.: Definition of the symbolic state for symbolic execution. Extends the
invariantContext record defined in Figure 5.1 on page 51.

by the field ps-i. For the visibleCalls and currentTransaction of the current
invocation, we use the fields ps-vis and ps-tx. Instead of the generatedIds from
all invocations, we just store the local ones in ps-generatedLocal. The field
localState is replaced in parts by the state of the mutable local variables in
ps-store. The other part of the local state is the io action that is still to be
executed. This is not included in the record, as it depends on additional type
parameter for the result of the action.

For the purpose of generating simpler verification conditions, we include
some additional ghost state, i.e. state that is not required for the symbolic
execution but can be used to encode additional structure and invariants in the
symbolic state.

For reasoning about unique identifiers, we include two ghost fields: The field
ps-generatedLocalPrivate includes those identifiers that were locally generated
and have not yet been exposed to other procedure invocations, which is by
storing them in the database. The field ps-localKnown includes all identifiers
that are locally known, which are the locally generated ones, the ones passed
to the procedure invocation via parameters, as well as identifiers returned by
database queries.

To simplify formulas related to database operations, we include two fields:
First, the field ps-localCalls stores a list of calls performed in the current
transaction in the order in which they were executed. This makes it easier
to reason about updated database states without unfolding all updates of the
happens-before relation. Second, the field ps-firstTx keeps track of whether
the current invocation has already committed a transaction (value False) or
is still in an earlier stage (value True). This is useful to simplify the happens-
before relation on invocations, which is simpler in the case of having only one
transaction in an invocation.

Note that we have not explicitly included anything “symbolic” in our sym-
bolic state. At this stage, this is not necessary, since we can simply use an
Isabelle variable for symbolic state and Isabelle’s logical premises to represent
path conditions. We will make path conditions and symbolic variables explicit
entities in Section 7.4, when we build a tool that works outside of Isabelle.
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Relating Symbolic and Concrete States

To relate symbolic execution to our single-invocation semantics, we define a
coupling relation between states of the former and states of a latter. The pred-
icate proof-state-rel PS CS holds for a proof state of the symbolic execution
PS and a concrete state CS from the single-invocation semantics, if and only
if all the following conditions hold:

1. The concrete state is well-formed:
state-wellFormed CS

2. The concrete and the symbolic state contain the same database calls:
calls CS = calls PS

3. The happens-before relation in the concrete state is calculated from the
happens-before relation of the symbolic state by adding the local calls
of the current invocation (ps-localCalls) to the relation.
happensBefore CS = updateHb (happensBefore PS) (ps-vis PS) (ps-localCalls
PS)

4. The originating transaction of calls in the concrete state is the same as
in the symbolic state, after updating the symbolic state with the local
calls from the currently active transaction.
callOrigin CS = map-update-all (callOrigin PS) (ps-localCalls PS) (the (ps-tx
PS))

5. The originating procedure invocation for transactions is the same in
both states, except for the current transaction which is not yet set in
the symbolic state.
transactionOrigin CS = (case ps-tx PS of

Some tx ⇒ transactionOrigin PS(tx ↦ ps-i PS)

∣ None ⇒ transactionOrigin PS)

∀ t. ps-tx PS ≜ t Ð→ transactionOrigin PS t = None

6. The unique identifiers known to clients are the same in both states.
knownIds CS = (knownIds PS)

7. The history of procedure invocations is the same in both states.
invocationOp CS = (invocationOp PS)

invocationRes CS = (invocationRes PS)

8. The ghost state ps-generatedLocal in the symbolic state contains exactly
the unique identifiers that where generated in the current invocation
according to the concrete state.
ps-generatedLocal PS = {x. generatedIds CS x ≜ ps-i PS}
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9. The local state in the concrete state is a triple, where the first compo-
nent is the store from the symbolic state, the second component is the
locally known unique identifiers from the symbolic state, and the third
component is some arbitrary io-action.
(∃ps-ls. localState CS (ps-i PS) ≜ (ps-store PS, ps-localKnown PS, ps-ls))

10. The current procedure in the concrete state is the function toImpl defined
in Figure 6.9.
currentProc CS (ps-i PS) ≜ toImpl

11. The visible calls in the concrete state is the union of the visible calls
in the symbolic state with the local calls from the current transaction
added.
visibleCalls CS (ps-i PS) ≜ (ps-vis PS ∪ set (ps-localCalls PS))

12. The current transaction in the current invocation is the same for both
states.
currentTransaction CS (ps-i PS) = ps-tx PS

13. When no transaction is active in the symbolic state, then there are no
uncommitted transactions in the concrete state.
(∀ tx ′. ps-tx PS /= Some tx ′Ð→ transactionStatus CS tx ′ /= Some Uncommitted)

14. The local calls in the symbolic state contain exactly the calls from the
currently active transaction in the concrete state.
(case ps-tx PS of

Some tx ′ ⇒ set (ps-localCalls PS) = {c. callOrigin CS c ≜ tx ′}

∣ None ⇒ ps-localCalls PS = [])

15. The list of local calls in the symbolic state is sorted by the happens-
before relation of the concrete state.
(sorted-by (happensBefore CS) (ps-localCalls PS))

16. The visible calls in the symbolic state and the calls from the currently
active transaction are disjoint.
(ps-vis PS ∩ set (ps-localCalls PS) = {})

17. The calls from the currently active transaction in the symbolic state
are not yet contained in the callOrigin map nor in the happensBefore
relation.
(dom (callOrigin PS) ∩ set (ps-localCalls PS) = {})

(Field (happensBefore PS) ∩ set (ps-localCalls PS) = {})

18. The list ps-localCalls contains no duplicates.
distinct (ps-localCalls PS)

101



Chapter 6: Proof Automation in Isabelle

19. The field ps-firstTx from the symbolic state is true, if and only if there
is no non-empty transaction in the current invocation.
(ps-firstTx PS ←→ (∄ c tx . callOrigin CS c ≜ tx ∧ transactionOrigin CS tx ≜
ps-i PS ∧ transactionStatus CS tx ≜ Committed ))

20. All committed calls from in the current invocation are contained in ps-
vis.
(∀ c. i-callOriginI-h (callOrigin PS) (transactionOrigin PS) c ≜ (ps-i PS) Ð→
c ∈ (ps-vis PS))

21. The locally generated unique identifers that are private are a subset of
the locally generated unique identifiers and they only contain unique
identifers that are private to the current procedure invocation.
(ps-generatedLocalPrivate PS ⊆ ps-generatedLocal PS)

(∀ v∈ps-generatedLocalPrivate PS. uid-is-private (ps-i PS) CS v)

22. The store for local mutable variables is finite. This ensures that we can
always allocate new reference cells.
(finite (dom (ps-store PS)))

23. The current invocation cannot generate unique identifiers out of thin
air. Only the locally known unique identifiers can appear in outputs
generated by the procedure.
(invocation-cannot-guess-ids (ps-localKnown PS) (ps-i PS) CS)

24. All locally generated unique identifiers are locally known.
(ps-generatedLocal PS ⊆ ps-localKnown PS)

25. Both states have the same program.
prog CS = ps-prog PS

6.2.2. Symbolic Execution Semantics
Having defined the symbolic state, we now define the semantics of the symbolic
execution. To this end we first define a predicate step-io that describes the
state transitions possible for a single step in an symbolic execution. We use
a relation instead of a function from state to state since the semantics is
nondeterministic.

The relation has the form step-io progInv qrySpec S cmd action S ′ cmd ′ Inv. Here
progInv is the program invariant and qrySpec is the database query specification
of the program. The pre-state of the step is given by the proof-state S and io-
command cmd. The post-state after the step is given by S’ and cmd’. The
final parameter Inv is a Boolean value which signals whether the step produced
any errors. The full definition is shown in Figures 6.11 and 6.12. It is similar
to the single-invocation semantics that we have introduced in Section 5.2.
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step-io progInv qrySpec S cmd S ′ cmd ′ Inv ≡
(Inv Ð→ proof-state-wellFormed S ′)
∧ (case cmd of

WaitReturn r ⇒ False
∣ WaitLocalStep cont ⇒
(∃ store ′ ok.

cont (ps-store S) = (ok, store ′, cmd ′)
∧ (Inv ←→ ok ∧ finite (dom store ′))
∧ (S ′ = S(∣

ps-store ∶= store ′
∣)))

∣ WaitBeginAtomic n ⇒
∃ t vis ′ calls ′ happensBefore ′ callOrigin ′ transactionOrigin ′ knownIds ′ invoca-

tionOp ′ invocationRes ′.
cmd ′ = n

∧ Inv
∧ ps-tx S = None
∧ progInv (invariantContext.truncate (S ′(∣transactionOrigin ∶= transactionOri-

gin ′∣)))
∧ transactionOrigin ′ t = None
∧ (∀ t ′. t ′ /= t Ð→ (transactionOrigin S t ′ ≜ ps-i S ←→ transactionOrigin ′ t ′ ≜

ps-i S))
∧ chooseSnapshot-h vis ′ (ps-vis S) (λtx. Some Committed) callOrigin ′ happens-

Before ′
∧ consistentSnapshotH calls ′ happensBefore ′ callOrigin ′ (λtx. Some Committed)

vis ′
∧ (∀ c. callOrigin ′ c /= Some t)
∧ (S ′ = S(∣

calls ∶= calls ′,
happensBefore ∶= happensBefore ′,
callOrigin ∶= callOrigin ′,
transactionOrigin ∶= transactionOrigin ′,
knownIds ∶= knownIds ′,
invocationOp ∶= invocationOp ′,
invocationRes ∶= invocationRes ′,
ps-tx ∶= Some t,
ps-vis ∶= vis ′

∣))
∧ ps-growing S S ′ t
∧ transactionOrigin S t = None

∣ WaitEndAtomic n ⇒
cmd ′ = n

∧ (S ′ = S(∣
happensBefore ∶= updateHb (happensBefore S) (ps-vis S) (ps-localCalls S),
callOrigin ∶= map-update-all (callOrigin S) (ps-localCalls S) (the (ps-tx S)),
transactionOrigin ∶= transactionOrigin S(the (ps-tx S) ↦ ps-i S),
ps-tx ∶= None,
ps-localCalls ∶= [],
ps-vis ∶= ps-vis S ∪ set (ps-localCalls S),
ps-firstTx ∶= ps-firstTx S ∧ ps-localCalls S = []
∣))
∧ (Inv ←→ progInv (invariantContext.truncate S ′))

Figure 6.11.: Semantics of single steps in symbolic execution (Part 1).
103



Chapter 6: Proof Automation in Isabelle

∣ WaitNewId P n ⇒
∃ uidv uid.

cmd ′ = n uidv
∧ Inv
∧ uniqueIds uidv = {uid}
∧ uid ∉ ps-generatedLocal S
∧ uid-fresh uid S
∧ P uidv
∧ (S ′ = S(∣

ps-localKnown ∶= ps-localKnown S ∪ {uid},
ps-generatedLocal ∶= ps-generatedLocal S ∪ {uid},
ps-generatedLocalPrivate ∶= ps-generatedLocalPrivate S ∪ {uid}
∣))

∣ WaitDbOperation oper n ⇒
(if Inv then
∃ c res.
calls S c = None

∧ ps-tx S /= None
∧ uniqueIds oper ⊆ ps-localKnown S
∧ toplevel-spec qrySpec (current-operationContext S) (current-vis S) oper res
∧ cmd ′ = n res
∧ (S ′ = S(∣

ps-localKnown ∶= ps-localKnown S ∪ uniqueIds res,
ps-generatedLocalPrivate ∶= ps-generatedLocalPrivate S − uniqueIds oper,
calls ∶= (calls S)(c ↦ Call oper res),
ps-localCalls ∶= ps-localCalls S @ [c]
∣))

else
S ′ = S ∧ cmd ′ = cmd ∧ ¬(uniqueIds oper ⊆ ps-localKnown S)
)

∣ Loop i body n ⇒
cmd ′ = loop-body-from-V body i >>= (λr. case r of Continue x ⇒ Loop x body n ∣

Break x ⇒ n x )
∧ Inv
∧ (S ′ = S))

Figure 6.12.: Semantics of single steps in symbolic execution (Part 2).
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Next, we extend this relation to multiple steps in the predicate steps-io. This
predicate has the form steps-io progInv qrySpec S cmd S’ res. The first parameters
are equivalent to the case of a single step (step-io). However, instead of a new
io-action and a flag to denote errors, we use a single value res. If the given
io-action (cmd) completes without error, then res contains the returned value.
If an error occurs during execution, then res is None. The full definition of
steps-io is given in Figure 6.13.

inductive steps-io for progInv qrySpec where
steps-io-final∶
steps-io progInv qrySpec S (WaitReturn res) S (Some res)
∣ steps-io-error ∶

step-io progInv qrySpec S cmd S ′ cmd ′ False
Ô⇒ steps-io progInv qrySpec S cmd S ′ None
∣ steps-io-step∶
[[step-io progInv qrySpec S cmd S ′ cmd ′ True;
steps-io progInv qrySpec S ′ cmd ′ S ′′ res

]]
Ô⇒ steps-io progInv qrySpec S cmd S ′′ res

Figure 6.13.: Symbolic execution of multiple steps (steps-io).

We can use the predicate steps-io to define correctness of executing a com-
mand with respect to some postcondition P . The predicate execution-s-check
progInv qrySpec S cmd P states, that executing the io-action cmd in a symbolic
state S never produces any errors and after executing the complete command
the postcondition P holds for the final state with the returned result. The
formal definition is given in Figure 6.14.

definition
execution-s-check progInv qrySpec S cmd P ≡
∀S ′ res. steps-io progInv qrySpec S cmd S ′ res
Ð→ proof-state-wellFormed S
Ð→ (case res of Some r ⇒ P S ′ r ∣ None ⇒ False)

Figure 6.14.: Definition of execution-s-check.

definition
finalCheck Inv i S res ≡

Inv (invContext.truncate (S(∣
invocRes ∶= invocRes S(i ↦ res),
knownIds ∶= knownIds S ∪ uniqueIds res∣)))

∧ uniqueIds res ⊆ ps-localKnown S

Figure 6.15.: Definition of finalCheck.

When verifying a procedure, the postcondition is given by the predicate
finalCheck defined in Figure 6.15. It checks that the program invariant holds
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after the final state is updated with the returned result and that the result only
contains unique identifiers known to the procedure invocation. However, the
predicate can be different when checking parts of a procedure. For example,
when checking a loop construct, the loop body is checked with a post condition
that includes a loop invariant.

Linking symbolic execution and single-invocation semantics. Using the
above definitions, we can now link symbolic executions with correctness in the
single-invocation semantics. The corresponding Lemma is given in Figure 6.16.
It states that a successful check using the symbolic execution (execution-s-
check) implies that the program is correct with respect to the single-invocation
semantics (execution-s-correct). The assumptions of the Lemma demand that
the checked state S is an initial state of a procedure invocation which satis-
fies the program invariant. Also, the procedure implementation must be the
function toImpl that we used to translate io-commands to the abstract state
machine used in the semantics (see Figure 6.9 on page 96). Moreover, we de-
mand that the program is well-formed with respect to its handling of unique
identifiers, which ensures that it cannot produce unique identifiers out of thin
air (this well-formedness property for programs is defined in Section 6.3).

Proof sketch. To prove this Lemma, we show that we can simulate steps
taken in the single-invocation semantics using the symbolic execution as de-
fined by steps-io. We show that if the single-invocation semantics produces
any error, then so does the symbolic execution. The proof proceeds by an
induction over the length of the trace in the single-invocation semantics. The
predicate proof-state-rel that we introduced above is used to link the states of
the two executions.

The case for the empty trace is trivial. For a nonempty trace we focus on
the first step in the trace. We then distinguish the case where the current
command is a return and the case for all other commands.

If the current command is a return, there are two possible actions according
to the single-invocation semantics: Either the action is a return or there is
an assertion failure because the implementation tried to return a value that
contains invalid unique identifiers. Both cases are handled by the definition of
finalCheck, which performs the same checks.

If the current command is not a return, we distinguish between the case
where execution with the single-invocation semantics produces an error and
where it does not. If it produces an error, we show that we can also produce an
error with symbolic execution. Otherwise, we show that symbolic execution
can perform a step that leads to a new symbolic state satisfying the proof-
state-rel predicate with respect to the new state from the single-invocation
semantics.

◻
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lemma execution-s-check-sound4∶
fixes S ∶∶ ( ′proc∶∶valueType, ′any store × uniqueId set × ( ′any, ′op, ′any)

impl-language-loops.io, ′op∶∶valueType, ′any∶∶valueType) state
assumes a1∶ localState S i ≜ (Map.empty, uniqueIds op, ls)

and a2∶ S ∈ initialStates ′ progr i
and a3∶ currentProc S i ≜ toImpl
and a4∶ invocOp S i ≜ op
and prog-wf ∶ program-wellFormed (prog S)
and inv∶ invariant-all ′ S
and qry-rel∶ crdt-spec-rel (querySpec progr) querySpec ′
and c∶ ⋀s-calls s-happensBefore s-callOrigin s-txOrigin s-knownIds s-invocOp

s-invocRes.
[[
⋀tx. s-txOrigin tx /= Some i;
invariant progr (∣

calls = s-calls,
happensBefore = s-happensBefore,
callOrigin = s-callOrigin,
txOrigin = s-txOrigin,
knownIds = s-knownIds,
invocOp = s-invocOp(i↦op),
invocRes = s-invocRes(i∶=None)
∣)
]] Ô⇒

execution-s-check (invariant progr) querySpec ′ (∣
calls = s-calls,
happensBefore = s-happensBefore,
callOrigin = s-callOrigin,
txOrigin = s-txOrigin,
knownIds = s-knownIds,
invocOp = s-invocOp(i↦op),
invocRes = s-invocRes(i∶=None),
ps-i = i,
ps-generatedLocal = {},
ps-generatedLocalPrivate = {},
ps-localKnown = uniqueIds op,
ps-vis = {},
ps-localCalls = [],
ps-tx = None,
ps-firstTx = True,
ps-store = Map.empty,
ps-prog = progr ∣) ls (finalCheck (invariant progr) i)

shows execution-s-correct S i

Figure 6.16.: Lemma describing the soundness of using execution-s-check for the
verification of programs.
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6.2.3. Rule Definitions and Correctness

In the previous section, we have shown that we can use symbolic execution
(execution-s-check) to show that a program is correct in the single-invocation
semantics (execution-s-correct). In order to automate the symbolic execution,
we now derive proof rules from the definition of step-io. We define one proof
rule for each language construct, which allows the rules to be applied auto-
matically based on the program structure. Another difference compared to
directly using the definition of steps-io is that the rules instantiate some prop-
erties which allow Isabelle to do simplifications during symbolic execution.
Moreover, the proof rules for loops include another inductive argument based
on loop invariants.

Before defining the concrete rules, end we first prove a generic correctness
criterion for proof rules, which is given in Figure 6.17.

lemma execution-s-check-proof-rule∶
assumes noReturn∶ ⋀r. cmd /= WaitReturn r

and cont∶
⋀PS ′ cmd ′ ok. [[

step-io Inv crdtSpec PS cmd PS ′ cmd ′ ok;
proof-state-wellFormed PS
]] Ô⇒

ok
∧ (∃ res. cmd ′ = return res
∧ P PS ′ res)

shows execution-s-check Inv crdtSpec PS (cmd) P

Figure 6.17.: Generic correctness criterion for proof rules.

In general, our proof rules have the conclusion execution-s-check Inv crdtSpec
PS cmd P, where cmd is a fixed command that is not a return. To show this
conclusion, we have to consider all the steps that are possible from a well-
formed pre-state PS to a post-state PS’. Here a symbolic state is called well-
formed (predicate proof-state-wellFormed) if there is a concrete state related
to the symbolic state according to proof-state-rel. For each of the possible
steps, we then have to show that it does not produce any errors (ok) and that
the predicate P holds for the new state and result of the command.

Below, we show how this generic rule is instantiated for the different kind
of commands in our language.

Local Steps: References

Our language includes 3 different constructs to perform local steps interact-
ing with the mutable local variable store via references: creating (makeRef ),
reading (read), and updating (assign). The proof rules for these constructs
are shown in Figure 6.18. The proof rule follow the definition of the language
constructs (see Figure 6.6 on page 94). However, unlike the original definitions
we do not include a default action when working with invalid references. In-
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stead, we add a precondition to the rules demanding that the used references
are valid.

lemma execution-s-check-makeRef ∶
assumes cont∶
⋀ref . [[

ref = freshRef (dom (ps-store PS))
]] Ô⇒ P
(PS(∣

ps-store ∶= (ps-store PS)(ref ↦ intoAny a)
∣))
(Ref ref )

shows execution-s-check Inv crdtSpec PS (makeRef a) P

lemma execution-s-check-read∶
assumes validRef ∶ iref r ∈ dom (ps-store PS)

and cont∶ P PS (s-read (ps-store PS) r)
shows execution-s-check Inv crdtSpec PS (read r) P

lemma execution-s-check-assign∶
assumes validRef ∶ iref r ∈ dom (ps-store PS)

and cont∶
P (PS(∣ps-store ∶= ps-store PS(iref r ↦ intoAny v)∣)) ()

shows execution-s-check Inv crdtSpec PS (assign r v) P

Figure 6.18.: Proof rules for local steps involving references.

Unique Identifier Creation

The rule for creating unique identifiers (newId) is shown in Figure 6.19. Re-
member that the newId command takes a predicate tc, which is a kind of
type-check to determine what kind of unique identifier to create. In the rule,
we demand this predicate to be true for an infinite set of identifiers. Since
there can only be finitely many identifiers that already have been generated,
this ensures that we can always succeed in finding a new one.

In the post-state we include the newly generated identifier in the set ps-
generatedLocalPrivate. This allows us to later derive that the identifier is not
already used in any other part of the system state. Section 6.3 explores this
in detail.

Start of Transaction

The proof rule for starting a transaction (shown in Figure 6.20) is our largest
proof rule. This is due to the fact that our technique handles interactions with
other concurrently running procedure invocations in this rule using a nondeter-
ministic state transition. In the rule, this state transition is modelled using new
logical variables s-calls’, s-happensBefore’, s-callOrigin’, s-transactionOrigin’,
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lemma execution-s-check-newId∶
assumes infPred∶ infinite (Collect tc)

and cont∶ ⋀v vn. [[
tc v;
vn ∉ knownIds PS;
vn ∉ ps-generatedLocal PS;
uniqueIds v = {vn};
uid-is-private-S (ps-i PS) PS vn

]] Ô⇒
P
(PS(∣ ps-localKnown ∶= ps-localKnown PS ∪ {vn},

ps-generatedLocal ∶= ps-generatedLocal PS ∪ {vn},
ps-generatedLocalPrivate ∶= ps-generatedLocalPrivate PS ∪ {vn}
∣))

v
shows execution-s-check Inv crdtSpec PS (newId tc) P

Figure 6.19.: Proof rule for creating unique identifiers.

s-knownIds’, vis’, s-invocationOp’, and s-invocationRes’ in the cont assump-
tion.

For the new state we can assume the program invariant and that it is well-
formed. We also can assume that the new state is reachable from the old
state. This is formalized by the ps-growing predicate, which transfers the
state-monotonicGrowth property we defined on concrete states to symbolic
states. The full definition of the predicate is given in Figure 6.21.

Database Calls

The rule for database calls (call) is given in Figure 6.22. It includes two addi-
tional proof obligations: There must be a current transaction and the database
operation must be shown to only include locally known unique identifiers.

In the cont part of the rule, we get to assume that the CRDT specification
holds for the result of the database call in an execution context constructed
from the current state.

In the rule, we also need to keep track of unique identifiers. The unique
identifiers contained in the database operation can no longer be considered
private to the current procedure invocation after writing them to the global
database. Moreover, we can learn about new unique identifiers from the data-
base result and thus we need to include the unique identifiers from the result
in our set of locally known identifiers.

End of Transaction

The rule for committing a transaction is given in Figure 6.23. This rule intro-
duced three proof obligations: First we need to show that there is an active
transaction and secondly that at least one database call has been performed.
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lemma execution-s-check-beginAtomic∶
assumes cont∶ ⋀tx s-calls ′ s-happensBefore ′ s-callOrigin ′ s-txOrigin ′ s-knownIds ′

vis ′
s-invocOp ′ s-invocRes ′ PS ′. [[

Inv (invContext.truncate PS ′);
s-txOrigin ′ tx = None;
⋀i op. invocOp PS i ≜ op Ô⇒ s-invocOp ′ i ≜ op;
⋀c. s-callOrigin ′ c /= Some tx;
ps-vis PS ⊆ vis ′;
vis ′ ⊆ dom s-calls ′;
ps-firstTx PS Ô⇒ (⋀c tx. s-callOrigin ′ c ≜ tx Ô⇒ s-txOrigin ′ tx /= Some (ps-i PS));
— consistency:
causallyConsistent s-happensBefore ′ vis ′;
transactionConsistent-atomic s-callOrigin ′ vis ′;
∀ v∈ps-generatedLocalPrivate PS. uid-is-private ′ (ps-i PS) s-calls ′ s-invocOp ′
s-invocRes ′ s-knownIds ′ v;
PS ′ = (PS(∣calls ∶= s-calls ′,

happensBefore ∶= s-happensBefore ′,
callOrigin ∶= s-callOrigin ′,
txOrigin ∶= s-txOrigin ′,
knownIds ∶= s-knownIds ′,
invocOp ∶= s-invocOp ′(ps-i PS ∶= invocOp PS (ps-i PS)),
invocRes ∶= s-invocRes ′(ps-i PS ∶= None),
ps-vis ∶= vis ′,
ps-localCalls ∶= [],
ps-tx ∶= Some tx
∣));

proof-state-wellFormed PS ′;
ps-growing PS PS ′ tx
]] Ô⇒

P PS ′ ()
shows execution-s-check Inv crdtSpec PS beginAtomic P

Figure 6.20.: Proof rule for starting a transaction.
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definition ps-growing S S ′ t ≡
∃CS CS ′.

proof-state-rel S CS
∧ proof-state-rel S ′ CS ′
∧ ps-localCalls S = []
∧ ps-localCalls S ′ = []
∧ ps-tx S = None
∧ ps-tx S ′ ≜ t
∧ ps-i S ′ = ps-i S
∧ ps-prog S ′ = ps-prog S
∧ ps-generatedLocal S ′ = ps-generatedLocal S
∧ ps-generatedLocalPrivate S ′ = ps-generatedLocalPrivate S
∧ ps-localKnown S ′ = ps-localKnown S
∧ ps-firstTx S ′ = ps-firstTx S
∧ ps-store S ′ = ps-store S
∧ state-monotonicGrowth (ps-i S) CS (CS ′ (∣

txStatus ∶= (txStatus CS ′)(t ∶= None),
txOrigin ∶= (txOrigin CS ′)(t ∶= None),
currentTx ∶= (currentTx CS ′)(ps-i S ∶= None),
localState ∶= (localState CS ′)(ps-i S ∶= localState CS (ps-i S)),
visibleCalls ∶= (visibleCalls CS ′)(ps-i S ∶= visibleCalls CS (ps-i S))∣))

Figure 6.21.: Definition of the ps-growing predicate.

lemma execution-s-check-call∶
assumes in-tx∶ ps-tx PS ≜ tx

and unique-wf ∶ uniqueIds OP ⊆ ps-localKnown PS
and cont∶ ⋀c res. [[

toplevel-spec crdtSpec (∣
calls = calls PS,
happensBefore=updateHb (happensBefore PS) (ps-vis PS) (ps-localCalls PS)∣)
(ps-vis PS ∪ set (ps-localCalls PS))
OP res;

Op PS c = None
]] Ô⇒

P
(PS(∣calls ∶= (calls PS)(c ↦ Call OP res),

ps-generatedLocalPrivate ∶= ps-generatedLocalPrivate PS − uniqueIds OP,
ps-localKnown ∶= ps-localKnown PS ∪ uniqueIds res,
ps-localCalls ∶= ps-localCalls PS @ [c]
∣))

res
shows execution-s-check Inv crdtSpec PS (call OP) P

Figure 6.22.: Proof rule for a database call.
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While the latter is not strictly necessary, we included it in the rule to avoid
further case distinctions in the newly introduced assumptions.

The third, and most important, proof obligation in the rule is to show that
the invariant holds for the new state after committing the transaction.

To simplify the proof of the invariant, we add a few assumptions in the cont
case of the rule. These assumptions help the simplifier with typical expressions
that might appear in invariants.

Sequential Composition

The rule for sequential composition with the bind (>>=) operation is given in
Figure 6.24. The idea is that we can check the initial command with the check
for the continuation moved into the postcondition.

Invocation Return

In the case of a return command, we simply have to check the postcondition
P with respect to the result and the final state, which we can assume to be
well-formed. The corresponding rule is given in Figure 6.25.

Loops

To support loops, we use the classical approach of loop invariants. We first
prove a rule for the general loop construct and then use this to derive proof
rules for the higher-level loop constructs.

The general rule is given in Figure 6.26. Remember that the general Loop
construct consists of an initial accumulator state, a loop body that takes the
accumulator and returns a loop result. The loop result is either Continue a
with a new accumulator or it is Break r, where r is a result passed to the
continuation of the Loop construct.

For the rule, we assume that the continuation always has the form return ○
f for some function f. The loop invariant is a predicate with three arguments:
the symbolic state before executing the loop, the current accumulator, and the
current symbolic state. In principle, it is not necessary to include the state
before executing the loop in the invariant, since this state is known when
applying the rule. However, if we want to annotate the program text with
loop invariants, this information would not be available otherwise.

The proof rule for the loop construct then introduces two proof obligations:
First, the loop invariant must be shown to hold for the initial state and the
initial accumulator value. Second, it must be shown that the loop body is
correct. This means that the loop invariant is maintained when the body
returns with Continue and that the postcondition P holds when it returns
with Break.

Unlike the previously introduced rules, the Loop rule is not suitable for
automation, since the loop invariant is not fixed. To avoid this problem, we
define annotated loop constructs with an additional parameter for the loop
invariant. The loop invariant is not used in the definition and is only used
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lemma execution-s-check-endAtomic∶
assumes in-tx∶ ps-tx PS ≜ tx

and tx-nonempty∶ (ps-localCalls PS) /= []
and cont∶ ⋀PS ′. [[

distinct (ps-localCalls PS);
⋀c. c∈set (ps-localCalls PS) Ô⇒ callOrigin PS c = None;
⋀c. c∈set (ps-localCalls PS) Ô⇒ c ∉ ps-vis PS;
⋀c c ′. c∈set (ps-localCalls PS) Ô⇒ (c,c ′) ∉ happensBefore PS;
⋀c c ′. c∈set (ps-localCalls PS) Ô⇒ (c ′,c) ∉ happensBefore PS;
invocation-happensBeforeH
(i-callOriginI-h (map-update-all (callOrigin PS) (ps-localCalls PS) tx) (txOrigin

PS(tx ↦ ps-i PS)))
(updateHb (happensBefore PS) (ps-vis PS) (ps-localCalls PS))

=
(if ps-firstTx PS then
invocation-happensBeforeH (i-callOriginI-h (callOrigin PS) (txOrigin PS))
(happensBefore PS)
∪ {i ′ ∣ i ′ c ′. c ′ ∈ ps-vis PS ∧ i-callOriginI-h (callOrigin PS) (txOrigin PS) c ′ ≜ i ′
∧ (∀ c ′′. i-callOriginI-h (callOrigin PS) (txOrigin PS) c ′′ ≜ i ′ Ð→ c ′′ ∈ ps-vis PS

) } × {ps-i PS}
else
invocation-happensBeforeH (i-callOriginI-h (callOrigin PS) (txOrigin PS))
(happensBefore PS)
− {ps-i PS} × {i ′. (ps-i PS,i ′) ∈ invocation-happensBeforeH (i-callOriginI-h
(callOrigin PS) (txOrigin PS)) (happensBefore PS) });
PS ′ = PS(∣happensBefore ∶= updateHb (happensBefore PS) (ps-vis PS) (ps-localCalls
PS),

callOrigin ∶= map-update-all (callOrigin PS) (ps-localCalls PS) tx,
txOrigin ∶= txOrigin PS(tx ↦ ps-i PS),
ps-vis ∶= ps-vis PS ∪ set (ps-localCalls PS),
ps-localCalls ∶= [],
ps-firstTx ∶= False,
ps-tx ∶= None
∣)

]] Ô⇒
Inv (invContext.truncate PS ′)
∧ P PS ′ ()

shows execution-s-check Inv crdtSpec PS endAtomic P

Figure 6.23.: Proof rule for committing a database transaction.

lemma execution-s-check-bind∶
assumes execution-s-check progInv qrySpec S cmd (λS ′ r.

execution-s-check progInv qrySpec S ′ (cont r) P)
shows execution-s-check progInv qrySpec S (cmd >>= cont) P

Figure 6.24.: Proof rule for sequential composition via >>=.
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lemma show-execution-s-check-return∶
assumes P PS r

shows execution-s-check Inv crdtSpec PS (return r) P

Figure 6.25.: Proof rule for returning from a procedure invocation.

lemma execution-s-check-Loop∶
fixes init ∶∶ ′any∶∶valueType
and LoopInv ∶∶ ( ′b∶∶valueType, ′any, ′op∶∶valueType) proof-state ⇒ ′any ⇒ ( ′b, ′any,

′op) proof-state ⇒ bool
and f ∶∶ ′any ⇒ ′a

assumes
inv-pre∶ LoopInv PS init PS
and cont∶

⋀acc PSl. [[
LoopInv PS acc PSl
]] Ô⇒ execution-s-check Inv crdtSpec PSl (body acc)
(λPS ′ r. case r of Break res ⇒ P PS ′ (f res)

∣ Continue acc ′ ⇒ LoopInv PS acc ′ PS ′ )
shows execution-s-check Inv crdtSpec PS (Loop init (loop-body-to-V body) (return ○
f )) P

Figure 6.26.: Proof rule for the general loop construct.

so that the corresponding proof rules can be applied automatically, without
manual instantiation of variables.

We now present the proof rules for the higher level loop constructs. The
rules are given in Figure 6.27.

The first rule is for the loop construct. This is similar to the generic Loop,
but instead of using type ’any for the accumulator and the return value of the
loop, it allows to use any countable datatype.

In the second rule, we handle while loops, which are similar to the general
looping construct but do not have a builtin accumulator nor a result value.
Consequently, the loop invariant only takes the initial state and the current
state as parameters. Overall, the rule is similar to the first rule.

Finally, the third rule in Figure 6.27 addresses the forEach loop. This
loop iterates over a given list, producing a result for each element in the list.
As typical loop invariants (see for example [Gri82]) involve statements about
an already processed section and about the section of data that is still to
be processed, we design the general form of the loop invariant accordingly.
The loop invariant takes 5 parameters: The pre-state of the loop, the list
of elements that already have been processed, the list of results that have
been produced for these processed elements, the list of elements still to be
processed, and finally the current state. This is similar to proof rules used
in Spec# [Jac+05], where loop invariants can refer to the list of values that
have already been returned by the loop iterator. Implicitly, the loop invariant
includes the fact that the list of processed elements and the list of results have
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lemma execution-s-check-loop∶
fixes PS ∶∶ ( ′proc∶∶valueType, ′any∶∶{small,valueType,natConvert}, ′op∶∶valueType)

proof-state
and init ∶∶ ′acc∶∶countable
and body ∶∶ ′acc ⇒ (( ′acc, ′a∶∶countable) loopResult, ′op, ′any) io

assumes inv-pre∶ LoopInv PS init PS
and cont∶

⋀acc PSl. [[
LoopInv PS acc PSl
]] Ô⇒ execution-s-check Inv crdtSpec PSl (body acc)
(λPS ′ r. case r of Break x ⇒ P PS ′ x

∣ Continue x ⇒ LoopInv PS x PS ′ )
shows execution-s-check Inv crdtSpec PS (loop-a init LoopInv body) P

lemma execution-s-check-while∶
assumes inv-pre∶ LoopInv PS PS

and cont∶
⋀PSl. [[

LoopInv PS PSl
]] Ô⇒ execution-s-check Inv crdtSpec PSl body
(λPS ′ r. if r then P PS ′ ()

else LoopInv PS PS ′ )
shows execution-s-check Inv crdtSpec PS (while-a LoopInv body) P

lemma execution-s-check-forEach∶
assumes inv-pre∶ LoopInv PS [] [] elems PS

and iter ∶
⋀done results t todo PSl. [[

LoopInv PS done results (t#todo) PSl;
length done = length results;
elems = done@t#todo
]] Ô⇒ execution-s-check Inv crdtSpec PSl (body t) (λPS ′ r. LoopInv PS (done@[t])
(results@[r]) todo PS ′)

and cont∶
⋀results PSl. [[

LoopInv PS elems results [] PSl;
length elems = length results
]] Ô⇒ P PSl results
shows execution-s-check Inv crdtSpec PS (forEach-a elems LoopInv body) P

Figure 6.27.: Proof rule for different looping construct.
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the same length and that the list of processed elements concatenated with the
list of elements to process is the list of all elements.

The rule then includes three proof obligations: First, we have to show that
the invariant holds for the initial states with no elements processed yet. Next,
we have to show that the loop body maintains the invariant. Here, we can
assume that there is one more element to be processed. In the last proof
obligation, we have to show that the loop invariant implies the postcondition
P after all elements are processed.

Further Aspects of Loops. Our proof rules for loops provide the basic in-
frastructure to prove partial correctness of programs involving loops. For sim-
plicity, we do not include a total correctness proof, which could be done by
extending the proof rules with loop variants. These are expressions that must
be shown to decrease in every loop iteration with respect to some well-founded
ordering [Flo93].

Another aspect that we omitted for simplicity is loop framing. This means
that we have to explicitly specify which parts of the state cannot change in
the state. This problem can often be solved by statically determining the set
of variables that are updated in a loop. For example in Dafny, this is done
automatically and users can use special annotations to define which variables
might change within a loop [FL17].

6.2.4. Combining Proof Rules with Eisbach
We now have defined proof rules for all constructs of our language. With the
goal to automate verification of applications within Isabelle, we now define a
custom tactic to derive verification conditions from a procedure implementa-
tion. To this end we use Eisbach [MMW16], which is a DSL for writing tactics
within Isabelle.

A tactic in Isabelle is a function that takes an Isabelle proof state (an
ordered list of goals to prove) and produces a lazy stream of new proof states.
This stream represents alternative outcomes and can be used for backtracking.
Tactics can be composed in different ways. It is possible to focus on certain
subgoals and ignore others. By default, tactics work on the first subgoal only.

We quickly introduce here the composition operators that we use for our
tactic (see Section 6.4.1 of the Isabelle Reference Manual [Wen+19]):

• The comma operator (“,”) composes two tactics sequentially. The second
tactic is applied on all proof states produced by the first tactic in a depth-
first fashion.

• The semicolon operator (“;”) is called structural composition. The left
tactic focuses on the first subgoal and the right tactic is applied for each
new subgoal produced by the first tactic.

• The question mark (“?”) tries to apply a tactic. If the tactic fails, i.e.
it produces an empty stream, it instead produces a singleton stream
containing the unchanged proof state.
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• The plus operator (“+”) repeats a tactic at least once and until it can
no longer be applied.

The method construct offered by Eisbach allows to give a name and param-
eters to a tactic. It also allows the definition of recursive tactics.
method repliss-vcg-step1 uses asmUnfold =
(rule repliss-proof-rules;
((subst(asm) asmUnfold)+)?;
(intro impI conjI)?;
clarsimp?;
(intro impI conjI)?;
(rule refl)?)

method repliss-vcg-step uses asmUnfold =
(repliss-vcg-step1 asmUnfold∶ asmUnfold;
(repliss-vcg-step asmUnfold∶ asmUnfold)?)

method repliss-vcg-l uses impl asmUnfold =
((simp add∶ impl)?,
(unfold atomic-def skip-def )?,
simp?,
repliss-vcg-step asmUnfold∶ asmUnfold)

Figure 6.28.: Eisbach tactics for symbolic execution.

Using the constructs introduced above, we define our tactic for symbolic
execution in Figure 6.28. The entry point is repliss-vcg-l, which takes two
fact collections impl and asmUnfold as parameters. The parameter impl is
supposed to contain the definitions of the procedure implementation. In the
first step, we use these to simplify the goal, which results in a state where
the program text of the current procedure is available. Next, we unfold the
definitions of language constructs that are merely syntactic sugar for other
constructs, since we do not have proof rules available for the sugared form.
Then we try to simplify the goal again and invoke the tactic repliss-vcg-step.
The tactic repliss-vcg-step is a recursive tactic that processes a single step
using repliss-vcg-step1 and then recursively tries to solve all new subgoals.
Effectively, this strategy will remove all subgoals with an execution-s-check
and only leave the other proof obligations to be solved.

For a single step, the tactic repliss-vcg-step1 first tries to apply all the dif-
ferent proof rules. The collection repliss-proof-rules basically includes all the
proof rules we introduced earlier. The only additional change is in the rule for
endAtomic, which we restructure such that the proven invariant at the end of
the transaction can be assumed to hold for proving the remaining postcondi-
tion P.

After applying the right proof rule, the new subgoals are tried to be simpli-
fied. To this end, we first unfold the definitions from the parameter asmUnfold
in the assumptions of the new subgoals. This parameter is supposed to contain
definitions that are useful to eliminate other proof obligations automatically
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when unfolded. We then simplify the subgoals and split conjunctions into
several goals. Finally, we try to use the rule refl, which eliminates schematic
variables in simple equations. For example this is necessary when using the
rule for database calls, since it contains the assumption ps-tx PS ≜ tx with a
variable tx that is not directly bound by the rule application.

6.2.5. Example: Sum of List
We now show the use of the proof rules using a simple example including loops
and references, but without any database interaction. This demonstrates that
we have the basic functionality of a verifier for an imperative programming
language.

The procedure shown in Figure 6.29 takes a list of natural numbers (p-list)
and calculates the maximum element in the list. We formulate this correctness
criterion as a program invariant in the definition inv1. It states that whenever
the operation of an invocation i is PMax list, the list is nonempty, and the
result of the invocation is r, then r is the maximum element in the list.

definition max-impl ∶∶ nat list ⇒ (val,operation,val) io where
max-impl p-list ≡

do {
resR ← makeRef 0;
forEach-a p-list (loop-inv resR p-list) (λx. do {

res ← read resR;
resR ∶← max x res
});
res ← read resR;
return (Nat res)

}

definition loop-inv ∶∶ nat ref ⇒ nat list ⇒ (proc, val, unit) proof-state ⇒ nat list ⇒
′a list ⇒ nat list ⇒ (proc, val, unit) proof-state ⇒ bool where
loop-inv resR p-list PS-old Done res Todo PS ≡
∃ re.

(iref resR) ∈ dom (ps-store PS)
∧ re ∶∶= s-read (ps-store PS) resR
∧ (if Done = [] then re = 0 else re = Max (set Done))
∧ (only-store-changed PS-old PS)

definition inv1 where
inv1 op res ≡ ∀ i list r.

op i ≜ PMax list
∧ list /= []
∧ res i ≜ r
Ð→ (r = Nat (Max (set list)))

Figure 6.29.: Example of a procedure to calculate the maximum of a list.

To prove the correctness of the implementation, we need to annotate the
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loop with an invariant, which is given in the definition of loop-inv in Figure
6.29. The essential part of the loop invariant states that the variable resR
contains the maximum of the numbers processed so far or 0 if no element has
been processed yet. Besides this essential part, we also need to specify that
resR is a valid reference. Moreover, we need a kind of loop framing condition
to state that invocation history and other parts of the state are not changed
by the loop. For this we have defined the predicate only-store-changed which
states that the local variable store is the only part of the state that may change
between the old and the new state.

Using this invariant, we can use our Eisbach method repliss-vcg-l to gener-
ate verification conditions. The resulting verification conditions can then be
discharged automatically by unfolding the definitions.

We also verified a variant of this example that uses a while-loop instead
of a for-loop4. The corresponding proof is similar, but requires a bit more
manual work. Since the proof rule does not include the idea of splitting the
input list into a part that is already processed and a remaining part, this has
to be done using existential quantifiers in the loop invariant. Moreover, the
implementation requires references as there is no inherent loop state that can
be used. Thus, the invariant need to address the references and state that
they are valid and that there are no aliases.

6.3. Handling unique identifiers

The properties of unique identifiers often play a role in the verification of
applications. However, we want to avoid proving these properties again for
every program. In this section, we generalize these properties, which include
statements about where unique identifiers may appear in the system state and
history. This requires some well-formedness properties of programs, which we
handle first.

6.3.1. Well-formedness of Programs

Our semantics from Section 5.1 already guarantees some basic properties for
unique identifiers: The action for generating unique identifiers never gener-
ates an identifier that has been generated before and clients can never invoke a
method using unique identifiers not exposed to them. However, the semantics
does not prevent programs from constructing unique identifiers out of thin
air, without using the identifier generation action and without obtaining the
unique identifier from invocation arguments or database call results. Simi-
larly, the semantics does not prevent CRDT specifications from generating
new unique identifiers.

To efficiently keep track of where unique identifiers can be used, we need
to exclude such behavior. We do this by defining the well-formedness of pro-

4The code for the while-loop example is available in the Isabelle theories under
example_loop_max.thy.
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grams. A program is well-formed, if its invocations and its database queries
cannot guess unique identifiers:

program-wellFormed progr ≡
invocations-cannot-guess-ids progr ∧
queries-cannot-guess-ids (querySpec progr)

We first define the property for invocations and then for queries.
Since a program can use an arbitrary Isabelle function for the state machine

implementation of procedures, we cannot use a syntactic definition. Instead,
we base the definition on the semantics. First, we define inputs and outputs for
actions in a trace. When an invocation learns about a new unique identifier, it
is considered an input. This is the case when the procedure is invoked, when
generating a unique identifier, and when getting a result from the database.

action-inputs (ALocal ls) = ∅
action-inputs (ANewId i) = uniqueIds i
action-inputs (ABeginAtomic t c) = ∅
action-inputs AEndAtomic = ∅
action-inputs (ADbOp c opr res) = uniqueIds res
action-inputs (AInvoc proc) = uniqueIds proc
action-inputs (AReturn r) = ∅
action-inputs ACrash = ∅
action-inputs (AInvcheck b) = ∅

Conversely, an action produces a unique identifier output, when information
leaves the procedure invocation. This is the case when performing a database
operation and when returning a value from the procedure:

action-outputs (ALocal ls) = ∅
action-outputs (ANewId i) = ∅
action-outputs (ABeginAtomic t c) = ∅
action-outputs AEndAtomic = ∅
action-outputs (ADbOp c opr res) = uniqueIds opr
action-outputs (AInvoc proc) = ∅
action-outputs (AReturn r) = uniqueIds r
action-outputs ACrash = ∅
action-outputs (AInvcheck b) = ∅

With the above definitions, we can define that an invocation cannot guess
unique identifiers.

invocations-cannot-guess-ids progr =
(∀ tr i a S ′ uid.

initialState progr
tr @ [(i, a)]
ÐÐÐÐÐÐÐÐ→* S ′ ∧ uid ∈ action-outputs a Ð→

(∃a ′. (i, a ′) ∈ tr ∧ uid ∈ action-inputs a ′))

The definition states that if an action outputs a unique identifier, the same
unique identifier must appear in the inputs of the same invocation earlier in
the trace. Finally, the definition invocations-cannot-guess-ids specifies that
the above property holds for all invocations.
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Next, we define the similar property queries-cannot-guess-ids for database
query specifications. This property states that if an unique identifier appears
in the results of a database call but not in the operation arguments, then it
must appear in an operation from the operation context.

queries-cannot-guess-ids qry =
(∀opr ctxt res x.

qry opr ctxt res Ð→
x ∈ uniqueIds res Ð→
x ∉ uniqueIds opr Ð→
(∃ cId opr res. calls ctxt cId ≜ Call opr res ∧ x ∈ uniqueIds opr))

While the definition of a well-formed program is based on the semantics, it
is not necessary to prove the well-formedness for each program. For database
queries, we just have to prove well-formedness once for each CRDT. For pro-
cedure implementation we can ensure that the property holds by construction.
In principle, there are two ways to do so. One is to design a static analysis
that ensures no unique identifiers are generated. This could be done with
abstract execution [CC77] or by using a deeply embedded language that does
not provide any construct for generating unique identifiers out of thin air. The
other method is to use dynamic checks by keeping track of the inputs and pre-
venting each illegal output. This is the approach we chose for the Io-programs
we introduced in Section 6.1.

Well-formedness of Io-Programs

Since we the definition of toImpl includes dynamic checks for the usage of
unique identifiers, programs cannot guess unique identifiers if they are based
on toImpl and the procedure implementation correctly captures the unique
identifiers of the given invocations.This is captured by the following Lemma:

6.3.1.1 lemma invocations-cannot-guess-ids-io∶
assumes proc-initial∶ ⋀proc store localKnown cmd impl.

procedure progr proc = ((store, localKnown, cmd), impl) Ô⇒
impl = toImpl
∧ localKnown = uniqueIds proc

shows invocations-cannot-guess-ids progr

For the proof, we first show that the set of locally known identifiers is always
equal to the trace-inputs for each invocation. This is done by an induction over
the steps taken. We then consider the actions that can add unique identifiers
to the trace-output and show that because of the definition of toImpl, they can
only add identifiers that are locally known.

6.3.2. Properties of private unique identifiers
In the proof rules (Section 6.2.3), we use the field ps-generatedLocalPrivate of
the symbolic state, to keep track of locally generated unique identifiers. An
new unique identifier is added to this set by the rule for the newId statement.
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It is removed from the set, when it is exposed to other transactions via a
database call. All identifiers in the set have the uid-is-private’ property, which
states that the identifier cannot be used in any database calls or procedure
invocations in the history. Formally, it is defined as follows:

uid-is-private ′ i s-calls s-invocOp s-invocRes s-knownIds uidv ≡
new-unique-not-in-invocOp s-invocOp uidv ∧
new-unique-not-in-calls s-calls uidv ∧
new-unique-not-in-calls-result s-calls uidv ∧
new-unique-not-in-invocRes s-invocRes uidv ∧ uidv ∉ s-knownIds

new-unique-not-in-invocOp iop uidv ≡
∀ i op. iop i ≜ op Ð→ uidv ∉ uniqueIds op

new-unique-not-in-calls iop uidv ≡
∀ i op r. iop i ≜ Call op r Ð→ uidv ∉ uniqueIds op

new-unique-not-in-calls-result iop uidv ≡
∀ i op r. iop i ≜ Call op r Ð→ uidv ∉ uniqueIds r

new-unique-not-in-invocRes ires uidv ≡
∀ i r. ires i ≜ r Ð→ uidv ∉ uniqueIds r

6.4. Completeness of Proof Rules
In this chapter, we derived rules for symbolic execution with respect to the
single-invocation semantics. The challenges concerning completeness in this
step are in the definition of steps-io and the definition of the proof rules. In
particular the rules for loop constructs are interesting here, since they must
allow to formulate a sufficiently strong loop invariant to be complete.

Since we have formulated the proof rules as theorems, it is not possible to
prove completeness of the rules directly in Isabelle5. Thus, we only give an
informal argument here. For the rules that are not handling loops, we just have
to check that all preconditions available in the single-invocation semantics and
the steps-io function are preserved in the rules. In fact, we even added more
assumptions to the rules to help with automation.

For the while-loop rule, we used the standard technique of loop invariants,
for which completeness has already been shown informally [Coo78] and for-
mally in Isabelle/HOL [Nip06]. The proof rules for the other loops follow a
similar pattern. When translated to a while-loop, the loop variable used in
these constructs would need to be translated to a reference value. As the loop
invariant allows to address the state of the loop variables, both cases would
allow formulating equivalent loop invariants. Thus, the proof of completeness
for while-loops should be transferable to the other loop constructs as well.

Another aspect of completeness of loop constructs is, whether it is always
possible to annotate a program with sufficiently strong loop invariants – the

5We could have used an inductive definition for the rules, or we could prove completeness
by separately showing that an inversion of the implication in the Lemma also is true.
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completeness proofs referenced above only consider the case where the loop
invariant is chosen dynamically with all quantified variables available. This
can be a problem, if proof rules introduce new variables that are not available
statically, when annotating the program. For example the LOCAL construct in
Nipkow’s Abstract Hoare Logics [Nip06] models local variables with shadowing
and the corresponding Hoare rule introduces a new variable. As a consequence,
it is not always possible to annotate a loop in the scope of a local variable ahead
of time. In our language we do not have a similar construct for local variables,
but we do have rules that introduce new variables.

One strategy to mitigate the annotation problem is to add constructs to
refer to previous states. For example Simpl [Sch08] includes a special construct
(ANNO and FIX) to introduce new logical variables, which can be used to
relate old and new states. In Dafny [FL17; Lei20] there is a special expression
old which can refer to the state at the beginning of the procedure or at a label
in the program.

We include a similar construct in our rule for loops, which allows the loop
invariant to refer to the old state before the start of the loop. The example
of computing the sum of a list (Section 6.2.5) showed that this feature was
useful to specify the parts of the state that are not changed by the loop.
However, we have not further investigated whether this construct is necessary
for completeness and whether it is sufficient.

6.5. Compositionality

Besides soundness and completeness, another desirable meta property for a
proof system is compositionality. In a composable system, it is possible to
independently specify parts of a bigger construct and verify the parts inde-
pendently. To verify the bigger construct, it is then only necessary to rely on
the specification for the parts. This is an important property to make a proof
system scalable, since it enables splitting the verification effort into verification
of smaller components.

In our case, the interesting place for compositionality are procedures. They
are the main components for our programs, and they also are the language
constructs that introduce concurrency in our semantics. Thus, the question is
whether our approach allows procedures to be specified and verified indepen-
dently when verifying a program composed of several procedures.

The single-invocation semantics introduced in Section 5.2 is composable in
the following sense: If we show that each procedure of a program maintains
an invariant, then the invariant is also maintained by the overall (composed)
program. The same level of compositionality is also carried over to the proof
rules.

However, our formalization was not designed to be fully compositional. To
make the technique fully compositional, additional steps would be necessary
which we discuss below. We decided to defer these aspects to the implemen-
tation of a verification tool.
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Datatype extensions. We use a type parameter ’proc for representing the
procedure signatures in a program. For example, we could instantiate ’proc
with a datatype with constructors A int and B string to represent a program
with two procedures A and B with different parameter types. The problem
with this design is that types cannot be easily composed in Isabelle. If we
wanted to verify procedure A without knowledge of B, we could use a sum
type and verify procedure A with ’proc = A int + ’b, where ’b is a type
parameter that can be later instantiated to B string. However, sum types are
tagged and thus not commutative in Isabelle, so this approach is tedious to
apply. Moreover, as the type ’proc also appears in the state of invariants, it
would be necessary to generalize those as well.

Well-formed states. The proof rules include the proof-state-wellFormed pred-
icate which allows falling back to the semantic level. This could be used
to prove some aspects with non-compositional techniques using the seman-
tic level. If we followed the approach for datatype extensions by using type
parameters, then the problem with the well-formed predicate is also solved.
If all but one procedure are abstracted away by type parameters, then only
compositional properties can be shown for the well-formed predicate.

In fact, the main property of the predicate is to add properties that are
invariant for all executions, no matter what the program is. We could have
defined this properties up front, but then the design would not be extensible
with new properties without adding them to the initial definition.

Compositionality in Repliss. In the next chapter, we describe our verification
tool Repliss which implements the proof technique. In a tool it is possible to
implement the above measures to make the tool composable. For Repliss, we
have made the well-formed predicate concrete (Section 7.5) so that this com-
posability gap is closed. However, we still consider ’proc as a closed datatype
and infer some invariants (shape invariants, see Section 7.6) that make use of
the fact that all procedures are known. For example, these facts can be used
to infer that certain database operations can never be called in the program.
In the end, there is a trade-off between compositionality and automation. A
tool can infer some properties if it considers the complete program at once.
Without this inference, a user of the tool might have to manually specify
expectations for the behavior of other procedures.
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We have developed the Repliss tool in order to evaluate the feasibility of our
proof technique in an automated verification tool. With Repliss, it is possible
to use the technique without knowledge of Isabelle. The sources for the Repliss
tool are available on GitHub1.

The input for the tool is given in the Repliss language. The language in-
cludes constructs for specifying the schema of the persistent data using repli-
cated data types. To this end, the CRDTs presented in Section 4.1 are included
in the language. The implementation of procedures is done in a simple impera-
tive language, which is similar to the language we embedded in Isabelle earlier
in Section 6.1. However, the language does not require the use of the ’any
type we used previously and thus more problems can be detected by the type
checker. The language also supports a simple form of user-defined datatypes
and it supports specifications using first order formulas.

Figure 7.1 gives a high level overview of Repliss’ main components. The
language frontend consists of a parser and a type-checker. We present the
syntax and type rules of the language in Section 7.1. We then have two main
components to check correctness of a Repliss application: Automated testing

1https://github.com/peterzeller/repliss

Parser

Typechecker

Testing

Random Exhaustive/Bounded

Verification

Symbolic Execution

CVC4 Isabelle/HOL

Visualization

Figure 7.1.: Overview of Repliss Components and data flow between components.
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for finding bugs and verification for proving the absence of bugs.
We present our techniques for automated testing in Section 7.3. The tech-

niques include two basic strategies. One based on random testing and one
based on exhaustive bounded testing, where all executions within certain
bounds are systematically checked. For verification purposes we use symbolic
execution, which we present in Section 7.4. Both techniques share a common
visualization component, which is used to show counter examples to the user.

7.1. Language
We begin by presenting the Repliss language. To present the syntax of the
language, we use the ANTLR4 [Par13] grammar which we also use to generate
the parser for the language. ANTLR4 grammars are similar to EBNF [Sta96]
notation. Non-terminal symbols are written in lowercase and terminal symbols
are written in quotes or upper case letters. Quoted terminal symbols are
interpreted literally and upper case terminal symbols refer to tokens defined
using regular expressions. Below we use ID for identifiers ([a‐zA‐Z][a‐zA‐Z_0
‐9]*) and INT for numbers ('0'|[1‐9][0‐9]*). Repetition is denoted by a star
(*), at-least-once repetition by a plus (+) sign. Optional elements are marked
with a question mark (?) and parenthesis are used for grouping. Alternatives
are separated by vertical bars (|). Ambiguities in the grammar are resolved
by precedence, where the first rule in an alternative has precedence over the
later alternative. Moreover, operators are associated left to right by default,
which can be overwritten with the option <assoc=right>.

Lexical Syntax Comments follow the C-style syntax (// for line comments
and /* ...*/ for multiline comments). A newline symbol (NL) stands for one
or more linebreaks and is used as a delimiter for most language constructs.
A newline symbol is omitted when one of the following tokens is used at the
end of the line or as the first non-whitespace character of the next line: +, *,

‐, /, %, &&, ||, :, ::, =, ==, !=, |, ==>, <==>, or a comma. Moreover, a newline
symbol is omitted if the line ends with an open parenthesis2 or the next line
starts with a closing parenthesis, a dot, or a negation symbol.

The syntax for procedures uses indentation to delimit blocks. The tokens
STARTBLOCK and ENDBLOCK are emitted by the lexer when the indentation is in-
creased or decreased by one.

Programs Figure 7.2 shows the syntax for Repliss programs and the most
important declarations. A program consists of a list of arbitrary declarations
followed and ends with the end-of-file marker (EOF).

Type Definitions The rule typedecl describes the Syntax for type definitions.
It combines the format for three different kinds of types. There are types for
unique identifiers (idtype), opaque types, and data types. Only data types can

2This includes round parenthesis (), square brackets [], and curly braces {}.
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program: NL? (declaration NL?)* NL* EOF;

declaration:
procedure

| typedecl
| operationDecl
| queryDecl
| axiomDecl
| invariant
| crdtDecl;

typedecl: ('idtype'|'type') ID typeParams? ('=' dataTypeCase ('|'
dataTypeCase)*)?;

typeParams: '[' typeParam (',' typeParam)* ']';

typeParam: ID;

dataTypeCase: ID ('(' (variable (',' variable)*)? ')')?;

invariant: 'free'? 'invariant' (ID ':')? expr;

crdtDecl: 'crdt' keyDecl;

keyDecl: ID ':' crdttype;

crdttype:
structcrdt

| crdt;

structcrdt: ID? '{' keyDecl (',' keyDecl)* '}';

crdt: ID ('[' crdttype (','crdttype )* ']')?;

operationDecl: 'operation' ID '(' (variable (',' variable)*)? ')';

queryDecl: ('@inline')? 'query' ID '(' (variable (',' variable)*)? '
)' ':' type
('=' expr | 'ensures' expr)?;

type: ID ('[' type (',' type)* ']')?;

procedure: 'def' ID '(' (variable (',' variable)*)? ')' (':' type)?
stmt;

variable: ID (':' type)?;

Figure 7.2.: Syntactical structure of Repliss programs
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have a list of cases. Opaque types can be used for types like String, which are
not included in Repliss and which do not need to be manipulated by the Repliss
program. Id-types are types for which values can only be generated by Repliss
programs (see new statement discussed later) and not by the environment. This
provides some guarantees about how clients can use the API of the Repliss
program, since they can only pass id-values as arguments if they have been
previously exposed to a client.

Invariants The main mechanism for specifying applications is via invariants
(the other mechanism being assertions, which we discuss below). An invariant
is introduced with the keyword invariant and comprises a boolean expression.
It can be marked as free in which case it is not checked but still can be used
to prove the correctness of other invariants. This can be useful for debugging
or for complicated invariants that cannot yet be checked by Repliss but can
be verified externally.

Database Schema Conceptually, the database schema consists of a single
struct CRDT (c.f. Section 4.1). In the syntax each field of the outermost
struct is defined with the crdt keyword followed by a keyDecl, which consists
of a name for the field and its CRDT type.

A CRDT type can either be a struct CRDT, which we write as a list of
keyDecl in curly braces, or it can be a builtin CRDT type. Those types are
used by their name and can take additional CRDT types or normal types as
type arguments.

It is also possible to define custom operations and queries, if a type is not
already provided by Repliss. However, these custom types cannot be com-
posed with the existing maps as we cannot ensure that specifications have
the expected format. Operations are introduced by the keyword operation

and queries by the keyword query. A query can either be specified with an
implementation given by a boolean formula (using = syntax) or using a post-
condition (using ensures syntax). The post-condition can refer to the special
variable result to specify which results are valid.

Procedures A procedure is introduced by the def keyword. The parameters
must have an explicitly given type which is checked separately from the gram-
mar. When the return type is not given, the procedure returns no value. The
body of the procedure is a single statement, which is usually a block statement
(see below).

Statements Figure 7.3 shows the Syntax for statements in Repliss. The first
6 cases comprise common language constructs of imperative languages: block
statements, local variables, assignments, the conditional statements if and
match, and a return statement. The match-statement provides pattern matching
which can be used together with data types. The only supported patterns are
variables that are bound while matching and datatype constructors.
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stmt:
blockStmt

| localVar
| assignment
| ifStmt
| matchStmt
| returnStmt
| newIdStmt
| atomicStmt
| crdtCall
| assertStmt
;

blockStmt: STARTBLOCK stmt* ENDBLOCK;

localVar: 'var' variable ('=' expr)? NL;

assignment: ID '=' expr NL;

ifStmt: 'if' expr NL stmt ('else' NL? stmt)?;

matchStmt: expr 'match' NL STARTBLOCK matchCase* ENDBLOCK;

matchCase: 'case' expr '=>' NL STARTBLOCK stmt* ENDBLOCK;

returnStmt: 'return' expr (assertStmt)* NL;

atomicStmt: 'atomic' NL stmt;

crdtCall: 'call' functionCall NL;

newIdStmt: ID '=' 'new' ID NL;

assertStmt: 'assert' expr NL;

Figure 7.3.: Syntax for statements in Repliss.
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expr:
ID

| ('true'|'false')
| INT
| expr '.' ID
| '!' expr
| expr 'is' 'visible'
| expr 'happened' ('before'|'after') expr
| expr ('*'|'/'|'%') expr
| expr ('+'|'‐') expr
| expr ('<'|'<='|'>'|'>=') expr
| expr ('=='|'!=') expr
| expr '&&' expr
| expr '||' expr
| <assoc=right> expr '==>' expr
| expr '<==>' expr
| quantifierExpr
| 'forall valid snapshots' '::' expr
| functionCall
| '(' expr ')'
;

quantifierExpr: ('forall'|'exists') variable (',' variable)* '::'
expr;

functionCall: ID '(' (expr (',' expr)*)? ')';

Figure 7.4.: Syntax for expressions in Repliss

There are two statements for interacting with the database. The atomic
statement executes a statement in the context of a transaction and the call
statement performs an update operation on the database. When a call state-
ment is used outside a transactional context, it is implicitly surrounded by an
atomic block containing only the single call.

The newIdStmt is used to create a new unique identifier. The name after the
new keyword refers to a type defined as idtype.

The assert statement is used to add additional checks to a procedure im-
plementation. It is verified that the expression of an assert statement always
evaluates to true when the assertion is executed. Just like all other expressions
in programs, assertions can only access the local state of the current procedure
invocation.

Expressions The syntax for expressions is given in Figure 7.4. The expres-
sions include the standard constructs: There are variables (ID) and constants
for booleans (true, false) and integers (INT). The operators on booleans are
negation (!), conjunction (&&), disjunction (||), implication (==>), and equiv-
alence (<==>). The general comparison operators (== and !=) can be used with
all types. For integers, there are comparisons (<, <=, >, >=), addition (+),
multiplication (*), subtraction (‐), integer division (/), and modulo (%). The
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semantics for division and modulo follow the Euclidean definition [Bou92],
which is also used in the SMT-LIB standard [BFT16].

The language also includes universal (forall) and existential (exists) quan-
tifiers. The quantifiers range over all values belonging to the type of the
variable. Note that the set of values can change over time, for example new
database calls, new procedure invocations or new unique identifiers can be
created.

There are a few expressions specific to our domain, namely expressions to
address the database and procedure invocation history. The expression c is

visible checks whether a database call c is visible in the current context. The
expressions e1 happened before e2 checks whether a database call e1 happened
before a database call e2. The happens-before relation is the irreflexive, tran-
sitive relation tracking potential causality, as described in Section 5.1. The
happens-before expressions is overloaded and also works when checking the
happens-before relation of two procedure invocations. A procedure invocation
i1 is defined to be happened before a procedure invocation i2 if both invoca-
tions contain at least one database call and all database calls in invocation i1
happened before every database call in i2.

To access information about history events, we use the property access syn-
tax with a dot (e.p). The following properties p are supported:

op The operation performed by a database call.

info Information about the procedure and arguments of a procedure invoca-
tion event.

result The result returned by a procedure invocation. The value is NoResult

if the invocation has not yet finished.

origin The procedure invocation in which a transaction or database call was
executed.

transaction The transaction in which a database call was executed.

Expressions can also include function calls, which can be calls to datatype
constructors or database queries. Queries are executed in the current context.
The special quantifier forall valid snapshots can be used to create an implicit
context, which allows queries to be used in invariants. Each invariant that uses
queries outside this quantifier is implicitly enclosed by the quantifier.

There are some restrictions about which expressions can be used in invari-
ants, assertions, and in program code.

1. Quantifiers can only be used in invariants and assertions.

2. Expressions concerning the history can only be used in invariants. There
are the datatypes InvocationId and CallId and the expressions working
with these types.
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7.2. CRDT Library
In Chapter 4 we already introduced the different CRDTs and their semantics.
Most of these CRDTs are also available in Repliss. Here we only present the
API of the available datatypes and refer to Chapter 4 for the semantics.

Flags. The following variants of flags are supported: Flag_ew, Flag_sew, Flag_dw
, and Flag_sdw. A flag provides the operations Enable and Disable and the query
ReadFlag: Boolean.

Sets. Similar to flags, sets also come in 4 variants: Set_aw[T], Set_saw[T],
Set_rw[T], and Set_srw[T]. A set provides the operations Add(x: T), Remove

(x: T) and the queries Contains(x: T): Boolean and GetSize: Int. Since the
specification for GetSize requires aggregates, the query is not supported by
automatic verification.

Maps. Maps come in two variants: Map_uw[K, V], Map_dw[K, V]. Here, K is an
ordinary type for keys in the map and V is another CRDT type for the values.
To perform operations on values, the map API provides the operation MapOp

(key: K, op: V.op) and the query MapQuery(key: K, qry: V.qry). The types
V.op and V.qry refer to the operation and query types of the nested CRDT V.
Moreover, there is an operation DeleteKey(k: K) and a query ContainsKey(k:

K): Boolean.

Registers. The type Register[T] stores values of type T. The only operation
is Assign(x: T) and the only query is ReadRegister: T. The register guarantees
that the returned value is one of the latest assigned values, but it does not
specify a strategy to choose from these values.

Multi-value Registers. The type MultiValueRegister[T] also provides an op-
eration Assign(x: T). For reading there is the query ReadFirst: T, which reads
one the latest assigned values, just like the Register above. In addition, it is
possible to use the query MvContains(x: T): Boolean that checks whether x is
one of the latest assigned values.

Reading the complete set of values is not supported since this would require
support for list or set values in Repliss.

Counter. The Counter type provides an operation Increment(amount: Int) and
a query GetCount: Int. Since the specification requires aggregates, the query
is not supported by automatic verification.

7.3. Automatic Testing
Repliss supports automated testing in order to find bugs in applications. This
can be seen as a more lightweight method compared to verification, but it can
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also simplify the verification process. When trying to verify an invariant that
does not hold, it can be very helpful to be presented with a genuine counter
example found by automatic testing. The examples are genuine in the sense
that they show complete executions starting from the initial state. In contrast
to this, the verification process can produce counter examples that start from
a state that satisfies the invariant but is actually unreachable.

In order to support automated testing, we need a technique for executing
specifications, which we discuss in Section 7.3.1. We then present different
strategies for exploring executions: Randomized executions in Section 7.3.2
and systematic exploration of small executions in Section 7.3.4.

7.3.1. Executing Specifications
One problem in executing the system model described above, is that it re-
quires evaluating first order logical formulas for checking properties and for
determining the results of database queries, which can also be specified by the
user. Validity of first order formula is undecidable in general [Chu36; Tur36].
However, we are interested in a simpler problem, which is to evaluate a first
order formula on a given structure. Without restrictions, this problem is still
undecidable. For example if we allow quantification over integers, one can
express the fact that a diophantine equation has a solution, which is known
to be undecidable [Mat70].

We address this problem by changing the semantics of unbounded quantifiers
during evaluation. When quantifying over a non-finite type, we restrict the
number of elements to a certain number N . In theory this means that we might
miss some bugs in the case of universal quantification in specifications and that
we might mistakenly report non-genuine bugs when existential quantifiers are
used in specifications. While the former is not a big problem in testing, the
latter is more concerning. However, the only unbounded types in Repliss
are integers and user-defined datatypes that are recursive or include other
unbounded types. Identifier types like CallId are unbounded, but quantifiers
only range over the identifiers that have been created so far, which is a finite
set. When a counter example is found related to unbounded quantification,
we could generate a warning that the counter example might be non-genuine.

Using the above restrictions on quantifiers, we can evaluate them by check-
ing all possible values. As an optimization, we use an approach based on
narrowing.

Evaluating Quantifiers with Narrowing. Specifications often contain quan-
tifiers that do not need to be checked for all elements. As an example consider
the first invariant of our chat application from Section 2.1:
invariant forall g: InvocationId, m: MessageId, author: UserId,

content: String ::
g.info == getMessage(m)

&& g.result == getMessage_res(found(author, content))
==> (exists s: InvocationId, content2: String ::

s.info == sendMessage(author, content2))
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Here, the variables of m, author, and content depend on the chosen invocation
g. We use a Narrowing approach inspired by Isabelle’s Quickcheck [Bul12] or
Lazy SmallCheck for Haskell [RNL08]. The main idea is to initially check a
quantified formula with an abstract value. Only when this value is actually
used, it will be refined (or narrowed) into more precise values. The aforemen-
tioned tools use Haskell’s lazy evaluation and imprecise exceptions to detect
the use of a value. When the corresponding exception is handled, the evalua-
tion of the quantified formula is repeated with refined versions of the abstract
value causing the exception.

Instead of exceptions, we use mutable state. When an abstract value needs
to be evaluated to a concrete one, we simply reassign the variable with the
first refined value and store the remaining refinements in a separate mutable
variable. This avoids repeating the same computation.

We focus here on the optimization of equality checks, for which we use two
abstract values:

1. SymAny is the abstract value representing all possible values.

2. SymNotEq(x) is an abstract value representing all possible values not equal
to x.

When we execute an equation x = e or e = x, where x is a variable and e
an arbitrary expression, we evaluate e to a concrete value ve. We then lookup
the current value of x.

• If the value is concrete, we compare the two concrete values.

• If it is SymAny, we replace it with ve, add SymNotEq(ve) to the list of values
to check for v (unless ve is the only valid value for variable x), and then
return true for the evaluation of the expression.

• If the value of x is SymNotEq(ve), the expression evaluated to false.

• Otherwise, we fall back to concrete values and check x with all possible
remaining values. For SymNotEq(a) these are all values not equal to a.

When an evaluated expression has the form C1(a1) = C2(a2) for datatype
constructors C1 and C2, we compare the constructors. If they are equal, we
recursively check equality pairwise on the arguments a1 and a2. Similarly, if
only one side is a datatype construction, we evaluate the other side and then
continue as in the former case.

This simple evaluation strategy can be extended with additional abstract
values and handled cases. For example, it would be possible to handle expres-
sions of the form x ∈ S, such that x is only checked for the concrete elements in
the set and one abstract value representing values not in the set. Another ex-
tension would be an abstract value for datatype values, where the constructor
is concrete, but the arguments may be symbolic.

More advanced strategies for evaluating invariants might be possible as well.
For example, we could use logical equivalence to rewrite formulas. It might
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also be possible to make the evaluation of invariants incremental. Many com-
ponents of the system state, in particular the history, grows monotonically,
which could be exploited to only evaluate quantifiers on parts of the state
that have changed. Another possible option would be to use SMT solvers to
evaluate quantifiers, although these tools have been built and optimized for
checking satisfiability and not for evaluating a formula on a given structure.
As such, they do not provide an API to define a structure and it would be nec-
essary to define it through custom type definitions and logical formulas. This
encoding might already be more expensive than the approach we are using.

7.3.2. Random Executions
Our first (naive) approach of randomly exploring the space of concurrent ex-
ecutions failed to find invariant violations for our examples. We had to intro-
duce heuristics to guide the search towards interesting cases of concurrency.
These heuristics are a direct consequence of the following observations:

1. Bugs happen more often, when there are few objects with many concur-
rent accesses.

2. When a procedure consists of several transactions, bugs often appear
when many changes are pulled in between transactions.

3. Causal consistency tends to tame the chaos introduced by randomness,
so a random choice must consider causality.

4. Most bugs can be triggered by a short sequence of actions. Longer
sequences of random actions can lead to save states, where no bugs can
appear (for example, deleted objects and final state of a state-machine
are often safe and cannot become unsafe again).

Point 1 was the easiest to address. We simply limit the size of the domain.
For our examples a size of 3 values per primitive type worked well (e.g. we only
use 3 different strings in executions). For id-types, we inspect the results of
procedures and when a procedure has generated more than 3 unique identifiers,
we stop generating new calls to the procedure.

Points 2-4 were not addressed well in our initial approach, where we simply
selected a random subset of all transactions as the set of pulled transactions.
Because all causal dependencies are included in a pull, picking a transaction
with many dependencies, pulled in almost all transactions, which led to an
almost linear history and did not reveal many bugs. Furthermore, it was
unlikely that the next transaction in the same invocation would start on a
substantially different snapshot. We addressed these issues with the following
approach: First we calculate the set of transactions, which are not yet visible
in the current invocation. Then we either pick one or two random transactions
from this set, which simulates pulling in changes from one or two other replicas.
This addresses point 2, since we always pull in new transactions when possible
(an exception is the first pull in an invocation, where we allow starting from
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the empty state). To address point 3 and 4, we introduced a bias towards
older transactions, so that we avoid including a big set of causal dependencies.

7.3.3. Shrinking Counter Examples

When we find an invariant violation, we try to shrink the execution in order
to present a small counter example to the user. An execution is defined by the
trace of actions, which were randomly generated before. The trace includes
all nondeterministic choices made by the system and therefore a trace can be
executed deterministically. This property is important for replaying traces.

To allow efficient shrinking of the trace, the execution also has to be stable
when removing some actions from the trace: this should only have minimal
effects on other actions. We achieve this with the following two design de-
cisions: First, we fix all generated identifiers in the actions of the trace, so
that identifiers are not affected by removing previous actions. Then, we en-
sure that actions can still be executed, even when the context has changed.
For example, a StartTransaction action can include pulled transactions, which
have already been removed, and we simply ignore them. Moreover, the set of
pulled transactions stored in the action already includes all causal dependen-
cies, so removing one transaction has a minimal effect on the overall set of
pulled transactions.

When we encounter an invalid action during execution, we simply ignore
it and report the invalid action to the shrinking process. That way, we can
directly remove all actions that have been invalidated by removing a single
action. For example, when we remove the call to a procedure that returns a
new unique identifier, this approach removes all actions in that call, as well as
all calls using the generated identifier.

The shrinking algorithm itself is then straightforward: We try removing an
action from the current trace, starting with the first action. When the reduced
trace still triggers the invariant violation, we continue shrinking the reduced
trace. Otherwise, we try to remove the next action from the trace instead and
continue as above.

7.3.4. Systematic Execution

Besides the random executions with shrinking described above, we also im-
plemented a systematic exploration of small executions. This is similar to the
strategy used by SmallCheck [RNL08]. The idea is similar to random execu-
tions. However, instead of using randomness for picking a value at points of
choice, we systematically enumerate all values. This process starts with small
values, which means that discovered counter examples are guaranteed to be
minimal (with respect to the enumeration order) and no shrinking is neces-
sary. Another benefit is that we can systematically cover a bounded subset
of the state space and can guarantee the absence of bugs for this subset. We
implemented two exploration strategies:
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def walkTree[T](root: Tree[T], breadth: Int = 2): LazyList[T] = {
def walk(t: Tree[T], n: Int): LazyList[T] = {

if (n <= 0) LazyList()
else

t.elem #:: (
for {

(c, i) <‐ t.children.take(n).zipWithIndex
next <‐ walk(c, n ‐ i / breadth ‐ 1)

} yield next)
}

LazyList.from(1).flatMap { depth =>
walk(root, depth)

}
}

Figure 7.5.: Generic tree walking algorithm.

Tree-Walking Strategy: In this first strategy, we view the possible executions
as an infinite tree. Each state has a list of possible actions, which each leads to
a successor state. To explore this tree, we use the algorithm shown in Figure
7.5. The function walkTree takes the root of the tree and a parameter breadth,
which controls the ratio of exploring the breadth of the tree or the depth of
the tree first. The result of the function is a lazy list of tree elements.

The nested walk function takes a tree node t and a depth n. If the depth
reaches zero, the tree exploration stops. Otherwise, we return a stream con-
sisting of the root element followed by elements from recursive calls for the
children. We only take the first n children and invoke walk on the children
with a reduced parameter for the depth. For the overall algorithm, we start
from depth 1 and iteratively call walk with increasing values.

We stop the tree walking once an invariant violation is found or a timeout
is reached. To reduce the size of the tree, we limit interleaving between dif-
ferent procedure invocations. We first finish a procedure invocation, before
considering actions on another invocation.

Deduplication Strategy: This strategy keeps track of already visited states
to avoid duplicate checks. This is similar to the basic idea behind the TLC
model checker for TLA+ [YML99]. To detect equivalent states, we use a
hashmap. States are checked for equivalence modulo renaming. The types
that are considered for renaming are InvocationId, TransactionId, CallId, and
all user defined types that are not algebraic data types. During equality checks,
we build bijections between these values from the two states being compared.
When computing hashes, we only count the number of occurrences of each
value subject to renaming. Thus, the invocations F(x,y) and F(z,x) would
result in the same hash value since they both have occurrences (1,1), while
F(z,z) would result in a different hash value with occurrences (2).

The strategy then uses a work-list algorithm to explore the state space
in a breadth-first manner. We restrict the number of values and invocations
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case class SymbolicState(
calls: SymbolicMap[SortCallId, SortCall],
happensBefore: SymbolicMap[SortCallId, SortSet[SortCallId]],
callOrigin: SymbolicMap[SortCallId, SortOption[SortTxId]],
transactionOrigin: SymbolicMap[SortTxId, SortOption[SortInvocationId]],
generatedIds: Map[IdType, SymbolicMap[SortCustomUninterpreted,

SortOption[SortInvocationId]]],
knownIds: Map[IdType, SymbolicSet[SortCustomUninterpreted]],
invocationCalls: SymbolicMap[SortInvocationId, SortSet[SortCallId]],
invocationOp: SymbolicMap[SortInvocationId, SortInvocationInfo],
invocationRes: SymbolicMap[SortInvocationId, SortInvocationRes],
currentInvocation: SVal[SortInvocationId],
currentTransaction: Option[SVal[SortTxId]],
localState: Map[ProgramVariable, SVal[_ <: SymbolicSort]],
visibleCalls: SymbolicSet[SortCallId],
currentCallIds: List[SVal[SortCallId]],
trace: Trace[SymbolicState],
internalPathConditions: List[NamedConstraint],
snapshotAddition: SymbolicSet[SortCallId],
translations: List[Translation]

)

Figure 7.6.: Symbolic state structure used in Repliss.

checked and iteratively widen these bounds once the state bounded state space
is fully explored.

7.4. Symbolic Execution

We use symbolic execution to verify that a program is correct. The implemen-
tation of Repliss follows the proof rules for symbolic execution we introduced
in Section 6.2, where we also described why we chose symbolic execution over
alternatives like weakest precondition calculations.

7.4.1. Symbolic State

The structure of symbolic states is shown in Figure 7.6. We use the type
SVal[T] for symbolic values with type T. The Type SymbolicMap[K, V] is short
for SVal[SortMap[K, V]] and represents a total map3 with keys of type K and
values of type V. The Type SymbolicSet[T] is short for SVal[SortSet[T]] and
represents sets of elements of type T. The types Map, List, and Option are the
normal Scala types and therefore are not symbolic.

The symbolic state has the same structure as described in Figure 6.10 on
page 99. However, there are some small adaptations in the data structures
used to make it easier to express updates with the native functions provided
by SMT solvers:

3In the context of SMT solvers, maps are also called arrays.
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1. In Isabelle, we used a partial map (a map with values of type option

) for the calls field. To avoid the indirection of option, we extended
the type for calls (SortCall) with a constructor NoCall, which represents
non-existent calls. We used the same technique for invocationOp and
invocationRes.

2. The happens-before relation in Isabelle was represented as a relation (a
set of pairs). In the Repliss tool, we use a map, which maps a database
call to the set of database calls that happened before it. This makes it
very easy to express updates for new database calls with the operations
available in SMT solvers.

3. For the known and generated unique identifiers, we separate the state
for the different user different id-types. This separation simplifies the
generated uniqueness formulas.

4. We include the additional field invocationCalls, which stores the set of
all database calls for each procedure invocation. Thus, it is the reverse of
combining callOrigin and transactionOrigin. Again, this simplifies some
formulas as it avoids quantification over the intermediate transaction
layer.

Besides the actual symbolic state, the fields in Figure 7.6 also include the
path conditions used for symbolic execution. Each path condition is repre-
sented by a NamedConstraint, which consists of a description, a priority, and a
Boolean formula. The description is used when exporting the constraints to
Isabelle and for showing users an overview of which constraints were actually
used in the verification process. The weight of constraints is used to guide
the SMT solver. Giving too many constraints the proof search might take too
long, so we start with the constraints most likely to be used and then add
further constraints incrementally.

We also keep a trace of the previous symbolic states, which we use to let
a user go through a failing counter example step by step. Likewise, the field
translations is also used for debugging and contains the verification condition
exported to Isabelle and SMT-lib format.

The field snapshotAddition is used for an optimization we explain in Section
7.4.3

7.4.2. Implementing Rules
The implementation of the proof rules in symbolic execution is straight for-
ward. The rules in 6.2 generally have the following form:

assumes a1 . . . an
and cont∶ ⋀ v1 . . . vm . p1 . . . pk Ô⇒ P S′ result

shows execution-s-check Inv crdtSpec S stmt P

We implement the rules in a function named executeStatement with the follow-
ing signature:
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def executeStatement(stmt: InStatement, state: SymbolicState,
ctxt: SymbolicContext,
follow: SymbolicState => SymbolicState): SymbolicState

The predicate P in the proof rules is the check executed after the command. In
the implementation, we instead use the continuation parameter follow. This
is a function that takes a state after the execution of stmt and executes the
remainder of the code being checked, returning the final state.

A proof rule can have assumptions a1 . . . an. These are conditions that must
be shown to hold true. For example at the end of a transaction, we must show
that the invariant still holds. In the implementation, this is done by invoking
the SMT solver to check that these conditions are implied by the current path
conditions. Technically, this is done by asking the SMT solver whether the
conjunction of all path conditions with the negation of an ai is satisfiable. If
the SMT solver returns that it is unsatisfiable, we have verified the necessary
implication. In the case it returns a model satisfying the conjunction, we have
a counter example that we can present to the user. If it returns unknown,
the verification was not successful, and we can only present a partial counter
example.

After the necessary checks are performed, we consider the cont premise in
our proof rule, which represents the continuation. This can introduce new
symbolic variables v1 . . . vm, new path conditions p1 . . . pk, and a new symbolic
state S′. In the implementation this is reflected by adding the path conditions
to the state and then calling the continuation function (follow) with the new
state S′.

Execution of Branching Statements In Section 6.2, we have not introduced
any proof rule for branching statements like if-statements. This was not neces-
sary, since the shallow embedding allowed us to use Isabelle’s own conditional
expression and the corresponding rules for splitting the subgoal. In the imple-
mentation of Repliss, we use an equivalent strategy and split the execution into
two execution paths. We invoke the SMT solver to detect infeasible branches
so that we avoid executing the complete path to the end of the procedure in
such a case. Nevertheless, this splitting rule leads to a number of paths ex-
ponential in the number of branching constructs taken. In principle, it would
be possible to rejoin two states after a branching construct to avoid the expo-
nential blowup. This strategy would result in fewer calls to the SMT solver,
albeit with more complex formulas. Since SMT solvers can handle branching
more efficiently, this can give some performance improvements as shown in
experiments for another symbolic execution tool [KMS12]. However, we have
not implemented this optimization in Repliss, as joining two symbolic states
would require some implementation effort. As the symbolic state is optimized
for a single execution path, joining requires more work than merely calculating
a disjunction of two formulas.
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7.4.3. Adaptations

The implementation contains some adaptations compared to a straight forward
implementation of the proof rules. These are techniques to simplify the job of
the SMT solver and to exploit the type information that we have in Repliss
programs but not in the Isabelle formalization.

Prioritized Constraints. During symbolic execution many path conditions
are collected. In particular, the predicates wellformed and state-monotonic-
Growth are implemented using a conjunct of many constraints. Sending all
the collected constraints to the SMT solver at once can overwhelm it, so that
it can neither find a proof nor a counter example. To address this issue, we
assign priorities to the generated assertions. A higher priority is assigned if
the invariant is more likely to be used in a proof. Lower priorities are used for
constraints that are hard to use for an SMT solver because of their structure.
We identified these constraints experimentally by measuring which constraints
had a significant impact on the time to find a proof or a counter example.

Given the set of prioritized constraints, we invoke the SMT solver incremen-
tally. We start with a selection of the highest priority constraints. When the
constraints are found to be unsatisfiable we are done, since then the overall set
of constraints is unsatisfiable as well. When we find a counter-example, we add
the constraints with the next lower priority level and again let the SMT solver
check the constraints. If there are no more constraints to add, verification has
failed and we have a counter example to present to the user. If the solver re-
turns unknown, we assume that this result would not change by adding more
constraints, since the solver apparently was already overwhelmed. In case
we previously found a counter example with fewer constraints, we return this
counter example but flag it as incomplete.

Handling Quantification over all Valid Snapshots. As we described in Sec-
tion 7.1, database queries can only be used in the context of a database snap-
shot. For specifications, we have a special construct to quantify over all valid
snapshots. Unfortunately, this quantification is not easy to instantiate for an
SMT solver. We address this issue by instantiating the quantifier specifically
for two special cases. We only optimize for the case, where the quantifier ap-
pears at the outer level. In that case, we will typically have one path constraint
from assuming the invariant at the beginning of a transaction, where the quan-
tifier appears positively and another appearance from the proof obligation at
the end of the transaction, where it is negated. The negated quantifier can
be seen as an existential quantification, for which we can create a fresh sym-
bolic value representing the snapshot. Then we can consider two cases for
this snapshot: Either it includes the transaction that was just committed or
it does not. The first case is only feasible, if the snapshot is a superset or is
equal to the snapshot of the transaction being committed, as otherwise causal
consistency would be violated.

In both cases, we can extract the part of the snapshot that does not include
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the new transactions, which we store as snapshotAddition in the symbolic state.
The quantifier stemming from the old invariant at the beginning of the trans-
action is automatically instantiated with the snapshotAddition set. Thus, if the
new transaction is included, the SMT solver has to check that the invariant
for a snapshot is preserved when adding a single transaction to the snapshot.
In the other case, it merely has to prove that it is preserved for the same
snapshot, which is trivial in many cases.

Using Types. In contrast to our Isabelle theories, the Repliss tool uses a
typed language. This can be exploited in symbolic execution. First, it simpli-
fies the translation to SMT solvers, which also uses a typed input language. In
Isabelle, we needed to use a union type to cover the different variants for val-
ues and accordingly we had to use conversion functions and case distinctions
which complicates formulas.

With using types, we can also make the tracking of unique identifiers more
precise. Instead of a single data structure for all unique identifiers, we can
partition this structure by type. This can be seen in the fields generatedIds

and knownIds in the symbolic state (Figure 7.6 on page 140).

7.4.4. Design Decisions

In the first version of Repliss, we used Boogie [Bar+05] as an intermediate
language for verification. Boogie is a language designed to be an intermediate
language for verification of sequential, imperative programs. Specifications are
given by pre- and post-conditions of procedures and assertions. The Boogie
tool calculates weakest preconditions which are then checked by the Z3 [Z3]
theorem prover. We encoded the rules of the single-invocation semantics in
pre- and post-conditions of procedures.

While this approach worked with some initial examples, it was hard to
debug cases, where Z3 was not able to prove the generated verification con-
ditions. We therefore changed from Boogie to Why3 [FP13]. This required
little changes to the code, since both languages provide the same core fea-
tures. Targeting Why3 is slightly more complex, since the language has more
syntactic restrictions and not primarily designed as an intermediate language.
However, one big advantage of Why3 is its IDE, which allows trying different
tactics and provers for the generated verification conditions. It also allows
splitting verification conditions and run solvers on smaller parts. The parts
that cannot be handled by automated theorem provers can then be exported
to interactive provers like Isabelle, which is helpful for debugging problems
in verification attempts. However, the export does not generate code with
stable and readable identifiers. It simply numbers all the assumptions, which
means that a small change in the generated code can result in many necessary
changes in the interactive proof.

Another aspect is the generation of counter examples for failed proof at-
tempts. While both Boogie and Why3 support the generation of counter
examples in principle, in our examples they were never able to produce exam-

144



7.5. Predicate Abstraction for Verification

ples. When we switched to our own implementation, we had more control over
counter example generation. First, we could invoke CVC4 with the special op-
tion for finding finite models [Rey+13], which turned out to work well with
the formulas we generate. Moreover, with more control over the interaction
with SMT solvers, we can pass assumptions to the solver incrementally. It
turned out, that some assumptions about the well-formedness of states make
it very hard for the solvers to find counter examples. When these assump-
tions are added later, we can at least get a preliminary counter example that
does not respect all constraints but still can give a hint on potentially missing
invariants for the program to be verified.

The additional control over generated formulas also allows us to generate
more efficient formulas. For example, we can collect all fresh call identifiers
on an execution path and generate a formula that they are distinct, for which
solvers provide a builtin predicate. Moreover, we can generate meaningful
names for added constraints, which are unlikely to be changed when minor
aspects of a program or the Repliss implementation are changed.

7.5. Predicate Abstraction for Verification
The proof rules we derived in Section 6.2 make use of the two predicates state-
monotonicGrowth and wellformed. The problem with these is that they are
defined semantically (based on the interleaving semantics), which makes them
unsuitable for a direct translation to SMT solvers. Instead, our approach is
to over-approximate these predicates. To this end, we use properties that
we proved in Section 5.3.2 to characterize the predicates. This is an over-
approximation in the sense that other predicates might also satisfy the same
predicates.

The challenge here is to include all predicates which might be required for
verifying applications. However, each predicate also increases the input for
the SMT solver and thus can slow down the verification process.

7.5.1. Well-formed States
We first consider the predicate wellformed, which we defined formally (see
page 121) as any state reachable from the initial state. We have used Isabelle
to verify several properties that hold true for all wellformed states. In the
following we present all of these lemmas that we use in the Repliss to char-
acterize wellformed states. Of course, this is not a complete representation of
the property. We made the selection based on counter examples found when
working with examples in Repliss. Whenever Repliss produced counter exam-
ples that violated expected consistency guarantees, we added corresponding
constraints to the tool.
The happens-before relation only is defined on valid database calls, which is
the domain of the call map:

lemma happensBefore-in-calls-left∶
assumes wf ∶ state-wellFormed S

145



Chapter 7: Design and Implementation of Repliss

and (x,y)∈happensBefore S
shows x∈dom (calls S)

lemma happensBefore-in-calls-right∶
assumes wf ∶ state-wellFormed S

and (x,y)∈happensBefore S
shows y∈dom (calls S)

The visible calls are a subset of all valid database calls.

lemma state-wellFormed-vis-subset-calls∶
assumes state-wellFormed S

and visibleCalls S i ≜ vis
and c ∈ vis

shows c ∈ dom (calls S)

The call origin is defined for all calls:

lemma wellFormed-callOrigin-dom3∶
assumes a1∶ state-wellFormed S
shows (calls S c = None) ←→ (callOrigin S c = None)

In the same invocation, all calls are totally ordered:

lemma state-wellFormed-same-invocation-sequential∶
assumes state-wellFormed S

and callOrigin S c1 ≜ tx1
and txOrigin S tx1 ≜ i
and callOrigin S c2 ≜ tx2
and txOrigin S tx2 ≜ i
and c1 /= c2

shows (c1,c2)∈happensBefore S ∨ (c2,c1)∈happensBefore S

The current snapshot is transactionally and causally consistent (see Section
5.3.2):

lemma wf-transactionConsistent-noTx∶
assumes wf ∶ state-wellFormed S

and visibleCalls S i ≜ vis
and currentTx S i = None

shows transactionConsistent (callOrigin S) (txStatus S) vis

lemma wf-causallyConsistent1∶
assumes wf ∶ state-wellFormed S

and visibleCalls S i ≜ vis
shows causallyConsistent (happensBefore S) vis

The happens-before relation is irreflexive, antisymmetric, and transitive:

lemma happensBefore-irrefl∶
assumes wf ∶ state-wellFormed S
shows irrefl (happensBefore S)
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lemma state-wellFormed-hb-antisym∶
assumes state-wellFormed S
assumes (x,y) ∈ happensBefore S
shows (y,x) ∉ happensBefore S

lemma happensBefore-transitive∶
assumes wf ∶ state-wellFormed S
shows trans (happensBefore S)

There can be no procedure invocation result without a procedure invocation:

lemma state-wellFormed-invocation-before-result∶
assumes state-wellFormed C

and invocOp C s = None
shows invocRes C s = None

The happens-before relation is consistent for calls from the same transaction.

lemma wf-transaction-consistent-l∶
assumes state-wellFormed S

and callOrigin S y1 = callOrigin S y2
and callOrigin S x /= callOrigin S y1
and (y1, x)∈happensBefore S

shows (y2, x)∈happensBefore S

lemma wf-transaction-consistent-r∶
assumes state-wellFormed S

and callOrigin S y1 = callOrigin S y2
and callOrigin S x /= callOrigin S y1
and (x, y1)∈happensBefore S

shows (x, y2)∈happensBefore S

If a transaction has no originating invocation, there can be calls in the trans-
action:

lemma state-wellFormed-transactionOrigin-callOrigin∶
assumes state-wellFormed S

and txOrigin S tx = None
shows callOrigin S c /= Some tx

If a procedure invocation is not defined, there can be no transactions in it:

lemma wf-no-invocation-no-origin∶
assumes state-wellFormed S

and invocOp S i = None
shows txOrigin S tx /= Some i

Besides the properties above, the wellformed property in the Repliss tool
also includes the constraints about unique identifiers, which we presented in
Section 6.3. We also include definitions and constraints for the auxiliary field
that are not present in the Isabelle theories. These are the snapshotAddition

field and the invocationCalls field.
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7.5.2. State Monotonic Growth
We now consider the predicate state-monotonicGrowth, which relates two
states S and S′ under a current invocation i. The formal definition of
state-monotonicGrowth(i, S, S′) (see page 62) states that the new state S′

is reachable from the old state S with steps in invocations different from i.
To characterize this property without referring to the semantics, we use the
properties below, which capture the monotonicity of the property.

When a call exists in the old state, is has the same information in the new
state:
lemma state-monotonicGrowth-calls∶

assumes state-monotonicGrowth i S S ′
shows calls S c ≜ info Ô⇒ calls S ′ c ≜ info

lemma state-monotonicGrowth-callOrigin∶
assumes state-monotonicGrowth i S S ′

and callOrigin S c ≜ t
shows callOrigin S ′ c ≜ t

lemma state-monotonicGrowth-callOrigin-unchanged∶
assumes state-monotonicGrowth i S S ′

and calls S c /= None
shows callOrigin S c ≜ tx ←→ callOrigin S ′ c ≜ tx

lemma state-monotonicGrowth-happensBefore∶
assumes state-monotonicGrowth i S S ′
shows c2∈dom (calls S) Ô⇒ ((c1,c2)∈happensBefore S ′ ←→ (c1,c2)∈happensBefore

S)

Similarly, when a transaction exists in the old state, it is unchanged in the
new state:
lemma state-monotonicGrowth-transactionOrigin∶

assumes state-monotonicGrowth i S S ′
and txOrigin S t /= None

shows txOrigin S t ≜ i ′ ←→ txOrigin S ′ t ≜ i ′

Moreover, no new database calls can be added to a committed transaction:
lemma state-monotonicGrowth-no-new-calls-in-committed-transactions∶

assumes state-monotonicGrowth i S S ′
and callOrigin S ′ c ≜ tx
and calls S c = None

shows txStatus S tx /= Some Committed

Monotonicity also holds for the invocation history.
lemma state-monotonicGrowth-invocOp-unchanged∶

assumes state-monotonicGrowth i S S ′
and invocOp S i ′ /= None

shows invocOp S i ′ = invocOp S ′ i ′

lemma state-monotonicGrowth-invocRes-unchanged∶
assumes state-monotonicGrowth i S S ′

and invocRes S i ′ /= None
shows invocRes S i ′ = invocRes S ′ i ′
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invariant shape_of_invocation_editMessage:
forall invoc: InvocationId, param_id: MessageId, param_newContent: String ::

invoc.info == editMessage(param_id, param_newContent))
==> (invoc.result == NoResult()

&& (forall tx: TransactionId :: !(tx.origin == invoc)))
|| (exists tx_0: TransactionId ::

(forall tx: TransactionId ::
tx.origin == invoc ==> tx_0 == tx)

&& (exists c_0: CallId :: forall c: CallId ::
c.tx == tx_0 ==> c == c_0)

&& c_0.tx == tx_0
&& c_0.op == Qry(messageQry(ContainsKey(param_id))))

|| (exists tx_0: TransactionId ::
(forall tx: TransactionId ::

tx.origin == invoc ==> tx_0 == tx)
&& (exists c_0: CallId, c_1: CallId ::

distinct(c_0, c_1)
&& (forall c: CallId ::

c.tx == tx_0 ==> c == c_0 || c == c_1)
&& c_0.tx == tx_0
&& c_1.tx == tx_0
&& c_0.op == Qry(messageQry(ContainsKey(param_id)))
&& c_1.op == Op(message(NestedOp(param_id,

content(Assign(param_newContent)))))
&& c_0 happensBefore c_1))

invariant shape_rev_Op_message_NestedOp_MessageId_author_Assign:
forall c: CallId, x: MessageId, y: UserId ::

c.op == Op(message(NestedOp(x, author(Assign(y)))))
==> (exists invoc: InvocationId, text: String ::

c.origin == invoc
&& invoc.info == sendMessage(y, text))

Figure 7.7.: Shape invariant for editMessage procedure and reverse shape invariant
for assignments to author field.

7.6. Shape Invariants
Some invariants can easily be derived from the application source code, so we
do not require them to be written down explicitly. Similar to shape analysis
[WSR00] for finding heap invariants in heap-manipulating problems, we can
derive shape invariants for the relation between procedure invocations and the
corresponding database history.

We automate the generation of invariants only for loop-free procedures by
abstractly executing each path through the procedure. From this we generate
an invariant that enumerates all possible sequences of transactions and data-
base calls which can occur in the invocation. Correspondingly, we also generate
invariants for the inverse direction. For each kind of database operation, we
generate an invariant listing all the possible kinds of invocations that could
trigger the database call. Figure 7.7 shows both kinds of shape invariants for
the invocations of editMessage and database calls to message_content_assign.

The abstract values we use during the abstract interpretation of a path are
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the following:
AbstractValue =

BoolValue(value: Boolean)
| DatatypeValue(typ: InTypeExpr, constructorName: String,

args: List[AbstractValue])
| ParamValue(paramName: String, typ: InTypeExpr)
| AnyValue(name: String, typ: InTypeExpr)

At the start of each path, the procedure arguments are assigned to cor-
responding ParamValue values. Expressions are evaluated abstractly and if a
value cannot be represented by any of the first three cases, it is handled as
an AnyValue. While interpreting the execution path, we maintain a list of ex-
ecuted transactions with a list of database calls in the transactions. For each
database call, we store the operation, which typically is a DatatypeValue.

With the results from the analysis, we can create an invariant for the shape
of each procedure. A possible state for a procedure is a prefix of the transac-
tions in one of the procedure’s execution paths. For the invariant, we create a
disjunction of all these possible states and describe the transactions with the
contained database calls based on the information we have from the analysis.
Abstract values of type ParamValue can be related to the procedure invoca-
tion information. Abstract values of type AnyValue are handled by introducing
existentially quantified variables. If the prefix is not a complete path, we
furthermore add the constraint that the procedure does not have a returned
result yet.

For generating the reverse invariants (from database calls to originating
invocations), we can use the results from the same analysis4. To this end, we
enumerate all possible database operations with placeholders for the variables.
For non-recursive datatypes, we also enumerate the possible variants of the
datatype. For example Figure 7.8 shows the enumeration of operations for the
chat example with the different levels of nesting. Variables are denoted with
a hash sign (#).

We then go through the results of the shape analysis and match the oper-
ations in the analysis with the enumerated operation patterns, unifying vari-
ables in the process. This gives us a list of possible procedure invocations for
each database operation. From this we can create an invariant by creating a
disjunction of the different cases. When a variable in an operation matches
with a parameter value, we express this relation in the invariant. Otherwise,
we again introduce existentially quantified variables.

4The reverse direction only uses parts of the information gathered in the analysis. It would
be possible to do a simpler analysis for this direction, that does not require checking
each execution path individually. This analysis could then also work with loops using
the normal abstract execution framework with AnyValue being the bottom value of the
lattice.
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Op(#x_1)
Op(chat(#x_2))
Op(chat(Add(#x_3)))
Op(chat(Remove(#x_4)))
Op(message(#x_5))
Op(message(DeleteKey(#x_6)))
Op(message(NestedOp(#x_8, #x_7)))
Op(message(NestedOp(#x_8, author(#x_9))))
Op(message(NestedOp(#x_8, author(Assign(#x_10)))))
Op(message(NestedOp(#x_8, content(#x_11))))
Op(message(NestedOp(#x_8, content(Assign(#x_12)))))

Figure 7.8.: Enumeration of operations in the Chat example.
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For the evaluation of the tool, we have implemented a few applications in
Repliss and using our Isabelle framework. This chapter begins with descrip-
tions of the case studies and their realization in our Isabelle framework. In
Section 8.4, we then evaluate the performance of the automated testing and
verification in Repliss.

8.1. Chat Example

In Section 2.1 we introduced our running example of the Chat application
and showed how it can be verified in the Repliss tool. We now show how our
formalized proof technique can be instantiated within Isabelle/HOL to prove
its correctness.

8.1.1. Modelling the application

As the first step we need to model the application in Isabelle. This requires
us to fix a type for the values to be used in the program. To this end we
define the type val in Figure 8.1. This sum type includes general purpose
values such as String, Bool, or the value Undef, but it also includes application
specific datatypes like users, chats, and messages. We also include cases for the
possible return values of the getMessage procedure, which can return NotFound
or Found with the respective data.

Next, we define the replicated data structures used for the persistent storage.
For this we can use the operations and specifications defined in Section 4.1.
We only need to define custom datatypes for the structs we want to use in the
data-model. For the chat example these are messageDataOp and operation
datatypes defined in Figure 8.2.

The messageDataOp type is for storing data of a message and is a struct
with two fields, for the author and the content of the message. Both fields
are registers with initial value Undef, which we define in the definition of
messageStruct in Figure 8.2.
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datatype val =
String string
∣ Bool bool
∣ Undef
∣ UserId int
∣ ChatId int
∣ MessageId int
∣ Found val val
∣ NotFound

Figure 8.1.: Value type for the chat application.

datatype messageDataOp =
Author (val registerOp)
∣ Content (val registerOp)

datatype operation =
Chat (val setOp)
∣ Message ((val, messageDataOp) mapOp)

messageStruct ≡
struct-field Author (register-spec Undef ) .∨.
struct-field Content (register-spec Undef )

crdtSpec ≡
struct-field Message (map-sdw-spec messageStruct) .∨.
struct-field Chat set-rw-spec

Figure 8.2.: Replicated datatype specification for the chat application.

The operation type is for toplevel operations, for which we give the speci-
fication in crdtSpec. The struct consists of two fields: Message is a map with
sdw strategy and using the messageStruct for the values in the map. Chat is
a set with rw strategy, storing the set of all messages in the chat.

Having defined the structure and semantics for the persistent data, in the
next step we present the implementation of the procedures, which we give in
Figure 8.3. We use Isabelle’s monad-syntax (do-notation) for the implemen-
tation, which lets us write the code very similar to the code we presented
earlier in Figure 2.2 on page 7. The biggest transformation is caused by the
fact that we cannot have side-effects in expressions. Therefore, the database
queries that we previously used in an expression have to be moved to their
own statements and their results have to be bound to new variables. We also
need to consider that every value in the program is of type val, so instead of
simply writing if exists then in an if-statement, we have to use a comparison.

Finally, the datatype proc in Figure 8.4 defines the available procedures.
Note that the design of this type makes it impossible to invoke a procedure
with arguments of a wrong type. We only convert the values to the dynamic
type val in the function procedures, which is given below the datatype. Based
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definition sendMessage-impl ∶∶ val ⇒ val ⇒ (val,operation,val) io where
sendMessage-impl from content ≡ do {
m ← newId isMessageId;
atomic (do {

call (Message (NestedOp m (Author (Assign from))));
call (Message (NestedOp m (Content (Assign content))));
call (Chat (Add m))
});
return m
}

definition editMessage-impl ∶∶ val ⇒ val ⇒ (val,operation,val) io where
editMessage-impl m newContent ≡ do {
atomic (do {

exists ← call (Message (KeyExists m));
if exists = Bool True then

call (Message (NestedOp m (Content (Assign newContent))))
else

skip
})
}

definition deleteMessage-impl ∶∶ val ⇒ (val,operation,val) io where
deleteMessage-impl m ≡ do {
atomic (do {

call (Chat (Remove m));
call (Message (DeleteKey m))
})
}

definition getMessage-impl ∶∶ val ⇒ (val,operation,val) io where
getMessage-impl m ≡ do {
atomic (do {

exists ← call (Message (KeyExists m));
if exists = Bool True then do {

author ← call (Message (NestedOp m (Author Read)));
content ← call (Message (NestedOp m (Content Read)));
return (Found author content)
} else do {

return NotFound
}
})
}

Figure 8.3.: Procedure implementations for the chat application.
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datatype proc =
SendMessage string string
∣ EditMessage int string
∣ DeleteMessage int
∣ GetMessage int

definition procedures ∶∶ proc ⇒ (localState × (localState, operation, val) proce-
dureImpl) where

procedures invoc ≡
case invoc of

SendMessage author content ⇒ toImpl ′ invoc (sendMessage-impl (String author)
(String content))
∣ EditMessage m newContent ⇒ toImpl ′ invoc (editMessage-impl (MessageId m)
(String newContent))
∣ DeleteMessage m ⇒ toImpl ′ invoc (deleteMessage-impl (MessageId m))
∣ GetMessage m ⇒ toImpl ′ invoc (getMessage-impl (MessageId m))

Figure 8.4.: Procedure dispatch function for the chat application.

on a given proc, this function chooses the corresponding implementation.

8.1.2. Proving application correctness
After modelling the application, we can now verify its correctness. As in Sec-
tion 2.1 we are going to verify the property that whenever GetMessage returns
Found with some author, then there must be a corresponding procedure invo-
cation of SendMessage with the same author. This property is formalized as
inv1 in Figure 8.5.

Note that the parameters of inv1 do not contain the complete invariant
context, but only information about procedure operations and results. Only
the combination of all invariants (defintion inv in Figure 8.5) takes the whole
context and then passes the relevant parts to each invariant. This makes it
easier to later handle the case where the parameters of an invariant do not
change.

Besides our specification inv1, we need three additional invariants for the
verification to succeed. Invariants inv2 and inv3 are the similar to the ones
presented in 2.1.4. Invariant inv4 is a shape invariant that is automatically
inferred by the Repliss tool (see Section 7.6) and thus did not appear explicitly
in Section 2.1.4. We quickly recap the essence of the auxiliary invariants from
Figure 8.5:

inv2 If there is an assignment to the Content field, there also must be an
assignment to the Author field that happened before.

inv3 There is no update on a message after it has been deleted.

inv4 If there is an assignment to the author field, then there is a procedure
invocation of SendMessage with the same author.
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inv1 op res ≡
∀ g m author content.

op g ≜ GetMessage m ∧ res g ≜ Found (String author) content Ð→
(∃ s content2. op s ≜ SendMessage author content2)

inv2 cop hb ≡
∀ c1 m s.

cop c1 ≜ Message (NestedOp m (Content (Assign s))) Ð→
(∃ c2 u.

cop c2 ≜ Message (NestedOp m (Author (Assign u))) ∧ (c2, c1) ∈ hb)

inv3 cop hb ≡
∄write delete m no.

cop write ≜ Message (NestedOp m no) ∧
is-update no ∧ cop delete ≜ Message (DeleteKey m) ∧ (delete, write) ∈ hb

inv4 op cop ≡
∀ c m u.

cop c ≜ Message (NestedOp m (Author (Assign (String u)))) Ð→
(∃ i s. op i ≜ SendMessage u s)

inv ctxt ≡
inv1 (invocOp ctxt) (invocRes ctxt) ∧
inv2 (Op ctxt) (happensBefore ctxt) ∧
inv3 (Op ctxt) (happensBefore ctxt) ∧ inv4 (invocOp ctxt) (Op ctxt)

Figure 8.5.: Invariants for the chat application.
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After defining the invariants, we need to show that they are valid for the
chat application. The proof that the invariants hold in the initial state is
trivial, since all invariants quantify over the history and initially there are
neither database calls nor any procedure calls in the history. So it remains to
be shown that each procedure invocation maintains the invariants.

Procedure SendMessage

First, we need to show that the invariant is maintained right after the in-
vocation has started. Here the only state change is that the SendMessage
invocation is added to the history of procedure invocations. This change can
only affect invariants 1 and 4 as the others do not depend on this information.
In both cases, the newly added invocation of SendMessage cannot invalidate
the invariant, if we consider the fact that the invocation is fresh and thus
cannot overwrite any previous invocation in the history.

Next, we show that executing the body of SendMessage maintains the in-
variant. Here, we use our tactics for symbolic execution (see Section 6.2.4)
which yields two cases where we need to show that the invariant is maintained:
when committing the transaction and when returning from the procedure.

At Commit. As transactions affect the database history, we have to consider
invariants 2, 3, and 4 when committing the transaction.

Invariant 2 states for every assignment to the Content field, there is an
assignment to the Author. This is trivial for the new transaction, since it
contains both calls in the desired order. It is also clear that the invariant is
maintained for the old part of the history and thus thus invariant 2 can be
discharged automatically.

Invariant 3 states that there is no update on a message after is has been
deleted. This property is a bit more involved, since we are performing updates
on a message in the transaction. So we need to show that these updates are not
on a deleted message, which cannot be the case since we are working on a fresh
message identifier. To reason about unique identifiers, we use the property
uid-is-private’ which we get from the rule execution-s-check-beginAtomic (see
Figure 6.20) at the start of the transaction. This property implies that no
database call can include the just created message identifier. In particular
there can be no delete operation on it. Using this fact, it is easy to show that
invariant 3 is maintained.

Finally, invariant 4 states that each assignment of the Author field has a cor-
responding invocation of SendMessage. In our new transaction, we obviously
have both so this invariant is again easy to show.

At Return. When returning from the procedure, only the invocation result
changes. This only affects invariant 1, for which we can automatically show
that it is maintained.
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Procedure EditMessage

Again, the invariant check right at the start of the invocation is trivial as no
invariants refer to invocations of EditMessage.

When executing the procedure with our symbolic execution method, we
end up with four proof obligations: We have to consider the two cases of
the if-condition and for both cases we have to show that the invariant is
maintained at transaction commit and when returning from the procedure.
The proof obligation for returning from the procedure is trivial in both cases,
since invocation results for EditMessage do not appear in the invariants. The
case that the if-condition is false (the message does not exist) also is trivial,
since no updates are performed in that case. This leaves us with one interesting
case.

If the if-condition evaluated to True, we can use the CRDT specification
to obtain information about prior database calls. Since the entry for message
m exists, there must be a database call upd-c, such that upd-c is an visible
update on message m with an update operation upd-op. Also there is no delete
operation on message m after upd-c. If we combine this with invariant 3, we
get that there is no visible delete operation for message m.

With this information alone, we do not know whether upd-op is an update
of the Author field or of the Content field. However, in the latter case we can
instantiate invariant 2 to obtain a database call upda-c, which is an update to
the Author field and which happened before upd-c. Using causal consistency,
we get that upda-c is also visible.

Thus, we can always find an update operation of the author field, which is
visible at the start of the transaction. This shows that invariant 2 is maintained
for the new update on the content of message m in the transaction.

For invariant 3, we have to show that the update performed in the transac-
tion does not occur after a delete operation. This is the case as there cannot
be any delete operation for the message, as we derived earlier.

Invariants 1 and 4 are trivially maintained as they are not affected by the
transaction.

Procedure DeleteMessage

This procedure is easily verified, since it only performs two unconditional
updates. Since we are performing a delete-operation in the transaction, for
invariant 3 we need to show that there cannot be any update after the delete.
This is a general property in the proof rule for committing a transaction (see
Figure 6.23 on page 114).

Procedure GetMessage

Since this procedure only performs queries, the only interesting case in this
procedure is when the message exists and we return Found. Since we return
Found from GetMessage, for invariant 1 we need to show that there is a cor-
responding invocation of SendMessage with the same author.
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If we use the query specification for reading the author field, we obtain an
assignment operation with the value stored in the register. Then we can use
invariant 4 to get a corresponding procedure invocation of SendMessage which
we can use to prove invariant 1.

8.2. User Database
The user database example demonstrates how the effect of a procedure can be
specified using the happens-before relation on invocations. We model a simple
user database in which users can be registered and their account information
can be retrieved. User accounts can also be updated and removed from the
database.

The Repliss code for the example is given in Figure 8.6. We use a delete-
wins map CRDT named user to store the user values. The key of the map is
the user identifier and the value is a struct consisting of two string-registers
storing the name and mail address of the user.

We want to verify that the removeUser procedure works correctly. This means
that trying to read a user after it has been removed should yield the result
notFound. This is expressed by the following invariant:
invariant (forall r: InvocationId, g: InvocationId, u: UserId ::

r.info == removeUser(u)
&& g.info == getUser(u)
&& r happened before g
==> g.result == getUser_res(notFound()))

This invariant alone is not sufficiently strong for proving itself. When we
run Repliss on the example, we get a counter example, where registerUser is
called after removeUser. Thus, there is an update after removing the user and a
subsequent call to getUser would return found. However, in the actual system,
this execution is not possible as registerUser always produces a new UserId

and thus cannot result in an update after a remove. We therefore add another
invariant, which states that there can be no update operation after a remove:
invariant !(exists write: CallId, delete: CallId,

u: UserId, upd ::
write.op == Op(user(NestedOp(u, upd)))

&& delete.op == Op(user(DeleteKey(u)))
&& delete happened before write)

When checking the registerUser procedure, this invariant is automatically
verified by the fact that a new unique identifier is used. In the check for
getUser it can then be used to show that after a remove, the ContainsKey query
cannot return true.

Failing Variants In order to check the bug finding functionality of Repliss,
we also implemented two variants of the userbase example that contain bugs.

1. In the first variant, we remove the atomic block from the updateMail

procedure. This can lead to the case, where the ContainsKey check
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def registerUser(uName: String, uMail: String): UserId
var u: UserId
atomic

u = new UserId
call user(NestedOp(u, name(Assign(uName))))
call user(NestedOp(u, mail(Assign(uMail))))

return u

def updateMail(id: UserId, newMail: String)
atomic

if userQry(ContainsKey(id))
call user(NestedOp(id, mail(Assign(newMail))))

def removeUser(id: UserId)
call user(DeleteKey(id))

def getUser(id: UserId): getUserResult
atomic

if userQry(ContainsKey(id))
return found(userQry(NestedQuery(id, nameQry(

ReadRegister))),
userQry(NestedQuery(id, mailQry(

ReadRegister))))
else

return notFound()

// used types:
idtype UserId
type String

type getUserResult =
notFound()

| found(name: String, mail: String)

// CRDT specifications
crdt user: Map_dw[UserId, {

name: Register[String],
mail: Register[String]

}]

Figure 8.6.: Repliss Code for the user database example.
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is performed before a user is removed, but the update afterwards. A
subsequent call to getUser would then return found since there is an
update after a delete.

2. In the second variant, we use an update-wins map CRDT to store the
users. This leads to a bug, when the updateMail method is invoked
concurrently to removeUser. Since the map has update-wins semantics, a
subsequent call to getUser would then incorrectly return found.

8.2.1. Isabelle Formalization

Besides verifying the user database example with the Repliss tool, we also
proved its correctness manually in our Isabelle framework. The implemen-
tation of the procedures is shown in Figure 8.7 and the invariants for the
application in Figure 8.8. The procedure implementation is equivalent to the
implementation in Repliss. For the invariants, we need inv3 as an additional
explicit invariant. In the Repliss tool, this invariant is covered by the auto-
matically generated shape invariants.

We now go through the procedures and shortly describe the necessary steps
for the verification.

Procedure RegisterUser

After Invocation. The invariants hold directly after the invocation, since
RegisterUser does not appear in the invariants.

At Commit. Invariant 1 and 3 are not affected by the transaction. For
invariant 2, we have to show that there can be no previous delete operation on
the same user. To show this, we need to use the fact that we have created a
new unique identifier, and with the uid-is-private’ property, we get that there
cannot be any database calls containing involving this user.

At Return. The procedure return does not affect any invariant, so this case
is again trivial.

Procedure UpdateMail

Similar to the case for RegisterUser, only the proof obligation at transaction
commit is interesting here.

When the if-condition evaluates to true, we perform an update, so for inv2
we have to show that there can be no delete-operation before it. We can use
the CRDT specification of the KeyExists query to show that there must be an
update for which all delete operations happened before. Combining this with
inv2 from the pre-state, we get that there can be no visible delete operations.
With this it is easy to show that the invariant is maintained.
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definition registerUser-impl ∶∶ val ⇒ val ⇒ (val,operation,val) io where
registerUser-impl name mail ≡ do {
u ← newId isUserId;
atomic (do {

call (NestedOp u (Name (Assign name)));
call (NestedOp u (Mail (Assign mail)))
});
return u
}

definition updateMail-impl ∶∶ val ⇒ val ⇒ (val,operation,val) io where
updateMail-impl u mail ≡ do {
atomic (do {
exists ← call (KeyExists u);
(if exists = Bool True then do {

call (NestedOp u (Mail (Assign mail)))
} else skip)
});
return Undef
}

definition removeUser-impl ∶∶ val ⇒ (val,operation,val) io where
removeUser-impl u ≡ do {
atomic (do {

call (DeleteKey u)
});
return Undef
}

definition getUser-impl ∶∶ val ⇒ (val,operation,val) io where
getUser-impl u ≡ do {
atomic (do {

exists ← call (KeyExists u);
(if exists = Bool True then do {

name ← call (NestedOp u (Name Read));
mail ← call (NestedOp u (Mail Read));
return (Found (stringval name) (stringval mail))
} else return NotFound)
})
}

Figure 8.7.: Implementation of the user database example in Isabelle.
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definition inv1 where
inv1 op res ihb ≡ ∀ r g u g-res.

op r ≜ RemoveUser u
Ð→ op g ≜ GetUser u
Ð→ (r,g) ∈ ihb
Ð→ res g ≜ g-res
Ð→ g-res = NotFound

definition inv2 where
inv2 c-calls hb ≡ ¬(∃write delete u upd.
(cOp c-calls write ≜ NestedOp u upd)

∧ is-update upd
∧ (cOp c-calls delete ≜ DeleteKey u)
∧ (delete, write) ∈ hb
)

definition inv3 where
inv3 op i-origin c-calls ≡ ∀u i c.

op i ≜ RemoveUser u
Ð→ i-origin c ≜ i
Ð→ cOp c-calls c ≜ DeleteKey (UserId u)

definition inv ∶∶ (proc, operation, val) invContext ⇒ bool where
inv ctxt ≡

inv1 (invocOp ctxt) (invocRes ctxt) (invocation-happensBefore ctxt)
∧ inv2 (calls ctxt) (happensBefore ctxt)
∧ inv3 (invocOp ctxt) (i-callOriginI ctxt) (calls ctxt)

Figure 8.8.: Invariants for the user database example in Isabelle.
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Procedure RemoveUser

For this procedure, the start of an invocation is more interesting, since inv1
mentions this procedure. To show that the invariant is preserved, we can
use the fact that a new procedure invocation cannot occur before any other
invocation existing in the history. The same is true, for the proof obligation
when committing the transaction.

We can also easily show that the shape invariant inv3 holds since the delete
is the only call made in the transaction.

Procedure GetUser

The GetUser procedure is essential for inv1. Directly, after the start of the
invocation and after committing the transaction, inv1 is not yet affected, since
there is no result for the invocation yet.

Only after returning Found from the invocation, there is an interesting proof
obligation for inv1. Here, we have to show that there can be no RemoveUser
invocation before the current invocation that deleted the user. If we return
Found, the KeyExists query must have returned True. From this we can derive
that there must be an update operation on the user such that all deletes
happened before the update. Together with inv2 we get that there can be no
delete operation. However, if there were an invocation of RemoveUser before
the current invocation, according to inv3 there should have been a delete
operation that is visible. Thus, there can be no such invocation and inv1 still
holds.

8.3. Further Examples
We have modelled a few other examples in Repliss, which we introduce now.
These examples were not verified in Isabelle and only analyzed with the Repliss
testing or verification tools.

8.3.1. Chat Example Data Invariant
For the chat application described earlier, we have verified the following data
invariants in Repliss:
invariant forall m: MessageId ::

chatQry(Contains(m)) ==> messageQry(ContainsKey(m))

invariant forall m: MessageId ::
messageQry(ContainsKey(m)) ==> chatQry(Contains(m))

Together these invariants are a referential integrity property. They state
that a message is in the set of all messages (the chat) if and only if it has an
entry in the message map.

We would have liked to express this property as one invariant using the
appropiate operator (<==>). However, the invariants can then no longer be
verified automatically by the SMT solvers, even though both formulations are
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def store(e: Element)
atomic

if sQry(GetSize) < 1
call s(Add(e))

crdt s: Set_aw[Element]

invariant sQry(GetSize) < 3

Figure 8.9.: Limited set size example.

logically equivalent. This is one of the examples showing the fragility of SMT
solvers in some situations.

8.3.2. Limited Set Size
The application in Figure 8.9 consists of a single procedure. The procedure
adds a new element to a set only if the size of the set is less than one. In
a strongly consistent setting, this would guarantee that there can never be
more than one element in the set. However, in Repliss there is no bound
on the size of the set. We use this artificial example, to check whether the
automated testing techniques can find bigger examples with several concurrent
procedure invocations. The example can be varied by changing the value 3

in the invariant. A bigger value means that the size of the minimal counter
example increases. Below, we identify these examples with singleton_setN.

rpls.

8.4. Evaluating Performance
We used the above case studies to evaluate the performance of Repliss. The
experiments were evaluated on a Laptop with i7-7500U processor and 16GB
of RAM. The software was run on Ubuntu 20.04 with Java OpenJDK version
11.0.8, Z3 version 4.8.9.0, and CVC4 version 1.7. The Benchmark code is
available in Benchmark.scala in the Repliss sources1.

We evaluated the performance of three different aspects of the Repliss tool:

1. A comparison of the three different testing techniques we implemented.

2. The time required for symbolic execution.

3. A comparison of the different SMT solvers for individual proof obliga-
tions.

8.4.1. Automatic Testing
We evaluated the time to find a counter example with the different testing
strategies. These are the following:

1https://github.com/peterzeller/repliss at commit 93c24670f8
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Example Random Small Dedup
chatapp_fail1.rpls 5.8 4.5 1.1
chatapp_fail2.rpls 3.3 8.2 1.0
userbase_fail1.rpls 3.6 17.5 1.5
userbase_fail2.rpls 1.3 2.3 0.5
singleton_set2.rpls 0.6 0.3 0.2
singleton_set3.rpls 1.0 - 0.2
singleton_set4.rpls 4.3 - 2.7
singleton_set5.rpls 8.5 - 132.2

Figure 8.10.: Time in seconds for different testing strategies until a bug is found.

Random Random testing similar to QuickCheck (See Section 7.3.2.)

Small Systematic exploration of small executions similar to SmallCheck (see
Section 7.3.4)

Dedup Systematic exploration of small executions with deduplication by check-
ing for equivalent states (see Section 7.3.4)

The results are shown in Figure 8.10 with the different strategies in the
columns.

8.4.2. Symbolic Execution
In Figure 8.11 we show the verification time for different examples we verified
with Repliss. The running times are subdivided into the running time for
the invariant check of the initial state and the running time for checking each
procedure. As SMT solver, we used the Repliss default option, which is an
incremental solver that concurrently runs two CVC4 instances (one with and
one without the finite model finding option). Z3 is not included in the default
options, since a bug in Z3 prevents us from interrupting the solver if another
solver is faster. However, we evaluate the performance of Z3 separately in the
next subsection.

We evaluated the running time for the following examples:

chatapp The chat application as introduced in Chapter 2, but using a manu-
ally written shape invariant tailored to the problem.

chatapp_si Same as above, but using the automatically generated shape in-
variants.

chatapp_data Verifying the data invariant for the chat application(see Sec-
tion 8.3.1).

userbase The user database example as described in Section 8.2 with manual
shape invariants.

userbase2 Same as above, but using the automatically generated shape in-
variants while keeping one manual shape invariant.
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chatapp.rpls

0.3s initial
4.2s sendMessage
3.8s editMessage
2.7s deleteMessage
37.3s getMessage
48.5s Σ

chatapp_si.rpls

0.1s initial
4.0s sendMessage
9.4s editMessage
10.2s deleteMessage
1m 12s getMessage
1m 36s Σ

chatapp_data.rpls

0.2s initial
1m 50s sendMessage
2m 53s editMessage
2m 25s deleteMessage
39s getMessage
7m 48s Σ

userbase.rpls

0.1s initial
4.0s registerUser
3.8s updateMail
1.5s removeUser
10.2s getUser
19.7s Σ

userbase2.rpls

0.1s initial
4.4s registerUser
11.6s updateMail
2.0s removeUser
2m 5s getUser
2m 34s Σ

userbase3.rpls

0.1s initial
3.8s registerUser
11.5s updateMail
1.5s removeUser
1m 55s getUser
2m 12s Σ

Figure 8.11.: Time for verifying different variants of the case studies.

userbase3 Same as above, but using the automatically generated shape in-
variants.

The evaluation shows that the procedures that were harder to verify in
Isabelle, are also harder for the SMT solvers. For the chat application this is
the getMessage procedure and for the user database it is getUser.

For the data-invariant of the chat application this situation is reversed and
the procedures containing updates use the most times, whereas getMessage

only performs database queries and is thus easier to verify. The fact that this
procedure still takes so long to verify hints at some possible optimizations
for handling data invariants. In principle, it should be trivial to verify the
data-invariant for a transaction without updates. However, it seems that the
SMT solver cannot do this rewriting and then detect the equivalence to the
invariant in the pre-state.

It is also apparent from the running times that the automatically generated
shape invariants add a significant overhead compared to invariants manually
tailored to the problem at hand.

Finding Counter Examples. Besides measuring the time for successful ver-
ification attempts, we have also measures the time for symbolic execution to
find a counter example. For this, we run the verifier on examples containing
genuine bugs and examples where the application is correct but verification
fails due to missing invariants. The results are given in Figure 8.12. The
two columns no SI and SI denote whether automatically generated shape
invariants were enabled or not.

We can see that with automatic shape invariants, the problem of finding
counter examples is much slower. However, without these invariants, counter
examples are less intuitive since they may show procedure invocations with
database calls that do not appear in the implementation of the procedure.
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Example no SI SI
chatapp_fail1.rpls 8s 23s
chatapp_fail2.rpls 10s 16m 35s
userbase_fail1.rpls 6s 5m 29s
userbase_fail2.rpls 6s 2m 24s
chatapp1.rpls 9s 23s
chatapp2.rpls 7s 29s
chatapp3.rpls 43s 16m 54s
chatapp_si1.rpls 9s 32s
chatapp_si2.rpls 10s 17m 14s
userbase_si.rpls 6s 8m 17s

Figure 8.12.: Time until symbolic execution finds counter examples.

The relatively long times to find a verification counter example also shows
the benefit of having an automated testing tool that often can find counter
examples much faster if there is a genuine bug.

8.4.3. SMT Solver Performance
During symbolic execution many queries to SMT solvers are generated. We
have collected the queries and compare the running times of the Z3 and CVC4
theorem solvers. In the evaluation we distinguish between satisfiable and un-
satisfiable problems.

The results for unsatisfiable problems are given in Figure 8.13. The y-axis
shows the number of instances for intervals of length 10. The x-axis shows
the difference in time to solve the query. For the value 0 both solvers take
the time. A negative value indicates that Z3 was faster, a positive value that
CVC4 was faster. The value denotes the reduction in time, so a value of 80
means that CVC4 used only 20% of the time required by Z3. Values above
100 mean that the instance could not be solved by the other solver.

We can see that there is an advantage on the side of Z3. In particular, Z3
can proof the data invariant much faster. However, CVC4 could solve more
instances in total with the timeout of 1 minute we used for this comparison.

For satisfiable problems, we have a similar comparison in Figure 8.14. Here,
we used the finite model finding option of CVC4. This option is made for
solving satisfiable instances and the evaluation results show that this gives
some significant advantages. CVC4 is faster and can solve many problems for
which Z3 does not find a counter example in the given timeout.
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Figure 8.13.: Comparison of Z3 and CVC4 for UNSAT problems.
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Figure 8.14.: Comparison of Z3 and CVC4 with finite model finder option for SAT
problems.
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Chapter 9
Conclusions

In this thesis, we have presented a new technique for verifying highly available
applications. The technique is enabled by three main design choices:

1. Communication between concurrent procedure invocation is limited to
updating the shared replicated database.

2. Invariants are restricted to address the global state.

3. Specifications are based on event histories.

The first two points are essential to allow for local reasoning. By restricting
communication to the database, which has a well-defined semantics, we also
limit where possible interactions between concurrent processes can occur. This
makes it possible to reason locally except for a few program points. For
these points, we use global invariants to reason about the possible effects of
concurrent processes.

Our specification technique based on event histories poses new challenges
when it comes to the development of tools which support partially automated
verification. We have developed the Repliss tool to explore how well our
specification and verification technique is suitable for automation. The spec-
ification technique based on event histories distinguishes Repliss from other
verification tools. The Repliss tool demonstrates some advantages of this
specification technique. The specifications are expressive and allow to specify
some properties that could only be specified using ghost variables in state-
based techniques. It also improves our approach to handle concurrency. Since
the history always grows monotonically, we have an implicit restriction on
what can happen in concurrently executed code. Another advantage of using
the history instead of states, is that counter examples arising from automated
provers can be more intuitive. Instead of a single state, a counter example is
given as a partial execution. On the other hand, relying on history information
instead of abstract state, complicates some verification conditions.

Overall, we showed that our technique is suitable for handling the special
kind of concurrency prevalent in highly available applications. Our work also
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is a sizable example of completely verifying the soundness of a proof technique
in Isabelle/HOL. This effort is based on a small-step interleaving semantics.
It then continues with a reduction to the single-invocation semantics that
eliminates the main pain points of concurrency. Moreover, the Isabelle theories
include specific proof rules that enable verification applications using a kind of
symbolic execution, resulting in a framework that can be used within Isabelle.
Our case studies for two examples demonstrate that this verification in Isabelle
works using equivalent invariants to the ones used for verification with the
Repliss tool.

9.1. Future Research
Closing Formal Gaps. We have formalized a significant part of our technique
in Isabelle/HOL, starting from a semantics and leading up to proof rules for
symbolic execution. For this part, we can be certain of correctness of all
theorems, assuming no Isabelle/HOL bugs affecting this result.

However, around these core results, there are some parts we have not proven
formally. As highlighted by Fonseca et al. [Fon+17], these untrusted parts
often contain bugs. Thus, we list the untrusted parts of our development in
the following and discuss how the gaps could be closed.

1. Our semantics constitute the basis for all formalizations. However, we
have not verified that this semantics accurately describes actual data-
base systems. One could close this gap formally, by implementing a
database system in Isabelle/HOL and then verifying that it satisfies our
semantics when combined with an application program. Similar efforts
already have been made. For example IronFleet [Haw+17] is an ef-
fort to fully verify a distributed database, but it has different semantics
from our setting. In particular, the database does not provide repli-
cated data types. In this thesis, we only worked with specifications of
replicated data types. However, our earlier work on verifying CRDTs in
Isabelle/HOL [ZBP14a] could be combined with this thesis to close this
gap.

2. While we have developed and verified proof rules for symbolic execution
in Isabelle/HOL, we did not verify that the realization of these rules
in the Repliss tool is correct. If we wanted to close this gap, we could
implement the Repliss tool in Isabelle/HOL, where we could then prove
the correspondence to the proof rules. Then Isabelle’s code generation
could be used to get the executable Repliss tool. One challenge in doing
so, is that Repliss invokes SMT solvers as external tools, so we would also
require a formalization of their semantics. Doing this correctly can again
be challenging. For example, while implementing Repliss, we stumbled
upon the fact that sets in CVC4 use a non-standard model, where the
universe set not necessarily contains all elements.

3. We have not implemented a method to get an executable application
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from a Repliss model. Thus, applying Repliss in the development of a
highly available application currently would require a manual translation
step, which could introduce bugs. This gap could be closed by imple-
menting code generation. Related work like CompCert [Ler+16] or work
by Blech [Ble09] shows that it is feasible to build a verified compiler.

Support for different consistency models. In our semantics, we have fixed
the consistency model to be transactional causal consistency. We fixed the con-
sistency model to keep the semantics easy to manage and understand, which
would change with a model supporting multiple consistency levels. However,
there is no fundamental reason why our approach could not be extended to
other consistency levels, as long as these consistency levels can be described as
constraints on database histories (database calls and happens-before relation).

For supporting a weaker consistency level, one would need to remove some
premises from the proof rules, which (as expected) would make some applica-
tions more difficult (or impossible) to prove correct. Also, some equivalences
for CRDT specifications would be no longer valid without causal consistency.

Support for stronger consistency levels is already possible in a limited way.
For example to support locks, we could define a CRDT with a lock operation.
Then we could specify, as a precondition for invariants, that two transactions
invoking the lock operation can never be concurrent. However, this extension
would not provide any higher level reasoning support for locks. For support-
ing this, it would be interesting to study an integration of the CISE [Got+16]
technique into ours (see related work in Section 3.3). This technique follows
the idea of rely-guarantee style reasoning. It can be seen as a way to make
our state-monotonicGrowth predicate more precise and specific to the locks
acquired by a transaction. Basically, we could add two-state invariants asso-
ciated with locks that each relates an old and a new state and may only be
violated by transactions that acquire the related locks. Thus, at the start of
a transaction, we can then assume the invariant for the locks excluded by the
locks of the started transaction. At the end of the transaction, we then have
to show all invariants except for the ones for which we acquired the locks.

Combining interactive and automatic verification. In its current state, the
Repliss tool only has limited support for interactive verification. When the
automatic SMT solvers fail to verify a proof obligation, it is possible to export
the proof obligation to Isabelle, where it can be proved interactively. How-
ever, there is no way for the automatic theorem prover to benefit from the
interactive proof. For example, this could be achieved by learning auxiliary
lemmata and typical instantiations of quantifiers. In particular, this could
be helpful for complex functions like aggregates. These are not directly sup-
ported by SMT solvers, so they have to be implemented using uninterpreted
functions and appropriate axioms and triggers. A good example for this pro-
cess is the handling of array comprehensions in Dafny [LM09]. We have not
yet implemented aggregates for Repliss, so datatypes like counters that re-
quire aggregates cannot be verified automatically. In contrast, a higher order
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tool like Isabelle/HOL allows to fully define this kind of functions and aux-
iliary theorems can be proven by methods like induction. Thus, it would be
interesting to see, whether an automated verification tool could be based on
a higher order logic with the possibility to fall back to interactive verification
when new situations with insufficient auxiliary theorems arise.
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