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Abstract

A significant step to engineering design is to take into account uncertainties and to
develop optimal designs that are robust with respect to perturbations. Furthermore, it
is often of interest to optimize for different conflicting objective functions describing the
quality of a design, leading to a multi-objective optimization problem. In this context,
generating methods for solving multi-objective optimization problems seek to find a
representative set of solutions fulfilling the concept of Pareto optimality. When multiple
uncertain objective functions are involved, it is essential to define suitable measures for
robustness that account for a combined effect of uncertainties in objective space. Many
tasks in engineering design include the solution of an underlying partial differential
equation that can be computationally expensive. Thus, it is of interest to use efficient
strategies for finding optimal designs. This research aims to present suitable measures
for robustness in a multi-objective context, as well as optimization strategies for multi-
objective robust design.

This work introduces new ideas for robustness measures in the context of multi-
objective robust design. Losses and expected losses based on distances in objective space
are used to describe robustness. A direct formulation and a two-phase formulation based
on expected losses are proposed for finding a set of robust optimal solutions.

Furthermore, suitable optimization strategies for solving the resulting multi-objective
robust design problem are formulated and analyzed. The multi-objective optimization
problem is solved with a constraint-based approach that is based on solving several
constrained single-objective optimization problems with a hybrid optimization strategy.
The hybrid method combines a global search method on a surrogate model with adjoint-
based optimization methods. In the context of optimization with an underlying partial
differential equation, a one-shot approach is extended to handle additional constraints.

The developed concepts for multi-objective robust design and the proposed optimiza-
tion strategies are applied to an aerodynamic shape optimization problem. The drag
coefficient and the lift coefficient are optimized under the consideration of uncertain-
ties in the operational conditions and geometrical uncertainties. The uncertainties are
propagated with the help of a non-intrusive polynomial chaos approach. For increasing
the efficiency when considering a higher-dimensional random space, it is made use of a
Karhunen-Loève expansion and a dimension-adaptive sparse grid quadrature.
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Zusammenfassung

Ein wesentlicher Schritt in der Entwicklung und Konstruktion von Bauteilen besteht
darin, Unsicherheiten zu berücksichtigen und optimale Entwürfe zu finden, welche ro-
bust gegenüber gewissen Störungen sind. Ferner ist es häufig von Interesse, verschiedene
widersprüchliche Zielfunktionen, welche die Güte der Entwürfe beschreiben, zu opti-
mieren. Daraus resultiert ein Mehrzieloptimierungsproblem. Spezielle Methoden zum
Lösen solcher Probleme dienen dazu, eine repräsentative Menge von Lösungen zu finden,
welche die Anforderungen der Pareto-Optimalität erfüllen. Wenn mehrere mit Unsicher-
heiten behaftete Zielfunktionen betrachtet werden, ist es wichtig, geeignete Maße für Ro-
bustheit zu definieren, die den kombinierten Effekt der Unsicherheiten im Zielfunktion-
sraum berücksichtigen. Viele Aufgaben im Bereich der Entwicklung und Konstruktion
von Bauteilen umfassen die rechnerische aufwändige Lösung einer zugrundeliegenden
partiellen Differentialgleichung. Daher ist es von Interesse, möglichst effiziente Strategien
zum Auffinden optimaler Lösungen zu verwenden. Ziel dieser Forschung ist es, geeignete
Robustheitsmaße im Bereich der Mehrzieloptimierung und Optimierungsstrategien für
den robusten Entwurf mit mehreren Zielfunktionen vorzustellen.

In der vorgelegten Arbeit werden erweiterte Ideen für Robustheitsmaße für den ro-
busten Entwurf mit mehreren Zielfunktionen eingeführt. Verluste und erwartete Ver-
luste, basierend auf Entfernungen im Zielfunktionsraum, beschreiben die Robustheit.
Um eine Menge robuster optimaler Lösungen zu finden, werden eine direkte und eine
zweiphasige Problemstellung, basierend auf erwarteten Verlusten, vorgeschlagen.

Darüber hinaus werden geeignete Optimierungsstrategien zum Lösen der resultieren-
den Mehrzieloptimierungsprobleme für den robusten Entwurf formuliert und analysiert.
Das Mehrzieloptimierungsproblem wird mit einem Ansatz gelöst, welcher darauf basiert,
das Problem in mehrere restringierte Einzieloptimierungsprobleme zu verwandeln und
diese mit einer hybriden Optimierungsstrategie zu lösen. Das hybride Verfahren kom-
biniert ein globales Suchverfahren auf einem Ersatzmodell mit einem Optimierungsver-
fahren basierend auf der Adjungiertenmethode. Bei der Optimierung mit zugrundeliegen-
den partiellen Differentialgleichungen wird eine One-Shot-Methode auf die Behandlung
zusätzlicher Nebenbedingungen erweitert.

Die entwickelten Ansätze für den robusten Entwurf mit mehreren Zielfunktionen und
die vorgeschlagenen Optimierungsstrategien werden für eine aerodynamische Formop-
timierung verwendet. Dabei werden der Widerstandsbeiwert und der Auftriebsbeiwert
unter der Berücksichtigung von Unsicherheiten im Betriebszustand sowie geometrischen
Unsicherheiten optimiert. Die Verbreitung von Unsicherheiten wird mit Hilfe einer nicht-
intrusiven Polynomial-Chaos-Methode realisiert. Um die Effizienz bei höherdimensiona-
len Wahrscheinlichkeitsräumen zu erhöhen, werden eine Karhunen-Loève-Entwicklung
und eine Sparse-Grid-Quadraturformel, die adaptiv in der Dimension ist, verwendet.
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1. Introduction

Multi-objective optimization and robust design are two well-established fields of research.
Especially in engineering applications, it is important to optimize for different conflicting
criteria like, for example, cost and quality aspects. This is realized using multi-objective
optimization (MOO) strategies to find trade-off designs for different criteria. Another
significant step towards realistic design is to take into account uncertainties for finding
robust optimal solutions. Robust design aims at finding solutions that are optimal and
robust with respect to perturbations.

However, multi-objective optimization and robust design are often treated as separate
tasks when it comes to engineering design. Often, multi-objective aspects are consid-
ered in a conceptual design phase, and after that, the performance and robustness of a
design are analyzed in a detailed design phase. If robust design is performed, it usu-
ally only takes into account a single criterion. The reason for this is that performing
multi-objective optimization or robust design strategies separately already increases the
computational costs, especially if underlying partial differential equations (PDEs) need
to be solved in each design step. Furthermore, the definition of suitable measures for
robust optimality is not straightforward in a multi-objective context.

Therefore, this thesis aims at presenting measures and corresponding problem formu-
lations for robust design in a multi-objective context and optimization strategies that
can be used to solve the robust design problem efficiently. The need for new and effi-
cient strategies for robust design in a multi-objective context will be further motivated
in Section 1.1. The section also gives a short literature overview. This is done more
thoroughly for each topic in the main part of the thesis. In Section 1.2, research goals
are formulated, the general methodologies are presented, and contributions of the thesis
are summarized. Finally, an outline of the main part of the thesis is given in Section
1.3.

1.1. Motivation

The aim of the presented research is the definition of robustness measures and optimiza-
tion strategies in the context of robust multi-objective design with an underlying PDE
constraint. This comprises different areas of research, namely

• strategies for multi-objective optimization,

• strategies for PDE-constrained optimization, and

• strategies for robust design.
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This section presents an overview of the state-of-the-art of research for the different
topics and possible shortcomings. It serves to demonstrate the need for new strategies
in the respective areas of research.

Multi-Objective Optimization Conflicting criteria are present in everyday life. In en-
gineering design, one has to find trade-offs between product quality and manufacturing
cost. Nowadays, especially when it comes to rethinking in environmental sustainability
and the associated demand for more sophisticated solutions, the complexity of prob-
lems in engineering design increases. Solutions need to be found in highly-nonlinear
environments, often involving competing objectives. The aim is to find a design that
fulfills various requirements. The requirements can be either integrated as multiple ob-
jective functions or, if the designer can formulate appropriate targets, as constraints of
an optimization problem. In aerodynamic shape optimization, for example, the aim is
to increase the performance by maximizing the lift of an airfoil and minimizing the drag,
which implicitly decreases fuel consumption. Usually, manufacturing constraints, like
the maximum space allowed for a component or the maximum amount of material, are
prescribed by given bounds. Especially in the presence of multiple objectives, trial-and-
error design based on intuition or experience in a specific field becomes impracticable.
Thus, the use of numerical optimization algorithms is inevitable.

If the criteria are conflicting, there does not exist a single optimal solution to the
multi-objective optimization problem. This means that a design that is optimal for one
criterion is not necessarily optimal for the other criteria. Instead, the aim is to find a
single trade-off solution or a set of trade-off solutions, which are offered to a decision-
maker. The concept that is used for relating vectors of objective functions is the concept
of Pareto optimality. Given a k-dimensional vector of objective functions, a feasible
design x is Pareto optimal if it is non-dominated, i.e., there does not exist any feasible
design x̃ such that fi(x̃) ≤ fi(x) for every objective function fi with i ∈ {1, . . . , k}
and there exists at least one strict inequality. The image of the set of Pareto optimal
solutions in objective space is referred to as the Pareto optimal front.

Methods for multi-objective optimization use different strategies to find a set of Pareto
optimal solutions. The aim is to find a set of representative solutions that are uniformly
distributed on the Pareto optimal front. One may distinguish between direct Pareto
approaches and scalarization approaches for multi-objective optimization.

Direct Pareto approaches try to find several Pareto optimal points at once. This can,
for example, be realized using evolutionary approaches. Research in the field of multi-
objective evolutionary methods is an ongoing topic. It started with Schaffer’s Vector
Evaluated Genetic Algorithm (VEGA, [234]) and the ideas of Goldberg [83]. The most
popular algorithm used is the Non-Dominated Sorting Genetic Algorithm (NSGA-II,
[49]). Direct Pareto approaches based on evolutionary strategies are popular due to
their easy implementation and integration in existing frameworks. A drawback of evo-
lutionary approaches is that there is no proof of convergence and, accordingly, there
are no objective convergence criteria like a vanishing gradient as a necessary condition
for optimality. Thus, in general, it is hard to define a suitable stopping criterion for
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evolutionary algorithms. Another disadvantage is the high number of function evalua-
tions reached to find an agreeable set of solutions, which is a significant problem if the
computational costs for a single evaluation are already high.

In scalarization approaches, the problem is transformed into several single-objective
optimization problems, which can be solved using efficient strategies for single-objective
optimization. The most intuitive approach in this context is to optimize a weighted
sum of objective functions with alternating weights. This method is referred to as
the weighted sum method. A significant disadvantage is that the method can only
find Pareto optimal points on convex parts of the Pareto optimal front. Additionally,
the points on the Pareto optimal front are not necessarily uniformly distributed when
choosing uniformly distributed weights [45]. This can be circumvented when using other
scalarization approaches, for example, constraint methods like the epsilon-constraint
method [177]. The idea of the epsilon-constraint method is to optimize one objective
function while imposing inequality constraints on the remaining competing objective
functions. The constraints, as well as the objective function, can be varied to find
different Pareto optimal solutions. The advantage of using constraint methods over
the weighted sum technique is the ability to find more evenly distributed Pareto points
and analyze selected regions of the Pareto front by selectively choosing appropriate
constraints.

A major advantage of scalarization approaches is the opportunity to make use of
known strategies for single-objective optimization. Specific challenges for single-objective
optimization algorithms in the context of multi-objective optimization can be formulated.
These challenges are:

• Only the unique global solution to the single-objective optimization problem is a
Pareto optimal solution. Therefore, it is important to use a method with a high
chance of finding a global optimum.

• Several single-objective optimization problems have to be solved for finding solu-
tions to the multi-objective optimization problem. Since the computational costs
for finding a representative set of solutions increase exponentially with the number
of objective functions, efficient optimization strategies are required.

• The optimization method shall work reliable and provide solutions for each of the
single-objective optimization problems. One may use the notion of robustness in
this context. However, the robustness of the methodology itself shall not be mixed
up with the robustness of a solution.

These challenges often prevent the use of scalarization approaches. Unfortunately, pos-
sible remedies for the challenges mentioned above are contradicting each other:

• Global optimization is still an open research problem. There is no deterministic
global optimization method with guaranteed convergence. The only reliable strat-
egy for finding a global optimum is an exhaustive search of the design space. The
high computational costs render this brute-force strategy prohibitive. The same

3



1. Introduction

applies to heuristic strategies for single-objective optimization like genetic algo-
rithms [119]. They usually have a higher chance of finding a global optimum, but
they share the same problems as heuristic methods in the context of multi-objective
optimization.

• Opposed to heuristic optimization methods, gradient-based strategies are compu-
tationally efficient. Additionally, reasonable convergence criteria exist. Newton’s
method, which makes use of the Hessian, shows local quadratic convergence. Also,
methods only based on first-order derivatives can achieve fast convergence, espe-
cially when making use of Hessian approximations. One-shot optimization strate-
gies have the potential to decrease the computational effort by one further order
of magnitude, and will be introduced in the next paragraph. However, gradient-
based strategies can only guarantee to find local optimal solutions. Additionally,
depending on the starting point of the algorithm, they can get easily stuck in local
optima. Since they converge locally, the chance of finding the global optimum
can only be increased by choosing the starting point in the vicinity of the global
optimum, which is normally not known.

• Methods that are not making use of derivative information are, in general, more
reliable and easier to implement in existing frameworks. When making use of
inexact derivatives, obtained, for example, from a finite difference approximation,
a gradient-based strategy may not show the expected convergence behavior or,
in the worst case, fail to converge. Thus, gradient-based optimization strategies
require the provision of accurate derivative information, which can be obtained
from algorithmic differentiation.

The fact that the challenges cannot be met using either global search strategies or
gradient-based methods motivates the use of hybrid optimization approaches that com-
bine both strategies to increase the chance of finding a global optimum. The idea is to
profit from the advantages of both strategies.

To summarize, the goal for multi-objective optimization is to revive constraint meth-
ods by using hybrid optimization strategies. Especially, the opportunity to use efficient
methods using derivatives obtained with the help of algorithmic differentiation, e.g.,
the one-shot method, can significantly decrease the computational costs for the single-
objective optimization problems arising from constraint methods for MOO. This makes
a Pareto front exploration feasible when the determination of the objective function
involves the computationally expensive solution of a system of partial differential equa-
tions. In the following, strategies for optimization with PDE constraints are presented,
focusing on adjoint methods and one-shot methods.

PDE-Constrained Optimization Many tasks in the field of engineering involve opti-
mization problems or optimal control problems with underlying partial differential equa-
tions. In fluid dynamics, this can, for example, be the Euler or the Reynolds-averaged
Navier-Stokes equations as state equations. They serve as constraints to the given prob-
lem. Usually, these PDE constraints cannot be solved analytically but have to be solved
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numerically. Calculating the solution to the PDEs is often, as in the case of fluid dy-
namics, expensive considering computing time and memory.

Because of the high computational effort when solving PDEs, it is costly to use classical
optimization methods. An additional cause for high computational costs is the deter-
mination of the gradient of the objective functions and the gradient of the constraint
functions with respect to the design variables when using gradient-based optimization
methods. Typically the number of design variables is high in relation to the number of
objective and constraint functions. This is, for example, the case for shape optimization
problems.

Finite differences are a common and straightforward approach for obtaining the needed
derivatives. However, the disadvantages are that these formulas only provide an approxi-
mation of the derivatives, and a time-consuming study of appropriate step sizes is needed.
The step size needs to be re-evaluated for each new problem and each new optimization
parameter, which is a constant overhead required by finite difference formulas. When
using finite differences, the computational complexity increases linearly with the number
of design variables. To solve this problem, one often makes use of adjoint approaches,
which guarantee an evaluation of derivatives that is independent of the number of de-
sign variables. The main idea of the adjoint approach is to solve the so-called adjoint
equation that can be derived by setting up the optimality conditions for the constrained
optimization problem. It was first derived and applied by Pironneau [221] in 1974 in
the context of control theory in fluid dynamics. Jameson [135] was the first one to
apply the adjoint approach to a shape optimization problem of an airfoil subject to a
potential equation. Later, he also applied it to problems subject to the Euler equations
and the Reynolds-averaged Navier-Stokes equations. There exist two classes of adjoint
approaches. In the continuous adjoint approach, the adjoint equation is derived from the
flow equation and is then discretized. In contrast to that, in the discrete approach, the
problem is discretized first, and the variations are taken afterwards. Jameson [135] made
use of the continuous adjoint approach, whereas, e.g., Giles [81] employed the discrete
adjoint method.

The discrete adjoint approach can be implemented in a robust and semi-automatic
manner with the help of the reverse mode of algorithmic differentiation (AD, [93]). Al-
gorithmic differentiation is a technique to differentiate a function that is implemented as
an algorithm in a computer program, like a numerical flow solver and can be decomposed
into elementary operations like +, sin, etc. The application of AD to an algorithm aug-
ments it by its derivative by linking the derivatives of the elementary operations using the
chain rule of differentiation. This can be either done using source code transformation
or using operator overloading. Source code transformation interprets the original source
code and produces a new source code augmented by the derivatives for each operation.
For modern programming languages like C++ that enable operator overloading, each
operation can be overloaded, such that a specific internal representation of the operation
that serves to calculate the respective derivative is generated. The advantage is that all
code changes can be automatically differentiated with minimal maintenance overhead.
There exist two different modes of AD. The forward mode provides derivatives for each
design parameter separately. Thus, as it is the case for finite difference approximations,
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the computational costs increase linearly with the number of design parameters. In con-
trast, the highly efficient reverse mode provides the full gradient of an objective function
in a single run.

Besides the advantage of computational cost, the use of derivatives obtained from
algorithmic differentiation enhances the reliability of gradient-based optimization since
derivatives obtained from AD are machine-accurate. The success of gradient-based op-
timization methods depends on the availability of accurate derivatives. Quasi-Newton
methods need accurate gradients to achieve a high-quality Hessian approximation and,
as a result, locally super-linear convergence. Furthermore, methods for constrained op-
timization problems like projection methods rely on the accuracy of the derivatives of
the constraint functions.

The reverse mode of algorithmic differentiation is connected to the adjoint equation in
the discrete adjoint method. The differentiation of the fixed-point iterator of a scheme for
solving the state solution of a PDE constraint results in a solution scheme for the adjoint
solution. The discrete adjoint solver based on this strategy inherits the contraction
properties of the solver for the state equation. Advanced techniques in the development
of algorithmic differentiation facilitate the extension of the fixed-point solver when it
is modified, as well as the incorporation of different objective functions and constraints
for optimization. Furthermore, the fixed-point iterator can be treated in a black-box
manner, such that methods involving the adjoint can be developed independently of its
implementation. This enables the semi-automatic transition from simulation tools to
optimization (see [70]). Especially, the availability of a robust discrete adjoint solver
enables the use of advanced optimization techniques like the one-shot approach.

In classical hierarchical optimization approaches, the feasibility of the primal equa-
tion and of the adjoint equation are recovered in each optimization step. If the primal
equation has a rather slow linear convergence, as it is the case for calculations of a flow
solution, one-shot strategies can be advantageous. The one-shot approach needs only
the computational costs of a small multiple of flow solutions for the optimization which
is referred to as bounded retardation.The primal flow equations, the adjoint equations,
and the design equation are iterated simultaneously in one optimization procedure in
a coupled fixed-point iteration. One-shot strategies can be distinguished by the order
of setting up the optimization problem and differentiation. The one-shot optimization
problem can be set up to be discretized afterwards [113, 116, 114], thus using the ideas
of the continuous adjoint approach. The solution procedure for this method can be
interpreted as an inexact reduced sequential quadratic programming approach. On the
other hand, the one-shot strategy can be formulated for the discretized primal equation
[89, 72, 102, 103, 71]. This approach is referred to as the single-step one-shot approach
as, opposite to the other approach, each update is based on the information of a sin-
gle point at the old iterate. For the single-step one-shot approach convergence to a
stationary point of the optimization problem can be guaranteed for a carefully chosen
preconditioner based on a doubly augmented Lagrangian, which is used for the iteration
in design space. The prerequisite for this is that the fixed-point iteration of the under-
lying primal equation is contractive. A review of one-shot approaches can be found in
[24].
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The coordination of primal, adjoint, and design iterations is well established when only
the state equation is considered as an equality constraint. If additional constraints are
considered, the usual strategy is to extend the objective function by a penalty term with
a fixed penalty. However, the convergence properties of the single-step one-shot method
cannot be directly adopted. In [239], an additional equality constraint is introduced in
the context of an inexact reduced sequential quadratic programming approach, and in
[23], the author extends the one-shot framework for additional constraints that allow the
introduction of corresponding additional state variables. Constraint methods for MOO
rely on a reliable optimization strategy for optimization with additional constraints.
This motivates to extend the single-step one-shot approach and its theoretical results to
the inclusion of additional constraints.

Having the opportunity of an efficient optimization strategy for MOO problems, the
idea of introducing an additional dimension, namely random variables due to uncer-
tainties in the underlying problem, is straightforward and will be discussed in the next
paragraph.

Uncertainty Quantification and Robust Design Sources of uncertainty can be found
in a lot of real-world scenarios as most processes are not deterministic. Instead, envi-
ronmental factors may, for example, cause variations in the parameters or the boundary
conditions of a model describing the problem. Opposed to epistemic uncertainties, which
result from modeling, these types of uncertainties are inherent in the problem and cannot
be reduced by further improving the model and are referred to as aleatoric uncertainties.
In aerodynamic shape optimization, e.g., one has to consider aleatoric uncertainties in
the operational conditions for flight. They may, for example, arise due to turbulence
or uncertainties in the geometry caused by manufacturing tolerances or temporary fac-
tors like icing. Thus, realistic engineering design often involves the consideration of
uncertainties affecting the system. If the effect of uncertainties is neglected in the design
process, the performance of an optimal design that was optimized under fixed conditions
may be significantly decreased for a small variation in these conditions. In the worst
case of events, this may even lead to a failure with significant effects.

When introducing uncertainties in the design process, the first task is the modeling
of uncertainties and the propagation of uncertainties through the system under consid-
eration. Research in this area has been conducted in the last decades and is summa-
rized under the term uncertainty quantification. Uncertainties caused, for example, by
environmental factors, as described above, can be represented by introducing random
variables with known distributions in the system of PDEs. Some uncertainties have to
be modeled as random processes leading to an infinite-dimensional probability space.
A Karhunen-Loève (KL, [141, 170]) expansion can be used to approximate the infinite-
dimensional space with a finite number of random variables.

There exist different strategies for the propagation of uncertainties. The choice of
strategies mainly depends on the number of uncertain variables. Monte Carlo approaches
make use of random sampling for approximating quantities of interest like the expected
value or the variance. While the number of needed samples is very high, these methods
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do not depend on the number of uncertain parameters.
For moderate dimensions of the random space (usually up to a maximum of ten uncer-

tain parameters), stochastic spectral methods, which are also referred to as polynomial
chaos (PC) approaches, are significantly more efficient in comparison to Monte Carlo
approaches. The idea of stochastic spectral methods is to expand input and output
random variables in terms of orthogonal polynomials depending on the probability den-
sity function of the random input variables. In the stochastic Galerkin method (see e.g.
[292]), the expansion coefficients are found by projecting the residual of the system of
PDEs onto the space of orthogonal polynomials. As a result, the approach is intrusive
since a new system of equations needs to be solved that requires a different analysis and
numerical treatment.

This can be avoided when using non-intrusive PC approaches. In collocation meth-
ods, the expansion coefficients are found based on a given number of samples for which
the output variables are evaluated. Stochastic collocation [179], for example, makes use
of interpolation for finding the expansion coefficients. In contrast, in the non-intrusive
polynomial chaos approach [289] the expansion coefficients are found by projecting the
residual of the expansion of the output onto the space of orthogonal polynomials. The
resulting integral for the coefficients is then solved, for example, by using a quadrature
method. The computational effort required for non-intrusive strategies may increase
exponentially with the dimension of the random space due to the convergence proper-
ties of interpolation or quadrature methods. This effect is referred to as the curse of
dimensionality. For intrusive methods, the same effect can be observed in a weaker form.
The use of sparse grids, e.g., dimension-adaptive sparse grids for quadrature [77], can
mitigate the curse of dimensionality.

The effects of uncertainties may be included in the optimization, yielding robust design
strategies. The aim of robust design is to find solutions that are robust and optimal, also
referred to as robust optimal, under the considerations of uncertainties. This requires the
definition of robustness as a modeling aspect and its integration in the formulation of the
optimization problem to find robust optimal designs. First ideas for robust design were
formulated in the middle of the last century by Taguchi [265], who proposed to describe
robustness with a quality loss function. The average quality loss inspired the definition
of robustness based on expectation and variance as quantities of interest, which is still
popular today. The quantities of interest can be obtained with the help of the strategies
for uncertainty quantification described above.

In general, including uncertainties in the optimization approach will naturally increase
the computational effort. However, the use of efficient optimization techniques based on
adjoint methods makes robust design a feasible option. Schillings et al. [235] successfully
demonstrate this for robust aerodynamic design. The key for efficiency is the utilization
of a one-shot optimization method for solving a semi-infinite robust design formulation
based on the expected value of the drag coefficient. A non-intrusive polynomial chaos
approach with the help of dimension-adaptive sparse grid quadrature is used for uncer-
tainty propagation. This motivates an extension of these strategies to robust design in
a multi-objective context.

There can be seen a growing interest in finding robust optimal solutions when different
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conflicting objective functions are considered in an uncertain environment. Variations in
parameters and boundary conditions have a combined effect on all objective functions.
The effect expresses itself in a probability distribution in objective space. Similarly to the
case of MOO without considering uncertainties, there does not necessarily exist a single
robust optimal solution. Multi-objective robust design strategies were first formulated
in an evolutionary context. Most of the research in this field is restricted to direct Pareto
approaches. The application in the context of evolutionary multi-objective optimization
enables the definition of a probability of dominance [269, 124], which can be used for
ranking members of a population, or a dominance relation based on worst case analyses
[10]. A common strategy is to replace the original fitness value of the evolutionary
strategy by an expected fitness value. Deb and Gupta [47] introduced different multi-
objective robust design formulations using a mean effective objective function as a fitness
function. Inspired by measures for robustness in single-objective robust design, the
formulations can be extended to the use of the expected value and the variance [197].
These formulations can also be used together with constraint methods for MOO.

The definition of robustness in MOO using the expectation and variance of the indi-
vidual objective function does not necessarily reflect the combined effect of uncertainties
in the form of a distribution in objective space. The measures used for dominance rela-
tions under uncertainties, in general, assume that objective functions are independently
distributed. Furthermore, these measures cannot be directly used in scalarization ap-
proaches for MOO. This motivates the definition of a measure for robust optimality that
accounts for the combined effects of uncertainty on all objective functions.

1.2. Research Goals and Contributions

This section defines the research goals for the different areas of research that are of
interest for enabling multi-objective robust design and presents scientific contributions
connected to this thesis.

One may distinguish between the different research goals that were motivated in the
previous section:

• Constraint methods are an interesting option when it comes to multi-objective
optimization with expensive PDE constraints. However, they require the use of a
strategy with a high chance to find a globally optimal solution to the constrained
single-objective optimization problems. Therefore, one goal of this work is to
demonstrate the success of constraint methods when using hybrid optimization
strategies.

• The one-shot approach is an efficient strategy for PDE-constrained optimization. A
further goal of this work is to integrate the one-shot strategy into a hybrid strategy
for multi-objective optimization. This requires the successful handling of additional
constraint functions. Consequently, the aim is to extend the framework of the one-
shot strategy to additional constraints and present corresponding theoretical and
numerical results.
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• The incorporation of uncertainties in a design process with multiple objectives is
not straightforward. Especially since existing strategies do not account for the ef-
fect of uncertainty in multi-objective space, another aim of this work is to introduce
a suitable robustness measure and corresponding strategies for robust design with
multiple objectives. The strategies of the previous key points shall help to enable
the application of the robust design formulations to PDE-constrained problems.

Next to the analysis and implementation of the proposed strategies, the aim is to show
the application to shape optimization in fluid flow. A test case based on two-dimensional
aerodynamic shape optimization shall serve to demonstrate the research aspects. In this
context, the multi-objective task is to minimize the drag and maximize the lift. The
open-source multi-physics simulation and design framework SU2 [216] is employed for
the implementation. SU2 is designed for supporting shape optimization problems in fluid
flow by providing the needed solvers and all steps in the design chain. It implements
the solvers for the state equations describing the fluid flow, as well as discrete adjoint
capabilities [4] supported by algorithmic differentiation with the help of the AD tool
CoDiPack [231].

The following paragraphs summarize the scientific contributions of the present work.
Furthermore, published results are brought in context.

Constraint Methods for Multi-Objective Optimization using Hybrid Strategies Con-
tributions of the present work in the field of multi-objective optimization involve the
rediscovery of constraint methods for multi-objective optimization using highly efficient
single-objective optimization algorithms, for example, the one-shot approach. Further-
more, hybrid optimization algorithms based on surrogate models are used to support
the multi-objective optimization process by increasing the chance to find global optima
and, as a result, Pareto optimal solutions. The general idea is to use a global search
method on a surrogate model to avoid the high computational costs needed by global
search methods to explore the design space. An efficient gradient-based optimization
method is used afterwards for a local search on the original expensive PDE-constrained
optimization problem.

In the context of own previous work [158], different multi-objective optimization al-
gorithms were explored. Constraint methods for multi-objective optimization, namely
the equality constraint method and the epsilon-constraint method, were identified as
valuable methods for generating a representative set of Pareto optimal points. A hybrid
algorithm was proposed for solving the constrained single-objective optimization prob-
lems to increase the success of the overall optimization process. The hybrid method
couples a derivative-free algorithm with a high probability for global solutions and a
local line search method to combine the advantages of both approaches. In a first step,
a genetic algorithm was applied for a search on a Kriging metamodel of the expensive
objective functions. Afterwards, the found solution was used as a starting point for a
quasi-Newton method. The overall methodology was applied in an industrial context
for improving exhaust after-treatment based on selective catalytic reduction. The two
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objective functions under consideration were the pressure drop and the flow uniformity
index. The proposed method, as well as the results, were published in [158].

In the present work, the idea described above is extended by further developments of
the hybrid optimization strategy such that it is improved for single-objective optimiza-
tion problems with additional constraints. The global search conducted on the Kriging
surrogate model (see [213]) is tailored for constrained optimization problems by using
the constraint-weighted expected improvement method. The emphasis for implementa-
tion was put on interfaces for objective and constraint functions to allow the integration
of the Kriging approach in the multi-objective optimization strategies. The proposed
multi-objective optimization methodology was integrated into the framework of SU2 and
successfully applied to shape optimization problems in fluid mechanics. In first applica-
tions, an interior point method was used as a strategy for gradient-based optimization.
To further increase the overall efficiency, suitable one-shot optimization strategies were
developed. They will be the focus of the following paragraph.

Theoretical and Numerical Analysis of the One-Shot Method with Additional Con-
straints Scientific contributions in the field of efficient strategies for PDE-constrained
optimization are based on the extension of the single-step one-shot method to include
additional equality constraints. This involves the theoretical and numerical analysis of
the approach and its application to multi-objective shape optimization problems.

Research in this field started with the work of Walther et al. [278], who extended the
single-step one-shot strategy [72, 102, 103] to additional equality constraints. The basic
idea of the extension is the introduction of a modified Lagrange function. The inclusion
of additional equality constraints complicates the analysis, but many properties of the
approach by Hamdi and Griewank are inherited. The work initiated a collaboration
in refining the results on convergence properties and developing practical solutions for
implementation. A contribution of this thesis is the implementation of the single-step
one-shot strategy and its extension to an additional equality constraint in SU2 (see also
[155]).

The modification of the Lagrange function to include additional equality constraints
implies the introduction of an additional vector of constraint multipliers. The choice of
a suitable preconditioner for the design update as well as for the constraint multiplier
update is essential to achieve bounded retardation. Refined results for the theoretical
analysis are published in [280], providing simpler conditions for both preconditioners.
Furthermore, a suitable preconditioner for the constraint multiplier update is proposed,
thus simplifying the overall implementation. The extension to inequality constraints with
the help of strategies for bound projection is discussed to enable the use of constraint-
based MOO strategies, leading to constrained optimization problems with inequality
constraints.

Finally, the one-shot strategy with additional equality constraints is firstly applied in
a multi-objective context [154]. The multi-objective optimization problem is formulated
for aerodynamic shape optimization and treated using the equality constraint method.
The constrained single-objective optimization problems arising from the equality con-
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straint method can thus be solved efficiently. Furthermore, the use of second-order
derivatives in the one-shot approach is investigated. The results show the successful
transition from simulation to optimization in a semi-automatic fashion.

Robustness Measures for Robust Design with Multiple Objectives Contributions in
the field of robust design are the formulation and analysis of strategies for robust design
in a multi-objective context. The general idea is to measure robust optimality based
on losses in multi-objective space. The losses are defined using the general concept of
Pareto optimality. Expected losses are integrated in the multi-objective optimization
problem with the help of two different strategies to find robust optimal designs. The
uncertainty is propagated with the help of the non-intrusive polynomial chaos approach.

Multi-objective robust design using the expectation of the respective objective func-
tions for measuring robustness is performed in [156]. The expectation-based robustness
measure is a common approach to robust design with multiple objectives. It is inspired
by robust design strategies in a single-objective context. The epsilon-constraint method
supported by the hybrid optimization strategy is employed for solving the multi-objective
robust design problem. The robust design task is applied in the context of aerodynamic
shape optimization and implemented in SU2. Uncertainties in the operational condi-
tions and the geometry are considered separately and propagated with the help of a
non-intrusive polynomial chaos approach. The random process that describes geometri-
cal perturbations is approximated using a Karhunen-Loève expansion. The integration
in random space is performed using dimension-adaptive sparse grids to increase the
overall efficiency. The work extends the ideas of Schillings et al. [235] to multi-objective
optimization using the epsilon-constraint method.

In [157], expected losses in objective space are introduced as a new measure for finding
robust optimal designs. Two different formulations are presented. They use different
definitions of losses in objective space. The first formulation is a two-phase approach
in which the losses are defined with regards to an approximation of the Pareto optimal
front without considering uncertainties. The Pareto optimal points for approximation
are found in the first phase. The expected losses are described with the help of a signed
distance function in objective space. Afterwards, a new optimization problem that
includes a constraint for the expected losses is solved. In the direct approach, on the
other hand, the Pareto optimal front in a deterministic setting is unknown. Therefore,
the losses are described based on the distance to the deterministic outcome of the design
under consideration. Both approaches are applied for robust airfoil design with multiple
objectives. When compared to the results of standard measures, the desired effect can
be observed. As a result, perturbations for the found designs are expected to stay close
to the Pareto optimal front.

12



1.3. Composition of Thesis

1.3. Composition of Thesis

In line with the composition of the introductory sections, the thesis is split into three
thematic chapters. Each of the chapters serves to introduce needed notation and to give
details on existing strategies for the respective topic. Then new strategies are explained
in detail. Results for the application of the proposed methods to aerodynamic shape
optimization are shown at the end of each chapter. To summarize these chapters:

• In Chapter 2, the hybrid strategy for multi-objective optimization is presented.
Fundamentals of optimization in a single-objective and a multi-objective setting
are introduced. Several methods for multi-objective optimization are reviewed, fo-
cusing on constraint methods. Finally, a hybrid optimization strategy is presented,
followed by results for shape optimization in fluid flow.

• Chapter 3 focuses on the development and application of the one-shot method
with additional equality constraints. In the beginning, general concepts for PDE-
constrained optimization are described with an emphasis on adjoint methods for
sensitivity computation. The one-shot approach and its extension to additional
equality constraints are presented along with important results on convergence
properties. Finally, the one-shot method with additional equality constraints is
applied to multi-objective aerodynamic shape optimization problems.

• Strategies for robust design in a multi-objective context are presented in Chapter
4. After an introduction of notations in probability theory, methods for uncer-
tainty quantification and propagation are presented. Robust design formulations
are discussed in a single-objective and a multi-objective context. A new robustness
measure is introduced for robust design with multiple objectives and applied in the
context of aerodynamic shape optimization under uncertainty.

Finally, a conclusion and an outlook are given in Chapter 5. The appendix comprises
additional information and results for some research aspects.
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2. Multi-Objective Optimization

Conflicting objectives are a natural phenomenon, which can be found in various fields
of application. We have to make decisions based on costs versus quality in everyday life.
Similarly, a lot of research in engineering involves the simultaneous optimization of differ-
ent competing objectives. In fluid dynamics, for example, fluid mechanical performances
to be optimized may be represented by different objectives. In aerodynamic design, the
aim is to maximize the lift of an airfoil while minimizing the drag for fuel-efficiency.
When designing a system for internal flow, the improvement of specific flow properties
often leads to a pressure loss. One refers to multi-objective optimization (MOO) for
optimization including different competing objectives.1

Typically, there does not exist a unique solution to the multi-objective optimization
problem. Instead, there exists a set of compromise solutions to the problem. The reason
for that is that the objectives are partly conflicting with each other. A well-known
concept for comparing solutions is the notion of Pareto optimality. Multi-objective
optimization algorithms aim to find a representative subset of solutions fulfilling the
conditions for Pareto optimality. Such a set of solutions can be offered to a decision-
maker to choose a single optimal design. A decision-maker is a person with enough
insight into the underlying application (regardless of expertise in mathematical modeling
or optimization) to decide for a given set of solutions according to preferences and
possible constraints for realization. When provided a representative set of the Pareto
optimal solutions, the decision-maker may also gather more information on the problem
and possible trade-offs. The present work does not focus on the decision-making process,
but solely on methodologies for finding a representative set of solutions.

Note that conflicting objectives can also arise from disciplines as a special situation
of multi-disciplinary optimization. Multi-disciplinary optimization problems comprise
any kind of optimization problem where different disciplines are involved, e.g., fluid
mechanics and structural mechanics in engineering design. If multiple objectives are
considered, standard multi-objective optimization algorithms may be utilized. However,
in this work, one focuses on problems involving a single discipline.

In the field of multi-objective optimization, the contribution of the present work in-
volves the rediscovery of constraint methods for multi-objective optimization using highly
efficient single-objective optimization algorithms (for example one-shot approaches).
Furthermore, hybrid optimization algorithms based on surrogate models are used to
support the multi-objective optimization process.

In this chapter, the concept of Pareto optimality is introduced together with conditions
for Pareto optimality (Section 2.1). Different methods for multi-objective optimization

1Other notions used in this context are multi-criteria optimization or vector optimization.
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are presented and compared in Section 2.2 with a strong focus on constraint methods
for multi-objective optimization. The present work uses the equality constraint method
(Section 2.2.3), the epsilon-constraint method (Section 2.2.4) and the normal constraint
method (Section 2.2.5) for solving MOO problems. The underlying algorithm for solving
the constrained single-objective optimization problem is a hybrid algorithm, coupling
a heuristic search method with a high probability for finding global solutions and a
computationally efficient gradient-based search method to combine the advantages of
both algorithms. The hybrid optimization strategy is presented in Section 2.3. Finally,
results for the application to aerodynamic shape optimization are presented in Section
2.4.

2.1. Fundamentals and Definitions

The general constrained minimization problem for a vector of objective functions F (x) =
(f1(x), . . . , fk(x))> can be posed as

min
x∈D
{f1(x), . . . , fk(x)}, (2.1)

with the vector of design variables x ∈ Rn and the design space

D := {x ∈ Rn | h(x) = 0, g(x) ≤ 0},

which is a subset of the finite dimensional Euclidean space.2

The function F (x) : Rn → Rk is vector-valued for k ≥ 2 comprising k multiple
objectives. One may then refer to problem (2.1) as a multi-objective optimization (MOO)
problem and the minimization is to be understood component-wise for each objective
function. In the following, also the shorter notation minx∈D F (x) is used. The functions
h : Rn → Rr and g : Rn → Rs describe the equality and inequality constraints that define
the design space. The design space of shape optimization problems in fluid dynamics is,
for example, limited by the designs that provide reasonable flow solutions fulfilling the
equations of fluid dynamics. It is also constrained by the dimensions of the installation
space.

The design space D is often referred to as a feasible region with a feasible design x ∈ D.
In the following, one assumes that the objective functions and constraint functions are
at least twice continuously differentiable and the set L := {x ∈ Rn | F (x) ≤ l} ∩ D
is closed, bounded and non-empty for a real vector l ∈ Rn to guarantee the existence
of a minimum. Furthermore, in the following definitions the active set of inequality
constraints is defined as

A(x) := {j ∈ {1, . . . , s} | gj(x) = 0}.

The inactive set is defined as

I(x) := {j ∈ {1, . . . , s} | gj(x) < 0}.
2It is referred only to minimization problems. Every maximization problem max(f(x)) can be trans-

formed into a minimization problem −min(−f(x)).
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This section serves to define the notion of Pareto optimality. Since single-objective
optimization strategies are used in constraint methods for MOO, definitions in this
context can be found in Section 2.1.1 before turning to the concept of Pareto optimality
in Section 2.1.2.

2.1.1. Single-Objective Optimization

Before introducing concepts of multi-objective optimization the focus will be on single
objective optimization problems, assuming k = 1 in this section. The scalar version of
the minimization problem (2.1) to be considered is

min
x∈D

f(x). (2.2)

The reason for introducing concepts of single objective optimization is the fact that
scalarization methods for solving multi-objective optimization problems make use of
single objective optimization.

When dealing with solutions to minimization problems, it is important to introduce
the concept of global and local minima, as well as necessary and sufficient conditions for
optimality.

Definition 1 (global minimum). A point x∗ ∈ Rn is a strict global minimum of f if
f(x∗) < f(x) for all x 6= x∗. If x∗ ∈ D, then it is denoted as a global solution to (2.2).

Definition 2 (local minimum). Let x∗ ∈ Rn and U(x∗) ⊂ Rn be an open neighborhood
of x∗, then x∗ is a strict local minimum of f if f(x∗) < f(x) for all x ∈ U(x∗),x 6= x∗.
If x∗ ∈ D and x ∈ U(x∗) ∩ D, then x∗ is the local solution to (2.2).

A weak minimum is defined in the same way without using strict inequalities.
The necessary and sufficient condition for optimality can be expressed in terms of a

Lagrange function or Lagrangian.

Definition 3 (Lagrange function). The function

L(x,µ,η) = f(x) + µ>h(x) + η>g(x) (2.3)

is the Lagrange function associated to (2.2) with Lagrange multipliers µ ∈ Rr and η ∈ Rs.

There exist several regularity conditions, which are referred to as constraint qualifi-
cations. The following regularity definition by Kuhn and Tucker [153] is used in the
context of necessary and sufficient conditions for optimality and can be found similarly
in [190, p.38] and [31, p.51].

Definition 4 (Kuhn-Tucker constraint qualification (KTCQ)). Let h,g be continuously
differentiable at x∗. Then the KTCQ is satisfied at x∗ if for any d ∈ Rn that fulfills
∇hj(x∗)>d = 0 for all j ∈ {1, . . . , r} and ∇gl(x∗)>d ≤ 0 for all l ∈ A(x∗), there exists
a function a : [0, 1] → Rn that is continuously differentiable at 0 and α > 0 ∈ R such
that

a(0) = x∗, g(a(t)) = 0 and h(a(t)) ≤ 0 ∀ 0 ≤ t ≤ 1, and a′(0) = αd.
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2. Multi-Objective Optimization

The KTCQ is implied by the condition that the constraints should be satisfied at x∗

and that the gradients of the constraints ∇hj(x∗) with j ∈ {1, . . . , r} and ∇gl(x∗) with
l ∈ A(x∗) should be linearly independent [31, p.51,56]. This condition is also called the
LICQ (Linear Independence Constraint Qualification) condition. It is more practical to
use and is required for second-order necessary conditions.

Theorem 1 (Karush-Kuhn-Tucker first-order necessary condition for optimality). Let
x∗ ∈ D be a local minimum. Let f(x), h(x), g(x) be continuously differentiable at x∗

and let the KTCQ be fulfilled at x∗. Then there exist unique vectors µ ∈ Rr and η ∈ Rs
with ηi ≥ 0 ∀ i ∈ {1, . . . , s} such that

∇L(x∗,µ,η) = ∇f(x∗) +
r∑
j=1

µj∇hj(x∗) +
s∑
l=1

ηl∇gl(x∗) = 0, (2.4)

and
ηjgj(x

∗) = 0 ∀ j ∈ {1, . . . , s}. (2.5)

Proof. The theorem is taken from [206, p.321] and can be found similarly in [31, p.56].
A detailed proof can be found in [206] (p.323-329) or in the original paper by Kuhn and
Tucker [153].

The conditions in Theorem 1 are also referred to as the KKT (Karush-Kuhn-Tucker)
conditions.

Theorem 2 (second-order necessary condition for optimality). Let x∗ ∈ D be a local
minimum. Let f(x), h(x), g(x) be twice continuously differentiable at x∗ and let the
LICQ be fulfilled at x∗. Then µ and η of Theorem 1 fulfill

w>∇2L(x∗,µ,η)w ≥ 0 ∀ w ∈W (x∗), (2.6)

with W (x∗) = {w ∈ Rn | ∇hi(x∗)>w = 0 ∀ i ∈ {1, . . . , r},∇gi(x∗)>w = 0 ∀ i ∈
A(x∗) with ηi > 0,∇gi(x∗)>w ≤ 0 ∀ i ∈ A(x∗) with ηi = 0}.

Proof. The proof is given in [206, p.332f].

To find a local minimum of a problem, the sufficient condition for optimality has to
be fulfilled.

Theorem 3 (second-order sufficient condition for optimality). Let x∗ ∈ D and let f, g, h
be twice continuously differentiable at x∗. If µ and η of Theorem 1 fulfill

w>∇2L(x∗,µ,η)w > 0 ∀ w ∈W (x∗) with w 6= 0, (2.7)

then x∗ is a strict local solution to (2.2).

Proof. The proof is given in [206, p.333-335].
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A

B

C

f1

f2

Figure 2.1.: Concept of dominance: Solution C is dominated by solution B, which is
indicated by the horizontal and vertical lines. When restricting the feasible
space to the set {A,B,C}, solution A and B are non-dominated.

2.1.2. Pareto Optimality

As a basis for multi-objective optimization, it is important to define a theory of rela-
tions for objective vectors. Pareto used a concept of dominance for multiple criteria
optimization in the context of economics in 1896 [217, 218]. As a result, this concept of
optimality is called Pareto optimality.3 The two following definitions are based on [254].

Definition 5 (Pareto dominance). Let z1 and z2 be two vectors in Rk. A vector z1

dominates z2 iff z1
i ≤ z2

i ∀ i ∈ {1, 2, . . . , k} and z1
j < z2

j for at least one j ∈ {1, 2, . . . , k}.

Definition 6 (Non-dominance). Let z, z ∈ Rk. z is non-dominated iff there does not
exist any z that dominates z.

Figure 2.1 shows the concept of dominance for three arbitrary solutions in a two-
dimensional objective space. Solution C is dominated by solution B. When restricting
the feasible space to the set {A, B, C}, solutions A and B are non-dominated.

Having defined a concept of domination, one can now introduce an optimal solution
in the sense of Pareto. The definition can also be found in [190, p.11].

Definition 7 (global Pareto optimality). A design vector x∗ ∈ D is globally Pareto
optimal iff there does not exist any design x such that fi(x) ≤ fi(x∗) for all i ∈ {1, . . . , k}
and fj(x) < fj(x

∗) for at least one j ∈ {1, . . . , k}.
Thus, the set of globally Pareto optimal designs corresponds to the set of feasible

solutions whose objective vectors are non-dominated. It is called a Pareto optimal set
and is denoted by P. The image of the Pareto optimal set in objective space is a Pareto
optimal front. To objective vectors evaluated at a Pareto optimal design one may also
refer as Pareto optimal (solutions). If one uses strict inequalities fi(x) < fi(x

∗) for all
i ∈ {1, . . . , k} in Definition 7, the solution is referred to as weakly Pareto optimal.

3The terms noninferiority and efficiency are sometimes used in the same context.
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locally Pareto optimal

not Pareto optimal

globally Pareto optimal

f1

f2

Figure 2.2.: Local (dashed bold line) and global (bold line) Pareto optimality.

Some of the computational algorithms for multi-objective optimization may find lo-
cally Pareto optimal solutions. Therefore, it is necessary to introduce local Pareto opti-
mality.

Definition 8 (local Pareto optimality). A point x∗ is locally Pareto optimal iff there ex-
ists an open neighborhood U(x∗) ⊂ Rn of x∗ that does not contain a point that dominates
x∗.

Figure 2.2 illustrates the concept of Pareto optimal solutions. The grey surface repre-
sents the image of the feasible region in objective space. The continuous line represents
the Pareto optimal front. Points on the black, dashed line belong to the set of only
locally Pareto optimal solutions. The curve section at the boundary of the feasible re-
gion that is indicated by the grey-colored dashed line is the part of the curve where
one cannot find any locally or globally Pareto optimal point. In higher dimensions, the
curve sections shown in Figure 2.2 will be higher-dimensional surfaces. The example
shows that the Pareto optimal front can be non-convex and disconnected. The union of
the above-described surfaces, which contains globally Pareto optimal points, only locally
Pareto optimal points and points that are neither globally nor locally Pareto optimal,
will be denoted as the containing surface.

In the following, it is essential to distinguish between local and global solutions to
single-objective optimization problems and locally and globally Pareto optimal solutions.
Furthermore, one has the concept of optimal solutions and strict optimal solutions in
single-objective optimization problems and weakly Pareto optimal and Pareto optimal
solutions in multi-objective optimization problems.

For a convex multi-objective optimization problem, it can be proven that all locally
Pareto optimal solutions are also globally Pareto optimal (see [190, p.12, Theorem 2.2.3]).
Convexity of the multi-objective optimization problem is defined in the following.
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Definition 9 (convex MOO problem). The multi-objective optimization problem (2.1)
is convex if all objective functions and constraint functions are convex and the feasible
set D is convex. A general set X ⊂ Rn is convex if

(1− t)u+ tv ∈ X ∀ u,v ∈ X and ∀ t ∈ [0, 1].

A function f is convex if it is defined on a convex set X and

f((1− t)u+ tv) ≤ (1− t)f(u) + tf(v)

for all u,v ∈ X and for all t ∈ [0, 1].

Later, it will be made use of vectors defining the range of the Pareto optimal front,
namely the ideal point and the nadir point.4

Definition 10 (ideal point). The ideal point f∗ = (f∗1 , . . . , f
∗
k )> is the vector consisting

of the global minima of the individual objective functions, i.e., f∗i is the solution to the
single-objective optimization problem

min
x∈D

fi(x) (2.8)

for i = 1, . . . , k.

Note that the ideal point is only a solution to (2.1) if all objective functions are
non-conflicting and can be minimized independently, which is usually not the case.

Definition 11 (nadir point). The nadir point fN = (fN1 , . . . , f
N
k )> comprises the indi-

vidually worst objective functions values in the Pareto optimal set P, i.e., fNi solves

max
x∈P

fi(x) (2.9)

for i = 1, . . . , k.

Maximizing over the Pareto-optimal set to find the Nadir point is, in general, not
feasible since the complete Pareto optimal set is not known. However, the Nadir point
can be estimated by using a payoff table based on the solutions to problem (2.8). When
denoting the set of solutions to problem (2.8) as S, the components of the Nadir point
are defined as solutions to the problem

max
x∈S

fi(x) for i = 1, . . . , k. (2.10)

When using this approach, the Nadir point may be over- or underestimated, which is
discussed in literature (see e.g. [190, 56]). Only for unique solutions to problem (2.8)
in the case k = 2 it can be guaranteed to find the exact Nadir point. Uniqueness of
the solution to problem (2.8) for k > 2 will avoid an overestimation of the Nadir point.
If solutions are not unique, one may obtain weakly efficient solutions and, as a result,
may overestimate the Nadir point. This problem can be overcome for k = 2 and relaxed
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Algorithm 1: Lexicographic optimization for estimating the Nadir point.

S̃ = ∅
for i = 1, . . . , k do
p0 = arg min

x∈D
fi(x)

for j = 1, . . . , k do
if j 6= i then
pj = arg min

x∈D
fj(x)

s.t. fl(x) = fl(p
l) ∀ l = 1, . . . , j − 1 with l 6= i,

fi(x) = fi(p
0).

end if
end for
S̃ ← S̃ ∪ {pl} with l = max{j | j ∈ {1, . . . , k}, j 6= i}

end for

for k > 2 by performing a lexicographic optimization based on the solutions to (2.8) as
expressed in Algorithm 1.

The Nadir points can then be estimated with the maximization problem (2.10) over
the set S̃ obtained from the lexicographic optimization. The estimate can be different
for different orders of indices in the inner loop of the algorithm.

The ideal and nadir point can be used to define the outlines of the Pareto optimal
front. They are often used to normalize objective functions in a given problem (cp.
[188]). The normalized objective function f̂i is then given by

f̂i(x) =
fi(x)− f∗i
fNi − f∗i

. (2.11)

Necessary and sufficient conditions can also be defined for Pareto optimality following
Kuhn and Tucker [153]. The presentation in the following is based on the formulation
in [190].

Theorem 4 (Kuhn-Tucker necessary condition for Pareto optimality). Let x∗ ∈ D. Let
F (x), h(x) and g(x) be continuously differentiable at x∗ and let h(x) and g(x) satisfy
the KTCQ at x∗. The necessary condition for x∗ to be Pareto optimal is that there exist
multipliers λ ∈ Rk with λi ≥ 0 ∀ i ∈ {1, . . . , k} and λ 6= 0, µ ∈ Rr and η ∈ Rs with
ηi ≥ 0 ∀ i ∈ {1, . . . , s} such that

k∑
i=1

λi∇fi(x∗) +

r∑
j=1

µj∇hj(x∗) +

s∑
l=1

ηl∇gl(x∗) = 0 and (2.12)

µjgj(x
∗) = 0 ∀ j ∈ {1, . . . , s}. (2.13)

4Sometimes the ideal point is also referred to as utopian point.
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Proof. The proof can be found in [190, p.39f] for inequality constraints. The extension
to equality constraints is straightforward.

For the second-order necessary condition, the LICQ needs to be fulfilled.

Theorem 5 (second-order necessary condition for Pareto optimality). Let x∗ ∈ D be
Pareto optimal. Let F (x), g(x) and h(x) be twice continuously differentiable at x∗ and
let g(x) and h(x) satisfy the LICQ at x∗. Then λ, µ and η of Theorem 4 fulfill

d>

 k∑
i=1

λi∇2fi(x
∗) +

p∑
j=1

µj∇2hj(x
∗) +

q∑
l=1

ηl∇2gj(x
∗)

d ≥ 0, (2.14)

with d ∈ {0 6= d ∈ Rn | ∇fi(x∗)>d ≤ 0 ∀ i ∈ {1, . . . , k}, ∇hj(x∗)>d = 0 ∀ j ∈
{1, . . . , r},∇gl(x∗)>d = 0 ∀ l ∈ A(x∗)}.

Proof. The theorem is given in [190, p.42] with a reference to the proof in [282].

A sufficient condition for Pareto optimality can be stated as a second-order condition.

Theorem 6 (sufficient condition for Pareto optimality). Let x∗ ∈ D. Let F (x), g(x)
and h(x) be twice continuously differentiable at x∗ and let g(x) and h(x) satisfy the
Kuhn-Tucker Constraint Qualification at x∗. The sufficient condition for x∗ to be locally
Pareto optimal is that

∃ λ ∈ Rk with λi ≥ 0 ∀ i ∈ {1, . . . , k}, µ ∈ Rr and η ∈ Rs with ηi ≥ 0 ∀ i ∈ {1, . . . , s}

such that (2.12) and (2.13) are fulfilled, and

d>

 k∑
i=1

λi∇2fi(x
∗) +

r∑
j=1

µj∇2gj(x
∗) +

s∑
l=1

ηl∇2hj(x
∗)

d > 0 (2.15)

with d ∈ {0 6= d ∈ Rn | ∇gj(x∗)>d = 0 ∀ j ∈ {1, . . . , r},∇hl(x∗)>d = 0 ∀ l ∈
A(x∗) with µl > 0,∇hm(x∗)>d ≤ 0 ∀ m ∈ A(x∗) with µm = 0}
or d ∈ {0 6= d ∈ Rn | ∇fi(x∗)>d ≤ 0 ∀ i ∈ {1, . . . , k}, ∇hj(x∗)>d = 0 ∀ j ∈
{1, . . . , r},∇gl(x∗)>d ≤ 0 ∀ l ∈ A(x∗)}.

Proof. The theorem is given in [190, p.43] with a reference to the proof in [282].

In the above conditions one assumes that the solution is non-trivial, i.e., λ 6= 0. Note
that the above necessary conditions are also fulfilled for weakly Pareto optimal points
and local (weakly) Pareto optimal points. The sufficient condition then gives a locally
Pareto optimal point in the stricter sense.
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2.2. Multi-Objective Optimization Algorithms

There exist different approaches to solve multi-objective optimization problems. They
can be categorized according to the time of decision-making. One approach is to make a
decision before defining the optimization problem. This is often referred to as an a priori
method. It is common to define a so-called utility function based on preferences. The
utility function is minimized, such that a single optimal solution to the problem is found.
This procedure enables the reduction of complexity and is applicable to an arbitrary
number of objective functions. However, it will significantly restrict the outcome and
raises problems concerning the articulation of preferences since the utility function has
to be carefully chosen. Examples of methods with a priori decision-making are the
weighted sum method without weight scanning, goal programming [33], compromise
programming [296, 299], and lexicographic approaches based on Algorithm 1 for finding
a Pareto optimal point. They will all find a single Pareto optimal solution.

There also exist so-called interactive methods in which preferences are set during the
optimization like in the method of Steuer [255, 254], the STEM method [15] or the
NIMBUS method [191].

In methods for Pareto front exploration or generating methods, the challenge is to
find an evenly distributed set of objective vectors that approximate the Pareto optimal
front. This is a challenge because the Pareto optimal front can be convex, non-convex,
continuous, or discontinuous. Methods for Pareto front exploration are also referred
to as a posteriori methods since the decision-maker selects a trade-off solution after
the generation of Pareto optimal points. The present work is restricted to these types
of methods. Generating methods may provide a better understanding of the overall
problem and give freedom to the decision-maker. The decision-making process can be
further supported by adding solutions in interesting regions of the objective space. A
drawback of this methodology is that the decision-making process is not very intuitive
in situations where more than three objectives are present. A suitable visualization
strategy can be of interest for helping in the decision-making process.

Among algorithms for Pareto front exploration one can distinguish between scalariza-
tion methods and direct Pareto methods. Direct Pareto methods find a set of representa-
tive solutions on the Pareto optimal front directly in one optimization procedure. They
are a popular choice for MOO. Therefore, Section 2.2.1 gives a condensed overview of
direct Pareto approaches, focusing on evolutionary strategies. Although these methods
manage to generate several proposed solutions simultaneously, they are usually computa-
tionally expensive and may be slow in terms of convergence. Opposed to gradient-based
methods, they lack mathematically well-defined convergence criteria.

Scalarization methods reduce the multi-objective optimization problem to one or sev-
eral single-objective optimization problems, such that only one optimal solution can
be found in each optimization run.5 The single-objective optimization problems can
then, for example, be solved using an efficient gradient-based strategy. Examples for

5Sometimes scalarization only refers to a certain kind of aggregation of objective functions. Here, it is
used as a more general description.
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scalarization methods are the weighted sum method, the equality constraint method,
the epsilon-constraint method and the normal constraint method, which are presented
in Sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5.

Some studies in literature exist that compare scalarization approaches and evolution-
ary approaches (see e.g. [192, 250]). Gambier [69], for example, compares a scalarization
method (normal boundary intersection) with a multi-objective evolutionary algorithm
(NSGA-II). The author concludes that for the specific application, i.e., the design of a
control system, the scalarization approach is computationally more efficient, and the re-
sulting set of Pareto optimal solutions is better distributed in objective space. However,
in [11], a multi-objective evolutionary algorithm (MOGA) outperforms a scalarization
approach (a combination of weighted sum method and epsilon-constraint method) with
respect to computational effort for a structural design problem with two objective func-
tions. It is important to point out that neither Pareto approaches nor scalarization
approaches are superior. On the contrary, the choice of a methodology depends on the
underlying optimization problems. This includes the computational costs for function
evaluations, the availability of gradients, additional constraints, the complexity of the
design space as well as the dimensionality of the MOO problem. In general, the multi-
objective nature of the problem introduces an additional level of complexity. Both types
of strategies are suitable for parallelization strategies, e.g., by simultaneously solving the
single-objective optimization problems or by simultaneously evaluating the quality of a
set of design points.

Nevertheless, a continuous optimization problem with a high-dimensional design space
is predestined for gradient-based optimization methods. A common mistake is the as-
sumption that problems with discontinuous Pareto fronts cannot be solved with such
type of methods. As indicated in the previous section, the Pareto optimal front of prob-
lems with continuously differentiable objective functions is not necessarily continuous.
As a result, in the following, the focus is on scalarization approaches for multi-objective
optimization methods with continuous objective functions. Here, the methods of choice
are constraint methods.

2.2.1. Direct Pareto Approaches

Direct Pareto approaches generate several solutions simultaneously. Therefore, they
are often easy to parallelize. Examples for direct Pareto approaches are multi-objective
evolutionary algorithms. They are based on the generation of a population of solutions.
Other examples of direct Pareto approaches are multi-objective particle swarm opti-
mization [198] or multi-objective simulated annealing [272].

Evolutionary algorithms exist for single-objective optimization as well as for multi-
objective optimization. Prominent evolutionary algorithms are genetic algorithms. They
were developed by Holland [119] and use the evolutionary concepts of Darwinism. In
genetic algorithms, a population of individuals is created in each iteration. A fitness
value is assigned to every individual of a population. According to their fitness value,
they are selected for reproduction. Crossover and mutation are applied to generate a new
population, which forms the new generation of solutions. The algorithms stop after a
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certain number of generations, typically if no further improvement is observed. Genetic
algorithms differ in their methods for selection, mutation, and crossover.

Evolutionary methods are, in general, easy to implement and are reliable in providing
solutions. A negative aspect of these strategies is is that they are computationally ex-
pensive and may be slow in terms of convergence. In general, the convergence properties
of evolutionary algorithms are hard to analyze and can only be formulated in a prob-
abilistic setting (see e.g. [274] for multi-objective evolutionary algorithms). Therefore,
when evolutionary algorithms are applied in the context of multi-objective optimization,
it is not guaranteed that they approximate globally Pareto optimal points. It is only
possible to judge Pareto optimality within the population of individuals. As a result,
Pareto optimality cannot generally be guaranteed.

Several multi-objective evolutionary algorithms were developed in the last decades.
The Vector-Evaluated Genetic Algorithm (VEGA) was introduced by Schaffer in 1985
[234] and was the first multi-objective genetic algorithm. It is not a Pareto approach as
it is not based on Pareto optimality. The selection phase is different from a conventional
genetic algorithm, as the population is divided into a fixed number of sub-populations.
In these populations, the best individual for a single objective is selected. The major
drawback of this method is the risk for tending to the optimization of only one objective
so that, for example, non-convex regions of Pareto optimal fronts are not covered.

Most of the other multi-objective evolutionary approaches use Pareto ranking for the
selection process, i.e., a ranking based on the concept of Pareto optimality. So-called
niching algorithms are often applied either to the objective domain or the decision do-
main to ensure diversity among the Pareto optimal front. Goldberg introduced the first
algorithm that was based on Pareto ranking in 1989 [83]. It was, for example, imple-
mented in the Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas and Deb
in [253], which was further extended in [49] (NSGA-II). Pareto ranking is performed
by giving all non-dominated members of the population the same fitness value and re-
peatedly removing them from the population to rank the non-dominated members in
the remaining population. Other prominent algorithms are the Multi-Objective Genetic
Algorithm (MOGA) by Fonseca and Fleming [67] in which the fitness value of a member
of the population depends on the number of individuals that are dominated by the mem-
ber, the Niched Pareto Genetic Algorithm (NPGA) by Horn, Nafpliotis and Goldberg
[120, 121], which compares two candidates based on a selected set of the population, or
the Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele [300, 301].
It archives a second population of non-dominated solutions that is used for ranking the
original population.

The advantage of multi-objective evolutionary approaches is that, similarly to the
single-objective evolutionary approaches, they are reliable and easy to implement since
the evaluation of the objective function is treated as a black-box. They are based on the
concept of domination and find a set of solutions in one run. If suitable strategies for
ranking, mutation, and crossover are chosen, they may generate a representative set of
solutions in objective space in a single run. However, an even distribution of solutions in
objective space cannot be guaranteed. The multi-objective evolutionary strategies suffer
from the same drawbacks as the corresponding single-objective optimization strategies.
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They need a high number of function evaluations and are slow in terms of convergence.
This is especially the case for high-dimensional objective function spaces, as evolutionary
strategies need a large population to find a representative set of solutions in the objective
function space [64].

2.2.2. Weighted Sum Method

In the weighted sum method, presented, for example, in [297], the objectives are combined
to a single objective in a convex combination that is to be minimized, i.e.,

min
x∈D

k∑
i=1

wifi(x) (2.16)

with weights wi ≥ 0 for i = 1, . . . , k and
∑k

i=1wi = 1. To obtain a set of Pareto
optimal solutions the values for the weights wi are systematically modified for every
optimization. There are special concepts for modifying the weights like the adaptive
weighted sum method [143] or simple weight scanning.

All minimizers of the single objective optimization problem for (2.16) with strictly
positive weights, as well as all unique minimizers, are globally Pareto optimal solutions.
Otherwise, the solution is weakly Pareto optimal. This is, for example, proven in [254,
p.167] and [190, p.78].

A significant disadvantage of using the weighted sum method for a generation of a
Pareto optimal front is the fact that the points on the Pareto optimal front are not
necessarily uniformly distributed when choosing uniformly distributed weights wi. Ad-
ditionally, the algorithm cannot find Pareto optimal solutions in non-convex regions of
the Pareto optimal front. These drawbacks are discussed in [45].

2.2.3. Equality Constraint Method

The equality constraint method (EC) is also known as the proper equality constraint
method and was formulated by Lin [165, 167, 166]. The idea is to minimize one objective
function fs for a fixed s ∈ {1, . . . , k} while imposing equality constraints on the remaining
objective functions fi with i ∈ {1, . . . , k} and i 6= s.

The constraints, as well as the objective function to be minimized, are varied to find
different Pareto optimal points that are distributed in objective space. One can think
of this procedure as scanning with a specific resolution in all directions of the objective
space. The task is then to solve a total number of no = k · ((nu + 1)k−1− 1) constrained
single-objective optimization problems, where nu denotes the user-defined resolution
in objective space. This means that a number of ns = (nu + 1)k−1 − 1 constrained
optimization problems are solved when minimizing one objective function s ∈ {1, . . . , k}.
This number arises from all possible combinations of prescribed constraint values. The
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j-th minimization problem for j = 1, . . . , ns with s ∈ {1, . . . , k} is then given by

min
x∈D

fs(x) (2.17)

s.t. fi(x) = f
(j)
i ∀ i ∈ {1, . . . , k} : i 6= s.

The constraint values f
(j)
i for the different steps can be distributed in equidistant fashion.

Since the constraints are given in objective space this allows an equidistant scanning
of the Pareto optimal front. When additionally altering the objective function to be
minimized one can find a well-distributed set of Pareto optimal points in objective space.
One can further improve this result with a normalization based on Equation (2.11),
although one cannot expect to obtain a perfectly even distribution. When a decision-
maker is interested in specific parts of the Pareto optimal front, the constraints can be
chosen according to his or her preferences. This can, for example, be done interactively.

Algorithmic Details In the following, the details on finding a step size for scanning and
defining suitable bounds for the equality constraints are presented.

The range of the Pareto optimal front can be obtained by finding the ideal point
and the nadir point (see Definition 10 and 11). The constraint values for the i-th

objective function f
(j)
i can then be constructed in the interval [f∗i , f

N
i ] with a constant

step ∆fi > 0. The corresponding algorithm for determining the step for equidistant
scanning is given in Algorithm 2 as the first step of the method.

Algorithm 2: Determination of step for equidistant scanning.

Input:
k: number of objective functions
nu: resolution in objective space

Function:

for s = 1 to k do
x∗s = arg min

x∈D
fs(x)

f∗s = fs(x
∗
s)

end for
for s = 1 to k do
fNs = max

i=1,...,k
fs(x

∗
i )

∆fs = 1
nu+1

(
fNs − f∗s

)
end for

One can make the following important remarks:

• Nadir point: An underestimation of the nadir point prevents the constraint
method from finding Pareto optimal points on all parts of the Pareto optimal
front. An overestimation, on the contrary, will produce single-objective optimiza-
tion problems defined outside of the range of the Pareto optimal front. As a result,
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the chosen resolution of the Pareto optimal front may be deteriorated. Therefore,
a good estimation is crucial for the success of the algorithm (see Section 2.1.2 for
details on the estimation of nadir points).

• Scanning: In literature some authors (see e.g. [183]) also suggest to use a scanning
step size ∆fs,i depending on the i−th objective function to be minimized. It is
given by

∆fs,i =
1

nu + 1
(fs(x

∗
i )− f∗s ) , (2.18)

i.e., choosing fs(x
∗
i ) instead of the respective value of the nadir point. The starting

value for determining the constraint values is then chosen as f0
s,i = fs(x

∗
i ). This

choice will guarantee that the resulting optimal points lie within the range of the
Pareto optimal front, but it cannot guarantee to find all Pareto optimal points.
The modified procedure using ∆fs,i is introduced in Section A.1.1 of the appendix.

• Weak Pareto optimality: When risking to find weakly Pareto optimal points,
it is necessary to find x∗s in the above algorithm with the help of a lexicographic
optimization to minimize the risk that x∗s is only weakly Pareto optimal [183].
Otherwise, since the nadir point is expectedly based on a weakly Pareto optimal
solution, a choice of the step size based on the nadir point may result in finding
weakly Pareto optimal solution outside of the range of the Pareto optimal front.
Therefore, in this case, it can also be of advantage to use the method described in
the second item. However, this may result in an incomplete representation of the
Pareto optimal front. The following notation is restricted to problems with unique
optimal solutions. This restriction is a natural assumption in engineering problems
with continuous objective functions and underlying partial differential equations.
For shape optimization problems, for example, one usually assumes that a unique
state is given for each design point. The uniqueness of the objective function value
often holds for the respective objective functions.

• Existence of solutions: For k > 2, it can happen that a feasible solution to a
resulting constrained optimization problem does not exist since the bounds are too
restrictive. Since the algorithm is constructed by starting with the maximum upper
bound, which is lowered during the steps of the algorithm, the bounds become more
restrictive. Whenever there does not exist a feasible solution to the optimization
problem, the minimum feasible bound is reached, and all subsequent reductions of
this bound can be discarded.

The algorithm for the equality constraint method is shown in Algorithm 3, using a
recursive strategy for setting all possible combinations of constraint values. The points
x∗s for s ∈ {1, . . . , k} found with Algorithm 2 already represent Pareto optimal points,
which are often referred to as anchor points. After having found the step size ∆fi
for i ∈ {1, . . . , k}, it can be used to alter the constraint values for the constrained

single-objective optimization problems starting from f
(0)
i = fNi . The updating of the
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Algorithm 3: Equality constraint method.

Global variables:
k: number of objective functions (input)
nu: resolution in objective space (input)
∆F : resolution step size
j: counter
P: Pareto optimal set (output)

Function Main(k,nu):

Obtain x∗s, ∆fs, f
N
s for s = 1, . . . , k from Algorithm 2

P ← {x∗1, . . . , x∗k}
for s = 1 to k do
j ← 0
Call CalculatePoint(1,s, 0)

end for
Function CalculatePoint(l,s,ε):

if l == s then
l← l + 1

end if
for m = 0 to nu do
εl ← fNl +m∆fl
if l == max{j | i ∈ {1, . . . , k}, i 6= s} then

f
(j)
i = εi for i ∈ {1, . . . , k}, i 6= s

if j 6= 0 then

xp ← arg min
x∈D

fs(x) s.t. fi(x) = f
(j)
i ∀ i ∈ {1, . . . , k}, i 6= s

P ← P ∪ {xp}
end if
j ← j + 1

else
Call CalculatePoint(l + 1,s,ε)

end if
end for

return
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(b) Vertical scan of EC method.

Figure 2.3.: First step of the equality constraint method, i.e., the determination of the
ideal point f∗i and the nadir point fNi for i ∈ {1, 2} (a), and vertical scan of
the Pareto optimal front (b). The objective function f1 is minimized while

constraining f2 with the prescribed constraints f
(i)
2 for i = 1, . . . , 4.

constraints is performed in such a way that all possible combinations of constraint values
are represented. Given an objective function s ∈ {1, . . . , k}, there are (nu+1)k−1 possible
combinations of constraint values when choosing from nu+ 1 values for each of the k−1
objective functions. For each objective function to be constrained, the value of the nadir
point and nu equidistantly distributed values are set as constraints. Let

Si = {f (j)
i | f (j)

i = f
(0)
i −m∆fi for m = 0, . . . nu}

be the set of all possible constraint values f
(j)
i for the i-th objective function for i =

1, . . . , k with i 6= s. Then the set of all possible combinations of constraint functions
can be expressed as the Cartesian product

∏
i∈{1,...,k}, i 6=s Si. The j-th combination of

constraint values f
(j)
i for j = 0, . . . , (nu+1)k−1 is chosen from this set. As an optimization

when setting the value of the nadir point for each constrained objective function will
result in an anchor point, this case can be neglected.

The procedure of Algorithm 3 is shown in the following figures at the example of a
two-dimensional objective space with artificial objective functions f1 and f2. Figure 2.3a
depicts the first step of the algorithm defining the extent of the Pareto optimal front with
the help of the ideal point f∗i and the nadir point fNi for i ∈ {1, 2}. Figure 2.3b shows
the vertical scanning of the Pareto optimal front by minimizing f1 and constraining f2

with constraint values f
(j)
2 for j = 1, . . . , nu with nu = 4. The constraint values are

indicated by the dashed lines.
As can be seen in Figure 2.3b, the method can only guarantee to find points on the

containing surface. The solution found for the constraint value f
(2)
2 is only locally Pareto
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f1

f2

Figure 2.4.: Scanning the Pareto optimal front for both objectives. This ensures a good
distribution of Pareto optimal points.

optimal, and the solution for the constraint value f
(3)
2 is not Pareto optimal. Another

problem that can be seen in this context is that the choice of equidistant step sizes ∆f
(j)
i

does not guarantee that the Pareto optimal front is covered uniformly. The large part

of the Pareto optimal front between the points for f
(0)
2 and f

(1)
2 is not covered.

The first problem can only be solved by using inequality constraints instead of equality
constraints (see Section 2.2.4). At the end of the present section, one can find a comment
on strategies for judging if a solution is Pareto optimal. However, the second problem
can be overcome by scanning the Pareto optimal front in all directions, i.e., by solving
constrained single-objective optimization problems with varying objective functions.

The algorithm improves the approximation of the whole Pareto optimal front, as shown
in Figure 2.4. Now, the region that is not covered in Figure 2.3b is represented by points
found during the horizontal scanning of the front.

Properties of the method As it is the case for all scalarization approaches, finding a
global solution to the single-objective optimization algorithms is crucial for the success
of the multi-objective optimization procedure. Only a globally optimal solution can
potentially give a globally Pareto optimal point. Figure 2.5 visualizes the situation
when a single objective optimization algorithm only finds a local solution, which is the
case for the two exemplary points that do not lie on the Pareto optimal front.

We have already seen in the example that the equality constraint method cannot
guarantee to find only globally Pareto optimal solutions. It may find solutions on the
containing surface that are only locally Pareto optimal or solutions that are not Pareto
optimal at all. Only for convex multi-objective optimization problems, the equality
constraint method will provide Pareto optimal solutions.

Lin [166] offers a theorem to show when solutions to (2.17) are globally Pareto optimal.
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f1

f2

Figure 2.5.: Local solutions to the constrained single optimization problem.

Theorem 7. A feasible solution x∗ to (2.17) with a vector of chosen constraint values
ε∗ := (f1(x∗), . . . , fs−1(x∗), fs+1(x∗), . . . , fk(x∗))> and finite fs(x

∗) is globally Pareto
optimal iff for Φ(ε) := inf(fs(x) | x ∈ D, fi(x) = εi, i 6= s):

• Φ(ε) ≥ Φ(ε∗) for all ε corresponding to a feasible solution to (2.17) satisfying
εi ≤ ε∗i , i 6= s and

• Φ(ε) > Φ(ε∗) for all ε corresponding to a feasible solution x to (2.17) with Φ(ε) >
−∞ and Φ(ε) = fs(x), and satisfying εi ≤ ε∗i , i 6= s with the strict inequality
holding for at least one i.

Proof. The theorem can be found in [166] for a maximization problem and in [31, p.147]
for a minimization problem. It was proven by Lin in [166].

This means that a solution is globally Pareto optimal if it is not dominated by any
solutions with smaller constraint values. However, checking the requirements of Theorem
7 is not feasible since it requires the complete set of points that can be possibly found
with the equality constraint method.

A simple, but not reliable, alternative is to discard solutions that are dominated by
other solutions found by the algorithm. This procedure is also referred to as Pareto
filtering. It is not guaranteed that all relevant solutions are discarded if the algorithm
does not find the whole set of Pareto optimal solutions.

In [17] the authors derive a check for Pareto optimality of a solution x∗. It involves
solving an additional single-objective optimization. The approach is a more practicable
reformulation of the ideas of Theorem 7. Given the vector δ ∈ Rk, iff Φ = 0 is the
solution to

Φ = sup
x,δ

k∑
i=1

δi s.t. fi(x) + δi = fi(x
∗), δi ≥ 0 for i = 1, . . . , k, (2.19)

33



2. Multi-Objective Optimization

then x∗ is Pareto optimal. Any solution (x∗, δ∗) to the above problem with Φ <∞ is a
globally Pareto optimal solution.

Theorem 7 and its reformulation already motivate to use a formulation based on
inequality constraints instead of equality constraints. The epsilon-constraint method,
which is presented in the following section, is based on inequality constraints.

2.2.4. Epsilon-Constraint Method

The epsilon-constraint method (or ε-constraint method) was developed by Marglin in
1967 [177]. One individual objective function is minimized while imposing inequality
constraints on the other objective functions. Thus, it is closely related to the equality
constraint method introduced in Section 2.2.3, which was also analyzed by Lin [168].
The resulting modified optimization problem for minimizing fs in the j-th step is given
by

min
x∈D

fs(x) s.t. fi(x) ≤ f (j)
i ∀ i ∈ {1, . . . , k}, i 6= s. (2.20)

Again, the upper bound is varied for every iteration to generate a Pareto optimal set.

Since the notation ε
(j)
i := f

(j)
i is often used to describe the upper bound, the method is

referred to as epsilon-constraint method.
The main advantage of the epsilon-constraint method in comparison to the equality

constraint method is that a solution to problem (2.20) is weakly Pareto optimal. Actu-
ally, it can be shown that a solution x∗ to (2.20) is globally Pareto optimal if and only
if it is an optimal solution to (2.20) for all s = 1, . . . , k with upper bounds εi = fi(x

∗)
for i = 1, . . . , k with i 6= s (see [190, p.85f]). Theorem 8 gives the stronger result.

Theorem 8. All unique solutions to (2.20) are globally Pareto optimal for any upper

bound f
(j)
i for i ∈ {1, . . . , k} with i 6= s.

Proof. The proof is given in [190, p. 86].

The algorithm for the epsilon-constraint method can be constructed in the same way
as the algorithms presented for the equality constraint method but with inequality con-
straints instead of equality constraints. Some details are distinctive for the epsilon-
constraint method:

• Nadir point: The overestimation of the nadir point does not have as significant
effects as in the case of the equality constraint method. The same applies to
the choice of the nadir point as a starting value for prescribing upper bounds.
In the case of an overestimation of upper bounds, the resulting solution to the
given constrained optimization problem is (weakly) Pareto optimal with inactive
constraints. Whenever the constraints of the optimal solution are inactive with
values ε̃i the subsequent constrained optimization problems can be skipped until

the prescribed upper bound is lower, i.e., f
(j)
i ≤ ε̃i. As a result, an overestimation

may only affect the resolution of the Pareto optimal front.
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Figure 2.6.: Solutions for the epsilon-constraint method. The constraint values are indi-
cated for both scanning directions.

• Active and inactive constraints: If an optimal solution with an active con-
straint was found in the j−th step of the algorithm and inactive constraints occur
for the step j+1, then the Pareto optimal front is disconnected [284] and the same
skipping procedure as in the first item can be applied.

Figure 2.6 shows the points found with the help of the epsilon-constraint method for
the two-dimensional artificial problem. It can be seen that the method indeed only
finds globally Pareto optimal points if the solution is unique. When minimizing f1 with

the constraint f2 ≤ f
(2)
2 , the method will find the starting point of the part of the

disconnected front with lower f2-values. As a result, the single-objective optimization

problem with the constraint value f
(3)
2 can be skipped since it would find the same point.

Some variants of the epsilon-constraint are presented in Section A.1.2 of the appendix.
Since one assumes the absence of weakly Pareto optimal solutions, the equality constraint
method and the epsilon-constraint method will be the method of choice in this thesis.
However, other interesting scalarization methods exist. The normal constraint method
and methods related to the normal constraint method will be presented in the following
section.

2.2.5. Normal Constraint Method

The normal constraint method (NC, [133]) is directly related to the epsilon-constraint
method. One objective function, e.g., f1 is minimized, and the design space is gradually
reduced by imposing additional inequality constraints for k−1 planes in objective space.
The main difference is that the feasible region in objective space is not constructed using
planes parallel to the coordinate axes. Instead, the planes (or hyperplanes) that are
used to define the feasible region are orthogonal to a utopia plane in objective space
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(referring to the ideal point) in which all anchor points lie. Given the ideal point x∗i , the
utopia plain in the original NC approach is built with the help of the normal directions
Ni = F (x∗i )− F (x∗1). Then points on the utopia plane are described by

pj =
k∑
i=1

αijF (x∗i ) with
k∑
i=1

αij = 1 and 0 ≤ αij ≤ 1.

One can generate an even distribution of points with the increment δi = (mi − 1)−1,
with the user-defined resolution mi. The problem is transformed into a single-objective
optimization problem with inequality constraints to restrict the feasible space. The
inequality constraints are defined based on planes that are perpendicular to the utopia
plane and intersect in pj , such that the task is to solve

min
x∈D

f1 s.t. N>i (F (x)− pj) ≤ 0 for i = 2, .., k (2.21)

for all points pj generated in the utopia plane.
In general, for the NC method, one can expect a better distribution of Pareto optimal

points. However, in the case of almost vertical or almost horizontal sections of the
Pareto optimal front, the distribution will be uneven. This effect can be toned down by
using a normalization in objective space based on the nadir point (see Equation (2.11))
as proposed in the normalized normal constraint method [132]. Since the method may
produce non-Pareto optimal points or locally Pareto optimal points, the authors also
propose to use a Pareto filtering approach.

In [188], the authors present a new feature that guarantees the coverage of the whole
Pareto optimal front by enlarging the area for distributing points xj in the utopia plane.
The hypervolume that contains all possible solutions that are not dominated by the
anchor points is projected onto the utopian plane to find the respective area of interest.
Similarly to the epsilon-constraint method, the hypervolume is constructed based on the
nadir point.

There exists a scalarization method, the normal boundary intersection method (NBI,
[44]), that uses a similar strategy based on equality constraints instead of inequality
constraints. The origin of both methods is the goal attainment method proposed by
Gembicki [75, 76], which is an a priori strategy for MOO. In [188], it is observed that the
NC method is more stable and less likely to generate locally optimal solutions than the
NBI method. Furthermore, the NBI method, like the original version of the NC method,
may miss parts of the Pareto optimal front.

In [62] the directed search domain (DSD) method is presented as a combination of
NBI and NC method. The idea is to build a utopian hyperplane as in the NC method
but to shrink the search domain. Points on the hyperplane are used as reference points
constraining the search space. Then the search space is further reduced to a search cone.
For some occasions, the cone has to be rotated or inverted to find Pareto optimal points.
Again, Pareto filtering has to be used to avoid non-Pareto optimal points.
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2.3. Hybrid Optimization Strategy

The scalarization methods presented in Section 2.2 lead to single-objective optimization
problems. Moreover, only the global solution to these problems can lead to Pareto
optimal solutions. As proposed in [158], the idea is to employ a hybrid optimization
method for efficient single-objective optimization with a high chance of finding a global
solution. The general strategy is to combine the advantages of gradient-based methods
and heuristic methods. In general, optimization methods can be divided into gradient-
based methods and derivative-free methods.

In gradient-based methods, the derivative of the objective function with respect to the
design variable is evaluated and used in the optimization algorithm. As the explicit rela-
tion between these two values is often unknown, e.g., for PDE-constrained optimization,
there exist different approaches to determine derivatives for optimization (see Section
3.1.3). Gradient-based methods usually ensure a fast convergence. The drawback of
gradient-based methods is that they can get stuck at local optima. Therefore, they
belong to the class of local search methods.

The following sections give a thorough introduction to gradient-based optimization
algorithms, starting with basic strategies for unconstrained optimization in Section
2.3.1. Since the optimization problems arising from the scalarization methods are based
on introducing additional constraints, the focus is primarily on constraint handling in
gradient-based optimization algorithms in Section 2.3.2.

Optimization algorithms that make use of gradient calculations are usually determin-
istic approaches, which means that they will find the same solution when using the same
starting value.

Contrary to that, derivative-free methods are usually not deterministic approaches.
Instead, they are heuristic. Examples of heuristic methods are genetic algorithms, which
were already introduced in Section 2.2.1, but also particle swarm optimization and sim-
ulated annealing. The advantage of heuristic methods is that they often have a higher
chance of finding a globally optimal solution if they are not based on a specific direc-
tion in search space but aim at exploring the whole design space. Such methods are
referred to as global search methods. Unfortunately, they require a lot of evaluations of
the objective function and, therefore, a high computational effort. The computationally
most expensive strategy for exploring the design space is to use an exhaustive search
method that performs a systematical brute-force search in the design space and tries to
evaluate all possible candidates. If this is not feasible, the method can be replaced by
an explorative random or targeted sampling in design space. Random sampling can be
interpreted as the simplest type of heuristic strategy.

The general idea of hybrid optimization strategies is to combine two or more different
optimization strategies, for example, a gradient-based strategy and a heuristic strategy,
such that it can be taken advantage of the desired features of each of the strategies
during the optimization.

Hybrid optimization strategies for multi-objective optimization can be implemented
at the level of the multi-objective optimization algorithm or, when using a scalarization
method, at the level of the single-objective optimization algorithm.
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A common approach for hybrid optimization strategies for MOO is to support an oper-
ation in a multi-objective evolutionary algorithm by a local search strategy. This results
in a hybridization at the level of multi-objective optimization. Vicini and Quagliarella
[275], for example, use a gradient-assisted multi-objective evolutionary algorithm for
aerodynamic shape optimization to increase the performance. Bosman and de Jong [22]
make use of descent directions in multi-objective space for hybridizing a multi-objective
evolutionary algorithm. In their studies, they conclude that, regarding efficiency, multi-
objective evolutionary algorithms with local search strategies are not as promising as
a hybridization of evolutionary algorithms for single-objective optimization. The main
problem in this context is that descent in multi-objective space may disturb the explo-
ration capability of the multi-objective evolutionary method, making a construction of
a successful hybridization more difficult.

The work in this thesis is restricted to hybrid optimization strategies for the con-
strained single-objective problems resulting from scalarization. Although the multi-
objective problem is transformed into a series of single-objective optimization problems,
the design space for the optimization is the same for all optimization problems. This
feature can be exploited in the single-objective optimization approaches. When only
gradient-based strategies are employed, the found Pareto optimal points can be used as
starting values for the new optimization with altered constraint. A heuristic strategy for
single-objective optimization can reuse the information of each optimization run. For
the hybrid strategy that is used in the present work, the idea is to reuse a Kriging meta-
model. It is built and updated during optimization based on the expected improvement
method to reduce the computational effort for the non-deterministic search method. As
a result, the design space can be efficiently explored and provide suitable starting val-
ues for a gradient-based optimization strategy. An overview of hybrid approaches and
details on the method suggested in the context of this thesis are given in Section 2.3.3.

2.3.1. Gradient-Based Algorithms for Unconstrained Optimization

A general strategy for gradient-based optimization is to iteratively choose a search di-
rection dj in each step j of the optimization algorithm with j = 0, . . . , N and move
into this direction for each iteration step. The corresponding update formula for each
iteration j is then given by

xj+1 = xj + γjdj . (2.22)

The step length γj can be determined by different strategies (see Section 2.3.1.4). The
determination of a suitable step length γj in each iteration is referred to as line search,
which is why methods based on a step length are referred to as line search methods.
Note that there also exist other types of gradient-based optimization methods, e.g.,
trust-region methods.

The maximum number of iteration steps j is reached for an abort criterion. One
abort criterion for the iteration can be a minimal value for the norm of the update ||dj ||.
Furthermore, the necessary condition for optimality gives a practical condition. The
optimization method should stop when ||∇f(xj)|| reaches a value close to zero. This
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value should be of higher or the same order than the numerical error of the gradient
itself, which depends on the approximation quality of the objective function f .

2.3.1.1. Method of Steepest Descent

A simple choice for dj is the direction of the steepest descent, which is the negative
gradient −∇f(xj) of the objective function. The advantage of the method of steepest
descent is that only the first derivative of the objective function has to be calculated.
A major drawback of the steepest descent method is the slow convergence compared to
other choices of the search direction d.

2.3.1.2. Newton’s Method

The search direction for Newton’s method is derived from a second-order Taylor se-
ries. When the second-order derivative ∇2f(xj) is nonsingular and symmetric positive
definite, the direction given by

dj := −(∇2f(xj))
−1∇f(xj) (2.23)

is a descent direction. A locally quadratic order of convergence can be obtained with the
help of Newton’s method, such that a fast convergence behavior is observed if the starting
value is close to the optimal solution. A major drawback of Newton’s method is that the
calculation of the second derivative can be computationally expensive. Therefore, one
can turn to quasi-Newton methods where the Hessian is approximated in each iteration
step.

2.3.1.3. Quasi-Newton Methods (BFGS, DFP)

In quasi-Newton methods the true Hessian ∇2f(xj) is approximated by Hj in each step.
The search direction can be expressed as

dj = −H−1
j ∇f(xj). (2.24)

In the BFGS6 method the approximation of the Hessian matrix Hj+1 is given by

Hj+1 = Hj +
rjr
>
j

r>j sj
−
Hjsjs

>
j Hj

s>j Hjsj
, (2.25)

with sj := xj+1−xj and rj := ∇f(xj+1)−∇f(xj). The BFGS update Hj+1 is symmetric
positive definite if Hj is a symmetric positive definite matrix and s>j rj > 0 (cp. [206,
p.24]). The last condition is automatically satisfied when the Wolfe conditions (see
Section 2.3.1.4) hold. For a symmetric positive definite Hessian the search direction dj
is a descent direction. Instead of inverting Hj , it is also possible to directly update the
inverse by the formula

H−1
j+1 = H−1

j +
sjs

t
j

rTj sj
−
sjr
>
j H

−1
j +H−1

j rjs
>
j

r>j sj
+

(r>j H
−1
j rj)(sjs

>
j )

(r>j sj)
2

. (2.26)

6Broyden, Fletcher, Goldfarb and Shanno
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A similar method to the BFGS method is the DFP7 method. The direct DFP update
for the inverse of the Hessian is given by

H−1
j+1 = H−1

j +
sjs
>
j

r>j sj
−
H−1
j rjr

>
j H

−1
j

r>j sj
. (2.27)

Quasi-Newton methods are able to achieve locally superlinear convergence. General
experience shows that the DFP method is not as efficient as the BFGS method. As an
example, the DFP method is not as good as the BFGS method in self-correcting bad
approximations of the Hessian (cp. [206, p.142]).

The optimization algorithm for quasi-Newton methods is given in Algorithm 4.

Algorithm 4: Quasi-Newton method.

j = 0, ε1 > 0, ε2 > 0, H0 = I
while ||∇f(xj)|| > ε1 and ||xk+1 − xk|| > ε2 do

Find a suitable γj
xj+1 = xj − γjH−1

j ∇f(xj)
sj = xj+1 − xj
rj = ∇f(xj+1)−∇f(xj)
calculate H−1

j+1 with the updating formula (2.26) or (2.27)
j = j + 1

end while

2.3.1.4. Line Search

The step length γj can be found by solving the one-dimensional optimization problem

min
γj

f(xj + γjdj). (2.28)

Usually, it is computationally expensive to solve a minimization problem in each step of
the optimization algorithm, i.e to perform an exact line search. Alternatively, one may
choose γj such that the Wolfe conditions are fulfilled. The Wolfe conditions are given in
[206, p.33] for an inexact line search for γj as

f(xj + γjdj) ≤ f(xj) + c1γj∇f(xj)
>dj , c1 ∈ (0, 1) (2.29)

and
∇f(xj + γjdj)

>dj ≥ c2∇f(xj)
>dj , c2 ∈ (c1, 1). (2.30)

Equation (2.29) is the sufficient decrease condition or Armijo condition and (2.30) is
referred to as the curvature condition. For Newton’s method or quasi-Newton methods
typical values for the constants are c1 = 0.0001 and c2 = 0.9.

7Davidon, Fletcher and Powell
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For Newton’s method or a method of steepest descent, it is sufficient to use a back-
tracking algorithm to fulfill the first Wolfe condition by reducing the step length γj until
the condition is guaranteed. The simplest example of a backtracking algorithm is to use
a bisection strategy for finding γj , presented in Algorithm 5.

Algorithm 5: Backtracking Algorithm for finding step length.

γ > 0, c = 10−4

while f(xj + γdj) > f(xj) + cγ∇f(xj)
>dj do

γ = 0.5γ
end while
γj = γ

Alternatively, one may find a suitable γj iteratively with a quadratic or higher-order
approximation of the objective function f(γj), which is to be optimized in (2.28). Quasi-
Newton methods need a backtracking algorithm that ensures that both Wolfe conditions
are satisfied. An example of a backtracking line search for quasi-Newton methods is
given in [206, p.60ff].

2.3.2. Gradient-Based Algorithms for Constrained Optimization

As constraint methods for multi-objective optimization require the solution of several
constrained optimization problems, it is important to discuss the issue of constraint
handling in gradient-based optimization methods. Penalty methods and augmented La-
grangian methods will be introduced as classical strategies for formulating unconstrained
optimization problems with additional penalty parameters. The idea of augmented La-
grangian methods will also become important in Chapter 3. The sequential quadratic
programming method and the interior point method are introduced to present alternative
strategies for constraint handling.

2.3.2.1. Penalty Methods

The idea of penalty methods is to transform the constrained optimization problem into
an unconstrained problem with an additional penalty parameter. A classical strategy,
which goes back to Courant [42], is to penalize constraint violation by adding a quadratic
penalty term, such that the augmented objective function fa is given by

fa(x) := f(x) +
1

2
ρ||h(x)||22, (2.31)

with ρ > 0. Convergence to a stationary point in a bounded design space can be shown
for sufficiently large ρ (see [63]). It can be achieved algorithmically by choosing a strictly
increasing sequence of ρk. Alternatives to the quadratic penalty function are, for ex-
ample, the l1 penalty function. If inequality constraints g(x) ≤ 0 are involved, penalty
terms are based on the l1-norm or l2-norm of max{0, g(x)} to penalize constraint viola-
tion. Note, however, that such penalty terms are not twice continuously differentiable.
Line search methods or trust region method can be used to solve for optimality of fa.

41



2. Multi-Objective Optimization

2.3.2.2. Augmented Lagrangian Methods

In augmented Lagrangian methods [117, 222] the original Lagrangian is augmented by
a penalty term. An augmented Lagrangian La with a quadratic penalty term is, for
example,

La(x,µ, ρ) = f(x) + µh(x) +
1

2
ρ||h(x)||22. (2.32)

An unconstrained subproblem

min
x
La(x,µk, ρk) (2.33)

is then solved in an iterative fashion for fixed ρk and µk. The values for ρ and µ
have to be chosen carefully. The value for ρ shall be neither too small nor too large
to avoid an ill-conditioned Hessian matrix. The speed of convergence to the optimum
solution strongly depends on the speed of convergence of µ → µ∗. This means that
in augmented Lagrangian methods, similarly to penalty methods, special care has to
be taken for updating the additional parameters. Furthermore, the risk of running
into an ill-conditioned system is given. A possible updating scheme is to update µk+1 =
µk+ρh(x) if the equality constraint is small enough and increase ρ if this is not the case.
Additional inequality constraints may be treated analogously to the equality constraints
by introducing slack variables (see 2.3.2.4) or using the penalty term introduced in the
penalty method.

One may refer to fa and La as penalty functions or merit functions. The following
definition introduces the notion of an exact penalty function (see e.g. [206, p.435]), which
will be of importance in Chapter 3.

Definition 12 (Exact Penalty Function). A penalty function pa(x,µ) is exact if there
exist multipliers µ > 0 such that for µ being component-wise large enough any local
solution of the original optimization problem (2.2) is a local minimizer of pa.

It can be shown that the penalty method based on the l1-norm provides an exact
penalty function for a given choice of µ (cp. [206, Theorem 17.3]). In the augmented
Lagrangian method, the Hessian of La(x∗,µ, ρ) is positive definite for sufficiently large
ρ (cp. [51]) if the reduced Hessian of the original problem is positive definite and the
stationary points of La and the original problem are the same. Thus, if the second-order
sufficient condition for optimality is fulfilled, the strict locally optimal solution of the
original problem is also a strict local minimizer of La. As a result, La is an exact penalty
function.

2.3.2.3. Sequential Quadratic Programming

The sequential quadratic programming method (SQP) was firstly introduced by Wilson
in 1963 and was made popular by Han (1977, [104]) and Powell (1978, [223]). Instead
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of solving the constrained optimization problem (2.2), the corresponding quadratic pro-
gramming problem

min
d
∇f(x)>d+

1

2
d>∇2

xxL(x,µ,η)d (2.34)

s.t. h(x) +∇h(x)>d = 0, g(x) +∇g(x)>d ≤ 0

is solved. Equation (2.34) is solved in an iterative algorithm for dk at a point xk. One
distinguishes between approaches for inequality and equality constrained optimization
problems. For inequality constraints the problem has to be solved with an algorithm for
quadratic programming for each iteration step. Popular methods used in this context
are active set strategies. When using equality constraints, dk can be found by solving
the linear system of equations(

Hk(xk,µk,ηk) ∇h(xk)
>

∇h(xk) 0

)(
dk
λk+1

)
=

(
−∇f(xk)
−h(xk)

)
(2.35)

under the condition that Hk is positive definite and ∇h(x) has full rank. The result d
serves as a direction of descent to update the design x by xk+1 = xk + γdk. The step
length γ is determined by an appropriate line search suitable for constrained optimiza-
tion, for example, using penalty functions or augmented Lagrange functions. The matrix
Hk is either an approximation of the Hessian of the Lagrange function of the problem
(realized, for example, by a damped BFGS update [223]) or the exact Hessian in the case
of Newton’s algorithm. The system of equations (2.35) is equivalent to the system of
equations that results when applying a Newton algorithm to the KKT condition where
dk = ∆xk, so that (2.34) can be seen as a linearization of the KKT condition (cp. [206,
p.530ff]). Powell [223] states that locally a superlinear rate of convergence can be guar-
anteed under some regularity assumptions and for a positive definite approximation of
the Hessian. An SQP strategy is, for example, implemented in SNOPT [82] or in SciPy’s
SLSQP method [149].

2.3.2.4. Interior Point Method

In the interior point method [63] or barrier method inequality constraints are transformed
into equality constraints using slack variables. The constraint function g(x) ≤ 0 becomes
g(x)+s = 0 with s ≥ 0. As a result, the design space is augmented by the slack variables
s ∈ Rq.

Problems of the form

min
x

f(x) (2.36)

s.t. h(x) = 0, g(x) + s = 0, s ≥ 0

are then transformed into the barrier function problem

min
x,s

φ(x, s) := f(x)− β
q∑
i=1

ln(si) (2.37)

s.t. h(x) = 0, g(x) + s = 0.
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The barrier problem may be solved using a damped Newton strategy to solve the KKT
system of (2.37). As the KKT system is also often referred to as the primal-dual system,
the strategy is often also called primal-dual interior point method. The barrier parameter
β is sequentially reduced during optimization leading to new KKT systems. Convergence
is observed for β → 0 (see [63]). Opposed to the penalty methods, where ρ is increased
during optimization, and the solution is typically approached from the exterior of the
feasible set, the interior point method will remain in the interior of the feasible set
of the inequality constraints. The use of the logarithmic barrier with s ≥ 0 prevents
the algorithm from finding points outside of the feasible set. Therefore, interior point
methods are especially useful in handling inequality constraints.

An interior point approach is implemented in IPOPT (Interior Point OPTimizer,
[277]). The authors use a line search filter strategy [276] for finding an admissible step
size. The idea is to use a line search that either improves φ(x, s) or the constraint viola-
tion ||(h(x), g(x)+s)>|| in a suitable vector norm resulting in a bi-objective optimization
problem, which is treated using the concept of Pareto dominance. A filter storing the
non-dominated vector pairs of the objective function and constraint violation is updated
during the optimization. Only points that are not dominated by any point in the filter
are accepted in the course of the optimization algorithm. Furthermore, the line search
strategy is chosen in such a way that a sufficient reduction in the objective function or
the constraint violation, as well as feasibility (s ≥ 0), are guaranteed. The filter method
can be applied to SQP methods or the equality constraints in interior-point methods, as
shown in [276].

2.3.3. Hybridization

The advantages and disadvantages of gradient-based local search methods and heuristic
global search methods were already discussed at the beginning of this section.8 They
are summarized in the following:

• Speed of convergence: Gradient-based methods allow a fast convergence, espe-
cially when using Newton’s method. Quasi-Newton methods can also achieve su-
perlinear convergence. For PDE-constrained optimization problems, the efficiency
can be further increased when using one-shot optimization strategies. Convergence
of heuristic methods can only be proven in a probabilistic setting. The speed of
convergence of such methods is rather slow.

• Stopping criterion: Stopping criteria for gradient-based optimization strategies
can be clearly defined based on optimality conditions like a vanishing gradient.
For heuristic approaches, there usually does not exist a clear stopping criterion.

• Computational efficiency: Gradient-based optimization methods need, next to
a function evaluation, the evaluation of first-order derivatives and depending on

8It is important to emphasize that the distinction between gradient-based and derivative-free methods,
and local and global search method is not unique. However, the present work is restricted to gradient-
based strategies that are used for local search as well as derivative-free methods that are used for
global search. The derivative-free strategy is based on a heuristic approach.
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the method also second-order derivatives. Obtaining derivatives can potentially be
computationally expensive, especially for PDE-constrained optimization problems
with a high number of design variables. However, when using adjoint methods, the
computational effort is comparable to a function evaluation. Heuristic approaches
can be used for non-differentiable or discrete functions since they only need the
function value. However, they require a high number of function evaluations to
converge. In genetic algorithms, for example, each member of the population has
to be evaluated in each step of the algorithm.

• Implementation: Gradient-based optimization strategies need the derivative of
the objective and constraint functions with respect to the design variable. When
using a black-box approach for obtaining derivatives, e.g., finite difference, the
computational costs can be high. Adjoint approaches can overcome this problem
but need to be implemented. Therefore, gradient-based strategies are often aban-
doned. Algorithmic differentiation, however, helps in setting up adjoint approaches
in a semi-automatic fashion and, as a result, allows the semi-automatic transition
of a simulation code to an optimization code. The implementation of heuristic
methods is straightforward since the simulation tool can be treated as a black-box.

• Global optimum: Gradient-based optimization strategies can easily get stuck
in local optima. Heuristic methods have a higher chance of finding the global
optimum since they explore the design space.

• Algorithmic robustness/reliability : Since gradient-based optimization ap-
proaches are based on a single iterative search in design space, they have a higher
chance of failing. Reasons for this can be that a design can fail to converge,
derivatives are inaccurate, or, in the worst case, derivatives cannot be provided.
Moreover, if the objective function is noisy, a gradient does not provide a good
search direction. Heuristic approaches, on the contrary, are reliable to provide a
good solution as they will not stop if a design does not converge.

One can establish a hybridization that uses two different methods for solving one
optimization problem to combine the advantages of the different types of algorithms. A
straightforward strategy, which will be pursued in this work, is to use these methods
sequentially. This is also referred to as pipelining. Another idea is to apply each of the
methods in situations where they are the most suitable, e.g., by dividing the design or
solution space. In some cases, it might be interesting to allow cooperation between the
algorithms by sharing information on the solution space or the search space. One option
for hybridization can be to insert ideas from one method as an operator into the other
method.

Several approaches can be used when hybridizing local and global search methods
in this context. A pipelining strategy is used in [294]. It changes between a genetic
algorithm and a gradient-based optimization strategy to avoid getting stuck in a local
optimum while at the same time reducing the computational costs. In [295], a genetic
algorithm is hybridized by introducing new genetic operators for reproduction using the
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simplex method, which is a derivative-free local search method. A similar strategy is
used in [227] with a quasi-Newton method applied for a local search to improve some
members of the population.

2.3.3.1. General Strategy

The concept that is employed in the present thesis is a sequential hybridization that first
uses a heuristic global search strategy followed by a gradient-based optimization strategy.
The order of construction is straightforward and represents a popular pipelining strategy.
Heuristic methods have a better chance to find a globally optimal solution, but they
especially need a high number of function evaluations when refining the solution near an
optimum. Instead of demanding a high level of approximation for the heuristic method,
the idea is to switch to a gradient-based strategy that uses the result of the heuristic
approach as a starting value for refining the solution locally near the optimum.

The main aspect of the hybridization in the present work is to perform the global
search on a surrogate model. Since the function evaluations are cheap, especially when
compared to solving a PDE for each objective function, this will reduce the computa-
tional costs of the global search strategy to the costs needed to construct the surrogate
model and, if needed, the costs for refining it during the optimization. As a result,
surrogate models are often used in combination with global search methods.

One may distinguish between three different types of surrogate models (also referred to
as metamodels): regression or interpolation-based models, projection-based models (e.g.
reduced-order models) and hierarchical models. Regression models treat the original
model as a black-box.9 Examples of regression models are quadratic response surface
models, Kriging models, and radial basis function regression. The method of choice for
the hybrid optimization strategy in the present work is Kriging, which is presented in
Section 2.3.1.1. Kriging is a popular choice and has proven to be successful in various
applications. A minor drawback is that it is only feasible for a moderate number of
design variables, i.e., a few dozens. The global search method on the surrogate model
is the expected improvement method (see Section 2.3.3.3). The method is suitable for
design space exploration and exploitation. In [146], the author uses a Kriging surrogate
model for approximating the objective functions that arise from a scalarization approach
for multi-objective optimization. The scalarization method is a variant of compromise
programming with weight scanning. An expected improvement method is used for a
global search supported by a genetic algorithm. As a result, the authors show that the
technique outperforms NSGA-II.

As a gradient-based strategy, the method of choice in the present work is either the
interior-point optimizer implemented in IPOPT or the one-shot strategy that is presented
in Chapter 3. Both make use of derivatives obtained from a robust discrete adjoint
approach. Note that the constraint handling has to be a special focus for all optimization
strategies.

A significant task of the hybridization is to find the point when the local search al-
gorithm should be applied. In general, it is not possible to judge whether a heuristic

9Regression models are sometimes also referred to as response surface models or approximation models.
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method is close to a global optimal solution. An indicator for reaching a locally or
globally optimal solution can be that the change in the function value has reached a
lower bound. For the specific strategy employed in the present work, which is based
on a surrogate model, a second criterion is the approximation quality of the function
value itself. If the objective function does not change significantly with an acceptable
approximation quality, the algorithm has found an optimal solution on the surrogate
model. The Kriging surrogate model does not only predict a function value but also
provides a level of confidence for the prediction. This value can be used to assess the ap-
proximation quality. When a satisfying quality of approximation or a maximum number
of function evaluations is reached, the strategy of the presented approach is to stop the
refinement of the surrogate model. A major advantage of using a surrogate model is that
an intensive search, e.g., based on random sampling in design space, can be employed
to find the global optimum during the iterations of the expected improvement methods.
Especially, the intensive search can be performed on the fixed surrogate model when
stopping the expected improvement method. Furthermore, since the design space is the
same for all constrained single-objective optimization problems, the Kriging surrogate
model can be reused for each optimization run. It will need less function values for
later optimization runs, such that the maximum number of function evaluations can be
distributed strategically.

Furthermore, the gradient-based optimization algorithm needs to produce iterates in
design space that are close to the design proposed by the global search. This is possible
by restricting the design space or the norm of the design update. The restriction is
especially required at the beginning of the algorithm. The former is used in the present
work since it does not intervene with the general procedure of the algorithm.

The resulting hybrid strategy for constrained single-objective optimization is summa-
rized in the following:

1. DoE: In the preliminary step an initial design of experiments (DoE) of size n1 is
performed.

2. Expected improvement method: The Kriging model is constructed and refined
with the help of the expected improvement method with constraint handling. The
expected improvement method stops

– when a fixed number of refinements n2 is reached, or

– for feasible designs x ∈ D with different minimum objective function values

fmin the change for successive iterations is small, i.e., |f (j)
min − f

(j+1)
min | ≤ ε1, or

– |f̂ (j)
min − f̂

(j+1)
min | ≤ ε1 for a change in the prediction and ŝ2 ≤ ε2 for the mean

squared error ŝ of the prediction.

3. Explorative search: A further explorative search on the Kriging model based on
random sampling is run to find the optimal solution xK on the Kriging surrogate
model.

4. Gradient-based search: The solution xK is chosen as a starting value for a
gradient-based search with x ∈ D ∩ {x | xKi − δ ≤ xi ≤ xKi + δ with i = 1, . . . , n}.
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Details on the Kriging model and the expected improvement method with constraint
handling are presented in the following sections.

2.3.3.2. Kriging

Kriging [152, 181], also referred to as Gaussian process regression, can be used to ap-
proximate highly nonlinear functions. In contrast to least squares regression, the Kriging
method will not smooth the approximation at data points, but it interpolates the data
points. The general idea of Kriging is to interpolate function values at specific points
by using weights for given nodes. The nodes that are closer to the point have higher
weights. The weighting factors are determined by considering a statistical variation over
the distance of the nodes. The main advantage of a Kriging model is that it provides
estimates for function values as well as for the modeling error at unsampled points.
To model such kind of behavior, the output of a function is described by assuming a
regression model as an underlying global trend function with an additional error term
represented by a random process. The initial data acquisition can be made, for example,
by using Latin Hypercube sampling (LHS, [184]). Then the Kriging model is trained.

Given a design vector x ∈ Rn and M samples in design space, for this particular
section, let the output vector be defined as y ∈ RM . It comprises all evaluations of
a function f , for example an objective function or a constraint function, such that
yi = f(x(i)) for i = 1, . . . ,M . The global trend function can be expressed as β(x), such
that the general modeling assumption is

Y (x) = β(x) + Z(x), (2.38)

where Y and Z describe random processes. The global trend function is a constant
β0 for ordinary Kriging or a linear function for universal Kriging. In the following,
it is focused on ordinary Kriging. The error term Z(x) is assumed to be a Gaussian
random process with the expectation function E (Z(x)) = 0 and the covariance function
C(Z(x), Z(x′)) = σ2R(x,x′) ≥ 0 (see also Section 4.1). The correlation function R,
which describes how the error at a given design point x(i) is correlated with other design
points x(j), can, for example, be prescribed as

R(x(i),x(j)) =
M∏
k=1

e−θk|x
(i)
k −x

(j)
k |γk

with θk ≥ 0 and 0 < γk ≤ 2. Note that the values for θk and γk can be determined
using maximum likelihood estimates to fit the model to the samples. The underlying
optimization can, for example, be done using a genetic algorithm.

The optimal predictor that minimizes the mean squared prediction error is the condi-
tional expectation (see [43]). Therefore, the best linear, unbiased predictor of the model,
is

ŷ(x) = β̂ + r>(x)R−1(y − 1β̂) (2.39)
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with r(x) = (R(x,x(1), . . . , R(x,x(M))>, the correlation matrix R ∈ RM×M , where
Ri,j = R(x(i),x(j)), and the least squares estimate

β̂ = (1>R−11)−11>R−1y. (2.40)

The maximum likelihood estimate of σ is

σ2 =
1

M
(y − 1β̂)>R−1(y − 1β̂). (2.41)

Equation (2.39) can be rewritten as a linear predictor

ŷ(x) = β̂ +

M∑
i=1

w(i)R(x,x(i))

with weights (w(1), . . . , w(M)) = R−1(y − 1β̂), which can be found by solving a linear
system of equations. This reformulation mirrors the general idea of Kriging as an inter-
polation method. The correlation function R(x,x(i)) can be interpreted as a Gaussian
radial basis function centered at a sample point x(i).

The mean squared error of the prediction can be expressed accordingly as

ŝ2(x) = σ2

[
1−

(
1 r>(x)

)(0 1>

1 R

)−1(
1
r(x)

)]
. (2.42)

Kriging is a highly popular method for function approximation, which has been further
developed in recent years. In direct gradient-enhanced Kriging [159, 105], for example,
the predictor additionally consists of the weighted sum of gradients of the output with
respect to the input variables. The use of gradients improves the accuracy of the Kriging
model. Issues concerning scalability of the correlation matrix and ill-conditioning for
noise data can often be overcome, although this requires, for example, the introduction
of regularization parameters, which need to be tuned.

2.3.3.3. Expected Improvement Method

The Kriging model can be used for the optimization of an objective function f . In
the following, the expected improvement method (EI), which was originally proposed by
Mockus et al. [194], is outlined. It can be used for adaptive sampling during opti-
mization using the above described Kriging model and belongs to the class of Bayesian
optimization methods. The idea of the expected improvement method is to exploit the
given model for finding a minimum while at the same time exploring the search space.
The improvement I for a sample x with prediction f̂ and mean squared error ŝ2

f 6= 0
can be expressed as

I(x) =

{
fmin − f(x), for f(x) < fmin

0, otherwise.
(2.43)
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Here, fmin is the minimum value of f found so far.10 Then, the expected improvement
is derived as

E (I(x)) =

{
(fmin − f̂) · FZ̃( 1

ŝf
(fmin − f̂)) + ŝf · fZ̃( 1

ŝf
(fmin − f̃)), for ŝf > 0

0, for ŝf = 0,

(2.44)

where FZ̃ and fZ̃ are the cumulative distribution function and the probability den-
sity function of the standard normal distribution. The derivation is done by using the
normalization u = ŝ−1

f (fmin − f̂) and v = ŝ−1
f (f(x) − f̂). As a result, u and v are

standard normally distributed and by employing the rules of probability theory one ob-
tains

∫ u
−∞ fZ̃(v)dv = FZ̃(u) and

∫ u
−∞ vfZ̃(v)dv = −fZ̃(u) (see for example [240], Section

4.3.1.2).
The aim of the expected improvement method is to maximize the expected improve-

ment, i.e., solve the problem

max
x∈Rn

E (I(x)) (2.45)

in each iteration of the expected improvement method. The expected improvement can
be maximized using, for example, an explorative search on the surrogate model utilizing
random sampling in design space. Promising points with a large value of expected
improvement are evaluated for refining the surrogate model. This is a typical procedure
in Bayesian optimization and is referred to as adaptive sampling using the expected
improvement as an infill criterion.

If further constraints gi(x) > 0 for i = 1, . . . , p are involved11, according to Schonlau
[240] an alternative expected improvement can be expressed as

E (ICWEI(x)) = E (I(x)) · P ({x | g(x) > 0}) = E (I(x)) ·
r∏
i=1

FZ̃(
ĝi
ŝgi

). (2.46)

Here, P ({ω}) denotes the probability of an outcome ω. The last equality requires the
statistical independence of the constraint functions gi for i = 1, . . . , r. One may refer to
this approach as the constrained-weighted expected improvement (CWEI) method.

If at least one constraint is violated for all full model evaluations, Gelbart et al. [74]
propose to optimize for the probability of constraint satisfaction first. As a result, the
probability of constraint satisfaction is used as a criterion for an explorative feasibility
search.

Next to the CWEI method, the present work also investigates two other methods for
constraint handling. Note that both methods do not include the probability of constraint
satisfaction in the function to be maximized. In the naive approach only the predicted

10Note that a more general form was introduced in [240], where fmin−f(x) is replaced by (fmin−f(x))g

and for larger g the search is more global. Here, g = 1 is used.
11For gi(x) ≤ 0 the probability of constraint satisfaction is 1− FZ̃((ŝg)

−1ĝ).
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constraint values are considered, such that

E (IN (x)) =

{
E (I(x)) if ĝi(x) > 0 for i = 1, . . . , r

0, otherwise.
(2.47)

This approach neglects the additional information of the probability distribution that is
provided by the Kriging model. The constraints can be further relaxed. For the present
work it is proposed to relax by a given ŝgi-region for each constraint gi with i = 1, . . . , r
to account for the underlying Kriging model.

Furthermore, an approach is investigated that extends the naive approach to using
the probability distribution, such that

E (IN,Ext(x)) =

{
E (I(x)) if P ({x | gi(x) > 0}) > 1− γ for i = 1, . . . , r

0, otherwise.
(2.48)

Here, 0 < γ ∈ R is a parameter describing the confidence region of constraint satisfaction.
There exist several other possibilities for constraint handling in the expected improve-

ment method. The strategy proposed in [248] and refined in [26] is to condense all
expensive constraint functions into a single expression, i.e., the maximum feasibility vi-
olation vmax, and to switch between maximizing the expected improvement in satisfying
vmax ≤ 0 and solving the original expected improvement problem with the constraint
v̂max ≤ 0. As a result, only one additional Kriging model has to be trained. However,
the constraint vmax ≤ 0 can be difficult to fulfill. In [87], the authors propose to use an
augmented Lagrangian method and build a Kriging model separately for all parts of the
augmented Lagrangian. The use of penalty methods or augmented Lagrangian methods
is an interesting option for constraint handling, which also allows for a proper handling
of equality constraints. However, the adjustment of penalty parameters in this context is
not well-defined, and a fixed parameter may not necessarily lead to satisfactory solutions.

2.4. Application and Results

Throughout this thesis, the proposed strategies will be applied to an exemplary shape
optimization problem. It shall merely serve to demonstrate and analyze all research
aspects. The chosen problem is the aerodynamic shape optimization of a two-dimensional
airfoil in transonic flow. This application case comprises all needed characteristics:

• The problem can be formulated as a multi-objective optimization problem to min-
imize the drag and maximize the lift of the airfoil.

• The flow around the airfoil is described by a system of PDEs, resulting in a PDE-
constrained optimization problem.

• The number of design variables that are usually used in this context is large enough
to present the use of adjoint strategies and connected optimization methods, and
also small enough to allow the use of the expected improvement method as a global
optimization strategy in the hybrid approach.
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• An important research aspect of aerodynamic shape optimization is the optimiza-
tion under uncertainties.

In the following, the aerodynamic shape optimization problem is presented in Section
2.4.1. The described strategy is implemented in the context of the open-source software
SU2. Details on the implementation are described in Section 2.4.2. Section 2.4.3 shows
the results of the application to aerodynamic shape optimization.

The application of the multi-objective optimization strategy for the shape optimization
for an internal, three-dimensional flow problem is shown in Section A.1.3 of the appendix.
In the main part of the thesis, external flow problems are considered.

2.4.1. Aerodynamic Shape Optimization Problem

The present section describes the aerodynamic shape optimization problem that is used
as an application test case in this thesis. The focus lies on different modeling aspects,
namely the formulation of the underlying equations, the definition of objective functions
and constraints, as well as aspects of parameterization of the shape. This section shall
only give a short overview. The intend is not to go into any details for modeling or
discretizing the underlying equations since this is not the scope of this work. Note that
all matters concerning optimization with an underlying PDE constraint will be discussed
in Chapter 3.

2.4.1.1. Underlying Partial Differential Equations

The balance equations for fluid flow form a system of partial differential equations. In its
generalized form, it is usually referred to as the compressible Navier-Stokes equations.
Without considering any body forces they can be written in their differential form using
the Einstein notation as

∂ρ

∂t
+
∂ρvi
∂ξi

= 0, (2.49a)

∂ρvj
∂t

+
∂

∂ξi
(ρvivj + τij) +

∂p

∂ξj
= 0, (2.49b)

∂ρE

∂t
+

∂

∂ξi
(ρviE + vjτij + vip+Qi) = 0, (2.49c)

with the viscous components τij with i, j ∈ {1, 2, 3} of the stress tensor and the heat
flux Qi for i = 1, 2, 3. Note that ξi stands for the components of the spatial coordinates
ξ and vi for the components of the velocity v. The temporal variables is t and the
density and the pressure are given by ρ and p. Equation (2.49a) is the equation of mass
conservation, Equation (2.49b) gives the three equations that balance momentum for
j = 1, 2, 3, and Equation (2.49c) is the equation for the balancing energy. The energy E
can be described as the sum of the internal energy e and the kinetic energy, such that

E = e+
1

2
||v||22.
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The system of PDEs (2.49) is usually defined on a domain with prescribed boundary
conditions and initial conditions. In the present context the flow is modeled as a ther-
mally and calorically perfect gas with p = ρRT and e = cvT = (cp+R)T . Here, T is the
temperature, R is the gas constant and cv and cp are the specific heat capacities. The
coherence of p and ρ is then given by

p = (γ − 1)ρe,

with the isentropic index γ =
cp
cv

.
The calculated flow is often modeled under the assumption of a Newtonian fluid, which

means that the viscous stresses are modeled as

τij = µ

(
∂vi
∂ξj

+
∂vj
∂ξi
− 2

3

∂vk
∂ξk

δij

)
,

with the Kronecker symbol δij .
A dimensionless number describing the flow speed is the Mach number, which is locally

defined as

Ma =
||v||
c
, (2.50)

with the speed of sound c =
√
γRT .

The flows considered in the present work are steady and transonic, i.e., flows with
a velocity around the speed of sound. Such a flow can be described by the steady,
compressible Euler equations, which model an inviscid flow. They are given by the
conservation equations

∂ρvi
∂ξi

= 0, (2.51a)

∂

∂ξi
(ρvivj) +

∂p

∂ξj
= 0, (2.51b)

∂

∂ξi
(ρviE + vip) = 0, (2.51c)

with the vector of conservative variables y := (ρ, ρv1, ρv2, ρv3, ρE)>.
When considering, e.g., a low subsonic flow with a Mach number below 0.3, the flow

is incompressible and in the majority of cases turbulent. Because of the different length
scales in turbulent flows and the resulting computational costs, usually, the Navier-Stokes
equations are simplified to the Reynolds-averaged Navier Stokes equations (RANS) with
an additional turbulence model.

When applied in two-dimensional aerodynamic shape optimization problems, bound-
ary conditions are prescribed for the surface A of the airfoil, and a free-stream boundary
is prescribed in the far-field. The no-slip condition is prescribed on the airfoil, i.e.,

v · n = 0 on A, (2.52)

where n is the outward-facing unit normal on the surface A.
The far-field boundary describes the free-stream flow far away from the airfoil through

a free-stream Mach number Ma∞ and an angle of attack α defining the direction of the
flow.
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2.4.1.2. Objective Functions and Constraints

The main objective of the multi-objective shape optimization problem is to minimize
the drag coefficient cd and maximize the lift coefficient cl.

In fluid flows, the forces acting on a body can be split into two components. The
component into the direction of the flow field is identified with the drag force with
magnitude Fd. The orthogonal component is referred to as the lift force with a magnitude
of Fl. In general, the lift force Fl and the drag force Fd can be expressed as the surface
integral over the surface A, given by

(Fd, Fl)
> =

∮
σn dA, (2.53)

with the stress tensor σ with σij = −pδij + τij . Thus, the forces result mainly from the
pressure acting on the object and, if present, from the viscous stresses.

The drag coefficient and the lift coefficient are dimensionless numbers representing
these forces. The drag coefficient is defined as

cd =
2Fd

ρ∞v2∞Aref
(2.54)

with the the free-stream density ρ∞, the velocity magnitude v∞ of the free-stream and
the reference area Aref , which can be described by the chord length for two-dimensional
airfoils.

Since one does not assume any friction forces in the present test case, the drag coeffi-
cient is described by the pressure drag. Thus, when inserting the expression (2.53) the
drag coefficient is given as

cd = cd,p =
2

ρ∞v2∞Aref

∮
(p− p∞)ndA. (2.55)

The pressure p∞ is the pressure of the far field. The pressure drag can also be expressed
with the pressure coefficient

cp =
2(p− p∞)

γ ∗M2∞ ∗ p∞
=

2(p− p∞)

ρv2∞
(2.56)

on a two-dimensional shape as

cd,p =
1

Aref

∮
cp (n1cos(α) + n2sin(α)) dA. (2.57)

The lift coefficient is defined as the drag coefficient in (2.54) with the lift force Fl
instead of the drag force. The pressure lift in two dimensions can then be expressed as

cl = cl,p =
1

Aref

∮
cp (n2cos(α)− n1sin(α)) dA. (2.58)

The moment coefficient cm describes the moment produced by the forces. The moment
is referred to as pitching moment in the context of airfoil design. In the following, the
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cd

cl

Ma∞

α

Figure 2.7.: Aerodynamic forces cd and cl for a two-dimensional airfoil (NACA0012).

spatial coordinates in two dimensions are described with ξ and η. While the aerodynamic
forces act in the center of pressure since they are given by the above integrals, the pitching
moment acts in the so-called aerodynamic center (ξm, ηm). In the two-dimensional
setting, the moment coefficient is then given as

cm =
1

A2
ref

∮
cp (n2(ξ − ξm)− n1(η − ηm)) dA. (2.59)

A negative pitching moment results in a nose-down pitching of the airfoil.
The direction of the aerodynamic forces is shown in Figure 2.7 along with the mag-

nitude and direction of the free-stream flow indicated by the angle of attack α and the
free-stream Mach number Ma∞.

2.4.1.3. Design Variables

The parameterization for the definition of the design variables is an important issue in
the shape optimization process. A suitable parameterization should include complex
geometries while at the same time controlling the smoothness of the shape. Therefore,
popular parameterization approaches for the shape deformation are the application of
smooth functions that perturb the geometry. In this context, Hicks-Henne [118] bump
functions are used explicitly for two-dimensional airfoil parameterization. For other
two-dimensional or three-dimensional problems, a free form deformation (FFD, [247])
strategy can be used. The idea of free-form deformation is to embed the geometry of
interest in a simple lattice. The control points of the lattice define the design variables
that serve to deform the original geometry with the help of splines. The disadvantage of
free-form deformation is that the definition of constraints for deformations of the original
geometry is not intuitive.

Opposed to that, in free-node parameterization, also referred to as CAD-free shape
parameterization [196], the design variables are defined as the position of the grid points
that are located on the shape of the airfoil. This type of parameterization gives the
highest possible degree of freedom. However, it does not necessarily preserve any shape
regularity. There is a high risk for producing uneven and wavy shapes during optimiza-
tion. It can be prevented by appropriately preconditioning the design updates, e.g., with
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Figure 2.8.: Hicks-Henne bump functions described by the parameter b and resulting
design.

the help of Sobolev smoothing originally proposed in [135]. Gradient smoothing strate-
gies only work efficiently as a design space preconditioner if the associated parameters
are correctly chosen globally or even locally. In an optimal setting, the preconditioner
should mimic the reduced Hessian operator [238].

Since parameter studies shall be omitted in the present work, a parameterization based
on Hicks-Henne bump functions is chosen in the following. Suppose that the shape of
the airfoil is described in the ξ-η-space. The Hicks-Henne bump functions describe the
displacement of the shape in the direction of η at the ξ-coordinate. The parameterized
shape η̃u of the upper surface for an initial design with coordinates ηu is described as

η̃u(ξ) = ηu(ξ) +

n/2∑
i=1

bui

(
sin(πξlog(0.5)/log(ξ(i)))

)2
(2.60)

with the Hicks-Henne parameters bui of the upper surface and the bump locations ξ(i).

The lower surface is parameterized analogously with parameters bli for i = 1, . . . , n/2
in the negative η-direction. Figure 2.8 shows the initial design and the design resulting
from an application of four Hicks-Henne bump functions distributed along the airfoil.
They are indicated in blue and are defined by the parameter b.

The Hicks-Henne parameters are used as design variables of the optimization leading
to a total number of n design variables, which will be described in the following with u,
such that u := (bu1 , . . . , b

u
n/2, b

l
1, . . . , b

l
n/2)>.

2.4.1.4. Shape optimization problem

The aim of airfoil design is the reduction of drag and the increase of lift under given
flight conditions. This type of design is usually done after a conceptual design phase of
the aircraft, which is used to determine the main configuration under given constraints.
Environmental, financial, and safety aspects guide the whole design phase. The reduc-
tion of the drag especially leads to a decrease in fuel consumption to reach a desired
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performance. This is advantageous for the environment and the costs. However, a re-
duction of drag naturally also leads to a reduction of the lift, as can be seen in the
formulas. It may then decrease the overall performance. This effect is not intended. It
is common in airfoil design to perform a lift-constrained drag minimization that aims at
maintaining a desired lift. But it can also be of interest to find a single compromise so-
lution between lift and drag. This is usually based on a maximization of the lift-to-drag
ratio (see e.g. [118]). It is a feasible option and is the most representative value for the
aerodynamic performance. It can also be interesting to consider a generating method
for multi-objective optimization, which will be pursued in this work. However, the con-
nection between lift and drag can be seen in the formulas, and we will later observe that
the Pareto optimal front is convex. We will also observe that the lift-to-drag value is
a representative trade-off solution, which is why a multi-objective optimization in this
context is only seldomly used. It is important to note that the application was chosen
without any intent to show new results for airfoil design, but as a test case to analyze
the proposed strategies and show results for a realistic shape optimization problem of
low complexity.

The design depends on the considered flow regime that is given by specific flight con-
ditions, i.e., subsonic, transonic, or supersonic flow.12 In transonic flow, e.g., depending
on the shape, a strong shock wave may appear on the upper surface of the airfoil. As
a result, the drag coefficient may increase significantly. Since one considers the com-
pressible Euler flow, the drag is mainly shock-induced (wave drag) due to the massive,
nearly discontinuous change in the pressure and partly lift-induced. As a result, aero-
dynamic shape optimization aims at avoiding such a strong shock by altering the shape.
Note that a lift constraint is sometimes adapted by changing the angle of attack during
optimization, which is not pursued in this work.

Next to optimizing the drag and lift, the design strategy is usually to keep the pitching
moment of the reference design that is to be optimized to maintain the characteristics
of the airfoil. The same applies to the maximum thickness of the airfoil, which is given
by

d(u) = max
ξ

(
2ηu(ξ) +

n∑
i=1

uizi(ξ)

)
(2.61)

with

zi(ξ) :=
(

sin(πξlog(0.5)/log(ξ(i)))
)2

for i = 1, . . . , n/2.

An improvement of the drag coefficient can naturally be obtained by decreasing the
maximum thickness of the airfoil. But this is not necessarily intended since the over-
all stability is worsened. Therefore, it is common to prescribe a lower bound for the

12Note that it is also interesting to design an optimal airfoil under different flow conditions, which leads
to a multi-point design problem. However, this work is restricted to specific flow conditions and
certain variations are only allowed in the robust design problem in Chapter 4.
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(a) Flow (Mach number).
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(b) Surface pressure coefficient.

Figure 2.9.: Flow around NACA0012 airfoil depicted by the contour lines of the Mach
number (a). A strong shock can be observed on the upper surface. The
shock can also be observed when plotting the surface pressure coefficient
(b). The upper line corresponds to the upper surface of the airfoil.

maximum thickness.13

The resulting multi-objective optimization problem that aims at minimizing the drag
coefficient and maximizing the lift coefficient is given by

min
y,u
{cd(y,u),−cl(y,u)} (2.62)

s.t. c(y,u) = 0,

cm(y,u) ≥ ctm,
d(u) ≥ dt.

Note that the underlying flow equations are introduced as a PDE constraint c(y,u) = 0
with the state variable y. This notation will also be used in Chapter 3 and the PDE-
constrained optimization problem will be analyzed. For now, it can be stated that one
has to solve a partial differential equation for each design evaluation and one can obtain
derivatives with a comparable cost.

The initial design for the shape optimization used in this thesis is a two-dimensional
NACA0012 airfoil, which was already plotted in Figure 2.7. The NACA airfoil series was
developed by the National Advisory Committee for Aeronautics. Series with different
numbers of digits exist for describing the geometry of an airfoil. The NACA four-digit

13The thickness of the airfoil is a differentiable function in u. Since the maximum is found for the ξ-
coordinate, which does not depend on the design variable, the maximum thickness varies continuously
with the design variable u. It is important to remark that the continuous differentiability is, in
general, not given. However, one may observe that the gradient-based optimization strategy works
with comparable results as when using a continuously differentiable volume constraint. As a result,
it is refrained from using a smooth approximation.
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series was developed first. The first digit gives the maximum camber in percentage of
the chord, and the next digit describes the position of the maximum camber in tenths of
percentage of the chord. The last two digits give the maximum thickness of the airfoil
in percentage of the chord. This means that the NACA0012 airfoil is symmetric, with
a maximum thickness of 12 percent of the chord. The test case has a chord length of
one meter, resulting in a maximum thickness of dt = 0.12 and a moment coefficient of
ctm = 0.0. In the following, the flow is transonic with an angle of attack of 1.25 degrees
and a free-stream Mach number of 0.8. The shape is parameterized using 38 Hicks-Henne
parameters.

Figure 2.9a shows the resulting flow for the NACA0012 airfoil by plotting the Mach
number in a coarse representation using contour lines. The strong shock can be observed
on the upper surface for the large changes of the Mach number. The flow over the surface
can also be depicted with the help of the surface pressure coefficient. This is shown in
Figure 2.9b, where the upper line corresponds to the upper surface of the airfoil. The
shock can be observed for the high slope of the pressure coefficient.

2.4.2. Implementation Details

This section presents some details of the implementation of the strategy for multi-
objective optimization. To summarize the strategy proposed in the present chapter:

• Constraint methods as presented in Section 2.2.3, 2.2.4 and 2.2.5 are used to solve
the multi-objective optimization problem.

• The hybrid strategy presented in Section 2.3.3 is applied to the constrained single-
objective optimization problem.

In the context of this work, the strategy was implemented in an existing framework for
aerodynamic shape optimization, namely the multi-physics package SU2.

2.4.2.1. Simulation and Optimization with SU2

The numerical modeling of the flow is an essential factor for the success of the opti-
mization algorithm. The success of the used optimization method highly depends on
the accuracy of the discretization method to solve the flow equations and the strategy
for obtaining derivatives. The presented strategy is implemented in SU2, which already
provides a solver for the compressible Euler equations.

The multi-physics package SU2 [216, 54] comprises several solvers for various phys-
ical problems. It was initially developed for solving aerodynamic shape optimization
problems for compressible flows. The code is open-source and is continuously improved
and extended by the community. The main aim of code development is to maintain
a modular structure with clearly defined interfaces. The solvers can be run in parallel
based on MPI communication.

The implementation of the compressible Euler solver is based on a finite-volume
method for solving Equation (2.51).14 In the finite volume method, the domain of the

14The incompressible flow solver in SU2 is based on an artificial compressibility formulation.
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calculation is divided into non-overlapping cells of a grid. In SU2, this is a vertex-based
median-dual grid, such that the cells of the dual grid are constructed with the vertices of
the primal grid as centers. The variables for the state equations are stored in the centers
of the cells. A system of balance equations that hold for each cell, balancing fluxes into
and out of the cell, can be derived from the system of partial differential equations (2.51)
in integral form by employing the Gauss divergence theorem.

Different numerical fluxes and slope limiters can be used, enabling first- and second-
order spatial integration. For the specific application, a Jameson-Schmidt-Turkel scheme
[137] is used, which introduces second-order and fourth-order artificial dissipation, which
is controlled with a limiter. An implicit Euler strategy based on a chosen Runge-Kutta
method is used to iterate the resulting residual equation in pseudo-time (see also Section
3.3.1.1). Convergence can be accelerated with the help of a multi-grid method [178].

SU2 offers the capability for a full design chain. An optimization framework is imple-
mented in Python. The Python framework in SU2 serves to generate configuration files,
run calculations with SU2, and to process results. Different types of design variables
and functions of interest can be defined. The mesh deformation tool implemented in the
main code can update the surface mesh and deforms the volume mesh accordingly by
making use of the linear elasticity method. The derivatives of the function of interest
with respect to the mesh nodes can be obtained with the help of an AD-based discrete
adjoint method (see Section 3.3.1.1) and are projected back into the design space to
provide gradients for optimization.

For the application in SU2, the algorithm for creating and managing the single-
objective optimization problems resulting from the multi-objective method was imple-
mented in the SU2 optimization framework. SU2 uses the SciPy optimization algorithms
for shape optimization. The optimization algorithm available for constrained optimiza-
tion problems of SciPy is SLSQP (Sequential Least SQuares Programming), which is
an SQP strategy originally proposed in [149]. For the present work, the interior-point
optimizer IPOPT was additionally integrated in SU2 to provide an alternative handling
of constrained optimization problems.

2.4.2.2. Hybrid Optimization Strategy

The hybrid method used in this context is based on the RoDeO (Robust Design Opti-
mization) package, which was developed for design under uncertainties. RoDeO provides
capabilities for Kriging and Bayesian optimization. The parameters of the Kriging model
are found with the help of a genetic algorithm, and the maximization of expected im-
provement is done with the help of an explorative search using random sampling. RoDeO
provides additional features that were not described in Section 2.3.3.3. Two features are
presented in the following.

Optionally a linear regression model freg(x) can be used as an additional term for
predicting the response for f(x). Opposite to universal Kriging the linear regression
model is not included in the Kriging prediction. Instead, the Kriging model is built for
sampled data of the output difference f(x(i))− freg(xi) for i = 1, . . . , N . The regression
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model is given by the formula

freg(x) = w0 +
n∑
i=1

wixi (2.63)

with the weight vector w = (w0, . . . , wn)>, which can be determined by using the pseu-
doinverse, such that w = (X>X)−1X>y with the augmented data matrix

X =

 1 x(1)

...
...

1 x(n)

 .

Gradient-assisted sampling [213] can be used additionally to the samples generated
from the expected improvement method. In this strategy, the gradient is evaluated at
the best sample point so far. Then, the full model is evaluated in the direction of steepest
descent. If no improvement is made, the step length is halved. This process is repeated
up to a predefined number. Note that the gradient-assisted sampling strategy has been
recently replaced by a primal-dual aggregation method [212]. The present work does
not consider the use of gradients in the global search method since a hybridization is
already applied on a higher level. Also, the extension to additional constraints is not
straightforward and needs, for example, a suitable projection strategy.

For the hybridization strategy in the present work, the package was adjusted to con-
strained optimization. Several features that are needed for enabling multi-objective
optimization were introduced:

• Modularity: As the objective function to be optimized, as well as the target
values for the constraints, are altered during the multi-objective optimization, the
modularity of the code was increased. As a result, the objective functions and an
arbitrary number of constraint functions relevant for optimization can be set in
an external configuration file. Furthermore, interfaces to various functions in SU2
were provided.

• Constraint handling: The naive approach for constraint handling was extended,
and the CWEI method was implemented.

For the presented application, the initial sampling set comprises 200 evaluations ob-
tained from a design of experiments.

One may first observe the convergence of the expected improvement method for the
NACA test case, where the drag coefficient is minimized without any additional con-
straints. The expected improvement (EI) method was run five times. A new initial design
of experiments with 200 samples was performed for each run. The convergence history in
2.10a shows the reduction of the objective function values for each full model evaluation.
It can be seen that the initial design of experiments can influence the convergence speed
of the method. However, the convergence behavior does not differ significantly. After
about 60 additional function evaluations, a slower convergence is observed for refining
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(b) CWEI method: constrained problem.

Figure 2.10.: Improvement of the drag coefficient for five different runs of the expected
improvement method with different initial sample sets of size 200 without
additional constraints (a). Improvement of the drag coefficient for the
constrained-based optimization problem (b).

the solution near the optimum. This is a typical behavior for heuristic approaches and
defines a promising starting point for the gradient-based optimization.

Figure 2.10b shows a single run of the constraint-weighted expected improvement
method for the constrained optimization problem with the given bounds on the maximum
thickness and the moment coefficient and the constraint equation cl ≥ 0.327 for the lift.
This corresponds to maintaining the lift coefficient of the initial NACA0012 design. Only
the values for feasible evaluations with a reduction in the objective function are plotted.
One can observe a similar convergence behavior as for the unconstrained optimization
problem. Due to the adjustment of the constraints, the improvement in the objective
function is slower. However, the number of evaluations that are needed until the slow
refinement phase starts is with a value of 75 not significantly higher. Further tests
show that the CWEI method, in average, gives the most promising results for constraint
handling, although the general performance of the three methods is comparable. The
CWEI method is the method of choice for the following results.

2.4.2.3. Multi-Objective Optimization Strategy

The framework for multi-objective optimization was implemented for the equality con-
straint method and the epsilon-constraint method in the Python framework of SU2. It
is responsible for setting up the constrained optimization problems based on Algorithm
3. A configuration file is used to prescribe the number of objective functions k, the user-
defined scanning resolution nu, as well as the type of objective functions. Another task of
the multi-objective optimization framework is to prepare and store the data for the hy-
brid optimization strategy. The expected improvement method and the gradient-based
method are called sequentially for each single-objective optimization problem.

Before being applied to the PDE-constrained optimization problem, the strategy was
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Figure 2.11.: Pareto optimal solutions for the problem (2.64) obtained with the epsilon-
constraint method.

first tested for a problem presented in [144], which implies the risk of finding locally
optimal solutions to the constrained single-objective optimization problems. The multi-
objective optimization problem can be directly expressed as

max
D
{f1(x), f2(x)} (2.64)

with

f1(x) =3(1− x1)2e−x
2
1−(x2+1)2 − 10(

x1

5
− x3

1 − x5
2)e−x

2
1−x2

2

− 3e−(x1+2)2−x2
2 + 0.5(2x1 + x2),

f2(x) =3(1 + x2)2e−(1−x1)2−x2
2 − 10(−x2

5
+ x3

2 + x5
1)e−x

2
1−x2

2

− 3e−x
2
1−(2−x2)2

,

and D = {x ∈ R2 | − 3 ≤ x1 ≤ 3, − 3 ≤ x2 ≤ 3}.
Next to the risk of finding local optima due to the highly nonlinear objective functions

f1 and f2, the optimization problem has got other interesting properties. The Pareto
optimal front is non-convex and disconnected.

The value at the global maximum of f1 is maxx∈D f1 ≈ 8.928. When solving for the
maximum with IPOPT with a tolerance of 10−4, it will only find a local maximum of
f1 ≈ 3.045. This shows the necessity to use the hybrid strategy.

When scanning the objective space with a resolution of nu = 7, corresponding to a
total number of 16 optimization problems, the algorithm finds the 14 points shown in
Figure 2.11. Since the functions are cheap to evaluate in this specific situation, a Kriging
model is directly based on a full factorial design with 360 points. The found optima are
used as starting values for IPOPT. When comparing the solutions in the objective space
to the samples in objective space (blue dots) that depict the feasible region, it can be
observed that they are globally Pareto optimal.
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2. Multi-Objective Optimization

Figure 2.12.: Flow around airfoil for minimum drag coefficient depicted by the contour
lines of the Mach number.

2.4.3. Results of Multi-Objective Aerodynamic Shape Optimization

The present section shows the results of applying constraint methods for multi-objective
optimization based on the hybrid optimization strategy for aerodynamic shape optimiza-
tion. The results of the epsilon-constraint method are presented in Section 2.4.3.1. A
more detailed look at a specific visualization strategy is given in Section 2.4.3.2. For
analysis purposes, Section 2.4.3.3 deals with the comparison of the epsilon-constraint
method and the normal constraint method.

2.4.3.1. Results of Epsilon-Constraint Method

For the following tests, the constrained single-objective optimization problems are solved
using the hybrid optimization strategy.15 The quasi-Newton strategy of IPOPT is em-
ployed for gradient-based optimization. The two-dimensional multi-objective optimiza-
tion problem (2.62) is solved with the help of the epsilon-constraint method.

The anchor points are found without constraining the other objective function. The
minimum drag coefficient has a value of about 7.6657 · 10−4 corresponding to a lift
coefficient of about 0.15920. Figure 2.12 of the flow around the optimized shape shows
that the shock on the upper surface has disappeared. Since no constraint was set for the
lift coefficient, the lift-induced drag is very small, and the optimal drag is only of the
size of a few drag counts. The lift maximization without constraining drag gives a value
of 0.80048 for the lift coefficient and 1.7406 · 10−2 for the drag coefficient.

Figure 2.13 shows the results of an intensive search for Pareto optimal points. A total
number of 32 Pareto optimal designs are given. The corresponding shapes are plotted
for some specific designs (large dots). From bottom to top, they correspond to shapes
with an increased lift coefficient.

15Note, however, that in this specific application case, the same optimal solutions will also be found
when only using the gradient-based optimization strategy.
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Figure 2.13.: Pareto optimal points found with the inequality constraint method. The
points are shown in objective space on the left side and some designs on
the right side corresponding to the large dots.

The Pareto optimal front has a convex shape and is easy to analyze concerning trade-
off. The Pareto optimal point with a drag coefficient of 1.0554 ·10−3 and a lift coefficient
of 0.26822 has the best lift-to-drag ratio cl/cd. This Pareto optimal point also denotes the
point that is the best compromise when looking at the slope of the approximated Pareto
optimal front, i.e., it gives the best value for ∆cl/∆cd when comparing two neighboring
points. This means that the lift can be increased a lot, leading only to a slight increase
in the drag.
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cl = 0.800

Figure 2.14.: Surface pressure coefficient plotted for five different Pareto optimal points.
The upper line corresponds to the upper surface of the airfoil.
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2. Multi-Objective Optimization

Furthermore, if one analyzes the flow solution of the different airfoils, one can observe
that there is no shock present for low lift constraint values. For cl ≥ 0.6, one obtains a
small shock on the upper surface near the trailing edge and on the lower surface of the
airfoil. This means that for high lift values, given the flow conditions and the constraints,
a shock cannot be prevented. This observation can be of interest for a decision-maker.
The flow behavior is reflected in Figure 2.14, where the surface pressure coefficient is
plotted for different lift constraints. The upper line represents the upper surface of the
airfoil. A shock is observed for a jump in the pressure coefficient.

2.4.3.2. Visualization

The result of the MOO problem can be further visualized by using a patch plot with
multi-dimensional scaling (MDS) as a projection method. The procedure was applied to
the multi-objective aerodynamic shape optimization in the context of the continuation of
work based on [256] for testing the strategy and comparing different projection methods.
The idea is to represent the data set for each Pareto optimal point by a feature vector
that comprises objective functions, design variables, and other functions of interest. The
feature vector is projected into a two-dimensional space where locations are assigned for
each Pareto optimal solution. A color-coded patch structure is created based on the
location with the help of a Voronoi diagram. This results in a patch plot for each
element of the feature vector.

The visualization using this strategy can be seen in Figure 2.15. It presents 42 di-
agrams, two for the objective functions representing the drag and the lift, two for the
moment coefficient and the area as additional observation functions, and the rest for
the 38 Hicks-Henne parameters hi for i = 1, . . . , 38. The colormaps of the Hicks-Henne
coefficients are set to display the same range. The patches in each diagram stand for the
32 Pareto optimal solutions. The plot directly shows the conflict between minimizing
the lift and maximizing the drag. The visualization with the help of the patch plot
makes it easier to compare and investigate design variable values when the number of
design variables is high. It also helps to understand their direct connection to the ob-
jective space. The knowledge about similar behavior of different design variables can,
for example, be used to reduce the design space. In this case, the observation functions
are constraint functions of the optimization problem, but any functions of interest could
be represented to observe correlations. Here, one sees the advantage of the proposed
method when considering more than three functions of interest. Thus, the visualiza-
tion via patch plots may be used for the analysis of higher-dimensional multi-objective
optimization problems.
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(a) Results of epsilon-constraint method.
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(b) Results of normal constraint method.

Figure 2.16.: Solutions found with the epsilon-constraint method (a) and the normal
constraint method (b).

2.4.3.3. Results of the Normal Constraint Method

The multi-objective optimization is done using the epsilon-constraint method and the
normal constraint method to compare both methods. The multi-objective aerodynamic
shape optimization is slightly altered to consider a problem with a Pareto optimal front
that does not have a similar curvature for all solutions in objective space. This is done
by replacing the maximum thickness constraint by an upper bound on the airfoil area.
The area of the NACA0012 initial configuration, which has a value of 0.0816925, is used
as the target area to be fulfilled.

Figure 2.16a shows the solutions found with the help of the epsilon-constraint method,
and the results for the normal constraint method are shown in Figure 2.16b. The epsilon-
constraint method especially needs a scan in both directions of the objective space to
find regions in the range of low drag coefficients. The results for the normal constraint
method were obtained based on a normalization of the objective space to get coverage for
low drag coefficients. We observe that the solutions obtained with the normal constraint
method are more evenly distributed.

This can also be measured using a performance metric. The performance of MOO
algorithms that generate a set of Pareto optimal solutions can be compared by analyzing
the computational effort and the quality of the solution. For the quality, one may
separate between the approximation quality, i.e., the distance of solutions to the Pareto
optimal front and the distribution quality, which describes the diversity of solutions, i.e.,
how well the set of solutions represents the Pareto optimal front. Different performance
metrics can be used to measure the respective features.

When comparing the epsilon-constraint method and the NC method, one may expect
the same approximation quality and a comparable computational effort. The present
work uses the spread metric [50] to measure the diversity for both algorithms. Given
that the algorithm finds next to the anchor points n additional solutions, the spread
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metric is defined as

∆s :=

k∑
i=1

di,a +
n∑
i=1
|di − d̄|

k∑
i=1

di,a + nd̄

. (2.65)

The distance di denotes the minimum Euclidean distance of the solutions to any other
solution found by the algorithm. The mean distance for all n solutions is given by d̄.
The distances for the anchor points, denoted as di,a, are treated separately. The reason
for this is that the metric was introduced for evolutionary algorithms, which might not
necessarily find the anchor points. This behavior leads to a higher value of the spread
metric. Typically the spread metric for NSGA-II has values between 0.4 and 0.7 and for
SPEA between 0.75 and 1.0 [49].

For the epsilon-constraint method one measures ∆s = 0.3525 and for the normal
constraint method ∆s = 0.1884. Thus, both methods give better results than the multi-
objective evolutionary approaches.

We may conclude that the normal constraint method gives promising results with a
better spread metric. However, the epsilon-constraint method may be preferred due to
some of the mentioned deficiencies. The normal constraint method cannot guarantee to
find only (weakly) Pareto optimal solutions. Furthermore, the implementation of the
construction of scanning points in the utopia plane is not very intuitive. Another reason
for choosing the epsilon-constraint method is that most solvers provide the values and
the gradients for the objective functions separately. The epsilon-constraint method can
directly use this information, while the constraints in the normal constraint method are
constructed based on all objective functions that are not minimized. Nevertheless, when
a good diversity of the Pareto optimal set is of interest, it can be beneficial to use the
normal constraint method.
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3. One-Shot Method for PDE-constrained
Optimization

The systems that are considered in engineering design problems are commonly governed
by partial differential equations. For fluid flows, these are typically the Navier-Stokes
equations, which may be further simplified depending on the system under consideration
(see also Section 2.4.1).1 Depending on the underlying problem, the numerical solution
methods for solving such PDE constraints may require a high computational effort. If,
for example, specific effects in fluid flow have to be resolved, the numerical solution
strategy may need a highly-resolved computational mesh. Usually, the steady-state
solution is found with the help of pseudo-time stepping strategies with several hundreds
of iterations.

As already stated in Section 2.3, the use of heuristic methods is in such situations
often too expensive. This can especially be observed when additionally a large number
of design variables is considered.

There exist gradient-based optimization strategies that are especially suitable for
PDE-constrained optimization problems with a large number of design variables. They
make use of so-called adjoint methods for finding the sensitivities needed by gradient-
based optimization algorithms. The advantage of adjoint methods is that the computa-
tional effort for computing derivatives is independent of the number of design variables.
An overview of adjoint methodologies will be given in Section 3.1 of this chapter.

Classical PDE-constrained optimization problems are nested approaches such that the
design update of the optimization algorithm is based on a fully converged solution of
the state and the adjoint equation. The main aim of one-shot approaches is to reach
state feasibility, adjoint feasibility, and optimality simultaneously in a coupled iteration.
This is especially advantageous for slowly converging solvers. The single-step one-shot
approach can be used if the underlying PDE constraint is solved with a contractive
fixed-point solver. It is presented in Section 3.2.

A contribution of this thesis is the presentation of new theoretical and numerical
results for the integration of additional equality constraints in the single-step one-shot
framework. For this, the reader may refer to Section 3.2.4 and 3.2.5. The numerical
results are presented in Section 3.3. As theoretical results, conditions for convergence of
the one-shot method with additional equality constraints are derived. Numerical results
include the application of the one-shot method to multi-objective aerodynamic shape
optimization. A well-defined framework for the integration of additional constraints
allows the solution of a multi-objective optimization problem with the help of constraint
methods based on hybrid methodologies, as presented in Chapter 2.

1Note that in this thesis, only steady-state processes are considered.
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3.1. Fundamentals of PDE-constrained optimization

The one-shot method can be applied to optimization problems that are constrained by a
set of partial differential equations. In the following, one may describe such optimization
problems as

min
u∈Uad,y∈Y

f(y,u) (3.1)

s.t. c(y,u) = 0

with the vector of design variables u ∈ Uad ⊂ U and the vector of state variables y ∈ Y
and appropriate Hilbert spaces U and Y . Here, Uad denotes the admissible design space,
which is assumed to be closed and convex in the following. The function f : Y ×U → R is
the objective function to be minimized. The equality constraint c(y,u) = 0, defined by
the function c : Y ×U → Y , describes the underlying set of partial differential equations
with boundary conditions. As methods based on discrete adjoint methodologies are
considered in the present work, in the following, the spaces are finite-dimensional, i.e.,
Y = Rm and U = Rn.2 Thus, one assumes that the system of PDEs is already discretized,
where c(y,u) = 0 represents the discretized PDE constraint.

Note that it can be advantageous to replace the discretized PDE constraint c(y,u) = 0
by a fixed-point equation y = G(y,u) that represents the solution strategy for solving
the PDE constraint. Nevertheless, the following results will be presented based on the
discretized PDE constraint. The reason for this is that it is the most common approach
for deriving optimality conditions and adjoint methods in a discrete setting. However, the
reader may keep in mind that all results can be analogously obtained for the formulation
with a fixed-point equation, which is presented later in Section 3.2.1 and will be the basis
of the methodologies for PDE-constrained optimization presented in this chapter.

In the following, Section 3.1.1 introduces some notations as well as assumptions for
the optimization problem. These are needed for the first and second-order optimality
conditions presented in Section 3.1.2. Finally, different methods for sensitivity compu-
tation are presented in Section 3.1.3, focusing on adjoint methods, which are popular
methods for optimization with PDE constraints.

3.1.1. Properties and Assumptions

In the present section, some natural assumptions are made. They are required for
the derivation and the analysis of methods for PDE-constrained optimization. To ease
notation, one may first introduce some abbreviated forms.

The collection of partial derivatives of the function f(y,u), as described above, with

2This is also done for reasons of notation. Due to the use of finite-dimensional spaces, inner products
can be written as scalar products. Elements from the dual space are described by the transpose.
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respect to ui for i = 1, . . . , n can be defined as the gradient

∇uf(y,u) :=


∂f
∂u1

(y,u)
...

∂f
∂un

(y,u)

 .

Accordingly, one may define the Hessian for a mixed second- order derivative of, e.g.,
∇uf with respect to y as

∇yuf(y,u) = ∇y ⊗∇uf =



∂2f

∂y1∂u1

∂2f

∂y1 ∂u2
· · · ∂2f

∂y1 ∂un

∂2f

∂y2 ∂u1

∂2f

∂y2∂u2
· · · ∂2f

∂y2 ∂un
...

...
. . .

...

∂2f

∂ym ∂u1

∂2f

∂ym ∂u2
· · · ∂2f

∂ym∂un


∈ Rm×n.

The Jacobian or Jacobi matrix of the function c(y,u) with respect to y is written as

cy(y,u) :=

 (∇c1(y,u))>
...

(∇cm(y,u))>

 .

To avoid confusion, the notation ∂y/∂u is used for the special case of the Jacobian of
the state variables with respect to the design variables. One assumes that the objective
function as well as the constraint functions are twice continuously differentiable and that

lim
||y||+||u||→∞

f(y,u) = +∞, (3.2)

such that all level sets of f are bounded to guarantee the existence of an optimal solution
to (3.1).

Furthermore, assuming that the Jacobian cy is nonsingular, the state y can be uniquely
determined by the design variable u. This result can be directly obtained from the
implicit function theorem. It is given in the following for the function c : D ⊂ (U×Y )→
Z in a finite-dimensional setting.3

Theorem 9 (implicit function theorem). Let U ,Y ,Z be finite-dimensional Hilbert spaces.
Let c : X → Z be continuously differentiable on the open set X ⊂ Y×U with c(y0,u0) = 0
for (y0,u0) ∈ X . Further, suppose that cy(y0,u0) is nonsingular. Then there exists an
open neighborhood W (y0) × V (u0) ∈ X of (y0,u0) and a function φ : V (u0) → W (y0)
that is continuously differentiable on V (u0), such that φ(u0) = y0 and for all u ∈ V (u0)

3The implicit function theorem can be generalized to Banach spaces in an infinite-dimensional setting,
such that it is applicable to the continuous formulation of the optimization problem.
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there is a uniquely defined φ(u) that solves c(φ(u),u) = 0. Furthermore, the Jacobian
of φ can be expressed as

φu(u) = −cy(φ(u),u)−1cu(φ(u),u). (3.3)

Proof. The proof is given in [226, p.336-339].

Because of this result one can reformulate the above problem in a reduced form as

min
u
f(y(u),u). (3.4)

3.1.2. Necessary and Sufficient Conditions for Optimality

In the following, necessary and sufficient conditions for optimality will be derived.
The Lagrange function L corresponding to the optimization problem (3.1) is

L(y, ȳ,u) := f(y,u) + c(y,u)>ȳ. (3.5)

The vector of Lagrange multipliers ȳ ∈ Rm can also be identified as the vector of adjoint
variables.

Theorem 10 (First-order necessary condition for optimality). Let (y∗,u∗) be a locally
optimal solution to (3.1) and let f, c be continuously differentiable at (y∗,u∗) with cy
nonsingular, then there exists a unique multiplier ȳ∗ such that the Karush-Kuhn-Tucker
(KKT) optimality conditions

∇ȳL(y∗, ȳ∗,u∗) = c(y∗,u∗) = 0, (3.6a)

∇yL(y∗, ȳ∗,u∗) = ∇yf(y∗,u∗) + cy(y∗,u∗)>ȳ∗ = 0, (3.6b)

∇uL(y∗, ȳ∗,u∗) = ∇uf(y∗,u∗) + cu(y∗,u∗)>ȳ∗ = 0 (3.6c)

are fulfilled.

Proof. The regularity assumption for cy guarantees that the LICQ is fulfilled. The KKT
conditions then result from the application of Theorem 1.

Equation (3.6a) is referred to as the state equation, Equation (3.6b) as the adjoint
equation, and Equation (3.6c) as the design equation.4 The derivation of the adjoint
equation allows to obtain derivatives with the help of adjoint methods, which will be in-
troduced in the next section. One may also refer to a point fulfilling the KKT conditions
as a stationary point of the optimization problem.

Let

H(y, ȳ,u) :=

(
∇yyL(y, ȳ,u) ∇yuL(y, ȳ,u)
∇uyL(y, ȳ,u) ∇uuL(y, ȳ,u)

)
4The state equation is also often referred to as the primal equation, while the adjoint equation is

sometimes referred to as the dual equation.
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3.1. Fundamentals of PDE-constrained optimization

be the Hessian of the Lagrange function. In the following, the second-order necessary and
sufficient conditions for optimality are stated. They require positive (semi-)definiteness
of the so-called reduced Hessian Hr := Z>HZ evaluated at the optimal solution (y∗,u∗).
The columns of Z ∈ R(m+n)×n span the tangential space of the PDE constraint, which
is given as Z := {(y,u) ∈ Rm × Rn | cyy + cuu = 0}. Due to the regularity of cy one
obtains the direct expression

Z(y,u) :=

(
−c−1

y (y,u)cu(y,u)

In

)
. (3.7)

Theorem 11 (Second-order necessary condition for optimality). Let (y∗,u∗) be a locally
optimal solution to (3.1) and let f, c be twice continuously differentiable at (y∗,u∗) with
cy nonsingular. Then the multiplier ȳ∗ of Theorem 10 fulfills

u>Z>(y∗,u∗)H(y∗, ȳ∗,u∗)Z(y∗,u∗)u ≥ 0 ∀ u ∈ Uad (3.8)

with Z defined as in Equation (3.7).

Proof. As the reduced Hessian can be directly introduced with the help of the tangential
space of the PDE constraint, Theorem 2 can be applied.

Theorem 12 (Second-order sufficient condition for optimality). Let f, c be twice con-
tinuously differentiable at (y∗,u∗) with cy nonsingular. If the multiplier ȳ∗ of Theorem
10 fulfills

u>Z>(y∗,u∗)H(y∗, ȳ∗,u∗)Z(y∗,u∗)u > 0 ∀ u ∈ Uad with u 6= 0 (3.9)

with Z defined as in Equation (3.7), then (y∗,u∗) is a strict locally optimal solution to
(3.1).

Proof. With the above results Theorem 3 proofs the statement.

3.1.3. Sensitivity Computation

Different approaches can be be used for finding the sensitivities needed for gradient-based
optimization with PDE constraints.

The total derivative Duf of the objective function f(y(u),u), which is used in a
gradient-based optimization algorithm, is given by

Duf := ∇uf(y(u),u) +

(
∂y

∂u

)>
∇yf(y(u),u). (3.10)

It contains the Jacobian ∂y
∂u , which cannot necessarily be computed directly. The total

derivative could be calculated with the help of finite differences, the forward mode of
algorithmic differentiation or direct sensitivities as described in the following section or
with the help of adjoint methods given in Section 3.1.3.2.
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3.1.3.1. Finite Differences and Direct Differentiation

When using finite differences the total derivative is approximated with the help of a
finite difference formula, for example, by one-sided differences

(Duf)i ≈
1

δ
(f(y(u+ δei),u+ δei)− f(y(u),u)) ∀ i = 1, . . . , n (3.11)

with the i-th unit vector ei. Thus, (n + 1) calculations of the objective function are
needed to find the total derivative. The error of the forward-differences formula is of
the order δ. Higher-order approximations can be derived from a Taylor series expansion.
The choice of δ is crucial and demands a lot of manual tuning. If it is chosen too small,
cancellation errors may occur. Furthermore, the optimal choice of δ is not necessarily
the same for all elements of the derivative vector.

When using direct differentiation, the relation

cu(y(u),u) + cy(y(u),u)
∂y

∂u
= 0 (3.12)

is used for directly solving for ∂y
∂u . The relation can be obtained from the implicit function

theorem or by linearization of c(y(u),u) = 0. The equation system (3.12) has to be
solved for each element of u and the result can be inserted in (3.10) to obtain the total
derivative. This strategy is, for example, applied for aerodynamic design in [268].

Finite difference and direct differentiation, as well as the forward mode of algorithmic
differentiation, presented in Section 3.2.6.2, are computationally expensive for a large
number of design variables as the evaluation of the derivative depends on the number of
design variables. Therefore, it is convenient to turn to adjoint approaches.

3.1.3.2. Adjoint Methods

When using adjoint approaches, the costs for an evaluation of the sensitivities of the
objective function with respect to the design variables is independent of the number of
design variables. This is a definite advantage in comparison to finite differences or the
direct sensitivity analysis.

In the following, the adjoint methodology is derived for the discretized optimization
problem (3.1), but the same ideas can be applied to the continuous problem in an infinite-
dimensional setting based on function spaces. The total derivative in equation (3.10)
can be expressed by eliminating ∇yf(y(u),u) in equation (3.10) with the help of the
adjoint equation

∇yf(y(u),u) + cy(y(u),u)>ȳ = 0, (3.13)

such that one obtains

Duf = ∇uf(y(u),u)−
(
∂y

∂u

)>
cy(y(u),u)>ȳ.
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Then the use of equation (3.12) results in a new expression for the total derivative, given
by

Duf = ∇uf(y(u),u) + cu(y(u),u)>ȳ. (3.14)

This expression is also referred to as the reduced gradient since the original gradient is
projected into the tangent space of the PDE constraint with the help of the linearization
(3.12). Note that the adjoint equation (3.13) is equivalent to the adjoint equation in the
KKT system (3.6) and a vanishing total derivative is equivalent to the design equation
in the KKT system. Thus, the adjoint strategy can also be derived with the help of the
necessary conditions for optimality. The result can also be obtained from the duality
viewpoint (see e.g. [81] or Section A.2.1 of the appendix).

Now, the task is to find the vector of adjoint variables ȳ using the adjoint equation
(3.13). Lions [169] formulated the adjoint approach for PDE-constrained optimal con-
trol problems. Later, Pironneau [221] presented the strategy in problems governed by
fluid flow. The approach was first introduced in the context of aerodynamic design by
Jameson in [135]. There exist two different adjoint approaches that are based on the
ideas described above but make use of different strategies for deriving and solving the
adjoint equation. These approaches are referred to as continuous adjoint and discrete
adjoint approaches.

Continuous Adjoint Method In the continuous adjoint approach, the aim is to de-
rive the continuous adjoint equation for the continuous formulation of the optimization
problem and discretize it afterwards. The adjoint equation corresponding to the state
equation is derived analytically from the given model via the variational form of the
PDE constraints. The conventional approach to obtain the adjoint equation is to take
the variation of the objective function and to incorporate the variations that concern the
state equations with the help of an adjoint variable. Then the adjoint variable is chosen
in such a way that the terms with the variation of the state variables disappear. The
choice of the adjoint variable thus leads to the adjoint equation as an additional PDE
that has to be solved.5

The continuous adjoint equation was derived and applied to various aerodynamic
shape optimization problems, e.g., for the two-dimensional Euler equations in [135], and
the three-dimensional Euler equations in [136].

The continuous adjoint approach is computationally efficient as it allows for the for-
mulation of problem-dependent solution schemes. However, the derivation of the adjoint
equations and the corresponding schemes can be very complex. As a result, the imple-
mentation of the adjoint equation is error-prone. For each new objective function and
each new constraint function, one has to derive a new adjoint equation. Additionally,
in the case of turbulent flows, for example, the continuous adjoint approach is mainly
limited to freezing parameters in the turbulence model, e.g., the use of the frozen eddy
viscosity assumption, as many turbulence models cannot be differentiated analytically.

5For the duality viewpoint, the task is to find the dual operator D∗ in (A.9). Additionally, one also
has to find dual boundary operators for the boundary conditions.
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One also has to think about an appropriate discretization of the adjoint equation. De-
pending on the grid resolution, there can occur inconsistencies between the derivatives
and the calculated objective function.

In contrast to that, when solving the discrete adjoint equation in the discrete adjoint
approach, one may use the same solver as for the state equations. Depending on the
numerical solution schemes and the approach for formulating the adjoint problem, the
adjoint solver in the discrete adjoint approach inherits the convergence properties of the
state solver. Moreover, the derivatives obtained from a converged adjoint solution may
potentially be consistent with the discretized objective function if the numerical solution
scheme of the state equation is taken into account.

Discrete Adjoint Method The discrete adjoint is built by first discretizing the state
equation and finding the discrete adjoint variables afterwards. The general idea is, for
example, formulated in [268]. Various strategies can be applied to find the discrete
adjoint solution. One strategy is to collect terms corresponding to variations of the
discretized state variables similarly to the continuous adjoint approach. This technique
is referred to as hand differentiation. The adjoint equation can then either be solved by
directly solving the linear system of equations or by using an iterative method with an
appropriate preconditioner (see e.g. [27, 147] for aerodynamic shape optimization). It
is common to make use of the reverse mode of algorithmic differentiation to avoid the
tedious work of collecting and hand-coding the appropriate terms for solving the discrete
adjoint equation and assembling the total derivative.

With the help of algorithmic differentiation, the whole computational path, from the
design variables as input to the objective function as an output, or the needed parts
of this path can be differentiated. Details on algorithmic differentiation are given in
Section 3.2.6. For now, it suffices to state that appropriate tools for algorithmic differ-
entiation allow a robust and semi-automatic way to obtain derivatives, and the appli-
cation of the reverse mode of algorithmic differentiation can be related to the adjoint
approach. The use of algorithmic differentiation also eliminates the problem of treating
non-differentiable turbulence models.

There exist different strategies for applying AD to solve the adjoint equation. In the
following, it is distinguished between two main strategies, which differ in the represen-
tation of the discretization of the PDE constraint:

• Residual representation: One strategy is to differentiate the implementation of
the discretized PDE constraint in its residual form c(y,u) = 0, i.e., the evaluation
at the stationary point of the state equation [195]. The differentiation can be done
in such a way that the Jacobians cy and cu in (3.13) and (3.14) are obtained from
matrix-vector products (see e.g. [30]). The same can be done for the implemen-
tation of the objective function. This approach is analogous to the idea of hand
differentiation, which is explained above. As a result, the adjoint equation can
be solved by solving the linear system of equations or by constructing a suitable
solution procedure. This is advantageous for efficiently solving the adjoint equa-
tion, but requires the identification of the required routines in the source code,
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e.g., the flux differentiation routine. Also, since the differentiation is based on the
assumption of a steady-state, it does not represent the full solution scheme of the
state equation. This decoupling of the state solver and the adjoint solver may
lead to a loss of consistency, which can have negative effects on the convergence of
the adjoint equation. This is especially the case if the state solution is not suffi-
ciently converged, which often happens in real-world engineering applications. In
the implementation of [205, 30], based on the exact dual approach of Giles [80],
the solution procedure of the state iteration is taken into account by constructing
a solution scheme that preserves discrete duality. It also requires that the steady-
state solution is found. The general idea is to use the same solution scheme for the
adjoint equation as for the state equation. In the exact dual approach, the strat-
egy is to apply the transposed preconditioner of the solution scheme to the state
equation to the adjoint equation. The exact dual approach gives the transition to
the other type of strategy for setting up an AD-based discrete adjoint solver.

• Fixed-point representation: The solution procedure for finding the steady-state
solution of the discretized PDE-constraint can be differentiated with the help of
algorithmic differentiation. Such a solution procedure can be usually described by
means of a fixed-point iteration G(y,u) = y. Details on formulating the optimiza-
tion problem with the help of a fixed-point iteration are given in Section 3.2.1.
First ideas for differentiating the iterative scheme were formulated in [148, 204]
in the context of hand differentiation. In general, when differentiating the fixed-
point equation, one obtains a fixed-point equation for the adjoint, and the adjoint
iteration inherits the contraction properties of the state iteration. Details on the
application of reverse mode to the fixed-point iteration will be given in 3.2.6.4.
The main aspects are summarized in the following. Applying the reverse mode of
algorithmic differentiation to the full computational path of the solution procedure
gives directly the total derivative that is required for gradient-based optimization
(see e.g. [73]). The resulting adjoint solution is consistent with the solution of
the state equation, such that the derivative is exact for the resolution of the ob-
jective function. The advantage of this approach is that the code can be treated
as a black-box and can be differentiated in a semi-automatic fashion. Hence,
no detailed knowledge of the algorithm for solving the state equation is needed.
However, differentiating the full iterative solution procedure with all intermedi-
ate states requires a lot of memory. This problem can be circumvented by only
differentiating the application of the fixed-point iterator to the stationary point
and iterating the adjoint variable based on this information [38]. This is referred
to as reverse accumulation. The fixed-point iteration for the adjoint inherits the
contraction property of the fixed-point iteration for the state equation at the ter-
mination state. The success of applying reverse accumulation depends on the level
of accuracy of the state solution. If the state solution is converged to a stationary
point and the respective fixed-point iterator is contractive, the adjoint fixed-point
iteration converges. Otherwise, convergence cannot be guaranteed. However, for
a sufficiently converged solution, it is often observed. The reverse accumulation
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strategy can be altered by using a simplified recurrence as proposed in [91]. For
this, a special structure of the iterator is assumed and a specific term is neglected
in the differentiation. This strategy can actually be related to the exact dual
approach by Giles.

In general, the use of algorithmic differentiation tools instead of hand differentiation
requires less coding effort but can be less memory and runtime efficient. The advantages
and disadvantages for setting up an AD-based discrete adjoint method have to be weighed
up against each other for the problem at hand. Both approaches can be manually tuned
to reduce issues with memory and runtime, but this requires experience and a careful
analysis of the implemented routines. For the AD-based discrete adjoint method based
on the discretized PDE-constraint, this is, for example, analyzed in [107, 199]. Tuning
of the AD-based discrete adjoint strategy based on the fixed-point formulation is, for
example, presented in [3].

Comparison of Adjoint Methods As the operations of discretizing and adjoining do not
commute in general, the discrete adjoint approach and the continuous adjoint approach
do not necessarily lead to the same results. But, for sufficiently smooth solutions, both
approaches may converge to the same results when letting the degrees of freedom go to
infinity. There are several studies that compare the continuous and the discrete adjoint
approach ([5], [81]). Nadarajah and Jameson ([200],[201]) compared both approaches for
the Euler equations. They concluded that, for the test cases under consideration, the
discrete adjoints agree better with finite differences, but the difference between results of
the discrete and continuous adjoint method is rather small and decreases as the number
of degrees of freedom increases.

3.2. The One-Shot Approach

The classical optimization approach for finding a KKT optimality point that fulfills (3.6)
is given by Algorithm 6.

Algorithm 6: Classical optimization approach.

for j = 1 to jmax do
solve state equation (3.6a)
solve adjoint equation (3.6b)
perform design update using the reduced gradient (3.14)

end for

As can be seen from the algorithm, the strategy of the classical approach is to reach
feasibility of the state equation and the adjoint equation, also referred to as state feasi-
bility and adjoint feasibility, in each design update in the j-th step.6 This is a nested

6Sometimes also referred to as primal and dual feasibility.
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procedure. The question arises if it is always necessary to recreate feasibility, even if the
solution is not optimal.

Thus, the main aim of one-shot approaches is to reach state feasibility, adjoint fea-
sibility, and optimality simultaneously in a coupled iteration. Haftka introduced the
simultaneous analysis and design (SAND, [101]) method for structural optimization
that breaks the nested optimization structure described above. Another terminology
that is used when simultaneously iterating state and design is the all-at-once approach
[68]. The term one-shot was introduced in this context by Ta’asan in [262]. He de-
veloped a multigrid one-shot approach in which the design update is performed on a
converged state and adjoint equation on a coarse grid. This method was applied in
[264] to an aerodynamic shape optimization problem under potential flow. Later, it was
extended to infinite-dimensional design spaces to optimize on different scales of the grid
[6, 7]. Iollo and Ta’asan also developed a single-grid one-shot approach in a pseudo-time
context [263, 131]. In their strategy, a pseudo-time equation is iterated for state and
adjoint, and the design equation is described as a boundary condition. The approaches
by Ta’asan make use of the continuous adjoint method. Inspired by Ta’asan, Marco
and Beux [176] used a hierarchical optimization strategy in combination with a discrete
adjoint approach.

More recent developments of one-shot methods can be split into two main strategies.
In [113, 116, 114] an inexact reduced SQP approach is applied to the continuous

optimization problem. The needed operators are discretized afterwards. The approach
can be interpreted as a pseudo-time stepping method of the full KKT system. Thus,
the values for the state variable and the adjoint variable are used in the design update
as soon as they are available, as done in Gauss-Seidel type iteration strategies. More
details on the inexact reduced SQP approach for one-shot optimization are given in
Section A.2.2 of the appendix.

The present thesis focuses on the so-called single-step one-shot strategy. Opposed to
the inexact reduced SQP one-shot approach, the approach presented in [89, 72, 102, 103]
uses the state and adjoint information of the old iterate for the new design update.
This can be interpreted as solving the optimality system with a Jacobi-type iteration
procedure. The single-step one-shot strategy is derived from the discretized version of
the PDE-constrained optimization problem, which will be introduced in the following.
The approach can be applied to any optimization problem that is constrained by partial
differential equations that are solved numerically by a contractive fixed-point iteration.

It can be expected that the Jacobi-type style of iteration of the single-step one-shot
method has a slower convergence rate than the Seidel-type style, as this is the case for
reduced SQP methods in nested strategies. However, numerical studies comparing both
one-shot approaches show that, for the test case under consideration, the difference in
the speed of convergence is negligible [99].

Both one-shot strategies have been applied in various contexts. The approach based on
an inexact reduce SQP method is, for example, used for aerodynamic shape optimization
in [111] and for robust aerodynamic design in [235]. The single-step one-shot strategy
was applied in the context of aerodynamic shape optimization, for example, in [72, 210,
211, 71], and in [151] for parameter studies of a climate model. Recently a variant of the
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single-step one-shot approach was developed and applied for the design of a magnetic
diverter [20]. The advantage of one-shot methods is their efficiency compared to nested
approaches. When the method is carefully constructed, i.e., using a suitable design space
preconditioner, one can achieve bounded retardation of the convergence rate. This means
that the costs for a one-shot optimization are only up to a small multiple of the costs
for solving the underlying PDE constraint. The retardation factor relates computational
costs for the one-shot methods to the costs for solving the state equation. It depends
on the smoothness of the problem and the construction strategy. The factor can be
measured based on the runtime, the number of fixed-point iterations, or the contraction
rate of the coupled one-shot iteration and the fixed-point iteration (see e.g. [24]). In [71],
the authors observe a bounded retardation factor of 4.6 for the Bratu problem. Here,
the retardation factor is measured in terms of iterations. A retardation factor of 4 is,
for example, achieved in [210] for aerodynamic shape optimization. The runtime factor
depends on the runtime of the adjoint iteration and is usually about 10 times higher.

Current research in the context of the single-step one-shot method involves different
aspects. Kaland et al. [140] have extended the convergence analysis of the single-step
one-shot method to a function space setting. A one-shot strategy for optimization with
unsteady PDE constraints based on the one-shot approach of [102] was proposed by
Günther et al. [100]. Bosse et al. [25] developed a multistep Seidel-type one-shot
method based on the ideas of the single-step one-shot method. A design is updated only
after several iteration steps for the state equation and the adjoint equation. The authors
derive local convergence properties for an appropriate preconditioner and a lower bound
for the number of steps.

In the following, the formulation based on the fixed-point iteration is presented in
Section 3.2.1. In Section 3.2.2, the piggy-back approach is presented, where the state
and the adjoint equation are iterated simultaneously. The single-step one-shot strategy
is presented in Section 3.2.3, focusing on theoretical results on the convergence since
they will be of importance for the analysis of the one-shot approach augmented with
equality constraints.

The new results of extending the one-shot method to additional equality constraints
are presented in Section 3.2.4. It contains an overview of existing strategies, the presen-
tation of the overall strategy, as well as details on the convergence analysis. The strategy
is to extend the single-step one-shot method to an additional update for the constraint
multiplier with a suitable preconditioner. The convergence analysis gives conditions on
the design space preconditioner and the preconditioner for the multiplier update. The
extension to inequality constraints is discussed in Section 3.2.5 by proposing a reformula-
tion with the help of bound constraints. Details on the use of algorithmic differentiation
in the one-shot approach are given in Section 3.2.6.
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3.2.1. Fixed-Point Formulation

One assumes that the solution method for the discretized PDE constraints can be rep-
resented by the fixed-point iteration

yk+1 = G(yk,u) (3.15)

for a fixed design u with the function G : Y × U → Y and Y = Rm, U = Rn. This
assumption is natural as nonlinear PDEs are, for example, solved using pseudo-time
stepping approaches with G(y,u) := y − P−1(y,u)c(y,u), where P : Y × U → Y is an
appropriate preconditioner.

As before, one assumes that f and G are twice continuously differentiable.
Furthermore, for the following derivations it is necessary to assume that the fixed-point

iteration is contractive with a constant contraction rate ρ such that

||Gy|| = ||G>y || ≤ ρ < 1, (3.16)

and with the mean value theorem one obtains ||G(y,u) − G(ỹ,u)|| ≤ ρ||y − ỹ|| for all
y, ỹ ∈ Y and u ∈ U . It follows from Banach’s fixed-point theorem that the fixed-point
iteration converges with a linear rate of convergence to a unique state y∗ = G(y∗,u) for
any fixed design u. As a result, the PDE constraint can be replaced by the fixed-point
equation y = G(y,u) that has to be fulfilled for a KKT point of the optimality system.

The resulting PDE-constrained optimization problem, when considering fixed-point
iterations, is then reformulated as

min
u,y

f(y,u) (3.17)

s.t. y = G(y,u).

It will be the basis for following discussions.
All derivations done for the optimization problem with the discretized PDE constraint

described by c(y,u) (see Section 3.1) can be done analogously for the new expression
G(y,u) − y. The main results are presented in the following, replacing all original
expressions.

Due to the introduction of fixed-point iteration one can describe the Lagrangian

L(y, ȳ,u) = N(y, ȳ,u)− y>ȳ (3.18)

with the help of the shifted Lagrangian

N(y, ȳ,u) := f(y,u) +G(y,u)>ȳ. (3.19)

The first-order necessary optimality conditions are given for a KKT point (y∗, ȳ∗,u∗)
as

Nȳ(y∗, ȳ∗,u∗)> − y∗ = G(y∗,u∗)− y∗ = 0, (3.20a)

Ny(y∗, ȳ∗,u∗)> − ȳ∗ = ∇yf(y∗,u∗) +Gy(y∗,u∗)>ȳ∗ − ȳ∗ = 0, (3.20b)

Nu(y∗, ȳ∗,u∗)> = ∇uf(y∗,u∗) +Gu(y∗,u∗)>ȳ∗ = 0. (3.20c)
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3. One-Shot Method for PDE-constrained Optimization

Note that the second-order derivatives of N and L are identical, such that the Hessian
is given by

H(y, ȳ,u) :=

(
Nyy(y, ȳ,u) Nyu(y, ȳ,u)
Nuy(y, ȳ,u) Nuu(y, ȳ,u)

)
.

The results for second-order optimality conditions can thus be formulated with the re-
duced Hessian Z>HZ based on

Z =

(
(Im −Gy(y,u))−1Gu(y,u)

In

)
. (3.21)

The matrix (I −Gy) is nonsingular due to the contractivity of G and the perturbation
Lemma (see [84, Lemma 2.3.3]).7 In the following, it is assumed that the second-order
sufficient condition for optimality is fulfilled, i.e., that the reduced Hessian is positive
definite at a local minimizer.

As before, the equations in (3.20) can be identified as the state equation, the adjoint
equation, and the design equation. The conventional approach according to Algorithm
6 for solving problem (3.17) is to fully converge the fixed-point iteration of the state
equation to the fixed-point y∗ and use the result for fully converging a fixed-point itera-
tion for the adjoint equation, given by ȳk+1 = Ny(y∗, ȳk,u)>. Afterwards, the reduced
gradient Nu is computed and used for updating the design variable. Then the whole
process is repeated until the optimization algorithm has fulfilled a given convergence
criterion. Before introducing the one-shot approach, one may consider the case when
the state equation and the adjoint equation are solved simultaneously in an iterative
fashion.

3.2.2. Piggy-Back Iteration

Solving the state equation together with the adjoint equation in a simultaneous fashion
is referred to as the piggy-back iteration [91]. The piggy-back iteration for a fixed design
u and the iteration index k

yk+1 = G(yk,u), (3.22a)

ȳk+1 = Ny(yk, ȳk,u)> (3.22b)

does not require any preconditioning. The adjoint ȳk is not an exact adjoint of yk but
an approximation with the same limit (cp. [91]). It can be shown that the convergence
of the adjoint iteration is guaranteed if G is contractive. Due to the fact that ||Gy|| =
||G>y ||, the iteration matrix G>y of the adjoint iteration Ny(yk, ȳk,u) = ∇yf(yk,u)> +

Gy(yk,u)>ȳk also fulfills the contraction property (3.16). As a consequence the fixed-
point iteration for the adjoint is contractive and a fixed-point ȳ∗ exists due to Banach’s
fixed-point theorem. Furthermore, as Gy and fy are continuous, one can guarantee that
the iterates of the adjoint variable converge to the solution of the adjoint equation.

7In the following, the indicator for showing the dimension of the identity matrix, e.g., Im ∈ Rm×m is
omitted if it is given from the context.
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3.2. The One-Shot Approach

The state iteration and the adjoint iteration converge with the same asymptotic rate
to the fixed-point (y∗, ȳ∗), but with a certain time lag of the adjoint variable. This effect
is referred to as dual retardation. The same asymptotic rate of convergence is achieved
since Gy and G>y have the same spectral properties. The asymptotic convergence rate
ρ, i.e.,

lim sup
k→∞

k
√
||yk − y∗|| ≤ ρ and lim sup

k→∞
k
√
||ȳk − ȳ∗|| ≤ ρ,

is derived in [92]. Griewank and Kressner also show the dual retardation behavior, i.e.,
||ȳk − ȳ∗|| ∼ k||yk − y∗||. The reason for the retardation of the iterates of the adjoint
variable is that their accuracy depends on the accuracy of the iterates of the state
variable. The resulting inaccuracies in the iterates of the adjoint variable accumulate
during the piggy-back approach and cause a time lag in the adjoint iteration. It can be
shown that this dual retardation is bounded [102].

3.2.3. Single-Step One-Shot Approach

The first ideas for the single-step one-shot approach are given in [89]. In the single-step
one-shot approach one iterates for the state variable, the adjoint variable and the design
variable simultaneously in a coupled iteration step, which is given by

yk+1 = G(yk,uk), (3.23a)

ȳk+1 = Ny(yk, ȳk,uk)
>, (3.23b)

uk+1 = uk −B−1
k Nu(yk, ȳk,uk)

>. (3.23c)

In the following, ∆yk = yk+1 − yk, ∆ȳk = ȳk+1 − ȳk, and ∆uk = uk+1 − uk denote
the updates for the state iteration (3.23a), the adjoint iteration (3.23b) and the design
iteration (3.23c).

The design space preconditioner B has to be positive definite and large enough to
guarantee convergence to a point fulfilling the first-order necessary conditions for opti-
mality. In [89], Griewank used an eigenvalue analysis to derive a necessary condition for
a preconditioner such that the iteration procedure described above is contractive. In [72],
the authors introduced the idea of a doubly augmented Lagrangian as an exact penalty
function to be reduced for deriving a design space preconditioner. Later, Hamdi and
Griewank [102, 103] formulated conditions for obtaining descent of the one-shot iteration
on the doubly augmented Lagrangian to show the convergence of the overall strategy.
An overview of theoretical results based on the doubly augmented Lagrangian will be
presented in the next sections, based on the derivations in [102, 103]. This includes the
results for the convergence analysis, as well as the derivation of a suitable design space
preconditioner.
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3. One-Shot Method for PDE-constrained Optimization

3.2.3.1. Convergence Analysis

In [72, 102, 103] the optimization problem is identified as the minimization of a merit
function of a doubly augmented Lagrangian type, given by

La(y, ȳ,u) =
α

2
||G(y,u)− y||2 +

β

2
||Ny(y, ȳ,u)> − ȳ||2 +N(y, ȳ,u)− ȳ>y. (3.24)

The gradient of La is given as ∇yLa∇ȳLa
∇uLa

 = −Ms(y, ȳ,u) (3.25)

with

M =

 α(I −Gy)> −I − βNyy 0
−I β(I −Gy) 0
−αG>u −βN>yu B

 (3.26)

and

s(y, ȳ,u) =

 G(y,u)− y
Ny(y, ȳ,u)> − ȳ
−B−1Nu(y, ȳ,u)>

 . (3.27)

The increment vector s(y, ȳ,u) = (∆y,∆ȳ,∆u)> is also the one-shot increment vector.
It can be shown that under some conditions the doubly augmented Lagrangian is an
exact penalty function and that the one-shot increment vector is a descent direction for
the doubly augmented Lagrangian. This is outlined in the following by presenting the
most important results of [102].

Exact Penalty Function One can show that under the above assumptions, i.e., that the
necessary and sufficient conditions for optimality are fulfilled for the original problem, the
stationary points of the augmented Lagrangian and the original optimization problem
coincide under the conditions that are presented in the following. Additionally, the
second-order sufficient condition for optimality is fulfilled for the doubly augmented
Lagrangian. Then according to Definition 12, one can show that the doubly augmented
Lagrangian is an exact penalty function. As a result, a strict local minimizer of the
original problem is also a strict local minimizer of the doubly augmented Lagrangian.

The correspondence condition

αβ(1− ρ)2 > I + β||Nyy|| (3.28)

derived by Hamdi and Griewank (see [102, Corollary 3.2]) is sufficient for fulfilling

det(αβ(I −Gy)>(I −Gy)− I − βNyy) 6= 0. (3.29)

This ensures that M is nonsingular and, as a result, the stationary points of the aug-
mented Lagrangian are also the stationary points of the original optimization problem.

Another condition for the two strictly positive weighting coefficients α and β gives the
positive definiteness of the Hessian of La. This is derived in [102, Corollary 3.3].
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3.2. The One-Shot Approach

Theorem 13 (Exact penalty function). If the condition

αβ(I −Gy)>(I −Gy) � I + βNyy (3.30)

is fulfilled then the Hessian of La is positive definite in all stationary points of La.

Proof. The proof can be found in [102]. It is based on a diagonalization of the Hessian of
La and requires positive definiteness of the reduced Hessian of the original optimization
problem (3.17) which is given by assumption.

Condition (3.30) is implied by the correspondence condition (3.28). At the same time,
condition (3.30) implies nonsingularity of M . Thus, given condition (3.30), La is an
exact penalty function since the local minimizer of (3.17) is also a local minimizer of La.

Descent Direction Hamdi and Griewank also derive the descent direction condition
(see [102, Proposition 3.4]) to show that the one-shot increment vector yields descent on
the doubly augmented Lagrangian.

Theorem 14 (Descent direction condition). If the condition

αβ∆Ḡy � (I +
β

2
Nyy)(∆Ḡy)−1(I +

β

2
Nyy) (3.31)

with ∆Ḡy = 1
2(I−Gy+(I−Gy)>) is fulfilled, the step increment vector s yields descent

on La for all large positive preconditioners B.

Proof. The proof can be found in [102]. The increment vector is a descent direction
if s>La < 0, meaning that M has to be positive definite. This is shown via positive
definiteness of its symmetric part

Ms =
1

2
(M +M>),

given by

Ms =

 α∆Ḡy −I − β
2Nyy −α

2Gu
−I − β

2Nyy β∆Ḡy −β
2Nyu

−α
2G
>
u −β

2N
>
yu B

 . (3.32)

For this, the matrix is subdivided into blocks (A,C;C>B) with

A :=

(
α∆Ḡy −I − β

2Nyy
−I − β

2Nyy β∆Ḡy

)
and C := (−α

2Gu,−α
2Gu)>. With block Gaussian elimination it remains to show that

diag(A,B − C>A−1C) is positive definite. Positive definiteness of A is given by (3.31)
and for the second part B has to be large enough, such that B � C>A−1C.
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3. One-Shot Method for PDE-constrained Optimization

If α and β satisfy the stronger condition√
αβ(1− ρ) > 1 +

β

2
||Nyy||, (3.33)

then condition (3.28) and (3.31) are automatically fulfilled.
In [102], the authors propose a suitable choice for the coefficients α and β such that α

is large enough to ensure a monotonic reduction but not too large to avoid a slow-down
of convergence. These values can be derived by minimizing α with respect to β with the
condition (3.33) as a constraint. Then suitable values for α and β are8, for example,

β =
2

||Nyy||
and α >

2||Nyy||
(1− ρ)2

. (3.34)

Since the condition on B that is needed for showing that s is a descent direction is
not very practicable, new results were derived by Hamdi and Griewank in [103].

Theorem 15. If condition (3.33) is fulfilled and

(√
α

2
‖Gũ‖+

√
β

2
‖Nyũ‖

)2

≤ (1− ρ)−

(
1 + β

2 ‖Nyy‖
)2

αβ(1− ρ)
, (3.35)

with Gũ := GuB
1
2 and Nyũ := NyuB

− 1
2 , then s yields descent on the doubly augmented

Lagrangian.

Proof. The proof can be found in [103, Proposition 3.2]. It is presented in this work since
the results will later be important for the theoretical analysis of the extended one-shot
strategy. For symmetric positive definite B the matrix Ms given in Equation (3.32) can
be rescaled in such a way that

M̃s = diag(I, I, B−
T
2 )Msdiag(I, I, B−

1
2 ) =

 α∆Ḡy −I − β
2Nyy −α

2Gũ
−I − β

2Nyy β∆Ḡy −β
2Nyũ

−α
2G
>
ũ −β

2N
>
yũ B

 .

It is shown in [103, Proposition 3.1] that for the 3× 3 matrix

Dc :=

α(1− ρ) −1− β
2 θ −α

2 ‖Gũ‖
−1− β

2 θ β(1− ρ) −β
2 ‖Nyũ‖

−α
2 ‖Gũ‖ −

β
2 ‖Nyũ‖ 1


the inequality v1

v2

v3

> M̃s

v1

v2

v3

 ≥
‖v1‖
‖v2‖
‖v3‖

>Dc

‖v1‖
‖v2‖
‖v3‖


8Note that the exact choice α =

2||Nyy ||
(1−ρ)2 violates the condition (3.33).
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3.2. The One-Shot Approach

holds. Thus, it remains to show that Dc is symmetric positive definite. This can be
done by subdividing the matrix into blocks such that

D =

(
α(1− ρ) −1− β

2 ||Nyy||
−1− β

2 ||Nyy|| β(1− ρ)

)
and d = (−α

2 ‖Gũ‖,−
β
2 ‖Nyũ‖). The matrixDc is positive definite ifD is positive definite,

which is implied by condition (3.33), and the Schur complement 1− d>D−1d is positive
definite which is the case for condition (3.35).

Global Convergence In [103], the authors also establish a global convergence result
for the single-step one-shot approach, when choosing α, β and the preconditioner B as
described before. The underlying assumption is that it is made use of a line search, e.g.,
a standard backtracking line search, for the search direction s to get sufficient decrease of
the exact penalty function La. Then one can show under the assumption Nuu � 0 that
the angle γ between the direction of steepest descent −∇La and the search direction s
is bounded away from π

2 , which means that

cos(γ) = − s>∇La
||∇La|| ||s|| ≥ C > 0 (3.36)

for all iterates (y, ȳ,u). Furthermore, for a starting point (y0, ȳ0,u0) all iterates are
contained in the level set N0 of La defined as

N0 := {(y, ȳ,u) | La(y, ȳ,u) ≤ La(y0, ȳ0,u0)}

if the conditions
lim

||y||+||u||→∞
f(y,u) = +∞ (3.37)

and

lim inf
||y||+||u||→∞

f(y,u)

||∇yf ||2
> 0 (3.38)

hold. Condition (3.37) is given by assumption. Conditions (3.37) and (3.38) then ensure
that all level sets of La are bounded and therefore La is bounded from below (compare
[103, Theorem 2.1]). Using these results and the convergence theorem for line search
procedures, which is, for example, given in [206, p.38], one obtains global convergence
of the one-shot approach, which means that

lim
k→∞

||∇La(yk, ȳk,uk)|| = 0. (3.39)

3.2.3.2. Choice of the Preconditioner

A preconditioner can be derived with the help of condition (3.35) as done in [103]. As a
result, if the condition (3.33) is fulfilled, any preconditioner that satisfies

B < B0 :=
1

σ
(αG>uGu + βN>yuNyu) (3.40)
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3. One-Shot Method for PDE-constrained Optimization

with

σ = 1− ρ− (1 +
||Nyy ||

2 β)2

αβ(1− ρ)
(3.41)

yields descent on La.
The matrix B0 is strongly related to the Hessian ∇uuLa with respect to the design,

which is shown in [103]. A preconditioner that fulfills (3.40) can be derived by considering
the optimization problem

min
∆u

La(y + ∆y, ȳ + ∆ȳ,u+ ∆u) (3.42)

and finding B from the condition ∆u = −B−1N>u . When using a sequential quadratic
programming approach for problem (3.42) one obtains the minimization problem

min
∆u

s>∇La +
1

2
s>∇2Las,

which is equivalent to the problem

min
∆u

∆u>(∇uLa +∇uyLa∆y +∇uȳLa∆ȳ) +
1

2
∆u>∇uuLa∆u

and can be approximated by the minimization problem

min
∆u

∆u>∇uLa(y + ∆y, ȳ + ∆ȳ,u) +
1

2
∆u>∇uuLa∆u. (3.43)

The solution to (3.43) is given by ∆u = −∇−1
uuL

a(y, ȳ,u)∇uLa(y + ∆y, ȳ + ∆ȳ,u).
One identifies B ≈ ∇uuLa. The choice B = αG>uGu+ βN>yuNyu+Nuu is equivalent to
the Hessian ∇uuLa if state and adjoint feasibility are satisfied. One chooses

B̃ =
1

σ
B =

1

σ
(αG>uGu + βN>yuNyu +Nuu) (3.44)

such that condition (3.40) is fulfilled for Nuu < 0.9

In practice, B is not computed exactly, but the inverse of the Hessian is approximated
by means of a BFGS update. Since one has B ≈ ∇uuLa,

B∆u ≈ ∇uLa(y, ȳ,u+ ∆u)−∇uLa(y, ȳ,u)

is fulfilled. The equation can be used as a secant equation for a BFGS algorithm. Thus,
the secant equation for the approximated inverse of B is given as

B−1
k+1rk = ∆uk (3.45)

with rk := ∇uLa(yk, ȳk,uk + ∆uk)−∇uLa(yk, ȳk,uk) and sk := ∆uk. B
−1
k is updated

with the BFGS update formula for the inverse as given in (2.26), i.e.,

B−1
k+1 = (I − skr

>
k

r>k sk
)B−1

k (I − rks
>
k

r>k sk
) +

sks
>
k

r>k sk
. (3.46)

9Note that σ < 1− ρ due to condition (3.33).
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It is important to apply this update only if the positive definiteness of B is maintained
which means that the curvature condition

r>k sk > 0 (3.47)

is fulfilled. If this is not the case, it is convenient to set B−1
k+1 = I or B−1

k+1 = B−1
k .

Another possibility, which is also proposed in [103], is to use a line search that guarantees
to satisfy the second Wolfe condition (2.30) for a design update in the doubly augmented
Lagrangian.

3.2.4. The One-Shot Approach with Additional Equality Constraints

In the above derivation, only PDE constraints were considered. When introducing addi-
tional constraints, the one-shot methodology has to be adjusted. The following approach
is restricted to equality constraints.

Additional equality constraints can be integrated into optimization strategies in var-
ious ways. Here, following [111], it is mainly distinguished between a direct treatment
and an indirect treatment of constraints. Examples of direct and indirect treatments
of constraints were already introduced in Section 2.3.2. One refers to a direct treat-
ment if the constraints are explicitly integrated in the optimization procedure by any
projection-based method, SQP method, or with any other strategy enabling feasibility of
the constraint function or a linearization of it in intermediate optimization steps. If, for
example, additional variables can be defined for directly adjusting the constraint func-
tion, it is possible to achieve feasibility in each optimization step. An indirect treatment
is the use of penalty methods or any similar strategy in which a new objective function
is formulated, and the reduced unconstrained optimization problem is solved either with
a constant multiplier or an update strategy for the multiplier.

A direct treatment of constraints in the simultaneous pseudo-time-stepping approach
is proposed in [114, 111], and applied for aerodynamic shape optimization. Similarly to
the procedure for the PDE constraint, the design update is projected onto the tangent
space of the linearized constraints leading to a reduced system to be solved. The solu-
tion procedure involves the additional solution of the modified adjoint equation to find
a reduced gradient of the additional constraints. The projection is further corrected for
nonlinear constraints. Theoretical results on convergence are not given, but the numeri-
cal results for aerodynamic shape optimization show a successful optimization behavior
requiring roughly ten times as much computational effort as the flow solution.

An indirect treatment of constraints in this context can be found in [115], where the
additional constraint is added to the objective function with a corresponding multiplier.
The reduced optimization problem is solved approximately in an inner iteration of the
optimization. Furthermore, the multiplier is based on an additional variable that can
be introduced to directly adjust the constraint function in the outer iteration of the
optimization. In the numerical study, this is the angle of attack, which can be adjusted
to reach a desired lift constraint in aerodynamic shape optimization. The multiplier is
kept constant but defined with the help of sensitivities with respect to the additional
variable.
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3. One-Shot Method for PDE-constrained Optimization

In the single-step one-shot approach, the coordination of state, adjoint, and design
iteration is well established when only the state equation is considered as an equality
constraint. In numerical studies of the single-step one-shot approach, additional equality
or inequality constraints are most of the time treated indirectly with the help of penalty
methods (see e.g. [211]). However, although the numerical results are successful, there
does not exist any theoretical or numerical analysis for the definition of penalty multi-
pliers in the one-shot framework. As a result, an updating strategy for multipliers is not
well-defined, which may lead to a reduced speed of convergence or even failure of the
overall strategy.

In [23], the multistep one-shot method based on the fixed-point iteration is extended
to additional equality constraints. In the analysis, the constraint is integrated via an
additional term in the Lagrangian with a corresponding multiplier. However, similar to
[112], the general assumption for this approach is that the state space is extended in such
a way that the constraint function can be directly controlled. As a result, an adjoint
equation for the additional state variables can be formulated, and the corresponding
adjoint variables explicitly describe the penalty multiplier in the Lagrange function. This
enables a direct treatment of the constraint function in the optimization procedure. If
the solution to the constraint function can be formulated in a fixed-point form for the
additional state variables with a suitable preconditioner, the original fixed-point iteration
for the state equation can be extended to the augmented state space. A convergence
analysis for the extended fixed-point iterator and a derivation of a lower bound for the
number of steps in the multistep one-shot approach are presented in [23] alongside the
first numerical results for a simple test case.

The assumption that additional variables can be introduced to enable a direct adjust-
ment of constraints is often not realistic. In aerodynamic design, for example, it might be
of interest to fulfill a lift constraint without adjusting an angle of attack. Furthermore,
it is not possible to define any additional parameters that can be adjusted to satisfy, for
example, a moment constraint. This inspired the development of a well-defined frame-
work for introducing equality constraints in the single-step one-shot method in situations
where no additional variables can be introduced.

This section presents the idea of the extended single-step one-shot approach as well as
the results of its analysis to additional equality constraints. First ideas for introducing
equality constraints in the theoretical framework of the single-step one-shot approach
are formulated in a thesis by Richert [229]. The first theoretical results are published
by Walther et al. in [278]. The contribution of the present thesis to this work is the
provision of first numerical results as well as the identification of a suitable design space
preconditioner. Furthermore, in collaboration with Andrea Walther, new theoretical
results with simpler conditions are derived, which are presented in [280]. The one-
shot method with additional equality constraints is firstly used in a multi-objective
optimization problem in [154]. In the following, the ideas will be presented together
with the results on convergence properties of the proposed method, focusing on the new
results presented in [280].

One may extend the original shape optimization problem (3.17) based on the fixed-
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point form and consider problems of the form

min
y,u

f(y,u)

s.t. y = G(y,u), (3.48)

0 = h(y,u).

The additional equality constraints are described by h : Y ×Uad → V , where V is a finite
dimensional Hilbert space with r = dim(V ) and r ∈ N, r ≤ m.10 Instead of introducing
a new notation, the notation of Section 3.2.3 is replaced in the following.

The Lagrangian for the optimization problem (3.48) reads

L(y, ȳ,u,µ) = f(y,u) + (G(y,u)− y)>ȳ + h(y,u)>µ = N(y, ȳ,u,µ)− y>ȳ, (3.49)

where

N(y, ȳ,u,µ) := f(y,u) +G(y,u)>ȳ + h(y,u)>µ (3.50)

is the new shifted Lagrangian and the vector of Lagrangian multipliers associated to the
additional equality constraints is µ ∈ Rr.

In the following, all assumptions of Section 3.2.3 hold. Additionally, one assumes that
h is twice continuously differentiable for all components and that the full constraint
Jacobian

A :=

(
Im −Gy −Gu
−hy −hu

)
∈ R(m+p)×(m+n)

has full rank. As a result, the LICQ condition is fulfilled.
As before, a stationary point (y∗, ȳ∗,u∗,µ∗) of the problem must satisfy the first-order

necessary optimality conditions

∇ȳL(y∗, ȳ∗,u∗,µ∗) = G(y∗,u∗)− y∗ = 0, (3.51a)

∇yL(y∗, ȳ∗,u∗,µ∗) = Ny(y∗, ȳ∗,u∗,µ∗)> − ȳ∗ = 0, (3.51b)

∇uL(y∗, ȳ∗,u∗,µ∗) = Nu(y∗, ȳ∗,u∗,µ∗)> = 0, (3.51c)

∇µL(y∗, ȳ∗,u∗,µ∗) = h(y∗,u∗) = 0. (3.51d)

Again, for second-order necessary and sufficient conditions, the reduced Hessian Hr =
Z>HZ with

H(y, ȳ,u,µ) :=

(
Nyy(y, ȳ,u,µ) Nyu(y, ȳ,u,µ)
Nuy(y, ȳ,u,µ) Nuu(y, ȳ,u,µ)

)
.

has to be positive (semi-)definite in the locally optimal solution. Here, Z ∈ R(m+n)×(n−r)

has to span the basis of the full constraint Jacobian A. One can construct Z with the help

10Note that the equality constraint −h(y,u) = 0 is chosen to guarantee for a consistent handling of
multipliers in the Lagrangian. Therefore, for the equality constraint h̃ = 0 one has to use the
multiplier µ̃ with µ̃k+1 = µ̃k + B̌−1

k h̃(yk,uk) in the Lagrangian.

93



3. One-Shot Method for PDE-constrained Optimization

of splitting the constraint Jacobian and expressing it in terms of the quadratic submatrix
A1 ∈ R(m+r)×(m+r) and the submatrix A2 ∈ R(m+r)×(n−r), such that A = (A1, A2) (see
[278]). If the quadratic submatrix is regular, which is implied by assuming full rank of
the full constraint Jacobian, one obtains

Z =

(
−A−1

1 A2

In−r

)
. (3.52)

Again, one assumes that the second-order sufficient condition for optimality is fulfilled,
i.e., the reduced Hessian is positive definite at a local minimizer of (3.48).

Now, the ideas of the single-step one-shot method without additional constraints can
be transferred to the problem with additional constraints with the help of the KKT sys-
tem (3.51). As a result, the original single-step one-shot method can then be augmented
by an iteration for the additional Lagrange multiplier µ resulting in the augmented
one-shot iteration

yk+1 = G(yk,uk), (3.53a)

ȳk+1 = Ny(yk, ȳk,uk,µk)
>, (3.53b)

uk+1 = uk −B−1
k Nu(yk, ȳk,uk,µk)

>, (3.53c)

µk+1 = µk − B̌−1
k h(yk,uk), (3.53d)

where Bk and B̌k are suitably chosen symmetric and invertible preconditioners. Again,
one may identify the state iteration, the adjoint iteration and the design iteration. The
augmented iteration (3.53d) is the iteration for the Lagrange multiplier µ.

3.2.4.1. Convergence Analysis

The basic ideas of the convergence analysis of the original single-step one-shot method,
which is presented in Section 3.2.3.1, can be extended to obtain convergence results for
the augmented one-shot method. One introduces the doubly augmented Lagrangian

La(y, ȳ,u,µ) =
α

2

(
‖G(y,u)− y‖2 + ‖h(y,u)‖2

)
+
β

2

∥∥∥Ny(y, ȳ,u,µ)> − ȳ
∥∥∥2

(3.54)

+N(y, ȳ,u,µ)− y>ȳ,
with positive penalty parameters α, β ∈ R. In the following, the aim is to show that La

is an exact penalty function.

Exact Penalty Function A first step to show that La is an exact penalty function is
to show that the stationary points of La and the optimization problem (3.48) coincide.
This was done in [278].

For notational convenience the expression ∆Gy := (I −Gy) is used. The gradient of
La is given as 

∇yLa
∇ȳLa
∇uLa
∇µLa

 = −Ms(y, ȳ,u,µ) (3.55)
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with

M =


α∆G>y −(I + βNyy) 0 αh>y B̌
−I β∆Gy 0 0

−αG>u −βN>yu B αh>uB̌
0 −βhy 0 B̌

 , (3.56)

and the increment vector

s(y, ȳ,u,µ) =


G(y,u)− y

Ny(y, ȳ,u,µ)> − ȳ
−B−1Nu(y, ȳ,u,µ)>

−B̌−1h(y,u)

 . (3.57)

One denotes the multiplier update as ∆µ = −B̌−1h(y,u). Again, one is able to observe
that the increment vector s = (∆y,∆ȳ,∆u,∆µ)> is also the one-shot increment vector.

Analogously to the derivation of the correspondence condition (3.28), the idea is to
show that the matrix M is nonsingular. It can be shown (see [278, Proposition 3.2]) that
M is nonsingular if the correspondence condition holds for the new shifted Lagrangian,
i.e.,

αβ(1− ρ)2 > I + β||Nyy|| (3.58)

and the preconditioners B and B̌ are nonsingular, which is given by assumption. The
proof is based on standard rules for determinants to show, with the help of the Sherman-
Morrison-Woodbury formula [84, p.63], that the determinant of M is nonzero.

The analysis of the Hessian of the augmented Lagrangian is not as straightforward.
It is done in the following in correspondence with the results of [280].

The Hessian of the augmented Lagrangian at a stationary point can be represented
by the summation

∇2La(y, ȳ,u,µ) = H1 +H2 +H3 (3.59)

with

H1 =

(
H11 0

0 βhyh
>
y − 1

αIp

)
,

H11 =

(
α∆G>

y ∆Gy + (I + βNyy)Nyy −(I + βNyy)∆G>
y −α∆G>

y Gu + (I + βNyy)Nyu

−∆Gy(I + βNyy) β∆Gy∆G>
y Gu − β∆GyNyu

−αG>
u∆Gy +Nuy(I + βNyy) G>

u − βNuy∆G>
y αG>

uGu + βNuyNyu +Nuu

)
,

H2 =


αh>y hy 0 αh>y hu h>y

0 0 0 0
αh>uhy 0 αh>uhu h>u
hy 0 hu

1
αI

 ,
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and

H3 =


0 0 0 βNyyh

>
y

0 0 0 −β∆Gyh
>
y

0 0 0 βNuyh
>
y

βhyNyy −βhy∆G>y βhyNyu 0

 .

Note that the terms − 1
αI in H1 and 1

αI in H2 cancel each other out and are introduced
for analysis purposes in the proof of the next theorem.

Theorem 16. The Hessian of the doubly augmented Lagrangian is positive definite at
all its stationary points if

αβ∆G>y∆Gy > I + βNyy, (3.60)

αβhyh
>
y > I (3.61)

and β is chosen small enough.

Proof. One may identify H11 as the Hessian of the augmented Lagrangian as introduced
by Hamdi and Griewank in [102], but with a modified shifted Lagrangian. As a result,
one can use the same ideas as in [102, Corollary 3.3] to show that the condition (3.60)
ensures that H11 is positive definite. Since H2 can be expressed as

H2 =


√
αh>y
0√
αh>u
1√
α
I

(√αhy 0
√
αhu

1√
α
I
)
,

one can conclude that H2 is positive semidefinite. Therefore, the sum H1 +H2 is positive
definite if

βhyh
>
y −

1

α
I � 0

holds, giving condition (3.61). For the third matrix it can be shown (see e.g. [280,
Lemma 1]) that λ is an eigenvalue of H3 if and only if λ2 is an eigenvalue of

H̃ = β2hy(NyyNyy +NyuNuy + ∆G>y∆Gy)h>y .

Let λmax(H3) and λmin(H3) denote the largest and smallest eigenvalue of H3 with a total
number of N = 2m + n + r eigenvalues. One can use the eigenvalue estimate of [84,
Corollary 8.1.6], which can be derived from Weyl’s inequality. As a result, one demands
that

|λk(H1 +H2 +H3)− λk(H1 +H2)| ≤ max{|λmax(H3)|, |λmin(H3)|} = (λmax(H̃))
1
2

= (||H̃||) 1
2 ≤ β||hy||(||Nyy||2 + ||Nyu||2 + ||∆Gy||2)

1
2 ∀ k = 1, . . . , N

to show that the Hessian of La at the stationary points has positive eigenvalues for β
small enough, and thus is symmetric positive definite.

The theorem shows that under the given conditions the augmented Lagrangian is an
exact penalty function.
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Descent Direction The step s as defined in Equation (3.57) is a descent direction
for the doubly augmented Lagrangian if M , as defined in Equation (3.56), is positive
definite, i.e., has only positive eigenvalues, since then one obtains

∇La(y, ȳ,u,µ)>s = −s>Ms < 0. (3.62)

The positive definiteness of M can be proven by showing the positive definiteness of
its symmetrical part

Ms =
1

2
(M +M>), (3.63)

given by

Ms =


α∆Ḡy −I − β

2Nyy −α
2Gu

α
2h
>
y B̌

−I − β
2Nyy β∆Ḡy −β

2Nyu −β
2h
>
y

−α
2G
>
u −β

2N
>
yu B α

2h
>
uB̌

α
2 B̌hy −β

2hy
α
2 B̌hu B̌

 ,

where ∆Ḡy = 1
2

(
∆Gy + ∆G>y

)
. One can define block matrices

M̃s =

 α∆Ḡy −I − β
2Nyy −α

2Gu
−I − β

2Nyy β∆Ḡy −β
2Nyu

−α
2G
>
u −β

2N
>
yu B


and C =

(
α
2 B̌hy − β

2hy
α
2 B̌hu

)>
. Using the Schur complement, it can be argued

that Ms is positive definite if M̃s is positive definite, and B̌ � C>M̃−1
s C holds. A similar

strategy can be found in [278] and also for the original single-step one-shot approach in
[102] in the proof of Theorem 15. Actually, one can identify M̃s as the symmetrical part
(3.32) of the Hessian used in Theorem 15 with a modified shifted Lagrangian. The same
arguments as in [102] can be used to derive that M̃s is symmetric positive definite for a
large enough preconditioner B if the additional condition

αβ∆Ḡy � (I +
β

2
Nyy)(∆Ḡy)−1(I +

β

2
Nyy) (3.64)

with ∆Ḡy = 1
2(I − Gy + (I − Gy)>) is fulfilled (compare (3.31)). One can also use

the same arguments as in the single-step one-shot method to formulate the stronger
condition √

αβ(1− ρ) > 1 +
β

2
||Nyy||, (3.65)

which implies condition (3.58) and condition (3.64).
Since the additional condition on B̌ is not practicable, alternative requirements are

derived in [280] and will be presented in the following. The general idea is to consider
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the decomposition

Ms =


α∆Ḡy −I − β

2Nyy −α
2Gu 0

−I − β
2Nyy β∆Ḡy −β

2Nyu 0

−α
2G
>
u −β

2N
>
yu B 0

0 0 0 B̌



+

(
−β

2

)
0 0 0 0
0 0 0 h>y
0 0 0 0
0 hy 0 0


︸ ︷︷ ︸

≡E1

+
α

2


0 0 0 h>y B̌
0 0 0 0

0 0 0 h>uB̌
B̌hy 0 B̌hu 0


︸ ︷︷ ︸

≡E2

=

(
M̃s 0

0 B̌

)
+ E

with E ≡ β
2 (−E1) + α

2E2 and analyze the eigenvalues of these matrices. Let λmin denote
the smallest eigenvalue of a given matrix, Theorem 8.1.5 of [84], which is also referred
to as Weyl’s inequality, yields

λmin (Ms) ≥ λmin

(
M̃s 0

0 B̌

)
+ β

2λmin(−E1) + α
2λmin(E2). (3.66)

The idea is now to achieve that the right-hand side of (3.66) is positive such that
the smallest eigenvalue of Ms is positive. As a result, since Ms is symmetric, positive
definiteness can be shown with the conditions presented in the following theorem.

Theorem 17. The matrix M as defined in Equation (3.56) is positive definite if

min{ẽ, λ2, λ̌} >
(
β
2 ‖hy‖+ α

2 ‖B̌‖ ‖hyh>y + huh
>
u‖1/2

)
(3.67)

with

ẽ = 1− 1

σ

(√
a

2
‖Gũ‖+

√
β

2
‖Nyũ‖

)2

,

λ2 =
α+ β

2
(1− ρ)−

√(
1 +

β

2
‖Nyy‖

)2

+
(α− β)2

4
(1− ρ)2,

λ̌ = minλ(B̌),

and (√
α

2
‖Gũ‖+

√
β

2
‖Nyũ‖

)2

< (1− ρ)− (1 + β
2 ‖Nyy‖)2

αβ(1− ρ)
, (3.68)

as well as condition (3.65) are fulfilled, where Gũ := GuB
1
2 , Nyũ := NyuB

− 1
2 and

σ := 1− ρ− (1 + β
2 ||Nyy||)2

αβ(1− ρ)
. (3.69)
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Proof. First, a lower bound is derived for the smallest eigenvalue of

A =

(
M̃s 0

0 B̌

)
.

Let λ(A) denote the set of all eigenvalues of A. Using [84, Cor. 8.1.9], one obtains that

λ(A) = λ(M̃s) ∪ λ(B̌).

The choice of B̌ is open, such that the smallest eigenvalue λmin(B̌) can be adapted
to satisfy a given condition. Inspired by the analysis in [103] one can examine the
eigenvalues of M̃s. We already identified the similarity of M̃s and (3.32). Since the
properties of the shifted Lagrangian are not explicitly used in the derivations of Theorem
15, the same derivations can be used for the modified shifted Lagrangian. As a result,
M̃s is positive definite if condition (3.68) is fulfilled. Inspired by the derivation, the
eigenvalues of the 3× 3 matrix

Dc =

α(1− ρ) −1− β
2 θ −α

2 ‖Gũ‖
−1− β

2 θ β(1− ρ) −β
2 ‖Nyũ‖

−α
2 ‖Gũ‖ −

β
2 ‖Nyũ‖ 1


can be analyzed. Due to [103, Prop. 3.1], i.e.,v1

v2

v3

> M̃s

v1

v2

v3

 ≥
‖v1‖
‖v2‖
‖v3‖

>Dc

‖v1‖
‖v2‖
‖v3‖

 ,
the inequality

λmin(M̃s) ≥ λmin(Dc).

holds for the smallest eigenvalue of M̃s. The eigenvalues of Dc can be obtained using
the block decomposition (D, d; d>, 1) with

D =

(
α(1− ρ) −1− β

2 ‖Nyy‖
−1− β

2 ‖Nyy‖ β(1− ρ)

)
and d = (−α

2 ‖Gũ‖,−
β
2 ‖Nyũ‖)>. The Schur complement is e = 1− d>D−1d. It follows

from [84, Theorem 8.1.9] that

λ(Dc) = λ(D) ∪ {e}.

Simple calculations show that D is positive definite if the fundamental condition (3.65)
is fulfilled, and the eigenvalues are given by

λ(D) =

{
α+ β

2
(1− ρ)±

√
(1 +

β

2
||Nyy||)2 +

(α− β)2

4
(1− ρ)2

}
.
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Furthermore, one obtains with an estimate based on the condition (3.65) that

e =1− αβ(1− ρ)det(D)−1

(
α

4
||Gũ||2 +

1 + β
2 ‖Nyy‖

2(1− ρ)
‖Gũ‖‖Nyũ‖+

β

4
‖Nyũ||2

)

≥ 1− 1

σ

(√
a

2
‖Gũ‖+

√
β

2
‖Nyũ‖

)2

=: ẽ > 0.

The Schur complement is positive due to the condition (3.68). It holds for the smallest
eigenvalue of M̃s that

λmin(M̃s) ≥ min{λ(D), ẽ}.
This yields for the smallest eigenvalue of A that

λmin(A) ≥ min

{
α+ β

2
(1− ρ)−

√
(1 +

β

2
‖Nyy‖)2 +

(α− β)2

4
(1− ρ)2, ẽ, λ(B̌)

}
=: λA.

Next, one may examine the eigenvalues of E1 and E2. Exploiting again [280, Lemma 1],
one obtains

λmin(−E1) = −
(
λmax(hyh

>
y )
)1/2

= −‖hy‖

and

λmin(E2) = −
(
λmax

(
B̌(hyh

>
y + huh

>
u)B̌

))1/2
= −‖B̌(hyh

>
y + huh

>
u)B̌‖1/2

≥ −‖B̌‖‖hyh>y + huh
>
u‖1/2.

Hence, Ms and therefore also M is positive definite if

λA −
(
β
2 ‖hy‖+ α

2 ‖B̌‖ ‖hyh>y + huh
>
u‖1/2

)
> 0,

yielding the assertion.

As a result, it can be shown that under the given conditions the augmented one-shot
iteration can be used together with an appropriate line search in a descent algorithm to
find a stationary point of the augmented Lagrangian, and the algorithm will converge
locally to a stationary point of the optimization problem (3.48).

3.2.4.2. Choice of Preconditioners

It can be shown that condition (3.68) is fulfilled for

B � 1

σ
(αG>uGu + βN>yuNyu). (3.70)

The proof of these assertions can be lead analogously to the one in Hamdi and
Griewank [103]. The preconditioner B is strongly related to the Hessian ∇uuLa with
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respect to the design. This can be shown in a similar way as done in Section 3.2.3.2 by
extending the derivations to the modified augmented Lagrangian. The main steps of the
results of [278] are presented in the following.

One can consider the optimization problem

min
∆u

La(y + ∆y, ȳ + ∆ȳ,u+ ∆u,µ+ ∆µ). (3.71)

In the following, the use of La without any arguments implies the evaluation at (y, ȳ,u,µ).
When using a quadratic approximation of the double augmented Lagrangian one obtains
the minimization problem

min
∆u

s>∇La +
1

2
s>∇2Las,

which leads to

min
∆u

E(∆u) (3.72)

with

E(∆u) = ∆u>(∇uLa +∇uȳLa∆ȳ +∇uyLa∆y +∇uµLa∆µ) +
1

2
∆u>∇uuLa∆u

≈ ∆u>∇uLa(y + ∆y, ȳ + ∆ȳ,u,µ+ ∆µ) +
1

2
∆u>∇uuLa∆u.

The solution to the optimization problem based on the last approximation is given
by ∆u = −∇−1

uuL
a(y, ȳ,u,µ)∇uLa(y + ∆y, ȳ + ∆ȳ,u,µ + ∆µ) for a positive definite

∇uuLa. Therefore, one identifies B ≈ ∇uuLa. The resulting choice for the precondi-
tioner is based on

B = αG>uGu + αh>uhu + βN>yuNyu +Nuu (3.73)

with Nuu � 0 which is equivalent to the Hessian ∇uuLa if state and adjoint feasibility
as well as the equality constraints are satisfied. Again, to fulfill the condition (3.70), one
uses B̃ := 1

σB.
The choice of the constraint multiplier preconditioner B̌ can be motivated similarly

(see [280]). The optimization problem

min
∆µ

La(y + ∆y, ȳ + ∆ȳ,u+ ∆u,µ+ ∆µ) (3.74)

can be formulated. Using a quadratic approximation of La one obtains

min
∆µ

s>∇La +
1

2
s>∇2Las,

which can be further approximated by

min
∆µ

E(∆µ)
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with the objective function

∆µ>(∇µLa +∇µyLa∆y +∇µȳLa∆ȳ +∇µuLa∆u) +
1

2
∆µ>∇µµLa∆µ

≈ ∆µ>∇µLa(y + ∆y, ȳ + ∆ȳ,u+ ∆u,µ) +
1

2
∆µ>∇µµLa∆µ =: E(∆µ)

as a similar optimization problem. As one has ∇µµLa = βhyh
>
y , one can only assume

positive semidefiniteness of ∇µµLa. Therefore, the above optimization problem is mo-
dified by adding a quadratic penalty term for µ such that the problem is bounded.

The solution of the modified optimization problem

min
∆µ

∆µ>∇µLa(y + ∆y, ȳ + ∆ȳ,u+ ∆u,µ)

+
1

2
∆µ>∇µµLa∆µ+

ε

2
‖∆µ‖2

with ε > 0 being sufficiently small is defined by

∆µ = −(∇µµLa + εI)−1∇µLa(y + ∆y, ȳ + ∆ȳ,u+ ∆u,µ).

From ∆µ = −B̌−1h one can identify the positive definite preconditioner

B̌ = βhyh
>
y + εI (3.75)

if adjoint feasibility is fulfilled.
In practice, if the inversion of B̌ is computationally expensive, a low-rank update

to B̌−1 can be used as an approximation. One can modify the double augmented La-
grangian by adding a quadratic penalty term for µ, such that

L̃a = La +
ε

2
‖µ‖2 (3.76)

and ∇µµL̃a = βhyh
>
y + εI. Then the approximation

B̌∆µ ≈ ∇µL̃a(y, ȳ,u,µ+ ∆µ)−∇µL̃a(y, ȳ,u,µ) (3.77)

can be used as a secant equation for a BFGS update of B̌−1.
The above derivations of [280] neglect the condition (3.67) involving the norm and

the eigenvalues of B̌. The present paragraph gives a closer look at one condition on B̌,
namely

λmin(B̌) >
β

2
‖hy‖+

α

2
‖B̌‖‖hyh>y + hyh

>
y ‖1/2. (3.78)

Since B̌ is symmetric positive definite, one has ‖B̌‖ = λmax(B̌). One may observe that
the ratio of the largest and the smallest eigenvalue, i.e., the condition number, has to
fulfill the property

κ(B̌) =
λmax(B̌)

λmin(B̌)
<

2− β(λmin(B̌))−1‖hy‖
α‖hyh>y + huh>u‖1/2

. (3.79)
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Additionally, since the condition number has to be positive it is required that the in-
equality

λmin(B̌) >
β

2
‖hy‖ (3.80)

holds, giving an additional condition for the minimum eigenvalue of B̌. Both conditions
on B̌ can be used to derive a specific choice for B̌.

For the specific choice of the preconditioner given by (3.75) one has λmin(B̌) = ε and
λmax(B̌) = β‖hy‖2 + ε. Thus, one may choose a specific ε to fulfill the above conditions.
Since this will not necessarily result in a sufficiently small ε, it leads to a different
interpretation of the preconditioner. Alternatively, one can derive new conditions on α
and β depending on ε such that condition (3.79) and (3.80) are fulfilled.

The first option, for example, gives

ε > (1− α

2
‖hyh>y + huh

>
u‖1/2)−1(

β

2
‖hy‖+ β‖hy‖2

α

2
‖hyh>y + huh

>
u‖1/2),

for (2−α‖hyh>y +huh
>
u‖1/2) > 0, which means that ε has to be large enough and α has

to be small enough. This gives further restrictions on an upper bound for α.
When looking at the remaining conditions on α and β, one can observe from The-

orem 16 that, next to condition (3.68) for the design space preconditioner B and the
fundamental condition (3.65), β has to be small enough and condition (3.61) is implied
by

αβ‖hy‖2 > 1. (3.81)

Thus, if β has to be small, α has to be large enough. This is already observed for
the fundamental condition. As a result, for the specific choice of the preconditioner,
one obtains an upper and a lower bound on α. This bound might be too restrictive,
depending on the choice of ε and β.

Note that it might be advantageous to introduce an additional parameter in the
penalty term of the augmented Lagrangian associated with the equality constraints in-
stead of sharing the parameter α with the state constraint. This helps to avoid the
direct influence of the constraint preconditioner on the choice of α, and implicitly on
the convergence of the state equation. Introducing the additional parameter would give
more freedom to the choice of parameters. A thorough investigation is omitted in the
following, but one may observe that this would result in the fact that conditions (3.61)
and (3.79) are independent of α.

3.2.5. Bound Constraints in the One-Shot Approach

The feasible design space for most shape optimization problems is, among other con-
straints, constrained by lower and upper bounds. In this section, the aim is to transfer
the general procedure to tackle bound constraints in iterative optimization methods to
one-shot methods. In [150], the limited BFGS update with a treatment of bound con-
straints is used for building the preconditioner in the one-shot method. No line search
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strategy is used, and no details of the implementation are given. In this section, it is
intended to describe a strategy for integrating bound constraints. The integration of
bound constraints is also of importance when using the one-shot approach in the hy-
brid strategy described in Chapter 2. Furthermore, the handling of bound constraints
allows the extension of the augmented one-shot approach to problems with inequality
constraints.

Therefore, before turning towards the introduction of bound constraints, one may also
have a quick look at the extension of the one-shot strategy to inequality constraints. The
question arises if the multiplier update can be adjusted in such a way that it does not
penalize constraint fulfillment. This requires, for example, that, when using inequality
constraints g(y,u) ≤ 0, the corresponding multiplier is not negative. This means that
ηk+1
i = min(η̃k+1

i , 0) for i = 1, . . . , s with η̃k+1
i obtained from the original multiplier

update. This is a variant of augmented Lagrangian methods (see e.g. [206, p.523f]) and
is also applied in the context of one-shot methods in [210]. However, the corresponding
augmented Lagrangian in its general form is non-smooth. For a rigorous convergence
analysis, this would require a suitable reformulation. In general, it is not clear how the
modified multiplier update influences the choice of the design space preconditioner. The
strategy is not pursued in the following. Instead, this work presents another option via
bound constraints.

Inequality constraints can be transformed into equality constraints with the help of
slack variables as introduced in Section 2.3.2.4 in the formulation (2.36). This leads
to additional bound constraints for the slack variables, which can either be handled by
augmenting the objective functions with a barrier function, as done in interior-point
strategies, or by using gradient projection methods, which will be introduced in the
following.

It is important to remark that the introduction of bound constraints in the one-shot
strategy based on gradient projection does not interfere with the theoretical results and
the construction of solution strategies based on the doubly augmented Lagrangian. The
reason for that is that one can explicitly include the bound constraints in the original
optimization problem (3.48) and in the optimization problem of the doubly augmented
Lagrangian and treat the subproblem with fixed multipliers given by

min
u∈Ũad

La(y, ȳ,u, µ̃). (3.82)

Here, the original admissible design space Uad is extended by the slack variables and,
accordingly, all bound constraints are defined by Ũad. The multiplier µ̃ ∈ Rr+s acts on
the collection of original equality constraints and the equality constraints arising from
the reformulation of the inequality constraints.

First approaches towards bound constraints for gradient-based search algorithms can
be found in [18], where gradient projection methods were proposed. One may consider
the simplified bound constrained minimization problem

min
x∈Ω

f(x), (3.83)
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with Ω = {x ∈ Rn | Li ≤ xi ≤ Ui for i = 1, . . . , n} and finite or infinite Li and Ui. The
projection onto the bound constrained design space Ω is then given as

P (x)i =


Li xi ≤ Li,
xi Li < xi < Ui,

Ui xi ≥ Ui.

Furthermore, A(x) is the active set with all indices for which the bound is reached, i.e.,
xi = Li or xi = Ui, and its complement I(x) the inactive set, as introduced in Section
2.1.1. In the following, a set projection PS onto a given set S is defined as

PS(x)i :=

{
xi if i ∈ S,
0 else.

As the gradient does not necessarily vanish at the bound constraint, an alternate
necessary condition for bound constrained problems is given.

Theorem 18. Let f be continuously differentiable in Ω. The first-order necessary con-
dition for a local minimum at a point x∗ is

∇f(x∗)(x− x∗) ≤ 0 ∀ x ∈ Ω. (3.84)

Proof. A proof can be found in [142][p.88].

Second-order necessary and sufficient conditions can also be found in [142].
For a Quasi-Newton or Newton scheme it is necessary to consider a reduced (approxi-

mate) Hessian R. The design is then updated by

xR(γ) := P (x− γR−1∇f(x))

and γ > 0 is chosen such that the condition for sufficient decrease

f(xR(γ))− f(x) ≤ −c1∇f(x)>(x− xR(γ)) (3.85)

holds and ideally also the curvature condition, i.e.,

∇f(xR(γ))(xR(γ)− x)‖ ≤ c2‖∇f(x)(xR(γ)− x)‖. (3.86)

It is not feasible to use a standard reduced Hessian or standard Hessian approxima-
tions for constructing a descent direction. Instead following the propositions of [18], an
underestimated inactive set Iε is used, which is a complement of the ε-active set Aε
with

Aε := {i | Ui − xi ≤ ε or xi − Li ≤ ε}

Typically

ε < min(ε̃, ||x− xR(1)||) (3.87)
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is chosen. The variable ε̃ > 0 is a small constant. For finite bound constraints, it
is proposed in [142] to choose 0 ≤ ε̃ < mini [(Ui − Li)/2]. Accordingly, the reduced
(approximate) Hessian R of the (approximate) Hessian H is

R = PAε + PIεHPIε =

{
δij if i or j ∈ Aε,
Hij otherwise.

(3.88)

The update of the generalized inverse of R can be formulated as

R−1
k+1 =

(
I − sPr

>
P

r>P sP

)
PIεR

−1
k PIε

(
I − rPs

>
P

r>P sP

)
+
sPs

>
P

r>P sP
(3.89)

with sP = PIε(s) and rP = PIε(r).
The updated algorithm to build the inverse of the approximated Hessian with the

help of a BFGS update is given in Algorithm 7 (see e.g. [142]). The initial value for the
approximated inverse is given by I but can be chosen differently.

Algorithm 7: BFGS method with bound constraints.

Input: x0, µ1, µ2

Function:
Find ε using Equation (3.87) based on x0 − P (x0 −∇f(x0))
R−1

0 = PIε(x0)IPIε(x0)

while ||xk − P (xk −∇f(xk)|| ≥ µ1 + µ2||x0 − P (x0 −∇f(x0)|| do
dk = −PAε(xk)∇f(xk)− PIε(xk)R

−1
k PIε(xk)∇f(xk)

Find γ such that Equation (3.85) holds.
Find ε using Equation (3.87) based on xk − P (xk −∇f(xk))
xk+1 = P (xk + γdk)
rk+1 = PIε(xk+1)(∇f(xk+1)−∇f(xk))
sk+1 = PIε(xk+1)(xk+1 − xk))
if r>k+1sk+1 > 0 then

Find R−1
k+1 with the help of the update rule (3.89) using Iε(xk+1), rk+1, and

sk+1

else
R−1
k+1 = PIε(xk+1)IPIε(xk+1)

end if
k = k + 1

end while

The line search strategy in Algorithm 7 does not guarantee for fulfilling the curvature
condition. Instead, if this condition is not satisfied, one resets R−1

k to the identity matrix.
Note that the approximation R−1

k is built using old iterates that were based on different
estimates of the inactive set. Therefore, it has to be projected before applying the update
for R−1

k+1. It can be advantageous in terms of consistency and memory requirements to
rebuilt the approximation with the help of a limited-memory BFGS method for bound
constraints, which is presented in Section A.2.5 of the appendix.
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When applied in the one-shot approach, the idea is to use Algorithm 7 or the limited-
memory version for the BFGS update based on the gradient of the doubly augmented
Lagrangian.

The design variable u is then updated with the formula

uk+1 = P (uk + γdk), (3.90)

with

dk := −PAε(uk)Nu − PIε(uk)B
−1
k PIε(uk)Nu,

where Nu is evaluated at (yk, ȳk,uk,µk)
> and

ε = min (ε̃, ||uk − P (uk −Nu)||) .

In the following, Lak(ũ) denotes an evaluation at (yk, ȳk, ũ,µk)
>. The line search for γ

is based on the condition

Lak(uk+1) ≤ Lak(uk)− c1∇uLak(uk)>(uk+1 − uk). (3.91)

The inverse of the preconditioner B of the one-shot approach is constructed from

yk = PIε(uk+1)(∇Lau(yk, ȳk,uk + ∆uk,µk)−∇Lau(yk, ȳk,uk,µk)

and sk = PIε(uk+1)(uk+1 − uk)).

3.2.6. Algorithmic Differentiation

As already explained in Section 3.1.3.2, it is advantageous to use the reverse mode of algo-
rithmic differentiation (Griewank and Walther, [93]) for obtaining the needed derivatives
in gradient-based optimization methods using the discrete adjoint method. Algorithmic
differentiation is sometimes also referred to as automatic differentation. A feature of
algorithmic differentiation is that the function gradients can be calculated accurately
to working precision, which is advantageous for the convergence of gradient-based op-
timization methods. Accurate derivatives are, for example, needed in projection-based
algorithms for constrained optimization problems or for enabling a robust Hessian ap-
proximation in quasi-Newton methods.

The general idea is to differentiate a function or algorithm implemented as a computer
program. The implementation requires that the algorithm can be broken down into a
concatenation of elementary operators (e.g. +,*,sin). A differentiated version of the
algorithm can then be established by using the chain rule of differentiation.

To present the basic ideas of algorithmic differentiation, one can considers a function

F : D ⊂ Rn → Rm,y = F (x).

Suppose F describes the function that evaluates a concatenation of elementary functions
Φi with i = 1, . . . , p that are differentiable at the point x ∈ Rn, such that

F (x) = Φp ◦ Φp−1 ◦ . . . ◦ Φ1(x). (3.92)
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Then the Jacobian of F in x, which is denoted as F ′(x), can be obtained by using the
chain rule of differentiation

F ′(x) = (Φ′p ◦ Φp−1 ◦ . . . ◦ Φ1(x)) · (Φ′p−1 ◦ Φp−2 ◦ . . . ◦ Φ1(x)) · . . . · Φ′1(x), (3.93)

or, when defining intermediate values x0 := x and xi = Φi(x
i−1) for i = 1, . . . , p, by

F ′(x0) = Φ′p(x
p−1) · . . . · Φ′1(x0). (3.94)

There exist two different approaches (or modes) for AD, namely the tangent-linear and
the reverse approach.11

This section gives a brief introduction to algorithmic differentiation, focusing on the
application in the one-shot method. In the following, both approaches, the tangent-linear
and the reverse mode, are presented alongside with additional information on imple-
mentation strategies and second-order derivative computations (see Section 3.2.6.3). To
formalize the robust discrete adjoint strategy based on algorithmic differentiation, Sec-
tion 3.2.6.4 presents different methodologies for the application of AD to the fixed-point
iterations. Finally, the calculation of the needed derivatives of the one-shot approach is
discussed.

3.2.6.1. Tangent-linear Mode

In the tangent-linear mode of AD the product in Equation (3.93) is evaluated from
right to left. When applying the tangent-linear mode, instead of directly evaluating the
Jacobian one ends up with the evaluation of

ẏ = F ′(x)ẋ, (3.95)

where ẏ = ∂y(t)/∂t and ẋ = ∂x(t)/∂t are directional derivatives, which can be inter-
preted as tangents of x(t) and y(t). This evaluation results from applying the chain rule
when considering the change of y under an input t, as

∂y(t)

∂t
=

∂

∂t
F (x(t)) = F ′(x(t))

∂x(t)

∂t
.

The Jacobian can be obtained from ẏ by evaluating Equation (3.95) with ẋ = ei for
i = 1, . . . , n resulting in n evaluations of the tangent-linear mode.

A tangent-linear version of an algorithm can, for example, be generated by augment-
ing the original code. Each statement in the code is differentiated according to the
rule of Equation (3.95). To show the general procedure one can make use of Single As-
signment Code (SAC), where each elementary function φj depending on some values vi
(i ≺ j, where ”≺” denotes the dependence relation) is assigned to a variable vj . The n
independent input variables are assigned to v0, . . . , vn−1, and the applications of elemen-
tary functions are assigned to q intermediate variables vn, . . . , vn+q−1 and m variables

11The tangent-linear mode is also referred to as the forward mode of AD. The notation pendant to the
tangent-linear mode is to refer to the reverse mode as the adjoint mode. It reflects the idea of the
general adjoint approach to find sensitivities but is not to be confused with it.
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vn+q, . . . , vn+q+m−1, which are then assigned to the dependent output variables.12 The
original SAC is:

vj = xj j = 0, . . . , n− 1 (independent input variables)

vj = φj(vi)i≺j j = n, . . . , n+ q +m− 1 (q intermediate variables)

yj = vn+q+j j = 0, . . . ,m− 1 (dependent output variables),

and the augmented tangent-linear version is:

v̇j = ẋj j = 0, . . . , n− 1

vj = xj j = 0, . . . , n− 1

v̇j =
∑
i≺j

∂φj
∂vi

v̇i j = n, . . . , n+ q +m− 1

vj = φj(vi)i≺j j = n, . . . , n+ q +m− 1

ẏj = v̇n+q+j j = 0, . . . ,m− 1

yj = vn+q+j j = 0, . . . ,m− 1.

3.2.6.2. Reverse Mode

The idea of the adjoint mode of AD is to evaluate the product in Equation (3.93) in
reverse order from left to right. Thus, it produces a product of the transposed Jacobian
and a vector that is given by

x̄> = ȳ>F ′(x) or x̄ = F ′(x)>ȳ, (3.96)

where x̄> = ∂a/∂x and ȳ> = ∂a/∂y can be interpreted geometrically as normals and x̄
and ȳ are referred to as the vector of adjoint variables or adjoint vector. The evaluation
can be derived by looking at the change of an output a under the input x, as

∂a

∂x
=
∂a

∂y

∂y

∂x
=
∂a

∂y
F ′(x).

The Jacobian can be obtained from x̄ by evaluating Equation (3.96) with ȳ = ei for
i = 1, . . . ,m resulting in m evaluations of the adjoint mode. As a result, this approach
is more efficient for n� m.

For reasons of completeness, the procedure for the reverse chain rule evaluation

x̄> = ȳ>Φ′p(x
p−1) · . . . · Φ′1(x0) (3.97)

is to evaluate intermediate values(
x̄p−1

)>
= ȳ>Φ′p(x

p−1), . . . , x̄> =
(
x̄0
)>

=
(
x̄1
)>

Φ′1(x0).

12Similarly to Equation (3.92), one may express the SAC as a concatenation of functions, where Φ1 is
identified as the mapping of x to the variable space, Φp is the projection of the variables to y, and
Φ2, . . . ,Φp−1 are mappings in the variable space, that can be related to the elementary operations
φn, ..., φn+q+m−1, i.e., q = p−m− 2.
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This means that the calculated values (e.g. xp−1) have to be present at the beginning
of the evaluation. The general strategy is to execute the original code in a first run and
store all needed intermediate values. Afterwards, the augmented part is executed in a
second (or reverse) run. In SAC this reads:

vj = xj j = 0, . . . , n− 1

vj = φj(vi)i≺j j = n, . . . , n+ q +m− 1

yj = vn+q+j j = 0, . . . ,m− 1

v̄n+q+j = ȳj j = m− 1, . . . , 0

v̄i =
∑
j:i≺j

v̄j
∂φj
∂vi

i = n+ q − 1, . . . , 0

x̄j = v̄j j = n− 1, . . . , 0.

For programming it is more convenient to relate each assignment to an adjoint assign-
ment, which is why the fifth line of the above SAC can be rewritten as the incremental
statement:

(v̄i)i≺j+ = v̄j
∂φj
∂vi

j = n+ q +m− 1, . . . , n.

As a result, using the reverse mode of algorithmic differentiation requires only one run
of the augmented code for calculating the state and the adjoint variables. The time that
is needed for running the reverse mode of AD is only a small multiple of the time needed
for running the original code. The utilization of intermediate values is a drawback of the
reverse mode since intermediate values might be overwritten during the original run. As
a result, these have to be either stored during the execution of the original statements
or recomputed when they are needed. Storing values or statements is sometimes also
referred to as recording or taping and will increase the overall memory consumption.
One the other hand, when recomputing values, the computational costs are increased.
Checkpointing strategies are often used as a compromise between time and memory.
The code is separated into blocks, for which only the input values that are needed to
execute the block from a given point are stored. This storage point is also referred to as
a snapshot. When the reverse run reaches such a block, the intermediate values for the
individual block are recalculated using the snapshot and stored to be used in the reverse
run.

There exist two different strategies for the implementation of algorithmic differentia-
tion. These are the application of source code transformation or operator overloading.
In source code transformation, the original source code is augmented by the correspond-
ing statements for the tangent-linear or the reverse mode as done before for the SAC.
There exist tools like Tapenade [106] that enable the code augmentation in an automated
fashion. Tapenade is applicable for code in Fortran or C. The main drawback of such
an approach is that code augmentation has to be repeated when the original code is
changed, causing a maintenance overhead. Furthermore, code optimization concerning
runtime and memory is rather difficult and often has to be done manually. Operator
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overloading does not require as much code transformation as source transformation,
but it can only be implemented in languages that support operator overloading, e.g.,
C++. In operator overloading, the original data type and all respective operators are
augmented, and the original data type is replaced with the augmented data type. In
tangent-linear mode, the augmented data type is simply used in the overloaded opera-
tors to compute the tangent-linear derivative according to Equation (3.95) in addition
to the primal computation. When using the reverse mode of AD in this context, a graph
(tape) is set up at run time. It is reversed or interpreted in the adjoint run to accumulate
derivatives. AD via operator overloading can be enabled with tools like ADOL-C [279]
or CoDiPack [231]. The augmented graph generally causes a high memory consumption.
The advantage of operator overloading is that it is easily maintainable since, due to the
use of the augmented data type, all code changes are automatically integrated into the
derivative computation. Furthermore, since only the data type is changed and some
access functions are added in the augmented version, the code remains easily accessible
for users.

In this work, it is made use of algorithmic differentiation via operator overloading with
the help of CoDiPack (see Section 3.3.1.1).

3.2.6.3. Second-Order Derivatives

Second-order derivatives can be obtained with algorithmic differentiation by any possible
combination of modes. This gives four possible options, namely the tangent-linear mode
over the tangent-linear mode, the tangent-linear mode over the reverse mode, the reverse
mode over the tangent-linear mode, or the reverse mode over the reverse mode. The
method of choice is often to use tangent-linear over reverse mode, or in short tangent over
reverse. This means that the tangent-linear mode is applied to the result of applying
the reverse mode to a function. It is preferred as, for example, the reverse over tangent-
linear mode would involve the additional taping of all tangent variables. For tangent
over reverse mode, on the other hand, the taping itself and the tape evaluation are done
in tangent-linear mode [202].

One considers again y = F (x) and denotes the Hessian of F as F ′′. Then the tangent
over reverse mode results in the evaluation of

ẏ =F ′(x)ẋ (3.98a)

y =F (x) (3.98b)

˙̄x> = ˙̄y>F ′(x) + ȳ>F ′′(x)ẋ (3.98c)

x̄> =ȳ>F ′(x), (3.98d)

where the second step, which is the application of the tangent-linear mode, corresponds
to Equations (3.98a) and (3.98c). The product of the Hessian with a vector v can be
obtained from ˙̄x by setting ˙̄y = 0, ȳ = 1 and ẋ = v.
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3.2.6.4. AD-Based Discrete Adjoint Approach

The present section intends to show the application of algorithmic differentiation in the
context of the optimization problem (3.17) based on the fixed-point iteration.

Algorithmic differentiation can be applied to an implementation of an iteration of the
fixed-point equation and an evaluation of the objective function, i.e.,

ỹ =G(y,u), (3.99)

z =f(y,u).

The fixed-point iteration and the objective function are evaluated at y. The result of an
evaluation of G is denoted as ỹ and the result of an evaluation of f as z.

Using the reverse mode of algorithmic differentiation one can write the resulting eval-
uation as (

ȳ
ū

)
=

(
Gy(y,u) Gu(y,u)
fy(y,u) fu(y,u)

)>( ¯̃y
z̄

)
. (3.100)

When setting z̄ = 1, one obtains the derivative of the shifted Lagrangian N(y, ¯̃y,u) with
respect to y and u as(

ȳ
ū

)
=

(
∇yf(y,u) +Gy(y,u)> ¯̃y
∇uf(y,u) +Gu(y,u)> ¯̃y

)
=

(
Ny(y, ¯̃y,u)>

Nu(y, ¯̃y,u)>

)
. (3.101)

This shows the connection of the reverse mode of algorithmic differentiation to the
necessary conditions for optimality. For the fixed-point (y∗, ȳ∗)> with y∗ = G(y∗,u),
one obtains the adjoint equation, which has to be fulfilled at the stationary point, from
¯̃y = ȳ∗.

The above considerations require that the fixed-point equation can be differentiated at
a converged state and that the corresponding fixed-point iterator is contractive. If this
is possible, the fixed-point equation for the adjoint converges to a fixed-point with the
same contraction rate as the state iteration. The resulting adjoint solution can be used
to provide a derivative that is consistent with the derivative of the objective function up
to machine precision. However, often it cannot be assumed that the state equation is
fully converged. As explained before, there exist different strategies to set up and iterate
the adjoint equation.

Suppose that starting values y0 and ȳ0 are given. One strategy is to differentiate
the whole computational graph for solving the state equation with all intermediate re-
sults, and to iterate the adjoint equation by using the corresponding statements and
intermediate results in reverse order, i.e.,

yk+1 = G(yk,u) for k = 0, . . . , S (3.102a)

ȳk+1 = Ny(yS−k, ȳk,u)> for k = 0, . . . , S. (3.102b)

The derivative with respect to the design u is then build by differentiating the evaluation
of the objective function f . The corresponding adjoint variable is given by

ū = ∇uf(yS ,u) +

S∑
i=0

Gu(yi,u)>ȳS−i.
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One may refer to this as the black-box adjoint approach. The black-box adjoint approach
is robust in the sense that it will always provide derivatives that are consistent with the
solution strategy for the state equation. Even if the state equation is not fully converged,
derivative information will be provided. However, it is unclear to what extend such
information is useful. Additionally, the reversal of the state iteration may require a
significant amount of memory. Thus, the approach only becomes feasible when using,
e.g., checkpointing techniques.

If the state equation is converged to a solution yS with sufficient accuracy, i.e., yS ≈
y∗, in the reverse accumulation (see [38]) strategy only the computational graph for
evaluatingG(yS ,u) is stored. Note that the above considerations based on the stationary
point y∗ can be seen as the ideal case. The iteration procedure for the adjoint variable
reads

ȳk+1 = Ny(yS , ȳk,u)> for k = 0, . . . , S̃. (3.103)

Since contractivity of the iterator G is expected near the solution of the state equation,
the adjoint iteration converges to a fixed-point. The number of iteration steps can be
chosen independently of S. The adjoint of the design variable is given by

ū = Nu(yS , ȳS̃ ,u)>.

It approximates the derivative of the objective function with the same order of accuracy
as the objective function itself.

In the piggy-back approach and also in the one-shot approach, the state and the
adjoint equation are iterated simultaneously resulting in the procedure

yk+1 = G(yk,u) (3.104a)

ȳk+1 = Ny(yk, ȳk,u)> (3.104b)

for k = 0, . . . , S. Properties of the piggy-back approach were already mentioned in
Section 3.2.2. If needed, e.g., for the one-shot approach, the adjoint variable of u can
be obtained in each step as

ūk+1 = Nu(yk, ȳk,uk)
>. (3.105)

When using the tangent over reverse mode, the second-order derivative can be derived
by applying the tangent-linear mode to Equations (3.99) and (3.100), resulting in

˙̃y
ż
˙̄y
˙̄u

 =


Gy Gu 0 0
fy fu 0 0

¯̃y>Gyy + z̄>fyy ¯̃y>Gyu + z̄>fyu G>y f>y
¯̃y>Guy + z̄>fuy ¯̃y>Guu + z̄>fuu G>u f>u



ẏ
u̇
˙̃̄y
˙̄z

 . (3.106)

Note that, when used in a piggy-back fashion, the convergence of the second-order adjoint
variables lags behind the convergence of the state variables by a factor of k2 (see [92]).
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3.2.6.5. AD in the One-Shot Approach

This section presents the use of AD to obtain the derivatives for the one-shot approach.
The piggy-back iteration given in (3.104) is the basis for the single-step one-shot

approach. One can extend the framework to integrate additional equality constraints h
by introducing the evaluation of the equality constraints denoted as

w = h(y,u)

in the system (3.99).
If the objective function and the constraint functions are evaluated after one fixed-

point iteration, the adjoint output z̄ of the objective function is set to z̄ = 1, and the
adjoint output of the constraint functions is set to w̄ = µk, one obtains the modified
piggy back iteration

yk+1 = G(yk,u) (3.107a)

ȳk+1 = Ny(yk, ȳk,u,µk)
>. (3.107b)

The derivatives Nu, which are needed for the design variable update in each iteration,
are then given by

ūk+1 = Nu(yk, ȳk,uk,µk)
>. (3.108)

For constructing the preconditioner B, one needs the gradient of the doubly augmented
Lagrangian with respect to the design variables. For now, it is assumed that one wants
to compute the doubly augmented Lagrangian evaluated with all variables at the iterate
k. It is given by

∇uLa = αG>u(G− yk) + βN>yu(N>y − ȳk) +N>u + αh>uh, (3.109)

where all functions without arguments are evaluated at the iterate k. When taping
the state iteration, the calculation of the objective function and the calculation of the
equality constraints, the tape evaluation gives

ūk+1 = ∇uf(yk,uk)z̄ +Gu(yk,uk)
> ¯̃y + hu(yk,uk)

>w̄.

The term N>u is obtained from a tape evaluation with z̄ = 1, w̄ = µk and ¯̃y = ȳk
(see Equation (3.108)). To obtain G>u(G− yk) + h>uh, one may evaluate the same tape
a second time. One has to set ¯̃y to ∆y := G(yk,uk)−yk and the corresponding adjoint
of h, i.e., w̄, to h(yk,uk), as well as z̄ = 0.

The second-order derivative term βN>yu(N>y − ȳk) can either be obtained from second-
order adjoints or can be approximated with one-sided finite differences for the direction
y, such that

N>yu∆ȳk =
1

δ
(Nu(yk + δ∆ȳk, ȳk,uk,µk)−Nu(yk, ȳk,uk,µk)) +O(δ) (3.110)
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with ∆ȳk = ȳk+1− ȳk. This requires an additional taping and tape evaluation with the
updated state variable.

With the help of second-order adjoints one can obtain the second-order derivative term
from the second-order adjoint ˙̄u as described in (3.106) with the additional evaluation
of h, such that

˙̄u> =(¯̃y
>
Guy + z̄fuy + w̄>huy)ẏ

+ (¯̃y
>
Guu + z̄fuu + w̄>huu)u̇+ ˙̃̄y>Gu + ˙̄zfu + ˙̄w>hu.

To obtain Nuy(N>y − ȳ) from the first term one can set z̄ = 1, ¯̃y = ȳ and w̄ = µ as

usual and the direction ẏ = (N>y − ȳ). It is furthermore necessary to set ˙̄z, ˙̄w, u̇ and
˙̃̄y to zero. As the direction ẏ contains the update for the adjoint state, which is only
available after evaluating the tape of the state iteration and the respective functions
evaluations, one has to set up a new tape. Similar to the use of finite differences, one
ends up with an additional tape recording and tape evaluation. If the preconditioner B
is constructed based on a second evaluation of ∇uLa at a modified design, all steps have
to be repeated.

The preconditioner B̌ for the multiplier update is based on the derivative hy. The
derivative of the i−th constraint function can be obtained by evaluating the original
tape setting ¯̃z to ei, i.e., the i−th unit vector, and all other values to zero. The tape
evaluation has to be repeated for all i = 1, . . . , r. If the preconditioner is obtained
using updates based on the secant equation (3.77), the derivative of the modified doubly
augmented Lagrangian L̃a with respect to µ can be found with AD. One has, e.g.,

∇µL̃a(yk, ȳk, uk, µk) = β∆ȳkhy(y,u) + h(y,u) + εµ,

and the first term requires a tape evaluation with ¯̃z = β∆ȳk. The term

∇µL̃a(yk, ȳk, uk, µk + ∆µk)

requires an additional taping and evaluation with the modified variables.

3.3. Application and results

In this section, the proposed strategy for the integration of constraints in the one-shot
approach is applied to the aerodynamic shape optimization problem, as presented in
Section 2.4.1. Section 3.3.1 comments on the implementation of the strategy in SU2.
Finally, in Section 3.3.2, the results of various studies are shown, focusing on the appli-
cation for multi-objective aerodynamic shape optimization. A further application to the
topology optimization of structures is shown in Section A.2.3 of the appendix.

3.3.1. Implementation in SU2

This section provides details of the realization of the extended approach that was pro-
posed in Section 3.2.4 and 3.2.5 in SU2. The section starts with the presentation of the
discrete adjoint methodology implemented in SU2. Afterwards, an algorithmic summary
and further details on the implementation of the one-shot strategy are given.
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3.3.1.1. Discrete adjoint in SU2

The discrete adjoint approach in SU2 is enabled by the differentiation of the fixed-point
iteration with the help of algorithmic differentiation (see e.g. [4]).

The discretization of the original partial differential equation is, for example, in the
case of fluid flow based on a finite volume method on a vertex-based median-dual grid
resulting in a given number of cells for a given mesh resolution. Let Ωi represent the
volume of the cell i and let R(y,u) be the residual equation comprising the residuals Ri
of the spatial discretization of each state equation (see e.g. (2.49)) in the respective cell
i. The vector y comprises the state variables yi in each cell i. Then one can identify the
discretized PDE constraint c(y,u) = 0 of problem (3.1) as

R(y,u) = 0. (3.111)

Commonly, this equation is solved iteratively using a pseudo-time integration method.
By using an implicit Euler scheme for the pseudo-time integration one ends up with the
linear system (

Dk(u) +Ry(yk,u)
)

∆yk = −R(yk,u) (3.112)

to be solved in each iteration k, with the update ∆yki := yk+1
i − yki and

(Dk)ij :=
|Ωi|
∆tki

δij .

Note that ∆tki is the pseudo-time-step that may be different in each cell due to the local
time-stepping technique.

Usually, the flow Jacobian Ry is approximated using a first-order approximation.
Thus, the implicit Euler discretization (3.112) naturally leads to a damped Newton
method for solving the discretized PDE constraint R(y,u) = 0, given by

yk+1 = yk − P (yk,u)R(yk,u) =: G(yn,u), (3.113)

with a preconditioner P ≈ (D + Ry)−1. By introducing the operator G one obtains a
fixed-point iteration.

It is assumed that the fixed-point iteration is contractive and, thus, converges to a
unique stationary point. Furthermore, it is natural to assume that G is stationary only
at feasible points of the residual formulation, i.e.,

R(y∗,u) = 0⇔ y∗ = G(y∗,u).

The discrete adjoint technique can now be derived in several ways. The approach
applied in SU2 is explained in detail in [4, 2]. The adjoint iteration is based on the reverse
accumulation strategy making use of the reverse mode of algorithmic differentiation.
Some simplifications are made to increase the overall efficiency of the AD-based discrete
adjoint method. In SU2, the so-called simplified recurrence can be utilized for updating
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the adjoint (see e.g. [90, 91]). The derivative of G, as defined in Equation (3.113), with
respect to y is given by

Gy(y,u) = I − Py(y,u)R(y,u)− P (y,u)Ry(y,u).

The idea of the simplified recurrence is to neglect the term PyR. If Py is uniformly
bounded the term vanishes when y converges to the steady state solution y∗. This is,
for example, given if the preconditioner is differentiable in a neighborhood of y (see
[91]). The simplification can then be used when updating the adjoint variable to result
in a simplified recurrence. It introduces a negligible error if the residual equation is
sufficiently reduced (see [4]). For more complex situations of G, where P cannot be
expressed explicitly, e.g., in multigrid methods, one has to be careful. However, the use
of the simplified recurrence is often still allowed [93].

For reasons of completeness, it is to note that an additional constraint x = M(u) has to
be considered in the optimization problem (3.48) when shape optimization is used. The
reason for that is that the computational mesh is subject to change. Let M : Rn → Rnx
be a linear function that formally contains the surface and mesh deformation. In SU2,
a mesh deformation routine using the Linear Elasticity method creates new mesh point
coordinates x ∈ Rnx . This introduces a dependency on the variable x(u) for all objective
and constraint functions. As a result, the modified Lagrangian with the modified shifted
Lagrangian Ñ associated to this problem reads

L̃(y, ȳ,x, x̄,u,µ) = Ñ(y, ȳ,x,µ)− y>ȳ + (M(u)− x)> x̄, (3.114)

where x̄ is the Lagrange multiplier associated with the mesh deformation constraint.
Analogously to (3.53), one obtains the fixed-point iterations for ȳ and x̄ as

ȳk+1 = Ñy(yk, ȳk,xk,µk)
>, (3.115)

x̄k+1 = Ñx(yk, ȳk,xk,µk)
>, (3.116)

and the update uk+1 = uk−B−1
k Mu(uk)

>x̄k can be obtained from x̄k. Equation (3.116)

is just an evaluation of Ñx at the current state.
The introduction of the additional constraint M(u)− x can be done similarly to the

state constraint by introducing a contractive fixed-point iteration with a carefully chosen
preconditioner B̃ for the mesh point coordinates x, namely

xk+1 = xk − B̃−1
k (M(uk)− xk). (3.117)

Equation (3.117) can then be iterated alongside the state variables, adjoint variables and
the design in a one-shot iteration similarly to (3.53). This necessitates the derivation
of new convergence properties based on a modified augmented Lagrangian L̃a with an
additional penalty term for the mesh update. Furthermore, a suitable preconditioner
that also ensures a good mesh quality for each update has to be derived.

As it is not the intention to focus on this kind of integration in the present work, it is
restricted to the situation where the linear system is solved in each one-shot iteration,
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and xk denotes the mesh corresponding to the respective design uk. This is a feasible
choice as, usually, the computational effort for solving the linear system is negligible
in comparison to the effort for solving the state equation. As a result, the solution of
the linear system can be interpreted as a projection step. This projection has to be
considered in the implementation of the method. Note that the projection step and its
corresponding adjoint version also have to be considered when constructing the design
space preconditioner B. To simplify and generalize the notation, these steps in the
design chain are again neglected in the following.

In previous works, the open-source tool CoDiPack was already applied to SU2 [4, 2]
to enable the robust AD-based discrete adjoint strategy presented above. The runtime
factor when comparing a state iteration of a three-dimensional flow solution with an
iteration of the adjoint equation is around 2.3 without any manual tuning [2]. Usually,
the factor for memory consumption is around 10 − 12. CoDiPack [231] is based on the
operator overloading approach and is specially designed for high-performance computing
and industrial applications. It provides different taping strategies, namely Jacobi taping
and primal value taping. In CoDiPack, algorithmic differentiation is applied to the
statement level instead of the operation level. The idea is to store only the information
for each statement instead of the information for all operations involved in the statement.
This usually increases the overall efficiency.

3.3.1.2. Optimization algorithm

As established before, the augmented Lagrangian (3.54) can be minimized with an appro-
priate line search for the determination of the step length γ using the descent direction

s(y, ȳ,u,µ) =


G(y,u)− y

Ny(y, ȳ,u,µ)> − ȳ
−γB−1Nu(y, ȳ,u,µ)>

−B̌−1h(y,u)

 (3.118)

of equation (3.53).
The following steps outline the basic framework of the adapted one-shot algorithm:

0. Initialization. Choose initial points y0 ∈ Y and u0 ∈ Uad, Lagrange multipliers
ȳ0 and µ0, ε > 0, parameters α and β and preconditioners B0 and B̌0. Set k = 0.

1. Step computation. Compute a descent direction sk(yk, ȳ,uk,µk) using (3.118).

2. Choose step length. Compute an efficient step length γk.

2. Updates. Update yk+1, ȳk+1, uk+1 and µk+1.

3. Stationarity test. If ||Nu(yk+1, ȳk+1,uk+1,µk+1)||2 < ε: STOP.

4. Prepare next iteration. Set k = k + 1, update Bk and B̌k, go to Step 1.

However, the success of the optimization depends on the details, i.e., the construction
of the preconditioners as well as the line search strategy. The following paragraphs
consider the respective implementation details.
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Preconditioner for design update The preconditioner B can be approximated using
the BFGS method with the secant equation

Bsk = rk (3.119)

with

rk := ∇uLa(yk, ȳk,uk + ∆uk,µk)−∇uLa(yk, ȳk,uk,µk) (3.120)

and sk := ∆uk, as proposed in [103]. This means that rk needs an additional evaluation
of the gradient of the doubly augmented Lagrangian, which causes the computational
effort for obtaining ∇uLa twice in each iteration of the optimization.

The use of a modified secant equation with

r̃k := ∇uLa(yk+1, ȳk+1,uk+1,µk+1)−∇uLa(yk, ȳk,uk,µk) (3.121)

has become a convenient alternative in one-shot methods. In general, this makes sense
since the result of the analysis gives that the preconditioner shall resemble (3.73) for
∆yk = 0 and ∆ȳk = 0. The modified secant equation can also be motivated by observing
that one can derive a preconditioner without using the approximation in the optimization
problem (3.72). The resulting optimal solution

B∆u = ∇uȳLa∆ȳ +∇uyLa∆y +∇uµLa∆µ+∇uuLa∆u

directly suggests the use of r̃k as an approximation (see [19]). Note that one has to
choose the modified preconditioner 1

σBk to ensure that it is large enough. This factor
can be included in the step length γ. Furthermore, the update rule (3.89) is used to
construct the inverse of Bk.

For reasons of efficiency, the present work uses a backtracking line search for finding
γ in the following and one sets B = I when the curvature condition r>k sk > 0 is not
fulfilled, which is common practice. The condition for sufficient decrease

La(yk+1, ȳk+1,uk+1,µk+1) ≤ La(yk, ȳk,uk,µk) + c1γd
>
k∇uLa(yk, ȳk,uk,µk) (3.122)

is consistent with the strategy for the BFGS update with

dk := −B−1
k Nu(yk, ȳk,uk,µk).

For the BFGS update step, ∇uLa is obtained for each iterate k with the reverse
mode of AD using the discrete adjoint of SU2, as explained in Section 3.3.1.1. As
already presented in Section 3.2.6.5, the second-order derivative term in the doubly
augmented Lagrangian can be either obtained with the help of finite differences or with
the help second-order adjoints. Both approaches involve a second taping of the solver
iteration, as well as the corresponding tape evaluation. In the following, a finite difference
approximation is used. Studies for second-order adjoints can be found in Section 3.3.2.2.
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Preconditioner for multiplier update For the first results, a constant positive definite
diagonal matrix is used as a preconditioner. The values of the diagonal matrix are
obtained based on a parameter study. It is important to note that one can guarantee
descent if the preconditioner is large enough. A carefully chosen preconditioner will
result in an improved speed of convergence of the overall method. The preconditioner
proposed in Section 3.2.4.2 is tested later in Section 3.3.2.3. A meaningful choice for the
starting value of the multiplier is, e.g., given by

(µ0)i = ‖∇uf(y0,u0)‖/‖∇uhi(y0,u0)‖ for i = 1, . . . , r.

Bound Constraints Bound constraints are considered throughout the optimization.
Numerical tests show that the BFGS method with bound constraints and the limited-
memory BFGS method with bound constraints behave similarly. The reason for that is
that the backtracking line search without ensuring the curvature condition will trigger
a resetting of the Hessian after a few updates for both updating strategies.

When using bound constraints, the scaling of the design variables, the objective func-
tion, and the constraint functions becomes more important. This avoids that the first
design updates are too large and would reach the bounds of the design space, since this
may slow down the convergence of the algorithm due to oscillations at the beginning.
Throughout, the objective functions and the constraint functions will be scaled with a
factor of 10−2. Note that some authors in the literature suggest starting the one-shot
method after a certain number of iterations to avoid too large updates at the beginning
(see e.g. [210]). The present study shows that the effects of both strategies, scaling or a
delayed start, is similar.

Implementation in SU2 As SU2 has a highly modular structure, the same routines can
be called for different areas of application. This modularity can be easily transferred
to the implementation of the one-shot approach. Existing access routines, which enable
the implementation of the discrete adjoint strategy, can be reused or replaced by similar
routines to enable the calculation of sensitivities for the one-shot approach. This all
happens outside the main solver level, such that other types of solvers can be easily
introduced. Any needed parameters are defined in an external configuration file.

The implemented algorithm is presented in Algorithm 8. It is presented for the case
of bound constraints, the proposed preconditioner for the multiplier update, and fi-
nite differences for obtaining the second-order derivative term in the doubly augmented
Lagrangian. Note that the projection of the gradient onto the design space has been
omitted. It can be observed that each line search step involves an update of the state
and the adjoint iteration. The outer optimization steps need additional computational
effort for obtaining the gradient of the doubly augmented Lagrangian, i.e., an additional
tape evaluation and an update of the state and the adjoint involving additional taping.
One counts a number of r tape evaluations for the multiplier preconditioner. As the
state and adjoint variables are overwritten during the algorithm, they need to be stored
in memory slots A and B.
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Algorithm 8: One-shot optimization in SU2 (pseudo-code).

Input:
γ0: initial step length (estimate of σ)
µ0: starting value for constraint multiplier
y0, ȳ0,u0, ε, ε1, ε2, δ

Function:

k ← 0, B0 ← I, c1 ← 10−4

repeat
γ ← γ0

Shift A to B, Store uk−1

repeat
if k 6= 0 then
µk = µk−1 + ∆µk−1

if γ 6= 1.0 then
Load yk, ȳk from B, Load uk−1

γ = 0.5γ
end if
uk = P (uk−1 + γdk−1), ∆uk = uk − uk−1

end if
yk+1 = G(yk,uk), f ← f(yk,uk), h← h(yk,uk)
ȳk+1 = Nu(yk, ȳk,uk,µk)

>

∆yk = yk+1 − yk, ∆ȳk = ȳk+1 − ȳk
Lak = α

2 ||∆yk||2 + β
2 (||∆ȳk||2 + ||h||2) + f + µ>k h+ ∆y>k ȳk (Use ȳk from B)

until Lak ≤ Lak−1 + c1∆u>k∇uLak−1

Store yk+1, ȳk+1 in A, Store Nu
∇uLak ← N>u (in ūk+1)
Obtain hu from tape evaluations
∆µk = [βhyh

>
y + εI]−1h

Obtain αGu(yk,uk)
>∆yk + αh>u h from tape evaluation

∇uLak ← ∇uLak + αGu(yk,uk)
>∆yk + αh>u h

Load yk, ȳk from B
y = yk + δ∆ȳk
ỹ ← G(y,uk), f ← f(y,uk), h← h(y,uk)
ū = Nu(y, ȳk,uk,µk)

>

∇uLak ← ∇uLak + β
δ (ū−Nu)

if k 6= 0 then
rk = PIε(∇uLak −∇uLak−1), sk = PIε(∆uk)
Determine Bk using Equation (3.89) for the inverse

end if
dk = −(PAε + PIεB

−1
k PIε)Nu(yk, ȳk,uk,µk)

Store ∇uLak, Lak
until ‖Nu‖2 < ε1 or ‖∆uk‖ < ε2
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3.3.2. Results of One-Shot Aerodynamic Shape Optimization

The present section serves to present the results for applying the one-shot strategy for
solving the aerodynamic shape optimization problem.

In Section 3.3.2.1 and 3.3.2.2, different constrained optimization problems with a sin-
gle and multiple equality constraints are solved using the proposed augmented one-shot
method. A multi-objective aerodynamic shape optimization problem involving the lift
constraint is considered. Finally, Section 3.3.2.3 shows the investigation of the use of
second-order adjoints for the second-order derivative term in the augmented Lagrangian,
and Section 3.3.2.4 presents results based on a specific choice of the multiplier precon-
ditioner.

3.3.2.1. Results for Aerodynamic Shape Optimization with Lift Constraint

The first application example for the extended one-shot method is the multi-objective op-
timization of the introduced aerodynamic shape optimization, neglecting the additional
constraints for the moment coefficient and the thickness. As a result, the optimization
task is to minimize the drag coefficient cd and maximize the lift coefficient cl without any
additional equality constraints. The flow properties and the parameterization is chosen
as in Chapter 2. Bound constraints are prescribed for the design variables such that
−0.005 ≤ ui ≤ 0.005 for i = 1, . . . , n.

The application of the equality constraint method to the multi-objective optimization
problem results in several constrained optimization problems of the form (3.48). As
explained in Section 2.2.3, the outlines of the Pareto optimal front can be found by
minimizing the objective functions individually without imposing additional constraints
using the original single-step one-shot approach. Having observed in Chapter 2 that
the Pareto optimal front is connected and convex, it is feasible to use the equality con-
straint method. The extended one-shot approach is used for all constrained optimization
problems.13

Figure 3.1a shows the optimization history for the minimization of the drag coefficient
without additional constraints, and the corresponding common logarithm of the pressure
residual and the adjoint pressure residual are shown in Figure 3.1b. Both residuals reach
a desired level of accuracy during the optimization. The flow solution of the steady Euler
equations would need around 200 state iterations to achieve a pressure residual of the
order of 10−7. The optimization needs around 270 outer iterations and 300 additional
line search steps to reach a design with a drag coefficient of 0.00033 (3 drag counts)
and a lift coefficient of 0.098. When comparing the number of state iterations in the
one-shot procedure with the number of iterations for a flow solution, the retardation
factor is around 2.9. When using a nested strategy with a BFGS method, one needs 31
outer iterations to converged to a similar level of accuracy. The overall computational
time is about 5.15 times higher. The multipliers are chosen as α = 20 and β = 2 with
the help of a parameter study. The higher value for α is based on the condition (3.65)

13Tests show that the one-shot strategy without hybridization is able to find the same solutions as for
the hybridization with stricter bound constraints.
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Figure 3.1.: Optimization history of single-step one-shot approach (a) and corresponding
state and adjoint residuals (b).

using estimates for ρ and ‖Nyy‖ (see [102]).
In the present study, the Pareto front is only scanned in one direction. The reason for

this is that the maximization of the lift coefficient with an additional constraint for the
drag coefficient requires an additional parameter study. Furthermore, one may observe
a bad convergence behavior for large values of the lift coefficient (cl ≥ 0.6). This may
be explained by the missing additional constraints and the high nonlinearities due to
shocks. As a result, the Pareto front is only scanned in the region 0.098 ≤ cl ≤ 0.6.
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Figure 3.2.: Obtained points in objective space (left) and corresponding designs (right)
using the one-shot approach with additional constraints.

The solutions marked with crosses in Figure 3.2 in the objective space are possible
Pareto optimal solutions and were found by minimizing the drag coefficient while varying
the target lift coefficient between the bound of c0

l,t = 0.098, which is determined by the
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(a) Convergence history.
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Figure 3.3.: Exemplary convergence history of one-shot optimization with lift constraint
of 0.4 (a) and the corresponding logarithmic plot of the state and adjoint
residuals (b).

minimum drag coefficient, and c5
l,t = 0.6. The constraint function for the lift coefficient

is then given as

h(y,u) = cl(y,u)− cil,t
for each optimization problem i = 1, . . . , 5. The designs on the right side of the figure
correspond to the solutions from top (cl = 0.6) to bottom (cl = 0.098).

Exemplary, the optimization history for the minimization of the drag coefficient with
a target lift of 0.4 is shown in Figure 3.3a. The preconditioner B̌ = 20 is constant
throughout the optimization, and the corresponding multiplier µ is zero at the beginning.
The drag coefficient of 0.0012 (12 drag counts) is reached after around 1400 iterations.
The red line in the figure shows the lift coefficient, which approaches the desired value
of 0.40 during the optimization.

The common logarithm of the pressure residual and the adjoint pressure residual
corresponding to the optimization history are shown in Figure 3.3b. Both residuals reach
a desired level of accuracy during the optimization. Towards the end of the optimization,
they do not stagnate but drop at a slower rate. All shown iteration steps still involve
an update of the design variable. When the updates stop due to the abort criterion, the
usual piggy-back convergence behavior can be observed.

The same multipliers and the same preconditioner B̌ were used for all six constrained
optimization problems showing the robustness of the implemented approach. The op-
timization runs need around 1200 to 3000 outer optimization steps to converge. The
additional equality constraint does not affect the costs of a single one-shot iteration as
the number of tape recordings and evaluations is the same when compared to the classi-
cal one-shot approach. Note, however, that this is only the case for a constant multiplier
preconditioner. Still, it can be observed for the specific test case that the solution of
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Figure 3.4.: Obtained points in objective space (left) and corresponding designs (right)
for test case with multiple constraints solved with the adapted one-shot
method.

the constrained optimization problem requires more optimization steps. Based on the
number of iterations in the inner and outer optimization loop, one obtains retardation
factors of about 10 up to 13.

3.3.2.2. Results for Aerodynamic Shape Optimization with Multiple Constraints

To obtain more realistic designs in comparison to the ones resulting from the optimization
with a lift constraint, the original constraints of the aerodynamic shape optimization
problem (2.62) are re-introduced, resulting in the constraint vector

h(y,u) =

 cl(y,u)− cil,t
cm(y,u)
d(u)− 0.12

 .

Note that the thickness constraint is treated exactly like the other constraints, although
it is a geometric constraint and does, therefore, not depend on the state y. This is done
to study the behavior of the method for several constraints. In a more general setting, it
can be of advantage to use a different strategy, e.g., the use of an additional optimization
problem in the design space for a suitable projection.

Again, one considers the minimization of the drag coefficient and the maximization
of the lift coefficient. The found Pareto optimal points are shown in Figure 3.4. The
corresponding designs on the right side represents the designs for an increasing lift con-
straint from the bottom to the top. It can be observed that the upper surface close to
the leading edge of the airfoil flattens for a higher lift constraint, which is the typical
result that was also obtained in Chapter 2. In a direct comparison with the results
of this chapter, one may observe that the designs and the objective values for low lift
constraints are similar. Notably, for the one-shot method the target value for the mo-
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Figure 3.5.: History of the adapted one-shot optimization for test case with multiple
constraints.

ment coefficient is prescribed as an equality constraint. A difference can be observed
for higher lift constraints. The objective values are similar, but the one-shot strategy
converges to a different design. A comparison of a design is shown in Section A.2.4 of the
appendix. Interestingly, the one-shot strategy tends to find designs similar to the ones
that will be found in Chapter 4 when considering robustness with respect to geometrical
uncertainties.

An exemplary optimization history for a lift constraint of 0.3 is shown in Figure
3.5. The diagonal matrix diag(20, 20, 100) is used as preconditioner for the equality
constraints. As before, α = 20 and β = 2. A drag coefficient of 0.0012 is reached for
the optimized design. Again, all Pareto optimal designs could be obtained with similar
configurations of the optimization algorithm. As the constrained optimization tests need
around 1700 to 3800 outer optimization steps to converge, the number of iterations and
the overall computational costs of the optimization are comparable to the test case with
a single constraint. This is quite understandable, as the convergence behavior of the
moment constraint is very similar to the one of the lift constraint. A faster convergence
is observed for the thickness constraint. This can be explained by the independence
concerning the convergence of the state variables.

3.3.2.3. Using Second-Order Adjoints for Design Space Preconditioner

For the results presented above, the second-order derivative term βN>yu(N>y −µ) in the
reduced gradient of the doubly augmented Lagrangian was approximated using finite
differences in the direction of the state y with a step size of δ = 10−5. This is com-
mon practice and works for the specific application. Nevertheless, the introduction of
second-order derivatives in the given SU2 framework is quite simple and, therefore, it
is worthwhile testing it. The general strategy for obtaining the second-order derivative
term with second-order adjoints was explained in Section 3.2.6.5.

In the implementation of second-order adjoints, the old data type
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Figure 3.6.: Comparison of the use of second-order adjoints versus finite differences. The
convergence history for the objective function is shown for the original pre-
conditioner and the preconditioner making use of second-order adjoints.

RealReverseGen<double> RReverse

is substituted by the second-order data type

RealReverseGen<RForward> RTanORev.

The values are now accessed via first getting the reverse part and then the tangent-linear
part, i.e., tape.getGradient(x[adjPos++]).getGradient().

RReverse RTanORev SOTerm

run 1 1 1.403 1.557
run 2 1 1.392 1.514
run 3 1 1.360 1.461

mean 1 1.385 1.511

Table 3.1.: Runtime factors for the introduction of second-order adjoints. The factor is
scaled to the runtime for building the finite difference approximation with
the RReverse datatype (first column). The change of datatype will increase
the runtime (second column), as well as the use of exact derivatives instead
of finite differences (third column).

Table 3.1 gives the runtime factor when introducing the new data type compared
to the old data type. The runtime is measured for the evaluation of the second-order
derivative term. The test was performed by taking the mean of 100 evaluations for three
different runs. The overall mean is 1.385. When using second-order adjoints instead of
finite differences, the mean factor is 1.511 in comparison to the use of the old datatype
(see last column). In general, the use of second-order adjoints is computationally more
expensive than the use of finite difference, but the additional costs are not significantly
high.

When looking at the performance of second-order adjoints for the one-shot optimiza-
tion in Figure 3.6, it can be seen that the convergence of, e.g., the objective function
throughout the optimization appears to be smoother and slightly faster. A similar behav-
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Figure 3.7.: Convergence history of multiplier for constant preconditioner for the multi-
plier update and for the preconditioner given by Equation (3.75).

ior can be observed for the constraint functions. But, based on experience, this behavior
can be counterbalanced by a higher number of inner line search steps, although these are
cheaper than the outer iterations. In this case, one has 50 percent more line search steps.
Also, for some tests, no clear difference could be seen in the convergence behavior. As a
result, for the present application, no clear advantage was determined. However, in gen-
eral, the smoother convergence may make the use of second-order adjoints advantageous
for test cases with bad convergence behaviors.

3.3.2.4. Convergence Results for Multiplier Preconditioner

The results of the previous sections were based on a constant preconditioner for the
multiplier update. The preconditioner was chosen large enough to achieve convergence.
When using more than one constraint, the preconditioner is constructed as a diagonal
matrix with large enough entries. However, this requires a parameter study for finding
the respective values for different constraints. We have seen that the convergence results
are satisfying, but it remains to analyze if the preconditioner proposed in Section 3.2.4.2
enables a faster convergence. It is given by B̌ = βhyh

>
y + εI (see Equation (3.75)). In

the following, the preconditioner is calculated exactly, and the inverse is applied in the
multiplier update.

Numerical tests show that, when keeping the parameters α and β of the original
calculations, the choice of B̌ only converges for a high value of ε. However, this was not
the intention when deriving the preconditioner since the information of the first term
does not have an influence anymore. When increasing β and using a small value for ε, it
is not possible to find a suitable parameter α to obtain convergence. This was already
predicted by the analysis of the choice of the preconditioner. The idea is to scale the first
term of the preconditioner with a constant factor of cB̌, such that B̌ = cB̌βhyh

>
y + εI.

As a result, the influence of the preconditioner can be maintained without changing the
values for α and β. Similarly to the factor based on σ for the design space preconditioner,
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the factor cB̌ may serve to ensure that the preconditioner is large enough. The procedure
can also be interpreted as using a smaller step size for the multiplier update if the value
of ε is scaled appropriately.

Figure 3.7 shows the application for lift-constrained drag minimization with a target
lift of ctl = 0.327. The convergence history of the multiplier based proposed precon-
ditioner with cB̌ = 100 is compared to using the constant multiplier B̌ = 20. Again,
the penalty parameters are given by α = 20 and β = 2. It can be observed that the
speed of convergence of the multiplier is similar, such that the proposed preconditioner
does not show any clear improvements. Similar results can be observed for the test case
with additional constraints for the moment coefficient and the thickness when directly
setting up the inverse of the preconditioner for the multiplier update. In this case, the
choice of cB̌ = 100 results in a slower speed of convergence compared to using a constant
multiplier. A similar convergence behavior is obtained with a different scaling of the
multiplier update for the thickness constraint.

129





4. Robustness in Multi-Objective
Optimization

Considering uncertainties in a problem formulation is a significant step towards real-
istic design. The performance of a design that is only optimized for specific nominal
conditions may deviate under real-world conditions. In engineering design, it is then
of general interest to find designs that are robust and optimal under uncertainty. Ex-
isting formulations of robustness are presented in this chapter, and shortcomings are
discussed. The primary goal is to discuss the use of different robustness measures for
multi-objective optimization and to formulate a new measure for robustness in a multi-
objective context. The main idea for introducing a new measure for robustness in the
context of multi-objective optimization is to account for the structure of the uncertainty
in objective space. Especially, solely judging robustness based on the expected value or
the variance of the individual objective functions cannot necessarily account for such a
structure.

When considering uncertainties, an important aspect is how to model them and how
to propagate them. There exist different approaches to describe uncertainty depending
on the available information and the underlying problem. This work is restricted to a
probabilistic description of uncertainties instead of, for example, using fuzzy set theory.
The non-intrusive polynomial chaos method, which can be interpreted as a particular
type of collocation method inspired by spectral methods, is employed for uncertainty
propagation.

In the following, some basic notations for probability theory are introduced in Sec-
tion 4.1. Furthermore, different concepts in uncertainty quantification are presented in
Section 4.2, focusing on spectral methods. The sections on probability theory and quan-
tification of uncertainties are based on [251]. For details on the non-intrusive polynomial
chaos approach the reader may refer to Sections 4.2.1 and 4.2.2.3. A short overview of
robust design formulations in single-objective optimization is given in Section 4.3. The
section focuses on robust design in the context of multi-objective optimization, and new
measures for robustness are introduced in Section 4.3.3. Finally, the application of the
introduced concepts is shown in Section 4.4.

4.1. Probability Theory

When looking at random differential equations, one has to differentiate them from
stochastic differential equations, where the realization of a random process is not smooth.
Random differential equations can be written with parameters that either depend on the
elements from the probability space or on its realizations. The present work is restricted
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4. Robustness in Multi-Objective Optimization

to random differential equations and the uncertainty in the parameters is modeled with
a probability distribution. Thus, in the following, the uncertainty will be expressed by
making use of random variables. It is helpful to introduce some terms and notations for
probability theory in the following to provide a basis for further discussion.

Random variables are measurable functions Z : Ω → R that map an outcome of a
random experiment onto a value. Furthermore, it holds that {ω ∈ Ω | Z(ω) ≤ z} ∈ F
for all realizations z ∈ R. The set Ω is the set of all possible outcomes and F its power
set. Together with the probability measure P, they form the probability space (Ω,F , P ).

A random process is a collection of random variables with an ordered index set, e.g.,
for a time-dependent random process Zt = {Z(t, ω), t ∈ T }. A random field is the
generalization for vector-valued indices without any ordering.

Definition 13 (Cumulative distribution function). The cumulative distribution function
(CDF) is a function

FZ : R→ [0, 1], FZ(z) = P ({ω ∈ Ω | Z(ω) ≤ z}) =

z∫
−∞

fZ(s)ds, (4.1)

with the probability density function (PDF) fZ of Z.

The moments of a PDF are described by the formula

E(Zn) :=

∫
R

znfZ(z)dz, (4.2)

where µ = E(Z) is the expected value and σ2 = E((Z − µ)2) is the variance.

A joint CDF for a random vector Z ∈ RN is given by

FZ : RN → [0, 1], FZ(z1, . . . , zN ) = P ({ω ∈ Ω | Zj(ω) ≤ zj , j = 1, . . . , N}). (4.3)

Marginal densities fZi(zi) of one variable Zi are obtained by integrating fZ(z1, . . . , zN )
against all other variables zj with j = 1, . . . , N and j 6= i.

An important aspect of the quantification of uncertainties is the independence of
random variables, also referred to as statistical independence.

Definition 14 (Independent random variables). The random variables Z1, . . . , ZN are
independent iff FZ(z1, . . . , zN ) = FZ1(z1) · . . . ·FZN (zN ). The probability density function
and the expected value can also be factorized.

Identically and independent distributed variables (iid) are independent, and the marginal
PDF for each random variable is the same function. If two random variables are inde-
pendent the covariance is zero.

Definition 15 (Covariance). The covariance of two random variables Z1 and Z2 is given
as

cov(Z1, Z2) = E((Z1 − E(Z1))(Z2 − E(Z2)). (4.4)
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The covariance matrix C for a vector Z ∈ RN is defined as Ci,j = cov(Zi, Zj) for all
i = 1, . . . , N , j = 1, . . . , N .

If the covariance of two random variables is zero, they are uncorrelated but not nec-
essarily independent.

Later, the operational uncertainties will be modeled using a normal distribution and
the geometrical uncertainties will be modeled by means of a Gaussian random field,
which is why some definitions based on the normal distribution are of importance.

The distribution of a random vector Z ∈ RN is referred to as the multivariate normal
distribution if any linear combination of the components of Z is normally distributed.
Its probability density function can expressed in terms of the covariance matrix C and
the vector of expected values µ as

fZ(z;µ,C) =
1√

(2π)Ndet(C)
exp(−1

2
(z − µ)>C−1(z − µ)). (4.5)

For N = 1, one obtains the univariate normal distribution fZ(z;µ, σ2). The notation
that is often used in this context is z ∼ N(µ, σ2). The standard normal distribution
uses µ = 0 and σ = 1. A nice property is that the normal distribution of an affine
linear combination of independent normally distributed random variables is normally
distributed with the linear combinations of the mean and the variance. This means that
a Gaussian random variable can be reduced to a linear combination of the mean and
the variance, such that Z = µ+ σY where Y is standard normally distributed. Another
frequently distribution function is the uniform distribution with the probability density
function

fZ(z; a, b) =

{
1
b−a for a ≤ z ≤ b,
0 for x < a or x > b.

(4.6)

The notation z ∼ U(a, b) denotes that z is uniformly distributed.
For second-order random processes (E(Z2

t ) < ∞), one can define functions for the
expected value and the covariance, i.e., µ(t) = E(Zt) and C(t, s) = cov(Zt, Zs). One
may talk of a stationary random process if the randomness is stationary which means
that two random vectors that are shifted in time have the same distribution. It follows
that µ(t) is constant and C(t, s) = C(t− s).

Definition 16 (Gaussian Process). If all collections of finite-dimensional vectors Zt of
random variables of a continuous random process have a multivariate normal distribution
Zt ∼ N(µ(t),C(t)), it is called a Gaussian process.

4.2. Uncertainty Quantification

The aim of uncertainty quantification is to quantify the uncertainties in the input and the
response (or output) of a specific model. Next to that, the aim is to identify uncertainties
and to reduce them.
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One distinguishes between two types of uncertainties. Aleatoric uncertainties cannot
be reduced by further improving a model with experiments or simply knowledge. They
are inherent to a given problem and may, for example, occur as input uncertainties in
initial conditions or boundary conditions of a PDE. In the context of aerodynamics,
this comprises uncertainties in the operational conditions or geometrical uncertainties.
Geometrical uncertainties may, for example, be present due to icing on the wing. Epis-
temic uncertainties, on the opposite, arise out of simplified modeling assumptions or
missing aspects in the models. This may involve modeling errors due to approximations
or resolutions of a numerical model, input uncertainty due to missing knowledge in the
modeling parameters, or numerical uncertainties due to numerical errors. The present
work focuses on aleatoric uncertainties.

There exist different strategies for representing uncertainties and for propagating them
through a model. The complexity of a simulation often requires the use of specific model-
ing approaches, for example, stochastic spectral methods or sparse grid methods, in this
context. In this thesis, it is be made use of non-intrusive polynomial chaos for uncertainty
quantification, and the computational costs are reduced by using dimension-adaptive
sparse grid techniques. In Section 4.2.1, two strategies for representing uncertainties
are presented. Different methods for uncertainty propagation are given in Section 4.2.2,
focusing on stochastic spectral methods. Finally, the need for suitable integration strate-
gies in stochastic spectral methods requires the introduction of quadrature techniques
in Section 4.2.3.

The topic of inverse uncertainty quantification is also an interesting aspect of uncer-
tainty quantification. It deals with the question of parameter estimation given noisy
data, which can be treated using a frequentist point of view, where the unknown pa-
rameter is fixed, or a Bayesian point of view, where the unknown parameter is assumed
to be a random variable. This is, for example, done when modeling the error term in
Kriging (see Section 2.3.3.2). This topic will be omitted in the following discussions,
restricting the present work to direct problems.

4.2.1. Representation of Random Inputs

In the following, it will be explained how to decorrelate random variables with the
Karhunen-Loève (KL) expansion and how to represent known distributions using Gen-
eralized Polynomial Chaos (GPC). The general idea is to approximate random processes
with finite-dimensional expansions. The main difference between KL and GPC is that for
KL, the basis functions are generated, while for GPC, they are assumed to be known for
a given distribution. In both representations, the basis functions depend on the random
variables, and the coefficients do not have a random dependency, such that the deter-
ministic and the stochastic part are separated. The KL expansion is applied in Section
4.4 for representing the random field that is used to model geometrical uncertainties.
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4.2.1.1. Karhunen-Loève Expansion

The Karhunen-Loève expansion [141, 170] is used as a finite-dimensional representation
of random fields and for decorrelating random variables. For finite dimensions, it is
simply a Singular Value Decomposition. Let ψ(t, ω) be a random field with mean ψ0(t)
and covariance function C(t, s), where t, s ∈ T may be spatial or temporal variables and
ω ∈ Ω is a random event. Furthermore, let Z = (Z1(ω), . . . , ZN (ω))> be a vector of
random variables. By definition C is a symmetric positive definite operator. Since it is
continuous and bounded, Mercer’s theorem [186] gives the spectral decomposition

C(t, s) =
∞∑
j=1

λjvj(t)vj(s).

The orthonormal eigenfunctions vj of the operator C and the corresponding eigenvalues
λj can be obtained from ∫

T

C(t, s)vj(s)ds = λjvj(t). (4.7)

The eigenvalues are real and non-negative. In the following, they are sorted in decreasing
order, i.e., λ1 ≥ λ2 ≥ . . .. The eigenfunctions form a complete orthonormal basis, such
that the KL expansion of ψ can be expressed as an infinite linear combination of the
orthonormal eigenfunctions. The spectral expansion reads

ψ(t, ω) = ψ0(t) +

∞∑
i=1

√
λivi(t)Zi(ω), (4.8)

and the uncorrelated random variable Zi is described by

Zi(ω) =
1√
λi

∫
T

(ψ(t, ω)− ψ0(t))vi(t)dt. (4.9)

The KL expansion is truncated to get an approximation of the random field in the
form of a finite-dimensional random space Z with uncorrelated random variables with
zero mean and unit variance. In the case of a Gaussian field, the property that the
variables are uncorrelated implies mutual independence of the random variables. One
denotes the truncated expansion of ψ at the K-th term as ψK , such that

ψK(t, ω) = ψ0(t) +
K∑
i=1

√
λivi(t)Zi(ω). (4.10)

The basis vi is optimal such that the mean square error of the truncation after the

last term E
(
||ψ − ψK ||2L2(T )

)
is minimized (see [78]). The approximation error can be

obtained as

E
(
||ψ − ψK ||2L2(T )

)
=

∞∑
i=K+1

λi.
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Thus, the important properties for a good approximation are a good choice of K and
a fast decay of eigenvalues towards zero. The rate of decay depends on the smoothness
of the covariance matrix and is subexponential for a Gaussian covariance function (see
Equation (4.64)) [246].

4.2.1.2. Generalized Polynomial Chaos

The original polynomial chaos was introduced by Wiener [285] as homogeneous chaos
using Hermite polynomials and Gaussian random variables. Convergence was proven
in [29] for second-order random processes, i.e., processes with a finite variance. The
polynomial chaos approach and its theory were generalized (GPC) in [78], where GPC
was applied together with a KL expansion in solid mechanics. Polynomial chaos stands
for a spectral expansion with specific basis functions φi : R → R. The GPC basis
functions φi for a single random variable Z with a PDF fZ all satisfy

E(φi(Z)φj(Z)) = 〈φi(Z), φj(Z)〉fZ = γiδij , (4.11)

i.e., they are orthogonal under a given probability density function fZ , and φ0(Z) = 1.
Here, the expression 〈·, ·〉fZ describes the expected value in the form of a weighted scalar
product. For Z ∼ N(0, 1) these are, for example, the Hermite polynomials and for
uniformly distributed Z ∼ U(−1, 1) the Legendre polynomials.

A GPC approximation for a function ψ with a PDF fZ is the projection with respect
to the L2-Norm, which means

ψK(Z) :=
K∑
k=0

ψ̂kφk(Z), (4.12)

with coefficients

ψ̂k =
1

γk
〈ψ, φk〉fZ . (4.13)

Note that ψK is a truncation of the infinite-dimensional expansion

ψ(Z) =

∞∑
k=0

ψ̂kφk(Z). (4.14)

In multi-dimensional cases the approximation can also be written as before with the
basis functions Φ : RN → R and a one-to-one correspondence between functions and
coefficients of

ψ(Z) =

∞∑
k=0

ψ̂kΦk(Z) (4.15)

and the summation

ψ(Z) = ψ̂0I0 +
∞∑
i1=1

ψ̂i1I1(Zi1) +

∞∑
i1=1

i1∑
i2=1

ψ̂i1,i2I2(Zi1 , Zi2) + . . . , (4.16)
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where Ip(Zi1 , . . . , Zip) are interaction terms representing the polynomial chaos of order
p. A truncation using N random variables with p summation terms, where p is the
highest order of polynomials Ip, corresponds to a summation over

K := ((N + p)!)/(N !p!)− 1

terms in (4.15). Alternatively, (4.15) can be expressed as

ψ(Z) =

∞∑
|k|=0

ψ̂kΦk(Z). (4.17)

Here, k denotes a N -dimensional multi-index with |k| = ∑N
i=1 |ki|, such that the multi-

variate basis function is Φk(Z) =
∏N
i=1 φki(Zi). The orthogonality assumption (4.11)

holds analogously with γk =
∏N
i=1 γki . In the following, one may stick to the numbering

in (4.15) and denote the approximation as ψK with a number of K summation terms.
The GPC expansion converges exponentially for an optimal basis (e.g. Hermite poly-

nomials for Gaussian processes) [292], which is denoted as spectral convergence. In
general, the convergence rate depends on the smoothness of the data in random space.
If a function is non-smooth, oscillations may occur in the expansion, and a slow-down
in the convergence rate may be observed (see e.g. [86]).

A major advantage of the GPC expansion is that statistical quantities like the mean
and variance can be determined from the coefficients, i.e., E(ψK) = ψ̂0 and var(ψK) =∑K

k=1 ψ̂
2
kγk. This is due to the choice of the GPC polynomials, which form a complete

orthogonal basis, such that, for example, for the expectation value one obtains

E(ψK) =

K∑
k=0

ψ̂kE(Φk(Z)) =

K∑
k=0

ψ̂kE(Φk(Z)Φ0(Z)) = ψ̂0. (4.18)

For the variance, when using the result for E(ψK), one obtains

var(ψK) = E
(
ψ2
K

)
− E(ψK)2 = E

( K∑
k=0

ψ̂kΦk(Z)

)2
− ψ̂2

0 (4.19)

= E

 K∑
k=0

ψ̂2
kΦk(Z)2 + 2

K∑
i=1

K−i∑
j=0

ψ̂jΦj(Z)ψ̂j+iΦj+i(Z)

− ψ̂2
0

=
K∑
k=1

ψ̂2
kE(Φk(Z)2) =

K∑
k=1

ψ̂2
kγk.

The second summation in the derivation vanishes due to the orthogonality of polynomi-
als. Note that for Z ∈ RN the values for γk are given by 〈Φk(Z),Φk(Z)〉fZ .
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4.2.2. Methods for Uncertainty Propagation

Given an uncertain input with a known probability distribution, the task is to propagate
uncertainties through the model. One may distinguish between three types of methods
for uncertainty propagation: sampling methods, perturbation methods, and spectral
methods. In this thesis, the focus is on spectral methods, and it is made use of a non-
intrusive form of spectral methods, also referred to as the pseudo-spectral approach. In
the following, the different propagation methods are described.

4.2.2.1. Sampling Methods

The most prominent sampling method is Monte Carlo sampling. The general idea of
sampling strategies is to select finitely many iid input parameters and calculate the
quantities of interest from the output variables. An estimator for the mean in Monte
Carlo sampling, e.g., is

E(ψM ) =
1

M

M∑
i=1

ψ(zi) (4.20)

and the variance is estimated by means of the formula

var(ψM ) =
1

M − 1

M∑
i=1

(ψ(zi)− E(ψM ))2 (4.21)

for a number of M experiments with realizations zi of the input random variable Z.
The method converges due to the central limit theorem (see e.g. [251], p.86) with a
rate of M−1/2, which is a slow convergence rate, but it is independent of the number of
random input parameters. A significant advantage is the possibility of parallelization,
which makes the whole method independent from the number of parameters. There
exist different approaches to sample from a known distribution. A computer can generate
uniform pseudo-random sequences in the interval [0, 1], which is made use of in strategies
for sampling non-uniform or non-Gaussian parameters.

There exist alternative sampling methods that have faster convergence rates, e.g.,
Latin Hypercube sampling or quasi-Monte Carlo methods.

4.2.2.2. Perturbation Methods

In perturbation methods (see for example [219]), the random output is expanded in terms
of a Taylor series using the sensitivity information of the output with respect to the
random input parameters. A first-order expansion results in a first-order perturbation
method, a second-order expansion in a second-order method. Sometimes perturbation
methods are referred to as second-moment method or methods of moments since the
first and second moments can be expressed using the expansion. In this case, the terms
first-order second moment (FOSM) method or second-order second moment (SOSM)
method are used. Expressions for statistical quantities of the output like the mean
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value and the variance can be derived from the sensitivities and the statistical quantities
of the random input variables (including covariances in the case of dependence). The
underlying assumption is that the density for each random input variable is symmetric
around a mean value. As a result, each random input variable can be represented as
Zi = E(Zi) + δZi for i = 1, . . . , N , where the perturbation δZi could, for example, be
represented by the standard deviation σi in the case of normally distributed random
variables.

For a first-order expansion of a function ψ and µ ∈ RN with µi = E(Zi), such that

ψ(Z) = ψ(µ) +
N∑
i=1

∂ψ

∂Zi
(µ)δZi +O(∂Z2

i ),

one obtains, for example,

E(ψ(Z)) ≈ ψ(µ) (4.22)

and for a given variance var(Zi) and covariance cov(Zi, Zj) the variance of the function
ψ can be expressed as

var(ψ(Z)) ≈
N∑
i=1

(
∂ψ

∂Zi
(µ)

)2

var(Zi) +

N∑
i=1

N∑
j=1,j 6=i

∂ψ

∂Zi
(µ)

∂ψ

∂Zj
(µ)cov(Zi, Zj). (4.23)

A significant aspect of perturbation methods is that the resulting approximation is
only locally defined for small variations δZi since this is an assumption for the Taylor
series expansion.

The efficiency of algorithmic differentiation can be exploited in this context, which
was, for example, done by Su and Renaud for robust design [257].

4.2.2.3. Stochastic Spectral Methods

Stochastic spectral methods are based on the spectral expansion introduced in Section
4.2.1. Thus, in the following, one assumes second-order random variables and processes.
General stochastic spectral methods require either mutually independent parameters or
a representation of the joint density of the random input parameters. In comparison
to Monte-Carlo sampling exponential convergence can potentially be observed for spec-
tral methods. But they suffer from the curse of dimensionality. As a result, they are
only feasible for a moderate number of random variables. The recommended maximum
number of random variables is problem-dependent, but, usually, up to ten variables are
realistic. One distinguishes between intrusive and non-intrusive spectral methods. In
this context, the term intrusive means that an existing solution method has to be mod-
ified. The intrusive stochastic Galerkin method and the non-intrusive polynomial chaos
method will be introduced in the following. Additionally, stochastic collocation, which
is based on the GPC approach as well, is presented. In contrast to the non-intrusive
polynomial chaos method, the stochastic collocation method is built using interpolation
instead of projection.
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4. Robustness in Multi-Objective Optimization

Stochastic Galerkin Method Given a PDE c(y, t,Z) = 0 with the solution variable y,
spatial and/or temporal variables t and the vector of random variables Z, the stochastic
Galerkin method is based on a spectral ansatz (4.12) for y(t,Z), which is

yK(t,Z) =
K∑
k=0

ŷk(t)Φk(Z). (4.24)

The ansatz uses random basis functions and deterministic coefficients. When the solution
y is vector-valued the ansatz is made for all components individually. This ansatz is
inserted into the PDE and the residual is projected onto the ansatz space, such that

〈c(yK , t,Z),Φk〉fZ = 0, for k = 0, . . . ,K. (4.25)

As can be seen in the equation, in contrast to standard Galerkin methods the projection
is done using the expected value. As a result one obtains a system of new deterministic
equations. The system can often be simplified by exploiting the orthogonality of the
polynomials. For example, applying the stochastic Galerkin method to a scalar random
ODE results in a system of deterministic ODEs for the expansion coefficients.

As explained before in Chapter 4.2.1, the expectation value and the variance can di-
rectly be identified from the expansion coefficients and the use of a polynomial chaos
expansion guarantees for an optimal projection of residuals onto the space of approxi-
mating polynomials in a L2 sense. Furthermore, depending on the smoothness of the
underlying problem, spectral convergence may be observed, if the integrals over orthogo-
nal polynomials are integrated exactly (see e.g. [291] for steady-state diffusion problems).
Following [287], spectral convergence may also be observed for sufficiently smooth func-
tions, if the order of quadrature is high enough. For discontinuities in random space, one
may observe the typical behavior of the spectral expansion, i.e. a slower convergence.
In such cases, locally defined expansions like the use of multi-element GPC [281] can be
advantageous for convergence.

A disadvantage is that the stochastic Galerkin method is intrusive. On top of that,
the original solution procedure or even parts of it cannot necessarily be reused when
applying the methodology. Additionally, when using multi-variate inputs, one runs into
the curse of dimensionality either because the system becomes too large or the expansion
coefficients are high-dimensional integrals. Furthermore, for applying the stochastic
Galerkin method, it is required that the random variables are independent with a known
distribution for which orthogonal polynomials can be defined. Extensions to multivariate
distributions can be made (see e.g. [203]) with restrictions on the dimensionality of the
problem and the uniqueness of the basis.

The method was applied for different probability distributions in [292] and to the
Navier-Stokes-equations in [293].

Stochastic Collocation Method The idea of general collocation methods is quite sim-
ple. To stay non-intrusive one uses deterministic or stochastic methods to generate
samples zm for m = 1, . . . ,M from random space. To obtain an expression for the
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output, (4.24) shall hold for all collocation points, such that

K∑
k=0

ŷk(t)Φk(z
m) = y(t, zm). (4.26)

As a result a system has to be solved to find the coefficients ŷk(t) for k = 0, . . . ,K. It
may be of size K + 1 (see e.g. [123]) or overdetermined leading to a linear least squares
problem [122]. This approach is often referred to as point collocation. Depending on the
choice of collocation points, the system matrix may be ill-conditioned.

In the simplest case with K + 1 collocation points, where the chosen polynomials
are Lagrange polynomials such that Φk(z

m) ≡ Lk(zm) = δkm, one can identify ŷm(t) =
y(t, zm). This is equivalent to employing Lagrange polynomials in the formulation (4.25)
of the stochastic Galerkin method and using the quadrature points, which are used for
the approximation of the resulting integrals, as collocation points. As a result, the
underlying equations are decoupled and can be solved for each collocation point on a
grid. Then the random variable y is constructed using Lagrange interpolation, such that

y(t,Z) ≈
K∑
m=0

Lm(Z)y(t, zm). (4.27)

Quantities like the mean and the variance are calculated by integration of the interpo-
lated output on the grid assuming a probability distribution for the input uncertainty is
given, such that, for example,

E(y(t,Z)) ≈
K∑
m=0

y(t, zm)

∫
Lm(z)fZ(z)dz. (4.28)

For complicated probability density functions, the integral over the Lagrange basis has
to be integrated using quadrature techniques or approximated using, e.g., sampling
techniques if a direct representation of the PDF is not given. If the collocation points
were chosen as quadrature points, the integral reduces to the corresponding quadrature
weight offset by the PDF, since Lm(zq) = δmq. The methodology is referred to as
stochastic collocation and was first proposed in [179, 180] and further analyzed and
generalized in [12] and [173].

The stochastic collocation method is non-intrusive by construction, which is a major
advantage in comparison to the stochastic Galerkin method, as the underlying problem
can be used in a black-box manner. Additionally, the evaluations in random and deter-
ministic space can be decoupled, such that the efficiency in comparison to the Stochastic
Galerkin method may be increased. Opposed to the stochastic Galerkin method and
the non-intrusive polynomial chaos method, stochastic collocation is an interpolation
method and not a projection method. Thus, it neither requires the independence of
random variables nor the construction of orthogonal polynomials. As a result, any kind
of distribution is compatible, although a description of a density function is required for
obtaining the quantities of interest.

141



4. Robustness in Multi-Objective Optimization

The problem of using an interpolation method instead of a projection method is that
orthogonality assumptions are, in general, not valid outside of the set of collocation
points. Thus, simplifications for the integral quantities like (4.18) and (4.19) cannot be
used. Also, the stochastic collocation method requires the construction of Lagrange poly-
nomials. Furthermore, it needs an appropriate choice of collocation points to guarantee
a certain accuracy since, in general, the choice of collocation points is not unique. The
optimal choice of collocation points in terms of accuracy is to use the zeros of the orthog-
onal polynomial of respective order of the underlying distribution, thus corresponding to
the quadrature points for Gauss quadrature rules. This applies especially to the accuracy
of the integral quantities like the expected value since one makes use of exact evaluations
at the quadrature points. The convergence behavior of stochastic collocation is based on
interpolation theory. The interpolation error for K collocation points in N -dimensional
random space behaves like O(K−α/N ) for functions with bounded derivatives up to the
order α, i.e., f ∈ Cα(Ω) with Ω being the domain of interpolation. The method is less
accurate than the stochastic Galerkin approach since it introduces an additional inter-
polation error. In contrast to the Monte Carlo method, stochastic collocation suffers
from the curse of dimensionality and is only feasible for moderate dimensions in random
space. Since the interpolation polynomials are globally defined in random space, dis-
continuities in random space may again decrease the accuracy and the efficiency of the
method. Some approaches like the use of sparse grid interpolation methods based on
locally defined basis function [174] or different interpolation techniques, as, for example,
in simplex stochastic collocation [286], can enhance the overall efficiency of the method.

An application example for stochastic collocation may be found in [172] for airfoil
analysis. In [21], a sparse grid collocation approach is used for robust optimal control.

Non-Intrusive Polynomial Chaos Method The non-intrusive polynomial chaos method
is often also referred to as a discrete projection or pseudo-spectral method. As for the
stochastic Galerkin method, it is required that the PDF of every independent input
random variable is known, and an orthogonal polynomial system is constructed for each
one to get a basis for the multi-dimensional input. The solution y is again expanded in
terms of the constructed orthogonal polynomials. Then a quadrature rule is employed
to approximate the Fourier coefficients ŷk(t) with the known formula

ŷk(t) =
1

γk

R∑
r=1

y(t, zr)Φk(z
r)fZ(zr)wr, (4.29)

where zr are the quadrature points and wr the quadrature weights of a N -dimensional
quadrature rule and R is the total number of quadrature points. Matching quadrature
rules can be chosen for integration weighted by the PDF (e.g. Gauss-Legendre quadra-
ture for a uniform distribution or a transformed Gauss-Hermite quadrature for a normal
distribution), such that the evaluation fZ(zr) in (4.29) is omitted. The quantities of
interest can be obtained from the expressions (4.18) and (4.19) by using the orthogo-
nality of polynomials. Note that the expansion coefficients may also be approximated
using different techniques than quadrature rules, e.g., random sampling. The approach
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using quadrature methods is described and analyzed in [289]. When employing Lagrange
polynomials as basis functions with unit density and weights, the method is equivalent
to stochastic collocation. Note that in some literature (e.g. [290]), the non-intrusive
polynomial chaos approach is seen as an extension of stochastic collocation methods
to the ideas of GPC. As a result, it is sometimes referred to as a collocation method
with quadrature points as collocation points. Vice versa, point collocation methods
based on the polynomials of the PC expansion are sometimes described as non-intrusive
polynomial chaos methods.

As the method is non-intrusive, the original PDE solver can be used as a black-box.
Since the deterministic and the stochastic part are fully decoupled, the evaluation at
different quadrature points can be easily parallelized. As a result, the efficiency in
comparison to the intrusive approach is potentially increased.

Additionally to the error introduced by the series truncation, a quadrature error is
present [289]. Similar to the interpolation error, one observes for a tensorized grid an
error of O(R−α/N ) for functions with bounded derivatives up to the order α. Thus, if the
functions are smooth, exponential convergence can potentially be achieved. For an exact
integration, the method inherits the convergence properties of the GPC expansion. As
it is the case for stochastic collocation, especially for larger dimensional random spaces,
the non-intrusive polynomial chaos method usually needs more degrees of freedom than
the intrusive approach to achieve a comparable accuracy. Sparse grid quadrature rules
(see Section 4.2.3) can be used to increase the overall efficiency.

An early application of non-intrusive polynomial chaos can be found in [161]. A
comparison to stochastic collocation can be found in [58] and in [228]. The computational
effort and the accuracy of both methods are comparable.

In the present work, the non-intrusive approach is chosen to avoid a derivation and
implementation of the solution procedure for the intrusive method. Furthermore, for
cases where the calculation of expectation is of importance, the non-intrusive approach
allows to compute only a single coefficient of the PC expansion. The non-intrusive
polynomial chaos approach is preferred over stochastic collocation since the input density
function is assumed to be known, and the construction of a suitable quadrature rule is
straightforward.

4.2.3. Quadrature

Most of the above methods require quadrature or interpolation techniques. In the fol-
lowing, it will be focused on quadrature techniques. However, the methods introduced
below can also be applied for interpolation using interpolation points instead of quadra-
ture points and evaluations of interpolation functions instead of quadrature weights.
Integrals can be solved with Monte-Carlo simulations, full tensor grid quadrature, or
sparse grid quadrature.
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4.2.3.1. Tensor Product Quadrature

A full tensor grid quadrature rule is constructed from the tensor product of the one-
dimensional quadrature rule

Q
(1)
i (f) =

Ri∑
r=1

f(qir)w
i
r (4.30)

for an integration of the function f : Ωi → R with a level of integration i ≥ 1 with nodes

qir and weights wir. The set of nodes Q(1)
i = {qi1, . . . , qiRi} lies in Ωi, and Ri indicates the

number of quadrature nodes for the level i with Ri < Ri+1. A rule of dimension N is
then built as

Q
(N)
i f = (Q

(1)
i1
⊗ · · · ⊗Q(1)

iN
)(f) =

Ri1∑
r1=1

· · ·
RiN∑
rN=1

f(q1
r1 , . . . , q

N
rN

)wi1r1 · . . . · wiNrN (4.31)

with the multi-index i = (i1, . . . , iN ). The resulting set of nodes is given by

Q(N)
i = Q(1)

i1
× · · · × Q(1)

iN
.

For one-dimensional quadrature rules (4.30), one commonly observes an error of
O(R−αi ) for functions with bounded derivatives up to the order α. The error in a N -
dimensional quadrature rule then behaves like O(R−α/N ). Here, R =

∏
Ri is the total

number of quadrature nodes. As a result, the growth in required nodes for achieving a
particular error is exponential in the dimension N , which is the curse of dimensionality.

4.2.3.2. Sparse Grid Quadrature

Sparse grids were constructed to integrate polynomials of a certain total degree exactly
with less nodes than the number of nodes needed for tensorized grids. Based on Smolyak
[252], one can define

∆
(1)
i = Q

(1)
i −Q

(1)
i−1, Q

(1)
0 (f) = 0 (4.32)

as a new operator for defining quadrature rules. The tensorized quadrature formula
(4.31) of level k ≥ N can be rewritten as

Q
(N)
k (f) =

∑
i∈RN : ||i||∞≤k

(∆
(1)
i1
⊗ · · · ⊗∆

(1)
iN

)(f). (4.33)

In comparison, the sparse quadrature formula of level k is given by

S
(N)
k (f) =

∑
i∈RN : ||i||1≤k+N−1

(∆
(1)
i1
⊗ · · · ⊗∆

(1)
iN

)(f) (4.34)
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and can be written recursively as

S
(N)
k (f) = S

(N)
k−1(f) +

∑
i∈RN : ||i||1=k+N−1

(∆
(1)
i1
⊗ · · · ⊗∆

(1)
iN

)(f). (4.35)

Equation (4.34) can be equivalently written in terms of the original operator and using
q = k +N − 1 [283] as

S
(N)
k (f) =

∑
i∈RN : q−N+1≤||i||1≤q

(−1)q−||i||1 ·
(

N − 1
q − ||i||1

)
· (Q(1)

i1
⊗ · · · ⊗Q(1)

iN
)(f). (4.36)

The set of grid points of the sparse grid is

Q(N)
k =

⋃
i∈RN : ||i||1≤k+N−1

Q(1)
i1
× · · · × Q(1)

iN
.

Nested quadrature rules have to be used to enable a sparse construction with less function
evaluations and allow for an efficient approximation of integrals. Nestedness means that
the nodes in the lower-order formula are also used in the higher-order formula, i.e.,

Q(1)
i ⊂ Q

(1)
i+1. As a result, one can reuse the function values of low orders and the set of

quadrature points for a nested rule of level k can be expressed as

Q(N)
k =

⋃
||i||1=k+N−1

Q(1)
i1
× · · · × Q(1)

iN
.

Also, for nested rules ∆
(1)
i defines a quadrature rule were the nodes and the weights are

the same as for Q
(1)
i , but instead of only evaluating the function itself the differences of

the function values and the estimated values at the lower order rule are evaluated at the
quadrature points. Due to the fact that the difference is zero for all quadrature points
of the lower order rule, one obtains

∆
(1)
i =

∑
xi∈Q(1)

i \Q
(1)
i−1

wxi

(
f −Q(1)

i−1(f)
)

(xi). (4.37)

Here, wxi denotes the weight associated to the quadrature point xi. The difference in
(4.37) is referred to as the one-dimensional hierarchical surplus and can be used as an
error estimator. Based on the one-dimensional expression, a hierarchical strategy can
be expressed for higher-dimensional rules (see e.g. [145]).

An example for a nested quadrature rule is the Clenshaw-Curtis rule [40], where the
quadrature nodes for the integration domain [0, 1] and a level of integration i > 0 are
given by the transformed location of extrema of the Chebyshev polynomials as

qir =
1

2

[
1− cos

(
π(r − 1)

2i−1

)]
for r = 1, .., 2i−1 + 1 and i > 1 (4.38)
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Figure 4.1.: Full tensor grid of Clenshaw-Curtis rule of level k = 4 (left) and sparse grid
rule of level k = 4 (right)

and q1
1 = 0.5. Figure 4.1 shows the points of a two-dimensional tensorized Clenshaw-

Curtis rule of level k = 4 (left) and the corresponding points when using a sparse grid
(right). The tensorized rule uses 17 × 17 = 289 points while the sparse grid rule only
needs function values at 81 points.

The error for sparse grid quadrature using a rule S(k,N) with a number of nodes
Ri of the order 2i is O(R−α(log2R)(N−1)(α+1)) [283] for functions with bounded mixed
derivatives up to the order α. This shows that the onset of the curse of dimensionality
is delayed in comparison to tensorized grids.

4.2.3.3. Adaptive Sparse Grids

The grid used in the sparse grid rule (4.34) is isotropic since all directions are equally
important. When, for example, using a KL decomposition for a stochastic process,
the dimensions are not equally important. Thus, it is more efficient to used adaptive
strategies to further reduce the number of grid points.

In general, the refinement might be dimension-adaptive or spatially adaptive. A spa-
tially adaptive strategy using the hierarchical surplus as an error indicator can, for
example, be found in [174]. An intuitive way to define anisotropic sparse grids for adap-
tivity in the dimension is to choose an index set {i ∈ RN | a>i ≤ k +N − 1} instead of
{i ∈ RN | 1T i ≤ k + N − 1}. The vector a ∈ RN gives a direction in index space and
has to be chosen according to the analysis of the underlying problem.

With the dimension-adaptive strategy proposed in [77], generalized sparse grids can
be produced. The important dimensions are identified with the help of error estimators
to refine the grid in these dimensions. The method can be understood as a sparse grid
approach with a generalized admissible index set I, such that the quadrature formula
reads

Q̃
(N)
I f =

∑
i∈I

(∆
(1)
i1
⊗ · · · ⊗∆

(1)
iN

)(f). (4.39)
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The generalized formula includes the formula for the full tensor grid with

It = {i ∈ RN | ||i||∞ ≤ k},

as well as the formula for the original sparse grid with

Is = {i ∈ RN | ||i||1 ≤ k +N − 1}.

An error indicator of an index i ∈ I can, for example, be computed from the term

(∆
(1)
i1
⊗ · · · ⊗∆

(1)
iN

)(f) [77]. It estimates the correction that is obtained for the integral
when adding an index. Starting from the coarsest sparse grid, if the index sets remains
admissible, the algorithm adaptively adds the index with the maximum error indicator.
An index set I is admissible, if for all elements i ∈ I the condition

i− ej ∈ I ∀ 1 ≤ j ≤ N (4.40)

holds. As a result, index sets are only admissible if for all indices of the set the indices
with lower entries in at least one dimension are also contained in the index set.

An advantage of the dimension-adaptive strategy based on generalized index sets
is that it enables the use of problem-dependent quadrature formulas like the Gauss-
Hermite formula. In Schillings et al. [235], the dimension-adaptive approach is applied
for the calculation of the expected value of the drag coefficient under the consideration
of geometrical uncertainties.

4.3. Robust Design

Robust design, sometimes also referred to as robust optimal design or robust design
optimization, is mainly used in the context of single-objective optimization problems.
A design is robust optimal if it is optimal and robust under perturbations. A design is
robust if it is not very sensitive under perturbations, or, in the best case, insensitive. A
basic modeling aspect in robust design is how to measure robustness and how to achieve
robust optimality.

There exist different formulations for robust design that can be distinguished based on
the definition of robustness itself. In Section 4.3.1, some formulations for single-objective
optimization problems are introduced. Multi-objective optimization problems are of
interest in Section 4.3.2. The specific section presents existing formulations and points
out the differences to single-objective optimization problems, as well as the necessity for
a measure that accounts for the structure of uncertainty in objective space. In Section
4.3.3, a new robustness measure is introduced, and different corresponding formulations
of robust design problems are presented.

Note that robust design is different from reliability-based design, but both can be
combined. Reliability-based design aims at finding reliable designs with a significantly low
failure rate, which is usually measured in terms of probabilities of constraint satisfaction.
As a result, reliability-based design is concerned with avoiding extreme cases of uncertain
events that may lead to failure of a design. In contrast, robust design aims at reducing
performance losses for small perturbations.
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4.3.1. Robust Design in a Single-Objective Context

The first ideas for robust design originated from Taguchi’s work [265, 266]. He introduced
the concept of optimizing the expected value of a quality loss function. Originally, the
quality loss was represented by the mean statistical variation found with the help of a
design of experiments, and optimized by means of statistical data analysis. The work of
Taguchi initiated the discussion of robust design in general and motivated the use of the
mean and the variance of an objective function as measures for robustness for finding
robust solutions and robust optimal solutions.

In early works for robust design, it was more common to use perturbation methods.
However, the use of sophisticated strategies for uncertainty propagation, as presented in
Section 4.2.2, has also become interesting for robust design.

In the following, PDE-constrained optimization problems of the form (3.1) are con-
sidered with additional uncertainties with outcomes ω ∈ Ω, which are represented by
the vector of random variables Z(ω) ∈ RN and may occur, for example, in the initial
condition or parameters of the PDE constraint. In the following, for ease of notation,
the additional constraints are expressed as the inequality constraint function g. The
variable z̄, which is also referred to as the vector of nominal values, will be used when
no uncertainties are present. One can classify robust design formulations according to
the robustness measures used. In general, robustness measures can be included in the
optimization procedure in various ways:

• By replacing the original objective function,

• as an additional constraint,

• or as an additional objective function leading to a MOO problem.

The following formulations focus on replacing the original objective function, but most
of the formulations can be altered to represent any of the strategies mentioned above.

4.3.1.1. Worst-Case Robustness

The worst case of uncertain events for an objective function f(yz,u,Z(ω)), which can
be expressed as

max
ω∈Ω

f(yz,u,Z(ω)), (4.41)

can be used for measuring the robustness of a solution [219]. Each realization z of Z(ω)
has an individual state y, which is why the notation yz for the state variable is used. In
the following, the subscript is omitted for the sake of clarity. Again, as done in Chapter
3, one assumes that the state constraint c(y,u,Z) = 0 will implicitly define a state y
depending on the design u and the random vector Z. The min-max formulation is used
for optimization in a worst-case scenario and is defined as

min
y,u

max
ω∈Ω

f(y,u,Z(ω)) (4.42)

s.t. c(y,u,Z(ω)) = 0, g(y,u,Z(ω)) ≤ 0 ∀ ω ∈ Ω.
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As a probability measure is not needed, this approach is often employed if the probabil-
ity density of the random variable is unknown, e.g., when only the ranges of variation of
the uncertain parameters are given. The case of optimization when considering worst-
case robustness is also referred to as robust optimization and is typically analyzed for
specific set-based descriptions of uncertainty. The formulation (4.42) can be particularly
interesting for situations in which a finite, discrete set of random events is considered.
In general, the approach is quite conservative since an optimal design is found to reduce
the worst-case behavior. As a result, the overall performance can be significantly worse
than the performance without considering uncertainties. Note that in the formulation
(4.42) constraint feasibility is required for each realization. For the robustness mea-
sure presented in the following section, different strategies for constraint feasibility are
discussed, based on the classification in [244].

4.3.1.2. Robustness based on Expectation

The expectation or expected value

E(f(y,u,Z(ω))) =

∫
RN

f(y,u, z)fZ(z)dz (4.43)

of a function can be used for measuring robustness. As a result, the mean performance
is optimized.

In the semi-infinite formulation (see also [129]) the expected value of the objective
function is optimized while requiring feasibility for all random outcomes, such that the
robust design problem reads

min
y,u

∫
Z f(y,u, z)fZ(z)dz (4.44)

s.t. c(y,u,Z(ω)) = 0, g(y,u,Z(ω)) ≤ 0 ∀ ω ∈ Ω.

The formulation is referred to as semi-infinite as it is based on infinitely many inequality
constraints. Thus, a direct treatment is only feasible for small problems with specific
assumptions (see e.g. [66] for the solution of a problem with a single constraint and a
one-dimensional bounded random variable).

When numerically approximating the expected value, e.g., with a quadrature rule with
points zi and weights wi as it is the case for the non-intrusive polynomial chaos methods
(4.29), the problem may be expressed as a multiple set-point problem

min
yi,u

R∑
i=1

f(yi,u, zi)wi (4.45)

s.t. c(yi,u, zi) = 0, g(yi,u, zi) ≤ 0 ∀ i ∈ {1, . . . , R}.

Such a problem is well-suited for parallelization, and, due to the numerical approxima-
tion, the constraints are only evaluated at a finite number of points. However, this way of
approximating the semi-infinite formulation depends on the level of discretization of the
random space. Alternatively, if this is possible, one may define finitely many local max-
imizers of the constraints g for each design u during the optimization, and reformulate
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corresponding reduced problems based on defining constraints for all local maximizers
(see e.g. [243]).

There exist alternatives to requiring constraint feasibility for every realization of the
random variables. Instead, defining feasibility robustness can be of interest. Therefore,
another approach is the chance-constrained formulation, which differs from the semi-
infinite formulation in the treatment of the constraints. Here, the inequality constraints
are more flexible such that they have to hold with a certain probability P0 ∈ (0, 1]. They
are referred to as chance constraints [32]. The corresponding formulation reads

min
y,u

∫
Z f(y,u, z)fZ(z)dz

s.t. c(y,u,Z(ω)) = 0 ∀ ω ∈ Ω, (4.46)

P ({ω ∈ Ω | gi(y,u,Z(ω)) ≤ 0}) ≥ P0 for i = 1, . . . , s.

Chance constraints were originally proposed for reliability-based design. Thus, the incor-
poration of chance constraints results in a combination of robust design and reliability-
based design strategies. It is also possible to formulate a joint chance constraint (see
e.g. [1]). The constraints can be either evaluated by sampling or by approximating the
cumulative distribution function Fgi for i = 1, . . . , s using standard propagation tech-
niques. In the case of a scalar-valued constraint and when additionally assuming that
the constraint is normally distributed or can be transformed appropriately, one may, for
example, use the the moments µg and σg to describe the chance constraint. One obtains

P ({ω ∈ Ω | g(y,u,Z(ω)) ≤ 0} = P ({Z̃ | µg + σgZ̃ ≤ 0} (4.47)

= P ({Z̃ | Z̃ ≤ −µg
σg
} = FZ̃(−µg

σg
),

where Z̃ ∼ N(0, 1) and FZ̃ is the cumulative distribution function of the standard normal
distribution. The inequality constraint can then be simplified by substituting (4.47) in
(4.46) (see e.g. [219, 52]), such that

µg + F−1
Z̃

(P0)σg ≤ 0.

This procedure is referred to as moment matching method.
In [224], the chance-constrained formulation is used in combination with a first-order

perturbation method for the moments of the constraints and the objective function for
a simple CFD application.

Other approaches for feasibility robustness include constraining the expected value
of h or the evaluation of h at the nominal input, the corner space evaluation method
[259] or most probable point-based importance sampling [52]. The worst-case analysis
in [219] assumes that the perturbations are simultaneously at their worst, which can, for
example, be represented by

h(µ) +

N∑
i=1

∣∣∣∣ ∂f∂Zi (µ)δZi

∣∣∣∣ ≤ 0, (4.48)
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when using a perturbation method and assuming small variations δZi around the mean
vector µ of the random variables Z. Reliability analysis approaches like the reliability
index approach [37] or the performance measure approach [271] can also be integrated
in robust design formulations (see e.g. [53]) but require additional computational effort
due to an optimization subproblem.

4.3.1.3. Robustness based on Variance

The expected value reflects the mean behavior of a function. Thus, it does not account
for reducing any variations. An optimal design using the expectation may, therefore,
still result in large variations of function values from the mean. Therefore, using the
variance or the standard deviation as a robustness measure can be of interest for robust
design. Since only minimizing the variations in the objective function does not have
any influence in the performance of the objective function, it is essential to include
the robustness measure as a constraint or as an additional objective function to the
deterministic problem.

4.3.1.4. Trading off Expectation and Variance

In contrast to using the expected value for measuring robustness, the use of the variance
or the standard deviation σ as a robustness measure neglects the optimization for the
overall expected performance concerning the objective function. Therefore, it is recom-
mended to use both measures, i.e., the expected value and the standard deviation, for
robust design formulations.

Commonly, both measures are concatenated in an additive way to form a single robust-
ness measure that replaces the original measure, e.g., in the semi-infinite formulation.
This leads to the robust design formulation

min
y,u

µf + kfσf (4.49)

s.t. c(y,u,Z(ω)) = 0, g(y,u,Z(ω)) ≤ 0 ∀ ω ∈ Ω,

where µf and σf denote the expected value and the standard deviation of f(y,u,Z(ω)).
The factor kf can either be interpreted as a weight to the importance of the standard
deviation or, if an assumption on the distribution function of f is given, can be chosen
such that minimizing µf + kfσf is equivalent to minimizing the worst case user-defined
probability quantile threshold for the objective function or a similar measure like the
conditional value at risk (compare [214]).

Since expectation and variance are commonly conflicting objectives, a more general
strategy is to formulate a multi-objective problem that aims to minimize the expected
value as well as the variance (or the standard deviation). This naturally leads to a robust
design problem with multiple objectives leading to trade-off solutions for robustness, i.e.,

min
y,u

(E [f(y,u,Z(ω))] , var [f(y,u,Z(ω)]) (4.50)

s.t. c(y,u,Z(ω)) = 0, g(y,u,Z(ω)) ≤ 0 ∀ ω ∈ Ω.
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(a) Robustness: Single-objective optimization.
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(b) Robustness: Multi-objective optimization.

Figure 4.2.: Robustness in single-objective optimization (a) and multi-objective opti-
mization. In both figures design A is more robust than design B. In multi-
objective optimization, uncertainty results in a combined effect in objective
space.

Note, however, that the underlying formulation is still only considering the effect of
uncertainties for a single performance measure and shall not be confused with robust
design for multi-objective problems. Early works of this type are [36] and [35], where
compromise programming is used to solve the multi-objective optimization problem. In
[225], three objective functions, the objective function evaluated at the nominal value,
the expected value and the variation, are minimized using a genetic algorithm.

4.3.2. Robust Design in a Multi-Objective Context

In a generalized form with an arbitrary number of objective functions, one can also speak
of robust solutions as solutions that are not very sensitive under uncertainty. In this
context, robust optimal solutions are solutions that fulfill a specific type of optimality
(e.g. Pareto optimality) and are robust under the consideration of uncertainties.

The main difference between robustness in single-objective optimization context and
multi-objective optimization context is depicted in Figure 4.2a and 4.2b.

In Figure 4.2a, the case of single-objective optimization is shown. The line indicates
the objective function evaluated at the nominal values and the dashed line indicates
the expected value of the objective functions for the different designs x. The dotted
line shows the range of variations of the objective function that are obtained with a
fixed level of probability P0 for each design x. Judging from the expected value and the
variations for a fixed level of probability, one may observe that point A is more robust
than point B, and can be denoted as robust optimal.

Figure 4.2b shows the situation for multi-objective optimization with the help of two
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exemplary solutions in objective space. The dot indicates the objective function evalu-
ated at the nominal values and the cross indicates the expected value in objective space.
The dotted line shows the contours of the set of random outcomes in objective space
for a fixed level of probability P0, which one may refer to as probability region. Thus,
the level of probability indicates that the probability of outcomes being observed in the
given region in the multi-objective space is P0. The region of probability shows that the
uncertainty has a combined effect on both objective functions. The Pareto optimal front
that is obtained without considering any uncertainties is represented by the line. When
looking only at the expected values, no dominance can be observed. Judging from the
probability region, one may denote Point A as more robust than point B. Usually, simi-
larly to MOO without considering uncertainties, the aim is to find a set of robust optimal
points, i.e., there does not exist a unique, robust optimal solution. Thus, the difference
to single-objective robust design is that one obtains a set of solutions in objective space
and, also, one has to consider a combined effect in objective space [48].

Robust design in the context of multi-objective optimization also has its origin in
Taguchi methods, which were extended to multiple objective functions by transforming
the loss function into an aggregated loss function (see e.g. [59, 220, 270]). All of these
strategies find robust design using a design of experiment, and thus remain purely sta-
tistical approaches instead of using numerical optimization. Nevertheless, they form a
basis for general ideas on robust design.

The prior aggregation of the objective functions into a single-objective function (e.g.
by using a weighted sum of objective functions) is a rather basic approach to multi-
objective optimization under uncertainties. In general, the choice of a suitable aggrega-
tion strategy is unclear, and the multi-objective nature of the problem is disregarded.
The aggregated objective function is simply treated using robust design techniques in
the context of single-objective optimization.

Also, quantities of interest like the expected value or the variance of the objective
functions can be aggregated into a single objective function. In [189, 187], for example,
the authors use physical programming methods to trade off an aggregation function
for the expected value and an aggregation function for the standard deviation. Hard
constraints are treated using worst-case feasibility robustness.

In the following, existing strategies for introducing robustness and robust optimality
in a multi-objective context are reviewed, focusing on their application in engineering
design. First, a short overview of the formulation of robustness measures in multi-object
evolutionary algorithms is given, and restrictions to these ideas are pointed out. It is
then turned to approaches that are applicable in a more general setting. They include
the sensitivity analysis in the context of multi-objective optimization and robustness
measures inspired from single-objective robust design like the worst case of events or
the use of quantities of interest like the expected value and the variance. Additional
constraints are neglected in the multi-objective robust design formulations since, for
most of the proposed strategies, they can be handled in the same way as in single-
objective robust design.
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4.3.2.1. Robustness in Multi-Objective Evolutionary Algorithm

The first approaches to combine robustness and Pareto optimality for finding multiple
robust designs were made in the context of multi-objective evolutionary algorithms.
The idea originally proposed in [269, 124] is to extend the concept of dominance to
robust design by defining a probability of dominance. In the single-objective case, the
probability that a design uA is better than a design uB can be found using the probability
density functions fprA and fprB and the probabilities PA and PB based on the respective
CDFs for describing the distribution of the objective function values f for the designs
uA and uB. The probability that a design A is preferred over B for a minimization can
then be described as

P ({ω ∈ Ω | f(uA, ω) ≤ f(uB, ω)}) =

∞∫
−∞

fprA (z)PB({ω ∈ Ω | f(uB, ω) ≥ z})dz. (4.51)

For the multi-objective case, the idea is to assume independence and formulate the
probability of dominance based on the marginal probability density functions as

P ({ω ∈ Ω | uA dominates uB}) =
k∏
i=1

P ({ω ∈ Ω | fi(uA, ω) ≤ fi(uB, ω)}). (4.52)

When having an explicit formulation of the respective density function, the formula-
tion can be used for Pareto ranking in evolutionary methods (see [269] for uniformly
distributed objective functions and [124] for normally distributed objective functions).
However, there are several restrictions to this strategy:

• If the density function is not known, it has to be sampled or approximated, which
requires extensive computation effort.

• The concept of Pareto dominance is usually used in direct Pareto approaches like
evolutionary algorithms. Scalarization approaches do not explicitly compare solu-
tions based on this criterion since it is implicitly stated in the formulation itself.

• One assumes independence of the objective functions and does not consider a joint
distribution. The assumption that objective functions are not correlated is usually
not applicable in real-world situations.

To summarize the literature review on robustness measures in multi-objective evolution-
ary algorithms, it can be stated that they either do not necessarily account for the effect
of uncertainty in objective space or they are tailored to specific concepts that can only
be used in evolutionary methods. This applies, e.g., to clustering and ranking variation
[108] or expected indicator functions [14].

The last point mentioned as a restriction to the concept of probabilistic dominance is
important for the following discussions. In an ideal scenario, one could obtain a joint
probability density function and could reformulate Equation (4.51) for robust Pareto
dominance in objective space. One could even go one step further and use a set-valued
optimization strategy for finding designs with optimal distributions (see e.g. [57]). This
approach is not further pursued in the present work.
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4.3.2.2. Sensitivity Analysis in MOO

The size and direction of a sensitivity region introduced in [98] can be used as a robust-
ness measure. The sensitivity region is the region in random space such that a variation
compared to the nominal parameter value will not cause the variation in objective space
to exceed a certain limit. The measure was first introduced in single-objective opti-
mization in [96]. The sensitivity region can be approximated locally by using derivative
information resulting in a local sensitivity analysis. Or, it can be estimated using the
worst-case sensitivity region, which can be found by solving an additional optimization
problem for each design point and is able to account for directions of the sensitivity re-
gion in parameter space. The information on the sensitivity region can then be included
as an additional constraint in the optimization problem based on the nominal values to
account for robustness. Related approaches for feasibility robustness can be found in
[97].

A similar concept is used in [126]. Here, the authors use a local sensitivity analysis
to obtain the influence of perturbations in objective space. The region of sensitivity
is approximated in objective space using, e.g., a rectangle in two-dimensions, which
is constructed based on the normal and tangent direction to the nominal Pareto op-
timal front. Thus, opposed to the sensitivity region described above, it accounts for
directions in objective space. It is worth noting that a good approximation of the nom-
inal Pareto optimal front has to be constructed to find representative directions. For
higher-dimensional objective spaces, it is harder to build the region of sensitivity. Some
strategies for coping with these difficulties are discussed in [125].

A different strategy based on a local sensitivity analysis is pursued in Augusto et al.
[8]. The authors make use of local sensitivity analysis by describing robustness with
the help of the maximum singular value of the Jacobian of the objective function with
respect to the uncertainties.

4.3.2.3. Worst-Case Analysis in MOO

Several robustness measures for MOO are inspired by single-objective robustness defini-
tions based on statistical quantities. One may distinguish between worst-case, expectation-
based, and variance-based measures. Also, the quantities can either be objectives or set
as additional constraints.

As in the case of single-objective optimization, a worst-case analysis of a design can
be used for measuring robustness, such that a robust worst-case multi-objective opti-
mization problem can be formulated as

min
y,u

max
ω∈Ω

F(y,u,Z(ω)) (4.53)

s.t. c(y,u,Z(ω)) = 0 ∀ ω ∈ Ω.

Usually the worst case of objective function values

max
ω∈Ω

F(y,u,Z(ω)) (4.54)
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is considered as a single, worst-case ideal solution comprising the worst cases of all
individual objective functions, such that it is not accounted for the effect of uncertainties
in multi-objective space. In practice, there exists a worst-case Pareto front for each
design point, which can be found by solving the multi-objective optimization problem of
worst cases (4.54). First ideas for using such a representation for defining a dominance
relationship for robustness to be applied in a multi-objective evolutionary algorithm were
proposed in [10, 9]. Since the worst-case Pareto front was based on discrete set scenarios,
the additional effort was negligible. In a scenario-based setting, different concepts of
robustness have been analyzed in a multi-objective context, e.g., based on set order
relations in [130]. In a more general setting in random space, however, finding a worst-
case Pareto front for each design point is computationally expensive. Hence, the use of
metamodeling techniques in random space is essential (see e.g. [163]). Similarly to the
situation in single-objective robust design, the worst-case approach is rather conservative
for finding robust optimal solutions and is especially of interest in reliability-based design.

4.3.2.4. Expectation- and Variance-Based Measures in MOO

In [47], Deb and Gupta introduce the concept of the mean effective objective function
as a robustness measure, which can be generalized as a sampled expected value. The
authors consider uncertainties in the design variables and sample in a ball in design
space. Although the concepts of robust design were formulated for uncertainties in the
design variables based on the mean effective objective function, they can be generalized
for arbitrary multi-objective optimization problems under uncertainty using expectation-
based measures. Thus, the work of Deb and Gupta can be seen as the basis for the use of
expectation- and variance-based measures in MOO. The authors introduce two different
concepts of robust solutions based on expected values.

Inspired from the expectation-based formulations in single-objective optimization one
concept is to minimize the expected values of the individual objective function, which
can be formulated as

min
y,u

E [F(y,u,Z(ω))] (4.55)

s.t. c(y,u,Z(ω)) = 0 ∀ ω ∈ Ω.

The expectation operator is to be understood component-wise. The resulting Pareto
optimal front is sometimes referred to as the expected Pareto optimal front.1

The second formulation for multi-objective robust design, given by

min
y,u

F(y,u, z̄)

s.t. ||E [F(y,u,Z(ω))]− F(y,u, z̄)]|| ≤ ν, (4.56)

c(y,u,Z(ω)) = 0 ∀ ω ∈ Ω,

1This terminology shall not be confused with the description of a distribution of the Pareto optimal
front since the order of minimization and applying a statistical description is not necessarily inter-
changeable.
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uses the expected deviations of the individual objective functions from the nominal
values as a robustness measure. This formulation introduces the robustness measure
as an additional constraint to the original problem based on nominal values z̄. The
deviation is understood component-wise, such that

(E [F(Z(ω))]− F (z̄))i = (E [F (Z(ω))− F (z̄)])i = E [fi(Z(ω))− fi(z̄)]

for i = 1, . . . , k and ω ∈ Ω.
The existence of a solution for the second formulation (4.56) depends on the value

of maximum perturbation ν, which has to be chosen by the designer. Note that in
a worst-case scenario, the worst solution can be chosen instead of the expected value.
Furthermore, different norms (e.g. ||.||1, ||.||2, ||.||∞) can be used in objective space. The
original definition of the constraint in [47] uses the relative expected deviations, i.e.,
the absolute deviations divided by ||F (y,u, z̄)||. The formulation (4.56) will be further
analyzed when introducing the new robust design formulation. For now, one may observe
that while the first formulation reduces the influence of uncertainties to a single point in
objective space (expected value), the second formulation accounts for component-wise
deviations in objective space (expected deviations).

Deb and Gupta use both formulations in an evolutionary context. In [13], the degree
of robustness is used as an additional measure for ranking solutions in multi-objective
evolutionary optimization. Inspired by the maximum perturbation in formulation (4.56),
the solutions are ordered based on the size of the design region such that a maximum
perturbation in objective space is not violated.

The ideas of Deb and Gupta can be extended to variance-based measures using the
individual variances of the objective function as robustness measures. This leads, for
example, to the robust design problem

min
y,u

F(y,u, z̄)

s.t. ||var [F (y,u,Z(ω)] || ≤ µ, (4.57)

c(y,u,Z(ω)) = 0 ∀ ω ∈ Ω.

The variance is to be understood component-wise and can be obtained from the distribu-
tions of the individual objective functions. It accounts for the expected squared deviation
from the expected value instead of an expected absolute deviation from a nominal value.
The vector of variances can be treated as an additional vector of objective functions as
well, thus leading to an extended multi-objective optimization problem, e.g.,

min
y,u

{E(F)>, var(F)>} (4.58)

s.t. c(y,u,Z(ω)) = 0 ∀ ω ∈ Ω.

This formulation is, for example, applied in [193] for the design of an unmanned space
vehicle and in [94, 46] for conceptual aircraft design.

In [182], a formulation similar to (4.49), which uses a combined objective function of
the expected value and the standard deviation, is proposed in a multi-objective context.
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Figure 4.3.: Two different probability regions in two-dimensional objective space with
definite gains (green) and losses (red) compared to the deterministic outcome
(black dot). The red circle indicates the expected value.

It is applied in [109] for the design of a vehicle suspension system using an epsilon-
constraint method and point collocation for uncertainty propagation and in [258] for
crashworthiness design of a vehicle. In [197] the formulation based on expected values
and variances is combined with the robustness measure of formulation (4.56).

Analogously to single-objective robust design, introducing the variance as an addi-
tional quantity allows for a better way of taking perturbations of the objective functions
into account. Nevertheless, the individual variances of objective functions are not nec-
essarily representative for analyzing the influence of uncertainties in objective space
since the correlation between objective functions is not captured. This problem will be
discussed in the following section.

4.3.3. Expected Losses in Objective Space

The intend of this section is to introduce a new measure for robust optimality that can
be used in a scalarization approach to find robust optimal solutions and that is able to
account for the effects of uncertainty in objective space. The general idea is to measure
the expected signed distance of an outcome from the deterministic Pareto optimal front.
Using the deterministic Pareto optimal front, one can state if an outcome of random
samples in objective space is better or worse in the sense of Pareto optimality. In the
present work, when comparing the effect of uncertainties of a design to the deterministic
Pareto optimal front, this is denoted as gains and losses in objective space.

Figure 4.3 shows the importance of considering the combined effect of uncertainties in
objective space. The probability region, as introduce at the beginning of Section 4.3.2,
is used in the following to represent the distribution of solutions for a given design in
objective space.2 It is shown for two different designs in a two-dimensional objective
space (red line). The designs are assumed to be close to each other. Thus, both designs
have a similar deterministic value (black dot), where the objective function is evaluated
at the nominal values. Also, the variances and the expected values (red circle) are

2The depiction for a fixed level of probability P0 is used for illustration purposes. Gains and losses are
defined for all outcomes and not only for outcomes in a probability region.
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(a) Losses in objective space.
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(b) Definite losses.

Figure 4.4.: Region of losses in objective space with respect to the Pareto optimal front
(a) and definite losses with respect to the deterministic outcome indicated
by the black dot (b). The red-colored probability regions indicate these
regions. The design corresponding to point A is more robust than the one
corresponding to point B.

similar.
Note that for a minimization problem, the points found in the lower-left region are

definitely better (region of definite gains depicted by the green color), and the points
in the upper right region definitely worse (region of definite losses depicted by the red
color) in comparison to the deterministic outcome. The vertical and horizontal lines in
the figure indicate these regions. The design on the right side has a large region of losses.
When comparing both designs, it can be noticed that most outcomes of the left design
dominate the outcomes of the right design. Thus, although both designs have similar
expected values and the variances of the individual objective functions are similar, one
would prefer the left design over the right one due to the shape of the probability region.
Additionally, the fact that the gains outweigh the losses for the right design shows that
a robustness measure should be defined based on losses in objective space.

As indicated in Figure 4.3, definite losses as well as possible losses can be measured
based on the signed distance to the deterministic value of the specific design, i.e. the
vector of objective functions evaluated at the nominal value. This is necessary if a
deterministic Pareto optimal front is not known. However, if the deterministic Pareto
front is known, it is possible to indicate gains and losses by using, for example, the signed
distance of every outcome to the Pareto optimal front as an indicator. Both cases are
depicted in Figure 4.4a and 4.4b. Figure 4.4a shows the region of losses, indicated in
red and restricted to a specific probability region, for two different designs in objective
space. The value for losses is higher when the outcomes are further away from the Pareto
optimal front. When measuring the distance to the Pareto optimal front, it can be seen
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that point A can be denoted as more robust than point B. The region of definite losses
compared to a deterministic design (dot) is shown in Figure 4.4b. The corresponding
distances to the deterministic design can be used to measure definite losses if the Pareto
optimal front is not known.

To summarize, the example in Figure 4.3 shows that the use of individual expected
values and variances of objective functions for robust design in a multi-objective setting,
as presented in Section 4.3.2, is not necessarily representative for measuring robustness.
It can be observed that the distribution in objective space, that may be represented by a
probability region, can be used for judging if a design is robust. Notably, the losses with
respect to the deterministic Pareto optimal front or the deterministic outcome are of
interest for robust optimality. Since it is in general too expensive to obtain a description
of the probability region itself, the idea is to measure the losses based on the expected
value of a signed distance function.3

In the following, robustness measures are introduced for both situations described
above. In the first section, one assumes that the deterministic Pareto optimal front
is known or approximated to measure the expected gains and losses. The robustness
measure is used to find robust optimal points in a two-phase approach. Then the next
section introduces the case when the Pareto optimal front is unknown and proposes a
formulation for finding optimal robust designs in a direct approach.

4.3.3.1. Two-Phase Approach

In the two-phase approach, it is assumed that a given set of Pareto optimal points
has been determined for the deterministic optimization problem (2.1) in a first phase.
Additionally, one assumes to have an approximation of the Pareto optimal front in
objective space. This can, for example, be done using local approximation techniques
based on Taylor expansions (see [273] for application in MOO), using spline interpolation
in a two-dimensional case or using other sophisticated interpolation methods for higher
dimensions. Note that the approximation can become non-trivial for disconnected Pareto
optimal fronts, although a distance to the front can still be defined. The representation
of the Pareto optimal front is denoted as the interface Γ0 for determining gains and
losses.

The losses can then be expressed by means of a signed distance function δ : Rk → R
in objective function space, such that

δ(F ,Γ0) := ± min
F ∗∈Γ0

||F − F ∗||. (4.59)

The signed distance function measures the distance of a point in objective space to the
representation of the deterministic Pareto optimal front Γ0 with a positive sign indicating
that the point is located in the region of losses.

3Reducing the representation of the losses to the expected value is a simplification with a loss of
information. Additionally, the variance of the losses can be of interest. If the distribution of the loss
function itself can be obtained with reasonable computational effort, e.g., using a surrogate model,
it can be used to assess robust optimality.
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Figure 4.5.: Two-phase approach: Linear approximation of the Pareto optimal front
(zero level set, t = 0) and different propagation steps (e.g. t = 0.1, 0.2, 0.3)
of the level set function ϕ(F , t) representing level sets for the signed distance
function.

The task is now to calculate the signed distance. Different definitions of the norm || · ||
can be used. In the following, the Euclidean distance is used. The problem is that, in
general, a closed expression for δ(F ,Γ0) is not available. Instead, the minimum distance
has to be recalculated for every sample in objective space. This can be, for example,
circumvented by approximating the signed distance function using strategies based on
the level-set method (see Section A.3.1 in the appendix for further details). The general
idea is to represent the signed distance function using a level set function with Γ0 as
the zero level set at a pseudo-time t = 0. Then the zero level set is propagated in
pseudo-time using a transport equation.

In the exemplary Figure 4.5 the front is approximated using linear splines. The cor-
responding level sets with positive values of the signed distance function are shown in
the figure as red lines.

The optimization problem to be solved in the second step aims at minimizing the per-
formance while constraining the expected losses in objective space and can be formulated
as

min
y,u

F(y,u, z̄) (4.60)

s.t. c(y,u, z̄) = 0,

E (max(0, δ(F(y,u,Z(ω)),Γ0)) ≤ δmax.

The evaluation at the nominal value z̄ denotes the deterministic case, which is the value
prescribed when not considering any uncertainties. The expected losses are constrained
by an upper bound δmax. The choice of the upper bound is important for the existence
of a solution to the above problem. The max(0, .)-function ensures that only losses are
considered.4 Note that the expected losses can also be used as an objective function to
avoid the definition of δmax. However, the constraint-based formulation will be applied in

4Note that for gradient-based optimization, the problem has to be transformed to obtain constraint
functions that are continuously differentiable. This can be done by either reformulating the problem
with the help of additional variables or by approximating the maximum function with a smooth
function. The latter is done in the context of the present work.
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the following as it extends the original deterministic optimization problem. Furthermore,
the definition of an upper bound for expected losses is less conservative.

4.3.3.2. Direct Approach

In the direct approach, the deterministic Pareto optimal front is not needed. As a re-
sult, a solution of the deterministic multi-objective optimization problem is not required.
This can be advantageous if the computational effort for solving the MOO problem is
high, and the deterministic Pareto optimal front is not of interest. It is also necessary to
use the direct approach if the approximation of the Pareto optimal front is not represen-
tative enough. Instead, the distance of the samples to the objective function evaluated
at z̄ for a given design u is used to describe losses. This approach is similar to the
constrained expectation-based formulation (4.56) using expected deviations in objective
space. However, there are significant differences to the proposed formulation:

• Perturbations in objective space consider gains and losses equally. This can be
used when the design variables are considered as uncertain. However, in a general
setting, this penalizes gains in objective space.

• The expected distances are considered component-wise, and a single measure is
defined afterwards using a suitable vector norm. As a result, this measure is not
equivalent to an expected distance in objective space, i.e., in general,

||E [F(Z(ω))− F (z̄)] || 6= E [||F(Z(ω))− F (z̄)||] .

For the proposed direct approach, different assumptions for the local estimation of
losses can be made. When considering expected possible losses one may formulate the
optimization problem as

min
y,u

F(y,u, z̄)

s.t. c(y,u, z̄) = 0, (4.61)
k∑
i=1

E (max(0, fi(y,u,Z(ω))− fi(y,u, z̄))) ≤ µ1.

Another assumption is to approximate the losses based on a local linear approximation
of the Pareto optimal front in the deterministic outcome of the objective function for
a design u. The local front can then be represented as the zero level set of the signed
distance function δ(F ) =

∑k
i=1 fi(y,u,Z(ω))−fi(y,u, z̄). The corresponding constraint

replaces the original constraint in (4.61), and is given by

E

(
max(0,

k∑
i=1

fi(y,u,Z(ω))− fi(y,u, z̄))

)
≤ µ2. (4.62)

Figure 4.6 depicts the signed distance functions for the two different approaches. The
expected possible losses and the linear approximation are always obtained locally for the
particular deterministic outcome.
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Figure 4.6.: Distance function for expected possible losses (left) and linear approximation
(right).

Other expressions may be based on the expected definite losses or a better local
approximation of the front. If, for example, the MOO problem is convex, a convex
approximation, e.g., ϕ0 = f1 + f2 + f1 · f2 in two dimensions, can be used.5

4.4. Application and Results

This section serves to present the application of strategies for multi-objective robust de-
sign to the aerodynamic shape optimization problem described in Section 2.4.1, using the
optimization strategies of Sections 2.3.3 and 3.2. After giving an overview of the litera-
ture on the application of uncertainty quantification and robust design in aerodynamics
in Section 4.4.1, details on the implementation of the above-described methodologies
are given in Section 4.4.2. In Section 4.4.3, multi-objective robust design is performed
using the expectation-based approach, as well as both proposed approaches based on
expected losses, considering uncertainties in the operational conditions. Uncertainties in
the geometry are considered separately in Section 4.4.4.

4.4.1. Uncertainty Quantification and Robust Design in Aerodynamics

Uncertainties in aerodynamic applications may arise in different forms due to various ef-
fects. In general, one may distinguish between uncertainties in the operational conditions
and geometrical uncertainties. Both types of uncertainties, operational and geometri-
cal, may be included in aerodynamic design processes. In the following results, they
are introduced separately in different studies to investigate the different effects. The
present section shall give an overview of strategies for uncertainty quantification and
robust design in aerodynamic design based on both types of uncertainties.

Uncertainties in the operational conditions are caused by general spatial or temporal
variations in the flow regime. They can arise due to atmospheric conditions or certain
flight maneuvers. It can also be of interest to include operational uncertainties in aero-
dynamic design when trying to cope with sensor uncertainties in real flight or corrections
in wind tunnel experiments due to walls or inhomogeneous conditions [228]. Geometrical
uncertainties can be used to represent variations due to manufacturing and wear over

5Note that an appropriate scaling has to be considered. Especially for the proposed convex approxi-
mation one can expect values to be in the range of −1 and 1.
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time. During flight, geometrical uncertainties may occur due to loading or icing effects.
Icing, for example, occurs when droplets at a temperature below the freezing point hit
the airfoil surface and freeze, which can significantly impact the performance and may
lead to accidents (see [79]).

Uncertainty Quantification in Aerodynamics Uncertainties in the operational condi-
tions are commonly modeled by assuming a uniform or a normal distribution for the
free-stream Mach number (see e.g. [127, 171]). Furthermore, it can be made use of
truncated distributions to prohibit unphysical effects [242]. Additionally, the angle of
attack of attack is sometimes assumed to be independently distributed (see e.g. [244]).

For uncertainties in the operational conditions, it is common (see e.g. [243, 34]) to
assume a Gaussian random process ψ(ξ, ω) with a mean function

E(ψ(ξ, ω)) = 0 (4.63)

and a covariance function

Cov(ξ, ξ′) = b2 exp(− 1

l2
||ξ − ξ′||22). (4.64)

Here b stands for the variability in the manufacturing error represented by the magni-
tude of the bumps. The parameter l describes the frequency of the bumps, which is
proportional to 1/l and indicates how fast the correlation is reduced along the airfoil.
The variables ξ and ξ′ are points on the airfoil surface A. The effects of uncertainty
act in the outward normal direction n of the airfoil, such that the uncertain shape s̃ is
expressed as

s̃(ξ, ω) = ξ + ψ(ξ, ω)n(ξ) ∀ ξ ∈ A,ω ∈ Ω. (4.65)

An early overview of methods in uncertainty quantification and robust design in engi-
neering is given in [298], pointing out the general need for UQ-based strategies and the
resulting opportunities for engineering design. In the following years, different meth-
ods for uncertainty propagation have been tested for general CFD applications and, in
particular, for aerodynamic applications.

In [172], geometrical variations are modeled using global shape parameters that are
assumed to be distributed with a truncated normal distribution. The effects of uncertain-
ties in a subsonic and transonic RANS flow are studied using stochastic collocation. The
influence of geometrical uncertainties on an Euler flow around an airfoil is investigated in
[34]. The manufacturing error is modeled using a the Gaussian random process with the
covariance matrix (4.64). The infinite-dimensional process is represented using finitely
many modes of the KL expansion, and the dimension is further reduced by using a global
sensitivity analysis requiring a sampling strategy. In [228], stochastic collocation and
the pseudo-spectral approach are applied to an airfoil in subsonic RANS flow under the
consideration of operational and geometrical uncertainties with uniform distributions.
The general observation, in this case, is that the effort of both approaches is comparable
with a slight advantage for the pseudo-spectral approach when the underlying problem
is smooth.
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Robust Design in Aerodynamics Robust airfoil design dates back to Huyse et al.
[127, 128]. Huyse used a discretized semi-infinite robust design formulation based on
minimizing the expected value of the drag coefficient. The mean drag coefficient was
optimized under an uncertain Mach number in a transonic Euler flow. The Mach number
was assumed to be uniformly distributed, and the expected value was evaluated by using
a quadrature method. A min-max formulation was used in [164] for the same setting.
Different studies for robust airfoil design have been conducted afterwards. Some of them
are listed in the following.

In [95] robust design is performed using the simplified assumption of independent
normally distributed geometrical parameters of a 3D wing. The uncertainties are prop-
agated using a first-order perturbation method. In [207] geometrical and operational
uncertainties are considered separately for a 2D airfoil in Euler flow. A worst-case for-
mulation is used, and the inner optimization problem considering the worst performance
of a design under uncertainties is solved on a surrogate model. The overall optimization
is carried out using a genetic algorithm. Lee et al. [162] optimize a three-dimensional
wing under uncertainties in the Mach number. The sampled mean and the variance of
the drag coefficient are considered as objective functions for a multi-objective evolution-
ary algorithm. In [244], the formulation (4.45) resulting from a semi-infinite formulation
and the chance-constrained formulation (4.46), using a first-order and second-order per-
turbation method, are compared for lift-constrained robust design with uncertainties in
the operating conditions. The Mach number and angle of attack are distributed using a
truncated normal distribution. The use of the first-order and second-order perturbation
method does not make a significant difference for the specific test case of an airfoil in a
2D Euler flow. The semi-infinite formulation leads to a better design than the chance-
constrained formulation when considering the performance of the range of the uncertain
parameters. The work in [243] focuses on geometrical uncertainties, which are modeled
using a Gaussian random process with the covariance function. The KL basis is chosen
goal-oriented, making use of the derivative of the objective function with respect to the
single basis functions. The semi-infinite formulation is discretized using non-intrusive
polynomial chaos based on spatially-adaptive sparse grid rules. In [235], a dimension-
adaptive sparse grid method based on the work of Gerstner and Griebel [77] is used.
In all works [244, 243, 235], the one-shot method based on approximate reduced SQP
iterations is used for optimization. Ghisu et al. [79] study robust aerodynamic design
considering the effects of icing. The unknown position of a single ice shape is propagated
using non-intrusive polynomial chaos. In [214, 215], the geometrical variations are mod-
eled as uncertainties in the design variables with independent Gaussian distributions
and a robust design of a two-dimensional transonic airfoil is performed using a proposed
quadrature technique for uncertainty propagation. The model of using design parameter
uncertainties stems from the idea of accounting for uncertainties in the conceptual design
phase.

Robust airfoil design with multiple objectives is performed in [39] for a 2D airfoil in
viscous flow using game theory. Uncertainties are assumed in the Mach number and
the angle of attack, and the expectation-variance-based approach (see problem (4.58))
is pursued using four objective functions, namely the expected value and the variances
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of the drag and lift coefficient.

4.4.2. Implementation Details

The test case introduced in Chapter 2 is considered for robust airfoil design with multiple
objectives. As before, the objectives are the drag and the lift coefficient. Additional in-
equality constraints for the pitching moment and the thickness of the airfoil are imposed.
To summarize the strategy:

• Different formulations for multi-objective robust design are analyzed. This includes
the new formulations based on expected losses proposed in Section 4.3.3.

• The resulting multi-objective optimization problems are solved with the help of
constraint methods that make use of the hybrid strategy presented in Section
2.3.3.

• Uncertainties are propagated with the help of a non-intrusive polynomial chaos
method (see Section 4.2.2). When considering geometrical uncertainties it is made
use of a KL expansion and sparse grids, as introduced in Section 4.2.1 and 4.2.3.

Details on the optimization procedure, methods for uncertainty quantification as well as
robustness measures that are specific for the application are given in the following.

4.4.2.1. Hybrid Optimization

For the hybrid optimization, the robust design formulation has to be integrated into the
metamodeling approach. There exist two possible options.

1. One possibility is to build a metamodel based on the design space and the random
space. Since the metamodel is cheap to evaluate, Monte Carlo sampling can be
applied for propagating uncertainties.

2. The other possibility is to build a metamodel for the approximated statistical
quantities like expectation, variance, or losses.

The first possibility is, for example, successfully applied in [139] based on different meta-
modeling strategies, where Kriging turned out to be the most promising. However, since
it shall be avoided to increase the approximation space of the metamodel, the present
work sticks to the second possibility and also makes use of a non-intrusive polynomial
chaos approximation for building the Kriging models.

4.4.2.2. Scaling

The objective functions have to be scaled appropriately to compare losses in objective
space and to find meaningful thresholds for the variance. In the application to aerody-
namic shape optimization, for example, the lift coefficient is about 100 times bigger than
the drag coefficient.
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For the possible losses in objective space in the direct approach, as well as for the
variance, cd(z̄) and cl(z̄) are used as constant scaling values. The same scaling strategy
is chosen for the dimension-adaptive sparse grid quadrature to allow for a multi-objective
error indicator.

For the two-level approach, the objective function values are normalized in objective
space based on the ideal and the nadir point of the deterministic Pareto optimal front.

4.4.2.3. Quadrature

All stochastic quantities are calculated using non-intrusive polynomial chaos. Since the
uncertainties are expressed assuming normally distributed random variables, it is made
use of Hermite polynomials. Gauss-Hermite quadrature [85] is used to approximate
integrals in random space. As the polynomial chaos expansion is based on Hermite
polynomials, Gauss-Hermite quadrature is a natural choice. The reason for that is that
the Hermite polynomials Hi(x), which are described by the recursive relation

Hi+1(x) = xHi(x)− iHi−1(x) with H0(x) = 1, H1(x) = x, (4.66)

are orthogonal when using the probability density function of the standard normal dis-
tribution

w(x) =
1√
2π
e−

x2

2 (4.67)

as a weight function. One obtains 〈Hi(x), Hj(x)〉w(x) = i!δij . This definition of Hermite
polynomials is the probabilistic definition. There also exists a physical definition with
H̃i+1(x) = 2xH̃i(x)− 2iH̃i−1(x) and H̃0(x) = 1, H̃1(x) = 2x.

The Gauss-Hermite quadrature rule of order k approximates the value of an integral
based on the weight function w as

∞∫
−∞

f(x)w(x)dx =
1√
π

k∑
i=1

wif(
√

2xi) (4.68)

with the quadrature points xi being the zeros of the physical Hermite polynomial H̃k(x)
and weights

wi =
2k−1k!

√
π

k2[H̃k−1(xi)]2
. (4.69)

Unfortunately, Gauss-Hermite quadrature rules are only weakly nested, i.e., the rules
of odd orders all include the grid point x = 0.0. Figure 4.7 shows the points of a
two-dimensional tensorized Gauss-Hermite quadrature rule of level k = 14 (left). The
accuracy and the number of points given by 15×15 = 225 is comparable to the Clenshaw-
Curtis grid presented in Figure 4.1. When constructing the corresponding sparse grid
from the full Gauss-Hermite rule of level k = 14, the resulting number of grid points
is 1233 (right). As a result, although the accuracy of the Gauss-Hermite sparse grid
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Figure 4.7.: Full tensor grid of Gauss-Hermite rule of level k = 14 (left) and correspond-
ing sparse grid rule of level k = 14 (right).

is higher, the number of points in the sparse grid is significantly higher for the weakly
nested rule.

For trading off accuracy and the number of grid points, the idea is to construct a
sparse grid rule that is only based on certain levels of Gauss-Hermite quadrature. A
possible choice is to use levels 1, 3, 7, 15, 31, . . . of the one-dimensional Gauss-Hermite
quadrature rule resulting in a new sparse grid Gauss-Hermite rule. The corresponding
sparse grid of level k = 3 (up to level 15 of the Gauss-Hermite quadrature rule) is shown
in 4.8a and consists of 73 points.

In the present work, when considering uncertainties in the operational conditions, it is
made use of four quadrature points. For the initial design, one observes a relative error
of the order of 10−4 due to the high nonlinearities that result from the shock. Near the
optimal design, where a better approximation quality is important, the relative error
is of the order of 10−5. Throughout the optimization, the resulting approximation is
representative enough to guide the optimization algorithm, especially when compared
to the numerical approximation quality of the objective function.

For the geometrical uncertainties, the present work uses the implementation of a
dimension-adaptive sparse grid construction by Schillings, which was applied to Bayesian
inverse problems in [237]. It is implemented in C++. When used in the Python frame-
work of SU2, the executable can be called. The interface for evaluating functions of
interested was extended to the SU2 environment. For the one-shot method, the imple-
mentation in C++ was directly integrated in the respective routines in SU2.

For the present work, the implementation of the dimension-adaptive sparse grid was
extended to non-nested and weakly nested Gauss-Hermite rules, and the error estimation
was adapted for a multi-objective setting. To avoid the generation of different index sets
for the objective functions fj with j = 1, . . . , k, it is made use of the maximum L2-norm
of the individual error indicators

(∆
(1)
i1
⊗ · · · ⊗∆

(1)
iN

)(fj) for j = 1, . . . , k. (4.70)

This requires a proper scaling of the objective functions such that the errors can be
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Figure 4.8.: Sparse grid Hermite rule constructed from levels 1, 3, 7, 15 of Gauss-Hermite
quadrature. (a). Estimated error of dimension-adaptive sparse grid Hermite
rule in (three-dimensional geometrical uncertainties) (b).

compared with each other. In the dimension-adaptive sparse grid strategy, it is made
use of the Gauss-Hermite sparse grid rule. The estimated error is shown in Figure 4.8b
for a three-dimensional random space assuming geometrical uncertainties for the initial
profile. A value of 10−5 for the estimated error is chosen as an abort criterion.

4.4.2.4. Goal-Oriented Karhunen-Loève expansion

The KL-expansion is employed to represent the random process with the help of a
construction based on the largest eigenvalues. When using this type of construction,
the input random process can be approximated in a representative form. However, the
modes corresponding to the largest eigenvalues can have different impacts on the random
outputs, i.e., the objective functions. Therefore, it can be of interest to further reduce
the dimensionality by only choosing the eigenvectors with a high impact on the outputs.
This strategy is referred to as a goal-oriented KL expansion.

There exist different strategies to measure this impact, inspired by methods for model
reduction or adaptive refinement. In [34], e.g., the dimension is reduced with the help of
a global sensitivity analysis based on sampling. In [243], local sensitivity information of
the objective function is used to measure the impact of an eigenvector vi as a KL basis
function. Suppose that ξ̃ are the surface mesh points describing the perturbed shape
s̃, then the total derivative of an objective function f with respected to Zi measures
the impact of the respective eigenvector. When the perturbed shape is evaluated at a
fixed Zi = Ẑ in random space, one obtains the local impact. The total derivative can
be obtained with algorithmic differentiation, namely

DZif(s̃(Ẑ)) = Dξ̃f(s̃(Ẑ)) · ∂ξ̃
∂Zi

(Ẑ) = Dξ̃f ·
√
λivi(ξ)n(ξ), (4.71)
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where λi is the corresponding eigenvalue and n is the direction of perturbation for the
unperturbed points ξ (see Equation (4.65)). The total derivative with respect to the
surface mesh points can be obtained efficiently using an AD-based discrete adjoint strat-
egy. The basis is reduced by keeping indices i with large sensitivity. The goal-oriented
KL expansion based on local sensitivity information is implemented in the context of the
current work. For multi-objective optimization, the L2-norm of the sensitivity analysis
for the objective functions is used to measure the impact. Unfortunately, for the appli-
cation in the present work, the KL basis cannot be further reduced in a goal-oriented
manner. This is due to the fact that the first eigenvectors always have a considerable
impact on one of the objective functions.

4.4.2.5. Signed Distance Function

The signed distance function is used for obtaining the expected losses as a measure for
robustness. In the following, a linear spline approximation of the deterministic Pareto
optimal front is constructed. For the linear approximation in an objective space with
moderate dimensions it is computationally feasible to calculate the exact signed distance
(4.59) from each part of the front by means of linear algebra. The presented results
are restricted to a two-dimensional objective space. Given a set of dimension P of
deterministic Pareto optimal points, which are described by (f i1, f

i
2)> for i = 1, . . . , P ,

the signed distance δi of a sample point (f1, f2)> to the linear approximation of the
Pareto optimal front based on the point (f i1, f

i
2)> can be obtained by inserting the

sample point in the Hesse normal form, which is

δi =
ni

‖ni‖

[(
f1

f2

)
−
(
f i1
f i2

)]
,

where ni is the normal of the linear approximation pointing into the direction of losses
in objective space. The signed distance to the Pareto optimal front is the minimum over
all individual distances δi.

The expected losses are then defined as the expected value of the positive signed dis-
tance, which is obtained from max{0, δ}. As already explained above, for gradient-based
optimization the maximum is approximated using a smooth function. The approxima-
tion

max{0, δ} ≈ 1

2

(
δ +

√
δ2 + ε

)
(4.72)

with ε > 0 is chosen.

4.4.3. Results for Uncertainties in the Operational Conditions

In a first application, different robust design formulations are analyzed for the multi-
objective aerodynamic shape optimization under the consideration of uncertainties in
the operational conditions.

The scalar-valued uncertainties in the operational conditions of flight are modeled by
using random variables with an assumed probability density function. In the following,
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it is assumed that the free-stream Mach Number Ma∞ is uncertain and can be described
with the normal distribution Ma∞ ∼ N(µ, σ2) with µ = 0.8 and σ = 0.01, which can
also be expressed as Ma∞ = µ + σZ with Z ∼ N(0, 1). The associated orthogonal
polynomials for the standard normal distribution with probability function fZ are the
Hermite polynomials Hk defined by (4.66).

Following the derivation in (4.18), the expected value of cd, for example, is then given
by

E(cd(y,u, Z)) ≈ E

(
m∑
k=0

cd,k(y,u)Hk(Z)

)

= cd,0(y,u) =

∞∫
−∞

cd(y,u, z)H0(z)fz(z)dz

≈ 1√
π

M∑
i=1

cd(y,u,
√

2zi)wi.

Note that it was made use of the orthogonality of the polynomials and that the re-
sulting integral was approximated with a Gauss-Hermite quadrature formula (4.68) with
weights wi and points zi for i = 1, . . . , 4.

For the variance, one obtains analogously

var(cd(y,u, Z)) ≈ E

(
(
m∑
k=0

cd,k(y,u)Hk(Z)− cd,0)2

)

=
m∑
k=1

k!cd,k(y,u)2 (4.73)

=
m∑
k=1

k!

 ∞∫
−∞

cd(y,u, z)Hk(z)fz(z)dz

2

≈
m∑
k=1

k!

π

(
M∑
i=1

cd(y,u,
√

2zi)Hk(
√

2zi)wi

)2

.

The results in the following sections make use of the expected value of the objective
functions or loss functions. Furthermore, only the Mach number is considered to be
uncertain. Further numerical results are shown in Section A.3.3 of the appendix. The
variances of the objective functions are analyzed. Furthermore, the angle of attack is
considered as an additional uncertain variable.
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4.4.3.1. Expectation-Based Approach

The robust multi-objective optimization problem based on the expected value is given
by

min
y,u

{E (cd(y,u, Z(ω))) , E (−cl(y,u, Z(ω)))}

s.t. c(y,u, Z(ω)) = 0 ∀ ω ∈ Ω, (4.74)

g(y,u, Z(ω)) ≥ 0 ∀ ω ∈ Ω.

When applying the above expression for the expected values and the ε-constraint
method and when discretizing the semi-infinite formulation, one obtains the multiple
set-point problem

min
y,u

1√
π

M∑
i=1

cd(y,u, zi)wi

s.t. c(y,u, zi) = 0 ∀ i = 1, . . . ,M, (4.75)

g(y,u, zi) ≥ 0 ∀ i = 1, . . . ,M,

− 1√
π

M∑
i=1

cl(y,u, zi)wi ≤ cl,j ,

for each iteration step j for the constraint cl,j on the lift coefficient. The same applies
to the constraints on the drag coefficient when minimizing the expected value of the
lift coefficient. The additional inequality constraints and the PDE constraint shall be
feasible for all quadrature points zi. The inequality constraints are the same as for the
original optimization problem without any uncertainties, namely a lower bound on the
moment coefficient and a lower bound on the maximum thickness of the airfoil. Note
that in this specific situation the maximum thickness does not depend on the random
variable. Furthermore, since the moment coefficient is monotonously increasing for low
Mach numbers, the constraints can be reduced to a single constraint

cm(y,u, min
i=1,...,M

zi) ≥ 0.

For minimizing drag and maximizing lift, the robust multi-objective optimization
problem is solved for finding eight Pareto-optimal points. In a first approach, the epsilon-
constraint method is applied in combination with the hybrid approach, using IPOPT for
gradient-based optimization.

In Figure 4.9, the found points on the deterministic Pareto optimal front are marked
as blue dots. The expected values can be found in a post-processing step for each of the
designs and are marked with a blue cross.6 The points found using the expectation-based
approach are marked in black. The black crosses denote the expected Pareto optimal
front, and black dots indicate the corresponding nominal values in objective space. The

6The values for the evaluation at the nominal parameters and the expected values are plotted in the
same objective space. It is, however, important to remark that the expected values do not define a
direct solution in objective space.
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Figure 4.9.: Solutions found for the expectation-based approach. The black crosses in-
dicate the expected values in objective space. The points correspond to an
evaluation at the nominal parameters. The optimal solutions without con-
sidering uncertainties are indicated by the blue points and their respective
expected values by blue crosses. The designs corresponding to the solutions
are presented on the right side.

points indicate a convex Pareto optimal front for each problem. One can clearly see the
improvement gained by the robust optimization. The expected values corresponding to
the deterministic Pareto optimal front tend to be worse than the respective minimum
objective values leading to high deviations from the nominal values when considering
uncertainties. On the right side of the figure are the designs that correspond to the
found points from top to bottom. The dashed shapes belong to the optimal designs, and
the solid shapes belong to the robust optimal designs.
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Figure 4.10.: Exemplary robust optimal airfoil design (solid line) and optimal airfoil
design (dashed line).
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Figure 4.11.: Behavior of the drag coefficient for the deterministic and the robust opti-
mal design. The increase in the drag coefficient is shifted to larger Mach
numbers.

The robustness is shown exemplary for one robust optimal design, which is given
in Figure 4.10. The expected value of the optimal design are E(cd) = 0.00274 and
E(cl) = 0.306 and the expected values of the robust optimal design are E(cd) = 0.00147
and E(cl) = 0.307. The differences of the two shapes are apparent near the trailing edge
and on the upper and lower side.

Figure 4.11 shows the behavior of the drag coefficient around the mean Mach number.
While the drag coefficient of the optimal design (dashed line) is sensitive around the
Mach number of 0.8, it is not very sensitive for the robust optimal design. The strong
increase of the drag coefficient is also shifted to a higher Mach number. For the lift
coefficient, a weaker increase in the lift coefficient with respect to the Mach number is
observed for the robust optimal design.

For further analysis purposes, the hybrid strategy using the one-shot strategy for
gradient-based optimization is applied to solve the multi-objective robust design prob-
lem. To present new results, the optimization problem under consideration is the multi-
objective aerodynamic shape optimization problem without considering constraints on
the moment coefficient and the thickness. Figure 4.12 shows the obtained robust optimal
solutions in objective space, as well as the corresponding designs.

During the one-shot strategy, the flow solutions and adjoint solutions for the different
Mach numbers are iterated simultaneously, and a combined objective and augmented
Lagrange function is built based on the corresponding quadrature weights. It can be
observed that the one-shot method based on expected values needs fewer iterations
in comparison to the results of Chapter 3. This is a typical result for robust design
based on expectation values since the integration has a smoothing effect on the objective
and constraint functions. Nevertheless, the computational costs for finding a robust
optimal design are naturally higher than the costs for finding an optimal design since
the consideration of the Mach number as a random variable increases the dimension.
For the following results, IPOPT is used as a gradient-based optimization algorithm to
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Figure 4.12.: Robust optimal solutions found with the one-shot method when only con-
sidering bound constraints (black dots, crosses for expectation), and com-
parison to optimal designs (blue dots, crosses for expectation). Corre-
sponding designs are compared on the right side.

present and analyze results for higher lift coefficients.
For further numerical results, including the consideration of an additional uncertainty

in the angle of attack, one may have a look at Section A.3.3 of the appendix.

4.4.3.2. Two-Phase Approach

In the following, the two-phase approach is used with a prescribed constraint on the
distance δmax = 0.15 in normalized objective space. The additional constraint for the
moment coefficient is also evaluated at the nominal value z̄. Note, however, that any
type of feasibility robustness could be applied. The expected losses are calculated with
the help of non-intrusive polynomial chaos using Gauss-Hermite quadrature with four
quadrature points zi and weights wi for i = 1, . . . , n. The resulting multi-objective
optimization problem

min
y,u

F (y,u, z̄) := (cd(y,u, z̄), cl(y,u, z̄))
>

s.t. c(y,u, z̄) = 0,

cm(y,u, z̄) ≥ 0, (4.76)

t(u) ≥ 0.12,
n∑
i=1

wi(max(0, δ(F(y,u, zi), φ0)) ≤ δmax

is solved for eight Pareto optimal points using the ε-constraint method. The signed
distance δ is based on the linear approximation presented in Section 4.4.2.
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Figure 4.13.: Pareto optimal points for two-phase approach (robust) and deterministic
Pareto optimal points (opt). The design are given on the right-hand side.

Figure 4.13 shows the optimization result in objective function space. The black dots
indicate the robust optimal designs evaluated for the Mach number z̄ = 0.8, which is
used in the deterministic optimization. The crosses indicate the expected values. For
reasons of comparison, the deterministic values and the expected values of the multi-
objective optimization without considering uncertainties are shown by the black dots
and crosses. The corresponding designs are plotted on the right side of the figure. The
upper design corresponds to the maximum lift coefficient and the lower design to the
minimum drag coefficient. It can be observed that the designs are very similar, while
the expected values for the robust design approach are significantly improved.

In Figure 4.14 random samples are shown for a chosen design to depict the probability
region. The blue-colored dots denote the probability region for a comparable design that
was obtained using the expectation-based approach, i.e. solving problem (4.74). The
probability regions differ significantly as the result obtained by the expectation-based
approach leads to higher losses in objective space. In particular, the probability region
based on the expected losses is close to the deterministic Pareto optimal front. As an
interesting side-effect for the application under consideration, the perturbations of the
resulting solution are less prone to result in a strong shock wave in the flow solution.
For the robust optimal design based on expectation, the occurrence of strong shocks for
specific perturbations can be observed due to the sudden increase of the drag coefficient
and decrease of the lift coefficient.
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Figure 4.14.: Sampled probability region for the expected losses (robust) and the
expectation-based approach (rob exp).

4.4.3.3. Direct Approach

The direct approach can be used if a construction of the Pareto optimal front is compu-
tationally too expensive. Exemplary, it is applied to the given test case by constraining
the expected possible losses presented in Equation (4.61) with µ1 = 0.15. The results in
objective space are shown in Figure 4.15. The constraining of expected possible losses
leads to designs with improved expected values.
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Figure 4.15.: Pareto optimal solutions for direct approach using expected possible losses.
The robust optimal solutions (robust) are compared to optimal solutions
(opt). The corresponding designs are given on the right-hand side.
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Figure 4.16.: Sampled probability region for the direct approach (robust) and the
expectation-based approach (rob exp).

In Figure 4.16, the probability region for a specific design is compared to the proba-
bility region of the design obtained using the expectation-based approach. Again, the
expectation-based approach leads to higher losses in objective space. The samples of the
probability region of the expectation-based approach are dominated by the samples for
the design obtained using the direct approach.

When comparing the results of the direct approach with the results of the two-phase
procedure, it can be seen that the two-phase approach results in designs with a better
probability region. Nevertheless, the direct approach is a good compromise when the
additional construction of the deterministic Pareto optimal front is too expensive. It can
be expected that the results of the direct approach can be improved using a different
approximation of the local Pareto optimal front, as presented in Section 4.3.3.

4.4.4. Results for Geometrical Uncertainties

As a further application for robust design with multiple objectives, geometrical uncer-
tainties of the airfoil are assumed. Given the spatial coordinates ξ, the uncertainties
are restricted to 80 percent of the airfoil surface A defined by Ã = {ξ ∈ A | ξ1 ≤ 0.8},
neglecting the trailing edge. This is a modeling assumption that avoids unreasonable
geometrical representations like intersections of the lower and upper surface. Note that
the shape A is defined by the design variables u in each iteration of the optimization
algorithm. The coordinates of the perturbed airfoil s̃ are given by Equation (4.65) us-
ing a random process ψ. The expected value of the random process is E(ψ) = 0 and
the covariance function is assumed to be the Gaussian covariance function (4.64) with
b = 0.001 and l = 0.1. The covariance function models the correlation between different
points on the airfoil. Note that the perturbations represented by the random field are
chosen independently of the parameterization that is used for optimization. This makes
sense since they cannot be represented by the chosen design variables.
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Figure 4.17.: Eigenvalues (left) and first three eigenvectors (right) of the covariance ma-
trix of the original design.

Describing the geometrical uncertainties with the help of a random process results
in an infinite-dimensional random space. For applying the non-intrusive polynomial
chaos approach, it is necessary to provide finite-dimensional and uncorrelated random
variables. This can be done by making use of a KL expansion, as described in Section
4.2.1. The eigenvalue problem (4.7) is discretized based on the mesh points on the
surface, leading to the solution of a discrete eigenvalue problem with a covariance matrix
of size (141 × 141) for the discretized airfoil. The problem is solved using a standard
linear algebra package (linalg in Python, Eigen in C++). Figure 4.17 shows the decaying
eigenvalues on the left side and the first three eigenvectors on the right side for the
NACA airfoil, which is the initial shape for the optimization. During the optimization,
the eigenvalue problem is solved for each perturbed shape. In each optimization step,
the basis constructed based on the first three eigenvectors is chosen as an approximation
of the random process. The random process is approximated using a KL expansion ψK
as given in Equation (4.10) with K = 3. As a result the infinite-dimensional random
space is reduced to a finite-dimensional random space with uncorrelated variables Z1,
Z2, Z3 ∼ N(0, 1). Thus, a non-intrusive polynomial chaos approach can be applied, such
that the expected value of the drag coefficient cd, for example, is expressed as

E(cd(y,u, ψ3(ξ,ω)) =

∫
R3

cd(y,u,
3∑
i=1

√
λivi(ξ)zi(ω))fZ1(z1)fZ2(z2)fZ3(z3)dz1dz2dz3.

(4.77)

The integral in the three-dimensional random space is approximated with the help of
dimension-adaptive sparse grids based on Gauss-Hermite quadrature using the sparse
Gauss-Hermite rule. A grid that was obtained with the help of the dimension-adaptive
strategy is shown in Figure 4.18a. It was produced for the initial design. For illustration
purposes, the original Gauss-Hermite quadrature rule was used. With a prescribed
tolerance of 5 · 10−5 for the estimated error, the dimension-adaptive strategy leads to 17
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Figure 4.18.: Dimension-adaptive sparse grid for the original design with 17 grid points
(a) and a different design with 27 grid points (b).

grid points. The dimension belonging to the third eigenvector is less important and the
dimension belonging to the second eigenvector is the most important. The grid in Figure
4.18b consists of 27 grid points and is an example of a design in which all eigenvectors
are found to be equally important. The number of grid points obtained for the sparse
Gauss-Hermite rule with a tolerance of 10−5 for the estimated error is usually between
19 and 41.

For the multi-objective optimization, one may prescribe the same constraints for the
objective functions as for the deterministic optimization. The geometric constraint shall
hold for the unperturbed design. The same way of constraint handling is applied to the
moment coefficient to avoid the high number of constraints resulting from a discretized
semi-infinite formulation.7 In the hybrid optimization strategy, the Kriging surrogate
model is built for the expected values. The expected values are obtained with the
help of the dimension-adaptive sparse grid rule based on the truncated KL expansion.
In the gradient-based strategy, the gradient of the expected function is evaluated for
the respective sparse grid. When using the one-shot strategy for the gradient-based
optimization, the eigenvectors and eigenvalues of the KL expansion and the dimension-
adaptive sparse grid are set up for the modified design in each optimization step. Since
the state and adjoint are not fully converged, one may choose the threshold for the
estimated approximation quality of the sparse grid rule depending on the state and
adjoint residuals. However, the adaption has to be chosen carefully to increase the
computational efficiency. Otherwise, it may deteriorate the convergence of the overall
methodology. In the nested gradient-based optimization strategy using IPOPT, the
expansion and the dimension-adaptive sparse grid are set up for each design based on
the converged state and adjoint solution with a fixed tolerance for the estimated error.

7Alternatively one may constrain the local minima for the distribution of cm, which can be, for example,
approximated based on the non-intrusive PC expansion [236]. An approximation of the local minima
is possible when only finite perturbations of the design are allowed.
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Figure 4.19.: Expected values of the robust Pareto optimal points (black cross) and
solutions of the deterministic optimization (blue point), with corresponding
expected values (blue crosses) when considering geometrical uncertainties.
Corresponding designs are given on the right side.

Figure 4.19 shows the resulting expected objective function values represented by the
black crosses. The blue crosses are the expected outcomes of the designs found by
the deterministic optimization. The blue dots mark the corresponding deterministic
objective function values. When evaluating the objective functions of the unperturbed
design for the robust optimal designs, the resulting objective function values are close
to the respective expected values.

The found robust Pareto optimal points are, in general, close to the original deter-
ministic front. One may observe that the robust designs when considering geometrical
uncertainties differ from the deterministic designs, which can be seen in the right part
of the figure. The solid shapes represent the robust designs, and the dashed shapes are
the designs resulting from the optimization without considering any uncertainties.
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5.1. Conclusion

In the present thesis, a strategy for multi-objective robust design was proposed and
applied in the context of aerodynamic shape optimization.

A constraint method that makes use of a hybrid strategy for the single-objective
optimization methods was used to solve the multi-objective optimization problem. The
hybrid optimization strategy combines a global search on a surrogate model with the help
of the expected improvement method and a gradient-based optimization strategy that
makes use of derivatives obtained from a robust discrete adjoint approach supported
by algorithmic differentiation. The hybridization was performed with the help of a
sequential approach that uses the solution of the optimization on the surrogate model
as a starting point for a gradient-based optimization on the full model.

The efficiency of the gradient-based strategy was further improved by using a one-shot
approach for solving the constrained optimization problems. The single-step one-shot
approach was extended to additional equality constraints. The proposed method was
analyzed theoretically and numerically. Furthermore, a way of treating inequality con-
straints was proposed by introducing the handling of bound constraints in the framework.

Suitable robustness measures were introduced to enable multi-objective robust design.
The losses in objective space were used to account for the combined effect of uncertain-
ties in objective space. Different formulations of optimization problems based on the
expected losses were introduced. For obtaining the functions of interest, the uncertain-
ties were propagated through the model with the help of a non-intrusive polynomial
chaos approach. It was made use of dimension-adaptive sparse grids to reduce the com-
putational costs of the quadrature method needed in the polynomial chaos approach.

The proposed strategy was implemented in the optimization framework of SU2 and
the outer structure of the solver. For analysis purposes, it was applied for the shape
optimization of a two-dimensional airfoil in a transonic flow regime. The multi-objective
optimization task was to minimize the drag coefficient and maximize the lift coefficient
under additional constraints on the moment coefficient and the thickness of the airfoil.
For robust design, uncertainties in the flow conditions and the geometry were considered
separately.

To present a detailed conclusion for the results of the analysis, it is referred back to
the original research goals defined in the introduction.

Hybrid Strategies for Constraint Methods in MOO Three different types of constraint
methods for multi-objective optimization were applied, the equality constraint, the
epsilon-constraint method, and the normal constraint method. The epsilon-constraint
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method has shown to be the most reliable when it comes to finding only Pareto optimal
solutions and is easy to implement in a given constraint-based optimization framework.
When it is of interest to find a good distribution of points on the containing surface, it
can be advantageous to use the normal constraint method.

When defining the research goals, it was pointed out that the success of constraint
methods for multi-objective optimization depends on the choice of the algorithm for
solving the constrained single-objective problems. With success, it is referred to both,
the success in finding a Pareto optimal point, which is a global solution to the single-
objective optimization problem, and the success of finding a solution to the optimization
problem in a robust and computationally efficient manner. The hybrid strategy was
especially suggested for this purpose and could be successfully applied for multi-objective
aerodynamic shape optimization. The found set of solutions shows that the strategy is
robust and can find Pareto optimal solutions with a reasonable computational effort for
the presented application. The number of function evaluations needed for the heuristic
strategy could be controlled by using a surrogate model. The use of the surrogate model
is advantageous for multi-objective optimization since the model can be reused during
the optimization.

For finding a global solution, the proposed strategy will outperform a scalarization
approach based on a purely gradient-based strategy. Concerning efficiency, it will out-
perform a scalarization approach based on a global search due to the use of the surrogate
model. It can be expected that the computational effort is, in the worst case, comparable
to the costs of conventional direct Pareto approaches like a multi-objective evolutionary
algorithms. In general, one may expect to obtain a better performance, especially for
higher-dimensional objective spaces.

Constraint Handling in One-Shot Strategies The single-step one-shot strategy was
extended to include additional equality constraints. In the convergence analysis, it was
shown that the resulting strategy could give descent on an exact penalty function under
specific conditions. The conditions were formulated for the penalty parameters, the
design space preconditioner B, and the preconditioner for the multiplier update B̌. The
analysis has shown that the conditions for the preconditioners B and B̌ can be separated
via the choice of suitable penalty parameters. As a result, one may use the design
space preconditioner for the single-step one-shot method without additional constraints.
Furthermore, a preconditioner for the multiplier update was proposed.

A projection strategy was proposed to handle bound constraints in the one-shot strat-
egy and to enable the handling of inequality constraints. The formulation of bound
constraints guarantees that a local search can be conducted in the vicinity of a promis-
ing starting point. As a result, the one-shot strategy could be easily integrated into the
hybrid strategy for solving MOO problems with the help of constraint methods.

Numerical results have shown the success of the proposed strategy for aerodynamic
shape optimization with multiple objectives. Several Pareto optimal points could be
found with the help of the equality constraint method. The one-shot method with addi-
tional equality constraints and bound constraints converged with a retardation factor of
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10 to 13 when related to the iterations of the state equation. Thus, the additional han-
dling of equality constraints resulted in an increase of the computational costs by a factor
of 3 to 4 compared to the single-step one-shot method without additional constraints.
The computational costs could not be improved by using the proposed preconditioner
B̌ instead of a constant factor for the multiplier update. In general, a slower speed of
convergence can be expected for the handling of equality constraints in gradient-based
optimization, especially when using an indirect treatment of constraints.

Robust Design with Multiple Uncertain Objectives Losses in objective space were
introduced as a new measure for robust optimality when considering multiple objectives.
The robustness measure was constructed to account for the effects of uncertainty in
multi-objective space. Two different formulations for representing losses in objective
space were proposed. In the first formulation, the losses could be defined with respect to
the deterministic Pareto optimal front. The second formulation was based on different
types of estimated losses, including possible losses and definite losses. The estimates
can be used if the deterministic Pareto optimal front is not known. As strategies for
robust design, both measures were introduced in a robust design problem by using the
respective expected values, i.e., expected losses and expected estimated losses.

The strategies were applied for multi-objective robust design of the aerodynamic shape
optimization problem considering uncertainties in the operational conditions. The results
of the previous considerations for using constraint methods based on a hybrid optimiza-
tion strategy could be successfully transferred to solve the multi-objective robust design
problem. The uncertainties were propagated with the help of a non-intrusive polynomial
chaos approach. The numerical analysis of the different strategies to multi-objective ro-
bust design has shown the advantage of using expected losses as a robustness measure
in comparison to only using the expected values of the individual objective functions.
The random outcomes in objective space for the robust optimal design were closer to the
deterministic Pareto optimal front. Results have shown that the formulation based on
estimated losses can be used as a compromise if the deterministic Pareto optimal front
is not available.

Furthermore, geometrical uncertainties were analyzed using an expectation-based ap-
proach for multi-objective robust design. A Karhunen-Loève expansion was used to ap-
proximate the random process describing the perturbation of the shape. A dimension-
adaptive sparse grid strategy was adapted to the multi-objective setting and Gauss-
Hermite quadrature rules. The combination of efficient strategies for multi-objective op-
timization and uncertainty quantification was successfully applied to find robust Pareto
optimal points in objective space.

To summarize, one may conclude that the research goals defined in the introduction were
met. The present work has shown that it is advantageous to use robustness measures
for multi-objective robust design that account for the effect of uncertainty in objective
space. Furthermore, the proposed strategies for robust multi-objective design with PDE
constraints was successfully applied.
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5.2. Outlook

The present work has introduced a strategy for robust design with multiple objectives
and applied it to a two-dimensional aerodynamic shape optimization problem. As an
outlook, several future tasks will be formulated in the following.

Due to the modular structure of the implemented strategies, i.e., the multi-objective
optimization framework, the one-shot approach, and the handling of uncertainties, the
strategy can be applied to other interesting applications within SU2:

• The strategy can be applied to three-dimensional shape optimization problems in
the same aerodynamic shape optimization setting. Furthermore, it can be inter-
esting to look at other problems in fluid dynamics, e.g., internal flow problems. In
this context, unsteady flow problems introduce an additional dimension and need
the adjustment of the implementation of the one-shot strategy.

• The multi-objective optimization approach is predestined to be used for problems
with objective functions arising from multiple disciplines. Here, one might think of
aero-structural design problems with objective functions from aerodynamics and
structural mechanics. In this context, it can also be interesting to look at topology
optimization problems (see also Section A.2.3 of the appendix).

For three-dimensional internal flow in a U-shaped bend, the robust design formulation
based on the expectation value was tested in the present work. However, the obtained
results were not of scientific value for the given setting. The optimization of expected
values resulted in the same Pareto optimal designs as for the deterministic problem (see
Section A.3.4 in the appendix). This shows that it is favorable to solve problems that
naturally arise in engineering design instead of constructing an artificial problem.

Aspects of high-performance computing were not explicitly considered in the present
thesis. However, there is a lot of potential for parallelization. Most of the underlying
tasks can be parallelized without significant manipulation:

• The constrained single-objective optimization problems arising from multi-objective
optimization are fully decoupled. When optimizing several problems in parallel,
the Kriging surrogate model cannot be reused. A strategy for communication is,
in general, not needed.

• The training of the Kriging model in the expected improvement method is already
parallelized with OpenMP. This type of parallelization was utilized in the present
work.

• The flow solver in SU2 makes use of MPI parallelization, which was also employed
for obtaining the presented results.

• The evaluation at quadrature points in the non-intrusive polynomial chaos method
can be performed in parallel. The values need to be communicated to construct the
expected value or the variance. For dimension-adaptive sparse grid rules, however,

186



5.2. Outlook

the distribution of tasks is not straightforward since specific information is needed
during the construction of the sparse grid.

• In the multi-step one-shot method, the state and adjoint equation can be iterated
asynchronously in a parallel fashion. However, this requires a strategy for load
balancing.

It remains to discuss where parallelization is the most fruitful for efficiency and, based
on this discussion, how to distribute tasks.

In the following, an outlook is given for the specific topics of the present work.

Hybrid Strategies for Constraint Methods in MOO The presented approach to multi-
objective optimization has shown to provide optimal solutions with a reasonable com-
putational effort. The number of design variables gives the only restriction due to the
use of a surrogate model. However, there exist other types of hybrid strategies designed
for multi-objective optimization. A task of future work will be to benchmark the algo-
rithm by comparing it to other hybrid strategies. In this context, it can be especially
interesting to look at hybridization or surrogate modeling strategies on the level of the
multi-objective solution strategy. This can be pursued differently:

• Hybridization strategy: The hybridization can be done before scalarization.
One may realize this by applying a direct Pareto method based on a heuristic
strategy and refining the solutions by formulating appropriate scalarization prob-
lems, which are solved with a gradient-based strategy. In [275], members of the
population of a multi-objective algorithm are refined based on a weighted sum of
objective functions. An application of the epsilon-constraint method can be found
in [288], where the a local search is applied to intermediate populations by ran-
domly selecting members and setting the inequality constraints according to the
objective function values of the members. The resulting optimization problem is
solved with a sequential quadratic programming approach.

Such a method can potentially decrease the computational effort. However, Bosman
and de Jong [22] conclude from their studies that improving the efficiency of multi-
objective evolutionary approaches with local search techniques requires a carefully
constructed hybridization and is, in general, not as fruitful as for single-objective
optimization. Furthermore, it is not as easy to maintain diversity as when directly
applying a scalarization approach. A systematic approach for scanning the Pareto
optimal front is not possible. Therefore, a lot of thought has to be put in the
construction of the evolutionary algorithm, as well as in the selection of members.
Only then, a fair comparison is possible. An idea can be to systematically subdi-
vide the objective function space and build separate populations that are refined
with the help of a hybrid strategy.

• Surrogate modeling: The optimization on a surrogate model can also be done
on the level of the multi-objective optimization strategy. Jeong et al. [138] con-
struct a Kriging model for each fitness function of a multi-objective evolutionary
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strategy. A promising strategy is given in [61, 60]. The multi-objective evolution-
ary method aims at maximizing the hypervolume, which is a performance metric
for MOO, and the idea of a multi-objective expected improvement is proposed for
searching on the surrogate model. It can be interesting to apply a hybridization in
this context. Similarly to applying a hybrid method in a direct Pareto approach,
running a direct approach on a surrogate model can be highly beneficial for com-
putational performance. However, a systematic search for Pareto optimal points
is not straightforward.

When applying the hybridization on the level of the single-objective optimization prob-
lem, it can be of interest to further investigate the constraint handling in the expected
improvement method. The constraint-weighted expected improvement method gives
promising results. However, since an optimization on the surrogate model is cheap, it
can be of interest to use a projection-based method for constraint handling. Furthermore,
it can be interesting to add a further level of hybridization for the expected improvement
method by using gradients. As already explained in Section 2.4.2, the extension of a
gradient-based local search to additional constraints is not straightforward. One idea
can be to use a suitable projection strategy and take one or more steps into the obtained
direction. Also, when using a penalty method for constraint handling, the respective
derivative gives a descent direction.

The scalarization approach was chosen to make use of the derivatives obtained from
an AD-based discrete adjoint method. For future work, it can be interesting to use these
derivatives for a search method in multi-objective space. One example is the directed
search method proposed in [245]. The general idea is that a descent direction in objective
space at a design x can be described by a direction d fulfilling

DF (x)d ≤ 0 and DF (x)d 6= 0, (5.1)

where DF (x) describes the Jacobian of the vector of objective functions in x. The
strategy for choosing a descent direction is then to solve the underdetermined linear
system of equations DF (x)d = −a with a prescribed negative right hand side −a, and
to iteratively update the design with the known formula for descent

xk+1 = xk − γDF (xk)
†a. (5.2)

The choice of a defines the strategy. When solving the optimization problem

max
a
||
∑

ai(JF )i(xk)||2 s.t.
∑

ai = 1,a ≥ 0

in each iteration k, the method gives steepest descent in objective space. The problem is
inspired from the Kuhn-Tucker conditions for optimality of Theorem (4), but a similar
problem can be derived when formulating the dual problem of mindmaxi(JF (x)d)i +
0.5||d||2 [65]. Different choices of a lead to the interpretation of search directions for
specific scalarization approaches. Furthermore, the idea of descent directions in objective
space can be used in a continuation strategy to direct the search in objective space along
a continuous Pareto optimal front. Continuation strategies are based on finding a search
direction tangent to the Pareto optimal front linearized in the current Pareto optimal
solution.
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Constraint Handling in One-Shot Strategies In the present thesis, the theoretical and
numerical analysis of the one-shot method with additional equality constraints has been
brought to a stage where it is ready for further application. However, some interest-
ing research aspects that can be of interest for future work have emerged during its
development:

• Mesh deformation: In Section 3.3.1.1, the additional constraint for the trans-
formation of the computational mesh according to the design variables has been
introduced, i.e., x = M(u). Usually, the mesh is transformed by solving a lin-
ear system of equations. Depending on the mesh size and the definition of design
variables, this can lead to a significant computational effort. One may expect the
mesh deformation to be cheaper than a solution of the state equation. However,
when done alongside a single iteration of the state and adjoint equation, the com-
putational costs become more significant. Multi-step one-shot methods can be
constructed in such a way that the computational costs are less significant. How-
ever, the question arises if the mesh has to be deformed exactly in each iterative
step of the one-shot method. Instead, as proposed in Section 3.3.1.1, one could
introduce a fixed-point iteration for the mesh deformation that uses a suitable
preconditioner for ensuring a good mesh quality. Then the fixed-point iteration
can be treated in the one-shot approach like an additional state equation with
corresponding multipliers x̄.

• Convergence Analysis: Although more practicable conditions were derived for
the parameters of the one-shot method, it has proven to be difficult to apply
them for the construction of a preconditioner for the constraint multipliers. For
the specific precondition proposed in Section 3.2.4.2, the penalty parameter α for
fulfilling the state equation and the constraints can potentially be restricted too
much, leading to a slow convergence or in the worst case there does not exist a
feasible value for α. In any case, due to the given conditions, the construction
of the preconditioner has to ensure a small condition number. If, for example,
low-rank modifications are used for the construction, the spectrum has to be con-
trolled (see e.g. [88]). Future research in this direction can be interesting. The
question is whether one can find more practicable conditions or a better alterna-
tive for constructing Bk. Also, the convergence analysis of the proposed method is
still missing the aspect of global convergence, which usually results in additional
conditions on the objective and constraint functions.

• Inequality Constraints: Ideas for handling inequality constraints based on a
modified multiplier update or the introduction of slack variables were already for-
mulated in the present thesis. For the specific application to aerodynamic design,
the inequality constraints resulting from the epsilon-constraint method will be
active in an optimal solution, such that a numerical analysis does not give repre-
sentative results. For future work, it is important to analyze the proposed strategy
for different types of problems, where the use of inequality constraints is obligatory.
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It can be interesting to extend the ideas of the augmented one-shot iteration to the
interesting topics of the current research in the context of the one-shot method:

• Unsteady problems: Since a lot of applications in engineering design are un-
steady, it can be interesting to apply the one-shot strategy with additional equal-
ity constraints to optimization problems with unsteady PDE constraints. The
developments in [100] can be used as a basis for numerical results. The idea is
to differentiate a modified time marching scheme that uses a reduced number of
pseudo-time iterations in each time step. Thus, the inner pseudo-time iterations
and the outer iterations are reversed, and for implementing such a strategy, the
solvers have to be further adjusted.

• Variant: In [20], a variant of the single-step one-shot method that neglects the
penalty term of the adjoint residual in the doubly augmented Lagrangian is intro-
duced, i.e., β = 0. The strategy is more efficient since the gradient of the doubly
augmented Lagrangian does not contain any second-order derivatives. Convergence
results can be shown with the help of the upper bound L for the adjoint time lag
such that ‖ȳk+1 − ȳk‖ ≤ L‖yk+1 − yk‖ for all iterations k. A lower bound on α
that depends on L can be derived, namely α > 2L/(1 − ρ). It may be of interest
to analyze how this strategy can be integrated for the one-shot method augmented
with equality constraints. This requires the derivation of new conditions on the
penalty parameters and the preconditioners.

Robust Design with Multiple Uncertain Objectives The proposed robustness measure
based on losses in objective space was constructed to provide solutions that are expected
to show less deviation from the Pareto optimal front. For the presented application, this
could be successfully shown. However, some important remarks can be made:

• Robustness measure: It can be interesting to search for solutions that are close
to the deterministic Pareto optimal front. However, the definition of robustness
is, in general, a matter of own preferences. Depending on the problem at hand,
it could also be of interest to maximize gains or to reduce variations in objective
space. It remains to be evaluated how well the proposed strategies perform for
different applications and what kind of results can be observed. However, the
main takeaway is that in a multi-objective setting, it is of importance to consider
a combined effect of uncertainties.

• Robust design formulation: In the proposed formulations for robust design,
the expected losses are introduced as a constraint function with a prescribed upper
bound. Thus, they replace the role of the standard deviation. This is a natural
choice since the standard deviation is also based on the expected value of a distance
measure. However, since the aim is to reduce the distance to the Pareto optimal
front, it can also be used in future work as a performance measure to be optimized.

• Level of approximation In the present work, the information on losses was
reduced to the expected value of losses. For future work, it can be interesting to
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additionally consider higher-order moments, e.g., the variance of losses. In general,
the loss function describes a distribution in objective space. If it can be sufficiently
approximated with feasible computational effort, e.g., with the help of a polynomial
chaos expansion, the probability density function itself or a cumulative distribution
function can be sampled. For this specific case, it will be possible to use losses or
similar distance measures to compare distributions. An interesting research aspect
can be to use probability quantiles of the distribution for minimizing risks, like a
minimization of the worst-case threshold defined with the help of the (conditional)
value at risk (see e.g. [230]).

Furthermore, concerning the methodology for propagating uncertainties, future work
may involve the following aspects:

• Representation of random input: Following the suggestions in literature, in
the present work it was assumed that the random input variables are normally
distributed. The quadrature rules used to approximate the quantities of interest
evaluate the respective functions at physically meaningful solutions y. To prevent
the occurrence of nonphysical input values, one might want to choose a truncated
distribution for uncertainties in the operational conditions and geometrical uncer-
tainties. However, this requires the construction of proper orthogonal polynomials.
Or, as an approximation, suitable transformations of the original distribution have
to be formulated. When introducing the angle of attack as an additional uncer-
tainty in the operating conditions one might think of an alternative strategy. A
representation of uncertainties in the magnitude and the direction of the free-
stream velocity could be a smoother description and the assumption of correlation
can be included. Furthermore, when a distribution can be described based on
measurements, it should be used for uncertainty propagation in a more realistic
setting.

• Adaptivity: The level of approximation of the non-intrusive polynomial chaos
method was kept constant during the optimization. Only adaptivity with respect
to the dimension was considered when using dimension-adaptive sparse grids. How-
ever, one may pursue an adaptive approach to increase the approximation quality
during the optimization algorithm. This is implicitly achieved when choosing a
fixed order of quadrature for the operational conditions since the objective function
becomes smoother near the optimal solution. But this effect cannot be guaranteed
for general application cases.

• Inverse Uncertainty Quantification: Further developments of the overall strat-
egy can be the application for inverse uncertainty quantification with multiple ob-
jectives. Here, one might think of a typical Bayesian inverse problem of fitting
model parameters to different types of outputs, given only noisy measurements
(see e.g. [237]).

To summarize the outlook, it can be stated that the concepts and strategies proposed
in the present thesis offer the potential for further developments and applications that
go beyond the scope of this work.
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ner, C. Tropea, and J. S., editors, New Results in Numerical and Experimental
Fluid Mechanics XII, DGLR 2018, Notes on Numerical Fluid Mechanics and Mul-
tidisciplinary Design Volume 142, pages 48–57. Springer, 2020.
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A.1. Appendix for Chapter 2

A.1.1. Variant of the Equality Constraint Method

One may formulate a variant of the equality constraint method, where the constraint
values depend on the objective function to be minimized. The new minimization problem
of the j-th step with j ∈ 1, . . . , ns and s ∈ {1, . . . , k} is then given by

min
x∈D

fs(x) (A.1)

s.t. fi(x) = f
(j)
i,s ∀ i ∈ {1, . . . , k} with i 6= s. (A.2)

The updated constraints in the j-th iteration in step s + 1 of the method are chosen
from the set

∏
i∈{1,...,k}, i 6=s Si,s, where

Si,s = {f (j)
i,s | f

(j)
i,s = f

(0)
i,s −m∆fi,s for m = 0, . . . nu}

is the set of all possible constraint values f
(j)
i,s for the i-th objective function for i =

1, . . . , k with i 6= s. The starting value is chosen as

f
(0)
i,s = fi(x

∗
s) ∀ i ∈ {1, . . . , k} with i 6= s.

The step size is different for each objective function s to be minimized in step s+ 1, i.e.,

∆fi,s =
1

nu + 1
(fi(x

∗
s)− f∗s ) ∀ i ∈ {1, . . . , k} with i 6= s.

Again, for k = 2 the distance for the j-th iteration is given as ∆f
(j)
i,s = ∆fi,s. An

optimization problem with k > 2 implies that all possible combinations of constraint
values for fi have to be applied.

A.1.2. Variants of the Epsilon-Constraint Method

There exist some variants of the epsilon-constraint method. In the following, two of
them are shortly introduced.

Modified Epsilon-Constraint Method A variant of the epsilon-constraint method (see
e.g. [41]), sometimes referred to as a hybridization of the weighted sum method and the
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epsilon-constraint method, is to solve the modified constrained optimization problems

min

k∑
i=1

wifi(x) (A.3)

s.t. fl(x) ≤ f (j)
l for l = 1, . . . , k.

It can be shown that for wi ≥ 0 for i = 1, . . . , k a feasible solution of the problem (A.3)
is an optimal solution if and only if it is a Pareto optimal solution (see e.g. [190, p.96]).
However, like in the weighted sum method, a goal-oriented scanning is not possible.

The reason for this is that the choice of suitable weights wi and bounds f
(j)
l to find a

representative distribution of Pareto optimal points is not straightforward.

Improved Epsilon-Constraint Method In [55], the authors propose to use a vector
of slack variables s+ ∈ Rk−1 (see also Section 2.3.2.4) for reformulating the inequality
constraints and to include them in the objective function. This is done by formulating
the modified optimization problem

minfi(x)−
k∑

l=1,l 6=i
λls

+
l (A.4)

s.t. fl(x) + s+
l ≤ f

(j)
l for l = 1, . . . , k with l 6= i, s+ ≥ 0.

This ensures that a feasible solution is Pareto optimal for λ > 0 and weakly Pareto
optimal for λ ≥ 0. Moreover, proper Pareto optimality is given for λ > 0 and s+ > 0.1

Furthermore, a relaxation of constraints using a vector of surplus variables s− ∈ Rk−1

is proposed by the authors, which results in the problem

minfi(x) +

k∑
l=1,l 6=j

µls
−
l (A.5)

s.t. fl(x)− s−l ≤ f
(j)
l for l = 1, . . . , k with l 6= i, s− ≥ 0.

The strategy allows the constraints to be violated by making them more flexible and
improves the behavior of the numerical optimization algorithm. This is especially im-
portant when the upper bounds are too restricting. The combination of both strategies
mentioned above is used in the so-called improved epsilon-constraint method formulated
in [55] as

minfi(x) +

k∑
l=1,l 6=j

(−λls+
l + µls

−
l ) (A.6)

s.t. fl(x) + s+
l − s−l ≤ f

(j)
l for l = 1, . . . , k with l 6= i, s+, s− ≥ 0.

1Proper Pareto optimality was not introduced in this thesis since it is not pursued in the context of
this research. A solution can be described as proper Pareto optimal if for each objective function i,
there is at least one objective function j such that a finite improvement of the objective function i
is only possible when worsening the objective function j. This is expressed in terms of positive and
bounded trade-off rates, which can also be identified as the multipliers λ of Theorem 6.
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For µ − λ ≥ 0 and µ,λ > 0 the solution of the improved epsilon-constraint method is
Pareto optimal.

As it is not of interest in the present work to find proper Pareto optimal solutions, and
one assumes the absence of weakly Pareto optimal solution, the modified strategy is not
pursued. However, in interior-point methods, e.g., constraint handling with the help of
slack variables is implied, and the objective function can be easily adjusted. This type of
constraint handling can also be implemented in one-shot methods for bound constrained
optimization problems, which is presented in Chapter 3.

A.1.3. Multi-Objective Shape Optimization of 3D U-Bend

In this section, the equality constraint method with a hybrid strategy is applied to
another type of problem in engineering design. One considers the internal flow through
a three-dimensional U-shaped bend. The inlet flow has a Reynolds number of 10.000,
and the flow is modeled in SU2 using the incompressible RANS equation with a k − ω
SST turbulence model [185].

A typical objective function for optimizing pipe flows is the pressure drop or pressure
loss, defined as the difference in the total pressure pt, i.e., the sum of static pressure ps
and the dynamic pressure, given by

pt = ps +
ρ

2
||v||2

at the inlet and outlet of the pipe. Here, ρ is the density and v the velocity of the fluid.
The loss of pressure is caused by friction effects occurring in the pipe flow due to pipe
walls and high velocities. The total pressure at the inlet can be used as an objective
function for optimization, as the predefined outlet pressure is set as a boundary condition.

As a second objective function the flow uniformity index γ ∈ [0, 1] can be of interest.
It measures the average deviation from a mean velocity in a given surface with area A
and is described by the formula

γ = 1− 1

2v̄A

n∑
i=1

|vi − v̄|Ai,

where vi is the local element velocity normal to the surface, v̄ is the mean normal velocity
and Ai is the local surface area.

The convergence history of the primal and adjoint pressure residuals measured in the
L2-norm are shown in Figure A.1. It can be observed that the contraction rates of the
primal and adjoint iteration are the same. The runtime factor of the adjoint iteration in
comparison to the primal iteration for this particular application is in average 1.3 and
can be obtained for two different mesh resolutions.

The multi-objective optimization was carried out considering the pressure drop in the
bend and the flow uniformity index at the outlet. A free form deformation box was used
to define 30 design variables describing the displacement of control points in in-stream
direction with prescribed lower and upper bounds.
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Figure A.1.: Convergence history of the pressure and the adjoint pressure using a loga-
rithmic scale.

The solutions found with the ε-constraint method are shown in Figure A.2 in objective
space. A total number of eleven Pareto optimal points were found using the hybrid
strategy with IPOPT as a gradient-based optimizer. It can be seen that some parts of
the Pareto optimal front are non-convex, and a weighted sum method would not have
been able to find such solutions.
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Figure A.2.: Pareto optimal solutions in objective space (inlet pressure and uniformity
index). The dots denote the Pareto optimal solutions.
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A.2. Appendix for Chapter 3

A.2.1. Adjoint Approach: Duality Viewpoint

The duality viewpoint shows that the adjoint approach can be applied when one wants
to evaluate a quantity (v,φ) and φ should satisfy the primal problem

Dφ = w, (A.7)

where D is, for example, a differential operator or a matrix in the discretized form. The
expression (·, ·) is an inner product in the continuous setting or a scalar product in the
discrete setting. The adjoint operator D∗ is defined such that for the inner product the
following holds:

(ψ, Dφ) = (D∗ψ,φ) ∀φ,ψ. (A.8)

The dual variable ψ satisfying the dual problem

D∗ψ = v (A.9)

can be used to evaluate (v,φ), as

(v,φ) = (D∗ψ,φ) = (ψ, Dφ) = (ψ,w). (A.10)

Now equation (3.14) can also be derived in a discrete dual way by identifying the
different expressions D = cy, φ = ∂y/∂u, w = −cu, v = −∇yf , D∗ = c>y and ψ = ȳ,

as one can substitute according to (A.10) the expression
(
∂y
∂u

)>
∇yf in (3.10) by c>u ȳ.

A.2.2. Inexact rSQP Approach for One-Shot Optimization

This section shortly describes a version of the one-shot approach that can be interpreted
as an inexact reduced sequential programming (rSQP) approach.

Hazra and Schulz introduced the approach in [113], where it was applied to a boundary
control problem. In [116] and [110] it was applied to an aerodynamic shape optimization
problem. Theoretical results on convergence properties can be obtained for quadratic
objective functions with linear equality constraints [134]. Thus, it can be presumed that
convergence is given locally in the vicinity of the optimal solution. A combination with
multigrid strategies is proposed in [112].

The simultaneous optimization procedure of the presented one-shot strategy is a con-
tinuous reduced SQP method applied to the continuous version of the constrained opti-
mization problem (3.1). In comparison to a SQP method, the reduced SQP method uses
an approximation of the Hessian such that it is projected on the kernel of the first-order
linearized state equation (see e.g. [241]). This means that all steps of the optimization
scheme are located in the tangent space of the current state equation c. After having
formulated a reduced SQP approach, the operators cy and c>y are discretized resulting
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in an inexact reduced SQP approach. The resulting inexact reduced SQP step is 0 0 Aa(yk,uk)
0 S cu(yk,uk)

>

Af (yk,uk) cu(yk,uk) 0

 ∆yk
∆uk
∆ȳk

 =

 −∇yL(yk, ȳk,uk)
−∇uL(yk, ȳk,uk)
−∇ȳL(yk, ȳk,uk)


(A.11)

with yk+1 = yk + ∆yk, uk+1 = uk + ∆uk and ȳk+1 = ȳk + ∆ȳk. Af ≈ cy and Aa ≈ c>y
are the matrices of the discretized flow equations and the discretized adjoint equation.
Similarly to the reduced gradient one can derive a reduced Hessian S.

The so-called reduced Hessian is approximated with a BFGS-Update or by an analyt-
ically found pseudo-differential operator [113]. One can show that the method can be
interpreted as a simultaneous pseudo-time stepping method.

The idea of pseudo-time stepping is to transform the equation

F : X → Y, F (x) = 0

with the Banach spaces X and Y into the ordinary differential equation ẋ = −F (x) with
a given initial condition. It is iterated numerically in the fashion of an ordinary time
integration scheme to reach the stationary point satisfying F (x) = 0. One identifies ẋ
as the substantial derivative in time. A stationary point can be reached if the right-hand
side −F has damping properties.

Note that the reduced SQP approach matches the explicit Euler method for the pre-
conditioned system ẏ

u̇
˙̄y

 =

 0 0 Aa(yk,uk)
0 S cu(yk,uk)

>

Af (yk,uk) cu(yk,uk) 0

−1 −∇yL−∇uL
−c

 (A.12)

with a preconditioner obtained from the reduced SQP method.

A.2.3. One-Shot Approach for Topology Optimization of Nonlinear
Structures

So far, the one-shot approach has been mainly used for shape optimization problems.
The main bottleneck for shape optimization is the need to perform a mesh deformation
or even a re-meshing in each optimization step, which might become an overhead in the
one-shot framework. For topology optimization, this problem is not apparent, which can
be a high potential for one-shot optimization methods. A popular nested approach for
topology optimization is the method of moving asymptotes, introduced in [261]. Simul-
taneous analysis and design has been performed in the context of topology optimization
of truss structures [233], and interior-point multi-grid methods have been applied for the
topology optimization of linear elastic materials [175]. In the following, first results of
using the single-step one-shot strategy for the topology optimization of nonlinear elastic
materials are presented, and challenges are formulated.
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The Topology Optimization Problem The structural analysis for the nonlinear mate-
rial under large displacements is based on the principle of virtual work. The resulting
weak form of the equilibrium equation in the current configuration with volume V is
given by

c(u) :=

∫
V
σ : δe dV −

(∫
V
f · δu dV +

∫
δV
t · δu dA

)
= 0 (A.13)

with the Cauchy stress tensor σ, the rate of deformation tensor δe, the virtual displace-
ment field δu, the boundary element dA, the volume force f and the surface traction
t. The nonlinear hyper-elastic material is modeled as a Neo-Hookean solid. Equa-
tion (A.13) is discretized using a finite element approach and solved iteratively with a
Newton-Raphson scheme leading to the fix-point formulation u = G(u). Note that it is
made use of the common notation of topology optimization, i.e. u is the vector of state
variables (displacements) and in the following ρ denotes the vector of design variables
(densities).

For topology optimization one may consider the mean compliance as an objective
function to maximize the stiffness of the structure. Using the SIMP (Solid Isotropic
Material with Penalization, [16]) approach, the density ρe serves as a design variable and
is used in each element e to model areas containing material (ρe = 1) and void areas (ρe =
0). The Young’s modulus Ee of an element is given by Ee(ρe) = Emin + ρpe(E − Emin),
where p > 1 penalizes densities between 0 and 1 and Emin > 0 is a very small value
representing the void regions in the stiffness matrix. An additional constraint is imposed
on the volume of the resulting structure by prescribing a volume fraction fv > 0. The
resulting optimization problem to be solved reads

min
u,ρ∈D

c(u,ρ) :=
∫
V f · udV

s.t. G(u,ρ) = u, (A.14)

V (ρ)/V0 = fv, 0 ≤ ρe ≤ 1.

Challenges for One-Shot Optimization There are several challenges for one-shot op-
timization inherent to topology optimization, among them the following:

• The constraints for the density have to be fulfilled at least for the optimal design.
As in the main part of the thesis, a projection step can be applied separately
from the updating scheme. In the following, the projection method proposed by
Tavakoli and Zhang [267] can be used for fulfilling the volume constraint and the
box constraints. The projection of ρ̄ is made by finding the unique minimizer of

L(z, µ) :=
1

2
‖z‖22 − ρ̄>z +

1

2
‖ρ̄‖22 + µ

(
1>z − fv · V0

)
,

with 0 ≤ z ≤ 1.

• The number of design variables is large, which makes the approximation of the
design space preconditioner difficult. Additionally, the preconditioner of the one-
shot method itself or an additional preconditioning step has to serve as a filter to
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f

(a) Cantilever beam: Set-up and results.

0 50 100 150 200 250
0
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3

Iteration

end compliance (Ncm)

100 · ||∇ρLa||
end compliance (Ncm) (no α and β)

(b) Optimization history.

Figure A.3.: Results of one-shot topology optimization after 250 iterations (a). The
set-up of the tip-loaded cantilever beam is shown in the upper part. The
optimization history for the minimization of end-compliance is shown (b).

ensure mesh-independency and prevent checkerboard patterns. A popular precon-
ditioner used for topology optimization is the Helmholtz filter [160]. Let d present
the unfiltered design update, then the filtered update d̃ can be found by solving
the Helmholtz-type PDE −r2∇2d̃ + d̃ = d with homogeneous Neumann bound-
ary conditions, where r is the filter radius. When used in the one-shot method,
the idea is to apply the filtering to the reduced gradient of the doubly augmented
Lagrangian, such that d = −∇ρLa.

• For the structural analysis of nonlinear materials undergoing large displacement,
it can be advantageous to apply the load in an incremental fashion making the
underlying problem unsteady. This is not pursued in the following since it requires
the reformulation of the one-shot strategy.

• As it is the case in a nested approach, the found local minimum depends highly
on the chosen starting value. This issue will not be treated in the following, but
in future work, strategies like the continuation method have to be adjusted to the
one-shot framework.

Numerical Example Results are shown for the minimization of end compliance for a
tip-loaded cantilever beam in a two-dimensional setting (see Figure A.3a, top) with a
load of 100N, assuming plane stress. The material is modeled with a Young’s modulus
of 2GPa and a Poisson ratio of 0.4. The solution procedure for the structural analysis
is provided in the open-source framework SU2 (see [232]). The finite element analysis is
performed using 4-node elements. The domain of 100 cm × 25 cm is discretized using
80 by 20 finite elements.
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Figure A.4.: Optimal design for lift constraint of about 0.4 obtained by one-shot method
and IPOPT (dashed line).

It is made use of the volume projection method with a volume fraction of 0.4. The
factors for the doubly augmented Lagrangian are α = 2 and β = 10−4, and the penalty
factor of the SIMP method is p = 3. Using the familiar one-shot preconditioner, one
obtains a design with unintended grey areas, which represent densities between 0 and 1.

Instead, a Helmholtz-type filtering method with a filter radius of r = 2 is used based
on the same values for α and β. A backtracking line search using the reduced gradient
of the doubly augmented Lagrangian is employed. The convergence history is shown in
Figure A.3b and the resulting optimized design is given in Figure A.3a (bottom). The
obtained design is a typical end-compliance design for a small load. The primal solution
converges in 25 iterations. The used method needs around 200 outer iterations and
200 inner iterations to converge. As the material does not exhibit a highly nonlinear
behavior under the given load, the method will also converge for α = 0 and β = 0.
The corresponding convergence history presented by the dotted line is very similar, but
the method will need an additional number of around 150 inner iterations. This shows
that the use of the doubly augmented Lagrangian speeds up the convergence of the
optimization. In future work, it needs to be analyzed if the methodology is successful
for highly nonlinear problems.

A.2.4. Comparison of Results for Multi-Objective Optimization

When comparing the designs for high lift constraints obtained from the one-shot ap-
proach with the designs obtained with IPOPT as a gradient-based strategy, a significant
difference can be observed in Figure A.4. The interior-point method tends to find designs
with a round lower surface. In contrast, the one-shot strategy will find designs similar to
the designs found when optimizing for robustness under geometrical uncertainties. The
objective function values are similar. For the result of the one-shot method one gets a
drag coefficient of cd = 0.001691 and a lift coefficient of cl = 0.4020. The values obtained
by the hybrid strategy with IPOPT are cd = 0.001682 and cl = 0.3913.
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A.2.5. Limited-Memory BFGS method for Bound Constraints

The limited-memory BFGS method was proposed in [28] and is presented in Algorithm
9 for bound constraints (cp. [142]). The function BFGSRec denotes the call to the
recursive BFGS update.

Algorithm 9: Limited-memory BFGS with bound constraints.

Global variables:
x0, µ1, µ2, lmax,S = {1, . . . , n} (input)
l, stored values ri, si for i = l − lmax, . . . , l − 1

Function Main():

l← 0, k ← 0
while ||xk − P (xk −∇f(xk)|| ≥ µ1 + µ2||x0 − P (x0 −∇f(x0)|| do
d̃k = −∇f(xk)
Call BFGSRec(l, d̃, PIε(xk))

dk = −PAε(xk)∇f(xk) + d̃k
Find γ such that Equation (3.85) holds.
xk+1 = P (xk + γdk)
rl ← PIε(xk+1)(∇f(xk+1)−∇f(xk))
sl ← PIε(xk+1)(xk+1 − xk))
if r>l sl > 0 then
l← l + 1

else
l← 0

end if
k ← k + 1

end while
Function BFGSRec(j,d, PI):

d← PId
if j == 0 or j == l − lmax then

return d← Id
end if
θ = (s>j−1d)/(r>j−1sj−1)
d← d− θrj−1

Call BFGSRec(j − 1, d, PS)
d← d+ θsj−1 − (r>j−1d)/(r>j−1sj−1)sj−1

d← PId
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A.3. Appendix for Chapter 4

A.3.1. Approximating the Signed Distance Function

The loss function in multi-objective space is defined based on a signed distance function.
It is not always feasible to calculate the distance function exactly since it has to be
done for every sample in objective space. This can, for example, be circumvented by
numerically approximating a level set function representing the signed distance function
using a level set method [209]. The representation of the deterministic Pareto optimal
front Γ0 is defined as the zero level set of the level set function ϕ(F , t) at time t = 0,
i.e.,

Γ0 := {F ∈ Rk | ϕ(F , 0) = 0}. (A.15)

Here, t is a pseudo-time that is introduced to describe the propagation of the zero level
set in objective space, such that

Γ0(t) := {F ∈ Rk | ϕ(F , t) = 0}. (A.16)

One may identify the level set function ϕ at t = 0 as a representation of the signed
distance function δ. The transport equation

∂tϕ(F , t) + sign(ϕ(F , 0))‖∇Fϕ(F , t)‖ = 0 (A.17)

can be used for propagating the zero level set function at any pseudo-time t. Given an
initial level set function at t = 0 that satisfies (A.15), equation (A.17) can be solved
numerically on a Cartesian grid in objective space for different time steps. The pseudo-
time t indicates the location of the zero level set of the level set function in objective
space and thus can be used to measure the distance to the zero level set at time t = 0
for a given point in objective space using interpolation between two time steps (see
[208, p.65]). As a result, the level set method can be used to approximately calculate
the signed distance to the deterministic Pareto optimal front. If it is too expensive to
precompute the solution on a Cartesian grid in objective space, equation (A.17) can be
solved for a fixed number of sample points in objective space.

When using the above strategy, it is not guaranteed that the level set function remains
to be a signed distance function for every pseudo-time t. This is even the case if the
initial condition is already the signed distance function to be approximated, or the
zero level set has the properties of a signed distance function. Thus, depending on the
initial condition and the solution procedure, the problem based on (A.17) can be ill-
conditioned. Therefore an alternative strategy is to prescribe the properties of a signed
distance function for ϕ, namely that

‖∇F δ(F ,Γ0)‖ = 1 (A.18)

has to hold almost everywhere in objective space. Equation (A.18) is a special case of
the Eikonal equation. If (A.18) has to hold for the level set function ϕ depending on
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Figure A.5.: Logarithm of the relative error of the expected value for the Monte Carlo
approach (a) and non-intrusive polynomial chaos using Gauss-Hermite
quadrature (b).

pseudo-time t, the idea is to find a steady-state solution such that the condition holds
for t ≥ t∗, where t∗ is fixed. Note that in this case the pseudo-time t is introduced for
the level set function to achieve convergence to a steady-state. The steady-state solution
can, for example, be found by solving the modified transport equation

∂tϕ(F , t) + sign(ϕ(F , 0))(‖∇Fϕ(F , t)‖ − 1) = 0 (A.19)

with the prescribed condition (A.15) and thus can be directly used to approximate the
signed distance function δ. However, depending on the smoothness of ϕ and the initial
condition, the zero level set may be moved when solving (A.19). Different strategies were
proposed for tackling this problem. Different numerical solution procedures like finding
the viscosity solution may help to increase stability. The fast marching method [249] uses
a different strategy based on the Eikonal equation to find the signed distance function. It
is, for example, used in the field of computer vision. Note that the approaches explained
above are sometimes combined [260] to increase the overall accuracy by solving (A.19)
to reinitialize the solution of (A.17) either globally or locally in a neighborhood of the
zero level set after a certain number of pseudo-time steps.

A.3.2. Monte Carlo Methods versus Non-Intrusive Polynomial Chaos

To compare the performance of the Monte Carlo method and the non-intrusive polyno-
mial chaos approach, the test function f(x) = exp(−x) is considered. It is assumed that
x is normally distributed with mean µ = 0.5 and standard deviation σ = 0.25. The ex-
pected value of f(x) is calculated using Monte Carlo integration and non-intrusive poly-
nomial chaos using Gauss-Hermite quadrature. The exact value is given by E(f(x)) =
exp(−µ+ 0.5σ2).

The relative error of the expected value for Monte Carlo integration is plotted in a log-
arithmic plot in A.5a. The values are averaged over 5 runs. The slow convergence with
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Figure A.6.: Logarithm of the relative error of the variance for Gauss-Hermite quadrature
with different maximum expansion orders K (a) and for the non-intrusive
polynomial chaos expansion with negligible quadrature error.

a convergence rate of the order 1/
√
M can be observed for Monte Carlo with M evalu-

ations of the objective function. The logarithm of the relative error for Gauss-Hermite
quadrature is plotted over the number of quadrature points in A.5b. Since the underlying
function is smooth, fast convergence is observed for Gauss-Hermite quadrature.

For approximating the variance of f with non-intrusive polynomial chaos, the maxi-
mum order of polynomials K in the expansion is of importance. The logarithm of the
relative error of the variance is plotted against the number of quadrature points in A.6a
for different maximum orders of polynomials K. As expected, a higher order of chaos
requires a higher number of quadrature points. The plateaus in convergence occur when
the quadrature error is reduced up to machine accuracy, and only the truncation error
of the expansion is present. This case is considered in Figure A.6b, where the relative
truncation error is plotted over the maximum order of the expansion.

A.3.3. Additional Results for Operational Uncertainties

The present section shows additional interesting results for aerodynamic multi-objective
robust design under the consideration of uncertainties.

First, it may be observed that the optimization based on expected values will not
necessarily improve the amount of variations. This is especially the case for designs with
a high lift coefficient. This can be observed in Figure A.7a, where vertical and horizontal
lines indicate the standard deviations for the drag coefficient and the lift coefficient of
the optimal designs and the robust optimal designs.

When optimizing the nominal objective functions while constraining the variance as
proposed in problem (4.57), a similar effect can be observed. Figure A.7b shows the
results for constraining the variance in such a way that var(c̃d) + var(c̃l) ≤ 0.001, where
c̃d and c̃l are scaled with respect to the nominal values. It can be seen that, despite the
introduction of scaling, constraining the variance results in designs for high lift values
that are far away from the Pareto optimal front.
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(b) Variance-based multi-obj. robust design.

Figure A.7.: Expectation and standard deviation of individual objective functions (b) for
optimal designs (blue) and robust optimal designs (black). The standard
deviations are indicated by the vertical and horizontal lines. Robust optimal
designs (b) found when constraining the L1-norm of the vector of variances
(black points) and corresponding expected values (black crosses).
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Figure A.8.: Robust Pareto optimal points for uncertainties in the Mach number and
the angle of attack (black points). The crosses indicate the corresponding
expected values and the designs are shown on the right side.
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Figure A.9.: Robust Pareto optimal solutions in objective space. The dots denote designs
evaluated at the nominal point and the crosses correspond to the expected
values.

It can be concluded that the choice of an appropriate upper bound for the variance is
not intuitive, and might be altered for specific regions in objective space. A similar but
weaker effect can be seen for the direct approach based on estimated expected losses.
When constraining losses with respect to the deterministic Pareto optimal front, such a
problem is not observed. Concluding the numerical analysis of the variance of objective
functions, it can be stated that an optimization based on losses in multi-objective space
will not necessarily improve the variance. The obtained values for the variances of
the individual objective functions are similar to the values of the expectation-based
approach.

Finally, the angle of attack α can be considered as an additional uncertainty, which
is normally distributed with a mean of 1.25 and a standard deviation of 0.01. The
uncertainties in the Mach number and the angle attack are assumed to be independent.
For the computation of the two-dimensional random integral, it is made use of a full
tensor grid with 16 Gauss-Hermite quadrature points. Note that the minimum value of
the moment coefficient will be obtained for the smallest outcomes of the Mach number
and the angle of attack. Thus, the corresponding constraint can be prescribed in the
discretized semi-infinite robust design formulation. The resulting robust Pareto optimal
points are marked in black in A.8. The black crosses indicate the respective expected
values. The resulting designs, shown on the right side, are very similar to the solutions
found when only considering an uncertainty in the Mach number.

A.3.4. Multi-Objective Robust Design of 3D U-Bend

The expectation-based formulation for multi-objective robust design is applied to the
three-dimensional U-shaped bend by assuming uncertain inflow conditions. Different
numerical experiments are conducted, including an uncertain flow speed ‖v‖, which is
normally distributed with µ = 0.4 and σ = 0.01, and an uncertain direction of the input
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flow given by (
√

1− ω2
1 − ω2

2, ω1, ω2) with ω1, ω2 ∼ N(0, 0.0001). Figure A.9 shows
the results for an uncertain flow speed. For all numerical experiments the resulting ro-
bust optimal designs are very close to the optimal designs obtained for a deterministic
optimization, or coincide with the optimal designs. Thus, for the problem under con-
sideration, the mean performance is comparable to the performance obtained when not
considering uncertainties.
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Düren, Deutschland

2008–2012 Studiengang mit Abschluss B.Sc. (Computational Engineering Science),
RWTH Aachen, Aachen, Deutschland

2012–2013 Studiengang mit Abschluss M.Sc. (Computational Engineering Science),
RWTH Aachen, Aachen, Deutschland

since 2014 Promotionsstudium,
TU Kaiserslautern, Kaiserslautern, Deutschland

Arbeitserfahrung

2009–2012 Studentische Hilfskraft, Mathematikabteilung des CCES,
RWTH Aachen, Aachen, Deutschland

2012–2013 Werkstudentin, Computational Fluid Dynamics,
Ricardo Deutschland GmbH, Aachen, Deutschland

since 2014 Wissenschaftliche Mitarbeiterin, AG Scientific Computing,
TU Kaiserslautern, Kaiserslautern, Deutschland

237





List of Publications

[Kusch et al.,2018] L. Kusch, T. Albring, A. Walther, and N. R. Gauger. A One-
Shot Optimization Framework with Additional Equality Constraints Applied
to Multi-Objective Aerodynamic Shape Optimization. Optimization Methods
and Software, 33(4-6):694–707, 2018.

[Kusch et al.,2016] L. Kusch and N. R. Gauger. The One-Shot Method in SU2.
Proceedings in Applied Mathematics and Mechanics, 16(1):699–700, 2016.

[Kusch et al.,2019] L. Kusch and N. R. Gauger. Robust Airfoil Design in the
Context of Multi-objective Optimization. Computational Methods in Applied
Sciences, 48:391–403, 2019.

[Kusch et al.,2020] L. Kusch and N. R. Gauger. Robustness Measures for Multi-
Objective Robust Design. Computational Methods in Applied Sciences (Ac-
cepted for Publication), 2020.

[Kusch et al.,2014] L. Kusch, N. R. Gauger, and M. Spiller. Efficient Calculation
of Pareto-Optimal Points for Shape Optimization. In Full Paper Compi-
lation: Evolutionary and Deterministic Methods for Design, Optimization
and Control with Applications to Industrial and Societal Problems - EURO-
GEN 2013, ISBN 978-84-617-2141-2, Universidad de Las Palmas de Gran
Canaria, Spain, 2014.

[Walther et al.,2016] A. Walther, N. R. Gauger, L. Kusch, and N. Richert. On
an Extension of One-Shot Methods to Incorporate Additional Constraints.
Optimization Methods and Software, 31(3):494–510, 2016.

[Walther et al.,2018] A. Walther, L. Kusch, and N. R. Gauger. New Results for
the Handling of Additional Equality Constraints in One-Shot Optimization.
Vietnam Journal of Mathematics, 46(4):825–836, 2018.

239




	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Lists
	Introduction
	Motivation
	Research Goals and Contributions
	Composition of Thesis

	Multi-Objective Optimization
	Fundamentals and Definitions
	Single-Objective Optimization
	Pareto Optimality

	Multi-Objective Optimization Algorithms
	Direct Pareto Approaches
	Weighted Sum Method
	Equality Constraint Method
	Epsilon-Constraint Method
	Normal Constraint Method

	Hybrid Optimization Strategy
	Gradient-Based Algorithms for Unconstrained Optimization
	Gradient-Based Algorithms for Constrained Optimization
	Hybridization

	Application and Results
	Aerodynamic Shape Optimization Problem
	Implementation Details
	Results of Multi-Objective Aerodynamic Shape Optimization


	One-Shot Method for PDE-constrained Optimization
	Fundamentals of PDE-constrained optimization
	Properties and Assumptions
	Necessary and Sufficient Conditions for Optimality
	Sensitivity Computation

	The One-Shot Approach
	Fixed-Point Formulation
	Piggy-Back Iteration
	Single-Step One-Shot Approach
	The One-Shot Approach with Additional Equality Constraints
	Bound Constraints in the One-Shot Approach
	Algorithmic Differentiation

	Application and results
	Implementation in SU2
	Results of One-Shot Aerodynamic Shape Optimization


	Robustness in Multi-Objective Optimization
	Probability Theory
	Uncertainty Quantification
	Representation of Random Inputs
	Methods for Uncertainty Propagation
	Quadrature

	Robust Design
	Robust Design in a Single-Objective Context
	Robust Design in a Multi-Objective Context
	Expected Losses in Objective Space

	Application and Results
	Uncertainty Quantification and Robust Design in Aerodynamics
	Implementation Details
	Results for Uncertainties in the Operational Conditions
	Results for Geometrical Uncertainties


	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix
	Appendix for Chapter 2
	Variant of the Equality Constraint Method
	Variants of the Epsilon-Constraint Method
	Multi-Objective Shape Optimization of 3D U-Bend

	Appendix for Chapter 3
	Adjoint Approach: Duality Viewpoint
	Inexact rSQP Approach for One-Shot Optimization
	One-Shot Approach for Topology Optimization of Nonlinear Structures
	Comparison of Results for Multi-Objective Optimization
	Limited-Memory BFGS method for Bound Constraints

	Appendix for Chapter 4
	Approximating the Signed Distance Function
	Monte Carlo Methods versus Non-Intrusive Polynomial Chaos
	Additional Results for Operational Uncertainties
	Multi-Objective Robust Design of 3D U-Bend


	Curriculum Vitae
	Lebenslauf
	List of Publications

