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Abstract

Dataflow process networks (DPNs) consist of statically defined process nodes
with First-In-First-Out (FIFO) buffered point-to-point connections. DPNs
are intrinsically data-driven, i.e., node actions are not synchronized among
each other and may fire whenever sufficient input operands arrived at a node.
In this original form, DPNs are data-driven and therefore a suitable model
of computation (MoC) for asynchronous and distributed systems. For DPNs
having nodes with only static consumption/production rates, however, one
can easily derive an optimal schedule that can then be used to implement the
DPN in a time-driven (clock-driven) way, where each node fires according to
the schedule.

Both data-driven and time-driven MoCs have their own advantages and dis-
advantages. For this reason, desynchronization techniques are used to convert
clock-driven models into data-driven ones in order to more efficiently sup-
port distributed implementations. These techniques preserve the functional
specification of the synchronous models and moreover preserve properties like
deadlock-freedom and bounded memory usage that are otherwise difficult to
ensure in DPNs. These desynchronized models are the starting point of this
thesis.

While the general MoC of DPNs does not impose further restrictions, many
different subclasses of DPNs representing different dataflow MoCs have been
considered over time like Kahn process networks, cyclo-static and synchronous
DPNs. These classes mainly differ in the kinds of behaviors of the processes
which affect on the one hand the expressiveness of the DPN class as well as the
methods for their analysis (predictability) and synthesis (efficiency). A DPN
may be heterogeneous in the sense that different processes in the network may
exhibit different kinds of behaviors. A heterogeneous DPN therefore can be
effectively used to model and implement different components of a system with
different kinds of processes and therefore different dataflow MoCs.

Design tools for modeling like Ptolemy and FERAL are used to model and
to design parallel embedded systems using well-defined and precise MoCs,
including different dataflow MoCs. However, there is a lack of automatic syn-
thesis methods to analyze and to evaluate the artifacts exhibited by particular
MoCs. Second, the existing design tools for synthesis are usually restricted to
the weakest classes of DPNs, i.e., cyclo-static and synchronous DPNs where
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each tool only supports a specific dataflow MoC.

This thesis presents a model-based design based on different dataflow MoCs
including their heterogeneous combinations. This model-based design covers
in particular the automatic software synthesis of systems from DPN models.
The main objective is to validate, evaluate and compare the artifacts exhibited
by different dataflow MoCs at the implementation level of embedded systems
under the supervision of a common design tool. We are mainly concerned
about how these different dataflow MoCs affect the synthesis, in particular,
how they affect the code generation and the final implementation on the tar-
get hardware. Moreover, this thesis also aims at offering an efficient synthesis
method that targets and exploits heterogeneity in DPNs by generating imple-
mentations based on the kinds of behaviors of the processes.

The proposed synthesis design flow therefore generally starts from the desyn-
chronized dataflow models and automatically synthesizes them for cross-vendor
target hardware. In particular, it provides a synthesis tool chain, including dif-
ferent specialized code generators for specific datalow MoCs, and a runtime
system that finally maps models using a combination of different dataflow
MoCs on the target hardware. Moreover, the tool chain offers a platform-
independent code synthesis method based on the open computing language
(OpenCL) that enables a more generalized synthesis targeting cross-vendor
commercial off-the-shelf (COTS) heterogeneous platforms.
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Chapter

Introduction

1.1. Motivation and Problem Setting

The ever-increasing functionality and the non-functional constraints in modern
embedded systems lead to an enormous growth in the complexity at the system
level. Dealing with the resulting complexity, many different system architec-
tures have been introduced in embedded system design that are integrating
heterogeneous single-core and multi-core processors with application specific
hardware and even more specific sensors and actors. Besides this heterogeneity
of the platforms, also the reduced time-to-market has imposed new challenges
for designers to develop products within a short period of time. The trends of
new system architectures and the tight time-to-market deadlines have enforced
model-based design flows not just to satisfy functional requirements but also
to better address non-functional characteristics like performance, portability
and scalability that are otherwise not intrinsically supported by traditional
design flows and programming paradigms.

Model-based design flows for embedded systems have been introduced to
allow late design changes while still keeping tight time-to-market deadlines.
A model-based design is generally characterized with a hardware-agnostic
abstract model based on a particular model of computation (MoC) and is
equipped with a tool chain typically providing simulators, tools for verifica-
tion, code generators, and tools for synthesis. A MoC precisely determines
why, when, and which atomic action of a system is executed. The clock-driven
or synchronous reactive (SR) MoC [Schn09; BeGo92; BCEHO03] describes a
system with an abstract notion of time (the clock). All components (modules)
of a synchronous system react in parallel to their environment in a sequence
of logical ticks and automatically synchronize after each tick. This abstrac-
tion imposed in the form of perfect synchrony allows deterministic semantics,
which makes the SR MoC well suited for formal analysis, simulation, verifica-
tion and synthesis of embedded systems. However, this synchrony hypothesis
can cause an unnecessary burden in the form of synchronization overhead, in
particular, for the implementation of distributed and asynchronous systems.

In contrast, dataflow process networks (DPN) [KaMi66; Denn74; Kahn74]
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Figure 1.1.: A simple visualization of a heterogeneous DPN. It consists of differ-
ent kinds of processes characterized by static, sequential and parallel
behaviors. The processes (pg . ..ps) are connected together via FIFO
buffered point-to-point channels (fo... f5).

consist of statically defined process nodes with first-in-first-out (FIFO) buffered
point-to-point connections. In their natural form, DPNs are data-driven, i.e.,
process nodes are not synchronized among each other and may fire whenever
sufficient data is available at a node. In this original form, DPNs are data-
driven and therefore a suitable MoC for asynchronous and distributed systems.
However, model-based designs starting from DPNs may suffer from problems
like deadlocks and buffer overflows [Park95; GeBa03]. Preserving proper-
ties like deadlock-freedom and bounded memory usage in DPNs is in gen-
eral not decidable. Therefore, both data-driven and clock-driven MoCs have
their own advantages and disadvantages. As an alternative, desynchronization
of synchronous models [BeCG99; Gira0ba] has been recently developed that
benefit both from the static analysis methods for synchronous systems and
the performance of the finally synthesized asynchronous systems. Desynchro-
nization techniques [BeCG99; PoCB06; TOGB12; Bail6] are used to convert
clock-driven models into data-driven ones in order to more efficiently sup-
port distributed implementations. These techniques preserve the functional
specification of the synchronous models and moreover preserve properties like
deadlock-freedom and bounded memory usage that are otherwise difficult to
ensure in DPNs. These desynchronized models are the starting point of this
thesis.

While the general MoC of DPNs does not impose further restrictions, many
different subclasses of DPNs have been considered over time like Kahn pro-
cess networks (KPN) [Kahn74], static dataflow (SDF) [PaPL95] networks and
Boolean dataflow (BDF) [Buck93] networks. Each class defines a specific
dataflow MoC by specifying a particular execution and communication se-
mantics [FHTZ17]. These classes mainly differ in the kinds of behaviors of
the processes which affect on the one hand the expressiveness of the DPN
class as well as the methods for their analysis (predictability) and synthesis
(efficiency). These behaviors are precisely described based on the underly-
ing semantics of how each process is triggered for an execution, and how
each execution of a process consumes/produces data. A process in a static
DPN exhibits a static behavior where a statically determined amount of data
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is consumed and produced in each execution. Second, a process in a KPN
may possess a sequential behavior where a dynamically determined amount of
data is consumed and produced sequentially in each execution. In contrast,
a process in a dynamic dataflow (DDF) [Kosi78] network may have a parallel
behavior that can consume and produce a dynamically determined amount of
data in parallel. A DPN may be homogeneous, i.e, all processes possess the
same kind of behavior, or it may be heterogeneous where different processes
exhibit different kinds of behaviors. A heterogeneous combination of particular
kinds of processes can be used to model and implement different components
of a system with different kinds of processes and therefore different dataflow
MoCs. A simple example of a heterogeneous DPN consisting of different kinds
of behaviors of the processes is visualized in Figure 1.1.

Design tools for modeling like Ptolemy [EJLLO03; BrLT10] and FERAL
[KFBG13| are used to model and to design parallel embedded systems us-
ing well-defined and precise MoCs, including different dataflow MoCs. The
main emphasis of these design tools is to analyse different MoCs, including
their heterogeneous combinations, for modeling and designing embedded sys-
tems. Some of these modeling design tools also introduced at some stage a
limited synthesis facility, supporting only platform-dependent synthesis meth-
ods usually restricted to implementations based on particular dataflow MoCs.
We therefore appreciate the convenient use of these well established frame-
works to study and to analyse different MoCs at the design level. However,
there is a lack of automatic software synthesis methods to analyse and to eval-
uate the artifacts exhibited by different datalow MoCs and especially their
heterogeneous combinations.

Second, the existing design tools for software synthesis like [STST13;
LKET15; BWHBI1S| are usually restricted to the weakest classes of DPNs,
i.e., cyclo-static and static DPNs where each tool only supports a specific
dataflow MoC. These tools provide specialized tool chains, in particular, a
specialized code generator for a specific MoC. Each tool therefore allows one
to model and to implement systems based on a specific dataflow MoC. A
design tool that only supports a static dataflow MoC can be used for the
modeling and synthesis of static (synchronous) behaviors. Similarly, a de-
sign tool based on a dynamic dataflow MoC can be employed for dynamic
and asynchronous behaviors. A design tool like the open RVC-CAL compiler
(ORCC) [YLJC13a] that is based on a more generalized dataflow MoC (DDF)
can also be used to implement a behavior that precisely belongs to a more
restricted dataflow MoC (e.g., SDF). However, when it comes to synthesis, in
particular, the code generation and scheduling, this may lead to an inefficient
implementation mainly because of the runtime overhead caused by a more
relaxed semantics than needed. Moreover, for heterogeneous DPNs offering
heterogeneous combinations of different kinds of behaviors of the processes,
the synthesis method should exploit the heterogeneity by generating efficient
implementations based on the precise dataflow MoC of each process.

Apart from efficiency, another crucial challenge is the portability of applica-
tions on different cross-vendor platforms which is not systematically handled
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by the traditional design flows. In general, the final result of these design flows
is more or less a set of automatically generated C programs. Consequently,
a non-trivial manual effort is finally required for deploying these programs to
a particular target architecture. To further automate the design process, a
systematic approach is needed to implement and deploy the modeled systems
on different cross-vendor target platforms in an automatic way that avoids
tedious and error-prone manual steps.

The overall motivation of this thesis is to enable the automatic software
synthesis of systems using different well-defined and precise dataflow MoCs
including their heterogeneous combinations. The main objective is to validate,
evaluate and compare the artifacts exhibited by different dataflow MoCs at the
implementation level of systems under the supervision of a common design tool.
Moreover, the idea is to offer an efficient synthesis method that exploits hetero-
geneity in dataflow networks by generating implementations based on the kinds
of behaviors of the processes. Finally, this thesis also considers the challenge
of systematically handling the portability of modeled systems on cross-vendor
heterogeneous platforms as an integral part of the synthesis process.

1.2. Related Work

A number of model-based design tools have been presented over time for the
design and development of embedded systems. This section covers a number
of well-established design tools, categorized mainly from the perspective of
desired goals, employed strategies and usage as given in the following sections.

1.2.1. Design Tools for Modeling

The Ptolemy project [EJLL03; BrLT10] is a design tool originally constructed
in a Java-based environment to support the modeling and simulation of behav-
iors based on different MoCs, including particular dataflow MoCs. It provides
a common platform for organizing a system into different domains character-
ized as directors. Each enclosing director represents a semantic model based
on a specific MoC and triggers the execution of the contained components in
accordance to the implemented semantics. The heterogeneous combination of
MoCs is therefore realized by coupling different directors within an application
scenario. The main emphasis of Ptolemy project is to analyse different MoCs,
including their heterogeneous combinations, for modeling and designing em-
bedded systems. Hence, the main focus is to study and analyse different MoCs
at the design level. However, it also provides a preliminary code generation
facility!. It requires the supporting helper code for each process to generate a
general C program. This helper code is required to be provided manually using
a fairly complex procedure for each process. Currently, the code generation
facility targets implementations based on particular individual MoCs.
FERAL [KFBG13] is another framework that supports heterogeneous mod-
eling and simulation. It is developed to provide a holistic model-based design

"http://ptolemy.berkeley.edu/ptolemyII/ptII10.0/ptII110.0.1/ptolemy/cg/
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approach to enable the coupling of specialized simulators in offline scenarios,
i.e., without connecting them to real hardware. This project very interestingly
adopts and extends the concepts from the Ptolemy project.

The formal system design (ForSyDe) [SaJA17] tool offers a formal design
methodology for embedded systems based on different MoCs including the SR
MoC and two particular dataflow MoCs. The ForSyDe modeling framework
is characterized as language independent where currently two versions are
available as a set of libraries in Haskell?> and SystemC?. Although the major
focus of this design tool is the modeling framework, it also provides a hardware
synthesis tool that has been mainly elaborated for translating models limited
to the SR MoC into the corresponding VHDL code. Another synthesis plug-in
called f2cc* has been introduced for generating GPGPU software code from
models limited to the SR MoC.

The SystemC models of computation (SysteMoC) [HFKS07] is an actor-
oriented dataflow programming language built on top of SystemC. It supports
different precise and well-defined dataflow MoCs and is available as an open
source C++ class library. Besides supporting different dataflow MoCs, it
also offers the automatic MoC identification of processes (actors), which is
not featured in frameworks like Ptolemy and ForSyDe. The identification of
different MoCs in SysteMoC is mainly realized by analysing the communica-
tion behavior. The communication behavior of an actor is typically specified
by an explicit finite state machine model. Although, the main focus of Syste-
MoC has been at the design level, the System-CoDesigner [HFKS07; HSKMO0S]
framework specializes in automatic design space exploration and rapid proto-
typing starting from SysteMoC models. In particular, the framework offers a
platform-based automatic system generation from SysteMoC models. Further-
more, it also supports the generation of Verilog/VHDL code using high-level
commercial synthesis tools like Forte Cynthesizer.

SDF for free (SDF3) [StGB06a] is a versatile experimental tool that can
generate random static dataflow graphs (SDFGs), with support to analyse
and visualize these graphs. It supports three different classes of static DPNs,
namely the static dataflow (SDF) [LeMe87al, the cyclo-static dataflow (CSDF)
[EBLP95] and the scenario aware dataflow (SADF) [SGTB11]. The tool in-
cludes an extensive library of SDFG analysis and transformation algorithms
as well as functionality to visualize and simulate them.

1.2.2. Design Tools for Synthesis

Model-based design tools for synthesis in the related state-of-the-art mainly
differ by their employed MoCs. A number of dataflow oriented design tools
have been presented where each tool usually only supports a specific dataflow
MoC. To this end, some of the inspiring model-based design tools for synthesis
are presented in [STST13; LKET15; BWHB18; BBJE09; BTRM14; BoHal®6;

’https://www.haskell.org/
3https://www.accellera.org/downloads/standards/systemc
*https://github.com /forsyde/f2cc/wiki
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SBRY12] and [BoGh15] (to name a few).

The framework presented in [STST13] introduces a design flow for executing
applications specified as SDF graphs on heterogeneous systems using the open
computing language (OpenCL) [StGS10]. The main focus of this work is to
develop and to provide features and concepts to better utilize the parallelism
and thereby improving end-to-end throughput in heterogeneous architectures.
However, it only supports the execution of behaviors limited to the SDF MoC.

The work presented in [LKET15] translates DPNs modeled using a sub-
set of Cal actor language (CAL) [EkJa03], namely the RVC-CAL language
[BoNy15], to parallel programs running some of the computations on OpenCL.
The methodology incorporates static analysis and transformations and thus
confined to the synthesis of SDF models. Similarly, another dataflow oriented
framework [BWHB18] proposes a dataflow MoC as a symmetric-rate dataflow,
a restricted form of SDF, where the token production rate and the token con-
sumption rate per FIFO channel is symmetric.

The Open DataFlow (OpenDF) [BBJEQ9] is a compilation framework built
under the Eclipse environment that models DPNs based on CAL. It uses a
dedicated software back-end (CAL2C) [RWRJO08] and a dedicated hardware
back-end [JMPROS] for the generation of C code and RTL descriptions (Ver-
ilog), respectively. Similarly, in [BTRM14], the HW/SW co-design methodol-
ogy based on the RVC-CAL language, is built as an Eclipse plug-in on top of
open RVC-CAL compiler (ORCC)® and OpenForge®. The open-source tools
are used as a tool chain of the framework, capable of providing simulation and
the HW/SW synthesis. The final implementations provided by these frame-
works are based on a dynamic dataflow MoC.

Another approach presented in [BoHal6] is aimed to provide a dataflow
programming framework for enabling the execution of behaviors based on a
dynamic dataflow MoC on GPU devices. The framework targets modeling a
system based on dynamic dataflow and allows the mapping of actors with a
data-dependent consumption of inputs and a data-dependent production of
outputs.

The distributed application layer (DAL) framework [SBRY12] presents a
scenario-based design flow for mapping streaming applications onto heteroge-
neous on-chip many-core systems. Behaviors are modeled based on a specific
dataflow MoC, namely the KPN MoC [Kahn74], and the execution scenarios
are coordinated using a finite state machine (FSM), where each scenario is
represented by a state. The work presented in [BoGh15] proposed the DAL
based design flow to execute DPNs modeled as RVC-CAL programs on multi-
core platforms. A dedicated DAL back-end based on the C back-end of ORCC
is proposed to translate RVC-CAL actors to DAL processes.

Shttp://orcc.sourceforge.net
https://sourceforge.net/projects/openforge
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1.2.3. Design Tools in Industry

One of the most popular and commercially recognized model-based design
tool Matlab” has introduced a variety of supporting toolkits over time. The
modeling toolkit Simulink provides a graphical extension for modeling and
simulation of systems. Similarly, the Embedded Coder generates C and C++
files for embedded software processors. The Simulink Design Verifier and
Polyspace are introduced for the formal verification of models and code, re-
spectively. Interestingly, Matlab Simulink introduced the dataflow domain®
where applications can be modeled and simulated based on the SDF MoC. It
automatically partitions the model, generates the static scheduler and simu-
lates the system using multiple threads. The main objective of introducing the
dataflow domain is to improve the simulation throughput with multithreaded
execution.

The Signal Processing Worksystem (SPW) from Cadence Design Systems®
supports the modeling and analysis of signal processing algorithms based on
static as well as dynamic dataflow models. The actors can be modeled and
organized in a hierarchical setting using several different models like SystemC,
Matlab, C/C++, Verilog, VHDL, or the design library from SPW. The de-
sign flow mainly focuses on the simulation and manual refinement of modeled
systems.

CoCentric System Studio (previously known as COSSAP) from Synopsys'’
is a system-level design solution consisting of tools, methodologies, and li-
braries that enables the design and simulation of systems-on-a-chip. It sup-
ports languages like C/C++, SystemC, VHDL, Verilog and others. The Sys-
tem Studio provides a wide variety of modeling capabilities to capture complex
systems efficiently. The modeling paradigms can be hierarchically mixed at all
levels for e.g., based on nested dataflow models and FSMs. The main emphasis
of the design flow is the modeling and analysis of complex systems.

1.2.4. Summary

In general, model-based design tools for embedded systems that support het-
erogeneous combinations of MoCs including different dataflow MoCs have
found their major interest in the modeling, simulation, and analysis of com-
plex systems. These frameworks, developed and evolved over decades, are
being conveniently used to formally analyse different MoCs for modeling and
designing embedded systems. Some of the design tools in this category also
introduced a synthesis facility, supporting only platform-dependent synthe-
sis methods usually restricted to implementations based on particular MoCs.
Thus, there is a lack of automatic synthesis methods to analyse and to evaluate
the artifacts exhibited by different dataflow MoCs. Second, the existing de-
sign tools for synthesis are usually dedicated for automatically implementing

"http://www.mathworks.com/matlabcentral/
8https://www.mathworks . com/help/dsp/ug/dataflow-domains.html/
“https://www.cadence.com/
Ohttps://www. synopsys . com/
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Figure 1.2.: The overall design flow based on Averest is organized in four phases:
the system behavior is modeled as a synchronous program which is
compiled to an intermediate format (AIF). The AIF description is
used to perform code optimizations and transformations as well as to
simulate and verify the synchronous components. If verified for desyn-
chronization, the components are transformed into a DPN which is
then automatically synthesized and deployed on the target hardware.

systems based on a specific dataflow MoC. Therefore, a common synthesis de-
sign flow is still needed that mainly focuses and emphasizes on the automatic
software synthesis of systems based on different dataflow MoCs. Moreover, an
efficient software synthesis method is desired that targets and essentially ex-
ploits the heterogeneity in the network by generating implementations based
on the precise dataflow MoC of each process.

1.3. Contributions

As a long term project, our group developed the Awerest'' tool for a model-
based design process starting with synchronous models. Averest is a frame-
work for the specification, verification and implementation of synchronous
reactive systems. Furthermore, the work presented in [Bail6] offers a desyn-
chronization design flow using Averest that starts from the synchronous model
of a system and then transforms it into an asynchronous model that can be

Hhttp://www.averest.org
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1.3. Contributions

directly used for the synthesis of the distributed applications [BaRS21]. The
complete design flow based on Awverest can be expressed in four phases as
shown in Figure 1.2.

The design flow is based on the imperative synchronous programming lan-
guage Quartz [Schn09], which is a variant of Esterel [BeGo92]. In Phase 1, at
the start of the design flow, the system behavior is specified in Quartz which
can then be compiled to the Averest intermediate format (AIF). In Phase 2,
the intermediate format is utilized to perform code optimization and trans-
formations such as dead and passive code elimination [BrSB14] and static
single assignment SSA format generation. In Phase 3, the system behavior
is simulated and verified by directly using the intermediate description. If
synchronous components are successfully verified for desynchronization, the
AIF code is transformed into a DPN. The underlying language of the target
DPN model is the Cal actor language (CAL) [EkJa03]. These desynchronized
models (DPNs) are the starting point of this thesis.

This thesis presents a model-based synthesis design flow based on different
dataflow MoCs including their heterogeneous combinations. This model-based
design covers in particular the automatic software synthesis of systems from
DPN models. The proposed synthesis method has been successfully used as
Phase 4 of the complete design flow based on Awverest as shown in Figure 1.2.
In particular, in Phase 4, the target code is automatically synthesized from the
desynchronized code for different cross-vendor target hardware. Moreover, the
synthesis design flow has also been implemented in a standalone framework.

The main objective of this thesis is to validate, evaluate and compare the ar-
tifacts exhibited by different well-defined and precise dataflow MoCs at the im-
plementation level of systems under the supervision of a common design tool.
To this end, we propose a synthesis design flow that essentially enables the
automatic software synthesis of systems based on different dataflow MoCs. In
particular, it supports three different dataflow MoCs, namely the synchronous
(static) dataflow (SDF) [LeMe87a] MoC, the Kahn process networks (KPN)
[KaMa77] MoC and a deterministic variant of the dynamic dataflow (DDF)
[Kosi78] MoC. The common design tool can be effectively used to generate
implementations based on the individual dataflow MoCs [RaSc21; RaSc19a;
RaSc18]. Moreover, in contrast to existing dataflow oriented model-based syn-
thesis methods, the proposed design flow offers an efficient synthesis method
that targets and exploits heterogeneity in dataflow networks by generating im-
plementations purely based on the kinds of behaviors of the processes or the
underlying precise dataflow MoC of each process [RaSc20b]. Hence, each pro-
cess in the network is scheduled and executed based on the underlying precise
dataflow MoC.

The target DPN model of our desynchronization method is based on a lim-
ited subset of CAL. The proposed synthesis design flow considers a general
DPN model based on this subset of CAL that is used with specific constraints
and restrictions to specify the supported dataflow MoCs. Second, it provides
a comprehensive synthesis tool chain, including different specialized code gen-
erators for specific dataflow MoCs, and a runtime system that finally maps
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models using a combination of different dataflow MoCs on the target hardware.
The tool chain essentially offers a platform-independent code synthesis method
based on the open specification language (OpenCL) abstraction that enables a
more generalized synthesis targeting commercial off-the-shelf (COTS) hetero-
geneous architectures. In particular, this thesis focuses on mapping modeled
systems on cross-vendor multi-core CPUs and many-core GPUs as depicted in
Figure 1.2. We target dynamic application environments involving a number
of data samples at a time. This allows us to potentially schedule and map
multiple executions of dataflow models on the target devices at a time that
are then executed either sequentially or in parallel depending on the underly-
ing MoC. The proposed synthesis method therefore enables us to analyse and
evaluate the artifacts exhibited by different dataflow MoCs on heterogeneous
platforms consisting of CPUs and parallel architectures like GPUs.
The main contributions of this thesis can be summarized as follows:

e We proposed an automatic model-based synthesis design flow that en-
ables us to synthesize systems using different dataflow MoCs, namely
the SDF MoC, the KPN MoC and a deterministic variant of the DDF
MoC.

o We implemented a platform-independent code synthesis method for CAL
DPN models. In particular, we offer a synthesis tool chain that auto-
matically synthesizes CAL models into OpenCL code which is platform
independent. This enables a more generalized synthesis not restricted to
devices like multi-core processors.

e We describe the supported dataflow MoCs and present their correspond-
ing code generators based on the employed CAL DPN model.

e We offer a single back-end based on OpenCL which is comprised of dif-
ferent specialized code generators for specific dataflow MoCs.

e We present the centralized host and the runtime system designed un-
der the OpenCL abstraction for finally deploying DPNs on cross-vendor
COTS target hardware.

1.4. Outline

The remainder of this thesis is organized in the following chapters:

e Chapter 2 highlights the background of this thesis by presenting some
important preliminaries. This includes introducing the tools, languages
and specifications used as essential parts of the proposed design flow.

e Chapter 3 overviews the proposed design flow and presents the exper-
imental tools especially developed for evaluating the feasibility of the
used languages and specifications.

10
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Chapter 4 focuses on presenting the supported dataflow MoCs. In par-
ticular, it first introduces the considered general model of DPNs, which
is then used with specific restrictions and constraints to represent the
precise dataflow MoCs.

Chapter 5 presents the complete synthesis tool chain including the spe-
cialized code generators and the runtime system. The synthesis method
employed for heterogeneous DPNs is also covered in this chapter.

Chapter 6 demonstrates the proposed design flow by presenting a number
of standalone benchmarks as well as a number of interesting case studies.
The results are presented for validating, evaluating and comparing the
artifacts exhibited by different supported dataflow MoCs.

Chapter 7 draws the conclusions and discusses the future prospects of
the presented synthesis framework.

11
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2.1. Models of Computation

Model-based design flows have been introduced to simplify the design process,
to trace out specification discrepancies and design errors earlier in the devel-
opment cycle, and to reduce the overall time-to-market [BTRM14; EJLLO3;
HSKMO08; SZTKO04]. These design flows are based on models of computation
(MoCs) that precisely determine why, when and which atomic action of a sys-
tem is erecuted. A MoC specifies in general what triggers the execution of a
component, how each execution of a component consumes/produces data, and
how these components communicate with each other. Depending on applica-
tions (hard or soft real-time systems) as well as on the target architectures
(single-core, multi-core or distributed), these MoCs carry their own advan-
tages and disadvantages. Thus, for an efficient model-based design process
targeting different applications and architectures, it is important to have the
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ability to translate parts of one MoC to another one. This section discusses in
general the synchronous MoC and the dataflow process network (DPN) MoC
with their advantages and disadvantages, and talks about the translation of
synchronous models to DPNs targeting particular applications and architec-
tures.

2.1.1. Synchronous Model of Computation

The clock-driven, time-driven, or synchronous reactive (SR) MoC [Schn09;
BeGo92; BCEHO03] organizes the behavior of a system into logical steps (ticks)
with an abstract notion of time (the clock). Each logical step is referred to as
a reaction of the system. All components (modules) of a synchronous system
react in parallel to their environment in a sequence of logical steps. In each
reaction, all inputs are read and all outputs are instantaneously computed by
all modules in parallel where values are instantaneously communicated be-
tween modules. The SR MoC forces components to communicate within one
step and therefore the communication requires no buffers at all. The outputs
of components in a synchronous program are conceptually simultaneous with
their inputs, which makes every component within the step to run instanta-
neously. This is called perfect synchrony. However, components can not run at
any order, instead, they have to follow causal rules, i.e. the modules are par-
tially ordered according to their data dependencies. This abstraction imposed
in the form of perfect synchrony allows a simplified reasoning about time in a
synchronous design. In particular, this offers many advantages like the ability
to model concurrent behaviors, deterministic simulation, formal analysis, ver-
ification and synthesis of embedded systems. The SR, MoC follows the same
abstraction of time as synchronous hardware circuits and thus can be visual-
ized as shown in Figure 2.1. At each logical tick of the global logical clock,
all the modules (A,B and C) are triggered. Then, all inputs (x1, x2) are read,
output results (y1, y2) are computed, and instantaneously communicated via
signal connections or wires.

Global Clock
1
x1 yl
x1 y1 Module B
x2 y2 I—
Module A
x1 yi
Module C

Figure 2.1.: A synchronous network consisting of modules (A, B, and C) driven by
a global clock.

Model-based design methods based on the SR MoC have been established
where either a sequential program or an application-specific hardware can be

14
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generated from one and the same synchronous model. Synchronous mod-
els are deterministic and therefore provide in particular predictable temporal
behaviors, which greatly simplifies many efforts in the verification and vali-
dation of hard real-time systems. They have proven their usefulness on both
single-core and multi-core platforms in safety critical applications such as avi-
ation [DPIC19] and other embedded system industries. However, when it
comes to soft real-time applications such as streaming and signal process-
ing [LKET15], performance and design flexibility are dominant factors over
safety, and commercial off-the-shelf (COTS) heterogeneous hardware plat-
forms are preferred from both the perspective of marketing as well as per-
formance [BaRS21]. With the advent of multi/many core heterogeneous plat-
forms in embedded systems, the generation of distributed implementations is
often desired for such applications, where different components are mapped
and executed on different computing units (devices). The SR MoC may induce
an unnecessary burden in the form of synchronization overhead and exces-
sive communication for such implementations mainly because the components
would have to synchronize after each reaction step. Therefore, synchroniza-
tion and communication overheads caused by the synchronous semantics of-
ten reduce the performance to an unacceptable level and is therefore not well
suited for the development of such applications especially when implemented
on distributed or even single-platform heterogeneous architectures involving
multi/many core devices.

e4

11 d

Figure 2.2.: A dataflow process network visualized as a graph consisting of vertices
(a,b,c and d) and directed edges (el, €2, e3 and e4).

2.1.2. Dataflow Process Networks

A dataflow process network (DPN) describes the behavior of a system in a set
of statically defined process nodes with FIFO buffered point-to-point channels.
As shown in Figure 2.2, a DPN can be visualized as a graph consisting of
vertices (a, b, ¢, d) called process nodes (or simply processes) and directed
edges (el, €2, e3, e4) called channels having FIFO buffers. A process of a DPN
represents a single computing unit in the network that models functionality
or computations to be executed. Each channel consisting of a FIFO buffer
connects at most two processes, i.e. one consumer that reads data values
(tokens) from the head of the buffer and one producer that writes data values
at the tail of the buffer. In general, the channels are conceptually considered to
be unbounded unless otherwise stated. Each process performs a computation
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Dataflow
Process
Networks

Dynamic

/ DPNs \
Homogeneous Synchronous Cylco-Static Boolean Kahn Process Dynamic
Dataflow Datafllow Dataflow Datafllow Networks Datalfow
(HSDF) (SDF) (CSDF) (BDF) (KPN) (DDF)

Figure 2.3.: Categorization of various dataflow MoCs. Different classes of dataflow
process networks are categorized into static and dynamic ones. The
static DPNs are characterized as ones having fixed consumption and
production rates. Whereas, the dynamic DPNs involve variable con-
sumption and production rates.

by firing where it consumes data tokens from its input buffers and produces
data tokens for its output buffers. The behavior of each process is described
by firing rules which are triggered by the availability of data. Hence, the
processes in a DPN are autonomous in the sense that they are not driven by
a global clock as done in the SR MoC. A process executes until enough tokens
are available in its input buffers for performing a computation.

The general MoC of DPNs does not impose further restrictions. However, a
number of different classes of DPNs representing different dataflow MoCs have
been considered over time [FHTZ17]. These classes mainly differ in the kinds
of behaviors of the processes which affect on the one hand the expressiveness
of the DPN class as well as the methods for their analysis (predictability) and
synthesis (efficiency). These behaviors are precisely described based on the
underlying semantics of how each atomic process is triggered for an execution,
and how each execution of a process consumes/produces data, in particular,
whether a statically or dynamically determined amount of data is consumed
and produced. The number of tokens consumed by a process from a particular
input buffer while firing is termed as the consumption rate. The number of
tokens produced by a process on a particular output buffer while firing is
termed as the production rate. Based on these factors, the most commonly
known classes can be categorized into static and dynamic DPNs as depicted
in Figure 2.3.

The latter accommodates DPNs like Kahn process networks (KPN)
[Kahn74], Boolean dataflow (BDF) [Buck93] and the dynamic dataflow (DDF)
[Kosi78] networks. Whereas, the former includes DPNs like static dataflow
(SDF) [LeMe87a; PaPL95|, homogeneous synchronous dataflow (HSDF)
[LeMe87a] and the cyclo-static dataflow (CSDF) [EBLP95] networks. Static
DPNs are generally characterized as having only processes where the consump-
tion and production rates are neither influenced by the values of the consumed
tokens nor they are dependent on the points in time at which tokens arrive on
the input buffers. Thus, processes in static DPNs always consume the same
number of input tokens from particular input buffers and produce the same
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increased expressiveness

increased analyzability

Figure 2.4.: A hierarchy [FHTZ17] of DPNs based on expressiveness and analyz-
ability. The hierarchy is partitioned into static (dark cyan) and dy-
namic (orange) DPNs. Dynamic dataflow (DDF) is the most general-
ized set, whereas the homogeneous static dataflow (HSDF') is the most
limited subset of DPNs. As shown in this figure, the analyzability of
DPNs is inversely related to their expressiveness.

number of output tokens to particular output buffers. However, they may read
different number of tokens from different input buffers and may write different
number of tokens to different output buffers. On the one hand, these charac-
teristics allow powerful design-time analysis techniques (e.g. for predictability
and decidability), but on the other hand they limit the expressiveness by ex-
cluding dynamic behaviors (like select and switch nodes).

In contrast to static DPNs, where the consumption and production rates
are not influenced by the values of the consumed tokens, processes in dynamic
DPNs can vary their consumption and production rates in each firing mainly
dependent on the history of the consumed tokens and also on the tokens to be
consumed. This allows conditional or data dependent executions of processes,
in particular, each process can produce and consume different number of to-
kens in every firing. This generalization results in higher expressiveness and
flexibility, but makes the analysis more difficult.

Thus, different classes belonging to both categories exhibit a different trade-
off between their expressiveness and their analyzability as depicted in Fig-
ure 2.4. Generally, the analyzability of DPNs is inversely related to their
expressiveness. There are major correctness properties like checking whether
a DPN can run with bounded buffer sizes, which are decidable for less ex-
pressive DPNs but are not decidable for more expressive ones. Because of the
static nature, static DPNs offer high analyzability, where one can check at
compile time the correctness properties like boundedness of buffers and ab-
sence of deadlocks [Park95], as well as one can effectively determine a static
schedule to run a DPN. In contrast, the dynamic DPNs offer high expressive-
ness that can be used to capture more flexible, dynamic and data dependent
behaviors.

In general, DPNs offer a modeling paradigm well suited for the modeling of
concurrent and distributed embedded systems. However, model-based design
flows starting from DPNs, in particular, based on more expressive dynamic
DPNs, have to deal with analyzability issues i.e., the undecidability of checking

17



Chapter 2: Background

major correctness properties like buffer boundedness and absence of deadlocks.
Therefore, implementations of concurrent and distributed embedded systems
from DPNs like KPNs may suffer from problems like deadlocks and buffer
overflows. Verifying the existence of these problems in DPNs is in general not
decidable.

2.1.3. From Synchronous MoC to DPN MoC

Based on the discussion in previous sections, it can be observed that both the
SR MoC and the DPN MoC carry their own advantages and disadvantages.
In particular, depending on applications and even more on the selected target
architectures, these MoCs have advantages and disadvantages. As an alter-
native, desynchronization of synchronous models [BeCG99; Gira05a] has been
recently developed that benefit both from the static analysis methods for syn-
chronous systems and the performance of the finally synthesized asynchronous
systems. This thesis focuses on the implementation of systems on distributed
and heterogeneous target architectures. In order to more efficiently support
distributed implementations, desynchronization is beneficial in the sense that
starting from a synchronous model, system correctness can be easily verified,
and a DPN can be generated while its correctness is maintained [PSST11a].
As a long term project, our group developed the Averest! tool for a model-
based design process starting with synchronous models. The Awverest project
aims at providing a complete set of tools for the development of reactive sys-
tems. Moreover, the work presented in [BSBK14; Bail6] further presents a
desynchronization design flow based on Awerest that transforms synchronous
networks into DPNs. The complete design flow based on Awerest is illus-
trated in Figure 1.2. Since synchronous models are particularly well suited
for analysis, the design flow starts with synchronous models, and then trans-
lates them to DPNs for the synthesis of concurrent and distributed systems.
The underlying language of the target DPN model is a subset of the Cal ac-
tor language (CAL) [EkJa03]. Specifically, synchronous programs modeled in
Quartz are compiled into synchronous guarded actions (SGAs), which repre-
sent the Awverest intermediate format (AIF). These SGAs are then translated
into CAL guarded actions. A set of SGAs representing a synchronous module
is translated into a set of CAL guarded actions that form a CAL process. Each
generated CAL process is stateless and depending upon the behavior of the
synchronous module, it precisely belongs to a particular dataflow MoC.
These desynchronized models (DPNs) based on CAL are the starting point
of this thesis. CAL is not related to any particular dataflow MoC. Instead, it
offers a set of abstract notions for modeling systems based on various dataflow
MoCs, from dynamic DPNs exhibiting dynamic behaviors to the more restric-
tive static DPNs. The design flow proposed in this thesis supports static as well
as dynamic DPN MoCs. These include the static dataflow (SDF) [LeMe87a]
MoC, the Kahn process networks (KPN) [KaMa77] MoC and a deterministic
variant of the dynamic dataflow (DDF) [Kosi78] MoC. The representation of

'http://www.averest.org
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state variables

guarded atomic actions

execution of actions

point-to-point buffers

Priority block

Q

Figure 2.5.: CAL DPN illustration: it consists of a set of processes connected via
point-to-point buffers. The behavior of a process is defined in a set
of actions. A process encapsulates its state using state variables and
the order of the execution of actions can be handled by a finite state
machine (FSM).

different supported dataflow MoCs based on the used subset of CAL is given
in Chapter 4.

2.2. Cal Actor Language (CAL)

CAL [EkJa03] is a dataflow and actor oriented language that provides use-
ful abstractions for dataflow programming with actors (processes). CAL has
been employed in a wide variety of applications and has been synthesized to
hardware, software and hardware/software co-design implementations. CAL
is constructed on a small set of semantic concepts which simplifies the de-
velopment of a compiler to transform any program into the target language.
Thus, a code generator is needed for the specific implementation language to
execute a CAL program on any given platform.

2.2.1. CAL DPN

CAL models behaviors by distributing them in a set of actors (processes). The
basic building block diagram of a CAL DPN is shown in Figure 2.5. It consists
of a set of processes that are connected with each other through point-to-point
buffers. Each process is a description of a computation on sequences of input
tokens that produces sequences of output tokens as a result. CAL offers a set
of essential constructs that can be used to model computations in processes.
A process is a modular component that encapsulates its own state using state
variables. The CAL processes can only interact with each other through
input and output buffers. This restriction disallows any process to modify
the state of another process. At the network level, the processes are generally
independent and can be triggered for execution concurrently.

The behavior of a process is defined in a set of actions. Each action can
perform a computation or part of a computation by consuming input tokens
from particular inputs, modifying the internal state using state variables, and
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Producer Consumer Print

outl—>[TTT]—>inpl
out2—>{TTT]—>]inp2

outl—>{TTT}—>]|result

Figure 2.6.: A simple example of a producer-consumer network.

producing output tokens to particular outputs. The computations are gener-
ally executed sequentially within a process. In other words, the transitions
of a process are purely sequential i.e., actions are triggered for execution one
after the other. However, depending on the underlying dataflow MoC of a
process, the actions can be mapped and executed on devices in parallel. CAL
provides a number of constructs for describing the firing conditions and the
selection order for actions in a process. An action is enabled for firing based
on its input patterns and guards. The input patterns are determined by the
amount of data required for the input sequences. Whereas guards are Boolean
expressions that are applied on the state variables and/or on input sequences
that need to be satisfied for enabling the execution of an action. The selec-
tion order of actions is determined by explicitly using an action schedule
in the form of a finite state machine (FSM) and/or a priority block.
The FSM performs the action selection according to its particular state to the
presence of input tokens and to the values of the tokens evaluated by guards.
A simple producer-consumer network is shown in Figure 2.6. The consumer
process modeled with CAL that contains all the discussed language constructs
is shown in Listing 2.1.

A process is declared with a finite set of input ports and a finite set of output
ports, separated with the identifier '==>" (Lines 1-2). The state of an actor can
be defined by state variables (Line 3). The behavior of a process is specified
by a set of actions that are declared with a set of input and output ports
(Lines 4, 5-13, 14), where each action upon execution consumes tokens from
its declared input ports and may produce tokens for its declared output ports.
The input and output sequences consumed and produced in each execution
of an action are specified in square brackets next to the declared input and
output ports, respectively. For instance, the action forward consumes a token
each denoted by a and b from the input ports inp! and inp2 respectively,
and forwards them to the output port out (Line 14). There are two ways
to implement an action: The functionality can either be implemented in the
output port access definition (Lines 4 and 14), or more descriptively in the
action body (Lines 8-13). The repeat keyword associated with a port defines
the number of tokens per execution that can be consumed/produced from an
input/output port (Line 5). An action may contain a guard (Lines 6-7) that
specifies an additional condition to execute that action. Guard conditions can
refer to state variables and the values of the input tokens.

The order in which actions are executed can be specified by an action sched-
ule (Lines 15-19) and/or using a priority block (Lines 20-22). An action sched-
ule is modeled as an FSM, where state transitions are triggered by the execu-
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1 actor consumer() int(size=8) inpl, int(size=8) inp2 =—>
2 int (size=8) out

3 bool state_flag := false;

4 add:action inpl:[a],inp2:[b] => out:[a+b] end

5 addnsub:action inpl:[a] repeat 2, inp2:[b] ==> out:[c]
6

7

8

guard
b >0

var
9 int (size=8) ¢
10 do
11 c := a[0] + a[l] — b;
12 state_flag := true;
13 end
14  forward:action inpl:[a],inp2:[b] == out:[a,b] end
15  schedule fsm s_start
16 s_start ( forward ) —> s_working;
17 s_.working ( addnsub ) —> s_start;
18 s_working ( add ) —> s_working;
19 end
20 priority
21 addnsub > add;
22 end
23 end

Listing 2.1: CAL code of the consumer process as shown in Figure 2.6.

tion of actions. In a particular state, only the associated actions can be fired.
For instance, in the state s_start, the action forward will be fired that causes
a state change to s_working (Line 16), where the actions addnsub and add can
be fired. For such a state where more than one action can be fired, a priority
block can be used to specify the priorities (Line 21).

The topology of the input and output connections sets up a network of
processes. The topology of the network is usually described using the func-
tional network language (FNL) based on the XML format [BEJL11]. A simple
producer-consumer dataflow network as introduced in Figure 2.6 is specified
in FNL as shown in Listing 2.2. This example shows the two most basic ele-
ments of FNL, namely the Instance and the Connection. Each Instance field
defines a process instance (Lines 2-4, 5-7 and 8-10), and possibly can even
refer to another network. Each Connection field defines a connection between
an input port and an output port of two instances (Lines 11-16).

2.2.2. Desynchronized CAL DPN Model

The desynchronization design flow based on Awverest as illustrated in Fig-
ure 1.2 finally yields a DPN based on a limited subset of CAL. In particular,
the SGAs are first verified for desynchronization and then translated into the
CAL guarded actions. Since, the proposed synthesis method targets the ex-
ecution and deployment of DPNs on heterogeneous platforms consisting of
different types of devices including GPUs, the desynchronization method gen-
erates stateless dataflow processes. This simplifies not only the target DPN
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1 <XDF name="ConProd”>

2 <Instance id="producer”>

3 <Class name="cal.producer”/>

4 </Instance>

5 <Instance id="consumer”>

6 <Class name="cal.consumer”/>

7 </Instance>

8 <Instance id="print”>

9 <Class name="cal.print”/>

10 </Instance>

11 <Connection dst="consumer” dst—port="inpl”
12 stc="producer” src—port="outl”/>

13 <Connection dst="consumer” dst—port="inp2”
14 src="producer” src—port="out2”/>

15 <Connection dst="print” dst—port="result”
16 src="consumer” src—port="out”/>

17 </XDF>

Listing 2.2: The FNL network description for the producer-consumer example as
shown in Figure2.6.

1 acti: action A:[a], B:[b] => Z:[z]
2 guard a >= 0

3 do

4 z := b;

5 end

6 actz: action A:[a], C:[c] => Z:[z]
7 guard a < 0

8 do

9 z = cC;

0

1 end

Listing 2.3: Sequential if-then-else based on the used CAL subset.

specification for the final synthesis, but also paves the way for dynamically
handling parallelization in OpenCL based synthesized implementations. The
target subset of CAL simply consists of a set of guarded actions. Thereby,
each generated stateless process essentially consists of a set of guarded actions
where the guards are applied on the values of the input tokens. Depending
on the behavior of a particular synchronous module, the generated process
possesses a particular kind of behavior that precisely determines a particu-
lar dataflow MoC. To exemplify, a desynchronized version of the sequential
if-then-else (SITE) operation is illustrated in Listing 2.3. The syntax and the
informal semantics of all the supported dataflow MoCs based on this limited
subset of CAL are presented in Chapter 4. We only briefly describe here the
generated set of guarded actions for SITE:

SITE is a dynamic version of the if-then-else operation that sequentially
consumes data from the input buffers B and C based on the value of data on
the input buffer A. It consists of two actions act; and acts, having different
inputs B and C, respectively (Lines 1 and 6). Both actions use the input buffer
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A for the guard with mutually exclusive guard expressions (Lines 2 and 7).
Depending on which guard is enabled in each execution, either act; or acty is
fired. In each execution, it therefore either consumes a token from the input
buffer B or the input buffer C' and writes it to the only output buffer Z (Lines
4 and 9), mainly dependent on the consumed value of a token on the input
buffer A.

In general, CAL is not related to any particular MoC, instead, offers mod-
eling a behavior based on various dataflow MoCs. The behavior once modeled
can then be interpreted and synthesized to an implementation based on the
underlying dataflow MoC. Therefore, this limited subset of CAL is very con-
veniently employed by the proposed design flow of this thesis to synthesize
from modeled behaviors, implementations based on the supported dataflow
MoCs. Therefore, for each synchronous module, a CAL actor (process) is gen-
erated that consists of a set of guarded actions as illustrated in the example
in Listing 2.3. The network description file (xdf) describes the topology of the
network as illustrated in Listing 2.2. The generated desynchronized CAL code
thus consists of two parts: the CAL processes and the network description.

2.3. Open Computing Language

The open computing language (OpenCL) [StGS10] is an open specification
language designed for parallel computing on cross-vendor and heterogeneous
architectures. In contrast to proprietary specification languages with limited
hardware choices, OpenCL allows task-parallel and data parallel heteroge-
neous computing on a heterogeneous collection of modern central processing
units (CPUs), graphical processing units (GPUs), digital signal processors
(DSPs), and other microprocessor designs organized into a single platform
[LNKP15; SFSV13]. The change from proprietary programming languages to
open standard facilitates the acceleration of general computation in a cross-
vendor fashion. To this end, OpenCL is supported by the leading hardware
vendors including Intel, Apple, AMD, and many others. It offers a low-level,
high-performance, portable abstraction that gives software developers portable
and efficient access to the power and the resources of these cross-vendor het-
erogeneous processing platforms.

OpenCL? has been used in a wide variety of applications, ranging from em-
bedded and consumer software to high performance computing systems. It
offers an efficient, close-to-the-target programming interface that forms the
foundation layer of a parallel computing ecosystem of platform-independent
tools, middleware and applications. OpenCL provides a comprehensive API
for handling parallel computation across heterogeneous processors as well as
it offers a cross-platform programming language with a well specified compu-
tation environment.

A primary benefit of OpenCL is a substantial acceleration in parallel pro-
cessing. OpenCL supports both coarse-grained (task-level) as well as fine-

2https://www.khronos.org/opencl/

23


https://www.khronos.org/opencl/

Chapter 2: Background

—

| N 1
Compute | ! Compute device [
H device | - ik
o : 1|| Compute unit Compute unit |
1y
\ PE || PE |- |[ PE |--| PE [[["
‘ Platform model ‘ S = \\: I\r, l\r, |_| |—| :
T ||| Compute | | N N I
: A AN |
P {1 - — S—
ol ~ - \\ \ ~ N
; AN
‘ Execution model ‘ - SN N
\ g AN AN
Kernel )" ||work-item1|work-item2

Host

==[==]|
program EE EE

work-item3 |work-item4
Work-group

’ Program model ‘

Figure 2.7.: Overview of the OpenCL architecture: the platform model provides
a standard abstraction of the target hardware. The program model
specifies the behavior of a system typically organized as a host and
several kernels. The execution model describes the mapping of the
program model onto the platform model.

grained (data-level) parallelism. Second, it provides the ability to write
vendor-neutral cross platform applications. This is achieved by providing high-
level abstractions to hide low-level details of implementations, such as drivers
and runtime. The basic strength of this abstraction is the ability to scale
code from simple embedded microcontrollers to multicore CPUs and highly
parallel GPUs without revising the code. These benefits can be derived by
understanding and exploiting a set of abstract models provided by OpenCL,
as depicted in Figure 2.7 and Figure 2.9.

2.3.1. Platform Model

The OpenCL platform model provides users with a convenient abstraction of
the target hardware. It is defined as a host connected to one or more compute
devices, each having multiple compute units (CUs), each of which further
consists of multiple processing elements (PEs).

A host is typically a CPU running a standard operating system (OS), while
a compute device may be a GPU, a DSP, a further multicore CPU or any other
specific microprocessor. Each device therefore consists of a collection of one or
more CUs where each CU can be conceived as, for instance, a core of a CPU,
or a streaming multiprocessor of a GPU. A CU is further composed of one
or more PEs that execute instructions. Each PE can therefore be conceived
as, for instance, a streaming core (or SIMD lane) of a GPU. An OpenCL
device therefore executes the instruction computations on the PEs within the
device. In particular, PEs execute instructions in a single instruction multiple
data (SIMD) or a single program multiple data (SPMD) fashion. SPMD
instructions are typically executed on microprocessor designs such as CPUs,
while SIMD instructions require a vector processor such as a GPU or vector
processing units integrated in a CPU.
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2.3.2. Program Model

The OpenCL program model is comprised of two main components: the host
program and kernels. The host program executes on the host, defines devices
context, sets up command queues of devices and enqueues kernel’s execution
instances on devices.

Kernels

A kernel is a C-like function that actually implements the abstract behavior of
the system or part of the system. OpenCL targets the parallel execution of a
kernel on compute devices by organizing it into an N-dimensional computation
domain, where N = 1, 2, or 3. For instance, performing a computation on a
linear array of data would require N = 1, while processing an image would re-
quire N = 2. This computation domain is defined when a kernel is mapped for
execution on the command queue. Each independent element of this domain
represents the execution instance of the kernel and is termed as the work-item.
Each work-item performs the same kernel function but on different data. The
total number of work-items represents the global work size of a kernel, where
each work-item is assigned a unique global ID.

Sequential C function OpenCL kernel

void addArray (int n, const float* arrayA, __kernel void addArray (__global const float* arrayA,
const float* arrayB, float* arrayC) __global const float* arrayB, __global float* arrayC)
{

inti; int id = get_global_id(0);

for(i=0; i<n; i++) arrayCl[id] = arrayA[id] + arrayBlid];

arrayCl[i] = arrayA[i] + arrayBli]; }

}

Figure 2.8.: OpenCL kernel illustration: the addArray example performs the add
operation on two linear arrays. The left hand side version is a sequen-
tial C' function, whereas the right hand side version is the OpenCL
kernel.

OpenCL also allows grouping work-items together into work-groups, as
shown in Figure 2.7. The work-group size specifies the number of work-items
in a group and is termed as the local work size. All work-items in the same
work-group are executed together on the same compute unit. The work-items
in a group share local memory and synchronization. Each work-item also has
its own private memory that allows each work-item to conveniently operate
on its own assigned data. Whereas, global work-items are independent and
cannot be synchronized. A simple example addArray that performs the add
operation on linear arrays is shown in Figure 2.8. In this example, each ele-
ment of two linear arrays arrayA and arrayB are added together and the result
is stored in arrayC. The figure presents two different versions of the addArray
example to illustrate how a kernel is implemented in OpenCL. The first ver-
sion implements addArray as a sequential C function with a simple for-loop
iterating through the elements in the arrays and then performing addition.
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The OpenCL version implements a data parallel function without using a se-
quential for-loop: It simply reads the unique global ID for the particular kernel
instance (work-item), performs the operation, and produces the output. The
host program determines the fine-grained data-level parallelism by specifying
the total number of work-items when the kernel is placed on the command
queue.

1 /«Create context for the devices*/

2 context = clCreateContext (0, 1, &device, NULL, NULL, &err);

3 /+*Create program from kernel sourcex/

4 program = clCreateProgramWithSource (context ,1,(const charxx)&

kernel_source ,(const size_t x)&source._size , &err);

/#*Create memory objectsx/

6 memobj_A = clCreateBuffer (context , CLMEMREAD.ONLY |
CLMEM_ALLOCHOST PTR, buffer_size , arrayA, &err);

7 memobj B = clCreateBuffer (context , CLMEM READ ONLY |
CLMEM_ALLOCHOSTPTR, buffer_size , arrayB, &err);

8 memobj_.C = clCreateBuffer (context , CLMEM READ.ONLY |
CLMEM ALLOCHOST PTR, buffer_size , arrayC, &err);

9 /xCreate command queuex*/

10 cmd_queue = clCreateCommandQueue (context ,device ,0 ,NULL) ;

11 /#*Enqueue memory commands+/

12 err = clEnqueueWriteBuffer (cmd_queue, memobj-A, CL.TRUE, 0,
buffer_size , (voidx)a, 0, NULL, NULL);

13 err |= clEnqueueWriteBuffer (cmd_queue, memobj B, CL.TRUE, 0,
buffer_size , (void*)b, 0, NULL, NULL);

14 /+Set up kernelx/

15 kernel = clCreateKernel (program,” addArray” ,&err);

16 /«Set up kernel arguments*/

17 err = clSetKernelArg(kernel, 0, sizeof(cl.mem), &memobj-A);

ot

18 err |= clSetKernelArg(kernel, 1, sizeof(cl.mem), &memobj B);
19 err |= clSetKernelArg(kernel, 2, sizeof(cl.mem), &memobj.C);
20 /xSet up the computation domainx/

21 size_t global_work_size = nj;

22 size_t local_work_size = n;

23 /xEnqueue kernel execution commandsx/
24 err = clEnqueueNDRangeKernel (cmd_queue, kernel, 1, NULL, &
global_work_size , &local_work_size, 0, NULL, NULL);

Listing 2.4: The host program of the addArray example as illustrated in Figure 2.8.

Host Program

The host program resides and executes on the host and is responsible for set-
ting up and handling the execution of kernels on the compute devices using
the defined context. The context essentially sets up the environment for ex-
ecuting kernels and is comprised of a number of resources including OpenCL
devices, program source, kernels and memory objects. To this end, the context
is created with a set of devices that are used by the host to execute kernels.
Second, the context defines the program source that implements a kernel or a
collection of kernels. Finally, the context defines the OpenCL memory objects
that are used as a source of communication between the host program and
devices. After the context is created, command queues are created where the

26



2.3. Open Computing Language

kernels are mapped to get executed on the OpenCL devices associated with
the context. Each command queue can represent a complete device (e.g., a
CPU) or even a compute unit of that device (e.g., a CPU-core). Each com-
mand queue accepts the execution and memory requests for the correspond-
ing devices and their CUs. A command queue typically accepts three types
of commands: Kernel execution commands map kernels on devices. Memory
commands transfer memory objects between the memory space of the host
and the memory space of devices. Synchronization commands specify order
in which enqueued commands are executed. Commands are inserted into the
command queue in-order and can be either executed in-order or out-of-order.
The host program illustrating the main resources for the addArray example
as shown in Figure 2.8 is listed in Listing 2.4.

2.3.3. Execution Model

The OpenCL execution model can simply be understood as the mapping of
kernels on the platform model which is implemented in the host program.
Depending on the target compute device (e.g., a CPU or a GPU), kernels are
mapped differently. In case of GPUs, OpenCL only allows the user to create a
command queue at the level of a compute device. Hence, for a GPU, a kernel
is typically allocated on a compute device, a work-group is ideally mapped on
a CU, and work-items of that work-group are executed by PEs of that CU,
as depicted in Figure 2.7. In contrast, for CPUs, a command queue can be
created at the level of a compute device as well as at the level of a CU. For the
latter, the whole kernel (all work-groups) are mapped to the same CU (i.e., a
core of a CPU). Furthermore, the execution model also facilitates the usage of
different scheduling schemes by allowing in-order and out-of-order execution of
kernels. In in-order setting, the kernels are executed sequentially in the order
they are placed into the command queue. The out-of-order setting executes
kernels based on the synchronization constraints specified for the kernels.

2.3.4. Memory Model

OpenCL offers a disjoint memory model to programmers as shown in Fig-
ure 2.9. This is mainly because OpenCL targets heterogeneous platforms
where most platforms utilize disjoint memory systems due to different mem-
ory requirements of different architectures. OpenCL visualizes its target as a
system where data sharing between the host and compute devices is performed
explicitly by a system network, such as a peripheral component interconnect
(PCI) bus. The OpenCL memory model is organized in five regions consisting
of host, global, constant, local and private memories.

The host memory is described as the region of system memory that is only
directly accessible from the host processor. Any transfer of data between the
host and the kernels should be done explicitly through the OpenCL global
memory region typically by using the OpenCL API. The global and constant
memories are shared between all devices including the host within a given
context. However, local and private memories are always associated with
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compute device
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Figure 2.9.: OpenCL memory model’consists of five regions: The host memory
is only accessible to the host processor. The global memory is ac-
cessible to both the host and device. The constant memory is fully
accessible to the host and write-protected for the device. The local
memory is only visible to the host and is local to a single compute
unit. The private memory is private to an individual work-item
executing within an OpenCL processing element

a particular device. In particular, global memory offers a region where all
work-items and work-groups have read and write access on both the compute
device and the host. The host can only allocate this memory region at runtime.
Constant memory resides in the global memory and offers the memory region
that is constant throughout the execution of kernels. While work-items can
only read, the host is permitted to read and write from this memory region.
Local memory offers a region as a shared memory to work-items in a work-
group. All work-items belonging to the same work-group have both read and
write access. Finally, private memory offers a memory region only accessible
to one work-item.

For heterogeneous architectures consisting of multiple devices integrated on
a single platform, host memory and device memory are independent of one
another. The memory management needs to be handled explicitly to allow
the data communication between the host and the device. This requires the
explicit handling of data from host memory to device memory and back to
host. OpenCL offers an API dedicated to manage the data sharing between
host and devices in a number of ways. This includes the data communication
using explicit read/write functions, memory mapping and others.

Shttps://www.khronos.org/registry/0OpenCL/specs/2.2/html/0penCL_API.html
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3.1. Feasibility Evaluation and Selection Criteria

We envisaged a common model-based synthesis framework that enables the
synthesis of a system using different well-defined and precise dataflow models
of computation (MoCs). Second, it integrates the standard hardware abstrac-
tions using the open computing language (OpenCL) to promote the use of
vendor-neutral heterogeneous architectures. Altogether, we envisioned an au-
tomatic synthesis that maps models using a combination of different dataflow
MoCs on heterogeneous platforms. To this end, a limited subset of Cal actor
language (CAL) is employed as the target language for DPNs. CAL innately
supports the use of concurrent nodes and is potentially suitable for model-
ing parallel and distributed systems as DPNs. Second, OpenCL is employed
as an integral part of the synthesis tool chain to systematically handle the
portability of modeled systems on various commercial off-the-shelf (COTS)
heterogeneous hardware. OpenCL allows task-parallel and data-parallel het-
erogeneous computing on a variety of modern CPUs, GPUs, DSPs, and other
microprocessor designs [StGS10].

As a part of this thesis work, two experimental tools are designed and devel-
oped to systematically evaluate the feasibility of employing CAL and OpenCL
for the proposed model-based synthesis framework. One of the tools primarily
focuses on presenting a systematic approach for evaluating OpenCL as a hard-
ware abstraction layer for distributed embedded systems. This tool is designed
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Figure 3.1.: Overview of experimental tool-1: the user interface (UI) is used to
intuitively set up the evaluation environment. The runtime manager
(Manager) invokes the execution based on the selected environment.
The evaluation results are read back by the Manager that are then
displayed at the UL

to enable the user to utilize the OpenCL supported computing resources by us-
ing and exploring different scheduling and mapping schemes. The second tool
offers a translation scheme for generating efficient parallel OpenCL code from
DPNs modeled using a subset of CAL, namely RVC-CAL [BoNy15]. This tool
provides an experimental evaluation environment for evaluating the feasibility
of employing CAL for modeling parallel and distributed systems. Second, it
also evaluates OpenCL for heterogeneous parallel computing and cross-vendor
portability.

3.1.1. Experimental Tool-1

This experimental tool [RaSc20] presents a systematic approach that employs
OpenCL as a standard hardware abstraction to explore and to evaluate the uti-
lization of parallel computing resources using different scheduling and mapping
schemes. Hence, enabling the user to potentially exploit both coarse-grained
task-level parallelism and fine-grained data-level parallelism, respectively.

As discussed, OpenCL distinguishes between a host and kernels where the
host is a centralized entity that is responsible for managing the execution of the
kernels on the available target devices. This experimental tool adopts this idea
in that it enables the user to utilize the available computing resources using
a combination of different scheduling and mapping schemes. An overview of
the experimental tool is depicted in Figure 3.1.
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Figure 3.2.: Available scheduling schemes in experimental tool-1. Apart from the
static scheduler that implements a static scheme, all other schedulers
follow dynamic data driven schemes.

User Interface and Runtime Manager

A user interface (UI) is designed to allow the user to intuitively set up and
to configure the desired evaluation environment. A user can select OpenCL
kernels from an extendable list of available kernels along with their data de-
pendencies. The Ul also displays a list of available target devices where the
user can select a particular device for execution. Furthermore, a user can
configure different mapping schemes mainly by selecting a combination of dif-
ferent OpenCL parameters such as number of work-items, work-groups, etc.
Finally, the UI provides a list of available scheduling schemes where a partic-
ular scheme can be selected that will be used in combination with the already
chosen mapping configuration. However, depending on the underlying scheme
of the selected scheduler, it may not allow all mapping combinations. Upon
invoking a start button, the runtime manager (Manager) starts the execution
based on the selected evaluation environment.

Based on that, the Manager sets up and initializes the kernels, sets up the
OpenCL mapping configuration, and finally invokes the selected scheduler.
Once the complete execution of the selected evaluation environment is fin-
ished, the Manager reads back the evaluated results and supplies it to the
Ul Intuitively, the Ul is capable of displaying and plotting the results on the
fly. In addition, the results are logged in a csv file for offline analysis and
monitoring.

Scheduling and Mapping

The chosen scheduler schedules the selected kernels (tasks) based on the un-
derlying scheduling scheme. To this end, four distinctive scheduling schemes
are developed and made available to the user as shown in Figure 3.2. The
serial scheduler, as the name suggests, realizes a serial execution of tasks, i.e.,
one task at a time. It implements a dynamic scheduling scheme that enqueues
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one task at a time for execution and waits until it is completely executed.
The ASAP scheduler also relies on a dynamic scheduling scheme that exploits
task-level parallelism by enqueuing all independent tasks at a time. It then
waits until all enqueued tasks are completely executed. The static scheduler
implements a static scheme that follows a predefined fixed schedule of tasks.
The current implementation of the static scheduler (for the case study) is sim-
ply a static version of the ASAP scheduler, however, it avoids the runtime
overhead of dynamically searching the independent tasks. Finally, the Fvent
scheduler also implements a dynamic scheduling scheme, and is similar to the
ASAP scheduler, except that it does not wait for the complete execution of
enqueued tasks. Instead, the Fvent scheduler sets up an event for all sched-
uled (enqueued) tasks, and therefore will be automatically notified when the
execution terminates. Hence, it provides a more flexible scheme by allowing
itself to perform other operations (if needed) while the already scheduled tasks
are being executed.

Regardless of which scheduler is selected by the user, each scheduled task
is then mapped on the target device for execution based on the configured
mapping scheme. A mapping scheme is configured by selecting a combination
of different parameters including the numbers of data samples, work-items,
work-groups, etc. This enables the user to potentially exploit the data-level
parallelism of the scheduled task by using the desired mapping scheme. A com-
bination of different scheduling and mapping schemes can be used to exploit
both the coarse-grained task-level parallelism and the fine-grained data-level
parallelism, respectively. Hence, the experimental tool systematically facili-
tates the substantial acceleration in parallel computing.

Evaluation

Using experimental tool-1, we evaluated OpenCL for the utilization of paral-
lel computing resources in a distributed embedded system, namely the Con-
ceptCar'. The ConceptCar features seven different electronic control units
(ECUs). Specifically, OpenCL is evaluated for embedded computing on a
particular ECU of the ConceptCar. The computations are provided by an ex-
tendable set of related advanced driving assistance system (ADAS) [KTPB18]
applications built under a common application setup. This application set is
mapped and executed using different scheduling schemes in conjunction with
various OpenCL mapping configurations.

Application Setup A number of related ADAS applications are designed
and developed under a common application setup as shown in Figure 3.3.
The main focus of this work is not to propose efficient algorithms for ADAS
applications. Instead, the idea is to develop a set of related applications under
a common system using a minimal set of sensors, mainly for initial lab testing
and performance evaluations.

"https://es.cs.uni-k1.de/research/applications/concept-car/
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Figure 3.3.: The application setup for evaluation using experimental tool-1. It is
organized in a three-level design: the first level retrieves raw sensor
data from the CAN bus. The second level features applications that
perform data acquisition on sensor data. The third level implements
the designed ADAS applications.

The proposed application setup can be understood in a three-level design
where the system first retrieves raw data of sensors from the controller area
network (CAN) bus which is forwarded to the second level. Seven different sen-
sors have been used including a temperature sensor, a dual-axis accelerometer,
wheel speed sensors, and others. The second level implements data acquisition
(DAQ) applications for signal conditioning and digital value conversions of the
used sensors. Specifically, four different DAQ applications are implemented to
provide the converted numeric values and other optimized results for tempera-
ture, acceleration, wheel speed, and battery voltage. The third level, fed by the
applications from the second level, implements different ADAS applications.
The application setup is presented in detail in [RaSc20].

Evaluation Environment The application setup, as shown in Figure 3.3, is
evaluated on the target platform, i.e., the multicore ECU of the ConceptCar.
The multicore core ECU features a heterogeneous computing platform with
the following hardware specification:

e CPU: 1.2 GHz quad-core ARM Cortex A53
e GPU: 400 MHz Broadcom VideoCore IV
e 1 GB LPDDR2-900 SDRAM

Furthermore, the software environment used for the evaluation is summarized
as follows:

e OpenCL CPU implementation: portable computing language (POCL) v1.3
e OpenCL GPU implementation: VideoCore IV OpenCL conformant to OpenCL v1.2
e Operating system (OS): Debian GNU/Linux 9.8
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Figure 3.4.: Experimental tool-1 results illustrate the top three combinations of
scheduling and mapping schemes on each device. The results on the
CPU are depicted by the blue bars, whereas, the GPU results are
depicted by the green ones.

The application setup is either executed on the CPU or the GPU at a time
with different combinations of scheduling and mapping schemes for evaluating
the performance on individual target devices. The average execution time of
the complete application setup to process the desired number of sensors data
samples is used as the performance metric. A maximum of one million forty-
four thousand data samples are used and the average of fifty repetitions is
taken for each evaluation.

The complete evaluations are thoroughly presented in [RaSc20], where three
individual OpenCL mapping parameters are considered, namely the workload,
the work-items and the work-groups. We discuss here the main conclusions
regarding the evaluation of OpenCL.

Results: Conclusions We derived the top three combinations of scheduling
and mapping schemes on each device that provided the fastest execution times,
as shown in Figure 3.4. Based on the results, all schedulers achieved their best
on the CPU with a single work-item and a single work-group. However, on the
GPU, all schedulers achieved their fastest execution times with a total number
of twelve work-items, and a total number of twelve work-groups.

On the CPU, the static scheduler proved to be the fastest, in particular,
more than twice as fast as the Event scheduler, and about 1.9% faster than the
ASAP scheduler. Similarly, on the GPU, the static scheduler and the ASAP
scheduler performed comparably fast, with the static one only slightly faster
than the ASAP. Both static and ASAP schedulers are approximately 53%
faster than the Event scheduler. This is mainly because the underlying scheme
of the static scheduler is especially devised for the proposed application setup
at compile time. The serial scheduler does not exploit any task-level paral-
lelism, and therefore performed slowest of all schedulers. The ASAP scheduler
and the Event scheduler induced the overhead of dynamically scheduling tasks
at runtime. Additionally, the Fvent scheduler further caused the overhead of
setting up events and calling handlers at runtime. These overheads therefore
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resulted in elevating the execution times. Finally, the static scheduler being
the fastest, performed about 47% faster on the CPU than on the GPU. It is
important to observe that based on the used application setup, the task-level
parallelism clearly dominated over the data-level parallelism. Therefore, the
application setup on the GPU understandably performed slower than on the
CPU because the communication overhead of OpenCL on GPU is higher than
the performance gain of executing instances in parallel on many cores.

Using experimental tool-1, we therefore evaluated that OpenCL can be ex-
ploited for targeting coarse grained task-level as well as fine grained data-level
parallelism in a distributed embedded system. In particular, different schedul-
ing schemes and OpenCL mapping configurations can be used together to effi-
ciently exploit heterogeneous parallel computing on different types of devices.
Especially, it is observed that on a GPU the best performance is achieved when
both task-level as well as data-level parallelism have been exploited. On the
contrary, on a CPU, the best performance in terms of average execution time
is achieved when only task-level parallelism is exploited. In a nutshell, the
main observation of this evaluation is that OpenCL is an open specification
that needs to be utilized systematically to achieve the desired performance
on different types of devices. Hence, OpenCL can be employed as a hard-
ware abstraction in a model-based design targeting the synthesis of systems
on heterogeneous platforms.

3.1.2. Experimental Tool-2

This experimental tool [RaKS19] evaluates the feasibility of employing the
combination of RVC-CAL and OpenCL for modeling and implementing par-
allel and distributed systems. In particular, it evaluates RVC-CAL as a po-
tential candidate for effectively modeling parallel and distributed systems as
DPNs. Second, it evaluates OpenCL as a hardware abstraction for implement-
ing DPNs on various COTS target hardware. Altogether, this tool offers the
generation of parallel software from RVC-CAL models based on the potential
parallelism of modeled behaviors. The approach considers both the coarse-
grained (task-parallel) execution of processes using multithreading and the
fine-grained (data-parallel) execution of their actions using OpenCL. This tool
analyzes the effectiveness of using the combination of RVC-CAL and OpenCL
by evaluating RVC-CAL benchmarks on OpenCL abstracted hardware plat-
forms. The experimental results are evaluated for efficiency (performance) in
comparison with a pure multithreaded C++ approach and a well-known ref-
erence framework, namely the open RVC-CAL compiler (ORCC) [YLJC13a;
BTRM14] framework. ORCC supports parallel execution of DPNs at the
coarse-grained level using a multithreading concept offered by an operating
system.

Overview

Experimental tool-2 is presented in detail in [RaKS19]. The overall approach
employs the multithreaded execution of RVC-CAL processes and the paral-
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Figure 3.5.: Overview of experimental tool-2: it is organized in a three level ap-
proach. The approach typically targets the multithreaded execution
of actors using C++ and the parallelization of their actions using
OpenCL.

lelization of their actions with OpenCL. It is systematically organized into
different levels of code generation and the final execution, as shown in Fig-
ure 3.5.

Actor level. At this level, RVC-CAL processes (actors) and the network de-
scription are taken into account where each process is translated into a C++
class and a global scheduling routine is generated for scheduling processes, re-
spectively. The global scheduling routine provides the scheduler at the process
level. The processes are executed concurrently by a fixed number of threads,
generally equal to the available number of compute units. Each thread calls the
global scheduling routine initially and when a scheduled process terminates.

Action level. At this level, all actions of a process are either translated into
pure C++ code or to OpenCL code for parallel execution. If the criteria for
parallelization with OpenCL are not met, the actions are translated to C++
member functions and are executed without any further parallelization.

Ezecution of actions. During execution, the global scheduler decides which
processes to execute next in the calling threads. Each process has its own
local scheduling routine that manages the execution of actions based on the
modeled behavior. Upon execution of a process, its local scheduler is called.
Depending on the generated code, the local scheduler either calls an action
that is parallelized by OpenCL or directly executes it in the thread. Each time
a local scheduler terminates, the control flow returns to the global scheduler
and the next process is scheduled in the current thread.
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Parallelization Criteria

The proposed concept of executing actions within processes in parallel mainly
relies on the fine-grained (data-level) parallelism of actions using OpenCL.
Hence, the basic idea is to execute multiple instances (work-items/threads) of
an action, operating on different data, in parallel. However, this can only be
achieved if each work-item knows exactly where to read /write its input/output
data. Based on this fundamental concept, the proposed criteria for deciding
whether a process can further be parallelized with OpenCL or not is depicted
in Algorithm 1.

Algorithm 1: Pseudo code to determine whether processes in the
network can be parallelized

1 foreach process p in the network do
if NoStateVariables(p) then
if NoFSM(p) then
if NoGuardCondtion(p) then
‘ create a kernel for each action of p
end
else if IsSynchronous(p) then
‘ create one kernel for p
end

© o N o ok~ W N

end
else if UnicyclicFSM(p) then

‘ create a kernel for complete cycle of the action schedule of p
end

T
N H O

[y
w

14 end

15 end

The algorithm first checks whether a process has state variables (Line 2).
As the same state variable can be used by different actions, executing them in
parallel without ensuring the correct access order can lead to non-deterministic
implementation. Therefore, processes only without state variables are qualified
for further investigation.

Next, the algorithm checks whether a process has an FSM or not (Line 3).
If an actor has no FSM, the algorithm checks if there are actions with guard
conditions (Line 4). If there is no guard condition, for each action, a separate
OpenCL kernel and the corresponding host code is generated (Line 5). Each
kernel can be executed in a number of parallel instances (work-items) depend-
ing on the availability of tokens. If a process consumes/produces a fixed num-
ber of tokens in each firing, it can be parallelized even with guard conditions
as each work-item would know exactly where to read/write its input/output
data and each work-item can evaluate the guard conditions independently. In
this case, a single OpenCL kernel is created for the process containing all ac-
tions (Line 8). Hence, the guard conditions are evaluated in the kernel and
the enabled actions are executed.

If a process has an FSM, the algorithm first checks if it consists of exactly
one cycle (Line 11). In this case, the resulting action schedule is clear because
in each state there is only one state transition possible. Therefore, a single
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OpenCL kernel is created for a complete cycle of the action schedule (Line 12).
However, if there are multiple state transitions possible in a single state of an
FSM, no parallelization is possible because a scheduling decision is required
before the execution of each action.

Evaluation

We selected two benchmarks, namely a FIR filter and a ZigBee multi-token
transmitter from the ORCC samples repository?, mainly because of the fol-
lowing reasons: First, the applications are entirely modeled with RVC-CAL
code. Second, a C++ program can be generated from RVC-CAL code and
can be executed to get the desired output.

For each selected benchmark modeled with RVC-CAL, two different software
versions are generated, namely the C++/OpenCL based version and a pure
C++ version that only uses multithreading for the concurrent execution of
processes. The total execution time of the network to process the complete
input data set, including initialization and termination of the program, is
used as the comparison metric. Based on that, the execution of the pure C++
version and the versions generated by the ORCC framework are compared
against the OpenCL based versions. The data set used has a maximum of
thirty-seven million samples and the average of fifty repetitions is taken for
each version.

Experimental Setup We executed the benchmarks on the following hard-
ware:
e Platform 1
— CPU-P1: Intel i5-7200U
— GPU-P1: NVIDIA GTX 950M
— 8GB RAM
e Platform 2
— CPU-P2: Intel i7 7700HQ
— GPU-P2: NVIDIA GTX 1050
— 16GB RAM

For the execution of the benchmarks we used the following software envi-
ronment:

e NVIDIA GeForce graphics driver version 22.21.13.8792
e Intel OpenCL SDK Version 7.0.0.2519
e Windows 10 pro version 1803 build 17134.407

Evaluation of the FIR Filter The low level finite impulse response (FIR) fil-
ter is shown in Figure 3.6. Based on the parallelization criteria as illustrated
in Algorithm 1, the actions of the processes source, sink and delay cannot
be parallelized with OpenCL. Apart from that, the actions of all other pro-
cesses are parallelized as they meet the criteria. This benchmark is either
executed on CPU-P1 or GPU-P1 at a time to evaluate the performance

2https://github.com /orcc/orc-apps
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Figure 3.6.: The first benchmark considered for evaluation using experimental tool-
2 is the digital FIR filter.
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on individual target devices. The performance comparison of the considered
implementations is shown in Figure 3.7.
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Figure 3.7.: The results evaluated for the FIR filter using experimental tool-2 are
shown in this figure. The results measured on the CPU are depicted
by blue bars and the results on the GPU are depicted by the red ones.

Discussion. Although the parallelized actions only perform simple oper-
ations like addition and subtraction, the generated OpenCL version on the
CPU shows the best performance in comparison to all other versions. Consid-
ering the fact that only few simple actions are parallelized, the OpenCL CPU
version shows a promising performance, slightly better than the ORCC ver-
sion and considerably better than the C++ version. The OpenCL version on
the GPU understandably performs low because the communication overhead
of OpenCL on GPU is higher than the performance gain of executing rather
small kernels in parallel on many cores. In contrast to the OpenCL CPU where
the host and the kernels reside on the same device, in the case of GPU, the
data has to be transferred to the GPU and back to the main memory (host).
This overhead therefore contributes in elevating the total execution time.

Evaluation of the ZigBee Multi-token Transmitter The ZigBee multi-token
transmitter benchmark is shown in Figure 3.8. For this benchmark only the
actions of the processes chipMapper and gpskMod can be parallelized with
OpenCL because all other processes do not meet the proposed criteria. This
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Figure 3.8.: The second benchmark considered for evaluation using experimental
tool-2 is the ZigBee multi-token transmitter.

benchmark is either executed on CPU-P2 or GPU-P2 at a time to evaluate
the performance on individual target devices. The performance comparison of
the considered implementations is depicted in Figure 3.9.
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Figure 3.9.: The results evaluated for the ZigBee benchmark using experimental
tool-2 are shown in this figure. The results measured on the CPU are
depicted by blue bars and the results on the GPU are depicted by the
red ones.

Discussion. As the parallelized actions perform more complex operations,
the generated implementations showed promising results. The OpenCL CPU
version again performed the best of all other versions, in particular, about 2.7x
faster than the ORCC version and almost 2.6x faster than the parallel C++
version. With the increased complexity of parallelized actions, the OpenCL
GPU version also performed substantially better than the ORCC and C+-+
versions. Precisely, it is 2.36x and 2.23x faster than the ORCC and C++
versions, respectively. However, the communication overhead caused by the
data transfer between the GPU kernels and the host (main memory) still
makes it slower than the OpenCL CPU.

Conclusions

Ezperimental tool-2 allowed us to evaluate the feasibility of employing the
combination of RVC-CAL and OpenCL for modeling and implementing sys-
tems on different COTS target platforms. First, we evaluated RVC-CAL as a
language for modeling such systems as DPNs. We identified that RVC-CAL
DPNs explicitly offer parallelism both at the level of processes and at the level
of actions. To efficiently execute these models on a target hardware, it is im-
portant to generate parallel code based on the entire parallelism provided by
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these two levels. Second, OpenCL also provides means to exploit task-level
and data-level parallelism.

Based on the evaluation, the proposed approach has shown promising re-
sults with significant improvement in the end-to-end performance. In par-
ticular, even with the selection of applications where only few actions could
further be parallelized based on the parallelization criteria, the approach has
substantially improved the performance up to 2.7x in comparison with the
reference approaches. Furthermore, we also observed that the applications
can be ported to a variety of heterogeneous platforms consisting of devices of
different types from different vendors without revising the code (kernels) at
all. Employing OpenCL does not only allow us to target vendor-neutral het-
erogeneous architectures, but also provides a standard abstraction for better
resource utilization in parallel architectures.

In a nutshell, we can conclude that systematically incorporating the com-
bination of RVC-CAL and OpenCL effectively contributes in modeling the
parallel and distributed computing systems as DPNs and in implementing
them on various heterogeneous COTS hardware. Based on these evaluations,
we therefore systematically employ a limited subset of CAL and OpenCL as
an integral part of the synthesis design flow proposed in this thesis.

3.2. The Proposed Synthesis Design Flow: Overview

This thesis proposes a model-based design flow for automatic software syn-
thesis of systems from DPN models. The design flow is implemented in an
extendable model-based design framework. In contrast to existing design tools
for synthesis, the proposed framework enables us to automatically synthesize
systems based on different well-defined and precise dataflow MoCs including
their heterogeneous combinations. We therefore offer a framework for auto-
matic software synthesis that maps models using a combination of different
dataflow MoCs on cross-vendor COTS target hardware. The framework sup-
ports three different dataflow MoCs, namely the synchronous (static) dataflow
(SDF) [LeMe87a] MoC, the Kahn process networks (KPN) [KaMa77] MoC and
a deterministic variant of the dynamic dataflow (DDF) [Kosi78] MoC. The
KPN and DDF MoCs allow processes whose actions consume different num-
bers of input tokens and produce different numbers of output tokens while the
actions of processes in the SDF MoC all consume the same number of input
tokens and produce the same number of output tokens. The SDF MoC is
the most restrictive amongst the supported dataflow MoCs in the sense that
it only supports processes having static behaviors. The KPN MoC can cap-
ture static as well as sequential behaviors. The DDF MoC further supports
processes with parallel behaviors.

The overall design flow can be understood in two phases i.e., the modeling
phase and the synthesis phase as shown in Figure 3.10. In general, the start-
ing point of this work is a desynchronized model. As explained in detail in
Chapter 2.2.2, the desynchronization design flow based on our Awerest tool
finally generates a CAL DPN based on the supported dataflow MoCs. To

41



Chapter 3: The Model-based Design Flow

Modeling

| Code-Generators ‘ |

Synthesis

——- | OpenCL Abstraction I
Centralized-Host Kernels
P1 Runtime Core 0

P2 D Manager K(—> Corel
-P3

P1 P2 P3
Process-Queue| (core0) = (Corel) (cu 0) |Device-Queue
Dispatcher

Figure 3.10.: The basic building block diagram of the proposed framework. It
can be understood in two phases: the modeling phase is in general
provided with the desynchronized CAL DPN models. The synthesis
phase employs the OpenCL abstraction and features a tool chain
involving the specialized code generators and the runtime system
that finally executes and maps the desynchronized models on the
OpenCL abstracted target hardware.

this end, a general CAL DPN model is considered that relies on an abstract
notion of a process. A process is composed of a finite set of actions where each
action can perform a computation by consuming tokens from input buffers
and producing tokens to output buffers. This general model is used with spe-
cific constraints and restrictions to specify the precise dataflow MoCs. Each
supported dataflow MoC interprets the behavior of the CAL process in two
parts: (i) process’s triggering or scheduling behavior and (ii) process’s ex-
ecution behavior. The triggering behavior determines the conditions under
which the dataflow MoC triggers a process for an execution. Whereas, the
execution behavior determines how a process consumes/produces data when
it is triggered for an execution. The general DPN model based on the used
CAL subset and the supported dataflow MoCs are described in Chapter 4.

Depending on the modeled synchronous behavior, the generated CAL DPN
may be heterogeneous in the sense that it consists of processes offering dif-
ferent kinds of behaviors. Thus, different components of the system can be
based on different kinds of dataflow processes, and therefore also different pre-
cise dataflow MoCs. The generated desynchronized CAL code consists of two
parts: the CAL processes and the network description that specifies the net-
work topology. Moreover, since the proposed design flow is implemented in a
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standalone framework, a system can also be directly modeled as a CAL DPN
based on the supported dataflow MoCs. The desynchronized or modeled DPN
consisting of CAL processes and the network specification is provided as input
to the synthesis phase.

The synthesis phase as shown in Figure 3.10 provides a comprehensive tool
chain, including a single back-end that offers different specialized code genera-
tors for different dataflow MoCs, and a runtime system which finally executes
DPNs on the target hardware. Using OpenCL [StGS10], it incorporates a
standard hardware abstraction for cross-vendor heterogeneous hardware ar-
chitectures. The proposed framework conceptually employs OpenCL as an
operating system (OS) in the sense that it provides: common services for
managing the target hardware, software resources and the implementation of
modeled systems based on the supported dataflow MoCs. Thus, the framework
logically incorporates the OpenCL specification as an OS mainly because of
two reasons: first, it provides an abstraction for heterogeneous hardware, and
second, the framework uses this abstraction in the composition of the synthe-
sis where different components implement different low-level details. As dis-
cussed, OpenCL offers a programming model consisting of a host and several
kernels where the host is a centralized entity that is connected to one or more
computing devices and is responsible for the execution of kernels [RaSc20).

The framework adopts this idea of host and kernels for the synthesis as
shown in Figure 3.10. The synthesis phase uses a combination of different
code generators which generates an OpenCL kernel for each process in the
network based on the underlying dataflow MoC of that process. In particular,
the generated kernel implements the execution behavior of the process. A sin-
gle back-end based on OpenCL is developed that provides different specialized
code generators for specific dataflow MoCs. Each code generator generates
kernel code strictly based on its underlying dataflow MoC. The syntactical
representation of each dataflow MoC is used by the back-end to ascertain the
MoC of each process in the network and enables the synthesis phase to auto-
matically realize the implementations based on the kinds of behaviors of the
processes. The runtime system systematically employs OpenCL as an integral
part of the synthesis and manages the scheduling of processes and their com-
munication based on the precise dataflow MoC of each process. A scheduler
each, is designed for each dataflow MoC that schedules a process based on the
triggering semantics of the underlying MoC. The runtime system is organized
in a centralized host and kernels architecture, built under the OpenCL ab-
straction. The host accommodates different essential components along with
the Runtime-Manager. The Runtime-Manager exploits other components of
the host and provides different low-level implementations to finally execute
the modeled DPNs (kernels) on the target hardware.

The framework supports the synthesis of heterogeneous DPNs by using the
combination of different specialized code generators. Moreover, the synthesis
tool chain provides a common environment that dynamically schedules and
executes the generated kernels at runtime based on their underlying dataflow
MoCs. This dynamic environment is designed to enable the synthesis of het-
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erogeneous composition of different kinds of processes under the supervision
of a common framework. The synthesis tool chain along with all its essential
components is presented in detail in Chapter 5. In particular, the back-end
comprising of different code generators is explained. The runtime system and
the associated host based on OpenCL is also discussed in detail in Chapter 5.
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As discussed, the starting point of this thesis is the desynchronized determin-
istic dataflow models. In particular, the synchronous guarded actions (SGAs)
are verified for desynchronization and then translated into the Cal actor lan-
guage (CAL) guarded actions [BSBK14; BaRS21]. The target dataflow process
network (DPN) model is based on a limited subset of CAL that is comprised
of stateless processes having guarded actions. The main purpose of this chap-
ter is not to present the formal specification of dataflow models of computa-
tion (MoCs) as this has been thoroughly considered in the literature [Faus82;
GeBa03; Star87]. Instead, the main idea here is to informally illustrate how
the limited subset of CAL is used to specify a general model of DPN and how
this general model is used with specific constraints and restrictions to spec-
ify the precise dataflow MoCs. We therefore first present the syntax and the
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informal semantics of the general DPN model based on the used CAL subset
and then illustrate the constraints to specify the supported dataflow MoCs.

4.1. The General Model of DPN

A DPN is a set of processes P = {py, ..., pm-1} with static point-to-point con-
nections via FIFO buffers F = {fo,..., fo-1}. We also assume a total order <
on the FIFO buffers so that we can unambiguously switch from sets to tuples
of FIFO buffers by simply ordering the corresponding set to a tuple. For this
reason, we often ignore the difference between sets and the corresponding tu-
ples. For any tuple ¢ = (to,...,ts), we denote its components as t; = proj; ().
Processes of the DPN communicate with each other by consuming data tokens
from their input buffers and adding data tokens to the output buffers. There-
fore, we define for each process p € P, the tuple of its input buffers inBuf(p)
and its output buffers outBuf(p).

In the following, we informally present and elaborate the syntax and the
semantics of the general model of a process based on the used subset of CAL.

4.1.1. Syntax

The syntax of a process p € P based on the used subset of CAL is illustrated
with an abstract example as shown in Listing 4.1. A process generally consists
of a set of input and output buffers and several actions.

1 actor ex() <Type> Xi,...<Type> Xy ==> <Type> Yi,... <Type> Yn :
2 labely: action Xi:[Z11,...,Z1,p1 ], s Xm [@m,1se s Tmpy | =
3 Yi:[yia,- s U,qlse-os Yo [Unidse ooy Unign ]
4 guard vy
5 do
6 Y1,1 = €1,1;
7 :
8 Yi,q1 "= €l,q15
9 :
10 Yn,qn *= En,qn;
11 end
12
13 labely: action Xi:[{Z11,..sZ1,p1 ], Xm [Tm,1y- s Tmypm | =—>
14 Yi:[yia, s Ul,qlse-os Yo i [Unidse oy Unyan ]
15 guard vy
16 do
17 Y1,1 = €1,15
18 :
19 Yi,q1 = €1,q15
20 :
21 Yn,an *= En,qn;
22 end
23 endactor

Listing 4.1: Abstract example of a process based on the general CAL DPN model.
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4.1.2. Semantics

The abstract example of a process as shown in Listing 4.1 illustrates the general
model based on the used subset of CAL. The head of a process p € P specifies
the input buffers inBuf(p) = (X1,...,X) and output buffers outBuf(p) =
(Y1,...,Yn), including the type of tokens communicated via the buffer (Line
1). The used CAL subset provides three data types: Boolean, integer and
real numbers. The behavior of every process p € P is determined by a set of
actions actions(p) = {aq,...,ap}. Actions are preceded by action labels which
in the general model need not to be unique, i.e. the same label can used for
more than one action (Lines 2 and 13). The head of an action « € actions(p)
specifies for the input buffers in inBuf(p) the number of data tokens to be
read (Line 2). It may or may not specify all input buffers in inBuf(p). If
the action is fired, these data tokens are consumed from the heads of input
buffers and are assigned to the variables x; ; such that x;; is the head of the
input buffer X;. Analogously, the action interface determines for the output
buffers in outBuf(p) the number of data tokens to be written. Thereby, the
values ¥;1,...,¥iq are added in this order to the tail of output buffer Y;.
The body of the action is therefore a sequence of statements that compute
values based on expressions e;1,...,e;q and assign them to output variables
Yil,---,Yig (Lines 5-11). An expression may compose of variables, values, and
both arithmetic and Boolean expressions. Since only a subset of inBuf(p) may
be used by an action « € actions(p), we also define inAct(«) < inBuf(p) as the
subset of input buffers used by that action. Similarly, we define outAct(«a) ¢
outBuf(p) as the subset of output buffers used by the action. For an action « €
actions(p) that requires that input tokens have particular values, an additional
condition can be specified using a guard (Line 4) which is a predicate on the
tokens of (some prefixes of) the input buffers in inAct(«). Since only a subset
of inAct(a) may be used by a guard, we also define inGrd(«) S inAct(a) as the
subset of input buffers whose values are considered by the guard ~, of action
Q.

For the semantics, we consider a domain D of values that may be the union
of integers, booleans and real numbers. We denote the set of finite sequences
on D as D* and the set of infinite sequences on D as D“, and the union of
both as D, i.e., D* := D* uD“. For sequences 01,09 € D, we introduce
the prefix ordering o1 € 09 <> Jog € D™. 09 = 01 - 03 where o1 - 03 means
the concatenation of the sequences o1 and o3 which demands that o1 € D*.
The prefix ordering on sequences 01,09 € D™ is lifted to tuples of sequences
o1=(01,0,...,01¢) and o2 = (02,...,02¢) in that we demand o1 ; € 09, for
all i €{0,...,¢}.

Each process p € P defines a function that maps the consumed input tokens
to produced output tokens. This function is determined by a set of actions
actions(p) of the process p where the semantics of each action « € actions(p)
is a function of type (D*)™ — (D*)™ with the following meaning: The action
consumes tokens from m input buffers and produces tokens to n output buffers,
thus, m := [inAct(«)| and n := [outAct(«)|.

Any action « € actions(p) as shown in Listing 4.1 is enabled iff the following
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actor nondet-merge() int X1, int X2 ==> int Y1
actl: action X1: [x1] ==> Y1: [y1]
guard true
do
yl:=x1;
end
act2: action X2:[x2] ==> Y1: [y1]
guard true
do
10. yl:=x2;
11. end
12. end

W NSURAEWNR

Figure 4.1.: A simple example of a non-deterministic process in CAL. The output
produced on Y1 depends on the arrival time of tokens on the inputs
X1 and X2.

conditions are all satisfied:

e cach input buffer X; € inAct(a) has enough tokens, i.e., X; must have at
least p; many tokens

e cach output buffer Y; € outAct(a) has enough space, i.e., Y; must have
at least space for ¢; many tokens

e the guard condition « which is a condition on the input tokens z;; in
inGrd(«) is satisfied

The general model of DPN does not impose further restrictions and therefore
actions consisting of common inputs and/or outputs may be enabled in the
same execution, as depicted in Listing 4.1. As a result, this gives rise to
read and write conflicts in buffers, ultimately ending up in non-deterministic
behaviors. A read conflict means that two actions are enabled in an execution
that read a token from the same input. Whereas, a write conflict means that
two actions are enabled in an execution that write a token to the same output.
A simple example of a non-deterministic process is illustrated in Figure 4.1.
It consists of two actions act! and act2 that consume tokens from different
inputs X1 and X2, respectively, and produce tokens to the common output
Y1. Depending on the availability of tokens on the inputs, both actions may
be enabled in the same execution, and therefore may give rise to write conflict
in Y1. Hence, the output produced on Y1 depends on the arrival time of
tokens on the inputs and therefore exhibits a non-deterministic behavior.

We therefore demand and use the general CAL DPN model with specific
constraints and restrictions to specify the precise dataflow MoCs.
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4.2. Static Dataflow Model

The static dataflow (SDF) [LeMe87a] MoC allows one to model static (syn-
chronous) behaviors. It is a more restricted DPN class in the sense that the
decision on whether to consume and produce tokens in each execution is stat-
ically made (fixed). Each execution of a process consumes and produces fixed
number of tokens. To this end, the number of tokens consumed or produced
by each node (process) must be specified a priori. In other words, the number
of tokens consumed or produced on each buffer must be independent of the
value as well as the arrival time of data. A process in SDF becomes enabled if
and only if all its inputs have required tokens and all its outputs have required
space. An enabled process may fire, and once fired, consumes the statically
specified number of tokens from its inputs and produces the statically specified
number of tokens to its outputs.

We demand and assume certain restrictions on the general DPN model to
represent the SDF MoC. In the following, we present an abstract example of a
static process based on the SDF MoC and informally illustrate its semantics.

4.2.1. Syntax

The syntax of a static process in SDF is illustrated with an abstract example
as shown in Listing 4.2.

1 actor SDF() <Type> Xi,...,<Type> X,, => <Type> Yi,...,<Type> Y,:
2 labely, : action Xi:[x11,...,Z1,p ], s Xm : [@m,1se s Tmyp | =
3 Yi:[yia, s Uqlseoos Yo [Unidse o Unign ]

4 guard 7q,

5 do

6 Y1,1 = €1y 43

7 :

8 Yi,q1 = €ly,qq5

9 :

10 Yn,qn *= €ly g5

11 end

12 :

13 labela, : action Xi:[x11,.--sZip ]y > Xm [ Tmly-eer Tmypm ] ==>
14 Yi:[yia,- s Uqlseoos Yo i [Undse ooy Unygn ]

15 guard 7a,

16 do

17 Y1,1 = €hy 15

18 :

19 Ya = en,;
20 :
21 Ynygn = €hy g
22 end
23 endactor

Listing 4.2: Abstract example of a process in SDF.
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4.2.2. Semantics

A process p € P in SDF consists of a set of actions actions(p) = {a1,...,az}.
The action labels need to be unique, i.e. the same label must not be used
for more than one action (Lines 2 and 13). For each action «;, we define its
guard 7,,. Each action «; € actions(p) specifies for all input buffers inBuf(p)
and all output buffers outBuf(p) the number of tokens to be read and written,
respectively. Thus, the input and output buffers are always same across all
actions i.e., inAct(ay) = ... = inAct(ay) and outAct(ay) = ... = outAct(ay,).
Second, the number of tokens to be consumed and the number of tokens to be
produced are always same for the same input and output buffers, respectively,
across all actions. This restricts the execution of processes to fixed consump-
tion and production rates. Regardless of which action is executed, the same
number of tokens are consumed and produced in the same buffers in each firing
of a process. Moreover, we demand that the guard conditions should always
be mutually exclusive across actions. This ensures that for each execution of
a process, the actions will never compete for an execution. Hence, in each
execution of a process only a specific action is fired whose guard is enabled.

Execution of Actions

Each time a process p € P is triggered for an execution, a particular action
is executed, mainly dependent on which guard is enabled. The guards of
actions actions(p) are always evaluated sequentially in the same order of their
actions definitions. Since all actions in a process have same input buffers with
same consumption rates, hence for any action «; € actions(p), the specified
fixed number of tokens are first consumed from all input buffers inAct(«;) =
inBuf(p). Finally, the enabled action is fired whose guard is true. Upon firing,
the defined computations are performed and the specified fixed number of
tokens are produced to all output buffers outAct(a;) = outBuf(p).

We therefore assume that a particular guard must be true in each execution
of a process. In case if none of the guards is true in an execution, it can
simply be considered as an erroneous or an incomplete behavior where no
functionality is specified for certain values of tokens. On the other hand, this
can be tackled purely at the implementation level by using the so-called silent
action that only fires if no other action is fired in an execution. The silent
action may simply consume those tokens and produce some dummy output to
continue with the rest of the executions or it may simply terminate the process
to indicate the erroneous behavior.

Triggering Processes for Execution

Each process p € P in SDF is triggered for an execution if and only if all input
buffers inAct(a;) of an action «; € actions(p) have enough input tokens and
all output buffers outAct(«;) of that action have enough space. The process
shown in Listing 4.2 is triggered for an execution iff for any action «;, each
input buffer X; € inAct(«;) has at least p; many tokens and each output buffer
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X1 actor ITE() int X1, int X2, int X3 ==>intY
actl: action X1: [x1], X2:[x2], X3:[x3] ==>Y: [y]
do

yi=X2; Y
end N\
act2: action X1:[x1], X2:[x2], X3:[x3] ==>Y: [y] 7421

X2
..754 1 )
guard x1<0
X3 . do
... 8426 1o. y:=x3;
11. end

12.end

NN RWNRE

o

Figure 4.2.: The static if-then-else (ITE) node: a simple example of a static process
in SDF. An example behavior is illustrated with a set of input values
and the computed output values as shown inside arrows.

Y; € outAct(c;) has at least space for ¢; many tokens.

SDF Process Example

A simple example of the static if-then-else (ITE) operation is illustrated in
Figure 4.2. In each execution, the ITE process consumes a token each from all
three inputs and produces a token to its only output. It consists of two actions
i.e., actl and act2, having same inputs X1, X2 and X3, and the same output
Y (Lines 2 and 7). Both actions use the input X1 for the guard with mutually
exclusive guard conditions (Lines 3 and 8). In each execution, depending on
which guard is enabled, either act! or act2 fires for an execution. ITE is only
triggered for an execution if there is a token available in all three inputs X1,
X2 and X3 and if there is space available for a token to be produced at the
output Y.

4.3. Kahn Process Networks Model

Kahn process networks (KPNs) [KaMa77] are dynamic DPNs where processes
can consume and produce different number of tokens in every firing depending
on the history of the consumed tokens and also on the tokens to be consumed.
In other words, it supports the conditional or data dependent execution of
processes where each process can vary its consumption and production rates
in every firing. KPNs exhibit latency-insensitive deterministic behaviors that
do not depend on the timing or the execution order of the processes. The
KPN MoC is typically specified with the following restrictions and properties:

e processes are not allowed to test input buffers for the existence of tokens

e reading from input buffers is blocking, and writing to output buffers is
non-blocking

e processes must implement deterministic sequential functions
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e processes do not need all of their inputs to get triggered for execution

Based on these restrictions/properties, it can be implied that a process in
KPN can be any sequential program where the firing rules can be tested in
a predefined order in each execution using blocking reads [LePa95]. This re-
flects the ability to uniquely consume the inputs in each firing without timing
information provided by the input signals. A KPN process is only triggered
for execution if the exact information on inputs required to produce the out-
put is available. A process therefore becomes enabled if the required values
on inputs are available to perform the computation and produce the output.
A process once enabled, may fire, and once fired, it may consume different
number of tokens from different inputs based on the history of the consumed
tokens. The KPN MoC can capture both static as well as sequential behaviors.
Since buffers with unbounded capacity cannot be realized in real implementa-
tions, the used KPN model only supports blocking write. However, since the
starting point of this work is the desynchronized models, desynchronization
preserves properties like deadlock-freedom and bounded memory usage that
are otherwise difficult to ensure in KPNs [BaRS21].

Next, we present an abstract example of a sequential process based on the
KPN MoC and illustrate its semantics.

4.3.1. Syntax

The syntax of a sequential process in KPN is illustrated with an abstract
example as shown in Listing 4.3.

1 actor KPN() <Type> Xi,...<Type> Xy ==> <Type> Yi,...<Type> Yn:
2 labela, : action Xi:[Z11,-.-,T1p1 ], s Xm : [Tm1y-eer Tmypm ] ==
3 Yi:[yia,- s U,qlse-os Yo [Unydse o Unygn ]

4 guard 7q,

5 do

6 Y11= €1y 13

7 :

8 Yi,q1 = €11,q, 3

9 :

10 Yn,qn = €ly g5

11 end

12 :

13 labela, : action Xi:[xi1,.. %18 ) s Xu i [Tuly ey Tu,fy ] ==
14 Yi [y, s Ul,g1)s-eer Yo i [Yodye- s Yv,go |

15 guard 7,

16 do

17 Y1,1 1= €hy 4 ;

18 :

19 Y1,91 *= €hy ;5
20 :
21 Yv,gu *= Chy g, 3
22 end
23 endactor

Listing 4.3: Abstract example of a process in KPN.
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4.3.2. Semantics

A process p € P in KPN consists of a set of actions actions(p) = {a1,...,az}.
The action labels need to be unique, i.e. the same label must not be used for
more than one action (Lines 2 and 13). For each action «;, we define its guard
Ya;- Each action «; € actions(p) specifies for the input buffers inAct(a;) ¢
inBuf(p) and the output buffers outAct(c;) < outBuf(p) the number of tokens
to be read and written, respectively. In general, the input and output buffers
can be different across different actions. However, since processes in KPN
consist of sequential functions, we demand that all actions in a process must
have at least one common input. This implies that inAct(aq)n...ninAct(ay,) #
{}. Moreover, we demand that the guard conditions are always mutually
exclusive across actions. This ensures that for each execution of a process, the
actions will never compete for an execution. Hence, in each firing of a process
only a specific action is executed mainly dependent on which guard is enabled.
Altogether, these restrictions ensure that for each execution of a process, the
actions will never compete for an execution for any set of tokens. Second,
they enable the execution of processes with dynamic consumption rates and
dynamic production rates, mainly dependent on which guards are enabled on
each execution.

Evaluation and Execution of Actions

As discussed, the KPN MoC does not allow processes to test input buffers for
the existence of tokens. A process is only triggered for execution if the exact
information on inputs required to execute an action is available. Therefore,
each time a process p € P is triggered for an execution, a particular action
«; € actions(p) is executed whose guard 7y, is enabled. The enabled action «,
once fires, consumes a finite number of tokens from the input buffers inAct (o)
and produces a finite number of tokens to the output buffers outAct(a;) as
specified for that action.

Triggering Processes for Execution

Since processes in KPNs consist of sequential programs, the availability of
tokens on the inputs, the availability of space on the outputs, and the guards
can be evaluated sequentially in a predefined order of their actions definitions.
Each process p € P is triggered for an execution if there exists one particular
action «; € actions(p) having: enough input tokens in inAct(c;), required
values on the guarded inputs inGrd(«;), and enough space in outAct(«;). For
instance, the process shown in Listing 4.3 is triggered for an execution when
for a particular action (say «y), each input buffer X; € inAct(cy,) has at least
f; many tokens, each output buffer Y; € outAct(cy,) has at least space for
g; many tokens, and the guard 3, is true. In case if one of the inputs does
not have enough tokens, the process is blocked (i.e., the blocking behavior of
KPN) until sufficient tokens are available on that input.
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. actor split() int X1, int X2 ==>int Y1, int Y2
. actl:action X1: [x1], X2:[x2] ==> Y1: [y1]
guardxl=1

1
2
3.
2121 5. yl:=x2;
6. end ..4321
7

act2: action X1:[x1], X2:[x2a, x2b] ==> Y1: [y1],

X2 N ' Y2:[y2] Y2
..643521 »8  guardxl=2 65
———— s

10. yl:=x2a;
11. y2:= x2b;
12. end
13.end

Figure 4.3.: The split node: a simple example of a sequential process in KPN.
An example behavior is illustrated with a set of input values and the
computed output values as shown inside arrows.

KPN Process Example

A simple example of a sequential process, namely the split node is illustrated
in Figure 4.3 that splits a single input channel to a number of individual
output channels. The split node consists of two actions act! and act2 that
depending on the value of a token at the input X1 splits the tokens from the
input X2 to outputs Y1 and Y2. Both actions share a common input, namely
X1. The guards are composed of mutually exclusive conditions (Lines 3 and
8). Both actions declare the input X2 with different consumption rates (Lines
2 and 7). The action act2 has an additional output Y2. In each execution,
depending on which guard is enabled, either act1 or act? fires for an execution.
In the case where act! fires, a single token each is consumed from X1 and X2,
and a single token is produced to Y1 (Line 5). On the contrary, when act2
fires, a single token is consumed from X1, two tokens are consumed from X2
and a token each is produced to Y1 and Y2 (Lines 10-11). Hence, in each
execution, a different number of tokens can be consumed from the input X2
and a different number of tokens can be produced to outputs Y1 and Y2.
The split node is only triggered for an execution if there exists one action i.e.,
either actl or act2, having required number of tokens in X1 and X2, required
space in outputs Y1 and Y2, and required values on the input X1.

4.4. Dynamic Dataflow Model

The dynamic dataflow (DDF) [Kosi78] also sometimes referred to as the non-
determinate dataflow is a dynamic DPN class that allows one to model dy-
namic and asynchronous processes. It offers a more generalized data dependent
and asynchronous execution semantics than the KPN MoC. In particular, the
DDF MoC allows one to model processes with parallel programs consisting
of concurrent and independent computations where more than one action can
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1 actor DDF() <Type> Xi,..., <Type> Xp,..., <Type> Xy =—>
2 <Type> Yi,..., <Type> Y,,..., <Type> Yn
3 labela, : action Xi:[Z11,-.-,T1p1 ]y s Xm : [Tm1y-eer Tmypm ] =—>
4 Yi:[yia, s U,qlse-os Yo [Undse o Unign ]
5 guard 7q,
6 do
7 Y1,1 5= €1y 15
8 :
9 Yi,q1 = €1y ,4q5
10 :
11 Yn,qn = €ln g,
12 end
13 ¢
14 labely, : action X1 [Tm+1,1,--, Zlppmar |yee s X0 2 (XM 15000, TMpy, | ==
15 Yo : [yn+1,17 s 7yn+1aQn+1:|v cee 7YN : [yN,h s 7yNqu:|
16 guard g,
17 do
18 Yn+1,1 = Chpyn 1
19 : '
20 Ynrlawr = Chuarg,
21 :
22 YN,an = Ckn gn
23 end
24 :
25 labely, : action
X1 : [mlyl,...@l,fl],...,Xm : [CCmyl,..A,xm,fm] ..A,X]W : [xju’h...,{lf]\/[,gM] 554
26 Y1 : [y1,1, .. '7y1,(I1]7 .. .,Yn : [yml, . 7yn,11n] .. .YN : [yN,l, e 7yN»QN]
27 guard 7,
28 do
29 Y1,1 = €ny 4;
30 :
31 Y1,q1 = €hy gy5
32 :
33 YN.an = €hn qp
34 end
35 endactor

Listing 4.4: Abstract example of a process in DDF.

be executed in each firing. This generalization results in higher expressive-
ness and flexibility, however, may lead to non-deterministic behaviors e.g., a
non-determinate merge [LePa95]. We use a variant of the DDF MoC that
only supports concurrent and independent actions with specific restrictions.
These restrictions demand that although multiple actions may fire in the same
execution of a process, however, they must not give rise to read conflicts in
buffers. Second, they must not lead to different output streams for the same
input streams. It can be used to model well-behaved parallel nodes that ex-
hibit deterministic behaviors e.g., the parallel OR (POR) node as illustrated
in Figure 4.4 (discussed in the next few subsections).

The considered variant of DDF MoC offers a more flexible semantics where
each process becomes enabled for an execution if only one of its inputs has
required tokens and only one of its outputs has required space. The decision
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on whether to consume/produce tokens and to execute each action of an en-
abled process is made dynamically at runtime when that particular process
is triggered for an execution. A process once enabled, may fire, and once
fired, it may trigger multiple actions for execution. A process can produce
and consume different number of tokens in every firing. Thus, each process
can have either static or dynamic consumption/production token rate per ex-
ecution. The considered variant of DDF MoC can capture static, sequential
and well-behaved parallel processes.

In the following, we present an abstract example of a well-behaved parallel
process based on the DDF MoC and informally illustrate its semantics.

4.4.1. Syntax

The syntax of a well-behaved parallel process in DDF is illustrated with an
abstract example as shown in Listing 4.4.

4.4.2. Semantics

A process p € P in DDF consists of a set of actions actions(p) = {a,...,ap}.
The action labels need to be unique, i.e. the same label must not be
used for more than one action (Lines 3, 14 and 25). For each action «y,
we define its guard 7,,. Different actions in actions(p) may specify com-
pletely different input and output buffers e.g., inAct(a1) ninAct(ay) = {} and
outAct(ay ) noutAct(ay) = {}. This enables the modeling of processes with in-
dependent actions consisting of completely different inputs and outputs. More-
over, different actions in actions(p) may also specify common input and output
buffers e.g., inAct(a;) ninAct(ap,) # {} and outAct(ay ) noutAct(ay,) # {}. The
associated number of token variables (i.e., token consumption rates) of com-
mon input buffers can be different across actions. Multiple actions may fire
in the same execution of a process. However, we demand that these firings
must be consistent and do not give rise to non-deterministic behaviors. In par-
ticular, we demand that the guard conditions of actions with common input
buffers are always mutually exclusive. Hence, in each firing of a process only
a specific action from all actions having at least one common input buffer is
executed whose guard is enabled.

This ensures that for each execution of a process, the actions with common
input buffers will never compete for an execution for any set of tokens. More-
over, for actions with at least one common output buffer, we demand that
each action upon firing produces the same sequence of tokens at the common
output buffer. Hence, the firing of actions with common output buffers do not
lead to different output streams. Altogether, these restrictions enable the exe-
cution of processes consisting of well-behaved parallel programs with dynamic
consumption rates and dynamic production rates, mainly dependent on which
guards are enabled on each execution. An example of a well-behaved parallel
node exhibiting such a behavior is illustrated in Figure 4.4.
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1. actor POR() bool X1, bool X2 ==> bool Y
2. actl:action X1:[x1] ==>Y: [y]

3 guard x1 = true

4. do

5 y:= true;

6 end

7
8

X1 .
j\> act2: action X2:[x2] ==>Y: [y]
. guard x2 = true gy\
X2 9 do F T F T T

10. y:=true;
FTFT 11. end
12. act3: action X1:[x1], X2:[x2] ==>Y: [y]

i

13. guard x1 = false and x2 = false
14. do

15. y:= false;

16. end

17. end

Figure 4.4.: The parallel OR node: a simple example of a well-behaved parallel
process in DDF. An example behavior is illustrated with a set of input
values and the computed output values as shown inside arrows.

Evaluation and Execution of Actions

Each action «; € actions(p) of a process p € P is evaluated for an execu-
tion dynamically when that particular process is triggered for an execution.
Each action «; fires for an execution iff: there are enough tokens available in
inAct(«;), enough space available in outAct(«;), and the required values on
the guarded inputs inGrd(«;) are available, i.e., the guard ~; is true. When
the action «; fires, it consumes a finite number of tokens from inAct(«;) and
produces a finite number of tokens to outAct(«;).

Since the actions are evaluated dynamically only after a particular process
is triggered for an execution, there may be a case when for an action «;,
although the guard ~; is true, however, either at least one of the input buffers
in inAct(c;) does not have enough tokens, or at least one of the output buffers
in outAct(c;) does not have enough space. In this case neither the input
tokens are consumed from inAct(«;), nor the output tokens are produced to
outAct(a;). Instead, the tokens are preserved in their respective input buffers.

Triggering Processes for Execution

As the decision to execute each action of a process and consume/produce data
tokens is made dynamically at runtime, when that process is triggered for an
execution. Therefore, each process p € P is triggered for an execution if there
exists at least one input buffer X; € inAct(«;) having enough input tokens and
there exists at least one output buffer Y; € inAct(qa;) having enough space. For
instance, the process shown in Listing 4.4 is triggered for an execution when
for a particular action (say o), any input buffer X; € inAct(aq) has at least
p; many tokens and any output buffer Y; € outAct(c;) has at least space for
¢j many tokens.
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DDF Process Example

A simple example of the parallel OR (POR) node is illustrated in Figure 4.4
that performs the logical OR operation on two Boolean inputs. The POR node
consists of three actions actl, act2 and act? that depending on the values of
tokens in either or both of the inputs X1 and X2 produces tokens in the
only output Y. The actions act! and act3 share a common input X1 (Lines
2 and 12). The actions act2 and act3 share a common input X2 (Lines 7
and 12). All actions share the same output Y (Lines 2, 7 and 12). In each
execution, depending on which guards are enabled, either one or both of the
actions actl, act2 can be fired. In case if both the actions are enabled, a token
each is produced to the output Y by both actions (Lines 5 and 10). Since,
they share a common output, hence, the same sequence of tokens is produced
at the output Y by both actions. In contrast, if the guard is true for act3,
the actions actl, act2 become disabled where only the action act3 is fired.
Therefore, the actions with common inputs never compete for firing in any
execution of the process. The POR node is only triggered for an execution if
there is a token available in at least one of the inputs i.e., either X1 or X2,
and there is a space available for one token to be produced in the only output
Y.

o8



Chapter

Automatic Synthesis: The Tool
Chain

Contents
5.1. Back-end . . . . ... . ... 60
5.1.1. Dataflow MoC Identification. . . . ... ... ... .... 61
5.1.2. Code Generators: Kernel Code Generation . . . . .. .. 62
5.2. Runtime System . . . ... ... ... ... o 70
5.2.1. Process and Device Queues . . . ... ........... 70
5.2.2. The Runtime-Manager . . . ... ... ... ........ 72

Using our Awverest tool, we model systems based on the synchronous reactive
(SR) model of computation (MoC) and essentially transform them to the Cal
actor language (CAL) DPN models as presented in Chapter 4. Second, a
system can also be directly modeled in the proposed framework using the CAL
DPN models. Regardless of which option is used, the CAL code consists of two
parts: the CAL actors (processes) and the network description. The network
description determines the topology of the network and is typically described
using the XML based functional network language [BEJL11] as illustrated in
Listing 2.2. Whereas, each CAL process based on a particular precise dataflow
MoC models a behavior of a system’s component as illustrated in the examples
in Figures 4.2, 4.3 and 4.4. The proposed synthesis tool chain of the framework
is provided with this CAL code.

In this chapter, we present in detail the synthesis tool chain. A brief
overview of the tool chain is illustrated in Figure 5.1. It offers a compre-
hensive set of tools that work together to finally implement the CAL DPNs
on the commercial off-the-shelf (COTS) target hardware. The tool chain is
typically composed of two main parts: a special back-end comprising of
specialized code generators for particular dataflow MoCs and the runtime
system. Each code generator generates an OpenCL kernel for each process
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OpenCL abstraction

I
1
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I OpenCL
I process schedulers Kernels
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CAL code I runtime manager
I

runtime system

Figure 5.1.: The proposed synthesis tool chain is composed of two main parts: the
back-end features the specialized code generators for the supported
dataflow MoCs. The runtime system organized in a host and kernels
program model schedules and maps the modeled system on the target
hardware.

based on the underlying precise dataflow MoC. Second, the runtime system
is organized in a centralized host and kernels program model, built under the
OpenCL abstraction. The host features different components including the
Runtime-Manager that schedule and deploy processes (generated kernels) on
the target hardware.

5.1. Back-end

The back-end is designed to work in two different modes, namely the manual
mode and the auto mode. In the manual mode, the back-end targets homo-
geneous implementations based on a specific user given dataflow MoC. In the
auto mode, the back-end automatically classifies the processes into three cate-
gories mainly according to their kinds of behaviors that determine the precise
dataflow MoCs. This classification of different kinds of behaviors involves: the
static ones based on the static dataflow (SDF) MoC, the sequential ones based
on the Kahn process network (KPN) MoC, and the parallel ones based on a
variant of the dynamic dataflow (DDF) MoC. As a result, the back-end pro-
vides three different specialized code generators for particular dataflow MoCs:
one for the SDF MoC, second for the KPN MoC, and finally for the used DDF
MoC. Ideally, we identify the kinds of behaviors of processes during desynchro-
nization based on a succinct formalization of input/output (I/O) firing rules of
synchronous components [RBSY21; RBSY21a|. The identified dataflow MoC
of each process is divulged to the synthesis phase through the network descrip-
tion file. However, the back-end also features a method that determines the
kind of each process in the network by using the syntactical representation of
each supported dataflow MoC as presented in Chapter 4. This method does
not verify if a process exhibits a particular behavior, instead, it simply deter-
mines one of the three supported dataflow MoCs to which a particular process
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belongs. This approach therefore assumes that the given process belongs to
one of the supported dataflow MoCs. In this case, the identified dataflow MoC
of each process is stored in the network description file at the back-end. Prior
to presenting the specialized code generators, we first present the method de-
signed to determine the underlying dataflow MoCs of processes based on their
syntactical representations.

Algorithm 2: Pseudo code to determine the supported dataflow
MoC of each process p in the network.

1 foreach process p in the network do
2 InFIFOsFirst < input FIFOs of first action
3 OutFIFOsFirst < output FIFOs of first action
4 DataflowMoC < SDF > assume the MoC is SDF
5 foreach action o in p do
6 if InFIFOsFirst + inAct(a)v OutFIFOsFirst + outAct(a) then
7 DataflowMoC <~ KPN > if not SDF, assume the MoC is KPN
8 break inner for loop
9 end
10 end
11 if DataflowMoC = KPN then
12 foreach action o in p do
13 CommonInFIFOs <« InFIFOsFirst n inAct(a)
14 if IsEmpty(CommonInFIFOs) then
15 DataflowMoC < DDF > if not KPN, the MoC is DDF
16 break inner for loop
17 end
18 else
19 ‘ InFIFOsFirst < CommonInFIFOs
20 end
21 end
22 end
23 store DataflowMoC for p in network description file

24 end

5.1.1. Dataflow MoC ldentification

The method employed by the framework at the back-end to determine the
precise dataflow model of each process in a network is illustrated by the pseudo
code given in Algorithm 2. It follows a simple principle of validating the
syntactical representations of processes starting from the most restrictive SDF
MoC and then moving to the more generalized supported dataflow MoCs. The
method works as follows:

It first assumes that the process exhibits a static behavior, or in other words,
precisely belongs to the SDF MoC (Line 4). This assumption is then assessed
by validating the process’s syntax against the syntactical representation of
the SDF MoC (Lines 5-10). To this end, the method iterates through the set
of modeled actions and simply checks if each action exactly defines the same
set of input and output FIFO buffers (Line 6). In case if one of the actions
reveals a different set of input or output buffers, the assumption is considered

61



Chapter 5: Automatic Synthesis: The Tool Chain

as invalid. The method then assumes that the process exhibits a sequential
behavior (Line 7) and evaluates this assumption by validating the process’s
syntax against the syntactical representation of the KPN MoC (Lines 11-21).
To this end, the method again iterates through the set of modeled actions and
checks if the current action defines at least one common input buffer with the
common input buffers of previous actions (Lines 13-14). In case if one of the
actions does not have any input buffer common with the common input buffers
of previous actions, the dataflow MoC of that process is simply validated as
the most generalized DDF MoC (Line 15). The validated dataflow MoC of
each process is finally stored in the network description file (Line 23).

In the following, we present the specialized code generators based on the
supported dataflow MoCs.

5.1.2. Code Generators: Kernel Code Generation

A code generator each, is designed and developed based on the underlying
semantics of each used dataflow MoC. Each code generator therefore generates
an OpenCL kernel for each process strictly based on the underlying dataflow
MoC. This section presents in detail the schemes employed for generating
OpenCL kernel code based on all the supported dataflow MoCs. Moreover,
we also illustrate the generated kernel code for each supported dataflow MoC
based on the CAL models presented in Figures 4.2, 4.3 and 4.4.

FEach code generator generates kernel code in two segments: First, the
OpenCL specific code is targeted which involves the generation of the ker-
nel header, the declaration of used inputs and outputs, and most importantly,
the generation of generic kernel code that enables the host to dispatch multi-
ple executions of the kernel on the device. This code segment is more or less
same for all used dataflow MoCs. The second segment targets the code gen-
eration strictly based on the underlying semantics of the used dataflow MoC.
We mainly present the schemes designed for generating code for the latter
segment. The former segment is explained in detail with the generated kernel
code examples.

SDF Code Generator

In SDF, it is statically determined that each firing of a process consumes/pro-
duces fixed number of tokens. A process in SDF is therefore simply scheduled
by the host for execution if there is enough data available in all inputs and if
there is enough space available in all outputs. The guards of actions are eval-
uated within kernels on the device side. The SDF code generation is relatively
straightforward. The code generation based on the underlying semantics of
the SDF MoC is illustrated by the pseudo code given in Algorithm 3.

For a static process, the proposed scheme works as follows: First, the code
is generated to consume tokens from all input buffers of the process (Line
1). The algorithm then iterates through the set of modeled actions in the
order of their definitions (Line 2) where for each action, it proceeds as follows:
First, the code is generated to evaluate the guard (Line 3). Next, the code
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is generated for the case if the guard is fulfilled (Lines 4-7). To this end, the
code to perform the modeled computations is generated (Line 5), and then to
produce the final output (Line 6).

Algorithm 3: Pseudo code for SDF kernel code generation of a
process p.

1 ConsumeTokens(inBuf(p)) > generate code to consume from all inputs
2 foreach action ain p do

3 EvaluateGuard (. ) D> generate code to evaluate the guard of «
4 if GuardValid (7, ) then > generate code to fire «
5 PerformComputations(a) > code to perform computations
6 ProduceTokens(outAct(«)) > code to produce for all outputs
7 end

8 end

The generated kernel for a static process ITE as shown in Figure 4.2 is

listed in Listing 5.1. The complete generated kernel code including all library
functions are given in Appendix A.
OpenCL specific code segment. This segment (Lines 1-14) is mainly com-
posed of the following parts: The generated kernel header uses the name of
the process and defines the argument list (Line 1). The argument list mainly
describes the OpenCL memory objects for the input and output FIFO buffers
of the process. These memory objects are used by the host for data commu-
nication to and from the kernels (device side). These objects are defined with
the global address space name that allocates them in the global memory shared
between the host and devices. For better memory performance, the kernel in-
stances (work-items) do not directly perform operations on the slower global
memory. Instead, an array each is declared for the sequences of input/output
tokens with the private address space name (Lines 4-11), which refers to a
faster memory region only visible to individual instances. In each execution
of a SDF process, only a particular action is executed, which depends on the
enabled guard. To avoid unnecessary duplication, an array is declared for each
input/output based on the statically determined consumption/production rate
(Lines 4-7). Second, the individual input/output token variables are declared
and pointed to their respective sequences i.e., arrays (Lines 8-11).

Moreover, the code generator generates generic kernel code (Lines 13-14) to
enable the centralized host to dispatch multiple execution (instances) of ker-
nels on the device at a time. The generic code involves two main components:
First, the OpenCL function get_global_id(0) provides the unique global ID for
the particular kernel instance or thread based on the number of instances
dispatched by the host to execute the kernel. These dispatched instances are
ideally executed in parallel on the device where each instance operates on data
based on its own unique ID. We further introduced an additional parameter,
namely blockSize (Lines 13-14) that allows us to manage the amount of work-
load associated with each instance. blockSize coalesces multiple instances in a
single instance and executes them sequentially inside a loop (Line 14). Conse-
quently, increasing blockSize implies increasing the workload per instance and
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1 __kernel void ITE ( __global fifo_tx X1 , __global fifo_tx X2
, --global fifo_t* X3, __global fifo_t*x Y, int blockSize)

/*Generate Declarations for All Inputs and Outpuls*/
__private int seq-X1[1];

__private int seq-X2[1];

__private int seq_-X3[1];

__private int seq-Y [1];

int*x xl_actl = &seq-X1[0]; intx xl_act2 = &seq_X1[0];
9 int* x2_actl = &seq_-X2[0]; int*x x2_act2 = &seq_-X2[0];
10 intx x3_actl = &seq_-X3[0]; int*x x3_act2 = &seq-X3[0];
11  int*x y_actl = &seq .Y [0]; int*x y_act2 = &seq.Y [0];

12 /*Generate Generic Kernel Codex/

13 int gid = get_global_id (0) * blockSize;

14 for (int x = 0; x < blockSize; x++) {

0~ O Uk Wi

15 /xGenerate SDF Specific Kernel Codex/
16 fifoRead (X1, seq-X1, 1, gid, &cnt_-X1);
17 fifoRead (X2, seq-X2, 1, gid, &cnt_X2);
18 fifoRead (X3, seq-X3, 1, gid, &cnt_X3);
19 if (xx1l_actl >= 0 ) {

20 xy_actl = xx2_actl;

21 fifoWrite (Y, seq.Y, 1, gid, &cnt_Y);
22

23 else if(xxl_act2 < 0 ) {

24 *y_act2 = xx3_act2;

25 fifoWrite (Y, seq-Y, 1, gid, &cnt Y);
26 }

27T}

28 }

Listing 5.1: Generated kernel for ITE as illustrated in Figure 4.2.

hence decreasing the total number of parallel instances. The combination of
the unique global ID and blockSize can be effectively used by the host to fine
tune the amount of data level parallelism according to the available resources,
and most importantly, based on the kinds of behaviors of processes. For ex-
ample, if the target device is a CPU offering only few cores, a larger blockSize
usually achieves better performance [RaScl9]. Second, if a process exhibits
a dynamic behavior, multiple instances can not be executed in parallel and
therefore a blockSize equal to the number of instances can be used by the
host.

SDF MoC specific code segment. This code segment (Lines 15-27) is
strictly generated based on the scheme presented in Algorithm 3. First, the
tokens are consumed from all inputs of the process (Line 16-18). Finally, a
particular action (i.e., either actl or act2) is executed based on the activation
of guard. To this end, if the guard is true for actl (Line 19), a token consumed
from the input X2 is written to the output Y (Lines 20-21). On the other
hand, if the guard is true for act2 (Line 23), a token consumed from the input
X3 is written to the output Y (Lines 24-25).
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KPN Code Generator

The KPN MoC supports static as well as sequential behaviors. Since, processes
in KPNs are sequential, their firing rules (including guards) can be evaluated
sequentially in a predefined order. In particular, a process is only triggered by
the host for execution if it is already known that the guard of one of the actions
is evaluated to true. In contrast to the SDF MoC, the guards are therefore
evaluated at the time of scheduling on the host side. This essentially simplifies
the kernel code generation, however, on the other hand, relatively complicates
the scheduling. The code generation based on the underlying semantics of the
KPN MoC is illustrated by the pseudo code given in Algorithm 4.

For a process in KPN, the proposed algorithm works as follows: It iterates
through the set of modeled actions in the order of their definitions (Line 1)
where for each action, it proceeds as follows: First, the code is generated that
checks if the already evaluated guard is valid for the action (Line 2). Next,
the code is generated for the case if the guard is valid (Lines 3-5). To this end,
the code is generated to consume tokens from all inputs of the action (Line 3).
Second, the generated code for the modeled computations is inserted (Line 4),
prior to generating the code for writing the computed results on the outputs
(Line 5). In contrast to the SDF MoC, where data is consumed from all inputs
of the process in each execution, the KPN MoC only consumes data from the
inputs of an enabled action.

Algorithm 4: Pseudo code for KPN kernel code generation of a
process p.

1 foreach action ain p do

2 if FvaluatedGuardValid(a) then
3 ConsumeTokens(inAct(«))

a PerformComputations(a)

5 ProduceTokens(outAct(a))
6 end
7 end

The generated kernel for a sequential process split as shown in Figure 4.3 is
listed in Listing 5.2.
OpenCL specific code segment. As discussed, this code segment is largely
same for all supported dataflow MoCs. In contrast to the SDF MoC, where
the guards are evaluated within kernels at the device side, in the case of KPN,
the guards are evaluated at the host side typically at the time of scheduling.
The host provides the information regarding the evaluated guards to the kernel
using a data structure evaluatedGuard through the argument list (Line 1). In
particular, each element of evaluatedGuard holds the identifier for an action
whose guard is valid for a particular instance. In each execution of a process,
only a particular action is executed, which depends on the enabled guard. To
avoid unnecessary duplication, an array is declared for each input/output with
the highest consumption/production rate of all actions. For instance, an array
is declared for the input X2 with the highest consumption rate of both actions
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1 __kernel void split ( __global fifo_tx X1 , __global fifo_t=x
X2, __global fifo_t* Y1 |, __global fifo_tx Y2, __global
int* evaluatedGuard, int blockSize)

2

3 /xGenerate Declarations for All Inputs and Outputsx/
4 __private int seq-X1[1];

5 __private int seq_-X2[2];

6 __private int seq-Y1[1];

7 __private int seq_-Y2[1];

8 int* xl_actl = &seq_-X1[0]; int* x1l_act2 = &seq_-X1[0];
9 int*x x2_actl = &seq-X2[0];

10  int* x2a_act2 = &seq_-X2[0]; int* x2b_act2 = &seq-X2[1];
11 int* yl_actl = &seq_-Y1[0]; int* yl_act2 = &seq_-Y1[0];
12 int*x y2_act2 = &seq_-Y2[0];

13 /+xGenerate Generic Kernel Codex/

14 int gid = get_global_id (0) % blockSize;

15 for (int x = 0; x < blockSize; x++) {

16 /*Generate KPN Specific Kernel Codex/

17 if (evaluatedGuard [x] = 0) {

18 fifoRead (X1, seq-X1, 1, gid, &cnt_-X1);
19 fifoRead (X2, seq-X2, 1, gid, &cnt_X2);
20 *yl_actl = *xx2_actl;

21 fifoWrite (Y1, seq-Y1, 1, gid, &cnt_-Y1);
22 }

23 else if (evaluatedGuard[x] = 1) {

24 fifoRead (X1, seq-X1, 1, gid, &cnt_-X1);
25 fifoRead (X2, seq-X2, 2, gid, &cnt_X2);
26 *yl_act2 = xx2a_act2;

27 xy2_act2 = xx2b_act2;

28 fifoWrite (Y1, seq-Y1, 1, gid, &cnt_Y1);
29 fifoWrite (Y2, seq.Y2, 1, gid, &cnt_Y2);
30 }

31 }

32 }

Listing 5.2: Generated kernel for split as illustrated in Figure 4.3.

(Line 5). The remaining code of this segment is exactly the same as explained
for the SDF MoC.

KPN MoC specific code segment. This code segment (Lines 16-31)
is strictly generated based on the scheme presented in Algorithm 4. The
generated code simply fires the enabled action whose guard is evaluated true
at the time of scheduling. As discussed, evaluated Guard provides the identifiers
of actions whose guards are valid for particular iterations.

A particular action (i.e., either actl or act2) is executed in each iteration
based on the activated guard. To this end, if the guard is true for actl (Line
17), a single token is consumed from X1 and a single token is consumed from
X2 which is then written to the output Y'1 (Lines 18-21). On the other hand,
if the guard is true for act2, a token is consumed from X1, and two tokens
are consumed from X2, where the first token of X2 is written to Y1, and the
other to Y2 (Lines 24-29).
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DDF Code Generator

The used variant of the DDF MoC supports sequential as well as parallel
behaviors. In DDF, the decision on whether to consume tokens and to fire
each action of a process is made dynamically at runtime when that particular
process is triggered for execution. A process is simply scheduled by the host
for execution if only one of its inputs has required tokens and only one of its
outputs has required space. In contrast to SDF and KPN MoCs, the firing
rules (including guards) of processes in DDF are completely evaluated within
kernels at the device side. Each DDF kernel therefore must indicate to the
host the number of tokens consumed/produced in each FIFO buffer for the
dispatched execution instances. This fairly complicates the code generation of
kernels. In particular, the code generator incorporates a number of DDF MoC
specific library functions designed to enable the dynamic evaluation of actions
within kernels. The code generation based on the underlying semantics of the
used DDF MoC is illustrated by the pseudo code given in Algorithm 5.

Algorithm 5: Pseudo code for DDF kernel code generation of a
process p.

1 PeekTokens(inBuf(p)) > code to peek from inputs of all actioms
2 foreach action o in p do

3 if TokensAwvailable(inGrd(a)) then

4 EvaluateGuard(ya)

5 if GuardValid(y.) €6 TokensAvailable(inAct(a)\inGrd(c)) €€
SpaceAvailable(outAct(a) ) then D> code to check o is enabled

6 ConsumeTokens(inAct(«))

7 PerformComputations(c)

8 ProduceTokens(outAct(a))

9 end

10 else if GuardValid(va) 66 !(TokensAvailable(inAct(a)\inGrd(«)) €564
SpaceAvailable (outAct(c))) then

11 ‘ WriteBuffersStatus(inAct(a)) > write status of tokens/space

12 end

13 end

14 end

First, the code is generated to peek tokens from all inputs for all actions of
the process (Line 1). The algorithm then iterates through the modeled set of
actions in the order of there definitions (Line 2). For each action, the algorithm
proceeds as follows: First, the code is generated to check if enough tokens are
available in the inputs used by the guard (Line 3). Second, code evaluating
the guard is generated (Line 4). Next, the code is generated to fire an action
(Lines 5-9). This involves code for checking if the guard is valid, the required
number of tokens are available in all inputs and the required amount of space
is available in all outputs (Line 5). The code is then generated for the enabled
action (Lines 6-8) which involves code for consuming all inputs, performing
modeled computations, and writing the computed results on the outputs. The
code generator further generates code for the case if although the guard is true,
however, either at least one of the inputs does not have enough tokens, or at
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least one of the outputs does not have enough space (Lines 10-12). In this case,
code is generated to ascertain the status of tokens and space in each input and
output FIFO buffer of the action, respectively. The status of each buffer in this
respect is written and conveyed to the host using a data structure (Line 11).
This case is typically used to indicate which input buffers lack the required
number of tokens and/or which output buffers lack the required space. This
information can be utilized by the host to optimize the scheduling if required.
In particular for sequential behaviors where only one of the actions fires in
each execution, the scheduler can wait only for the required tokens/space in
the inputs/outputs of the action whose guard was evaluated valid. This allows
the host to avoid the overhead caused by repeatedly dispatching the kernels
on the device unless tokens/space are available in the indicated buffers.

The generated kernel for a parallel process POR as shown in Figure 4.4 is
listed in Listing 5.3. The complete generated code is given in Appendix A.
For brevity, we illustrate here the generated code for the first two actions (actl
and act2).

OpenCL specific code segment. This code segment is exactly generated
in the same way as generated in the case of the SDF MoC.

DDF MoC specific code segment. This code segment (Lines 13-49) is
strictly generated based on the scheme presented in Algorithm 5. First, the
tokens are peeked from all inputs for all actions of the process (Lines 14-17).
The generated code then simply evaluates each action for firing. If there are
enough tokens available in the inputs used for guard (Lines 21 and 35), the
guard is evaluated (Lines 22 and 36). If the guard is valid and the required
number of tokens and the required amount of space is available in all input and
output FIFO buffers, respectively, the action is fired (Lines 26-30 and 40-44).
Depending on the availability of tokens/space and the enabled guard, either
one or both of the actions (actl and act2) can be executed in each iteration.
In particular, if both actions are enabled, a token each is consumed from both
inputs X1 and X2 (Lines 27 and 41) and a token each is produced to the output
Y (Lines 28-29 and 42-43) by both actions. In case if the guard is enabled for
one of the actions (say actl), however, there is no space available in the output
Y, the status of tokens and space in X1 and Y, respectively, are determined and
written using the DDF MoC specific library function fifo WriteStatus (Lines
32-33).
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1 __kernel void POR ( -_global fifo_tx X1 , __global fifo_tx X2,
__global fifo_tx Y, int blockSize)

2 {

3 /*Generate Declarations for All Inputs and Outputsx/

4 __private bool seq.X1[1]; __private bool seq-X2[1];

5 __private bool seq.Y [1];

6  boolx xl_actl = &seq-X1[0]; boolx xl_act3 = &seq_-X1[0];

7  boolx x2_act2 = &seq_-X2[0]; boolx x2_act3 = &seq_-X2[0];

8  boolx y_actl = &seq-Y [0]; boolx y_act2 = &seq-Y [0];

9  boolx y_act3 = &seq-Y [0];

10  /+«Generate Generic Kernel Codex/

11 int gid = get_global_id (0) % blockSize;
12 for (int x = 0; x < blockSize; x++) {

13 /*Generate DDF Specific Kernel Codex/

14 bool ctrl-X1_actl = fifoPeek (X1, seq-X1, 1, gid, &cnt_-X1);

15 bool ctrl_-X1_act3 = fifoPeek (X1, seq-X1, 1, gid, &cnt_-X1);

16 bool ctrl_X2_act2 = fifoPeek (X2, seq.X2, 1, gid, &cnt_X2);

17 bool ctrl_-X2_act3 = fifoPeek (X2, seq-X2, 1, gid, &cnt_-X2);

18 bool ctrl_-Y_actl = fifoSpace(Y, 0, Y>tail+gid, &cnt Y ,1);

19 bool ctrl_.Y_act2 = fifoSpace(Y, 0, Y>tail4gid, &cnt Y ,1);

20 bool ctrl_-Y_act3 = fifoSpace(Y, 0, Y>tail4+gid, &cnt Y ,1);

21 if (ctrl-X1_actl){

22 guard_actl = (xx1l_actl = true );

23 eval_impl_actl = evallmplication (guard-actl ,
ctrl_X1_actl && ctrl_-Y_actl);

24 }

25 else fifoWriteStatus (X1, 1, Xl->head + gid, &cnt-X1, 1);

26 if (eval_-impl_actl = ’17){

27 fifoReadDDF (X1, 4, Xl->head + gid, &cnt_X1, 1);

28 xy_actl = true;

29 bytes = fifoWriteDDF (Y, seq.Y, 1, gid, &cnt_-Y);

30 }

31 else if (eval_impl_actl = ’0’"){

32 fifoWriteStatus (X1, 1, Xl-—>head + gid, &cnt-X1, 1);

33 fifoWriteStatus (Y, 2, Y>tail 4+ gid, &cnt .Y, 1);

34 }

35 if(ctrl-X2_act2){

36 guard_act2 = (xx2_act2 = true );

37 eval_impl_act2 = evallmplication (guard_act2
ctrl_X2_act2 && ctrl_-Y_act2);

38 }

39 else fifoWriteStatus (X2, 1, X2->head + gid, &cnt-X2, 1);

40 if (eval_-impl_act2 = ’17){

41 fifoReadDDF (X2, 4, X2—>head + gid, &cnt_-X2, 1);

42 *y_act2 = true;

43 bytes = fifoWriteDDF (Y, seq.Y, 1, gid, &cnt_-Y);

44

45 else if (eval_impl_act2 = ’0’"){

46 fifoWriteStatus (X2, 1, X2->head + gid, &cnt-X2, 1);

47 fifoWriteStatus (Y, 2, Y>tail 4+ gid, &cnt .Y, 1);

48 }

49 }

50 }

Listing 5.3: Generated kernel for POR as illustrated in Figure 4.4.
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5.2. Runtime System

The runtime system systematically employs OpenCL in the composition of
the synthesis components to finally map and execute models based on different
dataflow MoCs on COTS target hardware. The runtime system is typically or-
ganized in a centralized host and kernels architecture, built under the OpenCL
abstraction as shown in Figure 5.1. The host accommodates different essen-
tial components along with the Runtime-Manager. These components work
together to implement low-level details such as the schedulers, the communica-
tion mechanism, resource allocation, kernels mapping and handling etc. This
section covers all the runtime components and explains in detail the workflow
of the composition of different components.

5.2.1. Process and Device Queues

The Process-Queue is generated for the host at the back-end. Each element
of this queue provides a special object of a process. Each object provides the
specific attributes of the process to the host. This includes: the process name,
the identified dataflow MoC, the associated FIFO buffers, the type of each
buffer, and the process type. The queue, once generated, is maintained and
updated by the host. In particular, the host assigns each object the process’s
status (idle, running or blocked) and the associated kernel. Although the
Process-Queue is generated at the back-end, however, it is a key component
of the host and therefore we present the complete details in this section.

The back-end merely parses the network description file (zdf) and automat-
ically generates the Process-Queue. As discussed and illustrated in Listing 2.2,
xdf is mainly composed of two basic elements, namely Instance and Connec-
tion fields. Each Instance represents a process. The name of each process is
described under the attribute id in Instance. Each Connection represents a
FIFO buffer connecting two processes. The name of the destination process
and the name of the source process of each FIFO buffer are described under the
attributes dst and src, respectively, in Connection. Instance fields are further
updated with the dataflow MoCs determined at the back-end. The underlying
dataflow MoC of each process is described under the attribute MoC in In-
stance. The pseudo code for generating the Process-Queue using the network
file zdf is given in Algorithm 6.

The algorithm constructs each object in the queue by extracting the required
attributes of the process from Instance and Connection fields in zdf. First,
the name and the identified dataflow MoC are assigned to each object by
extracting the values of attributes id and MoC, respectively, from Instance
fields (Lines 4-7). Second, the number of FIFO buffers used in each process
is determined by calculating the number of Connection fields where a process
appears as either a destination or a source (Lines 9-14). Each FIFO buffer
in a process can either be an input or an output buffer. The type of each
FIFO buffer in a process is determined by checking in Connection fields if
the process is featured as a destination or a source. A connection where the
process appears as a destination determines an input FIFO buffer of that
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Algorithm 6: Pseudo code for Process-Queue generation

1 NumOfProcesses < number of instances in xdf
2 ProcessQueue < CreateProcessQueue(NumOfProcesses)
3 foreach process object p in ProcessQueue do

4

© N o w;

10
11
12
13
14
15 end

foreach instance i in zdf do D> extract name and MoC of process
p.Name « i.Attribute(”id”)
p-MoC « i.Attribute(”MoC”)
end
NumOfFIFOs « 0
foreach connection c in zdf do D> extract number of FIFOs of process
if p.Name == c.Attribute(”dst”) || p.Name == c. Attribute(”src”) then
‘ NumOfFIFOs < NumOfFIFOs + 1
end
end
p.NumOfFIFOs < NumOfFIFOs

16 foreach process object p in ProcessQueue do

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 end

Count < 0

FlagProducer « false

FlagConsumer <« false

while Count <p.NumOfFIFOs do > extract type of FIFO and process
foreach connection c in zdf do

if p.Name == c.Attribute(”dst”) then

p.FIFO[Count].Type « ”input”

FlagConsumer <« true

end

else if p.Name == c.Attribute(”src”) then
p.FIFO[Count].Type « ”output”
FlagProducer « true

end
p.FIFO[Count].UniquelD <« connection count [> assign unique ID
Count « Count + 1

end

end

if FlagProducer &€& FlagConsumer then
‘ p.type < ” Worker”

end

else if FlagConsumer then
‘ p.type < ”Consumer”

end

else if FlagProducer then
| p.type < ”Producer”

end

FlagProducer « false

FlagConsumer <« false
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process (Lines 22-25). Similarly, a connection where the process appears as
a source determines an output FIFO buffer (Lines 26-29). Each FIFO buffer
in the network is assigned with a unique identifier provided by the number of
the connection field. These unique identifiers are stored in the process objects
to identify the associated FIFO buffers of each process (Line 30). Finally,
the type of each process is determined by examining the types of buffers used
in the process (Lines 34-42). If a process features both input and output
buffers, it is recognized as a Worker process. In case if a process only involves
input buffers, it is termed as a Consumer. On the contrary, it is termed as a
Producer if only output buffers are used. The process type is effectively used
by the schedulers to only look for the used types of buffers.

Apart from the Process-Queue that is provided by the back-end, the host
also generates a queue, namely the Device-Queue, using the OpenCL speci-
fication as depicted in Figure 5.1. The Device-Queue lists all the available
devices of the target hardware. Each element of this queue provides a special
object of a device. The device object provides an interface that is used by
the host to access and to use the device for systematically executing kernels.
In particular, each object features a command queue of a device, where the
processes (kernels) can be mapped for execution. Each command queue can
represent a complete device (e.g., a CPU) or even a compute unit of that
device (e.g., a CPU-core). Specifically for CPUs, OpenCL features the con-
cept of device fission' that allows one to subdivide a device into one or more
sub-devices. To this end, a sub-device can be created for each CPU core and
for each sub-device a dedicated command queue can be assigned. In contrast
to CPUs, OpenCL does not support GPUs for device fission. OpenCL only
grants access up to the device level for creating command queues for GPUs.
A command queue can therefore only be generated for the complete device for
GPUs.

The device object also provides the information about the processes cur-
rently running on the device. Moreover, it also contains the OpenCL event
object and the corresponding callback handler pointer associated with the
command queue of the device. The event object and the handler pointer are
typically used by the dispatcher and the handler to realize a smooth workflow
of the complete system from host to device and back to host.

5.2.2. The Runtime-Manager

The heart of the runtime system around which the overall implementation
circulates is the Runtime-Manager, as shown in Figure 5.1. The Runtime-
Manager is a part of the host that uses the Process-Queue and the Device-
Queue, and provides: the schedulers for scheduling processes based on the
supported dataflow MoCs, the communication mechanism between the host
and kernels, a dispatcher for mapping kernels to devices, and a handler mech-
anism for kernels using specialized callbacks.

"https://www.khronos.org/registry/OpenCL/extensions/ext/
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Schedulers

The schedulers are designed to schedule processes in the network based on the
underlying precise dataflow MoC of each process. To support the execution of
heterogeneous dataflow models characterized by different kinds of behaviors,
the Runtime-Manager provides a two-level hierarchical scheduling scheme. At
the first level, a baseline global scheduler is used that works in a dynamic round
robin scheme. At the second level, specialized local schedulers are used, where
each local scheduler is designed for a particular dataflow MoC. Altogether, the
baseline global scheduler iterates through the Process-Queue in a round-robin
fashion, and invokes the corresponding local scheduler for each process based
on its underlying dataflow MoC. All the local schedulers are designed based on
the dynamic data driven scheduling schemes mainly because of the following
reasons: The target DPNs involve heterogeneous dataflow models consisting
of static as well as dynamic behaviors. A common consistent dynamic environ-
ment is therefore needed to systematically schedule and execute heterogeneous
models. Second, as the proposed synthesis method targets parallel architec-
tures like GPUs, the dynamic scheduling scheme may potentially benefit from
the data level parallelism (DLP) by mapping multiple executions in parallel
based on the availability of data at runtime. Nevertheless, for a fully SDF
network only consisting of static processes, one can generate a static scheduler
at compile time.

Algorithm 7: Pseudo code for the baseline global scheduler.

1 while true do

foreach process p in the network do

if ProcessStatusldle(p) then

if DataflowMoC(p) == 7SDF” then
| CallSDFScheduler(p)

end

else if DataflowMoC(p) == "KPN” then
| CallKPNScheduler(p)

end

else if DataflowMoC(p) == "DDF” then
| CallDDFScheduler(p)

end
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end

fun
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14 end

15 end

Baseline Global Scheduler The Runtime-Manager employs a simple global
scheduler typically designed to handle the invocation of the specialized local
schedulers for scheduling heterogeneous dataflow models. The global schedul-
ing scheme is depicted in Algorithm 7.

As DPNs do not generally enforce any termination criteria, the global sched-
uler runs forever (Line 1). It works in a round-robin fashion and selects the
next process in the Process-Queue that is not currently running, in particu-
lar, has no pending dispatched executions (Lines 2-3). In case if a process
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has a pending call i.e., all dispatched kernel instances are not completely exe-
cuted, the next invocation of this process is delayed until the process’s status
is idle again. The scheduler simply invokes the local scheduler of the selected
process according to the identified underlying dataflow MoC provided by the
Process-Queue.

In the following, we present the specialized local schedulers based on the
supported dataflow MoCs.

SDF Scheduler The scheduling scheme based on the SDF MoC is depicted
in Algorithm 8. A process based on the SDF MoC always consumes and
produces fixed number of tokens in each execution. This greatly simplifies the
scheduling, in particular, a process is simply scheduled for execution if there
is enough data available in all input buffers (Line 2) and if there is enough
space available in all output buffers (Line 3).

Algorithm 8: Pseudo code for the SDF scheduling scheme.

1 for process p with SDF MoC' in the network do

2 if TokensAwvailable(inBuf(p)) then D> in all input buffers of p
3 if SpaceAvailable(outBuf(p)) then D> in all output buffers of p
4 ‘ ScheduleForExecution(p)

5 end

6 end

7 end

Algorithm 9: Pseudo code to determine the number of parallel
instances using the SDF scheduling scheme.

1 for process p with SDF MoC' in the network do
2 TokensAvailable « MaxBufferSize

3 SpaceAvailable « MaxBufferSize
4
5

foreach input FIFO inF in inBuf(p) do
TokensAvailable < min(TokensAvailable,
TokensAvailable(inF') /ConsumptionRate(inF'))

6 end
7 foreach output FIFO outF in outBuf(p) do
SpaceAvailable < min(SpaceAvailable,
SpaceAvailable(outF') /ProductionRate(outF'))
9 end
10 NumOflInstances = min(TokensAvailable, SpaceAvailable);
11 end

Moreover, the OpenCL abstraction offers the opportunity to exploit data
level parallelism (DLP) by performing the same operation on different data
in parallel. Depending on the availability of data tokens, multiple instances
of a process (i.e., its kernel) can be dispatched and executed in parallel on
the target device. However, this can be achieved only if each dispatched
instance knows exactly where to read/write its input/output data. Hence,
DLP is only possible for SDF processes exhibiting static behaviors. The SDF
scheduling scheme therefore can target DLP by calculating the number of
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parallel instances of a process based on the availability of data at runtime.
The scheme used by the SDF scheduler to determine the number of instances
is illustrated by the pseudo code given in Algorithm 9.

The algorithm first calculates the minimum available tokens across all inputs
of a process by dividing the available number of tokens in each input FIFO
buffer with the number of tokens consumed per instance on that buffer (Line
5). Second, it calculates the minimum available space across all outputs by
dividing the available free space in each output FIFO buffer with the number
of tokens produced per instance on that buffer (Line 8). Finally, the num-
ber of parallel instances is calculated as the minimum value of the minimum
available tokens and the minimum available space (Line 10). The scheduled
process is then forwarded to the dispatcher along with the calculated number
of instances.

KPN Scheduler As discussed, the KPN MoC supports static as well as se-
quential behaviors. A process is only scheduled for execution if it is already
known that the firing rules (including guard) of one of the actions are valid.
The firing rules in a process are therefore evaluated at the time of scheduling.
This relatively complicates the scheduling. The scheduling scheme based on
the KPN MoC is illustrated by the pseudo code given in Algorithm 10.

Algorithm 10: Pseudo code for the KPN scheduling scheme.

1 for process p with KPN MoC in the network do
foreach action a in p do
if TokensAvailable(inGrd(c)) then > input buffers used by guard
EvaluateGuard(vya)
if GuardValid(.)) then
if TokensAwvailable(inAct(a)\inGrd(a)) then
if SpaceAvailable(outAct(c)) then
| ScheduleForExecution(p)
end
else
BlockUntilSpaceAvailable(p)
break foreach loop
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end
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BlockUntilTokensAvailable(p) D> blocking read of KPN
break foreach loop
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21 end

22 end

Since the KPN MoC supports processes having sequential behaviors, it
schedules a process for execution by evaluating the firing rules (including
guards) sequentially in a predefined order. The KPN scheduler iterates
through the set of modeled actions in the order of their definitions where
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for each action, it works as follows: First, the scheduler checks if enough to-
kens are available in the input buffers used by the guard (Line 3). If enough
tokens are available and if the guard is valid (Line 5), the remaining (non-
guarded) input buffers of the action are checked for enough tokens (Line 6).
Only if there are enough tokens available, the output buffers are checked for
space (Line 7). If enough space is available, the action is finally scheduled for
execution (Line 8). In case if one of the conditions does not meet, the process
is blocked until that condition is fulfilled (Lines 11 and 16).

Since the host and generated kernels are independent components, the
evaluation sequence or order needs to be extracted from modeled processes
at compile time. The extracted sequence can be used by the KPN scheduler
at runtime to schedule processes for execution. To this end, we propose
a systematic way of extracting the evaluation sequence by introducing the
input-output tree wrapper (I10T-wrapper).

Introducing IOT-wrapper: The IOT-wrapper wraps the exact informa-
tion of inputs/outputs required to schedule a process in a standard tree struc-
ture, while taking into account the underlying semantics of the KPN MoC.
For each process, a wrapper is generated at compile time from the modeled
behavior. The IOT-wrapper generation based on the underlying KPN seman-
tics is illustrated by the pseudo code given in Algorithm 11. For each process
with KPN MoC, the proposed algorithm works as follows:

The IOT-wrapper is initialized, first, by adding the root node, and second,
by generating and assigning a function StepFunction to the root node (Lines 2-
16). The StepFunction of the root node is generated with the code specifically
related to the guards (Lines 4-16) and hence also termed as guard node. In
particular, the code is generated for each action in the order in which actions
were defined to first check if each input used for guard has enough tokens (Line
7), and second to evaluate the guard (Line 8). For each action, if the guard
is true (Line 9), the StepFunction returns the action number num € Z (Line
10) that corresponds to a specific branch in the tree originating from the root
node. The algorithm then iterates through the modeled set of actions in the
order of there definitions (Line 18). For each action, the algorithm first adds
nodes for all the remaining (non-guarded) inputs (Lines 20-38). For each non-
guarded input, the algorithm proceeds as follows: First, if the current node
is the root node, a new node is added at a specific branch of the root node
provided by the variable num (Line 22), which is incremented by one for each
action (Line 58). On the contrary, if the current node is not the root node, a
new node is always added at the branch 0 (leftest) of the current node (Line
34). Second, for a non-guarded input node, the StepFunction is generated
with the code to check if that input has enough tokens (Lines 23-30). The
algorithm then adds nodes for all the outputs (Lines 39-57). In contrast to an
input node, the StepFunction of an output node is generated with the code to
check if that output has enough space (Line 42-49).

The IOT-wrapper generated for a sequential process split as illustrated in
Figure 4.3, is shown in Figure 5.2. The root node only involves the input
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TokensAvailable(X1) && GuardValid (act1) TokensAvailable(X1) && GuardValid(act2)

TokensAvailable(X2) TokensAvailable(X2)

SpaceAvailable(Y1) SpaceAvailable(Y1)

SpaceAvailable(Y2)

&
g
&

Figure 5.2.: Generated IOT-wrapper for split process as shown in Figure 4.3: it
consists of two branches where each branch corresponds to a particular
action i.e., actl or act2 of the process. The step functions of all nodes
are illustrated in dashed boxes.

X1 as it is the only input used for guard by the process. The StepFunction
generated and assigned to each node is shown in dashed boxes. The set of
branches originating from the root node and extending up to the leaf node
represents a particular action. For instance, act2 is represented by branches
originating from the root node (X1) and extending up to the leaf node (Y2).

KPN Scheduler based on I0T-wrapper: The KPN scheduler is pro-
vided with the generated IOT-wrappers of all processes in the used network.
It uses a variant of the depth-first search (DFS) method [Tarj72] that starts
at the root of the tree, selects a branch, and traverses through that branch as
deep as possible until the leaf node is reached. In general, for each node, the
scheduler calls the assigned StepFunction, and only moves to the next node
if the function returns true. In particular, the StepFunction of the root node
returns a number num € Z mainly dependent on which guard is true. This
number is used to select a specific branch originating from the root node that
directs to a specific action whose guard is true. In case if the leaf node is
reached and its StepFunction returns true, the scheduler triggers the process
for execution. On the contrary, if the StepFunction of one of the nodes returns
false, the process gets blocked until that node returns true.

DDF Scheduler The DDF MoC evaluates the firing rules (including guard)
of each action in a process as a part of the kernel at the device. This greatly
simplifies the scheduling at the host and in fact the scheduler based on the
DDF MoC is the simplest of all supported dataflow MoCs. The scheduling
scheme based on the DDF MoC is illustrated by the pseudo code given in
Algorithm 12. It follows an optimistic scheduling strategy that expects the
firing of actions even if there is data available in only one input buffer and if
there is space available in only one output buffer of the process. A process is
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Algorithm 11: Pseudo code for generating IOT-wrappers for all
KPN processes in the network.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60 end

foreach process p with KPN MoC do

Initialize IOT-wrapper{

add

root (guard) node

for root node, generate StepFunction{
num < 0
foreach action a in p do

end

if TokensAwvailable(inGrd(a)) then
EvaluateGuard(ya)
if GuardValid(ya) then
‘ Yreturn num;”
end
end
num < num + 1

7return -1;” > in the case if none of the actions is enabled

1

num « 0
foreach action o in p do

end

current node = root node
foreach input FIFO inF in inAct(a)\inGrd(a) do > all non-guarded inputs
if current node == root node then
new node = add child node to current node at branch num
for new node, generate StepFunction{
if TokensAwvailable(inF) then
‘ Preturn true;”
end
else
‘ ?return false;”
end

current node = new node

end

else

new node = add child node to current node at branch 0

for new node, generate StepFunction{ same as Lines 24-29 }
current node = new node

end

end

foreach output FIFO outF in outAct(c) do > for all outputs
if current node == root node then

new node = add child node to current node at branch num
for new node, generate StepFunction{
if SpaceAvailable(outF) then
‘ ”return true;”
end
else
| 7return false;”
end
}
current node = new node
end
else
new node = add child node to current node at branch 0
for new node, generate StepFunction{ same as Lines 43-48 }
current node = new node

end

end
num < num + 1
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Algorithm 12: Pseudo code for the DDF scheduling scheme.

for process p with DDF MoC in the network do
if TokensAvailableAnyInputFIFO(p) then
if SpaceAvailableAnyOutputFIFO(p) then
‘ ScheduleForExecution(p);
end

1
2
3
4
5
6 end
7
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Figure 5.3.: The dispatching and handling mechanism of the Runtime-Manager.
The dispatcher provided with the scheduled process maps the associ-
ated kernel on the command queue of the target device. The handler
is mainly responsible for updating the runtime components at the host
after the dispatched executions are performed.

therefore simply scheduled by the host for execution if there is enough data
available in at least one of the input buffers (Line 2) and if there is enough
space available in at least one of the output buffers (Line 3).

With that, we illustrated all the specialized schedulers based on the sup-
ported dataflow MoCs. In the following, we present two of the main compo-
nents of the Runtime-Manager, namely the dispatcher and the handler.

Dispatcher

In general, a dispatcher is a special program which comes into play after the
scheduler. When the scheduler completes its job of selecting a process, it is the
dispatcher that gives a process control over the target device. The runtime sys-
tem of the proposed framework also provides a special dispatcher built under
the OpenCL abstraction. The global scheduler evokes one of the local sched-
ulers based on the dataflow MoC of a process. The evoked scheduler fetches
a ready process from the Process-Queue and provides it to the dispatcher as
depicted in Figure 5.3. The dispatcher acquires the device object from the
Device-Queue and finally maps the fetched process on the command queue of
the target device. The generated kernel of the dispatched process is then exe-
cuted based on the used dataflow MoC. Moreover, the dispatcher also receives
the number of instances of the process from the schedulers. The dispatcher
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dispatcher
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Figure 5.4.: Exploiting data level parallelism in SDF. A simple example of data
level parallelism exploited in a kernel based on the SDF scheme pre-
sented in Algorithm 9 is illustrated in this figure.

therefore maps multiple instances of the corresponding OpenCL kernel on the
device that depending on the underlying dataflow MoC either execute sequen-
tially or in parallel. In particular for the SDF processes, multiple instances
(work-items) of the corresponding kernels can be mapped in parallel by the
dispatcher as illustrated in Algorithm 9. To exemplify, a simple example is
illustrated in Figure 5.4 that considers a kernel of the SDF process having a
single input buffer and a single output buffer. The consumption rate of the
input buffer as well as the production rate of the output buffer is considered
to be equal to one. A total of five tokens are available on the input buffer and
a space for two tokens is available on the output buffer. The dispatcher maps
two instances of the kernel on the target device based on the SDF scheme
presented in Algorithm 9.

For the dynamic dataflow MoCs, however, the dispatcher maps sequential
executions of the kernels on the target device that are always executed sequen-
tially.

Communication Mechanism and Handlers

The proposed framework implements the FIFO buffers as bounded circular
ring buffers as shown in Figure 5.5. In general, this design enables the buffers
to work as if the memory is contiguous and circular in nature. As data is pro-
duced and consumed, it does not need to be restructured, instead, the head/-
tail pointers are updated. When data is produced, the tail pointer increments,
whereas, when data is consumed, the head pointer advances. Reaching the end
of the buffer, the pointers simply turn around to the start. The employed FIFO
structure serves two purposes, namely data transfer and, implicitly, storing the
status of tokens and space in buffers at runtime. For each data element in the
buffer, a corresponding control bit is provided that determines the presence
(denoted by '1’) or the absence (denoted by ’0’) of a data value. This design
provides a convenient structure for dynamically communicating the status of
buffers between a kernel and the host.
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Figure 5.5.: The FIFO buffers are structured as bounded circular ring buffers. The
structure supports the transfer of data as well as the communication
of the status of buffers between the host and device.

The communication between the host and kernels is realized using OpenCL
memory objects (buffers). For each bounded FIFO buffer, an OpenCL buffer
is created with the same design and size of the FIFO buffer as shown in Fig-
ure 5.5. Each process object provided by the Process-Queue stores and links
the address of each FIFO buffer with the associated OpenCL buffer. During
the execution of a process, i.e., when the kernel of a process is being executed,
data is read/written from/to the associated OpenCL buffers. When all the
instances of the kernel are executed, i.e., the dispatched process executions
are completed, the Runtime-Manager is then automatically notified to up-
date the components. For that purpose, a handler mechanism is developed
using callbacks as shown on the left part of Figure 5.3. The Runtime-Manager
generates a callback interface each, for every existing device in the Device-
Queue during the initialization of the queue. Based on the used dataflow
MoC, the Runtime-Manager provides the MoC specific implementations for
each generated callback interface. As a result, the dataflow MoC specific han-
dler mechanism is invoked. The dispatcher sets up a callback event for each
fetched process and links it with the callback handler of the device where it
is dispatched. Hence, the completion of the kernel of the dispatched process
automatically invokes the callback handler of the used device. The callback
handler performs a set of general tasks including: retrieving data from the
kernel (OpenCL buffers), updating all the FIFO buffers of the process, up-
dating the status of the process, updating the Process-Queue, updating the
device’s load, and finally updating the OpenCL buffers. However, updating
the FIFO buffers is a dataflow MoC specific task, and is therefore managed dif-
ferently for the supported dataflow MoCs. Based on the SDF MoC, the data
rate of a process remains fixed in each execution, and therefore each FIFO
buffer is simply updated based on the specified static data rate. Based on the
KPN MoC, since the processes are only scheduled if there exists one enabled
action, each FIFO buffer is simply updated based on the enabled actions of
dispatched instances. On the contrary, based on the DPN MoC, the processes
are evaluated for their firing rules within kernels. Therefore, the amount of
data consumed and produced is first measured at the host (handler) using
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the status of buffers, and finally each FIFO buffer of the process is updated

accordingly. The presented workflow of the Runtime-Manager is summarized
in Figure 5.6.

device | | Runtime-Manager

schedulers:
-select process
-call dispatcher

dispatcher:
-selects device
-sets up a callback event for the selected process
-links event with the callback handler of the selected device

-enques kernel
kernel enqueued

execute kernel

write data to OpenCL buffers

notify Runtime-Manager

handler:
-retrieve data from OpenCL buffers
-update FIFO buffers
-update process status to idle
-update Process-Queue and Device-Queue
-update OpenCL buffers

Figure 5.6.: The complete workflow starting from the Runtime-Manager to the
device and back to the Runtime-Manager is illustrated in this figure.
The tasks of the workflow are demonstrated from top to bottom.
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6.1. Overview

The proposed model-based synthesis design flow has been successfully used as
a part of our long term project Averest [ScBrl7] as illustrated in Figure 1.2.
Furthermore, it has been implemented in a standalone framework. The former
models the applications based on the synchronous reactive (SR) model of com-
putation (MoC) and essentially transforms them to dataflow process networks
(DPNs) which are then directly used by the synthesis framework to auto-
matically generate implementations [BaRS21]. In contrast, the latter directly
models the applications using the proposed models of the supported dataflow
MoCs and automatically synthesizes them to corresponding implementations.
In either case, the synthesis tool chain generally generates implementations
based on the underlying precise dataflow MoC of each process in the network
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and deploys them on any open specification language (OpenCL) abstracted
target hardware.

We therefore organized our experimental evaluations into two parts. In the
first part, the applications are modeled, synthesized and evaluated directly by
using the proposed synthesis framework. This part features two types of ap-
plications. The first type involves simple standalone benchmarks that perform
simple operations and are especially designed to evaluate and compare the ho-
mogeneous versions generated by all individual supported dataflow MoCs for
each benchmark (when possible). The second type presents a particular case
study of the ConceptCar [RaGS13; RaGS13c| where different configurations
of the ConceptCar’s architecture are used to model DPNs and automatically
generate implementations based on the individual dataflow MoCs as well as
based on their heterogeneous combinations.

In the second part, a particular case study of a building automation system
(BAS) is presented. A number of different versions of BAS with different
configurations are first modeled based on the SR MoC and then desynchronized
to DPNs using Awerest. The synthesis framework automatically generated
implementations from these desynchronized models (DPNs) either based on a
particular dataflow MoC or precisely based on the kinds of behaviors of the
processes in the network.

6.2. Experimental Setup

A variety of OpenCL supported devices have been employed for evaluation
as listed in Figure 6.1. The list involves five devices featuring three differ-
ent device types from three different vendors. In particular, two different
CPUs (CPU1 and CPU2), one integrated GPU (GPU1) and two dedicated
GPUs (GPU2 and GPU3) featuring Intel, AMD and NVIDIA have been
employed. The integrated GPU (GPU1) is built into the processor, and uses
the system memory that is shared with the CPU (CPUZ2). In contrast, the
dedicated GPUs (GPU2 and GPUS3) from AMD and NVIDIA feature their
own processors and their own source of memory. Different versions generated
for different benchmarks and case studies have been executed and evaluated
on different OpenCL supported target devices.

For different target devices, different vendor specific OpenCL implementa-
tions have been installed. This involves the software development kits (SDKs)
from device vendors and the appropriate device drivers supporting OpenCL
runtimes. The complete software environment used for executing generated
versions on the target devices is summarized in Figure 6.2.

6.3. Standalone Benchmarks

We designed a set of simple benchmarks consisting of processes having static,
sequential or parallel functions. These benchmarks are therefore typically
designed to offer a variety of processes having different kinds of behaviors that
enable the evaluation and comparison of implementations based on all three
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CPU1: Intel i5-8640U

# physical cores 4
# logical cores 4
cache 6 MB Intel® Smart Cache
base frequency 3.20 GHz
RAM 8 GB
CPU2: Intel i7-8650U
# physical cores 4
# logical cores 8
cache 8 MB Intel® Smart Cache
base frequency 1.90 GHz
RAM 8 GB
GPU1: Intel UHD Graphics 620
# shaders/cuda cores 192
# compute units 24
cache -
base clock 300 MHz
RAM -
GPU2: AMD Radeon HD 5450 GPU
# shaders/cuda cores 80
# compute units 2
cache L1/L2: 8 KB/128 KB
base clock 650 MHz
RAM 512 MIB GDDR2
GPU3: NVIDIA GeForce GTX 1050
# shaders/cuda cores 640
# compute units 5
cache L1/L2: 48 KB/1024 KB
base clock 1354 MHz
RAM 2 GB GDDR5

Figure 6.1.: The experimental setup: list of target devices employed to evaluate
the proposed synthesis design flow. The specification of each target
device is shown in the figure.

Device Software Toolkit Drivers
CPU1 Intel OpenCL SDK Version 6.3.0.1904 Intel processor driver version 10.0.1.9041.546
CPU2 Intel OpenCL SDK Version 6.3.0.1904 Intel processor driver version 10.0.1.9041.546
GPU1 Intel OpenCL SDK Version 6.3.0.1904 Intel graphics driver version 26.20.100.7639
GPU2  AMD OpenCL SDK version 3.0.130.135  AMD Radeon 5450 Driver Version 15.201.1151.1008

GPU3  CUDA Toolkit 10.1.243_426.00 NVIDIA Graphics Driver 451.67

Operating System

Windows 10 Pro Version 1903 Build 18362.720

Figure 6.2.: The software environment: list of software toolkits and drivers in-
stalled to enable the OpenCL implementations.
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Generated Network

Benchmark Function Type SDF KPN DDF
SeqDySwitch sequential x v v
SeqDyWorker sequential x v v
SeqDySelect sequential x v v

StITE static v v v
StOR static v v v
SeqDyMerge sequential x v v
SeqDySplit sequential x v v
ParDyOR parallel x x v

Figure 6.3.: The designed standalone benchmarks. FEach benchmark offers pro-
cesses based on a particular kind of behavior as depicted by the func-
tion type. The right hand side indicates the supported dataflow MoCs
that were able to generate implementations for the particular bench-
marks.

different dataflow MoCs of the framework. Each benchmark only features
processes based on a particular dataflow MoC. Each benchmark is organized
in a network of three processes which are connected in a producer-worker-
consumer setting. While the producer process produces the source data, the
consumer process displays the results of the benchmark. The worker process
provides the main functionality of the benchmark and therefore performs the
main operation, e.g., the POR node illustrated in Figure 4.4. The designed
standalone benchmarks along with their function types are listed in Figure 6.3.
A brief description of each benchmark is given as follows:

The sequential dynamic switch (SeqDySwitch) benchmark is designed to
switch the only data input channel to any one of a number of individual output
channels by the application of a control input. In contrast, the sequential
dynamic worker (SeqDyWorker) benchmark performs the operation by taking
one single input channel and copying its data to the only output channel
based on the value of data of the only input channel. The sequential dynamic
select (SeqDySelect) benchmark is a multiplexer that processes the information
from multiple input channels into a single output channel by the application
of a control input. It can simply be understood as a dynamic version of the
if-then-else operation that sequentially consumes data from input channels
based on the value of data on a control input. In contrast, the static if-then-else
(StITE) benchmark is a static version of the if-then-else operation that always
consumes data from all input channels in each execution. The sequential
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dynamic merge (SeqDyMerge) benchmark is designed to merge several input
channels to a single common output channel by the application of a control
input. In contrast, the sequential dynamic split (SeqDySplit) benchmark is
designed to split a single input channel to a number of individual output
channels by the application of a control input. The parallel dynamic OR
(ParDyOR) benchmark performs the logical OR operation on two Boolean
input channels and produces the result on the only output channel. It is a
parallel version of the logical OR operation that can consume and produce
tokens in parallel based on the availability of data on each input channel. In
contrast, the static OR (StOR) benchmark is a synchronous version of the
logical OR operation that always consumes tokens from both inputs in each
execution. Apart from ParDyOR that incorporates the parallel function, all
other benchmarks employ either static or sequential functions. In particular,
apart from StITE and StOR which involve only static processes, all sequential
benchmarks exhibit dynamic behaviors.

Each benchmark is modeled and automatically synthesized (when possible)
based on all three supported dataflow MoCs of the framework. Thereby, three
different implementations are automatically generated, namely the SDF MoC
version, the KPN MoC version and the DDF MoC version. Since the SDF
MoC only supports static behaviors, it could model and synthesize the StITE
and StOR benchmarks. The KPN MoC supports both static and sequential
functions and therefore able to model and synthesize all static and sequential
benchmarks. However, it could not model and synthesize the only benchmark
with the parallel function, namely the ParDyOR benchmark. The DDF MoC
being the most generalized dataflow MoC of the lot supports static, sequential
as well as parallel functions and therefore generated implementations for all
designed benchmarks. The information regarding the implementations gener-
ated by the supported dataflow MoCs for the designed benchmarks is depicted
in Figure 6.3.

The generated versions for each benchmark based on different dataflow
MoCs are evaluated based on their code size and the end-to-end performance.
The code size for each generated version (implementation) of benchmark is
measured as the sum of lines of code of all generated kernels for that version.
The end-to-end performance, i.e., the total execution time of the network to
process the complete input data set including initialization and termination of
the program is considered as the comparison metric. The data set used has a
maximum of ten thousand samples per input and the average of 50 repetitions
is taken for each version.

6.3.1. Evaluation: The Generated Code Size

The modeled behaviors of particular benchmarks (mainly worker nodes) are
given in Appendix A.1. The SDF MoC only supports static behaviors and
therefore triggers a process when the data/space is available for all input-
s/outputs. In each execution it consumes and produces statically determined
fixed number of tokens from all inputs and outputs, respectively. This sim-
plifies the code generation and in particular generates very succinct kernel
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Lines of Generated Code

Benchmark SDF KPN DDF
SeqDySwitch - 84 147
SeqDyWorker - 63 123
SeqDySelect - 79 140
StITE 81 83 148
StOR 70 72 133
SeqDyMerge - 83 146
SeqDySplit - 88 153
ParDyOR - - 159

Figure 6.4.: The generated code size for standalone benchmarks based on all three
supported dataflow MoCs.

code for static processes. The KPN MoC supports static as well as sequential
behaviors. Since, processes in KPNs are sequential, their firing rules can be
evaluated in a predefined order. It only triggers a process for execution when
the exact information on inputs/outputs required to fire an action is available.
This essentially simplifies the kernel code generation and therefore generates
succinct kernel code for sequential processes. In contrast, the DDF MoC sup-
ports sequential as well parallel functions, and therefore dynamically evaluates
actions including their inputs/outputs when the process is triggered for exe-
cution. Therefore, it accommodates additional code for enabling the dynamic
evaluation of actions within kernels at runtime. The KPN MoC therefore gen-
erates more concise kernel code for sequential processes than the DDF MoC.
The generated code size of each benchmark for the complete network based
on all three dataflow MoCs is depicted in Figure 6.4.

The additional kernel code overhead associated with the DDF MoC can
therefore be observed from the number of lines of the generated code for each
benchmark. For static benchmarks StITE and StOR that consist of only static
processes, the SDF MoC generated the most succinct code of all generated ver-
sions. In particular, the generated code size based on the SDF MoC for StITE
is about 83% and 3% lesser than the DDF and KPN versions, respectively.
Similarly for StOR, the SDF version demonstrated a code reduction of about
90% and 3% in comparison to the DDF and KPN versions, respectively.

For all benchmarks consisting of sequential processes, the KPN MoC gen-
erated the most succinct code of all generated versions. For all sequential
benchmarks, the KPN MoC generated at least 74% less lines of code than the
DDF MoC. In particular, the biggest difference is recorded in SeqDyWorker
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Figure 6.5.: End-to-end performance on GPU2 for the generated versions of the
standalone benchmarks. The results depicted in the figure are mea-
sured for 10K samples per input.

where the generated code size based on the KPN MoC is 95% lesser than
the DDF version. The ParDyOR benchmark features a parallel function and
could only be modeled and synthesized based on the DDF MoC. The DDF
MoC therefore offers a more generalized dataflow MoC that supports both
sequential as well as parallel behaviors but at the cost of the additionally
generated lines of kernel code.

6.3.2. Evaluation: The End-to-end Performance

Each generated version of a benchmark is either executed on CPU1 (Intel)
or GPU2 (AMD) at a time to evaluate and compare the end-to-end per-
formance of all used dataflow MoCs. On each target hardware, i.e., CPU1
and GPUZ2, the average execution time of each generated version of a bench-
mark is measured against the number of data samples. The complete results
for all benchmarks based on different number of input samples are given in
Appendix A.2. For brevity, in this section, we only show the results for the
maximum number of samples (i.e., ten thousand samples per input) where
the biggest differences in execution times have been recorded as shown in Fig-
ure 6.5 and Figure 6.6. All input samples are not processed at once, instead,
depending on the fixed buffer sizes, they are processed in different cycles of
execution.

Results: GPU2

The end-to-end performance of all generated versions of benchmarks for ten
thousand input samples on GPUZ2 is shown in Figure 6.5. As discussed for
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Figure 6.6.: End-to-end performance on CPUI1 for the generated versions of the
standalone benchmarks. The results depicted in the figure are mea-
sured for 10K samples per input.

static benchmarks, the SDF MoC generated the most succinct kernel code.
Considering the fact that the designed benchmarks only involve simple opera-
tions, the SDF MoC demonstrated the best end-to-end performance for StITE
and StOR. In particular, the SDF version of StITE executed 1.74x faster than
the DDF version and performed only slightly better than the KPN version.
Similarly for StOR, the SDF version executed 1.59x faster than the DDF ver-
sion and executed about 3% faster than the KPN version. Similarly, for all
sequential benchmarks, the additional runtime overhead associated with the
DDF MoC is propagated to the total execution time of the network resulting
in elevated execution times. As a result, the KPN versions performed substan-
tially better than the DDF versions. For all sequential benchmarks, the KPN
versions executed at least 1.15x faster than the DDF versions. In particular,
the biggest difference is observed in the case of SeqDySelect where the KPN
version executed 2.87x faster than the DDF version.

Results: CPU1

In comparison to GPU2, the average execution time of each benchmark ver-
sion is substantially reduced on CPU1 as shown in Figure 6.6. In contrast to
the OpenCL CPU where the host and the kernels reside on the same device,
in the case of GPU, the data has to be transferred to the GPU and back to the
main memory (host). This overhead therefore contributes in elevating the total
execution time. On average, the generated versions on CPU1 executed 1.75x
faster than on GPU1. Similar to GPU2, the same trend of end-to-end per-
formance has been observed on CPU1. The SDF MoC demonstrated the best
end-to-end performance for static benchmarks StITE and StOR. The SDF ver-
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sion of StITE executed 7% and 3.5% faster than the DDF and KPN versions,
respectively. Similarly for StOR, the SDF version performed slightly better
than the DDF and KPN versions. For all sequential benchmarks, the KPN
versions performed substantially better than the DDF versions. To this end,
the KPN versions executed on average 1.4x faster than the DDF versions. In
particular, the biggest difference is observed in the case of SeqDySelect where
the KPN version executed 1.83x faster than the DDF version.

Results: Summary

The SDF MoC generated the most succinct kernel code and demonstrated the
best end-to-end performance for simple static benchmarks. The KPN MoC
performed significantly faster than the DDF MoC for all sequential bench-
marks. The DDF MoC offers the most expressive semantics of all supported
dataflow MoCs and therefore was able to generate implementations for all de-
signed benchmarks. The DDF MoC enables one to model static, sequential as
well as parallel behaviors but at the cost of additional runtime overhead. Thus,
even for the simplest of the benchmarks, we observed that generating imple-
mentations based on the kind of behavior or the underlying precise dataflow
MoC of each process results in substantially improved end-to-end performance.
In other words, using a more generalized dataflow MoC for scheduling and ex-
ecuting rather restricted dataflow behaviors could result in inefficient system
implementations.

6.4. Case Study I: The ConceptCar’s Dataflow
Emulation

The ConceptCar [RaGS13; RaGS13c¢] (designed and developed by our group)
is an experimental embedded system with the objective of testing and
verifying car features by deploying different classes of applications. The
ConceptCar, although not as big as a conventional car, has been built and
engineered as close to a modern car as possible.

Hardware Design

The ConceptCar is a research platform remotely operated via a standard
2-channel (throttle and steering) 27MHz radio transmitter system. It
incorporates a set of sensors (wheel speed, gyro/accelerometer, distance
etc.) for interacting with the environment and surroundings. It uses an
air-cooled sensorless brushless electrical motor for driving, and a servo motor
for steering. The power train of the ConceptCar features two independent
power sources: one for the heavy load electric system (motors/actuators),
and another one for powering up all the electronic control units (ECUs).
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Figure 6.7.: Architecture of the ConceptCar.

Computational Architecture

Although not incorporated with as many ECUs as a modern car can carry,
the ConceptCar still features 7 different ECUs, as shown in Figure 6.7. These
ECUs are organized in three processing units. The SensorBoard ECUs, as
incorporated with different sensors, form the input processing unit which
is responsible for interacting with the environment. The multicore ECU
also known as DataBoard is used as a data processing unit and only comes
into play when complex mathematical computations are required. The
ActorBoard ECU forms the output processing unit and is responsible for
creating the PWM signals to drive the actuators (dc motor and servo). The
selector switch on ActorBoard chooses the source of data, either receiving
processed data from DataBoard or normalized data from SensorBoards.
Similar to a modern car, all ECUs interact with each other via a centralized
CAN bus architecture. Since the powertrain of the ConceptCar features
two independent power sources, a special ECU called EmergencyBoard is
integrated which separates the actuators from the other ECUs by galvanic
isolation. EmergencyBoard therefore isolates functional sections of electrical
systems to prevent current flow. This ECU only accepts the input from the
radio receiver and ActorBoard, and bypasses it to SensorBoards and the
actuators, respectively.

Dataflow Emulation

A dataflow emulation of the ConceptCar is devised where the operations of
all the ECUs are emulated in a network of processes. The computations per-
formed by each ECU are therefore modeled in a DPN process. This dataflow
emulation allows us to produce two different test cases: The first test case as
shown in Figure 6.8 emulates the initial design of the ConceptCar without gal-
vanic isolation i.e., the actuators are directly fed by ActorBoard. The second
test case as shown in Figure 6.13 considers the design with galvanic isolation
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Figure 6.8.: The original dataflow network of the ConceptCar based on the open-
loop configuration. As shown in the figure, the actuators are directly
fed by ActorBoard. The behavior type of each process is described at
the bottom of each node in square brackets.

provided by EmergencyBoard. For both test cases, the input data provided by
the process RadioRemoteReceiver is collected from the centralized CAN bus
and the results are validated against the logged outputs of the ConceptCar.

A number of implementations (versions) are automatically generated by the
synthesis framework for both test cases where each test case is focused to
evaluate particular aspects of synthesis. Each generated version is executed
on three different devices, namely CPU2 from Intel, GPU1 from Intel and
GPUS3 from NVIDIA as listed in Figure 6.1. The target hardware for this
case study therefore features three different types of devices involving a CPU,
an integrated GPU and a dedicated GPU. Each generated version is evaluated
for the resulting code size, the total network build time, and the end-to-end
performance. The code size of each generated version is described as the sum
of lines of code of all generated kernels. The network build time is defined
as the total time taken by the OpenCL just-in-time (JIT) compiler to build
all the kernels in the network and the MoC specific API functions of the used
dataflow MoC(s). The build time is measured only by using CPU2. The
end-to-end performance is defined as the total execution time of the network
to process the complete input data set including initialization and termination
of the program. The data set used has a maximum of five thousand samples
per input and the average of 50 repetitions is taken for each version.

6.4.1. Test Case I: Open-loop Configuration

The dataflow emulation of the design where ActorBoard directly feeds the ac-
tuators resulted in the open-loop configuration of the ConceptCar, as shown
in Figure 6.8. The original network features a heterogenecous DPN of differ-
ent kinds of processes exhibiting static as well as sequential behaviors. The
function or behavior type of each process is described at the bottom of each
node as shown in Figure 6.8. The main focus of this test case is to generate
homogeneous implementations based on the individual dataflow MoCs of the
framework and evaluate them for their resulting code size, the total network
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Generated networks (open-loop)
SDF DDF KPN
Processes
RadioRemote 59 83 60
SelectorSwitch 28 48 29
EmergencyBoard 59 83 60
SensorBoardSteering 102 171 105
Process size SensorBoardThrottle 102 171 105
(lines of code)
Databoard 62 87 64
ActorBoard (static) 206 - -
ActorBoard (dynamic) - 340 172
Actuators 29 49 29
total 647 1032 624
Network build time (msecs.) 249 1205 245

Figure 6.9.: ConceptCar’s open-loop setting: comparison of generated code size
and network build time of all supported dataflow MoCs.

build time, and the end-to-end performance. The open-loop configuration is
therefore modeled and automatically synthesized thrice, once for each individ-
ual dataflow MoC. Hence, three different versions are automatically generated
by the synthesis framework, i.e., first based on the SDF MoC, second using the
KPN MoC, and finally based on the DDF MoC. The original dataflow model
of ActorBoard exhibits a sequential behavior as it utilizes data either from
DataBoard or SensorBoards based on the input provided by SelectorSwitch.
A static version of ActorBoard is also modeled that consumes data from all
inputs in each execution. This allowed us to design a fully static network and
to generate an implementation of the open-loop network based on the SDF
MoC.

Generated Code Size and Network Build Time

The generated versions of the open-loop network based on all three dataflow
MoCs are illustrated in Figure 6.9. In particular, the generated kernel code
size of each DPN process and the total build time for the complete network
are given for each version.

The SDF MoC generated the most succinct kernel code for static processes.
On the other hand, the KPN MoC generated the most concise code for se-
quential processes. In contrast to SDF and KPN MoCs, the DDF MoC offers
a more flexible semantics where the decision on whether to consume/produce
data in each execution is taken dynamically at runtime in the kernel code.
Consequently, the generated DDF version accommodates additional kernel
code for enabling the dynamic evaluation of actions at runtime when the pro-
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Figure 6.10.: Open-loop setting: comparison of end-to-end performance of all sup-
ported dataflow MoCs on CPU2.

cess is triggered for execution. This overhead can therefore be observed from
the number of lines of the generated code for each process and the total net-
work build time. The generated code size of the DDF version for the complete
network is 65% and 59% greater than the KPN and SDF versions, respec-
tively. This results in an additional build time overhead of 391% and 384%
in comparison to the build times of KPN and SDF versions, respectively. The
overhead also reflects the additional time taken to build the DDF MoC specific
API functions used for dynamic execution within kernels.

Finally, we also observed that the KPN version has slightly less code size
than the SDF version for the complete open-loop network. This is mainly
because the static version of ActorBoard consumes data from all inputs in each
execution and therefore the corresponding generated kernel accommodated
more lines of code. Precisely, the generated code for the static version of
ActorBoard based on the SDF MoC is about 20% more than the dynamic
version generated based on the KPN MoC.

End-to-end performance

Each generated version of the open-loop network is executed on each target
hardware at a time to evaluate and compare the end-to-end performance. On
each target hardware. i.e., CPU2, GPU1 and GPU3, the average execution
time (in seconds) of each version is measured against the number of data
samples as shown in Figure 6.10, Figure 6.11 and Figure 6.12, respectively.
Regardless of which target hardware is used, the SDF version demonstrated
the best end-to-end performance of all generated versions. Apart from Actor-
Board, all processes in the original open-loop network are static. As already
observed in the previous section, the SDF MoC generated the most succinct
kernel code for static processes. Second, since the SDF MoC also simplifies
the scheduling of processes, this further contributes in the improved end-to-
end performance for the SDF version. The KPN version although offered a
slightly less code size, however, induced a slight overhead in scheduling static
processes in comparison to the SDF version. The SDF version therefore per-
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Figure 6.11.: Open-loop setting: comparison of end-to-end performance of all sup-
ported dataflow MoCs on GPUI.
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Figure 6.12.: Open-loop setting: comparison of end-to-end performance of all sup-
ported dataflow MoCs on GPUS3.

formed only slightly better than the KPN version, in particular, executed only
7% and 4.5% faster on CPU2 and GPU1, respectively. On GPU3 however
the difference in performance is negligible.

In contrast to SDF and KPN MoCs, the additional runtime overhead as-
sociated with the DDF MoC is propagated to the end-to-end performance
resulting in elevated execution times. Based on the results, as the number
of samples increases, this effect induced by the overhead can be clearly ob-
served. On CPU2, the DDF version took twice as much time as taken by
the SDF version and took about 90% more time than the KPN version to ex-
ecute the complete network for five thousand samples. On GPU1, the DDF
version yielded about 145% and 135% more execution time than the SDF and
KPN versions, respectively. Finally, on GPU3, the DDF version required
50% more time to process five thousand samples in comparison to the SDF
and KPN versions. The DDF MoC although offers semantics to model se-
quential as well as parallel behaviors, but at the cost of the additional runtime
overhead. Therefore, it exhibits a trade-off between expressiveness and overall
performance.
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Figure 6.13.: The original dataflow network of the ConceptCar based on the
closed-loop configuration. As shown in the figure, a feedback loop is
introduced into the network from ActorBoard into EmergencyBoard.
The behavior type of each process is described at the bottom of each
node in square brackets.

All generated versions executed substantially faster on the CPU than on the
used GPUs mainly because of the communication overhead associated with the
OpenCL GPU. For instance, the SDF version on CPU2 executed 4.75x and
1.4x faster than on GPU3 and GPU1, respectively. Since, the integrated
GPU (GPU1) share the same memory of the host, the versions executed
substantially faster on GPU1 than on the dedicated GPU (GPU3). For
example, the SDF version on GPU1 performed 1.39x faster than on GPU3.

6.4.2. Test Case Il: Closed-loop Configuration

The dataflow emulation of the design where the EmergencyBoard ECU sep-
arates the actuators from the rest of the ECUs by galvanic isolation resulted
in the closed-loop configuration of the ConceptCar. The closed-loop setting
therefore introduces a feedback loop in the network from ActorBoard into
EmergencyBoard as shown in Figure 6.13. The original network features a
heterogeneous DPN of different kinds of processes exhibiting static, sequen-
tial and parallel behaviors. In particular, EmergencyBoard exhibits a parallel
behavior as it features independent actions operating on the independent sets
of inputs from RadioRemoteReceiver and ActorBoard and producing data to
the independent sets of outputs. This test case focuses on observing how
the feedback loop in the network affects the performances of the individual
homogeneous implementations of all supported dataflow MoCs. Second, and
most importantly, it also demonstrates how the proposed synthesis method
effectively exploits the heterogeneity by generating implementations based on
the underlying precise dataflow MoC of each process to further improve the
end-to-end performance.
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Generated networks (closed-loop)
SDF DDF KPN Hetero
Processes
RadioRemote 59 83 60 59
SelectorSwitch 28 48 29 28
EmergencyBoard (static) 86 - 87
EmergencyBoard (parallel) - 139 - 139
Process size SensorBoardSteering 102 171 105 102
(lines of code) SensorBoardThrottle 102 171 105 102
Databoard 62 87 64 62
ActorBoard (static) 206 - -
ActorBoard (dynamic) - 340 172 172
Actuators 29 46 29 29
total 674 1085 651 693
Network build time (msecs.) 252 1208 249 348

Figure 6.14.: Closed-loop setting: comparison of generated code size and network
build time of all supported dataflow MoCs including their heteroge-
neous combination.

The closed-loop configuration is modeled and automatically synthesized four
times, once for each individual dataflow MoC and once based on the hetero-
geneous combination of all dataflow MoCs. Hence, four different versions are
automatically generated by the synthesis framework, i.e., first based on the
SDF MoC, second using the KPN MoC, third based on the DDF MoC, and
finally the heterogeneous version based on the combination of all used dataflow
MoCs. Since, the original dataflow model of EmergencyBoard exhibits a par-
allel behavior, a static version is also designed that consumes data from all
inputs in each execution. This allowed us to generate implementations of the
closed-loop network based on the SDF and KPN MoCs.

Generated Code Size and Network Build Time

The generated versions of the closed-loop network are illustrated in Fig-
ure 6.14. The generated homogeneous versions based on the individual
dataflow MoCs demonstrated the same pattern in code size as observed in
the case of the open-loop network. The generated code size of the DDF ver-
sion for the complete network is 67% and 61% greater than the KPN and SDF
versions, respectively. This resulted in an additional build time overhead of
385% and 379% in comparison to the build times of KPN and SDF versions,
respectively.

The heterogeneous version is automatically generated based on the kind
of behavior or the underlying precise dataflow MoC of each process in the
network. The generated code size of the heterogeneous version is only slightly
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greater than the KPN and SDF versions. Since the heterogeneous version
employed the MoC specific API functions of all the used dataflow MoCs, this
resulted in the build time overhead of about 40% and 38% in comparison to
the build times of KPN and SDF versions, respectively. However, the code
size of the DDF version is 56% greater than the heterogeneous version and
therefore required 247% more time to build the complete network.

End-to-end Performance

Each generated version of the closed-loop network is executed on each target
hardware at a time to evaluate and compare the end-to-end performance. On
each target hardware. i.e., CPU2, GPU1 and GPU3, the average execution
time (in seconds) of each version is measured against the number of data
samples as shown in Figure 6.15, Figure 6.16 and Figure 6.17, respectively.

Regardless of which target hardware is used, it can be observed that the
introduction of the feedback loop in the network elevates the execution times of
the SDF and KPN versions to an unacceptable level. As discussed, the original
dataflow model of EmergencyBoard exhibits a parallel behavior. Since, the
SDF MoC only supports static behaviors, a static version of EmergencyBoard
is designed to generate the SDF and KPN versions. The static version of
EmergencyBoard therefore requires data in all inputs before it can be scheduled
for execution. With a feedback loop introduced into EmergencyBoard, the SDF
and KPN versions only schedule and communicate a single execution at a time
for all processes (except RadioRemoteReceiver) at the device. Consequently,
this induces a lot of scheduling and communication overhead between the host
and device, and therefore resulted in excessively elevated execution times. The
DDF version on the other hand employs a parallel version of EmergencyBoard
and therefore attempts to schedule and communicate as many executions at
a time as possible based on the availability of data on independent sets of
inputs. Thus, even with the associated runtime overhead, the DDF version
outperformed the SDF and KPN versions.

On CPU2, the DDF version executed 31x and 41x faster than the SDF
and KPN versions, respectively, in executing the complete network for five
thousand samples. Similarly, the end-to-end performance of SDF and KPN
versions on both the used GPUs reached to an unacceptable level. On GPUT1,
the SDF executed 66x and the KPN version executed 149x slower in compar-
ison to the DDF version. On GPU3, the SDF and KPN versions are 51x and
45x, respectively, slower than the DDF version. The difference in execution
times is bigger on the GPUs than on the CPU mainly because of the communi-
cation overhead associated with OpenCL GPUs. The SDF version performed
substantially better than the KPN version on the CPU and the integrated
GPU, in particular, executed about 1.33x and 2.2x faster, respectively. This
is mainly because the KPN version induced an overhead in scheduling static
processes for a large number of single executions. Interestingly, the KPN ver-
sion executed about 1.13x faster than the SDF version on the dedicated GPU.
The KPN version only dispatches a process for execution on the device if there
exists one of the actions whose firing rules are satisfied. It therefore evaluates
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Figure 6.15.: Closed-loop setting: comparison of end-to-end performance of all
supported dataflow MoCs on CPU2. The right hand side graph
particularly shows the performance comparison between the DDF
version and the heterogeneous version.

= 350 2.5

§ —e=KPN —=—DDF ) 4 —-DDF Hetero

1 300 #—SDF Hetero / 2 )

£ 250 /

§ 200 / 1.5

g 150 / R /

9]

% 100 / _

g 50 s 0.5

]

2 0 74’3\/{;\ D R 0 = T T T 1
1 1K 2K 3K 5K 1 1K 2K 3K 5K

Number of samples

Figure 6.16.: Closed-loop setting: comparison of end-to-end performance of all
supported dataflow MoCs on GPU1. The right hand side graph
particularly shows the performance comparison between the DDF
version and the heterogeneous version.

the firing rules at the scheduling time on the host side. This relaxes the com-
putation on the device side. Since the dedicated GPU uses its own CPU and
memory, the execution of simpler operations on less powerful processing cores
contributed in the improved end-to-end performance for the KPN version.
The heterogeneous version. The main highlight of this test case is to
evaluate the ability of the proposed synthesis method to efficiently exploit the
heterogeneity of different kinds of behaviors of processes in the network. The
heterogeneous version is therefore automatically generated based on the un-
derlying precise dataflow MoC of each process in the network. Regardless of
which device is used for execution, the heterogeneous version demonstrated a
substantial improvement in performance in comparison to the most efficient
homogeneous version of the closed-loop network. The performance comparison
between the heterogeneous version and the DDF version is especially shown
on the right hand side graphs of Figures 6.15, 6.16 and 6.17. In particular, the
heterogeneous version executed 2.2x, 2.4x and 1.86x faster than the DDF ver-
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Figure 6.17.: Closed-loop setting: comparison of end-to-end performance of all
supported dataflow MoCs on GPUS3. The right hand side graph
particularly shows the performance comparison between the DDF
version and the heterogeneous version.

sion on CPU2, GPU1 and GPUS3, respectively. The heterogeneous version
therefore significantly improved the performance by eliminating the overhead
induced by the feedback loop in the SDF and KPN versions, and by avoiding
the additional runtime overhead of the DDF version.

Hence, it can be concluded from this particular test case that the ability to
exploit the heterogeneity of different kinds of behaviors of processes in DPNs
contributes in efficient system implementations with substantially improved
end-to-end performance.

6.4.3. Summary

The first test case featured an open-loop network which is mainly designed to
generate and evaluate homogeneous implementations based on all individual
supported dataflow MoCs. Considering the fact that most of the processes in
the network exhibit static behaviors, the SDF version demonstrated the best
end-to-end performance of all generation versions. The DDF version induced
the runtime overhead of evaluating actions within kernels and performed the
slowest of all generated versions. In particular, the DDF version took about
145% and 135% more execution time than the SDF and KPN versions, respec-
tively.

The second test case introduced a feedback loop from ActorBoard to Emer-
gencyBoard that resulted in a closed-loop network. We observed that the
introduction of the feedback loop in the network greatly degraded the end-to-
end performance of SDF and KPN versions. In particular, the DDF version
even with the associated runtime overhead outperformed the SDF and KPN
versions. However, the heterogeneous version that exploited the heterogeneity
of different kinds of processes significantly improved the performance, in par-
ticular, executed up to 2.4x faster than the fastest homogeneous DDF version.
Hence, the ability of the proposed synthesis method to exploit heterogeneity in
a DPN effectively contributed in achieving the best end-to-end performance.
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Figure 6.18.: The main architecture of the building automation system (BAS). The
architecture can be easily expanded by configuring different number
of rooms.

6.5. Case Study Il: Building Automation System (BAS)

As discussed, the proposed synthesis design flow has been mainly used as a
part of our long term project Awverest. This case study also demonstrates
the successful usage of the proposed synthesis method in conjunction with
our Averest tool. We designed a smart building automation system (BAS)
in the spirit of [Trap05]. We modeled a number of different versions of BAS
with different configurations based on the SR MoC using the synchronous
language Quartz [ScBrl7] of Awverest. The modeled synchronous versions of
BAS are then verified for desynchronization and automatically transformed
to DPNs using Averest. These desynchronized models (DPNs) are then used
by the proposed synthesis framework to generate various versions involving
homogeneous as well as heterogeneous implementations.

Computational Architecture

The main purpose of BAS is to control the lamps in the rooms of a building
and notify the security based on occupancy detection. The basic building
block diagram of BAS is shown in Figure 6.18. The two main components
in the system are OccupancyDetection and LampControl. The occupancy
is detected by OccupancyDetection based on multiple resources. First, it is
possible to identify the occupancy by detecting motion, which is provided
by the infrared motion detectors (IRDetect). Second, the occupancy can be
determined using a camera image, which is provided by the smart cameras
(Camera). Altogether, OccupancyDetection takes as input the movements
detected by a set of infrared motion detectors and smart cameras and reports
the occupancy status of the rooms. Apart from the occupancy, LampControl
requires the current and the desired illuminance, which are provided by
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the illuminance sensors (llluminanceDetect) and the control panel (Control-
Panel), respectively. The lamp configurations of the rooms are provided by
the component LampCtrl. LampControl accepts the lamp configurations,
the occupancy status, and the current and the desired illumination levels to
control the switching of the lamps (Lamp). A lamp can be switched either
automatically based on the occupancy or manually using a switch provided
by the component MainCltri.

BAS Configurations

This case study is organized into two test cases, where each test case is dedi-
cated to analyse and evaluate particular aspects of synthesis based on the BAS
architecture. BAS offers an architecture that can be easily expanded with a
number of rooms as shown in Figure 6.18. The first test case realizes various
versions of BAS mainly by configuring different number of rooms. Whereas,
the second test case focuses on various versions of a particular BAS configura-
tion of four rooms. For each test case, different synchronous networks are first
modeled and then automatically desynchronized to the corresponding DPNs
using Awverest.

A number of implementations (versions) are automatically generated by
the synthesis framework from the desynchronized models (DPNs) of both test
cases. Each generated version is executed on all five target devices as listed
in Figure 6.1. The target hardware for this case study therefore features two
CPUs (CPU1 and CPU2), one integrated GPU (GPU1) and two dedicated
GPUs (GPU2 and GPU3). Each generated version of the first test case is
evaluated for its network build time and the average execution time. The
generated versions of the second test case based on a fixed four rooms con-
figuration are thoroughly evaluated for end-to-end performance. The data set
used offered a maximum of ten thousand samples per input and the average
of fifty repetitions is taken for each version.

6.5.1. Test Case I: Network Complexity

This test case models various synchronous versions of BAS mainly by con-
figuring different number of rooms. In particular, five different synchronous
networks of BAS are designed based on one, two, four, six and eight room
configurations. These synchronous networks are then automatically desyn-
chronized to the corresponding DPNs using Averest. All the desynchronized
networks based on different configurations feature heterogeneous DPNs of dif-
ferent kinds of processes involving static as well as sequential behaviors, as
labelled in Figure 6.18. The resulting complexity of each desynchronized net-
work is summarized in Figure 6.19. The simplest of the network consisting of
a single room only features seventeen FIFO buffers and seven processes hav-
ing twenty-four actions. The complexity increases with the number of rooms
where the most complex network in terms of number of processes and actions
is resulted in the case of eight-rooms configuration.

The main focus of this test case is to evaluate how the resulting complexity
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# rooms # processes # actions # FIFO buffers
network 1 1 7 24 17
network 2 2 16 48 36
network 3 4 30 96 70
network 4 6 44 144 104
network 5 8 58 192 138

Figure 6.19.: Test case I: network complexity of generated dataflow networks based
on different BAS configurations.
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Figure 6.20.: Test case I: the affect of increasing the network complexity on the
build time on all five target devices.

affects the total build time and the average execution time of each network.
Since, the KPN MoC supports both static as well as sequential behaviors, a
homogeneous implementation (version) based on the KPN MoC is automati-
cally generated for each desynchronized network by the synthesis framework.
Furthermore, we also evaluate the affect of increasing the number of samples
on the execution time for the most complex network with eight rooms.

Network Complexity vs Build Time

The build time of each generated homogeneous version is measured on all
target devices as shown in Figure 6.20. Regardless of which target device is
used, the build time increases linearly with the increasing network complexity.
On average, the build time shows an increase by about 5.5x on all devices from
the simplest one-room version to the most complex eight-rooms version. Both
CPUs (CPU1 and CPU2) demonstrated the best build time performance of
all used devices. The integrated GPU (GPU1) demonstrated the build time
performance close to CPU1 and CPU2. Moreover, GPU1 acquired better
build time performance in comparison to the dedicated GPUs (GPU2 and
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Figure 6.21.: Test case I: the affect of increasing the network complexity on the
average execution time on all five target devices.

GPU3). GPU2 features the least processing power of the used dedicated
GPUs and therefore produced the longest build time of all used devices. The
OpenCL JIT compiler generally does not target building independent parts
of programs in parallel and therefore typically builds programs faster on the
CPUs than on the GPUs.

Network Complexity vs Average Execution Time

Each generated version is executed on each target hardware at a time for one
thousand samples to measure the execution time. The affect of increasing the
network complexity (number of rooms) on the average execution time on each
target device is depicted in Figure 6.21. Irrespective of which target device is
used, the average execution time increases with the increasing complexity. On
both CPUs (CPU1 and CPU2), the generated version of eight-rooms con-
figuration showed an increase in execution time by 7x in comparison to the
one-room version. Similarly, on GPU1, GPU2 and GPU3, the execution
time is increased by 4.6x, 8.4x and 2.35x, respectively. All the generated ver-
sions executed faster on the CPUs than on the GPUs. This is mainly because
of the following reason: The generated implementations do not yet exploit
data level parallelism and therefore the additional OpenCL communication
overhead on GPUs contributes in elevated execution times. The integrated
GPU (GPU1) uses the memory which is shared with CPU2 and generally
performed better than the dedicated GPUs. GPU2 offering the least pro-
cessing power of the used dedicated GPUs demonstrated the longest average
execution times for all versions.

Sample Size vs Execution Time

We also measured the affect of increasing the number of samples on the aver-
age execution time of the most complex eight-rooms network version as shown
in Figure 6.22. On each target device, the average execution time increases
linearly with the increasing number of samples. On both CPUs (CPU1 and
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Figure 6.22.: Test case I: the affect of increasing the number of samples on the
average execution time on all five target devices. The eight-room
configuration is particularly used for this part of the test case.

Synchronous networks Synthesized versions Implementation type
KPN (reference) * homogeneous
original network ¢ Hetero-Original * heterogeneous
¢ Hetero-Original-PAR * heterogeneous
Hetero-Transform * heterogeneous

transformed network
Hetero-Transform-PAR ¢ heterogeneous
SDF * homogeneous

fully static network
SDF-PAR * homogeneous

Figure 6.23.: Test case II: the synchronous networks and the finally synthesized
versions. The generated implementation type is also depicted in the
figure.

CPU2), the average execution time is increased by more than 11x by in-
creasing the number of samples by ten times. Similarly, on GPU1, GPU2
and GPUS3, the execution time is increased by 9.4x, 5.8x and 9.2x, respec-
tively. In terms of the used target devices, the results showed almost the same
pattern as observed in the case of increasing complexity. Interestingly, the
dedicated GPU (GPU3) demonstrated slightly lower execution times than
the integrated GPU (GPU1) with the increase in the number of samples.

6.5.2. Test Case Il: Exploiting Network Heterogeneity

This test case models various synchronous networks based on the particular
four-rooms BAS configuration that resulted in a system of thirty components
(processes) as illustrated in Figure 6.19. First, the original synchronous net-
work of four-rooms from the previous test case is used as illustrated in Fig-
ure 6.18. The generated homogeneous dataflow version of four-rooms based
on the KPN MoC from the previous test case is used as the reference version
for this test case. We further generated two heterogeneous versions labelled
by Hetero-Original and Hetero-Original-PAR based on the original syn-
chronous network, where each process is synthesized based on the underlying
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precise dataflow MoC. The term ‘PAR’ is used to indicate the version that
further exploits the data level parallelism (DLP) whenever possible in fully
static processes. We further transformed the original synchronous network
and worked out two different synchronous networks. Firstly, we transformed
the original synchronous network by converting all dynamic components into
static ones except the OccupancyDetection component, which is dynamic. Two
different heterogeneous versions labelled by Hetero-Transform and Hetero-
Transform-PAR are generated by the synthesis framework, where each pro-
cess is synthesized based on the underlying dataflow MoC. Secondly, the orig-
inal synchronous network is transformed by accommodating dummy inputs in
all dynamic components to make them static and thereby yielding a fully static
network consisting of only static components. Two different homogeneous
dataflow versions based on the SDF MoC are generated from the completely
static network. These versions are labelled by SDF and SDF-PAR. The
modeled synchronous networks and the finally synthesized dataflow versions
are summarized in Figure 6.23.
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Figure 6.24.: Test case II: the performance comparison of all generated versions
on CPU1. The results of the parallel versions that exploit data level
parallelism are represented by dashed lines.

The main focus of this test case is to validate and evaluate the ability of
the proposed synthesis method to generate efficient system implementations
based on the underlying precise dataflow MoC of each process in the network.
This test case therefore employs the synthesis framework for generating homo-
geneous as well as heterogeneous implementations. All the generated versions
are evaluated for end-to-end performance in comparison to the homogeneous
reference version that is generated without targeting heterogeneity of differ-
ent kinds of processes.

Each generated version is executed on each target device at a time to eval-
uate and compare the end-to-end performance of all generated versions. On
each target hardware, the average execution time of each generated version is
measured against the number of data samples as shown in Figures 6.24, 6.25,
6.26, 6.27 and 6.28.
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Figure 6.25.: Test case II: the performance comparison of all generated versions
on CPU2. The results of the parallel versions that exploit data level
parallelism are represented by dashed lines.

End-to-end performance: CPUs

The end-to-end performance of all generated versions on CPU1 and CPU2
is depicted in Figure 6.24 and Figure 6.25, respectively. On both CPUs, the
results clearly demonstrate the benefit of synthesizing components based on
the underlying precise dataflow MoC of each process. All the versions that
are generated based on the kinds of behaviors of the processes performed sig-
nificantly better than the reference version. The completely static versions
SDF and SDF-PAR performed the fastest of all generated versions, in par-
ticular, executed 3.57x and 2.83x faster than the reference version. The
SDF version performed about 20% faster than the SDF-PAR version that
exploits DLP. This is because the ability of a CPU to handle parallel instances
is just limited to the number of few available cores. Therefore, dispatching a
large number of parallel instances on few available cores results in OpenCL
implementation overhead on CPUs and reduces the overall performance. Sim-
ilarly, the heterogeneous versions Hetero-Transform and Hetero-Original
that do not exploit DLP performed substantially better than the reference
version, in particular, executed 2.5x and 1.22x faster, respectively.

End-to-end performance: Integrated GPU

The end-to-end performance of all generated versions on the integrated GPU
is depicted in Figure 6.26. In general, an integrated GPU doesn’t have its own
private memory, instead, it uses the memory that is shared with the system.
To this end, the target integrated GPU demonstrated largely the same trend
of end-to-end performance of generated versions as was observed in the case of
the target CPUs. The results again show the effectiveness of synthesizing com-
ponents based on the kinds of behaviors. However, since the integrated GPU
offers a relatively large number of cores than the used CPUs, the parallel ver-
sions that exploit DLP performed significantly better than the other generated
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versions. In particular, the generated versions SDF, Hetero-Original and
Hetero-Transform that do not exploit DLP still executed 1.23x, 1.06x and
1.22x faster than the reference version, respectively. Their parallel versions
SDF-PAR, Hetero-Original-PAR and Hetero-Transform-PAR that ex-
ploit DLP further improved their performance by 1.61x, 1.04x, and 1.45x, re-
spectively. Overall, the SDF-PAR version stands the fastest of all generated
versions on the integrated GPU.
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Figure 6.26.: Test case II: the performance comparison of all generated versions on
GPU1. The results of the parallel versions that exploit data level
parallelism are represented by dashed lines.

End-to-end performance: Dedicated GPUs

The end-to-end performance of all generated versions on the dedicated GPUs
(GPU2 and GPU3) is depicted in Figure 6.27 and Figure 6.28, respec-
tively. GPU2 offers a relatively large number of less powerful processing
cores than the target CPUs. Expectedly, the generated versions that do not
exploit DLP including the reference version performed the slowest of all
versions. This is mainly because with the sequential execution of instances
on the GPU, the large number of available processing units are not com-
pletely utilized. Consequently, this substantially degrades the performance of
all versions that do not exploit DLP. The parallel versions on GPU2 simply
outperformed the other generated versions. In particular, the parallel ver-
sions SDF-PAR, Hetero-Transform-PAR and Hetero-Original-PAR
executed about 25x, 5x and 1.3x faster than their sequential versions SDF,
Hetero-Transform and Hetero-Original, respectively. Moreover, the par-
allel versions SDF-PAR, Hetero-Transform-PAR and Hetero-Original-
PAR executed 18.5x, 3.65x and 1.06x faster than the reference version,
respectively.

GPU3 is the most powerful device of all the employed GPUs as shown in
Figure 6.1. It offers a relatively large number of processing cores as well as
the highest clock frequency of both the used integrated and dedicated GPUs.
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Figure 6.27.: Test case II: the performance comparison of all generated versions on
GPU2. The results of the parallel versions that exploit data level
parallelism are represented by dashed lines.

As expected, the parallel versions generally displayed better end-to-end per-
formance of all generated versions. However, GPU3 also demonstrated some
very intriguing evaluation results. The versions having more static processes
showed reduced end-to-end performance on GPU3 in comparison to all other
target devices. The parallel version SDF-PAR that clearly dominated on all
the used GPUs performed slower than the reference version. In particular,
the reference version executed 1.28x faster than the SDF-PAR version.
Similarly, the Hetero-Original-PAR version that incorporates relatively
more dynamic processes executed 1.62x and 1.49x faster than the SDF-PAR
and Hetero-Transform-PAR versions, respectively. This is mainly because
of the following reasons: First, the original synchronous network is transformed
by accommodating dummy inputs in the dynamic components to make them
static. Static processes are scheduled for execution only if data is available in
all inputs and their guards are evaluated on the target device. This introduces
additional communication of data in the form of dummy inputs. In contrast,
the dynamic processes are scheduled only if there exists one of the actions
whose firing rules are satisfied. Their firing rules are therefore evaluated at
the scheduling time on the host side. This relaxes the computation on the de-
vice side. Since GPU3 uses its own CPU and memory as well as it offers the
largest number of cores, the execution of simpler operations on less powerful
processing cores contributed in the improved end-to-end performance for the
versions having more dynamic processes.

Summary

We modeled the original synchronous network and further transformed it to
exploit the design space and to leverage the balance between communication
and scheduling. We synthesized from both the original and the transformed
networks different dataflow versions based on the kinds of behaviors of the
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Figure 6.28.: Test case II: the performance comparison of all generated versions on
GPU3. The results of the parallel versions that exploit data level
parallelism are represented by dashed lines.

processes. Regardless of which target device is used, the generated versions
based on the proposed synthesis method substantially increased the perfor-
mance. The completely static version SDF without DLP demonstrated the
best end-to-end performance of all generated versions on the target CPUs.
As we moved to the GPUs that offered a large number of cores, the paral-
lel versions that exploited DLP mostly displayed the best performance. The
integrated GPU (GPU1) shares the memory with CPU2 and demonstrated
largely the same trend of end-to-end performance as was observed in the case
of CPU2. On the dedicated GPUs, however, the parallel versions clearly
dominated the charts in terms of end-to-end performance.

On GPU2, the SDF-PAR version executed up to 18.5x faster than the
reference version. Similarly, the parallel version Hetero-Transform-PAR
generated from the transformed synchronous network displayed a significant
increase in performance, in particular, increased the performance by 3.65x in
comparison to the reference version. On GPUS3 that offered the highest pro-
cessing power, demonstrated best results for parallel versions accommodating
relatively more dynamic processes.

Finally, all the generated versions generally executed substantially faster
on the used CPUs than on the used GPUs. As an example, the Hetero-
Transform-PAR version on CPU1 executed 9x faster than on GPU2. This
is mainly because the communication overhead of OpenCL on GPU is higher
than the performance gain of executing parallel instances on many cores. In
contrast to the OpenCL CPU where the host and the kernels reside on the
same device, in the case of GPU, the data has to be transferred to the GPU
and back to the main memory (host).
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Chapter

Conclusions

7.1. Conclusions of the Thesis

Dataflow process networks (DPNs) are intrinsically data-driven and therefore
a suitable model of computation (MoC) for implementing asynchronous and
distributed systems. However, the verification of the major correctness proper-
ties like the absence of deadlocks and buffer overflows in DPNs is in general not
decidable. For this reason, desynchronization techniques are used to convert
clock-driven models into data-driven ones in order to more efficiently sup-
port distributed implementations. These techniques preserve the functional
specification of the synchronous models and moreover preserve properties like
deadlock-freedom and bounded memory usage that are otherwise difficult to
ensure in DPNs. These desynchronized models (DPNs) are the starting point
of this thesis.

A DPN can be heterogeneous in the sense that different processes may ex-
hibit different kinds of behaviors that determine the precise dataflow MoCs.
To efficiently implement systems based on DPNs, this heterogeneity can be
exploited by scheduling and executing the processes based on their kinds of
behaviors. The existing design tools for software synthesis are usually dedi-
cated to provide homogeneous implementations based on a particular dataflow
MoC. Each tool provides a specialized tool chain including a code generator
and the runtime system targeting only a specific dataflow MoC. Second, the
final result of most of these design tools is more or less a set of automatically
generated C programs. These programs are then mapped on a specific target
hardware in an additional deployment step. These tools essentially enable the
mapping and execution of generated C programs based on a multithreading
concept at the abstraction of an operating system (OS). Thus, they offer par-
allelism at the coarse-grained task level, which is usually restricted to devices
like multi-core CPUs.

This thesis considered the automatic software synthesis of systems based
on three different well-defined and precise dataflow MoCs including their het-
erogeneous combinations. These involve the static dataflow (SDF) MoC, the
Kahn process networks (KPN) MoC and a deterministic variant of the dy-
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namic dataflow (DDF) MoC. We proposed and presented a synthesis design
flow for automatic software synthesis of systems from DPN models. The de-
sign flow is implemented in an extendable model-based design framework that
offers a comprehensive tool chain including specialized code generators and
schedulers for the supported dataflow MoCs. First, this allowed us to meet
the objective of validating, evaluating and comparing the artifacts exhibited by
different dataflow MoCs at the implementation level under the shed of a com-
mon design tool. Second, the proposed framework employed an efficient and
smarter synthesis method that targets and exploits heterogeneity in dataflow
networks by generating implementations based on the kinds of behaviors of
the processes. To this end, the synthesis of heterogeneous DPNs is realized by
using the combination of different specialized code generators and the runtime
components based on the supported dataflow MoCs. In particular, the pro-
posed synthesis tool chain is designed under a common dynamic environment
to enable the dynamic scheduling and execution of heterogeneous composition
of different kinds of processes.

Finally, this thesis also tackled the challenge of systematically handling
the portability of systems on cross-vendor commercial off-the-shelf (COTS)
heterogeneous platforms. To this end, the framework systematically employed
the open specification language (OpenCL) as a standard hardware abstraction
in the composition of the synthesis tool chain. The systematic integration
of OpenCL as a foundational part of the tool chain not only allowed us to
target vendor-neutral hardware, but also provided the opportunity to target
task-level as well as data-level parallelism. Altogether, this enabled a more
generalized synthesis that automatically maps the dataflow models on cross-
vendor target hardware involving multi-core CPUs as well as GPUs, without
the need of the user to manually identify the potential parallelism in the model.

We designed a number of standalone benchmarks to evaluate and compare
the artifacts exhibited by the individual supported dataflow MoCs. Moreover,
we also worked out two interesting case studies that featured heterogeneous
DPNs consisting of different kinds of processes. The case studies are mainly
designed with the aim to evaluate and compare the implementations generated
precisely based on the kinds of behaviors of the processes. A variety of OpenCL
supported devices have been employed involving multi-core CPUs as well as
GPUs from different vendors.

Based on our detailed evaluations, we observed that even for the simplest
of the benchmarks, the generated versions based on the kinds of behaviors of
the processes demonstrated the best end-to-end performance. In particular,
using a more generalized dataflow MoC for scheduling and executing rather
restricted dataflow behaviors resulted in inefficient system implementations.
For instance, for benchmarks involving static behaviors, the SDF MoC per-
formed up to 1.79x faster than the DDF MoC in terms of the end-to-end
performance. Similarly, for sequential behaviors, the KPN MoC performed up
to 2.87x faster than the DDF MoC.

The heterogeneous versions generated from desynchronized or modeled
DPNs by the proposed synthesis method in both case studies demonstrated
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a substantial improvement in performance in comparison to their generated
homogeneous versions. For the first case study, the heterogeneous version per-
formed up to 2.4x faster than the most efficient generated homogeneous ver-
sion. The heterogeneous versions generated for the second case study showed
up to 3.65x improvement in performance in comparison to the reference ho-
mogeneous version. Based on the detailed evaluations, it can be concluded
that the ability to exploit the heterogeneity of different kinds of behaviors of
processes in DPNs contributes in efficient system implementations with sub-
stantially improved end-to-end performance.

7.2. Future Prospects

This thesis presented an extendable model-based design framework that offers
a common platform for automatic software synthesis of systems from different
types of dataflow models. In this thesis, we focused mainly on validating
and evaluating the artifacts exhibited by different dataflow models, especially
by their heterogeneous combinations, at the implementation level of systems.
However, the presented framework also offers some interesting prospects for
future work:

7.2.1. Design Decisions

So far, we modeled the systems either based on the synchronous reactive (SR)
MoC or directly using the supported dataflow models. Different versions of
the systems are designed to explore the design space by deliberately modeling
behaviors based on particular kinds of processes. A design decision-making
method can be integrated ideally at the synchronous level to analyse and
automatically explore the design space. In particular, such a method can be
used to leverage the balance between different kinds of processes in DPNs.

7.2.2. Optimized Scheduling

In this thesis a baseline global dynamic scheduler is used to enable the schedul-
ing of heterogeneous dataflow models based on their specialized dynamic local
schedulers. Static scheduling is generally only possible for full static networks
consisting of only static processes. Since, this thesis targets DPNs that consist
of static as well as dynamic nodes, each local scheduler based on a particular
dataflow MoC therefore follows a dynamic scheme and schedules a process
based on the underlying semantics of that dataflow MoC. In a DPN consisting
of a heterogeneous combination of static and dynamic processes, the overhead
of dynamically scheduling processes at runtime can be reduced by optimiz-
ing the scheduling of static parts in the network. In particular, the clusters
of static processes in a DPN can be replaced by composite processes. Each
composite process may contain a local scheduler that executes sequences of
statically scheduled process firings. This optimization can potentially provide
performance gains by targeting groups of processes instead of individual pro-
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cesses. A lot work [PiLe95; TBGR13; FSGT15] has been done in this area
and can be considered for the presented framework in the future.

7.2.3. Dynamic Load Balancing and Mapping

The proposed framework provides an interface in the form of the Device-Queue
to dynamically take into account the current load of each of the computing
units in the system. A dynamic load distribution scheme can be designed and
integrated in the framework to further optimize the mapping scheme and po-
tentially improve the performance. Using such an approach, processes can be
migrated dynamically from one compute unit to another based on more ad-
vanced load balancing algorithms. Some work [ChMil5; ZhGW09; WiRe93]
has been presented in this area and can be considered for the proposed frame-
work in the future.
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Appendix

Standalone Benchmarks

A.1. Benchmarks

The standalone benchmarks as presented in Section 6.3 are especially designed
to offer different kinds of behaviors of the processes. We present here the model
and the generated code of particular benchmarks covering all three supported
dataflow MoCs of the framework. We thereby consider showing mainly the
worker process model and the corresponding generated kernel code of the
following benchmarks: the StITE benchmark consisting of static processes,
the SeqDySplit benchmark offering sequential processes, and the ParDyOR

benchmark involving processes with parallel behaviors.

A.1.1. StITE Benchmark

1 actor ite() int X1, int X2, int X3 => int Y :
2

3 actl: action X1:[x1], X2:[x2], X3:[x3] => Y:[y]
4 guard x1 >= 0

5 do

6 y = x2;

7 end

8 act2: action X1:[x1], X2:[x2], X3:[x3] => Y:[y]
9 guard x1 < 0

10 do

11 y = x3;

12 end

13 end

Listing A.1: Worker process of StITE Benchmark
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Generated Kernel Code

SDF Kernel

1 __kernel void ite ( __global fifo_tx X1 , __global fifo_tx X2
, --global fifo_t* X3, __global fifo_t*x Y, int blockSize)

2

3  /+xGenerate Declarations for All Inputsx/
4 __private int seq-X1[1];

5 __private int seq_-X2[1];

6 __private int seq_-X3[1];

7 intx xl_actl = &seq-X1[0];

8 intx xl_act2 = &seq-X1[0];

9 int* x2_actl = &seq_-X2[0];

10 intx x2_act2 = &seq-X2[0];

11  int*x x3_actl = &seq_-X3[0];

12 int* x3_act2 = &seq_-X3[0];

13 /xGenerate Declarations for All Outputs+/
14  __private int seq.Y [1];

15  int* y_actl = &seq.Y [0];

16  int*x y_act2 = &seq-Y [0];

17 /x*Generate Generic Kernel Codex/

18 __private dynamicCount cnt_ X1 = { .instance_count = 0,.
current_count = 0 };

19 Xl—>stat_updated = 0;

20 __private dynamicCount cnt_X2 = { .instance_count = 0,.
current_count = 0 };

21 X2-—>stat_updated = 0;

22 __private dynamicCount cnt_-X3 = { .instance_count = 0,.
current_count = 0 };

23 X3—>stat_updated = 0;

24 __private dynamicCount cnt.Y = { .instance_count = 0,.
current_count = 0 };

25 Y—>stat_updated = 0;

26 int bytes;

27 int gid = get_global_id (0) * blockSize;
28 for (int x = 0; x < blockSize; x++) {

29 /*Generate SDF Specific Kernel Codex/
30 fifoRead (X1, seq-X1, 1, gid, &cnt_-X1);
31 fifoRead (X2, seq-X2, 1, gid, &cnt_X2);
32 fifoRead (X3, seq-X3, 1, gid, &cnt-X3);
33 if(xxl_actl >= 0 ) {

34 xy_actl = xx2_actl;

35 fifoWrite (Y, seq-Y, 1, gid, &cnt Y);
36

37 else if(xxl_act2 < 0 ) {

38 xy_act2 = xx3_act2;

39 fifoWrite (Y, seq-Y, 1, gid, &cnt Y);
40 }

41 updateDynamicCount(&cnt_X1);

42 updateDynamicCount (&cnt_X2) ;

43 updateDynamicCount(&cnt_X3) ;

44 updateDynamicCount(&cnt_Y ) ;

45}

46 }

Listing A.2: Generated SDF kernel for StITE Benchmark
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KPN Kernel
1 __kernel void ite ( --global fifo_tx X1 , __global fifo_tx X2
, --global fifo_tx X3, __global fifo_t* Y, __global intx
evaluatedGuard, int blockSize)

2

3 /+xGenerate Declarations for All Inputsx/

4 __private int seq-X1[1];

5 intx xl_actl = &seq-X1[0];

6 intx xl_act2 = &seq-X1[0];

7 __private int seq-X2[1];

8 __private int seq-X3[1];

9 intx x2_actl = &seq_-X2[0];

10 intx x2_act2 = &seq-X2[0];

11  int*x x3_actl = &seq_-X3[0];

12 intx x3_act2 = &seq_X3[0];

13 /+«Generate Declarations for All Outputs*/

14  __private int seq.Y [1];

15 intx y_actl = &seq_ Y [0];

16 intx y_act2 = &seq.Y [0];

17 /+xGenerate Generic Kernel Codex/

18 __private dynamicCount c¢cnt_-X1 = { .instance_count = 0,.
current_count = 0 };

19 Xl—>stat_updated = 0;

20 __private dynamicCount cnt_-X2 = { .instance_count = 0,
current_count = 0 };

21 X2—>stat_updated = 0;

22 __private dynamicCount cnt_-X3 = { .instance_count = 0,
current_count = 0 };

23 X3—>stat_updated = 0;

24 __private dynamicCount cnt.Y = { .instance_count = 0,.
current_count = 0 };

25  Y—>stat_updated = 0;

26 int gid = get_global_id (0) % blockSize;

27 for (int x = 0; x < blockSize; x++) {

28 /*Generate KPN Specific Kernel Codex/

29 if (evaluatedGuard [x] = 0) {

30 fifoRead (X1, seq-X1, 1, gid, &cnt-X1);

31 fifoRead (X2, seq-X2, 1, gid, &cnt_X2);

32 fifoRead (X3, seq-X3, 1, gid, &cnt_X3);

33 xy_actl = xx2_actl;

34 fifoWrite (Y, seq.Y, 1, gid, &cnt_Y);

35

36 else if (evaluatedGuard|[x] = 1) {

37 fifoRead (X1, seq-X1, 1, gid, &cnt_X1);

38 fifoRead (X2, seq-X2, 1, gid, &cnt_X2);

39 fifoRead (X3, seq-X3, 1, gid, &cnt-X3);

40 xy_act2 = xx3_act2;

41 fifoWrite (Y, seq.Y, 1, gid, &cnt_Y);

42 }

43 updateDynamicCount(&cnt_X1);

44 updateDynamicCount (&cnt_X2) ;

45 updateDynamicCount(&cnt_X3) ;

46 updateDynamicCount(&cnt_Y ) ;

a7 4

Listing A.3: Generated KPN kernel for StITE Benchmark
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DDF Kernel
1 __kernel void ite ( -_global fifo_tx X1 , __global fifo_tx X2
, --global fifo_t* X3, __global fifo_t*x Y, int blockSize)

2

3 /+*Generate Declarations for All Inputsx/

4 __private int seq_-X1[1];

5 intx xl_actl = &seq-X1[0];

6 intx xl_act2 = &seq-X1[0];

7 __private int seq_-X2[1];

8 __private int seq-X3[1];

9 intx x2_actl = &seq-X2[0];

10 int* x2_act2 = &seq_-X2[0];

11 int*x x3_actl = &seq_-X3[0];

12 int*x x3_act2 = &seq_-X3[0];

13  /+«Generate Declarations for All Outputs*/

14 __private int seq-Y[1];

15 int*x y_actl = &seq.Y [0];

16  int* y_act2 = &seq.Y [0];

17 bool guard_actl;

18 bool guard_act2;

19 char eval_impl_actl;

20 char eval_impl_act2;

21 bool result = false;

22 /*Generate Generic Kernel Codex/

23 __private dynamicCount cnt_-X1 = { .instance_count = 0,.

current_count = 0 };

24 Xl—>stat_updated = 0;

25 __private dynamicCount c¢nt-X2 = { .instance_count = 0,.

current_count = 0 };

26 X2—>stat_updated = 0;

27 __private dynamicCount c¢nt-X3 = { .instance_count = 0,.

current_count = 0 };

28 X3—>stat_updated = 0;

29 __private dynamicCount cnt.Y = { .instance_count = 0,.

current_count = 0 };

30 Y—stat_updated = 0;

31 int bytes;

32 int gid = get_global_id (0) % blockSize;

33 for (int x = 0; x < blockSize; x++) {

34 /xGenerate DDF Specific Kernel Code */

35 bool ctrl_X1_actl = fifoPeek (X1, seq.X1, 1, gid, &cnt_X1);

36 bool ctrl_-X1_act2 = f1foPeek(X1, seq-X1, 1, gid, &cnt_X1);

37 bool ctrl_X2_actl = fifoPeek(X2 seq-X2, 1, gid, &cnt_X2);

38 bool ctrl_X2_act2 = fifoPeek (X2, seq.X2, 1, gid, &cnt_X2);

39 bool ctrl_-X3_actl = f1foPeek(X3, seq-X3, 1, gid, &cnt_X3);

40 bool ctrl_-X3_act2 = fifoPeek (X3, seq-X3, 1, gid, &cnt_-X3);

41 bool ctrl.Y_actl = fifoSpace(Y, O, Y>ta11+g1d &ent Y ,1) ;

42 bool ctrl-Y_act2 = fifoSpace(Y, 0, Y>tail4+gid, &cnt Y ,1);

43 if(ctrl-X1_actl){

44 guard_actl = (xxl_actl >= 0 );

45 eval_impl_actl = evallmplication (guard-actl ,
ctrl_X1_actl & ctrl_-X2_actl & ctrl_X3_actl &
ctrl.Y_actl);

46 }

47 else{
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48 fifoWriteStatus (X1, 1, Xl->head + gid, &cnt X1, 1);
49 }

50 if(eval_-impl_actl = ’17){

51 fifoReadDDF (X1, 4, Xl->head + gid, &cnt X1, 1);

52 fifoReadDDF (X2, 4, X2->head + gid, &cnt-X2, 1);

53 fifoReadDDF (X3, 4, X3—>head + gid, &cnt-X3, 1);

54 xy_actl = xx2_actl;

55 bytes = fifoWriteDDF (Y, seq-Y, 1, gid, &cnt_Y);

56

57 else if (eval_impl_actl = ’07){

58 fifoWriteStatus (X1, 1, X1->head + gid, &cnt-X1, 1);
59 fifoWriteStatus (X2, 1, X2—>head + gid, &cnt_-X2, 1);
60 fifoWriteStatus (X3, 1, X3—>head + gid, &cnt_-X3, 1);
61 fifoWriteStatus (Y, 2, Y>tail + gid, &cnt .Y, 1);

62

63 if(ctrl_-X1_act2){

64 guard_act2 = (xxl_act2 < 0 );

65 eval_impl_act2 = evallmplication (guard_act2

ctrl_X1_act2 & ctrl_X2_act2 & ctrl_X3_act2 &
ctrl_.Y_act2);

66 }

67 else{

68 fifoWriteStatus (X1, 1, Xl->head + gid, &cnt-X1, 1);
69 }

70 if(eval_impl_act2 = ’17){

71 fifoReadDDF (X1, 4, Xl-—>head + gid, &cnt-X1, 1);

72 fifoReadDDF (X2, 4, X2—>head + gid, &cnt_-X2, 1);

73 fifoReadDDF (X3, 4, X3—>head + gid, &cnt X3, 1);

74 xy_act2 = xx3_act2;

75 bytes = fifoWriteDDF (Y, seq.Y, 1, gid, &cnt_Y);

76

7 else if(eval_impl_act2 = ’0"){

78 fifoWriteStatus (X1, 1, Xl->head + gid, &cnt X1, 1);
79 fifoWriteStatus (X2, 1, X2->head + gid, &cnt-X2, 1);
80 fifoWriteStatus (X3, 1, X3—>head + gid, &cnt_-X3, 1);
81 fifoWriteStatus (Y, 2, Y>tail 4+ gid, &cnt .Y, 1);

82 }

83 updateDynamicCount(&ent_X1) ;

84 updateDynamicCount(&cnt_X2) ;

85 updateDynamicCount(&cnt_X3) ;

86 updateDynamicCount(&cnt_Y) ;

87 eval_impl_actl = 'u’;

88 eval_impl_act2 = 'u’;

89}

90 }

Listing A.4: Generated DDF kernel for StITE Benchmark
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A.1.2. SeqDySplit Benchmark

1 actor split() int X1, int X2 => int Y1, int Y2
2

3 actl: action X1:[x1], X2:[x2] => Y1:[yl]

4 guard x1 =1

5 do

6 yl = x2;

7 end

8 act2: action X1:[x1], X2:[x2a, x2b] ==> Y1:[yl], Y2:[y2]
9 guard x1 = 2

10 do

11 yl = x2a;

12 y2 := x2b;

13  end

14 end

Listing A.5: Worker process of SeqDySplit Benchmark

Generated Kernel Code

KPN Kernel
1 __kernel void split ( __global fifo_tx X1 , __global fifo_t=x
X2, __global fifo_t* Y1 |, __global fifo_tx Y2, __global

int* evaluatedGuard, int blockSize)

2

3  /+*Generate Declarations for All Inputsx/
4  __private int seq_-X1[1];

5 int* xl_actl = &seq_-X1[0];

6 intx xl_act2 = &seq-X1[0];

7 __private int seq-X2[2];

8 int* x2_actl = &seq_-X2[0];

9 intx x2a.act2 = &seq-X2[0];

10 int* x2b_act2 = &seq_-X2[1];

11 /*Generate Declarations for All Outputsx*/
12 __private int seq-Y1[1];

13 __private int seq.-Y2[1];

14 int* yl_actl = &seq_-Y1[0];

15 int*x yl_act2 = &seq_-Y1[0];

16  int*x y2_act2 = &seq_-Y2[0];

17 /*Generate Generic Kernel Codex/

18 __private dynamicCount c¢cnt-X1 = { .instance_count = 0,.
current_count = 0 };

19 Xl—>stat_updated = 0;

20 __private dynamicCount c¢cnt-X2 = { .instance_count = 0,.
current_count = 0 };

21 X2—>stat_updated = 0;

22 __private dynamicCount cnt.-Y1 = { .instance_count = 0,.
current_count = 0 };

23 Yl—stat_updated = 0;

24 __private dynamicCount cnt.-Y2 = { .instance_count = 0,.
current_count = 0 };

25 Y2—stat_updated = 0;
26 int bytes;
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 }

int gid = get_global_id (0) % blockSize;
for (int x = 0; x < blockSize; x++) {

}

/*Generate KPN Specific Kernel Code =/
if (evaluatedGuard [x] = 0) {
fifoRead (X1, seq-X1, 1, gid, &cnt-X1);
fifoRead (X2, seq-X2, 1, gid, &cnt_X2);
*yl_actl = xx2_actl;

fifoWrite (Y1, seq-Y1, 1, gid, &cnt-Y1);

else if (evaluatedGuard[x] = 1) {
fifoRead (X1, seq-X1, 1, gid, &cnt-X1);
fifoRead (X2, seq-X2, 2, gid, &cnt_X2);
*yl_act2 = xx2a_act2;
xy2_act2 = xx2b_act2;

fifoWrite (Y1, seq-Y1, 1, gid, &cnt_Y1);
fifoWrite (Y2, seq-Y2, 1, gid, &cnt_Y2);

}

updateDynamicCount
updateDynamicCount
updateDynamicCount
updateDynamicCount

&ent_X1);
&ent _X2);
)
)

&cent_ Y1
&cent_Y2

)

o~~~ —

)

Listing A.6: Generated KPN kernel for SeqDySplit Benchmark
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DDF Kernel
1 __kernel void split ( -_global fifo_tx X1 , __global fifo_t=
X2, __global fifo_t* Y1 , __global fifo_tx Y2, int
blockSize)

2

3 /+xGenerate Declarations for All Inputsx/

4 __private int seq-X1[1];

5 intx xl_actl = &seq-X1[0];

6 int* xl_act2 = &seq_-X1[0];

7 __private int seq-X2[2];

8 intx x2_actl = &seq-X2[0];

9 int* x2a_act2 = &seq_-X2[0];

10 intx x2b_act2 = &seq-X2[1];

11 /*Generate Declarations for All Outputsx/

12 __private int seq.Y1[1];

13 __private int seq-Y2[1];

14  int*x yl_actl = &seq_-Y1[0];

15 int* yl_act2 = &seq_-Y1[0];

16 intx y2_act2 = &seq-Y2[0];

17 bool guard_actl;

18 bool guard_act2;

19 char eval_impl_actl;

20 char eval_impl_act2;

21 bool result = false;

22 /+*Generate Generic Kernel Codex/

23 __private dynamicCount c¢cnt-X1 = { .instance_count = 0,.
current_count = 0 };

24 X1l—>stat_updated = 0;

25 __private dynamicCount c¢cnt-X2 = { .instance_count = 0,.
current_count = 0 };

26 X2—>stat_updated = 0;

27 __private dynamicCount cnt.-Y1 = { .instance_count = 0,.
current_count = 0 };

28 Yl—>stat_-updated = 0;

29 __private dynamicCount c¢nt.-Y2 = { .instance_count = 0,.
current_count = 0 };

30 Y2—>stat_-updated = 0;

31 int bytes;

32 int gid = get_global_id (0) % blockSize;

33  for (int x = 0; x < blockSize; x++) {

34 /*Generate DDF Specific Kernel Code x/

35 bool ctrl-X1l_actl = fifoPeek (X1, seq-X1, 1, gid, &cnt_-X1);

36 bool ctrl_-X1_act2 = fifoPeek (X1, seq-X1, 1, gid, &cnt_-X1);

37 bool ctrl_X2_actl = fifoPeek (X2, seq.X2, 1, gid, &cnt_X2);

38 bool ctrl_-X2_act2 = fifoPeek (X2, seq-X2, 2, gid, &cnt_-X2);

39 bool ctrl_-Y1l_actl= fifoSpace(Y1,0,Yl>tail4+gid,&cnt_Y1,1);

40 bool ctrl_Y1_act2= fifoSpace(Y1,0,Yl—>tail+gid,&cnt_Y1,1);

41 bool ctrl_-Y2_act2= fifoSpace(Y2,0,Y2>tail+gid,&cnt_-Y2,1);

42 if(ctrl-X1_actl){

43 guard_actl = (xxl_actl = 1 );

44 eval_impl_actl = evallmplication (guard-actl ,

ctrl_-X1_actl & ctrl-X2_actl & ctrl_-Y1l_actl);

45 }

46 else{

47 fifoWriteStatus (X1, 1, Xl-—>head + gid, &cnt-X1, 1);
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48 }

49 if(eval_-impl_actl = ’17){

50 fifoReadDDF (X1, 4, Xl->head + gid, &ent X1, 1);

51 fifoReadDDF (X2, 4, X2-—>head + gid, &cnt_-X2, 1);

52 xyl_actl = *xx2_actl;

53 bytes = fifoWriteDDF (Y1, seq-Y1, 1, gid, &cnt-Y1);

54 }

55 else if(eval_impl_actl = ’0"){

56 fifoWriteStatus (X1, 1, Xl-—>head + gid, &cnt X1, 1);

57 fifoWriteStatus (X2, 1, X2->head + gid, &cnt-X2, 1);

58 fifoWriteStatus (Y1, 2, Yl-—>tail + gid, &cnt-Y1, 1);

59 }

60 if (ctrl-X1_act2){

61 guard_act2 = (xxl_act2 = 2 );

62 eval_impl_act2 = evallmplication (guard_act2
ctrl_X1_act2 & ctrl_-X2_act2 & ctrl_-Yl_act2 &
ctrl_.Y2_act2);

63 }

64 else{

65 fifoWriteStatus (X1, 1, Xl->head + gid, &cnt-X1, 1);

66 }

67 if(eval_-impl_act2 = ’17){

68 fifoReadDDF (X1, 4, Xl->head + gid, &cnt_-X1, 1);

69 fifoReadDDF (X2, 4, X2-—>head + gid, &cnt X2, 2);

70 xyl_act2 = xx2a_act2;

71 xy2_act2 = xx2b_act2;

72 bytes = fifoWriteDDF (Y1, seq.Y1, 1, gid, &cnt_Y1);

73 bytes = fifoWriteDDF (Y2, seq-Y2, 1, gid, &cnt-Y2);

74 }

75 else if(eval_impl_act2 = ’07){

76 fifoWriteStatus (X1, 1, Xl-—>head + gid, &cnt X1, 1);

7 fifoWriteStatus (X2, 1, X2—>head + gid, &cnt X2, 2);

78 fifoWriteStatus (Y1, 2, Yl->tail 4+ gid, &cnt-Y1, 1);

79 fifoWriteStatus (Y2, 2, Y2>tail + gid, &cnt_-Y2, 1);

80 }

81 updateDynamicCount(&cnt_X1);

82 updateDynamicCount (&cnt_X2) ;

83 updateDynamicCount(&cnt_Y1) ;

84 updateDynamicCount(&cnt_Y2) ;

85 eval_impl_actl = 'u’;

86 eval_impl_act2 = 'u’;

87 }

88 1}

Listing A.7: Generated DDF kernel for SeqDySplit Benchmark
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A.1.3. ParDyOR Benchmark

1 actor POR() bool X1, bool X2 => bool Y :
2

3 actl: action X1:[x1] => Y:[y]

4 guard x1 = true

5 do

6 y = true;

7 end

8 act2: action X2:[x2] => Y:[y]

9 guard x2 = true

10 do

11 y = true;

12 end

13 act3: action X1:[x1], X2:[x2] => Y:[y]
14  guard x1 = false and x2 = false

15 do

16 y = false;

17 end

18 end

Listing A.8: Worker process of ParDyOR Benchmark

Generated Kernel Code

DDF Kernel

1 __kernel void POR ( -_global fifo_tx X1 , __global fifo_tx X2,
__global fifo_tx Y, int blockSize)

2

3  /+*Generate Declarations for All Inputsx/
4 __private bool seq-X1[1];

5 __private bool seq-X2[1];

6  boolx xl_actl = &seq-X1[0];

7  boolx x1l_act3 = &seq_X1][0];

8  boolx x2_act2 = &seq_-X2[0];

9 boolx x2_act3 = &seq-X2[0];

10  /xGenerate Declarations for All Outputs+/
11 __private bool seq .Y [1];

12 bool*x y_actl = &seq-Y [0];

13 boolx y_act2 = &seq.Y [0];

14  boolx y_act3 = &seq.Y [0];

15 bool guard_actl;

16 bool guard_act2;

17 bool guard_act3;

18 char eval_impl_actl;

19 char eval_impl_act2;

20 char eval_impl_act3;

21 bool result = false;

22 /+*Generate Generic Kernel Codex/

23 __private dynamicCount cnt-X1 = { .instance_count = 0,.
current_count = 0 };

24 X1l—>stat_updated = 0;

25 __private dynamicCount cnt-X2 = { .instance_count = 0,.
current_count = 0 };
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26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74

75
76

X2—>stat_updated = 0;
__private dynamicCount cnt.Y = { .instance_count = 0,.

current_count = 0 };

Y—>stat_updated = 0;

int bytes;

int gid = get_global_id (0) * blockSize;
for (int x = 0; x < blockSize; x++) {

/*Generate DDF Specific Kernel Code */

bool ctrl_-X1.actl = fifoPeek (X1, seq-X1, 1, gid, &cnt_X1)

bool ctrl_X1_act3 = fifoPeek (X1, seq.X1, 1, gid, &cnt_X1)

bool ctrl_-X2_act2 = fifoPeek (X2, seq-X2, 1, gid, &cnt_-X2);

bool ctrl_-X2_act3 = fifoPeek (X2, seq-X2, 1, gid, &cnt_-X2);
)
)
)

)

)

bool ctrl_.Y_actl = fifoSpace(Y, 0, Y>tail4gid, &cnt Y ,1
bool ctrl-Y_act2 = fifoSpace(Y, 0, Y>tail4+gid, &cnt Y ,1
bool ctrl_Y_act3 = fifoSpace(Y, 0, Y>tail+gid, &cnt .Y ,1
if(ctrl_-X1_actl){

)

i

)

guard_-actl = (xxl_actl = true );
eval_impl_actl = evallmplication (guard_actl
ctrl_X1_actl & ctrl_-Y_actl);
}
else{
fifoWriteStatus (X1, 1, Xl-—>head + gid, &cnt X1, 1);
if(eval_.impl_actl = ’17){
fifoReadDDF (X1, 4, Xl->head + gid, &cnt X1, 1);
xy_actl = true;
bytes = fifoWriteDDF (Y, seq.Y, 1, gid, &cnt_Y);
else if(eval_impl_actl = ’0"){

fifoWriteStatus (X1, 1, Xl->head + gid, &cnt X1, 1);
fifoWriteStatus (Y, 2, Y>tail + gid, &cnt .Y, 1);

if(ctrl_.X2_act2){

guard_-act2 = (xx2_act2 = true );
eval_impl_act2 = evallmplication (guard_act2
ctrl_X2_act2 & ctrl_Y_act2);
}
else{
fifoWriteStatus (X2, 1, X2—>head + gid, &cnt X2, 1);
if (eval_-impl_act2 = ’17){
fifoReadDDF (X2, 4, X2—>head + gid, &cnt X2, 1);
xy_act2 = true;
bytes = fifoWriteDDF (Y, seq.Y, 1, gid, &cnt_Y);
else if(eval_impl_act2 = ’0’7){

fifoWriteStatus (X2, 1, X2—>head + gid, &cnt-X2, 1);
fifoWriteStatus (Y, 2, Y>tail + gid, &cnt .Y, 1);

if(ctrl-X1_act3 & ctrl-X2_act3){
guard_act3 = (x¥x1l_act3 == false & *x2_act3 == false );
eval_impl_act3 = evallmplication (guard_act3
ctrl_-X1_act3 & ctrl-X2_act3 & ctrl_-Y_act3);
}

else{
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7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98 }

fifoWriteStatus (X1, 1, Xl->head + gid, &cnt X1, 1);
fifoWriteStatus (X2, 1, X2—>head + gid, &cnt-X2, 1);
}
if (eval_.impl_act3 = ’17){
fifoReadDDF (X1, 4, X1-—>head + gid, &cnt-X1, 1);
fifoReadDDF (X2, 4, X2—>head + gid, &cnt-X2, 1);
xy_act3d = false;
bytes = fifoWriteDDF (Y, seq-Y, 1, gid, &cnt_Y);

else if (eval_impl_act3 = ’07){
fifoWriteStatus (X1, 1, X1->head + gid, &cnt-X1, 1);
fifoWriteStatus (X2, 1, X2—>head + gid, &cnt_-X2, 1);
fifoWriteStatus (Y, 2, Y~>tail 4+ gid, &cnt .Y, 1);
}
updateDynamicCount(&cent_X1) ;
updateDynamicCount(&cnt_X2)
updateDynamicCount(&cnt_ Y ) ;
eval_impl_actl = ’'u’;
eval_impl_act2 = 'u’;
eval_impl_act3 = ’u’

)

)

Listing A.9: Generated DDF kernel for ParDyOR Benchmark
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A.2. Results: All Benchmarks
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Figure A.l.: StOR: number of samples vs end-to-end performance.
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A.2.2. StITE
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Figure A.2.: StITE: number of samples vs end-to-end performance.
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A.2.3. SeqDySwitch
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Figure A.3.: SeqDySwitch: number of samples vs end-to-end performance.
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A.2.4. SeqDySelect
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Figure A.4.: SeqDySelect: number of samples vs end-to-end performance.

140



A.2. Results: All Benchmarks

A.2.5. SeqDyWorker
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Figure A.5.: SeqDyWorker: number of samples vs end-to-end performance.
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Appendix A: Standalone Benchmarks

A.2.6. SeqDySplit
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Figure A.6.: SeqDySplit: number of samples vs end-to-end performance.
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A.2. Results: All Benchmarks

A.2.7. SeqDyMerge
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Figure A.7.: SeqDyMerge: number of samples vs end-to-end performance.
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A.2.8. ParDyOR
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Figure A.8.: ParDyOR: number of samples vs end-to-end performance.
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