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Abstract: Clinical classification models are mostly pathology-dependent and, thus, are only able to 
detect pathologies they have been trained for. Research is needed regarding pathology-independent 
classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier 
that provides prediction probabilities and explanations of the classification decisions. Spinal pos-
ture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as 
well as synthetic data, were used for modeling. A one-class support vector machine was used as a 
pathology-independent classifier. The outputs were transformed into a probability distribution ac-
cording to Platt’s method. Interpretation was performed using the explainable artificial intelligence 
tool Local Interpretable Model-Agnostic Explanations. The results were compared with those ob-
tained by commonly used binary classification approaches. The best classification results were ob-
tained for subjects with a spinal fusion. Subjects with back pain were especially challenging to dis-
tinguish from the healthy reference group. The proposed method proved useful for the interpreta-
tion of the predictions. No clear inferiority of the proposed approach compared to commonly used 
binary classifiers was demonstrated. The application of dynamic spinal data seems important for 
future works. The proposed approach could be useful to provide an objective orientation and to 
individually adapt and monitor therapy measures pre- and post-operatively. 

Keywords: spine; machine learning; artificial intelligence; data mining; biomechanics; back pain; 
osteoarthritis; spinal fusion; explainable artificial intelligence 

1. Introduction
In outpatient care, back pain, and knee joint osteoarthritis are among the 30 most 

common individual diagnoses, with approximately 20% of 18–79-year-olds having phy-
sician-diagnosed osteoarthritis, whereby knee and hip joints are most commonly affected 
[1]. Back pain is considerably lowering the quality of life across all income and age groups 
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and is now the leading cause of disability worldwide [2] with a point prevalence of 25–
40% [3], a 12-month prevalence of approximately 61% [4], for example in the German pop-
ulation, and a lifetime prevalence in the American population of up to 85% [5]. Hence, 
more emphasis should be put on the back. Back pain may be due to a specific vertebro-
genic cause, such as spondylitis, herniated disc, or spinal stenosis [6]. However, 90% of 
back pain is stated to be nonspecific, whereby no anatomic correlate can be detected as 
the specific cause that requires treatment [7]. Non-specific back pain can be caused by 
altered function; moreover, pathologies, such as knee or hip osteoarthritis, may cause pos-
tural changes or back pain. This is because the body reacts to a pain stimulus with avoid-
ance in both stance and gait, which leads to poor or relieved postures [8]. For those pa-
tients diagnosed with a specific cause of their back pain, such as spondylolisthesis, sur-
gery is often required. In the field of spondylodesis, in particular, there has been a large 
increase in surgery rates in recent years [9,10], even though patients do not always clearly 
benefit from this type of surgery—most notably, those with persisting pain [11,12]. Hence, 
objectifiable data, such as radiography or magnetic resonance imaging, are not able to 
explain this dissatisfying postoperative outcome alone. Besides daily-life monitoring data 
of wearables [13,14], a posture and motion analysis, combined with artificial intelligence, 
might be able to provide useful insights. 

Artificial intelligence (AI) and machine learning approaches are gaining increasing 
interest in the field of biomechanical clinical data analysis and have obtained promising 
results (e.g., after stroke [15] or in Parkinson´s disease [16]). They have proven to be useful 
in analyzing complex and multivariate data, giving objective orientation and finding dis-
criminative group-specific differences [17,18]. Furthermore, they have even shown ad-
vantages over commonly used inference-based statistical analysis methods in those data-
bases [19–21]. In the clinical context, they are able to identify pathologic characteristics 
and even surpass human guidance in the detection of diseases [22,23]. Additionally, they 
might be able to reduce false-positive mistakes and differences in disease detection based 
on the different experience levels of the medical practitioners [24]. However, regarding 
the application of machine learning methods on spinal data for the mentioned patholo-
gies, there is a lack of research. Using machine learning approaches, existing classification 
studies have investigated pathologies such as osteoarthritis [25] or total hip arthroplasty 
[17,26]. To the best of the authors’ knowledge, no studies regarding back pain and spinal 
fusion (spondylodesis) are currently available. 

Many machine learning models often show black box characteristics and a lack of 
transparency [27]. For the user, it is, therefore, hard to trust in the model and its decision 
because it is opaque—why does the model make certain decisions and what has the model 
really learned [28]? This opacity does not comply with the requirements of the European 
General Data Protection Regulation (GDPR,EU 2016/679) [29] and strongly limits practical 
applications in clinical contexts [30]. Recently, through advances in the application of ex-
plainable artificial intelligence (XAI) methods in the biomechanical clinical domain, ma-
chine learning is becoming more and more applicable in practical clinical settings [31,32]. 
XAI offers methods for increasing the trustworthiness and transparency of black box mod-
els [27]. The prominent interpretation tools are, for example, Local Interpretable Model-
Agnostic Explanations (LIME) [33], SHapley Additive exPlanations (SHAP) [34], and 
Deep Learning Important FeaTures (DeepLIFT) [35]. The usage of XAI has shown to be 
particularly useful in understanding individual pathologic differences and is, therefore, 
of high relevance in the context of personalized medicine, e.g., to monitor therapy 
measures pre- and post-operatively [31,32].  

Most works are based on binary classification tasks for knowledge discovery through 
distinguishing between healthy subjects and subjects with a certain pathology (e.g., 
[17,25,26,31,32]). For model training, both the data of healthy subjects and of the pathology 
of interest are often used. The resulting models are, therefore, only applicable for a certain 
pathology—they are pathology-dependent; hence, they are only able to detect the certain 
pathology for which they have been trained. To obtain a model for another pathology of 
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interest, completely new training with subjects of the respective pathology has to be per-
formed, even if the training data of healthy subjects remain the same. 

Differences in comparison to a healthy group are usually of interest in the clinical 
context. Therefore, the question arises if it is possible to develop a pathology-independent 
classifier by only learning the characteristics of healthy subjects in order to recognize any 
(pathological) deviations. Unsupervised outlier detection methods may have the potential 
to perform this. A previous work [36] used a one-class support vector machine (OCSVM) 
and obtained the first promising results. Transferred to the terminology of an outlier de-
tection task, a decision function was learned based on regular observations (healthy sub-
jects) and outliers (subjects with a pathology; in the quoted case, total hip arthroplasty, 
and one transfemoral amputee) detected due to their location outside the learned frontier. 

Overall, there is a lack of research regarding those classifiers and their interpretation. 
According to current practice, they are treated as black boxes. This does not comply with 
GDPR and strongly limits applications in the clinical context. Furthermore, it is question-
able whether XAI tools are suitable for interpretation in this context. Therefore, the aim of 
this research is to design and evaluate a pathology-independent classifier that provides 
explanations of classification decisions using XAI. Using clinical spinal posture data of the 
clinically highly relevant pathologies back pain, spinal fusion, and osteoarthritis, we 
wanted to check whether it is possible to adequately explain pathologic differences com-
pared to healthy controls with a pathology-independent classifier and to generate clini-
cally relevant insights. The classification results are compared with those obtained using 
commonly used binary classification approaches. 

2. Materials and Methods 
2.1. Measuring Method, Data, and Subjects 

Across four studies, we collected data of 151 subjects. Depending on the study design 
of the respective study (see Table 1), for every subject, on one or on three separate days, 
12 postural data measurements of the spine averaging from 12 to 14 individual images 
were obtained for each day (36 total measurements for each healthy subject which were 
recorded on three days). Data were collected of healthy subjects, as well as subjects with 
various pathologies (back pain, spinal fusion, and osteoarthritis), using the DIERS formet-
ric III 4D™, DICAM v3.7Beta analyzing system as a means for rasterstereography, also 
called surface topography (ST). All subjects received the same marker placement (vertebra 
prominens, both dimples, and shoulders). The subjects’ characteristics are described in 
Table 1. The method allowed to measure the spine in all body planes without the use of 
invasive or radiation-based approaches or extensive preparation. Recently, in addition to 
static measurements, this method has proven useful in measuring dynamic spinal data 
[37,38]. (1 The dataset is part of the dissertation project of Friederike Werthmann; 2 The 
dataset is part of the dissertation project of Claudia Wolf.) 

Table 1. Subject characteristics and related trials. 

 
Subjects 

(n) 
Male (n); 

Female (n) 
Age (SD) 

Hight cm 
(SD) 

BMI 
(SD) 

Further Information 

Healthy 1 
(asympto-

matic) 
25 12; 13 

34.68 
(12.07) 

176.28 
(8.83) 

24.01 
(3.45) 

Repeated measurements at three points in time; walk-
ing without walking aids and pain; no acute or 

chronic diseases; no pregnancy; BMI < 30; WHO regis-
ter (INT: DRKS00014325) 

Back pain 32 14; 18 
44.53 

(14.84) 
174.00 
(11.00) 

26.01 
(4.79) 

Area of pain: 6% thoracic spine (TS), 72% lumbar 
spine (LS), and 22% TS + LS;  

no acute fractures, walking aids, or acute/chronic ill-
nesses that prevent safe walking; WHO register (INT: 

DRKS00013145) 
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Spinal fu-
sion 

34 20; 14 
56.26 

(15.40) 
171.00 
(11.00) 

26.95 
(4.43) 

Spinal fusion somewhere between C7 and L5; no 
acute fractures, walking aids, or acute/chronic ill-

nesses that prevent safe walking; WHO register (INT: 
DRKS00013145) 

Osteoar-
thritis 2 

60 29; 31 
64.00 

(11.27) 
171.00 
(9.15) 

25.68 
(2.35) 

30 knee osteoarthritis and 30 hip osteoarthritis; walk-
ing without walking aids; no walking impairments 
that prevent safe walking; no acute or chronic dis-

eases; no pelvic or spinal surgery; no pregnancy; BMI 
< 30; WHO register (INT: DRKS00017240)  

Fifty-five static parameters provided by the system were used (pelvic obliquity (°), 
pelvic torsion (dimples) (°), pelvic inclination (dimples) (°), pelvic rotation (°), and orien-
tation of VP, T1–12, and L1–L4 in all planes (°)) for modeling. For a detailed description 
of the parameters, see [37,39] and Appendix A. Data of healthy subjects were used for 
training the OCSVM. Consequently, only the outliers in the group of healthy subjects in-
fluenced the learning of a decision function. Therefore, outliers were removed for the data 
of the healthy subjects using isolation forest [40] that also pay attention to multivariate 
outliers. Of the 900 samples, 150 were removed (one subject was completely removed). 

For evaluation of the classification performance in terms of the dependence of the 
class separation, synthetic subject data (n = 24 subjects) of known separation to the healthy 
reference subjects were created. The use of the synthetic data is intended to ensure that 
groups of different class separations are present to check the performance of the proposed 
approach in settings with well separated groups as well as settings with little separated 
groups. To maintain similar spinal characteristics compared to real-world data for the 
synthetic posture data, data creation was based on the principal components (PCs) of the 
healthy subjects. After removing the mean and scaling to unit variance, principal compo-
nent analysis (PCA) was applied. Four different synthetic classes were created, each of 
which was based on a modification of one PC. Therefore, separately for the first four PCs, 
data were created by adding random samples from a normal Gaussian distribution. The 
center of the distribution was set according to the desired cluster separation (silhouette 
scores of synthetic data compared to healthy data—class S1: 0.49; class S2: 0.41; class S3: 
0.33; class S4: 0.16) with a standard deviation equal to 1. Afterward, the synthetic PCA 
data were transformed back into the original space. 

For every real and synthetic subject, 10 samples without replacement were drawn for 
further calculations. 

2.2. Data Preprocessing and Model Evaluation 
For both the pathology-independent classifier, as well as the binary classifiers, 

grouped K-fold cross-validation (KFold) with five folds (25–29 healthy subjects were used 
each time in the training, while 6–9 healthy subjects were used each time in the test set) 
was used for model evaluation to check if the model was able to generalize to new sub-
jects. Therefore, the data were split considering the subjects to ensure that the samples of 
each subject were not present in both the training and the testing data. The data of each 
training fold were split into data for actual training and data for validation (validation 
size = 20%) to allow hyperparameter searching and probability calibration/calculation 
without introducing a bias. Standardization was performed based on each respective 
training set by removing the mean and scaling to unit variance. 

2.3. Pathology-Independent and Binary Classifier 
OCSVM [41] was used for building a pathology-independent classifier. Initially, the 

SVM algorithm was developed for binary classification tasks. In the case of one-class clas-
sification, the algorithm tries to capture the density of the majority class. Outliers are de-
tected as extremes of the learned density function. The OCSVM was trained using training 
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samples of healthy subjects in the training set only. A random hyperparameter search was 
performed with the parameter “kernel” (linear, radial basis function), “nu,” and “gamma” 
using the samples of healthy subjects in the validation set for performance evaluation. The 
remaining hyperparameters were set to the default parameters of Scikit-learn [42]. Vali-
dation set performance was measured as the ratio of misclassified healthy subjects to the 
total number of healthy subjects in the validation set. 

The classification output was transformed into a probability distribution over the 
classes according to Platt´s method [43]. Therefore, a logistic regression model was fitted 
to the output scores of the model with respect to the actual class labels. In the present case, 
logistic regression using five-fold CV for hyperparameter selection was fitted to the vali-
dation set for each group of subjects. 

2.4. Validation 
For comparing the results of the proposed methodology with those obtained using a 

classical binary classification method, the random forest classifier (RF) [44] was used (a 
preliminary study using spinal posture data of another group of subjects showed that the 
algorithm yielded similar or slightly better classification results compared to other re-
garded classifiers). A random hyperparameter search was performed with the parameters 
“n_estimators” and “max_depth” using the validation set performance. The remaining 
hyperparameters were set to the default parameters of Scikit-learn. The F1 score was used 
to measure the validation set performance. Probabilities for the RF model were calibrated 
according to Platt´s method described above. 

2.5. XAI Interpretations 
The model-agnostic interpretation tool Local Interpretable Model-Agnostic Explana-

tions (LIME) [33] was used for explaining the predictions of the OCSVM or the binary 
classifier using probabilities calculated/calibrated with the described Platt´s method. To 
explain how a black box model makes a single prediction, LIME performs an approxima-
tion of a local prediction of a black box model with a simpler interpretable model. There-
fore, data points around an instance of interest of a black box model were generated 
through perturbation. Afterward, these data points were predicted with the black box 
model and weighted by their proximity to the selected instance. Finally, an interpretable 
model was learned on the weighted data points and used for explaining the prediction 
[33]. Each trained model during KFold was used to explain the predictions of the respec-
tive test set. Detailed analyses of the XAI results were performed for the pathology with 
the highest classification performance. Subject-specific results were exemplarily pre-
sented and discussed. 

2.6. Evaluation Metrics and Calculations 
Uncertainties were analyzed using classification probabilities. Due to partly imbal-

anced classes, predicted probabilities were evaluated using the Brier Skill Score (BSS; nor-
malized by the naive score [45]). Classification performance was reported using the Mat-
thews correlation coefficient (MCC), the F1 score, and a confusion matrix (CM) based on 
the classification founded on prediction probabilities. Calculations were performed in Py-
thon (Python Software Foundation, Wilmington, DE, USA) using Scikit-learn [42] and 
LIME [33]. 

3. Results 
The results for the OCSVM, as well as the binary classification approach, are pre-

sented in Table 2. For the pathologies, the best classification performance was obtained 
for the spinal fusion data. The proposed OCSVM showed improved performance com-
pared to the binary RF classifier for the respective data and the F1 and MCC scores. The 
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BSS was slightly reduced compared to the RF classifier. The worst classification perfor-
mance was obtained for both approaches for the back pain data. Performance for the os-
teoarthritis data was between the classifications of spinal fusion and back pain. 

Table 2. Classification results (mean and standard deviation) for the pathology-independent one-class classifier (OCSVM) 
and the binary classification approach using a random forest classifier (RF). Absolute class predictions were conducted 
according to the calculated/calibrated prediction probabilities. MCC, Matthews correlation coefficient; F1, F1 score; CM, 
confusion matrix. 

 One Class SVM Binary RF Classifier 
 Data F1 MCC BSS CM F1 MCC BSS CM 

Syn-
thetic 

S1 
0.96 ± 
0.05 

0.92 ± 0.1 0.84 ± 0.12 
220 2 

1.0 ± 0.0 1.0 ± 0.01 0.93 ± 0.02 
239 0 

20 238 1 240 

S2 
0.99 ± 
0.01 

0.99 ± 0.02 0.95 ± 0.02 
237 0 

0.98 ± 0.03 0.96 ± 0.07 0.88 ± 0.05 
230 1 

3 240 10 239 

S3 
0.89 ± 
0.03 

0.77 ± 0.05 0.61 ± 0.12 
203 19 

0.95 ± 0.04 0.90 ± 0.09 0.79 ± 0.12 
223 6 

37 221 17 234 

S4 
0.82 ± 
0.09 

0.65 ± 0.19 0.46 ± 0.23 
192 38 

0.90 ± 0.04 0.82 ± 0.06 0.65 ± 0.09 
217 23 

48 202 23 217 

Real 

BP 
0.54 ± 
0.13 

0.13 ± 0.19 0.02 ± 0.10 
149 165 

0.62 ± 0.17 0.08 ± 0.34 
–0.08 ± 

0.35 
98 113 

91 155 142 207 
Spinal fu-

sion 
0.80 ± 
0.12 

0.57 ± 0.23 0.33 ± 0.28 
194 78 

0.74 ± 0.25 0.45 ± 0.25 0.36 ± 0.31 
171 86 

46 262 69 254 
Osteoar-

thritis 
0.69 ± 
0.04 

0.21 ± 0.12 0.35 ± 0.30 
138 230 

0.78 ± 0.09 0.19 ± 0.21 
41.28 ± 

0.35 
73 107 

102 370 167 493 

For the synthetic data, the binary classifier performed better than the OCSVM (except 
S2). The difference was especially visible for the data with the lowest separation from the 
group of healthy subjects (MCC OCSVM: 0.65 ± 0.19; MCC RF: 0.82 ± 0.06). Surprisingly, 
OCSVM performance was reduced for S1 compared to S2, and even the class separation 
measured by means of the silhouette score increased for S1. 

The local results for the pathology with the highest classification performance (sub-
jects with spinal fusion) for the OCSVM, as well as the binary classifier, are presented in 
Table 3. Examples for one correctly and one falsely classified subject are given in Figure 
1. 
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Figure 1. Exemplary posture of one correctly (3459598) and one falsely (8232865) classified subject. Bottom: Displayed 
LIME values show the effect for the 10 most important features. Negative values represent an effect toward the group of 
healthy subjects, with positive values indicating an effect that indicates an outlier (patient). Top: Vertebral body positions 
in the transversal (rotation), coronal (lateral flexion), and sagittal (flexion extension) planes. Positive values indicate a 
rotation/tilt to the left or ventral (toward flexion), while negative values indicate a rotation/tilt to the right or dorsal (to-
ward extension). Blue = mean and standard deviation (SD) of healthy reference group; orange = mean and SD of group of 
subjects with the respective pathology; black = mean and SD of the 10 measurements of the subjects of interest. 
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Table 3. Results for the spinal fusion subjects (mean and standard deviation of the 10 measurements 
per subject), as well as localization of the spinal fusion and the features with the highest relevance 
according to the LIME results. The probabilities are for classification as an outlier/patient. P, pelvis. 

Subject ID  

OCSVM 
Mean  

Prediction 
Probability  

RF 
Mean  

Prediction 
Probability  

Location of 
Spinal  
Fusion  

LIME 
OCSVM 

LIME 
RF 

1962247 1.00 ± 0.00  0.92 ± 0.00 L1–S1  T8, T9, P T9, T10, T7 
3459598  1.00 ± 0.00  0.93 ± 0.00 T10–L2  T4, L1, T5 T3, T4, T2 
7741511 0.99 ± 0.00  0.90 ± 0.01 L5–S1  T9, P, T3 T9, T10, T7 
5777016 0.98 ± 0.01  0.92 ± 0.00 T10–L3  L4, P, P T9, T7, T5 
7475130 0.96 ± 0.01  0.73 ± 0.01 L3–S1  T4, T5, T6 T4, T3, T2 
9342653 0.96 ± 0.01  0.80 ± 0.04 L4–L5  L4, P, L1 T9, T7, T8 
3729138 0.90 ± 0.01  0.87 ± 0.02 L2–L3  P, P, T8  T3, T4, T7 
5536002 0.87 ± 0.02  0.71 ± 0.03 T6–L3  L4, P, T2 T3, T4, T7 
6705867 0.87 ± 0.02  0.84 ± 0.01 L5–S1  P, T12, L4 T3, T4, T12 
5247355 0.83 ± 0.03  0.88 ± 0.02 L5–S1  P, L4, T8 T4, T5, T8 
5297873 0.81 ± 0.03  0.80 ± 0.02 L4–L5  P, P, T7 T8, T7, T5 
5408449 0.80 ± 0.02  0.71 ± 0.02 T4–L1  T7, T8, T12 T5, T4, L1 
3336746 0.78 ± 0.02  0.93 ± 0.01 L3–L5  P, T8, P T4, T5, T8 
9747703 0.77 ± 0.01  0.94 ± 0.01 L3–L5  P, L4, T3 T4, T5, T8 
2324908 0.76 ± 0.06  0.90 ± 0.01 T11–L3  P, L4, L3 T3, T4, T7 
8398276 0.75 ± 0.05  0.43 ± 0.03 T10–L2  L4, P, T11 T3, T4, T7 
3012624 0.70 ± 0.07  0.83 ± 0.07 L4–L5  P, T8, T12  T3, T4, T7 
7767875 0.62 ± 0.02  0.82 ± 0.02 C6–T2  P, P, L4 T5, T4, T6 
5815929 0.60 ± 0.03  0.92 ± 0.00 T12–L2  P, L4, P T4, T5, T8 
9621669 0.56 ± 0.09  0.34 ± 0.05 T12–L2  T4, T3, T5 T3, T4, T2 
1082776 0.55 ± 0.00  0.43 ± 0.05 L2–L4  L4, T4, T5 T3, T11, L4 
649887 0.53 ± 0.01  0.82 ± 0.01 L4–L5  VP, T3, T9 T3, T3, T4 

7550216 0.53 ± 0.00  0.82 ± 0.02 T10–L5  VP, T3, T9 T3, T9, T6 
3943929 0.51 ± 0.00  0.88 ± 0.01 L3–L4  L4, T9, L3 T9, T3, T4 
5584179 0.51 ± 0.01  0.89 ± 0.01 L4–L5  T9, T4, VP T9, T3, T8 
6777530 0.51 ± 0.01  0.86 ± 0.01 L2–L4  VP, T3, L3 T3, T9, T6 
9299446 0.50 ± 0.01  0.32 ± 0.03 T5–T10  L3, VP, T12 T3, T7, T3 
632814 0.45 ± 0.01  0.76 ± 0.06 L4–S1  L4, VP, T3 T3, T9, T6 

3035442  0.42 ± 0.00  0.71 ± 0.02 T11–L2  L4, VP, T3 T3, T9, T8 
6683738 0.41 ± 0.09  0.11 ± 0.01 L4–L5  T3, L1, T2 T3, T2, T10 
2064644 0.31 ± 0.06  0.19 ± 0.05 L4–S1  P, T7, T11 T10, T9, T7 
9664225 0.08 ± 0.04  0.44 ± 0.13 T6–T11  T12, L4, T11 T3, T4, T12 
1084868 0.03 ± 0.00  0.08 ± 0.01 T6–T10  T8, T9, P T9, T10, T8 
8232865 0.00 ± 0.00  0.37 ± 0.02 T1–L1  T4, T3, T5 T3, T4, T2 

Using the mean probability values of the measurements of each subject, 27 and 7 
subjects were correctly and falsely classified, respectively, out of the 34 subjects with spi-
nal fusion. For 8 of the 27 correctly classified subjects, the class probability difference was 
below 0.2. Using the RF approach, 9 and 25 subjects were falsely and correctly classified, 
respectively. For the majority of the misclassified subjects, the results for the OCSVM and 
the binary classification approach were congruent. 

The point plots in Figure 1 showed, in general, the presence of highly overlapping 
areas between the classes. Subject 3459598 was correctly classified for both OCSVM and 
RF with a high probability (probability for classification as an outlier—OCSVM: 1.00; RF: 
0.93). For subject 8232865, pathologic differences were clearly visible in the point plot. 
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However, both approaches failed to classify the subject correctly (probability for classifi-
cation as an outlier—OCSVM: 0.00; RF: 0.37). Looking at the LIME interpretations for both 
classifiers showed similar features in the top 10 listings. For the correctly classified subject, 
the LIME values of the top 10 features showed an effect that indicated an outlier. For the 
misclassified subject, the majority of LIME values for the top 10 features showed an effect 
toward the class of healthy subjects. 

4. Discussion 
For the discussion of validity/plausibility of the found effects, as well as the proposed 

pathology-independent classifier, five aspects were addressed in the following: (a) classi-
fication performance of the pathology-independent and binary classification approaches, 
(b) previous research results and biomechanical characteristics in relation to classification 
performance, (c) LIME effects between the pathology-independent and binary classifica-
tion approaches, (d) LIME effects in relation to the location of the spinal fusion, and (e) 
expert knowledge-based interpretation of the exemplary subject results. 

(a) Looking at the real data, the best performance was achieved using the pathology-
independent classifier for the spinal fusion data (MCC = 0.57 ± 0.23). These results also 
matched the use of the binary classifier using the RF algorithm trained on both classes 
(MCC = 0.45 ± 0.25). OCSVM performed better using the spinal fusion data. Therefore, the 
current study indicated prevalent spinal differences between healthy subjects and subjects 
after spinal fusion that were suitable for classification. The classification performance of 
the subjects with osteoarthritis might have indicated potential spinal differences with a 
limited ability for classification. For the osteoarthritis data, the predicted and actual clas-
ses were only weakly correlated when using the stance data (OCSVM: MCC = 0.21 ± 0.12; 
RF: 0.19 ± 0.21). The results indicated that subjects with osteoarthritis seemed to stand 
differently compared to healthy subjects. However, the differences seemed relatively 
small, which resulted in a low discriminative power of the features. An interpretation of 
the results should, therefore, be carried out with caution. For the back pain data, no good 
model solution was found for either approach (OCSVM: MCC = 0.13 ± 0.19; RF: 0.08 ± 
0.34). 

The BSS as a probability scoring metric also quantified the poor distinguishability of 
subjects with back pain from healthy subjects. Due to the poor results for both the pathol-
ogy-independent, as well as the binary classifier, it can be ruled out that the proposed 
approach alone was the cause of the poor results. This was in line with a previous work 
that demonstrated that even the use of different complex classifiers and metric learning 
approaches is not able to lead to a significant improvement in the classification perfor-
mance for subjects with back pain [46]. 

For the synthetic data, the binary classification approach seemed to show superior 
performance when the class separation was reduced. This may highlight the importance 
of highly discriminant data for optimal performance of the pathology-independent ap-
proach. Surprisingly, the OCSVM approach showed a lower performance on S1 compared 
to S2, which was contrary to this statement. It cannot be fully clarified at this point 
whether this was a random event and, consequently, if further research is necessary. 

There were diverging indications that, on the one hand, suggested no clear, system-
atic performance difference and, on the other hand, that binary classifiers performed bet-
ter when the class separation was low. This study was intended as an initial investigation, 
but in order to clarify the mentioned aspects, further research is necessary. However, over-
all, the results seemed relatively congruent for the OCSVM, as well as for the binary RF 
approach. 

(b) It can be assumed that non-specific back pain and osteoarthritis affect the spine 
more in terms of dynamic function than in terms of posture. Therefore, these pathologies 
are less detectable in static measurements. Back pain often originates in the muscular sys-
tem [47]. Due to an altered movement sequence, other muscle activities, angular courses, 
and greater joint moments are conceivable and probable [7]. Muscular imbalances are also 
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easier to recognize in dynamic function. Osteoarthritis patients, on the other hand, have 
postural changes due to contractures in the affected joint, which should also be recogniza-
ble in static measurements of the cranially located vertebrae [48,49], which would explain 
why their detection was more successful. However, the entire spine was demonstrated to 
compensate for the flexed hip joint in the sagittal plane, but since this is limited, a strongly 
unbalanced spine–pelvis alignment was found [48]. This compensatory phenomenon 
should actually be identifiable by the proposed methodology. Nevertheless, since our in-
dividual vertebral body positions did not necessarily reflect the spinal position as a whole, 
our classification approach might appear as not sensitive enough. In spondylodesis pa-
tients, the underlying pathologies were directly in the measurement area. As a result, the 
vertebral bodies to be measured usually no longer contribute to a physiological position, 
since the affected segments were fixed. After spondylodesis surgery, structural alterations 
such as a slight shortening of the spine have been found [50], but only after one year, and 
none of them in the frontal plane. The authors hypothesized that these measurable 
changes were due to other structural changes, such as muscle shortening and deformed 
vertebrae. Years of pain with functional alterations of movement patterns and the result-
ing pathological posture, thus, appeared to have a major lasting impact on anatomical 
structure [51]. In addition, it can be assumed that neighboring segments compensated for 
the stiffened area, which is why stronger vertebral body rotations could be recognizable 
here. Existing surgical scars, as well as spinal hardware such as rods and screws, could 
also have an influence on the measurement results. Besides the influence of different pa-
thologies on posture, advancing age could have also negatively affected the postural con-
trol [52]. 

(c) The following discussion of the LIME effects focuses on the results for the spinal 
fusion data due to the best classification performance. The reason is that, on the one hand, 
local LIME effects may indicate characteristics of a healthy or pathologic subject for the 
respective vertebras and, on the other hand, it is also possible that the model learned a 
wrong relationship between the feature value and the class membership. For the identifi-
cation of subject-specific characteristics, it is, therefore, important to reduce model mis-
takes. 

Looking at the LIME values of the OCSVM and the binary RF approaches with the 
highest effects, showed that partly congruent results were present for the features with 
the highest effects for both approaches. However, there were also diverging results; for 
example, the pelvis more often had a higher relevance for the OCSVM. In general, only a 
little research addresses the agreement of XAI results for different classifiers, different XAI 
approaches [32], and different extracted features [31] in the context of biomechanical data 
and, consequently, more research is necessary. The exemplary LIME results for each of 
the presented subjects often showed effects for both classes (healthy and outlier). There-
fore, the present study´s patients also showed spinal characteristics, which seemed to be 
similar to those of the healthy subjects. 

Regarding the partly different/instable XAI results for both approaches, the aggrega-
tion of the results of different XAI approaches and different models on the same data 
might be an interesting approach to increase the robustness of XAI interpretations. In the 
context of feature selection, the ensemble method has already proven useful in generating 
more robust results [53,54]. The use of similar methods in the context of XAI could, thus, 
be useful and could help to increase the stability and, consequently, the trust in the XAI 
interpretations. The inclusion of global interpretations, e.g., through permutation im-
portance or partial dependence plots [55], may be complementary and add more insights 
into the data. For a practical use in clinical settings, the appropriateness of an exclusive 
focus on LIME appears questionable. Therefore, the combination of different approaches 
seems necessary. 

Looking at the LIME effects, the boxplots showed little variation of the LIME values 
between the 10 measurements of each subject most of the time. Therefore, in general, the 
same effects were identified for the measurements of each subject, which also speaks for 
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the quality of the interpretation. These results can also be justified by the fact that previous 
works showed a high accordance between multiple static and dynamic measurements of 
the same subjects [38]. 

(d) The LIME values did not always show high effects for the vertebras related to the 
direct location of the spinal fusion. A possible reason for this might be that spinal fusion 
causes a higher pathologic deviation in other regions of the spine. This could also be ex-
plained by the connection instability that often develops after surgery [56,57]. However, 
more distant vertebral bodies also showed large effects, and they are usually in the regions 
of reverse curvature. They appeared to deviate from the physiological positions in the 
sense of maintaining balance to compensate for the altered statics of the fused vertebral 
bodies. 

(e) Looking at the exemplarily results for the correctly classified subject 3459598 
showed that the LIME values with the highest effect (OCSVM: Flexion extensions T4, T5, 
and L1; RF: Flexion extensions T2, T3, and T4) indicated an effect toward an outlier. The 
effects were similar for both approaches. In line with the above-mentioned aspects, the 
features with the highest effects did not directly map the vertebras where the spinal fusion 
was located (T10–L2). For the misclassified subject 8232865, the LIME values (OCSVM: 
Flexion extensions T3, T4, and T5; RF: Flexion extensions T2, T3, and T4; location of the 
spinal fusion: T1–L1) indicated an effect for the class of healthy subjects. However, the 
subject belonged to the class of spinal fusion. The misclassified subject showed very dif-
ferent patterns compared to the other subjects of the spinal fusion group. In addition to 
the still obvious vertebral body position data deviating from physiological posture, the 
very long fusion (long-axis fusions with more than four vertebral bodies are more com-
mon in scoliosis patients) also suggested that subject 8232865 suffered from severe scolio-
sis. In general, the mean values for the flexion extensions T3, T4, and T5 of the group of 
spinal fusion were above the mean values for the healthy. For the misclassified sample, 
this was the other way around. This might be the reason why the binary classifier failed 
to correctly classify the subject, because it learned an oversimplified relationship of the 
feature values to the class membership. The training data for the respective pathology 
should, therefore, be expanded, especially for subjects that show similar characteristics to 
the misclassified subject, so that the model is able to map the respective characteristics 
during the training phase. Further feature engineering through an automated feature ex-
traction [37] or the inclusion of global spinal parameters (e.g., lordosis and kyphosis angle) 
might also be promising. For the OCSVM, a further possible reason for misclassification 
was that hyperparameters were not optimally chosen due to the hyperparameter search, 
because it was only based on the validation set performance related to the healthy sub-
jects. Hyperparameter searching using a scoring metric that captures the classification re-
sults of healthy and patient data might be a promising alternative approach for improving 
performance. 

Overall, the results highlighted the usefulness of the proposed XAI approach for ex-
plaining the predictions of the pathology-independent classifier. With the proposed XAI 
approach, it was possible to understand why subjects were classified (including why they 
were misclassified) and to reduce the black box character of the machine learning model. 
Therefore, the current study formed an important step for making OCSVM classifiers 
more applicable in clinical contexts. 

Common inference-based statistical analysis methods often aim to find global effects 
between different groups of subjects. However, global interpretations are misleading in 
the case of highly individual subject characteristics, which are potentially relevant for 
class memberships. For spinal data, a previous work showed that highly individual pat-
terns are present, which even enables the recognition of subjects [38]. For example, for the 
present groups of pathologies, the location of the spinal fusion was highly individual. 
Therefore, local instead of global interpretations gained high relevance. This highlights 
the clinical importance of the use of XAI tools, such as in the present study, for obtaining 
local interpretations. 
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Overall, the present results showed a high potential for the proposed pathology-in-
dependent classifier and no clear superiority of commonly used binary classification ap-
proaches. Limitations are to be mentioned in connection with the validity of the measure-
ments while standing. Although a meta-analysis was able to confirm an overall reliable 
and valid measurement method for the assessment of spinal posture, this was particularly 
the case for global parameters such as thoracic kyphosis or lumbar lordosis. Pelvic param-
eters, such as obliquity or torsion, were less reliable and showed higher reliability in sco-
liosis patients than in healthy individuals, but one reason for this may be the smaller sam-
ple size [58]. However, further research has also shown that similar vertebral body devi-
ations in the transverse plane of healthy persons could be measured with the help of ras-
terstereography [39], as another research group was able to perform with the help of CT 
and MRI images [59,60]. 

The sample of healthy subjects for training the pathology-independent classifier was 
relatively small. The discovered differences could, therefore, also be due to the sample 
and not due to actual differences in the subjects with pathologies. An expansion of the 
sample is, therefore, necessary for future studies. There were limitations regarding the 
sample of subjects and the large age difference between the groups. At this point, it cannot 
be excluded that the corresponding effects influenced the classification task. In following 
studies, the analysis should be repeated with matched groups of subjects. Further, the 
present study evaluated the posture while standing. Other positions (e.g., sitting), as 
demonstrated in [61], may influence spinal parameters and should also be considered in 
future works. 

Interacting features might influence the dependency between the feature and, thus, 
the LIME values. Hence, possible interactions should be considered and analyzed in fu-
ture works. For different contexts, different interpretation levels can be provided through 
selecting a maximum number of features to be displayed by LIME. However, there is no 
ground truth for the evaluation of the interpretation results. It is, therefore, difficult to 
evaluate if they were meaningful and appropriately mapped posture characteristics. Fur-
thermore, according to the current state of research, there were no objective criteria to 
evaluate interpretability [55]. For the evaluation of the interpretation results, task perfor-
mance might be a useful approach [62]. A comparison of clinical expert-based decisions 
with the XAI results might also be relevant for the additional evaluation of automated 
XAI interpretations. 

The present study used static spinal data for the application of the methods. How-
ever, in the context of biologic gender classification, for example, dynamic data have 
proven superior for classification compared to the use of static data [37]. Furthermore, 
there are biomechanical reasons why dynamic data might better map pathologic differ-
ences [63,64]. Previous studies have shown that chronic back pain patients, in addition to 
altered thoracic–pelvic or lumbar–pelvic coordination in the transverse and frontal planes, 
also had different muscular control of the back muscles than healthy subjects [63,64]. In 
the transverse plane, coordination was less variable and more rigid, and the pelvis, lum-
bar spine, and thorax moved in phase; meanwhile, in the frontal plane, all three body parts 
showed looser and more variable coordination, especially at higher walking speeds, while 
rotational amplitudes were not affected [64]. The ipsilateral back muscles (on the side of 
the pain) showed increased muscle activity during the actual rather inactive swing leg 
phase and decreased activation during the double-supported stance phase [63,64]. A dy-
namic adaptation in gait to existing muscular or capsular deficits can also be assumed in 
osteoarthritis patients. These altered biomechanical parameters probably only become ap-
parent through an asymmetrical and less-coordinated movement sequence. This is why 
the application of dynamic spinal data seems to have the potential to improve classifica-
tion performance and should be evaluated in future works. In addition, studies have re-
ported improved classification performance for feature extraction or mapping objects into 
an embedded space through learning a representation function (metric learning) [65]. 
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Consequently, feature extraction and metric learning approaches should also be consid-
ered for future works. Regarding the used outlier detection algorithm, various other un-
supervised approaches (e.g., isolation forest algorithm [40]), as well as semi-supervised 
outlier detection approaches [66], are proposed in literature. Regarding the used XAI al-
gorithm for explaining the predictions, various other approaches have been reported (e.g., 
SHAP [34] and DeepLIFT [35]). As a next step, the comparison of the proposed approach 
with other algorithms and other XAI tools seems to be important. 

As a possible field of application, except of the use in the clinical analysis of spinal 
data, the proposed approach might also be interesting in the field of ergonomics. Trunk 
posture classifiers are an emerging application for estimating spinal loads during manual 
lifting tasks that may lead to low back pain [67]. Many of the most-used and simple bio-
mechanical models applied for estimating spinal loads utilize only a few parameters re-
lated to the trunk posture for estimating spinal loads [68]. The present study’s pathology-
independent approach could possibly be expanded to automatically identify incorrect po-
sitions in real time by only learning the patterns of correct ergonomic positions. 

5. Conclusions 
The results suggested the potential suitability of the proposed pathology-independ-

ent approach. In the present study, no clear superiority of the commonly used binary clas-
sifiers compared to the proposed approach could be demonstrated. Static data did not 
seem to be optimally discriminant for mapping differences between the currently studied 
patient groups (especially for the subjects with back pain) and the healthy subjects. As a 
next step, spinal movement data should be used for classification to check if the dynamic 
data better map group differences and lead to increased classification performance. More-
over, metric learning approaches should be evaluated. 

The proposed pathology-independent data-driven approach could be helpful for 
providing clinicians and therapists an objective orientation and to individually adapt and 
monitor therapy measures pre- and post-operatively. Overall, the approach might be ben-
eficial for finding and addressing individual spinal characteristics. In the context of per-
sonalized medicine, the most relevant characteristics for each subject classification might 
be useful as an objective orientation and for an individual adaptation of therapy measures. 
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Appendix A 

Table A1. Variables used for modeling. Variables were measured in sagittal, frontal, and transversal 
plane. The descriptions were adapted from the DIERS manual. 

Variable Plane Description 

VP/C7 (Vertebra 
prominens/7. cer-

vical vertebral 
body) 

T1–T12 
(Thoracic spine) 

L1–L4 
(Lumbar spine) 

Sagittal:  
Vertebral sagittal Flexion and 

Extension (°) 

The parameter describes the inclina-
tion of the calculated vertebra in 

space (relative to a plumb/gravity 
line) as seen from a left view. The 

angle (in degrees) is calculated from 
the projection of the vertebra in a 
sagittal plane (rotation and lateral 

flexion are ignored). A positive 
value means a forward tilt of the 

vertebra (flexion). 

Frontal:  
Vertebral Lateral Flexion (°) 

The parameter describes the lateral 
inclination of the vertebra in space 
(relative to a plumb/gravity line) as 
seen from a posterior–anterior view. 
The angle (in degrees) is calculated 
from the projection of the vertebra 
in the coronal plane (rotation and 
sagittal extension/flexion are ig-

nored). A positive value means a tilt 
of the vertebra to the left (lateral 

flexion left). 

Transversal:  
Vertebral Rotation (°) 

The vertebral rotation describes the 
rotation of a vertebra in the trans-

versal plane (relative to the neutral 
pelvis). A positive value means a 

vertebra is rotated to the left (coun-
terclockwise) when seen from be-

hind. 
The rotation of vertebral bodies 

happens in situ and, therefore, the 
direction of rotation between the 

surface and vertebral rotation 
changes. Hence, a surface rotation 
to the right, mathematically repre-

sented with a +, becomes a vertebral 
body rotation to the left. This is due 
to the calculation process in which a 
vector is used that points from the 

Processus spinosus towards the 
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middle of the vertebral body, mean-
ing that the surface rotation changes 

its direction within the vertebral 
body. 

Pelvis 

Pelvic Obliquity (°) 

A line is drawn from DL to DR (left 
and right dimple) and is compared 
to a horizontal line representing the 
horizon. The angle (in degrees) be-

tween them is measured. A positive 
value means that the right pelvis is 

elevated. 

Pelvic Torsion (dimples) (°) 
The parameter describes the torsion 

of the surface normals on the two 
lumbar dimples. 

Pelvic Inclination (dimples) (°) 
The parameter describes the mean 
vertical torsion of the two surface 

normals on DL and DR. 

Pelvic Inclination (symmetry 
line) (°) 

The parameter describes the angle 
of the vertical components of the 

surface normals on point DM (dim-
ple midpoint) based on the horizon-

tal. 

Pelvic Rotation (°) 

The pelvic rotation is the rotation in 
the transversal plane of the right 

dimple relative to a reference coro-
nal plane that is defined from the 

system setup, perpendicular to the 
camera-projection axis. A positive 

value means the pelvis is rotated to 
the left when seen from behind (the 

value is corrected * (−1)). 
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