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Abstract. 
As shown by Krasnosel'skii, the classical Preisach model 
allows to construct a hysteresis operator W between spaces of 
real functions of time. This construction, via the definition 
of a measure fi in the so-called Preisach plane, is recalled. 
Characterizations in terms of 1 are given for several mapping 
and continuity properties of W in various function spaces, for 
the invertibility of W and for the corresponding mapping and 
continuity properties of the inverse. 



-2- 

9 1 Introduction 

The mathematical investigation of hysteresis models is still 
largely open, except for the rather special case of 
plasticity, despite of their obvious importance in applica- 
tions. However, a remarkable effort in this direction is to be 
acknowledged to the Soviet school, cf. the monograph [6]; and 
interest in this subject has been spreading also among western 
mathematicians in the last few years. 
It was already in 1935 that the physicist Preisach proposed in 
191 a mathematical model for representing ferromagnetic 
hysteresis; this then became popular among scientists and 
engineers [2,3,7,8,12], and was also used for modeling other 
hysteresis phenomena. In fact, this model has an appealing 
geometrical interpretation, which also allows to perform 
efficient numerical computations. Actually it can be regarded 
as the most satisfactory mathematical model of hysteresis 
currently available. 
The key idea of the Preisach model, also known as the 
independent domain model, consists in representing a general 
hysteresis loop by V1addingVV several elementary rectangular 
loops. Following Krasnosellskii and Pokrovskii, compare e.g. 

[5,61, this construction is formalized here by defining a 
hysteresis operator acting between spaces of time-dependent 
functions, which correspond to the input and the output of a 
system with hysteresis. The formulation is presented in 
section 2, where the basic definitions of elementary 

hysteresis operator (or “delay”) wp, of the Preisach plane P 

and of the Preisach operator W are introduced. The latter is 
obtained by integrating the elementary operators wp with 
respect to a measure B defined in P. 
The main aim of the present paper is to investigate the 
relationship between the properties of the measure B and those 
of the corresponding operator W. In an effort to make our 
presentation as complete and self-contained as possible, also 
some results of [5,6,11] are reported here (with or without 

proof), aside several original ones: this shall be pointed out 

at each occurrence. 
In section 2 the construction of the operator W is recalled 

I 
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and a characterization of the case in which it operates in 
CO([O,Tl), OLTL=, is given. In section 3 it is proved that 
under the only condition that W operates in CO([O,Tl), it is 
also continuous with respect to the uniform topology of 
C”([O,Tl). This result was already stated in 161 and 
independently stated and proved in [ill. Our present argument 
is different from that of [ll]; it is based on the analytical 
representation and treatment of the curve B(t), which in the 
Preisach plane separates the two phases characterized by wp=-1 
and wp=l respectively. We also analyze in detail the 
properties of B(t), which have an interest in themselves and 
can also be exploited in the numerical approximation, cf. 
[lOI l 

In section 4 the cases in which W is uniformly continuous or 
even Lipschitz continuous in C"([O,Tl) are characterized in 
terms of the corresponding measure N; these results are 
already included in [6], the second one .without proof. 
Furthermore, necessary and sufficient conditions on 11 are 
given for W to operate and have weak continuity properties in 
the Holder spaces CO,h([O,T]) with OLAL~, in the Sobolev 
spaces Wltp(O,T) with lLpL=, and in CO([O,T]) n BV(O,T), where 
BV denotes the space of functions with bounded variation. 
In section 5 the case in which W is invertible is 
characterized in terms of p; it also turns out that W is 
one-to-one if and only if it is onto. Finally, necessary and 
sufficient conditions on D are given for W-l to operate and to 
be weak star continuous in the spaces C"tA([O,T]), Wltp(O,T) 
and CO([O,Tl) 0 BV(O,T), as well as to be Lipschitz continuous 
in C"([O,Tl). 
In section 6 we extend W to functions which depend also on 
space, not only on time. If n c RN is a Euclidean domain and 
u - u(y,t) is a Caratheodory function, we set 

tfm1 (Ylt) = tw(u(Y, * 1 )I (t) 
and extend the mapping and continuity properties of W and its 
inverse to corresponding properties of q and its inverse in 
spaces of vector valued functions such as 
C"(fl;Co([O,Tl)), WArp(fi;Co([O,Tl)), Lp(n;C"~h([O,Tl)), 
Lp(fl;Wl~p(O,T)) and Lp(fi;C"([O,T]) 6 BV(O,T)). 
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These results do not exhaust the properties of the Preisach 
operator. For instance a question, which is not considered 
here, is how W changes as Jo changes in the space of measures 

.on the Preisach plane. This question arises if one wants to 
identify the measure p, which is of interest in applications. 
Some results concerning the identification problem can be 
found in [1,4], but several questions are still open. 
The Preisach model is also well-behaved for coupling with 
various partial differential equations, cf. [ll], and this 
looks as an interesting area of research. 

i 
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9 2 The Preisach hysteresis operator 

An elementary hysteresis operator formalizes the input-output- 
behaviour of the rectangular loop as depicted in figure 2.1, 
with switching thresholds p1 and p2. 
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Figure 2.1 

Definition 2.1 
The Preisach (half-) plane P is defined by 

P = {(P1,P2) e m2 : P1 4 P2L 

For any p e int(P) = {p e P: p1 L p2) the elementary 
hysteresis operator wp maps an x e C [O,Tl) and an n = -1 or 
1 to a function 

YP = wpW,TI) : [O,T] + {-l,l), 

defined in the following way: 
-1 , if x(O) 4 P1 

n , if p1 L x(0) L p2 

1 I if x(0) L p2. 

For t 1 0, we set 

At = (1 : 0 L T L t, X(T) = P1 01: X(T) = Pai 

and define 
y,(O) , if At = 0 

YpW = -1 I if At l 0 and x(max At) = p1 
1 I if At*0 and x(max At) = p2. 
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Note that y, is well defined and depends measurably upon t, p 
and q. 0 

We state the main properties of the elementary hysteresis 
operators w 

P’ 

Proposition 2.2 
Let p e int(P). Then wp has the following properties for all 
arguments in their respective domains: 

W 

(ii) 

(iii) 

(iv) 

(VI 

(vi) 

(vii) 

Causality: If x1 = x2 in [ottI, then 

[wp(yl)l (t) = rwp(xz,TI)l (t) l 

Rate independence: If s: [O,T] + [O,T] is a monotone 
homeomorphism, then 

hJpocn)l (t) = [w,(x 0 sAl)l (s(t)). 

Transition or semigroup property: If tl L t,,, then 

hp~x,v)l W,) = [w,(x(t,+*) ,[w,(x,a)l (ql (t2-tl). 

Piecewise monotonicity: If x is either non-increasing 
or non-decreasing in some interval I c [O,Tl, then so 
is wp(x,n) in the same interval I. 

Order preservation: If x1 h x2 in [O,tl and nl h n2, 
then 

[wp(xl,nl)l (t) 4 [wp(x2,n2)l(t). 

BV-regularization: The function wp(x,q) is piecewise 
constant, and 

Var[wp(x,3)l L o(x2T 
I 2-P1) + 2r 

where for any x e CO([O,T]) and any hh0 we set 
u(x,h) = suptr e R: ltl-t21 L r => Ix(tl)-x(t2)k'h,. 

Boundedness in BV: If x e C'([O,T]) n BV(O,T), then 

Var[wp(x,n)] 4 * Var[x] + 2 
2 1 

‘ 
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Proof: Properties (i) - (v) follow immediately from definition 
2.1. The last two properties are consequences of the following 
facts: First, if the function wp(x,v) has a jump at th0, the 
next jump occurs only after x has gone from pl to p2 or con- 
versely: second, the number of such oscillations of x between 
p1 and p2 is finite, as x is uniformly continuous. 

0 

We remark that, for any reasonable choice of function spaces X 
and Y, the elementary hysteresis operator wp: X + Y is dis- 
continuous. Also, for ease of exposition we so far excluded 
the case pl = p2, i.e. a switch without memory. We will return 
to this point at the end of this section. 
We now introduce the Preisach hysteresis operator. 

Definition 2.3 
Let p be a finite Bore1 measure on int(P), let S denote the 
set of all Bore1 measurable mappings on int(P) with values in 
t-1,1,. Then the Preisach operator W maps any x e CO([O,T]) 
and any TI e S to the function W(x,q) : [O,T] + R defined by 

[W(x,TI)l (t) = I 
int(P) 

[w~WI(P))I It) dk(p) l 

Note that the argument in the integral above is Bore1 measur- 
able. 
We can immediately extend the basic properties of w in 

P 
proposition 2.2 to the Preisach operator. 

Proposition 2.4 
Let 1 be a finite Bore1 measure on int(P). If we replace wp 
by W in 2.2, then the properties of causality and rate inde- 
pendence and, if D&O, also of piecewise monotonicity and order 
preservation remain true. The semigroup property has to be 
modified in the following way: 

(iii') If tl L t2 and TI e S, then 

[W(x,Jl)l W,) = [W(x(t,+* ) ,q (t2-tl), 
where rl 1 e s is given by TIN = [w,(x,V(P))l (t,)m 
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The BV-properties are, if IDI denotes the variation of fl: 

(vi') 

(vii') 

Proof: 
2.3. 

BV-regularization: For any x e C"([O,T]), if 

L1(x) = I 
int(P) u(x,p2-pl) 

dlpl (P) L -1 

then W(X,TI) e BV(O,T) for all q e S, and 
Var[W(x,n)l L 2LI(x).T + 2ll.cl(int P). 

Boundedness in BV: If 

L2= I 1 - dlBl (P) ‘ -, 
int(P) p2'p1 

then W(. ,n) maps c”([o,Tl) n BV(O,T) into BV(O,T) for 
all rl e S, and 
Var[W(x,v)l b 2L.Var[xl + 2lpl(int P). 

.I. 

This is immediate from proposition 2.2 and definition 

The next theorem asserts that 
continuous if and only if the 
and vertical line is zero. 

Theorem 2.5 

the output function W(X,I) is 
measure N of each horizontal 

Let p be a finite Bore1 measure on int(P). Then W(.,q) maps 

CO([O,Tl) into CO([O,T]) for any q e S if and only if 
ipI(L(r,i)) = 0 

for any r e fi and i e <1,2}, where 
L(r,i) = (p e P: pi=r}. 

Proof: We shall just prove the "if"-part, the converse being 
obvious. Let us fix any E e [O,Tl. For any p e P such that 
p1 * x(E) and p2 z x(E) , there exists a 810 such that 

p1 * x(t) and p2 z x(t) if It-El 4 5. Hence, by the assumption 

on P, 
lim [wp(x,n)l = [wp(x,n)l(f) N - a-e. in P, 
td 

therefore 
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lim [W(x,a)l (t) = [w(x,n)l (E) 
t+E 

by Lebesguels dominated convergence theorem, since lwpl L 1 
and B is finite. 

We now present an extremely useful geometric interpretation, 
which in fact dates back to the origin of the Preisach model 
and has accompanied it ever since. 
Let us fix any (x,n) e CO([O,T]) x S and set 

y,(t) = [w,(x,nO) )I (t) l 

For any t e [O,T], define 

A+(t) = {p e int(P): y,(t) = 11 
A-(t) = {p e int(P): y,(t) = -1). 

Now, from figure 2.1 and the definition of wp it is apparent 
how the sets A+(t) and A-(t) change in time: As x increases 
in time, the boundary of A+(t) moves upwards: as x decreases 
in time, the boundary of A-(t) moves to the left, compare 
figure 2.2. 

wP= 
1 

/ 
Pl=P2 

wP=- J 
x(t) ,x(t)) 

Figure 2.2 

Moreover, for any p,p’ e int(P), if the following 
property holds at the initial time t=O, then it holds for all 
t10: 
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if P e A+(t) and P’LP, then p' e A+(t); 
if P e A-W and P-LPI, then PI e A-(t); 

here p=p’ means plhpi and p2Lp;I. 

Thus, the boundary 
B(t) = aA+ n eA-(t) 

is a maximal antimonotone graph, which intersects the main 
diagonal p1=p2 at the point (x(t),x(t)), see figure 2.3. At 
any t, B(t) determines the function p -P [w,(x,v(p))] (t), hence 
also [W(x,q)l(t). Thus, B(t) represents the state of the 
system at time t; it can also be viewed as the memory of the 
system at time t. 

Figure 2.3 

As x evolves in time, new arcs appearing in B(t) must be 
parallel to the axes p1 and p2 by the construction just given; 
any portion of B(t) with a different shape must have been 
present in the initial configuration B(0) determined by n and 

x(O) l 
In the case of a virgin ferromagnetic material, namely 

of a system which never experienced magnetization, 

B(O) = 4p e P: p1 = -P2’. 

It is not difficult to imagine how the Preisach model gener- 
ates continuous hysteresis loops in the input-output-plane. 
Let us consider a periodic input x e CO([O,T]) oscillating 
between two values x1dx2; this corresponds to a periodic move- 
ment of B(t) within'the triangle A(x1,x2) with vertices 
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(x,,x,) I 0+x,) and (x2, x2) in the Preisach plane. The out- 
put W(x,n) therefore also is periodic with the same period, 
and the area of the loop bounded by the pair 

(x(t), [W(x,rl)l (t)), i.e. the resulting hysteresis loop, is 
equal to 

I 
AW1tx2) 

( P , - P , )  db(p) l 

c 

. 

We want to close this section with a remark concerning the 
main diagonal p1=p2, the boundary of P. If we consider a 
measure D concentrated along the main diagonal, being zero at 
every single point (which in this case is equivalent to the 
condition in theorem 2.5), then the geometric interpretation 
yields 

[W(x,n)](t) = l({(r,r): rLx(t)) - p({(r,r): r-Lx(t)}). 
This means that the hysteresis operator W degenerates into 
a superposition operator. That is only natural since the 
main diagonal does not represent memory. On the other hand, an 
arbitrary finite Bore1 measure B on P can be written as 
u = tio+BA, where PO is concentrated on int(P) and pA on the 
main diagonal; the corresponding Preisach operator is the sum 
of a superposition operator and an operator as defined in 2.3. 
These considerations also prove: 

Corollary 2.6 
Let p be a finite Bore1 measure on P. Then the assertions of 
theorem 2.5 hold. 
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9 3 Continuity of the Preisach operator in CO([O,T]) 

One aim of this section is to prove the following theorem. 

Theorem 3.1 - 
Let 1 be a finite Bore1 measure on the Preisach plane P. If 

1 PI (L) = 0 for every L c P which is a horizontal or vertical 
straight line, then the Preisach operator W maps CO([O,T]) 
into CO([O,Tl) and is continous with respect to the uniform 
topology. 

From theorem 2.5 and corollary 2.6 we see that theorem 3.1 
actually characterizes the strong continuity of 
W: CO([O,Tl) + C"([O,Tl). We note as an immediate corollary of 
theorem 3.1 and corollary 2.6 a result which is well known for 
the special case of superposition operators as well as for 
certain integral operators in various function spaces. 

Corollary 3.2 
The Preisach operator W is strongly continuous on CO([o,T]) if 
and only if it maps CO([O,T]) into itself. 

0 

Theorem 3.1 has been stated already in [5,6] and proved in 

1111 l The considerations of [5,6,11] rest on the geometric 
interpretation described in section 2, whereas the boundary 
curve B(t) separating the V'+18-region and the 14-11-region in the 
Preisach plane represents the state of the system. One there- 
fore is induced to study the evolution of B(t) in time. 
We now propose - and this is the second aim of this section - 
to decompose the Preisach operator W into an input-state map F 
and a state-output map E, and actually to use this as an 
alternative definition of W (compare the discussion at the end 
of this section). It then turns out that F is Lipschitz 
continuous, whereas the properties of E obviously depend upon 
the measure I(; in particular, E may be smooth. This is 
obtained rather directly. The main goal of this section is to 

c 

c 

t 

i 



- 13 - 

analyze the operator F, i.e. the time evolution of the 
boundary curve B(t), in more detail in order to prove some 
of the characterizations given later as well as theorem 3.1. 
To give an analytical representation of the curve B(t), it 
seems convenient to change to the coordinates 

u = p2-p1 p2+pl 
2 I v=T' 

which are, in fact, the coordinates originally used by 
Preisach [91, see also [6]. A given boundary curve will be 
written as v = q(u), where + e Y for some set P; later we will 
write v = $(t)u to include evolution in time, so that 
0: [O,T] + Y. 

Definition 3.3 
Let 

yO 
= 49,: $ e CO([O,=)), 9 vanishes at +a) 

5 = (9: $ e Yo' 9 has bounded support and is Lipschitz 
continuous with Lipschitz constant 41) 

i = 4Y: 9 e To' and there exists {uk'keN such that 
u ho, k lim Uk'O, Uk+ILUk if UkhO, 

qtb+m) = 0, +d"k+l, k u ] is a straight line of 
slope either +l or -1). 

Let d- and d 
l,P 

denote the distances corresponding to the 
norms 

II 9 II QD = max t$(u)l 
U&O 

'Y,p = (; I*)(u) ,pp/p I 1LPLO. 
0 

For o,$ e PO, we say as usual that *dly if e(u) L S(u) for all 
uro. We define that +LVJ, if oL+ and o(O) L 9(O). 

•I 

Obviously, % c 3rl c vo. It will turn out that $ is the set of 
reachable internal states, if we fix Jlo=O. We will use ql 
since it is simpler to deal with. At last, q. is defined in 
order that (Vo, u.M~) is a separable Banach space which 
contains everything of interest. 



. 
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We will obtain the time evolution F of the internal state by 
a completion argument, analogous to the definition of a 
hysteron of first kind in [6l. First, we give an analytical 
representation of the motion of the straight lines which form 
the boundary curve. 

Definition 3.4 
Define G: n x PO + Y, by 

G(x,S) (~1 - mincx+u,max<x-u,II(u)',r. 
This means that one projects graph($) in the v-direction onto 
the cone 

K. (xl = 4 (u,v): x-u 4 v L x+u1, 
see figure 3.1. 

Figure 3.1 

Comparing with the geometrical interpretation of the Preisach 
model in section 2, one easily is convinced that G(x(t),rYo) 
gives the correct internal state at time t for an initial 
state qo, if x e CO([O,T]) is monotone. 
We state some properties of the mapping G. 

Lemma 3.5 

0) We have G: R x Y1 + PI, G: n x % + 3. 

(ii) G(x2,G(xl,W = W2,*1) 

for all x1,x2 e R, $ e Y1 with 9(O) L x1 4 x2 or . 
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(iii) 

9(O) l x1 a x2. 

If x1 4 x2 and $1 L q2, then G(xl,ql) L G(x~,$~); 
ifx LX 1 2 and (I'1 4 q2, then G(x1,91) L G(x2,q2); 
this holds for all x1,x2 e R and all (11,q2 e lo. 

G(x,9) (0) = x for all x e R, * e PO. 

G(l'(O),+) = 9 for all rl e Y1. 

Wxl, 01)-G(x2,$2) 11~ L maxc 1x1-x21 ,II~~-~~II,~ 

for all x1,x2 e R and all VJ~,~~ e PO. 

Proof: The justification of (i) - (v) is straightforward. To 
prove (vi) we observe that for all ua0 
Wxl+ (u)-G(x~,*~) (~1 1 = 

= Imintxl+u,maxtxl-u,$10,, - mintx2+u,maxtx2-u,*2(u)~~t 

h max< Ix1-x21,1maxtxl-u,*l(u)k - maxtx2-u,92(u)kl 1 

L maxc Ix 1-~~l,maxclxl-x~l,l~l(u)-~~(u)l~~. 
0 

We describe the evolution of the internal state for a piece- 
wise monotone continuous input. 

Definition 3.6 
Set 

Cim([O,T1) = 4x: x e CO([O,T]), x is piecewise monotone). 

For any x e CErn ([O,Tl) and J, e Y1 we define 
0 

F(Wo): [o,Tl -) Y1 
by 

F(x, go) (0) = G(x(O) ,qo) 
F(x, *o) (t) = G(X(t),F(x,4'o)(ti))l if ti't'ti+l, 

where 0 = to L . . . L tN = T is a partition such that 
X'[ti,ti+l ] is monotone. 

The definition of F(x,qo) does not depend on the choice of the 
partition {ti}, by properties (ii) and (iv) of G in lemma 3.5. 
One immediately obtains the Lipschitz continuity of F: 
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Proposition 3.7 - 
The mapping F of definition 3.6 can be uniquely extended to a 
Lipschitz continuous mapping 

F: CO([O,Tl) x Yl ---) C"([O,Tl); (Yo,I141J) 
with 

IIF(X 1,Yol)-F(~2,$02) II b max{ 11x1-x2iim, II$~~-$~~II~) 

for all x1,x2 e CO([O,T]) and all *01,~02 e PI, where we take 

for 4 = F(x,qo) e C"([O,T];Yo) the standard norm 

II cy II = sup 
te [O,Tl 

II*(t) II@. 

Proof: Let II, e P1, x e co ,,(I 0,Tl) with partition {tit, then 
F(x,~~) is continuous in (ti,ti+l) and at t=O by lemma 3.5, 
(vi). Furthermore, 

by lemma 3.5, (vi) and (v), since x(ti) = (F(x,Vo)(ti))(0) 

by ,(iW applied to F(XtJlo) (ti) = G(X(ti) tF(Xt’o) (ti-1)) l 

Therefore, F maps Co x Yl pm 
into C"([O,T];to). For the 

Lipschitz continuity, consider x1,x2 e C:m([O,T]) and 
$ 01' 02 Q e Y1. Again, by lemma 3.5 (vi) 

IIF(X l,*ol) (0)-F(x2,*02) (0) MOD L max4 Ix,(O)-x2(O) I ,l1901-9021~s~, 
1 

and for all t c (ti,ti+l] 

IIF(X l,qol) W-F(x2,qo2) (t) Hrn = 

= IIG(Xl(t) rF(Xlt*o1) (ti) )-G(x~(‘) tF(x2,902) (ti)) “- 

L max( Ix,(t)-x,(t) 1 t l~F(X2t~ol) (ti)-F(x2t*02) (ti) ‘oD’t 

so the asserted inequality follows by induction on i. 
Since Co pm([O,T]) is dense in C"([O,Tl), the proposition holds. 

q 

Remark 3.8 

(i) Later on in lemma 3.19 we will see that for $ = F(x,qo) 
we also have 4(t) e PI, if q. e Y1, as well as q(t) e Y 

(ii) F cannot be continuous w.r.t. x in Lp-norm, pi=, because 
needle-like variations of the input with arbitrarily 

i 
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. 

small LP-norm can change the state permanently by a 
fixed magnitude. 

(iii) From the definitions of G and F it is clear that Lip- 
schitz continuity will be the optimal regularity of F. 

0 

The semigroup property of G extends to F. 

Lemma 3.9 

Let x e CO([O,T]), q. e Pl, set 9 = F(x,qO). Then 

q(t) (0) = x(t) for all t&O 
$(t+s) = F(x(.+t) t*(t) 1 (s) for all t,shO 

(with slight abuse of notation). 

Proof: For piecewise monotone x, it follows from lemma 3.5. 
Passing to the limit, we obtain it also for arbitrary x, 
since F is continuous by proposition 3.7. 

q 

The cone K. from definition 3.4 and figure 3.1 preserves its 
meaning for arbitrary continuous inputs: 

Lemma 3.10 

Let x e CO([O,T]), (lo e Yl, set $ = F(x,‘lo). Then for all t we 
have: 

W q(t): [0,-J + 1 is Lipschitz continuous with Lipschitz 
constant not larger than 1. 

(ii) graph(WW c KoWW , i.e. 
x(t)-u L cU(t)u L x(t)+u for all u&O. 

(iii) "If $(t)U lies on the boundary of X0(x(t)), then 9(t) 
is identical with that boundary up to IV': 

x(t) = *(t)u+a -> x(t) = Il(t)u+u for all u e [O,Ul 

x(t) = +(t)a-a -> x(t) = q(t)u-u for all u e [O,Ul. 

Proof: Let xn e co pm([O,Tl) with xn + x uniformly. Then (i) 
holds for (Yn = F(xn,Yo) by lemma 3.5, (i), and also for $, 
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because (In(t) + rl(t) uniformly on [0,-l by proposition 3.7. 
Since q(t)(O) = x(t) by lemma 3.9, the rest is now a direct 
consequence of (i). u 

The order preserving properties of G extends to F. 

Lemma 3.11 
Let x e CO([O,Tl), ry, e Yl, set + = F(x,So). Let x be monotone 
on some interval I c [O,T]. If t,s c I, then x(t) L x(s) 
implies *(t) L q(s), and x(t) L x(s) implies ly(t) L q(s). 

Proof: This is immediate from 3.5, (iii). 

Lemma 3.12 
Let x1,x2 e C"([O,Tl) and 901,*02 e Yl with x1 4 x2 and 
(I, ol h qo2. Set (11 = F(x~,*~~) and 9 2 = F(x~,$~~). Then 
q,,(t) L q,(t) for all t e [O,Tl, and if x,(t) L x,(t) for some 
t, then q,(t) L q2(t). 

Proof: If x1 and x2 are piecewise monotone, it follows from 
lemma 3.5, (iii) and (iv). If not, take piecewise linear 
interpolates xI~,x~~ such that xin + Xi uniformly and 

Xln ' X2n' and note that F is continuous by proposition 3.7 : 

and that ei(t)(O) = xi(t) by lemma 3.9. 
q 3 

We investigate the input-state map F in more detail, in order 
to get properties which will be used in,section 5. (A reader 
who is mainly interested in the definition of the Preisach 
operator W may jump immediately to theorem 3.24.) 

Definition 3.13 
Given x e C"([O,Tl), associate with it the quantities 

m(t) = min x(s) , M(t) = max x(s) , 
tLsLT t6sLT 

d(t) = i W(t)-m(t)) 

as well as closed regions A(t), K(t), S+(t) and S-(t) whose 

i 
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definition is immediate from figure 3.2. 

M(t 

m(t 

K ( t )  

Figure 3.2 

Lemma 3.14 
The functions m,M,d: [O,T] + R in definition 3.13 are 
continuous, m(T) = M(T) = x(T), d(T) = 0, m is nondecreasing, 
M and d are nonincreasing. If tls, then K(t) 3 K(s) and 

A(t) c A(s). 

Proof: Immediate from the continuity of x. 
•1 

As it is intuitively obvious, the cone K(t) has the following 
property: The portion of graph q(t), which lies within K(t), 
will remain unchanged for the rest of the time. 

Lemma 3.15 
Let x e CO([O,T]), q. e YI, set rJ, = F(x,llo). For t e [O,Tl 
and 

K(t) = { (u,v): u h d(t), M(t)-u 4 v L m(t)+u# 
we have: 

(i) If (u,$(t)u) e K(t), then $(s)u = rl(t)u for all s L t. 
(ii) If (u,$(s)u) e int(K(t)) for some s h t, then 

t 



- 2.0 - 

*(T)U = cU(t)u for all T a t. 

Proof: For sbt, -- define a comparison input 51 by X=x in [O,tl, 

X = M(t) in [s,Tl , Xbx and 5? monotone in [t,sl. If 
v = F(Wp) t we have by lemma 3.12 that P&V and in particular 

11(s)u h q(s)u = max(M(t)-u, $(t)u,. 
The assumptions of (i) and (ii) both imply that the max is 
attained at $(t)u and therefore +(s)u 4 $(t)u. Bounding x from 
below, the reverse inequality is obtained. This proves (i) 
directly and reduces (ii) to (i). 

The next lemma states that the variation of q(t) in time takes 
place within the set A(t) y S+(t) v S-(t) from figure 3.2 and 
sweeps at least the triangle A(t). 

Lemma 3.16 
Let x e CO([O,Tl), (lo e Iyl, set v = F(WO). Then we have for 
all t e [O,T]: 

(i) For all s,S 5 t, the region between graph($(s)) and 
graph($(S)) is contained either in A(t) Y S+(t) or in 

A(t) ”  s-(t) l 

(ii) If M(t) 1 m(t), then there exists sm,sM b t such that 
tl(sm) L 9(sM) and $(s,)(O) = m(t), $(sM)(0) = M(t). 

Proof: Let s,b L t. Since by lemma 3.15, graph(w(s)) and 
graph(?(s)) coincide in int(K(t)), there is a common entry 
point (u,v) e eK(t) with 

u = infcw: (w,U(s)w) e int(K(t)), 
= infcw: (w,P(s)w) e int(K(t)) k. 

Because of the Lipschitz bound 1 for cl(s) and 'l(S) and because 
of lemma 3.10, (i) is proved. To prove (ii), choose sm,sM 5 t 
with x(sm) = m(t), x(sM) = M(t). If, say, sM L sm, define a 
comparison input B by 52=x on [.O,sMl and X = M(t) on [sM,Tl. 
Then 7 = F(3Z,$o) l 'I' and in particular *(s,) h ?(s,) = 9(sM). 

q 

We now describe formally, how the corners of graph(e(T)) are 
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. 

formed by the movement of the straight lines. For any given 
point (u,$(T)u) e graph 9 we want to denote by l(u) the last 
time this point is touched by a straight line. 

Definition 3.17 
Let x e CO([O,T]), \lo e Pl, 1L = F(x,qo). Let K(t) be as in 
3.13 and 3.15. We set 

u* = inf{u: u&O, (u,So(u)) e int K(O)), 
and define 1: [O,=) + [O,T] by l(u) = 0 if ulu*, 

l(u) = supts: MU = x(s)+u or $(T)u = x(s)-u) 
if uhu,. 0 

Lemma 3.18 
Let x e CO([O,T]), q. e Yl, * = F(x,Vo). Then for any U&O we 
have 

$(t)u = 9(T)u 
for all u&U and t 5 l(U). In particular, V(t)u = Uo(u) for 
all u&u* and all t&O. Moreover, 9(1(U)) restricted to [O,Ul is 
a straight line of slope +l or -1 for all U&O. 

Proof: On (u*, =), all q(t) coincide with (Y. by lemma 3.15 (ii) 
and definition of u*. Let now ULu,. Since (I: [O,T] + (So,r.em) 
is continuous, it is enough to prove the first assertion for 
T L t 1 l(U). In this case, we have 

9(T)U-U L m(t) L x(T) L M(t) L $(T)U+U, 
because x(T) = q(T)(O), 9(T) has Lipschitz constant 1 and the 
definition of l(U). Therefore, (u,JI(T)u) e int(K(t)) for all 
USU and we obtain rl(t)u = rlr(T)u from lemma 3.15, (ii). 
The second assertion follows directly from lemma 3.10, (iii). 

0 

It now turns out that the evolution defined by F leaves 
invariant the internal state sets $I and 3. 

Proposition 3.19 
Let rl = F(x,qO), where llo e tl and x e CO([O,T]). Then 

q(t) e y1 for all t&O. If (Y. e %, then also 9(t) e ^Y for all 
tao. 

,. 
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Proof: Lemma 3.18 implies V(t) e Yl. Now let (lo e 9. Since 
obviously q(O) e ?, it is enough to show q(T) e i. We want to 
construct a monotone decreasing sequence tuk' such that 
q(T) t[uk+l,uk] has slope +1 or -1. Since we already know from 
lemma 3.18 that 9(T) has the required form on [u,,=l with u* 
from definition 3.17, we may set ul=u*. We define tl = l(ul) 
and with d from definition 3.13 

Uk = d(tkml) I tk = l(uk) , k L 2. 

If we assume for definiteness cl(tl)ul = 9(T)ul = x(tl)-u1 
then we can visualize the sequences as in figure 3.3. 

t 

Figure 3.3 : 

Since (ul,$(tl)ul) e aK(O), we have x(t,) = M(tl) = M(0) and 
$(tl)u = x(t,)-u for u e [O,ul] from lemma 3.18, also 

m(tl)+ul a Wtl)ul- If ul=O, we are done. If ~1~0, then by 
definition of tl = l(ul) we have m(tl)+ul 1 (L(tl)ul and there- 
fore u2 = d(t,) L ul. Furthermore, since (u,e(t,)u) e K(tl) 

: 

for u e [u2,ul], we have (Y(T) I[u~,u~I = 9(tl)I[u2,u1] by 
lemma 3.15, (i), which has slope -1. Again if u210 we have, by 
definition of t2 = l(u2), that $(T)u2 = x(t2)+u2 = 'l(t2)u2 as 
well as x(t,) = m(t,) = m(t,). Continuing in this manner, by 

induction we obtain a sequence {uk), with the slope 
$(T)~[uk+~,u~] as required, which either has uk=O for some 
k e N or is strictly decreasing. In the latter case, ctk} is 
increasing to some limit, and since by construction 
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Uk+l = d(tk) = $ Ix(tk+l)-x(tk) I 

the continuity of x implies that tuk' converges to zero. 
0 

We remark that theorem 38.2 in [6] gives a description similar 
to lemma 3.19. 
We can also prescribe precisely the support of q(t), which 
obviously cannot decrease in time. 

Iemma 3.20 
For any * e Y1 we denote by s(e) the maximal point in the 
support of 4. Let (I, = F(x,$o) with Cy, e 11 and x e CO([O,T]). 
Then 

up(t) 1 = maxts(90), o;;mt Ix(t)i, . 

Proof: Since obviously 

yp(Wo)) = max{y,po), 1 cl ) 

the assertion holds for t=O, and it is enough to prove it for 
t=T. The construction in the proof of proposition 3.19 shows 

that u&W3) 5 upo), so the semigroup property of F implies 
that %(9(t)) d oes not decrease in time. If x is piecewise 
monotone, the assertion follows from the definition of F. In 
general, let xn + x with xn e C , then for Jln = F(xn,qo) we 
have s(qn(T)) + maxts('lo) ,NXN:? and 9,(T) + cl(T) in PI, so 

SW(T) 1 L max(+(SO),~x~tI). Since always Ix(t)1 L s(*(t)) 
and the latter does not decrease, IIXII~ L %(9(T)). This ends 
the proof. 0 

If we have two inputs xl and x2, then it is immediately clear 
that 'II(t) # q2(t) if x,(t) # x,(t), where qi = F(xi,SO). 
However, for the characterization of injectivity of W the 
following stronger property of F is needed. 

Proposition 3.21 
Let x1,x2 e C[O,T], Jlo e Yl, qi = F(xi,SO). If 91(T) * q2(T) 
then there exists a t e [O,T] such that 

*l(t) ‘ $2 (t) or q),(t) 1 ql(t). 
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Proof: The idea of the proof is to look at the corner, where 
*l(T) and V2(T) branch (as seen from the right), and to 
investigate its formation. By M i' li ... we denote the func- 
tions and sets from definitions 3.13 and 3.17 corresponding to 
x.. 1 Set 

U 
0 

= suptu: use, +l(T)u * V2(T)u,. 

Then 0 L u. L 0 by lemma 3.19. Set t = maxtll(uo),12(uo)~, 
assume that t = ll(uo). By lemma 3.18 we have 

Jl,wu = +2(s)u = cl(T)u v u h u. v s b t, 

and ~,(t)l[O,uol is a straight line of slope +l or -1, assume 
it to be +l. Then $I(t) I 02(t), since s,(t) e Pl. If 
x,(t) L x,(t), we are done: let us assume x,(t) = x,(t) and 
derive a contradiction. Set MO = maxcMl(t),M2(t), and 

dO 
= maxtdl(t),d2(t)}, see figure 3.4. We have MO L xl(t)+2uo 

by definition of 11, l2 and uo, and therefore also d L u 
0 0’ 

Figure 3.4 

Now for u e [do,uo] we have (u,Jli(t)u) e IQ.(t), and from 
lemma 3.15 we conclude 

ql (T) u = ql(t)u = r12(t)u = rY2(T)u 

for all u e [do,uo], which contradicts the definition of uo. 
0 

The special structure of the set % of attainable internal 
states renders the distance d 

l,P 
almost equivalent to the 

uniform distance, yielding a certain amount of continuity of F 
in the W1'p-norm. 
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Lemma 3.22 

We have an 
A 

+ + in (Y,dl,p) for 1 L p L - if and only if en + o 
in ($,d*) and uW(en) 3 s(o), where uM(+) again denotes the 
largest point of the support of o. 

Proof: Let +n + o in (3,d 1 p). Between uM(+n) and ~(9~)' I 
19pt = 1, therefore 

lu.&en)-u#) I 4 ll*;-*'II;, 

and obviously on + 9 in II.II~. For the converse we note that 

*A 4 0 in Lp([uM(*) ,-)). In Lp([O,uM(*)]) the sequence I'I(I) 
is bounded, therefore e,!, + 9) weakly. Since 
1.q L 1 = 10’1 a.e., the convergence is strong. 

Lemma 3.23 

Let xn e CO([O,T]), con e 3. If tn + t in [O,Tl, xn -) x in 

CO([O,T]) and (I on + $. in (^u,dl,p), 1 4 p L 0, then 
A 

F (xn, Yen) (t,) + F(x,*o)W in (hdl,p)a 

Proof: Set +n = F(xn,+,,)(tn), * = F(x,+o)(t). Lemma 3.22 
implies qon + (lo uniformly and uM(qon) + uM(Iyo). From proposi- 
tion 3.7 we have en + o uniformly, and from lemma 3.20 we 
obtain V") + “MO) l 

Again by lemma 3.22 we finally conclude 

0 n + e in (Y,d 1,P)' 
0 

We may summarize the continuity properties of the mapping F. 

Theorem 3.24 

The mapping F from definition 3.6 define8 a unique Lipschitz- 
continuous (with Lipschitz constant 1) mapping 

F: C"([O,Tl) x i + C”([O,Tl ;  (i,dJ) l 

Also, the mapping (t,x,qo) I--, F(x,Jlo)(t) is continuous from 

[O,Tl x C"([O,Tl) x (3,dl p) to (?,a, p) for all 1 4 p L m. I I 

Moreover, $ is the set of internal states which can be reached 
from qo=O, i.e. 

~,niv.-B\~~- 
Kaiserslad@l 
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i = (F(x,O)(t) : t e [O,Tl, x e CO([o,T]) ). 

Proof: For a given * e ? one can,easily define an input x 
whose local maxima and minima produce the corners of Q,. 
All other assertions have already been stated and proved in 
propositions 3.7, 3.19 and lemma 3.22. 

This completes the first part of this section. 
We now define the state-output map E and discuss some of its 
properties. As E o F must correspond to the hysteresis 
operator W defined in 2.3, it is clear that E should measure 
the sets of switches, which are in the same position, i.e. the 
sets above and below an internal state curve 4 e lo: 

a0 *NJ 
E('J',b) - c+ I I dD(v,u) + c_ ; ; db(v,u), 

0 -0D 0 q(u) 

3 

where c+ and c- are the values taken on by an individual 
switch (in section 2 we assumed c+=l, c-=-l). This description 
makes apparent the analytical properties of E; formally it 
leads to difficulties if one wants to consider measures which 
are not absolutely continuous or which are only locally 
finite. To treat an infinite but locally finite measure (e.g. 
the Lebesgue measure without restrictions on support), one 
simply fixes a reference state Q 

: 

u and a reference output value 

y, = E$,,N. The other problem is harder: if the measure of a I 
boundary curve graph($) c "+ x R is not zero, then one has to 
know the state of the switches on the boundary curve. This 
means that one has to decide how a switch with, say, an upper 
threshold p2 behaves subject to an input with local maximum 
exactly equal to p2. Does it switch or not? The situation is. 
inherently ambiguous, the decision made implicitly in defini- 
tion 2.1 is arbitrary. However, as already stated in section 
2, if the measure of some set (p2 = con&I or 4p1 = consti is. 
not zero, then the output y=y(t) is in general a discontinuous 
function. Therefore, in the continuous case this ambiguity 

does not matter. We state the relevant assumption, already 
given in theorems 2.5 and 3.1, formally in (u,v)-coordinates. 
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Definition 3.25 
Let 

Y+# = jji: p locally finite Bore1 measure on "+ x R, 
hi = 4~ e M-: IDI(R+ x n) L -k 

M+ 
= 4jI e M: p L 0). 

We say that k e Ma, has property (P,), if IflI(L) = 0 for all 
straight lines L with slope 1 or -1. 

Property (P,) means that the measure of the graph of all 
possible boundary curves * e i is'zero on the portion where 
10'1 = 1. We now define E in a convenient way, ignoring the 
exact history of the boundary itself. 

Definition 3.26 

Let c+,c- c n with C+ N C- be the two values attained by each 
individual switch. For 11 e Y. and p c M we set 

E('J',p) = c+q~({(u,v): u&O, v L’#(U)k + 

+ c- *jl({ (u,v): U&O, S(u) 6 Vb. 

0 

Clearly, if u is absolutely continuous with density 
e e Ll(R+xR), we can write definition 3.26 in the form 

- 9(u) 
E('+',b) = c+ ; I e(u,v) dvdu + c- ; ; e(u,v) dvdu. 

-0 0 $(u) 

For N e MB \hfwe fix rl e 3, P y, e fir set E(qti,~) = y, and 
define E(cl,j~) for rl e Yl by the signed difference 

E(9,p) = y, + (c+-c-)[p(A+(%+J) - HA-(%~J)]f 
where 

A+(++ - 4 (u,v) : u&O, qc((U) 6 V L q(U) ) 
A,(++ = 4 (u,v) : u&O, V(U) 6 V L *,(U) ). 

For p e M this is equivalent to definition 3.26 if we define 
yp to be E($,,u) from that definition. In the following, we 
mainly ignore the case p e M. \ M, since it only complicates 
the exposition. 

The following order preserving property of E is obvious. 
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Lemma 3.27 
In the situation of definition 3.26 let LC e M+ and $1,q2 e Y. 

. with $1Lq2. Then 

EW1t 19 ‘ EW2,u9 if c- L c+ 
E(+B’ b W,,P) if c- b c+ 

Also E(J,,B) l 0 for all (I, e To if c- b 0, c+ L 0. 

Proof: Omitted. 

It turns out that continuity of E in the W1'p-norm is charac- 
terized by property (PI). 

Lemma 3.28 

Let b e Mm, E as in definition 3.26. Then B has property (P,) 
if and only if 

E(.,D) : (bdl,p9 -) n 
is continuous. 

Proof: The IrifV1 -part is obvious. For the other part, assume 
(Pl), holds. Let qn + 9 in (%,d 

1 P9. We have I 
IWn,~9 - E(cl,fi)I L Ic+-c-1. IpI (R,) 

where Rn denotes the region between graph($) and graph(qn). 
From lemma 3.22 we conclude that Rn is contained in the 
c-neighbourhood of graph(9i[0,%(9)1) with 
c = lIWnll + ‘up9-uMWn9 1 I which converges to zero for 
n + -. S&e (PI) holds, also 111 (R,) + 0. 

0 

We now compose E and F to define the Preisach operator. 

Definition 3.29 
For x e C"([O,T]), ~1 e hi- and (Y. e' PI we define the Preisach 
operator W by 

[W(x, L, qo9 1 (t-9 = WWW’09 (t9 t  ~9 l 

If we keep (lo or p fixed, we also write W(x,B)(t), W(x,*o)(t) 

or even (Wx)(t). 0 

i 
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It is easy to see that the operator W defined in this way also 
has the properties of causality, rate independence and transi- 
tion from proposition 2.2, if they are formulated in the 
obvious way. We state the order preservation and piecewise 
monotonicity property explicitly. 

Proposition 3.30 
Let Jo e Mm, p&O, let c+ac-, where c+ and c- are the switching 
values at the right resp. left threshold. 

W If Xl h x2 and qol L qo2, then we have 

W(xl,Jlol) (t) d W(x2,+02) (t) for all t e [O,Tl, 

where x1,x2 e C"([O,Tl) and So1,Vo2 e yl* 

Let moreover x e CO([O,T]), (Y. e 91 and I c [O,T] an interval. 

(ii) If x is monotone on I (i.e., either nondecreasing or 
nonincreasing on I), then so is Wx, and x(s) 4 x(t) 
implies (Wx)(s) L (Wx)(t) for t,s e I. 

(iii) If Wx is strictly monotone on I, then so is x, and 
(Wx)(s) L (Wx)(t) implies x(s) L x(t) for t,s e I. 

Proof: Assertions (i) and (ii) immediately follow from the 
corresponding properties of F and E in lemmas 3.11, 3.12 and 
3.27. To prove (iii), set 0 = F(x,qo) and consider the case 
that Wx is increasing. We show that for any s&, the function 
x has a unique maximum on [s,t] at r=t. Indeed, if there is a 
maximum at r&, then q(t) L (l(r), by comparison with the input 
P which is equal to x on [O,r] and constant on tr,tl, and 
therefore (Wx)(t) L (Wx)(r), contradicting the assumption 
that Wx is increasing. 

In order to prove theorem 3.1, we restate it in the terminol- 
ogy of this section. 

Theorem 3.31 
Let Jo e MO, and q. e Pl. If B has property (P,), then defini- 
tion 3.29 yields a continuous operator 

W: CO([O,TJ) -) C"([O,Tl). 
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Proof: Let x e CO([O,T]), Q = F(x,uo). By Theorem 3.24, the 
map (I: [O,T] + ($,a I p) is continuous, therefore 
Wx e CO([O,Tl) by lekma 3.28. Suppose now x, 4 x in 
CO([O,T]). Since p = N+-D- with p+aO, D-LO, and E is linear 
with respect to N, we may assume ~'0. We set 

+ 
X n = x + IIX-Xnll 

OD l 

Then x: + x uniformly, and F(xn,+,)(t) 
($4 

+ F(x,SO)(t) in 
I p) for all t by theorem 3.24, and again 

w+ it, + (Wx)(t) pointwise in t by lemma 3.28. Since W is 
order preserving by proposition 3.30 (i), this convergence is 
monotone; we also have Wxn, + Wx e CO([O,Tl), and Dini's 
theorem implies Wxi + Wx uniformly. The same holds for 
x- = x - IIX-X~N-, and Wx- 6 wx n n n L Wx: then implies 

wxn + Wx uniformly. 

We again comment on the relationship between the two 
different definitions of the Preisach operator in this and 
in the previous section. Definition 2.3 is slightly more 
general than definition 3.29, because it admits more general 
initial states, but usually this is no real advantage. Dis- 
regarding this aspect, both definitions are equivalent for 
piecewise monotone inputs if the measure H has property (P,), 
and the separate continuity proofs then show that they yield 
the same operator W: CO([O,T]) + CO([O,T]). If N does not 
satisfy (PI), then the two definitions are not equivalent, 
and neither one defines an operator from CO([O,Tl) into 
itself. 
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0 4 Further continuity properties 

In this section we discuss various continuity properties of 
the Preisach operator W. 
It was already proved in [6], theorem 38.3, that the following 
property of the measure 1 characterizes the uniform continuity 
of W in C"([O,Tl). 

Definition 4.1 
Let p e M. We say that k has property (P,), if 

t~l(graph 9) = 0 for all Cy e YI. 

One can express the modulus of continuity of 
E(- ,B): (+,,a-) + fi by means of the following quantity. 

Definition 4.2 
For any p e M and ~10 we define 

a(c,d = sup I~l(N(q,c)), 
$e q1 

where 
N(*, cl = 4 (u,v): U&O, 9(u)-c 4 v L cy(u)+c, 

Lemma 4.3 
Let D e M+. Then we have for all ~10 

Ic+-c-1 .a(c,p) = SUP~IE(+,~)-E(S,D)I: o,q e Y1 and 

II 0 - \y II 4 2c,. 0 

Proof: The proof follows directly from the definition of E. 

Theorem 4.4 
Let p e M. Then the following statements are equivalent: 

(i) D has property (P,). 

(ii) Et-,10 : (YI,d-) + R is uniformly continuous. 

(iii) W: C'([O,Tl) -B c"([O,T]) is uniformly COntinUOUS. 
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Proof: The part "(i) + (iii)ll was already proved in [6], p. 
254 f.; we shall restate that argument in our terminology. 
We may assume ~'0. To prove "(ii) => (iii)ll we note that for 
x1,x2 e CO([O,T]) and *i = F(Xit qo) we have for all t 

' W,) (t) - Wx,) (t) 1 - IEPIW ,H-W2W ,111 1, 
H*l(t)-*2(t) Ho h IIx1-x211~ 

by theorem 3.24. 
Next, we prove "(i.) -> (ii)". If E is not uniformly 
continuous, then by lemma 4.3 and the definition of ~((t,p) 
there exists an qh0 and sequences qn e 11, cnJO with 

WPnr cn)) l 2q h 0. 

Choose MLO with p([M,m) x R) L 3, set K =[O,M] x n. For a 
subsequence and some (I e P 1' 'n + $ uniformly on [O,Ml. Then 

K n NV,, cn) = K n N(9, c,+II~-O~IIJ, 

B(K fi Wn,cn)) I I, 

so 

u(K n wwh(W 1 = lim B(K e 
n-- 

N(9, cn+“WnuJ ) l 3, 

and (i) does not hold. The implication "(iii) => (i)" is again 
proved indirectly. Let 3, c Y1 which B(graph($)) h 0. For some 
M?rO, with K - [O,M] x R also I.~(K n graph(*)) b 0. Since i is 
dense in (Y,,d-), for every ch0 one can find +t e 3 with 
et(u) L 9(u) L +c(u)+c for all u&O. Moreover this can be done 
in a way such that on [O,Ml 

* c = F(x/~) WC), eC+c = F(xc+c,'lo) (t,) 

for some xc e CO([O,T]) and tc e [O,Tl. 
This implies 

I (w(xc+c)) (t)-(wxc) (t) I a B(K n graph(W) A 0, 

therefore W is not uniformly COntinUOUS. 

In a similar manner one characterizes the Lipschitz 
continuity of W in C"([O,T]). 

Theorem 4.5 
Let P e M. Then the following assertions are equivalent: 

(i) There exists an L with 
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a(c,B) 4 Lc 
for all ~10, where a is given in definition 4.2. 

(ii) E(.,P) : (Yl,dop) -B R is Lipschitz continuous. 

(iii) W: CO([O,T]) + CO([O,T]) is Lipschitz continuous. 

Proof: The equivalence of (i) and (ii) is clear from lemma 
4.3. The implication (ii) => (iii) again follows directly from 
theorem 3.24. For the reverse, if PLO and 

'E+ j+E(42,~)~ L LII~-0~11~ 
e 

for some 41,42 e PI, one constructs *I e t, x1 ' e C"([O,Tl), 
tcrO with the properties 

mintal, 02”C 4 4 : 4 mint41,42b, 

4; = F(x;,*~) (t,), 

4; = F(x' ,,qO)(tC) on a large enough compact set, 

where 4 ; = 4; + 2c + l141-42110, x; = xi + 2c + H41-42H~. 

Then one easily checks that 
I (Wxi) (tpwx;) (t,) I h Lnx~-x;ll, 

if c is small enough. u 

The equivalence of (i) and (iii) in theorem 4.5 was already 
stated in 161, section 38.6, without proof. 
We formulate the most important special case of theorem 4.5 
separately. 

Corollary 4.6 
Let p e M have a bounded density f with support in [O,Ml x R. 
Then 

'w+ ~)-W(X~,B)H~ 4 Ic+-c_I~M~~~f~lo~ux1-x21~~ 

for all x1,x2 e C”([O,Tl) l 

Proof: We use lemma 4.3 and definition 4.2 directly, noting 
that l~l(N(9,c)) 4 2Mnfn/ q 

We remark that one could obtain corollary 4.6 immediately from 
proposition 3.7 and the definition of E without further 
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analysis. This is one of the attractive features of the 
decomposition of section 3. 
We will now consider boundedness and continuity properties of 
W in spaces other than CO([O,Tl). We first formulate an 
auxiliary lemma, which will enable us to conclude weak star 
continuity of W from boundedness of W. 

Lemma 4.7 
Let X, Sl, S2 be metric spaces such that Sl c X and S2 c X 
with continuous injections. Let f: X + X be continuous and 
such that it maps relatively compact subsets of Sl into 
relatively compact subsets of S2, the compactness being here 
with respect to the topologies of SI and S2. Then f: Sl + S2 
is continuous with respect to the topologies of Sl and S2. 

Proof: Fix any x e Sl and any sequence {xn e Sl) such that 
X n +xinS I; then the set {f(xn)) is relatively compact in 

s2' therefore f(xn,) + w in S2 for some w e S2 and some sub- 
sequence. By continuity of f in X we also have f(xn,) + f(x) 
in X; thus w=f(x). As the limit does not depend on the sub- 
sequence, the whole sequence f(x,) converges to f(x) in S2. 

0 

In section 5 we will establish the continuity of the inverse 
of w. Since the lemma needed there is similar to the one just 
proved, we present it at once. 

Lemma 4.8 

Let X, Y be metric spaces, let f: S -) Y be continuous and 
G c f(X) be dense in Y. Also assume that for any relatively 
compact set K c G, the set f 'l(K) is relatively compact. Then 

f(X) = Y, and if moreover f is injective, then f -1 :Y+Xis 
continuous. 

Proof: Fix any y e Y and let the sequence 'y, e G, converge to 
y. Then for any choice of xn e f-l (y,), the sequence 'xn' is 
relatively compact, hence xn, + x for some subsequence (xn,} 
and some x e X. Since f is continuous, we have f(x) = y. So f 
is surjective. Let f now be injective. Fix any y e Y and any 
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sequence 'y, e Y} with y, + y. By the same argument as above 
we conclude that fB1(yn) + x = f-'(y), since x does not depend 
on the subsequence. 0 

In order to obtain bounds on Wx in various norms, we want to 
estimate the oscillation of Wx. To do this, we have to relate 
the variation of the internal state, already described in 
lemma 3.16, to the measure 1. 

Let p e M+ and c+,c- e fi with c+ z c-. We define k: R+ + R by 
k(C) = IC+-C-I+SUP{~(R~(A,A+I)): A e fl, i=l or 2,, 

where Ri(hl, x2) is the vertical resp. horizontal strip 
{A. 6 Pz L A,) in the Preisach plane in (p1,p2) coordinates: I l. L 
thus in (u,v) coordinates we 

Rl("l,h2) = ((u,v): u&O, 
R2(~+2) = {(u,v): ur0, 

Here c+ and c- are again the 
ual switch. 

have 
Al+U h V h A2+U' 

Al -U d V 6 AZ-U'. 

values attained by each individ- 
0 

Lemma 4.9 

Definition 4.10 
For any x e CO([O,T]) and any [t,,t,] c [O,T], we define the 
oscillation of x in [t,,t,] by 

osc x= max x(t) - min x(t) - 
[t,,t,l t e 1t,,t,1 t e [x,,x,l 

The crucial property of W is given in the next lemma. 

Lemma 4.11 
Let B e M+ have property (PI) as defined in 3.25. Then we 
have, with k as defined in 4.9, 

osc Wx L k( osc x) 
it,,t,1 [t,,t,l 

for all x e CO([O,T]) and all [t,,t,l c [O,Tl. 

Proof: If we apply lemma 3.16 (i) with [O,Tl replaced by 
[t,,t,l I the assertion follows directly from the definition 
of k and W, recalling from figure 3.2 that 
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Rl(“(W #M(t) 1 = A(t) Y S+(t) and R2(m(t),M(t)) = A(t) y S-(t). 
n 

For any v e (O,l], let us denote as usual by C"'"([O,Tl) the 
space of Holder continuous functions with seminorm 

IXI" := sup 
wt,)-x(t,) ' 

tl,t2 e [O,Tl Itf-t21” 
. 

We then can characterize a boundedness property for W in 
Holder spaces. 

Theorem 4.12 
Let fl e M+, assume that (P,) holds. Let 0 L "1,~~ L 1 and 
(210. Then the following statements are equivalent: 

(i) We have 

k(l) L Cc "24 for all 5AO. 

(ii) We have 
0," 

iwxt 
v2/v1 , 

"2 
L CIXI 

"1 
for all x e C ‘([O,Tl) l 

Of" 
In particular, W then maps C 1 0," 

([O,Tl) into C 2([VlL 
and is sequentially weakly star continuous. 

Proof: Let us first prove that (ii) implies that W is 
sequentially weakly star continuous. This is a consequence 
of lemma 4.7. We set X = C"([O,T1) and take for Si bounded 

0,“. 

subsets of C i([O,T]) such that W: Sl + S2 by (ii). We have 
only to note that W: X + X is continuous by theorem 3.1, that 

0,“. 

C l([O,T]) has a separable predual and therefore, with 
respect to the weak star topology, the Si are precompact and 

metrizable. 
We now prove that (i) implies (ii). Let 

Or" 
xe c '([O,T]). Let us fix any tl,t2 e [O,Tl with tl L t2- 
By lemma 4.11 and (i) we obtain 
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’ Wx) W,) -Wx) (t,) 1 4 osc wx 4 
[t,+l 

4 k( 
Wl osc xl 4 C( osc x) 4 

[t,,t,l [t,,t,l 

4 c 1x1 [ 
ul(t2-tl)Y1]u2'u1 = clxl~~'u1(t2-tl)u2, 

therefore (ii) holds. 
Let us now prove that (ii) implies (i). 'First, assume that P 
has bounded support. Take any ILO and A e R. To obtain a 
bound on fl(R2(h,A+l)), we construct a suitable 

o,u 
XC c 1 ([O,T]). Now fix a tl with 0 L tl L T and set 
x(t,) = A, x(0) - x0, where x0 is such that the support of b 
lies above graph(q(0)). For arbitrary t2 with tl L t2 L T 
consider the corresponding piecewise linear x defined by 
x(0) = x0, x(t,) = A, x(t,) = A+! and x(T) = x(t,). Fix t2 
such that 

-U 

IXI 

u1 
4 (l+c) I(t2-tl) I, 

this is possible for any ~10 since 
-U 

IXI u1:[t1,t21 = c (t2-tl) 5 

IXI ul;[(-)T] ’ ‘X’Ul;[O,tll + ‘X’ul;[tl’t21m 

By construction of x we havo 

1 (Wx) W,) -Wx) (t,) ' = Ic+-cJ(R2(h,A+l)). 

and with assumption (ii) we may estimate 

I (Wx) (t,)-(Wx) (t,) I 4 lWXlu - (t2-tl) u2 
2 

4 ClXl u2'"1 - w2-y 
u2 

u1 

4 c (l+c)l(t2-tl) I 
-1 u2/u1 1 (t2-tl) u2 

= c(l+c) u2/"1 
* c 

u2'"1 
I 

which gives the desired bound for P(R~(A,A+()) and therefore 
proves (i). If 1 is finite, but has unbounded support, a 
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suitable choice of x0 entails 

I (WC) (t,)-(Wx) (t,) 1 = w+-cJD(R~(A,A+I)) 

for some TI with + h o 4 1, so the argument above remains 
valid. •I 

A similar theorem holds, 
Wl"(O,T). 

if we consider the Sobolev spaces 

Theorem 4.13 
Let D e M+, assume that (P,) holds, let ChO. Then the.follow- 
ing statements are equivalent: 

(i) We have 

k(f) 4 Cl for all 110. 

(ii) We have 
1% (Wx) (t) I 4 Cl& x(t) 1 a.e. in (0,T) 

for all x e Wl'l(O,T). 

In particular, W then maps W1lp (0,T) into itself for all 
1 h p L =; moreover, for ~11, W is sequentially weakly star 
continuous in Wl"(O,T). 

Proof: The last statement again is a consequence of lemma 4.7, 
applied as in the proof of theorem 4.12. Now, starting from 
(i), (ii) is easily established for any 
x e W'+o,T) n C;m(tO,Tl); as this space is dense in 

W'+O,T), it holds in general. For the converse we obtain a 
bound on B(R~(A,A+J)) constructing x as in the proof of 
theorem 4.12; this time, t2 may be arbitrary, and the 
corresponding estimate is 

t, 

1 Wx) (t,)-(Wx) W,) 1 4 I” I& WXI mds 
5 

t2 d 
4 c J ldt XI ds = Clx(t2)-x(tl)l = CC. 

5 
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Now let us consider inputs of bounded variation. We remind the 
reader that by definition 

X -,X n weakly star in BV(O,T) 
if and only if 

T T 
J * dxn + I edx 
0 0 

for all Cy e CO([O,T]), these integrals being in the sense of 
Lebesgue-Stieltjes. 

Theorem 4.14 
Let k e M, assume that (P,) holds. If 

then W maps CO([O,T]) fi BV(O,T) into itself and 
Var(Wx) L 2L Var(x) + 21~l(P) 

for all x e CO([O,T]) fi BV(O,T). Moreover, W iS COntinUOUS in 

the sense that for any sequence 'xn' in this space, if xn + x 
strongly in Co and weakly star in BV, then also Wxn + Wx 
strongly in Co and weakly star in BV. 

Proof: Since LL- implies that p is concentrated on int(P), the 
first part is already given in proposition 2.4 (vii'). For the 
rest, the strong convergence is given in theorem 3.1 and the 
weak star convergence follows from lemma 4.7 in the same 
manner as in the proof of theorem 4.12, since BV(O,T) has the 
separable predual CO([O,T]). 

We remark that the convergence of the integral in theorem 4.14 

is only a sufficient, but not a necessary condition for the 
inequality stated there to hold. To check this, consider a 
measure concentrated on the main diagonal pl = p2 with bounded 
(one-dimensional) density: in this case the hysteresis 
operator degenerates into a superposition operator, but the 
integral obviously diverges. 
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c5 Inverse Preisach operator 

Here we shall determine the conditions, under which there 
exists the inverse W -1 of the Preisach operator W, and study 
its properties. In contrast to the second part of section 4, 
here geometrical objects to be considered are triangles of the 
form 

ip e P: Al 4 p 1 4 P2 4 h2) 
which correspond to sets of switches whose thresholds both lie 
between fixed bounds hl and h2. We write down a formal defini- 
tion in (u,v)-coordinates. 

Definition 5.1 
For any hl,h2 e R with hl 4 h2, we define 

A(hl,h2) = {(u,v): ~0, A~+U 4 v 4 A~-u’. 

Note that, in the terminology of figure 3.2 and definition 
3.13, we have A(m(t),M(t)) = A(t). 
If AllA2, we define A(hl,h2),= A(hl,h2). 

0 

For convenience, we describe at once the setting in which we 
will formulate the results of this section. 

Assumption 5.2 
Let us fix q. e + and c+ '1, c-=0. Moreover, fix a,b e R with 
aLb and let p e M+ be a measure with support in A(a,b), satis- 
fying property (P,) in definition 3.25. We then define 

X = {x: x e CO([O,T]), a 4 x(t) 4 b for all t, 

Y = cy: y e c”([o,Tl 1, 0 h y(t) 4 WW,W) for all tr. 
q 

It is obvious from the definition of W that W maps X into Y. 
In the study of the inverse,of W and its properties, a key 
role will be played by the following condition, which ex- 
presses the strict positivity of the measure LC in the neigh- 
bourhood of the main diagonal {p e P: pl = p2) resp. the 
v-axis <(u,v) e R2: u-0,. 
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Definition 5.3 
Let assumption 5.2 hold. We say that fl satisfies the triangle 
property (T), if 

u'(A(+ x2)) 10 for all a 4 A~ L h2 L b. 
We define the function x: n+ -) n by 

x( I) = min4B(A(A,A+f)): a L A L b-1). 
We remark that if (T) holds, then x(l) L 0 for any 110, since 
by property (P,) the function defined by A I+ JI(A(A,A+~)) is 
continuous. 0 

Remark 5.4 
The triangle property is satisfied, for example, in the 
following two cases: 

(i) fi possesses a density, with respect to the two-dimen- 
sional Lebesgue measure, which is strictly positive a.e. 
in some right neighbourhood of 4(u,v) e R2: u=O~. 

(ii) 1 is concentrated on the line 4(u,v): u=O) and has 
a.e. strictly positive density with respect to the 

an 
one- 

dimensional Lebesgue measure along this line. In this 
case, W is a superposition operator of the form 

uw (t) = f(x(t)) for some absolutely continous and 
increasing function f. 0 

The triangle property is linked to piecewise monotonicity 
properties of the operator W. 

Proposition 5.5 
Let assumption 5.2 hold. Then the following statements are 
equivalent: 

(0 B satisfies the triangle property (T). 

(ii) We have 

W1,bo ‘ E(y) 
for all e1,+2 e tl with 'I L e2, which means as before 
that *l b e2 and *I(O) L 02(0). 

(iii) If x e X is strictly monotone on some interval 
I c [O,T], then so is Wx on I. 
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(iv) If x e X and Wx is monotone on some interval I = [O,Tl, 
then so is x on I. 

Proof: We prove the implications (i) => (ii) => (iii) => (i) 
and (ii) => (iv) => (i). To prove (ii) from (i), note that 

E(*2~~)-E(*1,u) aJ ~WqO) ,*2(o) 1) 
for all +1,e2 e 91 with *l~+~. By lemma 3.11 we obtain (iii) 
directly from (ii). To prove (i) from (iii), consider an 
arbitrary triangle A(hl,h2), define x e X as the linear inter- 
polate corresponding to x(0) = h2, x(T/2) = hl and x(T) = h2, 
and observe that 

D(A(A 1,A2) 1 = (Wx) (T) -(Wx) ($). 

Next, we obtain (iv) from (ii). Let Wx be nondecreasing on I. 
Assume that there exist s,t e I with sLt and x(t) L x(s). We 
then may also assume that x(r) L x(s) for all r e Cs,tl. With 

q = WWoL we then have q(t) L q(s) by comparison and lemma 
3.12, therefore (Wx)(t) L (Wx)(s) by assumption (ii), which is 
a contradiction. Finally, we prove that (iv) does not hold if 
the triangle property is not satisfied. Take hl~h2 with 

P(A(AltA2)) = 0 and define x e X to be the linear interpolate 
corresponding to x(0) = 0, x(T/2) = h2, x(T) = hl. Then Wx is 
nondecreasing, but x is not monotone. 

0 

We remark that the reverse implications in statements (iii) 
and (iv) above alwayr hold, as was proved in lemma 3.30, so 
the triangle condition is characterized by the statement, that 
x e X is (strictly) monotone on a subinternal if and only if 
Wx is (strictly) monotone on that interval. 
The first result of this section states that the triangle 
property is equivalent to the injectivity of W. 

Theorem 5.6 
Let assumption 5.2 hold. Then W: X + Y is one-to-one if.and 
only if p satisfies the triangle property. 

Proof: First, assume that (T) holds. Let x1,x2 e X with 
x1 * x2. Then x,(t) M x,(t) for some 6 e [O,T], and also 
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lu,(t) @ 92(t) with Si = F(xi,qo). NOW proposition 3.21 implies 
that for some t e [O,$] we have either 9,(t) L e,(t) or 
92(t) L ql(t). But then, proposition 5.5 (ii) applied to 
0. 1 = si(t) shows that (Wxl)(t) rr (Wx,)(t), so Wxl fl Wx2 as 
was to be proved. 
For the converse, assume that ~(A(A,,A,)) = 0 for some hlLh2. 
Fix tl e (0,T) and define xA e X as the linear interpolate 
corresponding to x,(O) - ~2, xA(tl) - A~ and x,(T) - A. Now 
it is obvious that Wx, yields the same function for all 
A C [A 1,A2' t since WxA is constant on [tl,T] for all such A. 

Therefore W is not injective. 0 

The next lemma is in some sense dual to lemma 4.11. 

Lemma 5.7 
Let assumption 5.2 hold. Then we have, with x as defined in 
5.3, 

X( osc xl L osc wx , 
[t,,t,l [t,,t,l 

for all x e X and all [t lft2' c [O,Tl. 

Proof: For any x e X and any [tl,t2], we set Cy = F(x,go) and 
apply lemma 3.16 (ii) with [t,T] replaced by [tl,t2]. This 
yields sm,sM e [t,,t,] with 

osc x = X(6 ) 
[t,,t,l M - x(s,) 

and *(s,) ‘ ‘ltsM), therefore we also have 

WOW,) rXtsM))) h E(Wsm) ,P) - EWs,) IP) 
= (Wx) MM) -  (Wx) (s,) l 

The assertion now follows from the definition of X. 
q 

The lemma just given allows us to charactarize the range of W 
and to derive continuity properties of the inverse. 

Theorem 5.8 
Let assumption 5.2 hold. Then W(X) - Y if and only if 1 
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satisfies the triangle property (T). In this case, moreover, 
w-5 Y + X is continuous with respect to the uniform topology. 

Proof: First, let us assume that (T) holds. We want to apply 
lemma 4.8 to fnW. To do this, we note that, for every compact 
set K c Y, the set W-l(K) is compact in X by Ascoli's theorem 
and lemma 5.7. Moreover, we assert that 

Y n C;m([O,Tl) c f(X). 

This is true, because for every piecewise monotone y e Y we 
may construct explicitly an x e X with y = Wx, if we first 
choose x(0) such that y(0) - (Wx)(O) and then proceed from one 
monotonicity interval to the next. Therefore, W(X) is dense in 
Y, and because of theorem 5.6, W is injective. Lemma 4.8 now 
yields that W(X) = Y and that W-l is continuous. For the 
converse, let us assume that W(X) = Y. We want to show that 
(T) holds. We first recall that, if y = Wx is strictly 
monotone on some interval I c [O,Tl, then so is x by proposi- 
tion 3.30 (iii). For the interpolate y of y(0) = 0, 

Y(T) = WW%b) 1, take x with y = Wx. Since x and y are 
increasing, l(R2(~1, 2 A )) b 0 for all horizontal strips 
R2("l,h2) with a L hl 4 ~2 L b. Now take any ~2 h a and 

tl e (OtTI, and choose y as the interpolate of y(0) = 0, 

Y W,) = WWb A,) 1 I Y(T) = 0. Also take x e X with y = Wx. 
By the above, x(t1) - h2, and x is increasing on [O,tl] as 
well as decreasing on [t1,T]. Therefore we have for all 
ALLAH that 

B(A(A,,A,)) = Y(t,) - Y(t) h 0, 

if we choose t 1 tl such that x(t) = hl. 

Corollary 5.9 

Let assumption 5.2 hold. Then W: X + Y is bijective if and 
only if &I satisfies the triangle property (T). If so, then 
w-5 Y + X is continuous with respect to the uniform topology. 

Proof: This is a direct consequence of theorems 5.6 and 5.8. 
q 

L 

a 
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For the continuity of W-l in other norms, we obtain results 
analogous to those in section 4. Again, we start with Holder 
seminorms. 

Theorem 5.10 
Let assumption 5.2 hold, let o L u1,u2 L 1, CLO. The following 
statements are equivalent: 

(i) We have 

X(I) 5 cc 
"l'"2 for all 110. 

(ii) The inverse of W: X + Y exists, and we have 

I w-ly I 
"2 

L (c-l IYl 1 
u2/"1 

"1 
o,p 

for all y 'e Y n C l([O,Tl). 

In particular, W -1 then maps Y n C 
01 u1 

([O,T]) into 
0," 

xnc 2 ([O,T]) and is sequentially weakly star continuous 
with respect to the Holder norms. 

Proof: Since the proof is analogous to the proof of theorem 
4.12, we will state it more briefly. To prove (ii) from (i), 
note that (i) implies (T) and therefore W is invertible by 
corollary 5.9. Moreover, for any tl L t2 and any 

0," 
yeYnC 1 ([O,Tl) we have, using lemma 5.7 and writing 
x = w-ly, 

C1x(t2)-x(tl) I "l'"2 
L x( Ix(t,)-x(tl) I) L 

L x( osc xl ‘ osc y 

tt,,t,1 W,,t,l 

which implies (ii). For the converse, construct y e Y and 
X = W-Iy such that 

x(0) = a, x(t,) = A+#, x(t,) = x(T) = A, 

lY(t,)-Y(t,) 1 = P(A(A,A+~)) t 

IYl L (l+c) 
lYw,)-Y(t,) 1 

"1 (t2-tl) 
"1 - 
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This gives us 

I 4 IW’ly, (tz-tl) "2 
u2 

and, using (ii), 

CI "l'"2 4 (l+c) B(A(A,A+C)), 

which implies (i). Since W-I: Y + X is continuous by corollary 
5.9, the same argument as in the proof of theorem 4.12 yields 
that W-l is sequentially weakly star continuous with respect 
to the Holder norms. 

P 

We also obtain the corresponding theorem for the Sobolev 
spaces W "'(O,T). 

Theorem 5.11 
Let assumption 5.2 hold, let ChO. Then the following state- 
ments are equivalent: 

(i) We have 
x(C) b cc for all CaO. 

(ii) The inverse W-1 : Y + X exists, and we have 

1% (W"y)(t)l L C-'1% y(t)1 a.e. in (0,T) 

for all y e W"'(O,T) 6 Y. 

In particular, W -' then maps W "'(O,T) A Y into 
W1"(O,T) n X for all 1 4 p 4 0; moreover, for ~'1, W-l 
is sequentially weakly star continuous with respect to the 
norm of Wlrp. 

Proof: Since property (i) implies (T), by corollary 5.9 it 
also implies the existence and continuity of W-l: Y -, x. 
The proof is now completely analogous to that of theorem 
4.13; for the converse one constructs x and y with y = Wx, 
Ix(t,)-x(t,)l = c and 

lYW2)-YW1) ' = P(A(A,A+!)). 
q 
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Let us now consider the BV properties. 

Theorem 5.12 
Let assumption 5.2 hold, assume that for some Cl0 

x(t) a CI for all 1bO. 
Then W-l maps Y n BV(O,T) into X n BV(O,T), and 

Var(W-ly) L C-lsVar(y> 

for all y e Y n BV(O,T). Moreover, W-l is continuous in the 
sense that for any sequence cy,} in CO([O,T]) n BV(O,T), if 

yn + y strongly in Co and weakly star in BV, then also 

w-ly, + w-l y strongly in Co and weakly star in BV. 

Proof: Theorem 5.11 implies that 
Var(W-ly) h C-l.Var(y) 

for all y e Y fi W "'(O,T). The inequality remains true for 

Yey A BV(O,T), because W"' (0,T) is dense in BV(O,T) with 
respect to the topology induced by the distance 

d(y,z) - uy-ZII 
LhT) 

+ IVar(y)-Var(z)l, 

compare [13]. The second assertion again is a consequence of 
lemma 4.7 and corollary 5.9. 0 

We end this section with a characterization of Lipschitz 
continuity of W -l in the norm of CO([O,T]). We first state 
the inequality which is essential for this result. 

Lemma 5.13 
Let assumption 5.2 hold, let x1,x2 e C"([O,T]). Then we have 

B(A(x 1 (t) ,x,(t)) L 2. sup 1 (Wx,) (s)-(Wx2) (s) 1 
OLsht 

for all t e [O,Tl. 

Proof: The proof will be given after the proof of theorem 
5.14. 0 

Theorem 5.14 
Let assumption 5.2 hold. Then the following statements are 

equivalent: 
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(i) There exists a (3~0 such that 
X(C) h cc for all 1hO. 

(ii) The inverse W -1 : Y -) X exists and is Lipschitz continuous 
with respect to the uniform norm. 

Proof: If (i) holds, then also (T) holds, therefore W is 
invertible by corollary 5.9. Moreover, for all t e [O,T] 
and all x1,x2 e CO([O,T]) we have 

C1xl(t)-x2(t) I 4 x( Ix,(t)-x,(t) I 

4 W(x,W ,x,(t) 1) 

4 2. sup iWx,)(s)-(Wx,)(s)i, 
OhsLt 

so w -' is Lipschitz continuous with Lipschitz constant 2C-l. 
For the converse, take any triangle A(x,h+l). It is easy to 
construct x1,x2 e C"([O,T]) with XI(T) = A, x2(T) = A+f, 
II x1-x2 II oD = 1 and 

(Wx2)(T)-(WxI)(T) = flWx2-WxIn= = jA(A(A,A+j)). 

From this, assertion (i) follows immediately. 
0 

Proof of lemma 5.13: The proof is based upon a close inspec- 
tion of the internal states *I(t) and q,(t), where 

5. = F(xi,Jlo) for i=1,2. Fix any t e [O,Tl. For x,(t) = x,(t) 
the assertion is trivial, so let us assume that x,(t) L x,(t). 
We can interpret the difference (Wx,)(t)-(Wx,)(t) as the 
signed area between graph(q2(t)) and graph($I(t)). Since 
A(xI(t),x2(t)) is contained in that area, if 9I(t) 4 q2(t), 
then 

N(A (x1 (t) ,x2 (t) 1) 4 Wx,) (t) -,W,) (t) , 

and we are done. The situation is more difficult if 
(II(t)u 1 q2(t)u for some ~10, and the estimate above obviously 
is no longer valid. We introduce the following notation 
(compare figure 5.1): 

u* = inftu: ULO, yw h *2wUb 

u* = inftu: uhu*, IYI(t)u - q2(t)u), 

i 
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A = AW,W,x,WL 

D1 = 4 (u,v) : 0 4 u 4 u*, 91(t)u 4 v 4 92(t)u, - A, 

D2 = 4 (u,v): u* 4 u 4 u*, q2(t)u 4 v 4 \Il(t)uL 

Because x,(t) l x,(t) and because supp(qi(t)) is bounded, 
0 L u* L u* L -. 

Fi.gure 5.1 

Now obviously 
(Wx,) (t) - Px2 (t) = MA)+~(D1)-P(D2)+mor 

where mm represents the contribution from the region where 
u 1 u*. The idea of the proof is to find an s e [O,t] with 

(*I WI) W-Wx,) (9) b N2)-mp- 

This would be enough to prove the lemma, since then 

B(A) = [(wx,)(t)-(wx,)(t)l - p(D1) + 1(D2) - mm 

4 [(Wx,)(t)-(Wx,)(t)l + 1 WC,(s)-(Wx,) (s)l l 

Let us prove (*). We consider the region D2 and assume that 



- 50 - 

u* L mincuW(e,(t)),%(*2(t))r, where uM is defined in lemma 
3.20, so that aD2 consists of lines with slope 1 or -1 only, 
as in figure 5.1. (The proof is analogous if also horizontal 
portions appear.) We set 

p, = P,~~,WU,) = (u*,~,Wu*) 

p* = (u*,*,Wu*) = (u*l~,wu*) I 

and observe that both curves graph(qi(t)), restricted to 

[u*,u*l, consist of at least two arcs of different slope, as 
is implied by the definition of u* and u*. 
Let ri be the second arc of graph(Yi(t))l[u,,u*], counted from 
left to right, and let Qi = (Ui, 'i (t)Ui) be the right endpoint 
of 7 i. (It may happen that Qi = P* for one or both i.) We now 
set 

s = max411(u1),12(u2)}. 

where li(ui) denotes the time where the arc Y. is formed on 1 
graph(qi(t)), i.e. the last time Qi is touched by a straight 
line, according to definition 3.17. We claim that s satisfies 
(*). For this, assume without loss of generality that 

S 
= ll(ul) l From lemma 3.18 and the construction in the proof 

of proposition 3.19 it is easy to see that 

$1 (s) = maxcqI(t),oI} 

q2(s) L max{02(t),*,b on [0,u21 

42 (s) = ‘U,(t) on h,,-), 

where o and +* 

Q, and b,, 

are the straight lines with slope -1 through 
respectively. Since the measure LC is nonnegative, 

this implies (*), and the proof is complete. 
0 

There is a more explicit version of the condition for p in the 
previous theorems. (This observation is due to Stefan Luck- 
haus.) 

Lemma 5.15 
Let assumption 5.2 hold, let ClO. Then the following state- 
ments are equivalent: 

(i) We have 

2 
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(ii) The measure 11, restricted to the main diagonal, satis- 
fies 

1 a CA, 
where A is the one-dimensional Lebesgue measure. 

Proof: To prove (ii) from (i), consider any interval I = [a,bl 
on the main diagonal and approximate it by a sequence of 
triangles 

n 
D, = " A(Ci-l,Ci) , Cm = a + n 1 

i (b-a). 
i=l 

Then B(I&) - B(I) and jt(Dn) h C(b-a). The converse is 

obvious. 

One therefore realizes that the continuity properties of W-l 
characterized by condition 5.15 (i) are linked to the super- 
position part of the Preisach operator. 
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Q 6 Properties of W and W-l in spaces of vector valued 
functions 

Here we shall be concerned with the properties of the 
hysteresis operator W and of its inverse W-l (if it exists) 
in the case that the input function depends not only on time, 
but also on another variable, typically representing space. 
So we introduce a Euclidean domain n c RN, whose generic point 
will be denoted by y in order to avoid confusion with the 
previous use of the letter x; however, conforming to standard 
notation in the theory of PDE's, we will write u for the input 
function. In a general way, given any "memory operator" 

H: C"([O,Tl) - C”(tO,Tl), 

for any function u: fJ x [O,T] - R we set 

[ku)l (ytt) = [H(u(Y, -) )I (t) 
for all (y,t) e n x [O,T], for the moment without specifying 
any regularity assumption. In this approach, the space 
variable y only plays the role of a parameter. The non-local 
dependence involves just the time variable; there is memory 
but no space interaction. Of course, this formulation may not 
be completely satisfactory forsome application. 
The results we shall present in a moment are intended to be 
applied for either H = W or H = W -1 , whence the initial 
conditions have been prescribed. Note that also the initial 
conditions may depend on y, and hence must satisfy natural 
regularity conditions, such as measurability for example. 
We set 

Q = i-J x (0,T) 
and introduce the set of Caratheodory functions 

M(n;CO([O,T])) = (u: Q + R I y I- u(y,t) 
is measurable for all t, t I- u(y,t) is continuous 
in [O,T] for almost ali y}. 

We consider the following function spaces, all Banach spaces 
endowed with natural norms: 

WI'P(O,TrLP(n)) = LP(n;W1'P(O,T)) 

= {u: u e LP(Q,,s e L’(Q) ) . lLpL=, 
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LP(Q;Co([O,Tl)) = u: u e M(fI;C”([O,Tl )) ,J nu(y,*) II! dy ‘ = 
R 

W1vP(fl;co([O,Tl)) = 4u: u,: e LP(iI;Co([O,Tl )) b, lLpb=, 

Wh'P(fl;Co([O,T])) = tu: u e LP(fVCo'([O,T])), I 

II WY1’ *)-WY,, -1”: - “Yl’Y-2” -(N+AP)dyIdy2 L =I, 
nx n 

lbpL=,OLh4 1, 

W h~a(O;Co([O,Tl)) - (u: u e La(n:Co([O,T])), 

ess sup (llU(Y,,*) - U(Y,,*)l~, * "YI-Y2"-A) L =k, 
Yl' Yp 0 

0 L A 4 1. 

We recall that WA'a(fi;Co([O,Tl) coincides with the Holder 
space C o~A(~tCo([O,Tl)). 

Lemma 6.1 
Let H: C"([O,T]) - cO([O,Tl) be continuous. Then 

G(u)1 (Ylt) = [H(~(Y,*))] (t) 

defines an operator 

ii: M(ntC"([O,Tl)) - M(WC"([O,Tl ) 1. 

Proof: It is sufficient to note that y I+ u(y,e) defines a 
measurable mapping from 0 to CO([O,T]) for any 
u e M(fW"([O,T])). q 

Proposition 6.2 
Let X be a Banach space which can be embedded continuously in 
C”([O,Tl), let H: C”([O,Tl) + CO([O,T]) be continuous. If H 
operates and is bounded in X, then 6 operates and is bounded 
in LP(n;X) for all lhpL=. 

Proof: The proof is straightforward and therefore omitted. 
q 

Due to the result6 of sections 3, 4 and 5, proposition 6.2 can 
be applied for H - W or H = W-l, and either 
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x=c o'h([O,Tl 1 , OLA41, or 

X = Wl"(O,T) , lbpda, 

x -  C”([O,Tl 1 n BV(O,T)  l 

Proposition 6.3 
,et H: C'([O,T)) --+ C"(tO,T]) 
in C"(fI;Co([O,T])). 

Proof: Omitted. 

Proposition 6.4 
Let H: CO([O,TI) + CO([O,T]) 
the following assertions hold: 

or 

be continuous. Then fi operates 

be Lipschitz continuous. Then 

(i) fi operates and is Lipschitz continuous in LP(fI;Co([O,TI)) 
for 1 4 p 4 QE. 

(ii) G operates and is bounded in W"P(n;Co([O,TI)) for 
OL h 41,14p4=. 

Proof: Omitted. 
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