USING ENHANCED LOGIC PROGRAMMING SEMANTICS FOR
EXTENDING AND OPTn\Ia)IZING SYNCHRONOUS SYSTEM
ESIGN

Dissertation

Vom Fachbereich Informatik der Technischen Universitiat Kaiserslautern zur Verleihung des
akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation

von

Marce Dahlem

Datum der wissenschaftlichen Aussprache | 17.08.2021

Dekan Prof. Dr. Jens Schmitt
Gutachter Prof. Dr. Klaus Schneider
Prof. Michael Mendler, PhD

D 386

Abstract

The semantics of programming languages assign a meaning to the written pro-
gram syntax. Currently, the meaning of synchronous programming languages,
which are especially designed to develop programs for reactive and embed-
ded systems, is based on a formal semantics definition similar to Fitting's
fixpoint semantics for logic programs. Nevertheless, it is possible to write a
synchronous program code that does not evaluate to concrete values with the
current semantics, which means those programs are currently seen to be not
constructive. In the last decades, the theoretical knowledge and representa-
tion of semantics for logic programming has increased, but not all theoretical
results and achievements have found their way to practice and application in
system design.

This thesis, in a first part, focuses on extensions to the semantics of syn-
chronous programming languages to an evaluation similar to a well-founded
semantics as defined in logic programming by van Gelder, Ross and Schlipf
and to the stable model semantics as defined by Gelfond and Lifschitz. Par-
ticularly, this allows an evaluation for some of the currently not constructive
programs where the semantics based on Fitting's fixpoint fails. It is shown
that the extension to well-founded semantics is a conservative extension of
Fitting's semantics, so that the meaning for programs which were already
constructive does not change. Finally, it is considered how one can still gen-
erate circuits that implement the considered synchronous programs with the
well-founded semantics. Again, this is a conservative approach that does not
modify the circuits generated by the so-far used synthesis procedures. Answer
set programming and the underlying stable model semantics describe prob-
lems by constraints and the related answer set solvers give all solutions to
that problem as so-called answers. This allows the formulation of searching
and planning problems as well as efficient solutions without having the need
to develop special and possibly error-prone algorithms for every single appli-
cation. The semantics of the synchronous programming language Quartz is
also extended to the stable model semantics. For this extension, two alterna-
tives are discussed: First of all, a direct extension similar to the extension to
well-founded semantics is discussed. Second, a transformation of synchronous
programs to the available answer set programming languages is given, as this

iii

allows to directly use answer set solvers for the synthesis and optimization of
synchronous systems.

The second part of the thesis contains further examples of the use of an-
swer set programming in system design to emphasis their benefits for system
design in general. The first example is hereby the generation of optimal/min-
tmal interconnection-networks which allow non-blocking connections between
n sources and n targets in parallel. As a second example, the stable model
semantics is used to build a complete compiler chain, which transforms a given
program to an optimal assembler code (called move code) for the new SCAD
processor architecture which was developed at the University of Kaiserslautern.
As a final part, the lessons learned from the two examples are shown by the
means of some enhancement ideas for the synchronous programming language
paradigm.

v

Acknowledgement

First of all, I want to give special thanks to Prof. Dr. Klaus Schneider, who
guided me in a perfectly helpful and constructive way through the years of my
research. Not only but also in hectic phases he was able to calm me down, to
recalibrate my focus and to point me out to new directions when needed. But
also when having submission deadlines, urgent issues or when getting stuck,
he always had time to support, to discuss, and to solve the issues. I also want
to express my huge gratitude to my company Insiders Technologies GmbH
and especially to Florian Morr for giving me the opportunity, support and free
space to work on my research. But also I want to thank the complete MOBILE
team at Insiders, who conceivably suffered the most from my absence during
my research time, for their total appreciation and mental support. Further, I
want to thank Prof. Michael Mendler for his review of the thesis. To all my
colleagues at the university: it was a great pleasure to discuss all the different
topics with you; and it wasn’t just a single time that those discussions led
to new ideas and input for the research... I also want to give huge thanks to
my parents and to my siblings, who supported me all the years during my
studies and during the time of my research. Last and most important I want
to thank my lovely wife Christina for the limitless support, all the motivation
and encouragement, and not least for the language review of my work.

October 3, 2021, Marc Dahlem

Contents

(1. Introduction 1
[I.1. Contributions 2
.2, Related Workl 3
M3 0Outhne o oo o e 4

[2. Background| 5
[2.1. Semantics of Logic Programs: From Horn Models to Stable |

| Modelsd 5
[2.2. Stable Model Semantics in Practice: Answer Set Programming] 12
[2.3. Semantics of Synchronous Languages|. 14

[3. Extending Semantics of Synchronous Programs| 23
[3.1. Well-founded Semanticsl L. 23
[3.2. Stable Model Semanticsl o000 50

[4. Optimized System Design with Stable Models| 69
[4.1. Synthesis of Optimal Interconnection Networks|. 70
4.2. Optimal Code Generation tor SCAD| 74
[4.3. Enhancing Synchronous Programs by Stable Models|. 92

5. Conclusions| 101

Bibliograp 103

(A, _Curriculum Vitael 113

vii

List of Figures

2.1. ABRO:modulef 15
[2.2. ABRO: synchronous guarded actions| 16
4.1. Switch configurations|, 70
4.2. An expression DAG with its levelized and planarized version, |
| and the final level-planar expression DAG| 76
4.3. Equation system for ABRO|[.. 79
[4.4. ASP encoding of the ABRO example.| 82
[4.5. (a) An example basic block as DAG, (b) the same DAG as |
| ASP-codel 83

|4.6. Three valid variable assignments and orderings that allow com- |
| putation of the basic block in |[Figure 4.5 without any overhead| &84
[4.7. Combined DAG for Solutions 1 and 2 from [Figure 4.6{a) and (b)| 87
4.8. One example to minimize the amount of execution time and |
[then find the minimal number of PUs needed to schedule the |
| example basic block shown in|Figure 4.5(. 88
[4.9. One example out of 8088 (without symmetries: 1348) to min- [
| imize the amount of PUs with an upper bound to 4 execution |
| steps from the example basic block shown in |Figure 4.5. 89
14.10. Example schedules with LSU constraints for [Figure 4.5] 90
[4.11. (a) Average and maximum time required by SAT and ASP |
| solvers to derive resource constrained schedules for programs |
| of different sizes. (b) Average and maximum time taken by |
| ST and ASP ol o - —d Tl T |
| programs of different sizes.|o oo oL 91

ix

Chapter

Introduction

As the market of embedded and integrated systems is still increasing, program-
ming languages which can be synthesized to hardware are more than ever of
interest. Synchronous languages are developed to describe system reactions
with parallel micro step actions that are scheduled in macro steps, like the com-
putations of synchronous hardware circuits. As embedded systems are often
used in safety-critical applications like automobiles and aircrafts, there exists
a high demand for the verification of these systems to ensure a proven cor-
rect behaviour. The semantics of synchronous languages are given by formal
definitions which enables the verification against given formal requirements.

The world of mathematical logic and logic programming also completely re-
lies on formal semantics. Already in the 50th, Alfred Horn introduced a clause
form which is named after him to structure and analyse logic terms [Horn51].
For such Horn clauses, unique and minimal models can be computed which
was shown by Emden and Kowalski in the 70th [EmKo76]. When negation is
introduced to such sets of Horn clauses, the first logic programming seman-
tics can be defined. Such a negation was introduced by Keith Clark with
the special ‘negation by failure’ which computes not(x) only if x cannot be
proved [Clar77]. To this end, Clark also defined a completion of programs
which constructs equation systems for the given logic terms. Nevertheless,
Clark’s semantics lacked the handling of negations with cyclic dependencies
which was the base for Fitting’s fixpoint semantics [Fitt85] who constructed a
three-valued interpretation for logic programs. Especially the still not optimal
part of negations in Fitting’s fixpoint semantics was enhanced by van Gelder,
Ross and Schlipf in the well-founded semantics for logic programs [GeRS91].
Gelfond and Lifschitz [GeLi88| generalized all those ideas in the stable model
semantics by the observation that every model which is stable in its applica-
tion has a cause for every term to hold. This stable model semantics found
its application in the language of answer set programming |[EilK09; CFGI13]
which is especially useful to define search and optimization problems efficiently
with the help of constraints, facts, and logical rules.

However, not all knowledge about logic programming semantics has so far
been transformed into the area of synchronous languages. In particular, there

Chapter 1: Introduction

are synchronous programs which evaluate some of their values to 1 (unknown)
with the current semantics, although this program would evaluate with the
well-founded semantics or the stable model semantics to concrete values. Fur-
ther, answer set programming as application of the stable model semantics
contains some useful enhanced features like optimization statements or choice
statements from which synchronous languages could benefit. Especially, the
system design with synchronous programs could switch from a possible error-
prone algorithmic and computational approach to a constraint and specifi-
cation driven perspective by describing the solution’s parameters instead of
writing concrete algorithms. Also answer set programming can benefit from
such an extension of synchronous languages, because synchronous program-
ming languages can provide a high-level access to the theory-based and for-
mal language of answer set programs. For instance, user-friendly statements
like if-then-else, abortions, a possibility to separate programs into steps using
pause statements, and the capability to define modules would be convenient
for programmers who do not want to directly access the low-level description
of answer set programming with the stable model semantics.

1.1. Contributions

The current semantics of synchronous languages by the example of the syn-
chronous programming languages Quartz and Esterel are essentially equiva-
lent to Fitting’s fixpoint semantics for logic programming: If a synchronous
Quartz program is constructive, i.e., yields concrete and unique values for all
variables, the corresponding logic program evaluated with Fitting’s fixpoint
semantics would result in the same result and vice-versa. However, there are
programs which are not constructive with the current semantics of Quartz,
while concrete and unique values could be computed with the well-founded
semantics.

The first contribution of this thesis is therefore the extension of the current
Quartz semantics in a way that these programs can be executed according
to the well-founded semantics. This approach is discussed from two different
perspectives: At first, a theoretical approach on how to integrate the well-
founded semantics into a synchronous program interpreter and the semantics
definition via structural operation semantics (SOS rules) is given. Then, a
more practical way is shown which allows one to extend programs themselves in
such a way that the current synchronous interpreter computes the same result
as the well-founded semantics for logic programs would do. It is proven that
this approach is conservative, and especially the interpretation of constructive
programs in the current semantics based on Fitting’s fixpoint computation
does not change their interpretation with this extension, but more programs
can be given a meaning. The main advantage of this approach is that it is
practical in the sense that it allows a circuit generation for the considered
programs with the well-founded semantics.

As a second contribution, the further extension of the semantics of syn-
chronous programs to the stable model semantics is discussed. It will be shown

1.2. Related Work

that a direct inclusion into the interpreter or into the program itself does not
give a real benefit, especially because the program interpretation for the stable
model semantics is non-monotonic and therefore needs special search tools for
the solutions. However, a transformation into the standardized ASP-core-2
language format will be shown, which allows to use state-of-the-art solvers
and heuristics of the answer set community to evaluate, synthesize and opti-
mize synchronous programs. This translation adds an high-level access with
synchronous programming languages to the theoretical constructs of ASP.
The third contribution are some real example solutions of system design
problems, which show the huge power of the stable model semantics and ASP
in system design. The first example is the generation of optimal and minimal
non-blocking interconnection networks, which allow parallel connections of n
source ports to n target ports. The second example builds a complete compiler
chain on the base of the stable model semantics which allows to find optimal
assembler code called move code for the new SCAD processor architecture,
which was developed at the University of Kaiserslautern. In a last part, the
lessons learned from the examples will be sketched by an idea to enhance
synchronous programming languages with advanced features and statements
that allow a rapid and flexible definition of search and optimization problems
in synchronous languages by using their stable model interpretation with ASP.

1.2. Related Work

The formal semantics of synchronous programming languages has always been
given special attention, as ”[...Jusing a solid mathematical foundation is the
ability to reason formally about the operation of the system” [BCEHO3|. The
Esterel synchronous language |BeGo92| introduced the constructive causal-
ity as a mathematical description of constructive synchronous programs in
[Berr99|. That approach was adapted by Quartz [Schn09|, after several stud-
ies on the semantics of synchronous programming languages and their causality
[ScWeO01; [ScBS04b; BrSc08a].

The semantics of graphical representations of synchronous systems like Stat-
echarts [Hare87], SyncCharts [Andr96; |Andr95] or Argos [MaRe01; Mara91]
was considered even earlier in many research papers [MeLu00; RoLM10; [HPSS87;
PnSh91; Mara92|. In particular, “What Is in a Step: New Perspectives on a
Classical Question” summarizes the semantics of Statecharts and compares the
corresponding Pnueli-Shalev step semantics [PnSh91]| with game-theoretic se-
mantics [AgMell] or the synchronous semantics of Esterel, and proves that the
Statecharts semantics as defined by Pnueli and Shalev ‘coincides exactly with
the so-called stable models introduced by Gelfond and Lifschitz’ [RoLM10].
More recent work focused on the concurrent behaviour of synchronous pro-
grams and investigated denotational semantics for the synchronous program-
ming paradigm [AMHF15].

The research in the field of logic programming semantics is quite impressive.
It captures not only the general semantics definitions, like the well-founded
semantics [GeRS91] or the stable model semantics [GeLi88; LiZh04b|, but also

Chapter 1: Introduction

some comparisons as, e.g., |[Dung92] who compared the stable model semantics
with the well-founded semantics or [Lifs10|, where thirteen different definitions
of the stable model semantics are briefly discussed. More practical publica-
tions enhance the semantics according to their need, like, e.g., an adaption
of the well-founded semantics for the case of program updates [BaAB04|, or
a new formal paradigm called open-world logic programming that enables the
analysis of model parts in which some values are still unknown [JaBS13|. The
stable model semantics have also been used to define reachability and dead-
lock properties in special Petri nets [Helj99]. Answer set programming as an
implementation of the stable model semantics has been used in several ap-
plications, e.g. to plan robot coordination in [SNLG18]. A good overview on
answer set applications is given in [ErGL16] and [FFST18|. Even the synthesis
of embedded systems with ASP by exploiting the optimal design space is a
topic of research in [NWSH17] and [NWSH18|, although their work seems to
be ongoing and is currently on an abstract level. But also in the domain of the-
oretical knowledge representation and reasoning the work goes on, as one can
e.g. see in last year‘s publication about the reasoning on strong inconsistency
in non-monotonic reasoning frameworks like ASP [MeMa20]. Very interesting
is also the publication “Learning Dynamics with Synchronous, Asynchronous
and General Semantics” [RFMR18] which tries to remove restricting semantics
completely by replacing ‘will happen’ by ‘can happen’ semantics.

1.3. Outline

The thesis starts with a deeper look into the semantics of synchronous pro-
grams and logic programming in Among others, the well-founded
semantics and stable model semantics are presented, answer set programming
as an application of the stable model semantics is introduced, and synchronous
languages and especially their current semantics based on Fitting’s fixpoint
computation are shown.

contains the main part of the thesis and shows the different
approaches to extend the semantics of synchronous programming languages
by the example of Quartz. In a first part, the semantics of Quartz is extended
to a well-founded interpretation. In a second part, it is shown how Quartz
programs can be evaluated also with the stable model semantics and how
synchronous languages can be seen as a high-level access to the theory of
stable models with the help of answer set programming.

The second half of the thesis focuses on two examples of the use of stable
model semantics and ASP in system design in First by a synthesis
of optimal concentrator networks and second by a complete compiler tool
chain from Quartz programs to assembler code for the SCAD architecture.
Furthermore, this chapter adds an enhancement for synchronous languages by
sketching how advanced ASP features could be modeled in the synchronous
world.

The thesis closes in with a short summary of the results.

Chapter

Background

Contents

[2.1. Semantics of Logic Programs: From Horn Models to Stable |

I Modeld o D
2.1.1. Horn Clauses| 5
[2.1.2. Fitting's Fixpoint Semantics|. 7
2.1.3. Well-founded Semanticsl 7
[2.1.4. Beyond Well-founded Semantics: Stable Models| 10

[2.2. Stable Model Semantics in Practice: Answer Set Programming] 12

[2.3. Semantics of Synchronous Languages|. 14
[2.3.1. Program Evaluation with Fitting‘s Fixpoint Semantics|. 16

First of all, some background knowledge is introduced in this chapter. The
first part sketch the history of logic programming semantics and introduce
the concept of Answer Set Programming (ASP) which is based on the stable
model semantics. The second part will then show the semantics of current
synchronous languages, and how their interpretation compares with logic pro-
gramming semantics.

2.1. Semantics of Logic Programs: From Horn Models
to Stable Models

2.1.1. Horn Clauses

As the most basic definition, Horn clauses and their minimal models have to
be mentioned. A Horn clause is a clause with at most one positive
literal, i.e., {-x1,...,-~xp} or {=x1,...,-2p,y}. These clauses are named af-
ter the logician Alfred Horn and play an important role in logic programming
and constructive logic. Since the literals of a clause are disjunctively con-
nected, one may also write a Horn clause as an implication z1 A ... Az, = ¥.

Chapter 2: Background

This implication written in the Prolog [Kowa74;|CoR096| and Quartz [Schn09]
programming languages are shown in the following table.

module Pl(event y,xl,...,xn) {
y := x1,...,xn if(x1 and ... and xn) emit(y);

}

Van Emden and Kowalski showed that every set of definite clauses has a unique
minimal model [EmKo76], and that an atomic formula is logically implied by
a set of definite clauses if and only if it is true in its minimal model. The
minimal model semantics of Horn clauses is the basis for the semantics of
logic programs.

Hereby, the minimality of a model is defined in terms of the number of
variables made true. If a satisfying assignment is associated with the set of
variables it makes true, then minimality refers to minimal cardinality of these
sets of variables. Thus, the least assignment is the one where all variables are
false, and the greatest one is that one that makes all variables true. As already
stated above, every set of Horn clauses has a minimal model. A minimal model
of a set of Horn clauses can be constructed by the marking algorithm [DoGa84].

Introducing Negation and Completion of Horn Clauses

General clauses are more powerful than Horn Clauses, as they may include
more complex formulas and especially negated atoms. To increase the expres-
siveness of Horn clauses, one would wish to introduce ‘some kind’ of negation
in the Horn clauses. If this kind of negation was treated as the usual logical
negation, one would no longer deal with a restricted set of clauses, thus with
general propositional logic, and thus, the satisfiability problem would become
NP-complete. To avoid these issues, some special forms of negation are pre-
ferred as the ‘negation by failure’ [Clar77] by Clark, which essentially states
that not (x) is considered to be proved if and only if x cannot be proved.
In the following, Horn clauses where negated literals are used are called logic
programs to avoid confusion with sets of Horn clauses. Further, Clark |Clar77]
introduced the ‘negation by failure’ in that he considered the completion of a
logic program by computing for each variable y an equivalence y < ¢, where
¢y is the disjunction of all premises of clauses with conclusion y.

However, there are still some differences between Clark‘s completion and
the semantics of usual logic programs (and also between the equation systems
and the semantics of Quartz programs): for example, consider the following
logic program and the corresponding Quartz program:

module P2(event p) {
p :- not(p) if(not(p)) emit(p);
}

For the single clause p :- !p, the completion p <-> !p is obtained, which has
no two-valued models: so all formulas are implied by it. However, the logic

2.1. Semantics of Logic Programs: From Horn Models to Stable Models

programming language Prolog answers ‘no’ to the query p and ‘yes’ to !p.
The corresponding representation in Quartz on the right hand side is declared
to be not constructive by the compiler which cannot assign a value different
than 1 to p. All in all, while Clark's completion does not give a complete
characterization of the semantics of logic programs yet, the Quartz programs
still behave in exactly the same way.

2.1.2. Fitting's Fixpoint Semantics

To overcome the issues of Clark‘s completion, another semantics has to be the
corresponding semantics of logic programs. To characterize the semantics of
logic programs, Fitting [Fitt85] suggested to use three-valued logic to denote
whether a variable is true, false or unknown (L). To compare this iteration
with well-founded models, two transformations of environments are formally
introduced. To this end, an environment Z is represented as a set of literals
with the meaning that x € Z means that x is true, —x € Z means that z is false,
and if neither is the case, then x is unknown.

For a given logic program P and an environment Z, two functions can be
defined:

(1) Tp(Z) is the set of variables y that have a rule ¢1,...,¢, - y in P such
that all literals /¢1,...,#, are true in Z.

(2) Fp(Z) is the set of variables y where all rules ¢1,...,¢, -y in P have
at least one literal ¢; that is false in Z.

Note that (2) also applies if there is no rule with conclusion y. In [Fitt85], it
has been shown that the minimal model of Horn clauses is the least fixpoint of
the function fp(Z) := Tp(Z)u{-x | x € Fp(Z)}. Moreover, |Fitt85] proved that
a three-valued interpretation is a model of an equation system of a program
P if and only if it is a fixpoint of fp. For this reason, the meaning of a logic
program P has been defined as the least fixpoint of this function fp.

Finally, exactly the same kind of reasoning can be applied to synchronous
programs: The above function Tp(Z) corresponds with that part of the causal-
ity analysis that determines the ‘must’ actions of a program, i.e., those guarded
actions (,a) where « is true under Z. The function Fp(Z) determines the
variables that ‘cannot’ be assigned a value, since for all existing guarded ac-
tions (7,) where « could assign a value to them, the guard -y is false under
Z. The causality analysis computes these two sets and then updates the en-
vironment by applying the above function fp(Z). Thus, causality analysis of
Quartz programs is exactly what is defined by Fitting as the meaning of a
logic program.

2.1.3. Well-founded Semantics

Although Fitting's fixpoint semantics is already quite expressive, there are
some programs for which this fixpoint cannot be computed. For this reason,
some even more sophisticated semantics of logic programs were developed.

Chapter 2: Background

One of them is the so-called well-founded semantics which is described in the
following. Van Gelder, Ross and Schlipf [GeRS91| introduced the well-founded
semantics of logic programs, which is again based on a three-valued interpre-
tation of variables as it was also the case for Fitting‘s fixpoint semantics. As
above and in |[GeRS91|, these three-valued interpretations are represented by
consistent sets of literals, i.e., sets that do not contain both a variable and its
negation.

A canonical model in the well-founded semantics is also computed by a fix-
point computation. However, the function gp(Z) used here instead of fp(Z)
is a stronger one, so that the well-founded semantics can be defined for pro-
grams where Fitting's fixpoint semantics cannot be defined. The part where
the assignment of a variable is changed from unknown to true is thereby the
same, i.e., function Tp(Z) is also used, but the changes from unknown to false
are done using a function Up(Z) instead of Fp(Z). The definition of Up(Z) is
the greatest unfounded set, which is defined as follows:

Definition 2.1 (Greatest Unfounded Set)

Given a partial interpretation Z and a logic program P, a set of variables A
is called unfounded if for all variables x € A one of the following conditions
holds for each rule with conclusion x:

e Some positive or negative subgoal x; of the body is false in Z.

e Some positive subgoal of the body occurs in A.

Intuitively, an unfounded set of variables A is a set of variables that can be
simultaneously made false based on a partial interpretation, i.e., changing 7
such that all variables in A will be assigned false is justified either by Z or A.

The important observation is now that the union of unfounded sets is also an
unfounded set, and therefore there is always a greatest unfounded set (which
is the union of all unfounded sets). This greatest unfounded set of a program
P w.r.t. a three-valued interpretation Z is denoted as Up(Z) and can be com-
puted as a greatest fixpoint as follows: First, all rules from P are removed
where at least one subgoal is false in Z (it is clear that these rules cannot
fire since they are already disabled by the so-far determined interpretation
7). Let the remaining rules be the subset P’ of P. Now, the greatest set of
variables Up(Z) is sought such that x is in Up(Z) if and only if for each rule
T1y.vy Ty YL, .-, Yn — £ one of the x; is in A as well.

Thus, the procedure is started with the set of all variables Vy and succes-
sively removes all x from this set if there is a rule z1,...,Zm, —y1,...,~Yp => T

2.1. Semantics of Logic Programs: From Horn Models to Stable Models

either without positive subgoals x; or where none of the positive subgoals is
in the current set.

module P3(event x1,x2,x3,x4,x5,x6) {
x1 emit (x1);
x2 :- x4,not(x5) if (x4&!'x5) emit (x2);
x2 :- x5,not(x6) if(x5&!x6) emit (x2);
x3 :- not(x2) if('x2) emit(x3);
x4 - x2 if(x2) emit(x4);
x5 :- x4 if(x4) emit (x5);
}

For example, for Z = {} and the above program P3, the greatest unfounded
set Up(Z) = {x2,x4,x5,x6} is computed, so that these variables could now be
made false. Note that x1 and x3 are removed since these variables have a rule
without positive subgoals.

For a fixed program P, let Up(Z) denote the greatest unfounded set and
let 7p(Z) denote the set of variables z whose truth values can be derived
from the rules in P instantiated by the truth values of Z (as in the fixpoint
semantics). The well-founded model of a logic program is then obtained as the
least fixpoint of the function gp(Z) := Tp(Z) u {-z | x e Up(Z)}, i.e., starting
with Z = {} and iterating with gp yields in the limit the well-founded model
of P.

For the above program, the following sets are obtained: Zy = {}, Z; =
{x1,-x2,-x4,-x5,-x6}, and Zy = {x1,-x2,x3, -x4,-x5,-x6}. Fitting's fix-
point semantics, however, computes Zy = {} and Z; = {x1,-x6} which is also
the result of the Quartz simulator for the corresponding program on the right
hand side above.

The 2-valued models of the completion are M; = {x1, -x2,x3, ~x4, -x5, -x6},
My = {x1,-x2,x3,-x4,-x5,x6}, and M3 = {x1,x2, -x3,x4,x5,-x6} so that
the well-founded semantics determined the minimal model (in the sense that
the fewest variables are made true)!

It is not difficult to see that the well-founded semantics always computes a
minimal model since Up(Z) determines the largest set of variables that can
be consistently made false (not true). Now consider the following extension of
the above program with two further rules:

module P3’ (event x1,x2,x3,x4,x5,x6,x7,x8){
x1 emit (x1);
x2 :- x4,not (x5) if(x4&!'x5) emit(x2);
x2 :- x5,not(x6) if(x5&!'x6) emit (x2);
x3 :- not(x2) if(1'x2) emit(x3);
x4 - x2 if(x2) emit(x4);
x5 :- x4 if(x4) emit(x5);
x7 :- not(x8) if(1x8) emit (x7);
x8 :- not(x7) if(1x7) emit (x8);
}

Chapter 2: Background

The well-founded semantics computes Zy = {}, 77 = {x1, -x2, -x4, -x5, -x6},
and Zy = {x1,-x2,x3,-x4,-x5,-x6} as before, and is therefore not able to
determine values for x7 and x8 that depend on each other via negations. If
the negations of the last two rules were omitted, the new variables x7 and x8
would be made false.

Since fp(Z) is a subset of gp(Z), it follows that the least fixpoint of fp is
a subset of the least fixpoint of gp, thus the fixpoint semantics is weaker than
the well-founded semantics. Moreover, it can be proved that the least fixpoint
of gp is also a fixpoint of fp (although not necessarily the least one). Thus,
it is a three-valued model of the equation system of P.

Again, it can be seen that the semantics of Quartz is equivalent to Fitting's
fixpoint semantics, and therefore weaker than the well-founded semantics. It is
therefore also possible to define a well-founded semantics of Quartz programs
in the same sense as van Gelder, Ross and Schlipf |[GeRS91| defined one for
logic programs. Similar to the existing semantics, a canonical model that can
be computed by fixpoints will be chosen this way, and programs like the one
above which do not have a semantics with the current definitions, will be given
a semantics with the well-founded approach.

From the computational perspective, the computation of the well-founded
reaction is still polynomial in the size of the program, but requires the eval-
uation of an alternating fixpoint instead of a simple least one. It is therefore
more expensive, i.e., it no longer runs in linear time, but it is still polynomial
and therefore might scale well also for larger programs.

A generalization to non-boolean programs could be made such that as few
as possible rules should be fired by the well-founded semantics.

2.1.4. Beyond Well-founded Semantics: Stable Models

The well-founded semantics is not quite the only semantics which is more
powerful than Fitting's fixpoint semantics. Still, some programs can be con-
structed for which the well-founded semantics cannot deliver a solution as a
variable assignment.

As shown by Kowalski [EmKo76|, Horn clauses have a minimal model that
is uniquely defined, and these models are computed by the above mentioned
marking algorithm that is nothing else but a fixpoint computation as done
by causality analysis. According to [Fitt85], this can be generalized to logic
programs by using three-valued variable assignments so that again a minimal
model semantics can be achieved. A generalization is obtained by well-founded
models, and yet another approach to define the meaning of logic programs in
terms of a canonical model has been taken by Gelfond and Lifschitz by the
introduction of stable models |[GeLi8§|. In contrast to the fixpoint and the well-
founded semantics, the stable model semantics does not always determine a
unique model since even though also stable models are minimal models, they
may not be unique since programs may have several stable models with the
same number of variables made true. Especially, the introduction of nega-
tion leads to the characteristic non-determinism in the stable model semantics

[SaZa90].

10

2.1. Semantics of Logic Programs: From Horn Models to Stable Models

In contrast to Fitting‘s fixpoint and well-founded models, stable models are
defined with two-valued logic. Thus, models are given as sets of variables with
the meaning that the contained variables are exactly those that are true, see
e.g., [Dung92; [Fitt93].

The first and most basic definition of stable models uses the definition of
the reduct of a logic program.

Definition 2.2 (Reduct)

The reduct RD(P,Z) [GeLi88] of a logic program P with respect to a set T
of variables is the set of Horn clauses obtained by the following two steps
from P:

e Remove all rules {x1,...,Tm,-Y1,...,-Yn} = z where at least one y;
belongs to L.

e Replace the remaining rules {x1,...,Tm,=Y1,---,-Yn} — 2 by the
rule {x1,...,xm} > 2.

The concepts of Answer Set Programming (ASP) [EiIK09; |GeLi88; CFGI13]
are based on the stable model semantics. In ASP, stable models are seen as
the solutions of a problem, and a logic program with several stable models
will then just have several solutions, which is not considered a problem. For
example, the different colorings of a graph may all be represented as stable
models of a logic program describing the well-known graph coloring problem.

Furthermore, Francois Fages [Fage94] found a syntactic criterion for logic
programs P so that all models of their completion are stable models of P.
Fangzhen Lin and Yuting Zhao [LiZh04b| showed how to make the completion
of a program P stronger by adding so-called loop formulas, so that all its non-
stable models are eliminated. Those results could directly be used to compute
stable models with satisfiability (SAT) solvers. The following example shows
how this works in principle:

module P4(event a,b,c,d) {
a :-b if(b) emit(a);
b :- a if(a) emit(b);
¢ :- not(d) if('d) emit(c);
d :- not(c) if('c) emit(d);
a :- not(c) if('c) emit(a);
b :-d if(d) emit(b);
}

This logic program P4 contains only one non-empty loop L = {a,b} in the
positive dependency graph of the program. The variables which support this
loop L from external are ExtSupp(L,P4) = {-c,d}. With those sets, the
disjunctive loop formula LFp(L) can be constructed by demanding that the

11

Chapter 2: Background

variables in the loop L can only hold if the external support ExtSup is given:
LFp(L) = (avb) — (-cvd). Originally, Clark‘'s completion of the program
contains the following composition

Comp(P4) = {
a < (bv -c),
b« (avd),
c < -d,
d < -c

}

Considering only Clark’s completion Comp(P4), the classical model calcu-
lation would result in My = {c}, Ms = {a,b,d} and M3 = {a,b,c}. But when
adding all loop formulas LF'(P) to the completion of the program, in our case
LF(P4) = {(avb) — (-cVvd)}, exactly the stable models are determined.
For program P4 this means that the classical models M; and My are stable as
they fulfill the loop formula, but the classical model M3 fails and is therefore
no stable model of the program P4. In general, finding all stable models as
solutions to Comp(P) u LF(P) can be performed by classical SAT solvers,
which is the basic idea of the assat algorithm defined in |[LiZh04b].

On top of those two basic definitions, there exist a bunch of other defini-
tions of a stable model: Vladimir Lifschitz summarized them in the publication
“Thirteen Definitions of a Stable Model” in [Lifs10|. For example, he sketches
the relation between circumscription [FeLLO7; [FeLL11], the situation calcu-
lus |[Reit01; McDe82a] or the equilibrium logic [Pear96] with the stable model
semantics. But also the Pnueli-Shalev semantics to compute steps in State-
charts is seen as equivalent to the stable model semantics for logic programs
[PnSh91; RoLM10].

2.2. Stable Model Semantics in Practice: Answer Set
Programming

Based on the theoretical definition of stable models, a complete programming
paradigm has been developed: Answer Set Programming (ASP). ASP [EilKO09;
GeLi88; |GeRS91; Fage94; |LiZh04b] has its roots in the field of logic program-
ming, knowledge representation and reasoning, deductive database querying,
and constraint solving like SAT solving [Przy88; (GeLi91} Lierl7; |Apt03]. It
is seen as the practical implementation of the stable mode semantics and is
especially capable of defining and solving all kinds of NP-hard search problems
in a convenient way.

The most modern practical ASP solvers are implemented on the insights of
Fangzhen Lin and Yuting Zhao [LiZh04b] and the loop formulas: A given pro-
gram can be strengthened with additional formulas for variables which appear
only in a dependency loop of each other, without an external support to give
them a concrete value. |LiZh04b] showed that those enhanced programs ex-
actly yield the stable model semantics for the corresponding original programs.
This is normally implemented as a search algorithm by taking iteratively loop

12

2.2. Stable Model Semantics in Practice: Answer Set Programming

formulas to the program until models can be found. Good insights into the
practical implementation of ASP solvers can be found in [KLPS16b] and ex-
plain especially the difference of the two main steps grounding and solving
and the conflict-driven approach to find stable models for a given program
[GKNSO7b; (GeKS12].

ASP programs themselves are written in the standardized language format
of the ASP-core-2 input language, defined as a first version in [CFGI13| and
extended with additional constructs for version 2 in [CFGI20]. ASP programs
consist of a set of rules, normally in the form a :- b, with a head a, which is
deduced, and a body b which must hold to deduce a. A body can consist of
multiple entries a :- by; bg;...; b,, which all must hold, or if the body is
completely omitted, then this can be written directly as fact with the form a.
Further, atoms can be predicated with terms, e.g., p(X1, ..., X,,) such that it
is possible to carry and argue about values the corresponding term X; stands
for.

For example, the following program computes all square numbers for all
even X up to 10:

number(1..10).
square(X = X) :— number(X); X\2==0.

First of all, it captures all numbers from 1 to 10 in a predicated fact num-
ber(i) and then it formulates that if an X is a number and X is even (mod
2 == 0), then X*X is saved in the predicate square(i). An answer set solver
computes exactly one solution for this program with the following content:
number (1) number(2) number(3) number(4) number(5) number(6) number(7)
number(8) number(9) number(10) square(4) square(16) square(36) square(64)
square(100).

Version 2 of the ASP-core-2 input language [CFGI20] especially contains
the definition of some advanced features like aggregate functions, choice rules
and optimization statements.

Aggregate functions, like sum, max, min and count, allow one to reason
about all terms of a given predicate. For example, the rule up(X) :- —
X=#tmax {S : square(8)}. returns the maximal term element in the already
defined squares predicate; in our case it returns up (100).

Using choice statements, predicates can be filtered and chosen according to
a given criterion. These choice statements N {p(X): q(X)} M can be assigned
how many at least (N) or at most (M) elements p(X) have to be chosen. For
example, the choice statement 2 { upper(X): square(X),X>30 } 3 chooses
2 up to 3 out of our even square definition and assigns them to the predicate
upper. This definition results in multiple answers, as there are multiple options
to pick 2 or 3 square numbers from even numbers:

Answer: 1

upper (64) upper (100)

Answer: 2

upper (36) upper(64) upper(100)
Answer: 3

13

Chapter 2: Background

upper (36) upper (100)
Answer: 4
upper (36) upper (64)

Together with choice statements optimization statements [BrNT03} |GeKS11]
can be used in ASP in order to minimize or maximize the answer set regarding
a given constraint. For example, the minimize statement upperSum(X):- —
X=#tsum{U:upper (U)}. #minimize{X: upperSum(X)}. asks the answer set
solver to find the optimal answer out of the four answers from above, which
has the least sum of square numbers in the upper predicate. It therefore picks
the set as an only possible optimal answer, which contains 36 and 64 in the
upper predicate as the sum is 100 and smaller than all other sums of the other
answers:

Answer: 1

upper (36) upper (64)
Optimization: 100
OPTIMUM FOUND

There are other powerful extensions like disjunctive rule heads which allow
one to formulate programs more conveniently such that the solver takes the
task of finding solutions which fit either the one or the other predicate of the
according rule head [LeRS97].

Ongoing research focuses on the power of the so-called multishot-solving
with the help of iterative ASP programs [ObRS19; |GKKS19], temporal oper-
ations and LTL formulas [ACPV11} |CaDil1; |CKSS18; (CaSc19] or even theory
propagation and solving, with the approach of hybrid answer set programming
[KaSW17].

2.3. Semantics of Synchronous Languages

While different semantics for non- and monotonic reasoning arose, also dif-
ferent programming paradigms and languages came up to implement or use
those semantics to their end. In order to program reactive systems and embed-
ded systems, the paradigm of synchronous programming languages|BCEH03;
Halb93| came up, which allows one to develop parallel embedded systems
such that the hardware sensors can be monitored, read and controlled very
efficiently. Classic synchronous languages divide their computation into so-
called macro and micro steps where a macro step can be seen as a clock tick
of a hardware circuit and every macro step is computed by a set of atomic
actions called micro steps. Conventional sequential programming languages
would suffer here very fast as their sequential nature hardly allows them to
react, use and coordinate the parallel reaction to the sensor values and clock
ticks in a way that is needed here.

As many embedded systems have very strict safety requirements, the verifi-
cation of those systems plays an important role. Most synchronous languages
are completely based on formal definitions which enables a formal verification
of the written programs against the defined goals and requirements.

14

2.3. Semantics of Synchronous Languages

Popular representatives are the synchronous programming languages Esterel
[BoSi91; Berr99], Lustre [HCRP91; |CHPPS87; |Halb05], SIGNAL [GGBM91],
and Quartz [Schn09]. Graphical representations are Statecharts [Hare87],
SyncCharts [Andr96; |Andr95] and Argos [MaRe01; Mara91]. The synchronous
programming language Quartz [Schn09] has been designed at the University of
Kaiserslautern, initially as a variant of Esterel [BoSi91]. Syntactically, macro
steps in Quartz programs are therefore, as in Esterel, separated with pause
statements. All actions in between two different pause statements build the
micro steps of the corresponding macro step. All expressions and statements
of Quartz are described by structural operational semantics (SOS) transition
and reaction rules. As the current semantics are the base for the semantics
extensions shown in this thesis, the semantics of Quartz and their evaluation
equivalence to Fitting's fixpoint semantics of logic programs is shown in an
own subsection (see [Section 2.3.1)). All available tools for the synchronous
programming language Quartz are collected in the Awverest E] framework and
contain, among others, compilation tools, synthesis tools, simulators, verifica-
tion tools, and a collection of benchmark programs.

module ABRO(event bool 7a,?b,?r,!'o) {
loop
abort {
{wa: await(a); || wb: await(b);}
o = true;
wr: await(r);
} when(r);

Figure 2.1.: ABRO: module

A typical Quartz program from the Averest benchmark suite called ABRO can
be found in The signature of ABRO defines the input variables
a, b, and r (indicated by the symbol ?) and the output variable o (indicated
by !). The variables a, b, and r are of the type boolean and define signals
(keyword event) which means that they do not carry their values to the next
macro step, but fire once.

The program body of ABRO creates a loop that resets as soon as the signal
r appears. In the meantime, in a parallel statement the program waits for the
signals a and b to hold. As soon as both signals have occurred, the output
signal o fires and the system waits for r to restart the whole procedure.

The compilation of Quartz programs takes place in two separated steps:
First, Quartz programs are compiled to the intermediate representation of the
program which is a set of synchronous guarded actions. Second, those guarded
actions can then be processed further up to the demand of the developer: they
can be analyzed, simulated, verified, compiled to software and synthesised into
hardware. Synchronous guarded actions, represented as v = «, serve as a uni-

"http://www.averest.org

15

http://www.averest.org

Chapter 2: Background

fied intermediate representation for various synchronous languages [Schn09;
BrSclla; [YBFH16; BGSS11; BGSS12]. Hereby, the guard v describes the
trigger condition that must hold such that the according atomic action « is
executed. Typical atomic actions « are immediate assignments x=7 or de-
layed assignments next (x)=7. Typical guards + contain control flow labels,
which describe the program state at which the action should appear. Espe-
cially every step-consuming a Quartz statement like pause or await gets
assigned a unique label during compilation and special control flow actions,
which describe the condition under which this label becomes active.

For example, the above mentioned ABRO program compiles to the following
set of guarded actions:

control flow:

true = next(running) = true

lrunning = next(wa) = true

Irunning = next(wb) = true

(Ir&wak'alr&(wr|walwb)) = next(wa) = true

('r&wb&!'b|r& (wr|walwb)) = next (wb) true

('r&(wr | a&kwa&b&wb | ! wa&b&wb | ! wb&a&wa)) = next (wr) = true
data flow:

('r& (a&wa&b&wb | 'wa&b&wb| lwb&a&wa)) = o = true

Figure 2.2.: ABRO: synchronous guarded actions

All not explicitly mentioned assignments, e.g., the assignments to false, are
subsumed in their default reaction, often called the reaction to absence that
takes place if no other guarded action is enabled for a variable.

All synchronous guarded actions of a program are seen to be executed and
evaluated synchronously, i.e., in parallel, on the same environment. Here, the
current semantics computed the least fixpoint according to a Fitting's fixpoint
analysis, until all variables get their according values. For causally, correct
programs in the current semantics, this fixpoint can be calculated in finitely
many steps and assigns unique concrete values for all variables |[Schn09].

2.3.1. Program Evaluation with Fitting‘s Fixpoint Semantics

This section will introduce the current semantics of synchronous languages and
especially of the synchronous language Quartz in detail. Hereby it is shown
that this semantics definition is equivalent to Fitting‘s fixpoint semantics for
logic programs. Most of the results can also be found in our paper “Are
Synchronous Programs Logic Programs?” [ScDal§].

The concrete semantics of Quartz and all statements is formally described by
so-called structural operational semantics (SOS), which is a semantics descrip-
tion idea based on concepts first introduced by Plotkin [Plot81]. Furthermore,
the interpretation of Quartz programs is split into two different aspects: to
compute the concrete values of outputs for a given macro step, and to compute

16

2.3. Semantics of Synchronous Languages

the next control flow state. The latter is described by the so called SOS tran-
sition rules, whereas the computation of the variable environment of a single
macro step is performed with the SOS reaction rules.

The SOS transition rules describe the movement of the control flow regard-
ing the current variable assignments which were computed by the SOS reaction
rules. Their idea is that a computation of the next control flow state is started
with a set of statements S and a current environment £ which provides a value
E(x) for every variable z. As a result of the semantics description, it should
compute the statements S’ which have to be executed next, the actions D (as-
signments) performed by S in this computation step, and a termination flag
b € {true, false} that indicates whether the statement’s execution is finished or
not. The general form of a SOS transition rule is given as follows:

Definition 2.3 (SOS Transition Rule)

(E,8) »q (S',D,t)

Of course, rules can also have preconditions ;: if they are fulfilled, the tran-
sition can be concluded.

Definition 2.4 (SOS Transition Rule with Assumptions)

P1..-Pn
(€,5) »q (5, D,t)

As an example, the atomic statement nothing is taken which does not do
anything.

Definition 2.5 (SOS Transition Rule for nothing)

(€,nothing) »q (nothing, {},true)

In this definition one can see that no values changed and that no subsequent
statement has to be executed. As a second example for a simple atomic state-
ment, the assignment of the variable x as 7 is considered next.

17

Chapter 2: Background

Definition 2.6 (SOS Transition Rule for Assignments x=71)

(€,%x=T) > (nothing, {x=7},true)

Here, the operational semantics collects the assignment itself in the set D of
actions to be executed by this statement. More interesting is the definition of
combined statements as for example the definition of a sequence of statements.

Definition 2.7 (SOS Transition Rules for Sequences)

(€,51) »q (S, Dy, false)
(€,{51;52}) »q ({S1; S2}, D1, false)

(8,51) >Q (S{,Dl,true) <5,SQ) >Q <Sé,’D2,t2)
(€,{51;592}) »q (S5, D1 U Dy, t2)

For the sequence, two cases have to be considered. If the first set of statements
S is not immediate and therefore finishes the calculation of the current macro
step, the sequence of S1;S2 needs to be evaluated to the remaining steps S]
followed by Si. Only the definitions/assignments D; of the evaluation of S;
have to be considered in this case and the sequence itself is also not immediate
anymore (false). In the second case, the first set of statements S; can be
evaluated completely within the macro step. Then, the sequence with So will
contain S as next steps, and will contain all definitions D; of S; and all
definitions Dy of the immediate part of S3. The combined sequence statement
S1; 52 is then immediate iff Sy is. All in all, the definition of the sequence of
statements collects the definitions of S and Sy for all immediate statements.

In the same style, other expressions like conditional statements can be de-
fined:

Definition 2.8 (SOS Transition Rules for Conditionals)

[olg = true and (£, 51) »q (S1,D1,t1)
(g,if(O') S else Sg) >Q <S{,D1,t1>

lo]g = false and (€, S2) »q (S5, D2, t2)
(€,if (o) Si else S3) —q (S5, Do, t2)

18

2.3. Semantics of Synchronous Languages

For the conditional statement if(o)..., the evaluation depends on the current
value of the condition ¢ evaluated in the current environment £. If o evaluates
to true, the statement in the if part has to be considered; if o evaluates to false,
the else part needs to be taken into account.

The above examples should be enough to show the general idea of the struc-
tural semantics definition. For a complete list of all statements of Quartz,
please refer to [Schn09).

The SOS transition rules calculate the next internal control flow state, i.e.,
the statements which have to be executed in the next macro step. What re-
mains is the evaluation of the variables themselves, i.e., to compute the values
for all output variables given the statements, the input variables and the pre-
vious environment. That is the main task of the SOS reaction rules: they
calculate the values according to the statements by the use of incomplete en-
vironments and fixpoint calculation in the sense of Fitting. To this end, the
incomplete environment is filled step by step by an estimated set of assign-
ments with the help of the so-called must- and can-sets, which are pessimistic
and optimistic representations of assignments to a variable. At least all vari-
able assignments in the must set and at most all assignments in the can set are
executed. If a variable has no assignment in those sets, it is not considered in
the current macro step meaning that no explicit assignment for that variable
can happen when being given the current environment. To this end, so-called
SOS reaction rules are introduced. Those take a statement S, an incomplete
environment £ and compute the sets Dpyst of variables that must be given a
value, Dc,n of variables that can still be given a value, and the flags tpmust and
tcan, which indicate whether S must or can be executed instantaneously.

Definition 2.9 (SOS Reaction Rule)

<5, S> Of')Q (Dmusb Dcana 7fmusta tcan)

Please note that Dmyst € Dean and tmust = tean hold (see [Schn09]).
The following SOS reaction rules are defined for the same atomic actions
described already by the SOS transition rules:

Definition 2.10 (SOS Reaction Rules for Some Atomic Actions)

(€,nothing) g ({}, {}, true, true)

(€,x=7) P ({(z=7)},{(x =)}, true, true)

19

Chapter 2: Background

The nothing statement is instantaneously executed and no variable is added
to the can- and must-sets. An assignment is also definitely executed, e.g., is
in the must-set, but therefore it also can be executed. The assign statement
itself is instantaneous.

Definition 2.11 (SOS Reaction Rule for Sequences)

(&, 51) q»@< must: Can,false false)
<5 {Sl’SQ}) q”@(must > camfa'Se false)

(g7Sl> Of')@ <Dr1nust7 canvfalse true) <g 82) %Q (must’D?anv mustvtgan>
<6’ {Sl ’SQ}> %Q (must?Dgan U Dzanvfalse’tcan>

(57S1> q”@ < mustv,Dcamtrue true) (5 522 q')Q <2 mustvpzanz? must’tzan>
<5, {Sl ’SQ}) q”@ (must Y Dmust7Dcan U Dcanv must?tcan>

For a sequence of statements S1;59, three different rules have to be defined. If
the statement S; is not instantaneous in the computation of the can (tl,,)- or
must-set (tL,,;), the result of the sequence calculation is only the can (DL, -
and must-set (D} .,) of S1 as the evaluation of the combined sequence state-
ments must stop here in between. If the can-set calculation of S is instanta-
neous, the can set of So has to be added to the can set of S7. Thirdly, if both
the can- and must-sets of S; are computed instantaneously, both are unified
with the can- and respectively must-set of So. The missing combination of the
must set being computed instantaneously and the can-set not cannot happen,
as it must hold that ¢}, — tL,,, as noted previously.

Definition 2.12 (SOS Reaction Rule for Conditionals)

[[U]]E = true <S,Sl> q-)Q < must?D}:arI? must>tiarf>
<g71f (0-) Sl else SQ) q—)Q< mustcham must?tcan>

[[U]]E = false <£7 S2> q_>Q (mustﬂDgan7 must?tzan>
<5,if(0’) Sy else S2> q'>Q< must?D?:an? ?nust?tzan)

[[U]]g =1 (57 Sl) q')Q <,Dr11ust7Dc1an7t|1ﬂust>tgan> (5>SQ> q')Q (Diustvpfan7t31ust7t§an)
<57 if (o) Sl else SQ) q')Q <Dr1nust n ,Drglush Dclan U Dc2an7 ti\ust A t%ustv téan \ t?an)

For the conditional statement, the evaluation of the condition ¢ in the cur-
rent (mostly incomplete) environment determines the corresponding can - and

20

2.3. Semantics of Synchronous Languages

must-sets that are taken into account for the evaluation of the complete ex-
pression. If o evaluates to true, the must- and can-sets of S; are taken; if o
evaluates to false, the sets of S5 are taken. If the condition ¢ cannot be eval-
uated yet, e.g., evaluates to L, the can-sets of both sub-statements S; and Ss
are unified, as both can happen and the must-sets are intersected, as only the
variables, which evaluate in both parts to a value, can be in the final must-set.
In the same fashion, all other statements can be formulated in terms of SOS
reaction rules (see [Schn09]).

Those SOS reaction rules can be used to calculate the least fixpoint and
complete the incomplete environment step by step with new values, similar to
the following code sketch.

Definition 2.13 (Computation of the System Reaction)

function ComputeReaction(&, S, Epre)
do
Eold = &;
(Drmust, Dean) = ReactSOS(E, S);
&= UpdateEnV(DmustaDcamgold?gpre)
while &g # £
return £

Hereby, the function ReactSOS(...) is the evaluation of the SOS reaction rules
as described before. The function UpdateEnvs(...) takes the must- and can
sets and proceeds as follows: Let DX . be all the assignments x=7 of Dpmust

must
writing to x and DZ{an as the assignments x=7 of Dg,, writing to x.

e For a variable z which has assignments in the must-set, e.g., DX =
{x=71,...,%x=7,} # {}, take all assignments x = 7; and pick the supremum

of the evaluation of all 7; as new value for z, e.g., update £ such that

E(x) =sup{[ale.[mle- - [male}

e For a variable x which has no assignments in the can-set, the so-called
reaction to absence triggers, and sets the variable’s value to its default
value out of Epe, €.g., false for a Boolean variable z: DX = {} =
update £ such that £(z) := false.

The definition of the function Compute Reaction given in Definition[2.13|shows
that the environments are filled step by step until a fixpoint is reached, e.g.,
while Eqg # €. As the function UpdateEnvs(...) only updates values with
their supremum, the update is monotonous and continuous and therefore the
sketched function describes a least fixpoint computation (this directly follows
from the well-known Tarski-Knasker Theorem [Tars55|).

By having the computation of the reaction for a complete macro step with
the function ComputeReaction(...) available, the SOS reaction rules and SOS

21

Chapter 2: Background

transition rules can be put together and a simplified interpreter for syn-
chronous programs can be described as follows:

Definition 2.14 (Quartz Interpreter)

function InterpretQuartz(S)
Epre = Edef; // default values for all variables
do
&in := Readlnputs();
5init = UselnpUts(ginvgpre)Q
& = ComputeReaction(&init, S, Epre)
if 3z e V. E(x) € {L, T} then fail;
(S’,D,t) := TransSOS(S, £);
S =5
5pre = g;
while(=t);

In every clock cycle, the inputs are read (Readlnputs()) and the current en-
vironment is filled with those input values (Uselnputs(...)). Then, the new
environment (concrete values for all output variables) is computed with the
help of the SOS reaction rules (ComputeReaction(...)). After this, a check is
performed to check whether the environment is complete. If either a value
is 1 or T, the program was not causally correct, e.g., there were conflicting
assignments to the same variable or the computation could not determine a
value according to the semantics. With this complete environment, the SOS
transition rules can be applied and the next macro step/remaining statements
are computed (TransSOS(...)). These steps to interpret single macro steps
and to get the remaining statements is repeatedly computed until no next
statement remains.

All in all, this section described how the evaluation of synchronous programs
is executed by current state of the art synchronous languages like Quartz. As
mentioned in this section, this evaluation and especially the definition of the
function UpdateEnv(...) with the contained description of the reaction to ab-
sence exactly describes the same semantics as Fitting's fixpoint semantics for
logic programs. In the following, different approaches are shown to extend
this semantics in a way such that programs can be interpreted with the well-
founded semantics or the stable model semantics, which allows the interpre-
tation of more programs as in the current state of the synchronous language
definitions.

22

Chapter

Extending Semantics of Synchronous
Programs

Contents
B.1. Well-founded Semantics|, 23
13.1.1. FExtension of the SOS5S Rules 24
[3.1.2. Direct Inclusion Into Synchronous Guarded Actions] 41
BI3 Proofd 46
[3.2. Stable Model Semanticsf 50
[3.2.1. Direct Inclusion Into Quartz{. 50
[3.2.2. Quartz as Frontend for Answer Set Programming| 53

This section will introduce two extensions to the current synchronous pro-
gramming semantics based on Fitting‘s fixpoint calculations. First of all, it
is shown how the interpretation of synchronous programs can be performed
with the well-founded semantics and which adaptions to the interpreter are
needed. Second, another approach is shown which allows the interpretation of
synchronous programs with the stable model semantics used by Answer Set
Programming (ASP).

3.1. Well-founded Semantics

Well-founded semantics [GeRS91| sets the value of variables to false if they
are contained in the so-called unfounded set. This is different to Fitting's
fixpoint semantics and different to the equivalent concept of reaction to absence
in synchronous languages which sets the value of a variable to false if its
evaluation does definitely not lead to the value true.

This section examines an extension of the semantics of synchronous lan-
guages from Fitting‘s fixpoint semantics to well-founded semantics. The first
part shows how one can extend synchronous programs to be evaluated with the

23

Chapter 3: Extending Semantics of Synchronous Programs

well-founded semantics by extending the SOS rules and the related simulation.
The second part shows a way to reach this in practice by extending programs
with new rules instead of changing the interpreter itself. This allows the in-
terpretation with the available tools, so that all known analysis and hardware
synthesis methods can still be used. The last part gives some proofs that the
extension is conservative, e.g., all programs that had an interpretation with
Fitting's fixpoint semantics yield the same interpretation.

3.1.1. Extension of the SOS Rules

When taking into consideration synchronous languages and their semantics
in general, the so called SOS rules (see will quickly come into
play. They describe the structural semantics of synchronous languages from
a semantics point of view and how the results/meanings of statements are
calculated in general. Therefore, this section will focus on the changes needed
to this semantics description in order to generalize the structural semantics
from Fitting's fixpoint semantics up to well-founded semantics.

Example Evaluation with Current SOS Rules

First, the well-founded example P3 from is considered with the
current SOS rules for synchronous languages.

module P3(event x1,x2,x3,x4,x5,x6) {
emit (x1);
if (x4&!'x5) emit (x2);
if(x5&!'x6) emit (x2);
if(1x2) emit(x3);
if(x2) emit(x4);
if(x4) emit(x5);
}

If the interpretation procedure InterpretQuartz(P3) is started, every value is
assigned 0 for &ye. The program code to be analyzed is the full program P3.

Epre ={21=0,22=0,23=0,24=0,25=0,26 =0}
(8 = Full program code of P3)

The first step regarding the interpretation is to use the input variables &
(there are no input variables in our example) and add them to the initial
environment for the fixpoint where every variable is assigned the value 1 rep-
resented in the initial environment Epnit.

En=0

Cmt={xl=1,22=1,23=1,24=1,25=1,26 =1}
Now, the reaction £ can be computed for this setup:

& = ComputeReaction(
{zl=1,22=1,23=1,24=1,25= 1,26 = 1},
S,
{x1=0,22=0,23=0,24=0,25=0,26 =0})

24

3.1. Well-founded Semantics

The first round to apply the SOS reaction rules takes six steps, as there are
six lines of code in the original program.

At
// Round 1:
/)

Eod ={xl=1,22=1,23=1,24=1,25=1,26= 1}

(Dmust; Dean) = ReactSOS(
{zl=1,22=1,23=1,74=1,25=1,26=1},5)

)

// Round 1 - Step 1: (Sequence 3 + atomic assign)
[/ mmmmmm T

<5 {Xl 1 S’ }> qﬂ@ ({Il - 1} U,Z)mustv {331 - 1} U,Z)cam must?t::an>

[/ mmmm T

// Round 1 - Step 2: (Sequence 3 + conditional 3)

/) mmmm e
<£7{if(X4&!X5) emit(XQ); S,}> q9@< mustﬂ{x2 1}UDcan7 must?t::an>
[/ mmmmm T

// Round 1 - Step 3: (Sequence 3 + conditional 3)

[/ mmmmmm T

<£7 {lf (X5&IX6) emlt (XQ)’ S’}) q—)(@ < must> {x2 1} U Dcan? must?t::an>
[/ mmmmm T

// Round 1 - Step 4: (Sequence 3 + conditional 3)

[/ mmmmm T

<g’ {lf(|X2) emlt (XB) > S’}) Or)@ (must> {:L'?) 1} UDcan’ must?téan>
e

// Round 1 - Step 5: (Sequence 3 + conditional 3)

/) ST

<5,{if (X2) emit (X4); S’}> %Q(must7{$4 1} U,Z)can’ must?t(’:an>

[/ mmmm T

// Round 1 - Step 6: (Sequence 3 + conditional 3)

[/ mmmmmmm T

<8a {if (X4) emit (X5) > SJ}> C}—)Q < must? {1'5 - 1} LJ,Dcam must?t::an>

25

Chapter 3: Extending Semantics of Synchronous Programs

In the calculations above, all evaluations of ¢ in the if-statements were L
as all variables have the value L in £yg. Therefore, all steps 2-6 added the
corresponding assignment only to the can-set. The only variable that is in the
must-set is the assignment emit (x1).

Putting everything together, the combination results in the following must-
and can set calculations for the first round.

(Dmust; Dean) == ({21 =1}, {zl1=1,22=1,23=1,24=1,25=1})

With those must- and can-sets, the new environment for the next round can
be computed as follows:

& := UpdateEnv(
{1=1},
{zl1=1,22=1,23=1,24=1,25 =1},
{rl=1,22=1,23=1,24=1,25=1,26= 1},
{z1=0,22=0,23=0,24=0,25=0,26 = 0})

Hereby, the function UpdateEnv will change the variables based on the can
and must sets as follows:

e From Dy it follows that E(z1) =1 — & ={zl=1,22=1,23= 1,24 =
Lab=1,26=1}

e From Dy, it follows:

_ DX2

ean # @ — no changes

~ DX @ —s no changes

can

— DX 4 g — no changes

can

- DX 13— 1o changes

can

_ DXG

can

=g — & ={xl=122=1,23=1L,24=1,25=1,26 =0}

According to the algorithm ComputeReaction, the second round is started as
Eold = {xl = 1,22 = 1,23 = 1,24 = 1,25 = 1,26 = 1} is not equal to the
newly calculated & = &) = {1 = 1,22 = 1,23 = 1,24 = 1,25 = L,26 = 0}.
Nevertheless, the second iteration/round will result in the same result, i.e.,
E={xl=1,22=1,23 = 1L,24 = 1,25 = 1,26 = 0} = &g, and the fixpoint
iteration stops at this point. This is due to the fact that neither the new value
of 1 = true nor the new value of z6 = false will make a change to the can- and
must-set calculation as still no o of the if-statements is computable/every o
will still evaluate to 1L with the new £. Therefore, for the example it is enough
to have one round to calculate the result as demanded by Fitting‘s fixpoint
semantics. The result is, as expected, that some variables still have assigned
the value 1, which means that Fitting‘s fixpoint semantics cannot calculate a
valid result for the given program.

Changing the Interpretation

In order to determine concrete values for the undetermined variables in Fit-
ting‘s fixpoint semantics, the unfounded set condition can be used. Hereby,

26

3.1. Well-founded Semantics

the idea is that if a variable is contained in the unfounded set, one can use
that information to remove even more values from Dc,p, as this would fulfill
the task of the unfounded set and would allow us to set more values to false
than Fitting's fixpoint semantics. This can recursively lead to other values
for variables, and finally to a fully evaluated environment according to the
well-founded semantics.

Let’s assume to have all unfounded variables according to the current en-
vironment £ in a set Dy,s. Then, let‘s update the definition of the function
UpdateEnvs(...) as follows: Let DX ., be all the assignments x=7 of Dpyst writ-
ing to x and DX, as the assignments x=7 of Dca, writing to x. Additionally,
define tffnf as the predicate describing true if x is in the unfounded set Dy, or
false otherwise.

e For a variable x which has assignments in the must-set, i.e., DX . =
{x=71,...,x=7,} # {}, take all assignments z = 7; and pick the supremum

of the evaluation of all 7; as new value for z, i.e., update £ such that
E(x) =sup{[z]e,[nlg,---. [mnle)-

e For a variable z which has no assignments in the can-set or which is in
the unfounded set, the so-called reaction to absence triggers, and sets the
variable’s value to its default value out of Epe, e.g., false for a Boolean

variable z: DX =@ v tX . = update £ such that £(z) := false.

The main idea is that the new reaction to absence fires not only in case the
variable has no assignments in the original can-set Dcan, but also if it is not
even in the can-set reduced by the unfounded variables Dy \ Dyns. With
this definition, all unfounded variables will be assigned their default value, as
demanded by the well-founded semantics.

The crucial part now is the calculation of the (greatest) unfounded set. Let‘s
recap the definition of the unfounded set.

Definition 3.1 { Greatest Unfounded Set)

Given a partial interpretation Z and a logic program P, a set of variables A
1s called unfounded, if for all variables x € A one of the following conditions
holds for each rule with conclusion x:

e Some positive or negative subgoal x; of the body is false in T.

e Some positive subgoal of the body occurs in A.

In order to be able to analyze if a variable x is unfounded, those information
are needed: what a rule, a positive subgoal and a negative subgoal of a variable
x is regarding a partial environment £.

In the case of the synchronous programming language Quartz, a rule is a
set D¢ of conditions C that must be fulfilled by the partial environment &

27

Chapter 3: Extending Semantics of Synchronous Programs

such that the variable assignment x=7 fires. There can be multiple rules, e.g.,
multiple different paths, that can trigger the variable to fire. This can be seen
in the following example

module P(event yi1,y2,x) {
if(yl) emit(x);
if(1y2) emit(x); }

which becomes the equation system x = y1|!y2. Here, two rules ri=y1 and
r2=1y2 are contained. If at least one of them is fulfilled by a partial envi-
ronment £, the assignment fires and x gets the value true. The subgoals, the
positives as well as the negatives, can be read out of the structure of the
conditions Dc; in our example the rule r1 has the positive subgoal y1 and
no negative subgoal, and the rule r2 has no positive subgoal but the nega-
tive subgoal y2. For our example, the greatest unfounded set regarding e.g.,
the empty environment {yl = 1,y2 = L,z = L} is, according to the defini-
tion of the greatest unfounded set, then the greatest fixpoint of the equation
uz = (lyl vuy) A (y2) = (lyl v true) A (y2) = y2 = false. The last step, e.g.,
y2 = false comes from the fact that the reaction to absence sets the value of
y2 to false, as it is not contained in the can-set. Therefore, the unfounded set
for the example becomes D" "= {y1,y2}.

But how can the rules and the positive and negative subgoals be found with
the help of the SOS rules in general? To this end, the SOS reaction rules will
be extended to collect all conditions C for every variable assignment in a set
Dc. This set can then be used to analyze the structure of the conditions and
to find all rules and all positive and negative subgoals.

Definition 3.2 (SOS Reaction Rule, Well-founded)

(57 Ca S> q”(@wp <Dmusta Dcan, tmust7 tcan, DC)

A SOS reaction rule for the well-founded extension knows at every step, which
conditions C have been collected so far up to the current statement S, and can
use these conditions to create a set of conditions D¢ for every subsequent
assignment in S. The final result will then contain a list of conditions to be
fulfilled mapped to every assignment x = 7, no matter if this assignment is in
the can- or must-set or in neither of both.

Definition 3.3 (SOS Reaction, Atomic Actions, Well-founded)

(€,C,nothing) Sqy, . ({},{}, true, true, &)

(€,C,x=7) qu, ({(z=7)}{(z =7)} true, true, {(C,z = 7)})

28

3.1. Well-founded Semantics

For an assignment it is stored that the conditions C were leading to this as-
signment. For an empty statement no mapping needs to be stored.

Definition 3.4 (SOS Reaction, Sequence, Well-founded)

(£,C,81) Pouwpr (DLust, Dian, false, false, D)
(€,C,{S1;52}) Fou, (D must,Déan,false,false,Dé)

(£,C,91) Powp (DLt can,false true, D¢)
<8,C,52) q')QWF < mustipgam 2must? cam;D2> . 5
<5,C, {51;52}> q—)@WF (must?Dcan U Dcanvfalse tcan’DC U DC)

(€,C,51) Youy (D must,Déan,true true, DC2>
<5,C7SQ) q”@wz«*(must7Dcan7 must7 canvD) . 5
<5,C,{Sl;52}) q'>(@WF (must U,Dmust7,Dcan U,Dcanv must> canﬂD uD)

If a sequence statement is reached, both sub-statements S7 and Ss are reached
with the same conditions C. When the first statement S; stops the execution
and is not instantaneous, the assignments of So will never be executed. That
is why in this case only the mapping of S to Dé must be used as condition.
In the case that S; is instantaneous in either the can execution or also in
the must execution, both condition mappings Dé and D% are collected and
put together. With these two definitions, the sequence of S=nothing; x=y1
would for example lead to D¢ = @ U {(true,z = y1)}.

Definition 3.5 (SOS Reaction, Conditionals, Well-founded)

lo]g = true
(5,6 /\07‘91> q-)QWF < n)ustng?n> must» can?Dl>
<€7C/_‘O-7SQ> q_>QWF (rznust Dcan f%mstl can? DC)
<5,C,if(0) Sl else S2> q”@wz«*(mustcham must» can’DCUDC>

[o]¢ = false
(€,Cna,51) P owr (D mustv,Dgan must7 can Dl>
<57C A _‘0'752) Powr < must?DZanﬂ must> can?DC)
<5,C,if(0) Sl else S2> q”@wz«*(mustngam r2nust7 can’DCUDC>

[[0]]81: . 1 1 1 1
(57 C A 0—7 Sl) q')@wp <Dmust7 Dcan: tmust7 tcam DC)
(8,C A -0, S2> q"@wF (Drznusta D?amt?nusta t?ampé)
(€,C,if (o) S1 else Sa2)
Powr

1 1 2 1 2 1 2 1 2
(Dmust n Dmust7 Dcan U Dcam tmust A tmusta tcan 4 tcan: DC U DC)

29

Chapter 3: Extending Semantics of Synchronous Programs

For conditional statements i£(c)S; else S, the condition ¢ is added to
the conditions C that lead to an assignment in the substatements of S; or Ss.
All further statements, as the abort statements or different kind of loops,
can be changed in the same matter, such that the condition of the current
statements evaluation is given to the corresponding sub statements.

As a final result, if the adapted SOS reaction rules are executed for the
complete program P respectively considering the current environment &£, a set
of mappings (C, x;=7;) is produced, which maps every occurring assignment to
a variable to its execution conditions.

Die={
(gbl/\d)Q/\.../\gf)n,l‘:Tl),

e
(V1 Ao AL AP,y = T2),
e

(Wi AwWa A L. AWy, =T3)

Especially, if a variable has assignments at different positions in the original
program, all those assignments are included in the set, respectively all rules
for a variable regarding the current environment £ are available.

Let‘s define a new function ComputeUnfSet(...), which takes the computed
mapping of conditions D¢, the current partial environment £ and calculates
the set Dyns containing all unfounded variables regarding £.

Definition 3.6 (Computation of the Unfounded Set)

function ComputeUnfSet(E,D¢)
Eunf ={x =true |z e A};
¢={(C,y:=7)eDc|y==a};
C” := Compute DN F (D¢);
do
gunf,old = Eunf;
Vze Ado
tX ¢ = CheckUnfoundedCondition(C%, &, Eunt);
Eunf ={z =15 ¢ |z e A};
while gunf,old # Eunf;
Dyns = {w € A| % == true};
return Dyrf;

The function starts by defining some starting conditions: according to the
greatest fixpoint calculation, it is assumed that every variable is unfounded if
not disproved and all conditions with a mapping to x are stored in a set D¢

30

3.1. Well-founded Semantics

for all x in the program. Furthermore, the conditions that have to be fulfilled
to assign x=7 are normalized as DNF, as this allows the interpretation and
separation as rules according to the definition of the unfounded set. e.g., the
program

module P(event x1,x2,x3,x4,x5) {
if (x1 & x2) if (x3) x4=T1;
if (x3 & 'xb) x4=T1;

}

results in the set DZ* = {((z1va2) Ax3,24 = 7), (23 A ~x5,x4=7)}. This set is
not directly interpretable as logical rules. But if this set is transformed to a dis-
junctive normal form (DNF') by concatenating all conditions C; out of the map-
pings (C;, x4=7) with a disjunction v (every condition leads to the assignment
means that only one condition needs to be fulfilled), the rules are easily cut out
after the performance of the DNF transformation. In our example this means,
the DNF transformation results in C** = (z1Az3) Vv (22A23)V (23A-25), which
can easily be split into the three rules ri=x1Ax3; r2=x2Ax3; r3=x3A-x5;.
The special case of the set being empty for x, should return the trivial Boolean
value C* = false, as this means that the according variable x has no assign-
ments in the program considering the current partial evaluation £. Having
those rules/normalized conditions C* for every variable x in the program al-
lows to calculate the greatest unfounded set Dy,s by a fixpoint calculation.
To this end, the unfounded conditions are recursively checked for C* with the
(constant) environment & containing the current values for all variables and
the (changing) environment &£,,¢, which contains the last calculated state of
the fixpoint regarding the unfounded conditions of all variables.

The crucial part is now the function CheckUnfoundedCondition, which can
be defined as follows:

Definition 3.7 (Check for Unfoundedness)

function CheckUnfoundedCondition(C*, &, Eynf)
xIsUn founded := true;
VeonjTerm e C* do
unfCondl := [-~conjTerm] ;
Apos := GetPositiveVars(conjTerm);
unfCond2 := 3z € Apos | [z]¢, . = true;
xIsUn founded := x1sUn founded A (unfCondl v unfCond2);
return x1sUn founded;

As it can be seen, the two conditions of the unfounded set are checked for
all rules, respectively all conjunction terms out of the mentioned DNF. To do
so, the first condition evaluates the negation of the term/rule in the partial

31

Chapter 3: Extending Semantics of Synchronous Programs

environment £, which means at least one positive or negative subgoal of that
rule body evaluates to false under €. Furthermore it is checked for all positive
subgoals that at least one of it evaluates to true in £,nf, which means that this
subgoal is recursively also a part of the unfounded set. Finally, the conjunction
of all checks is returned as the conditions have to hold for all rules, respectively
all conjunction terms of our formula. Above that, especially the edge cases
are also considered correctly:

e for the trivial condition C*=true, which means there is an assignment
without preconditions, the function evaluates to false: there is one term
conjTerm:=true. Its negation will lead to unfCondi=false and be-
cause it does not contain positive variables, also its second condition
unfCond2=false.

e for the trivial condition C*=false, which means that there was no as-
signment to that variable under the partial environment £ at all, the
function evaluates to true: there is only one conjTerm:=false. Its
negation will lead to unfCondl=true.

All in all, the function turns the interpretation of the unfounded condition
into the following scheme: If e.g., C* = ¢; Vea V...V ey, and every ¢ =
Tjy ANTjy Ao ANTj, N=Zj, 1 A=Tj, ... ATy, , the unfounded-set condition
for a rule ¢, is interpreted as follows:

ti{nf =
/) mmmmmm T
// unfounded set condition, rule k
/) mmmmm T
A
/) mmmmm T
// unfounded set condition part 1, false-evaluation
A it
(_‘le VT, V V oLy V Thpir ¥V Tjpag -V x]nJrz)
%
Y R S
// unfounded set condition part 2, recursion
Y R S
(B vy v)

YA,

For our small example from above with the three rules ri=x1 A x3; r2=x2 A
x3; r3=x3 A -x5;, the function would lead to tfff‘; = (-zlv-23V tffnlf v tffr?f) A
(~22V -3V X2 v iX3) A (<3 v 25 v viES). This resulting formula would then
be interpreted with the partial environments £ for all program variables x;,
and with the partial environment &, for all unfounded set conditions tféf.
Having defined the computation of the greatest unfounded set regarding a
partial environment £ as described with the function ComputeUnfSet using the
function CheckUnfoundedCondition, the complete program interpretation can

be changed as follows if everything is put together:

32

3.1. Well-founded Semantics

Definition 3.8 (The Well-founded System Reaction)

function ComputeReaction(&, S, Epre)
Dunt = &;
do
Eold = &;
Dunf,old = Dunf;
(Dmust; Dean, Do) := ReactSOS(E, true, S);
Dunf := ComputeUnfSet(E, D¢);
&= UpdateEnV(Dmusta Dean; €old, 5pre» Dum‘)§
while 8o|d #E v Dunf,old * Dumc
return £

As described, the system reaction depends on the unfounded set Dy,f, which
is calculated by the conditions D¢ that are collected with the SOS reaction
rules. The starting condition for the SOS rule calculation is true, as all variable
assignments without other conditions in the program code should be directly
executed without any preconditions. The computed unfounded set D¢ is then
used to update the environment as described in this chapter by especially
setting all variables in the unfounded set also to its default value with an
improved reaction to absence compared to the old fixpoint semantics. The
iteration has to stop if both fixpoints £ and Dy, are reached. Later it will be
shown that these two fixpoints are alternation-free (see |Section 3.1.1)).

Example Evaluation with the Updated SOS Rules

Let‘s consider our well-founded example P3) from again with the
newly adapted SOS rules according to the well-founded definitions.

The beginning stays the same, every value is assigned false for Eyre, the full
program is analyzed S = P3, the initial environment is empty &Eniw = {zl =
Lx2=1,23=1,24=1,25=1,26=1}.

Now, the adapted reaction to get Dyyyst and Deqy, (as before), and the new
mapping of conditions Do can be computed for this setup. The first round
to apply the SOS reaction rules takes again six steps, as there are six lines of
code in the original program.

/) e e e
// Round 1:
/) e e

Eold={xl=1,22=1,23=1,24=1,25=1,26=1}

(Dmustypcanap()) = ReactSOS(
{zl=1,22=1,23=1,24=1,25= 1,26 = 1},true,S);

33

Chapter 3: Extending Semantics of Synchronous Programs

ettt
// Round 1 - Step 1: (Sequence 3 + atomic assign)
ittt
(€,1,{x1=1;S"})
PQwr)
({z1=1} U,Dmustﬂ{x1 =1} U,Dcanv must> canv{(1 z1=1)}uD >

[/ mmmmmm oo
// Round 1 - Step 2: (Sequence 3 + conditional 3)
[/ mmmmmmm T
(€,1,{if (x4&!x5) emit(x2); S’})

Powr)
< must» {$2 - 1} LJ,Z)cam must’ can’ {(14&'735 x2 = 1)} uD)

/) mmmmm o
// Round 1 - Step 3: (Sequence 3 + conditional 3)
[/ mmmmmm T
(€,1,{if (x5&!'x6) emit(x2); S’})

q-)QWF

(D! st, {22 =1} U DL {(z5&!26,22 = 1)} U DZ)

can» must? can?
[/ mmmmmmm T
// Round 1 - Step 4: (Sequence 3 + conditional 3)
[/ mmmmmmm oo
(€,1,{if (1x2) emit(x3); S’})

Y owr

(Dhusts {23 =1} u D! 22,23 =1)} UDZ)

can» must? can’{(
e
// Round 1 - Step 5: (Sequence 3 + conditional 3)
et
(E,1,{if (x2) emit(x4); S’})

q—)QWF

(D! s, {xd =1} U DL (2,24 =1)} UDE)

can? must? can7{

[/ mmmmmmm T
// Round 1 - Step 6: (Sequence 3 + conditional 3)
[/ mmmmm T
(€,1,{if (x4) emit(x5); S’})
Powr
< must» {fL‘5 - 1} U,Dcam must» cam {(:E4 rd = 1)} UDC)

The calculation of the must- and can-set does not change compared to the
Fitting's fixpoint SOS reaction, therefore Dyyst = {1 = 1} and Deap = {1 =
1,x2=1,23=1,24=1,25=1}).

34

3.1. Well-founded Semantics

After that, the main change starts and the function ComputeUnfSet(...)
executes with the partial environment £ and with the map of conditions to
assignments D¢ from the SOS reaction rules calculation.

Dy s := ComputeUnfSet(
{zl=1,22=1,23=1,24=1,25= 1,26 = 1},
{
(1,21=1),
(zd&lzh, 22 = 1),
(z5&!26,22 = 1),

(122,23 =1),
(22,24 =1),
(z4,25=1)

1)

The first step of the function is the calculation of the DNF normalized condi-
tions for the assignments:

C* = true

C*? = z4&\x5 v 25& 126
C*3 =122

C™ = 22

C* = x4

C® = false

Especially, the computation of the conditions for the variable 26 leads to false,
as the set of mappings Dgﬁ = @, which means there is no assignment possible
under the partial environment &,;4.

With those normalized conditions, the rules according to the unfounded
set can be extracted and the unfounded condition can be checked recur-
sively for every variable with CheckUnfoundedCondition(...) until the fixpoint
is reached. This leads to the followmg computatlons Wlth the startlng envi-

ronment &, ¢(init) = {tunf 1, tunf 1’tunf 1, tunf 1 tunf 1, tunf 1}.
/)
// Round 1/2 - Unfounded Set

/)
x1 x1 gu”f —f |
ting = ~true = || t7 . = false

2 gunf
unf_ (_'x4vx5\/tunf (_‘x5vx6\/tunf) — [{ti{nfﬂg = true
tf,?f =72 =— [[tff,?fﬂ . C L
gunf

tunf =-z2V tunf [[tunf:H 5 = true

x5 x4 Euny _
tunf - _|:L‘4 \/ tunf [[tunfﬂ S - true

gunf
tunf = —false = [[tunf]]g = true

Eunp(roundl/2) = {51 = 0,652 = 1,4%3 = | ¥4 -1 X8 _1 46 _ 1},
Dynf(roundl/2) = {22, 24,25, 26} .

35

Chapter 3: Extending Semantics of Synchronous Programs

After already one round, the fixpoint for the unfounded set calculation is
reached for this example and it results in Dy, = {22, 24, x5,26}. Now, this
unfounded set together with the must- and can-sets can be used to update the
environment £ with the function UpdateEnv.

& := UpdateEnv(

{z1=1},

{zl1=1,22=1,23=1,24=1,25 =1},
{rl=1,22=1,23=1,24=1,25= 1,26 =1},
{x1=0,22=0,23=0,24 =0,25 =0,26 = 0},
{22,24,25,26})

Hereby, the function UpdateEnv will change the variables based on the can-
and must sets as before, but will also use the information from the unfounded

set:

e From Dpyet it follows, that £(xl) =1 — & = {zl = 1,22 = 1,23 =
Lxd=1,25=1,26=1}

e Irom Dcan and Dy, it follows:

X2

unf

DX2

can
Ly

DX3 2 v X3 — 1o changes

can “unf

g vitie — & ={rl=1,22=0,23=1,24= 1,25 = 1,26 =

DX g vt g = {al1=1,22=0,23= 1,24 =0,25 = 1,26 =
L1}
DX s vi*S — & = {21 =1,22=0,23 = 1,24 = 0,25 = 0,26 =
1}
DXG

can

0}

=g v X6 — & ={xl=1,22=0,23 = 1,24 = 0,25 = 0,26 =

unf

According to the algorithm ComputeReaction the second round is also started
here as Eyg = {xl = 1,22 =1,23 = 1,24 = 1,25 = 1,26 = 1} is not equal to the
newly calculated € = &L ={x1=1,22=0,23=1,24 = 0,25 = 0,26 = 0}.

This time, the second iteration/round will not result in the same set as the

first iteration, and differs here in comparison to the evaluation with Fitting‘s
fixpoint semantics, and the fixpoint iteration continues. Therefore, let‘s take
a look at the second iteration of the SOS reaction rules:

/7

// Round 2:

/7

Eod ={x1=1,22=0,23=1,24=0,25=0,26 =0}

(Dmush Dean, DC) = ReactSOS(

{r1=1,22=0,23=1,24=0,25=0,26 = 0}, true,S);

36

3.1. Well-founded Semantics

ettt
// Round 2 - Step 1: (Sequence 3 + atomic assign)
ittt
(€,1,{x1=1;S"})
PQwr

<{1’1 - 1} U,Z)mustﬂ {xl - 1} U,Z)canv must» can? {(1 rl = 1)} UDQ)
[/ mmmmm T
// Round 2 - Step 2: (Sequence 3 + conditional 2)
[/ mmmmm o
(€,1,{if (x4&!'x5) emit(x2); S’})

<D:nust7D<,:an7 must> can? {(‘L4&'J‘) x2 = 1)} UD2>
[/ mmmm T
// Round 2 - Step 3: (Sequence 3 + conditional 2)
e

<D:nust7D<,:an7 must> can? {(10&'[6 x2 = 1)} UDZ)
[/ mmmmm T
// Round 2 - Step 4: (Sequence 3 + conditional 1)
[/ mmmmm oo
(€,1,{if (1x2) emit(x3); S’})

PQwr

<{333 1} LJDmustﬂ{x3 1} U,Z)canv must» canv{("LQ x3 = 1)} UDC)

[/ mmmmm oo
// Round 2 - Step 5: (Sequence 3 + conditional 2)
[/ mmmmm T

(E,1,{if (x2) emit(x4); S’})

<D:nust7Déan7t:nust’ can» {(‘LQ rd = 1)} UDC)
[/ mmmmm T
// Round 2 - Step 6: (Sequence 3 + conditional 2)
[/ mmmmm T
(E,1,{if (x4) emit(x5); S’})
FQwr
(D4

D!
must’ " can» must’ can?

{(z4,25=1)} uDZ)

With the new partial environment, all conditions ¢ of the example now eval-
uate to a concrete value instead of 1 as it was in the first round and also in
the Fitting's fixpoint evaluation. The second iteration of the SOS reaction
rules result in Dyyst = {x1 = 1,23 = 1} and D, = {zl1 = 1,23 = 1}. As one
can see, all unfounded variables do not appear in the can set anymore, as
their conditions to be emitted have all been turned to false. The only vari-
able that has not been sure if it has been unfounded, x3, is now part of the
must-set, as the evaluation of the corresponding o=!x2 turned positive with
the new knowledge. The mappings of conditions for the assignment Do are

37

Chapter 3: Extending Semantics of Synchronous Programs

unchanged, which comes from the fact that the evaluation of the o is ignored
by collecting the conditions.

With these results, the function ComputeUnfSet(...) is executed a second
time with the partial environment £ and with the map of conditions to assign-
ments D¢ from the SOS reaction rules calculation.

Dy s = ComputeUnfSet(
{r1=1,22=0,23=1,24=0,25=0,26 = 0},
{
(1,21 =1),
(zd&lzh, 22 =1),
(z5&!26,22 = 1),

(122,23 =1),
(22,24 =1),
(z4,25=1)

1

The calculation of the DNF normalized conditions does not change:

C*! = true

C*? = z4&\x5 v 25& 126
C*3 =122

C™ = 22

C™ =24

C* = false

And also the rules extraction is the same, as the set D¢ itself did not change.
But the evaluation does, as the environment £ is another one as in the first
iteration:

[/ mmmmmmm e

// Round 1/2 - Unfounded Set

[/ mmmmmmm T
un f

%L = true — [{tunfﬂg = false

unf - unf

gunf
=(-~zd4vabv tunf) A (=xb Va6 v tunf) — [[txzﬂg = true

X3 _ 22— [[txg’ﬂ gun = false

unf — unf
gunf
tfﬁ =—x2vV tffr% — [[tfﬁﬂ . T true
&
5 51 “unf
X9 =z v tunf [[tfnfﬂ . T true
gunf
tun6f = —false = [[tfnsfﬂ . true
Eunys(roundl[2) = {tunf = O,tunf = 1,tffn = false,tffn =1 tunf = 1,tffn =1}.

Dynf(roundl/2) = {22, 24, x5, 26} .

The fixpoint for the unfounded set calculation is reached again after one round
and results in a changed environment &, f(roundl/2) but in an unchanged

38

3.1. Well-founded Semantics

unfounded set Dy, = {22,24,25,26}. This is the case in general, as the
fixpoints are alternation-free, see

Finally, the same unfounded set together with the must- and can-sets can
be used to update the environment £ with the function UpdateEnv.

& := UpdateEnv(
{z1=1,23=1},
{z1=1,23=1},
{r1=1,22=0,23=1,24=0,25=0,26 = 0},
{x1=0,22=0,23=0,24=0,25=0,26 = 0},
{22,24,25,26})

The function UpdateEnv computes only small changes, because the changes
are small in the can- and must-set and in the environment in comparison to
the first iteration:

e From Dy it follows that £(23)=1— & ={2l1=1,22=0,23=1,24 =
0,25=0,26 =0}

e As the can-set Dcan was only reduced and the unfounded set D, s was
unchanged, both the sets have no more influence on the environment &;

According to the algorithm ComputeReaction, the third round is started, as
Eold = {xl=1,22=0,23 = 1,24 = 0,25 = 0,26 = 0} is not equal to the newly
calculated € = & = {x1 = 1,22 = 0,23 =1,24 = 0,25 = 0,26 = 0}. But this
iteration will end in the same environment & and also in the same D, s and
the fixpoint is reached. The program interpretation ends and is valid, as the
resulting environment £ is complete and does neither contain T nor 1 values.

As a result one can see that the changed SOS reaction rules, the unfounded
set computation and corresponding changes to update the environment allowed
the interpretation of a program, which had no meaning before with Fitting‘s
fixpoint semantics. That was reached by storing the paths/conditions to the
variable assignments with the SOS reaction rules, and constructing logical
rules for every variable assignment, which allowed to analyze them according
to the unfounded set conditions. Finally, the variables that were found to be
unfounded, could improve the reaction to absence and allowed to set more
variables to their default values compared to Fitting‘s fixpoint interpretation
without introducing conflicts.

Some Further Notes and Lemmas

Lemma 3.1 (Df ; # @ — t= . = false)

must

Proof For a variable x in the must set Dmust it is known that all conditions C
to assign at least one concrete expression x=7 to this variable evaluated to true

39

Chapter 3: Extending Semantics of Synchronous Programs

in the current environment £ during the application of the SOS reaction rules.
This means, at least one path/one rule to that variable directly contradicts
the condition 1 of the greatest unfounded set definition. Furthermore, if the
whole rule evaluated to true, also all positive subgoals would evaluate to true.
That finally means, these positive subgoals could not be unfounded as well.
Therefore, it is clear that all variables x with an assignment in Dyuet, €.g.,
DE .t * D, x are not in the unfounded set.

Lemma 3.2 (Non-Alternation of the Fixpoints £ and Dyy,f) If a
variable = is set to its default value e.g., false in £ as reaction to ab-
sence because of tX = true, that = cannot change the neat iteration of
the unfounded set D,y computation, and the corresponding fixpoints are
therefore alternation-free.

Proof Assuming x is unfounded regarding a partial environment &£, for exam-
ple if (y)emit (x); = tX =true=... A(-yV tunf) A Furthermore, let‘s
assume that for another variable x2 it could not be ﬁnally determined if it is
unfounded with £, because of a dependency to x : tunf = 1. Now, the value of
x is changed to false in the environment & because x was unfounded.

(1) Case 1: unf evaluates to true given £ because of x

(I) in order to evaluate to true with z = false, z must be negated in t*

unf -
..A...=Z...A.... But this means that x has to be positive in the
rule C*2 = ... Az A.... According to the definition of the unfounded

set condition 2, it must be checked, that all positive subgoals are

also in the unfounded set, e.g., tuan =...A...oXV tunf .A.... But
as tu = true, x = false cannot be the reason for tunzf to turn true.
O.

(2) Case 2: tX2 evaluates to false given & because of x

(1) tx = false has no influence on the unfounded set D,,, s regarding &o,
as only all positive occurrences tu;f are included in the unfounded

set.

(IT) If another tfrff depends on tffnzf, and ¢4 = false, also ¢ Jf can only
become false but not true, as Condltlon 2 of the unfounded set only
demands positive checks of the set inclusion, e.g., unf \/tuanv

0.
(3) Case 3 (indirect influence): Another variable x3 evaluates to a concrete
value in & because of a dependency to x and x3 has an impact to x2.

(I) Case 3.1: x3 evaluates to true in & because of a dependency to x:
eg.,if(Ix)emit(x3);.

40

3.1. Well-founded Semantics

(A) tfnzf evaluates to true given & because of x3.

(B) in order to evaluate to true with x3=true, x3 must be positive

in tfanf =...A...T...A.... But this means that x has to be
negative in the rule C*2 = ... A =23 A According to the

definition of the unfounded set condition 2, it must be checked
that all positive subgoals are also in the unfounded set, e.g.,

tffn% = .. Az VIR AL Butas tX . = true, z = false
cannot be the reason for tfnzf to turn true. a.

3.1.2. Direct Inclusion Into Synchronous Guarded Actions

The last section showed how one can include the computation of the un-
founded set condition theoretically into the formal semantics description of
the SOS rules. Although this describes the changes on a theoretical level
very well, in practice this would mean to change all available tools as the
interpreter, the compiler, all verification and analysis tools, etc. Therefore,
this section shows another approach which adds some extra statements to
existing programs, such that the reduction of the can-set shown in the last
section is still archived, but the interpretation can still be performed with-
out changes to the available tools and interpreters. Especially, this allows to
use the available hardware generation tools and also the interpretation with
the well-founded semantics as it can be seen in the next lines. To this end,
the general idea is to make the assignment explicit, e.g., add it to the must-
set instead of using the implicit reaction to absence to set the default value.
E.g., the assignment 1£(0) x = true; else nothing; sets the value of x
to false implicitly by the reaction to absence if o evaluates to false; whereas
if(o) x = true; else x=false; explicitly adds x to the must set on the
condition that o evaluates to false.

According to the definition of the well-founded semantics, the part which
changes the value of a variable from unknown to true is the same as in Fitting's
fixpoint semantics, but the transformations from unknown to false are done
by the 'unfounded set’. In order to interpret synchronous programs with the
well-founded semantics, it is therefore enough to include a predicate describing
the unfounded condition. To do so, for every variable x, a special variable u,
is added into a program, which should evaluate to true iff the corresponding
variable z is in the unfounded set and false if it is not. This variable u, can
then be used to set the value of = explicitly to false if it evaluates to true. This
is equivalent to being in the unfounded set.

module P3(event ...,x;,%;1,...) {
event ..., Uz, Uz qy---;
/) T
// original program

)

Ti=...3
Tiv1 = .. -;

41

Chapter 3: Extending Semantics of Synchronous Programs

) e
// reaction to absence triggered by unfounded set

T

if(ug;) x; = false;
if(uy,,,) i1 = false;

}

The important part is now the definition of the unfounded set condition itself.
Recapping the definition of the greatest unfounded set, two conditions have
to be modeled:

Definition 3.9 (Greatest Unfounded Set)

Given a partial interpretation Z and a logic program P, a set of variables A
1s called unfounded, if for all variables x € A one of the following conditions
holds for each rule with conclusion x:

e Some positive or negative subgoal x; of the body is false in Z.

e Some positive subgoal of the body occurs in A.

As mentioned in synchronous programs can be transformed to an
equational format, such that every variable is assigned to exactly one specific
expression. Having the definition of variables in the equational format, the
subgoals can be extracted directly from the different rules ¢ out of the formula.
Ifeg, z;=civeaVv...Vey, and every ¢, = Tj, AZj, A ... AZj, A=Tj., A
=T, --- AN Zj,,., the positive and negative subgoals can be extracted by
taking the positive and negative occurrences of the depending variables.

All in all, the unfounded-set condition for a rule ¢; can be formulated as
follows:

Uy, =

[/ mmmm

// unfounded set condition, rule k

/) mmmm e

A

/) mmmm T
// unfounded set condition part 1, false-evaluation
/) mmmmm T

42

3.1. Well-founded Semantics

e
// unfounded set condition part 2, recursion

/)

This is actually the same definition that had been used and defined in the last
section for the unfounded set condition tX ..

When taking a look into our introductory example, this can lead to the
following definition, e.g., for us:

module P3(event x1,x2,x3,x4,x5,x6) {
event ul,u2,u3,ud,ub,ub;
Y R R
// original program
Y R
x1 = true;
if(x4&!'x5) x2 = true;
if(xb&'x6) x2 = true;
if(!'x2) x3 = true;
if(x2) x4 = true;
if(x4) x5 = true;
Y R

// reaction to absence triggered by unfounded set

// computing the greatest unfounded set

it

if(((x4&'x5) & 'ud) | ((x5&'x6) & 'ub)) u2 = false; else —
u2 = true;

Evaluation

When taking the encoding from above the way it is, the simulation of programs
which had no meaning in Fitting‘s fixpoint computation (some values had been
1) and should have a meaning when evaluated with well-founded semantics,
still evaluate to L for most of those values. This comes from the fact that
some of the rules ¢ evaluated to L for those variables, what means that some
depending variables x; could not have been evaluated before. But as the

43

Chapter 3: Extending Semantics of Synchronous Programs

same values are used by the condition of the unfounded set, the unfounded
set condition for those variables also evaluates to L and thus did not shift the
interpretation to well-founded semantics yet. This can be seen clearly if one
takes a look at our example:

The evaluation starts with all variables 1: Enip = {xl = 1,22 = 1,23 = 1,24 =
Lxb=1,26=1,ul = L,u2=1,u3=1Lud=1,ub=1,u6=1}.

Due to the current interpretation with the must and can sets, the variable
x1 gets the value x1 = true and the variable x6 the value z6 = false because of
to the reaction to absence. Further, the corresponding unfounded conditions
are the trivial cases and therefore directly set as ul = false and u6 = true. But
all other unfounded conditions still evaluate to u; = 1 as all conditions of their
if-statement can still not be evaluated with these new variable values and the
starting values 1.

When considering the well-founded semantics definition in detail, it is im-
portant to see that the evaluation of the unfounded set must be executed by
a greatest fixpoint analysis. Especially, all variables for which the unfounded
set condition cannot be evaluated at the initial time have to be considered as
being in the set, e.g., evaluating the condition to true.

Of course this could be reached by tagging the newly introduced expressions
and conditions to be evaluated with a greatest fixpoint and changing the simu-
lator and postponed steps of the compilation (hardware synthesis etc). But if
one directly defines these fixpoints by unrolling the expressions, it is possible
to use the existing eco-system without changes like synthesizing hardware or
simulating the program.

Hence, the initial unfounded set condition of the unrolling wu,, o of every
variable z; is set to true (unless it has assigned a constant value true in the
original program, as then the unfounded set condition itself is false). Then,
all intermediate calculation steps of the fixpoint unrolling w,,; refer to all
values of the previous iteration u,, ;-1 and have the previous value u, ;-1 as
a fallback. As the maximal depth of the fixpoint, e.g., in how many steps
the fixpoint can change one variable’s value from true to false, is at maximum
the amount of variables m in the program, the fixpoint can be unrolled by
unrolling every single expression u;; up to gz, m-

Uy, Ug;m s
e
// unfolding step m for z;
S/ mmmm e
Ug,;m =
/) mmmm T
// unfounded set condition, rule k
/) mmmmmm o
C...n(
At
// unfounded set condition part 1, false-evaluation
/) mmmmm T

44

3.1. Well-founded Semantics

/7

// unfounded set condition part 2, recursion.

// refers to previous unrolling m—1

//

/7

/7

/7

/7

Ug; 0 =

For the example, this means:

Y R S

// computing the greatest unfounded set

Y R

u2 = u2_6;

/) T e

// unfolding u2

Y R S

if(((x4&'x5) & 'ud_5) ((x5&!x6) lub_5)) u2_6
else u2_6 = u2_5;

if(((x4&'x5) & 'ud_4) ((x5&!x6) lub_4)) u2_5
else u2_5 = u2_4;

if(((x4&'x5) & 'ud_3) ((x5&!x6) lub_3)) u2_4
else u2_4 = u2_3;

if(((x4&'x5) & 'ud_2) ((x5&!x6) lub_2)) u2_3
else u2_3 = u2_2;

if(((x4&'x5) & 'ud_1) ((x5&!x6) fub_1)) u2_2
else u2_2 = u2_1;

if(((x4&'x5) & 'ud_0) ((x5&!x6) lu5_0)) u2_1

else u2_1 = u2_0;

u2_0 = true;

false;

false;

false;

false;

false;

false;

—

—

—

—

With this trick, it is possible to transform every parallel program’s interpre-

tation to well-founded semantics without losing the capability to synthesize
the program to hardware or to analyze it further with the existing tools. In

45

Chapter 3: Extending Semantics of Synchronous Programs

the following, the proofs will be given that the semantics of programs is only
extended and especially does not change for programs for which a solution in
the sense of Fitting has already existed.

The shown strategy introduces n? new formulas to a program, which is of
course not optimal particularly for larger programs. Although the computa-
tion of the fixpoint is just linear in n because the current level computation
of ux; only influences the next level [+ 1, this representation can further be
optimized in reality. One such optimization could be the calculation of the de-
pendency depth of a variable in the dependency graph, as only subsequent data
dependent variables x; can influence the value of a variable x and therefore
also the corresponding unfounded set conditions ux;; the value of ux;,;. But
such optimizations do not change the general idea, and still allow the com-
putation of a well-founded system'‘s reaction with the help of the currently
available rules and tools.

3.1.3. Proofs

This section will prove the conservative characteristics of the shown extension
to well-founded semantics. The proofs will be performed by inductive proofs
over the data dependency order. Therefore, the notation of a rule ¢ in the
case expression true — x = c1Vca V...V, is enriched with a data dependency
index j, for every x in the rule as follows: ¢ = 2, Axj, A... AZj, A=Tj, . A

=T, .o --- A=, Which can be combined to ¢, = A ;. A A —Zj,, -
ri=1l..n ro=n+l..n+z

Hereby, every x;, is computed in the data dependency order before x.
Furthermore, let‘s introduce two notations to clearly separate the interpre-
tation with Fitting from the interpretation with well-founded semantics:

Ip(x;) is the interpretation of the variable x; with Fitting‘s fixpoint semantic

Iy (x;) is the interpretation of the variable x; with the extended semantics of
well-founded models presented in the last sections

Basically there are to prove two different aspects:

e A variable made false because of the well-founded set/unfounded set con-
dition was already evaluating to false or 1 under the fixpoints semantics
— the extension is conservative

e everything having evaluated to a concrete value under Fitting's fixpoint
semantics has the same value under the newly introduced extension eval-
uating the well-founded semantics — conflict-free extension

Direct Influence of the Unfounded Set

Lemma 3.3 uy, — Ip(z;) = false|L

46

3.1. Well-founded Semantics

Proof The above lemma is proved with an inductive proof over the data
dependency order. Since our program is derived from Quartz, it is known that
these data dependencies exist.

(1)

Induction Base: All constant variables are the base of the data dependen-
cies. It is to prove that u,, — Ir(xo) = false|L. Let‘s assume uy, = true.
It directly follows from the definition of the extension that for constants
only xg = false can lead to uy, = true. The constant zy = true would lead
to ug, = false O

Induction Step: Assume the Lemma holds for all j, < i: Uz, —
Ir(xj,) = false|lL It is to prove that the Lemma also holds for 7 + 1:
Ug,,, — Ip(wis1) = false|lLl. Let's assume ug,,, = true. As uy,,, =
Uy AlUcy A ... A, , it is known that all u., must be true. Let‘s take an
arbitrary row k: wuc, =ugt . vugk o can only be true if one of the two
introduced well-founded conditions p; or ps is true.

(I) Case 1: ugk . =true.
Ck - .)
Uziv1,p1 \4 Ty, V \ Ljrg
ri=1..ng ro=ng+l.ng+2k

Therefore, either one —z;, must be true or one z;, for arbitrary
.

(A) Case 1.1 -z, =true

This means, z;, must be false. But then the corresponding

case condition c?l = A zj, A... would never be able to
ri=1..ng

evaluate to true. Therefore, if —z;, = true and an arbitrary k

is chosen, I'p(x;y+1) must evaluate to false|L O

(B) Case 1.2 ;, =true

This means, -, must be false. But then the corresponding

case condition c}:l =...A A -xj,, would never be
ro=ni+l.ngp+2k
able to evaluate to true. Therefore, if z;, = true and it was
chosen an arbitrary k, I'r(z;+1) must evaluate to false|L O
. 0 Ck _
(IT) Case 2: ugk ., =true

Ck _

As ugh =V U, at least one U, must be true. As for all

ri=1..ng
Jy <4 it is given that u,;, — Ip(zj,) = false|L from the induction
assumption, it can follow that Ip(z;.) = Ir(z;,) = false|L. But
no matter if this positive subgoal evaluates to false or to 1, the
corresponding case condition ¢ must evaluate to false v L too. As
it were chosen arbitrary k and r, it directly follows that Ip(x;s1)
must evaluate to false|L then, too O

47

Chapter 3: Extending Semantics of Synchronous Programs

Indirect/Subsequent Influence of the Unfounded Set

It is known that ug, = true will lead to Ir(x;) = false v L. But can the variable
x;, which was made false from u,,, conflict Fitting‘'s semantic? What exactly
does conflict mean:

case 1 Fitting would normally say Ip(x;) = true, but one Iy (x;_q) = false
enforces x; to be false.

case 2 Fitting would normally say Ir(x;) = false, but one Iy (z;_q) = false
enforces x; to be true.

There is a third case in which Fitting would normally say Ir(z;) = 1, but
Iy (x;_q) = false enforces z; to be true or false. This case 3 is no conflict; it is
the wanted intention of the defined extension to well-founded semantics.

Well-founded Semantics Cannot Conflict true To be disproved: Fitting
would normally say Ip(z;) = true but one Iy (x;_q) = false enforces x; to be
false.

As Ip(x;) = true = ¢1 Vea V... Ve, it can be followed that at least one
condition ¢, fired and evaluated to true.

In order to change the value of x; to false, one x;_4, which was made false
because of the unfounded set conditions, must change the value of the corre-
sponding condition ¢ to false.

In order to change ¢, = A ;. A A -xj,, from true to false

"
ri=1..ng rgznk+1..nk+zk

with Iy (x;_q) = false means that z;_4 is one of the positive subgoals Zj,, -
This means also that xj, evaluated to true under Fitting's semantic:
Ir(zj,,) = Ir(zi_q) = true.
Aswig=x5 =c]' vy v...vel =true under Fitting's semantics, at least
one condition C;; = true with CZ; =true= A 1, A A —Tj,, -

ks
rz=l.ng, T4=Npy+1. Mgy +2k,

Which means (1) all positive subgoals z, are true and (2) all negative subgoals
z;,, are false.

. B o
At the same time, u,, , = Uz, = U

AUl

. "L OAL.. AUl =true means that
cq co Cmoy

the unfounded set condition is true for every case condition ugl% , especially
also for the case condition with the same index k3 = k9 that had been chosen
3 3 4 1o T1 — T1 — 71 71 —
for Fitting‘s semantic: Uy, = true. Because of Uiy, = Ve, 1 V“x% po = true,
two different cases have to be considered:
. 1 —
(1) Case 1: Uz, o1 = true

The unfounded set definition p; demands at least one of the positive or
negative subgoals to evaluate to false:

T1 - . . —
Uy = V2T,V Vv xj,, = false.
2 r3=1..nk2 r4=nk2+1..nk2+zk2

But this means at least one zj, . must be false or one z; —must be
true, which is both a contradiction to the above shown assumptions

48

3.1. Well-founded Semantics

(1) and respectively (2) that the variable z;_4 = true under Fitting's
semantics.]

. T —
(2) Case 2: ug}% py = true

The unfounded set definition po demands that at least one positive sub-

: 343 1. T1 — —
goal of the considered case condition ¢;: Upey 2 = Vv Uz, = true.
2 r3=1..nk2
But if this ug, = true, the corresponding variable z;, must evaluates

to false v 1 under Fitting‘s semantics according to the proof shown in
section 3.1.3] This is a contradiction to the above shown assumption
(1), that the variable x;, = true given x;_4 = true under Fitting's seman-
tics. 0

Well-founded Semantics Cannot Conflict false To be disproved: Fitting
would normally say Ip(x;) = false but Iy (x;_q) = false enforces x; to be true.
Ip(z;) =false=cy Vea V... Ve, means that all conditions ¢y, are false.
In order to change the value of z; to true, one x;_4, which was made false be-
cause of the unfounded set condition and is contained in at least one condition
¢, must change the value of the condition to true.

r

In order to change ¢, = A ;. A A -xj,, from false to true
ri=1..ng rgznk+1..nk+zk

with Iy (x;_q) = false means the x;_4 is one of the negative subgoals —Zj,, -
This also means that z;, evaluated to true under Fitting's semantic:
IF(ij) = Ip(x;_q) = true. The only way how Iy (x;_4) = false could happen
under these circumstances is if ;-4 was in the unfounded set: u,, , = true.
As ;g = xj,, = C12V V..V Gy, = true under Fitting's semantics, at least
one condition c};z = true with c;z =true= Az, A A —Tj, -

-
ra=l..ng, Ta=Npoy+1. Mgy +2k,

This means (1) all positive subgoals x;, must evaluate to true and (2) all
negative subgoals z;, to false.

At the same time, ug,, = uz? Aui AL A u?cmz = true means that the
unfounded set condition is true for every case condition u;ik , especially also
for the case condition with the same index k3 = k9 that had been chosen for
Fitting‘s semantic: ugik = true. Because of “22%2 = u;ikz Y u;ikz ps = true,
two different cases have to be considered:

(1) Case 1: uQZ% o = true

The unfounded set definition p; demands at least one of the positive or
negative subgoals to evaluate to false:

ur? n= VooV \VJ xj, = false.

kg’ T3:1..’nk2 r4:nk2+1..nk2+zk2

But this means at least one zj, . must be false or one z; —must be
true, which is both a contradiction to the above shown assumptions
(1) and respectively (2), that the variable x;_4 = true under Fitting's
semantics. O

49

Chapter 3: Extending Semantics of Synchronous Programs

(2) Case 2: u?ﬁb py = true

The unfounded set definition p, demands that at least one positive sub-

; " 2. T2 _ -
goal of the considered case condition ¢;?: Uey 02 = . 1\/n Uy, = true.
3=1.-Nky

But if this Ug;, = true, the corresponding variable xj,, must be false ac-
cording to the definition of the unfounded set extension. This is a contra-
diction to the above shown assumption (1), that the variable x;_4 = true
under Fitting's semantics, which is even more underlined by the proof

shown in [Section 3.1.3|that u,, — Ip(z;) = false|L. O

3.2. Stable Model Semantics

3.2.1. Direct Inclusion Into Quartz

Based on the concepts of the unfounded set, the stable model semantics can
be defined. The idea behind stable models is that every variable needs to have
a reason to become true. Thus, there must be a rule for this variable. In
contrast to well-founded semantics, stable model semantics can have multiple
solutions. Furthermore, it is known that all total well-founded models, e.g., in
which no variable has the value 1, are the stable models of a program. Thus,
the solution of the well-founded semantics is a subset of all stable models.
Therefore, it would be enough to select appropriate values for all variables
that have the value 1 in the well-founded semantics.

Considering those facts, it is not surprising that the original definition of a
stable model with the reduct of a program uses the unfounded condition to
describe the properties of the stable models (see .

Nevertheless, a lot of knowledge on the stable model semantics exists; the
most advanced is the connection and presentability with the help of loop for-
mulas. Hereby, the information of the program variable loops is collected, and
even more important are the rules which are excluded and therefore support-
ing the loop variables. This leads to the possibility of reducing the check to
stable models to a default SAT problem, by putting together Clark’s comple-
tion of the program with the associated supporting loop formulas. This idea
has been presented in in the example program P4. In order to
evaluate Quartz programs with the stable model semantics, it seems close to
just add the corresponding loop formulas to the program as it was the case for
the well-founded semantics and its unfounded set condition in

module P4’ (event a,b,c,d) {
event ua,ub,uc,ud,ua_O,ua_1,ua_2,ua_3, —
ua_4,ub_O,ub_1,ub_2,ub_3,ub_4, —
uc_0O,uc_1,uc_2,uc_3,uc_4, ud_O,ud_1,ud_2,ud_3,ud_4;

/) mmmm o
// original program

[/ T
if(a) b=true;

50

3.2. Stable Model Semantics

if(b) a=true;
if (!'c) a=true;
if(!d) c=true;
if(!'c) d=true;
if(d) b=true;

Y R S
// loop formulas
Y R S
if(!d & c) a=false;

if(!'d & c) b=false;

)
// reaction to absence triggered by unfounded set
[e
if(ua) a = false;

if(ub) b = false;

if(uc) c = false;

if(ud) d = false;

Y S
// computing the greatest unfounded set

/) T e
ua = ua_4;

ub = ub_4;

uc = uc_4;

ud = ud_4;

Y

// unfolding ua

e

if((b & 'ub_3) | (('d & ¢c) & 'uc_3) | !'c) va_4 = false; —
else ua_4 = ua_3;

if((b & 'ub_2) | ((!'d & c) & 'uc_2) | 'c) uva_3 = false; —
else ua_3 = ua_2;

if((d & 'ub_1) | (('d & ¢) & 'uc_1) | !'c) ua_2 = false; —
else ua_2 = ua_1;

if((d & 'ub_0) | (('d & ¢) & 'uc_0) | !'c) uva_1l = false; —

else ua_1 = ua_O0;
ua_0 = true;
R
// unfolding ub
) e
if((a & 'va_3) | (('d & ¢) & 'uc_3) | (d & 'ud_3)) ub_4 = -
false; else ub_4 = ub_3;

o1

Chapter 3: Extending Semantics of Synchronous Programs

if((a & 'va_2) | (('d & ¢c) & 'uc_2) | (d & 'ud_2)) ub_3 = —
false; else ub_3 = ub_2;

if((a & 'wa_1) | (('d & ¢) & 'uc_1) | (d & 'ud_1)) ub_2 = >
false; else ub_2 = ub_1;

if((a & 'va_0) | (('d & ¢) & 'uc_0) | (d & 'ud_0)) ub_1 = —

false; else ub_1 = ub_0;
ub_0 = true;
/) T e
// unfolding uc
Y R S
if('d) uc_4 = false; else uc_4 = uc_3;
if(!'d) uc_3 = false; else uc_3 = uc_2;
if('d) uc_2 = false; else uc_2 = uc_1;

if('d) uc_1 = false; else uc_1 = uc_0;
uc_0 = true;
Y R S
// unfolding ud
Attt bt
if('c) ud_4 = false; else ud_4 = ud_3;
if('c) ud_3 = false; else ud_3 = ud_2;
if(lc) ud_2 = false; else ud_2 = ud_1;
if('c) ud_1 = false; else ud_1 = ud_O0;
ud_0 = true;
}
drivenby t0 {
pause;
}

But the example extended with the loop formula and also additionally with the
unfounded set condition as shown in P4’ is still not constructive, respectively
has still some values left 1 after the interpretation with the current Quartz
interpreter.

When taking a deeper look into the example, one can realize that with
the current Quartz interpreter, the monotonic fixpoint computation does not
lead to a constructive result. As all variables somehow depend on the others,
all variables are in the can-set, but no value is concretely assigned a value
with the must-set. Only the starting values for the unfounded set computa-
tion uag, ubg, ucy, udy evaluate to concrete values true and the second iteration
variable ub; too, because it is the only variable whose unfounded set condition
of the iteration two can be computed just by the starting values in the first
iteration.

But all other values, not only the unfounded set conditions, but all vari-
ables, recursively depend in loops to each other. This will let a monotonic
fixpoint fail during computation. The only way to overcome this issue would
be to choose variable values and make the computation non-monotonic and
from a semantics point of view especially also non-deterministic. Of course it
would somehow be possible to encode this choose operations and an accord-

52

3.2. Stable Model Semantics

ing backtracking if a value contradicting the other rules in Quartz itself was
chosen; but that would finally mean to re-implement a SAT solver or Answer
Set Solver in Quartz.

3.2.2. Quartz as Frontend for Answer Set Programming

Instead of bringing the computation of stable models into the synchronous
world, the more practical approach is to use the available tools, knowledge
and optimizations from state-of-the-art answer set solvers directly. On the one
hand, as answer set programming is based on the concept of stable models,
this would allow to interpret every synchronous program directly with stable
model semantics. On the other hand, this allows to give a high-level language
access to the much more theoretical language of ASP systems. To this end,
this section describes two different approaches to translate synchronous pro-
grams directly to the standardized answer set programming input language
format ASP-Core-2. The first option will show, how one can translate syn-
chronous programs into the default ASP-Core-2 language format. And the
second option will use the latest enhancements of answer set and translates
them into an inductive definition, in which every step of the original program
is then described as an induction step in ASP.

Translation to Default ASP-Core-2 Language

Synchronous languages can be transformed into the intermediate common rep-
resentation of synchronous guarded actions. Those guarded actions v = «
consist of a guard « which must evaluate to true in the current environment,
such that the action « fires. This representation is already very close to the
representation in ASP, where a program consists of a set of rules H < B,
which are composed of a head H and a body B and which can be read as if
the body B can be deduced, then also the head H.

The naive approach would now take every guarded action v = a and trans-
forms it to the rule for ASP with a < ~, such that the head H = « and the
body B = . But as always, the devil’s in the details.

A (normal) action in the language of synchronous guarded actions is either
an immediate assignment x=7 or a delayed assignment next (x)=7. Hereby,
the expression 7 is typed with the type of x. The guard -~ itself is always a
Boolean expression over the set of variables and constants in the program. At
the same time, in ASP a head is a literal and the body itself consists of a
conjunction of other literals. This hinders the direct transformation from gen-
eral guarded actions to ASP, as the expressions of synchronous actions are not
necessarily conjunctions. Further, for some special types like arrays or tuples,
corresponding representations in the ASP-core-2 syntax have to be defined
and the connection from the action « and the guard v has to be considered
as well. Nevertheless, the basic idea of translating every synchronous guarded
action by itself into the syntax of the ASP-Core-2 language stays the same.

In detail, every guarded action 7 = x|next (x)=7 can be transformed to
a rule x(V) |next (x(V)) < ~;7(V). in ASP. It is to read as follows: if the

93

Chapter 3: Extending Semantics of Synchronous Programs

condition « is fulfilled and if then the expression 7 evaluates to the concrete
V, the variable x also evaluates to the value V. For Boolean expressions, the
value V can be omitted and then the rule gets x|lnext (x) < ;7.

The important part now is the translation of the expressions themselves.

Boolean Expressions Consider e.g., the following Boolean expression:
next (x)=case (x2|x23:true, x3:true, default:false), which can ap-
pear in the intermediate representation as a guarded action in the system of
Averest. This expression cannot directly be translated to ASP, as ASP neither
has a case statement, nor it is possible to have (nested) disjunctions in rule
bodies directly.

Therefore, one option would be to translate the Boolean expression first into
a disjunctive normal form x = ¢1 vV o Vv ... ¢, first, and then every disjunctive
part ¢; into an own rule in ASP:

r - ¢
Tr - qbg.
T oi— ...
T - On.

But calculating the minimal DNF is on the one hand NP-complete and on
the other hand can lead to an exponential explosion of the formula. Therefore,
a simple trick can be used to omit this step. Instead of calculating the DNF, all
sub-expressions can be given unique names, such that the focus of the trans-
lation procedure can just lie on single operations instead of complete formulas.
The formula next (x)=case(x2|x23:true, x3:true, default:false) can
e.g., lead to the following rules:

next(xr) :- x2 or_x23.

next(x) :- 3.
r2_0r_x23 - x2.
x2_0r_x23 - x23.

Hereby, a new variable x2_or_x23 is introduced for the only non-trivial sub-
expression x2|x23. Then, this sub-expression itself is also transformed to ASP.

In the following, the translation for the different operations of Boolean ex-
pressions are shown, whereas it is accordingly assumed that every expression
is given a unique name x. A variable access in a Boolean expression would
lead to the following two possibilities, dependent on the definition type of the
variable x.

ATF expression H ASP rules
x = BoolVar gn (immediate) X - V_qn.
next (x)= BoolVar qn (delayed) next(x) - v_qn.

The Boolean constants (true and false) in the AIF type system can be
translated to the ASP constants of the type bool, #true and #false.

54

3.2. Stable Model Semantics

ATF expression H ASP rules
X = BoolConst true X :- #true.
x = BoolConst false X :- #false.

This step could be simplified and replaced in ASP by the fact x. for the con-
stant true and the constraint :- x. for the constant false, but the extensions
defined in the next sections, especially for arrays, are easier to define if every
rule has left and right-hand sides in ASP.

Next, let‘s define the default Boolean expressions of Boolean negation, con-
junction, disjunction, implication and the if-then-else statement.

AIF expression H ASP rules
X = BoolNeg bexp X :- not bexp.
x = BoolConj(bexpl,bexp2) x :- bexpl; bexp?2.
x = BoolDisj(bexpl,bexp2) x :- bexpl.
x :- bexp2.
X = BoolImpl (bexpl,bexp2) x :- not bexpl.
X :- bexp2.
X = BoolIte(bExp,bExpIf,bExpElse)|| x :- bexp; bExplf.
x :- not bexp; bExpElse.

Those expressions are recursively defined over the according sub-expressions,
as for the negation BoolNeg the sub-expression bexp. On the ASP side of the
translation, of course these sub-expressions must be translated accordingly and
as mentioned they must be given a unique name in order to avoid building the
full DNF for the (ground) formula.

The conjunction of two expressions can be defined with one ASP rule: both
sub-expressions bexpl and bexp2 must be fulfilled in order to satisfy the cur-
rent variable x. The disjunction can be defined accordingly with two rules: the
first rule states that x holds if the first sub-expression bexp1 is true, whereas
the second rule is defined in a same matter for the second sub-expression
bexp2. The implication uses the Boolean transformation a — b = 'a Vv b.
And the If-then-else expression includes the condition accordingly to the if- or
else-part of the expression 1f a then b else c=(aAb) v (lanc).

Furthermore, the AIF system contains a case expression of the form
BoolCase (caselist,default_val). Hereby, the caselist represents a list
of pairs of Boolean conditions on the one side, and a concrete Boolean value ex-
pression on the other caselist = [(cond_1, bexp_1), ... , (cond_n, —
bexp_n)]. The default value default_val represents the value for the ex-
pression, if none of the case conditions is evaluated to true in the current
environment. The Boolean case expression can be handled in the translation
to ASP similar to the disjunction, where every entry in the caselist represents
a disjunction term by combining the condition and the attached Boolean ex-
pression for every entry in the list. And finally, the default_val expression is

95

Chapter 3: Extending Semantics of Synchronous Programs

attached with a conjunction of all negated case conditions to explicitly show
that the expression evaluates to this value in case that every case condition

evaluates to false.

AIF expression

H ASP rules

x = BoolCase (

L

(cond_1,bexp_1),

(cond_n,bexp_n)

1,
default_val

)

x :- cond_1; bexp_1.
x :- cond_n; bexp_n.

x :- not cond_1; .. .; not cond_n; default_val.

With those translations, a new look into the example formula next (x)= —
case(x2|x23:true, x3:true, default:false) can be taken.

v_asp-1
v_asp_1
v_asp_2
next(v_x)
v_asp-3
next(v_x)
v_asp_4
next(v_x)

v_T2.
v_x23.
#true.

v_asp_l;v_asp_2.

v_x3.

v_asp_3;v_asp_2.

#false.

not v_asp_l;not v_asp_3;v_asp-4.

This is the result of a prototypical compiler, that has been written and is

more precisely described in [Section 3.2.2

In contrast to the previously introduced simplified example solution (see
next listing), the following changes can be determined.

next(x) :-

next(x)
x2_or_x23
xr2_0or_x23 :-—

x2_or_x23.
x3.

2.

x23.

e all newly introduced variable names during the compilation are prefixed

with asp

e the constants #true and #false are added

e the default case statement is made explicit by negating all case condi-
tions. This is especially needed if the default value itself is an expression
like the so-called carrier variables in Averest

e the expression on the right-hand side of every case statement is added, as
this must not always be the constant true, but a full expression bexp_i

o6

3.2. Stable Model Semantics

e asp-variable names are reused, when a new variable name is introduced
during the compilation and the same expression can be found on multiple
places in the Averest program.

Number Expressions In the AIF system Averest supports expressions of
other types than Boolean. Especially number expressions can be defined in
Quartz programs and they are translated to according synchronous guarded
actions. Numbers can be of the concrete type integer, natural number or real
number. The ASP-Core-2 language supports out of the box integers and nat-
ural number expressions. Those expressions can be translated from the AIF
system into ASP-core-2 language rules, similar to the Boolean expressions.

Instead of defining Boolean variables x as basic Boolean literals v_x, number
expressions must also hold their value V and can be expressed by simple func-
tion terms x (V) with the meaning that x evaluates to the value V if all other
conditions of the rules are fulfilled. Especially, the rule contains according
constraints to V such that the original meaning is obtained.

ATF expression H ASP rules
x = NatConst const x(const) :-#true.
x = NatVar (qn,_) x(V) - v_qn(V).
x = NatAdd (1n,rn) x(X4Y) :- In(X); r(Y).
x = NatMul (1n,rn) x(X*Y) - In(X); rn(Y).
x=NatIte(bExp,nIf,nElse)|| x(V) :- bexp; nlf(V).
x(V) :- not bexp; nElse(V).
x = NatSub (1n,rn) x(X-Y) - In(X); rn(Y).
x = NatDiv (1n,rn) x(X/Y) :- In(X); rn(Y).
x = NatMod (1n,rn) x(X\Y) :- In(X); rn(Y).
x = NatExp (1n,rn) X(X**Y) - In(X); r(Y).
x = NatCase (
L
(con_1, nexp_1), x(V) :- con_1; nexp_1(V).
(con_n, nexp_n) x(V) :- con_n; nexp_n(V).
1,
nExp x(V) :- not con_1; .. .; not con_n; nExp(V).
)

The default expressions on natural numbers like for example the subtraction
NatSub(1ln,rn) can be directly translated into ASP by defining the resulting
value V according to the corresponding arithmetic expression in ASP, e.g.,
V=X-Y for the subtraction if the expression on the left evaluates in the current
computation to the concrete value X in 1n(X) and the right-hand side expres-
sion to Y in 1n(Y). Constants can directly be expressed by facts, e.g., the
assignment x=5 will lead to the fact x(5) . in ASP. Again, the constant #true
is added to the ASP body of the corresponding rule, so that it is easier in the

57

Chapter 3: Extending Semantics of Synchronous Programs

following to define array expressions. The case-expression and the if-then-else
expression can be defined quite similar to the Boolean corresponding expres-
sions; only the concrete value is now of type number instead of bool, which
means the concrete value V has to be added.

By allowing number expressions to be translated from AIF to ASP, also the
corresponding equality checks should be translated. Therefore, the following
translation schemes for the additional Boolean expressions are introduced:

ATF expression H ASP rules

x = NatEqu (1n,rn) x - In(V); (V).

x = NatLes (1n,rn) x - In(X); rn(Y); X<Y.
x = NatLeq (1n,rn) x - In(X); rn(Y); X<=Y.

The equality of two number expressions 1n and rn can be expressed in ASP
by defining that the equality is only true if both expressions evaluate to the
same value V in the concrete answer. The less and less-or-equal expressions
can be translated by using the corresponding comparators in ASP < and <=.

Having defined those expressions, the following number expression can e.g.,
be translated next (x)=case(x10:x1+1, x8:x1+1, default:x1).

voasp1(1) :— #true.
voasp2(X +Y) vxl(X);vasp1(Y).

next(x(V)) = val0;v_asp2(V).
next(x(V)) :— wva8v_asp2(V).
next(z(V)) :- not vxl0;not va8;v_xl(V).

For this example, two new variables are introduced for the corresponding
non-trivial sub-expressions. The first variable v_asp_1 stands for the constant
value 1. The second variable v_asp_2 is the addition of x1 with this constant
1. With those variables, the case statement can be expressed, whereas both
case statements result in an own rule each and the default statement with all
negated conditions in a third rule. The variable x should now contain exactly
one concrete value for the next step if the original program was constructive
also in Quartz/Averest.

Array Expressions As a last step, the tramslation of array expressions is
discussed. This is especially useful as arrays are not directly supported in the
original language of ASP-Core-2. Therefore, having this translation, besides
all other statements in Quartz like if-then-else constructs or abort and loop
statements, gives a huge benefit for programmers who want to access the
power of ASP without the need to deeply dive into the theoretical parts of
ASP, logic programming and logic rules. It enables them to use an abstract,
more programmer-friendly language, such as the synchronous language Quartz
to describe problems more easily.

Arrays in the AIF system are always of a known, fixed and constant size.
The basic idea for the translation of array expressions to ASP-Core-2 languages

o8

3.2. Stable Model Semantics

is to add a position to the already known variable definition x(V, P0S). This
can be read as the array z evaluates to value V at position POS. Having the
according additional constraints on POS, enables to define possibly different
values for every position.

The assignment to a complete array variable can be defined as follows:

ATF expression H ASP rules

x = ArrVar (qn, (size,Qbool)) x(POS) - v_qn(POS).

x = ArrVar (qn, (size,Qnat)) x(V, POS) :- v.qn(V, POS).
x = ArrVar (qn, (size,Qarr)) x(V, POS) :- v.qn(V, POS).

Hereby, the current variable x is assigned the same value V for every position
POS of the assigned array variable with the name gn. The value V can again
be omitted if the type of the values in the array is Boolean.

Arrays can also be defined as list of expressions of the arrays value type.
Such a list can be transformed into single rules describing the arrays value at
every position 0 up to the size of the list n.

ATF expression H ASP rules
x = ArrOfExprL (
[
exp_0, x(0, V) :- exp_0(V).
exp_n x(n, V) - expn(V).
D

If the expressions are of type bool, the concrete value V can be ignored when
translating an array being a list of expressions.

Similar to the other types, array expressions are possible to appear as case
statements and if-then-else statements. Again, the position of the values has
to be added to the according expressions in ASP.

ATF expression H ASP rules

x=ArrIte(bExp,alf,aElse)|| x(V, POS) :- bexp; alf(V, POS).
x(V, POS) :- not bexp; aElse(V, POS).

x = ArrCase (
[
(cond_1,aexp_0), x(V, POS) :- cond_1; aexp_0(V, POS).

(cond_n,aexp_n) x(V, POS) :- cond_n; aexp n(V, POS).

1,

default_val x(V, POS) :- not cond_1; ...; not cond_n;
default_val(V, POS).

)

99

Chapter 3: Extending Semantics of Synchronous Programs

Arrays cannot only be assigned to variables at once; the most important part
is the access to specific array positions like x = a[P0S] itself. The type of
an array access depends on the concrete type of the elements in the array.
For Boolean array, the type of x is bool and therefore also the access op-
eration BoolArrAcc(aExp, nExp) is a Boolean expression. All array access
operations <Type>ArrAcc(aExp, nExp) have the array to be accessed (aExp)
and a natural number expression nExp describing the position of the access as
parameters.

ATF expression H ASP rules
x = <Type>ArrAcc(aExp,nExp) H x(V) :- aExp(V, POS), nExp(POS).

Such a typed array expression can be formulated in ASP by stating that the
variable x evaluates to a value V if the given array evaluates to V at the position
P0S. Furthermore, the given natural number expression has to evaluate to that
position POS in the current computation.

Arrays can also be nested, e.g., x = a[1] [2] ;. Therefore, a representation
for nested arrays has to be defined in ASP. The chosen representation adds
nested positions for nested array expressions to the according ASP expression:
x(V, (POS1, (... (POSN-1, POSN)...))). This especially means that an
array variable x(V, P) can stand for a position P as a natural number expres-
sion P=N or as a nested access P=(P0S1, (..., POSN)). The access to such
nested expressions can be defined as follows:

ATF expression H ASP rules
x=ArrArrAcc(aExp,nExp) H x(V,P) :- aExp(V,(POS0,P)), nExp(POSO0).

The array access which returns an array can be read like explained in the
following: If the given index expression nExp evaluates to the concrete value
POSO then collect all V which are available at POSO in the nested array (collect
all sub-positions P) and construct the new array, while the position P is then
the index of the accessed array.

Instead of accessing concrete positions, also concrete positions can be as-
signed a value, like a[2] [1] = 19;. For those expressions, the index expres-
sions from the left-hand-side must be considered in the translation to an ASP
rule as well.

ATF expression H x[nExpO] ... [nExpn] = <typed>Exp

ASP rules x(V, (P0OSO, (..., (POSN-1, POSN)...)))
1= <typed>Exp(V), nExp0(P0S0), nExpl(P0S1), ...,
nExpN-1(POSN-1), nExpN(POSN) .

60

3.2. Stable Model Semantics

With those translation schemes, all array operations can be translated to ASP.
For example the assignment expression a[2] [1] = 19; will lead to:

voasp-1(1) :— #true.
v_asp2(2) - Ftrue.
v_asp-3(19) :— #true.

v_a(X,(POS0,POS1))

v_asp-3(X);v_asp2(POS0);v_asp-1(POS1).

Here, the constant numbers 1, 2, and 19 are defined first. Then, the variable
v_a is assigned the value X at the nested position, where the constant 2 and
constant 1 respectively are available. The access to an array position x = —
al1][2]; will end in:

v_asp 1(1) :— Ftrue.
v_asp2(2) - H#true.
v_asp3(X,POS) :- w.a(X,POS).
v_asp4(X,POS1) :— w_asp_1(POS0);v_asp3(X,(POS0,POS1)).
vasp5(X) - wv.asp2(POS);v_asp4(X,POS).
va(X) - wv.asp5(X).

Here, the intermediate variable v_asp_4 stands for the outer access at position
1 and returns the corresponding inner array as the result. The intermediate
variable v_asp_5 accesses this array and stands for the inner access at position
1. It returns the final value X, which is finally assigned to the variable v_z.

Evaluation

All in all, the shown translation scheme converting AIF expressions to ASP-
core-2 expressions allows to evaluate corresponding Quartz programs with the
stable model semantics by using state-of-the-art ASP solvers. An accordingly
translated ASP-Program allows to compute one system reaction if a current
environment, including the program state and the input variables, is given.

Definition 3.10 (Quartz Interpreter with ASP)

function InterpretQuartzWithASP(S)

Eore = {Edef }3 // default values for all variables

Spre = {5};

do
Ein := Readlnputs();
Einit = UseInPUtS(gin’gpre)§
{&} := ComputeReactionsAsAnswerSets(Einit, Spre; Epre);
if 3z eV.E(x) € {L, T} then fail;
{(S",D,t)} := TransSOSASP(Spre, {E});

Spre = {S,};
Epre = {E};
while(3t. —t);

61

Chapter 3: Extending Semantics of Synchronous Programs

Our according interpreter could be enhanced by using the ASP solver to com-
pute the reaction (see pseudo-code above). As answer set programming can
lead to potentially multiple correct answers, every answer can be taken into
consideration by itself. This can be done by wrapping all computations into
sets of results, as shown in the pseudo-code. Here, especially the set of states
Spre Tepresents all currently reachable states with the computed answer sets
and the set of according environments is stored in the variable Eye. The in-
terpreter can stop if all termination flags ¢ of all computations are reached.
The function TransSOSASP(...) hereby stands for the default TransSOS(...)
applied to each element given in the set of states and environments.

The function ComputeReactionsAsAnswerSets(...) uses the translated pro-
gram Pagp and enriches it with the information about the input variables
and the currently examined state S € Spre. As all values of the environments
and states have a known value V, all according variables can be added to the
ASP program as ASP facts y;(C;), while C; stands for the according constant
value for the variable:

// Translated Program
v_asp. l(X) :—

Vlésp,N(X) -
CE1(V) i

on (V) 1= ...
next(yy (V)) :—

next (ym (V) i=

// Current state
y1(C1).

Y (Com)

// Current inputs

i1(C21).

iét(721)-
The translation scheme shown in the last section has been implemented in a
prototypical compiler. The compiler takes an (equalized) AIF program and
compiles it to an equivalent ASP encoding.

Let‘s take as an example the following program from the background chap-
ter:

module P3‘(event x1,x2,x3,x4,x5,x6,x7,x8){

emit (x1);

if (x4&!x5) emit(x2);

if(x5&!'x6) emit(x2);

if(!'x2) emit(x3);

if(x2) emit (x4);

if(x4) emit (x5);

if(1x8) emit (x7);

if(!'x7) emit(x8);

62

3.2. Stable Model Semantics

It compiles to the following intermediate representation of synchronous guarded
actions:

system P3‘:
abbreviations:
true => __1lvar000 = x4&!x5
true => __1lvar00l = x5&!x6

control flow:
true => next(_.__running000) = true

data flow:
true => x1 = case(!____running000: true, default: false)
true => x2 = case(__lvar001&!___running@00: true, —

_lvar000&!____running000: true, default: false)

true => x3 case(!x2&!____running000: true, default: false)
true => x4 = case(x2&!__running000: true, default: false)
true => x5 = case(x4&!____running000: true, default: false)

true => x6 = false
true => x7 = case(!x8&!____running000: true, default: false)
true => x8 case(!x7&!__running000: true, default: false)

The corresponding translation to ASP results in the following rules regarding
the translation scheme from the last section:

%%%%% ASP Program Code %%%%%
% Abbreviations

asp_lvar.0 :- not v._x5.
v___lvar000 :- v.x4; asp_lvar.0.
asp_lvar_l :- not v_x6.
v__lvar00l :- v.x5; asp-lvar_l.

% Control Flow
next(v____running000) :- #true.

% Data Flow
asp_lvar2 :— not v_____ running00eo.
asp-lvar_3 :- #true.

vxl :- asp_lvar_2;asp_lvar_3.
asp-lvar_4 :- #false.

vx1l :— not asp_lvar_2; asp_lvar4.
asp_-lvar5 :— v__1lvar001; asp_lvar.2.
v.x2 :— asp_lvar5;asp_lvar_3.
asp_lvar6 :— v__lvar000; asp_lvar.2.
v.x2 :- asp-lvar_6;asp-lvar._3.

v.x2 :- not asp_lvar5; not asp_lvar 6; asp.-lvar.4.
asp-lvar_.8 :— not v.x2.

asp_lvar_.7 :— asp_lvar.8; asp_lvar.2.
vx3 :- asp_lvar_7;asp_lvar_3.

v.x3 :— not asp_lvar_7; asp_lvar.4.
asp_-lvar9 :— v.x2; asp-lvar.2.

v.x4 :— asp_-lvar9;asp_-lvar.3.

v.x4 :- not asp_lvar9; asp.lvar4.
asp-lvar_.10 :— v.x4; asp_lvar2.

v.x5 :- asp_lvar_10;asp_lvar_3.

v x5 :— not asp_lvar_10; asp_lvar.4.
v.x6 :- #false.

asp_lvar_12 :- not v_x8.

asp-lvar_.11 :- asp-lvar_12; asp-lvar.2.
v.x7 :- asp-lvar_ll;asp_lvar_3.

v.x7 :— not asp_lvar_11; asp-lvar_4.

asp_lvar_14 :- not v.x7.

asp-lvar_.13 :- asp_lvar_14; asp_-lvar.2.
v.x8 :- asp_lvar_13;asp_lvar_3.

v.x8 :- not asp_lvar_13; asp_lvar_4.

63

Chapter 3: Extending Semantics of Synchronous Programs

This example does neither have a solution in Fitting‘s fixpoint semantics nor
in the well-founded semantics. But calling the ASP suite clingo results to the
following two different answers, as it was the initial intention of the translation
from synchronous programs to ASP:

Answer: 1
asp_lvar_3
asp_lvar.2
asp-lvar_1l
asp_lvar.0
next(v_____ running000)
vx1l
asp_lvar.8
asp_lvar_7
v_x3
asp-lvar_12
v_x7
asp-lvar_11
Answer: 2
asp_lvar_3
asp_lvar.2
asp_lvar_l
asp_-lvar.0
next(v_____ running000)
vx1l
asp_lvar.8
asp_lvar_7
v_x3

v_x8
asp_lvar_14
asp_lvar_13
SATISFIABLE

Models 2

Calls 1

Time : 0.002s (Solving: 0.00s 1lst Model: 0.00s Unsat: 0.00s)
CPU Time 0.000s

The ASP solver takes just 0.002s to compute the result. It assigns the first
answer as Al = {x1,23,27} and the second answer A2 = {z1,x3,x8}.

The prototypical compiler has been run on several more test examples from
the Averest benchmark suite. Especially included were the ABRO example
for Boolean expressions, the Speed and Malik examples for natural number
expressions and the Rivest and the Sudoku example for array expressions.

The compilation results for those programs can be found in the following
table. Hereby, the compiler, which was written in the programming language
F+#, has been running on a Windows 10 machine incl. 48GB of RAM and an
Intel i5-6600k processor (4 x 3,5GHz):
shows the program name in the first column, and in the other
columns some compilation information. It contains the compilation time taken
to translate the AIF program to the ASP program, then the amount of syn-
chronous guarded actions in the AIF system for which the compilation was
started, the overall amount of resulting ASP rules, and the amount of newly
introduced abbreviation variables in ASP of the form asp_lvar_i. It can be
observed that the compilation for small programs is very fast, all far under
one second. The amount of guarded actions doubles until triples when com-
piled to ASP rules for Boolean and number programs. Hereby, approximately

64

3.2. Stable Model Semantics

Experimental Compilation Results
Program Name || Compilation Time | #GAs | #ASP rules | #New Vars

ABRO 0.202411s 29 54 11
Speed 0.206204s 24 49 12
Malik 0.225320s 17 37 10
Rivest 0.261346s 14 93 47
Sudoku 69.841374s 5428 53523 17396

P3 0.234527s 11 34 15

Table 3.1.: Experimental compilation results

1/3 of the ASP rules are newly introduced abbreviation variables having been
introduced in order to create the full expression tree. But it is also visible,
that the picture seems to be a bit different for the compilation of programs
containing arrays (Rivest and Sudoku). The amount of guarded actions has
nearly increased tenfold from 5429 guarded actions to 53523 ASP rules in the
Sudoku example. This can be explained by the deeply nested arrays contained
here. Further, arrays are unrolled during compilation from guarded actions to
ASP resulting in a quite immense blowup the deeper the arrays are nested.
This blowup also explains the huge increase in compilation time of the Sudoku
example. Nevertheless, this unrolling of arrays does not have a huge influence
on the actual program simulation and result calculation, as it is indicated in
the following paragraph.

The compiled ASP programs have been used to be interpreted on some
useful environments, like for the ABRO example with the state w_a = true
and the input variable b = true. The following table contains the interpre-
tation/simulation times for those examples using the answer set suite clingo
4.5.4 to compute the system reaction on the same machine as the compiler
was running on:

Simulation Result
Program Name || #ASP rules | ASP Answer in

ABRO 54 0.015s
Speed 49 0.020s
Malik 37 0.011s
Rivest 93 0.003s
Sudoku 53523 2.400s

P3 34 0.002s

Table 3.2.: Experimental simulation results

shows the feasibility to use ASP as a simulator for synchronous
programs. Although the Sudoku was quite huge with 53523 ASP rules, solving
the Sudoku with a given predefinition of the grid just took 2.4 seconds with
ASP, whereas the available simulator in Averest takes 15.147s to find the
solution. All other examples took just a few ms to calculate the results and it
is not even realized as a delay when computing the simulation result for those.

65

Chapter 3: Extending Semantics of Synchronous Programs

Full Simulation

So far, translated programs in ASP allow to interpret one macro step of syn-
chronous programs given a current environment. This can be extended to a
full simulation/ interpreter by introducing a counter representing the current
execution step.

This can be archived by representing all immediate expressions/assignments
exp (V) by exp(V,N), with N representing the current execution step. Further-
more, delayed assignments next (exp(V)) can be represented by exp(V,N+1)
to state that the expression has to hold in the next execution step N+1.

On top of that, the ASP solver clingo contains latest research results via the
so-called multishot solving. The idea of multishot solving is that problems,
which can be separated into several steps, can be solved iteratively. Like
in an inductive proof, the definition of such multi-shot programs contains an
induction base containing the initial state. Further, a definition of an induction
step has to be given. And finally, a check function is part of such a program,
to define conditions when to end the solving process.

For our translation, the base program can contain constants/facts, like for
example the maximal execution step counter or a driver for the current pro-
gram:

#include <incmode>.
#program base.
max_prog_counter (150) .
// driver

a(140).

b(145).

r(147).

The induction step part contains the program translation as described in the
latest sections, defined in dependency to the current execution step k.

#program step(k).
//control flow :

—___running003(k+1).
wa(k+1) :- not ____running003(k).
wb(k+1) :- not ____running003(k).

wa(k+1) :- not r(k), wa(k), not a(k).

wa(k+1l) :- r(k), wr(k).
wa(k+1) :- r(k), wa(k).
wa(k+1) :- r(k), wb(k).

// data flow :

o(k) :- not r(k), a(k), wa(k), b(k), wb(k).
o(k) :- not r(k), not wa(k), b(k), wb(k).
o(k) :- not r(k), not wb(k), a(k), wa(k).

66

3.2. Stable Model Semantics

And finally, the check part allows to add an ending condition. In general cases,
it could be added for example, that the maximum defined program counter is
not exceeded.

#program check(k).
:- query(k), k<L; max_prog_counter (L) .

In Averest, it is possible to define assertions and assumptions as Boolean
expressions on the program variables. Those assertions can also be added to
the check part in order to stop simulating/running as soon as an assertion
fails.

#program check(k).

// assertions

new_assert_var_1(k) :- query(k);
:- not new_assert_var_1(k); query(k).

new_assert_var_n :- query(k);
:- not new_assert_var_n(k); query(k).

// mazxz counter
:— query(k), k<L; max_prog_counter(L).

All in all, this extension to the multi-shot-solving in ASP allows a full simula-
tion of a synchronous program with the stable model semantics, and can even
be enriched with LTL formulas, when using the newest research results from
[ACPV11} CaDill; |CKSS18; |CaScl9).

67

Chapter

Optimized System Design with
Stable Models

Contents
|4.1. Synthesis of Optimal Interconnection Networks|. 70
4.1.1. Experimental Results|. 72
[4.2. Optimal Code Generation for SCAD| 74
.............................. 77
.............................. 83
|4.2.3. Experimental Results|. 90
[4.3. Enhancing Synchronous Programs by Stable Models|. 92
4.3.1. Disjunctive Programming| 94
4.3.2. Constraints 94
4.3.3. Choices 96
4.3.4. Aggregates| 97
4.3.5. Optimizations| 98

The last chapter showed how to interpret synchronous programs with stable
model semantics. In this chapter the focus lies on the application of stable
model semantics by the means of two larger examples written for answer set
programming. Both examples have been developed to solve (optimization)
problems in the area of system design and especially show the descriptive
nature of ASP programs: the first example solves the problem of finding an
interconnection network with a concentrator property while being minimal in
the sense of used switches in the network. The second example is a complete
compiler from Quartz to move code for the SCAD architecture, optimizing
the produced code in the sense of finding the best distribution to all SCAD
processing units.

69

Chapter 4: Optimized System Design with Stable Models

4.1. Synthesis of Optimal Interconnection Networks

In general, an interconnection network connects input ports and output ports
by a network circuit of so-called switches, which can either route the one way
or the other (see [Figure 4.1). The idea is, that such a network transmits
data from the inputs to the outputs, whereby every switch in the network has
got a concrete position and thereby influences, where the corresponding input
is transmitted to, and finally, which input ports are routed to which output

ports.
O-><-O
O O O~ O

Figure 4.1.: Switch configurations

Interconnection networks can be categorized with the help of special prop-
erties, e.g. a network is sorting if the network can sort every combination of
values at the input ports to a sorted output at the output ports.

The property to be a (N, M)-concentrator [Pins73|] circuit with N inputs
and M < N outputs is defined as being able to route any given number K < M
of valid inputs to K of its M outputs. Hereby, it is not important which of
the K out of the M outputs are selected and how the inputs are mapped
to the output ports. But no matter which K < M inputs are valid, it must
be possible to map them to the same K of the M outputs. Every sorting
network is of course also a concentrating network, however the practically
best known sorting networks [Batc68; [Parb92] require O(log(N)?) depth and
O(Nlog(N)?) size (in terms of comparators) and therefore do not lead to
competitive concentrator designs. The best known practically used concen-
trator implementations are the so-called permutation networks (see references
in |JaScl6]) which can have size O(Nlog(N)) and depth O(log(N)). Still,
it is known that those permutation networks contain switches not needed for
obtaining the concentrator property ([QuWi05]), which leads to the question
how absolutely minimal concentrators look like.

As interconnection networks are often needed for chip and system imple-
mentation, the real size has a lot of impact to the final chip size. This op-
timization problem, to find a minimal concentrator network in the sense of
needed switches or minimum network levels, is presented in the following as
an ASP program. Those results have been published in [DJSG17].

The ASP definition of the problem starts with the overall goal definition to
minimize the switches in the network with an according optimization state-
ment:

#minimize{N : num_switches(N)}.

Furthermore, the program can be configured with three constants: the
amount of inputs IV, the amount of outputs M to be used for the concentrat-

70

4.1. Synthesis of Optimal Interconnection Networks

ing property and the constant max_switches for the upper bound of switches
to limit the search space.

#const N = 3.
#const M = 2.
#const max_switches = 5.

The next part of the program defines the basic nodes as IV inputs and output
ports of the network. Additionally, all last M of the outputs are defined to be
used for concentrating. All those concentrating target outputs must later on
be reachable from all possible K < M out of N inputs. It is sufficient to find a
concentrator for K = M, because this concentrator maintains the concentrator
property for all K < M.

in(1..N).
out(1..N).
used_output(Out) :— out(Out),Out > (N - M).

As a next step, the amount of switches are chosen with an according choice
statement. For every answer in the answer set, the ASP solver chooses exactly
one amount of switches and together with the overall minimizing goal, this
amount is minimal regarding all other constraints of the program.

possible_switch_amount(0..max_switches).
1 {num_switches(N) : possible_switch_amount(N)} 1.
switch(1..N) := num_switches(N), N > 0.

So far, the definitions have been given. Without more constraints, this
network would minimize to size 0.

Let‘s consider the concentrator property: it must be defined that for every
combination of picking k = M out of the N inputs it must be possible to
find an according routing or more precise to find an according set of switch
configurations which maps those inputs to the outputs marked as being used
for concentrating.

To this end, first it is assumed that all combinations of picking the k = M
inputs are collected in a variable C' and that a predicate contains(In,C') is
available, which is only true if the given input port is in the chosen input
combination C'. With that help, for every combination C the according goals
can be defined by mapping those chosen inputs to an output marked to be
used for concentrating:

1 {goal(C,In,Out) : used_output(Out)} 1 := contains(In,C).
:= goal(C,In,Out), goal(C,In2,0ut), In + In2.

The first line states that for every input In contained in an combination C,
exactly one used_output must be chosen. The second line restricts that chosen
goal with an according constraint, such that all inputs In of a combination C
must be mapped to different outputs Out by disallowing the output Out to
be the same in the according goals, when the inputs In and In2 differ. All in

71

Chapter 4: Optimized System Design with Stable Models

M) combinations of picking M inputs out of I available inputs,

which finally sums up to (]\]\2) - M goals.

Fach of these (]\]\/[1) - M goals must be fulfilled by the network searched as
answer set. Furthermore, every combination C' can lead to a different switch
configuration of the network. Therefore, the ASP solver must find (1\]\/[1) differ-
ent switch configurations for the network.

This leads to the following two restrictions, which describe that for every
goal the outputs that are defined in the goals must be reachable with the given
network. Hereby, the first line demands that only one output is reachable from
every input and the second line demands that this output is the output which
is defined in the according goal for the input, by considering the according
combination C.

all, there are (N

:— goal(C,In,O),#count{l, Out : reachable(C,in(In),out(Out))} = N,
N #1.
:— goal(C, In,Out),reachable(C,in(In), out(Out2)), Out2 + Out.

The last needed definition is the predicate reachable. This predicate is
dependent on the chosen input combination C' as another switch configuration
of the network is possible for every combination. To this end, the following
recursive definition is chosen to define the reachability: A node D is reachable
from an input In for a combination C if

e either D is directly connected to the input In

e or the predecessor of D is a switch S already reachable: the input port
1V of S is already reachable from I'n and IV routes for the combination
C' (with switch position SV') to the node D

This definition can be expressed with the following ASP code:

reachable(combination(I1D),in(In),D) :-connection(in(In),D),
combination(ID).
reachable(C,In, D) :—connection(switch(S),SV,D),
switchConfig(C,S,IV,SV),
reachable(C, In, switch(S,1V)).

With those definitions, the minimal concentrating networks can be searched
with ASP. Additionally, one could add some more constraints to ease the search
and help the solver by adding additional constraints, like that every node S
cannot be reached from different inputs:

:— reachable(C,In,S),reachable(C,In2,S5),In + In2.

4.1.1. Experimental Results

As shown in [DJSG17], an experiment with the above ASP encoding has been
executed. As the ASP solver, clingo 4.5.4 has been used on a machine run-
ning Ubuntu 16.04.1 LTS with a i5-6600@3.30GHz CPU and 16 GB memory

72

4.1. Synthesis of Optimal Interconnection Networks

installed. The process used approximately 2GB of memory during the exper-
iment. For the execution of the experiment, the ASP solver clingo had been
called repeatedly with different constant numbers for N and M. The gener-
ated minimal concentrators can be found in [Table 4.2 for different N and M
and completes the experimental results with the required runtime.
It is differentiated into the total time, the time needed to prove the optimality
and time needed until the first concentrator of that size was found.

’ N/M H total | optimality | model
5/1 0.26 0.198 | 0.015
5/2 145.79 145.245 | 0.354
5/3 303.70 302.949 | 0.415
5/4 0.88 0.394 | 0.365
6/1 24.11 23.850 | 0.087
6/2 33042.85 | 33031.465 | 8.439
6/3 317913.72 | 317906.224 | 5.799
6/4 60621.53 | 60594.077 | 11.865
6/5 113.61 112.970 | 0.208
7/1 5618.63 5618.438 | 0.038
7/2 || 1870617.88 (aborted) N/A | 3.392

Table 4.1.: Runtime in seconds required for generating optimal concentrators (run-
time for N <5 are negligible).

As it can be observed in the result table, the ASP solver needs nearly no
time for all NV < 4. For larger concentrators with IV > 3, an immense blowup
of the time needed can be seen. For example, to find a minimal concentrating
network for N = 6 and M = 3 already took more than three days and the
computation for N =7 and M = 2 was cancelled after three weeks without
finding an optimal model (but it had found a possible non-optimal model
already after three seconds).

Indeed, the search space of all possible graphs having to be considered as
potential concentrators is enormously large: Assume, the final minimal net-
work has M < maz_switches many switches. Without further constraints,
there exist 2M + N input ports. As every input port of a node must be
reached, there exist (2M + N)! many possibilities to construct a network with
M switches and N inputs and outputs. For every i < max_switches, the net-

work must be checked if it is minimal, this sums up to the immense sum of
max_switches

> (2i+ N)\.
i=0
For N = 7 and max_switches = 8, this then yields a total of 2.59-10%2 possible
networks to be checked. In general, it is sufficient to check less networks,
because if one minimal model with M switches exists (computed in X steps

with the solving capabilities of ASP solvers), the sum of the networks to

M-1
be checked for unsat the problem is then X + ¥ (2¢ + N)!. Furthermore,
i=0

one network (invalid or valid) must be checked in the worst case for all ([]\([)

73

Chapter 4: Optimized System Design with Stable Models

possibilities to choose K out of the N inputs, which results in an total upper
M-1

bound of ([]\;) (X + Y (2e+N)).
i=0

The evaluation results on the one hand show the feasibility of the approach
and proved that the minimal size of concentrator network is lower than the
minimal size of sorting networks [MoSc11|. On the other hand, the results show
that due to the large amount of networks to be checked even for small numbers
of N inputs, the computation time is quite enormous. When comparing the
computation time with the SAT-encoding for minimal sorting networks in
[MoSc11], the time needed to find the solution is a bit higher.

Besides showing how minimal networks with a special property, in this case
the concentrator property, can be found with and formulated as ASP problem,
the shown example especially gives a feeling about the descriptive nature of
ASP programming. Instead of writing down an algorithm to find or construct
networks, the shown ASP encoding defined the properties that the network
must fulfill with the help of descriptive rules and the solver did the work to
construct the network according to the given rules.

4.2. Optimal Code Generation for SCAD

The second example tackles the optimal code generation problem for a newly
proposed architecture developed in the Embedded Systems Group of the Uni-
versity of Kaiserslautern called SCAD (Synchronous Control Asynchronous
Data). SCAD is a dataflow driven architecture, which moves values from
output buffers of processing units to input buffers while bypassing registers
completely - this allows a highly parallel and data driven computation ap-
proach.

A simple code generation for the so-called move code can be performed
by a breadth-first traversal over its syntax tree [FeEr81]. With the breadth-
first traversal, it can be ensured that operands required for the execution of
operations at one level of the tree appear in the correct order for the next level
of the graph at the head of the input queues.

Often, basic blocks of programs are represented as directed acyclic graphs
(DAGs) which can be processed similar to syntax trees. Nevertheless in order
to generate move code for a DAG, additional duplicate and swap operations
have to be introduced as overhead, in order to create a level-planar graph
[ScLY02] as shown in

This approach, which is based on code generation for queue machines, was
described in [BhJS16], and it was especially observed that every basic block
can be executed on a SCAD machine without the need to have those overhead
operations. This is due to the fact, that in contrast to queue machines, the
SCAD machine has multiple buffers which are associated with multiple PUs,
while queue machines are only attached to a single buffer. Therefore, the
additional swap and duplicate operations can be omitted in the SCAD machine
when having available enough PUs and buffers. This fact finally leads to the
question how to compute the best move code for a basic block in the sense of

74

4.2. Optimal Code Generation for SCAD

‘(09 pajnor aq [[im syndur pIfea a1} aIolM 9sOI[) oI S[2IId ® M sindino o)) JSV Aq pajelatiad siojerjuedtod ozis-rewryd() g § a[qel

V/N) | 51— G=IN
(V/N) =N
(V/N) e=IN
(posioqe) -z — p—
M@E “x
= XX

<7 q 1=

X 4 - @m X

75

Chapter 4: Optimized System Design with Stable Models

Figure 4.2.: An expression DAG with its levelized and planarized version, and the
final level-planar expression DAG

maximizing the instruction level parallelism. Furthermore, the question is how
large a SCAD machine must be scaled in PUs and buffer size such that a given
basic block can be scheduled on this machine without overhead operations.

In a first SAT encoding of the problem to find a minimal SCAD
machine and its move code was shown. This was extended to an SMT encoding
in [BhSc17]. Both encodings [BhSc16; BhSc17] lacked automated optimization
and especially describing resource constraints quickly became unhandy. Such
resource constraints could be to find the minimal runtime for a given number
of PUs or nested minimization constraints like as a first criterion to minimize
the overall runtime and as a second criterion to reduce the amount of needed
PUs.

To this end, an ASP encoding has been defined in , which allows
to automate the optimization problem of finding the most parallel move code
by taking into account the available resources. This encoding further allows
to add additional nested constraints on the resources. This solution of finding
optimal move code for a single basic block had been extended to a full compiler
from synchronous programs to optimal move code for SCAD in [DaSc20].
Those two results are shown in this section.

The following overall pipeline for a compiler from synchronous program to
optimal SCAD move code had been chosen:

Compiling a synchronous program

Analyzing, transforming synchronous guarded

use an according ASP problem encoding and

The first step qrz2aif is to take a synchronous program in Quartz and com-
pile it to the intermediate language of synchronous guarded actions. As it is
known that for constructive and causally correct Quartz programs, a fixpoint

76

4.2. Optimal Code Generation for SCAD

in the sense of Fitting exists, the reaction of the complete program/e-
valuation of all guarded actions can be computed completely without case
distinctions or non-interpreted values. This fact leads to the concrete idea
to interpret all synchronous guarded actions together as a single basic block,
which describes all possible reactions of the corresponding program in all pro-
gram states. Such a basic block can also be seen as the complete hardware
synthesis of the program and can be used as an input for the ASP encod-
ing described in [DaBS18b]. This translation from the synchronous guarded
actions to the corresponding ASP encoding is substituted under aif2lp. The
task of aif2lp especially is to generate 2-address code out of all synchronous
guarded actions. This then allows a uniform input for the last step Ip2mc,
which finally finds optimal move code for a given program. Further, Ip2mc
includes the transformation from the ASP answer set to the move code syntax
of the SCAD machine.

4.2.1. aif2lp

The task of the first step aif2lp is to transform synchronous guarded actions to
a form interpretable as a single basic block which can be used as an input for
the next step Ip2mc for the optimal move code generation. It is proposed to
execute this task with the following three steps, which are described in detail
within the next paragraphs:

Transforming all synchronous guarded ac-

Introducing variable names for every sub expres-

Generating an equivalent operand

nge D X W1l

Equalize On the one hand, the guard v of a guarded action v = « represents
a label which stands for the current control flow position of the program.

labell - y = z&x
label2 — y = z|xo

On the other hand, the actions « of the guarded actions assign values to vari-
ables if the label is true in the current environment. As there can be multiple
assigning actions « for the same variable x; under different program condi-
tions, this format cannot directly be used to generate a directed acyclic graph;

77

Chapter 4: Optimized System Design with Stable Models

which is needed to be interpreted as a basic block. For the example above this
would mean that one could generate two operands similar to operand(y, z,)
or operand(y, z,z2) for the same variable y, which does not represent a DAG
anymore. Such an operand form should be read as y can be generated by
using z and x or z and z2. In order to reach a form which allows the inter-
pretation as a DAG, it is required to get a unique single expression similar
to operand(y, A, B) for every variable z;. In Averest, such a form can be
archived by the equalize operation, which transforms a program given as a
set of synchronous guarded actions to an equivalent set of guarded actions, in
which every variable gets a unique single action consisting of a case expression
on the right hand side of the assignment.

The two expressions from the example above will be transformed to the
following single guarded action containing only one case statement:

y =
case
labell: z & x;
label2: x | x2;
default false

In the background chapter, the example program ABRO has been intro-
duced in The program describes a system which waits for two
signals a and b to appear on the sensors and trigger the output o as soon as
both the input sensors fired. The procedure can be reset at any time with a
reset signal r.

This ABRO example compiles to the synchronous guarded actions as shown
in [Figure 2.2l Hereby, the different program states are encoded in the la-
bels wa, wb, wr and in some further conditions on the input variables. As
mentioned before, this representation itself is not directly suited to be trans-
formed into a DAG, as e.g. different assignments to wa occur in different
guarded actions.

Therefore, the ABRO example can be transformed by the equalize transfor-
mation in a corresponding system containing only case statements as unique
assignments for every variable. This result is shown in Note that
here, the reaction to absence was made explicit by using the ‘if and only if’
semantics of equations.

Transformation The equalize transformation produces a set of equations,
in which every right hand side of every assignment is a case statement. The
translation of those case statements to a form which can be used for the shown
operands requires every case statement to be rewritten and transformed like
shown in the following. Especially, this means that every sub-expression must
be transformed to a binary expression in a way that a uniform representation
is achieved, which can directly be read as a directed acyclic graph.

Consider that the expression only consists of Boolean expressions and vari-
ables. Then, the transformation to binary operations / 2-address-code can
be archived as follows. Hereby, the following property of the given equalize

78

4.2. Optimal Code Generation for SCAD

control flow:
next (running) = true
next (wa) = case
'running: true;
Irgwa&'a|r&(wrlwalwb): true;
default: false;
next (wb) = case
'running: true;
Ir&wb&!'b|r& (wr|walwb): true;
default: false;
next (wr) = case
lr& (wr | a&wa&b&wb | ! wa&b&wb | ' wb&a&wa) : true;
default: false;
data flow:
o = 1lvar018 //abbreviation wvariable computed by the compiler

Figure 4.3.: Equation system for ABRO

algorithms has been used: the produced default reactions/default values are
always the Boolean constant false and all other cases in the expression as-
sign only the constant value true to the variable if the corresponding case
condition holds. With those facts in mind, the above case statement from the
example was originally given as:

y = case
labell&(z&x) : true
label2&(z|x2) : true
default: false

For a full compiler, let‘s take all available guarded actions of the dataflow,
control flow and the abbreviations together. For those guarded actions, the
goal is to generate an acyclic dataflow graph including all the information
from the guarded actions themselves. Additionally, all nodes in the graph will
be labeled so that every sub-expression can be given a concrete name. This
enables a direct generation of the required operand structure from this graph.

When taking into account Boolean case statements, the idea is to convert
them into equivalent disjunctions: Every statement case ai : fi;...;an, :
fn;default: w; can be converted to the disjunction V', a; A B; (as already
mentioned, remember that w is false for Boolean event types).

By looking into the details, some corner cases have to be considered. Recap
again our example in It consists of four case statements for the
control flow and one case statement for the data flow.

If e.g. no case statement is given at all, as in the example a) for the variable
running in the control flow and b) for the data flow variable o, a new binary
expression can be introduced for its right-hand side (. To this end, the variable
@ is replaced by the equivalent binary expression ¢ v false:

79

Chapter 4: Optimized System Design with Stable Models

To be able to translate nested expressions into a DAG, new variables have
to be introduced for non-binary sub-expressions to build a binary tree. In the
ABRO example this is e.g. needed for all first case conditions in the control
flow. Therefore, to express for example next (wa) (shortly written as wa’) as
a binary expression, all case conditions of wa must introduce new variables.

It is important to note that for duplicate expressions no new variable names
should be introduced - as otherwise the same expression would evaluate twice
on the running processor. In the ABRO example, the sub-expression !running
had been given the name news in the case statement of wa’. Therefore, this
new variable name should be reused in the DAG representation of wb’:

Looking more carefully at the exact definition of the introduced variable
news, it can be realized that this expression initially was a negation and there-
fore also was not directly binary. To work around this, negations can be
transformed into an appropriate expression as into a xor expression with the
constant true. In our ABRO example, this could lead to a node for the variable
news as follows:

80

4.2. Optimal Code Generation for SCAD

d.b*

Another transformation has to be performed. Consider that the list of case
conditions contains more than two case statements, then additional variables
have to be introduced to allow building a binary tree. Hereby, the order of
the construction defines how many steps need to be executed to evaluate the
complete case statement. If we take the case statement o = case 3 :true;~:
true;J : true;w : true;default : false, the simplest way would be to
create a binary tree by recursively folding the list of case conditions into own
case statements; e.g. with a disjunction of the last two cases. This would lead
to the following binary tree:

Such an unbalanced binary tree is of course not optimal and introduces
additional computation steps. This comes from the fact that new data de-
pendencies are introduced, which are not needed for transforming the case
statement to a DAG. Instead, the proposed compiler should build a balanced
tree if it translates a list of case conditions as disjunctions recursively.

81

Chapter 4: Optimized System Design with Stable Models

If everything is combined, an expression dataflow graph as DAG, which
defines all variable computation dependencies, is constructed. Furthermore,
every node in this DAG is labeled with a unique variable name and all sub-
expressions appearing on different program locations only appear as one node
in the resulting graph.

Code Generation The task now is to generate a unique representation of
the so computed binary expression tree with the ASP syntax. As such a
representation, a set of operands(X,Y,Z) is chosen for every variable X, which
state the data dependencies of X by indicating that X is computed by Y
and by Z. The concrete operation out of the expression node of X can be
omitted, as it is assumed to have only universal processing units in the SCAD
machine, which means that the operation does not influence the compilation
result regarding the optimality. Still, in order to compute the concrete move
code, the developed compiler prototype stores the operation together with the
operands as comment besides the according ASP rule.

For the discussed example program ABRO, this compilation technique re-
sults in the following ASP operands as shown in

% Abbreviations
operand("asp_lvar0", "a", "TRUE"). % xor

operand("lvar_000", "wa", "asp_.lvar0"). % and

operand("asp_lvar_1", "r", "TRUE"). % xor

operand("lvar001l", "lvar0e00", "asp_lvar.1"). % and
% and

(
(
(
operand("lvar002", "lvare0l", "asp_lvar.1").
operand("lvar@03", "a", "wa"). % and
operand("asp_lvar22", "b", "TRUE"). % xor
operand("lvar@04", "wb", "asp_lvar.2"). % and

operand("lvar009", "lvar003", "lvar007"). % and

(
operand("asp_lvar3", "wa", "TRUE"). % xor
operand("lvar010", "lvar007", "asp_-lvar3"). % and
operand("asp_lvar4", "wb", "TRUE"). % xor
operand("lvar01l", "lvar003", "asp_-lvar4"). % and

% Control Flow

operand("asp_lvar5", "lvar002", "lvar023"). % or
operand("asp_-lvar6", "running003", "TRUE"). % xor
operand("nextwa", "asp_lvar5", "asp_lvar6"). % or
operand("asp_lvar_.7", "lvar0le", "lvar01l9"). % or
operand("nextwr", "asp_lvar.7", "FALSE"). % or
operand("asp_lvar8", "lvar006", "lvar023"). % or
operand("nextwb", "asp_lvar8", "asp_lvar_6"). % or

operand("next_running003", "TRUE", "TRUE"). % or
% Data Flow
operand("o", "lvar018", "FALSE"). % or

Figure 4.4.: ASP encoding of the ABRO example.

This representation of a program as operands is used as the inputs for the
next step Ip2mec, which is the actual definition of the search problem with ASP
to find the optimal move code.

82

4.2. Optimal Code Generation for SCAD

4.2.2. Ip2mc

To define the actual search problem of the optimal code is part of the proto-
typical implementation in lp2mec. The results shown in this section are based
on the publication in [DaBS18b].

Default Problem Encoding As a first step, the scheduling of basic blocks
itself is modeled similar to the encoding in [BhSc16], which was used as a base
encoding idea also for the shown ASP encoding. In this first step, the question
is to be answered about how many numbers of PUs are required to schedule
a given basic block B on a SCAD machine without the introduction of the
overhead operations duplicate and swap. Additionally, with the given ASP
encoding, the amount of such minimal schedules can be counted and every
schedule’s structure can be analyzed further as all optimal schedules can be
computed.

The outcome of the last step aif2lp was a basic block for a complete syn-
chronous program. Let‘s consider the following example of a basic block as

shown in

operand(xs, xo,x1).
operand(z4,xo,x2).
operand(xs, xo,x3).
operand(zg,x1,x3).
operand(x7,x4,x2).
operand(zs, x4, x2).

Figure 4.5.: (a) An example basic block as DAG, (b) the same DAG as ASP-code

From such basic blocks it is desired to produce schedules for a SCAD ma-
chine. Such a schedule consists of two different aspects to be answered:

o Assignment: which variable is produced by which PU?

e (Ordering: in which order are the variables produced, when they are
assigned to the same PU?

An assignment is the mapping of variables to PUs and an ordering on such
a PU must enable the generation of move code for a SCAD machine without
producing overhead operations. To be more concrete, such an assignment and
ordering must allow to move values from the (FIFO) output buffers to (FIFO)
input buffers while retaining the variable order of the target PU. This enables
the SCAD machine to produce the values in the needed order.

For the shown example in some valid schedules of the basic block
have been collected in Here it is to mention that during actual
execution more than one copy of a variable can be produced in the output
buffer if it is needed by the given basic block, although only one copy of each
variable is shown in the figure. For example, the following is a valid sequence of

83

Chapter 4: Optimized System Design with Stable Models

move instructions for Solution 1. It allows the execution of the example basic
block on the SCAD machine while it respects the order of variables (every PU,,
has two input buffers, the left one named PU,, j, and the right one PU, g):
xo - PUo,r, x0 » PUy 1, v0 » PUy1, 1 - PUy , x1 > PUy R, 12 > PU R,
To — PUI,R7 o — PUO’R, xr3 —> PUO7R, xr3 —> PUO’R, T4 —> PULLa T4 —> PULL'

In the same matter it is possible to generate valid move code for all other
solutions. The input variables of the basic block, e.g. the ones without in-
coming edges in the original DAG, are considered to be loaded from the main
memory of the SCAD machine (in the example the variables xg, z1 and x3)
and are considered not to be computed by any PU.

(a) Solution 1 (b) Solution 2 (c) Solution 1 (sym)

Figure 4.6.: Three valid variable assignments and orderings that allow computation

of the basic block in without any overhead

The next steps will show how such solutions can be found with the help of
an according ASP encoding.

First of all, all variables out of the given input DAG (as operands) are
extracted, so that they can be used throughout the complete ASP problem
definition:

var(X) :— operand(X,Y,Z).
var(Y) :— operand(X,Y,Z).
var(Z) :- operand(X,Y,Z).

The so-called generate part of the ASP problem definition (the part which
defines the general solution domain) is shown next. For the optimal move code
generation, it is defined that every variable must be mapped to exactly one
PU which produces its value. Further, if any two variables are assigned to the
same PU, they must be ordered in their production order (either V; < V5 or
Vo < V7). To find the corresponding order and assignments is the task of the
ASP solver.

1 {asgn(VAR,PU) :pu(PU)} 1 :- wvar(VAR).
order(Vy, Va), order(Vo,V1) :— asgn(Vy, PU), asgn(Vs, PU),
Vi+ Vs

Next, the so-called test part takes place, which has the subject to restrict
the solutions of the defined domain to valid solutions regarding the problem

84

4.2. Optimal Code Generation for SCAD

definition. In case for the shown optimal move code search problem, the test
part adds restrictions to the production order of variables, such that the com-
putations of the basic block can be performed and there is no contradiction in
the data dependency order. [BhScl6] and [BhSc17] showed that it is sufficient
to test that the order of two variables Vi, Vs produced by a processing unit
PU, is also given and preserved in their corresponding operands Vi /g and
Vs /R if both those operands are produced by a same processing unit PUs.

order(Vir, Voor) = asgn(Vi, PU), asgn(Va, PU), Vi # Vs,
order(Vi, Va), operand(Vi, Vir, Vi r),
operand(Va, Var, Var), asgn(Vi , PUs),
asgn(Va 1, PUsz), Vi # Var.

order(Vi r, Vo,r) :— asgn(Vi, PU), asgn(Va, PU), Vi # Vs,
order(Vy, Va), operand(Vi, Vi, Vi Rr),
operand(Va, Var, Var), asgn(Vi g, PUs),
asgn(Va.r, PUs), Vi g # Vo g.

Further to that, the production order to be found must additionally preserve
the data dependencies defined in the basic block definition. If, for example,
an operand Vi p is produced by the same PU as its consumer Vi, it must be
given that then also this order from the initial DAG must be preserved in the
production order. This fact must not only be valid to the direct operands, but
to all predecessors of a variable Vi. To this end, first a construction of the
DAG and based on that definition, the definition of an according predicate
predecessor(X,Y) is added to the ASP encoding. This predicate is true if there
exists a path in the DAG between the two given nodes X and Y:

node(X) :- war(X).
edge_initial(X,Y) :— operand(Y,X,).
edge_initial(X,Y) :- operand(Y,_, X).
rootNode(X) :— not edge_initial(-, X), node(X).
predecessor(X,Y) :- edge_initial(X,Y).

predecessor(X, Z) predecessor(X,Y), predecessor(Y,Z).

This predicate can then be used to restrict the production order of every
PU to only allow orders which do correspond with the predecessors order.

:— predecessor(X,Y), asgn(X, PU), asgn(Y, PU), order(Y,X).

Finally, the transitive closure of the ordering relation is defined, so that it
is possible to compare every position of every variable on the same PU.

order(Vi, V3) :—= order(Vy,Va), order(Va, V3).

85

Chapter 4: Optimized System Design with Stable Models

In the end, the first overall problem definition, which is to minimize the
amount of PUs needed to allow a definition of such a production order, can
be formulated as follows:

pu(0..PUS - 1) : = amountPUs(PUS).
possible PU Amount(0..max_pus).

1 {amountPUs(N) : possiblePU Amount(N)} 1.
#minimize{N : amountPUs(N)}.

Executing this problem definition with the above example leads to 8800
different solutions, whereas three of them have been picked out and have been
shown in[Figure 4.6, When taking a closer look, it can be seen that the example
solution (c) is a symmetric solution of (a). This computation overhead can be
removed by adding symmetry breaking constraints, which in this case sort the
PUs by the minimally assigned variable.

minimum(PU,S) :- S=#min{VAR:asgn(VAR,PU)},
pu(PU),asgn(_, PU).
i = minimum(PU, S), minimum(PUs, S2),
PU2 > PU,S > SQ.

This symmetry breaking constraint deletes all rotated results and the accord-
ing assignments from the resulting answer sets. Overall, #mPU! many so-
lutions are left when this symmetry breaking constraint is added and when
there would normally have been N schedules for amountPU many PUs. As
an example, if there are N = 2016 schedules for scheduling a basic block on

4 PUs, 2916 - 84 unique solutions are left when adding this symmetry break.

24
For the example [Figure 4.5| the amount of results reduces to 8% schedules:

21
in total from 8800 to 4400.

Optimal Scheduling Regarding Execution Time So far, a basic scheduling
optimization problem has been defined, which allows to find the minimum
required PUs to run a given program or basic block on a SCAD machine.
It was observed, that this basic optimization problem can be enhanced to
more sophisticated minimization modes with small changes, such as finding a
schedule with a minimal execution time on SCAD. In contrast to the already
available time optimization encoding in SMT [BhScl7|, where an assignment
of variables to timeslots was used, in ASP a very direct way to define the
time minimization problem was found. This idea scales very well, especially
in contrast to the SMT encoding, which added huge amounts of constraints
the more variables a program had.

This idea is based on the observation that the found scheduling in the previ-
ous section basically introduces additional edges to the initial DAG describing
the basic block. All variables which are now produced by a same PU in a
fixed order can add additional edges to the initial DAG for the new order
constraints between some of those variables. This means that all answer sets
of the previous sections describe all possibilities to add such new edges to the
DAG with the only constraint to just allow minimal possible paths through

86

4.2. Optimal Code Generation for SCAD

the graph, which stands for the minimal amount of PUs searched. Further,
the constraints prohibit the introduction of cycles by these new edges.

When talking about the execution time from an abstract perspective, the
longest path through that combined graph describes how many steps are
needed to compute the result for the basic blocks, as it contains all data
dependencies and therefore all computations needed to find the solution for
the given basic block. By adding different costs for every OP-code executed,
for every PU or even adding costs for moving values, this abstract model can
easily be enhanced to a particular real hardware implementation prediction.

In the following, this idea is illustrated with the help of our example solutions
from Here, solution a) introduces the additional edges z¢p — z1,
r1 — T4, T4 — T5, and x5 — xg by the concrete found order of PU; and
To — X3, T3 —> x7, and x7 — xg by the order of PU;. These edges can be added
to the initial DAG and when the longest path is searched in this combined
DAG, the execution time/amount of execution steps is found; e.g. solution 1
needs 5 steps to execute the basic block on a SCAD machine.

Figure 4.7.: Combined DAG for Solutions 1 and 2 from (a) and (b)

However, if the combined DAG for solution 2 is constructed and examined,
it can be seen that there exists at least one path with cost 6. Although solution
1 and 2 can both be scheduled on 2 PUs, solution 1 would be a better choice
for an optimal compiler as it requires less concrete execution steps.

To model this additional minimization problem with ASP, one can first
construct the combined DAG with the help of the newly introduced order
relation of the concrete answer set:

edge(X,Y) :- edge_initial(X,Y).
edge(X,Y) :— order(X,Y).
initial Node(X) :- not edge(_, X), node(X).

Having available the combined DAG with all variable construction depen-
dencies in ASP, the longest path and therefore the needed execution time can
be found.

pathCosts(X,1) :— initialNode(X).
pathCosts(Y,N +1) :— edge(X,Y), pathCosts(X,N), N < (M +1),
amountVars(M).
mazimalCost(N) :— N =#max{C : pathCosts(_,C)}.

87

Chapter 4: Optimized System Design with Stable Models

With the help of the preducate mazimalCost, which contains the longest
path through the combined graph, the execution time minimization problem
can be directly expressed with the help of ASP:

#minimize{ NQ1 : mazximalCost(N), N > #inf}.
:= mazimalCost(#inf).

It allows to restrict all solutions to those which only have the most minimal
longest path in the combined DAG throughout all answer sets and only contain
the concrete production orders, which lead to the best execution time regarding
the found minimal amount of PUs when executed on a SCAD machine. (Hint:
the infimum expression #inf in the ASP encoding ensures that a maximal
cost must be found/defined).

For our example it was figured out that only 520 of all 8800
possible schedules on 2 PUs are optimal (260 with symmetry breaking). Es-
pecially the solutions (a) and (c) of are minimal with a cost of 5,
whereas solution (b) costs 6 execution steps and is therefore excluded by the
newly introduced optimality constraints.

So far, the minimal amount of PUs has not been touched, which raises
the question, if schedules exist when having available more processing units
for the computation, but which are faster and require less execution steps
on a SCAD machine. And what is the overall fastest execution possible if
no limitation on the available PUs are given? The latter question can be
answered quickly, as the depth of the initial DAG represents the overall lower
bound to the execution time. But with which minimal amount of PUs can this
execution time be reached? This question can be answered in the shown ASP
encoding by just switching the priorities of the two minimization statements
accordingly: First compute all minimal schedules regarding execution time
and then minimize the amount of PUs needed to reach this execution time.

Figure 4.8.: One example to minimize the amount of execution time and then find
the minimal number of PUs needed to schedule the example basic

block shown in

shows such one out of all 6912 possible minimal schedules (288
with symmetry breaking) for our example DAG The initial basic
block can be scheduled on 4 PUs if it is required to minimize the overall
execution time, which is, in this case, 3 steps (as this was the maximal depth
in the initial DAG).

88

4.2. Optimal Code Generation for SCAD

Enhanced Optimal Scheduling So far, the encoding finds schedules with an
overall minimal execution time or it finds a minimal schedule on the overall
least possible amount of PUs. It is absolutely more realistic to consider both
resource and time constraints together instead of optimizing towards the di-
rection of one of those two. Therefore, it may be more realistic to determine
the minimum number of PUs to schedule a basic block within N steps or to
find the fastest execution if a limitation for the PUs is given.

Also these two questions can be answered with small adaptions to the ASP
encoding, which again shows the flexibility when programming in ASP: As a
predicate holding the maximal cost of a graph maximalCost is already avail-
able in the ASP prorgram, the first question can be answered by introducing
one additional constraint which states that the cost does not exceed a given
constant for maximal executions.

:— mazximalCost(N), N >maz_execution.

For our example basic block [Figure 4.5| [Figure 4.9 contains one minimal
solution of 3 PUs needed at minimum when an upper bound for the execution
time of 4 is defined.

Figure 4.9.: One example out of 8088 (without symmetries: 1348) to minimize the
amount of PUs with an upper bound to 4 execution steps from the

example basic block shown in

Similar to this upper bound on the execution time, the resource limitation
regarding the amount of available PUs can be defined:

:— amountPUs(N), N > pus_available.

As a last enhancement for the ASP encoding, one concrete detail can be
introduced for a realistic move code generation: As already mentioned ear-
lier, the input variables of a complete basic block do not just appear in the
according output buffers in a schedule, but they must be read from the Load-
Store-Unit (LSU). This additional constraint has been included into the en-
coding by taking all root nodes of the initial DAG (the input variables) and
by forcing them to be always assigned to the first processing unit PUy. All
other variables than input variables are not allowed to be produced by PUy.

asgn(X,0) :— rootNode(X).
:— not rootNode(X), assignment(X,0).

89

Chapter 4: Optimized System Design with Stable Models

This forced assignment of input variables to PUjy (representing the LSU) leads
to an exception in the symmetry breaking constraint. Only the processing
units PUp, with L > 0 must be sorted regarding the variable names and must
be included in the cyclic dependency check.

: —manimum(PU, S), minimum(PUs, S2), PUy > PU,S > Sy, PU > 0.

g
7]
e|

5|
x—5 (b) Minimizing execution time

4
3|

(a) Minimizing processing
units

Figure 4.10.: Example schedules with LSU constraints for

Forcing all input variables to come from one PU results for the example in
22 different unique solutions (same if removing symmetries) when minimizing
the amount of PUs (see [Figure 4.10). The maximal execution time is, in this
case, 8. By minimizing the overall execution time with LSU, ASP produced
results with execution time 5 and needed 4 PUs to schedule it (696 optimal
schedulings, 116 without symmetries).

4.2.3. Experimental Results

In the last sections, the steps needed to setup a full optimal compiler pipeline
from synchronous programs/ Quartz programs to SCAD move code have been
shown. As the heart of this compiler, the underlying complex minimization
problem has been defined with the help of stable models/ASP. All those tools
have been developed as prototypes. This allowed to set up benchmarks and
evaluate the feasibility of the shown approach.

The first subsection will focus on the heart of the compiler pipeline lp2mc,
with which the ASP problem encoding could be fairly compared with corre-
sponding SAT and SMT encodings. The second subsection will show some
benchmarks for the complete compiler chain, by taking different Quartz pro-
grams and completely compiling them to runnable move code for a SCAD
machine.

Ip2mc: Comparison with SAT and SMT/Benchmarks The shown encod-
ing Ip2mc to find the optimal SCAD move code for a basic block has been

90

4.2. Optimal Code Generation for SCAD

benchmarked on an Intel Core-i5 (4 x 2.67 GHz) desktop computer with 8 GB
RAM running Ubuntu 14.04. To this end, a random basic block generator
had been used instead of using real synchronous programs, as this allows the
comparison with the already available encodings with SAT [BhSc16] and SMT
[BhSc17|. The random basic block generator was able to produce DAG repre-
sentations of a given size n and a given level | allowing a good control of the
comparison parameters D The benchmark setup generated 1000 basic blocks
for every pair (node,level). For a fair comparison (1) with the SAT encoding
[BhSc16], the corresponding ASP program with the only optimization criteria
to find the minimal amount of PUs required to execute the basic block without
overhead on a SCAD machine has been used. For the comparison (2) with the
SMT encoding |[BhSc17], the program setup to minimize the number of PUs
and after that to minimize the time needed to execute the basic block on a
SCAD machine without overhead was defined. As tools in the experiments.
the ASP framework clingo 5.2.2, the Microsoft’s SMT solver Z3, and an own
SAT solver implemented in the Embedded Systems Group in Kaiserslautern
were installed.

T
[} o]
e ASP 7 —— ASP T
—e— SAT ! © ,
' '
'
' '
1 w0
— Avg i}
- - Max ! @
'

1500
|

1000
|

Time taken (in milliseconds)
Time taken (in seconds)

Basic block size (number of nodes) Basic block size (number of nodes)

Figure 4.11.: (a) Average and maximum time required by SAT and ASP solvers to
derive resource constrained schedules for programs of different sizes.
(b) Average and maximum time taken by SMT and ASP solvers to
derive time constrained schedules for programs of different sizes.

shows the benchmark results by giving the execution times of
Clingo in comparison to the SAT (a) and SMT (b) encoding.

In comparison to SAT (a), no significant differences on the execution times
to find the overall minimal amount of PUs to run the basic block could be
observed, although the ASP encoding produced all possible answer sets with
Clingo, whereas the SAT encoding only produced one satisfying model. How-
ever, there is a small trend that the execution times of Clingo will increase
faster than in the corresponding SAT encoding.

On the other hand, the ASP encoding outperformed the SMT encoding by
far. It is quite interesting to mention that the CPU times of Clingo to find the

'The tools are available at |https://es.cs.uni-kl.de/tools/teaching/

91

https://es.cs.uni-kl.de/tools/teaching/

Chapter 4: Optimized System Design with Stable Models

minimal execution times on a minimal amount of PUs (b) is even faster than
the version in (a), where only the amount of PUs are minimized. With the
ASP encoding to find minimal execution times, there could easily be computed
schedules up to 20 nodes without running into memory, time or other resource
problems, which was not possible with the SMT encoding.

Experimental Results for the Full Compiler As already mentioned, a com-
plete prototype of all compiler steps has been implemented. According to
the proposed compiler chain, it first converts a synchronous program into a
representation as a basic block/DAG, generates an ASP input for that DAG
and uses the shown ASP encoding to find the minimal/optimal SCAD move
code. Finally, it converts the resulting answer set into the syntax of the SCAD
machine, such that the resulting code can be directly pasted to the available
SCAD simulator available on https://es.cs.uni-kl.de/tools/teaching/.

In order to benchmark this compiler chain, various examples out of the
Averest?| benchmark suite have been used for the experiments. All results
have been checked with the SCAD simulator. The experiment was performed
on a Windowsl0 machine with an Intel i5-6600k processor (4 x 3,5GHz) and
16GB of installed RAM.

The benchmark results are shown in It can be observed that the
compiler chain is quite fast for most of the shown small examples and compiles
the optimal move code mostly under 1 second. Only a few more complex
examples containing reincarnations and circles, as the program Edwards02
and DiningPhilosophers, the ASP solver requires more runtime to find the
optimal move code.

Allin all, the results show that the stable model semantics and its implemen-
tation framework ASP are quite powerful and can even solve complex tasks
like finding optimal code compilation results in a feasible manner. Of course
this prototypical compiler is neither complete nor optimized with all available
knowledge from modern compiler constructions, but it is a good example to
show the power of stable model semantics and answer set solving.

4.3. Enhancing Synchronous Programs by Stable
Models

So far, the focus was set on the translation of the synchronous language syn-
tax to the ASP syntax in and two examples for the use of ASP
in [Section 4.1] and [Section 4.2 which showed the power of the stable model
semantics. With the semantics extensions shown in available syn-
chronous programs can be translated to corresponding ASP programs. Nev-
ertheless, the ASP-Core-2 language has some enhanced language constructs,
which have not been considered so far by the translation scheme, but that
are used quite often when defining problems in ASP. Most of those extensions
appeared in the examples in [Section 4.1] and [Section 4.2 When taking a look

Zhttp://wuw.averest.org

92

https://es.cs.uni-kl.de/tools/teaching/
http://www.averest.org

4.3. Enhancing Synchronous Programs by Stable Models

Experimental Compiler Results

Program Name Compilation Time | #PUs
ABRO 1.406s 3
Berry P01 0.032s 3
Berry P02 0.062s 4
Berry P03 0.016s 4
Berry P04 Os 3
Berry P05 0.048s 4
Berry P06 0.016s 5)
Berry P07 0.048s 4
Berry P09 0.048s 5
Berry P10 0Os 2
Berry P11 0.157s 7
Berry P12 0.016s)
Berry P13 0.36s 7
Berry P14 0.094s 6
Berry P15 0.048s 4
Berry P16 Os 2
Berry P17 0.08s 7
Berry P18 0.096s 7
Berry P19 0.064s 6
Berry P20 0.204s 9
Berry P21 0.11s 7
Edwards02 416.172s 4
Fork 0.078s 3
Dining Philosophers (Simple) 5.172s 3
Redo Abort 0.032s 3
Trap vs Abort 0.048s 4
Trap vs Immediate Abort 0.063s)
Trap vs Weak Abort 0.016s 2
Trap vs Weak Immediate Abort 0.031s 3
Schizophrenia 10 0.094s 3
Schizophrenia 11 0.109s 3

Table 4.3.: Experimental results

93

Chapter 4: Optimized System Design with Stable Models

from the opposite direction, meaning to see synchronous languages like Quartz
as a full front-end language for ASP, those constructs have to be contained
in the translation scheme as well in order to allow users to access the full ca-
pability of modern ASP solvers from a higher language like the synchronous
language Quartz. This section sketches an approach to introduce those en-
hanced language constructs into the synchronous language core of Quartz.

4.3.1. Disjunctive Programming

First of all, ASP allows disjunctive rule definitions meaning that the rule head
can be connected disjunctively:

x1|...|lTy 1= expri,...,exprog.

Such disjunctive definitions especially allow to shift the perspective away from
concrete algorithm definitions to descriptive constraint programs, which de-
scribe how the solution looks like instead of defining an algorithm on how to
compute the solution. Here, not the programmer or grounder defines the so-
lution, but the solver assigns the values of the variables according to all other
constraints and rules of the program.

An extension of synchronous languages could add such disjunctive descrip-
tions syntactically by allowing the left-hand-side of the expressions to contain
multiple variable names:

x1|...|%, = <typed>Expr;

In order to stay type-safe, all variables x; must be of the same type, and
the concrete expression to be assigned must be of that type as well.

The semantics of such disjunctive expression heads are given by the ac-
cording ASP rule. This means that the ASP solver decides due to all other
constraints, which variable xi|...|x, gets assigned the according translation
of the expression <typed>Expr.

As an example, take a quartz program which assigns an input natural num-
ber value either to a variable odd or even.

module Disjunction(event nat ?in) {
event nat odd;
event nat even;

odd | even = in;

4.3.2. Constraints

Without further constraints, the module Disjunction from above would al-
ways lead to two answer sets odd=in or even=in. When describing results in
a descriptive way, it is often needed to shrink down the search space for the
resulting solutions by defining concrete constraints deciding which states and

94

4.3. Enhancing Synchronous Programs by Stable Models

variable assignments should never be reached. In ASP, such expressions do not
have a rule head, e.g. :- exp;;...;exp,. and state that the given expressions
can never appear together.

In order to include such constraint expressions into synchronous languages,
one idea would be to introduce a special variable with a special name like
disallowed and with the type bool: disallow = boolExp, which can be
assigned in every place in the program to express that this statement at that
program position is not allowed.

To that end, n different assignments to disallowed = boolExp, are in-
cluded in the AIF program, which leads, together with the defined translation
scheme from synchronous languages to the ASP-Core-2 language in
to several ASP rules with the head v_disallowed :- v_boolExp;.

Finally, the ASP statement :- disallowed. can then be added to state
that the computed solution is only valid if no disallowed boolean expression is
contained in the resulting system answer.

For our example module Disjunction to separate odd and even numbers,
the corresponding extended module Contraintsl could introduce according
constraints on the defined numbers in Quartz, such that the answer set solver
only finds one answer set which depends on the input variable in: if in is odd,
it is assigned to the variable odd and if in is even, it is assigned to the variable
even.

module Constraintsl(event nat 7in) {
event nat odd;
event nat even;
event bool disallowed;

odd | even = in;
disallowed = odd % 2 == 0;
disallowed = even % 2 == 1;

Of course, with the available translation scheme for other types in Quartz
programs, this extension can also be used for other types as arrays, like shown
in the following module Constraints2:

module Constraints2() {
event [10]nat y;
event [10]nat z;
event bool disallowed;

for(i=0..9) {
z[i] | y[i] = i;
disallowed = y[i] % 2 == 0;
disallowed = z[i] % 2 == 1;

95

Chapter 4: Optimized System Design with Stable Models

The program describes with the help of constraints the wanted solution for
a disjunctive rule, stating that either z[i] or y[i] is assigned the value i
from a loop between 0 and 9. It describes via constraints that the array y
should only contain odd numbers on every index i and the array z only even
numbers.

When translated to ASP, this Quartz program will result in an according
ASP program assigning the variable disallowed to all conditions described
in this way. In the last line of code, it can finally be stated that disallowed
can not appear in an answer of the computed answer set:

disallowed :— 1==2[0]%2.
disallow.e.a'l i— 1==2[9]%2.
disallowed :— 0==y[0]%2.
disallow‘e.ci t— 1==2[9]%2.
1~ disallowed.

When now computing the corresponding answer set, the result only contains
the correct assignments for the array containing only the odd numbers in the
array y and the even indexes in the array z.

4.3.3. Choices

Another way to define programs more descriptively are the so-called choices.
A choice picks a subset of solutions regarding a given constraint. For example,
if it is known that there exist exactly N solutions for a given problem, one can
choose all of them with a choice rule N {constraint} N, or if it is known
that up to N solutions exist, one can state to pick 1 to N solutions regarding
a given constraint 1 {constraint} N. This can be especially useful if those
rules are mixed with the optimization statements (see below), or if the amount
of solutions regarding a constraint are not known beforehand.

According to the ASP-Core-2 language definition, a choice can only appear
in rule heads. In our previous ASP examples from the last section, the choice
rules were used quite often, e.g. while generating optimal concentrator circuits,
the amount of needed switches was defined with a choice rule:

possible_switch_amount(0..mazswitches).
1 {num_switches(N) : possible_switch_amount(N)} 1.
switch(1..N) : — num_switches(N), N >0.

A corresponding expression in synchronous languages could be syntacti-
cally defined as s = Choose(nExpMin, nExpMax, boolExp), where the first
and second natural number expressions stand for the minimum and maxi-
mum amount of expressions to be chosen and the boolExp for the expression
which must be fulfilled by the chosen values s. Therefore, the Boolean ex-
pression should be defined with s as free variable. The example to define the

96

4.3. Enhancing Synchronous Programs by Stable Models

num_switches to be in a range between 0 and max can then be defined with a
Quartz module Choices as follows:

module Choices(event nat 7max) {
event {}nat num;
num = Choose(l, 1, num < max A num > 0);

Hereby, the Choose statement chooses exactly one number (both boundaries
nExpMin and nExpMax are 1) between 0 and max and assigns this value to the
variable num. The Boolean expression itself uses this variable num as free
variable to define which rules must be fulfilled by the chosen variable.

As in general the variable s defined with a Choose statement stands for
a representation of possibly multiple values, it is suggested to introduce a
new type {}<type> (a set with elements of type <type>) into Quartz, so
that variables like the chosen s, which are not ordered but represent multiple
values, can be defined. The variables of type set can be used and accessed in
the program as all other variables in all expressions.

For example, the definition s = NatChoose (10,10, s<10); assigns s to
stand for all natural numbers up to 10. Furthermore, the expression
s2 = NatChoose(2,3, (s_2 == s)& (s_2 % 2 == 0)); chooses two up to
three even values out of these ten numbers and assigns them to ss. So the
variable of s9 can stand in one solution/answer set for so={2,4}, in another
solution/answer set for s9={0,6,8} and so on. If now the expression z = sy<s
has to be evaluated, it stands for is at least one value out of so smaller than
one value of s and therefore always evaluates to true, as s can always be chosen
as 9 and at least one value picked for ss is smaller than 9.

Those two statements for s and sy evaluate to the following ASP-core-2
rules:

asplvar 0(X) :- X <10.
10 {s(X) : asp_lvar 0(X)} 10.

asplvar 1(X) - s(X);X\2=0.
2 {s2(X) :asp_lvar_1(X)} 3.

But how to handle the operations on variables s; with the type <typed>set?
All typed operations s = s; ® x with all operations & and the variables x of
type <type> can be interpreted as s =Vv € s;.v® x and s is then also a
variable of type <typed>set. The same holds if both operands of the operation
are of type <typed>set, e.g. s = s; ® so;. Here, the result is again a set
containing the results of applying the operation to all elements in all sets:
s =Vves;.Vvy €81.VD Vo.

4.3.4. Aggregates

The ASP-core-2 language contains the ability to define so-called aggregates,
which can be used to reason about the sets of ASP terms and term tuples.
The concrete available aggregate functions in the ASP-core-2 language are

97

Chapter 4: Optimized System Design with Stable Models

#count(T), #sum(T), #max(T), and #min(T). From the perspective of
a higher programming language like Quartz, those functions can be seen as
operations on the type set, which have been introduced due to the choice
statements in the last section. They allow to reason about all available/chosen
values the concrete set variable s stands for.

In order to introduce and use those aggregate functions in Quartz, the fol-
lowing expressions are proposed to be introduced:

e x = Count(setExp)

e x = Sum(numberSetExp)
e x = Max(numberSetExp)
e x = Min(numberSetExp)

The Count expression should return the amount of elements in the set and
therefore works on all types of elements in a set. The aggregate function Sum
needs a number type in order to allow building the sum of all elements in the
set. As the two functions Max and Min need an according order relation, they
should also only be defined on sets of numbers in Quartz.

In the two shown examples for the power of ASP /stable models, those ag-
gregate functions have been used quite often.

For example, the #max aggregate was used to calculate the longest path
through a graph:

pathCosts(X,1) :— initial Node(X).
pathCosts(Y,N +1) :— edge(X,Y), pathCosts(X,N), N < (M +1),
amountVars(M).
maximalCost(N) :— N =#max{C : pathCosts(_,C)}.

Let‘s consider all pathCosts being available in an according set variable in
Quartz. Then, the maximal cost can be defined as follows:

module Aggregate() {
event nat maximalCost;
event {}nat pathCosts;

pathCosts = ...;
maximalCost = Max(pathCosts);
}

4.3.5. Optimizations

As a final construct available in ASP and should be made available in Quartz,
optimization statements have to be mentioned. The optimization statements
#maximize(C) and #minimize(C) allow to optimize an answer set or stable

98

4.3. Enhancing Synchronous Programs by Stable Models

model according to a given count function C. In the shown ASP examples, all
optimization statements were used as the final goal definition for the according
problem.

E.g. to minimize the amount of switches in the concentrator circuit, the
following ASP rule has been used:

#minimize{N : num_switches(N)}.

The same holds for the second example, which finally wanted to minimize
the amount of PUs.

#minimize{N : amountPUs(N)}.

The optimization statements can be introduced into Quartz by adding the
standalone statements Minimize (numberVar) and Maximize (numberVar). The
mentioned ASP statements could therefore lead to the following Quartz mod-
ule definition:

module Optimizationsl1() {
event nat num_switches;

num_switches = ...;
Minimize (num_switches) ;

3

module Optimizations2() {
event nat amountPUs;

amountPUs = ...;
Minimize (amountPUs) ;

All in all, this chapter sketches, how synchronous languages like Quartz
can be extended to a full front-end for ASP languages with only small adap-
tions. Hereby, the most important part is the introduction of a new type
set, which allows to reason about multiple values in synchronous languages,
while it therefore stands for all instantiations of an according ASP term. By
allowing the definition of additional constraints and with the ability to have
operations on sets with aggregates like to calculate the sum or to count the
elements in the set, also optimization statements could be introduced with an
according meaning. Finally, this sketch shifts the perspective from Quartz as
a language to define algorithms to a language showing its benefits especially
by the definition of search and optimization problems in a descriptive way, like
ASP languages do.

99

Chapter

Conclusions

The thesis in hand started with an introduction of current known semantics
of logic programming, especially the well-founded semantics and the stable
model semantics used in state-of-the-art ASP solvers. Further, a connection
was drawn to the semantics of current state-of-the-art synchronous languages,
which are based on an instantiation of the Fitting's fixpoint semantics. Hereby,
the synchronous language Quartz and the current semantics have been intro-
duced in detail.

The next section focused on the semantics extension of synchronous lan-
guages in order to level up the possibilities of the interpretation of synchronous
programs, such that new programs could be defined a meaning, and which do
not lead to a meaning and calculation result with the current used Fitting's
fixpoint semantics.

To update the semantics of synchronous programs to the well-founded se-
mantics of logic programming, two different levels of abstractions have been
shown. First of all, the well-founded semantics have been introduced as an
extension to the abstract SOS rules and to the abstract synchronous program
interpreter procedure. This introduced abstract extension allowed to reason
about the semantics from a theoretical point of view. As another option, a
more practical approach has been shown, which takes an existing program
and extends this program itself in order that it is automatically evaluated ac-
cording to the well-founded semantics. This practical extension does not need
to adapt any existing tools for synchronous languages and allows to use the
fixpoint iterations of Fitting‘s semantics to interpret the program in the same
matter, as the well-founded semantics would have done. That this procedure
is a conservative extension of Fitting‘s fixpoint semantics has been proved.

In order to interpret synchronous programs also with the stable model se-
mantics of ASP, another step had to be taken. First of all it was shown, that
a similar extension of the program and semantics in the same matter as it was
performed for the well-founded semantics could not be used here. This basi-
cally comes from the non-monotonicity of the stable model semantics. Hence,
another approach was shown to interpret synchronous programs with the sta-
ble model semantics: by a compilation from every synchronous program to

101

Chapter 5: Conclusions

the ASP-core-2-language format. This compiler defined not only how the dif-
ferent expressions and types of Boolean, array or numbers can be transformed
to an according ASP program, but it was also implemented by a prototype.
This allowed to show the feasibility of the approach, where different example
benchmark programs had been completely compiled to ASP and could then
be interpreted with current state-of-the-art ASP solvers.

But how can a programmer of synchronous programs directly benefit from
this compilation and the power of stable model semantics? This was the fo-
cus of the next section, where two complex examples for the practical use of
ASP have been introduced. The first example defined an according search and
optimization program to find minimal concentrator circuits, which can move
multiple values without blocking from inputs of the interconnection network
to their outputs with according properties in parallel. The second example
was then the definition of a complete compiler chain from synchronous pro-
grams to optimal move code for the synchronous control asynchronous data
(SCAD) architecture, which was developed in the embedded systems group of
the University of Kaiserslautern. Hereby, the heart of this compiler to find
optimal scheduling for that architecture was developed with the help of ASP
and the stable model semantics.

Having defined and analyzed those two complex examples, one could re-
alize that the current ASP-core-2 language contains very helpful additional
constructs, which especially allow to define and handle search and optimiza-
tion problems in a very descriptive way. As an compilation from synchronous
languages to ASP programs was already available, it was quite obvious to
raise the question if synchronous languages can be seen in general as a more
high-level access language to stable model semantics and ASP solvers than
the ASP-core-2 language. To answer this question it was sketched how those
advanced constructs, which could not directly be reached from current syn-
chronous language expressions, can be introduced into the language design of
synchronous languages. With the help of the introduced syntax and transla-
tion scheme of Constraints, Disjunctive Assignments, Choices, Aggregates and
Optimization Statements, the hypothesis is raised that synchronous languages
are a very valid high-level access language for the stable model semantics.

All in all, the current semantics and the use of synchronous languages have
been analyzed and extended in this thesis to newer available semantics as
the well-founded semantics or stable model semantics of logic programs. This
allows not only to interpret more programs in synchronous languages than
before, but it especially shifts the focus away from concrete algorithm defi-
nitions to descriptive problems and solution descriptions. During the work
on this thesis, the feeling was raised that this shift and descriptive nature
is very constructive and fits to the core idea of synchronous languages and
synchronous semantics much better than the fixed algorithm definition syn-
chronous languages have mostly been used for so far.

102

Bibliography

[ACPV11]

[AMHF15]

[AgMell]

[Andr95]

[Andr96]

[Apt03]

[BaABO4]

[Batc68]

[BoSi91]

[BCEH03]

F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. “Loop Formulas
for Splitable Temporal Logic Programs”. In: Logic Programming
and Nonmonotonic Reasoning (LPNMR). Ed. by J.P. Delgrande
and W. Faber. Vol. 6645. LNCS. Vancouver, Canada: Springer,
2011, pp. 80-92.

J. Aguado, M. Mendler, R. von Hanxleden, and I. Fuhrmann.
“Denotational Fixed-point Semantics for Constructive Schedul-
ing of Synchronous Concurrency”. In: Acta Informatica 52.4
(2015), pp. 393-442.

J. Aguado and M. Mendler. “Constructive Semantics for Instan-
taneous Reactions”. In: Theoretical Computer Science (TCS)
412.11 (2011), pp. 931-961.

C. André. SyncCharts: A Visual Representation of Reactive Be-
haviors. Research Report tr95-52. University of Nice, Sophia An-
tipolis, France, 1995.

C. André. Representation and Analysis of Reactive Behaviors: A
Synchronous Approach. Research Report tr96-28. University of
Nice, Sophia Antipolis, France, 1996.

K.R. Apt. Principles of Constraint Programming. Cambridge
University Press, 2003.

F. Banti, J.J. Alferes, and A. Brogi. “Well Founded Semantics
for Logic Program Updates”. In: Ibero-American Conference on
Artificial Intelligence. Ed. by C. Lemaitre, C.A. Reyes Garcia,
and J.A. Gonzalez. Vol. 3315. LNCS. Puebla, Mexico: Springer,
2004, pp. 397-407.

K.E. Batcher. “Sorting Networks and their Applications”. In:
AFIPS Spring Joint Computer Conference. Vol. 32. 1968, pp. 307—
314.

F. Boussinot and R. de Simone. “The Esterel language”. In:
Proceedings of the IEEE 79.9 (1991), pp. 1293-1304.

A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. de Simone. “The Synchronous Languages Twelve
Years Later”. In: Proceedings of the IEEE 91.1 (2003), pp. 64—
83.

103

Bibliography

[Berr99)
[BeGo92]

[BhJS16]

[BrNTO3]

[BGSS11]

[BGSS12]

[BrSc08a]

[BrScllal

[BhSc16]

[BhSc17]

G. Berry. The Constructive Semantics of Pure Esterel. 1999.

G. Berry and G. Gonthier. “The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation”. In: Sci-
ence of Computer Programming 19.2 (1992), pp. 87-152.

A. Bhagyanath, T. Jain, and K. Schneider. “Towards Code Gen-
eration for the Synchronous Control Asynchronous Dataflow (SCAD)
Architectures”. In: Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen (MBMYV).
Ed. by R. Wimmer. Freiburg, Germany: University of Freiburg,
2016, pp. 77-88.

G. Brewka, I. Niemela, and M. Truszczynski. “Answer Set Op-
timization”. In: International Joint Conference on Artificial In-
telligence (IJCAI). Ed. by G. Gottlob and T. Walsh. Acapulco,
Mexico: Morgan Kaufmann, 2003, pp. 867-872.

J. Brandt, M. Gemiinde, K. Schneider, S. Shukla, and J.-P.
Talpin. “Integrating System Descriptions by Clocked Guarded
Actions”. In: Forum on Specification and Design Languages (FDL).
Ed. by A. Morawiec, J. Hinderscheit, and O. Ghenassia. Olden-
burg, Germany: IEEE Computer Society, 2011, pp. 1-8.

J. Brandt, M. Gemiinde, K. Schneider, S.K. Shukla, and J.-
P. Talpin. “Representation of Synchronous, Asynchronous, and
Polychronous Components by Clocked Guarded Actions”. In:
Design Automation for Embedded Systems (DAEM) (2012). DOI
10.1007/s10617-012-9087-9.

J. Brandt and K. Schneider. “Formal Reasoning About Causality
Analysis”. In: Theorem Proving in Higher Order Logics (TPHOL).
Ed. by O. Ait Mohamed, C. Muifioz, and S. Tahar. Vol. 5170.
LNCS. Montréal, Québec, Canada: Springer, 2008, pp. 118-133.

J. Brandt and K. Schneider. Separate Translation of Synchronous
Programs to Guarded Actions. Internal Report 382/11. Kaiser-
slautern, Germany: Department of Computer Science, University
of Kaiserslautern, 2011.

A. Bhagyanath and K. Schneider. “Optimal Compilation for Ex-
posed Datapath Architectures with Buffered Processing Units
by SAT Solvers”. In: Formal Methods and Models for Codesign
(MEMOCODE). Ed. by E. Leonard and K. Schneider. Kanpur,
India: IEEE Computer Society, 2016, pp. 143-152.

A. Bhagyanath and K. Schneider. “Exploring the Potential of
Instruction-Level Parallelism of Exposed Datapath Architectures
with Buffered Processing Units”. In: Application of Concurrency
to System Design (ACSD). Ed. by A. Legay and K. Schneider.
Zaragoza, Spain: IEEE Computer Society, 2017, pp. 106-115.

104

Bibliography

[CKSS18] P. Cabalar, R. Kaminski, T. Schaub, and A. Schuhmann. “Tem-
poral Answer Set Programming on Finite Traces”. In: Theory
and Practice of Logic Programming (TPLP) 18.3-4 (2018), pp. 406
420.

[CFGI13] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T.
Krennwallner, N. Leone, F. Ricca, and T. Schaub. ASP-Core-2
Input Language Format. ASP Standardization Working Group.
2013.

[CFGI20] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T.
Krennwallner, N. Leone, M. Maratea, F. Ricca, and T. Schaub.
“ASP-Core-2 Input Language Format”. In: Theory and Practice
of Logic Programming (TPLP) 20.2 (2020), pp. 294-309.

[CHPP87] P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice. “LUSTRE:
A declarative language for programming synchronous systems”.
In: Principles of Programming Languages (POPL). Munich, Ger-
many: ACM, 1987, pp. 178-188.

[CaDill] P. Cabalar and M. Diéguez. “STeLP - A Tool for Temporal An-
swer Set Programming”. In: Logic Programming and Nonmono-
tonic Reasoning (LPNMR). Ed. by J.P. Delgrande and W. Faber.
Vol. 6645. LNCS. Vancouver, Canada: Springer, 2011, pp. 370—
375.

[Clar77] K.L. Clark. “Negation as Failure”. In: Logic and Data Bases.
Ed. by H. Gallaire and J. Minker. Toulouse, France: Plemum
Press, New York, 1977, pp. 293-322.

[CoR096] A. Colmerauer and P. Roussel. “The Birth of Prolog”. In: His-
tory of Programming Languages II. Ed. by T.J. Bergin and R.G.
Gibson. ACM, 1996. Chap. 7, pp. 331-367.

[CaSc19] P. Cabalar and T. Schaub. “Dynamic and Temporal Answer Set
Programming on Linear Finite Traces”. In: Datalog. Vol. 2368.
CEUR, 2019, pp. 3-6.

[DJSG17] M. Dahlem, T. Jain, K. Schneider, and M. Gillmann. “Automatic
Synthesis of Optimal-Size Concentrators by Answer Set Pro-
gramming”. In: Logic Programming and Nonmonotonic Reason-
ing (LPNMR). Ed. by M. Balduccini and T. Janhunen. Vol. 10377.
LNAI Espoo, Finland: Springer, 2017, pp. 279-285.

[DaBS18b] M. Dahlem, A. Bhagyanath, and K. Schneider. “Optimal Schedul-
ing for Exposed Datapath Architectures with Buffered Process-
ing Units by ASP”. In: Theory and Practice of Logic Program-
ming (TPLP) 18.1 (2018), pp. 438-451.

[DoGag4] W.F. Dowling and J.H. Gallier. “Linear-time algorithms for test-
ing the satisfiability of propositional Horn formulae”. In: The
Journal of Logic Programming 1.3 (1984), pp. 267-284.

105

Bibliography

[RoLM10]

[DaSc20]

[Dung92]

[ErGL16]

[EiTK09]

[Fage94]

[FFST18]

[FeEr81]

[Fitt85]
[Fitt93)]

[FeLLO7]

[FeLL11]

W.-P. de Roever, G. Liittgen, and M. Mendler. “What Is in
a Step: New Perspectives on a Classical Question”. In: Time
for Verification — Fssays in Memory of Amir Pnueli. Ed. by Z.
Manna and D. Peled. Vol. 6200. LNCS. Springer, 2010, pp. 370—
399.

M. Dahlem and K. Schneider. “Compiling Synchronous Lan-
guages to Optimal Move Code for Exposed Datapath Architec-
tures”. In: International Workshop on Software and Compilers
for Embedded Systems (SCOPES). Ed. by S. Stuijk. Sankt Goar,
Germany: ACM, 2020.

P.M. Dung. “On the relations between stable and well-founded
semantics of logic programs”. In: Theoretical Computer Science
105.1 (1992), pp. 7-25.

E. Erdem, M. Gelfond, and N. Leone. “Applications of Answer
Set Programming”. In: AI Magazine 37.3 (2016), pp. 53-68.

T. Eiter, G. Ianni, and T. Krennwallner. “Answer Set Program-
ming: A Primer”. In: Reasoning Web. Semantic Technologies
for Information Systems. Ed. by S. Tessaris, E. Franconi, T.
Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousset, and R.A.
Schmidt. Vol. 5689. LNCS. Brixen-Bressanone, Italy: Springer,
2009, pp. 40-110.

F. Fages. “Consistency of Clark’s completion and existence of
stable models”. In: Methods of Logic in Computer Science 1.1
(1994), pp. 51-60.

A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, and E.C.
Teppan. “Industrial Applications of Answer Set Programming”.
In: KI - Kinstliche Intelligenz 32.2 (2018), pp. 165-176.

M. Feller and M.D. Ercegovac. “Queue machines: An organiza-
tion for parallel computation”. In: Conpar 81. Ed. by W. Brauer,
P. Brinch Hansen, D. Gries, C. Moler, G. Seegmiiller, J. Stoer,
N. Wirth, and Wolfgang Handler. Vol. 111. LNCS. Niirnberg,
Germany: Springer, 1981, pp. 37-47.

M. Fitting. “A Kripke-Kleene Semantics for Logic Programs”.
In: Journal of Logic Programming 2.4 (1985), pp. 295-312.

M. Fitting. “The family of stable models”. In: The Journal of
Logic Programming 17.2-4 (1993), pp. 197-225.

P. Ferraris, J. Lee, and V. Lifschitz. “A New Perspective on
Stable Models”. In: International Joint Conference on Artificial
Intelligence (IJCAI). Ed. by M.M. Veloso. Vol. 7. Hyderabad,
India, 2007, pp. 372-379.

P. Ferraris, J. Lee, and V. Lifschitz. “Stable Models and Cir-
cumscription”. In: Artificial Intelligence 175.1 (2011), pp. 236—
263.

106

Bibliography

[GKNSO07b]

[GKKS19]

[GeKS11]

[GeKS12]

[GeLiss]

[GeLi91]

[HCRP91]

[Halb05)]

[Halb93]

[HPSS87]

[Hare87]

[Helj99]

[Horn51]

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. “Conflict-
Driven Answer Set Solving”. In: International Joint Conference
on Artificial Intelligence (IJCAI). Ed. by M.M. Veloso. Vol. 7.
Hyderabad, India, 2007, pp. 386—392.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. “Multi-
Shot ASP Solving with Clingo”. In: Theory and Practice of Logic
Programming (TPLP) 19.1 (2019), pp. 27-82.

M. Gebser, R. Kaminski, and T. Schaub. “Complex Optimiza-
tion in Answer Set Programming”. In: Theory and Practice of
Logic Programming (TPLP) 11.4-5 (2011), pp. 821-839.

M. Gebser, B. Kaufmann, and T. Schaub. “Conflict-Driven An-
swer Set Solving: From Theory to Practice”. In: Artificial Intel-
ligence 187 (2012), pp. 52-89.

M. Gelfond and V. Lifschitz. “The Stable Model Semantics for
Logic Programming”. In: Logic Programming. Ed. by R.A. Kowal-
ski and K.A. Bowen. Seattle, Washington, USA: MIT Press,
1988, pp. 1070-1080.

M. Gelfond and V. Lifschitz. “Classical Negation in Logic Pro-
grams and Disjunctive Databases”. In: New Generation Com-
puting 9.3-4 (1991), pp. 365-385.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The Syn-
chronous Dataflow Programming Language LUSTRE”. In: Pro-
ceedings of the IEEE 79.9 (1991), pp. 1305-1320.

N. Halbwachs. “A synchronous language at work: the story of
Lustre”. In: Formal Methods and Models for Codesign (MEM-
OCODE). Verona, Italy: IEEE Computer Society, 2005, pp. 3—
11.

N. Halbwachs. Synchronous programming of reactive systems.
Kluwer, 1993.

D. Harel, A. Pnueli, J. Schmidt, and R. Sherman. “On the for-
mal semantics of Statecharts”. In: Logic in Computer Science
(LICS). Tthaca, New York, USA: IEEE Computer Society, 1987,
pp. 54-64.

D. Harel. “Statecharts: A visual formulation for complex sys-
tems”. In: Science of Computer Programming 8.3 (1987), pp. 231—
274.

K. Heljanko. “Using Logic Programs with Stable Model Seman-
tics to Solve Deadlock and Reachability Problems for 1-Safe Petri
Nets”. In: Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS). Ed. by R. Cleaveland. Vol. 1579. LNCS.
Amsterdam, The Netherlands: Springer, 1999, pp. 240-254.

A. Horn. “On sentences which are true of direct unions of alge-
bras”. In: Journal of Symbolic Logic 16.1 (1951), pp. 14-21.

107

Bibliography

[JaBS13]

[JaSc16]

[KLPS16b]

[KowaT74]

[KaSW17]

[GGBMO91]

[Lier17]

[Lifs10]

[LeRS97]

[LiZh04b)]

[Mara91]

[Mara92]

[McDe82a)

E.K. Jackson, N. Bjorner, and W. Schulte. Open-world Logic
Programs: A New Foundation for Formal Specifications. Techni-
cal Report MSR-TR-2013-55. Microsoft Research Lab, 2013.

T. Jain and K. Schneider. “Verifying the Concentration Property
of Permutation Networks by BDDs”. In: Formal Methods and
Models for Codesign (MEMOCODE). Ed. by E. Leonard and K.
Schneider. Kanpur, India: IEEE Computer Society, 2016, pp. 43—
53.

B. Kaufmann, N. Leone, S. Perri, and T. Schaub. “Grounding
and Solving in Answer Set Programming”. In: Al Magazine 37.3
(2016), pp. 25-32.

R. Kowalski. “Predicate Logic as Programming Language”. In:
IFIP Congress. Stockholm, Sweden, 1974, pp. 569-574.

R. Kaminsgki, T. Schaub, and P. Wanko. “A Tutorial on Hy-
brid Answer Set Solving with clingo”. In: Reasoning Web. Se-
mantic Interoperability on the Web. Ed. by G. Ianni, D. Lembo,
L.E. Bertossi, W. Faber, B. Glimm, G. Gottlob, and S. Staab.
Vol. 10370. LNCS. London, UK: Springer, 2017, pp. 167-203.

P. Le Guernic, T. Gauthier, M. Le Borgne, and C. Le Maire.
“Programming real-time applications with SIGNAL”. In: Pro-
ceedings of the IEEE 79.9 (1991), pp. 1321-1336.

Y. Lierler. “What is Answer Set Programming to Propositional
Satisfiability?” In: Constraints 22.3 (2017), pp. 307-337.

V. Lifschitz. “Thirteen Definitions of a Stable Model”. In: Fields
of Logic and Computation. Ed. by A. Blass, N. Dershowitz, and
W. Reisig. Vol. 6300. LNCS. Springer, 2010, pp. 488-503.

N. Leone, P. Rullo, and F. Scarcello. “Disjunctive Stable Mod-
els: Unfounded Sets, Fixpoint Semantics, and Computation”. In:
Information and Computation 135.2 (1997), pp. 69-112.

F. Lin and Y. Zhao. “ASSAT: Computing answer sets of a logic
program by SAT solvers”. In: Artificial Intelligence 157 (2004),
pp. 115-137.

F. Maraninchi. “The Argos Language: Graphical Representation
of Automata and Description of Reactive Systems”. In: Visual
Languages. IEEE Computer Society, 1991.

F. Maraninchi. “Operational and Compositional Semantics of
Synchronous Automaton Compositions”. In: Concurrency The-
ory (CONCUR). Ed. by R. Cleaveland. Vol. 630. LNCS. Stony
Brook, New York, USA: Springer, 1992, pp. 550-564.

D. McDermott. “Nonmonotonic Logic II: Nonmonotonic Modal
Theories”. In: Journal of the ACM (JACM) 29.1 (1982), pp. 33—
57.

108

Bibliography

[MeLu00]

[MeMa20)]

[MaRe01]

[MoSc11]

[NWSH17]

[NWSHI8]

[ObRS19]

[Parb92]

[Pear96]

[Pins73]

[Plot81]

M. Mendler and G. Luettgen. What is in a Step: A Fully-abstract
Semantics for Statecharts Macro Steps via Intuitionistic Kripke
Models. Research Memorandum CS-00-04. University of Sheffield,
Sheffield, UK, 2000.

C. Mencia and J. Marques-Silva. “Reasoning About Strong In-
consistency in ASP”. In: Theory and Applications of Satisfiabil-
ity Testing (SAT). Ed. by L. Pulina and M. Seidl. Vol. 12178.
LNCS. Alghero, Italy: Springer, 2020, pp. 332-342.

F. Maraninchi and Y. Rémond. “Argos: An Automaton-Based
Synchronous Language”. In: Computer Languages 27.1 (2001),
pp. 61-92.

A. Morgenstern and K. Schneider. “Synthesis of Parallel Sort-
ing Networks using SAT Solvers”. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltun-
gen und Systemen (MBMYV). Ed. by F. Oppenheimer. Olden-
burg, Germany: OFFIS-Institut fiir Informatik, 2011, pp. 71-80.

K. Neubauer, P. Wanko, T. Schaub, and C. Haubelt. “Enhanc-
ing symbolic system synthesis through ASPmT with partial as-
signment evaluation”. In: Design, Automation and Test in Fu-
rope (DATE). Ed. by D. Atienza and G. Di Natale. Lausanne,
Switzerland: IEEE Computer Society, 2017, pp. 306-309.

K. Neubauer, P. Wanko, T. Schaub, and C. Haubelt. “Exact
multi-objective design space exploration using ASPmT”. In: De-
sign, Automation and Test in Europe (DATE). Ed. by A.K.
Coskun. Dresden, Germany: IEEE Computer Society, 2018, pp. 257—
260.

P. Obermeier, J. Romero, and T. Schaub. “Multi-Shot Stream
Reasoning in Answer Set Programming: A Preliminary Report”.
In: Open J. Databases (OJDB) 6.1 (2019), pp. 33-38.

1. Parberry. “The Pairwise Sorting Network”. In: Parallel Pro-
cessing Letters (PPL) 2.2-3 (1992), pp. 205-211.

D. Pearce. “A New Logical Characterisation of Stable Models
and Answer Sets”. In: International Workshop on Non-monotonic
Extensions of Logic Programming. Ed. by J. Dix, L.M. Pereira,
and T.C. Przymusinski. Vol. 1216. LNCS. Bad Honnef, Ger-
many: Springer, 1996, pp. 57-70.

M.S. Pinsker. “On the Complexity of a Concentrator”. In: Inter-
national Teletraffic Conference (ITC). Stockholm, Sweden, 1973,
318:1-318:4.

G.D. Plotkin. A Structural Approach to Operational Semantics.
Tech. rep. FN-19. Arhus, Denmark: DAIMI, 1981.

109

Bibliography

[Przy88]

[PnSh91]

[QuWi05]

[Reit01]

[RFMR18]

[ScBS04b)

[SNLG18]

[Schn09]

[ScDal8]

[ScLY02]

T.C. Przymusinski. “On the Declarative Semantics of Deductive
Databases and Logic Programs”. In: Foundations of Deductive
Databases and Logic Programming. San Francisco, CA, USA:
Morgan Kaufmann, 1988, pp. 193-216.

A. Pnueli and M. Shalev. “What is in a step: On the semantics
of statecharts”. In: Theoretical Aspects of Computer Software
(TACS). Ed. by T. Ito and A.R. Meyer. Vol. 526. LNCS. Sendai,
Japan: Springer, 1991, pp. 244-264.

B.R. Quinton and S.J.E. Wilton. “Concentrator Access Net-
works for Programmable Logic Cores on SoCs”. In: International
Symposium on Circuits and Systems (ISCAS). Vol. 1. Kobe,
Japan: IEEE Computer Society, 2005, pp. 45—48.

R. Reiter. Knowledge in Action: Logical Foundations for Speci-
fying and Implementing Dynamical Systems. MIT press, 2001.

T. Ribeiro, M. Folschette, M. Magnin, O. Roux, and K. Inoue.
“Learning Dynamics with Synchronous, Asynchronous and Gen-
eral Semantics”. In: International Conference on Inductive Logic
Programming (ILP). Ed. by F. Riguzzi, E. Bellodi, and R. Zese.
Vol. 11105. LNCS. Ferrara, Italy: Springer, 2018, pp. 118-140.

K. Schneider, J. Brandt, and T. Schiile. “Causality Analysis of
Synchronous Programs with Delayed Actions”. In: Compilers,
Architecture, and Synthesis for Embedded Systems (CASES).
Washington, District of Columbia, USA: ACM, 2004, pp. 179—
189.

B. Schéapers, T. Niemueller, G. Lakemeyer, M. Gebser, and T.
Schaub. “ASP-Based Time-Bounded Planning for Logistics Robots”.
In: International Conference on Automated Planning and Schedul-
ing (ICAPS). Ed. by S. de Weerdt, S. Koenig, G. Roger, and
M.T.J. Spaan. Vol. 28. 1. Delft, The Netherlands: AAAT Press,
2018, pp. 509-517.

K. Schneider. The Synchronous Programming Language Quartz.
Internal Report 375. Kaiserslautern, Germany: Department of
Computer Science, University of Kaiserslautern, 2009.

K. Schneider and M. Dahlem. “Are Synchronous Programs Logic
Programs?” In: Principled Software Development. Ed. by P. Miiller
and I. Schéfer. Springer Nature Switzerland, 2018, pp. 251-266.

H. Schmit, B. Levine, and B. Ylvisaker. “Queue machines: hard-
ware compilation in hardware”. In: Field-Programmable Cus-
tom Computing Machines (FCCM). Ed. by J. Arnold and K.L.
Pocek. Napa, California, USA: IEEE Computer Society, 2002,
pp. 152-160.

110

Bibliography

[ScWe01]

[SaZa90]

[Tarsb5]

[EmKo76]

[GeRS91]

[YBFH16]

K. Schneider and M. Wenz. “A new method for compiling schizophrenic
synchronous programs”. In: Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES). Atlanta, Georgia, USA:
ACM, 2001, pp. 49-58.

D. Sacca and C. Zaniolo. “Stable Models and Non-Determinism
in Logic Programs with Negation”. In: Principles of Database
Systems (PODS). Ed. by D.J. Rosenkrantz and Y. Sagiv. Nashville,
Tennessee, USA: ACM, 1990, pp. 205-217.

A. Tarski. “A Lattice-Theoretical Fixpoint Theorem and its Ap-
plications”. In: Pacific Journal of Mathematics 5.2 (1955), pp. 285—
309.

M. van Emden and R. Kowalski. “The semantics of predicate
logic as a programming language” . In: Journal of the ACM (JACM)
23.4 (1976), pp. 733-742.

A. van Gelder, K.A. Ross, and J.S. Schlipf. “The Well-Founded
Semantics for General Logic Programs”. In: Journal of the ACM
(JACM) 38.3 (1991), pp. 620-650.

7. Yang, J.-P. Bodeveix, M. Filali, K. Hu, Y. Zhao, and D. Ma.
“Towards a verified compiler prototype for the synchronous lan-
guage SIGNAL”. In: Frontiers of Computer Science 10.1 (2016),
pp. 37-53.

111

Appendix

Curriculum Vitae

Berufserfahrung
seit 2014 Software Engineer Insiders Technologies GmbH Kaiserslautern

Abteilung MOBILE

2013—2014 Studentische Hilfskraft DFKI GmbH Standort Kaiserslautern
Forschungsgruppe Eingebettete Intelligenz

20112012 Studentische Hilfskraft TU Kaiserslautern
Zentrale Einrichtung Allgemeiner Hochschulsport

20102011 Studentische Hilfskraft TU Kaiserslautern

Fachbereich Informatik, Arbeitsgruppe Bildverstehen und Mustererkennung

Akademische Ausbildung

2012-2014

Master of Science in Informatik TU Kaiserslautern

Masterarbeit: Interactive Verification of Synchronous Systems in HOL

2012-2013 Auslandssemester in Schweden Lulea University of Technology
2008-2012 Bachelor of Science Informatik TU Kaiserslautern
Bachelorarbeit: Systematische Beschreibung und Werkzeugunterstitzung
textueller Produktlinien
Schulausbildung

2004-2007 Abitur Albert-Schweitzer-Gymnasium, Kaiserslautern

113

	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 Semantics of Logic Programs: From Horn Models to Stable Models
	2.1.1 Horn Clauses
	Introducing Negation and Completion of Horn Clauses

	2.1.2 Fitting`s Fixpoint Semantics
	2.1.3 Well-founded Semantics
	2.1.4 Beyond Well-founded Semantics: Stable Models

	2.2 Stable Model Semantics in Practice: Answer Set Programming
	2.3 Semantics of Synchronous Languages
	2.3.1 Program Evaluation with Fitting`s Fixpoint Semantics

	3 Extending Semantics of Synchronous Programs
	3.1 Well-founded Semantics
	3.1.1 Extension of the SOS Rules
	Example Evaluation with Current SOS Rules
	Changing the Interpretation
	Example Evaluation with the Updated SOS Rules
	Some Further Notes and Lemmas

	3.1.2 Direct Inclusion Into Synchronous Guarded Actions
	Evaluation

	3.1.3 Proofs
	Direct Influence of the Unfounded Set
	Indirect/Subsequent Influence of the Unfounded Set

	3.2 Stable Model Semantics
	3.2.1 Direct Inclusion Into Quartz
	3.2.2 Quartz as Frontend for Answer Set Programming
	Translation to Default ASP-Core-2 Language
	Evaluation
	Full Simulation

	4 Optimized System Design with Stable Models
	4.1 Synthesis of Optimal Interconnection Networks
	4.1.1 Experimental Results

	4.2 Optimal Code Generation for SCAD
	4.2.1 aif2lp
	4.2.2 lp2mc
	4.2.3 Experimental Results

	4.3 Enhancing Synchronous Programs by Stable Models
	4.3.1 Disjunctive Programming
	4.3.2 Constraints
	4.3.3 Choices
	4.3.4 Aggregates
	4.3.5 Optimizations

	5 Conclusions
	Bibliography
	A Curriculum Vitae

