
Property-Driven Design
A new approach for hardware design

Vom Fachbereich Elektrotechnik und Informationstechnik

der Technische Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurswissenschaften (Dr.-Ing.)

genehmigte Dissertation von

Tobias Ludwig
geboren in Merzig, Deutschland

D 386

Datum der mündlichen Prüfung: 16.07.21

Dekan des Fachbereichs: Prof. Dr.-Ing. Ralph Urbansky

Vorsitzender der Prüfungskommission: Prof. Dipl.-Ing. Dr. Gehard Fohler

Gutachter: Prof. Dr.-Ing. Wolfgang Kunz

Prof. Dr.-Ing. Ulrich Heinkel

2

Acknowledgments

This thesis is the result of several years of research carried out while I have been part of
the “electronic design automation group” at the University of Kaiserslautern. This work
benefits from the close collaboration of our group during this period. Furthermore I’d
like to thank all my student and research assistants that contributed to my work within
the recent years.

Most important, I would like to thank my supervisors, Prof. Wolfgang Kunz and Prof.
Dominik Stoffel, who have made my research possible. Thank you for all the good advice,
many hours in the seminar room and the possibilities I had during my time as a PhD. I
am really glad that I had the chance to work with you.

Specifically, I would like to mention: Joakim Urdahl for supporting me as a colleague,
mentor and friend; Nawras Altaleb, Ibrahim Alkoudsi, Lucas Deutschmann, Alex Wezel
and Paulius Morkunas for their major code contributions; Michael Schwarz for the reviews,
as colleague and friend.
Many thanks also to Prof. Ulrich Heinkel for his in-depth analysis in the review of this
thesis and to Prof. Gerhard Fohler for chairing the examination procedures.

To all my friends that where always ready to support me and listen to my ideas and
dreams. A special thanks goes to Frank and Joachim for following along the same path
with me since school and to Lea for always supporting me.
To my parents who made this entire journey possible with their endless support during
all these years.

To everyone that made my time in Kaiserslautern cheerful.

Kaiserslautern, 30.12. 2020
Tobias Ludwig

3

4

Contents

Acknowledgments 2

1 Introduction 7

2 Background 11
2.1 Electronic System Level . 11

2.1.1 Modeling Systems . 12
2.1.2 SystemC . 14
2.1.3 Design Flows . 16
2.1.4 Semantic gap . 17

2.2 Model Checking . 19
2.2.1 Sequential model . 19
2.2.2 Linear Temporal Logic . 22
2.2.3 IPC . 23

2.3 Complete Interval Property Checking . 25
2.3.1 Terminology . 25
2.3.2 Completeness Criterion . 27
2.3.3 Completeness Check . 28
2.3.4 Case Split Test . 29
2.3.5 Successor Test . 30
2.3.6 Determination Test . 31
2.3.7 Reset Test . 32

2.4 Satisfiability Modulo Theories . 32
2.5 S2QED . 34
2.6 Publication List . 35
2.7 Related work . 36

3 Property Driven Development 39

4 Path Predicate Abstraction 43
4.1 PPA for graphs . 44
4.2 PPA for FSM . 45
4.3 Compositional PPA . 49

4.3.1 Communication schemes in digital hardware 52
4.3.2 Modeling Communication . 52
4.3.3 Synchronization and wait-stuttering 57
4.3.4 Model checking on the abstract system 61

5

4.3.5 Data Path Abstraction . 63
4.4 SystemC-PPA . 63

4.4.1 Interfaces . 66
4.4.2 Components of SystemC-PPA . 68

5 DeSCAM approach 71
5.1 From ESL to PPA . 72
5.2 From PPA to Properties . 73
5.3 From Properties to RTL . 76

5.3.1 Macros . 76
5.3.2 RTL Interfaces . 78
5.3.3 RTL Skeleton . 81
5.3.4 Refinement . 82
5.3.5 Implementation . 84

5.4 Programming view of the Abstract Model 86
5.5 Optimizations . 90

6 Extension for Pipelining 97
6.1 The need for an extension . 97
6.2 PDD-P explained . 100
6.3 Details of PDD-P . 102

6.3.1 Insert Stage . 104
6.3.2 PDD-P engine . 105
6.3.3 Properties . 106
6.3.4 Wait Properties . 110
6.3.5 Flushing . 112
6.3.6 Limitations . 113

7 Experimental Results 115
7.1 Case Study: RISC-V Processors . 115
7.2 Case Study: SONET/SDH Framer by Alcatel-Lucent 120
7.3 Case Study: Industrial FPI Bus . 121
7.4 Case Study: Wishbone Bus . 123
7.5 Case Study: PDD-P flow . 124

7.5.1 Processor . 124
7.5.2 AHB . 125

8 Conclusion and future work 127

9 Summary 129

10 Deutsche Kurzfassung: Eigenschaftsgetriebene Hardwareentwicklung 131

6

Chapter 1

Introduction

Today, the Register Transfer Level (RTL) is still the central anchor point in most method-
ologies for designing the hardware of a System-on-Chip (SoC) or Embedded System. Af-
ter decades of evolutionary progress, industrial design environments for hardware have
reached a high level of sophistication. Yet — despite all the progress related to design at
the Electronic System Level (ESL) with new system-level languages and design environ-
ments integrating virtual prototypes and advanced verification techniques — the actual
conceptual process of RTL design based on languages like VHDL and Verilog has not
much changed over the last decades.

Although High-Level Synthesis (HLS) has evolved to be applicable in certain domains,
such as implementations of signal processing algorithms, the bulk of RTL designs in indus-
try is still created manually, starting from informal specifications such as natural language
descriptions, conceptual diagrams of finite state machines (FSMs), timing diagrams, flow
charts et cetera. In almost all practical settings, RTL descriptions are the reference
point for verification. Even in HLS-based flows, usually, the RTL description remains the
“golden model” for sign-off. System-level models, on the other hand, are usually consid-
ered “prototypes” employed for early assessments of functional and non-functional design
goals. The extent to which these prototypes really reflect the characteristics of the final
RTL implementation, however, is often difficult to determine. In fact, this disconnection
between System Level and RTL implementation is one of the main risk factors in today’s
industrial design flows.

In the scope of this thesis, we work towards a new approach for RTL design, start-
ing from a system-level description. The proposed methodology is based on a manual
design process and does not impose any restrictions on designers w.r.t. the developed
implementations. However, new tool support is provided, based on formal techniques for
verification and abstraction, ensuring that both the hardware IP and the verification IP
are developed in a systematic and compositional manner. The most important benefit of
the proposed method is that a formally well-defined relationship is established between
the RTL description and the system-level model used as the starting point for our method.
This aspect is key. It allows us to safely deviate from today’s design practices and to move
towards employing abstract system models as golden design models.

The proposed approach called “Property First Hardware Design” or “Property-Driven
Hardware Design (PDD)” takes inspiration from software engineering and widely used
practices in software development like “Test First Development” or “Test-Driven Devel-

7

opment (TDD)”” [1]. The TDD paradigm deviates from the classical V-model for software
development and is based on the conviction that the actual software development process
is positively affected by creating software tests prior to writing the actual program code.
Such gray-box tests have shown to lead to higher fault coverage when compared to the
classical white-box tests of the V-model.

Transferring this idea to the hardware domain suggests a methodology that integrates
verification steps early and systematically into the design process. The role of software
tests in TDD can be assumed in hardware design by properties or assertions formulated
in property languages like the Property Specification Language (PSL) or System Verilog
Assertions (SVA). A distinct feature of our methodology – and under this aspect the anal-
ogy with the software domain is no longer valid – is the systematic creation of properties
for which abstract descriptions are automatically generated from the design’s system-level
model. Adapting this to the special needs of RTL hardware design and running modern
formal verification techniques in the background of our design environment results in a
systematic and intuitive design procedure (without restricting the designer’s freedom).
Finally, this allows for formal statements about the functional correctness of the obtained
RTL implementation.

There is a key attribute to the methodology that is formally guaranteed by the specific
way the properties are initially generated and later refined: when all created properties
are proven on the developed design it can be concluded with mathematical rigor that the
RTL design represents a correct refinement of the system-level description from which
the properties were generated. This is ensured by a well-defined formal relationship es-
tablished between the abstract model and its concrete implementation, called Path Pred-
icate Abstraction (PPA) [2]. Conversely, this means that after successfully completing
the design process the system-level model represents a formally sound abstraction of the
implementation.

Establishing system-level models as PPAs of RTL designs can change the role of
system-level models fundamentally: rather than being “prototypes” and having only a
loosely defined relationship with the implementation they may now be trusted as “de-
sign models”, just like RTL design models are trusted to be sound abstractions of the
underlying gate level (by merit of formal equivalence checking). Based on Path Predi-
cate Abstraction (PPA), the theoretical framework we provide establishes a formal link
between the abstract system model and the concrete RTL design. In our methodology,
the semantics of the system model is defined by compositional PPA.

We show how this can be used in a realistic design methodology based on standard
languages. This is subject of Chap. 3. We introduce a subset of SystemC called SystemC-
PPA for describing system-level models and present the PDD flow in which abstract
property descriptions are automatically generated from SystemC-PPA and subsequently
refined during the design process. A major contribution of this work is the open-source
tool DeSCAM that reads the SystemC-PPA description and automatically generates the
properties. In Chap. 5 we introduce the tool and describe how the properties are generated
correct-by-construction. A challenging task is to implement a pipelined design from an
abstract model. We develop a special methodology for this problem in Chap. 6. It helps
the designer to ensure a sound implementation and to solve possible hazards.

In Chap. 7 we report on case studies conducted for several industrial and open-source
designs. Our experimental results show that fully verified RTL designs can be created by

8

PDD as formally well-defined refinements of system-level descriptions. All design steps are
based on standard languages and only employ state-of-the-art formal property checking,
as it is commercially available. The manual effort for design and verification is reduced
substantially.

9

10

Chapter 2

Background

This section presents general background and notations that are relevant for the un-
derstanding of later chapters. Sec 2.1 elaborates on the Electronic System Level. We
introduce formal techniques in Sec 2.2 and Sec 2.3, that are used to bridge the semantic
gap and enable a new hardware design methodology, as presented in Chap. 3. Finally,
Sec. 2.4 briefly reviews SMT solving (SMT = Satisfiability Modulo Theories) which is
a class of decision procedures that are the basis for code optimizations in our hardware
design flow.

2.1 Electronic System Level

The complexity of today’s circuits poses great challenges for design and verification pro-
ductivity, in particular at the Register-Transfer Level (RTL). Technology enhancements
allow us to implement more complex designs. However, the current design and verification
methodologies do not scale with the growing design complexity. This is mainly due to the
lack of new abstraction levels above the RTL, preventing an increased productivity. The
Electronic System Level (ESL) aims to establish a new abstraction level above the RTL.
In contrast to RTL and lower abstraction levels (gate level, switch level, transistor level
etc.) the ESL, as of today, is not clearly defined. To date, there is no common, agreed
definition of the ESL.

Modeling systems at the ESL before actually implementing them pursues the goal
of reducing time to market by arriving at a feasible system architecture faster. [3] de-
scribe ESL design goals as follows: “The utilization of appropriate abstractions in order
to increase comprehension about a system, and to enhance the probability of a success-
ful implementation of functionality in a cost-effective manner, while meeting necessary
constraints.”

An ESL model captures the desired functionality abstractly, more or less independent
of the implementation. The designer chooses the required amount of detail depending
on the system-level behavior and functionality that is modeled. We call any model that
is more abstract than an (RTL) implementation an ESL model. An ESL model may
describe a simple model of a bus system or an abstract model of a System-on-Chip (SoC).
The model of the bus aims to model a correct arbitration and routing of messages by
ensuring a correct implementation of the protocol. The model of the SoC is designed
to test firmware and inter-module communication. The main difference between these

11

models is not only the scope of the model, it’s more in the modeled amount of detail.
The model of the SoC abstracts anything that is not required to develop the firmware.
For example, the bus connecting the components of the SoC does not model the bit- and
timing-accurate protocols and implements only the routing of the messages. The bus
and the SoC model focus on different aspects and describe the functionality on different
abstraction levels. It is the task of the designer to choose the appropriate abstraction
level for his purpose.

We describe in Sec 2.1.1 how systems are modeled at the ESL and introduce the core
concepts of system-level modeling, such as transaction-level modeling. In practice, the
C++ library SystemC is is the most common way of modeling the ESL. We cover the core
ideas of SystemC briefly in Sec. 2.1.2. For design exploration and virtual prototyping,
ESL modeling is already widely adopted in the industry. Sec. 2.1.3 provides an overview
of ESL design methodologies currently used in industrial practice. The ESL is, however,
barely used as the golden design model for the hardware design process. This is due to a
semantic gap, as explained in Sec. 2.1.4.

2.1.1 Modeling Systems

In this section, we explain how systems are modeled at the ESL. As opposed to the
RTL, ESL models may exist at various levels of abstraction, even for the same design.
Depending on the application domain, the understanding of what is specified by the
system level, may vary. In order to have a common understanding, in the context of this
work, we provide a definition of our understanding of the system level.

Definition 1. (System-level model). A system-level model is composed of modules that
communicate with each other. The model may be executable, i.e., it may be simulated
in order to analyze its behavior. Communication is modeled on the transaction level
as blocking message passing. The behavior is described as a time-abstract, word-level
description and the behavior of each module is described as an FSM. The finite state
machines of the modules send each other messages based on synchronization events.

The outputs are defined as a function of the current state and inputs. The behavior of the
entire system level is defined by an FSM that results from an asynchronous composition
of the individual FSMs (cf. Def. 23).

As mentioned in Def. 1, the behavior of each module is described in terms of a Finite
State Machine (FSM). The asynchronous composition of the FSM allows for a modeling
of all interleavings of messages being passed between the modules, and ensures capturing
the full behavior of the system-level model. Due to the untimed behavior of the system-
level model, each module is allowed to run at its own speed, in the context of system-level
modeling this is also called temporal decoupling. In order to exchange a message between
two modules they need to synchronize through a handshake. In the executable model this
handshake is implemented with events.

The system-level model, as defined in Def 1, is also referred as transaction-level model
and constructing executable models at the transaction level is denoted as Transaction-
level Modeling (TLM). This term was coined in the early 2000s by the Electronic Design
Automation (EDA) companies. TLM aims to model the communication components of

12

the system, especially the bus systems. The core idea of TLM is to separate communica-
tion from computation [4].

For example, consider modeling a synchronous bus system at the RTL. This is done
by modeling the different signals (e.g., clock, control, address or data) and the respective
time behavior of the signals, as defined by the bus protocol. As a consequence, the RTL
model is cycle-accurate and bit-accurate. The transaction-level model abstracts from
implementation details such as how control and data are represented by logic signals and
how these signals are timed according to the specified bus protocol. It instead models the
bus communication in terms of abstract data transfers called transactions.

As noted, the core idea of TLM is to separate communication and computation. The
bus is abstracted to a so called Channel, i.e., a single module specifying the routing and
arbitration between communicating components. In contrast to the RTL, the time and
pin-accurate protocol is abstracted and sending and receiving is modeled by a distinct
event-based handshaking. This results in a vast increase of simulation speed compared
to the RTL model.

In TLM, the computational part responsible for data processing can be described
without the micro-architecture of an RTL model. Instead, the behavior of the component
is described by an algorithm, analogous to a software function. This data processing
model is called an algorithmic model.

The term TLM is misleading, because, as opposed to the RTL, the transaction level
does not describe a distinct level of abstraction. The abstraction of the RTL has a
clear semantics. It describes the desired behavior by means of register-transfers. The
transaction level lacks this clear semantics. For example, the communication can be
modeled time- and pin abstract and the computation pin- and cycle-accurate, and vice
versa. This results in different possible model abstractions with different semantics. In
practice, every model that is more abstract than the RTL is considered to be a transaction-
level model and time behavior is modeled at various accuracy levels. Hence, the notion
of a “level” does not fully apply and TLM is considered more a modeling technique. In
TLM, the level of abstraction is dependent on the use case.

A B

C E

FD
Cycle-
timed

Approximate-
timed

Untimed

Untimed Approximate-
timed

Cycle-
timed

A: Specification model
B: Component-assembly model
C: Bus-arbitration model
D: Bus-functional model
E Cycle-accurate computation model
F: Implementation model

Communication

Computation

Figure 2.1: Abstracting time in TLM [4]

Fig. 2.1 shows different levels of abstraction when modeling time in TLM: Untimed,

13

Approximately-timed, and Cycle-timed. An untimed model describes the behavior with-
out any notion of time, whereas approximate-timed adds an estimated timing behavior
without the need to completely match with the real time behavior. The cycle-timed model
exhibits the exact timing behavior. We may describe computation and communication
with different notions of time. The untimed model is denoted as the Specification Model
and the cycle-timed is denoted as the implementation. The other models result from
combining different abstraction levels. For example, “E”in Fig. 2.1 is a model with a
cycle-accurate timing behavior for computation, i.e., all the clock events are simulated,
combined with approximately timed communication behavior.

According to Def. 1, we only consider the specification model when we talk about
system-level models. The definition also states that a system-level model has to be exe-
cutable. The industry standard for executable system-level designs is SystemC [5]. The
next section gives an overview on SystemC.

2.1.2 SystemC

In this section we briefly introduce the core concepts of SystemC. As mentioned in
Sec. 2.1.1, we consider system models described at different levels of abstraction. SystemC
is a software library implemented in C++ and allows to model any desired level of detail
as mentioned in Sec. 2.1. In the scope of this work, we are focusing on untimed system-
level models. We discuss only the relevant components for modeling on this abstraction
level. For a more detailed introduction on SystemC we would like to refer to [6] or [7].

The development of SystemC started in the late 90s, with preliminary efforts from
both, academia and EDA companies (e.g., SpeC [8] and Handel-C[9]). In 1999 the Open
SystemC Initiative (OSCI) formed and started coordinating the development of SystemC.
Due to the participation of major EDA and semiconductor companies in the initiative,
SystemC quickly became the dominant language for describing system-level models. Ver-
sion 1.0 of SystemC was released in 2000 and it primarily rebuilt the functionalities of
RTL languages, to allow for fast RTL simulation by native execution rather than by a
simulation engine that interprets VHDL or Verilog like, e.g., ModelSim™ [10]. A SystemC
model is compiled together with a process scheduler and a simulation engine into an exe-
cutable simulation program for the host computer. Executing native code delivers higher
simulation performance compared to an interpreting simulator, and it also allows employ-
ing standard software debugging technology. Over time, SystemC has been continuously
extended with transaction-level features [4, 11] and version 2.0 was standardized by the
IEEE [12] in 2005. The new version provides features that allow to abstract from certain
implementation details (e.g., timing) resulting in faster simulation models.

Figure 2.2: Structure of a SystemC TLM model

In SystemC, a C++ class hierarchy models the structural composition of modules and
their behavior into a system of concurrent processes. The SystemC library provides a

14

scheduler for simulating the concurrent execution of the processes. Fig. 2.2 provides an
overview of the structure of a SystemC model. The structure of the model is defined by
instantiating objects of the module class. The designer may add input / output ports by
instantiating a port object within the class. The modules can exchange messages between
each other by connecting the ports through channels. Channels are an object structure
specifically designed to connect ports and to specify a communication protocol.

For example, let us consider a channel implementing communication through a FIFO
buffer (FIFO = First In – First Out). A port connected to this channel can write (read)
a value to the FIFO, if and only if the FIFO is not full (empty). Otherwise, the execution
of the module is blocked (resp. has to wait) until the FIFO is free.

The behavior (i.e., the FSM) of each module is specified by providing methods to the
module class. By using SystemC-specific macros within the constructor the method is
linked to the scheduler. When the binary is executed, the scheduler calls the methods
upon events and thereby models the behavior of the modules and the overall system.
Methods may alter state variables of the class or assign values to output ports. A method
that is registered to the scheduler is called a process. There are different types of processes
in SystemC, which differ semantically in the concepts they intend to model. In this scope
we are only going to use a thread process, that specifies the desired behavior within an
infinite while(true) loop.

The provided scheduler implements an event-driven simulation algorithm, concur-
rently executing the processes, in order to model asynchronous behavior. The correct
asynchronous execution of the processes is ensured by the simulation algorithm. The core
idea of the scheduler is the following: At the start of the program all threads are marked
as “pending” for execution. The scheduler randomly chooses a thread that is marked
as pending and executes it until it is blocked by a communication request. In this case,
the thread is marked as “suspended” until the desired event occurs. Returning to the
example of the FIFO, a thread that writes to the FIFO is blocked, if the FIFO is full.
The thread is suspended until a notification from the FIFO is received. Upon notification,
the suspended thread is marked as “ready” for execution. After the scheduler executed
every thread marked as pending, all threads marked as ready are then again marked as
pending. The simulation continues until the simulation is stopped by the user or there is
no more thread marked as pending.

In practice, suspending threads is used to enforce a specific execution order of threads.
However, we assume an untimed asynchronous behavior and each thread may run at it’s
own speed. The threads only need to synchronize, if they want to exchange a message.
From a simulation point of view, the thread keeps the priority, i.e., it keeps executing, until
it communicates. Every communication results in an event based handshaking with the
communication partner and gives other threads the possibility to execute. For untimed
processes the execution order results from the handshaking of the processes. Hence, every
process may run at its own speed. In case of an approximate or cycle-accurate timing
model the execution order depends additionally on some notion of time. Processes may
execute after a specific number of clock ticks (as in hardware). Here, the progress of time
is modeled by events and a process is suspended until the desired number of cycles has
passed. However, because we are only interested in untimed models, we always consider
blocking behavior as related to communication.

In Chap. 3 we provide a basic example of a SystemC module. Later on, Sec. 4.4 intro-

15

duces SystemC-PPA, a subset of SystemC, used to efficiently model a system according to
Def. 1. In the following section we are going to explain how SystemC is used in industrial
practice.

2.1.3 Design Flows

In this section, we explain how the ESL and the language SystemC is currently used
in industrial design flows. There are two main use cases for ESL models: High Level
Synthesis (HLS) and Virtual Prototyping (VP). Furthermore, we will talk about the
current limitations of these flows, which are mostly related to the semantic gap.

Virtual Prototyping

In virtual prototyping the designer models the desired behavior of the system, e.g., an
SoC. There are two dominating use cases for virtual prototyping. By providing an early
prototype of the hardware, the respective software development can start before the actual
hardware is implemented. However, because the prototype is not used as a golden refer-
ence in the following hardware design process, the hardware model is rarely functionally
sound w.r.t. the resulting RTL implementation.

A second use case of a virtual prototype is design exploration. Here, different architec-
ture types, bus protocols and implementations of algorithms are explored and evaluated.
The goal is to estimate the resulting performance, throughput and power consumption
of the hardware design. Furthermore, within design exploration the task of partitioning
is performed. The designer decides which part of the functionality is implemented in
hardware and which part is implemented as software. The benefit of virtual prototyping,
compared to RTL, is that it allows for quick architectural changes.

High Level Synthesis (HLS)

Synthesis, in the domain of digital hardware, is, in the understanding of most people,
the process of translating an RTL model into a functionally equivalent gate-level model
or, respectively a gate-level model into a corresponding transistor-level model. With the
upcoming of the ESL and SystemC, noticeable effort has been put towards synthesizing
RTL from ESL descriptions. As of today, HLS is mostly used in the context of digital
signal processing in complex ASIC and FPGA designs. As described above, a core concept
of TLM is the separation of computation and communication. HLS synthesis tools are
strong in synthesizing the algorithmic descriptions into a digital design.

The algorithms are described and tested at the ESL. Most synthesis tools accept a
description as a function in a C style language. The function has to have a deterministic
and stateless behavior. The result must be a function of the provided parameters only, not
of the internal state. Such a function cannot describe an FSM. Using HLS in a top-down
design flow has two benefits: First, it allows for a very abstract, algorithmic description
without the need to worry about micro-architectural decisions (e.g., pipelining) or timing.
Second, the immensely increased simulation speed at the ESL allows for a more thorough
verification of the implemented algorithms compared to RTL simulation.

Besides functional design goals HLS tools are able to consider also non-functional
design goals such as timing, area and performance. In order to meet these goals, various

16

optimization strategies (e.g., loop unrolling, pipelining, rescheduling) can be applied.
The resulting RTL description behaves equivalently with respect to the I/O behavior of
the algorithm function. It is possible to use equivalence checking techniques to prove
equivalence between the algorithm and the resulting RTL implementation.

However, these tools are less suited for synthesizing state machines. When synthesizing
algorithms it is always possible to match up the I/O signals of the ESL and the RTL
models and thereby establish a sound relationship. This is, however, not possible for
FSMs and communication protocols. In this case, the RTL timing as well as the logic
signals are abstracted away at the ESL. A refinement step is required, specifying how
the abstract objects of the ESL are related to the generated RTL. This problem is called
semantic gap, which is discussed in more detail in Sec. 2.1.4.

To date, there is no commercially available technique to establish a sound relationship
between a TLM SystemC model and an RTL model. Within the scope of this work we
will use a technique, as presented in [13, 2] that allows to build such a sound relationship
for communication protocols and FSMs. In Chap. 4 we will discuss the theory of Path
Predicate Abstraction, as introduced in [13], that provides the means for building such a
relationship. In Chap. 3 we will show how this relationship can be established in practice.

2.1.4 Semantic gap

This section discusses the problem of the semantic gap between ESL and RTL in more
detail. In Fig. 2.3 the relationships between the different abstraction levels are illustrated.
A new abstraction level is established only, if it has a well defined (i.e., sound) relationship
with lower abstraction levels. If this is the case, the new abstraction level can be used
for design and verification. Otherwise, the abstract model lacks clear semantics w.r.t.
the physical circuit. The core idea of sound abstraction levels is that verification results
of a sub-circuit, obtained at a lower abstraction level, should not need to be verified
again at a higher abstraction levels. Let’s assume that there exists a verified transistor
implementation of an AND gate. At the gate level it is now possible to use the more
abstract AND gate for further design verification. There is no need to re-verify the
transistor implementation of the AND gate at the gate level. If there exists confidence in
the relationship between two abstraction levels then it is not necessary to use the lower
level for design sign-off.

As shown in Fig. 2.3, the lowest considered level is the transistor level. The transistor
level is simulated (e.g., with SPICE [14]), in order to build confidence that a transistor
netlist realizes the intended functionality correctly. Such netlists may describe a Boolean
operator (e.g., and or not) or a binary storage element (e.g., D-FlipFlop). At the gate level
an abstract representation of the operators and storage elements is used (e.g., AND-gate
or NOT-gate). There is no more need to model the behavior of the individual transistors.
Here, the sound relationship results from an exhaustive simulation at the transistor level.

The gate level is a netlist describing the actual Boolean representation of the circuit
or device. It consists of combinational blocks and storage elements in between. The gate
level can be seen as a structural implementation of Boolean formulae. The level above
the gate level is called the Register Transfer Level (RTL).

The RTL models the functional behavior of digital circuits. The main difference to the
gate level is that it allows to describe behavioral models. It relates well to the theoretical

17

Figure 2.3: Abstraction levels for circuit descriptions

model of a Finite State Machine (FSM). An FSM models the behavior only in terms of
output and register changes as functions of the input and state. The gate-level details,
i.e., how the change is realized by a combinational circuit, is abstracted away, to a large
extent.

In order to show that the RT level is sound w.r.t. the gate level a formal Equivalence
Check (EC) is used. The EC ensures that a gate-level netlist correctly implements the
desired functionality. This allows to abstract from gate-level details and use the more
abstract RTL description. Due to these methods, it is possible to show that RT-, gate-
and transistor-level behave equivalently for identical input sequences. We call this “the
chain of trust”, because designers trust the higher abstraction level to be suitable for
design and verification.

However, EC techniques cannot be employed to establish a sound ESL model, because
there is no notion of equivalence that can be easily applied in this context. This problem
is referred to as the “semantic gap”. As implied by the name, functional descriptions
at high levels of abstraction do not have a well defined semantics w.r.t. the RTL and,
as a result, to the physical circuits. However, the problem does not result from a lack
of standardization of ESL descriptions. It is a theoretical problem of describing a sound
relationship between the bit- and cycle-abstract ESL descriptions and the RTL.

A system engineer models large functional blocks as modules with event-driven com-
munication. This allows modeling the overall behavior of the system without the need to
worry about synchronization and details of any specific communication protocol. How-
ever, implementing such functionalities at the RT level requires an important refinement
step. This refinement step forces the engineer to make major RT design decisions such
as making area/performance trade-offs, selecting communication protocols, employing
pipelining, etc. An automated synthesis, as described in Sec. 2.1.3, is in most cases not
possible, or at least unwanted, because this takes away many of the RT design decisions.

A notion of equivalence, as defined for the RTL and gate level, does simply not apply
in case of the ESL and the RTL. Nevertheless, a formal relationship between these levels
is necessary to establish trust in the ESL and use it as the new abstraction level for design
sign-off. In [13],[2] and [15, 16] a new formalism has been developed, specifically tailored

18

for the purpose of describing such a relationship and, thereby, of closing the semantic gap.
This formalism is described in Chap. 4 and adapted in the scope of this work in order to
fit a new top-down design flow called Property-Driven Development (PDD).

2.2 Model Checking

Model checking, also referred as property checking, aims to formally prove or disprove,
with fully automatic methods, whether a digital design fulfills a specific property. The
behavior of the design is formalized by a sequential model and the desired property is
formalized with a temporal logic expression. The task of a model checker is to prove
that the specified property holds on the design. As opposed to simulation, the proof
mechanism is based on mathematical methods and the model checker does not apply
stimuli and assert responses. Instead, the design model and the property together form
a computational verification model and the result is computed by an algorithm.

Model checking allows to verify hardware (or software) with tools providing front-
ends for common hardware description languages (e.g., VHDL and Verilog) or common
software programming languages. The properties are formulated in specific property lan-
guages such as Property Specification Language (PSL) [17] and System Verilog Assertions
(SVA) [18].

First, we explain how digital circuits are formalized as sequential models by intro-
ducing two different automata formalisms: Finite State Machines and Kripke Models in
Sec. 2.2.1. The desired properties are formulated by a specific form of temporal logic
expression, as explained in Sec. 2.2.2. There are different model checking techniques, of
which, within the scope of this work, interval property checking plays an important role.
We explain the idea of this technique in Sec. 2.2.3.

2.2.1 Sequential model

In the following, we explain how the behavior of digital circuits can be formalized by
formal, sequential models. Digital circuits are composed of storage elements and combi-
national blocks. The combinational behavior of the circuit can be described by Boolean
formulas. However, storage elements cannot be represented by Boolean logic. Instead,
various formalisms for automata are used, also known as state machines or transition
systems.

These automata, represent the value of the storage elements by a state and are of-
ten visualized as a state transition graph (STG), a directed graph with a node for each
state, with an edge for each transition, and with a labeling dependent on the specifics
of the automaton formalism under consideration. The terminology used in graph theory
also partly applies in the context of automata. The reachable states are states that are
reachable by a path starting at the initial state. The sequential depth is the length of the
longest cycle-free path from the initial state to any reachable state.

Finite State Machine

The digital behavior of an electronic circuit can be described by a discrete and deter-
ministic Finite State Machine (FSM). In the scope of this work we are using Mealy-type

19

FSMs. Moore-type FSMs only differ in the definition of the output function λ, which for
Moore-type FSMs is a function of only the set of states, i.e., λ : S 7→ Y .

Definition 2 (Finite State Machine). A deterministic Finite State Machine (FSM) is a
6-tuple M = (S, I,X, Y, δ, λ) with:

• a finite set of states S,

• a non-empty set of initial states I ⊆ S,

• an input alphabet X (a finite set of input values),

• an output alphabet Y (a finite set of output values),

• a transition function δ : S ×X 7→ S,

• and an output function λ : S ×X 7→ Y .

Sequential circuit descriptions, e.g., RTL descriptions, can be interpreted as an FSM
where the set of states, the input alphabet, and the output alphabet are encoded by
vectors of Boolean values. The transition function, δ, and the output function, λ, are
realized in the circuitry as Boolean operations on these vectors.

Definition 3 (Encoded FSM). An encoded FSM is an FSM, M = (S, I,X, Y, δ, λ), where:

• The state set S is an encoding over a vector V of Boolean variables referred to as
state variables, V = 〈v1, v2, . . . , vn〉.

• The input alphabet X is an encoding over a vector of Boolean variables referred to
as inputs, X = 〈i1, i2, . . . , im〉.

• The output alphabet Y is an encoding over a vector of Boolean variables referred to
as outputs, Y = 〈o1, o2, . . . , ok〉.

• The transition function δ = 〈δ1, δ2, . . . , δn〉 is a vector of Boolean functions, where
δj is a next-state function for the state variable vj.

• The output function λ = 〈λ1, λ2, . . . , λk〉 is a vector of Boolean functions, where λj
is the output function for the output oj.

It follows that for an encoded FSM each unique value of the state vector, input vector
and output vector correspond, respectively, to a state, an input symbol and an output
symbol. Note that an encoded FSM will have 2n states (and 2m input symbols and 2k

output symbols). However, not all of these states are necessarily reachable from an initial
state. Finding and representing the set of actually reachable states is one of the main
concerns when applying formal methods.

20

Kripke Model

In this section we introduce Kripke models, an automaton formalism widely used in
computer science. It is used, e.g., for defining temporal logic languages, as introduced
in Sec. 2.2.2. In the scope of this work, it is also used in Chap. 4 to establish a sound
relationship between ESL and RTL.

Definition 4 (Kripke Model). A Kripke model is the quintuple K = (S, I, R,A, L) with:

• a finite set of states S,

• a non-empty set of initial states I ⊆ S,

• a left-total transition relation R ⊆ S × S,

• a set of Boolean atomic formulas A,

• and a valuation function L : A 7→ 2S.

Note that no input or output is defined for a Kripke model. Instead, a valuation
function (also referred to as a labeling function) is defined which gives each state a val-
uation (truth value) to the set of atomic formulas. In a state s ∈ S the atomic formula
a ∈ A has the value true if s ∈ L(a) and the value false if not. Two Kripke models are
sequentially equivalent if any of the initialized paths in one model produces a sequence
of labels/valuations which can also be produced by an initialized path of the other, and
vice versa.

A Kripke model can be derived from an FSM, and thereby also from an electronic
circuit. Let M = (SM , IM , XM , YM , δM , λM) be a Mealy-type FSM. Then, a derived
Kripke model K has the following state transition behavior.

• Set of states: S ⊆ SM ×XM × YM :
S = {(sM , xM , yM) | yM = λ(sM , xM)}

• Set of initial states: I ⊆ IM ×XM × YM :
I = {(sM , xM , yM) | sM ∈ IM ∧ yM = λ(sM , xM)}

• Transition relation: R = {((sM , xM , yM), (s′M , x
′
M , y

′
M)) |

s′M = δM(sM , xM) ∧ y′M = λM(sM , xM)}

Note that the deterministic behavior of an FSM, due to the transition function δ, is
reflected in the Kripke model by the fact that every state, (sM , xM , yM), has only transi-
tions to next states with a unique FSM state component s′M ; however, it has transitions
to all states with that FSM state component s′M , i.e., with any input component x′M .

The atomic formulas A and the labeling function L of the derived Kripke model need
to be chosen such that the properties we would like to prove on the model can actually
be formulated. In principle, all states, inputs and outputs of the original FSM can be
distinguished by the labeling function of the Kripke model and thus can be reasoned over.

21

2.2.2 Linear Temporal Logic

Temporal logic languages allow us to reason over logical properties for the sequential
behavior of automata. In practice, standardized languages such Property Specification
Language (PSL) [17] and SystemVerilog Assertions (SVA) [18] are used to formalize tem-
poral logic. They provide an extended syntax for describing temporal logic expressions
and they can be mapped to formal temporal logic languages, as presented here.

In this section, we introduce the language Linear Temporal Logic (LTL), as proposed
in [19]. There are other forms of temporal logic such as Computation Tree Logic (CTL) [20]
and CTL* [13]. These languages and the according model checking techniques, however,
are not required in the scope of this work.

LTL extends the set of Boolean logic operators by a set of temporal operators: X
(“next”), G (“globally”), F (“finally”), U (“until”), W (“weak until”), R (“release”), to
express logical properties quantified over time. LTL formulas describe a set of paths in
the considered Kripke model. If an LTL formula is satisfied in all paths starting from a
specific state, we may say that an LTL formula holds for this state.

Definition 5 (LTL Syntax). The legal syntax of LTL is recursively defined by:

1. Every Boolean atomic formula, a ∈ A is an LTL formula, φ.

2. If φ1 and φ2 are LTL formulas then: ¬φ1, φ1∨φ2, Xφ1, Gφ1, Fφ1, (φ1Uφ2), (φ1Wφ2),
(φ1Rφ2) are also LTL formulas. (∧, true , false can be expressed using ¬ and ∨.

Definition 6 (LTL Semantics). For a considered Kripke model, let φ1, and φ2 be LTL
formulas, πi = (si, si+1, . . .) be an infinite path from si, π |= φ mean that the LTL formula
φ is satisfied by the path π.

• πi |= a⇐⇒ si ∈ L(a)

• πi |= ¬φ1 ⇐⇒ πi 6|= φ1

• πi |= φ1 ∨ φ2 ⇐⇒ (πi |= φ1) or (πi |= φ2)

• πi |= Xφ1 ⇐⇒ πi+1 |= φ1

• πi |= (φ1Uφ2) ⇐⇒ there exists j ≥ i such that πj |= φ2 and for all i ≤ k < j,
πk |= φ1

• Fφ1 ≡ trueUφ1

• Gφ1 ≡ ¬(F¬φ1)

• (φ1Wφ2) ≡ (φ1Uφ2) ∨ Gφ1

• (φ1Rφ2) ≡ φ2W (φ2 ∧ φ1)

22

2.2.3 IPC

In this section we introduce Interval Property Checking (IPC), as proposed in [21].
It is a SAT-based model checking technique, rooted in the industrial developments of
the 1990s. With this model checking technique, it is possible to produce globally valid,
unbounded proofs. It uses Kripke models as the sequential model and the desired property
is formulated by a restricted form of LTL formulas (cf. Sec. 2.2.2) known as interval
properties. An interval property describes behavior over a finite time interval and the
temporal logic expression is formulated in form of an implication.

Definition 7 (Interval Property). An interval property φ is an LTL formula of the form
G (A→ C) where both sub-formulas A and C, referred to as assumption and commitment,
respectively, describe behavior over a finite time, i.e., the only temporal operator that may
be used is the next operator, X.

We further refer to interval properties as operation properties, because in practice they
are often used to specify “operations” of the model under consideration. We provide a
formal introduction of operations in Sec. 4.2.

The computational model for IPC is related to Bounded Model Checking (BMC) [22].
In BMC properties are formulated from a specific starting state and are restricted to
describe behavior over a bounded time interval. Here, the sequential model, can be
mapped to Boolean logic by “unrolling” it over a finite time window. The inputs of the
circuit are left as free input to the SAT problem.

However, in order to have an unbounded proof that is not restricted to a certain period
of time, the unrolled model has to cover the entire reachable state space. This can be
done by unrolling the model from the initial state with a period greater than or equal
to the sequential depth of the circuit. This is, in most cases, not feasible due to the
computational complexity of the SAT problem as well as the complexity of calculating
the sequential depth in the first place. In a nutshell, BMC gives bounded proves for
properties describing a finite time interval.

The computational model for IPC is, with one important exception, the same as for
BMC. The difference is that in IPC no assumption is made about the starting state,
i.e., the starting state is left as a free input in the SAT problem. In other words, IPC
assumes a symbolic initial state. This is why the properties proven on this model are valid
for an arbitrary concrete starting state. This is why IPC provides unbounded proofs for
properties describing a finite time interval.

The proof computation for a property, φ, is illustrated in Fig. 2.4. Property φ expresses
an interval property over the finite interval of three clock periods. It uses a nested next
operator X at most three times.

The combinational logic is unrolled three times and the starting state, st and the
input in each clock period, xt, xt+1, and xt+2 are left as free input with respect to the
assumption A. Every value that is not a contradiction to the assumption is considered to
be a valid value for the input and the initial state. The property is disproved if any set of
values fulfills the negation of the commitment C. This set is, then, a counterexample of
the property. If no such counterexample exists, the property is valid for the model under
consideration.

Due to the fact that the starting states are modeled as free inputs, all states are
considered as possible starting states. This results in an over-approximation of the state

23

st

st+3st+2st+1

yt+1

combinational circuit
(λ , �)

yt+2

combinational circuit
(λ , �)

yt+3

combinational circuit
(λ , �)

xt+2xt+1xt

Assumption A

Commitment C

counterexIf counterex never
true Φ |= Model

Figure 2.4: Proof computation for interval properties

space, because not all considered states are necessarily reachable in the design. This
might result in “false negatives” or “spurious counterexamples”. These are counterex-
amples starting from an unreachable state of the design. However, “false positives” are
not possible, because the property is proven in all reachable and unreachable states. The
term “positive” refers to a successful proof of a property and “negative” to an unsuccess-
ful one that returned a counterexample. Therefore, the computational model of IPC is
conservative.

The problem of false negatives is solved in IPC by proving strengthened invariants for
the design. Either the counterexample is manually inspected and assertions are formulated
for the design or automatic methods, e.g., as proposed in [23], are used.

If the properties are formulated such that they describe important “operations” of the
design, false negatives can be avoided, to a large extend. An operation, in the context
of digital hardware, describes sequences of register transfers with a common purpose.
An operation could be, e.g., an instruction of a simple processor, or, the functionality
triggering the protocol for the transmission of a message over a bus.

These operations tend to have sparse, manageable inter-dependencies. Note that the
correct execution of a processor instruction is, in most cases, independent of previous
behavior. Interdependencies between instructions can, for example, occur in pipelined
designs if forwarding of datapath variables is required to resolve hazards. Here, the
reachable values, at the time of the operation, are determined completely by previous
operations.

A designer, usually, thinks about the behavior of design in terms of operations (e.g.,
an ADD instruction as one operation). The process of creating and proving the operation
properties is, from an abstract point of view, closely related to the design process. Also,
the verification engineer needs to identify the operations to create the properties. In that
sense, the operation properties formalize and document the operations of the design. We
consider IPC to be a white-box approach, because the process of creating the properties
requires to reason on internal signals. This is in contrast to black-box approaches like
simulation-based verification. Here, the verification engineer is not required to understand
the internals of the design.

During the process of creating the properties an abstract engineering view of the design
is formalized. Even for complex circuits, from our experience, the overall functionality

24

can be well understood in terms of operations. Formulating properties for important
operations of the design is common practice in industry and well supported by prover
technology tailored for this purpose such as in [21, 24, 25]. The high-quality of the
verification results from the established validity of the individual operations.

2.3 Complete Interval Property Checking

In the context of simulation-based verification methods certain coverage metrics, such as
code coverage and functional coverage, are used to measure which portion of the design is
verified. These metrics, however, do not apply in the context of formal methods. Proving
a formal property on a design shows that the property is valid for all possible input
stimuli. A measurement, reflecting which portion of the design behavior is covered by the
proven property, is still needed.

This chapter presents an absolute cover measure, that is a formal criterion for the
completeness of a set of interval properties. It was first developed in [26, 27]; [28] later
independently obtained a similar result. It is ensured that a set of properties fulfilling this
criterion completely describes the output behavior of the design in terms of the design’s
input.

This chapter briefly summarizes Complete Interval Property Checking (C-IPC) in the
terminology and notations of this thesis. For a more comprehensive and illustrated elabo-
ration of this technique the reader may refer to [27]. The chapter is structured as follows:
First we will introduce some important notions related to completeness. This formal-
ization is required to introduce the path predicate abstraction in Chap. 4 — the main
theoretical foundation for Property-Driven Development. In Sec. 2.3.2 the completeness
criterion will be formally defined. Sec. 2.3.3 presents an algorithm to check the fulfillment
of this criterion. In practice, this completeness check is computationally tractable even
for large designs and it is commercially available [25].

2.3.1 Terminology

The behavior over a finite time interval is characterized by the notion of a sequence
predicate.

Definition 8 (Sequence Predicate). A sequence predicate is an LTL formula where the
only temporal operator used is the next operator, X.

Note that the assumption A and the commitment C of an interval property are ex-
amples of sequence predicates. For ease of notation we also define a generalized next
operator.

Definition 9 (Generalized Next Operator). The generalized next operator denotes a finite
nesting of the next operator, X. Let φ be an LTL formula. The generalized next operator
nextk is defined by: next0(φ) := φ, and nexti(φ) := X(nexti−1(φ)) when i > 0.

The completeness check is tightly coupled with the concept of describing the design
behavior with operations, as described in Sec. 2.2.3. The basic idea is the following: A set
of properties is considered complete if and only if every input sequence and every output

25

(a) FSM representation

State Encoding: (abc)
Input i on edges

(b) Kripke model representation

State Encoding: (iabc)

Figure 2.5: Example model to illustrate formalisms

sequence of the FSM under verification is fully described by a sequence of operations.
For the following discussion, operations are formalized by means of interval properties
augmented with a length.

Definition 10 (Operation). An operation O is a set of finite path segments of length l in
a Kripke model K characterized by the pair (P, l) of an interval property, P := G(A→ C),
with P |= K, and the operation length l. A path segment, (s0, . . . , sl), is element of O if
and only if for any path π = (s0, . . . , sl, . . .) it holds that π |= A.

In other words, the pair (P, l) characterizes path segments with l transitions (between
l + 1 states). These segments are prefixes of one or more paths on which the assump-
tion A (and, hence, the commitment C) holds. The pair (P, l) can be understood as the
specification of an operation. From now on, when it is clear from the context whether the
specification or the actual design behavior is meant, we may refer to both, (P, l) and O,
as “operation”.

Practically, l specifies the length of the finite behavior of an operation. This means
that it describes the number of transitions needed to check an assumption A and to
produce an output sequence fulfilling the commitment C of the property. There are
special cases where a shorter value for l is chosen. In pipelined designs, for example, the
computed results are only visible at the outputs a number of cycles after the operation
was issued. A new operation may already be in progress while the current operation is
still computing a result. In this case, the length of l is chosen such that the start of the
current operation, O, and the start of the new operations align. This is important when
considering chains of operations, as explained below.

Example (1): Fig. 2.5 shows an FSM and the corresponding Kripke model. We created
an example operation (op, 5), such that inputs, outputs and FSM can be distinguished
by the labeling of the Kripke model.

The operation is characterized by the property op and the length l = 5 for the model
of Fig. 2.5. Let op := G(A→ C) where A := ¬b∧¬c∧ i∧ next1(i)∧ next2(i)∧ next3(¬i)
and C := next1(¬a ∧ ¬b ∧ c) ∧ next2(¬a ∧ b ∧ c) ∧ next3(¬a ∧ b ∧ ¬c) ∧ next4(a ∧ b ∧ ¬c).

26

The path satisfying A are all paths with a prefix matching the states codes (1x00, 1xxx,
1xxx, 0xxx). The reader may verify by inspection of the Kripke model that the paths with
prefix (1000, 1001, 1011, 0010) and the paths with prefix (1100, 1001, 1011, 0010) fulfill
this condition. The reader may further verify by inspection of Fig. 2.5b that for these
paths the commitment C, given by (xxxx, x001, x011, x010, x110), is fulfilled and, hence,
the interval property op holds. The evaluation of the operation results in the following
path segments. It shows the paths fulfilling A and having a prefix of length l = 5:

{(1000,1001,1011,0010,0110,0000), (1000,1001,1011,0010,0110,1000),

(1000,1001,1011,0010,1110,0000), (1000,1001,1011,0010,1110,1000),

(1100,1001,1011,0010,0110,0000), (1100,1001,1011,0010,0110,1000),

(1100,1001,1011,0010,1110,0000), (1100,1001,1011,0010,1110,1000)}

The completeness criterion relies on sequencing of a set of operations. Each operation
has a set of states reachable at the beginning of the operation and a set of states reachable
at the end of the operation. In order to fulfill the criterion, it is required that the end of
an operation is the start of another. The set of reachable states at the end of an operation
are therefore of special interest and are referred to as important ending states.

Definition 11 (Important Ending State). The set of important ending states of an op-
eration O of length l is the set of states
{s | ∃ (s0, s1, . . . , sl) ∈ O : s = sl}.

For example, in the operation (op, 5), the important ending states are the states 0000
and 1000. In other words, the set of important ending states of an operation is the set of
states reachable at the end of the operation.

Definition 12 (Important States). The important states of a set of operations are the
union of all important ending states of all operations in the set.

In order to create a complete set of properties the verification engineer has to identify
important modes of the system. The design behavior is partitioned into operations tran-
sitioning between these modes. Hence, the modes describe the important states of the
design. In our methodology, the important states are specified in terms of an expression
over the RTL state variables. Practically, macros / functions are created for each im-
portant state of the design. They are then refined by formulating logic expressions over
the RTL state variables. The operation properties are then written by referring to these
macros. The starting mode is specified in the assumption A and the ending mode in the
commitment C of the property.

2.3.2 Completeness Criterion

A property set is considered to be complete if the properties describe the output sequences
according to certain determination requirements. The determination requirements specify
which output signals in the design need to be determined under which circumstances. An
output signal is determined at a specific time point if and only if its value is described
through the property set as a function of the inputs at current and/or earlier time points.

27

In addition to the outputs, state variables can also be declared as determined. If state
variables are declared to be determined at the time of reference, these state variables
may be used to express output signals. The expression for determining an output signal’s
value must be in terms of inputs and/or other determined values.

As an example, let us consider the determination requirement for a data bus with
a valid flag “datavalid”. If the flag is not set, the data of the bus is irrelevant. The
determination requirement for the data signal, “data”, is specified as “if (datavalid = true)
then determined(data)”, assuming that the valid flag has no determination requirements.
The determination requirements thereby specify a set of time points for each property
considered in the set for which the value of the data bus should be determined. It is
defined as a pair (s, σs) for a signal s (i.e.,: data bus) and the condition σs defines when
the signal s is to be determined. The determination requirement is fulfilled if the signal s
is determined for any given time point characterized by σs.

Definition 13 (Complete Property Set). A property set V = {P1, P2, . . . , Pn} is com-
plete if any two finite state machines satisfying all properties in the set are sequentially
equivalent in the signals specified in the determination requirements at the time points
characterized by the guards of the determination requirements.

In the scope of this work the properties we consider reason about the labels of a Kripke
model. The labeling is chosen such that they discriminate the signals of the RTL design.
One way for choosing the labeling is that each RTL signal is represented by its own
Boolean atomic formula, e.g., the aforementioned bus is represented by a set of atomic
formulas, one for each of the state and data bits.

2.3.3 Completeness Check

The completeness of a property set is checked formally, by a proof by induction starting
from the initial states. In practice, the initial states are defined by the possible states
of the design when the reset signal is asserted. This algorithm has shown to be com-
putationally feasible. The algorithm proves that starting from an initial state that any
input sequence drives the design through a sequence of operations, each described by an
operation property. The starting point of each operation “mode” is determined by the
history of input sequences (i.e., the sequence from reset). The mode is described in terms
of expressions over state variables of the system.

The base case of the inductive proof is the reset property which determines the state of
the system a finite number of clock cycles after reset. The inductive step is constituted by
the other properties of the property suite. It is then ensured that for any input sequence
received in any ending state of a previous operation, an operation property exists which
determines an ending state of the current operation. In order to ensure that an operation
ends in a determined state it is checked whether the operation is a function of only inputs
and its starting states.

The basic of idea of Complete Interval Property Checking (C-IPC) is implemented
by a collection of four tests. These tests can be performed automatically on the set of
operation properties. Note that the design is not taken into consideration and the tests
are solely performed on the property suite. The user needs to specify:

• the input signals,

28

• what signals should be determined according to determination requirements,

• a sequencing of operations.

The sequencing is specified by a property graph G = (V,E) where the nodes V = {Pi} are
the operation properties and the edges describe their potential sequencing. There is an
edge (Pj, Pk) ∈ E if the operation specified by (Pk, lk) can take place immediately after
the operation specified by (Pj, lj) . (This is the case if operation (Pk, lk) starts in a state
that is reached by operation (Pj, lj).) Note that, in principle, the property graph could
be determined automatically from the set of operations.

In order to prove the completeness criterion of a set of properties, four checks are
performed on the property graph G: a case split test, a successor test, a determination
test and a reset test, all described below.

Example (2): In order to practically demonstrate the idea of completeness, a complete
set of properties is created for the model shown in Fig. 2.5. First, we need to specify the
determination requirements. Here, we only list one requirement for the atomic formula c as
(c, true), i.e., it is an unconditional requirement. Atomic formulas a and b are considered
internal states and do not need to be determined.
We consider the set of operations:
{(long, 5), (short, 3), (idle, 1), (wrong, 4), (readErr, 1), (keepErr, 1), (reset, 0)}

The interval properties are defined by:

Along := ¬b ∧ ¬c ∧ i ∧ next1(i) ∧ next3(¬i)
Clong := next1(c) ∧ next2(c) ∧ next3(¬c) ∧ next4(¬c) ∧ next5(¬b ∧ ¬c)
Ashort := ¬b ∧ ¬c ∧ i ∧ next1(¬i)
Cshort := next1(c) ∧ next2(c) ∧ next3(¬b ∧ ¬c)
Aidle := ¬b ∧ ¬c ∧ ¬i
Cidle := next1(¬b ∧ ¬c)
Awrong := ¬b ∧ ¬c ∧ i ∧ next1(i) ∧ next3(i)
Cwrong := next1(c) ∧ next2(c) ∧ next3(¬c) ∧ next4(a ∧ b ∧ c)
AreadErr := a ∧ b ∧ c ∧ ¬i
CreadErr := next1(¬b ∧ ¬c)
AkeepErr := a ∧ b ∧ c ∧ i
CkeepErr := next1(a ∧ b ∧ c)
Areset := reset

Creset := ¬b ∧ ¬c

The example will be used to explain how the four individual tests for establishing
completeness are applied and how they ensure the overall completeness of the property
set. It will be continued for each test in each test’s respective subsection.

2.3.4 Case Split Test

The case split test checks, for an arbitrary input sequence, that there exists a chain of
operation properties such that the assumption of each property in the chain is fulfilled.
In other words, for an arbitrary sequence of inputs there will be a deterministic sequence
of operations.

29

This is ensured by checking that for every operation (P, lP) the commitment CP of P
is covered by the disjunction of the assumptions {AQj

} of all successor properties Qj after
lP transitions. This implies that, for every path starting in an important ending state of
(P, lP), there exists an operation property Qj whose assumption AQj

describes that path.
Let {AQ1 , AQ2 , . . .} be the set of assumptions of the successor operations, then the

case split test checks whether the implication CP → nextlP (AQ1 ∨ AQ2 ∨ . . .) holds or
fails. The assumptions AQi

of the property Qi are shifted in time to the end of property P
so that the first state of AQi

coincides with the last state of CP .

Example (3): Fig. 2.6 shows the property graph as defined previously by the interval
properties of our running example. Lets consider the case split test applied to operation
(wrong, 4). By inspecting the property graph, the successors operations are identified as
readErr and keepErr. The case split tests checks for wrong that the commitment Cwrong

implies that either the assumption AreadErr or the assumption AkeepErr holds at the end
of the operation, i.e., next1(c) ∧ next2(c) ∧ next3(¬c) ∧ next4(a ∧ b ∧ c) ⇒ next4((a ∧ b ∧
c ∧ ¬i) ∨ (a ∧ b ∧ c ∧ i)). Clearly, the case split test holds for (wrong, 4).

Figure 2.6: Property Graph

If the case split test succeeds (for all operations), this means that for every possible
input trace of the system there exists a chain of operations that is executed. However,
this chain may not be uniquely determined. Therefore, the following successor test is
performed.

2.3.5 Successor Test

The successor test ensures that the execution of an operation (Q, lQ) is completely deter-
mined by its predecessor operations (P, lP).

Considering a pair (P,Q) ∈ G with a predecessor operation P and a successor oper-
ation Q. The test checks whether the assumption AQ of Q depends only on inputs and
signals determined by P . The problem is translated to a SAT instance by the following
steps:

1. The set of signals mentioned in the properties P and Q is duplicated. If a symbol z′

is marked with a tick then it belongs to the copy, otherwise to the original set. The
first set of signals is used to describe executions of an operation (P, lP) followed by
operation (Q, lQ).The second set describes operation (P, lP) followed by a different
operation.

30

2. The same input sequence and the same values for determined state variables are
applied to both executions.

3. The set of determination requirements D =
∧
di is expressed as a conjunction of the

determination requirements di. Each di represents one requirement (s, σs) expressed
as di = (σs ∧ σ′s ⇒ s = s′). Intuitively, this expression states that whenever the
guard of signal s is true in one of the executions the signal s must have the same
value in both executions.

4. Let A′P , C ′P and A′Q be the assumption and commitment of property P and the
assumption of property Q, respectively, expressed in the copied signals. The succes-
sor test checks the following implication on the SAT instance (with the same input
values in each time frame):

AP ∧ CP ∧ A′P ∧ C ′P ∧D ∧ nextlP (AQ)⇒ nextlP (A′Q)

If the implication does hold, then the assumption AQ uniquely determines for any
input sequence applied after completion of operation (P, lP) whether operation (Q, lQ)
will follow or not (hence the name, “successor test”). In the case that this implication
does not hold, there exists an input sequence such that operation property P is executed
and the assumption of operation property Q may or may not hold, depending on the other
signals mentioned in the properties. This is the case if the assumption AQ was written
such that it depends on some state variables other than inputs and variables determined
by P .

Example (4): For the pair (wrong, keepErr) of the example, the successor test is:

Awrong ∧ Cwrong ∧ A′wrong ∧ C ′wrong ∧ (c⇔ c′) ∧ next4(AkeepErr)→ next4(A
′
keepErr)

The commitment of wrong fully specifies the FSM at time point next4. Clearly, the
formula holds for this example.

In order to demonstrate the successor test we modify wrong, such that next4 specifies
only states b and c. Now, we add a new successor property to the property graph with
the an assumption including a = 0. In this case, the case split test for wrong still holds.
Due to the fact that a is not determined at the end of wrong it is not possible to know
whether the new property or one of the two original successor properties would trigger
at next4. Hence, the successor test fails and correctly flags such a set of properties as
incomplete.

With the successor test, we ensure that a unique chain of operations for every input
trace exists. In the following, we introduce the Determination Test that shows that these
operations determine the output signals as stated in the determination requirements.

2.3.6 Determination Test

The determination test performs a check whether an operation (Q, lQ) and its predecessor
operation (P, lP), in turn, fulfills its respective determination requirements. The test
creates a SAT instance that evaluates to true if a determination requirement is violated.

31

This means that a variable required to be determined by Q is actually not a function of
the variables P and/or of inputs during the operation (Q, lQ).

As in the successor test, the set of signals is duplicated for both operations Q and P .
This technique allows to describe two executions where Q is the successor of P and
identical input sequences are applied. The state variables are assumed to be equal and
are given the same values, in the time points specified by the guards. Let DP and DQ be
the determination requirements of property P and Q, respectively.

The determination test checks the following implication on the SAT instance (with
the same input sequences applied in both executions):

AP ∧ CP ∧ A′P ∧ C ′P ∧DP → nextlP (DQ)

Disproving this implication means that there exists a sequence of input signals and/or
signals mentioned in the operation properties such that signals that are supposed to be
determined in Q may have different values in different executions of P .

Example (5): In the provided example we only have a single, unconditional determi-
nation requirement — c should be determined at all times, i.e, DP = (c ⇔ c′). In our
rudimentary example the value of c is explicit at all “time points” of all operations. The
determination test clearly holds for the set example.

In reality, the signals to be determined may be vectors whose values are expressed by
functions dependent on input and/or other signals at earlier time points. In such cases
the determination test will be non-trivial.

2.3.7 Reset Test

The inductive proof is rooted at the reset state. The case split, successor and determi-
nation test form the inductive step of the proof with a hypothesis that states: Assuming
that an operation (P, lP) ∈ V uniquely determines its ending state, then an operation
(Q, lQ) ∈ V exists that uniquely determines the ending state as well as the output se-
quence of (Q, lQ) solely from the ending state of (P, lP) and from the input sequence
applied during the operation (Q, lQ).

For the reset test, a special reset property is required to describe the state after reset.
Here, the assumption contains only the reset condition and the test whether reset behaves
deterministically and that it fulfills all determination requirements. The construction is
similar to the other test. However, the reset property does not have any predecessor
properties.

Example (6): The reset operation (reset, 0) specifies the state after reset. It does not
refer to the state before the reset condition. Hence, it guarantees that reset can be
applied deterministically. Furthermore, the determination requirement is clearly fulfilled;
Creset := ¬b ∧ ¬c determines the value of c from the fulfillment of the reset condition
until one of the successor operations determines its value (in the next clock cycle).

2.4 Satisfiability Modulo Theories

In the context of digital design Boolean formulas and their satisfiability are of special
importance. For example, they are used to specify the logic of the circuit or to prove

32

important design properties with IPC. The problem of determining whether there exists
an interpretation that satisfies a given Boolean formula is called SATISFIABILITY or
SAT. The solvers for these problems are efficient in solving Boolean decision problems,
which is why they are frequently used as engines behind verification applications. In
practice, decision problems are sometimes described with “richer” languages features (e.g.,
arithmetic operators) and the resulting formula (for example, a+ b ≤ 20) models a higher
abstraction level. In order to use the existing efficient SAT solvers, the abstract formula
has to be translated to a Boolean formula. However, translating such formulas to Boolean
decision problems quite often results in computationally very expensive problems. Let
us consider the example a + b ≤ 20. The addition of two 32-bit integer values has to be
transformed to the Boolean logic of a 32-bit adder to decide if the problem is satisfiable.
The arithmetic operation is mapped to the theory of Boolean logic. In order to capture
the meaning of these formulas without the need of translation to Boolean logic, a different
technique named Satisfiability Modulo Theories (SMT) [29] is used. The key idea of SMT
is to combine a SAT-based approach with specific problem specific theories (e.g., theory
of integer arithmetic) allowing capturing the high-level semantics of the formula, without
the need of translating it to Boolean logic.

The primary goal of research in SMT is to create verification engines that can reason
natively at a higher level of abstraction, while still retaining the speed and degree of
automation of today’s Boolean engines. SMT formulas provide a much more expressive
modeling language than what is possible with Boolean SAT formulas. For example, an
SMT formula allows us to model datapath operations of a microprocessor at the word
rather than the bit level. A problem formulated as (x − y ≤ c), where x and y are
variables and c is a constant, can be solved by a theory solver for difference arithmetic.
Considering a set of these formulas, instead of translating the problem to propositional
logic, a computationally far less expensive method is used that represents that equation
with directed weighted graphs. The theory solver searches for negative cycles within the
graph and thereby decides on the satisfiability of the problem.

An SMT solver works as follows: First, the solver creates an abstraction that maps
the atoms (i.e., non-Boolean expressions used within the formula) of an SMT formula into
fresh Boolean variables p1, ..., pn. For example, the formula ¬(a ≥ 3) ∧ (a ≥ 3 ∨ a ≥ 5)
is translated into ¬p1 ∧ (p1 ∨ p2), where the atoms a ≥ 3 and a ≥ 5 are, respectively,
replaced by the Boolean variables p1 and p2.

If a SAT solver finds the abstract formula to be unsatisfiable, then the SMT formula
is, too. On the other hand, if the SAT solver finds a model (i.e., the formula is SAT), then
a specific theory solver is used to check the model produced by the SAT engines. A model
for the abstract formula is {p1→ false, p2→ true} that translates to {¬(a ≥ 3), (a ≥ 5)}
for the concrete formula. Here, a theory solver for the theory of arithmetic is used and
finds this formula to be unsatisfiable.

The abstract formula is extended by the theory lemma ¬(¬(a ≥ 3) ∧ (a ≥ 5)) ⇒
¬(¬p1 ∧ p2) and is checked for satisfiability again. The extended formula ¬p1 ∧ (p1 ∨
p2) ∧ ¬(¬p1 ∧ p2) is not satisfiable and thus the entire formula is not satisfiable. The
engine continues adding the theory lemmas until the formula is disproven or the concrete
model holds.

In Chap. 5.5 we use SMT solving for optimizing the generated set of operation prop-
erties. The operation properties are described at the word level and may contain complex

33

datapath operations. This makes a Boolean SAT-based pruning approach computation-
ally expensive. We identify and detect unreachable operations and use SMT-based tech-
niques for further simplification of expressions (e.g., by computing that (x+1+1+1+1+1)
is equal to (x+ 5)).

2.5 S2QED

In this section, we review S2QED, a formal processor verification approach targeting com-
plex instruction pipelines presented by [30]. S2QED proves that every instruction executes
independently of the previous pending instructions in the pipeline, i.e., independently of
its program context.

The computational model of S2QED consists of two identical and independent in-
stances of the processor under verification which are constrained to execute the same
instruction, at an arbitrary time point. It is important to note that S2QED does not
necessarily result in a complete formal verification, as specified in Sec. 2.3.2. For exam-
ple, the existence of a single-instruction bug is not detected. With the S2QED-property
it is only possible to prove that the instruction produces equivalent results independent
of the context. There exists an extension to S2QED, presented in [31], that ensures a
complete coverage along the S2QED proof. In the remainder of this section we review the
fundamentals of S2QED.

Fig. 2.7 shows the computational model in which the two CPU instances of the same
processor are unrolled for a time window as large as the upper bound of the execution
time of an instruction in the pipeline.

CPU1 CPU1

NOP

CPU1

NOP

CPU2

Instr(1)

CPU2

Instr(2)

CPU2

Instr(n)

.....

.....

Sref

S0´ S1´ Sn-1´

S1 Sn-1 Sn

Sn´

Instr(1)

Figure 2.7: S2QED Computational model

Definition 14. (QED consistency): In the S2QED computational model, the two CPU
instances are QED-consistent at a time point t, if the corresponding architectural state
elements of both instances at time point t hold the same values.

The architectural state of a processor is defined by its register file and general purpose
registers. For a processor with N registers a QED-consistent register state is characterized
by the named logic expression:

qed consistent registers :=
N−1∧
i=0

(
Ri

cpu1 = Ri
cpu2

)
(2.1)

This expression is a Boolean predicate that is implemented as a macro in the property
language of the verification tool. It represents architectural states in which the register
files R of both CPU instances have identical contents.

34

assume:
at tIF: cpu2 fetched instr() = cpu1 fetched instr();
during [tIF+1, tWB]: cpu1 fetched instr() = NOP;
at tIF: cpu1 state() = Sref;
at tWB: qed consistent registers();

prove:
at tWB+1: qed consistent registers();

Figure 2.8: S2QED property

Consider an S2QED computational model, in which Rcpu1 and Rcpu2 represent the
CPU 1 and CPU 2 register files, respectively. Fig. 2.8 shows the S2QED property that is
to be proven on this model. The property specifies that if two independent CPU instances
fetch the same instruction and the register files are consistent with each other before the
write-back (the macro qed consistent registers() specifies this consistency), then the two
CPU instances must be QED-consistent also after the write-back, independently of the
pipeline context.

The CPU 1 instance is constrained to start from a flushed-pipeline state Sref and
fetches only NOPs in the time frames for t > 1. A flushed-pipeline state Sref is forced
on the CPU 1 instance by letting it execute only NOPs for as many time frames before
time point t as there are pipeline stages. This results in a significant reduction of proof
complexity and excludes any false counterexample to the property that can result from
an inconsistent pipeline register.

The CPU 2 instance is left unconstrained to start from a symbolic initial state and is
allowed to execute an arbitrary sequence of instructions for the time frames t > 1. In
this computational model, the SAT solver compares the scenario 1, where the Instruction
Under Verification (IUV) is executed in a flushed-pipeline context, with all scenarios 2
where the IUV is executed in an arbitrary context including the ones where bugs are
activated and propagated.

In Sec. 6 we extend this idea for general hardware models other than only processors.
The main challenge is to define the “architectural state” of the two design instances and
to generalize the idea of an “instruction” to a general hardware design.

2.6 Publication List

The main contributions of thesis have been published at conferences and in journals as
listed chronologically below:

1. T. Ludwig, M. Schwarz, J. Urdahl, L. Deutschmann, S. Hetalani, D.
Stoffel and W. Kunz Property-Driven Development of a RISC-V CPU. In
Proc. Design and Verification Conference United States (DVCON-US ’19).

2. T. Ludwig, J. Urdahl, D. Stoffel and W. Kunz Properties First – Correct-
By-Construction RTL Design in System-Level Design Flows In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems

35

3. J. Urdahl and S. Udupi and T. Ludwig and D. Stoffel and W. Kunz
Properties first? A new design methodology for hardware, and its perspectives
in safety analysis In ACM International Conference on Computer-Aided Design
(ICCAD), 2016.

4. A publication for the results of Sec. 6 is in preparation.

The theoretical foundation of the PPA theory (see Chap. 4) has been developed by
our chair and has been published in:

1. Urdahl, J., Stoffel, D., Wedler, M., and Kunz, W. System verification
of concurrent RTL modules by compositional path predicate abstraction. In Pro-
ceedings of the 49th Annual Design Automation Conference (New York, NY, USA,
2012), DAC ’12, ACM, pp. 334–343.

2. Urdahl, J., Stoffel, D., and Kunz, W. Path predicate abstraction for sound
system-level models of RT-level circuit designs. IEEE Transactions On Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 33, 2 (Feb. 2014), 291–
304.

2.7 Related work

The theory presented in Chap. 4, introduced in [13], is inspired by the advances in theorem
proving and the use of refinement maps [32, 33] to model complex relationships between
abstract and concrete models in hardware design such as [34, 35, 36, 37, 38, 39]. Notable
success was obtained in the hardware domain by the notion of “Bisimulation modulo
stuttering”, as demonstrated in [40] for hardware verification. The difference between
bisimulation modulo stuttering and PPA was already discussed in [2].

Generally, there is an important difference between these classical approaches and our
work. Bisimulation and its weakened forms are defined for an arbitrary labeling. The
objective in most of this work is to identify an efficient abstraction based on a labeling
as given by a concrete model. Both the abstract and the concrete model are described in
terms of the same alphabet.

In our work, we exclusively consider a special labeling called “operational coloring”,
as defined in Def. 15, which is derived directly from the given abstract model. As will
be developed in later sections, the whole point of our methodology is to enforce this
operational coloring along the design flow. The refinement mapping for an operationally
colored model is immediately obvious and maps each label (color) of the concrete model
to one abstract state. In fact, PPA may be understood as a special case of a “bisimulation
modulo silent actions” [33] where the refinement mapping is obvious, but as a result of
the operational view, it can be linked to RTL designs. Thanks to the special labeling, our
approach can formally link models described in terms of completely different alphabets.
This aspect is very important for the practicality of our approach.

36

Our PPA-based methodology is formulated in such a way that no knowledge of higher
order logic or related languages is needed to implement the proposed PDD paradigm.
Based on PPA only standard design and verification languages are needed. All proofs can
be based on bounded circuit models using SAT-based property checking [41, 21], as it is
commercially available.

A completely different approach to closing the semantic gap between a system model
and concrete RTL is High-Level Equivalence Checking (HLEC) [42, 43]. This approach has
the advantage that a high degree of automation is possible. It is promising in applications
where the notion of equivalence or a weakened form of it, such as equivalence modulo
latency, is adequate to describe the relationship between the abstract and the concrete
model. This can be the case in data-centric designs, for example, when an abstract
specification of a signal processing algorithm is matched against its RTL implementation.

In [44, 45, 38] equivalence checking is combined with theorem proving to obtain a
more general framework for linking concrete RTL implementations with high-level models.
Note, however, in contrast to our approach, equivalence checking always assumes that
both the concrete design and the abstract model are available. HLEC is usually meant to
be used in scenarios where also High-Level Synthesis (HLS) is available. While HLS and
HLEC are most appropriate for data-centric designs, the proposed PDD methodology
is equally suitable for the control and communication structures of a system. It may
therefore complement design flows in those cases where HLS and HLEC are not applicable.
The approach described in [46] enables a hardware generation from operation properties.
This approach requires a complete set of properties to be available prior to generation.
This is actually the case in a PDD based flow and a combination of the methods in [46]
and PDD may lead to a top-down hardware generation flow.

Specification based on Instruction-Level-Abstraction (ILA), as proposed in [47], pur-
sues a similar goal as our work. It is centered around a generalized notion of processor
instructions. In contrast, our approach is based on structuring an arbitrary design in
terms of the operations of its control flow and establishes compositionality based on the
notions of complete property sets and PPA.

Finally, it should be noted that the proposed methodology is loosely related to prac-
tices where high-level simulation patterns or test cases as in [48, 49] are used to derive
properties for implementation verification. In contrast to our work, these approaches do
not aim at establishing a formal relationship between the system-level model and the RTL
implementation, but instead to maintain coherence between the test cases at the different
abstraction levels.

37

38

Chapter 3

Property Driven Development

In this chapter we will introduce the Property-Driven Design (PDD) flow, as depicted in
Fig. 3.1. Starting at the Electronic System Level (ESL) and following common practices
we can formalize the abstract design by an executable model description. In our current
implementation of the flow we use the language SystemC for this purpose.

System-Level Design & Verification
(simulation or formal verification)

Architectural-Level Description
e.g., SystemC, SystemC-PPA

RTL template
e.g., VHDL or Verilog

RTL implementation
e.g., VHDL or Verilog

Operation properties
e.g., SVA or PSL

Property suite: "Verification IP"
e.g., SVA or PSL

Refinement of implementation,
cycle- and bit-accurate

Refinement of operation properties,
cycle- and bit-accurate

How?
Implementing

What?
Understanding

Documenting
Verifyinggenerated generated

Figure 3.1: Workflow of the proposed design methodology

Already in the system-level model first refinements are made and described at an
architectural level. The model and the refinements can be based on SystemC. In PDD,
the architectural level comprises any system-level description for which clear semantics
with respect to PPA can be defined. For this purpose, the language SystemC-PPA has
been created (cf. Sec.4.4).

At the architectural level, the system is modeled in a time-abstract way by commu-
nicating abstract automata and their interaction with data paths. It is described what
data manipulations are performed between communication points of different compo-
nents. This does not dictate, however, that a particular algorithm chosen at the system
level must be implemented at the RTL. For example, a multiplication at the system level
may be implemented using Booth’s multiplication algorithm, a Wallace Tree or any other
suitable method at the RTL. The property checker allows abstracting from such imple-
mentation details. SystemC descriptions that have been refined to the architectural level

39

using SystemC-PPA can then be processed by our tools that support the new flow.

Example (7): Fig. 3.2 shows an example of a module modeled in SystemC-PPA. We
will continue to use this example in the sequel in order to illustrate the PDD flow, tool-
generated properties and manual refinements. It is a slightly simplified version of a
SystemC-PPA model that is publicly available online and that can be evaluated using our
PDD tool DeSCAM [50].

1: enum status t {in frame, oof frame};
2: struct msg t {status t status; int data; };
3: SC MODULE(Example) {
4: SC CTOR(Example):
5: nextsection(idle) { SC THREAD(fsm)};
6: enum Sections {idle, frame start, frame data};
7: Sections section, nextsection;
8: blocking in<msg t> b in;
9: master out<int>m out;

10: shared out<bool> s out;
11: int cnt; bool ready; msg t msg;
12: void fsm() {
13: while (true) {
14: section = nextsection;
15: if (section == idle) {
16: s out→set(false);
17: b in→read(msg);
18: if (msg.status == in frame) {
19: s out→set(true);
20: nextsection = frame start;
21: cnt = 3;
22: }
23: } else if (section == frame start) {
24: m out→write(cnt);
25: cnt = cnt - 1;
26: if (cnt == 0) {
27: cnt = 15;
28: nextsection = frame data;
29: }
30: } else if (section == frame data) {
31: ready = b in→nb read(msg);
32: if (!ready) {
33: m out→write(msg.data);
34: if (cnt == 0) {nextsection = idle; }
35: cnt = cnt - 1;
36: }
37: }
38: }}};

Figure 3.2: Example of a SystemC-PPA module

The SystemC-PPA language subset is discussed in more detail in Chap. 5. At this
point, the reader may examine the source code of the example in order to gain a first
intuition into the nature of PPA models. The basic structure of a module is a finite state
machine (FSM), defined in a method called fsm(). General FSM control is divided into

40

sections. Each section can define arbitrary computations and determine the next section
to be executed, and it can invoke communication transactions with other modules. At the
current state of our implementation, communication needs to be specified based on prede-
fined transaction-level interfaces (SystemC-PPA header files). The interfaces implement
message passing in various forms (blocking, non-blocking, synchronous/asynchronous).

Our software tool DeSCAM reads a SystemC-PPA description and extracts from it
the abstract FSM that represents a PPA of the RTL model to be designed.

idle

frame_dataframe_start

wait for
sync

sync and msg.status != in_frame

cnt != 1 ready

cnt == 1

sync and
msg.status==in_frame

cnt!=0 and
!ready

cnt==0 and !ready

Figure 3.3: Abstract FSM of SystemC module in Fig. 3.2

Example (8): Fig. 3.3 shows the state transition graph of the abstract FSM defined by
the SystemC-PPA module in Fig. 3.2. The edges between the nodes are labeled with
communication events and control conditions. Each edge represents the computations
performed on the respective control paths in the SystemC code, i.e., an edge represents
an operation, a fundamental concept of PPA (cf. Sec. 4).

The subsequent design process can be split into two separate threads. The first one is
shown on the left side of Fig. 3.1 and corresponds to the conventional design process for
RTL descriptions from abstract specifications. Here, it is determined how the abstract
specification is implemented in a cycle-accurate RTL model. All common design practices
can be applied and arbitrary solutions can be chosen for the micro-architectures of the
system. Optionally, a PDD-based design environment can automatically generate tem-
plates for the main control structures of the system as they result from the abstract model.
This, however, only serves convenience purposes. The soundness of the final design does
not rely on this optional automation step.

The second thread on the right side of Fig. 3.1 is used to formally describe what
is implemented by the design on the left side. A “formal data sheet” of the design is
created. It provides a well readable documentation of the design in standardized property
languages. We can use System Verilog Assertions (SVA) or any other suitable property
language for this purpose. Importantly, this description also forms the basis for the formal
proofs by which the soundness of the system model and, accordingly, the correctness of
the design refinements are established.

To this end, abstract properties are automatically generated from the architectural-
level description. In analogy to TDD-based software development this is done before the
start of RTL code development (“Properties First”). In the actual RTL design process,

41

the designer maintains a formal relationship between the abstract properties and the RTL
code by refining auto-generated macros and/or function definitions. This consists of filling
in pre-defined template fields and function bodies. This automation step contributes to
substantially reducing verification efforts. Moreover, in order to ensure soundness by PPA
it is essential that all of the generated properties are refined and proven on the design.
By this methodology it is ensured that the resulting verification IP constitutes a complete
set of operation properties in the sense of a well-defined completeness criterion [26, 28].
This results in the powerful theoretical properties of the new methodology which estab-
lishes a formal relationship between the architectural level and the RTL, thus, closing the
“semantic gap” between the two levels. In the following chapter, we will explain in detail
how this formal relationship is built.

42

Chapter 4

Path Predicate Abstraction

In this chapter we will introduce the theory of Path Predicate Abstraction (PPA) and how
it is used to establish a well-defined formal relationship between the system level and the
RTL. The chapter is structured as follows: In Sec. 4.1 we introduce the main idea of PPA,
as well as the meaning of the terms soundness and operation properties. By example of
directed graphs we aim at providing an intuitive understanding of PPA. A more general
definition of the PPA for FSMs is introduced in Sec.4.2.

In order to model entire systems with PPA, a compositional approach is elaborated
in Sec. 4.3. The theory of PPA has been published in [13, 2, 16, 15]. In the scope
of this work, we will define a subset of SystemC, called SystemC-PPA, that provides
the semantics of a PPA. As explained in Sec.2.1.4, there is an established chain of trust
from the transistor level to the gate level, and from the gate level to the RTL. The
correctness of a model at one abstraction level can be verified with respect to the next
lower level, e.g., an RTL model can be verified against its gate-level implementation by
formal equivalence checking techniques such as combinational or sequential equivalence
checking. Two sequential circuits are equivalent if and only if they produce identical
output sequences for all possible input sequences. Such a notion of equivalence does not
exist between design models at the ESL and the RTL. At the ESL, a system is described
by modules that communicate abstractly based on untimed message passing, whereas at
the RTL, communication is specified with bit and clock cycle accuracy.

For example, an ESL designer specifies reading a message from a bus as bus→read().
At the ESL this is modeled event-based, e.g., by using handshaking. The RTL design
implements the same operation with an arbitrarily complex, cycle-accurate bus protocol.
The RTL design is considered sound w.r.t. the ESL if the protocol ensures, under all
circumstances, that if bus→read() is triggered correctly and a valid message is transmitted
from the writer to the reader. In this case, the RTL is a correct refinement of the ESL, and
the ESL is a sound abstraction of the RTL. The term soundness describes a well defined
formal relationship between an ESL and an RTL model. In the following we describe
how this relationship is established. First, we give an intuition into the underlying theory
of path predicate abstraction [2], and then we show how it is applied in practice in the
context of RTL design.

43

4.1 PPA for graphs

Instead of revisiting the formal development of PPA from [2], we motivate its basic idea
by considering a special graph labeling or coloring called “operational coloring”. Later,
we show how this type of coloring is created using the concept of “operations” in digital
circuits.

Definition 15 (Operational Graph Coloring). Consider a directed graph G = (V,E), a
subset W ⊆ V of the graph nodes called colored nodes, a set of colors Ŵ = {ŵ1, ŵ2, . . .}
and a surjective coloring function c : W 7→ Ŵ . A path (v0, v1, . . . , vn) such that v0, vn ∈ W
and v1, . . . , vn−1 ∈ V \W is called operational path in G. The set W must be chosen and
colored such that:

• every cyclic path in G contains at least one node from W (no cycles with only
uncolored nodes in the graph),

• for every operational path (v0, v1, . . . , vn) and u0 ∈ W such that c(u0) = c(v0) there
must exist an operational path (u0, u1, . . . , um) in G with c(um) = c(vn)

We call c an operational coloring function and G an operationally colored graph.

In other words, this definition considers a graph with two types of nodes, colored and
uncolored. We call this coloring an operational coloring if the following two conditions
are fulfilled: Every cycle in the graph must contain at least one colored node. A path
starting in a colored node moving through uncolored nodes and ending in a colored node
is called an “operational” path. The coloring must fulfill a second condition: If there
exists an operational path that starts in some node with color 1 and ends in some node
with color 2 then for any other node of color 1 there also must exist an operational path
to color 2.

b

y

g

y

g

b

b

Figure 4.1: Example of an opera-
tional coloring

b

y g

Figure 4.2: Path predicate abstrac-
tion of Fig. 4.1

Fig. 4.1 shows a directed graph which may be interpreted as a finite state transition
structure such as a Kripke model or an FSM. There are two types of nodes: colored (blue,
green, yellow), and uncolored (white nodes). The coloring in Fig. 4.1 is special in that it
has some interesting properties w.r.t. paths between colored nodes. An operational path,
as defined by Def. 15, is a path that visits only uncolored (white) nodes along the way.

44

We call this path an operational path, or operation, for short. Such a coloring is called
“operational coloring”.

Definition 16 (Path Predicate Abstraction). We consider a graph G = (V,E) with a
set of colored nodes W ⊆ V , a set of colors Ŵ and an operational coloring function
c : W 7→ Ŵ .

A directed graph Ĝ = (Ŵ , Ê), such that for any two nodes u,w ∈ W , it is (c(u), c(w)) ∈
Ê if and only if there is an operational path (u, . . . , w) in G, is called path predicate ab-
straction of G.

This definition states that the abstracted graph contains exactly one node for each
color in the original graph, and path segments through uncolored nodes in the original
graph are replaced by single edges in the abstract graph. It naturally allows for a powerful
abstraction. Since all colored nodes of identical color support the same operations we can
create an abstract graph that has one node for each color and one edge representing each
operation. All white nodes are removed and all operational paths of the same kind are
collapsed into a single edge. Fig. 4.1 shows the abstract graph of the example. Note that,
by following this procedure, both graphs, the concrete one in (a) and the abstract one
in (b) contain the same set of operations: b→ g, g → b, g → y, y → b. Each operation in
the abstract graph is represented by a single edge, whereas each operation in the concrete
graph may consist of more than one edge. This is key to modeling multi-cycle RTL
operations/transactions. In our PPA formalism, we need this kind of abstraction for the
input sequences and the output sequences of operations spanning multiple clock cycles.

What is interesting about this abstraction? There is a well-defined formal relationship
between the abstract graph and the original graph: Any path in the abstract graph can be
described by a sequence of colors. The underlying theory is briefly introduced in Sec. 4.2
and is published in [13, 2, 16, 15]. The goal here is to provide an intuitive understanding
of PPA, as well as the meaning of the terms soundness and operation properties.

4.2 PPA for FSM

PPA defines a relationship between two automata where one is referred to as the imple-
mentation M and the other the abstraction M̂ . In [51, 2], PPA was defined based on
Kripke models and it was shown how can they be translated to Mealy-type FSMs, as
commonly used for designing and reasoning about hardware models. PPA describes a
relationship between two automata operating on a different set of labels. (For FSMs, this
translates to different input and output alphabets.) This is essential when describing the
relationship between an ESL model where communication is realized by sending abstract
messages, and the RTL implementation where a message may be transmitted in different
encodings, and possibly as a sequence of packets. A PPA is defined by a special labeling
called operational coloring of the implementation M .

For a comprehensive introduction of the PPA, the reader should refer to [2, 13], where
an operational coloring is formally defined for Kripke models. Here, we will discuss PPA
informally based on FSMs, aiming to provide an intuitive understanding of the abstraction
mechanism.

When translated to FSMs, the set of Kripke states becomes a set of three separate
coloring functions applied to objects of the RTL implementation: one maps a subset of

45

the FSM states to state colors Ŝ, another one maps input sequences to input colors X̂ and
the third one maps output sequences to output colors Ŷ . These colors serve as elements
of an abstract FSM M̂ = (Ŝ, ŝreset, X̂, Ŷ , δ̂, λ̂).

In practice, the abstract state set is created by the designer or, in case of PDD,
generated from a system-level specification. Abstract states correspond to “conceptual
states” or “operation modes” of the design. Every abstract state corresponds to a unique
set of implementation states. However, not every implementation state is represented by
an abstract state. Some states are “uncolored”, i.e., they are “unimportant” intermediate
states visited during the execution of an operation. An abstract transition according to the
transition function δ̂ : Ŝ × X̂ 7→ Ŝ corresponds to an abstract operation. Operations are
“triggered” by concrete input sequences that are represented by abstract input symbols
from the set X̂ and, according to the output function λ̂, “produce” concrete output
sequences that are represented by abstract output symbols from the set Ŷ .

Example (9): Consider a bus protocol and a master executing a write() transaction.
The master node can begin the transaction when the bus is in an IDLE state, ready to
receive a transaction request. In the abstract finite state machine of the PPA, IDLE is an
abstract state ŝ ∈ S, and write is an abstract output symbol ŷ ∈ Y , produced by the FSM
during the abstract operation from IDLE to the same abstract state again, IDLE . In the
properties describing the cycle-accurate RTL implementation, IDLE is a state predicate
(to be defined below) in terms of RTL objects modeling all design states in which the bus
is idle, and write is described as a sequence predicate (to be defined below) representing
the set of value assignments to the bus signals such that a write transaction is carried out.
For example, write could specify a burst transaction beginning with an address phase and
followed by a sequence of data items to be written.

Example (10): As another example, consider the abstract FSM of Fig. 3.3. The tran-
sition from state “idle” to state “frame start” represents an operation that performs a
read in line 17 of Fig. 3.2, and that receives data such that the if condition in line 18
becomes true. The further actions taken by the operation are specified in lines 19 to 21.
While read and in frame are abstract symbols (alphabet of the abstract level), they may
define multi-cycle sequences of value assignments to multiple RTL signals (alphabet of
the concrete level) in the implementation.

Previous work [26, 2] has shown how a PPA can be extracted bottom-up from an
already existing RTL implementation. Bottom-up, the coloring, and hence, the abstrac-
tion, can be chosen quite freely; however, certain restrictions apply: The coloring func-
tions must obey the requirements for an operational coloring as detailed in [2]. These
requirements ensure that the abstraction M̂ and the implementation M have the same
“color behavior”. Fig. 4.1 and Fig. 4.2 for graphs, this means that for any sequence of
input colors the abstract FSM and the implementation FSM produce the same sequence
of output colors. This can be viewed as “sequential equivalence in terms of colors”. The
colors have a defined semantics for the implementation (based on the coloring functions)
and for the abstraction, as they directly represent FSM objects.

Any property that can be expressed in terms of colors has the same meaning and
validity in the abstraction and in the implementation. Tab. 4.1 (cf. [2]) shows how any LTL
property p̂ formulated for the abstraction can be translated to a property p formulated
for the implementation, and vice versa. For such properties, PPA ensures behavioral

46

Abstract formula Concrete formula

(1) ŝi ηi
x̂i Ψx̂i

∧ ιi
ŷi Ψŷi ∧ µi

(2) X f̂ X (¬Ψ U (Ψ ∧ f))

F f̂ F (Ψ ∧ f)

G f̂ G (Ψ⇒ f)

ĝ U f̂ (Ψ⇒ g)U (Ψ ∧ f)

(3) ¬f̂ ¬f
f̂ ∧ ĝ f ∧ g
f̂ ∨ ĝ f ∨ g

Table 4.1: Abstract formulas vs. concrete formulas

equivalence between any single abstract model M̂ and its implementation M , i.e., p̂ |=
M̂ ⇐⇒ p |= M .

This establishes the soundness of path predicate abstraction. In Tab. 4.1, ηi refers to
an abstract-state predicate, and ιi and µi refer to input and output sequence predicates,
respectively (to be defined below). The Ψ-predicates are used to characterize implemen-
tation states that are colored (“important states”). These predicates evaluate to false for
intermediate, non-important states of the design.

A path predicate abstraction is uniquely defined by an operational coloring. In prac-
tice, the operational coloring is established through formal property checking. We need
to formalize a property for every operation of a design, i.e., we need to create a complete
set of operation properties. (Note that the properties we talk about at this point estab-
lish the coloring and the PPA, whereas the properties of Tab. 4.1 exploit the soundness
and are used to specify verification targets for the system under verification.) Previous
work [26, 2] has shown how a PPA can be extracted bottom-up from an already existing
RTL implementation. Also the bottom-up approach relies on the completeness of a set of
properties. As explained in Sec. 2.3, a set of operation properties is complete if every de-
sign behavior is described by one of the properties in the set. Completeness of a property
set can be proven formally [26, 28].

In the top-down PDD methodology described in this thesis, the properties are first
generated automatically from the SystemC-PPA code in an abstract version, and are then
refined together and concurrently with the RTL design implementation. The properties
are generated in a standard property checking language like SVA. Their structure follows
a certain coding style in which abstract objects like states, input and output sequences
are encapsulated in macros/functions of the property checking language. The verification
engineer does not touch the abstract properties themselves but merely refines by filling
in the bodies of the macros/functions. A main benefit of PDD is that the properties are
generated correct-by-construction, they automatically fulfill the completeness criterion
(see Sec. 2.3.2) and, thus, cover the entire state space of the design. Formally, such
macros are state predicates or sequence predicates :

47

Definition 17 (State Predicate). A state predicate is an LTL formula without temporal
operators (Boolean subset of LTL).

Definition 18 (Sequence Predicate). A sequence predicate is an LTL formula where the
only temporal operator used is the next operator, X.

By allowing only X for expressing temporal relationships, sequence predicates describe
finite time intervals (more specifically, finite prefixes of infinite paths).

Definition 19 (Operation Property). An operation property is a pair (P, l) of an LTL
formula P and the finite length l of the operation. The property is of the form of an
implication A =⇒ C with A = ηstart ∧ ι and C = Xlηend ∧ µ.

The state predicate ηstart specifies the starting state set; the state predicate ηend spec-
ifies the state set reached at the end of the operation after l clock cycles. The sequence
predicate ι specifies the input sequences triggering the operation. The sequence predicate µ
specifies the expected output sequences during the operation.

States fulfilling a starting state predicate ηstart or an ending state predicate ηend are
called important states.

The antecedent, A, and the consequent, C, are also called “assumption” and “com-
mitment”, respectively, of the property.

1: property idle 3 read 5 p(length);
2: // freeze variables
3: int b in data 0;
4: // freeze values @t
5: t ##0 hold(b in data 0, ‘b in data) and
6: // triggers
7: t ##0 idle 3() and
8: t ##0 b in sync() and
9: t ##0 b in status() == in frame

10: implies
11: t end(length) ##0 frame start 2() and
12: t end(length) ##0 cnt() == 3 and
13: t end(length) ##0 m out sig() == 3 and
14: t end(length) ##0 msg data() == b in data 0 and
15: [...];
16: endproperty;

Figure 4.3: Operation property example

Example (11): Fig. 4.3 shows an example of an operation property in SVA, as it is
generated in our PDD framework. The property describes the transition from state idle

to state frame start in Fig. 3.3 (see Example 8). It describes the operation of the module
when the read in line 17 of Fig. 3.2 has completed and the condition in the if statement
in line 18 evaluates to true .

The property has the structure of an implication: The assumption part is the set of
sequences before the implies keyword in line 10 of Fig. 4.3; the commitment part is the
set of sequences thereafter. The sequences are conjoined by the “and” keyword. Some
custom keywords have been defined to enhance readability: The t keyword has a void

48

definition; t ##0 refers to “time point t = 0” in the respective sequence, i.e., the start of
the operation. The keyword t end(length) marks the time point the operation ends. (Note
that ## 0 is needed for syntactic correctness.) It serves as an abstract time reference,
and is concretized (refined) by specifying the actual length that the operation has in the
RTL. All objects referred to in Fig. 4.3 are abstract objects. For example, idle 3() and
frame start 2() are state predicates, realized in SVA by functions.

Once the RTL design process has started, the abstract properties are refined by filling
in the macro/function bodies.

Example (12): The expression in line 9 of Fig. 4.3 is a sequence predicate according to
Def. 8. It relates two abstract objects to each other: in frame is of the enum type defined
in line 1 of Fig. 3.2, and b in status() refers to the status element of the message object
received in the the read() call in line 17 of Fig. 3.2. Once the RTL implementation of the
module exists, the abstract object b in status() must be refined. In SVA, predicates are
realized as functions, and refinement means providing bodies to the functions. Fig. 4.4
shows an example of such a refinement.

1: function status t b in status();
2: return to status t({ \
3: $past(in,4), $past(in,3), $past(in,2), $past(in,1) });
4: endfunction

Figure 4.4: Refinement example

As can be seen, the refinement makes use of the SVA special operator $past() in order
to collect and concatenate several input values received sequentially over multiple clock
cycles. (For simplicity, a function to status t() is used to perform a conversion from RTL
values to a symbolic enum value.)

When the design implementation is completed and all properties have been refined
and proven to hold on the design, we have obtained an implementation of a module that
is a correct refinement of its SystemC-PPA description.

4.3 Compositional PPA

Up to this point, we have reviewed PPA for a single module as introduced in [2]. Systems,
however, are usually composed of several interacting modules. We now review the com-
positional approach as presented in [15]. Here, the sound relationship between a system
of communicating SystemC-PPA modules and its corresponding system of modules at the
RTL is introduced.

At the RTL, we model a system of n finite state machines, Mi = (Si, Ii, X, Yi, δi, λi),
where 1 ≤ i ≤ n. The machines are interconnected through a common, global, input
alphabet X = Y0 × Y1 × Y2 × . . . × Yn, i.e., every machine can access the output of
every other machine, Yi for i > 0, as a possible input. Y0 represents the input from
the environment. Of course, in practical systems, not every machine reads every other
machine’s output all the time. By formulating appropriate input sequence predicates
(Def. 8) we can select what machine outputs are evaluated at what time points.

49

In order to create a sound abstract system model, the coloring of the I/O must be
consistent among the communicating modules in the system. This means that any ini-
tialized I/O sequence must be abstracted to the same sequence of abstract symbols for all
modules in the system. We therefore extend the PPA definitions in [2] to compositional
PPA by defining a message specification below.

A message specification characterizes a set of I/O sequences of a specified length for
the global input alphabet X. Message specifications are used to define output sequence
segments of some FSM of the system that serve as input sequence segments in other FSMs
triggering operations there. Each message specification is syntactically defined in terms
of the global input space X, however, semantically it may relate only to the output of one
or more specific machines. A receiving machine can access the output of several sending
machines simultaneously.

Definition 20 (Message Specification). A message specification is a pair, (µ, l), of a
sequence predicate, µ (see Def. 8), and a length l. The predicate µ is specified using only
atomic formulas encoding the global input alphabet, X.

In this definition, l denotes the length of the operation that produces an output se-
quence characterized by µ. In practice, such message specifications are defined as macros
in a property language, relating to logic values on the interconnect lines between commu-
nicating machines like in the example of Fig. 4.4. The same macro can be used without
modification for ingoing and outgoing message specifications.

When an individual FSM in the system reads its inputs these values may be outputs
of more than one other machine. In the context of a composed system the input sequence
predicate, ι, of an operation property (see Def. 19) is therefore expressed as such a con-
junction of message predicates, one from each machine Mj in a system of n machines:
ι =

∧n
j=0 µj, where each message predicate µj ∈ Qj, with Qj being the set of all message

predicates describing outputs of machine Mj.

Example (13): In the example SVA property of Fig. 4.3, the module is triggered by an
input reading only a single port b in. However, if it were to make decisions based on more
than one input this would be specified by additional sequence definitions placed in the
assumption part. The conjunction of all sequence predicates is formed explicitly by the
SVA and operator.

In our PPA theory, the message specifications are mapped to abstract symbols through
a mapping function βj. There is a mapping function βj for every FSM Mj in the system.

Definition 21 (Message Abstraction). For every message specification (µ, l) there is a
unique, abstract message symbol ŷ ∈ Ŷj. There is a one-to-one mapping between the
message specifications and the abstract message symbols by the mapping function: βj :

{(µj, l)} 7→ Ŷj.

Using the βj we can map every operational input predicate ι to a corresponding tuple
of abstract messages, (x̂0, x̂1, x̂2, . . . , x̂n,), where x̂j = βj((µj, l)), (and vice versa).

Definition 22 (Abstract System Alphabet). The abstract system alphabet is a set of
(n+ 1)-tuples, X̂ = Ŷ0 × Ŷ1 × Ŷ2 × . . .× Ŷn where Ŷ0 is the set of abstract primary input
message symbols and where Ŷj for j > 0 is the set of abstract message symbols of the j-th
sending machine according to Def. 21.

50

Example (14): In practice, the abstract system alphabet consists of a set of abstract
message symbols that are defined globally for all modules. In the SystemC-PPA example
of Fig. 3.2, the definitions in lines 1 and 2 define a message data type as an enum type
and message objects as a struct msg t. All modules exchanging messages of this type use
the same global definition.

The abstract state set is the product of the individual FSM state sets. But how
should the transition behavior be modeled? In the concrete system, every finite state
machine, Mi, corresponds to a path predicate abstraction M̂i. An operation in a ma-
chine Mi may comprise a sequence of state transitions but it corresponds to a single
transition in the abstract model M̂i, i.e., M̂i is time-abstract. The temporal relationship
between the operations in different machines, e.g., based on a common clock, is lost in
the abstraction. Hence, in our abstract system model the abstract FSMs communicate
asynchronously with each other by exchanging messages. The unknown temporal rela-
tionship between the modules is modeled using non-determinism: While each abstract
FSM M̂i = (Ŝi, Îi, X̂, Ŷi, δ̂i, λ̂i) is still a deterministic FSM the composed model M̂ has a
non-deterministic transition behavior modeled by a relation T̂ rather than a function δ̂.

Definition 23 (Asynchronous composition). The asynchronous composition M̂ of n path-
predicate-abstracted FSMs M̂i is given by M̂ = (Ŝ, Î , X̂, Ŷ , T̂ , λ̂), where

• Ŝ = Ŝ1 × Ŝ2 × Ŝ3 × . . .× Ŝn, is the set of states,

• Î = Î1 × Î2 × Î3 × . . .× În, is the set of initial states,

• X̂ = Ŷ0 × Ŷ1 × Ŷ2 × . . . × Ŷn is the input alphabet where Ŷ0 is the set of abstract
primary input messages and, for all i, 1 ≤ i ≤ n, Ŷi is the set of messages produced
by the abstract FSM M̂i,

• Ŷ = Ŷ1 × Ŷ2 × Ŷ3 × . . . × Ŷn is the output alphabet where Ŷi is the set of messages
produced by the abstract FSM M̂i,

• T̂ is the transition relation:
((ŝ1, . . . , ŝn), x̂, (ŝ′1, . . . , ŝ

′
n)) ∈ T̂ iff ∃i, 1 ≤ i ≤ n such that ŝ′i = δ̂i(ŝi, x̂) and

∀j, 1 ≤ j ≤ n, j 6= i : ŝ′i = ŝi.

• λ̂ : Ŝ 7→ Ŷ is the output function, labeling every state with the output messages
produced by all sub-modules:
λ̂ ((ŝ1, . . . , ŝn)) = (λ̂1(ŝ1), λ̂2(ŝ2), . . . λ̂n(ŝn)).

This notion of an asynchronous composition is illustrated in an example below (Fig. 4.9).
It is important to observe that all possible interleavings of operations between different
machines are represented. This model is closely related to the asynchronous product of
ω-automata in Spin [52]. Note that the transitions in the asynchronous composition rep-
resent single transitions of sub-modules, i.e., modules never transition simultaneously but
always “one after the other”.

Note that when using a model checker on this asynchronous composition, a liveness
property may return counterexamples that are spurious in the implementation because
abstract paths exist where sub-FSMs M̂i remain in waiting states infinitely long. This
is usually solved by adding fairness constraints to make sure that every sub-FSM M̂i

infinitely often makes a transition (cf. finite progress assumption in [52]). (This is imple-
mented as weak fairness in Spin.)

51

4.3.1 Communication schemes in digital hardware

Communication in digital hardware relies on a few basic principles. The communicating
parties need to synchronize with each other before messages can be transmitted. Also,
there needs to be an agreement on how a message is actually transferred from the sender
to the receiver(s).

Let us discuss the different communication schemes in digital hardware that we address
in this work. A first fundamental distinction is between asynchronous communication,
relying on dedicated event signaling, and synchronous communication, relying on a com-
mon hardware clock. (Note that the terms “asynchronous” and “synchronous” are here
used in the context of data transmission at the hardware level. They have a different
meaning at the software level, where they usually imply non-blocking or blocking com-
munication, respectively.) Another distinction is to be made between implementations of
communication systems that rely on timing constraints/guarantees (implicit timing) and
those that do not.

Asynchronous communication

In asynchronous communication the synchronization of sender and receiver is carried out
through event signaling: one or more communication partners signal their being ready
for communication by asserting a synchronization signal. If only one partner sends a
synchronization signal then local timing constraints must guarantee that the other is
ready to communicate when the synchronization signal arrives. The message is then
transferred either through implicit timing, meaning that the communication partners
comply to timing constraints such as setup/hold times of the synchronization signals
or guaranteed latency periods. Or, if no implicit timing information is used, proper
transmission is signaled through a handshake.

Synchronous communication

In synchronous communication the situation is similar. While the transfer of the individ-
ual information bits of a message is controlled by a common clock, the overall orchestration
of message exchange is synchronized through certain explicit synchronization signals. If
only one communication partner sends such a signal (unilateral synchronization), then it
must be guaranteed (through local timing constraints) that the other partners are ready
to receive the signal and the message. Because of the common clock, in synchronous
communication the actual data exchange may comprise several steps (such as the beats
in a burst operation on a bus). Proper reception of the data is either guaranteed through
the implicit synchronization by the clock, or may be be signaled explicitly, e.g., to accom-
modate for varying access latencies such as “wait states” in bus protocols.

4.3.2 Modeling Communication

When using compositional PPA for designing systems in practice, one of the key is-
sues is to model communication between the different modules. Therefore, based on the
categorization of communication schemes in Sec. 4.3.1 we show, in the following, how

52

communication can be modeled within our methodology using explicit synchronization at
the abstract level, as realized by the SystemC-PPA communication primitives.

Our computational model is based on an asynchronous product of the individual FSMs.
An important fact is that a system composed at the abstract level by connecting abstract
inputs and outputs, without any abstract synchronization mechanism, is actually sound
with respect to LTL. However, such a simple model will usually introduce many spurious
transitions due to an over-approximation of the possible interleavings between operations
of different modules. Therefore, the synchronization mechanisms of the concrete system
should be reflected in an abstract synchronization model that is created to avoid these
spurious transitions. In the following, we explain how to model an abstract synchroniza-
tion that is sound by construction for the standard communication schemes considered
here.

Modeling asynchronous communication

Fig. 4.5 shows an example of a four-phase handshake between two Moore machines M1

and M2. The handshake is carried out using signals s and r. The signal s, produced
by M1, is asserted only in state S and de-asserted in all other states. Likewise, signal r,
produced by M2, is asserted in no state other than R.

A S B

P R Q

s=0 s=1

s=0

s=1 s=0

s=1

s=0

r=0

r=0

r=0r=1r=0

r=1

r=1
M1

M2

Figure 4.5: Asynchronous communication based on four-phase handshake

(This example corresponds to a “blocking port” communication in SystemC-PPA.
For example, the module described in Fig. 3.2 has one such interface, b in (cf. line 8).
With respect to the abstract FSMs of Fig. 4.5, the SystemC module of Fig. 3.2 resembles
machine M2, signal s corresponds to the sync component of the port b in and the read()
communication call in line 17 corresponds to the shown state sequence.)

Before data can actually be transferred both machines need to synchronize. Assume
that M2 is waiting in P . When M1 moves from A to S it sends a synchronization signal
s = 1, possibly together with some data. M2 is triggered by this signal and moves into R.
Because there are no timing guarantees machine M1 needs to wait in its sending state S
until M2 has actually received the message, moved into state R and acknowledged back to
M1 by sending the signal r = 1, again possibly together with some data. Machine M1 then
de-asserts s and waits for M2 to de-assert r as well. Note that M1 needs to wait for M2

in state B, otherwise a new message sent during some state sequence (B, . . . , A, S,B)
could go unrecognized if machine M2 remains in state R during that time. The four-
phase handshake built with the signals s and r ensures certain reachability constraints

53

according to the four phases: state P is not left unless state S is taken, S is not left while
in P , R is not left while in S, and B is not left while in R.

For creating the communication primitives provided by SystemC-PPA we need to map
each of the communication schemes of Sec. 4.3.1 to the four-phase handshake above so
that it can be interpreted as event-based message passing on the abstract level. This is
trivial for the scheme of asynchronous communication without local timing guarantees
at the RTL, because in this case the RTL implementation communicates exactly like
the abstract model, using a four-phase handshake. The abstract modeling of the other
communication schemes needs more consideration.

Modeling synchronous communication

In case of synchronous communication the four-phase handshake results in an unnecessary
overhead regarding the required synchronization signals. In this case, we need auxiliary
constructs to establish soundness, because only parts of the four-phase handshake are
present in the path predicate abstraction. We then need to extend the abstract models
of sender and receiver(s) with the missing elements.

As an example, consider the unilateral synchronous scheme: two machines M1 and M2

communicating in a synchronous system at the RTL with M1 sending the synchronization
signal and M2 receiving it. Fig. 4.6 shows parts of their state transition graphs. The

A S B
z=0 z=1 z=0

P Rz=1

r=0 ρ

M1

M2

Figure 4.6: Synchronous communication with unilateral synchronization

system relies on an implicit timing guarantee stating that machine M2 is always in state P
whenever machine M1 enters state S. Such an implicit timing guarantees result from the
communication protocol and can usually be identified easily. Machine M1 sends the
synchronization signal, z = 1, in state S to indicate that a communication operation
begins. Machine M2 waits in P until the synchronization signal triggers a communication
operation. The operation lasts for several clock cycles in which data can be exchanged
between the machines. During this operation, both machines remain in synchron due to
the common clock while they each traverse the operation. A message specification (µ, l)
is used to characterize the I/O sequences exchanged in the operation.

The path predicate abstractions of M1 and M2 are given by the state transition graphs
in Fig. 4.7. The abstract states S and P correspond to the starting states of the com-
munication operation between M1 and M2, the abstract states B and R mark its end.
Comparing this with the four-phase handshake of Fig. 4.5 we see that states with the
same names correspond to each other. The synchronization signal z serves as one of the

54

A S B

P R

z=0 z=1

z=0

z=1

z=0

M1

M2

Figure 4.7: Path predicate abstractions of M1 and M2 from Fig. 4.6

A S B

P R

z=0 z=1

z=0

z=1

z=0

M1

M2

r=0 r=1

z=1

r=1 r=0

z=0

r=0 r=1

Figure 4.8: Path predicate abstractions of M1 and M2 with extensions

55

handshake signals, namely s in Fig. 4.5. However, for a full four-phase handshake, the
dotted elements of Fig. 4.8 need to be added so that we soundly model the communi-
cation in an abstract system that does not rely on timing guarantees. In this example,
an abstract handshake signal r needs to be introduced that is asserted only in state R.
Self loops and guard conditions are added to the state transition graphs of the abstract
machines M̂1 and M̂2 as shown in Fig. 4.8.

When are we allowed to add these elements to the state transition graphs of the
path-predicate-abstracted models? As stated above, the elements (states, transitions,
guard conditions) of a four-phase handshake produce a behavior with certain reachability
constraints on the product states of the composed abstract system. We may extend
path predicate abstractions to full four-phase handshake communication if and only if
the corresponding concrete system has the same reachability constraints on the involved
starting and ending states of the operation as the extended abstract system. This must
be shown for all communication schemes considered in our methodology.

In the top-down methodology, we account for the different synchronization schemes
by providing corresponding communication primitives in SystemC-PPA. For example, the
unilateral synchronization scheme is implemented by a “master/slave port” in SystemC-
PPA, as, for example, used in Fig. 3.2 in line 9. For this interface, our PDD tool
DeSCAM automatically generates properties checking for unilateral synchronization, as
well as checking that the timing constraints are indeed met by the RTL.

Soundness for specialized communication schemes

Let us begin with the case of unilateral synchronization as shown in the above example.
Referring to Fig. 4.5, the first reachability constraint requires that state S must not be
entered before P is entered, (i.e., M2 is always ready for M1 in P). This reachability con-
straint must be guaranteed by the implicit timing constraints used in the implementation.
(Note that the soundness of our model relies on the validity of this constraint; see discus-
sion below.) The other three reachability constraints (S not left while in P , R not left
while in S and B not left while in R) are fulfilled through the synchronous communication
operation following state S. They are verified by the fact that the machines transition
synchronously throughout the communication operation and that this operation is un-
ambiguously described by the message specification (µ, l). This same predicate is used in
the formal property proofs of the communication operations in both, the sending and the
receiving machine.

The discussion of the remaining communication schemes is analogous. For the case of
synchronous communication with bilateral synchronization, both signals, s and r, exist
in the concrete implementation and therefore also in the path predicate abstractions, as
do the self-loops in state S and P . The extension towards a full four-phase handshake
requires only the self-loops in the communication ending states, B and R. This is justified
in the same way as for the unilateral synchronous case.

For the case of asynchronous communication we identify two cases: bilateral synchro-
nization and unilateral synchronization with an implicit timing guarantee. The first case
yields a four-phase handshake on the concrete as well as on the abstract level, as men-
tioned before, and needs no extension. The second case is similar to the synchronous
unilateral scheme in the following respect: Instead of having a feedback signal r from

56

machine M2 to M1 we have implicit timing constraints (enforced, e.g., through timer cir-
cuits or counters) that enable state transitions in machine M1 only if M2 is guaranteed
to have moved into the corresponding communication states. In other words, the timing
constraints enforce the reachability constraints of the four-phase handshake abstraction.

The soundness of the abstract model can also be established, for the considered com-
munication schemes, by the following argument. If the reachability constraints are fulfilled
by the implementation then the following construction yields a concrete system which is
functionally equivalent with the original design and has a path predicate abstraction with
a four-phase handshake: Assume we extend the original concrete implementation of M2

with an additional output signal r that is evaluated by M1 as in Fig. 4.8. Obviously,
the operations corresponding to the dotted arcs are never triggered if the implementation
fulfills the set of reachability constraints. Therefore, the extended implementation which
has a full four-phase handshake communication abstraction is functionally equivalent to
the original implementation.

In all standard communication schemes, as they are considered here, the extended
path predicate abstractions composed in an asynchronous system with communication
through four-phase handshakes, by construction, soundly model the concrete system. It
only needs to be ensured that the concrete system indeed matches one of the described
communication schemes. This can be done by a simple manual inspection or can also
be automated by going through a formalized check list that examines whether the path
predicate abstractions created for the individual modules match with the characteristics
of the considered communication schemes. In cases where implicit timing constraints are
used in the implementation, the soundness of our model relies on the validity of the timing
constraints. In practice, however, these timing constraints are often obvious by inspection
because the respective state machines have only very few states and may be always in a
state ready for communication.

Fig. 4.9 shows the asynchronous composition of the machines in Fig. 4.5. As can be
seen from the state transition graph, the four-phase handshake between the two machines
is capable of modeling a synchronous communication, e.g., Fig. 4.8: The starting states
of the communication operation are S and P , the ending states are B and Q. In a
synchronous communication the product state BQ is reached always some time after
product state SP . This is reflected in the asynchronous composition of Fig. 4.9: All fair
paths leaving SP always reach BR. (Fairness forbids infinite cycling in SP , SR or BR.)

4.3.3 Synchronization and wait-stuttering

The asynchronous composition of Def. 23 pays tribute to the fact that the concrete timing
of an operation in a PPA module is lost in the abstraction. The abstract system model
represents all interleavings of the transitions in the abstract modules, by considering every
possible operation timing instead of just the one in the concrete implementation. Two
different implementations have the same abstract system model if the concrete systems
differ only in the timing but not in in the sequencing of input/output messages. We may
exploit this fact for simpler and more flexible abstraction functions while preserving the
soundness of the abstract model.

In this section we introduce a new message category for specific types that still ensures
soundness of the model even when the correspondence for the message abstraction is

57

AP
s=0
r=0

s=0

s=1

r=0

s=0

r=1 r=0

r=0

s=0

r=1

s=0
s=1

r=0

AR
s=0
r=1

SP
s=1
r=0

SR
s=1
r=1

AQ
s=0
r=0

BP
s=0
r=0

BR
s=0
r=1

SQ
s=1
r=0

BQ
s=0
r=0

Figure 4.9: Asynchronous composition of machines in Fig. 4.5

58

weaker than what was originally required by Def. 21. Thus, the extensions made in this
section enable a stronger abstraction and allow for a more flexible abstraction technique.

Consider an operation starting and ending in states that are characterized by the same
FSM state predicate. Such an operation is mapped to a state with a self-transition in the
PPA. If an abstract FSM containing such a state ŵ with a self-transition is composed with
other abstract FSMs in an asynchronous product then every product state containing ŵ
has a self-transition, too. If such a product state is reachable then an arbitrary number of
consecutive repetitions of the self-transition is reachable. In order for the product machine
to be meaningful, the actual number of repetitions cannot be relevant for functional
correctness, because the modeled behavior includes any number of repetitions.

Definition 24 (Wait Message). A wait message is an I/O sequence which only satisfies
input sequence predicates of operations starting and ending in states satisfying the same
FSM state predicate.

Fig. 4.10 illustrates the definition of a wait message for a system composed of modules
M1 and M2. M1 produces output sequences µw := (z = 0) of length 1 in three states. M2

receives these messages which only trigger the self-transition of length 1 in state P . The
I/O sequences specified by (µw, 1) are examples of wait messages.

From the above discussion it follows that, in the composed abstract system, the ef-
fect of a single wait message cannot be distinguished from the effect of any number of
consecutive wait messages. We may therefore safely model any number of consecutive
wait messages using the same abstract symbol — the set of unique paths in the (over-
approximated) abstract system remains unchanged.

S1 S2z=0
z=0

P

z=0M1

M2

z=0

Figure 4.10: Consecutive wait messages

In the example of Fig. 4.10, according to Def. 21, the mapping of this “long message”,
((µtot := z = 0 ∧ X(z = 0) ∧ X2(z = 0)), 3), cannot be mapped to the same symbol as
used for the “short message”, (µw, 1) which triggers the self-transition in M2. (We write
Xi+1p = XXip to represent a generalized LTL “next” operator.) We also cannot use a
different symbol because the long message “contains” the short message, i.e., µw and µtot

would not characterize disjoint sets of I/O sequences.
In order to create a legal abstraction, the long operation would therefore have to be

split up into several shorter operations such that each produces the short message. The
extension to be introduced in this section allows for a more flexible mapping where such
an abstraction is possible. The short message is a wait message, and the long message
can be viewed as several consecutive short messages. In the abstract system, the effect

59

of several consecutive wait messages cannot be distinguished from the effect of a single
occurrence. In such a case, we will therefore allow the long message to be mapped to the
same abstract symbol as used for the short message.

Notice that the wait message is not completely disregarded. We may only simplify
our model by representing any fixed number of repeated wait messages by a single occur-
rence. A complete disregard of a wait message could make the self-transition it triggers
unreachable and thereby hide the output of the self-transition preventing a possible trig-
gering of an actual state change in one of its neighboring modules. Such a disregard could
therefore change the reachable product space of the composed system and would make
the abstraction unsound.

In many cases, however, the output during an operation triggered by a wait message
is completely irrelevant because it does not trigger operations in neighboring modules.
We call such wait messages “strict”, as defined below.

Definition 25 (Waiting Operation). A waiting operation is an operation where the start
state predicate is the same as the end state predicate and whose output is either not used
as a trigger for any operation in another module or it only triggers waiting operations in
other modules.

Definition 26 (Strict Wait Message). A strict wait message is a wait message satisfying
only input sequence predicates of waiting operations.

Based on the above classification of messages the abstraction requirements can now
be weakened without affecting soundness. We allow any finite number of consecutive wait
messages to be represented by the same abstract symbol, and we allow abstractions where
strict wait messages are not represented at all.

The abstraction of messages was described in Def. 21 by a one-to-one mapping between
message specifications and abstract message symbols. The message specifications are I/O
sequence predicates paired with the length of the operation (see Def. 20). According to
Def. 21, operations of different lengths can, therefore, not be described using the same
message symbols. In the following we replace Def. 21 by the weakened message abstraction
of Def. 27, which, under specific circumstances in the presence of wait messages, may allow
I/O sequences in operations of different lengths to be abstracted using the same abstract
symbols. To simplify notation we let stutter((µ, l), k) denote the I/O sequence predicate,
µ ∧ nextlµ ∧ next2lµ ∧ . . . ∧ next(k−1)lµ, characterizing k consecutive repetitions of µ of
length l.

Definition 27 (Message Abstraction with Wait Stuttering). Let βj be the bijective func-
tion of Def. 21 mapping message specifications to abstract message symbols, let µtot and
µmsg be arbitrary I/O sequence predicates, and let µw and µsw be I/O sequence predicates
characterizing only wait messages and strict wait messages, respectively, then a surjective
function Fmsg : {(µtot, l)} 7→ Ŷ is a message abstraction function if Fmsg((µtot, l)) = ŷ
implies one of the following:

1. βj((µtot, l)) = ŷ

2. βj((µw, q)) = ŷ and (µtot, l) = stutter((µw, q), i) and l = i · q

60

3. βj((µmsg, a)) = ŷ and
(µtot, l) = stutter((µsw, q), i) ∧ nextq·i(µmsg) ∧ nexta+q·i(stutter((µsw, r), j)
and l = i · q + a + j · r

The first form of the message abstraction is the original form of Def. 21. It is actually
contained in the third form as a special case (when i = 0 and j = 0) but is kept here for
clarity. The second form describes a finite number of repetitions of a wait message µw,
mapped to an abstract “wait” symbol ŷ. The third form describes a message with three
phases. The first phase and the third phase are (possibly empty) stutterings of strict
wait messages. The second phase is a single instance of a non-wait message. These three
phases together are abstracted into the single abstract message symbol ŷ corresponding
to the non-wait message.

With Def. 27 we can now concisely model any communication scheme in practical
systems including the schemes presented in Sec. 4.3.1 by abstracting synchronization
signals using stuttering of wait messages.

4.3.4 Model checking on the abstract system

The abstract system model is an asynchronous product of path predicate abstractions.
The concrete system model we consider here can either be a standard synchronous prod-
uct of finite state machines if all design modules share a common clock or an asyn-
chronous composition in the form of Def. 23 if the design modules communicate asyn-
chronously with each other. We here consider LTL model checking. A Kripke model
K̂ = (ŜK , ÎK , R̂K , ÂK , L̂K) is derived from an asynchronous composition M̂ in the fol-
lowing way. Let M̂ = (Ŝ, Î , X̂, Ŷ , T̂ , λ̂) be the asynchronous composition of n path-
predicate-abstracted FSMs M̂i, 1 ≤ i ≤ n. For the Kripke model K̂ the set of states
is ŜK = Ŝ × X̂, the set of initial states is ÎK = Î × X̂ and the transition relation is
R̂K ⊆ ŜK × ŜK = {((ŝ, x̂), (ŝ′, x̂′)) | (ŝ, x̂, ŝ′) ∈ T̂}. The set of atomic formulas, ÂK , is
composed from subsets of atomic formulas, one for each component of the system. The
subset for component M̂i comprises the state set Ŝi, the input alphabets X̂i and the out-
put alphabet Ŷi of that component: Âi = Ŝi ∪ X̂i ∪ Ŷi. The overall set of atomic formulas
for the system’s Kripke model is ÂK =

⋃n
i=0 Âi.

In the following we consider an abstract model and a concrete model with an al-
ready established sound relationship. Due to its asynchronous composition, the abstract
composed system model over-approximates the possible interleavings of operations. In
other words, the paths reachable in the abstract composed system represent a superset
of the sequences of operations that are actually executable in the concrete composed sys-
tem. Hence, successfully proofing a property on the abstract model guarantees that the
corresponding property is also valid for the concrete model, but not vice versa.

The soundness of the asynchronous composition with respect to LTL relies on the
fact that every path in the concrete system is represented by a path in the abstract
system. This means that if there is a counterexample for a property in the concrete
model, then there also exists a counterexample on the abstract model. (An existential
operator does not exist in LTL, the over-approximation by asynchronous composition is
therefore conservative for all properties.)

Note that a property in the abstract model may fail if the corresponding property
on the concrete level only holds for a specific processing speed between synchronization

61

events. In the asynchronously composed abstract model all possible component speeds
and the resulting interleavings of operations are represented, including the specific set of
speeds existing in the implemented, concrete system. Therefore, not all initialized (i.e.,
reachable) abstract paths must have a corresponding concrete path. As a result, only
system behavior that is speed-independent, i.e., does not depend on the processing speed
of the individual modules, can be verified on the abstract level.

Theorem 1 (LTL Soundness of Composed Model). Consider an LTL formula ϕ̂ for the
composed abstract model and the corresponding LTL formula ϕ for the concrete system
as obtained by applying the translation rules of Tab. 4.1. If the formula ϕ̂ holds on the
abstract model then the formula ϕ holds also for the concrete model.

Proof. We state the proof for the communication scheme of synchronous communication
on the concrete level. For the other communication schemes the proof is similar.

Consider an arbitrary (possibly infinite) path π from the initial state in the concrete
system. In every product state on the path an arbitrary number of machines may be in a
respective important state (see Def. 19). In a synchronous communication operation, the
sender and the receiver begin and end the communication in synchronized start and end
states, i.e., at product states that are important in both, sender and receiver. We now split
the path π into fragments between such synchronized states. A communication fragment
is one that begins at a communication start state and that ends at a communication end
state. This fragment always has a corresponding abstract path fragment, because the
start and end states, by construction (see Def. 23), have corresponding sets of product
states in the asynchronous composition.

A non-communication fragment is a path fragment that begins at the end of some
communication and that ends at the beginning of the next communication. In between
these states the machines do not communicate and the specific product states occurring
on the path fragment are a result of the specific speed at which each module actually
runs in the implementation. The asynchronous model abstracts from concrete timing and
represents all possible interleavings of operations in the two modules. In every individual
module, an operation on the concrete level always corresponds to an abstract transition.
Hence, for such a concrete path fragment at least one abstract path fragment exists.

Each path in the concrete and in the abstract machine consists of one or more path
fragments and represents a sequence of communications, in the concrete and in the ab-
stract model, respectively. As a result of the asynchronous composition, the sequence of
communications contained in the abstract model is a superset of the sequence of commu-
nications in the concrete model. Therefore, every path in the concrete system beginning
at the initial state has a representation in the abstract system. If a concrete LTL formula
does not hold on a specific path leaving the initial state in the concrete model then there
is an abstract path leaving the initial state where the abstract LTL formula is violated,
also.

As a last observation in this section, we note that our framework has to be based
on LTL formulas rather than CTL. In LTL, all expressible properties can be understood
as expressions within a universal operator, i.e., properties expressing a meaning in the
form “for all paths . . . ”. In contrast, CTL formulas can also existentially quantify over
paths. Since not every abstract path must have a concrete counterpart, the asynchronous
composition, in general, is not a sound model with respect to CTL.

62

4.3.5 Data Path Abstraction

The formalism of PPA is well suited to create an abstraction for the control of a hardware
implementation. Including the data path is straightforward. We simply view all state
and input variables to be part of the control. In the PPA formalism, this would lead to
separate operations and operation properties for every possible data path value. Although
formally correct, this is, clearly, not practical.

However, there is a technical solution to this problem. We allow each property to
distinguish between a set of control states, a set of data path variables and several in-
put and output message types. The properties that are created describe operations as
transitions between control states in terms of a set of input messages and a set of data
path variables. This distinction is a purely syntactical one, and an operation described
in this way has a direct translation into sets of operations matching our formal model.
Soundness of the abstraction is not compromised. A translation always exists when the
abstract state space is the product of the control states and the data path states, and the
“input message space” is the product of the set of input messages.

The operation properties written in this way describe transitions between concrete
data path states implicitly using functions. The functions describe the data path func-
tionality and map between the data path variables representing operands and those rep-
resenting the results of a computation. This allows for efficient abstractions of data path
objects of various kinds, including predicate abstraction and word-level abstractions. Note
that due to the time-abstract nature of PPA, cycle accuracy of concrete data path com-
putations is always abstracted away.

4.4 SystemC-PPA

In the following, we sketch the subset of SystemC, called “SystemC-PPA”, that can be
used for sound hardware modeling. We need to restrict ourselves to a subset because
SystemC, per se, lacks a clear semantics with respect to modeling digital hardware.

The subset requires the user to write the SystemC model in a certain format such that
the notions of Compositional PPA (cf. Sec. 4.3) apply and a set of communicating FSMs
can be extracted. A SystemC-PPA model of a system consists of modules communicating
with each other using event-based message passing. To enable extracting a module’s
behavior as a PPA, the module must:

1. model an FSM in a time-abstract fashion,

2. have a single thread executing infinitely (infinite outer loop),

3. communicate only through an allowed set of communication ports,

4. not block unless a blocking communication interface is called,

5. have no cyclic execution path without a blocking communication,

6. use only objects whose size are known at compile time (e.g., no dynamic memory
allocation).

63

We provide a set of predefined communication interfaces to simplify the mapping of
messages between modules to sequence predicates. These interfaces are necessary, because
DeSCAM needs to know the underlying communication protocol of a communication
interface to correctly generate the properties. These interfaces, however, implement the
SystemC TLM 2.0 standard in order to enable all performance optimizations available by
SystemC. They do not impose any restrictions on the system-level designer and SystemC-
PPA modules are able to interact with other SystemC modules.

Despite these restrictions, SystemC-PPA supports a large subset of the C language
including arithmetic operators, built-in C++ datatypes, enum and compound types
(structs), and arrays. If-then-else is used for flow control. Note that – as of the time
of this writing – loops must be implemented in FSM style by jumping to and iterating
over sections. Future work will extend the subset to bounded for and while loops as well
as switch-case statements. Since any hardware behavior can generally be described using
the concept of finite state machines, SystemC-PPA places no restrictions on what can be
modeled (only on how it is described). Intuitively, we may view SystemC-PPA as the
“hardware-designable subset” of SystemC at a transactional level.

We illustrate some key features of SystemC-PPA using Fig. 4.11 and in the following
sections, we explain some key language features in more detail. A full documentation of
the features can be found in the online documentation to DeSCAM [50].

The module provides communication interfaces to other modules in the system. Lines
8 to 10 define three such interfaces. There is a blocking interface, corresponding to a
full four-phase handshake between the communicating modules (cf. Sec. 4.3.2). During
simulation, the read() in line 17 blocks and suspends the module’s SC THREAD by calling
a SystemC wait() until the counterpart of the communication has called the corresponding
write(). When a blocking interface is refined to the RTL, the generated set of properties
contains special synchronization functions/macros that need to be implemented by the
RTL developer in order to guarantee a full four-phase handshake.

When RTL designs are synchronized through a common clock, four-phase handshakes
bear unnecessary overhead. Line 9 shows an example of a so-called master/slave interface,
avoiding such overhead in the RTL refinement. A master/slave interface refines to a
unilateral synchronization scheme (cf. Secs. 4.3.1, 4.3.2). It relies on the timing constraint
that the slave module is guaranteed to be ready for communication whenever the master
module sends a synchronization signal. The generated properties ensure that the timing
constraint is met by the RTL design.

As a third communication primitive, line 10 shows an example of an unsynchronized
port. It can be used to model volatile data (like sensor I/O) or to provide additional
information together with some other communication port that is of the blocking or
master/slave kind.

The control and computation behavior of the module is described in the form of an
FSM description (cf. line 12 in the example). It is divided into sections that loosely
correspond to operations of the design. However, the actual abstract states of the PPA
defined by the module are given implicitly through the communication primitives read()
and write(), as shown, e.g., in lines 17, 24 and 31.

Fig. 4.12 shows the state transition graph of the abstract FSM defined by the SystemC-
PPA module in Fig. 3.2. The nodes represent communication states of read or write calls
in the different sections in which the FSM waits for synchronization signals from the mod-

64

1: enum status t {in frame, oof frame};
2: struct msg t {status t status; int data; };
3: SC MODULE(Example) {
4: SC CTOR(Example):
5: nextsection(idle) { SC THREAD(fsm)};
6: enum Sections {idle, frame start, frame data};
7: Sections section, nextsection;
8: blocking in<msg t> b in;
9: master out<int>m out;

10: shared out<bool> s out;
11: int cnt; bool ready; msg t msg;
12: void fsm() {
13: while (true) {
14: section = nextsection;
15: if (section == idle) {
16: s out→set(false);
17: b in→read(msg);
18: if (msg.status == in frame) {
19: s out→set(true);
20: nextsection = frame start;
21: cnt = 3;
22: }
23: } else if (section == frame start) {
24: m out→write(cnt);
25: cnt = cnt - 1;
26: if (cnt == 0) {
27: cnt = 15;
28: nextsection = frame data;
29: }
30: } else if (section == frame data) {
31: ready = b in→nb read(msg);
32: if (!ready) {
33: m out→write(msg.data);
34: if (cnt == 0) {nextsection = idle; }
35: cnt = cnt - 1;
36: }
37: }
38: }}};

Figure 4.11: Fig. 3.2 from Chap. 3

ules it communicates with. For example, the blocking read() on port b in in the section
named idle introduces the abstract state idle. It has a self-loop corresponding to the wait-
ing operation (cf. Def. 25) that is executed until the synchronization signal sync becomes
true. Such synchronization signals are provisioned automatically by DeSCAM. They are
generated as functions/macros in the property suite and need to be refined/mapped by the
developer to the corresponding features in the RTL design as explained in Sec. 5.3. Again,
this enforces correct implementation and establishes the soundness of the refinement. For
this example, the SystemC source code, the generated properties, and a possible RTL
implementation are available for download [50]. Chap. 5 elaborates on this example in
more detail and explains, in depth, how PPA models are specified in SystemC-PPA.

65

idle_3

wait for
sync

sync and msg.status != in_frame

frame_start_2

cnt != 1

sync and
msg.status==in_frame

frame_data_0
cnt == 1

ready

cnt!=0 and
!ready

cnt==0 and !ready

Figure 4.12: PPA for Figure 3.2

4.4.1 Interfaces

In this section, we talk in more detail about the supported interfaces of a SystemC-PPA
model. Exchanging a message between two modules is done using synchronization via a
handshake. At system level handshaking is implemented using built-in SystemC events.
At the RTL, such message passing may translate to a handshake-based transaction, which
might bear unnecessary overhead in case message loss is acceptable. SystemC-PPA ad-
dresses this issue by providing three different types of communication interfaces called
ports (standard SystemC ports could not be adopted because none of them provides pure
Rendezvous communication).

In most cases, these three supported types suffice to implement any kind of hard-
ware communication. Each type of port results in a different PPA. Regarding the PDD
methodology, use of different ports affects the generated property suite and resulting hard-
ware design as presented in Chap.5. In our proposed RTL generation flow, a difference
in PPA directly affects the generated hardware. Hence, it is important to select proper
communication interfaces between modules during the ESL design process to produce an
efficient RTL equivalent. More information about the resulting port implementations at
the generated RTL can be found in Sec. 5.3.2. The SystemC-PPA supported ports are
Blocking, MasterSlave, and Shared.

Blocking

The blocking interface guarantees that a message sent by the sender is received by the
receiver module. As the name suggests, the blocking interface blocks the sender/receiver
until both sides are ready for the message exchange. In other words, the blocking interface
forces synchronization by implementing Rendezvous communication, where both commu-
nicating sides have to inform each other once they are ready for a message exchange.

Here the blocking communication relates to the asynchronous communication scheme
presented in Sec. 4.3.2. Currently, the generated properties are only supporting syn-
chronous communication, meaning that the four phase handshake is reduced to a two
phase handshake. The methods that initiate blocking communication are port name->write(val)

66

and port name->read(var).

write() write_nb()
!sync

sync sync !sync

Figure 4.13: Different wait automata for write() and nb write() of a blocking interface.

In addition, the blocking interface also offers non-blocking sending and receiving of
messages. By calling the method port name->nb write(val) a write is initiated re-
gardless of whether the receiver is ready or not. If the message is successfully de-
livered the method returns true, otherwise it returns false. The same applies to
port name->nb read(var). Fig. 4.13 shows the different wait automata for the regu-
lar write and the non-blocking write. The incoming synchronization signal sync is true if
the counterpart module is ready for communication, or false otherwise. Fig. 4.13 shows
the difference in the blocking behavior of the two methods.

MasterSlave

The MasterSlave interface can be only used for modeling synchronous hardware systems,
e.g., system using a common clock. It connects two modules of master and slave type.
The interface is based on the assumption that the slave module is ready to communicate
at any given moment. This allows to send a message without waiting for the slave’s
synchronization signal.

The master interface offers two possible methods, port name->write(val) for writing
and port name->read(var) for reading messages. The master can communicate with the
slave at any time point with the guarantee that the slave is ready to either receive or send
a message. As a result, these methods are non-blocking and no message loss can occur
from the perspective of the master.

The slave interface provides similarly named methods as the master interface. A
slave is always ready to communicate with the corresponding master either by repeatedly
sending messages (in case the master initiates a read) or by constantly checking for arriving
messages (in case the master initiates a write). It is accepted that messages sent from
the slave can get lost. On the other hand, capturing a message should only happen if
the corresponding master did actually send one, which is indicated by the return value of
the method call. Both methods are non-blocking. A slave module must not contain any
blocking communications within it to comply with the ”always ready” requirement.

Shared

The shared interface does not involve any handshaking mechanism and therefore can
model the behavior of volatile memory. Hence, it is useful for modeling input data like sen-
sor values, that can change at any moment. It offers two methods, port name->set(val)

for sending a message, and port name->get(var) for retrieving a message.

67

4.4.2 Components of SystemC-PPA

A brief description of each of the supported components of a SystemC-PPA description
is provided in the following sections.

Data Types and Variables

SystemC-PPA supports the built-in data types: bool, int and unsigned int, as well as
enums and custom data types. The last two have to be defined within the scope of the
module, as shown in Listing 3.2 in lines 2 and 3. Custom data types are called compound
and their members can consist of built-in data types and enums, as demonstrated in
line 3. (Constructors and methods within compounds are not supported). Variables
needed for the behavioral description have to be declared, as illustrated in line 18, within
the SystemC module definition and not within the behavioral description itself.

Constructor

If the model is written with the help of sections (which is optional, but highly recom-
mended), the constructor must contain section initialization. It can also include other
variable initialization if needed (variable initialization during the declaration, as well as
initialization of the sub-variables of a compound data type are not supported in the cur-
rent version of SystemC-PPA). The SystemC macro SC THREAD(fsm) registers the method
fsm() as a thread that describes the behavior of the module, as shown in line 9.

Ports

The supported ports are derived from SystemC class template sc port with custom in-
terfaces defined by SystemC-PPA. The possible interfaces are blocking, master, slave and
shared, all of which implement a different blocking mechanism. Allowed directions are in
for receiving and out for sending messages. Message types may be of any of the SystemC-
PPA supported data types. A port forwards the calls of interface methods in a module to
the channel that it is bound to. Example port declarations can be seen in lines 11 to 13.

Functions

Functions are not allowed to change any state variables of the module since they are
meant to model combinational logic. This is ensured by declaring the function as const.
The function may only return built-in and enum data types.

FSM

A SystemC-PPA module must have a single method that describes its behavior and is
registered as a SystemC thread as required also by the synthesizeable subset of SystemC.
The use of SC THREAD is necessary for simulation of blocking behavior because SC PROCESS

and SC METHOD cannot be blocked. An example structure of such a method is illustrated
in Fig. 3.2 line 12 to line 38.

The method must contain one infinite outer loop written as while(true){..} with
the body describing the behavior. This is necessary to precisely define the behavior as an

68

FSM and model the continuous operation of digital hardware. The ESL model describes
untimed behavior and all notions of time are not allowed.

The only allowed control structures within the while(true)-loop are if-then-else
(ITE) constructs, because each path from a communication function call to the next
one has to consist of a finite number of C statements. Bounded while and for-loops are
currently not allowed. This is only due to technical reasons. The code can be structured
with the help of Sections to better represent individual stages. Sections can be defined by
an enum type that is declared in combination with two variables section and nextsection.

69

70

Chapter 5

DeSCAM approach

This chapter demonstrates Property-Driven Design from a practical point of view. As
shown in Fig. 3.1, the desired flow starts with an executable system-level model. Any
language with clear semantics w.r.t. a PPA can be used as a design entry language. In
the scope of this work, we are going to focus on SystemC-PPA as introduced in Sec. 4.4.

Electronic System Level

SystemC-PPA

refine model

generate properties

implement

R
T
L

refine P
r
o
p

e
r
t
ie

s

Figure 5.1: Implementation and refinement

The overall flow is depicted in Fig. 5.1 and consists of three major steps:

1. Analysis of the SystemC description for compliance with the SystemC-PPA subset,

2. generation of the properties and

3. design of the hardware with PDD design methodology.

We developed a tool supporting this flow. It generates the operation properties from
the SystemC-PPA description and it can generate a RTL template as a starting point
for the design process. The approach and the accompanying tool is called Design from
SystemC Abstract Models (DeSCAM). A public version of the tool is available as open
source on GitHub [50].

In Sec. 5.1, we explain how we parse and analyze a given SystemC-PPA description for
compliance with the SystemC subset defined in Sec. 4.4. Furthermore, we explain how a
PPA is extracted from a SystemC-PPA description by providing a “coloring” algorithm.

71

It applies an operational coloring (cf. Sec. 4.1) to the control flow graph of the SystemC-
PPA module and thereby computes the PPA.

Afterwards, in Sec. 5.2, we discuss how the parsed SystemC-PPA description is trans-
formed into properties and, lastly, in Sec. 5.3, we show how the properties are refined
along a hardware design process by an example.

5.1 From ESL to PPA

The first step of the DeSCAM approach is to parse a SystemC-PPA source file and
create a data structure, called Abstract Model, that stores the information relevant for
property generation. Fig. 5.2 shows the flow for this step. For parsing, we use the open-
source compiler framework LLVM/Clang [53]. The parser produces a representation of
the SystemC-PPA input as an Abstract Syntax Tree (AST). An AST represents the entire
program code, including the SystemC scheduler or C libraries, in a tree-like structure.

SystemC

Parse

Analyse AST Feedback

Abstract
Model

Figure 5.2: Abstract model generation

In the next step, the AST is analyzed and all information required for property gen-
eration is stored. This analysis is a static source code analysis. This means that only
information that is available during compile time is extracted. Details that are relevant
only for C++ analysis or SystemC simulation, like the SystemC scheduler, are stripped
away. The remaining information, describing the module in a PPA view, is stored in a
new data structure called Abstract Model (AM). The AM is explained in full detail in
Sec. 5.4. It contains structural information in the form of an abstract syntax tree and
behavioral information as a control flow graph (CFG). Initially, a CFG is automatically
generated by Clang for the class method void fsm() of a SystemC-PPA module. The
source code of this method needs to have a certain structure (cf. Sec. 4.4) such that (1)
its behavior, when simulated by the SystemC framework, is that of a finite state machine
(FSM), and (2), the FSM in terms of states and transitions can be extracted from the
control flow graph of the SystemC code.

In fact, this FSM extraction is straightforward. The CFG nodes can serve directly as
nodes of the state transition graph of the FSM, with a few exceptions, such as the outer
while (true) loop, the if-then-else (ITE) structure for the sections and any nextsection
assignment (if present). DeSCAM removes the respective CFG nodes and produces a
CFG that represents the FSM of the PPA, as shown in Fig. 4.12.

The nodes are labeled with the line numbers of the statements in Fig. 3.2. The dashed
boxes indicate the sections to which the individual CFG nodes belong. The tool analyzes

72

L.17

L.16

true

fa
ls

e
L.18

L.19

L.21

L.24

L.25

true

fa
ls

e

L.26

L.27

L.31

true

fa
ls

e

L.32

L.33

true

false
L.34 L.35

L.35

idle frame_start frame_data

Figure 5.3: Generated colored CFG

each object of the SystemC/C++ program and checks for compliance with SystemC-
PPA. Violations are reported in form of warnings and errors and the affected objects
are rejected. ESL models written in SystemC often serve several purposes at the same
time, e.g., to support early firmware development, to help in integration testing and to
generate tests. SystemC models may therefore contain code that is meaningless in the
PPA view but should still remain in the source. When DeSCAM warns about code that
is not SystemC-PPA compliant the user needs to analyze the diagnostic output and make
a decision on whether the affected code is relevant for the abstraction and should stay
included in the model or not. For example, take the following C++ statement:

std::cout <<"Hello" <<std::endl;

This piece of code produces the DeSCAM error:

-E- Unknown error: Stmts can’t be processed;

This statement may have side effects that could change the behavior of the modeled
component, for example, if the stream pipes into a variable that is used inside the module.
The designer must then refine the SystemC code to remove the error. Otherwise, if the
designer is certain that no side effect exists, for example, because std::cout has its default
behavior of writing to the console, the error can be flagged and ignored.

5.2 From PPA to Properties

In the next step DeSCAM generates a PPA from the Abstract Model. This step has three
phases, as illustrated in Fig. 5.4.

73

Coloring Path enumeration

States Operations

Optimize

CFG

PPA

Figure 5.4: Overall flow of model generation

• Coloring: Operational coloring is applied on the initially uncolored CFG. In case of
PDD the coloring is trivial, because the important states are implicitly provided by
the communication primitives. Each communication with synchronization results
in an important state.

• Enumeration of operational paths: Every path between two important states (see
Def. 12) in the CFG results in an operation (see Def. 10) for which an operational
property is generated.

• Optimization: The PPA is optimized with respect to structural complexity, in or-
der to enhance conciseness and readability. Sec. 5.5 presents the details of the
optimization procedures.

Prior to applying the operational coloring, the CFG is extended by additional opera-
tions that are defined implicitly by the SystemC-PPA model:

• reset operation: It is defined by the initialization of the nextstate variable in the
constructor (SC CTOR) of the SC MODULE (cf. Fig. 3.2). In the current version,
DeSCAM supports only SystemC-PPA modules with a single constructor. The
reset operation ensures the correct initialization of RTL registers and guarantees
that the design is in the correct important state after reset. This is necessary for
fulfilling the completeness criterion (see Def. 2.3.2).

• wait operation: Wait operations are generated for communication over blocking
ports. They correspond to the wait operation described in Def. 25. If read() or
write() is called and the counterpart of the communication is not ready, then the
module blocks, i.e., it needs to wait. A wait operation is added to the PPA that
forces the module to remain in its state until the counterpart is ready for commu-
nication.

After the insertion of implicit operations, operational coloring, as required for gener-
ating the PPA, is applied. First, every node resulting from a blocking communication is
colored (i.e., red and green). A communication primitive implementing the master inter-
face is colored only if condition 1 of Def. 15 is violated. The condition states that any
cyclic path within a graph must be broken by a colored node. This is the case for line 24,
thus L. 24 is colored blue. The communication primitive at line 33 does not violate the

74

1: property red-to-blue is
2: assume:
3: - - starting states
4: at t+0: state == L. 17;
5: - - trigger sequence
6: at t+0: sync == true;
7: at t+0: msg.status == in frame;
8: prove:
9: - - output sequence

10: at t+n: s out == true;
11: at t+n: cnt == 3;
12: - - ending states
13: at t+n: state == L. 24;
14: end property;

Figure 5.5: Operation property: red to blue

condition because there is no path without a colored node starting from L. 33. The paths
end in either green or red.

Fig. 5.5 shows one of the resulting operation properties. This property specifies the
transition from red to blue. It verifies that after a successful handshake and detecting a
new frame in control state L. 17, the operation will always end up in control state L. 24,
with counter set to 3 and with the shared port set to true.

In contrast to Fig. 5.3, DeSCAM names the states not by the line of code in which they
are declared. Instead, as Fig. 4.12 shows, states are named by the section in which they are
declared, extended by a unique ID generated by DeSCAM. If multiple communication calls
occur within one section they are distinguished by the unique ID. In our example, L. 17 is
renamed to idle 3, L. 24 to frame start 2 and L. 33 to frame data 0. The operations of the
PPA are labeled with the trigger conditions. The effects of different port interfaces on the
RTL implementation become apparent in Fig. 4.12. The state idle has a wait operation
because the communication counterpart may not be ready when the module enters this
state. On the other hand, the state frame data 0 does not have a wait operation because
the communication call uses the non-blocking nb read() method. The state frame start 2
requires no handshaking, because the respective port implements the master interface.

Initially, each variable specified at the system level leads to the implementation of
corresponding registers in the RTL. If a variable is used only for the sake of utility, e.g.,
storing intermediate computation results, an RTL register is not needed. In the given
example, this is the case for the variable ready. The variable is assigned the status value
indicating success of communication via port b in. It is used only once in the if-then-else
at line 32 where it can be safely replaced by the status value itself, in all operations
containing line 32. By contrast, the variable cnt at line 35 is assigned its previous value,
decreased by one. The new value depends on the previous one and thus the variable is a
necessary part of the state space of the PPA resulting in an RTL register.

75

5.3 From Properties to RTL

The final, manual, step of PDD is the actual implementation of the RTL from a PPA.
Its workflow is depicted in Fig. 5.6. The starting point is the complete set of properties
as generated from the PPA by DeSCAM, where each property represents one operation
that needs to be implemented at the RTL. For each abstract object of the system level
(variables, data values, etc.) a macro or function definition (in SVA) is generated. The
operation properties are built using these macros. For example, the macro cnt in Fig. 5.5
results from the system-level variable with the same name, cnt.

Implement RefineProve

RTL Properties

Figure 5.6: Implementation and refinement

The designer implements the RTL code matching the properties, one property at a
time. Each property is refined concurrently with the implementation, i.e., timing infor-
mation is added as well as detail concerning the datapath implementation. If the chosen
property holds on the design, the hardware implements the operation correctly. Other-
wise the RTL code needs to be corrected (or the timing adjusted). The design process is
finished once all properties can be successfully verified on the design.

The property suite provides a valuable verification IP for the finished design. It serves
as a formalized data sheet precisely documenting the implemented functionality.

Sec. 5.3.1 explains in more detail what a macro is and how it relates an abstract object
of the system level to a concrete RTL implementation.

5.3.1 Macros

Macros are an important vehicle for abstraction. By encapsulating references to RTL
objects at different time points they decouple RTL implementation details from their
abstract representation in a property. The property definitions themselves remain un-
changed during the design process. Only the macro bodies are edited. This approach
has two benefits. Since the generated set of properties is complete, independently from
the actual content of the macros, it is not possible to introduce a verification gap during
the refinement process; also, instead of the whole property text only a small part of the
generated lines of code has to be adapted by the designer. We evaluated the associated
work effort. Results can be found in Sec. 7.

In this and the following section we illustrate the abstraction constructs using the
commercial property language ITL [25]. Note that DeSCAM also supports SVA printout
for which it generates defines and functions instead of macros. The interested reader can
find the RTL implementation as well as the refined properties (both in ITL and SVA) for
the example of Fig. 3.2 on our GitHub site.

Fig. 5.7 shows an abstract definition of a macro, consisting of a name, return type and
a body as it is initially generated by DeSCAM. In the macro body the designer specifies
the implementation details of the abstract object. Sometimes, a word-level RTL variable
has the same name and an equivalent type as the system-level variable it implements.

76

1: macro MACRO-NAME: RETURN-TYPE :=
2: MACRO BODY
3: end macro

Figure 5.7: Macro definition

1: macro cnt: int :=
2: instance/RT signal
3: end macro

Figure 5.8: Simple refinement for cnt

For example, Fig. 5.8 shows such a straightforward refinement for the abstract system-
level variable cnt. A variable can also be mapped to a more complex RTL data structure,
as shown in the example of Fig. 5.9 where “cnt” is represented by a composition of two
slices named “foo” and “bar”.

1: macro cnt: int :=
2: instance/foo[31 downto 16]
3: & instance/bar[15 downto 0]
4: end macro

Figure 5.9: Non-trivial refinement for cnt

For refining the macros there are only three rules:

• Sequences may be formulated only over finite time windows (of arbitrary length).

• Functions characterizing abstract inputs may be expressions over only input signals
of the RTL design.

• Functions characterizing abstract outputs may be expressions over only output sig-
nals of the RTL design.

Ports are modeled by a combination of three specialized macros: notify, sync and data-
path. The combination of these macros is determined by the type of communication
interface the port implements. A port with a shared interface requires no synchronization
because it models a volatile access. Hence, only a datapath macro is generated for it.
The datapath macro describes the message and is named portname sig. The operation
properties guarantee that the correct message is sent by specifying a value for the data-
path macro. Ports with a master/slave interface require, generally, no synchronization.
The output port with a master interface is complemented by notify indicating validity
of a new message for the respective slave input. Conversely, the slave input has a sync
macro in order to evaluate the validity of the incoming message. The macros are named
portname notify and portname sync, respectively.

For a port implementing a blocking interface both macros, notify and sync, are required
to implement a handshaking mechanism. The four-phase handshake starts with raising
the outgoing notify flag. The module is blocked until the incoming sync flag evaluates

77

to true, indicating readiness of the counterpart. At the end of the transmission both
flags evaluate to false. The correct handshaking is enforced by the generated operation
properties. The design has to fulfill these properties, resulting in a correct-by-construction
handshaking. The evaluation of the macros is not necessarily restricted to a single signal
changing its value in a single clock cycle. The macros may describe an arbitrary protocol
spanning multiple cycles and different signals.

Macros for datapath registers result from variables at the system level. The macros for
compound types are split into separate macros for each subtype. For example, the variable
msg is separated into two macros msg data and msg status. The same idea applies to port
macros. The provided example implementation has three datapath registers: one for the
variable cnt and two for the variable msg, namely msg data and msg status. As explained
earlier, the variable ready is not required for the RTL implementation.

Important states, derived from the communication calls at the system level, each
result in a macro. Fig. 4.12 shows the resulting PPA with three important states, idle 3,
frame start 2 and frame data 0. Each important state results in a macro of boolean return
type. If the hardware is in an important state the macro evaluates to true, otherwise to
false.

5.3.2 RTL Interfaces

In the following, we explain how SystemC-PPA-supported communication interfaces are
interpreted at the RTL. As described in Section 4.4, there are three supported interface
types: Blocking, MasterSlave, and Shared.

Blocking

In order to implement a blocking communication (write and read), a handshake as ex-
plained in 4.3.2 is required. This handshake ensures a correct synchronization between
the modules. As demonstrated in Fig. 5.10, the handshake is implemented at the RTL
using sync and notify signals. The data is exchanged by the data signal.

notify
sync

notify
sync

data data ReaderWriter

Figure 5.10: Connection between blocking reader and blocking writer modules

Fig. 5.11 depicts a timing diagram of a transaction over the blocking interface (shown
from the writers perspective) when blocking read and write methods are used. This
waveform demonstrates how the handshake presented in Fig. 4.5 is implemented. In
this case, we assume a synchronous communication and thus the four-phase handshake
is simplified to two phases. However, extending the presented protocol to a four-phase
handshake only requires implementing the missing de-assertion phase of the notify signals.
The handshake is transformed into the following protocol: The blocking ports have to
initiate reading (or writing) by asserting the notify signals; only then can the transaction
occur. The communicating modules are waiting for each other as shown with arrows t1

78

and t2 until both ports are ready. As soon as both ports are ready the message (i.e., value
of data port) is exchanged and both sides lower their respective notify signal.

Waiting for reader Waiting for writer No waits

clk

data_out data data data

notify_out

sync_in
t1 t2

Figure 5.11: Blocking communication timing diagram from writer’s perspective for various
scenarios

As mentioned in Sec. 4.4, the blocking interface also supports non-blocking read and
non-blocking write. If the designer uses non-blocking methods the module does not block
in case that the counterpart is not ready for transaction. These methods can only be used
when message loss is accepted.

Timing diagrams of different combinations of blocking and non-blocking communica-
tions are shown in Fig. 5.12. Transitions marked with arrows t3 and t4 show waits that
occur when blocking read and blocking write is used. The success signal is asserted when
the transaction was successful. This signal is added to the waveform for demonstration
purposes. At the ESL, success is given when the respective thread continues execution.

Non-b. write and b. read Non-b. read and b. write Non-b. write and read

clk

data_out data data data data data

notify_out

sync_in

success

t3 t4

Figure 5.12: Blocking communication timing diagram from writer’s perspective for various
scenarios with non-blocking read and write usage (when message loss is accepted)

We can see that the notify signals in the generated RTL implementation are de-
asserted one clock cycle after both notify signals were asserted. Unlike in four-phase
handshake communication, there is no blocking wait until the counterpart module de-
asserts its notify signal. All manually written RTL modules have to follow this rule
in order to be compatible with the generated ones in case a combined setup is used.
Compliance with this rule is checked if the PDD methodology is used for the manual im-
plementations by proving the generated properties on the designs. In practice, the notify
signal is usually implemented by a one-bit port. However, the designer is not required to
implement a distinct port. In Sec. 5.3.4, we provide other options to specify the notify
signal.

79

MasterSlave

The MasterSlave is a simplified version of the blocking interface. The interface requires the
slave to be always ready to communicate. Fig. 5.13 shows the structure of this interface.

data
Slave

Master

Slave
notify sync

datadata

data

Figure 5.13: Connection between master and slave modules

Due to the fact, that the slave is required to be always ready no notify signal is
required for the slave. The master module, on the other hand, communicates only when
there is a demand. For this reason, it has a notify signal to inform the slave module
about the intended transaction. Fig. 5.14 shows the timing diagram of the MasterSlave
communication.

clk

data_in data data

notify_out

data_out data data

Figure 5.14: MasterSlave communication timing diagram from the master’s perspective

Shared

The shared interface does not require any handshaking between modules, and therefore,
it does not introduce any wait states. The shared interface results in the generated RTL
code in an internal variable that is forwarded to the outside of the module so that other
modules can access it. The connection between modules of the shared interface can be
seen in Fig. 5.15 and the timing diagram in Fig. 5.16.

ReaderWriter datadata

Figure 5.15: Connection between two modules using shared interface

clk

data_out data data data

Figure 5.16: Timing diagram of a communication over shared interface from writer’s
perspective

80

5.3.3 RTL Skeleton

As a starting point, the PDD methodology requires, at the least, a minimal RTL descrip-
tion that provides structural information about the implementation, such as the ports and
the needed datapath registers. We call it skeleton in the sequel. However, a behavioral
description is not needed for the first iteration of PDD. The designer can either use the
skeleton provided by DeSCAM or create a custom one. It is even possible to start with a
pre-existing design and then only edit the properties for refinement. This is a promising
solution for dealing with legacy design code, as will be shown in Sec. 7.2.

In the following, we show how to create an RTL implementation for the PPA example
of Fig. 3.2. We begin with the skeleton as it is generated by DeSCAM and show how
the corresponding properties are refined. We explain refinement-of-macro definitions at
the example of the macro generated for port b in. We show how to implement RTL code
at the example of the reset operation. Fig. 5.17 shows the RTL skeleton generated by
DESCAM. A VHDL package declaring the needed data types is generated alongside the
skeleton. The shown code is simplified for demonstration purposes. The full example is
available on GitHub.

The skeleton initially declares a port b in (line 5) that transports a message of type
msg t. It consists of a 32-bit integer for msg.data and a 1-bit boolean for msg.status
(cf. Fig. 3.2). In practice, a system-level data object can usually not be simply “copied”
to the RTL, but needs to be refined to a low-level representation according to specific
data formats and communication protocols. In our example, the 33-bit wide input port
data, as generated by DeSCAM, is represented on the RTL as a serial bit stream received
in 33 beats over a 1-bit input. In Fig. 5.17 we demonstrate a manual design decision. A
1-bit input port called data in (line 8) is added and b in (line 5) is removed. The untimed
word-level exchange of a message at the system level is transformed into a cycle- and bit-
accurate exchange. DeSCAM generates two macros for the port b in: b in sig status and
b in sig data. In the following, we describe how these macros are refined for this specific
protocol.

81

1: entity Example is
2: port(
3: clk: in std logic;
4: rst: in std logic;
5: - - b in: in msg t;
6: b in sync: in bool;
7: b in notify: out bool;
8: data in: in signed(0 downto 0);
9: m out: out int;

10: m out notify: out bool;
11: s out: out bool)
12: end Example;
13:
14: architecture Example arch of Example is
15: signal section: Example SECTIONS;
16: signal cnt signal:int;
17: signal msg signal:msg t;
18: begin
19: control: process(clk)
20: if (clk=’1’ and clk’event) then
21: if rst = ’1’ then
22: section <=idle;
23: cnt signal <= 0;
24: s out <= false;
25: b in notify <= true;
26: m out notify <=false;
27: msg signal.data <= to signed(0,32);
28: msg signal.status <= in frame;
29: else
30: - - Implement the control behavior
31: end if;
32: end if;
33: end process
34:
35: end Example arch;

Figure 5.17: RTL implementation

5.3.4 Refinement

Fig. 5.18 illustrates how the macro for the datapath b in sig data is refined in order
to implement the protocol. The property checker proves the property for an arbitrary
starting state (shown by the arbitrary time point t). The other time points referred to
in the property are finite offsets from t, i.e., the property covers a finite time interval of
behavior.

82

1: macro b in sig data : int :=
2: data in & next(data in,1) & next(data in,2) & next(data in,3)
3: & next(data in,4) & ... & next(data in,31)
4: end macro

Figure 5.18: Refinement of macro b in sig data

The first bit is received at timepoint t, the last bit at timepoint t+31. The macro
describes the reception of this serially transmitted message. The method prev(signal, n)
provides the value of signal n cycles before t and the method next(signal, n) returns the
signal value at n cycles after t. Lines 2–3 describe the sequential behavior using the next
function. The protocol for the refinement of b in sig status is the following:

• The abstract bit is evaluated over the last four input bits of data in.

• If the sequence is equal to ’1111’, then the status bit evaluates to in frame and
otherwise to oof frame.

Fig. 5.19 shows the resulting refinement and Fig. 5.18 describes a 4-bit integer com-
posed of the value of the last four cycles. In this case, the RTL evaluates four bits to
determine the status, whereas at the system level only one bit is required. The helper
function frame detected evaluates this integer and returns the required value.

1: macro b in sig status: int :=
2: frame detected(prev(data in,4) & prev(data in,3)
3: & prev(data in,2) & prev(data in,1))
3: end macro

Figure 5.19: Refinement of macro b in sig status

Refining the important states boils down to specifying which state bits of the global
state vector describe the important states. In general, the designer is free to describe the
important states to his/her convenience.

In our experiments two approaches showed the best results:

• Output-based refinement: The notify macros are used to describe the current state.
Each important state implements a communication and thus the respective notify
signals are set and unset, involving setting and resetting of the associated notify
signals. This enables describing the important state with a one-hot encoding of the
notify signals. If there are multiple system-level communication calls to the same
port the encoding is extended by additional conditions in order to distinguish these
calls.

• State-based refinement: The important state is described depending only on internal
state variables.

The state-based refinement is explained by an example for idle 3. The presented approach
works well if the designer adheres to the best-practice of reserving separate sections for

83

each communication, as detailed in the user manual available on GitHub. The initial skele-
ton generated by DeSCAM provides a section signal which can be used to identify the
important states. We utilize this section signal and refine macro idle 3 to section==idle.
Instead of such state-based refinement, users may also use output-based refinement, as de-
scribed above. In this case, the macro idle 3 could, for example, specify b in notify==true

and cnt==0 . As explained above, it is not sufficient to use the notify flag of port b in,
because state frame data 0 may also result from a communication through port b in. Us-
ing the notify flag again would result in an equivalent refinement for both states which is
prohibited. Macros must describe states uniquely. In this example, an additional condi-
tion is needed to resolve the ambiguity. Here, we use the datapath register cnt, which is
known to be zero in state idle 3 and not zero in frame data 0.

5.3.5 Implementation

In this section we describe how PDD is used to progressively implement designs, property
by property. The process always starts with the reset property. Fig. 5.20 shows the
reset property of our example. Line 3 calls a macro named reset sequence. As the name
suggests, the macro defines the sequence of signal values that reset the circuit. In the
simplest case, the macro describes an assertion of a signal called reset or the like. (The
macro reset sequence is not part of the PDD methodology. We use it here only to hide
the details of circuit initialization.)

1: property reset is
2: assume:
3: reset sequence;
4: prove:
5: - - output sequence
6: at t: cnt = 0;
7: at t: msg data = 0;
8: at t: msg status = in frame;
9: at t: s out sig = false;

10: at t: m out notify = false;
12: at t: b in notify = true;
13: - - ending states
14: at t: idle 3;
15: end property;

Figure 5.20: Reset operation

The property specifies that when the reset is triggered the design has to fulfill the
commitments in lines 5 to 14. The datapath registers must be initialized correctly (lines
6 to 8). The output s out is required to become false. As mentioned in Sec. 5.3.1
the properties ensure a correct handshaking. The reset property proves that after reset
the hardware is in state idle 3. This state has been generated for the communication
through port b in. The read from this port is initiated by asserting its notify signal.
The port m out is not used and thus m out notify evaluates to false. Fig. 5.17 contains
the implementation of the reset operation between lines 22 and 28. Now, after the reset
operation has been implemented, the PDD process continues with the operations starting
in important state idle 3.

84

1: property idle 3 read 5 is
2: for timepoints:
3: t end = t+32;
4: freeze:
5: b in sig data at t=b in sig data@t,
6: b in sig status at t=b in sig status@t;
7: assume:
8: - - starting states
9: at t: idle 3;

10: - - trigger sequence
11: at t: b in sig status=in frame;
12: at t: b in sync;
13: at t: cnt==0;
14: prove:
15: - - output sequence
16: t end: cnt = 3;
17: t end: m out sig = 3;
18: t end: msg data=b in sig data at t;
19: t end: msg status=b in sig status at t;
20: t end: s out sig = true;
21: during[t+1, t end]: b in notify=false;
22: during[t+1, t end-1]: m out notify=false;
23: t end: m out notify = true;
24: - - ending states
25: t end: frame start 2;
26: end property;

Figure 5.21: Regular operation

In our example, we continue with the operation leading from idle 3 to frame start 2, as
described in lines 17 to 24 in Fig. 3.2. The corresponding operation property is shown in
Fig. 5.21. There are two new ITL language features in this property (line 2 and line 4) that
were not discussed so far. The first feature, for timepoints, is used to define the length of an
operation by providing a value for the timepoint t end at line 3. Note that the minimum
length of an operation is one clock cycle. In case t end is not defined, DeSCAM generates
the property with the default value t+1. The property specifies that the operation receives
a message at port b in and modifies the datapath registers accordingly. The timepoint
t end of macro msg.data is changed to t+32. The operation has a length of 32 cycles,
because it takes 32 cycles to receive the 32 serial bits. For example, the evaluation of
macro b in sig data at t end results in the values from t end to t end+32.

The second ITL language feature, freeze (line 4), allows to associate the value of
an expression at a specific timepoint t with a name so that it can be referenced later.
For example, the “freeze variable” b in sig data at t is assigned the evaluation of macro
b in sig data (the value of the received message data) at timepoint t. The property
verifies (line 18) that the datapath register msg data stores the message, received at
timepoint t, at timepoint t end, correctly. The property ensures the correct handshaking
by checking that the associated notify flags only change value at the end of the operation,
proven by line 21 and line 22. The important state entered after receiving the message
is frame start 2. This state results from the port m out. The macro of this port has to

85

evaluate to 3 (line 17) and the according notify is set (line 23).
The designer is entirely free on how to implement this operation. The provided exam-

ple on GitHub is one possible implementation. Theoretically, there is an infinite number
of sound refinements for the same PPA. If all properties hold on the design it is guar-
anteed with mathematical rigor that the implementation is sound w.r.t. the PPA and
thereby sound w.r.t. the SystemC-PPA. It is, however, important that the designer is
only allowed to change the length of the operation and the bodies of the macros. The
property descriptions calling the macros must remain as generated by DeSCAM.

5.4 Programming view of the Abstract Model

In this section, we explain the idea of the Abstract Model (AM) in more detail. The AM
is designed to capture the behavior of ESL models, as introduced in Sec. 2.1.1. The data
structure stores the results of the first step of the DeSCAM approach, as presented in
Sec. 5.1. DeSCAM strips away irrelevant model detail, such as the SystemC scheduler,
which are only required in other applications, e.g., C++ analysis or SystemC simula-
tion. The AM stores structural information and behavioral information in the form of an
abstract syntax tree (AST) [54].

Module

+ Name

+ vector<Port *>

+ vector<Variable*>

+ FSM*

ModuleInstance

+ Name

+ Module *

+ Channel *

Channel

+ Name

+ Port * fromPort

+ Port * toPort

Model

+ vector<ModuleInstance *>
+ vector<Module *>

+ vector<Channel *>

Figure 5.22: Overview of the structure of a Model

Fig. 5.22 shows a UML-like overview of the AM. Each node of the tree represents
a C++ class. An arrow indicates that the predecessor node contains a reference to the
successor node. A * succeeding the name of a class indicates that the predecessor can
contain multiple references to instances of this class.

The root class of the AM is called Model ; it contains three elements: Module, Mod-
uleInstance and Channel. The Module class describes a module with its structural and
behavioral information. A ModuleInstance is an instance of a Module. It contains a
reference to the Module it instantiates, the name of the instance and a reference to the
respective channel for each port. The Channel class implements the idea of a channel as
discussed in Sec. 2.2.1 and stores a connection between an output port of a ModuleIn-
stance and the respective input port. This information is extracted automatically from
the SystemC simulation model by DeSCAM. The behavior of the entire Model results
from the the product of the FSMs of each ModuleInstance and the connections between
the instances. Figure 5.23 shows how a model is instantiated in SystemC, by the example

86

0: main(){
1: Master master(”master”);
2: Slave slave0(”slave0”);
3: Slave slave1(”slave1”);
4: Interconnect interconnect(”interconnect”);
5:
6: //Connecting Master and Interconnect through two channels
7: Blocking<interconnect req t> MasterToBus(”MasterToBus”);
8: master.interconnect req(MasterToBus);
9: interconnect.master in(MasterToBus);

10: Blocking<interconnect resp t> MasterAgenToMaster(”BusToMaster”);
11: interconnect.master out(MasterAgenToMaster);
12: master.interconnect resp(MasterAgenToMaster);
13:
14: //Connecting Slave0 and Interconnect through two channels
15: Blocking<interconnect req t> BusToSlave0(”BusToSlave0”);
16: slave0.interconnect req(BusToSlave0);
17: interconnect.slave out0(BusToSlave0);
18: Blocking<interconnect resp t> SlaveToBus0(”SlaveToBus0”);
19: interconnect.slave in0(SlaveToBus0);
20: slave0.interconnect resp(SlaveToBus0);
21:
22: //Connecting Slave1 and Interconnect through two channels
23: }

Figure 5.23: Instantiation of SystemC-PPA model within the main function

of a bus with single master and two slaves. Currently, DeSCAM does not support struc-
tural hierarchy. This means that all components have to be instantiated and connected
by channels in the main function of the SystemC model.

Lines 1 to 4 show how four ModuleInstances are instantiated. The first instance –
named master of the module Master – is instantiated in line 1. Lines 2 and 3 instantiate
two instances of the module Slave, (i.e., slave0 and slave1), respectively. The next step is
to connect the ports of each ModuleInstance to their counterpart. The Master module has
two ports, one request port and one response port, both of type blocking. We instantiate
two channels of type blocking in line 7 and line 10. The instance master is connected to
the instance interconnect in line 8 and line 9, and vice versa in line 11 and line 12. The
same idea applies for connecting the slaves to the interconnect.

As explained in Sec. 4.3, the soundness of the compositional model relies on a correct
implementation of the modules and defined communication schemes between them. This
is guaranteed if the modules are implemented using the DeSCAM approach as presented
in Sec. 5.1 to Sec. 5.3.5.

In the following we focus on the data structure of the module. This structure is the
entry point for the generation of the operation properties. For this step it is useful to
store the behavior, originally described by the thread of the module, in such a way that
it is possible for it to be efficiently analyzed.

87

Model of a Module

As Fig 5.24 shows, the Module element is composed of ports, variables, functions and the
FSM containing the PPA and the CFG. The Module for the example in Fig. 3.2 has three
port elements, three variables and no functions. However, the most interesting part of
the Module is the data structure for the PPA and the CFG. The main difficulty here is
to implement the behavior described by the program code.

Module

Port
+ Name

+ Interface *

+ DataType *

Variable
+ Name

+ InitialValue *

+ DataType *

FSM
+ CFG *

+ PPA *

FSM
+ vector<State *>

+ vector<Operation *>

State
+ Name

+ ID

+ vector<Operation*> pred

+ vector<Operation*> succ

Operation
+ Name

+ ID

+ vector<Expr*> assumption

+ vector<Expr*> commitment

Figure 5.24: Overview of the structure of a Module

Statements and Expressions

In order to do so, we borrowed core ideas from the field of compiler programming. The
behavior is described through the code of the SystemC thread. When analyzing the
code we distinguish between statements and expressions. A statement is a complete line
of code that performs some action, while an expression is any section of the code that
evaluates to a value. Expressions can be combined “horizontally” into larger expressions
using operators, while statements can only be combined “vertically” by writing one after
another. For example, var = x + 2; is a statement composed of the expressions var

and x+2. Expressions can be defined recursively. x+2 is an arithmetic expression built
from the expressions x and 2. The return value of the an arithmetic expression is a
signed or unsigned integer number. Another example of an expression is x==2; – a logical
expression with Boolean return type.

In the domain of compilers code is usually represented as an Abstract Syntax Tree
(AST). The AST is a (directed) tree with variables and constant values as leaf nodes.
The root node of an AST can either be a statement or an expression. For example,
Figure 5.25 shows the AST for the statement var = x + 2;. The root node is the =

statement. It is composed of a left-hand side expression that is a reference to the variable
var and the right-hand side being an arithmetic expression. This arithmetic expression +

is the root node of the subtree defining this expression. Figure 5.26 provides an UML-like

88

Figure 5.25: Example of an AST for x=x+2;

overview of statements and expressions available within our model. There are only three
types of statements: Assignment, Branch and Read / Write.

Stmt
+ Name

Assignment
+ Expr * LHS

+ Expr * RHS

Branch
+ Expr * cond

Read
+ Port *

+ Variable *

Write
+ Port *

+ Variable *

If

Else

While

Expr
+ DataType *

ConstValue
+ Value *

Arithmetic
+ Operation

+ Expr * LHS

+ Expr * RHS

Logical

Bitwise

Relational

Operand

PortOperand

VariableOperand

DataSignalOperand

FunctionOperand

IntegerValue

EnumValue

UnsignedValue

Figure 5.26: Example of an AST for x=x+2;

We do not explain all Expr in detail; for a more comprehensive discussion we refer the
reader to [50]. Statements are composed of structural elements or expressions. For exam-
ple, an assignment is constructed by two expressions, a left-hand side (LHS) expression
representing the variable that is assigned a value and a right-hand side expression (RHS)
representing the value to be written. A branch, e.g., if(x==2)), has a reference to the
expression (x==2) representing the condition. This condition is always of type Boolean.

In the expression there is the group of binary operations. Each of these operations
requires a LHS and RHS expression:

• Arithmetic: +, -, ÷, ×, modulo

• Relational: ==, !=, <, >, <=, >=

• Logical: and, or, xor, nand, nor, xnor

• Bitwise: &, |, <<, >>, ^

89

Lastly, there is a Unary operation requiring only an operator (not, ++, --) and an
expression.

We also have the notion of operands. If a structural element is referenced (e.g., vari-
able, port) this element is referenced through an Operand. This is due to two facts: First
the structural definition and the statement tree do not share the same base class. Second,
the expression is always required to evaluate to a value. This information is missing in
the structural tree. In order to transform the structural element to an expression we
encapsulate it in an Operand. For example a variable var is encapsulated by a Variable-
Operand element. The same idea applies to ports. However, depending on the interface
the port may provide a datapath signal encapsulated by the DataSignalOperand or a
synchronization signal encapsulated by the SyncSignal operand.

Model of the PPA

Fig. 5.24 provides an overview of the data structure of a PPA. As introduced in Sec. 2.3 it
is possible to visualize a set of operations as directed cyclic graph. The important states
form the nodes of the graph and the operations are the edges of the graph, with the edge
starting in the start state and ending in the end state. The graph view of the PPA allows
for optimizations, as explained in Sec. 5.5. This is why we also store the PPA in a graph
data structure.

The model of the PPA is composed of States and Operations. The state element stores
references to all incoming and outgoing operations. A special state is the reset state,
because it has no incoming edges. An operation is composed of a list of assumptions
and a list of commitments. The assumptions are expression of Boolean return type and
the commitments are assignments. When the operations are transformed to operation
properties, as explained in Sec. 5.2 the operations are extended by a notion of time. The
operation properties are stored in a separate data structure called PropertySuite, which
is explained in [50]. In the following section we are going to explain why and how the
operations are optimized.

5.5 Optimizations

The goal of this section is to explain how redundancies are removed from the operations
and how they are made easier to read for a human. The redundancies result from the
specific way the operations are generated. For example, the algorithm enumerates all
execution paths between two important states to generate the operations. However, not
every combination is reachable in the design. Also the computation of the commitments
results in redundancies, e.g. an integer variable var is increased by one three times
along the execution path. Without an optimization the commitment results into var
= var+1+1+1 instead of var = var+3. For finding optimizations we transform the
operations into a representation amenable to SMT solving (cf. Sec. 2.4). In the scope of
this work we use the open source solver z3 [55]. We implemented a translator that allows
to translate the statements and expression to z3-SMT instances.

Fig. 5.27 shows how the abstract model, after it has beeen generated, is subjected to
optimization procedures. The optimizations are carried out directly on the internal PPA
data structure. We introduce three different types of optimizations:

90

Coloring Path enumeration

States Operations

Optimize

CFG

PPA

Figure 5.27: Overall model generation flow, repeated here from Fig. 5.4

1. Simplification: The assumptions and commitments of the operations are simplified
while preserving the meaning of the operation

2. Redundancy removal: Operations with contradicting assumptions are removed from
the PPA

3. Unreachable removal: Operations that are unreachable in the PPA are removed. An
operation is unreachable if there exists no trace from reset that fulfills the operation’s
assumptions.

Candidates for optimizations are detected by formulating properties and proving or
disproving them on the PPA. In general, it is possible to translate the property to a regular
Boolean SAT problem. However, the PPA operates on the word level and translating the
problem to a Boolean SAT problem removes the high-level view of the PPA and increases
proof complexity. As explained in Sec. 2.4, the more efficient way is to use a SMT solver
and remain at the word level view of the PPA.

In the following, we explain the core ideas of each optimization on selected examples.
In practice, the properties used to find the optimizations become more complex than
the ones shown in our examples. However, using SMT allows to perform thousands of
checks during the construction of the PPA without them becoming a bottleneck for the
performance of the DeSCAM tool.

Simplification

In this step, the properties are simplified with respect to readability and proof complexity.
The main goal is to remove redundancy within expressions and statements and thereby
increase the readability of the properties and improve the documentation character of
the properties. The optimization targets the assumption and the commitment of each
property individually. Both are represented as a tree of sub-expressions. The problem
of finding a simpler representation of an expression is formulated as an SMT problem.
As these expressions are usually not very complex, the corresponding SMT instances are
ease to solve with short run times.

In the following we use the example in Fig. 5.28. It contains two communication
statements (line 1 and line 8) resulting in two important states. The operations result
from possible execution paths between the important states. For creating the operations,
the tool iterates through the list of statements between the important states. An if-
then-else construct (e.g., line 2), creates two operations: One operation represents the

91

1: port in→read(var) //important state: read
2: if(var > 0){
3: result = var * 2;
4: }
5: if(var > 10){
6: result = 0;
7: }
8: port out→write(result); //important state: write
9: [...]

Figure 5.28: Snippet of code for explaining the idea of simplification

then branch and is assigned the positive condition from the ITE statement. The other
operation represents the else branch and is assigned the negated condition. In our example
here, there are four different operations with the assumptions:

{(var>0 ∧ var>10) , (var>0 ∧ var<=10) , (var<=0 ∧ var>10) , (var<=0 ∧ var<=10)}

Consider, now, the execution path: var>0 ∧ var>10. This results in an operation with
two assumptions. One may immediately see that having two conditions is not necessary
because var > 10 implies that var > 0. In order to interpret the assumptions the tool
translates them to clauses. The used SMT solver z3 provides an API that allows to
formulate arbitrary logic propositions. The tool composes a formula of the assumptions:
var > 0 ∧ var > 10. Afterwards, the solver is used to prove that: var > 0 ∧ var >

10 =⇒ var > 0. If successful, the operation is simplified by removing one assumption
from the assumption list. This does not affect the validity of the property, because the
original and the simplified assumption describe the same invariant.

In the following, we explain how the commitments of an operation can be simplified
using z3. The code shown in Fig. 5.29 results in a single operation, starting in the
important state read and ending the important state write. The important states results
from the communication calls of line 1 and line 5.

1: port in→read(var) //important state: read
2: ++var;
3: ++cnt;
4: result = cnt + var;
5: port out→write(result); //important state: write
6: [...]

Figure 5.29: Code snippet for explaining the idea of redundancy removal

The resulting property is shown in Fig. 5.30. The property has only two assumptions
(cf. line 9 and line 10), assuming that the hardware is in the important state read and that
the counterpart is ready for communication. The property proves that the hardware ends
in the correct important state (cf. line 12), that the data path register cnt is increased
by one (cf. line 13) and that output register is assigned the correct value (cf. line 14).
The value of the output register is the sum of the received messages and the value of cnt
increased by two. The figure shows the optimized version of the addition.

92

1: property read to write is
2: dependencies: no reset;
3: for timepoints:
4: t end = t+1;
5: freeze:
6: cnt at t = cnt@t,
7: port in sig at t = port in sig@t;
8: assume:
9: at t: read;

10: at t: port in sync;
11: prove:
12: at t end: write;
13: at t end: cnt = (1 + cnt at t);
14: at t end: port out sig = ((2 + port in sig at t) + cnt at t);
15: [...]
17: end property;

Figure 5.30: Operation property generated for Fig. 5.29

The commitments of an operation are computed during the processing of the state-
ments of the execution path. After processing all statements of an execution path, the
tool knows the respective symbolic value of each register at the end of the path. Not
using a variable on an execution path results in a commitment verifying that its value
remains the same.

In the following, we explain how the resulting value of the output register of the
blocking port port out is computed by walking through the statements of the execution
path of Fig 5.29 backwards. The outgoing message from line 5 is defined by the value of
the temporal variable result. This value results from the sum of the current values of the
variables cnt and var (cf. line 4). The value of variable cnt is defined by line 3 that is the
value at the beginning of the operation increased by one. The variable var holds the value
of the message received at the beginning of the operation in line 1 increased by one in line 2.
Without simplification, the commitment to the output register in line 14 would be of the
form: cnt+1+port in sig+1. We simplify this statement to: cnt+port in sig+2. This
technique unleashes its full potential if there are more complicated data path operations
with many constants.

Redundancy removal

In order to explain the idea of redundancy removal, we consider the example from Fig. 5.28
again. As stated above, this piece of code results in four possible operations. The assump-
tion {var <= 0 ∧ var > 10} of one of the generated operations consists of contradicting
conditional expressions. We translate the assumption into an SMT instance: var < 0

∧ var > 10. The solver finds this expression to be unsatisfiable and the property is,
consequently, removed from the PPA. The remaining three operations have the following,
optimized, assumptions: {var > 0} or {var > 0 ∧ var <= 10 } or {var <= 10 }.

In this example, the advantage of SMT solving over pure Boolean SAT becomes appar-
ent. If we had to simplify the above assumption expressions using a regular SAT solver,
run times could easily explode because variables would have to be “bit-blasted” to 32-bit

93

Boolean representations, leading to large SAT problems and long proof times.

Removal of unreachable operations

In the last step, we remove unreachable operations. Fig. 5.31 shows a piece of code
resulting in an unreachable operation. Although this example seems contrived, in practice,
unreachable operations may naturally occur due to the abstraction of PPA, and may result
in unnecessarily complex sets of properties. In general, the generated properties serve as
an implementation guide for the hardware designer. However, if a generated property
describes an unreachable operation, the designer is burdened with the extra effort of
detecting this and removing the property from the property suite.

1: port in→read(var) //important state: start
2: check = 0;
3: port in→read(var) //important state: read
4: if(check == 0){
5: ++check;
6: } else --check;
7: port out→write(check); //important state: write
9: [...]

Figure 5.31: SystemC-PPA resulting in unreachable operations

Applying the basic coloring idea, as presented in Sec. 4.1, has the effect that infor-
mation from predecessor operations does not transfer to the successor operation. The
successor operation can have assumptions that are unsatisfiable given the commitment of
the predecessor operation. DeSCAM propagates, depending on the desired optimization
level, information over multiple operations and removes operations that are unreachable.

The example in Fig. 5.31 results in three operations, one starting in start (cf. line 1)
ending in read (cf. line 3) and two starting in read and ending write (cf. line 5). The
operation starting in start proves that the variable check is equal to zero at the ending
state read. However, this information is not available to the subsequent operations. The
operation for the path check != 0 is actually unreachable in the design. The optimization
Redundancy removal does not remove this operation, because the assumptions are, by
themselves, satisfiable.

The issue is resolved by building an extended proposition of the assumption of the
current operation and the commitments of predecessor operations. Let us consider the
operation starting from important state read. In order to know whether the assumptions
are satisfiable, we add the commitment of the predecessor operation as condition to the
assumption list. This constructs the following propositions: check == 0 ∧ check == 0

and check == 0 ∧ check != 0. The solver will find that the second expression is not
satisfiable. This allows us to remove the operation from the PPA.

This approach is only a heuristic and not every unreachable operation can be found.
However, it is a conservative approach because an operation is only removed if it is found
to be truly unreachable. Transforming this optimization to an exhaustive approach would
require to implement an algorithm that finds all sequences of operations starting with the
reset operation and ending in the operation being tested for reachability. Then, for each

94

sequence, a property is formulated verifying that if the assumptions of all predecessor
operations are fulfilled, the operation under test cannot be triggered (i.e., its assumption
cannot be fulfilled). A counterexample to this property is a witness for reachability.
Since for each possible sequence such a SAT-based property check is needed, finding all
unreachable operations in this way exhaustively is computationally infeasible. However,
in our experiments, we found that considering only the predecessor of the operation under
test is sufficient to find most of the unreachable operations. To improve these results it
is possible to consider predecessors with a distance >1.

95

96

Chapter 6

Extension for Pipelining

In this chapter we describe an extension to the PDD approach for pipelined designs.
We show that the extended approach guides the design process by helping to resolve
data/structural hazards while preserving benefits of the regular PDD approach. In Sec. 6.1
we explain why it is necessary to have a special approach for pipelining. We show in
Sec. 6.2 how this problem is solved by combining a specialized property generation ap-
proach with a simplified S2QED technique. Lastly, in Sec. 6.3, we explain the details of
this approach and present results based on two examples to show the feasibility.

6.1 The need for an extension

The ESL, respectively the SystemC-PPA model, is a sequential model. It describes tran-
sitions between important states of the design as operations. The operations extracted
from the ESL are used to generate formal properties proving that the RTL is sound w.r.t.
the ESL. An operation property describing an algorithm may span multiple clock cycles
if the algorithm is implemented with pipelining or re-timing registers. Otherwise, the
algorithm is executed in one clock cycle.

For example, implementing a multiplication at the system level requires one state-
ment. At the RTL such an operation may be implemented as a combinational logic block
(no pipelining: t end == t+1) or with sequential steps (pipelining: t end == t+n). The
property proves in both cases that the multiplication is implemented correctly, indepen-
dent of the chosen implementation.

The step-wise execution of an algorithm in more than one clock cycle is, in the context
of this work, called non-overlap pipelining, because only one operation is active at the
same time in the design and the executions of the individual operations never overlap
with each other. This means that there is no concurrent behavior in the implemented
design that is not covered by the PPA of the ESL. However, in practice, the executions of
the operations overlap with each other in time to increase the data throughput of a design
or to enable resource sharing. This form of pipeling is denoted as overlap pipelining. An
overlapping is only possible if there is concurrent behavior in the design.

In the following, we explain why the properties that are generated from the sequential
model cannot hold on a design with overlap pipelining and what are possible solutions to
this problem within the current PDD flow. We use Fig. 6.1 to demonstrate the difference
between non-overlap pipelining and overlap pipelining. Figs. 6.2–6.5 are used to provide

97

an intuition why the sequential properties hold for a non-overlap pipelining design and
fail for an overlap pipelining design. Afterwards, we explain how this problem can be
solved, in principle, in the existing flow and why we think an extension of this flow is
beneficial in case of overlap pipelining.

non-overlap
pipelining

overlap
pipelining

t t+1 t+2 t+3 t+4 t+5 t+6
op1

op 2

op1

op 2

op1

Figure 6.1: non-overlap pipelining vs. overlap pipelining

At the top of Fig. 6.1 is a timeline with abstract timepoints from t to t+6. The
operations op1 and op2 each span three clock cycles (t end == t + 3). The second
operation starts when op1 ends and the important end state (cf. Sec. 4.3) of op1 is the
important start state of op2. This sequencing of operations is equivalent to the sequencing
of operations at the ESL. The operation property proves that the sequential model is
correctly refined into a pipelined hardware.

The bottom of the figure shows the sequencing in case of overlap pipelining. The
operation describes the same behavior as in non-overlap pipelining except that the second
operation starts at timepoint t+1 instead of t+3. The important start state of op2 is not
the important end state of op1. The commitments of op1 and op2 overlap at timepoint
t+ 3 as indicated by the red box.

If the concurrent execution of the operations is not described by the ESL, the PPA
generated from the ESL does not match the PPA implemented by the RTL. The RTL
does not fulfill the system-level specification and the two models are not sound w.r.t. the
same PPA. To demonstrate this issue we provide an RTL design as shown in Fig. 6.2.
The design has one blocking input port with the respective synchronization signals and
one blocking output port. Fig. 6.3 shows the PPA extracted from the sequential ESL.
The ESL specifies the following behavior: In state A the design waits for a new message
to arrive. Upon arrival op1 is triggered and the design transitions to state B. In state B
the design waits for a message to be transmitted. The transmission is successful if op2 is
triggered.

d_out_notify

d_out

d_out_sync

d_in_sync

d_in

d_in_notify
Design

Figure 6.2: Structural view of the exam-
ple

A

op 2

B

wait

op 1

wait

Figure 6.3: Sequential PPA of Fig. 6.2

The properties in Fig 6.4 and Fig 6.5 describe the extracted behavior. They fulfill the

98

timing of the non-overlap pipelining case in Fig. 6.1. If op1 is triggered the value at the
input is multiplied with an internal counter. At the end of the operation, a handshake
is offered (d out notify == true) and the output port is set to the computed value. For
reasons of simplicity we do not explicitly demonstrate the respective ESL implementation
and the wait operation properties.

In order to ensure soundness, the property needs to prove all outputs at all times as
well as the correct value of all visible registers. For example, op1 proves that the internal
counter does not change its value (see line 14) and op2 proves that the counter is correctly
increased by 1 (see line 13).

1: property op1 is
2: assume:
3: - - starting states
4: at t+0: state == A;
5: - - trigger sequence
6: at t+0: d in sync == true;
7: prove:
8: - - output sequence
9: during[t+1,t+2]: d out notify == false;

10: at t+3: d out notify == true;
11: at t+3: d out == d in∗prev(cnt, 3);
12: during[t+1,t+3]: d in notify == false;
13: - - ending states
14: at t+3: cnt == prev(cnt, 3);
15: at t+3: state == B;
16: end property;

Figure 6.4: Operation property
op1

1: property op2 is
2: assume:
3: - - starting states
4: at t+0: state == B;
5: - - trigger sequence
6: at t+0: d out sync == true;
7: prove:
8: - - output sequence
9: during[t+1,t+3]: d out notify == false;

10: during[t+1,t+2]: d in notify == false;
11: t+3: d in notify == false;
12: - - ending states
13: at t+3: cnt == prev(cnt, 3)+1;
14: at t+3: state == A;
15: end property;

Figure 6.5: Operation property
op2

In lines 9 and 10 of Fig. 6.4, the property verifies that the notify of the output port
remains low until the end of the operation and that the value is set to the correct value in
line 11. This results directly from the sequential model. The input port is not used after
the message is received and the d out notify is deasserted for timepoints t + 1 to t + 3
(see line 12). Proving a correct value of the notify signals at all times is a requirement
for soundness. For example, removing line 12 could lead to a design that requests a new
data message without storing it. Such an RTL model would drop messages and would
not be a sound refinement.

Let us consider the overlap pipelining example of Fig. 6.1, with the behavior of the
operations as specified in Figs. 6.4 and 6.5. The pipelining works as follows: If the message
is received op1 starts computing the value of the output. The computation is based on
the value of the counter at timepoint t. At t+1 op2 begins to compute the next value of
the counter. At t+3 the output is set to the correct value and at t+4 the value of the
counter is computed correctly and the design is ready to receive the next instruction.

In a PDD flow the designer must prove all properties on the design. At timepoint
t+ 3 the operations overlap such that op1 proves that d out notify is set to true and op2
proves that d out notfiy is set to false. Obviously, there is no design that can fulfill these
conditions at the same time. This problem propagates to any sequential specification
with an overlap pipelining implementation. For example, consider two operations ADD
and LOAD proving the correct execution of an instruction. The ADD instruction does

99

not access data memory and thus proves that the respective notify is set to false for the
entire operation. On the other hand, the LOAD operation proves the respective notify is
set to true during memory phase. This results, as in the above example, in contradicting
commitments of the properties.
In the current PDD-flow there are two approaches to solve this issue:

1. The designer computes the FSM of the pipelined design that is the product ma-
chine of the implemented stages. The ESL description is redesigned such that it
implements the pipelining. The downside of this approach is that large parts of the
RTL are duplicated at the ESL and the desired abstraction is lost.

2. The designer refines the pipelining within the macros. We used this approach in the
results shown in Sec. 7.1. The ESL remains abstract. However, with this approach
parts of the RTL are duplicated in the refinement of the macros.

The two above approaches require an additional effort by the designer. The goal of
PDD is to aid the designer and accelerate the design process. Especially, the case of
overlap pipelining results in an overhead when PDD is used. Furthermore, the current
approach does not help the designer to implement the pipeline, especially it does not help
to indicate correct resolution of structural and data hazards.

What is the solution? In the remainder of chapter we are going to propose an extension
to PDD called “Property Driven Development for Pipelining” (PDD-P). With PDD-P we
are going to achieve the following three goals:

1. The ESL remains abstract and sequential.

2. No complex and time consuming refinement of the macros are needed.

3. Hazards are correctly resolved.

6.2 PDD-P explained

In this section we explain how PDD is extended to achieve the goals above. Fig. 6.6
provides a comparison of the current flow, depicted on the left hand side, and the extended
flow on the right hand side with the new steps colored in blue.

The first novelty is the new design step Insert Stages allowing the designer to add
information about the desired pipeline to the ESL model. In practice, a new stage is
added to the model by calling insert state() at the respective position in the SystemC-
PPA module. From a theoretical point of view a new important state is created for each
function call in the PPA. The behavior of the stage is described by the execution path
starting from this new important state and ending in the next important state. The
details of this step are discussed in Sec. 6.3.1.

The “augmented” SystemC-PPA module is parsed by DeSCAM (see Sec. 5.2). In the
PDD flow an operation describes an execution path between two important states. This
results in a distinct operation for each stage of the design. Take, for example, an ADD
instruction in a processor with a 5-stage pipeline (IF – Instruction Fetch, ID – Instruction
Decode, EX – Execute, MEM – Memory access, WB – Writeback). In standard PDD,
the instruction execution is decomposed into five operations, one for each pipeline stage.

100

SystemC-PPA

DeSCAM

Insert
Stages

DeSCAM

PDD-P
Engine

Base
Properties

Relaxed
Properties

Sequential
Properties

Augmented
SystemC-PPA

PDD-P
Skeleton

Figure 6.6: Current vs. extended flow

This results in two problems: First, this is not how a designer thinks about the ADD
operation. It is more natural to see the ADD instruction as one operation, spanning over
all stages. Second, having these micro operations results in a large overhead, when signal
macros are refined. To solve this issue, we introduce the PDD-P engine to compute macro
operations. They cover a sequence of micro operations. E.g., the ADD instruction is the
macro operation, covering the micro operations for each stage (IF to ID, ID to EX, . . . ,
WB to IF). Each macro operation starts and ends in the same important state (IF), but
it can cover different sequences of micro operations. The algorithm for computing macro
operations is described in full detail in Sec. 6.3.2.

Due to the introduction of macro operations the problem of pipelining is reduced
to the problem of non-overlap pipelining versus overlap pipelining as presented in the
previous section. The core idea to solve this issue is to generate two sets of properties.
A base property set describing the non-overlap pipelining case of the macro operations
and a relaxed property set describing the overlap pipelining cases of the design.

The base property set assumes that the pipeline is empty (or flushed) at the beginning
of the operation and thereby proves a first execution of an operation in the pipeline. This
is equivalent to the behavior of the ESL, because a new operation may only start if the
previous one is finished. The base property is convenient for the designer to prove non-
pipeline related behavior of the design. However, the base property set is not sufficient
to prove soundness w.r.t. the PPA. The case-split test (see Sec. 2.3.4) fails for this set of
properties, because the operations do not cover the case that the pipeline is not empty.

Proving these cases is the task of the relaxed property set. The name of this set
results from the fact that the assumptions are relaxed compared to the base property set.
The initial state of the pipeline is unconstrained and the properties prove that the design
produces correct results independent of the state of the pipeline and thereby covers the
missing cases from the case-split test.

To prove the relaxed property set we need an S2QED setup, as presented in Sec. 2.5,
with two instances of the design. The PDD-P skeleton is generated for the user to

101

automatically create this setup. We will provide more details in Sec. 6.3.2 and Sec. 6.3.3.

Having the two sets of properties requires also a change of the “refine and implement”
phase of the PDD flow. It is split into two phases for PDD-P:

1. The goal of the first phase is to implement the sequential behavior part of the design,
specified by the base property set. In this phase the designer focuses on a correct
functional implementation. There is no need to resolve any hazards, because the
properties all assume that their operations are executed starting with an empty
pipeline.

2. The goal of the second step is to prove with the relaxed property set that the
design behaves correctly if the pipeline is not empty. This requires that all possible
hazards are resolved. If a hazard is not resolved correctly the property will fail and
the designer has to fix the design.

The implementation is correct if and only if both sets hold on the design. This is due
to the fact that the properties are designed such that the combination of these two sets
fulfill the completeness criterion, as defined in Sec. 2.3.2. An informal proof is provided
in Sec. 6.3.3.

Let us analyze whether PDD-P fulfills the goals defined in the previous section.

1. Abstract and sequential ESL: The benefit of PDD-P is that the ESL design remains
a sequential model. The insertion of the stages does not affect the I/O behavior
of the model and only requires adding one line of code for each stage to the ESL.
However, there is no need to model the product machine of the stages at the ESL.

2. Quick refinement: PDD-P removes the overhead for refining the properties to a
pipelined design. For proving the base property only a trivial refinement is needed.
The refinement of the relaxed property is based on the base property and thus only
requires a trivial refinement, too.

3. Hazard resolution: The relaxed property set only holds if all hazards are correctly
resolved. If a hazard is missed by the designer, the property fails and a counter
example is provided that can be analyzed to resolve the issue.

6.3 Details of PDD-P

In this section we discuss the details of the extension by analyzing the individual steps
of the PDD-P flow. The major novelty of this approach compared to [31] is that PDD-P
is not restricted to processors and that the properties are generated from a behavioral
description instead of a structural description. Additionally, we are able to discover
opportunities for forwarding in pipelines. The S2QED property is generated for the user
by default.

The example in Fig. 6.7 is used in the following section to explain the details of
PDD-P. It shows a SystemC-PPA of a RISC-V 4-stage processor. The figure is simplified
and contains only operations relevant for explaining the Insert Stage step. This ESL

102

1: SC MODULE(VCORE){
2: //INSTR Interface
3: master in<unsigned int> instr in;
4: master out<unsigned int> instr req;
5: //MEM
6: blocking out<MemReq> mem write;
7: shared in<unsigned>mem read;
8: //Variables [...]
9: void fsm() {

10: while(true) {
11: insert state(“IF”); //Fetch
12: instr in->master read(instr);
13: instr req->master write(dec pc + 4);
14: insert state(“ID”); //Instruction decode
15: if(getOpCode(instr) == 1) { //add
16: ex write reg = true;
17: ex dest reg = getDest(instr);
18: ex result = regfile[getOpA(instr)] + regfile[getOpB(instr)];
19: } else if(getOpCode(instr) == 4) { //load
20: ex write reg = true;
21: ex dest reg = getDest(instr);
22: memRequest.addr = regfile[getOpB(instr)] + getImm(instr);
23: memRequest.write = false;
24: mem write->write(memRequest,“MEM LOAD”);
25: [...]
26: } else if(...) { //other instructions
27: insert state(“EX”); //Execute
28: wb dest = ex dest reg;
29: wb result = ex result;
30: wb write reg = ex write reg;
31: insert state(“WB”); //write back
32: regfile[0] = (wb write reg && wb dest == 0) ? wb result : regfile[0];
33: [...]
34: regfile[7] = (wb write reg && wb dest == 7) ? wb result : regfile[7];
35: }}}

Figure 6.7: Simplified core

description is a sequential description and does not describe any pipeline-related behavior,
except for the function calls that indicate the desired pipeline stages.

Lines 11, 14, 27 and 31 demonstrate how to use the insert state() function. The
execution of an add instruction is demonstrated in lines 15 to 19 and lines 19 to 25 show
the execution of a load instruction. The main difference between these two instructions
is that the load instruction implements a blocking communication call in line 24. This
results in an important state that is not present for the add instruction. The generated
PPA is depicted in Fig. 6.9.

Lines 32 to 34 of Fig. 6.7 show how the ternary operator (cond?true:false) is used
in the context of SystemC-PPA. For example, line 32 states that if the condition is true,
regfile[0] is assigned the computed value from execute stage, otherwise it keeps the
old value. In the following we explain the core ideas of the new steps, provide detail on
special cases and limitations and, lastly, we conclude the section with results.

103

6.3.1 Insert Stage

The main goal of the Insert Stage step is to add information about the desired pipeline
structure to the ESL. This information is then used in the PDD-P engine, as shown in
Sec. 6.3.2, to compute the macro operations. In order to introduce the information of
the pipeline the ESL calls insert state(‘‘name’’) at the respective position in the
code. Calling this function results in a colored node in the CFG that is not related to a
communication. This colored node translates to an important state (see Sec. 5.1). The
string “name” allows the user to specify a name for this state instead of using a random
name. For example line 14 of Fig. 6.7 introduces an important state named ID.

From a control-flow point of view calling the function insert state() splits the cur-
rent execution path and enforces a step in the simulation as well as in the design. Due
to the fact that the step is not related to a communication call, it does not affect the
I/O behavior. From a theoretical point of view there is no need for this important state,
because it does not break a cycle of uncolored nodes. Not removing this colored node
results in a less abstract PPA. In order to explain the main differences between regular
PPA and the augmented PPA, we use the following two figures.

IF MEM

wait

WB

ID

WB

EX

ID

wait

Figure 6.8: Regular PPA from PDD flow

IF ID EX WB

wait

MEM

wait

Figure 6.9: Augmented PPA

Fig. 6.8 shows the PPA generated from the simplified core without using insert state().
The grey nodes indicate the stages the operations are traversing. It is only an indication,
because introduced stages do not directly appear within the properties. From a PPA point
of view, there is no need to color these states, because there is no cyclic path without a
colored node. For example, the operation that starts and ends in important state IF and
passes through ID, EX and WB describes any operation without access to data memory.
This operation is a good example for a non-overlap pipelining operation with a length
of three cycles and it covers the entire execution of the instruction, i.e., it is a macro
operation.

Any instruction with access to data memory is split into two micro operations (plus a
wait operation). The execution starts in important state IF, passes through the ID stage
and ends in MEM. From MEM, the operation transition through WB back to IF. Having
two micro operations for one instruction is not how a designer thinks about a load or
store instruction. Fig. 6.9 shows the resulting PPA for the case that explicit states are
inserted. Its easy to see that every grey colored node is now colored. In this case any
instruction is described by four micro operations (not including the wait). For this PPA
DeSCAM generates a property for each transition between an important state.

104

6.3.2 PDD-P engine

If the tool is invoked with --pipelined the PDD-P-engine is enabled. The task of this
engine is to compute the macro operations from a given PPA. The algorithm includes
three major steps:

1. Find the first important state after the reset, denoted as root.

2. Find all cyclic paths starting and ending in root, each such path describes a cyclic
sub-graph of the PPA.

3. Translate cycles to macro operations: Every operation in the cycle, respectively
every transition between two important states, is considered as a micro operation.
The micro operations are merged into a single macro operation covering the entire
cycle.

We use Fig. 6.9 to explain the individual steps of the algorithm and to point out
possible limitations of the current PDD-P engine.

Step 1

The first step is to find the root node within the PPA that is used as a starting point for
finding the cycles. The current engine assumes that the root is the first important state
from reset. This is not necessarily the case and in theory it is possible to use a different
node as root.

Step 2

The tool implements a special version of a depth-first-search (DFS) algorithm that starts
in the root node and traverses the graph until the root node is reached again. In other
words, the algorithm finds all paths starting and ending in root. However, if the PPA has
cyclic subgraphs other than the ones beginning and ending in root then the algorithm
may never terminate. A regular DFS algorithm terminates if a node is visited twice. The
implemented one is special because it always tries to find a path to the root and may
iterate in the cyclic subgraph infinitely. The solution to this problem is explained in the
remainder of this section by means of an example.

Fig. 6.9 shows the augmented PPA. The root node of this PPA is the important state
IF. The algorithm traverses the graph until IF is reached again. By a manual inspection
we identify three cyclic paths: two with a finite length (IF -ID-EX -WB -IF and IF -
ID-MEM -WB -IF) and one with an infinite length IF -ID-MEM -MEM -...-MEM -WB -IF.
The path with the infinite length poses a problem for the algorithm, because it may never
reach the root node again.

How can we modify the search such that the algorithm terminates? This depends
on the type of the cycle. The first type is a wait operation resulting from a blocking
communication. This operation leads to an infinitely long path if the communication
is blocked forever. To solve this issue we assume a bounded wait for the input which
is added as a constraint to the property. The wait operations are verified implicitly by
including them into the macro operation. As explained in Sec. 6.3.4, an induction-based
proof is used to close the verification gap resulting from the constraint.

105

The second type of cyclic sub-graph is not related to a blocking communication.
Fig. 6.10 shows an example of a PPA with a cyclic sub-graph composed of the states
SLV, DBG and INP. There exists a path IF -ID-DBG-INP-SLV-. . . -DBG-INP-SLV-ID-
EX -WB -IF with an infinite length. In this case it is not sufficient to apply a liveness
constraint on an input, because the design remains in this sub-graph until the condition is
met and one of the operations marked with yes and no are triggered. The engine throws
an error for this case, because macro operations cannot be generated. Future research
should work towards finding solutions for this problem. For now, the standard PDD flow
with the complex refinement can be used.

IF

error

ID EX WB

wait

MEM

wait

DBG

yes

SLV

INP

no

Figure 6.10: PPA with cyclic subgraph

Step 3

The main goal of this step is to compute the macro operations from the micro operations
and to generate both the base property and the relaxed property. Each macro operation
translates directly into a base property. The generation of the relaxed property set is
based on the macro operations as well, but also incorporates ideas from S2QED. The
following sections assume a basic understanding of the S2QED approach. For details to
this approach we refer to Sec. 2.5 or [31, 30].

Merging the micro operations into a macro operation requires the introduction of
multiple timepoints. In regular PDD each operation has only two timepoints t and t end.
This is not sufficient for macro operations, because not every commitment is proven at
t end of the macro operation. Instead, the timepoint is relative to the t end of the
micro operation. The engine introduces a timepoint for each micro operation covered
by the macro operation. This way, the macro operation ensures the same sequencing of
commitments as the micro operations. The same idea applies to the assumption part of
the macro operation property.

6.3.3 Properties

In this section, we explain, by means of an example, how a base property and a relaxed
property are structured. As stated earlier, we use the relaxed property set to prove the
gaps resulting from the base property set. How do we ensure a complete verification?

106

Idea

The core idea relies on an extended S2QED approach, called Complete-S2QED (C-S2QED),
presented in [31]. It extends the S2QED consistency proof with a proof of functionality
to achieve complete formal verification. The major contribution of [31] is a mathematical
proof stating that it is sufficient to verify functionality correctness on the constrained
design, because all other uncovered context related bugs (initially uncovered due to the
constraining) are detected by the consistency proof. This means that it is not necessary
to prove functionality for the unconstrained instance, resulting in a simplified functional
verification.

However, the original approach presented in [31] does not fit well in a top-down design
flow due to three reasons:

• The C-S2QED property is too complex for a top-down design, because it combines
two proofs in one property. A failing property does not tell the user if the problem
is within the functionality or within consistency.

• The designer has to find possible forwarding cases by himself. This is a manual
effort and a source of errors we are able to avoid with PDD-P.

• The properties are only generated from structural description instead of the behav-
ioral descriptions. A structural description cannot be used for design sign-off and
is not functionally abstracted.

The idea of having separate base property and relaxed property sets aims to decom-
pose the complete verification problem into verifying functional design behavior and con-
sistency check. This reduces proof complexity, allows more properties to run in parallel
and provides for easier debugging. This separation also makes properties more clear and
self-documenting, especially the base property set due to the abstracted pipeline behavior.
Another benefit, compared to C-S2QED, is that the base property set is proven only for
the DUT and not the S2QED setup with two instances. The smaller computational model
results in a less complex proof of the base property as the results provided in Sec. 7.5
demonstrate.

Base property

An example for a base property is shown in Fig. 6.11. The respective macro operation
describes an ADD instruction. This macro operation is derived from one of the cycles
of Fig. 6.9. Lines 3 to 7 show the introduced timepoints. They result directly from the
important states introduced into SystemC-PPA as shown in Fig. 6.7. In this case the
refinement of the timepoints is trivial because the operation is executed from an empty
(or flushed) pipeline. There are no delays due to stalling or hazard resolution.

The only state macro refinement required for this approach is the state macro of the
root, denoted as IF 1, in line 9. The macro is refined such that it relates to the important
state IF 1 of the design. The second macro empty pipline is the constraint assuming an
empty pipeline. Line 10 results from the assumption of the micro operation starting in
ID and ending in EX. The assumption is different from the assumptions in PDD, because
t ID is not the start of the operation. It relates to timepoint t+1. There is no need for

107

1: property add is
2: for timepoints:
3: t IF = t,
4: t ID = t+1,
5: t EX = t ID+1,
6: t WB = t EX+1,
7: t end = t WB+1;
8: assume:
9: at t IF: IF 1 and empty pipeline;

10: at t ID: (getOpCode(instr) = ADD;
11: prove:
12: at t ID: dec pc = (2 + dec pc@t IF);
13: at t ID: instr = instr in sig@t IF;
14: at t ID: instr req sig = (4 + dec pc@t IF);
15: at t EX: ex op b = reg in sig@t ID(getOpB(instr@t ID));
16: at t EX: ex result = (reg@t ID(getOpA(instr@t ID)) + reg@t ID(getOpB(instr@t ID)));
17: at t WB: wb dest = ex dest reg@t EX;
18: at t WB: wb value = ex result@t EX;
19: at t end: regfile[0] = (wb dest@t WB = 0)? wb value@t WB : regfile[0]@t WB;
20: at t end: regfile[1] = (wb dest@t WB = 1)? wb value@t WB : regfile[1]@t WB;
21: [...];
22: at t end: regfile[7] = (wb dest@t WB = 7)? wb value@t WB : regfile[7]@t WB;
23: during[t ID,t WB]: memory notify = false;
24: end property;

Figure 6.11: Base property for an ADD instruction

an assumption on the important state at t ID because the execution of it is known to be
one clock cycle.

The commitments of the property are shown in lines 12 to 23. It appears that there is
no commitment concerning the important state. This is not required because it is known
that the operation executes ID at t+1. If this is not the case one of the commitments
related to the stage (lines 12 to 14) fails. Lines 15 to 23 ensure a correct propagation of
the control and data signal through the pipeline. The architectural state of the design
is updated in lines 20 to 23. Lastly, in line 23 we prove that the notify related to the
memory port remains deasserted for the duration of the operation.

Relaxed property

As mentioned earlier, proving the base property is not sufficient for a complete coverage
of the design behavior. This is due to the second condition empty pipeline in line 9. The
macro includes assumptions on the initial state of the pipeline. There are two possibilities
to fulfill the case split test: First, each base property proves at t ID – start of a new opera-
tion – that empty pipeline holds. This is not possible because the current instruction is al-
ready in the pipeline and, thus, the pipeline is not empty (contradiction to empty pipeline
constraint). Second, there is a property assuming the case not(empty pipeline). Such
a property is equivalent to a property that proves all pipelining cases, resulting in the
complex refinement we aim to avoid. Instead we use our extended C-S2QED technique
and cover this case with the relaxed property set.

We use Fig. 6.12 to explain the structure of a relaxed property. It shows the respective

108

relaxed property for the base property shown in Fig. 6.11. Lines 4 to 14 show two sets of
timepoints. The first set is related to the base instance and can be directly derived from
the base property. The second set (lines 10 to 14) is related to the instance that has no
constraint on the initial state of the pipeline. Here, the refinement is not as simple as in
the base property case.

1: property S2QED add is
2: for timepoints:
3: - - constrained instance
4: t if i1 = t,
5: t id i1 = t if i1+1,
6: t ex i1 = t id i1+1,
7: t wb i1 = t ex i1+1,
8: t end i1 = t wb i1+1,
9: - - unconstrained instance

10: t if i2 = t,
11: t id i2 = t if i2+1..5 waits for (cpu2/dmem enable o==0 || cpu2/dmem valid i),
12: t ex i2 = t id i2+1..5 waits for (cpu2/dmem enable o==0 || cpu2/dmem valid i),
13: t wb i2 = t ex i2+1,
14: t end i2 = t wb i2+1;
15: assume:
16: - - constraints on CPU1
17: at t IF: IF 1 and empty pipeline;
18: at t ID: (getOpCode(instr) = resize(1,32));
19: - - same instruction for IUV
20: at t: cpu1/imem addr o = cpu2/imem addr o;
21: - - I/O should be the same (no stalling)
22: at t: (cpu2/dmem enable o==0 || cpu2/dmem valid i);
23: - - QED consistent registers
24: at t wb i2: cpu2/regfile == regfile@t wb i1;
25: - - Flushing
26: at t id i2: cpu2/ex mispredict = ex mispredict@id i1;
27: prove:
28: at t ID: cpu1/imem addr o = cpu2/imem addr o;
29: - - general registers
30: at t end i2: cpu1/regs@t end i1 = cpu2/regs@t end i2;
31: end property;

Figure 6.12: Relaxed property for an ADD instruction

As we can see in line 11, t id i2 depends on the evaluation of the condition. If another
instruction is blocking the decode stage (e.g., load or store) then the instruction is stalled
until the decode stage is free. The design is unrolled for up to 5 clock cycles (indicated
by ..5). This is an overconstraint on the design, because it is assumed that after 5 cycles
the decode stage is free. Of course this may not always be the case, e.g., if dmem valid i
remains low forever, the processor is stalled forever. We explain in Sec. 6.3.4 how this
problem is solved in PDD-P.

At line 17 we use the assumptions from the base property to assume that instance 1
executes from an empty pipeline state. The assumption at line 18 ensures that the fetched
instruction is an ADD instruction. As shown in [31], it is possible to prove the consistency
with one S2QED property. However, in a hardware design flow it is more efficient to split
the operation in order to ensure ease of debugging. Furthermore, splitting the S2QED

109

properties allows parallelization of the proof. We, therefore, generate one relaxed property
for each base property.

The second instance is free on its execution, except of the fact that both instances
need to execute the same macro operation. This is ensured by assuming that the inputs
and outputs of the designs are equivalent in line 20 and line 22. Intuitively, line 20 means
that both designs fetch the same instruction. It is important to remember that PDD-P
is not limited to processor designs. The generalization of this assumption is the fact that
both instances receive the same inputs and the initial state is equivalent. Every time a
design reads an input the two instances are required to read the same value.

Next we are going to focus on the assumption of QED consistency, because this as-
sumption is really important for the entire approach. The base instance executes the
instruction starting from an empty pipeline. In case of a processor, this means that the
register file does not change until write back stage. However, the relaxed instance is free
on its initial state and the register file can change during the execution. If this is the
case, a correct forwarding has to be implemented to fulfill the consistency check. This
consistency assumption (see line 24) is automatically computed from the base property.
Every time a hazard can occur (e.g., write-after-read) a QED consistency assumption is
necessary. The fact that the engine is able to compute the timepoint for assuming QED
consistency is a major advantage over the approach of [31].

The assumption in line 26 ensures that both instances show the same behavior related
to flushing. From an abstract point of view flushing can be described as an abortion of
a macro operation. This is usually not described by the sequential model and cannot be
computed by the engine. In Sec. 6.3.5, we explain how flushing can be introduced without
altering the ESL behavior and thereby fulfilling the goals defined in Sec. 6.1.

In line 28 we prove that both instances fetch the next instruction and in line 30 we
prove that the architectural registers are updated correctly. Its important to note that
in contrast to [31] we do not prove a specific value for outputs or registers. Instead the
proof is reduced to verifying the consistency of the two instances as in classic S2QED.
This reduces the complexity of a property and makes debugging easier.

Consider, for example, a design that implements functionality correctly for one macro
operation but there is a bug in the forwarding. Then the base property holds on the
design but the relaxed property fails. This removes the need to inspect errors related to
functionality while debugging. However, just proving the relaxed property is not sufficient,
because a functional bug will not be discovered.

6.3.4 Wait Properties

In this section we are going to discuss how a wait operation is modeled in PDD-P. Mod-
eling an infinite wait is a backbone for the sound modeling of abstractions with PPA (see
Sec. 4.3.3). The PDD methodology models a wait operation by a special wait property
verifying that the design remains in its important state while waiting for the synchroniza-
tion signal.

In PDD-P, multiple micro operation are merged into one macro operation. As ex-
plained in Sec. 6.3.2, the wait operations are not directly included to avoid infinitely long
macro operations. A wait operation, in PDD, results from a blocking communication call
at the ESL. However, neglecting the wait operation for PDD-P results in a verification

110

gap. For example, a sender transports a message via a blocking port at the ESL. The
module is blocked until the message is received by the receiver. It is never lost. Consider
the case that there is a bug in the stalling unit of the pipelined RTL implementation and
the design aborts sending the message after two clock cycles. The execution continues
and the message is lost. This destroys the sound relationship of the ESL and the RTL. To
ensure soundness we need to prove the correct behavior for an infinite wait. We propose
an induction-based proof. The infinite wait operation is split into an induction base and
an induction step.

The induction base is not a distinct operation; it is already described by the macro
operation generated by the PDD-P engine. Each macro operation automatically includes
the proof that the the base is reachable. The base case is defined as the respective
important state and the corresponding synchronization signals. Additionally, the macro
operation verifies a bounded wait with the bound defined by the designer. The induction
step proves that if the wait operation is triggered then the design remains in this state.
This step function is similar to the original wait operation with the difference that the
proof only verifies signals related to the stage rather than the entire design.

Induction base

Fig. 6.13 shows an example for a macro operation covering a blocking communication.
This macro operation is computed from the micro operations resulting from the path
IF, ID, MEM, WB and IF of Fig. 6.15. Compared to the macro operation depicted in
Fig. 6.11 it has an additional timepoint in line 6, due to the blocking communication.
This timepoint is used to prove a bounded wait along with the macro operation.

For proving the induction base we use the timepoint t MEM. In order to prove that we
reach the important state we prove the commitments resulting from the micro operation
ID→MEM. The commitments are shown in lines 13 to 15. By proving these commitments
it is verified that the important state is reachable.

1: property mem is
2: for timepoints:
3: t IF = t,
4: t ID = t+1,
5: t MEM = t ID+1,
6: t MEM wait = t MEM+0 .. BOUND waits for mem sync,
7: t WB = t MEM wait+1,
8: t end = t WB+1;
9: assume:

10: [...]
11: prove:
12: [...]
13: at t MEM: mem notify;
14: at t MEM: mem addr = addr;
15: at t MEM: mem data = data;
16: during[t MEM+1,t MEM wait]: mem notify;
17: during[t MEM+1,t MEM wait]: mem addr = prev(addr);
18: during[t MEM+1,t MEM wait]: mem data = prev(data);
19: end property;

Figure 6.13: Induction base property for a memory instruction

111

In theory it is not necessary to prove a bounded wait along with the induction base,
because we have the induction step to prove this. In practice, it makes sense to include a
bounded wait, because it allows the designer to implement a correct waiting mechanism
without the need to run the step property. In most cases, a design does not wait forever
and it is sufficient to choose a realistic upper bound for the waiting period.

Line 6 shows a finite wait from zero to BOUND cycles. The value for BOUND is
determined by the designer. In most cases, a sufficient value for BOUND is between three
and five. In order to avoid the case that mem sync remains low, the user has to add a
liveness constraint to the property. This constraint assumes that if mem notify is set then
mem sync evaluates to true within the provided bound. This constraint introduces a gap
in the verification that is closed by the induction step. Lines 16 to 18 prove the behavior
of the design in case the wait operation is triggered. If complexity of the induction base
becomes an issue, the designer may reduce the bound to zero and thereby indirectly
remove the commitments. These commitments are proven also in the step property as as
shown in lines 6 to 8 of Fig. 6.14. However, having these commitments directly indicates
to the designer that this operation needs to implement a correct waiting mechanism.

Induction step

The goal of the induction step operation is to prove that if a wait operation is triggered
the design remains in its state. Fig. 6.14 shows the step property. The induction step
assumes to start from the base (see line 2) and proves that the design remains in its state
in the next step (lines 6 to 8). A step is defined as one clock tick.

1: property mem wait is
2: assume:
3: at t: mem notify;
4: at t: not(mem sync);
5: prove:
6: at t+1: mem notify;
7: at t+1: mem addr = prev(addr);
8: at t+1: mem data = prev(data);
9: end property;

Figure 6.14: Induction step for a memory instruction

The assumption in line 3 ensures that the induction step is only triggered if the
respective sync signal remains low. As lines 5 to 7 show, the property only proves the
signals related to the stage. Other outputs or data path registers are ignored, because they
are covered by a different overlapping macro operation. This still results in a complete
verification, because any pipeline-related bugs not covered by the these two properties
are covered by the relaxed property set.

6.3.5 Flushing

In a pipelined design it is sometimes necessary to cancel the execution of a macro op-
eration. This is called flushing. For example, the misprediction of a branch decision, a
timeout or an overwriting of an operation may result in an abortion of in-flight operations

112

and a flushing of the pipeline. The sequential ESL usually does not describe the abortion
of an operation. Let us consider the execution of a branch instruction at the ESL. The
ESL executes in a sequential manner. There is no instruction fetch happening while the
branch is executed. Hence, there is no need to describe a flushing. At the RTL, depending
on the design decisions, an instruction can be fetched and if the branch is mispredicted
the execution of this instruction is aborted.

IF

branch taken

ID EX WB

wait

MEM

wait

branch
not taken

Figure 6.15: PPA that is extended for flushing

How do we augment the SystemC-PPA with this information? The easiest way to
describe such a flushing is to introduce a shared port transporting a Boolean message.
When the augmented PPA is created the designer decides at which stage an operation
can be aborted. The introduced port is read at the respective stage and depending on the
evaluation of the message the execution is continued or aborted. In order to not affect the
simulation behavior the port is implemented such that it always yields false. However,
the PDD-P engine creates two operations, one for the case the message evaluates to true
and one for false. At the RTL the generated macro is refined to the internal register
(e.g., branch decision). Depending on the value of the register one of the operations is
triggered.

Fig. 6.15 extends the augmented PPA from Fig. 6.9. A new edge (indicated as red
arrow) from important state ID to IF is introduced describing the abortion of an oper-
ation. This results in a new cycle and thereby in a new macro operation for the design.
Each macro operation now has an assumption at t id either assuming that the value is
low or high depending on the fact whether the branch is taken or not.

6.3.6 Limitations

In this section we briefly describe the current limitations of PDD-P:

• PDD-P is limited to designs with a static in-order pipeline. Modeling an out-of-
order pipeline remains an open issue. Most likely, multiple communicating PPAs
are needed to describe such a pipeline.

• As already discussed, we don’t allow cyclic sub-graphs within the PPA. This con-
tributes to a restriction to the approach for general purpose hardware. Communica-
tion designs, e.g., a bus, sometimes operate in different modes. This can result in a
cyclic subgraph for each mode. A workaround for this is to write the SystemC-PPA
such that these cycles do not occur.

113

• PDD-P is not completely automated. The identification of the empty pipeline state
remains a manual task for the designer. Aside from this, PDD-P has the same lim-
itations as the regular S2QED approach. The proof complexity grows non-linearly
with the complexity of the computational model. However, due to the composi-
tionality of PPA it is possible to divide the design into smaller subsets with better
manageable complexity.

114

Chapter 7

Experimental Results

The proposed methodology has been evaluated by means of five case studies. Two case
studies were conducted in an industrial setting. Four case studies have been conducted
in our academic environment so that all related data can be made available in the public
domain [50].

All experimental results were obtained on an Intel Core i7 @ 3 GHz with 32 GB of
RAM. All property checking experiments were conducted with the commercial property
checker OneSpin 360 DV-Certify™.

7.1 Case Study: RISC-V Processors

The first case study comprises multiple implementations of a RISC-V CPU, each being a
sound refinement of the same system-level model. The system-level model is a SystemC-
PPA-compliant Instruction Set Simulator (ISS) implementing the RV32I Base Integer
Instruction Set, as specified in [56], excluding interrupts. In the sequel we refer to the
SystemC-PPA model as ISS. The presented results are obtained with the regular PDD
methodology (see Sec. 3) and not the extended methodology for pipelining PDD-P. PDD
is elaborated on three different implementations:

• Simple sequential CPU. The design is implemented with two modules: a CPU
module and a register file. Datapath computations are described mostly by com-
binational functions. The goal of this implementation is to provide an RTL design
requiring as little refinement effort as possible.

• Complex sequential CPU. The functionality of the processor is divided into four
modules. The core is composed of a decoder, an arithmetic logic unit (ALU), a
register file and a control unit. All communication between the modules is realized
by master/slave interfaces. This CPU demonstrates how a complex communication
structure implemented at the RTL can be abstracted at the system level.

• Pipelined CPU: The CPU consists of a control unit, a datapath and a register file.
The processor is implemented as a five-stage static pipeline with forwarding. The
control unit orchestrates the pipelining and sets the respective control signals. The
datapath implements the computation and communicates with the register file.

115

The complete set of properties was generated for the ISS and refined for each implemen-
tation, resulting in three different property suites.

request
instr.

request
"load"

receive
"load"

receive
instr.

wait

"other" instr. request
"store"

store instr.

load instr.

wait wait wait wait

receive
"store"

wait

next instr.

next instr.

29

Figure 7.1: PPA of the ISS

Fig. 7.1 shows the PPA of the ISS. The ISS is connected to a memory by a blocking
output port for sending a new memory request and a blocking input port for receiving
the response. As we explained in Sec. 4.4, each blocking communication results in an
important state. If the handshake fails, the system waits in its current state, represented
by the wait operation at each important state. An instruction cycle starts in request
instr, requesting an instruction from the memory. The ISS transitions to state receive
instr, if the request is successful. Upon receiving the instruction the execution continues,
depending on the decoding of the instruction. Two cases need to be distinguished: In case
of a load or store instruction being received the ISS needs to make another communication
to memory, resulting in state request load for a load instruction and request store for a
store instruction. The state request load (store) is followed by another state receive load
(store) reading the response from the memory. Execution then continues with fetching the
next instruction from the memory. In case of any other type of instruction (e.g., R-type,
I-type or B-type) the operation “other instructions”, subsuming the operations for each
of these opcode classes, is triggered. The operations verify that the correct values are
written into the right registers and that the program counter is set to the correct value.
The operation ends in state request instr and a new cycle begins.

Fig. 7.2 shows the property generated for R-type instructions. It implements all
register-to-register instructions like add, or and shift. The property starts in state receive
instr (line 9); it is assumed that a new instruction is available (line 12) from the memory.
The encode type of the instruction is evaluated by a combinational function getEncType().
A combinational function is not allowed to change any state variables of the module. It
returns a value as a function of the input parameters. When the operation is triggered
it is guaranteed that the program counter is set to the correct value (line 15). Lines 17
to 19 set up the request for the next instruction. During the operation all notify flags are
set to false and the memory is notified that there is a new request by raising the notify
flag at t end. The result of the computation is returned by the combinational function
getALUresult() and stored to the register file. Lines 21 to 24 sets up the communication with
the register file. In line 16, the property ensures that the hardware does not accidentally
initiate a read from the memory.

The refinements for the pipelined processor are, naturally, more complex. The prop-
erty describes a single instruction, but, due to the pipelining, the processor executes
other instructions in parallel. This results in a more complex refinement of properties

116

1: property property fetch 16 read 5 is is
2: for timepoints:
3: t end = t+k;
4: freeze:
5: - - Register values in REG FILE
6: pcReg at t = pcReg@t;
7: assume:
8: - - starting states
9: at t+0: receive instr;

10: - - trigger sequence
11: at t+0: (getEncType(loadedDataInstr)=ENC R);
12: at t+0: fromMemoryPort sync;
13: prove:
14: - - output sequence
15: t end: pcReg = (4 + pcReg at t)(31 downto 0);
16: during[t+1, t end]: fromMemoryPort notify = false;
17: t end: toMemoryPort sig addrIn = (4 + pcReg at t)(31 downto 0);
18: t end: toMemoryPort sig dataIn = 0;
19: during[t+1, t end-1]: toMemoryPort notify = false;
20: t end: toMemoryPort notify = true;
21: t end: toRegsPort sig dst = getRdAddr(INSTR);
22: t end: toRegsPort sig dstData = getALUresult(INSTR,REGFILE);
23: during[t+1, t end-1]: toRegsPort notify = false;
24: t end: toRegsPort notify = true;
25: t end: - - Unimportant datapath register ...
26: - - ending states
27: t end request instr
28: end property;

Figure 7.2: R-Type instructions

and design. Take, for example, the refinement of the source registers. In the sequential
implementation it is sufficient to refine the macros for the registers by referring to the
datapath registers storing the actual values. In the pipelined implementation data hazards
can occur, necessitating implementation of a resolution mechanisms such as forwarding.
The property macros are refined by referring to the values of the forwarding unit or to
the datapath registers, depending on whether a hazard was detected or not.

Lastly, the timing in line 3 is refined by providing a value for k which is different for
the different implementations:

• Simple sequential implementation: k = 1. Each operation is executed in one clock
cycle.

• Complex sequential implementation: k = 8. The timing here depends on the com-
munication between the modules. Each operation has its own distinct timing. The
designer has to understand the underlying communication sequences and reflect this
in the timing.

117

• Pipelined implementation: This is the most complex case, because the timing of the
operation depends on the pipeline state, e.g., a stall due to a data hazard increases
the time until an operation finishes. In practice, there are two ways to specify this.
One way is to keep the value for k static and let the macros describing the pipelining
accommodate for the different pipeline states. The other way is to keep the macros
static and reflect the pipeline state through different values for k. In either case, the
pipeline state is reflected in the property refinement. The implementation provided
in our public-domain online repository uses the first approach.

Table 7.1: Design size and LoC

Lines of code ISS Simple Seq. Complex Seq. Pipelined

Properties generated 1165 - - -

Properties - lines added - 0 1 411

Properties - lines changed - 56 68 56

Implementation 1000 1110 1626 2264

Synthesis

Input/Output - 36/71 36/71 36/71

Flip-Flops - 1340 1881 2698

Tab. 7.1 provides the results for the size of the designs and the property suite. A set
of 21 properties was generated from the SystemC-PPA of the ISS in less than 25 seconds.
The generated properties have a total of 1165 Lines of Code (LoC). In general, only the
macro refinement and the timepoints are changed and the assumption and commitment
part of the properties remain unchanged. Tab. 7.1 row “Properties – lines added” shows
how man new lines have to be added during macro refinement and row “Properties – lines
changed” reports how many of the generated LoC are changed.

The verification effort in PDD results from the time spent on the refinement of the
properties during the implementation process. Tab. 7.2 provides manual work efforts,
CPU times for formal property checking and simulation times for the system-level model.
The second row of the table denotes the design efforts for creating the SystemC model
of the ISS and for creating from it the RTL implementations of the different RISC-V
implementations. The third row shows the additional manual efforts needed for refining
the generated properties during the RTL design process. The reported work efforts were
those of first-time users of the methodology.

As can be expected, manual efforts grow as the designs become more complex w.r.t.
inter-module communication, timing and pipelining. For example, all operations of the
simple processor have a length of one cycle and the design and property refinement starting
from the system-level model is nearly trivial. This keeps the work effort for refining the
properties under two hours. For the more complex processor versions we exploited the
SystemC-PPA communication mechanisms, as discussed in Sec. 4.4, to decompose the ISS
model into several SystemC-PPA sub-models that correspond to the different processor
modules. The design efforts given in Tab. 7.2 include the efforts for these decomposition
steps at the SystemC-PPA level as well as for the creation of the RTL code.

118

Table 7.2: Design effort and simulation results for different RISC-V implementations

Design and verification results ISS Simple Seq. Complex Seq. Pipelined

Design effort 1 person week 1 person day 4 person days 3 person months
Property refinement effort — 2 person hours 1 person day 1 person month
Property checking time total — 2 min 5 min 4:20 h
Longest individual checking time — 28 s 65 s 1:30 h
Max. memory usage (MB) — 4003 5220 4628

Simulation time

Prime numbers (s) 5 16 56 95
Fibonacci (s) 1 4 10 15
Bubble sort (s) 8 35 130 259

The property refinement of the pipelined processor required about 1 person month, due
to the complex pipelining. It is important to note that a completed property refinement
process implies that all properties hold on the design. Thus, further RTL simulation for
verification is not required so that all efforts for traditional simulation and creation of
test benches can be avoided.

As shown in Tab. 7.2, proving the actual properties on the design is very fast, espe-
cially for the smaller design. Most properties are proven in less than five minutes. The
longest proof time was for the R-type instruction property of the pipelined processor. The
complexity lies within the datapath operations, which are a worst-case scenario for SAT
engines, due to the large state space. A common practice is to blackbox datapath-heavy
components (e.g., the ALU) to reduce proof times drastically.

We simulate the designs with three computation-heavy C++ programs, compiled with
the RISCV-V R32 toolchain:

• “Prime numbers”, computes ten prime numbers starting from n=10000.

• “Fibonacci”, computes numbers of the Fibonacci sequence.

• “BubbleSort”, sorts an array with 500 integer numbers. Initially, the numbers are
sorted in descending order and the algorithm sorts them in ascending order, resulting
in the worst-case execution time for BubbleSort.

The results, as given in Tab. 7.2, demonstrate a simulation speedup by simulating the
ISS between 4X in case of the simple design and ∼32X for the more complex design,
compared to the RTL implementations. Simulation of a SystemC model can, obviously,
be expected to generally outperform RTL simulation. In case of our PDD methodology the
SystemC model, at the abstraction level of an instruction set simulator, has the additional
advantage of a sound relationship with the RTL, meaning that the RTL implementation
and the ISS execute software in functionally identical ways. This is, to our knowledge,
the first time that an ISS can be used as a golden model for design and even for firmware
sign-off.

119

7.2 Case Study: SONET/SDH Framer by Alcatel-

Lucent

The second case study is based on an industrial implementation of a SONET/SDH Framer
circuit from Alcatel-Lucent. The circuit identifies words of data from communication
lines operating in a non-ideal physical environment where, e.g., discrepancies in the clock
frequencies of the communicating modules must be compensated for.

In prior work, this design has been completely verified and a system model with two
PPAs has been created “bottom-up” according to [2]. In this system, one module describes
the main functionality of the Framer, while the other is a monitor collecting performance
data in order to determine the synchronization status of the Framer.

The efforts attributed to the bottom-up creation of the two PPAs were about six
person months.

Table 7.3: SONET/SDH Framer — original design and redesign

RTL Design PPA
Module inp./out. FFs LoC inp./out. var. states/ops.
Framer (or.) 549/280 4.2k-47k 27k 7/6 4 4/13
Monitor(or.) 20/6 30 850 3/1 2 2/9
Framer (re.) 549/280 3.9k-42k 12k 7/6 4 4/13
Monitor (re.) 20/6 425 92 3/1 2 2/9

Tab. 7.3 shows the numbers for the original design (rows 1 and 2), which contains,
depending on the configuration through VHDL generics, between 132 and 549 input bits,
88 and 280 output bits, and 4054 and 47213 state bits. The major part of this large state
space results from the buffering of the input stream. The table also shows the numbers
for the PPAs of the Framer and the Monitor. Also in this case study a high degree of
abstraction is obtained by the PPA models. For example, in this design it is exploited
that the correct buffering of the input stream is verified at the RT level and does not need
to be represented at the system level.

Starting from the compositional SystemC-PPA descriptions, we redesigned both cir-
cuit modules from scratch following the PDD approach. This was accomplished in less
than two person months.

The generated property suites cover the behavior of all possible design configurations
by VHDL generics. The property suites comprise 22 operation properties. Proving them
on all possible configurations of the original design takes 23 min and only 2 min for the
redesign. Proving the most complex property took less than 9 min with a maximum
memory consumption of 1589 MB. Memory consumption ranges from 496 MB to 1589 MB
for both designs.

Tab. 7.3 also shows the numbers for the redesign (rows 3 and 4). The state space of
the redesign could be somewhat reduced. Depending on the configuration through VHDL
generics, the new design counts between 3997 and 41961 state bits.

The new implementation not only represents a “clean refactoring” of the old IP block
but also underwent aggressive RTL optimizations for minimizing the power consumption
of the circuit, such as manifold sharing of a single counter for various purposes (as opposed

120

to several independent instances in the original design), reduction of input buffering, as
well as clock gating of large parts of the circuitry, as proposed in [57]. These measures lead
to substantial reduction of circuit activity, resulting in a reduction in power consumption
of 50%. Applying these intricate optimizations to the RTL design was only possible
because their functional correctness could be immediately verified using the accompanying
property suite.

Table 7.4: SONET/SDH Framer — simulation of 107 frames

Design RTL sim. SystemC-PPA sim. property proofs

RTL Industrial 541 s 2 s 23 min
RTL Redesign 600 s 2 s 10 min

Another goal of the top-down methodology is to move verification to the system level.
Tab. 7.4 shows the results for the simulation for 107 frames. Due to the strong abstraction
of the system-level description the simulation times are reduced from 541 s to 2 s, while
the soundness of the system model guarantees preservation of the design’s I/O sequences.
For illustration of our approach, we also employed PDD to design a simplified version of
the industrial framer design, available with all relevant data in public domain under [50].

7.3 Case Study: Industrial FPI Bus

This case study is based on a complex on-chip bus protocol called Flexible Peripheral
Interconnect (FPI), owned by Infineon Technologies. A highly optimized industrial RTL
implementation of this bus was available for our experiments. We constructed a system
where two peripherals act as masters and two memories act as slaves. As an implementa-
tion of this system we instantiated the FPI bus with the industrial RTL modules for the
above configuration.

PPAs for these modules were created bottom-up along the lines of [2] and were verified
to fulfill all conditions for compositionality as developed in Chap. 4. Tab. 7.5 shows data
for the industrial designs and the PPAs extracted bottom-up.

Table 7.5: FPI Bus — original design

RTL Design PPA
Module inp./out. FFs LoC inp./out. var. states/ops

MasterAgent 199/202 292 3568 9/3 4 5/84
SlaveAgent 199/202 292 3568 12/15 0 1/16
BCU 258/215 941 8966 4/4 12 1/6

For the RTL design, we show the number of (binary) input/output signals, flip-flops
and lines of code (LoC). The industrial design has a total of 12.5k LoC in VHDL. The
agents share the same HDL description and are configured to be a master or a slave
through generics.

121

For the PPAs, we give the number of abstract inputs, outputs, data path variables
as well as the number of abstract states and operation properties, i.e., the nodes and
edges in the state transition graph of the abstract FSM. The effort for PPA extraction by
bottom-up verification was measured to be about 1 person month per 2k LoC.

For demonstrating the feasibility of the PDD approach we redesigned the most so-
phisticated component of the bus, the MasterAgent, top-down. In order to come up with
a differently structured design, we used the PPA that had been extracted bottom-up
and transformed it into a compositional SystemC-PPA description consisting of a control
module and a memory module. The external interfaces of the redesign are identical to
the original version so that the new design could be integrated “first-time-right” into the
existing industrial environment. Starting from the SystemC-PPA model, a new RTL im-
plementation of the the master agent was obtained using the tool DeSCAM and the PDD
methodology. The redesign took 3 person days and was performed by a different engineer
than the person who extracted the original PPA bottom-up. The new RTL design is
comparable to the old implementation in terms of hardware cost, area and performance.
However, due to the existence of a complete set of operation properties holding on the
design, there are now additional optimization opportunities. For example, [57] and [58]
present automatic power consumption reduction techniques based on a complete set of
operations.

The small amount of effort required for redesigning the master agent shows the effi-
ciency of the PDD methodology, which benefits greatly from the automatically generated
properties. The case study further demonstrates how PDD can help with the problem of
refactoring legacy designs. Replacing old code components with new versions is a process
highly prone to human error. PDD guarantees implementation correctness even after per-
forming substantial design changes. The maintainability of the code is greatly enhanced
by the SystemC-PPA (high-level documentation) as well as the SVA properties for the
RTL (low-level documentation).

Table 7.6: FPI Bus — redesign

RTL Design PPA
Module inp./out. FFs LoC inp./out. vars. states/ops. proof

Control 253/110 186 553 11/10 3 6/95 58 s
Memory 100/213 425 200 2/7 15 2/47 50 s

Tab. 7.6 shows the results for the redesign of the MasterAgent. The I/O interface of
the redesign is equivalent to the original one. The different number of inputs and outputs
results from the decomposition of the original design into two modules, the Control and
the Memory. The maximum computational effort encountered for a single property was
a proof time of 1.7 s and a memory consumption of 1369 MB. As a result of this compu-
tational efficiency, the designer can work with the property checker interactively and can
check design refinements repeatedly during the design process.

122

7.4 Case Study: Wishbone Bus

With this case study we demonstrate the flexibility of PDD when describing systems at
different levels of abstraction. We considered a Wishbone bus system comprised of one
master and four slaves and created two different system-level models for it. The first is
protocol-independent and models the possible communications between the master and
the slaves using message passing. The second one is a bit more refined and models bus
agents for the master and the slaves as well as bus transactions according to the Wishbone
protocol.

Both models were represented in SystemC-PPA and were subsequently refined into
RTL implementations according to PDD, using DeSCAM for generating properties. Tab. 7.7
shows data for both models and their implementations. The PPAs are, again, represented
in terms of the numbers of input/output predicates, data path variables, abstract states,
and transitions (operations). The RTL implementations of both models have an identical
I/O interface. However, the simple implementation is of significantly lower complexity
than the Wishbone-compliant implementation.

Table 7.7: Wishbone Bus

RTL Design PPA
Module inp./out. FFs LoC inp./out. var. states/ops

Simple 209/303 403 203 5/5 5 9/34
Wishbone 209/303 2023 634 5/5 17 12/45

For each model, we ran simulations of bus transactions, both on the system level as
well as the RTL, cf. Tab. 7.8. As expected, system-level simulation is orders of magnitude
faster than RTL simulation. Since each RTL is a sound refinement of the corresponding
SystemC-PPA model, any simulation result obtained on the system level also holds for
the implementation, which makes RTL simulation replaceable by SystemC simulation in
many cases.

Table 7.8: Wishbone Bus — simulation of 107 frames

Design RTL sim. SystemC-PPA sim. property proofs

Simple 144 s 4 s 34 s / 850 MB
Wishbone 322 s 90 s 410 s / 3885 MB

In a second experiment we demonstrate the versatility of PPA when it comes to mod-
eling designs at various levels of abstraction. As mentioned, both SystemC-PPA models
have the same external I/O interface. Therefore, it was possible to use the SVA properties
that were generated by DeSCAM for the more abstract, protocol-independent SystemC-
PPA model and refine them such that they hold also on the less abstract SystemC-PPA de-
scription modeling a system of bus components. The manual effort for this “cross-model”
property refinement was less then 1 person day. As a result, the RTL implementation
of the Wishbone is now also a sound refinement of the more abstract system-level model
which allows for even higher verification efficiency than “its own” SystemC-PPA model.

123

This experiment shows that there is great flexibility when choosing the abstraction level
of SystemC-PPA models.

All models and properties from this case study are publicly available in full on GitHub [50].

7.5 Case Study: PDD-P flow

In this section we report the results for the PDD-P flow. We elaborate the benefits of the
extension with two examples. The results are generated on an IntelCore I7 with 32 GB
of RAM, running the commercial property checker OneSpin.

The first design is a simple processor with a static 4-stage pipeline and a forwarding
unit. The second design is an AHB bus with four masters and three slaves.

The two designs are pre-existing designs. We created the SystemC-PPAs models for
the existing RTL designs. The aim is to show that the SystemC-PPA subset provides
the required features and that the generated properties do no limit the designer. We
re-implemented core functionality to mimic a design process and show the feasibility of
this approach.

7.5.1 Processor

The first design is a simple 4-stage in-order processor. This processor is used as our
example in the previous sections. A total of 9 macro operations are created. The generated
base properties are proven in 9 sec and the relaxed properties need 2:48 min to prove.
As mentioned earlier, the functionality is covered by the base property set. A bug in the
data path of the ALU, e.g., implementing subtract instead of an add, results in a failing
base property. The commitment in line 16 of Fig. 6.11 fails. The counterexample is found
in 1 second.

The proof time for the relaxed properties appears to be long compared to the base
properties. However, when a bug is introduced in the forwarding unit a counterexample
is provided by the property checker in less then four seconds, allowing fast design cycles.
In this case, the commitment in line 30 of Fig. 6.12 fails.

Table 7.9: Results for the processor

Property Name Property Name Relaxed prop.

Time[min] Time[min]

add 0:01 0:23

branch not taken 0:01 0:02

branch taken 0:01 0:02

load 0:01 0:50

neg 0:01 0:17

nop 0:01 0:11

reset 0:01 -

store 0:01 0:40

sub 0:01 0:23

124

7.5.2 AHB

The second design is an AHB bus with fixed arbitration and single read/write transfers.
The protocol allows to implement a pipeline with three stages (addr, data, resp). An
empty pipeline is defined as a state where each master is idle. In this implementation
the master with ID 3 has the highest priority and the master with ID 0 the lowest. For
this example we use fixed priority-based arbitration and accept that the master with the
lowest priority can starve.

Table 7.10: Results for AHB bus

Property Name Base property Relaxed prop.

Time[min] Time[min]

master0 to slave0 0:57 4:30

master1 to slave0 0:36 5:35

master2 to slave0 0:29 3:14

master3 to slave0 0:39 1:32

For this example a macro operation for each possible transfer between master0 and a
slave is generated from the ESL. Proving all base properties takes about 2:40 min with
an average of less then 1 min per property. Proving the relaxed properties takes about
15 min . An interesting observation is that the lower the ID of the respective master
is, the longer the proof of the relaxed property takes. This is due to the fact that more
stalling cases occur if master 2 requests. Although the macro operations overlap in their
execution, there is no dependency between them. Once a macro operation is in the
pipeline it executes independently of the other operations. Hence, no forwarding cases
can happen and no consistency assumption is necessary.

The starvation is detected by a failing property master0 to slave0. By analyzing the
counterexample it is easy to see that master 0 is never granted access to the bus. This
issue is solved by applying a liveness constraint on the model, stating that after a certain
number of clock cycles master 0 is granted access. This behavior is also visible at the
system level during simulation.

125

126

Chapter 8

Conclusion and future work

In this work we presented Property Driven Design, a new methodology to refine transaction-
level system models into RTL implementations. The theoretical basis of this methodology
is compositional path predicate abstraction; its practical basis is state-of-the-art property
checking along with methods to generate and refine properties starting from SystemC-
PPA descriptions. Due to the established well-defined formal relationship between the
transaction-level model and the implementation, a “trustworthy” system model becomes
available such that global verification tasks can be shifted from the RTL to the system
level.

The lack of a trustworthy and abstract system-level model in today’s design process
leads to a “verification gap”, i.e., a difference between the increase in design complexity
and improvements in verification methodologies. Due to this gap, verification becomes
a bottle-neck within the design cycle. This work provides a solution to this problem by
providing a trustable, abstract and executable system-level model that can be used as
“golden model” for design sign-off.

Our case studies clearly show the attractiveness of the approach: First, complex de-
sign tasks can be mastered in relatively short time while simultaneously guarantying the
functional correctness of the resulting design. Second, the experimental results indicate
that the abstract SystemC-PPA models execute significantly faster then the refined RTL
models. Using such models for design sign-off should have a significant positive impact
on time-to-market.

The obtained results are based on industrial standard languages such as SystemC,
Verilog and SVA. This allows designers and verification engineers to leverage the power of
already existing, commercially available tools, while benefiting from the improved design
flow. Executing the case studies showed that designs with a pipeline can result in complex
refinements. This motivated us to extend the existing PDD flow to PDD-P to archive a
better support for pipelining.

The main contribution of this work is the open-source tool “Design from SystemC Ab-
stract Models” (DeSCAM). It supports the PDD methodology by generating the required
properties and optional HDL skeletons. First, the tool parses the provided SystemC
description, checks that it adheres to the SystemC-PPA subset and provides immedi-
ate feedback to the user in case of a violation. In the scope of this work we provided
a definition of the SystemC-PPA subset. The subset is designed such that it allows
transaction-level modeling at the system level while still complying to semantics of the

127

PPA. Using DeSCAM, instead of a manual creation of the properties, results in two
additional benefits:

First, the tool provides a formalized way of generating the properties from the speci-
fication. Hence, the problem of “miss-interpreting” the specification and thus generating
incorrect/misguided properties does not occur. Second, the designer is not relieved from
the responsibility to ensure that the set of properties is complete.

For an efficient PDD methodology, DeSCAM has to fulfill two non-functional goals.
First, the SystemC-PPA subset should be as inclusive as possible, allowing the system-
level engineer to use a natural way of writing SystemC code. Second, the generated
properties have to be easy to read from a human point-of-view. Readability of the prop-
erties is an important aspect of PDD. Aside from ensuring soundness w.r.t. the semantics
of PPA, the properties serve as a formalized documentation within the design process. As
explained in Chap. 5, the tool implements optimization techniques to increase readability
of the properties. However, within the scope of this work we only managed to implement
a core subset of SystemC language features.

Future work should aim at extending this subset by more language features like
bounded loops, switch-case statements and/or bit-slicing to provide a more intuitive de-
sign experience to the user. An industrial case study with Nordic Semiconductor [59]
showed that PDD is applicable in practical settings. However, the current state of the
tool lacks some PPA related features. Although the provided selection of communication
interfaces allows to model any type of protocol, it sometimes burdens the designer with
an unnecessary large overhead to match the SystemC-PPA to the envisioned protocol.
To improve usability, a library of interfaces that allow for a more natural design process
should be provided in future.

Furthermore, we will explore how to connect SystemC-PPA easier with high-level
simulation models and extend DeSCAM to better support Engineering Change Orders
(ECOs) at the the system level, such that incremental design steps preserve a maximum
of the RTL macro refinements. Finally, we would like to note that the future development
will continue as a spin-off, that aims at building as commercial version of the software.

128

Chapter 9

Summary

We introduce Property-Driven Design, a tool-flow that guarantees formal soundness be-
tween ESL and RTL and thus enables a shift-left of general functional verification by
moving HW verification to higher abstraction layers. In addition, by generating a formal
Verification IP (VIP) automatically from ESL descriptions, the entry hurdle to formal
methods is reduced considerably, opening them to a wider audience, which effectively
‘democratizes’ them. Short feedback cycles reduce time spent on RTL verification and
lead to higher-quality designs.

The proposed builds upon existing flows like Unified Verification Methodology (UVM).
Starting from a set of use cases (e.g., a constraint-random stimulus or precomputed in-
put sequences), a behavioral ESL model, e.g., specified in SystemC-TLM, is checked for
correctness with a simulation-based approach. In a traditional approach, a time-costly re-
verification of the RTL Design Under Test (DUT) against the same use cases is required
to build confidence in behavioral equivalence of ESL and RTL. Our approach removes
the need for a complete functional re-verification of the DUT, saving valuable RTL ver-
ification time and, additionally, allows to cover the entire RTL design behavior with a
complete set of formal properties.

The VIP covers the design intent described by the ESL model as a complete set of
formal properties (e.g., as SVA), wherein each property covers the hardware behavior in
terms of a transactional operation between automatically inferred states, e.g., different
stages of a pipeline. Instead of re-running the simulation-based verification with the DUT,
the design is verified formally using the VIP. If all properties hold on the DUT, the design
is correct-by-construction, w.r.t. the ESL model.

The basic ingredients to the new flow are:

• Path-Predicate Abstraction (PPA), a mathematical model that allows to establish
formal relationship between ESL and RTL based on formal properties. Therefore,
verification results obtained at the ESL also apply at the RTL.

• DeSCAM, an EDA tool that automates VIP creation for the target design in a cho-
sen verification language, which significantly reduces required verification expertise
and effort.

• Standard industrial formal verification languages, tools and verification techniques.

129

130

Chapter 10

Deutsche Kurzfassung:
Eigenschaftsgetriebene
Hardwareentwicklung

Bis heute ist das Register Transfer Level (RTL) in den meisten Methoden der Ein-
stiegspunkt zum Entwurf eines Systems-on-Chip (SoC) oder eines eingebetteten Systems.
Trotz aller Fortschritte im Bereich des Elektronic System Level (ESL), der virtuellen Pro-
totypen oder neuer Verifikationstechniken basiert der eigentliche konzeptionelle Prozess
des RTL-Entwurfs auf Sprachen wie VHDL oder Verilog. Dieser Prozess hat sich in den
letzten Jahrzehnten praktisch nicht verändert. Eine Ausnahme hiervon bildet High-Level
Synthesis (HLS), welches sich in speziellen Bereichen, wie zum Beispiel bei der Imple-
mentierung von Signalverarbeitungsalgorithmen, als anwendbar erwiesen hat.

In der industriellen Praxis wird der Großteil der RTL-Designs noch immer manuell er-
stellt. Ausgangspunkt für diesen Prozess sind informelle Spezifikationen, Beschreibungen,
Diagramme von Finite-State-Machines (FSMs), Zeitdiagramme oder Flussdiagramme,
welche von einem Entwickler nach seinem Verständnis in ein RTL-Design übertragen
werden. Das RTL-Design wird allgemein auch als “golden model” bezeichnet, da es
den wesentlichen Bezugspunkt zur Verifikation der Funktionalität darstellt. Selbst bei
Nutzung von HLS bleibt die RTL-Beschreibung das “golden model” für die Verfikation
der Designs und nicht die Hochsprache, welche den Ausgangspunkt der Synthese darstellt.

Modelle auf der Systemebene hingegen werden in der Regel nur als “Prototypen”
betrachtet. Sie werden für die frühzeitige Bewertung der funktionalen und nicht funk-
tionalen Designeigenschaften verwendet. Diese Trennung zwischen Systemebene und
RTL-Implementierung ist eine der Hauptursachen für die wachsende Komplexität der
Verifikation in den gängigen industriellen Designsflows.

Im Rahmen dieser Arbeit arbeiten wir an einem neuen Ansatz für das RTL-Design,
ausgehend von einer Beschreibung auf der Systemebene. Die vorgeschlagene Methodik
basiert auf einem manuellen Designprozess und schränkt den Designer bezüglich der
zu entwickelnden Implementierung nicht ein. Wir stellen eine Tool zur Verfügung um
sicherzustellen, dass sowohl die Hardware-IP als auch die Verifizierungs-IP systematisch
und kompositorisch entwickelt werden können. Der größte Vorteil der vorgeschlage-
nen Methode ist, dass eine formal definierte Beziehung zwischen RTL und Systemebene
hergestellt wird. Dieser Aspekt ist entscheidend, wenn versucht wird, von den heuti-

131

gen Entwurfspraktiken abzuweichen und die Verwendung abstrakter Systemmodelle als
goldene Designmodelle voranzutreiben.

Der vorgeschlagene Ansatz wird als Property-Driven Development (PDD) bezeichnet
und wurde von einer weit verbreiteten Technik aus dem Software-Engineering namens
Test-Driven Development (TDD) inspiriert. Das TDD Paradigma weicht vom klassis-
chen V-Modell für die Softwareentwicklung ab und basiert auf der Überzeugung, dass
die eigentliche Softwareentwicklung durch die Erstellung von Softwaretests im Voraus
positiv beeinflusst wird. Solche Gray-Box-Tests haben gezeigt, dass sie im Vergleich zu
klassischen White-Box Tests zu einer höheren Fehlerabdeckung führen. Die Übertragung
dieser Idee auf die Hardwaredomäne führt zu einer speziellen Entwurfsmethodik. Die
Überprüfung der “Tests” erfolgt frühzeitig und systematisch im Entwurfsprozess. Die
Rolle der Softwaretests in TDD können im Hardware-Design durch formale Eigenschaften,
in Eigenschaftssprachen wie der Property Specification Language (PSL) oder System Ver-
ilog Assertions (SVA), ersetzt werden.

Ein besonderes Merkmal unserer Methodik ist die systematische und automatische
Erstellung der Tests (hier SVA oder PSL Properties) aus der abstrakten Beschreibung.
Die automatische Generierung stellt einen wesentlichen Unterschied zum TDD aus der
Software-Domäne dar. Die generierten Tests sind an die besonderen Anforderungen des
RTL-Hardware-Designs angepasst. Der Einsatz moderner formaler Verifikationstechniken
führt zu einem systematischen und intuitiven Designverfahren, ohne die Freiheit des De-
signers einzuschränken. Die spezifische Art und Weise, wie die Eigenschaften anfänglich
generiert und später verfeinert werden, ermöglicht schließlich eine formale Aussage über
die funktionale Korrektheit der erstellten RTL-Implementierung.

Wenn alle vom abstrakten Modell generierten Properties für das finale Design be-
wiesen wurden, ist bewiesen, dass das Design mit mathematischer Sicherheit eine kor-
rekte Verfeinerung des abstrakten Modells ist. Dies wird durch eine klar definierte for-
male Beziehung zwischen dem abstrakten Modell und seiner konkreten Implementierung
sichergestellt. Umgekehrt bedeutet dies, dass nach erfolgreichem Abschluss des Entwurfs-
prozesses die Systemebene eine formal korrekte Abstraktion des RTL darstellt.

Die Erstellung von ESL-Modellen, welche eine PPA des RTL-Designs beschreiben,
verändert die Rolle dieser Modelle grundsätzlich. Anstatt nur ein Prototyp zu sein und
keine definierte Beziehung zur Implementierung zu haben, kann die Systemebene nun als
Designmodell angesehen werden, ähnlich wie RTL-Designmodelle als solide Abstraktionen
der zugrunde liegenden Gate-Ebene (aufgrund der formalen Äquivalenzprüfung) gelten.
Basierend auf der PPA stellt der von uns bereitgestellte theoretische Rahmen eine formale
Verbindung zwischen dem abstrakten Systemmodell und dem konkreten RTL-Design her.
In unserer Methodik wird die Semantik des Systemmodells durch eine kompositionale
PPA definiert.

Wir zeigen in Kap. 3, wie dies in einer realistischen Entwurfsmethode, die auf Stan-
dardsprachen basiert, verwendet werden kann. Wir führen eine Teilmenge von SystemC
mit dem Namen SystemC-PPA zur Beschreibung von Modellen auf Systemebene ein
und präsentieren den PDD-Flow. Properties werden automatisch aus SystemC-PPA
Beschreibungen generiert und anschließend während des Designprozesses verfeinert. Der
Hauptbeitrag dieser Arbeit ist das Open Source Tool DeSCAM, dass die SystemC-PPA-
Beschreibung automatisch analysieren und die Eigenschaften generieren kann.

In Kap. 5 stellen wir das Tool vor und beschreiben, wie die Properties correcty-by-

132

construction erzeugt werden. Eine besonders herausfordernde Aufgabe ist die Implemen-
tierung von Designs mit einer Pipeline auf Basis eines abstrakten sequentiellen Modells.
Wir haben eine spezielle Methodik für dieses Problem entwickelt, die in Kap. 6 vorgestellt
wird. Diese Methodik hilft dem Designer eine korrekte Implementierung sicherzustellen
und mögliche Hazards aufzulösen. In Kap. 7 präsentieren wir Fallstudien, die für ver-
schiedene Industrie- und Open-Source Unternehmen durchgeführt wurden. Unsere ex-
perimentellen Ergebnisse zeigen, dass vollständig verifizierte RTL-Designs erstellt wer-
den können. Alle Entwurfsschritte basieren auf Standardsprachen und verwenden nur die
modernsten formalen Techniken und Tools. Unsere Experimente zeigen, dass der manuelle
Aufwand für Design und Verifizierung wesentlich reduziert wird.

System-Level Design & Verifikation
(Simulation oder Formal)

Beschreibung der Architekturebene
z.B., SystemC, SystemC-PPA

RTL Vorlage
z.B., VHDL oder Verilog

RTL Implementierung
z.B., VHDL oder Verilog

Operation properties
z.B., SVA oder PSL

Property suite: "Verification IP"
z.B., SVA oder PSL

Erstellung der Implementierung,
(cycle- und bit-genau)

Ausfüllen der Operation properties,
(cycle- und bit-genau)

Wie?
Implementieren

Was?
Verständnis

Dokumentation
Verifikationgeneriert generiert

Figure 10.1: Property-Driven Design: Übersicht

In Abb. 10.1 sieht man eine Übersicht über den neu entwickelten PDD-Flow. Be-
ginnend auf dem ESL können wir das abstrakte Design durch eine ausführbare Mod-
ellbeschreibung formalisieren. In unserer aktuellen Implementierung des Flows verwenden
wir zu diesem Zweck die Sprache SystemC.

Bereits auf Systemebene werden erste Verfeinerungen auf architektonischer Ebene
vorgenommen und beschrieben. Die Architekturebene (Architectural Level) umfasst jede
Beschreibung auf Systemebene, für die eine klare Semantik in Bezug auf PPA möglich
ist. Zu diesem Zweck wurde die Sprache SystemC-PPA erstellt (vgl. Sec. 4.4). Auf der
Architekturebene wird das System zeitabstrakt modelliert, indem abstrakte Automaten
und deren Interaktionen beschrieben werden. Es wird beschrieben, welche Berechnungen
zwischen Kommunikationspunkten verschiedener Komponenten durchgeführt werden.

Dies schreibt jedoch nicht vor, wie ein bestimmter Algorithmus auf der RT-Ebene
implementiert werden muss. Zum Beispiel eine Multiplikation auf Systemebene wird
möglicherweise mit Multiplikationsalgorithmus von Booth, einem Wallace Tree oder ein
anderer geeigneten Methode im RTL implementiert. Die formalen Eigenschaften ermöglichen
das Abstrahieren von solchen Implementierungsdetails. SystemC-Beschreibungen, die auf
der Architekturebene zu SystemC-PPA verfeinert wurden, können dann von unseren Tools
verarbeitet werden.

133

Lebenslauf

 Seite 1 von 2

Persönliche Daten

Name Tobias Ludwig

Ausbildung

08/1999 – 06/2008

 Albert-Schweitzer-Gymnasium, Dillingen

04/2009 – 01/2015 Abschluss: Abitur (2,1)

 Technische Universität Kaiserslautern

 Studium der Informationstechnik

06/2012 – 08/2012 Abschluss: Diplom Ingenieur (1,5)

 Eberspächer, Brighton, USA

 Praxisprojekt für Studienarbeit

05/2014 – 12/2015

Thema: „Manufacturing Execution System (MES)
 im industriellen Einsatz“ (1,0)

Michigan State University, USA

Diplomand im Fachbereich „Computer Science and Engineering“

 Thema: „Distance-preserving trees” (1,0)

Praktische Erfahrungen

07/2008 – 03/2009

 Arbeiterwohlfahrt Dillingen

04/2010 – 10/2010 Zivildienst

 Factory-IT, Diefflen

 Entwicklung einer Software zur Auswertung von
Produktionsdaten

01/2011 – 12/2013

 Eberspächer GmbH, Neunkirchen

 Werkstudent

 Seite 2 von 2

 Aufsetzen von SIMATIC IT (MES, Siemens)

 Aufsetzen von Proficy (MES, General Electrics)

10/2012 – 05/2015 Frontend-Entwicklung (ASP.NET, C#)

 - Technische Universität Kaiserslautern

 - Wissenschaftliche Hilfskraft

 - Lehrstuhl „Entwurf informationstechnischer Systeme“

 Entwicklung von Algorithmen zur Hardwareverifizierung von
Prozessoren (C/C++, Python)

 Erstellung von Dokumentationen (Doxygen)

05/2015 - jetzt - OOP Reimplementierung bestehender Software
(VHDL, C/C++)

Kenntnisse

Technische Universität Kaiserslautern

Wissenschaftlicher Mitarbeiter
Lehrstuhl „Entwurf informationstechnischer Systeme“

-

EDV-Kenntnisse -

 Microsoft Office

Betriebssysteme Webentwicklung (HTML, CSS, JavaScript)

Programmiersprachen Windows, MacOS, Linux

FPGA Prototyping C/C++, C#, Python, Assembler, ASP.NET, MSSQL, PHP

Sprachkenntnisse VHDL, ONESPIN, XILINX

 Englisch (fließend)

 Französisch (Grundkenntnisse)

Kaiserslautern, 23.09.2020

136

Bibliography

[1] K. Beck, Test Driven Development: By Example. Addison-Wesley, 2002.

[2] J. Urdahl, D. Stoffel, and W. Kunz, “Path predicate abstraction for sound system-
level models of RT-level circuit designs,” IEEE Transactions On Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 33, no. 2, pp. 291–304, Feb.
2014.

[3] G. M. B. Bailey and A. Piziali, ESL Design and Verification - A Prescription for
Electronic System-Level Methodology. Systems on Silicon, 2007.

[4] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in First
IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and
Systems Synthesis (IEEE Cat. No.03TH8721), 2003, pp. 19–24.

[5] “Standard SystemC language reference manual,” IEEE Std 1666-2011, 2011.

[6] A. S. Initiative.

[7] F. Kesel, Modellierung von digitalen Systemen mit SystemC: Von der RTL- zur
Transaction-Level-Modellierung. De Gruyter, 2012.

[8] D. Gajski, J. Zhu, R. D. Omer, A. Gerstlauer, and S. Zhao, SPECC: Specification
Language and Methodology. Springer US, 01 2000.

[9] M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts, “Handel-c language reference
guide,” Computing Laboratory. Oxford University, UK, 1996.

[10] Mentor Graphics, https://www.mentor.com/.

[11] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez, “Transaction level modeling in
systemc,” 2003.

[12] “Ieee standard for standard systemc language reference manual,” Jan 2012.

[13] J. Urdahl, “Path Predicate Abstraction for Sound System-Level Modeling of Digital
Circuits,” Ph.D. dissertation, Technische Universität Kaiserslautern, December 2015.

[14] L. W. Nagel, “Spice2: A computer program to simulate semiconductor circuits,”
Ph.D. dissertation, EECS Department, University of California, Berkeley, 1975.

137

[15] T. Ludwig, J. Urdahl, D. Stoffel, and W. Kunz, “Properties first – correct-
by-construction rtl design in system-level design flows,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, pp. 3093–3106,
June 2020.

[16] J. Urdahl, S. Udupi, T. Ludwig, D. Stoffel, and W. Kunz, “Properties first? A new
design methodology for hardware, and its perspectives in safety analysis (invited
paper),” in The IEEE/ACM International Conference on Computer Aided Design
(ICCAD), 2016.

[17] “IEEE Standard for Property Specification Language (PSL),” IEEE Std 1850-2005,
2005. [Online]. Available: http://www.eda.org/ieee-1850/

[18] “IEEE 1800 – standard for SystemVerilog–unified hardware design, specification,
and verification language,” IEEE.

[19] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science,
1977., 18th Annual Symposium on Foundations of Computer Science, 31 1977-nov.
2 1977, pp. 46 –57.

[20] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state
concurrent systems using temporal logic specifications,” ACM Trans. Program. Lang.
Syst., vol. 8, no. 2, pp. 244–263, Apr. 1986.

[21] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and W. Kunz,
“Unbounded protocol compliance verification using interval property checking with
invariants,” IEEE Transactions on Computer-Aided Design, vol. 27, no. 11, pp. 2068–
2082, November 2008.

[22] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, Bounded Model Checking,
Advances In Computers Volume 58. Academic Press, 2003.

[23] M. Thalmaier, M. Nguyen, M. Wedler, D. Stoffel, J. Bormann, and W. Kunz, “Ana-
lyzing k-step induction to compute invariants for SAT-based property checking,” in
Proc. International Design Automation Conference (DAC), 2010, pp. 176 –181.

[24] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic evaluation of
partially-ordered trajectories,” Formal Methods in System Design, vol. 6, no. 2, pp.
147–189, 1995.

[25] Onespin Solutions GmbH, “OneSpin 360 DV-Verify,”
https://www.onespin.com/products/360-dv-verify/.

[26] J. Bormann and H. Busch, “Verfahren zur Bestimmung der Güte einer Menge von
Eigenschaften (Method for determining the quality of a set of properties),” European
Patent Application, Publication Number EP1764715, 09 2005.

[27] J. Bormann, “Vollständige Verifikation,” Dissertation, Technische Universität Kaiser-
slautern, 2009.

138

[28] K. Claessen, “A coverage analysis for safety property lists,” in Proc. International
Conference on Formal Methods in Computer-Aided Design (FMCAD). IEEE Com-
puter Society, 2007, pp. 139–145.

[29] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Satisfiability Modulo Theories.
IOS Press, 2009, ch. 26, pp. 825–885.

[30] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel, and
W. Kunz, “Symbolic quick error detection using symbolic initial state for pre-silicon
verification,” in Design, Automation & Test in Europe Conference (DATE). IEEE,
2018, pp. 55–60.

[31] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. Barrett, S. Mitra, W. Ecker, D. Stof-
fel, and W. Kunz, “Gap-free processor verification with s²sqed and property gener-
ation,” in 2020 Design, Automation Test in Europe Conference Exhibition (DATE),
Grenoble, France, March 2020.

[32] M. Abadi and L. Lamport, “The existence of refinement mappings,” Theoretical
Computer Science, vol. 82, no. 2, pp. 253–284, 1991.

[33] R. Milner, “Operational and algebraic semantics of concurrent processes,” in Hand-
book of theoretical computer science (vol. B), J. van Leeuwen, Ed. Cambridge, MA,
USA: MIT Press, 1990, pp. 1201–1242.

[34] S. Ray and W. A. Hunt, Jr., “Deductive verification of pipelined machines using first-
order quantification,” in Proc. Intl. Conf. on Computer-Aided Verification (CAV).
Boston, MA: Springer, 2004, pp. 31–43.

[35] P. Manolios and S. K. Srinivasan, “A refinement-based compositional reasoning
framework for pipelined machine verification,” IEEE Transactions on VLSI Systems,
vol. 16, pp. 353–364, 2008.

[36] ——, “A complete compositional reasoning framework for the efficient verification of
pipelined machines,” in Proc. International Conference on Computer-Aided Design
(ICCAD), 2005, pp. 863 – 870.

[37] R. Gentilini, C. Piazza, and A. Policriti, “From bisimulation to simulation: Coarsest
partition problems,” J. Autom. Reasoning, vol. 31, no. 1, pp. 73–103, 2003.

[38] K. Hao, S. Ray, and F. Xie, “Equivalence checking for behaviorally synthesized
pipelines,” in Proc. Design Automation Conference (DAC). New York, NY, USA:
ACM, 2012, pp. 344–349.

[39] E. Cohen, W. Paul, and S. Schmaltz, “Theory of multi-core hypervisor verification,”
in SOFSEM 2013: Theory and Practice of Computer Science, ser. Lecture Notes in
Computer Science, P. van Emde Boas, F. C. A. Groen, G. F. Italiano, J. Nawrocki,
and H. Sack, Eds., vol. 7741. Springer, 2013, pp. 1–27.

[40] P. Manolios and S. K. Srinivasan, “Verification of executable pipelined machines with
bit-level interfaces,” in Proc. International Conference on Computer-Aided Design
(ICCAD), 2005, pp. 855 – 862.

139

[41] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic model checking
using SAT procedures instead of BDDs,” in Proc. Design Automation Conference
(DAC), June 1999, pp. 317–320.

[42] A. Kölbl, J. R. Burch, and C. Pixley, “Memory modeling in ESL-RTL equivalence
checking,” in Proc. Design Automation Conference (DAC), San Diego, CA, USA,
June 2007, pp. 205–209.

[43] A. Kölbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for system-level to
RTL equivalence checking,” in Proc. Design, Automation Test in Europe (DATE),
April 2009, pp. 196–201.

[44] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-cycle-accurate
sequential equivalence checking,” in Proc. Design Automation Conference (DAC),
2009, pp. 460–465.

[45] K. Hao, F. Xie, S. Ray, and J. Yang, “Optimizing equivalence checking for behav-
ioral synthesis,” in Proc. Design, Automation and Test in Europe (DATE), Leuven,
Belgium, 2010, pp. 1500–1505.

[46] J. Langer and U. Heinkel, “High level synthesis using operation properties,” in Proc.
of Forum on Specification Design Languages (FDL 2009), Sep. 2009, pp. 1–6.

[47] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,
“Instruction-level abstraction (ILA): A uniform specification for system-on-chip
(SoC) verification,” ACM Trans. Des. Autom. Electron. Syst, vol. 24, no. 1, pp.
10:1–10:24, Jan. 2019.

[48] M. Diepenbeck, M. Soeken, D. Große, and R. Drechsler, “Behavior-driven develop-
ment for circuit design and verification,” in IEEE Intl. High-Level Design Validation
and Test Workshop (HLDVT), 2012.

[49] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne, H. M. Le, J. Seiter, M. Soeken,
and R. Wille, “Completeness-driven development,” in Graph Transformations.
Springer, 2012, pp. 38–50.

[50] “DeSCAM,” https://github.com/ludwig247/DeSCAM.

[51] J. Urdahl, D. Stoffel, M. Wedler, and W. Kunz, “System verification of concurrent
RTL modules by compositional path predicate abstraction,” in Proc. Design Au-
tomation Conference (DAC), 2012, pp. 334–343.

[52] G. J. Holzmann, “The SPIN model checker,” IEEE Transactions on Software Engi-
neering, vol. 23, pp. 279–295, 1997.

[53] L. Foundation, “Clang,” http://clang.llvm.org. [Online]. Available:
http://clang.llvm.org

[54] “Abstract Syntax Trees,” https://en.wikipedia.org/wiki/Abstract syntax tree.

140

[55] L. D. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 337–340.

[56] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanović, “The RISC-V
instruction set manual volume II: Privileged architecture version 1.9,” EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-161, 2016.

[57] S. Udupi, J. Urdahl, D. Stoffel, and W. Kunz, “Dynamic power optimization based
on formal property checking of operations,” in Proc. Intl. Conf. on VLSI Design
(VLSID), 2017.

[58] S. Udupi, J. Urdahl, D. Stoffel, and W. Kunz, “Exploiting hardware unobservability
for low-power design and safety analysis in formal verification-driven design flows,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 6,
pp. 1262–1275, June 2019.

[59] “Nordic Semiconductor,” https://www.nordicsemi.com.

141

