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I. INTRODUCTION 
The performance of a combustion engine is essentially 

determined by the charge cycle, i.e. by the inflow of fresh air 

through the inlet pipe into the cylinder after a combustion 

cycle. The amount of air, exchanged during this process, 

depends on many factors, e.g. the number of revolutions per 

minute, the temperature, the engine and valve geometry. In 

order to have a tool in designing the engine one is interested 

in calculating this amount. 

The proper calculation would involve the solution of three- 

dimensional hydrodynamical equations governing the gas flow 

including chemical reactions in a complicated geometry, 

consisting of the cylinder, valves, inlet and outlet pipe. 

Since this is clearly too ambitious, we consider a simplified 

model, consisting of the following elements: 

1. The working substance is ideal gas, whose thermodynamical 

properties remain the same before and after combustion (i.e. 

we do not discriminate between different types of gases). 

2. In the cylinder mass balance and the first law of therm0 

dynamics yield a system consisting of two ordinary differen 

tial equations. 

3. In the pipe system mass, momentum and energy balance lead to 

partial differential equations describing one dimensional 

isentropic gas flow. 

4. Both equation systems are coupled together in a suitable 

manner. 

5. Combustion is taken into account by empirical functions, 

describing heat and mass influx. 

The method developed here, relies on a similar procedure in 

Cll. The most subtle question concerns the coupling condition 

mentioned above. In the following we formulate this condition 

and study it with a model consisting of a cylinder, inlet and 

outlet valves and an inlet pipe. We simulate pure charge cycles 

with this model, i.e. combustion is not yet taken into account. 

The generalization of this system to include combustion and 

exhaust pipes should be straightforward and remains to be 

done. 
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In the next sections we derive the model equations and describe 

the coupling condition. The resulting discretized system is 

solved by using an explicit Runge-Kutta scheme. Stability 

problems encountered with this method can perhaps be avoided by 

using implicit schemes, which will be investigated in the 

future. 

2. THE MODEL 
The model has the following structure (the inlet pipe is 

straight and of constant cross section): 

Fig. 1: Model structure 

m 
Z 

and Tz denote mass and temperature in the cylinder; P, p 

and u density, pressure and velocity in the corresponding 

blocks (we remark that if one would include an exhaust pipe, 

the "Out" block left to the cylinder would have the same 

structure as the corresponding "in" block to the right). 

The quantities mz(t), TZ(t), Pp(t,x), pp(t,x), u,(t,x) obey 

equations (7)-(11) below (the pipe quantities are assumed to 

be constant over the cross section, so they spatially depend 

only on the coordinate x along the pipe axis. x=0 corresponds 

to the boundary with the inlet valve, x=L to the boundary with 

the atmosphere). The dependent functions p, (pressure in the 

cylinder) and T (temperature in the corresponding blocks) are 

given by the ideal gas law 

PZ 
= RgmZ*TZ/VZ 

or 

T = p/(R*p). 
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. R denotes the ideal gas constant (normed on the unit mass). 

The cylinder volume VZ(t) is known, when the angular velocity 

+(t) of the crank shaft is given and serves together with the 

cylinder, valve and pipe geometry and the atmosphere values 

P a' P, and Ta as input to the model. In particular A;,(t) and 

A oudt) d enote the cross section areas of inlet and outlet 

valve respectively, open to gas exchange. The functions also 

are given, when @(t) it given. 

The coupling quantities are calculated from the corresponding 

pipe boundary values and cylinder or atmospherical values 

respectively as described in the next chapter. 

Then the mass flow per unit of time through the inlet valve is 

given by (negative velocities correspond to inflow) 

Ii =-p ‘U 
in cz cz * Ain . (1) 

With E denoting the adiabatic coefficient of the gas we define 

I(P~,P~) by 

9(P1rP2) = 

K 
i-l K-1 

I 1 2 
n--t1 

I p1 

G 

1 
K-l 

,I 2/x 

K l-l Iztl 

I Pl 

p2 

l/2 

Then the mass flow through the 

(see e.g. C21). 

I 

outlet valve is obtained as 

I 
-A out 1/2PzPz ?4P,IP,) for p 

Z 
A Pa 

lil = 
out 

A out ‘/2P,P, Y+(Pz'Pa) else 

Kc+1 
K II l/2 

K 

for-\ 2-n-l p1 

P2 
t 1 Ktl 

(2) 
K 

pl 2 for - 6 - I 1 K-1 

p2 
Ktl 

(3) 

(the first line corresponds to outflow, the second to inflow 

through the outlet valve). Of course this expression has to be 

replaced by an expression of type (l), if one wants to 

consider an exhaust pipe also. 

The mass flow through the inlet valve gives rise to the 

following enthalpy flow: 



- 4 - 

i 

. m. a C In P ' TZ if CI in 
L 0 

outlet valve leads to 

'lil 0 u t * c 

,LOUt[cp p 

* TZ 

A Z' 
out 

[ 

lh v 
Ta t AoUt mz 

out z 

(4) 

A similar consideration for the enthalpy flow through the 

if fi out 
L 0 

(5) 
2 I 1 else 

‘2 

cP 
denotes the specific heat capacity of the gas at constant 

pressure. 

The heat losses through the cylinder wall (with the tempera- 

ture Tw) empirically C31 are found to be of the form 

?J = f(t) T -0.53 
Z PZ 

0'8(~Z-~w) 

(for the detailed form of f and its dependence on angular 

velocity refer to C31). 

Then the mass balance for the cylinder reads 

dm 
-$=h 

in t Ii out 

(6) 

(7) 

The first law of thermodynamics (i.e. the balance of interral 

energy) for an ideal gas, applied to the cylinder, leads to 

dT 1 
Z?=rn c 

- (-p dVZ .- 
z dt + lt in t Lout+ G-cvTZ(kntkout)) (8) 

z v 

Note that through the coupling quantities in (1) and (4) the 

r.h.s. of equations (7) and (8) depend not only on m z and T , 

but also on the boundary values Pp(LW 9 pp(t,O) and up(t,z) 

of the pipe (see below)! cv in (8) denotes the specific heat 

capacity at constant volume. 

To obtain the equations for the gas flow in the pipe, one can 

set up the mass balance on a resting control volume and 
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momentum and energy balances, both performed on a moving 

control volume. We assume no heat transfer through the pipe 

wall (adiabatic flow). If one accounts for frictional effects 

by introducing a frictional force in the momentum balance, 

proportional to the square of the velocity, and if one in- 

cludes frictional work in the energy balance, one obtains 

after some manipulations the following equations, describing 

adiabatic gas flow in the pipe: 

T!zP=-,, at 2.EBP aUp 
P Jx P Jx (9) 

2P=_,p 2Lu app at P ax P ax 

(10) 

(11) 

a is some empirical friction constant, remember that h: denotes 

the adiabatic coefficient. 

3. THE COUPLING BLOCKS 
We motivate and describe the calculation of the coupling 

values only for block I in fig. 1 with the cylinder values 

mz(t), Vs(t) and the pipe boundary values Pb(t) q Pp(t,O) 

b,, ‘lb analogously defined) as inputs. To simplify writing, 

the explicit t-dependence is omitted from now on. The same 

analysis applies for block II with cylinder entities replaced 

by the atmospheric values and boundary values taken at x=L. 

Consider equations (9)-(11) in the s 

less case: 

tationary and friction- 

UP s + PU = 0 x 

PX 
uu x+p=o 

KPu x + up, = 0 

(12) 

(13) 

(14) 

2 
Then one can verify directly that ppSn and n E t k 

K-1 p are 

constant. The latter of these quantities we shall write in a 
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more convenient way as c T t u 
P 22 ( 

using that for ideal gas 

cp-cV 
= R, cp'cv = ~c and therefore p/p = (cp-cV)T). In 

computing the coupling values we shall use these conservation 

laws, thus assuming stationary, frictionless, adiabatic flow 

from the cylinder or the pipe respectively to the coupling 

block, as follows. 

First we note that by the ideal gas law conservation of ppmn 

implies conservation of p n T. 

For P, 1 Pb we assume gas flow from the cylinder to the pipe 

and for the pressure p cz in coupling I (see fig. 1) we set 

Cl1 

P cz = l'b 

Conservation of p K T implies 

T 
cz = TZ 

(15) 

(16) 

Since the gas starts with zero velocity in the cylinder, 
2 

conservation of c T t G- 
P 2 together with the restriction to the 

subsonic region leads to 

11 
cz 

= min(42cp(TZ-Tcz), J"RTcz) 

( J’CRTcz is the sonic velocity in the coupling block). The 

ideal gas law then gives 

P 
P cz = R;:, 

for the coupling density. 

If p, h pb we put Cl1 

P cz = P, 

u = u cz b' 

Conservation of p K T leads to 

(17) 

(18) 

(19) 

(20) 
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(21) 

and pcz is given as in (18). 

As mentioned above, formulae (15)-(21), with the boundary 

values taken at x=L and the cylinder quantities replaced by 

the atmospherical values apply also to the coupling II block 

in fig. 1. 

At coupling I we in addition have to account for closed valves 

(i.e. A. in = 01, which we do by 

u = 0 
CZ 

2 
From conservation of cpT t 5 then follows 

2 u 
T 

CZ 
=Tbt&- 

P 

1-K 

The conservation of p Ic T gives 

Tb 1-K 
P 

CZ 
=Pb T 

I 1 CZ 

(22) 

(23) 

(24) 

and pcz again is calculated from the ideal gas law. 

As we shall see in the next section, in a spatially dis- 

cretized version of (9)-(11) the coupling values determine 

the increments of the pipe values in the boundary cells, thus 

"driving" the pipe by cylinder and atmosphere respectively. 

At coupling I they serve a twofold purpose, since moreover 

they determine the "input" to the cylinder equations (7)-(8). 

4. DISCRETIZATION 

We divide the pipe in N cells of length Ax such that NAx=L. 

The procedure (see [II) is explained for the density, the 

other pipe quantities are treated analogously. We assume the 

density to be constant in the i-th cell and thus obtain the 

vector Ppi(t) (i=O,...,Ntl) with Ppo(t) := PC,(t) (see fig. 1) 

and P p Ntlw := PC,(t)* i=l denotes the cell at the boundary 
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with coupling I, i=N at the boundary with coupling II (see 

fig. 1) and the coupling quantities are obtained from those at 

i=l and the cylinder values and from those at i=N and the 

atmospheric values respectively as described in the last sec- 

tion. Following 111 we approximate the spatial derivatives by 

P 
~xPpi(t) = ’ 

i+l(t) - ’ i-l(t) 

2Ax 
(i=2,...,N-1) 

ayPplW = 
(P p) + p 2(t))/2 - p ,(t) 

1 *x 

P 
AxPpN(t) q ’ 

N++) - (P ,b) + pp N-+))/2 
*x 

With these definitions we obtain a system of differential 

equations in time for mz(t), Tz(t), Ppi(t), ppi(t), upi 

(i=l,...,N), consisting of equations (7), (8) and the 

spatially discretized version of (9)-(ll), i.e. 

dPpi= 
dt -upi * P x pi -P *u 

pi x pi 

F!$= 
-“Ppi( AxPpi + Audi) - upiAxupi 

dPpi = 
dt 

-Kp 
pinxupi - '"piAxPpi 

(25) 

(27) 

(28) 

To solve this system, a 4th order Runge-Kutta-scheme is 

employed (see 111). We collect the cylinder quantities mz(t), 

TZ(t) to a vector CYL(j,t) (j denotes the order of the Runge- 

Kutta step, see below) and the pipe quantities P pi(t), Ppi(t), 

upi to PIPE(i,j,t) (i=l,...,N). PIPE(O,j,t) is calculated 

from CYL(j,t) and PIPE(l,j,t) as described in the last sec- 

tion, analogously PIPE(N+l,j,t) is obtained from the 

atmospheric values p 
a' 'a' Ta and PIPE(N,j,t). 

With *t denoting the time step size, the time discretized 

version of (7) and (8) determining the increments *CYL(j,t) 

may be written as 

*CYL(j,t) = fCyL (CYL(j,t),PIPE(O,j,t),t)*t (29) 

and analogously we collect (26)-(28) to 



- 9 - 

APIPE(j,t) = fpIpE (PIPE(O,j,t),PIPE(l,j,t),..., 

PIPE(N,j,t),PIPE(N+l,j,t)). (30) 

Of course all geometrical and thermodynamical properties as 

VZ(t), Ain( Aout( n (number of revolutions per time 

unit), R, c p, Cv"" enter the functions f 
CYl 

and f 
pipe 

respectively (thus leading to the explicit time dependence in 

(29)). 

Then the Runge-Kutta-scheme leads to the following diagram for 

M time steps: 



Is .  . 

Initialize PIPE(l,O,O) . . . PIPE(N,O,O), CYL(O,O) 

t=o , . . . ,(M-l)At 

j=l ,...I 4 

calculate PIPE(O,j-1,t); PIPE(N+l,j-1,t) 

APIPE(j,t) = fpipe(PIPE(O,j-l,t),...,PIPE(Ntl,j-1.t)) 

j=4 
- 

ACYL(j,t) = fcjl(CYL(j-l,t),PIPE(O,j-l.t),t) ACYL(j,t) = fey, (CYL(j-l,t),PIPE(O,j-l,t),ttAt/2) A(CYL(j,t) = f,y,(CYL(j-l,t),PIPE(O,j-l,t),ttAt 

j=l,Z j=3 j=4 

CYL(j,t) = CYL(O,t)tACYL(j.t)/2 CYL(j,t) = CYL(O,t)tACYL(j,t) AcyL = A(CYL(l,t)+(ACYL(2,t)+ACYL(3,t))2+ACYL(4,t) 

PIPE(j,t) analogously PIPE(j,t) analogously 
6 

APIPE analogously 

PIPE(O,t+At) = PIPE(O,t)tAPIPE 

cYL(o.t+At) = CYL(O,t)+ACYL 

Fig. 2: Runge-Kutta-scheme 
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. 

E 

In an obvious manner we have sometimes omitted the cell index 

i (running from 1 to n) in the above figure. Stability 

considerations Cl1 lead to the following restriction on at and 

Ax: 

aAt/Ax i 1 (30) 

with a denoting the sonic velocity. 

5. EXAMPLE AND OUTLOOK 
We show the results of some charge cycle simulations. The 

engine geometry was based on reasonable assumptions, in 

particular the pipe length was lm and the areas Ain( 

A OUP) were based on real life valve data. We assumed a 

constant angular velocity of the crank shaft with (n denotes 

the number of revolutions per second) n=17 s -1 (2 1020 min-') 

and replaced the time t by the crank shaft angle * in the 

following plots. The inlet valve starts opening at -30 and 

690, respectively, (in the plots the corresponding points are 

denoted with 1.0.) and is completely closed at 240 (denoted 

with I.C.). Analogously the output valve is completely closed 

at 60 (O.C.) and starts opening at 510 (0.0). 

For figure (3)-(10) we took N=80 for the cell number and 

A@ = 0.003. The plots show the cylinder volume, the amount of 

mass in the cylinder, density, temperature and pressure in the 

cylinder and in the pipe and the gas velocity in the pipe. The 

pipe values were taken at five equidistant points 

(1) (2) (3) (4) (5) . . . . . 

cylinder I atmosphere 

pipe 
The curves - belong to point 1 and analogously T to 2, 

- to 3, ---cc to 4, - to 5. 
The same applies for figures (ll)-(18) taken with N=lO and 

110 = 0.05. The qualitative features of the pictures seem to be 

satisfying, in particular note the occurrence of oscillations 

in the pipe after closing the valves and the propagation of 

excitations, coming from the movement of the piston or 

reflections at the pipe ends, through the pipe. The occurrence 
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of small oscillations, superimposed on the "physical" oscilla- 

tions in the pipe indicates the presence of stability 

problems, which are of course worse in the second set (note 

the pipe density) due to the chosen step widths in length 

and time. Since these stability problems occur in the region 

of closed valves, where the pipe is "decoupled" from the 

cylinder, one maybe can separate the procedure and use a more 

effective scheme for solving the Euler equations there. 

Another possibility would be, to replace the Runge-Kutta- 

scheme by an implicit scheme. 

We do not claim that the procedure described here is new. 

Basically the same ideas are present in [ll. But we were 

unable to decide on the detailed way of coupling cylinder and 

pipe together in [ll, based on the information given there. 
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