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Abstract

As an alternative to the commonly used Monte Carlo Simulation
methods for solving the Boltzmann equation we have developed a
new code with certain important improvements. We present
results of calculations on the reentry phase of a space
shuttle. One aim was to test physical models of internal

energies and of gas-surface interactions.

1. Introduction

Simulation methods are the most important tocol to solve the
Boltzmann equation in realistic settings. In the past, a
number of so-called Direct Simulation Monte Carlo Schemes have
been developed (see Nanbu’s review!). The most popular
standpoint for their derivation was: Imitate the behavior of
real gas molecules, but in a reduced particle system. One step
beyond this interpretation has been done by Nanbu when
deriving his scheme from the Boltzmann equation. This scheme

is now quite well understood (from a physical as well as a

*) This report shall appear in the Proceedings of the 16th

Rarefied Gas Dynamics Symposium, Pasadena, July 1988



rigorous mathematical point of view!, and it has been proven
to yield approximations of solutions of the Boltzmann equation
provided a sufficiently large number of test particles?:?,
However, also this method can be interpreted as to imitate a
rhysical situation: the motion of particles in a fixed

background gas*®.

For the derivation of a powerful simulation code, we propose

to forget about the physical situation and instead to search

for a mathematical model yielding results as close to the

Boltzmann equation as possible. Such a code (called Low

Discrepancy Code) has been developed by our group. The

philosophy behind it is completely different from that of

Monte Carlo schemes, since it replaces the purely random

"microscopic" behavior by one which is as regular as possible

in order to cut down fluctuations. Our code - as far as it is

by now - shows essential improvements compared with all Monte

Carlo schemes in use. It

- imitates two particle collisions and thus satisfies

strictly the conservation laws (in contrast to Nanbu’'s);

- is highly vectorizable (in contrast to Bird’s), even in the
treatment of internal energies and boundary conditions;

- has reduced fluctuations and thus allows to reduce particle

numbers.

The main application for our scheme have been calculations on
the reentry phase of the European Space Shuttle Hermes. 1In
order to obtain results for two and three dimensional test

cases we had to develop an efficient adaptive grid, applicable



to all geometries of interest, which allows for the recon-
struction even of high gradients (shocks) within reasonable
calculation times. Details are described in section 3.

We have carefully studied problems of modelling physical
effects 1like internal degrees of freedom and gas surface
interactions. The usual way of treating these is to apply
robust models which are easy to implement and which produce
plausible results. The commonly used models are the Larsen-
Borgnakke model for internal energies and diffuse reflection
with accomodation coefficient for the gas surface interaction.
In order to test their physical relevance we have also
implemented alternative models which seem to be better
motivated from a physical point of view. The results are shown
in the sections 4 and 5. (Calculations concerning gas mixtures
and chemical reactions are on progress and cannot be presented

here.)

All calculations have been performed on the vector calculator

Fujitsu VP 100.



2. The idea of Low Discrepancy

In order to explain the main idea of Low Discrepancy we choose
a situation as simple as possible. Therefore, in this section
we only consider the space homogeneous Boltzmann equation

j—t £(v) = JIE,£1(v) = JIk-4if(v' )E(w' )=Ff(v)Ff(w) dndw

(mn unit vector, v’ = v-m<v-w,m>, W' = wn<v-w,n>)
and its time discretization

fj+1(v) = fJ.(v) + At'J[fJ.,fJ.](v)

=(1—At-ffkfj(w)dndw)fj(v) + At-ffkfj(v')fj(w')dﬂdw.

Multiplying a test function ¢ and integrating with respect to
v one can compress this formula to the following weak

version?:

f¢(v)fj+ {(v)dv = I¢(¢(v,w,b))dzbfj(v)dvfj(w)dw

1
with impact parameter b and
v’ if b indicates "collision"
V(v,w,b) =
v if b indicates "no collision".
This version is appropriate for our aims since it can be
interpreted as follows:
If fj is the velocity distribution at the j-th
time step then with probability
dzbf.(v)dvf.(w)dw
J J
the velocity at the (j+1)St time step is
¥(v,w,b).

This motivates the following general simulation scheme:

General scheme: (one time step)

1St step: Start with an N point approximation



(V'(O))iéN = (VI(O),...,VN(O))

1

of £ (0)dv.
o

ond step: Select for each vi(O)
- a "collision partner" wi(O) = v
- and an "impact parameter" bi
such that

is a good approximation of de fo(v)dvfo(w)dw

("factorization property" of selection mechanism).

3rd step: Define new velocities

v. (1) = ¢(vi(0),wi(0),bi)-

(If the collection of pairs (i,n(i)) is "symmetric", i.e.
n(i) = j <=> n(j) = i,

and if b. = b
i n

(i)’ then the scheme satisfies the conserva-

tion laws.)

Taking the Monte Carlo version of this scheme (this is equi-
valent to Nanbu’s) one has to choose bi and n(i) as inde-
pendent random numbers. In this case one can show that the
simulation result is a good approximation of the solution of
the Boltzmann equation, if N is large encugh?. (A similar

statement is true in the space dependent case?3.)

In order to construct a Low Discrepancy version one has to

find a selection algorithm with an optimal factorization

property. The following simple example should clarify this a



little bit: Suppose fj depends only on lvl, and the veloc-

ities are arranged as follows:

Then the best approximation of fj(v)dvfj(w)dw by pairs
(Vi,wi) is that for which the pairs (i,n(i)) are spread over
{1,...,NiIx{1,...,N} as uniformly as possible. Figure 1 shows
a Monte Carlo and a Low Discrepancy choice for (i,n(i)).

In this simple one dimensional case it is possible to find a
practicable strategy which is almost optimal. In higher
dimensional cases a practicable alternative is to find
sequences of pseudo-random numbers with a good factorization

property (such as Hammersley sequences, etc.).

The idea of Low Discrepancy is not restricted to the approx-
imation of dzbfj(v)dvfj(w)dw. It may also be applied (in an
obvious manner) in order to treat initial and boundary condi-

tions, internal energies, etc.



3. GENERATION OF ADAPTIVE GRID STRUCTURES

Recall that the collision operator of the Boltzmann-Equation
is local in the space coordinates. In simulations it is
therefore necessary to homogenize the density function with
respect to the space coordinates. This homogenization proce-
dure is done according to a cell structure which is influ-
enced by the properties of the flow field. Therefore the cell

structure may vary from time to time.

To be acceptable in a simulation a given grid must fulfill

three conditions:

- the approximate homogeneity of the density function over
each cell must be guaranteed,

- it must be easy to refind the particles in the cells after
the free flow,

- the number of cells must yield a reasonable computer

storage.

Until now several criteria have been given to refine or to
coarsen an existing grid. Widely used are physically moti-
vated ones which are based e.g. on the particle density or on
gradients of the macroscopic quantities. Instead of those we
have chosen a mathematical criterion which is based on a
requirement of the proof of convergence of Babovsky and
Illner:

We have to ensure that

(1) ess suplf(t,x+ax,v) - f(t,x,v)lexp(avz) £ Bax
t,x,v

for some «>0, B>0 and all spatial displacements Ax.

To perform this requirement we use the following algorithm:



For each time step

- divide the domain of computation into rectangular cells
(2D) or cubes (3D) of fixed shape;

- divide each rectangle (cube) into smaller rectangles

(cubes) until (1) is satisfied.

It is clear that this algorithm allows the indexing of the
particles in a straightforward way (the only things you have
to do are modulo operations and reorderings!).

As a first testcase for the performance of the algorithm we
have chosen the problem of the calculation of the flowfield
around a 2D ellipse. The input data were the following:

- flow velocity: Mach 20

- wall temperature: 1000 <k

- gas temperature: 194 <k

- mean free path: 0,13 m

- ellipse axes: 6,85 m; 2,055 m

- angle of attack: 40°

Fig. 2a and 2b show the initial coarse grid and the refined
grid in the stationary state at the end of the simulation. We

have plotted the midpoints of the cells.



4. GAS-SURFACE-INTERACTION LAWS

Usually the structure of a solid boundary is by far to
complicated to compute the interaction potential between the
surface and the incoming particles. Even if this were
possible the incomplete knowledge of the state of the surface
(roughness, chemical reactions etc.) made such a calculation
impossible.

Therefore the description of gas-surface-interaction phenom-
ena is done by simple models which are motivated by phenom-
enological reasoning and which have some disposable para-
meters. These parameters have to be fitted on experimental
results. The usual mathematical description of these models
can be done in the frame of scattering kernels yielding an

integral equation of the form:

lvenlf(x,v,t) = [ R(v' 11— v, x,t)f(x,v ,t)Iv +nidv .
v 'n<0

Here n is the inner normal at the boundary point x and

R(v' I— v, x,t) is the scattering kernel. The probabilistic

interpretation of R is: Rdv is the probability that a

particle which hits the wall at x with velocity v’ leaves the

wall with a velocity in the volume element around v.

Beside the simple models

- specular reflection (no parameters)

- diffuse reflection (the wall temperature can be considered
as parameter)

- Maxwell boundary (parameters: wall temperature and accomo-
dation coefficient)

we have implemented the Cercignani-Lampis model®. This model

treats the normal component Vi and the tangent component Ve



of the scattered velocity in different ways.

The features of the Cercignani-Lampis-model are:

- scattering in the tangent space and in the normal direction
are independent

- specular reflection and diffuse reflection are special
cases of this model

- the scattering kernel satisfies the reciprocity condition?$

- good agreement with scattering experiments can be achieved

by suitable choice of the accomodation coefficients.

Another advantage of the model is the easy implementation in

the simulation procedure. The algorithm is as follows:

A) Scattering in tangent space:

- choose random numbers r r

1’ "2

g «—I J—at(Znat)log(l—rl)

(1)

N -s*cos(27nr

Vél) —l (l-« )V

t 2)

(2)

vt —| (1—0(

(2)

A

—a¥ai
N s 31n(2ﬂr2)

Here vé(l), v£(2) are the two components of the incom-

ing velocity in the tangent space.

B) Scattering in normal direction, Polya-Aeppli-distribution
algorithm:
l1-«

o
n

n .2)

- Generate Poisson ( . Vn random variable z

- Generate Gamma (1+z) random variable G

v o—l v G
n n

It should be noticed that in this way of implementing the



gas-surface-interaction procedure is completely vectorized
and therefore not time consuming.

As testcase for gas surface models we have selected the heat
transfer problem in one dimension. Fig. 4.1 shows the temper-
ature profile of a monoatomic hard sphere gas between two
infinite walls. At the left boundary we have a temperature of

180 K and at the right boundary a temperature of 220 K.

As can be seen by comparison of fig. 3b and fig. 3c the
results are the same for the diffuse reflection model and
Cercignani-Lampis model. Fig. 3a shows that the profile
becomes more flat if the accomodation coefficients are lower
than 1.0. So we are able to adjust our results to measure-
ments by fitting the parameters. But to get some guess about
the right values we need measurements of the temperature

profile in this simple case.



5. TREATMENT OF CLASSICAL INTERNAL DEGREES OF FREEDOM

Because of the temperatures which arise in the simulation of
realistic gas flow problems the internal states of the gas
molecules have to be considered. In many cases we deal with

linear molecules (e.g. N 02) for which the rotations of the

2,

molecules are of particular importance.

Whereas there is little doubt about the right kinetic equa-
tion for monoatomic gases a generalization to polyatomic
molecules is not quite étraightforward (one has to decide,
for example, whether to treat the internal degree of freedom

by means of quantum mechanics or not).

In this paper we report about classical internal degrees of
freedom. To save computer storage and time we calculate the
distribution of the internal energy only. The kinetic equa-

tion we use was described by Pullin®:

d
(g + v v f(t,x,v,2) =

I J | Ww-whe(E;e,e ;8 ,e.;m7 ) x
2 1 1
0 AE S
(1)

x {f'f¥—f'f*}dw(n)d2§'di d3w

with
E = L HV—wH2+z+s - I v =w 1%+ +&]
4 1 4 1
f = f(t,X,V,E), f* = f(t,x,w,z'l)
f' = f(t,x,v ,z") f% = f(t,x,w',si)
AE = (= ,zi) 0_3',O-£i,£ +aiéE} .



It is clear that different models of the exchange of internal
and translational energy are characterized by the particular

form of the scattering cross section O(E;E,El;r',zi;ﬂ'n')-

A widely used model is that proposed by Larsen and
Borgnakke’+ For this model the scattering cross section

reads:
o(E;e,z 52 ,6.5mm") =

Z(E)o (Wv-wi)h(n:n')8(s=s")8(s ~27) +

1)
+ (I-Z(E))GO("v—w")R(E;E,El;E',Si)h(ﬂ-n')

with: [ h(n:n')dw(n') = 1

S2
R = (ro( v —w )y —w’ II2(E' 'Si)X/Z_lN(E)
I R dzg' =1 .
A
E

The features of this model are:

- The total cross section depends on lIv-wl only.

- A part of the collisions is elastic. The ratio of elastic
to inelastic collisions is controlled by the total colli-
sional energy.

- The "energy scattering kernel" does not depend on & and £

it is determined by the total cross section T

According to this model we have the following simulation

algorithm to perform the collision process:

1) Define the collision partners in such a way that the pairs

((vi,ai),(wi,si)) are a good approximation of the product

density function.



2) For each pair ((V,S),(W,;))

Poopp ! o (Mv-wi)-lv-wiat’,
If (1-r) = Peoll
E I % hv-wil + & + &5 &, I % hv-wi?

If (r * Z(E))

generate r-°v. p #1 according to P.» Py

t’
generate r*v. m° according to h(#n'7n")

—|
St HtE

e I (1—#1)(1—pt)E

e p (1-p )E
End if
v 1 T
M RO I

Here we have

p (1) = N(E)o_(uE)u (1-p )%

yyx/2-1

o
—
®
—
1

Cz(ul(l—#l
1
where C2 is chosen in a way to ensure that é pl(pl)dﬂl = 1.

It should be noticed that this simulation procedure is
completely vectorizable because there is no need for the use
of a time counter (remember that the introduction of time
counters causes recurrence which avoids the possibility of

vectorization).

To study the influence of the parameters we have calculated a
1D shock wave of gases with 2 internal degrees of freedom.

In all our calculations the initial distribution was given by



a Maxwellian with different parameters upstream respectively
downstream with a jump at zero. The downstream values are
determined from the upstream values by the Rankine-Hugoniot
relations._Equilibrium at infinity is assumed. In fig. 4 we
show the results obtained by using a hard sphere total cross
section, in fig. 4 those obtained with the help of the VHS

scattering cross section of I. Kuscer?®;

6KT

a'o(llv-wll) = crm'[l + 2
miv-wl

Here TS is the Sutherland temperature of the gas molecules
which are to be simulated and ¢ is a constant which has to
be adapted on the measured viscosity (notice that the viscos-
ity calculated with the help of this scattering cross section
obeys the Sutherland formula). In the results shown the
function Z(E) has been kept constant at the values 0.9 and
0.6 respectively. As can be seen by comparison of the various
results both the temperature and the density profiles are
influenced by the choice of the scattering cross section and
the ratio of elastic collisions. Therefore by comparison of
calculated with measured shock profiles it should be possible
to make a decision about the interaction law which is

suitable for a given gas type.



6. SUMMARY AND CONCLUSIONS

We have developed a new code for the simulation of
Boltzmann’s Equation which is based on the LD-method. Because
of the structure of this algorithm the vectorization of the
code is straightforward. This vectorization property yields
reasonably short computation times: to calculate the flow
field around a 2D ellipse we needed about 18 CPU minutes on
the Fujitsu VP 100.

Also, the LD ideas are very appropriate for simulating
boundary conditions. In this field we implemented the
Cercignani;Lampis model which has, to our opinion, enough
parameters to fit on experimental results.

The consideration of internal energies is also straight-
forward because the LD method is based on binary collisions.
This property of the method has been demonstrated by the
calculation of a 1D shock wave of gases with 2 internal
degrees of freedom.

The most important property of our algorithm is, to our
opinion, the proof of convergence. This proof shows that the
LD method is based on a good mathematical ground and does not
rely on heuristics (as e.g. Bird's scheme). This ground

work allows further consideration of the scheme as e.g. its
behaviour when the number of simulation particles is very
small. The study of this behaviour will be one of our main

research topics in the future.
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" Figure 4a

LDO-METHOD
SIMULATIUN OF A SHOCK

PARAMETER -

UPSTREAM VEL=2900.0 M /SEC
MEAN FREE PATH = 0.12 M
COLL RATIO = 0. 90

TEMPERATURE = 200K

Figure 4b

LD -METHOD
SIMULATION OF A SHOCK

PARAMETER -

UPSTREAM VEL=2900. 0 {'V.S'EZ'
MEW FREZ PATH = 0.12 M
COLL RATIO = 0.60

TEMPERATURE = 200K
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Figure 5a

LD-METHOD
SIMULAT. J'QN OF A SHOCK

PARAMETER -
UPSTREAM VEL=2900.0 M/SEC
MEAN FREE PATH = 0.12 M

COLL RATIQ = 0.90

TEMPERATURE = 200K

Figure 5b

LD-METHOD

PARAMETER :
UPSTREAM VEL=2900.0 M/SEC
MEAN FREZ PATH = 0.12 M
COLL RATIO = 0.60

TEMPERATURE = 200K
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