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Abstract
A Contribution to the Design of Sparse Arrays for Data-Independent and

Adaptive Broadband Beamformers

by Phan Le Son

Beamforming performs spatial filtering to preserve the signal from given directions
of interest while suppressing interfering signals and noise arriving from other di-
rections. For example, a microphone array equipped with beamforming algorithm
could preserve the sound coming from a target speaker and suppress sounds com-
ing from other speakers. Beamformer has been widely used in many applications
such as radar, sonar, communication, and acoustic systems. A data-independent beam-
former is the beamformer whose coefficients are independent on sensor signals, it
normally uses less computation since the coefficients are computed once. More-
over, its coefficients are derived from the well-defined statistical models, then it
produces less artifacts. The major drawback of this beamforming class is its limi-
tation to the interference suppression. On the other hand, an adaptive beamformer is
a beamformer whose coefficients depend on or adapt to sensor signals. It is capable
of suppressing the interference better than a data-independent beamforming but it
suffers from either too much distortion of the signal of interest or less noise reduc-
tion when the updating rate of coefficients does not synchronize with the changing
rate of the noise model. Besides, it is computationally intensive since the coefficients
need to be updated frequently. In acoustic applications, the bandwidth of signals
of interest extends over several octaves, but we always expect that the characteris-
tic of the beamformer is invariant with regard to the bandwidth of interest. This
can be achieved by the so-called broadband beamforming. Since the beam pattern of
conventional beamformers depends on the frequency of the signal, it is common to
use a dense and uniform array for the broadband beamforming to guarantee some
essential performances together, such as frequency-independence, less sensitive to
white noise, high directivity factor or high front-to-back ratio. In this dissertation,
we mainly focus on the sparse array of which the aim is to use fewer sensors in the
array, while simultaneously assuring several important performances of the beam-
former. In the past few decades, many design methodologies for sparse arrays have
been proposed and were applied in a variety of practical applications. Although
good results were presented, there are still some restrictions, such as the number
of sensors is large, the designed beam pattern must be fixed, the steering ability is
limited and the computational complexity is high.

In this work, two novel approaches for the sparse array design taking a hypothe-
sized uniform array as a basis are proposed, that is, one for data-independent beam-
formers and the another for adaptive beamformers. As an underlying component of
the proposed methods, the dissertation introduces some new insights into the uni-
form array with broadband beamforming. In this context, a function formulating
the relations between the sensor coefficients and its beam pattern over frequency
is proposed. The function mainly contains the coordinate transform and inverse
Fourier transform. Furthermore, from the bijection of the function and broadband
beamforming perspective, we propose the lower and upper bounds for the inter-
distance of sensors. Within these bounds, the function is a bijective function that can
be utilized to design the uniform array with broadband beamforming.
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For data-independent beamforming, many studies have focused on optimiza-
tion procedures to seek the sparse array deployment. This dissertation presents an
alternative approach to determine the location of sensors. Starting with a weight
spectrum of a virtual dense and uniform array, some techniques are used, such as
analyzing a weight spectrum to determine the critical sensors, applying the cluster-
ing technique to group the sensors into different groups and selecting representative
sensors for each group. After the sparse array deployment is specified, the optimiza-
tion technique is applied to find the beamformer coefficients. The proposed method
helps to save the computation time in the design phase and its beamformer per-
formance outperforms other state-of-the-art methods in several aspects such as the
higher white noise gain, higher directivity factor or more frequency-independence.

For adaptive beamforming, the dissertation attempts to design a versatile sparse
microphone array that can be used for different beam patterns. Furthermore, we aim
to reduce the number of microphones in the sparse array while ensuring that its per-
formance can continue to compete with a highly dense and uniform array in terms
of broadband beamforming. An irregular microphone array in a planar surface with
the maximum number of distinct distances between the microphones is proposed. It
is demonstrated that the irregular microphone array is well-suited to sparse recovery
algorithms that are used to solve underdetermined systems with subject to sparse
solutions. Here, a sparse solution is the sound source’s spatial spectrum that need to
be reconstructed from microphone signals. From the reconstructed sound sources,
a method for array interpolation is presented to obtain an interpolated dense and
uniform microphone array that performs well with broadband beamforming.

In addition, two alternative approaches for generalized sidelobe canceler (GSC)
beamformer are proposed. One is the data-independent beamforming variant, the
other is the adaptive beamforming variant. The GSC decomposes beamforming into
two paths: The upper path is to preserve the desired signal, the lower path is to
suppress the desired signal. From a beam pattern viewpoint, we propose an im-
provement for GSC, that is, instead of using the blocking matrix in the lower path
to suppress the desired signal, we design a beamformer that contains the nulls at
the look direction and at some other directions. Both approaches are simple beam-
forming design methods and they can be applied to either sparse array or uniform
array.

Lastly, a new technique for direction-of-arrival (DOA) estimation based on the
annihilating filter is also presented in this dissertation. It is based on the idea of
finite rate of innovation to reconstruct the stream of Diracs, that is, identifying an
annihilating filter/locator filter for a few uniform samples and the position of the
Diracs are then related to the roots of the filter. Here, an annihilating filter is the filter
that suppresses the signal, since its coefficient vector is always orthogonal to every
frame of signal. In the DOA context, we regard an active source as a Dirac associ-
ated with the arrival direction, then the directions of active sources can be derived
from the roots of the annihilating filter. However, the DOA obtained by this method
is sensitive to noise and the number of DOAs is limited. To address these issues,
the dissertation proposes a robust method to design the annihilating filter and to
increase the degree-of-freedom of the measurement system (more active sources can
be detected) via observing multiple data frames. Furthermore, we also analyze the
performance of DOA with diffuse noise and propose an extended multiple signal
classification algorithm that takes diffuse noise into account. In the simulation, it
shows, that in the case of diffuse noise, only the extended multiple signal classifica-
tion algorithm can estimate the DOAs properly.
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Zusammenfassung
A Contribution to the Design of Sparse Arrays for Data-Independent and

Adaptive Broadband Beamformers

von Phan Le Son

Ein Beitrag zum Design dünn besetzter Mikrofonarrays für datenunabhängige
und adaptive Breitband-Beamformer Beamforming ist eine Technik, die eine räum-
liche Filterung durchführt, um gewünschte Signale aus bestimmten Richtungen zu
erhalten und gleichzeitig Störsignale und Rauschen aus anderen Richtungen zu un-
terdrücken. Beamforming wird in vielen Anwendungen wie beispielsweise in Radar-
, Sonar-, Kommunikations- und akustischen Systemen eingesetzt. Ein datenunab-
hängiger Beamformer ist ein Beamformer, dessen Koeffizienten unabhängig von
den Messsignalen sind, und der normalerweise einen geringeren Rechenaufwand
erfordert und weniger Betriebsartefakte erzeugt. Der Nachteil dieser Klasse von
Beamformern ist die eingeschränkte Unterdrückung von Störsignalen. Im Gegen-
satz dazu ist ein adaptiver (datenabhängiger) Beamformer ein Beamformer, dessen
Koeffizienten von den Messsignalen abhängig sind oder sich an diese anpassen.
Ein solcher Beamformer kann Störsignale besser unterdrücken als der datenunab-
hängige Beamformer, erfordert jedoch einen hohen Rechenaufwand und kann zu
Störungen des Signals führen. Bei akustischen Anwendungen erstreckt sich die
Bandbreite der interessierenden Signale über mehrere Oktaven und die Eigenschaften
des Beamformers sollen über den interessierenden Frequenzbereich möglichst kon-
stant sein, was mit sogenannten Breitband-Beamformern erreicht werden kann. Da
die Richtcharakteristik herkömmlicher Beamformer von der Frequenz des Signals
abhängig ist, verwendet man üblicherweise ein dicht und gleichmäßig besetztes Ar-
ray für das Breitband-Beamforming, um einige wesentliche Anfordeungen wie z.B.
Frequenzunabhängigkeit, white noise gain, directivity factor und front-to-back ratio
gerecht zu werden. In dieser Dissertation konzentrieren wir uns auf dünn besetzte
Arrays, deren Ziel es ist, mit wenigen Sensoren gleichzeitig mehrere wichtige An-
forderungen des Beamformers zu erfüllen. In den letzten Jahrzehnten wurden viele
Entwurfsmethoden für dünn besetzte Arrays vorgeschlagen und in einer Vielzahl
von praktischen Anwendungen genutzt. Obwohl gute Ergebnisse erzielt wurden,
gibt es immer noch einige Einschränkungen, z.B., dass die Anzahl der Sensoren groß
ist, der entworfene Beamformer statisch ist und die Komplexität der erforderlichen
Berechnungen hoch ist.

In dieser Arbeit werden zwei neue Ansätze für das Design dünn besetzter Arrays
vorgeschlagen, die auf dem hypothetischen gleichmäßig besetztem Array basieren,
einer für datenunabhängige Beamformer und einer für adaptive Beamformer. Als
zugrunde liegende Komponente der vorgeschlagenen Methoden bietet die Disserta-
tion einige neue Einblicke in das gleichmäßig besetzte Array mit Breitband-Beamfor-
ming. In diesem Zusammenhang wird eine Funktion vorgeschlagen, die die Beziehu-
ngen zwischen den Sensorkoeffizienten und der Richtcharakterisitk formuliert. Die
Funktion wird als inverse beam pattern transform bezeichnet. Sie enthält haupt-
sächlich die Koordinatentransformation und die inverse Fourier Transformation.
Darüber hinaus legen wir aus der Perspektive der inverse beam pattern transform
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und dem breitbandigem Beamforming die unteren und oberen Grenzen für den Ab-
stand der Sensoren fest. Innerhalb dieser Grenzen ist die inverse beam pattern func-
tion die bijektive Funktion, die verwendet werden kann, um das gleichmäßig beset-
zte Array mit Breitband-Beamforming zu entwerfen.

Für die datenunabhängigen Beamformer haben sich viele Studien auf Optimier-
ungsverfahren darauf konzentriert, ein dünn besetztes Array zu entwerfen. Diese
Dissertation präsentiert einen alternativen Ansatz zur Bestimmung der Position der
Sensoren, der ausgehend von einem Gewichtsspektrum eines virtuellen gleichmäßig
besetzten Arrays aus mehreren Schritten besteht. Dazu gehören die Analyse des
Gewichtsspektrums zur Bestimmung der kritischen Sensoren, die Anwendung der
Clustering-Technik zur Gruppierung der Sensoren in verschiedene Gruppen und
die Auswahl der repräsentativen Sensoren für jede Gruppe. Nachdem das dünn be-
setzte Array spezifiziert wurde, wird eine Optimierungstechnik angewendet, um
die Beamformer-Koeffizienten zu ermitteln. Das vorgeschlagene Verfahren hilft,
Rechenzeit in der Entwurfsphase einzusparen und die Ergebnisse übertreffen an-
dere Verfahren nach dem Stand der Technik in mehreren Aspekten.

Hinsichtlich adaptiver Beamformer zielt die Dissertation darauf ab, ein vielseit-
iges dünn besetztes Mikrofonarray zu entwerfen, das für verschiedene Richtcharak-
teristiken verwendet werden kann. Darüber hinaus wird angestrebt, die Anzahl der
Mikrofone in dem dünn besetzten Array klein zu halten und gleichzeitig sicherzust-
ellen, dass die Güte weiterhin mit einem dicht und gleichmäßig besetzten Array
zum Breitband-Beamforming konkurrieren kann. Dazu wird eine unregelmäß- ige
Anordnung der Sensoren in einer Ebene mit der maximalen Anzahl unterschiedlicher
Abstände zwischen den Sensoren vorgeschlagen. Es wird gezeigt, dass das un-
regelmäßige Mikrofonarray für die Algorithmen, die zur Rekonstruktion der Schal-
lquellen verwendet werden, gut geeignet ist. Ausgehend von den rekonstruierten
Schallquellen wird ein Interpolationsverfahren vorgestellt, um ein interpoliertes dic-
htes und gleichmäßig besetztes Array zu erhalten, das für das Breitband-Beamforming
geeignet ist.

Darüber hinaus werden zwei alternative Ansätze für das GSC-Beamforming (Ge-
neralized Sidelobe Canceler) vorgeschlagen. Einer für das datenunabhängige Beam-
forming, ein anderer für das adaptive Beamforming. Der Ansatz GSC-Beamforming
zerlegt das Beamforming in zwei Pfade: Der obere Pfad dient zur Erhaltung des
gewünschten Signals, der untere Pfad dient zur Unterdrückung der unerwünschten
Signale. Unter dem Gesichtspunkt des Beamformings, schlagen wir eine Verbesser-
ung für GSC vor. Anstatt eine Blocking-Matrix im unteren Pfad zu verwenden,
um das gewünschte Signal zu unterdrücken, entwerfen wir einen Beamformer, der
die Nullen in interessierenden Richtungen und einigen anderen Richtungen enthält.
Beide Ansätze sind einfache Entwurfsmethoden, die auf dünn besetzte und gleich-
mäßig besetzte Arrays angewendet werden können.

Schließlich wird eine neue Technik zur Schätzung der Einfallsrichtung (DOA)
vorgestellt, die auf einem sogenannten Annihilating Filter basiert. Die durch dieses
Verfahren ermittelte Einfallsrichtung ist jedoch empfindlich gegenüber Rauschen
und die Anzahl der gleichzeitig geschätzten Einfallsrichtungen ist begrenzt. Um
diese Probleme zu beheben, wird eine robuste Methode vorgeschlagen, um das An-
nihilating Filter zu entwerfen und den Freiheitsgrad des Messsystems (wie viele
Quellen können gleichzeitig erkannt werden) durch Beobachtung mehrerer Daten-
fenster zu erhöhen. Darüber hinaus analysieren wir auch die Fähigkeit, die Einfall-
swinkel bei diffusem Rauschen zu ermitteln und schlagen einen erweiterten MUSIC-
Algorithmus vor, der das diffuse Rauschen berücksichtigt. Im Experiment zeigt sich,
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dass bei diffusem Rauschen nur mit dem erweiterten MUSIC-Algorithmus die Ein-
fallswinkel korrekt ermittelt werden können.
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Chapter 1

Introduction to the Thesis Topic

1.1 Background and Motivation

A microphone is a transducer that converts sound pressure to an electrical signal.
Microphones are used in many applications such as telephones, hearing aids, con-
sumer devices, video conference rooms, radio, television broadcasting and many
others. Normally, the electrical signal from a microphone includes additive noise
such as electrical noise, mechanical imprecise, interference, acoustic environment
which are disturbing in most applications. There is a strong motivation to improve
the quality of the signal, also be flexible to select a subset of the signal such as the fre-
quency of interest, the direction of interest. One of the most promising approaches
is to use a microphone array that contains multiple microphones to measure the spa-
tial information of sound pressure. If the microphone array, where the temporal and
spatial information of the sound pressure are sampled together, equips with wise
algorithms, it could perform many interesting functions which a single microphone
could not, such as beamforming, sound source localization, sound source separa-
tion, sound field reconstruction, or suppressing different kind of ambient noises.

Among several classes of algorithms, beamforming is widely used in practical
applications and it is also attracted a lot of interest in the literature. The topic of
beamforming is not restricted to audio applications, it is also a key technology in
other applications such as radar, sonar, medical machines, communication, radioas-
tronomy, etc. For microphone arrays, conventional beamforming performs spatial
filtering to preserve the desired signal while suppressing interfering signals and
noise arriving from directions other than the directions of interest. For speaker ar-
rays, the beamforming is applied to produce a sound field at certain area satisfying
several characteristics such as personal sound zone, sound pressure equalization
and active noise cancellation to list a few. Moreover, beamforming is indispens-
able for the sound source localization of moving objects, flying aircraft, high-speed
trains, motor cars in motion, open rotors like helicopter and wind turbine rotors
[Mic06]. However, the design and implementation of microphone/speaker arrays
with beamforming algorithms is not a trivial task because a beamformer tends to
have a frequency-dependent response, while many applications need to deal with
broadband signals.

Back to history, one of the earliest designs of the sensor/source array, which is
well-known, is the phased array. The first concept of phased array was known dur-
ing World War I and they were developed as radio detection and ranging (RADAR)
antennas in World War II [Dob68]. A phased array is a low cost array that only
uses the phase shifting at each antenna/sensor to form a directivity pattern. Later,
they are extensively used in medical imaging with ultrasound. After World War
II, phased arrays of hydrophones were used for improving sound navigation and
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ranging (SONAR) for the localization of submarines, that is, sound waves are emit-
ted and the echoes are evaluated. Besides, passive sensors are also used by sub-
marines where large line arrays for low frequencies are towed to observe the sound
field silently. The principle of underwater sound was summarized by Urick (1983)
[Uri83], where he described the traditional techniques and their applications. Fur-
ther applications are later used in radio-astronomy, such as the electromagnetic waves
emitted by celestial sources in the sky are collected by antenna arrays [RTMSJ17;
Wia+09; CMW14]. Recently, the applications of the array are extended to the civil-
ian areas such as communication, seismology, smart devices, medical devices and
entertainment [VT04].

Early beamforming techniques were developed under the assumption that the
channel effect can be modeled by a delay and attenuation only. In actual room acous-
tics, however, the propagation process is much more complex. Indeed, the prop-
agating signals undergo several reflections before impinging on the microphones
[SBA10]. Moreover, in many cases of application, the signal is broadband, e.g. speech
and audio signals or sonar and underwater acoustic communication signals. The
interest in broadband signals amplifies the complexity of beamforming design, be-
cause the characteristics of a beamformer are dependent on the frequency and some-
times they are contradictory each other. Today, in contrast with the broadband’s sys-
tematic problems, broadband beamforming gains a substantial attention due to their
wide applications [VT04]. In early studies, it is common to use dense and large ar-
rays with a large number of sensors to obtain some essential characteristics together,
such as frequency-independence, high white noise gain, high directivity factor and
high front-to-back ratio, etc.

Recently, adaptive beamforming approaches have been used to deal with inter-
ference. From observed data, the weights can be computed adaptively. The most
well-known adaptive beamforming technique is the minimum variance distortion-
less response (MVDR) beamformer [Cap69], whose objective is to minimize the vari-
ance of the array output, while assuring the array response to the direction of interest
to be distortion-less. Over the years, the extension of MVDR has been studied, that is
the so-called linearly constrained minimize variance (LCMV). In LCMV, more con-
straints are inserted into the optimization problem to increase either the robustness
or the flexibility of the beamformer. Normally, both MDVR and LCMV are mod-
eled as a quadratic problem which uses multiple observed frames to estimate the
covariance matrix of input signals, then a closed form expression for the solution is
derived.

Regarding the frequency-independence in acoustic applications, an attractive
concept is differential microphone arrays (DMAs) which refer to arrays that com-
bine closely spaced sensors to respond to the spatial derivatives of the acoustic pres-
sure field. The general principle of DMAs can be traced back to the 1930s when
the directional Ribbon microphones were invented [Ols32; Ols46]. Since the sen-
sor spacing of the DMA is much smaller than the acoustic wavelength, then the
DMA is small in size which can be easily mounted into small devices. On the other
hand, based on short-time Fourier transform, spatial filtering is applied to form a
differential beamformer in each subband [TE04; BCC15; ZBC14; CPC15; Hua+20].
The order of differential beamformer could be designed by selecting the number
of null-constraints, and the type of differential beamformer could also be obtained
by assigning the nulls’ position and/or changing the objective function of the op-
timization problem such as maximum front-to-back ratio for supercardioid beam
pattern, maximum directivity index for hypercardioid beam pattern, etc. However,
the conventional DMAs or arrays with differential beamformer are still sensitive to
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the white noise and array mismatch at low frequencies, the directivity factor is de-
graded at high frequencies, the higher order systems are somewhat impractical and
their beam pattern is restricted to the function of differential beamformer [Elk00].

Recently, the interest in sparse arrays is growing, mainly due to the capacity to
reduce the number of sensors but still assure an acceptable performance. Never-
theless, in general, finding a suitable sparse array layout is still a challenging task.
Many studies have focused on the convex or stochastic optimization approaches to
determine the sparse array deployments. Despite the success of these techniques,
the results depend heavily on the strength of the optimization algorithms and it is
not guaranteed that the obtained solution is close to the optimal solution. For exam-
ple, based on the compressed sensing framework, applying the l1-norm is efficient
only if the measurement system (transformation matrix) has a low restricted isom-
etry constant [Boc+15; Don06], but the restricted isometry constant itself is not easy
to verify, and it is still an open question in the sparse array design’s model. Regard-
ing the stochastic approach, it is inefficient for a large search-space system. More
specifically, it does not ensure that its solution is close to the optimal solution if the
number of sensors is large. Furthermore, in some circumstances, the optimization
or stochastic approaches are not only difficult to tune the parameters, but it is also
computationally intensive to solve them with subject to sparse solutions.

1.2 Main Contributions

In light of the drawbacks of the state-of-the-art sparse array designs, this research
mainly focuses on the design of sparse arrays with broadband beamforming. Two
new approaches are proposed, that is, one for data-independent broadband beam-
forming and another for adaptive beamforming (data-independent and adaptive
beamforming concept were explained in the Abstract of this dissertation). We can
briefly summarize the contributions of our work on this topic as follows.

1. For data-independent beamforming, the research proposed a new method to
design a sparse array that takes a desired beam pattern and a dense and uni-
form array (DUA) as the inputs. The new method uses the clustering, clas-
sification algorithm in combination with optimization techniques to seek the
sensor positions as well as their coefficients. We claim that this method not
only outperforms other state-of-the-art methods in some important aspects of
beamforming, but it is also efficient in computation time.

2. For adaptive beamforming, we proposed a method to design irregular micro-
phone arrays for the broadband beamforming in conjunction with the com-
pressed sensing framework. The random microphone array having maximum
degree-of-freedom (number of distinct distances between microphones) is de-
signed and we argued that this kind of deployment is well-suited to com-
pressed sensing algorithms. First, we use the simulated annealing algorithm to
seek a good array deployment, since we know that our optimization problem
is an NP-hard problem. Next, we then use the orthogonal matching pursuit
algorithm to reconstruct the sparse sound sources, and an interpolated DUA
is constructed from the sparse sound sources. Finally, we perform the beam-
forming for the interpolated DUA. The results of the method are examined
with simulations as well as experiments. In the experiments, we constructed a
real microphone array and tested in a reverberant room.
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3. Both proposed approaches in this research are based on a hypothesized DUA
working well with the frequency-independent beam pattern. To do so, we
newly proposed an effective method to design the DUA with broadband beam-
forming. The function inside the new method is named inverse beam pattern
transform. This transformation transforms an arbitrary desired beam pattern
to the sensor coefficients of the DUA. Based on the characteristics of the inverse
beam pattern transform, we also proposed new bounds for spatial sampling
from broadband beamforming perspective.

4. In addition, alternative approaches to the generalize sidelobe canceler beam-
former are proposed to overcome the major drawback of generalize sidelobe
canceler that is the subtracting of two different beam patterns. Although this
contribution does not help to find the sparse array layout, it provides the
methodologies to design a beamformer for the sparse array.

5. Lastly, the research also covers the direction-of-arrival (DOA) estimation topic
which normally combines with beamforming algorithms in audio applications.
We proposed an extended multiple signal classification (MUSIC) algorithm
which takes diffuse noise into account. Also, we proposed the annihilating
filter-based method for DOA estimation, that is, the annihilating filter design
for multiple data frames. As obtained from simulations results, the proposed
annihilating filter-based method outperforms the conventional MUSIC in terms
of DOA’s accuracy. Furthermore, the proposed method help to reduce the cost
of computation compared to subspace-based approaches.

1.3 Organization

These remaining chapters of this dissertation are organized as follows.
Chapter 2 carries out a comprehensive literature review of beamforming, which

covers the basic principles of beamforming and several representative beamforming
algorithms.

Chapter 3 focuses on uniform array with broadband beamforming. This chapter
introduces inverse beam pattern transform and spatial sampling for uniform array
from broadband beamforming perspective. The inverse beam pattern transform is
applied to the uniform array and it is the fundamental theory to design the sparse
arrays in Chapter 4 and 5.

Chapter 4 focuses on data-independent beamforming. This chapter presents a
new approach to design the sparse array with frequency-independent beam pat-
tern. This approach is applicable for the linear array (both broadside and endfire
configurations) as well as planar array. The proposed method is compared with the
state-of-the-art sparse array designs and with the uniform arrays.

Chapter 5 focuses on adaptive beamforming. The sparse array proposed in this
chapter aims to reconstruct the sound sources via the compressed sensing frame-
work. From reconstructed sound sources, we propose a simple approach to interpo-
late a dense and uniform array, and beamforming is deployed in this interpolated
dense and uniform array. We also describe the hardware construction of a real mi-
crophone array and conduct various experiments to examine the performances of
the constructed microphone array in a reverberation room.

Chapter 6 presents some discussions and future works.
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Chapter A focuses on both data-independent and adaptive beamforming. This
chapter proposes two variants for the generalized sidelobe canceler beamformer.
One is for data-independent, another is for adaptive beamforming.

Appendix B presents the direction-of-arrival (DOA) estimation. This appendix
proposes a new method for DOA estimation based on the design of annihilating
filter for multiple frames. Also, we propose an extension of the MUSIC algorithm
that takes diffuse noise into account.

Appendixes C, D provide Matlab programs.

1.4 Published and Submitted Papers

• (Chapter. 4) Phan Le Son, "Using Uniform Microphone Arrays to Design Sparse
Microphone Arrays with Frequency-Independent Beam Pattern," published in
Deutsche Jahrestagung fur Akustik, DAGA 2020, pp. 126-129, March. 2020.

• (Chapters. 3 and 4) Phan Le Son, “On the design of sparse arrays with frequency-
invariant beam pattern,” published in IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 29, pp. 226–238, 2021.

• (Appendix. A) Phan Le Son, “Alternative approaches to generalized sidelobe
canceller beamformer,” published in Deutsche Jahrestagung fur Akustik, DAGA
2021.

• (Chapter. 3) Phan Le Son, “Inverse Beam Pattern Transform and Spatial Sam-
pling for Uniform Array from Broadband Beamforming Perspective,” submit-
ted in IEEE Transactions on Signal Processing, 2021.

• (Chapter. 5) Phan Le Son, “Irregular Microphone Array Design for Broadband
Beamforming,” accepted for revision in Elsevier Signal Processing, 2021.
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Chapter 2

Scientific Background

In this chapter, the author briefly presents the background of beamforming and re-
view some research methods which are related to this dissertation. The chapter starts
with the model of sound propagation and basic principles of microphone. The chap-
ter then introduces some important aspects of beamforming, such as beam pattern,
frequency-independence, beam-width, steering, directivity factor, white noise gain,
etc. Finally, the chapter explains algorithms of several beamforming techniques.

2.1 Fundamentals of Microphone Array

2.1.1 Sound Propagation

Sound waves propagate through fluids as longitudinal waves. The molecules in
the fluid move back and forth in the direction of propagation, producing regions of
compression and expansion. By using Newton’s equations of motion to consider an
infinitesimal volume of fluid, an equation governing the wave’s propagation can be
developed. A generalized wave equation for acoustic waves is quite complex as it
depends upon properties of the fluid. However, assuming an idea fluid with zero
viscosity and let p(x, y, z, t) be an infinitesimal variation of acoustic pressure from
equilibrium value which satisfies the acoustic wave equation [Wil99]

∇2 p− 1
c2

∂2 p
∂t2 = 0 (2.1)

where c is the sound speed depending upon the pressure and density of the fluid
and ∇2 is the Laplace operator

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

Let p̄(ω) be a Fourier transform of p(t) (for simplicity of notation, we omit the de-
pendence of p and p̄ on (x, y, z), that is

p̄(ω) = F{p(t)} =
∫ +∞

−∞
p(t)e−jωtdt

where ω is the angular frequency and F is the Fourier transform, then

p(t) =
∫ +∞

−∞
p̄(ω)ejωtdω (2.2)
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Equation (2.2) can be differentiated with respect to time, that is

∂2 p
∂t2 = −

∫ +∞

−∞
ω2 p̄(ω)ejωtdω

Then

F{∂2 p
∂t2 } =

∫ +∞

−∞

(
−
∫ +∞

−∞
ω2 p̄(ω)ejωtdω

)
e−jωtdt = −ω2 p̄(ω).

The Fourier transform of (2.1) is the Helmholtz equation

∇2 p̄ + k2 p̄ = 0 (2.3)

where the acoustic wavenumber is k = ω/c.

Far Field

If the distance from sound source is much farther than the distance between two
examined points, then the far field assumption is applied. For the far field assump-
tion, the signal is modeled as the plane wave. The general solution of the Helmholtz
equation (2.3) is

p̄(ω) =
A(ω)

4πr0
ej(kxx+kyy+kzz) (2.4)

where A(ω) is an constant presenting for the strength and phase of a sound source
at rotation frequency ω, kx = k cos φ sin θ, ky = k sin φ sin θ, kz = k cos θ (φ, θ is
the azimuth and elevation angle in the spherical coordinate, respectively) and r0 is
the radial distance from a source to the sensor (r0 is much bigger than the distance
between sensors in the array and r0 is approximately constant for all sensors in the
array). This yields the final result, a plane wave at a rotation frequency

p(x, y, z, t) =
A(ω)

4πr0
ej(kxx+kyy+kzz−ωt) (2.5)

Near Field

The solution for a spherical wave can be derived as [Zio20]

p(x, y, z, t) =
A

4πr
ej(rk−ωt) (2.6)

where r =
√

x2 + y2 + z2 is the radial distance from a source at (0, 0, 0) to (x, y, z).
The spherical wave solution shows that the signal amplitude decays at a rate pro-
portional to the distance from the source.

Superposition Property

Due to the linearity of the wave equation, the monochromatic solution can be ex-
panded to the more general polychromatic case by considering the solution as a
sum or integral of such complex exponentials. In other words, the solution in (2.5)
and (2.6) are for a stimulating source, if multiple sources stimulate simultaneously,
then sum of single solutions is the solution. In array processing, this principle is one
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of fundamental principles. Example for far field sources,

p(t) =
N

∑
i=1

A
4πr0

ej(~ki .~ri−ωt) (2.7)

where~ki = (kxi, kyi, kzi) give the direction of stimulating source i,~ri = (xi, yi, zi) is
the position vector, N is the number of stimulating sources and "." is the dot product.

2.1.2 Microphone

A microphone is a device that converts sound pressure into an electrical signal. Dif-
ferent types of microphones are used today, which employ different methods to
convert the air pressure variations of a sound wave to an electrical signal, such as
condenser microphone, dynamic microphone, contact microphone, MEMS micro-
phones, .etc.

Condenser Microphone

A condenser microphone is also called a capacitor microphone or electrostatic micro-
phone, which uses the vibrating diaphragm as a capacitor plate. The sound hits the
diaphragm, then the value of capacitor is changed. This changing can be recognized
by the electronic circuits. Fig. 2.1 1 plots a construction of a condenser microphone.

FIGURE 2.1: Condenser microphone.

Dynamic Microphone

The dynamic microphone is also known as the moving-coil microphone. It uses
the inverse mechanical principle with a loudspeaker where an electrical conductor
moves in a magnetic field, an electric current is induced. Fig. 2.2 2 plots a construc-
tion of dynamic microphone.

1from https://www.neumann.com/homestudio/
2from https://www.neumann.com/homestudio/

https://www.neumann.com/homestudio/
https://www.neumann.com/homestudio/
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FIGURE 2.2: Dynamic microphone.

MEMS Microphone

A MEMS microphone is also called a microphone chip or silicon microphone. Nor-
mally, it is a variant of inexpensive condenser microphone (polarized condenser mi-
crophone) where the pressure-sensitive diaphragm is etched directly into a silicon
wafer [Pfl17]. Fig. 2.3 plots a construction of MEMS microphone.

FIGURE 2.3: MEMS microphone [Pfl17].
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2.2 Review of Beamforming Techniques

In this section, the thesis represents some representative techniques of the data-
independent and adaptive beamforming. All the techniques are modeled in the
Fourier domain, except the generalized sidelobe canceler that is presented in time-
domain. The spatial filtering of beamforming is constructed in the short-time Fourier
transform (STFT) domain, as illustrated in Fig. 2.4.

FIGURE 2.4: Spatial filtering of beamforming [BJ12]: Blue is the audio
signal, a dash-red box is a frame of the STFT.

In general, we assume that both interference and ambient noise coexist with the
target source. Consider an array with M microphones, in the frequency-domain, the
array signal at angular frequency ω and frame index n is presented by x(ω, n) =
[x1(ω, n), . . . , xM(ω, n)]T and it can be decomposed as

x(ω, n) = s(ω, n)ds(ω) + i(ω, n) + n(ω, n) (2.8)

where s(ω, n) is the source of interest (SOI), ds(ω) is the steering vector of SOI,
i(ω, n) is the incident noise (such as interfering sources), and n(ω, n) is the statistical
noise (such as white noise, diffuse noise).

For the sake of conciseness, we omit the variable ω in the remainder of this chap-
ter wherever possible. Then, the output of the beamformer can be written as

y(n) = wHx(n) (2.9)

where w = [w1, . . . , wM] is the weight vector of the beamformer.
The target of beamforming is to recover the SOI s(n) from the measurement sig-

nals x(n) by using the spatial filter w. According to our signal model, the measure
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signals in (2.8) contains two type of noises: Incident noise and statistical noise. For
the statistical noise, we assume to know their statistical model in advance, e.g., nor-
mal distribution, Gausian distribution, Laplace distribution, etc. then we can find a
data-independent weight vector to suppress that noise in the statistical sense. That is
the data-independent beamforming, where the weight vector is fixed over the time.
For the incident noises, we need to observe the measurement signals to estimate the
noises at every frame, therefore if the beamforming wants to suppress the incident
noises, its weight vector needs to adapt versus the data, that is the so-called adaptive
beamforming.

2.2.1 Characteristics of Beamforming

In order to get a better understanding of the characteristic of beamforming, the chap-
ter first introduces some important measures to analyze their performance.

Beam Pattern

That is the response function of the array to a wavefront coming from a specific angle
at a specific frequency, depending on the azimuth φ and elevation θ in the spherical
coordinate system [BS01]. The spatial-temporal transfer function is given by

B(φ, θ, ω) = w(ω)Hd(φ, θ, ω) (2.10)

where d(φ, θ, ω) is the steering vector at the azimuth φ and elevation θ. That is also
called the beam pattern, which is usually presented on a logarithmic scale. Since
the beam pattern depends on three variables, it is not possible to display in a single
plot. It is often plotted in the polar coordinate (for 2-dimensional) or the spherical
coordinate (for 3-dimensional) for a single frequency. An example of cardioid beam
pattern is plotted in Fig. 2.5, where the look direction at 0o degree and the null at
180o degree.

FIGURE 2.5: Cardioid beam pattern.
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Beam-width

FIGURE 2.6: Beam-width of a beam pattern.

The beam-width (open angle) can be defined in many ways, we will use three dB
criteria in this chapter, that is the continuous angle space around the look direction
where the gains of beam pattern not less than 3 dB of the gain at look direction

BW(ω) := {(φ, θ) : |20 log10 B(φ, θ, ω)| ≥ 20 log10 |B(φ0, θ0, ω)|− 3 and (φ, θ) ∈ M}
(2.11)

whereM is the main-lobe space and (φ0, θ0) are the angle of look direction. Fig. 2.6
illustrates the beam-width (open angle is 39o) of a beam pattern, that is space covered
by the dash green lines.

Besides the beam-width, other important characteristics of beam pattern are also
illustrated in Fig. 2.7, such as mainlobe, sidelobes, nulls.

FIGURE 2.7: Null, mainlobe, sidelobe of beam pattern.

Steering

In general, the beamforming is possible to rotate toward a direction of interest by
changing the beamforming coefficients. This is termed electronic steering. Although
the electronic steering is the low cost solution, quick response and high flexible, the
steering beam pattern is suffering more from the spatial aliasing effect. Due to this



14 Chapter 2. Scientific Background

drawback, it mainly applies for the linear array with broadside beamforming or for
the planar array. Fig. 2.8 presents the beam patterns for different steering angles.

(A) 90o. (B) 60o.

FIGURE 2.8: Electronic steering ability of a linear array.

Directivity Factor

A common quantity to evaluate the beam pattern is the directivity factor (DF), it
measures the ability to preserve the source of interest while suppressing the signal
coming from other directions.

D(w(ω)) =

∣∣w(ω)Hds(ω)
∣∣2

w(ω)HΓ(ω)w(ω)H (2.12)

where Γ(ω) is the pseudo-coherence matrix of the diffuse noise field,

[Γ (ω)]i,j = sinc
(

ωdij

c

)
where dij is the distance between sensor i and sensor j.

White Noise Gain

The white noise gain (WNG) shows the ability of the array to suppress the incoher-
ence noise, such as self-noise, array imperfection, etc. That is given by [BS01],

W (w(ω)) =

∣∣wH (ω) ds(ω)
∣∣2

wH (ω)w (ω)
. (2.13)

Front-to-Back Ratio

In many applications, DF is not the best index to evaluate the array, such as video
conferences or the recordings of orchestras. In such applications, a front-to-back
ratio (FBR) is a better choice, since in most cases all desired sources are in front of
the array and all unwanted sources are behind the array [BS01; Elk00; MH41],

F (ω, φ0 = 0, θ0 = 0) =

∫ π
0

∫ π
0 |B(φ, θ, ω)|2 sin θdφdθ∫ 2π

π

∫ π
0 |B(φ, θ, ω)|2 sin θdφdθ

(2.14)

or

F (ω, φ0, θ0) =
wHΓ f w
wHΓbw

. (2.15)
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where
Γ f =

∫ π

0

∫ π

0
d(φ, θ, ω)dH(φ, θ, ω) sin θdφdθ

Γb =
∫ 2π

π

∫ π

0
d(φ, θ, ω)dH(φ, θ, ω) sin θdφdθ.

2.2.2 Data-independent Beamforming

For instance, the noise fields are stationary and well-defined, the beamforming coef-
ficients can be presented by a closed-form formula whose inputs are the noise model,
array layout and look direction.

Delay and Sum Beamforming

Delay and sum beamforming (DSB) is the simplest beamforming technique where
the signal of sensors are delayed to align in phase and then be summed. That is

w =
ds

M
.

Fig. 2.10 plots the DSB beam patterns of an uniform linear array (ULA) in Fig. 2.9,
which contains nine microphones having the inter-distance of 0.025 m.

FIGURE 2.9: Uniform linear array configuration.

The weight of DSB is actually the optimal beamforming for optimizing the WNG
where the amplitude of the coefficients are equal. The DSB is a well-known method
since it is simple and robust. However, its directivity is not optimal. The term di-
rectivity describes the ability of a beamformer to suppress noise coming from all
directions other than the source of interest. Therefore, for diffuse noise, the DSB’s
performance is degraded at low frequencies.
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FIGURE 2.10: DSB Beam patterns of the ULA in Fig. 2.9 at different
frequencies.

Superdirective Beamforming

Superdirective beamforming (SD) [Elk00] is the optimal beamforming for optimiz-
ing the directivity, that is

minimize
w

wHΓw

subject to

wHds = 1

(2.16)

where wHΓw is the diffuse noise energy and wHds = 1 is distortion-less constraint
at the look direction. By using the Langrange-multiplier [Fro72], the closed-form
solution of (2.16) is

w =
Γ−1ds

dH
s Γ−1ds

. (2.17)

However, at low frequency, the SD beamforming is worse at WNG performance
since the amplitude of coefficients are very large at some sensors. In practical appli-
cations, the noise signals normally contain the white noise as well as diffuse noise,
therefore a beamforming compromising between WNG and DF often be used by in-
troducing a parameter µ that is adjusted over frequency range to control the WNG,
DF within the acceptable ranges. Gilbert and Morgan [GM55] suggested that µ
should be small

w =
(Γ + µI)−1ds

dH
s (Γ + µI)−1ds

. (2.18)

Fig. 2.11 plots the SD beam patterns (µ = 0.01) of an ULA with nine microphones
having the inter-distance of 0.025 m.

Since the problems in this section contains only one constraint (distortion-less
at the look direction), they belong to the minimum variance distortionless response
(MVDR) beamforming class.

Differential Beamforming

Differential microphone arrays (DMAs) refer to the arrays that are responsive to the
spatial derivatives of the acoustic pressure field [TE01]. As shown in Fig. 2.12, the
third-order DMA is implemented by three stages of delay and subtraction. If the
number of sensors is M = 4, the first stage yields three first-order DMA, the second
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FIGURE 2.11: SD Beam patterns of the ULA in Fig. 2.9 at different
frequencies.

stage yields two second-order DMA and the last stage yields a third-order DMA.
The higher-order DMA is normally proportional to the higher directivity factor and
the delays at a stage decide the nulls’ position of beam patterns. Since the position
of nulls are invariant with frequency, the beam pattern of DMA is almost frequency-
independent. Of course, spatial aliasing may produce some more nulls, it leads to
degradation of the frequency-independent beam pattern at high frequencies. To re-
duce the spatial aliasing effect, the inter-distance of sensors in DMA should be small,
a small inter-distance also mitigates the amplitude differences of measurement po-
sitions.

FIGURE 2.12: The implementation of third-order DMA in time-
domain [BJ12].

In Fig. 2.13, we design the conventional DMA with M = 4 microphones, dH =
0.01 m, the look direction at 0o and the nulls at 60o, 120o, 180o.

The conventional DMA deals with the uniform linear array (ULA) in the time-
domain. Later, they extended the method of DMA to the Fourier domain, which
increase the flexible of DMA [BJ12], e.g., the DMA designs for the uniform circle
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FIGURE 2.13: Beam patterns of the third-order DMA.

array, the DMA with maximizing the DF, maximizing the FBR, or the DMA with
fractional order, etc.

Herein, we only consider the ULA and the processing ULA in Fourier domain
with short-time Fourier transform (STFT). The steering vector of ULA at the incident
angle θ is

d(θ) = [1, e−jωdH cos θ/c, . . . , e−jω(M−1)dH cos θ/c]T

where dH is the inter-distance of sensors and c is the speed of sound. As mentioned
earlier, it is assumed that the inter-distance is much less than the wavelength or
dH << 2πc

ω [EWT03].
The function of beam pattern is

B(θ) = wHd =
M

∑
m=1

w(i)e−jω(m−1)dH cos θ/c. (2.19)

The frequency-independent beam pattern of an Nth-order DMA is defined as [Elk00]

BN(θ) =
N

∑
n=0

aN,n cosn θ (2.20)

where aN,n, n = 0, 1, . . . , N are real coefficients. The different values of these coef-
ficients determine the different directional patterns of the Nth-order DMA. In look
direction, e.g. θ = 0o, the array gain is 1, that is BN(0o) = 1, then

N

∑
n=0

aN,n = 1.

Similarly for the nulls of beam pattern, we have

N

∑
n=0

aN,n cosn θi = 0
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where θi is the null angle of beam pattern. To achieve N + 1 coefficients of Nth-order
DMA, the beam pattern has at most N nulls, that can be presented by the product of
a Vandermonde matrix and coefficient vector as

1 1 . . . 1
1 cos1 θ1 . . . cosN θ1
· · · . . . . . . . . .
1 cos1 θN . . . cosN θN




aN,0
aN,1
· · ·

aN,N

 =


1
0
· · ·
0

 (2.21)

where θ1, . . . , θN are the null directions. (2.21) always has a unique solution if the
null directions are distinct (θi 6= θj, ∀i 6= j) [Tur66]. Similarly, if number of sensors
is equal to the order of DMA plus one M = N + 1, we can find w(ω) at every
frequency of interest. That allows us to design the DMA in the Fourier-domain by
STFT.

More importantly, if the number of sensors is greater than the order of DMA plus
one M > N + 1, there is room to find the optimum w(ω) towards different beam-
formers’ characteristics, such as maximizing the WNG, DF or FBR, while the beam
pattern still assures the Nth order DMA. For examples, the hypercardioid DMA is
achieved by maximizing the DF in (2.16) with subject to the distortion-less and nulls,
that is

w =
Γ−1D

DHΓ−1D
i (2.22)

where D = [d(0o), d(θ1), . . . , d(θN)] is the matrix size of M × (N + 1) and i =
[1, 0, . . . , 0]T is a vector size of N + 1.

For example, a similar differential beamforming with conventional third-order
DMA designed via STFT for ULA with M = 7 microphones and dH = 0.01 m is
illustrated in Fig. 2.14.

FIGURE 2.14: Beam patterns of the third-order DMA are designed in
Fourier domain.
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2.2.3 Adaptive Beamforming

In this section, we present representative methods of adaptive beamforming.

Linearly Constrained Adaptive Beamforming

The most well-known adaptive beamforming techniques are the minimum vari-
ance distortionless response (MVDR) and linearly constrained minimum variance
(LCMV). MVDR minimizes the variance of the output while assuring the distortion-
less at a look direction. LCMV is the extension of MVDR where more constraints are
added to the optimization problem.

Back to history, a classical adaptive beamforming technique is the Capon beam-
former [Cap69], which belongs to the MVDR beamforming class where the covari-
ance matrix is updated online. The following optimization problem could present
for the Capon beamformer

minimize
w

E[|wHx|2]

subject to

wHds = 1

(2.23)

where E[.] is the expectation operation. A solution of (2.23) for the optimal weighting
vector is given by

w =
R−1

x dS

dH
s R−1

x ds
(2.24)

where Rx is the covariance matrix of the received signals, that matrix can be esti-
mated from multiple snapshots (data frames). In Fig. 2.15, the beam pattern of linear
array with M = 9 is plotted, which focuses on the the broadside direction and the
interferences present at 45o and 1800. It is clearly seen that distortion-less property
at the look direction is assured, while nulls are automatically inserted at the direc-
tions of interference. In Fig. 2.16, the MVDR beamforming for frequency range from

FIGURE 2.15: MVDR beamforming at 1.6 kHz focuses on the broad-
side direction and the interference presents at 45o and 135o.

1 kHz to 7 kHz is plotted. Although the beam pattern is not frequency-independent,
the distortion-less property and nulls of the beam pattern are always ensured.
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FIGURE 2.16: MVDR beamforming with broadband focus on the
broadside direction and interference present at 45o and 135o.

A problem of the MVDR beamforming is that it is sensitive to steering vector mis-
match or it needs to know the exact look direction in advance, which is somewhat
impractical. In order to improve the robustness, some other robust beamforming
techniques are proposed such as LCMV beamformer, general steering vector mis-
match, etc. The common idea is to construct the uncertain steering vector within a
specific bound as the additional constraints and combining with the minimum vari-
ance (MV) or minimum dispersion (MD) criterion, which can be applied for Gaus-
sian signals as well as non-Gaussian signals [Vor13].

The objective function and target of MD criterion are presented by

minimize
w

E[|wHx|p] (2.25)

where E[|wHx|p] is the dispersion. The parameter-p is presented for the shape of
the probability density function (PDF) of the signal, e.g., p = 1 and p = 2 are for
Laplacian and Gaussian signal, respectively. It is interesting to explain the formula
(2.25) from a statistic standpoint as follows. The PDF of the generalized Gaussian
distribution of the output is given by [NAR09]

ps(y(n)) =
p

2σΓ(1/p)
e−(

|y(n)−µ|
σ )p

(2.26)

where Γ(.) is the gamma function that ensures (2.26) is correctly normalized, σ and
µ are the standard deviation and expectation value, respectively, and p is the shape
parameter. With beamforming, we hope to recover the SOI by y(n) = wHx(n) ≈
s(n), then the PDF of the output should have a similar type with that of the SOI
(decided by the shape parameter p). In other words, the output of beamforming
y(n) is robust against noises if its statistical model fits to the SOI’s statistical model.
Therefore, we need to find the weight vector that maximizes the likelihood function.
Since the logarithm is a monotonic function, we would consider the logarithmic
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likelihood function, which is given by [Bis06]

L(w) = N log(p)− N log(2σΓ(1/p))− 1
σp

N

∑
i=1
|wHx(n)− µ|p, (2.27)

where N is the number of snapshots (measurement frames). For the case µ = 0,
it is clearly seen that the maximized likelihood function is equivalent to minimize
E[|wHx|p], that explains the expression in (2.25).

Here, we present an example of broadband beamforming design via LCMV. The
simulation conducts for a ULA with N = 8 sensors, with the inter-distance of sensor
of 3 cm, a look direction of 0o, and a frequency band from 400 Hz to 3200 Hz with
8 kHz sampling frequency. The broadband beamforming of LCMV is plotted in
Fig. 2.17.

FIGURE 2.17: Beam pattern with LCMV over frequency.
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Generalized Sidelobe Canceler Beamformer

For broandband signals, an alternative approach to LCMV beamforming processing
the signal in time-domain was proposed by Griffith and Jim [GJ82], that is the gen-
eralized sidelobe canceler (GSC) where the beamforming can be decomposed into
two orthogonal paths, as plotted in Fig. 2.18. The upper path is the conventional
beamformer consisting of a set of fixed beamformer coefficients aims to control the
main-lobe. The lower path is the side-lobe canceling path, which uses the combina-
tion of a blocking matrix and adaptive FIR filters to reproduce the sidelobes of the
upper path. The output signal is the subtraction of signals between the upper path
and the lower path.

From the LCMV perspective, one part represents the distortion-less constraint
and the other part represents the minimum noise power. The original GSC struc-
ture is connected with Frost’s procedure [Fro72] (constrained least-mean-square al-
gorithm), that is, the DSB is applied for the upper path, meanwhile, the input signal
is projected onto the noise subspace by multiplying with an orthogonal blocking
matrix B. Although a similar result is obtained, the optimization problem of GSC is
reduced to the unconstrained problem which is simpler than that of Frost’s proce-
dure. Moreover, the GSC can be extended to other structures whose learning curves
of adaptive filter have different trajectories.

The GSC algorithm was proposed in the time-domain where the signal of sensor
m at sample n is defined by

xm(n) = sm(n) + nm(n), m = 1, . . . , M

where sm(n) and nm(n) are the desired signal and noise, respectively.
Let xA be the time-alignment of [x1, . . . , xM]T towards the look direction. In

the lower path, the desired signal inside the time-aligned signals are removed via
a blocking matrix

xB = BxA

where xB is the signal vector after removing the desired signal. To do so, the blocking
matrix B has to fulfill the following properties [BS01; GJ82]:

• The size of the matrix is (M− 1)×M

• The sum of all values in one row is zero

• The matrix has to be of rank M− 1.

An example of a blocking matrix for the case M = 4 is

B =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 .

The vector xB is processed with adaptive FIR filters H = [h1, . . . , hM−1]
T and then

be subtracted from the output of DSB to get the noise-reduced output signal, that is

y = yDSB ∗ g f −
M−1

∑
i=1

[xB]i ∗H(i, :)

where ∗ is the convolution operation, yDSB is the output of DSB, g f is a fixed FIR
filter which ensures a specified gain and phase response for the output signal.
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FIGURE 2.18: Schematic description of the decomposition of the op-
timal weight vector into two orthogonal parts.

The early paper of GSC [GJ82] used an iterative procedure to adaptive updating
H in the least-mean-square sense

H(:, k)n+1 = H(:, k)n + µy(n)xB(n− k), k = 1, . . . , L

where L is the length of FIR filters and µ is the normalized step size.
In Fig. 2.19 and Fig. 2.20, we simulated for the case where signals from different

directions impinge to the ULA with M = 7 microphones (the inter-distance dH =
0.02 m): The interferences containing the narrow band signal centered at 1 kHz come
from the directions φr1 = 70o and φr2 = 150o , the SOI containning the impulse
response comes from the direction φo = 0o. After processed with GSB, the output
signal mainly contains the impulse response from the SOI. A small difference in
amplitude of the desired signal and the beam’s signal was studied by Griffith and
Jim [GJ82], that is mainly due to the presence of the white noise component and the
‘signal leak through’ [Wid+75] which are negligible compared to other methods.

The GSC is a flexible structure due to the separation of the beamformer into
a fixed and adaptive path. However, the GSC suffers from ‘signal leak through’
[Wid+75] and partially interference signal block in the lower path which may result
in desired signal’s distortion. The ‘signal leak through’ occurs when the blocking
matrix does not completely suppress the desired signal and this can be problematic
for broadband beamforming where it is difficult to ensure perfect signal cancellation
across the frequencies of interest [McC01]. Also, the interference signal is partially
blocked in the lower path, that happens when the interference signal is not com-
pletely orthogonal to the desired signal, which leads to the interference in the upper
path leaks to the final output.
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FIGURE 2.19: 0.5 second waveform: Microphone (blue line) contains
the interference, white noise and interested signal; the SOI (green
line) contains a impulse response; GSC (red line) beams to the SOI.

FIGURE 2.20: Zoom-in the waveform: Microphone (blue line) con-
tains the interference, white noise and interested signal; the SOI
(green line) contains a impulse response; GSC (red line) beams to the

SOI.

2.3 Sparse Array and Broadband Beamforming

The sparse array is the array in that the inter-distances between sensors are not ho-
mogeneous. The beamforming applied for the broadband signals is called broad-
band beamforming. It is well-known that if the characteristics of beamforming are
dependent with frequency, then the uniform array needs to be dense and large to
cover high and low frequencies of the broadband signals. As such, the number of
sensors for broandband beamforming is sometimes too big for some applications.



26 Chapter 2. Scientific Background

On the other hand, an irregular layout of sparse array could be an optimal array
deployment for broadband beamforming. Normally, a sparse array contains sensors
with small distances as well as big distances but the total number of sensors is less
than that of uniform arrays.

FIGURE 2.21: An example of nested array.

A straightforward array structure of broadband beamforming is based on the
concept of harmonic nested arrays [Cho95], [ZGET04], where the final array is the
union of several uniform arrays, each one matches to a different frequency subband,
as shown in Fig. 2.21 [McC01].

Later, they proposed further improvements for sparse array layouts where ad-
vanced algorithms are applied to search the optimal position of sensors as well as
their beamforming coefficients. Generally speaking, many studies have focused on
the convex [HL13; HL14; CWB08; Liu+15b] or stochastic [Dob08; CT12; CT14; LYF13;
ES+18] optimization approaches to determine sparse array deployments. Despite
the success of these techniques, the results depend heavily on the strength of the
optimization algorithms and it is hard to decide if the obtained solution is close to
the optimal solution. For example, as based on compressed sensing framework, ap-
plying l1-norm is efficient only if the measurement system (measurement matrix)
has a low restricted isometry property (RIP) [CRT06; Don06], but the RIP itself is
not easy to verify, and it is still an open question in the sparse array design’s model.
For the stochastic approach, it is not so efficient for a large search-space system or it
does not guarantee that its solution is close to the optimal solution if the number of
sensors is large. Furthermore, in some circumstances, the optimization or stochastic
approaches are not only difficult to tune the parameters, but it is also computation-
ally intensive to solve them with subject to the sparse solution.

Another example is shown in Fig. 2.22 [LS20], that is a sparse array with eleven
microphones whose performance is equivalent to that of an uniform array with 21
microphones in the frequency range from 700 Hz to 12 kHz.
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(A) Array deployments.

(B) Frequency-independent beamforming.

FIGURE 2.22: Sparse array vs uniform array.
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Chapter 3

Using Inverse Fourier Transform to
Obtain the Beamformer Weights

A sensor array collects spatial samples of propagating wave fields, and a beam-
former performs spatial filtering to preserve the desired signal while suppressing
interfering signals and noise arriving from directions other than the direction of in-
terest. Given a signal with wideband frequency, using a uniform array is one of
the most common approaches to obtain broadband beamforming. In this work, a
function formulating the relations between the sensor coefficients and its beam pat-
tern over frequency is introduced. The new function mainly contains the coordinate
transform and inverse Fourier transform. From the view of spatial aliasing, the inter-
distance of the sensors should be less than half of the minimum wavelength of the
signal. However, from the bijection of the new function and broadband beamform-
ing perspective, this chapter proposes the other lower and upper bounds for the
inter-distance. Within these bounds, the new function is the bijective function which
can be applied to design the uniform array with broadband beamforming.

3.1 Introduction

Spatial sampling is the bridge between a continuous sensor and a discrete sensor. It
is similar to temporal sampling, other than sampling over the space. The Nyquist-
Shannon sampling theorem [Sha49] is widely used in digital signal processing, it
establishes a sufficient condition for a sample rate that permits a discrete sequence
of samples to capture all the information from a continuous-time signal of finite
bandwidth. To avoid the ambiguities resulting from aliasing, we must select the
sampling rate fs to be greater than two times the largest frequency of the signal fmax
[JG07],

fs > 2 fmax

or, equivalently in the spatial sampling, the inter-distance of sensors ∆d should be
less than half of the smallest wavelength λmin,

∆d <
λmin

2
. (3.1)

However, temporal sampling is developed for the signal reconstruction and the
number of samples could be very large, while spatial sampling is normally built
for beamforming, sound source localization, sound field reconstruction, etc., and
the number of samples is restricted. A common justification for spatial sampling in
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(3.1) is the spatial aliasing problem, but normally an array with a large aperture suf-
fers from spatial aliasing when perform beamforming since beamforming is often
computed based on the modeling of measurement points with respect to a reference
point and the computed distances are much bigger than the inter-distance. From the
spatial sampling constraint in (3.1), some questions arise as the following.

• How many samples (sensors in the array) are enough?

• How small must the inter-distance be?

In this study, the chapter provides some new insight into these questions from broad-
band beamforming perspective. Broadband beamforming is a beamforming tech-
nique used for the signal with a wide range of frequency and assuring certain re-
quirements, e.g. the beam pattern is frequency-independent [P.E88; Syd94]. Many
studies proposed good uniform array designs for broadband beamforming in the
literature [VB88; LW08; Nor+14; DBC01; Yan06; DBWW95; SC07; Li+13; YZL11;
WWM20]. Herein, we review some representative approaches. Van Veen and Buck-
ley in [VB88] applied the least square error minimization between the desired and
actual response of an array to find the beamformer weights. Later, the method pro-
posed by Wei Liu and Stephan Weiss in [LW08] utilized the relationship between the
beam pattern and Fourier transform to find the beamformer weights over the fre-
quency which assure that the synthesized beam pattern is frequency-independent.
The desired beam pattern of this approach is restricted to a function of variables:
cos φ sin θ and sin φ sin θ, where φ and θ are the azimuth and elevation angle of
a direction, respectively. Recently, Sven at al. in [Nor+14] used convex optimiza-
tion to design broadband beamforming for an arbitrary desired beam pattern, and
Wenxia Wang at al. in [WWM20] also used optimization techniques to synthesize the
frequency-independent beam pattern with respect to multiple constraints. Besides,
the concept of line source with broadband beam pattern also attracts an amount
of interest [DVMP01; DVMP03; Vil04]. De Villiers in [Vil04] (this is the extended
version of methods in [DVMP01; DVMP03] for narrow bands) utilized the singular
function for line sources to design the broadband beamforming.

To the best of the author’s knowledge, the present approaches do not clearly ex-
plain the reasons behind the discrepancy between the desired beam pattern and the
synthesized beam patterns. In order to analyze the deviation between the desired
and synthesized beam pattern over frequency, the chapter formulates the transform
from an arbitrary desired beam pattern to sensor weights. First, the chapter presents
a geometric visualization to explain the relation between the desired beam pattern
and functions in the spherical coordinates at different frequencies. A function in
the spherical/Cartesian coordinate that presents the gain of array response with re-
spect to arrival direction is called a gain function. It is similar to the beam pattern,
but it could be presented in either the spherical or Cartesian coordinate. Next, the
gain function in the spherical coordinate is transformed to another gain function in
the Cartesian coordinate. Finally, the inverse Fourier transform is applied for the
gain function in the Cartesian coordinate to achieve the beamformer weights. The
overview of the procedure is presented in Fig. 3.1.

After having successfully formulated the synthesized beam pattern of the sensor
array, we deduce new bounds for the inter-distance of sensors. The bounds assure
that the beam pattern is frequency-independent with regard to the bandwidth of
interest. Hence, the designers gain more information to adjust the sensor array con-
figurations. In order to examine the function, that transforms an arbitrary desired
beam pattern to beamformer weights, some examples with different configurations
(the planar array and linear array) are given.
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Desired beam
pattern

Geometric
interpretation

Coordinate
transformation
and projection

Inverse Fourier
transform

FIGURE 3.1: The steps inside the proposed method to obtain the
beamformer coefficients from an arbitrary beam pattern.

The chapter is organized as follows. In Section 3.2, the chapter addresses the
problem as the continuous sensor. In Section 3.3, the chapter formulates for the dis-
crete sensor and connects the problem with the continuous sensor. In Section 3.4, the
chapter analyzes imperfections of the transforming function. Numerical simulations
are given in Section 3.5. Finally, conclusions are drawn in Section 3.6.

3.2 Continuous Sensor

Without loss of generality, we start with a planar array, similar results could be ap-
plied for a linear array. A sensor at position (x, y) in the Cartesian coordinate has the
measurement value p(x, y, f ) at the frequency f , and a complex-valued w(x, y, f ) is
a filter element for that sensor. The output of the beamformer is

y( f ) =
∫ ∫ ∞

−∞
w(x, y, f )p(x, y, f )dxdy.

Consider a far-field wave, then the wave reaching the sensor is planar. c is the speed
of wave propagation. The spatial response of the array for a source at a direction
indicated by the azimuth angle φ and elevation angle θ is

b(θ, φ, f ) =∫ ∫ ∞

−∞
w(x, y, f )e−j 2π f

c (x sin θ cos φ+y sin θ sin φ)dxdy (3.2)

where j =
√
−1 is the imaginary unit. Substitutions:

R =
f
c

(3.3)

u = R sin θ cos φ, v = R sin θ sin φ. (3.4)
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b(θ, φ, f ) could be presented by b(u, v, f ),

b(u, v, f ) =
∫ ∫ ∞

−∞
w(x, y, f )e−j2π(ux+vy)dxdy. (3.5)

From Eq. (3.5), it is clearly seen that b(u, v, f ) is the 2-Dimensional (2D) Fourier
transform of w(x, y, f ) with respect to x, y or w(x, y, f ) is the 2D inverse Fourier
transform of b(u, v, f ).

If R = f /c is a constant, Eq. (3.4) is the formula transforming a point (θ, φ, R)
in the spherical coordinate to a point (u, v) in the Cartesian coordinate (we are only
interested in the u-v plane where z = 0). From this observation, a method to obtain
the weights from a desired beam pattern is proposed. First, a desired beam pattern
is interpreted as the functions in spherical coordinates, and then functions in the
spherical coordinates are transformed to Cartesian coordinates. Finally, applying
inverse Fourier transform to obtain the complex-valued weights.

Let B(θ, φ) be a desired beam pattern, below are some highlights:

• In the spherical coordinate, a single value R is mapping with a single value f
and vice versa.

• The desired beam pattern B(θ, φ) is interpreted as gain functions in spherical
coordinates bR(θ, φ): Different frequency f (radius R) associated with different
gain functions.

• A gain function in the spherical coordinate bR(θ, φ) is located in a hemisphere
with radius R (for visualization, the gain values could be presented by the
color on the surface of the hemisphere, as shown in Fig. 3.2).

FIGURE 3.2: Example of gain functions associated to different fre-
quencies in the spherical coordinate.

• b f (u, v) is the gain function at frequency f , as shown in Fig. 3.3. b f (u, v) is
obtained by transforming (Eq. (3.4)) bR(θ, φ) to the Cartesian coordinate and
projection (assign z = 0).

Below, the chapter suggests the steps to obtain the weights of the uniform array from
a desired beam pattern,

• Step 1: Define a desired beam pattern B(θ, φ).

• Step 2: At a single radius R, presenting the desired beam pattern to a gain
function in the spherical coordinate,

bR(θ, φ) := b(θ, φ, R) = C{B(θ, φ), f }
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FIGURE 3.3: An example of the gain function in the Cartesian coordi-
nate at one frequency.

where C{.} is a copy/interpreting function and R is constant. A copy/interpret-
ing function is the function that copies/interprets gain values of the desired
beam pattern to the gain function at a frequency in the spherical coordinate,
that is the function with inputs located in the hemisphere of radius R.

• Step 3: At a single frequency f = Rc, b f (u, v) is achieved by transforming and
projecting the gain function bR(θ, φ) in the spherical coordinator to the u-v
plane of the Cartesian coordinate,

b f (u, v) := b(u, v, f ) = T {bR(θ, φ)}

where T {.} is the coordinate transform and projection (assign z = 0).

• Step 4: Applying the 2D inverse Fourier transform of b f (u, v) to achieve w(x, y, f ),

w(x, y, f ) = F−1{b f (u, v) ∪A}

where F−1{.} is the inverse Fourier transform, A is the set of arbitrary values
associating with the points in plane u-v which are outside the hemisphere (in
Fig. 3.3, A is the set of zeros).

For a linear array, the desired beam pattern is interpreted as the gain functions in the
polar coordinate.

In summary, the complex-valued weight at a frequency is formulated as below,

w(x, y, f ) =

W{B(θ, φ), f } := F−1{T {C{B(θ, φ), f }} ∪A} (3.6)

whereW{.} is the inverse beam pattern function (inverse beam pattern transform),
as illustrated in Fig. 3.4. Note that A is a set containing arbitrary padding values,
and A also a input of inverse beam pattern transform. However, the space of A is
dependent on the frequency f , then we omitted it in the input argument ofW{.}.

Theorem 1. W{B(θ, φ), f } in (3.2) is a bijective function for θ ∈ (0, π
2 ], φ ∈ [0, 2π) and

f > 0.

Proof. If all the functions insideW{B(θ, φ), f } are bijective functions, thenW{B(θ, φ), f }
is a bijection [Ham13; Pas15].
F−1{.} is the inverse Fourier transform, then it is a bijection [TT12].
C{.} does the copy operators, it is a bijection.
Consider R is constant and R > 0, (θ, φ, R) belongs to the surface of a hemisphere,
then T {bR(θ, φ)} is a bijection for θ ∈ (0, π

2 ].



34 Chapter 3. Using Inverse Fourier Transform to Obtain the Beamformer Weights

FIGURE 3.4: Inside inverse beam pattern transform at a frequency.

The weights derived from Eq. (3.2) could form the beam pattern which is iden-
tical with the desired beam pattern, that means a beamforming function in (3.2) is
invertible viaW{B(θ, φ), f }.

3.3 Discrete Sensor

Consider the planar uniform array: the inter-distance of sensor array ∆d in X-direction
is equal to the inter-distance in Y-direction, the number of sensors in each direction
N is an odd number. The origin of the coordinate is at the center of the planar array
and coincides with a sensor, as illustrated in Fig. 3.5.

FIGURE 3.5: Discrete sensor array in the Cartesian coordinate.

Let w(n1, n2, f ) be a weight factor of a sensor at a position with index (n1, n2) (n1, n2 ∈
Z), Eq. (3.2) becomes,

b(θ, φ, f ) =

(N−1)
2

∑
n1,n2=− (N−1)

2

w(n1, n2, f )

×e−j 2π f
c (n1∆d sin θ cos φ+n2∆d sin θ sin φ).
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The radius in the spherical Coordinate is defined by

R =
f N∆d

c
. (3.7)

We also define for u, v

u =
f N∆d

c
sin θ cos φ, v =

f N∆d

c
sin θ sin φ. (3.8)

Eq. (3.5) becomes:

b(u, v, f ) =

(N−1)
2

∑
n1,n2=− (N−1)

2

w(n1, n2, f )e−j 2π
N (n1u+n2v). (3.9)

If u, v are restricted to integer numbers, Eq. (3.9) is a 2D discrete Fourier trans-
form with respect to the variables n1, n2 [Rab75]. More specifically, u, v are frequency
indexes in the 2D frequency-domain, therefore we can imagine that the sensor in-
dexes n1, n2 of the planar array are associated with grid points u, v in Cartesian co-
ordinates, as shown in Fig. 3.6 (every grid point in u-v plane is associated with a
sensor).

From Eq. (3.8), one may confuse the integer values of u, v, however, as illustrated
in Fig. 3.7, the integer value of u is mapping with the non-uniform elevation angle.
For the fractional value u or v, it can not be realized in the inverse discrete Fourier
transform (IDFT) of Eq. (3.9), therefore the fractional value u or v is discarded in the
discrete domain. Let us define a discrete desired beam pattern

B(r)|P f := ∑
r0∈P f

∫
B(r)δ(r− r0)dr (3.10)

where r = (θ, φ) is a direction in the spherical coordinate, P f is the set of discrete
directions at a frequency f and δ(.) is a Dirac delta function. From (3.8), we obtain

θ = arcsin(

√
u2 + v2

R
) (3.11)

and
φ = arctan(

v
u
). (3.12)

In order to apply the IDFT in Eq. (3.9), we need to define a set of integer points (u, v)
inside the hemisphere with radius R in the following way:

ER := {(u, v) : u, v ∈ Z,
√

u2 + v2 ≤ R} (3.13)

and P f is obtained by applying Eqs. (3.11), (3.12) for every (u, v) in the set ER. The
cardinality of the set P f is

|P f | = |ER| = 1 + 4
bRc

∑
k=0
b
√

R2 − k2c, (3.14)

where b.c is the floor function (see Appendix 3.7: The Number of Encoding Points).
For a discrete sensor, we adopt the design steps from a continuous sensor by

replacing Eqs. (3.3), (3.4) by Eqs. (3.7), (3.8). An inverse Fourier transform is replaced
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by an IDFT 1. The input of inverse beam pattern function is B(r)|P f and the frequency
index is restricted to the set I in (3.15). Note that I \ER is the set of index of A.

(A) N = 11 (N is an odd number)

(B) N = 12 (N is an even number)

FIGURE 3.6: Sensor indices in the u-v plane of the Cartesian coordi-
nate and the radius of the hemispheres

1Since −(N−1)
2 ≤ n1, n2 ≤ (N−1)

2 , n1, n2 ∈ Z, before and after doing inverse Fourier transform,
shifting zero-frequency component to begin and center of the array are required, respectively (the
function of IDFT in the programming languages is normally applied for n1, n2 ∈ Z, 0 ≤ n1, n2 ≤ N).
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Theorem 2. In discrete domain, suppose that N is an odd number,W{B(r)|P f , f } in (3.2)
is a bijection if

f <
(N + 1)c

2N∆d
.

Conversely, if

f ≥ (N + 1)c
2N∆d

,

thenW{B(r)|P f , f } is not a bijection.

Proof. For discrete sensor, the proof is similar to the proof of Theorem 1 except that
the frequencies indexes are restricted to the set

I = {(u, v) :
−(N − 1)

2
≤ u, v ≤ (N − 1)

2
, u, v ∈ Z}. (3.15)

In other words, the projection (assign z = 0) inside T {bR(θ, φ)} is limited to an area
in (3.15).
In case of f < (N+1)c

2N∆d
, from (3.8) we obtain

−N + 1
2

sin θ cos φ < u <
N + 1

2
sin θ cos φ,

−N + 1
2

sin θ sin φ < v <
N + 1

2
sin θ sin φ.

Since −1 ≤ sin θ cos φ, sin θ sin φ ≤ 1, then the bound of the projection of the coor-
dinate transform T {bR(θ, φ)} is

− N + 1
2

< u, v <
N + 1

2
, θ ∈ (0,

π

2
], φ ∈ [0, 2π). (3.16)

Consider u, v ∈ Z, the set in (3.16) equals the set I in (3.15), then the projection inside
T {bR(θ, φ)} is a bijection which prove the claim of the bijection.

We now examine the converse claim. We need to find a direction (θ, φ) ∈ P f
which does not associate with any element in I. It means the projection inside
T {bR(θ, φ)} is not an injection, which implies thatW{B(r)|P f , f } is not a bijection.
Let us select (θ, φ) = (π

2 , 0) ∈ P f , then, from (3.8), we obtain u, v ≥ N+1
2 for all

f ≥ (N+1)c
2N∆d

. It is easy to select a f that satisfies u, v ∈ Z. An obvious selection is

f = (N+1)c
2N∆d

corresponding to u = v = N+1
2 , (u, v) /∈ I.

When R < N+1
2 (or f < (N+1)c

2N∆d
), all the information of the gain function in the

spherical coordinate is encoded by the integer grid points in the u-v plane. The hemi-
sphere with the bigger radius contains more u-v grid points inside it, then the gain
function is encoded by more grid points, it means the resolution of the synthesized
beam pattern is higher. If the radius of the hemisphere is too small, less u-v grid
points are inside the hemisphere and the resolution of synthesized beam pattern is
reduced.

From above analysis, to assure the frequency-independent beam pattern, the
chapter suggests that at least five grid points are inside the smallest hemisphere
for the lowest frequency, as shown in Fig. 3.6a. Note that five grid points for encod-
ing the beam pattern at the lowest frequency is a weak assumption, but it is a good
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value to start with and the chapter will examine the effects in the simulation section.

1 ≤ R,

1 ≤ f N∆d

c
,

c
N f
≤ ∆d.

Substituting the wavelength λ = c
f , we obtain

λ

N
≤ ∆d.

The same approach for N even, we could have the following constraints for the inter-
distance: {

λ
N ≤ ∆d < λ

2 , N is even,
λ
N ≤ ∆d < (N+1)λ

2N , N is odd.
(3.17)

The origin of the Cartesian coordinate is always consolidated with a sensor’s posi-
tion is the best choice. In the case of N even, the origin is not at the center of the
array, therefore the array is not symmetric to the origin, as shown in Fig. 3.6b. Thus,
the maximum of radius is less than N

2 .
In summary, inequality (3.17) can be used as the bound constraints for inter-

distance of sensors.

3.4 Imperfections of Applying Inverse Beam Pattern Trans-
form

For the sake of simplicity, in this section, we analyze the linear array with the polar
coordinate system.

3.4.1 Non-uniform Discrete Direction Angle

Assuming that the inverse beam pattern transform is a bijection in the bandwidth of
interest, the discretized space by (3.11), (3.12), (3.13) affects the quality of the synthe-
sized beam pattern. That is the resolution of the beam pattern at different angle φ is
not equal, as shown in Fig. 3.7. The resolution of beam pattern at broad-side direc-
tions (φ ≈ 0o) is higher, while it is lower at end-fire directions (φ ≈ 90o or φ ≈ −90o).
It is caused by the non-uniform discretized direction angle of B(φ) in order to obtain
the integer value u for the IDFT.
The resolution of direction angle corresponding to two adjacent sensors n0, n1 (where
n1 − n0 = 1) is

∆φ01 = arcsin(
n1

R
)− arcsin(

n0

R
).

The resolution of direction angle corresponding to two adjacent sensors n4, n5 (where
n5 − n4 = 1) is

∆φ45 = arcsin(
n5

R
)− arcsin(

n4

R
).

If n5, n4 > n1, n0, then ∆φ45 > ∆φ01, since the arcsin function is a non-linear function.
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FIGURE 3.7: Transform from the polar coordinate to the Cartesian
coordinate and the non-linear resolution of direction angles.

3.4.2 The Number of Encoding Points at Low Frequencies

As mentioned earlier, the number of u-v grid points used to encode the desired beam
pattern is lower at the lower frequency. Herein, we illustrate this drawback by an
example. The list of encoding points for the desired beam pattern at frequency f ,

E = {u : u ≤ R, R =
f N∆d

c
, u ∈ Z}.

FIGURE 3.8: The number of encoding points is changed correspond-
ing to the frequency.

As shown in Fig. 3.8, when R1 > R2 > R3 (corresponding to f1 > f2 > f3), then
|E1| > |E2| > |E3| (11 > 5 > 3) where |Ex| is the cardinality of set Ex.

In the constraint (3.17), the lower bound λ
N is to assure at least five grid points

(three grid points) of the u-v plane (u axis) are inside the smallest hemisphere (half
circle) containing the gain function of the lowest frequency. In some applications,
the lower bound should be set more strictly ∆d >> λ

N to assure enough encoding
points for the beam pattern’s shape.

In Section 3.5, the chapter will provide numerical simulations to illustrate the
inverse beam pattern transform in Eq. (3.2) and the bound constraints in Eq. (3.17).
However, instead of changing the inter-distance, the simulation changes frequencies
and examines the change of beam patterns.
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3.5 Numerical Simulations

The chapter provides three examples: Two examples for planar arrays and one ex-
ample for a linear array. The MATLAB code for the examples is provided in Github
2.

Besides frequency-independence, some other beamformer performances are also
important, such as white noise gain (WNG), directivity factor (DF), steering ability,
front-to-back ratio, etc [BJ01]. However, if beam patterns are almost identical then
the DFs or front-to-back ratio are also almost identical, therefore we only measure
the WNG and analyze the steering in simulations. The WNG is a useful measure for
the robustness against random errors. That is given by [BJ01],

N (ω) =
1

∑n1,n2
w∗(n1, n2, f )w(n1, n2, f )

(3.18)

where (.)∗ denotes the conjugate operator. Note that the Eq. (3.18) is only applied
for the beamforming with the distortionless at the look direction.

Example 1. Example for planar array: Desired beam pattern has 2D-Sinc shape.

• Step 1: Define the desired beam pattern, as shown in Fig. 3.9.

B(θ, φ) =

{
| sin(5πθ)

5πθ |, θ > 0,
1, θ = 0.

• Step 2: Interpret the desired beam pattern to a gain function in the spherical
coordinate system, the different gain functions are shown in Fig. 3.2,

bR(θ, φ) =

{
| sin(5πθ)

5πθ |, θ ∈ (0, π
2 ],

1, θ = 0.

• Step 3: Transform bR(θ, φ) to b f (u, v). The relationship between the spherical

and the Cartesian coordinates system is θ = arcsin(
√

u2+v2

R ) or θ = arcsin( c
√

u2+v2

f N∆d
).

Then,

b f (u, v) =



∣∣∣∣∣ sin(5π arcsin( c
√

u2+v2
f N∆d

))

5π arcsin( c
√

u2+v2
f N∆d

)

∣∣∣∣∣ , u, v 6= 0,
√

u2 + v2 ≤ f N∆d
c ,

1, u = v = 0,
0, Otherwise.

Fig. 3.3 shows a gain function in the Cartesian coordinate system at 16 kHz, it
is resulted from one of the gain functions in Fig. 3.2.

• Step 4: Sensor weights are achieved by applying IDFT, e.g., the beam pattern
at 16 kHz is showed in Fig. 3.10a.

With N = 200, ∆d = 0.01 m and c = 343.2 m/s, from Eq. (3.17), we have the
range of frequencies,

c
N∆d

≤ f <
c

2∆d
,

2https://github.com/PhanLeSon03/inverse_beam

https://github.com/PhanLeSon03/inverse_beam
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(A)

(B)

FIGURE 3.9: (a) Desired beam pattern (in dB scale). (b) Cross-section
of beam pattern.

176.1 Hz ≤ f < 17160 Hz.

The cross-section of beam patterns and WNGs over frequency from 200 Hz to 20
kHz are presented in Fig. 3.10b and Fig. 3.10c, respectively. At f > 17160 Hz, the
side-lobes of beam patterns are distorted, since the radius of hemispheres are big-
ger than the boundary of the u-v plane. At low frequencies, the beam patterns are
also distorted, since the shape of the desired beam pattern has higher-order and the
desired beam pattern needs more grid points to encode its shape, so we have to in-
crease the lower bound of frequency in order to maintain the shape of the desired
beam pattern.

Example 2. Example for planar array: Desired beam pattern has two levels of gain and no
side-lobe.
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(A)

(B)

(C)

FIGURE 3.10: (a) Beam pattern at 16 kHz, (b) Beam patterns over
frequency from 200 Hz to 20 kHz, (c) WNGs over frequency (N = 200,

∆d = 0.01 m and c = 343.2 m/s).

• Step 1: Define the desired beam pattern which the gain is the function of ele-
vation angle θ shown in Fig. 3.11,
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θ ≤ θC1: Gain is 1.
θC1 ≤ θ ≤ θC2: Gain is 1/10 (reduce 20 dB).
Others: Gain is 0.

FIGURE 3.11: Desired Beam-Pattern in dB scale (maximum dB scale
is 40dB).

• Step 2: Interpret the desired beam pattern to a gain function in the spherical
coordinate,

bR(θ, φ) =


1, θ ≤ θC1,
1/10, θC1 < θ ≤ θC2,
0, Otherwise.

where θC1 = π
16 , θC2 = π

8 .

• Step 3: Transform the gain function in the spherical coordinate bR(θ, φ) to a
gain function in the Cartesian coordinate (Rsinθ =

√
u2 + v2, R = N∆d f

c ),

b f (u, v) =


1,
√

u2 + v2 ≤ R sin θC1,
1/10, R sin θC1 <

√
u2 + v2 ≤ R sin θC2,

0, Otherwise.

Fig. 3.12 illustrates a gain function in the Cartesian coordinate at 16 kHz.

FIGURE 3.12: A gain function in the Cartesian coordinate at 16 kHz.
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• Step 4: Sensor weights of the sensor array are obtained by applying IDFT, e.g.,
the synthesized beam-pattern at 16 kHz is depicted in Fig. 3.13a. The cross-
section of beam patterns versus frequency is depicted in Fig. 3.13b.

Selecting N = 100, ∆d = 0.015 m and c = 343.2 m/s. From Eq. (3.17), we obtain
a frequency range,

c
N∆d

≤ f <
c

2∆d
,

228.8 Hz ≤ f < 11440 Hz.

We simulate for the frequency range from 250 Hz to 16 kHz. At f > 11440 Hz, the
two-steps cylinder shape (the main-lobe is shown in Fig. 3.11) of the gain functions
are still inside the boundary of u-v plane, although the hemispheres are bigger than
the boundary of u-v plane, so the synthesized beam patterns still preserve the main-
lobe of the desired beam pattern, as shown in Fig. 3.13a and Fig. 3.13b. Fig. 3.13c
plots the WNGs over frequency. For this special beam pattern (there is no side-
lobe), the inverse beam pattern function is surjection for some frequencies but this
surjection does not affect the main-lobe of beam pattern.

The lower bound 228.8 Hz assures five grid points are inside the smallest hemi-
sphere, but only one grid point is inside the smallest two-steps cylinder or the shape
of two-steps cylinder is encoded by only one point, therefore the beam patterns are
distorted significantly at low frequencies.

Example 3. Example for linear array: Desired beam pattern only has a main-lobe.

• Step 1: A similar desired beam pattern used in [LW08] is taken and removed
the side-lobes,

B(θ) =
3

∑
m=−3

hme−jmπ sin θ (3.19)

where the coefficients
{hm : m = −3, ..., 3} =

[0.0307, 0.2028, 0.1663, 0.2004, 0.1663, 0.2028, 0.0307].

In Fig. 3.14a, red “*" plotted the desired beam pattern without side-lobe.

• Step 2: Interpret the desired beam-pattern to a gain function in the polar coor-
dinate,

bR(θ) =

{
B(θ), −20o ≤ θ ≤ 200,
0, Otherwise.

• Step 3: Transform the gain function in the polar coordinate bR(θ) to a gain
function in the Cartesian coordinate (u = Rsinθ, R = N∆d f

c ),

b f (u) =

{
B(arcsin( u

R )), R sin(−200) ≤ u ≤ R sin(200),
0, Otherwise.

• Step 4: Sensor weights are obtained by applying IDFT. The beam pattern at 16
kHz, beam patterns over frequency and WNGs over frequency are plotted in
Fig. 3.14b, Fig. 3.14c and Fig. 3.14d, respectively.
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(A)

(B)

(C)

FIGURE 3.13: (a) Beam pattern at 16 kHz (in dB scale). (b) Beam
patterns over frequency from 250 Hz to 16 kHz. (c) WNGs over fre-

quency (N = 100, ∆d = 0.015 m and c = 343.2 m/s).

Selecting N = 101, ∆d = 0.01 m and c = 343.2 m/s. From (3.17), we obtain a
frequency range,

c
N∆d

≤ f <
c(N + 1)

2N∆d
,
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(A)

(B)

(C)

(D)

FIGURE 3.14: (a) Blue line is the beam pattern (BP) in Eq. (3.19), red
“*” is the desired beam pattern without side-lobe. (b) Beam pattern
at 16 kHz (in dB scale). (c) Beam patterns over frequency from 350
Hz to 20 kHz. (d) WNGs over frequency (N = 101, ∆d = 0.01 m and

c = 343.2 m/s).
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(A)

(B)

(C)

(D)

FIGURE 3.15: (a) Blue line is the beam pattern in Eq. (3.19) steering
to θ = −70o, red “*" is the desired beam pattern without side-lobe.
(b) Beam pattern at 16 kHz (in dB scale). (c) Beam patterns over fre-
quency from 350 Hz to 20 kHz. (d) WNGs over frequency (N = 101,

∆d = 0.01 m and c = 343.2 m/s).
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339.8 Hz ≤ f < 17329.9 Hz.

We simulate for the frequency range from 250 Hz to 20 kHz. For this example,
similar results with Example 2 (the beam patterns are distorted significantly at the
low frequencies) could be observed in Fig. 3.14.

In order to observe the non-bijection effect of the inverse beam pattern transform
at high frequencies, we examine for the steering case. The linear array steers to the
incident angle θ = −70o. The desired beam pattern is shown in Fig. 3.15a where
the red “*" is the desired beam pattern. The beam pattern at 16 kHz, beam patterns
over frequency and WNGs over frequency are shown in Fig. 3.15b, Fig. 3.15c and
Fig. 3.15d, respectively.

3.6 Conclusions

The chapter has proposed the inverse beam pattern transform for the uniform ar-
ray, which deduces the sensor coefficients from an arbitrary desired beam pattern
B(θ, φ),

w(x, y, f ) =

W{B(θ, φ), f } := F−1{T {C{B(θ, φ), f }} ∪A}.

It is worthwhile to note that the computation of the inverse beam pattern function
mainly contains the coordinate transform and inverse Fourier transform, it has high
potential to be realized in real-time applications. As based on the bijection of the
inverse beam pattern functions and broadband beamforming perspective, the bound
constraints for spatial sampling are proposed{

∆d < (N+1)λmin
2N , N is odd,

∆d < λmin
2 , N is even.

(3.20)

For the lower bound, from the inequality (3.17) we have,

∆d ≥
λmax

N

the inter-distance of sensors should be greater than or equal to the largest wave-
length divided by the number of sensors in the vertical or horizontal axis. How-
ever, from simulation results the chapter suggests that the planar array (linear ar-
ray) needs more than five points (three points) inside the smallest hemisphere (half
circle), so {

∆d ≥ mλmax
N , N+1

2 > m >> 1, N is odd,
∆d ≥ mλmax

N , N
2 > m >> 1, N is even.

(3.21)

the parameter m determines the number of encoding points |P fmin | for the beam
pattern at the lowest frequency. For the linear array

|P fmin | = 2bmc+ 1, (3.22)

and for the planar array

|P fmin | = 1 + 4
bmc

∑
k=0
b
√

m2 − k2c (3.23)
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(see Appendix 3.7:The Number of Encoding Points).

3.7 Appendix: The Number of Encoding Points

For the linear array, it is obvious (see Fig. 3.8).
For the planar array, let us consider the right half circle with radius m, as shown in
Fig. 3.16.

FIGURE 3.16: The number of integer points on the line u = k.

Let k be an integer number and 0 ≤ k ≤ bmc, the number of integer points on the
line u = k is

Nk = 2b
√

m2 − k2c+ 1.

The number of integer points belong to the right half circle

Nr =
k=bmc

∑
k=0

Nk =
k=bmc

∑
k=0

(2b
√

m2 − k2c+ 1).

The circle is symmetric, so the number of integer points belongs to the left half
circle Nl = Nr. The total integer points belong to full circle is 2Nr − N0, where N0 is
the common points of two halves, thus we achieve the result in (3.23).
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Chapter 4

Sparse Arrays with
Frequency-Independent Beam
Pattern

Beamformer performs spatial filtering to preserve the desired signal while suppress-
ing interfering signals and noise arriving from directions other than the direction
of interest. However, the beam pattern of the conventional beamformer is depen-
dent on the frequency of the signal. It is common to use dense or uniform arrays
for a broadband signal to achieve some essential performances together, such as
frequency-independence, high white noise gain, high directivity factor, high front-
to-back ratio, etc. Recently, the interest in sparse arrays is growing, mainly due to the
capacity to reduce the number of sensors with acceptable deteriorated performance.
Nevertheless, in general, finding a suitable sparse array layout is still a challenging
task. Many studies have focused on optimization procedures to seek a sparse array
deployment. This chapter presents an alternative approach to determine the loca-
tion of sensors. Starting with a weight spectrum of a virtual uniform array, some
techniques are used, such as analyzing the weight spectrum to determine the crit-
ical sensors, applying the clustering technique to group the sensors into different
groups, and selecting the representative sensors for each group. After the sparse
array deployment is specified, the optimization technique is applied to find beam-
former coefficients. The proposed method helps to save the computation time in the
design phase, and its beamformer performance outperforms other state-of-the-art
methods.

4.1 Introduction

Frequency-independent (FI) beamforming is a technique used to obtain signals with
a wide frequency band. It maintains signal integrity and spatial selectivity over the
band of interest. It has been widely used in many applications such as radar, sonar,
communication and acoustic systems where the bandwidth of signals is several oc-
taves. In the past few decades, many design methodologies for a dense and uniform
array (DUA) with FI beamforming have been proposed and widely applied in many
practical applications [Nor+14; LW08; WKW01; GHB18; LW08; DBWW95; Yan06;
SYH07; SC07; EMK09; Li+13; YZL11]. Besides FI beamforming, other performances
of the array such as directivity factor (DF), white noise gain (WNG) are also im-
portant. Sometimes these performances contradict each other, e.g., a conventional
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beamformer with high DF has a large amplification of sensor noise and sensor posi-
tion errors (low WNG). Given a reference beam pattern, a uniform array with a small
equidistance ensures the FI beam pattern at high frequencies, while a uniform array
with a big equidistance ensures the FI beam pattern at low frequencies. In case of a
wide frequency range, the uniform array needs to be dense and large to cover both
the near and far distances of sensors; therefore, the traditional techniques sometimes
require a large number of sensors. For FI in acoustic applications, another concept
is the differential microphone array (DMA) which is widely used in practical appli-
cations. The conventional DMA is based on the spatial derivatives of the acoustic
pressure field [Elk00; Elk00; TE01; Buc02]. Since the sensor spacing of the DMA is
much smaller than the acoustic wavelength, then the DMA is small in size which
can be easily mounted into other devices. On the other hand, based on short-time
Fourier transform, spatial filtering is applied to form a differential beamformer in
each subband [BJ12; BCC15; ZBC14; CPC15; Hua+20]. The order of the differen-
tial beamformer could be designed by selecting the number of beam patterns’ nulls
and the type of differential beamformer could also be obtained by assigning the
null positions and/or changing the optimization objective function such as maxi-
mum front-to-back ratio for supercardioid microphone, maximum directivity index
for hypercardioid, etc. Besides, some studies show that, for the circular or arbitrary
array, the differential beamformer has ability to steer to any direction of the sensor
plane [EP97; HBC17; HCB18; Bor+20]. However, conventional DMAs or arrays with
differential beamformers are still sensitive to the white noise and array mismatch at
low frequencies, the DF is degraded at high frequencies, the higher order systems
are somewhat impractical and their beam pattern is restricted to the function of a
differential beamformer [Elk00].

Over the past years, the interest in the sparse arrays is growing. Many sparse ar-
ray designs for broadband beamformers have been developed previously [Cho95;
ZGET04; Dob08; CT12; CT14; LYF13; Liu+15a; HL13; HL14; Liu+15b; Buc+18],
which are briefly mentioned as follows. A straightforward array structure of FI
beamforming is based on the concept of harmonic nested arrays [Cho95], [ZGET04],
where the final array is the union of several uniform arrays, each one matches to
a different frequency subband. With the goal of reducing the number of sensors,
Doblinger [Dob08] proposed a sparse array based on a superdirective beamformer
[Elk00] and simulated annealing [PWV08] where the cost function achieved from
the superdirectivity beamformer of a DUA. A similar idea to Doblinger’s idea was
also presented by Marco Crocco and Andrea Trucco in [CT12], [CT14], they pre-
sented more parameters in the cost function of the simulated annealing to adjust the
beamformer performances toward different objectives such as FI, DF, WNG, side-
lobe and main-lobe. Later, in [LYF13], a genetic algorithm [ES+18] together with a
gradient-based method was applied for microphone array placement, this approach
compromises between searching the optimal solution rapidly and jumping out from
the local minima. A design of FI beamforming for linear arrays based on the gener-
alized matrix pencil method was proposed in [Liu+15a]; this approach performs
the singular value decomposition of a reference beam pattern to determine how
many array elements are required, and then applying the generalized matrix pen-
cil method to determine the positions and weight-valued of the sensors. Recently, as
based on the compressed sensing [Boc+15], [Mig14] concept, Hawes and Liu [HL13]
proposed the l1-norm to find the position of the sensors and their coefficients to-
gether. To extend the sparsity of the conventional l1-norm, Hawes and Liu [HL14]
and Liu et al. [Liu+15b] applied a sequence l1-norm method [CWB08] which is iter-
atively reweighting the conventional l1-norm in order to achieve the solutions that
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are closer to the sparse solution. In this chapter, the method in [Liu+15b] is called the
coherence sparse array design. More recently, Yaakov et al. [Buc+18] also applied the
sequence l1-norm method to find the positions of sensors at different subbands and
then merging these SAs by a clustering algorithm to obtain the final sparse array. In
this chapter, this approach is called incoherence sparse array design.

Broadly speaking, many studies have focused on the convex or stochastic opti-
mization approaches to determine the sparse array deployments. Despite the suc-
cess of these techniques, the results depend heavily on the strength of the optimiza-
tion algorithms and it is hard to say that the obtained solution is close to the optimal
solution. For example, based on a compressed sensing framework, applying the l1-
norm is efficient only if the measurement system (measurement matrix) has a low
restricted isometry property [CRT06; Don06], but the restricted isometry property
itself is not easy to verify, and it is still an open question in the sparse array design’s
model. For the stochastic approach, it is not so efficient for a large search-space sys-
tem or it does not guarantee that its solution is close to the optimal solution if the
number of sensors is large. Furthermore, in some circumstances, the optimization
or stochastic approaches are not only difficult to tune the parameters, but it is also
computationally intensive to solve them with subject to the sparse solution. To the
best of the author’s knowledge, although the DUAs work well with the FI beam pat-
tern, few approaches use the information of DUAs as the input for the sparse array
design. In this work, a new method that takes the information of the DUA as the
input to design the sparse array is proposed. The general idea is shown in Fig. 4.1.

Hypothe-
sized
Dense
Array

Analyze
Weight

Spectrum

Selecting
Sensors

Optimiza-
tion

Sparse
Array

Weight
Values

Number
and

Locations

Input

Output

FIGURE 4.1: Flowchart for the proposed sparse array design.
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• First, a DUA with the broadband beamforming is designed. Spatial filters of
the DUA at different frequencies constitute a weight matrix.

• Then, we analyze the spectrum of the weight matrix to identify the critical
sensors, .i.e, the "Analyze Weight Spectrum" block in Fig. 4.1 can be detailed
as follows. Principal component analysis (PCA) [WEG87] is applied to reduce
the size of the weight matrix because this matrix does not have a full-rank.
After compressing the weight matrix, we identify the rows in the compressed
matrix which was superior energy corresponding with the critical sensors that
need to be kept in the sparse array.

• Next, K-means clustering algorithm [HW79] is applied to categorize the re-
maining sensors in the DUA into different groups [Buc+18]. For each group,
the sensors which have the closest distances to the group’s centroid are also
added to the sparse array. Therefore, the number of sensors in the sparse array
is proportional to the number of groups. Moreover, if the number of groups
increases, the total distance from the points to the centroid points decreases.
This decrease is proportional to the error-tolerances of the FI beam pattern.

• Once the positions of the sensors in the sparse array are identified, optimiza-
tion approaches are used to find the sensor coefficients at every frequency. In
order to examine the proposed method, some examples with different config-
urations (broad-side, end-fire and planar array) are given.

The layout of this chapter is organized as follows. Section 4.2 presents the signal
model. Section 4.3 describes the design method. Section 4.4 presents some evalu-
ation metrics. The simulations and their results are provided in Section 4.5. The
conclusion is drawn in Section 4.6.

Notations: The vectors (matrices) are represented by lower-case (upper-case) bold
characters. (.)T and (.)H denote the transpose and Hermitian transpose, respec-
tively. j =

√
−1 is the imaginary unit. [A]i,j denotes the (i, j) entry of A. A(i, :)

is the row ith of A. A(:, i) is the column ith of A. diag(A) returns a column vector
formed from the main diagonal of A. ‖.‖2 is the l2-norm. |.| is the absolute operator.
mean(v) is mean value of the elements in vector v.

4.2 Signal Model

Consider the far-field wave, then the wave reaching the sensors is planar. Without
loss of generality, we assume that the plane of array consolidates with X-Y plane in
the Cartesian coordinate. A look direction described by S = (φ0, θ0) is specified by
the azimuth angle φ0 and the elevation angle θ0. The beam pattern in an interested
bandwidth Ω is given by

b(φ, θ, ω) = wH(S, ω)d(φ, θ, ω), ∀ω ∈ Ω, (4.1)

where
w(S, ω) = [w1(φ0, θ0, ω), ..., wM(φ0, θ0, ω)]T

is a weight vector (from now on, the manuscript drops the explicit S from the expres-
sion w(S, ω) in order to keep the notation uncluttered), M is the number of sensors.

d(φ, θ, ω) = [e−jωt1 , .., e−jωtM ]T
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is a steering vector at the direction specified by the azimuth and elevation angle
ρ = (φ, θ), ρ ∈ Θ (Θ is the operating space of beamforming).

tk =
xksinθcosφ + yksinθsinφ

c
, k = 1, ..., M

is the delay of wave propagation from the origin to the sensor kth at the position
(xk, yk), c is the wave speed.
From M sensors with equidistance in the DUA, we select K(<< M) sensors whose
indices belong to the set SK,

SK := {ik : ik ∈ [1, .., M], k = 1, ..., K}.

The beam pattern at the angular frequency ω is formed by the sensors in SK,

bS(φ, θ, ω) = wH
S (ω)d(φ, θ, ω) (4.2)

where wS having K non-zero elements and M− K zero elements is weight vector of
the sparse array.
WA size of M× J is the weight matrix of the uniform array that contains the weight
vectors w(ωi), ωi ∈ Ω, i = 1, ..., J,

WA = [w(ω1), w(ω2), ..., w(ωJ)].

WS size of M × J is the weight matrix of the sparse array that contains the weight
vectors wS(ωi), ωi ∈ Ω, i = 1, ..., J,

WS = [wS(ω1), wS(ω2), ..., wS(ωJ)].

Let b(ρ, Ω) (bS(ρ, Ω)) be the beam pattern vector of a DUA (sparse array) at single
direction ρ = (φ, θ) across the bandwidth of interest. From (4.1) and (4.2), we have

b(ρ, Ω) = diag(WH
A Dρ(Ω)), (4.3)

bS(ρ, Ω) = diag(WH
S Dρ(Ω)), (4.4)

where Dρ(Ω) = [d(ρ, ω1), d(ρ, ω2), ..., d(ρ, ωJ)].
Suppose a reference beam pattern is given, then it is possible to design a DUA

with M sensors, equidistance δ and the weight matrix WA to assure that b(ρ, Ω)
is almost unchanged in Ω. The next section will present a method to find the set
SK = [i1, i2, ..., iK] so that bS(ρ, Ω) in (4.4) is close to b(ρ, Ω) in (4.3) for all ρ ∈ Θ.

4.3 Design Method

A three-step method is proposed to design the sparse array: Analysis, Selecting and
Optimization. This method finds the SK and wS separately. In the Analysis step, a
DUA performing well with the FI beam pattern is designed and analyzed. In the
Selecting step, the weight matrix WA of the DUA is used as a basis to select the
set SK. In the last step, the optimization technique is deployed to find the weight
vector wS. It is worth noting that the optimization efforts to find the weight vector
is negligible compared with that to find the sparse solution (position of sensors).
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4.3.1 Analysis

In this section, a design method for the planar DUA with an arbitrary FI beam pat-
tern is briefly presented (more details could be found in Chapter 3. Let w(n1, n2, ω)
be an element of the weight vector w(ω), which associates with the sensor at posi-
tion (n1δ, n2δ), where (n1, n2) are the indices in X and Y axis,

− (N − 1)
2

≤ n1, n2 ≤
(N − 1)

2
, n1, n2 ∈ Z.

Assuming that N =
√

M is an odd number, N is the number of sensors in X or Y
axis (note that for the linear array N = M). (4.1) is presented by,

b(θ, φ, ω) =

(N−1)
2

∑
n1,n2=− (N−1)

2

w(n1, n2, ω)

×e−j ω
c (n1δ sin θ cos φ+n2δ sin θ sin φ). (4.5)

Let us define the spherical coordinate where a point is presented by φ, θ and radius
R,

R =
f Nδ

c
, (4.6)

where f = ω
2π . Let us define

u = R sin θ cos φ, v = R sin θ sin φ. (4.7)

(4.3.1) is equivalent to

b(u, v, f ) =

(N−1)
2

∑
n1,n2=− (N−1)

2

w(n1, n2, f )e−j 2π
N (n1u+n2v) (4.8)

It is clearly seen that b(u, v, f ) is a 2-Dimensional (2D) Discrete Fourier transform
of w(n1, n2, f ) with respect to the variables n1, n2. Therefore, w(n1, n2, f ) is achieved
by applying inverse Fourier transform of b(u, v, f ). From now on, we use notation
b f (u, v) instead of using b(u, v, f ).

As presented in the equation (4.8), u, v are frequency indices in 2D frequency-
domain, therefore they are integer numbers. Intuitively, one can imagine that the
variables n1, n2 build planar grid points associated with grid points u, v in the Carte-
sian coordinate and every grid point in the u-v plane is associated with a sensor.

At a single frequency, R is constant, (4.7) is the formula transforming a surface
bR(θ, φ) in the spherical coordinate to a surface b f (u, v) in the Cartesian coordinate.
From this observation, we could propose a method to obtain the weights from a ref-
erence beam pattern. First, the reference beam pattern is translated to gain functions
in the spherical coordinate, and then the gain functions in the spherical coordinate
are transformed to the Cartesian coordinate. Finally, the inverse Fourier transform
is applied to achieve the weight vector of the uniform array.
Let B(θ, φ) be a reference beam pattern, below are some properties:

• In the spherical coordinate, radius R is proportional to frequency f (a single
value R is mapping with a single value f and vice versa).
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• A reference beam pattern B(θ, φ) is presented by different gain functions in the
spherical coordinate bR(θ, φ): Different radii R are associated with different
gain functions.

• A gain function in the spherical coordinate bR(θ, φ) is located in a hemisphere
with radius R (the gain values could be presented by the color on the surface
of the hemisphere, as shown in Fig. 4.2).

FIGURE 4.2: Example of gain functions associate with different fre-
quencies in the spherical coordinate: Concentric hemispheres with

different radii.

• b f (u, v) is the gain function in the Cartesian coordinate at frequency f , as
shown in Fig. 4.3. b f (u, v) is bR(θ, φ) after applying the coordinate transform.

FIGURE 4.3: A gain function in the Cartesian coordinate at a fre-
quency.

Note that, for the linear sensor array, the reference beam pattern is translated to
the polar coordinate system, and then, it is transformed to the Cartesian coordinate
system.

The FI beam pattern is assured if the coordinate transforms do not change the
gain function over frequency/radius of the hemisphere. Therefore, the radius in the
spherical coordinate should not be greater than the boundary of grid points in the
plan u-v and at least more than five grid points are inside the smallest hemisphere
(the smallest hemisphere associates with the lowest frequency), as shown in Fig. 4.4,

1 ≤ R ≤ (N − 1)
2

.

From (4.6), we have

1 ≤ f Nδ

c
≤ (N − 1)

2
,

c
Nδ
≤ f ≤ c(N − 1)

2Nδ
.

The origin of the Cartesian coordinate is always consolidated with a sensor’s posi-
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FIGURE 4.4: Sensor indices in the plan u-v of the Cartesian coordinate
and the radius of the hemispheres.

tion. For the case of N odd, the origin is at the center of the array. For the case of
N even, the origin is not at the center of the array, therefore the maximum radius is
(N−2)

2 . We yield the following constraints for both cases:{
mc
Nδ ≤ f ≤ c(N−2)

2Nδ , N is even,
mc
Nδ ≤ f ≤ c(N−1)

2Nδ , N is odd.
(4.9)

A parameter m ≥ 1 is introduced. If m = 1, the lower bound c
Nδ ≤ f is to assure

at least five u-v grid points inside the smallest hemisphere. If the reference beam
pattern has higher-order, it needs more than five values to encode its shape. There-
fore, the lower bound constraint could be set more strictly mc

Nδ ≤ f with m >> 1.
A simple way to express this is that the bigger m, the more grid points inside the
smallest hemisphere or the higher resolution of synthesized beam pattern at the low
frequencies.

In summary, the CT method consists of four steps that apply to all ωi ∈ Ω (some
examples of this method are given in [Son20]):

• Step 1: Define a reference beam pattern B(φ, θ).

• Step 2: At a single R, presenting the reference beam pattern B(φ, θ) to a gain
function bR(φ, θ) in the spherical coordinate.

• Step 3: Gain function in the Cartesian coordinate b f (u, v) is achieved by trans-
forming the surface bR(φ, θ) in the spherical coordinate to the Cartesian coor-
dinate.

• Step 4: Apply the inverse Fourier Transform for b f (u, v) to achieve w(ω).

After J iteratives for J frequencies in Ω, a weight matrix is obtained

WA = [w(ω1), w(ω2), ..., w(ωJ)].

The weight matrix achieved from this step decides the possibility of reducing the
amount of the sensors in the sparse array. Fig. 4.5(b) presents the weight spectrum
WA, which are discussed later in Section 4.5.3 ( 101× 101 sensors are rearranged into
the vertical of the matrix). If there are only some rows having energy dominate other
rows in the weight matrix, the reference beam pattern has a high potential to reduce a
lot of sensors in the sparse array. If the energy spectrum of the weight matrix spreads
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(A) Cross-cut of beam patterns across fre-
quency.

(B) Weight matrix.

(C) Dimensional reduction matrix (α =
0.98).

FIGURE 4.5: Planar array: Analyzing the DUA.

across the rows and columns, there is less chance to reduce the number of sensors
in the sparse array. Therefore, in general, using optimization techniques to find the
active sensors in this step may be inefficient. Note that designing a DUA in this
step uses less computation time than solving the optimization with sparse solutions,
since this coordinate transform (CT) method mainly uses coordinate transform and
inverse Fourier transform for its computation.

4.3.2 Selecting

Before choosing important sensors, one could apply the dimensional reduction algo-
rithm for the weight matrix to save the computation time of the selecting algorithm.
If WA is a rank-deficient matrix with decaying singular-values, using PCA is a good
option for dimensional reduction in terms of keeping the essential information. In
order to show that WA is not a full-rank matrix, one may look at the correlation
matrix of RA [Buc+18]:

RA = WH
A WA

of size J × J. If RA is low rank with decaying eigenvalues. Let σi, i = 1, ..., r be the
singular-values of matrix WA, where r denotes its rank, then λi = σ2

i , i = 1, ..., r are
the eigenvalues of matrix RA.
The input of the PCA algorithm is the weight matrix WA of size M× J. Define matrix
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WA to be the central version of WA:

WA(:, j) = WA(:, j)−mean(WA(:, j)), ∀j ∈ J

The output of the PCA algorithm is the dimensional reduction matrix,

WR = WAU,

where U is a matrix size J × L, containing L eigenvectors corresponding to L largest
eigenvalues, L << J.
The column dimension L of the matrix U is set according to the following criteria:
ith(i ≤ L) first eigenvalues of RA in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λL (if i > r,
then λi = 0) are selected which satisfy [Buc+18]:0.6 < α < 1,

α =
∑L

j=1 λj

∑J
j=1 λj

.

After having dimensional reduction of the weight matrix WR, as shown in Fig. 4.5(c),
we present the way to select the critical sensors. The selection follows two crite-
ria: Energy contribution in the weight matrix’s spectrum and minimize the error-
tolerance of the FI beam pattern.
Let SK1 be a subset containing indices of K1 sensors in the DUA which have the
strongest energy span over row of WR and let subset SK1 := {1, ..., M} \ SK1 be a
subset which contains the sensor indices in the DUA other than the sensor indices in
SK1 .
Let a spanning energy for a sensor be a sum of that sensor’s energy across the fre-
quency range, herein we use the dimensional reduction matrix as the input for the
spanning energy’s calculating,

εi = ‖WR(i, :)‖2 , i = 1, ..., M

and the maximum value of the spanning energy,

εmax = max(εi), i = 1, ..., M.

The set of sensors having spanning energy is greater than a threshold,

SK1 := {i : (εi > βεmax), i = 1, ..., M}, (4.10)

and the remaining sensors,

SK1 := {i : (εi ≤ βεmax), i = 1, ..., M},

where 0 < β < 1 is a spanning energy factor for the sparse array. If β is close to 0,
the sparse array is close to the DUA, it means more sensors from the DUA are taken.
If β is close to 1, the sparse array only takes a few most important sensors from the
DUA.

From SK1 , we then apply a clustering algorithm over the rows of WR(SK1 , :) to
categorize sensors in SK1 into K2 groups. Each group contains the sensors having
similar characteristics (similar pattern of the energy distributing over frequency).
K-means clustering algorithm [HW79], which minimizes the within-cluster sums of
point-to-centroid distances, is used. The sums of point-to-centroid distances could
present the gap between the sparse array and the DUA in terms of FI beam pattern.



4.3. Design Method 61

K-means algorithm divides (M−K1) sensors into K2 groups. The larger K2 leads
to the smaller sum of distances to centroids, which means the larger K2 is relative to
the smaller error between the beam pattern of the sparse array and the beam pattern
of the DUA. As will be mentioned again in Section 4.3.3, the setting of K2 is as big as
possible to approximate the reference beam pattern within a desired tolerance. For
each group, one or several representative sensors which are closest to their group’s
centroid are chosen [Buc+18] to add to the subset SK2 . If the grids of the DUA is
small enough, the discrepancy between the representative sensors and the centroid
of the group will be small. It is possible to have a large amount of sensors in the
DUA since it is the virtual sensor array. On the other hand, too many sensors in the
DUA increases the computation time in the Analysis and Selecting step.
Finally, the set SK is the union of the subset SK1 and the subset SK2 ,

SK = SK1 ∪ SK2 . (4.11)

K-means clustering algorithm does not guarantee to obtain the global minimum, its
solution depends on the initial groups. Hence, it is required to run the algorithm
multiple times with different initial conditions to find a good solution. However, it
is time-consuming to find a good solution with a large number of sensors. There-
fore, applying the stochastic techniques, such as the simulated annealing [PWV08]
or genetic algorithm [ES+18], for initial values of K-means clustering algorithm is a
good approach to reduce the running time and increase the chance to find the global
optimal solution.

4.3.3 Optimization

In the previous step, the K indices of the sparse array are determined by (4.11), but
the weights of these sensors are not determined. Now, the optimization techniques
are used to find their complex-valued weights.

The discretized angle spaces are made uniformly, and P directions ρi = (φiθi) ∈
Θ are introduced that cover the entire direction of the beam pattern. U out of P di-
rections are taken that cover the main-lobe region Θm, and letKm be a set containing
these directions,

Km = {ρ1, ρ2, ..., ρU)}

where superscript m stands for main-lobe. Similarly, Ks contains P −U directions
that cover the side-lobe region Θs is defined,

Ks = {ρU+1, ρU+2, ..., ρP}

where superscript s stands for side-lobe. A steering matrix over direction is the
matrix that contains the steering vectors over the angle space at an angular frequency
ωi is defined,

Dωi(Θ) = [d(ρ1, ωi), d(ρ2, ωi), ..., d(ρP, ωi)].

The steering matrix over direction for the main-lobe region Θm at the angular fre-
quency ωi: Dωi(Km

i ).
The steering matrix over direction for the side-lobe region Θs at the angular fre-
quency ωi: Dωi(Ks

i ).
The reference beam pattern for the main-lobe region Θm is a vector: bm

d .
The reference beam pattern for the side-lobe region Θs is a vector: bs

d.



62 Chapter 4. Sparse Arrays with Frequency-Independent Beam Pattern

The main-lobe constraints are given by,

C1 :
∥∥∥bm

d −DH
ωi
(Km)wS(ωi)

∥∥∥
2
≤ ε1(ωi), ∀ωi ∈ Ω.

The side-lobe constraints are given by,

C2 :
∥∥∥bs

d −DH
ωi
(Ks)wS(ωi)

∥∥∥
2
≤ ε2(ωi), ∀ωi ∈ Ω

where ε1(ωi), ε2(ωi) are the error-tolerances for the main-lobe and side-lobe, respec-
tively. As mentioned in the Analysis step, the sums of point-to-centroid distances is
correlated with ε1(ωi), ε2(ωi). The smaller the sums of point-to-centroid distances
is, the smaller ε1(ωi), ε2(ωi) could be set.
The distortion-less response constraint for the look direction S = (φ0, θ0) is given by,

C3 : wH
S (ωi)d(φ0, θ0, ωi) = 1, ∀ωi ∈ Ω.

The optimization may achieve the vector wS(ωi) containing the elements with a big
number. In such a scenario, the array is sensitive with white noise, therefore the
WNG constraint is also needed,

C4 : wH
S (ωi)wS(ωi) ≤ γ(ωi), ∀ωi ∈ Ω.

A reasonable choice is to minimize the white noise’s power C4, subject to the remain-
ing constraints C1, C2, C3 [Buc+18].

minimize
wS(ωi)

: wH
S (ωi)wS(ωi)

subject to∥∥∥bm
d −DH

ωi
(Km)wS(ωi)

∥∥∥
2
≤ ε1(ωi)∥∥∥bs

d −DH
ωi
(Ks

i )wS(ωi)
∥∥∥

2
≤ ε2(ωi)

wH
S (ωi)d(φ0, θ0, ωi) = 1

(4.12)

This is a convex optimization problem, it can be efficiently solved by using a MAT-
LAB toolbox, such as CVX [GBY09], [GB08].

4.4 Evaluation metrics

The synthesized pattern would be affected by some random errors in practical ar-
rays, such as position errors, excitation mismatch, non-ideal sensor characteristics.
As is well known, the WNG is a useful measure for the robustness against the ran-
dom errors. That is given by [Elk00],

W (wS(ω)) =

∣∣wH
S (ω) d(φ0, θ0, ω)

∣∣2
wH

S (ω)wS (ω)
.

Another important measure which qualifies the ability of the beamformer to sup-
press the diffuse noise is the DF [Elk00],

D(wS(ω)) =

∣∣wS(ω)Hd(φ0, θ0, ω)
∣∣2

wS(ω)HΓ(ω)wS(ω)H ,
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where Γ(ω) is the pseudo-coherence matrix of the diffuse noise field,

[Γ (ω)]i,j = sinc
(

ωdij

c

)
where dij is the distance between sensor ith and sensor jth.

In the case of diffuse noise, the noise energy is depended on the shape of the
beam pattern, if the beam patterns are almost identical then the DFs are also almost
identical. If the target of the design method is to approximate the synthesized beam
pattern to the reference beam pattern, so it is better to present a new measure which
can consider this objective. In this work, beam pattern error average (BPE) indicates
the average of the difference between the synthesized beam pattern br(ρi, ω) and the
desired beam pattern bd(ρi, ω) at a single angular frequency ω,

E(ω) =
∑ρi∈Θ |br(ρi, ω)− bd(ρi, ω)|

P
,

where P is the size of Θ. The ideal value of E(ω) is zero.

4.5 Numerical Simulations

In this section, three examples are provided. Example A is for the broad-side linear ar-
ray, the performances of the proposed method are compared with the performances
of the uniform arrays and coherence sparse array design in [Liu+15b]. Example B
is for the end-fire linear array, the performances of the proposed method are com-
pared with the performances of the uniform arrays and coherence sparse array de-
sign in [Buc+18]. Example C is for the planar array, the performances of the proposed
method are compared with the performances of the uniform arrays with a higher
number of sensors. In the remainder of this chapter, the blank area or disconnection
line in the figure means that the optimizations are infeasible.

4.5.1 Sparse Broad-side Linear Array

For comparison, a similar reference beam pattern used in [LW08], [Liu+15b] is taken.

Analysis Step

The reference beam pattern is defined,

b(θ) =
3

∑
m=−3

hme−jmπ sin θ ,

where the coefficients

{hm : m = −3, ..., 3} = [0.0307, 0.2028, 0.1663, 0.2004, 0.1663, 0.2028, 0.0307].

From (4.9), configuration of the DUA is selected: N = M = 101 sensors, δ =
0.01 meter, c = 340 m/s. The frequency range of the DUA which ensures FI beam-
former is given by,

mc
Nδ
≤ f ≤ c(N − 1)

2δN
, m ≥ 1

337m Hz ≤ f ≤ 16832 Hz, m ≥ 1.
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Herein, the frequency range Ω = {2.4 kHz, . . . , 12 kHz} of the coherence sparse ar-
ray design in [Liu+15b] is also used to select the important sensors. The beam pat-
tern of the DUA across frequency are presented in Fig. 4.6(a) and the corresponding
weight matrix spectrum is shown in Fig. 4.6(b). With α = 0.99, the dimensional
reduction of the weight matrix is presented in Fig. 4.6(c). In this figure, the vertical
axis is the sensor’s indices {1, 2, . . . , 100, 101}.

Selecting Step

(A) Cross-cut of beam patterns across fre-
quency.

(B) Weight matrix.

(C) Dimensional reduction matrix (α =
0.99).

FIGURE 4.6: Broad-side linear array: Analyzing the DUA.

Set β = 0.7, from (4.10) one sensor with index SK1 = {51} is chosen. The re-
maining sensors in the DUA are divided into K2 = 5 groups by K-means clustering
algorithm. In each group, two representative sensor which are closest to the centroid
of its group are chosen because we aim to design a symmetric array layout, that is,
the linear sparse array contains two symmetric halves. Then. we obtain the subset
SK2 = {12, 26, 31, 40, 45, 57, 62, 71, 76, 90}. Finally, the total number of sensors in new
sparse array is 11. For comparison, four array layouts having the same amount of
sensor M = 11 are considered, as shown in Fig. 4.7: The new sparse array (red cir-
cles) , small size uniform array (SUA) containing sensors located at close distances
(green circles), big size uniform array (BUA) containing sensors located at far dis-
tances (blue circle) and coherence sparse array design design (black *).
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FIGURE 4.7: The broad-side linear array deployments: proposed
symmetric sparse array (red circle), SUA (green circle) and BUA (blue

circle) and coherence sparse array design (black *).

Optimization Step

We run the simulation for two cases.

Case 1. beam pattern error-tolerances are relaxed.

The error-tolerances are selected to assure the acceptable FI beam pattern and the
optimizations are feasible for the proposed sparse array and coherence sparse array
design in the bandwidth of interest.
The main-lobe error-tolerances for θ ∈ [70o, 110o], ε1(ωi) = 0.006U, ∀ωi ∈ Ω.
The side-lobe error-tolerances for θ ∈ [0o, 70o) ∪ (120o, 180o], ε2(ωi) = 0.016(P −
U), ∀ωi ∈ Ω where P = 180 (the resolution of azimuth angle ∆θ = 1o), U = 41.
For comparison, the same error-tolerances apply to all sensor arrays. The synthe-

FIGURE 4.8: Broad-side linear array: The beam patterns versus fre-
quency.

sized beam patterns versus frequency are shown in Fig. 4.8. It is clearly seen that
the proposed sparse array, SUA and coherence sparse array design satisfy the FI
beam pattern constraints, while the BUA does not satisfy them (its optimization is
not feasible for some ωi ∈ Ω). There are the blank areas in Fig. 4.8(c) where the
optimizations in (4.12) are infeasible.

Fig. 4.9 depicts the synthesized beam patterns and the reference beam pattern
at 10 kHz. Note that the synthesized beam pattern in Fig. 4.9(c) is blank since the
optimization in (4.12) of the BUA is infeasible.
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FIGURE 4.9: Broad-side linear array: Beam patterns (dB) at 10 kHz
for different broad-band linear arrays, the optimization of the BUA

(c) is infeasible.

Fig. 4.10 shows the WNGs, DFs and BPEs of four array layouts (proposed sparse
array, SUA, BUA and incoherence sparse array design). The disconnection of the
blue line presents for the empty solution. The performances of the proposed sparse
array and coherence sparse array design are comparable in almost all aspects. More
specifically, the proposed sparse array is slightly better than the coherence sparse
array design in terms of the BPE.

Case 2. Beam pattern error-tolerances are strictly set.

If we set the side-lobe error-tolerances in (4.12) more strictly, ε2(ωi) = 0.01(P−
U), ∀ωi ∈ Ω which means the synthesized beam patterns and the reference beam
pattern is less (the nulls and side-lobes are preserved). For the coherence sparse ar-
ray design and SUA, the optimization in (4.12) becomes infeasible at some frequen-
cies, while for the proposed sparse array the optimization in (4.12) is still feasible for
the bandwidth of interest Ω, as shown in Fig. 4.11.

Although the proposed approach does not take the steering ability into account,
but it is worthy to observe how the sparse array responses to different look direc-
tions. Fig. 4.12 plots the beam patterns of new sparse array pointing to different
directions: (a) θ = 90o, (b) θ = 95o, (c) θ = 100o, (d) θ = 105o, (e) θ = 110o and
(f) θ = 115o. It is clearly seen that the shape of the main-lobe is always preserved.
However, the side-lobes suffer from the deformation, the side-lobe degradation is
more when the steering direction goes far away the broad-band direction.
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(A)

(B)

(C)

FIGURE 4.10: Side-lobe constraints are relaxed, the performance com-
parison of different broad-side linear array layouts (the disconnection

lines mean that the optimizations are infeasible).
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(A)

(B)

(C)

FIGURE 4.11: The side-lobe constraints are strictly set, the perfor-
mance comparison of different Broad-side linear array layouts.

4.5.2 Sparse End-fire Linear Array

For comparison, a similar reference beam pattern with the example in [Buc+18] is
used . The beam pattern of an Qth-order DMA is given by [Elk00]

b(θ) =
Q

∑
n=0

an cosn θ,
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FIGURE 4.12: Broad-side linear array: beam patterns (dB) at 10 kHz
for different look directions: (a) 90o, (b) 95o, (c) 100o, (d) 105o, (e) 110o,

(f) 115o.

where an, n = 0, ..., Q are coefficients.

Analysis Step

Let us define a third-order hypercardioid beam pattern

b(θ) = −0.14− 0.57cosθ + 0.57cos2θ + 1.14cos3θ.

From (4.9), the configuration for the DUA is selected, M = N = 141 sensors, δ =
0.01 meter, c = 340 m/s. The frequency range of the DUA is given by

mc
Nδ
≤ f ≤ c(N − 1)

2δN
, m ≥ 1,

241m Hz ≤ f ≤ 16879 Hz, m ≥ 1.

Let us design the sparse array with FI beam pattern at the bandwidth

Ω = {500 Hz, . . . , 6 kHz}.

We apply the CT method to get a weight matrix for DUA, as shown in Fig. 4.13(b).
With α = 0.99, Fig. 4.13(c) depicts the spectrum of dimensional reduced weight
matrix.

Selecting Step

For comparison, the setting parameters this step intends to obtain the same amount
of sensors with the incoherence sparse array design in [Buc+18]. The spanning en-
ergy threshold is set β = 0.5, then three sensors with indices SK1 = {70, 71, 72}
are chosen, the indices of sensor are shown in the vertical axis of Fig. 4.13(c). The
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(A) Cross-cut of beam patterns across fre-
quency.

(B) Weight matrix.

(C) Dimensional reduction matrix (α =
0.99).

FIGURE 4.13: End-fire linear array: Analyzing the DUA with broad-
band beamforming.

remaining sensors in the DUA are divided into K2 = 7 groups by the K-means clus-
tering algorithm. In each group, a representative sensor, which is closest with the
centroid of its group, is chosen. Then, the subset SK2 = {28, 53, 63, 67, 73, 77, 83} is
obtained. Finally, the proposed sparse array contains ten sensors. Fig. 4.14 presents
different array layouts: The proposed sparse array (red circle), SUA (green circle),
BUA (blue circle) and incoherence sparse array design (black *).

FIGURE 4.14: The end-fire linear array deployments: New sparse ar-
ray (red circle), SUA (green circle), BUA (blue circle) and incoherence

sparse array design (black *).

Optimization Step

We run the simulation for two cases.
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Case 1. Beam pattern error-tolerances are strictly set.

The constraint parameters are selected to assure the FI beam pattern and the
W ≥ −15 dB, ∀ωi ∈ Ω. The main-lobe error-tolerances for θ ∈ (120o, 180o], ε1(ωi) =
0.003U, ∀ωi ∈ Ω. The side-lobe error-tolerances for θ ∈ [0o, 120o], ε2(ωi) = 0.004(P−
U), ∀ωi ∈ Ω, where P = 180 (the resolution of the azimuth angle ∆θ = 1o),
U = 60.

The minimization problem in (4.12) is performed with the same error-tolerances
for the proposed sparse array, SUA, BUA and incoherence sparse array design. The
synthesized beam patterns versus frequency are shown in Fig. 4.15, and the beam
patterns at 1 kHz are shown in Fig. 4.16. Fig. 4.17 describes the WNGs, DFs, BPEs
over frequency. For the incoherence sparse array design and BUA, the optimizations
are infeasible at high frequencies. Both the proposed SA and SUA perform well
in terms of BPE, but the proposed sparse array achieves better WNGs at the low
frequencies, as shown in Fig. 4.17.

FIGURE 4.15: End-fire linear array: Beam patterns versus frequency.

Case 2. Beam pattern error-tolerances are relaxed.

In order to make the optimization for the incoherence sparse array design feasi-
ble for the bandwidth of interest, we relax the side-lobe, main-lobe error-tolerances.
The new main-lobe error-tolerances are set ε1(ωi) = 0.01U, ωi ≤ 2π5000, ωi ∈ Ω
and ε1(ωi) = 0.015U, ωi > 2π5000, ωi ∈ Ω. The new side-lobe error-tolerances
are set ε2(ωi) = 0.02(P − U), ωi ≤ 2π5000, ωi ∈ Ω and ε2(ωi) = 0.03(P −
U), ωi > 2π5000, ωi ∈ Ω. The new performances are shown in Fig. 4.18. The
proposed sparse array and incoherence sparse array design have the same perfor-
mances in terms of DF and BPE, however the proposed sparse array is better in
terms of WNG.
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FIGURE 4.16: End-fire linear array: Beam patterns at 1 kHz (for the
case the error tolerance of the BPE is strictly set). The optimization of

the BUA (c) is infeasible.

4.5.3 Planar Symmetric Sparse Array

This example focuses only on the proposed sparse array since for such a high num-
ber of potential sensors, other approaches are computationally intensive and hard
to find a feasible solution. The proposed approach ran on an i7-6700U CPU @ 3.4
GHz of INTEL with 32 GB ram and it took less than one second to find the sparse
array deployment as well as their beamformer coefficients. We compare the perfor-
mance of the sparse array with the other uniform arrays having higher the number
of sensors (81 sensors in the sparse array compares with 121 sensors in the SUA and
BUA).



4.5. Numerical Simulations 73

(A)

(B)

(C)

FIGURE 4.17: Beam pattern error-tolerances are strictly set, the per-
formance comparison of different end-fire linear array layouts.

Analysis Step

Define the reference beam pattern:

b(φ, θ) =

{
| sin(4.4θ)

4.4θ |, θ ∈ (0, π
2 ],

1, θ = 0.
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(A)

(B)

(C)

FIGURE 4.18: The beam pattern error-tolerances are relaxed, the per-
formance comparison of different end-fire linear array layouts.

From (4.9), the configuration of a DUA is selected: N = 101 sensors, M = 101×
101 sensors, δ = 0.01 meter, c = 340 m/s. The frequency range of the DUA is given
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by,
mc
Nδ
≤ f ≤ c(N − 1)

2δN
, m ≥ 1,

337m Hz ≤ f ≤ 16832 Hz, m ≥ 1.

Let us select the frequency range for the sparse array, Ω = {1 kHz, . . . , 4.5 kHz}. Ap-
plying the CT method and set α = 0.98, we yield the weight matrix and its dimen-
sional reduction showed in Fig. 4.5(b) and Fig. 4.5(c) in Section 4.3.1, respectively.

Selecting Step

Set β = 0.8 then we obtain K1 = 21 sensors. The remaining sensors in the DUA are
divided into 15 groups by K-means clustering algorithm. The iterative of K-means
clustering is 500 times for this example to find the acceptable solution. For the planar
sparse array, let us set the number of the representative sensors for one group to four
because we aim to design a symmetric array layout, that is, the planar sparse array
contains four quarters and the layout pattern in a quarter is symmetric with each
others. Finally, 60 sensors in SK2 are obtained and the total sensor in the sparse array
is 81, as shown by the red circle in Fig. 4.19.

FIGURE 4.19: Symmetric sparse array (81 sensors constitute an irreg-
ular layout but having four symmetric quarters), SUV (121 sensors)

and BUA (121 sensors).

Optimization Step

The main-lobe error-tolerances for the elevation angle space θ ∈ [0o, 30o], ε1(ωi) =
0.0002U, ∀ωi ∈ Ω and the side-lobe error-tolerances for the elevation angle space
θ ∈ (30o, 90o], ε2(ωi) = 0.0006(P − U), ∀ωi ∈ Ω where P = 90× 120 (the res-
olution of the elevation, azimuth angle are ∆θ = 1o, ∆φ = 3o, respectively), U =
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30× 120.
The beam patterns at 1.7 kHz and beam patterns versus frequency are shown in Fig.
4.20(a) and 4.20(b), respectively. Fig. 4.21 depicts the WNGs, DFs, BPEs over the

(A) Beam patterns. (B) Cross-cuts.

FIGURE 4.20: Planar array: (left column) beam patterns at 1.7 kHz
and (right column) their cross-sections over frequency.

frequency range. The optimization in (4.12) for the sparse array always gives the
solution in the bandwidth of interest, while the optimization for the SUA and the
BUA is infeasible at some frequencies, despite they have 40 sensors more.
Herein, a similar simulation applying to the broad-side linear array is performed to
examine the steering ability of the planar sparse array. It is noted that the spatial
aliasing problem of the planar array is more severe with the elevation angle beam
steering. Therefore, in this simulation, the look direction is fixed the azimuth angle
and only varied the elevation angle. Fig. 4.22 plots the beam patterns at 1.7 kHz.
Each beam pattern points to different look directions: (a) (θ, φ) = (0o, 180o), (b) (θ, φ)
= (5o, 180o), (c) (θ, φ) = (10o, 180o), (d) (θ, φ) = (15o, 180o), (e) (θ, φ) = (20o, 180o) and
(f) (θ, φ) = (25o, 180o). At look directions θ > 20o , the shape of beam pattern has
much deformation, especially for the side-lobes.
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(A)

(B)

(C)

FIGURE 4.21: Comparison of the performances of different planar ar-
ray layouts.
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FIGURE 4.22: Beam patterns (top view) at 1.7 kHz for different look
directions.

4.6 Conclusions

In this chapter, a new approach for the sparse array design via a hypothesized dense
and uniform array has been developed. The proposed method not only outperforms
other state-of-the-art methods in some aspects of beamforming, but it is also efficient
in computation time. Given a reference beam pattern, the chapter has also presented
a new method to design the broadband beamforming for a dense and uniform ar-
ray, and then the sparse array design analyses the weight matrix of the dense and
uniform array to identify the critical sensors. However, some parameters are empir-
ically set in the proposed approach, such as the number of the groups or the number
of representative sensors for each group. These settings need to be addressed in a
mathematical sense in future work. Furthermore, other common classification al-
gorithms such as the support vector machine or relevance vector machine could be
applied to identify the critical sensors instead of taking the closest sensors to the
group’s centroid of K-means clustering.
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Chapter 5

Irregular Microphone Array
Design for Broadband
Beamforming

Sparse microphone array design is receiving a great deal of attention, largely due to
the capacity to reduce the number of microphones without sacrificing much of the
array performance. However, in general, using a sparse array for broadband beam-
forming still requires a large number of microphones for a complex/higher-order
beam pattern, while a sparse array deployment is normally designed for a specific
beam pattern. This chapter aims to design a versatile sparse microphone array that
can be used for different beam patterns. Furthermore, we aim to reduce the number
of microphones in the sparse array while ensuring that its performance can continue
to compete with a highly dense and uniform array in terms of broadband beamform-
ing. An irregular microphone array in a planar surface with the maximum number
of distinct distances between the microphones is proposed. It is demonstrated that
the irregular microphone array is well-suited to the sparse recovery algorithms that
are used to reconstruct the sound sources. From the reconstructed sound sources, the
array interpolation method is presented to obtain an interpolated dense and uniform
microphone array that performs well with broadband beamforming. This chapter
covers the theoretical background of the method as well as the experimental results.

5.1 Introduction

Broadband beamforming techniques are important for numerous applications, in-
cluding microphone arrays, sonar arrays, radio astronomy and broadband radar.
The techniques allow for maintaining signal integrity and spatial selectivity over
a given frequency range and are widely used for audio signals where the band-
width of the signals extends to several octaves. A conventional approach involves
using a dense and uniform array (DUA) for broadband beamforming where the sen-
sors exhibit a close distance response for beamforming at high frequencies and a
far distance response for beamforming at low frequencies [DBWW95; Yan06; LW08;
WKW01; Nor+14; SC07; EMK09; Yan06; MSK09; LW10; VVB88]. In terms of acoustic
applications, the differential microphone array (DMA) is also widely used, largely
due to its compact size [Elk00; TE01; Buc02; Elk04]. Given that the principle of DMA
is based on the spatial derivatives of the acoustic pressure field, the inter-distance of
the sensors is much smaller than the acoustic wavelength.
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New approaches for broadband beamforming based on sparse arrays have been
proposed in recent studies. For a sparse array design, the target is to determine
the array layout as well as beamforming coefficients. Doblinger [Dob08] applied
the simulated annealing (SA) algorithm to determine an array layout where the cost
function of SA and the sensor coefficients were achieved through a superdirectivity
beamformer [Elk00]. Meanwhile, Marco Crocco[CT12] and Andrea Trucco [CT14]
also used the SA algorithm, but introduced more parameters in the cost function
to adjust the different beamformer characteristics, including the directivity factor,
the white noise gain, the side-lobe and the main-lobe. More recently, based on the
concept of compressed sensing (CS) [Boc+15; Mig14], Hawes and Liu [HL13] pro-
posed the application of the l1-norm to simultaneously ascertain the position of the
sensors and their coefficients. To extend the sparsity of the conventional l1-norm,
both Hawes and Liu [HL14] and Liu et al. [Liu+15b] applied a sequential l1-norm
method [CWB08] that iteratively reweights the conventional l1-norm to achieve so-
lutions that are closer to the sparse solution. Similarly, Yaakov et al. [Buc+18] also
applied the sequence l1-norm method to determine the positions of the sensors at
different narrow bands before merging these sub-arrays via a clustering algorithm
to obtain the final sparse array. Meanwhile, Phan [LS20] analyzed a hypothesized
DUA and applied a clustering algorithm to it to design the sparse array. While good
results have generally been reported, the state-of-the-art methods still require nu-
merous microphones, especially for the higher-order beam patterns. In other words,
the number of microphones is proportional to the complexity of the beam pattern.
Moreover, a sparse microphone array is generally designed for a specific beam pat-
tern, which limits the sparse arrays’ applications where the beam pattern needs to
be changed during the running time.

Suppose a signal is a sparse representation in a certain basis and that the matrix
is transforming this signal to another basis, compressed sensing is a method that can
be used to invert the transform. The inverse transform is unique if the transform ma-
trix has certain properties. Here, the restricted isometry constant (RIC) of a matrix is
an important aspect [Can+08; Bar+08] since it indicates the ability of preserving the
Euclidean distance of the transform and then determines the possibility and stability
of the inversion. In a given measurement system, a transformation matrix is the ma-
trix describing that system, which is generally a fat matrix (a fat matrix is the matrix
that has more columns than rows), since the point of interest is involving fewer mea-
surement points while ensuring there are enough to reconstruct the signal. In such a
case, the transformation matrix transfers the sparse signal from a high-dimensional
subspace to a lower-dimensional subspace. However, the restricted isometry con-
stants itself is difficult to verify, and we are generally interested in analyzing the
column coherence of the transformation matrix [Boc+15].

In terms of microphone arrays, if we wish to reconstruct a sparse sound source,
then the RIC will be related to the positions of the microphones. Therefore, in this
chapter, a rule for microphone array deployment is proposed, that is, maximizing
the number of distinct distances between the microphones, while assuring that the
distribution of the microphones in a plane is almost equal. Since the target function
does not have an explicit derivative, we must use the stochastic method to solve
this problem. Here, the simulated annealing algorithm [Tru01; MTR96] is selected.
The simulated annealing is an algorithm of approximating the global optimum, it
simulates the natural process of annealing in metallurgy, assuring that the searching
process is not trapped in a local minimum at the high temperature. As such, an
approximate global solution is obtained in reasonable running time, even in a large
search space.
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Meanwhile, due to physical ill-conditions of the system, the measurement ma-
trices at certain frequencies are ill-suited for the recovery algorithms, which means
determining the suitable sparse recovery algorithms for the transformation matrix
is also important. Among the numerous available algorithms such as iterative hard
threshold [BD08], subspace pursuit [DM09], Bayesian compressive sensing [WR04]
[JXC08], compressive sampling matching pursuit [NT09], basic pursuit [CDS01], and
orthogonal matching pursuit [TG07], we had to select the most suitable by verify-
ing them with the transformation matrix of the microphone array. Following this,
we present a method for obtaining the interpolated DUA based on the sparse sound
source. Finally, the broadband beamforming is performed on the interpolated DUA.
An overview of the method is presented in Fig. 5.1.

Irregular Mi-
crophone Array

Deployment

Sparse Sound
Source Re-

construction

Interpolated
Dense and

Uniform Array

Broadband
Beamforming

FIGURE 5.1: The steps of the proposed method.

We can briefly summarize the contributions of our work on broadband beam-
forming as follows.

1. We present a new perspective for design of the sparse array layout that is well-
posed for sparse recovery algorithms.

2. We verify different sparse recovery algorithms using our sparse array to deter-
mine the most suitable algorithm, while we also present certain properties of
the selected algorithm to explain its fitting.

3. We propose a simple approach to interpolate a DUA. This interpolation ap-
proach is compared to the least-square error (LSE) minimization approach in
the simulation and experiment sections.

4. In addition, we construct a real microphone array and conduct various exper-
iments to examine the performances of the constructed microphone array in a
reverberant room.

The remainder of this chapter is organized as follows. Section 5.2 presents the
signal model before section 5.3 describes the algorithms for the sparse array deploy-
ment, the sound source reconstruction, the DUA interpolation and the broadband
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beamforming. The numerical simulations and the experimental results are then pre-
sented in section 5.4 and section 5.5, respectively. Finally, conclusions are drawn in
section 5.6.

Notations: The bold uppercase and lower-case letters denote matrices and col-
umn vectors, respectively. (.)T and (.)H denote the transpose and Hermitian trans-
pose, respectively. j =

√
−1 is the imaginary unit. ‖.‖2 is the l2-norm. |.| for a

complex-value number is the amplitude operator, |.| for a set is the cardinality of
that set. C is the set of complex numbers.

5.2 Signal Model

In terms of the far-field signal, the sound impinging on the microphone array is a
planar wave. The plane of the array coincides with the X-Y plane of the Cartesian
coordinate. The position of a microphone in the Cartesian coordinate is given by

pi = [xpi , ypi , zpi ]
T, i = 1, ..., M

where M is the number of microphones in the array. For a planar array, zpi = 0 for
all i = 1, ..., M.

Let us suppose that there are N grid points corresponding to N directions that
cover the entire space. The direction of incident sound k is then presented by a vector

dk = −[sin θ cos φ, sin θ sin φ, cos θ]T

where φ, θ is the azimuth and elevation angle in the spherical coordinate system.
The incident sounds impinge on the array from multiple directions, and then the
sound pressure of a microphone in position pi at a frequency of f is estimated by

xi( f ) := x(pi, f ) =
N

∑
k=1

sk( f )e−
j2π f pT

i dk
c + ni( f ) (5.1)

where sk( f ) is a complex-valued number representing for the strength and phase of
an incident sound at the direction dk, c is the sound speed and ni( f ) is white Gaus-
sian noise with zero mean of the microphone at position pi, e.g., electrical noise,
mechanical imprecise, acoustic environment, .etc. For conciseness, we omit the vari-
able f in the remainder of the chapter wherever possible.

In three-dimensional space, we can uniformly discretize θ, φ to the grid of direc-
tions. Assuming the grid size is N = m1 × m2 (m1 grid points for θ and m2 grid
points for φ), we could assign the complex-valued numbers to all points in the grids
to form a sound source matrix (SSM) S with dimension of m1 ×m2. Then, S contains
the information of the sound sources in the working space.

If there are S sound sources impinging on the array, the SSM will contain S non-
zero elements and the remaining elements will be zero. A non-zero element is as-
sociated with an active incident sound and the information of that sound source is
encoded by a complex number. It is highly unlikely that at a given frequency the
array is impinged on by the incident sounds coming from all directions of the space
simultaneously. Hence, in an environment without noise/reverberation, the SSM is
generally a sparse matrix or the sparse SSM will stand for the sound sources at a
frequency after removing the noises.

In order to solve a optimization problem with a sparse solution constraint, we are
interested in working with a sparse vector. Hence, we vectorize the SSM to a sound
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source vector (SSV). The row in a SSM stacks on top of another row to construct a
vector s with size of N = m1 ×m2

s = vec(ST)

where vec(.) is the vectorization of a matrix, e.g., it can be implemented by the re-
shape function in Matlab: s = reshape(S′, [m1 ∗ m2, 1]), where S is a matrix size of
m1 ×m2.

In the CS framework, a vector is called S-sparse if the number of non-zero ele-
ments is not larger than S. From a geometrical point of view, an S-sparse vector
belongs to the set obtained by the union of all the (N

S ) = N!
S!(N−S)! S-dimensional

subspaces in CN . This set is called ΣS [Mig14].
From M microphones, the sound pressure at M points in the plane could be

measured. From (5.1), we can construct a linear relation between the SSV and the
measured signals

x = As + n, (5.2)

where x =


x1( f )
x2( f )
· · ·

xM( f )

 (x ∈ CM) is a vector that contains measured signals at the

frequency f ,

A =


e−

j2π f pT
1 d1

c · · · e−
j2π f pT

1 dN
c

e−
j2π f pT

2 d1
c · · · e−

j2π f pT
2 dN

c

· · · · · · · · ·

e−
j2π f pT

Md1
c · · · e−

j2π f pT
MdN

c


(A ∈ CM×N) is a transformation matrix at the frequency f , and n is the noise vector
(n ∈ CM).

The problem in (5.2) is a basic form of the CS framework. To recover the sparse
solution s, two aspects need to be considered: designing a transformation matrix
that is well-suited to the CS algorithms and determining a suitable sparse recovery
algorithms for that transformation matrix. Given the matrix entries are a function of
the position of the microphones, our method focuses on two aspects: the microphone
array deployment and suitable CS algorithms.

5.3 Design Irregular Microphone Array

5.3.1 Irregular Microphone Array Deployment

This section aims to construct a transformation matrix A that is well-suited to CS-
based techniques. As will be addressed in Section 5.3.2, the transformation matrix
should have a small column coherence [Boc+15]. It is equivalent to finding the mi-
crophone array layout with maximum degrees-of-freedom or maximizing the num-
ber of distinct distances between the microphones.

Let us discretize the possible position of the microphones in the planar surface
to M×M rectangular grid points and let us assume that the array has only M mi-
crophones allocated in these grid points. If the target function is to maximize the
degrees-of-freedom of the array, we need to search on (M2

M ) possible solutions. Since
an algorithm that can identify the best combination in a timely manner is not known,
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the probabilistic techniques are used to find the solution. In order to narrow the
search area, we propose a rule to restrict the position of a microphone. Here, the
grid points are divided into M segments, as shown in Fig. 5.2, each microphone is
restricted to be within one of the segments. This deployment manner not only en-
hances the search efficiency but also results in a reasonable deployment. This means
that even though the location of the microphones is somewhat random, the distri-
bution across the plane is almost equal, which avoids both small areas with a large
number of microphones and large areas with no microphone (this is the scenario of
the sparse array design using the Golumb-ruler method [Ras+11]). We call the new
constraint a distribution constraint. With the distribution constraint, we could reduce
the search space of the algorithm from (M2

M ) to M! possible solutions.

FIGURE 5.2: Segment layout for microphones.

FIGURE 5.3: The possible positions of microphones in a segment.

For example, where M = 25, every segment has 25 positions that are uniformly
distributed over the X and Y axis, as shown in Fig. 5.3. One out of the 25 positions is
randomly selected for the placement of one microphone. The position of the micro-
phone in different segments will be different. We could assign a number between 1
to 25 to indicate the position of the microphone in a given segment. As such, the list
containing the sequence of 25 numbers could describe the array deployment with 25
microphones.

We used the simulated annealing algorithm with the cost function of maximizing
the number of distinct distances between the microphones in the array subject to the
distribution constraint. In each iteration step, the algorithm inherits a good array
deployment from previous step and a permutation on the sequence encoding for the



5.3. Design Irregular Microphone Array 85

array deployment occurs to generate a new array deployment which is close to the
current array deployment. If the permuted sequence is better than the current one,
it is always accepted as the good sequence which is used in the next iteration. If
not, the permuted sequence is accepted with a probability that is high at the high
temperatures and vice versa. Herein, a permutation is a random selection of two
numbers in the sequence and swapping their positions. For example, a sequence of

{1, 2, 3, 4, 5, 6, 7, 8, 13, 10, 11, 12, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

is the permutation of the sequence of

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}.

The number of distinct distances between the microphones is defined in (5.4).

Algorithm 1 Simulated annealing for array deployment

Input: randomly choose a sequence of number Lr
1: select start temperature T0
2: k = 1
3: repeat
4: reduce T at each iteration T = T0/k
5: repeat
6: Lp is the permuted sequence of Lr
7: compute the number of distinct distances between the microphones in the

array Bk by using (5.4)
8: compute the cost function Cnew = Bmax − Bk
9: δC = Cnew − Cold

10: select random number x ∈ [0, 1]
11: if δC < 0 or x < e−δC/T then
12: Cold = Cnew
13: Lr = Lp
14: end if
15: until Np permutations
16: k = k + 1
17: until Ni iterations
Output: Lr.

The procedure of simulated annealing is list in Algorithm 1 (the Matlab code
is provided in Appendix C). Given the number of microphones M, the maximum
possible of the number of distinct distances between the microphones in the array is
Bmax = (M

2 ) and the number of distinct distances between the microphones at the kth

iteration is Bk. In order to update Bk, we need to calculate the distances between the
microphones in the array as follows:

D = {dil : dil =
√
(xpi − xpl )

2 + (ypi − ypl )
2,

∀i, l ∈ 1, . . . , M, i 6= l} (5.3)

where (xpi , ypi) is the position of microphone i in the layout Lp. For example, in
Fig. 5.4, with Lp(5) = 10, the position of microphone 5 is (xp5 , yp5) = (25, 1). We
group the distances in D which have close values and only select one distance as the
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representative distance to form a subset Dk. That can be formulated by

Bk = maximize
Dk

: |Dk|

subject to
Dk ⊆ D

|di − dl | ≥ ed, ∀di, dl ∈ Dk

(5.4)

where ed is a small number used to round the fractional value of the distance. For
the sake of simplicity, we solve (5.4) approximately, that is, we round the distances in
the set D to obtain the subset Dk, e.g. ed = 0.01 and dH = 0.01 m, then Dk is obtained
by rounding the distance in D with the resolution of 0.01 cm. Then, the cost function
of the simulated annealing at the kth iterative is defined as

Ck = Bmax − Bk. (5.5)

By selecting an appropriate starting temperature T0, the cool down phase of the
simulated annealing algorithm is slow enough to potentially achieve a global mini-
mum.

After running the simulated annealing algorithm with the parameters Ni = 5
(number of steps associated with reducing the temperature), Np = 100000 (num-
ber of steps associated with the permutation), T0 = 1 and ed = 0.01, we obtain the
position of the 25 microphones in Fig. 5.4 corresponding the sequence of numbers

L = {12, 5, 2, 13, 10, 17, 6, 9, 3, 19, 8, 4, 22, 20, 1, 24, 11, 15, 23, 18, 16, 21, 14, 7, 25}.

FIGURE 5.4: The final layout of irregular microphone array.
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For the equidistance of sensors dH = 1 cm, the histogram of the distances be-
tween the microphones is presented in Fig. 5.5 where the total number of the dis-
tinct distances is Bk = 189. Meanwhile, the updated cost function of the simulated
annealing over the iterations is present in Fig. 5.6.

FIGURE 5.5: The histogram of distinct distances of the microphone
array in Fig. 5.4.

FIGURE 5.6: The updated cost values of the simulated annealing over
the iterations.

Consider the irregular array archived by the simulated annealing, the spectrum
of the real and imaginary part of the transformation matrix at 2.532 kHz are pre-
sented in Fig. 5.7 and Fig. 5.8, respectively. The X-axis from 1 to N is the direction
index where N = m1 × m2 = 30× 120 = 3600, while the Y-axis from 1 to M is the
microphone index where M = 25.
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FIGURE 5.7: The spectrum of the real part of the transformation ma-
trix at 2.532 kHz of the irregular array (25 microphones). The X-axis
from 1 to N is the direction index where N = m1 ×m2 = 30× 120 =
3600, while the Y-axis from 1 to M is the microphone index where

M = 25.

FIGURE 5.8: The imaginary part of the transformation matrix at 2.532
kHz of the irregular array (25 microphones). The X-axis from 1 to N
is the direction index where N = m1 ×m2 = 30× 120 = 3600, while

the Y-axis from 1 to M is the microphone index where M = 25.

For comparison, we also construct the transformation matrix for a planar uni-
form array with 25 microphones. The spectra of the real and imaginary parts of
the uniform array’s transformation matrix at 2.532 kHz are shown in Fig. 5.9 and
Fig. 5.10, respectively. The figures show that the transformation matrix of the ir-
regular array exhibited more random/low column coherence than the transforma-
tion matrix of the uniform array. More specifically, columns of A of irregular array
and uniform array are taken randomly to form submatrices, then, with 10000 Monte
Carlo trials, the maximum columns’ coherence of submatrices are plotted Fig. 5.11
where the X-axis is the number of the selected columns (S-sparse).

By maximizing the degrees-of-freedom of the irregular microphone array, we
increase the incoherence of the columns of A. This results in increasing the stability
of the sparse recovery algorithms, which is further elaborated on in section 5.3.2.

5.3.2 Recovery Algorithms for Sound Source Reconstruction

Before presenting the algorithm for sparse sound source reconstruction, we define
some notations as follows.
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FIGURE 5.9: The spectrum of the real part of the transformation ma-
trix at 2.532 kHz of the uniform array (25 microphones). The X-axis
from 1 to N is the direction index where N = m1 ×m2 = 30× 120 =
3600, while the Y-axis from 1 to M is the microphone index where

M = 25.

FIGURE 5.10: The spectrum of the imaginary part of the transfor-
mation matrix at 2.532 kHz of the uniform array (25 microphones).
The X-axis from 1 to N is the direction index where N = m1 ×m2 =
30× 120 = 3600, while the Y-axis from 1 to M is the microphone index

where M = 25.

Definition 1. A support-set T is a set of indices corresponding to the non-zero components
in a vector s,

T := {i : si 6= 0}. (5.6)

Definition 2. The complement of the support-set T is

T̄ := {i : si = 0}. (5.7)

Definition 3. sT is a vector formed by T elements of the vector s and AT is a matrix formed
by T columns of the matrix A.

Definition 4. The pseudo-inverse of matrix A is given by

pinv(A) = (AHA)−1AH. (5.8)

Definition 5. A residual vector of vector x to the column space of AT is given by

r := resid(x, AT) = x−ATpinv(AT)x. (5.9)
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FIGURE 5.11: Analyzing the maximum columns’ coherence of sub-
matrices of the transformation matrix.

Definition 6. The function max_indices(s) returns indices corresponding to the largest
amplitude components in the vector s, if Tmax = max_indices(s) then

Tmax := {l : |sl | ≥ |si|, ∀i ∈ N} (5.10)

where N is the size of s.

The transformation matrix A in (5.2) is deemed to satisfy the RIC δS(δS ∈ (0, 1))
if δS is the smallest constant such that for every x ∈ ΣS,

(1− δS)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δS)‖x‖2
2. (5.11)

Intuitively, δS measures “how well" the columns of AS for all S ⊆ {1, . . . , N} and
|S| = S (matrix AS is defined in Definition 3) forms approximately an orthonormal
system [Mig14]. Equivalently, δS requires that the eigenvalue of any matrix AH

S AS

are within 1− δS and 1 + δS so that all AH
S AS are close to an isometric.

In general, it is difficult to check whether or not A satisfies the RIC δS. Another
property of A, which is easily verifiable and also ensures good recovery guarantees,
is the coherence of the columns of A. As can be observed in the Gram matrix of the
column vectors of A in Fig. 5.12, several columns of A are highly coherent with some
other columns in A. This is especially the case with columns associated with azimuth
angles that are close together, where the high coherence or columns associated with
elevation angles close to zero (broad-side direction) also exhibited high coherence.
Therefore, it is predicted that the basic pursuit algorithm ( l1-norm minimization) is
not suitable for this system.

In CS, many algorithms could be applied to the under-determined system (5.2),
including iterative hard threshold, subspace pursuit, Bayesian compressive sens-
ing, compressive sampling matching pursuit, orthogonal matching pursuit, and ba-
sic pursuit. Here, we would select the orthogonal matching pursuit algorithm due
to the following reasons. The algorithm requires less computation time than other
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FIGURE 5.12: Spectrum of the Gram matrix (AHA), the axes’ values
from 1 to N are the direction index where N = m1×m2 = 30× 120 =

3600.

methods. The orthogonal matching pursuit can reliably recover a signal with S-
sparse in dimension N with M measurements with the total complexity O(SMN)
[TG07], and it presents robustness against the transformation matrix with a high
restricted isometry constants.

For comparison of the sparse recovery algorithms, we simulate three active sound
sources at 2532.3 Hz impinging on the array in Fig. 5.4 with an inter-distance dH =
0.015 m: the 1st active source comes from the direction (φ, θ) = (80o, 30o), which has
an amplitude of 1 and a phase of 60o; the 2nd active source comes from the direction
(φ, θ) = (230o, 50o), which has an amplitude of 0.7 and a phase of 45o; the 3rd active
source comes from the direction (φ, θ) = (180o, 60o), which has an amplitude of 0.5
and a phase of 35o. The simulated sound source spectrum is presented in Fig.5.13.

FIGURE 5.13: The simulated sound sources impinge on the array: The
X-axis is the elevation angle with the range of (0o, 900), the Y-axis is
the azimuth angle with the range of (0o, 360o) and the Z-axis is the

amplitude of the active sounds.

The signal-to-noise ratio (SNR) is 20 dB. Fig. 5.14 presents the reconstructed
sound sources of iterative hard threshold (IHT), subspace pursuit (SP), Bayesian
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compressive sensing (BCS), compressive sampling matching pursuit (CoSaMP), or-
thogonal matching pursuit (OMP) and basic pursuit (BP).

FIGURE 5.14: Comparison of sparse recovery algorithms for the
sound source reconstruction: X-axis is the elevation angle with the
range (0o, 900), Y-axis is the azimuth angle with the range (0o, 360o)

and Z-axis is the amplitude of active sounds.

To visualize the sparse data, the reconstructed sound sources in Fig. 5.14 are vec-
torized and depicted in Fig. 5.15. The ‘black line’ is the simulated sound sources, the
‘cyan line’ is the sound source reconstruction via the basic pursuit, the ‘red line’ is the
sound source reconstruction via the orthogonal matching pursuit, the ‘yellow line’ is
the sound source reconstruction via the compressive sampling matching pursuit, the
‘green line’ is the sound source reconstruction via the Bayesian compressive sensing,
the ‘blue line’ is the sound source reconstruction via the subspace pursuit and the
‘magenta line’ is the sound source reconstruction via the iterative hard threshold.

Among all the algorithms, the orthogonal matching pursuit and Bayesian com-
pressive sensing present the most superior performance. Furthermore, their sound
source reconstructions are close to the simulated sound sources. However, the Bayesian
compressive sensing results are strongly affected by the user-defined parameter, for
example the variance of Gaussian noise, and the computational cost of the Bayesian
compressive sensing is higher than that of the orthogonal matching pursuit. More
precisely, the orthogonal matching pursuit yields a better performance than the
Bayesian compressive sensing in terms of low energy active sources’ estimation, as
shown in Fig. 5.15: the ‘red line’ is almost identical with the ‘black line’, while the
spareness of the ‘green line’ deviates from the sparseness of the ‘black line’ at the
pulse with a small amplitude.

The orthogonal matching pursuit algorithm is thus selected for the sound source
reconstruction. Certain properties of the orthogonal matching pursuit can be out-
lined to explain its superior performance. In each iteration step of the orthogonal
matching pursuit, only one reliable component is added into the support-set Tk.
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FIGURE 5.15: Comparison of sparse recovery algorithms.

This procedure indeed works well with the transformation matrix A. Since A con-
tains some columns with high coherence to others, if more than one component is
newly taken, some unreliable components will be added to the support-set Tk. Once
the support-set Tk contains the wrong components, the residual vector rk that is per-
pendicular to the subspace spanned by column vectors of ATk will no longer be
reliable. Then, in the next iteration, the procedure for identifying next active com-
ponents will involve with an unreliable input (the residual vector), which means its
outcome will no longer be reliable. However, this unexpected behavior does not
occur if only one component is taken in each iteration. For example, at the first iter-
ation, only the most reliable component is selected, then the residual vector r1 is or-
thogonal with a reliable subspace spanned by the column vectors of AT1 . Therefore,
in the next iteration, the next reliable component is taken successfully. Inductively, a
reliable support-set is always maintained (even in the case where the transformation
matrix A has the high column coherence).

Algorithm 2 Orthogonal matching pursuit

Input: A, x, Kmax, ε
Initialization :

1: T0 = ∅
2: r0 = x
3: k = 0

Repeat
4: k = k + 1
5: Tmax = max_indices(AHrk−1, 1)
6: Tk = Tk−1 ∪Tmax
7: rk = resid(x, ATk)

Until (‖rk‖2 ≥ ε ‖r0‖2) and (k < Kmax)
Output: ŝ s.t ŝTk = pinv(AT)x and ŝT̄k

= 0.
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The procedure of orthogonal matching pursuit for the sparse sound source re-
construction is listed in Algorithm 2 where ε is the acceptance error value, Kmax is
the maximum number of iterations, Tk is the support-set of s at the iteration k, rk is
the residual vector at the iteration k and ŝ is the sparse sound source estimation. The
Matlab code is provided in Appendix D.

5.3.3 Microphone Interpolation

Suppose that we have successfully estimated the sound source vector ŝ from the ir-
regular microphone array, then it is possible to estimate the sound pressure at any
point in the space. The interpolation of sound pressure at point px is the superposi-
tion of the active sounds’ propagation,

x̂(px, f ) =
N

∑
k=1

ŝk( f )e−
j2π f pT

x dk
c (5.12)

where ŝk( f ) is the kth element of ŝ.
In our method, we apply this interpolation for all the grid points M × M other

than the real microphone positions. Finally, from M microphones, we are able to
estimate the sound pressure at M×M points, which means we have an interpolated
DUA.

5.3.4 Broadband Beamforming for Dense and Uniform Array

We need to determine the sensor coefficients for the interpolated DUA which sat-
isfy the frequency-independent beam pattern. We refer to the coordinate transform
method presented in Chapter 3, which comprises four steps for every frequency f :

• Step 1: define a reference beam pattern bre f (φ, θ)

• Step 2: consider radius R = f MdH
c , presenting the reference beam pattern to a

gain function bR(φ, θ) in the spherical coordinate

• Step 3: gain function in the Cartesian coordinate b f (u, v) is achieved by trans-
forming the surface bR(φ, θ) in the spherical coordinate to the Cartesian coor-
dinate

• Step 4: apply inverse Fourier transform of b f (u, v) to achieve w( f )

where dH is the distance of the grids, w( f ) is the weight values of the array at fre-
quency f .

5.4 Numerical Simulations

In this section, we introduce a parameter for evaluating the frequency-independent
characteristic. A beam pattern error indicating the average of the difference between
the real BP br(ρi, f ) and the desired BP bd(ρi, f ) at f is defined by [LS20]

E( f ) =
∑ρi∈Θ |br(ρi, f )− bd(ρi, f )|

P
(5.13)

where Θ is the operating space of the beamforming and P is the size of Θ. Ideally,
the value of E(ω) is zero.
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For comparison, a similar reference beam pattern of the sparse array design in
[LS20] is examined:

bre f (φ, θ) =

{
| sin(απθ)

απθ |, θ ∈ (0, π
2 ], α = 4.4

π ,
1, θ = 0.

(5.14)

We simulate a sound source at a certain direction impinging on the irregular
microphone array (the inter-distance of the grid points dH = 0.015 m), it is shown
in Fig. 5.4. Here, the direction of sound sweeps over the entire space. During the
sweeping process, we could solve the problem in (5.2) via the OMP to reconstruct
the sound sources. An example of the solution of the equation (5.2) at 4 kHz is
presented in Fig. 5.16. Next, we apply the equation (5.12) with the reconstructed
sound sources to obtain the interpolated DUA. Finally, we perform the beamforming
for the interpolated DUA and verify its beam patterns.

FIGURE 5.16: The reconstructed incident sound by the OMP: X-axis is
the elevation angle, Y-axis is the azimuth angle, Z-axis is the strength

of the incident sound.

In comparison with other sound source reconstruction methods, we also recon-
struct the sound sources by applying the LSE minimization to solve the equation
(5.2),

ŝ = pinv(A)x. (5.15)

Similar to what occurred with the simulation of the OMP algorithm, an incident
sound is sweeping over the whole space. The sound source spectrum of the LSE
minimization method is shown in Fig. 5.17. This reconstructed sound sources is not
sparse, even in a noiseless scenario.

In terms of the OMP algorithm, Fig. 5.18 and Fig. 5.19 present the simulation
results of two cases, noiseless and white noise (SNR = 20 dB), respectively. In each
case, the figure presents the beam patterns of the irregular microphone array (left)
and the DUA (right) at different frequencies: 2 kHz, 4 kHz, 8 kHz and 10 kHz.

Following the LSE (l2-norm) minimization, the beam patterns are obtained, as
presented in Fig. 5.20 and Fig. 5.21 for the noiseless and white noise cases, respec-
tively.

The comparisons of the beam pattern error are presented in Table 5.1. The table
includes the beam pattern errors at the different frequencies (2 kHz, 4 kHz, 8 kHz
and 10 kHz) for two cases, noiseless and white noise (SNR = 20 dB). Clearly, the
LSE minimization fails to interpolate the DUA at the middle and high frequencies.
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FIGURE 5.17: The reconstructed incident sounds by the l2-norm: the
X-axis is the elevation angle, the Y-axis is the azimuth angle and the

Z-axis is the strength of the incident sound.

FIGURE 5.18: In the case of noiseless, using the OMP algorithm for
the sound source reconstruction: Beam pattern of the irregular mi-
crophone array (left) and beam pattern of the full microphone array

(right).

Even though its norm of the error in the equation (5.2) (it is minimum mean square
error) is smaller than that of the OMP, the technique does not present the physical
characteristics of the simulated sound sources. For the OMP algorithm, the beam
patterns of the irregular microphone array can compete with the beam patterns of
the DUA for all frequencies, which means that the sound source estimation obtained
by the OMP algorithm is good enough to interpolate the DUA. In the case of white
noise, the irregular microphone array even outperforms the DUA, which is because,
if the sound source is estimated by sparse-algorithms, then estimated sound field
doesn’t take the white noise into account. It leads to the interpolated signal is a
noise reduction signal. That is illustrated in the equations (5.1) and (5.12) where the
noise term of (5.1) doesn’t presented in (5.12).

In comparison with the sparse array design in [LS20], the irregular array requires
fewer microphones, that is, 25 microphones compared to 81 microphones, while its
frequency-independent beam pattern characteristic is better.
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FIGURE 5.19: In the case of white noise, SNR = 20 dB, using the OMP
algorithm for the sound source reconstruction: Beam pattern of the
irregular microphone array (left) and beam pattern of the full micro-

phone array (right).

FIGURE 5.20: In the case of noiseless, using LSE minimization for
the sound source reconstruction: Beam patterns of the irregular array

(left) and beam patterns of the DUA (right).

5.5 Experimental Results

The proposed irregular microphone array is examined in an office room with di-
mensions of 3.5 × 6 × 3 m3. Here, 25 Adafruit I2S Micro-Electro-Mechanical Sys-
tems (MEMS) microphone boards are used to build the irregular microphone array
in Fig. 5.4 (the inter-distance of the grid points dH = 0.015 m), and one additional
MEMS microphone board is used for verification purpose. The position of the ver-
ification microphone (microphone 26) is at [−0.205, 0.08, 0] m in the Cartesian coor-
dinate.

The MEMS microphone board is equipped with SPH0645LM4H-B MEMS micro-
phone by Knowles: omnidirection, standard 24-bit I2S format, 65 dB SNR, up to 64
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FIGURE 5.21: In the case of white noise, SNR = 20 dB, using LSE
minimization for the sound source reconstruction: Beam patterns of

the irregular array (left) and beam patterns of the DUA (right).

TABLE 5.1: BEAM PATTERN ERROR

Frequency
2 kHz 4 kHz 8 kHz 10 kHz

OMP 0.0697 0.0388 0.0239 0.0226
DUA 0.0616 0.0306 0.0132 0.0112
LSE 0.0694 0.2008 0.2609 0.2746

OMP(noise) 0.0698 0.0389 0.0241 0.0227
DUA(noise) 0.0622 0.0382 0.0416 0.0503
LSE(noise) 0.0695 0.2008 0.2609 0.2746

kHz sampling frequency. DSP56725 chip by NXP is used to record all 26 MEMS
microphones. The audio signals are processed with DC-removal and are streamed
out via a TDM 30 channels 32 kHz sample frequency, 32-bit PCM (four channels are
unused). A Beaglebone-Black board is used to record the TDM 30 channels from the
DSP56725 by using the multichannel audio serial port in the AM3358 (Arm Cortex-
A8 by Texas Instruments).

5.5.1 Experiment 1

A sound source at the direction (φ, θ) = (0o, 90o) impinged on the irregular micro-
phone array for five seconds, which contains the normal speech and a hand-clapping
sound, as shown in Fig. 5.23. All the recorded signals were partitioned into overlap-
ping frames with a frame size of 128 and an overlapping factor of 50%. A Hanning
window was then applied to each frame. The windowed frame signal was added
with 64 zero-padding in the head and tail before being transformed into the short-
time Fourier transform (STFT) domain using a 256-point fast Fourier transform.

For comparison, the sound source reconstructions were computed offline in two
cases: the OMP algorithm with Kmax = 6 and the LSE minimization algorithm. Note
that if Kmax = 25 and ε ≈ 0, then the OMP algorithm is equivalent to the l2-norm
algorithm. Due to the limitation of the hardware (Processor: Intel(R) Core(TM)
i7-6500U CPU@2.5GHz(4CPUs), Ram: 8Gb), we restricted the size of SSV to N =
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FIGURE 5.22: Experiment with the microphone array in Fig. 5.4.

FIGURE 5.23: Spectrogram and waveform of the audio signal from
microphone 5. The horizontal axis is the time, the vertical axis of the
top and bottom figures are the frequency and amplitude, respectively.

m1 ×m2 = 5× 60 = 300. After the reconstructed sound sources were obtained, we
applied formula (5.12) to interpolate the audio signal at the position of the verifica-
tion microphone. The audio spectra of the real microphones and the interpolated
microphones are shown in Fig. 5.24. Here, audio from the microphone 5 is on the
top, with the verification microphone audio (microphone 26) below, followed by the
interpolated microphone via the OMP algorithm, and, at the bottom, the interpo-
lated microphone via LSE minimization algorithm. We applied our algorithms for
the frequencies form 200 Hz to 15 kHz.

A part of the audio signals (the hand-clapping sound) is showed in Fig. 5.25.
Here, audio from microphone 5 is on the top, with the verification microphone be-
low, followed by the interpolated microphone via the OMP algorithm, and, at the
bottom, the interpolated microphone via the LSE minimization algorithm.

By comparing the spectra and the waveform of the interpolated audio signals in
Fig. 5.24 and Fig. 5.25, it becomes clearly that the interpolated signal achieved by the
sparse sound source reconstruction (OMP) is almost identical with the verification
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FIGURE 5.24: Spectra of the signals (from top to bottom of the figure):
microphone 5, microphone 26, interpolated audio via the OMP, and
interpolated audio via the LSE (l2-norm). The horizontal axes are the

time (s), the vertical axes are the frequency (kHz).

FIGURE 5.25: Waveform of the signals (from top to bottom of the
figure): microphone 5, verification microphone, interpolated micro-
phone via the OMP, and interpolated microphone via the LSE (l2-
norm). The horizontal axes are the time (s), the vertical axes are the

amplitude.

signal. The delay and the amplitude of the signal are estimated successfully, which
assures the interpolated signals can replace the real signals in the DUA to perform
the beamforming, while the LSE minimization algorithm deteriorates the audio sig-
nal at the verification point, especially at middle and high frequencies (consistent
with the results of the simulation in Section 5.4). In summary, the sound source re-
construction via the LSE minimization algorithm is unsuitable for interpolating the
audio signal.

More specifically, Fig. 5.25 shows, the interpolated signal from the OMP gener-
ates the artifact at the place immediately before the clapping sound, which results
from the audio signal’s frame partition for carrying out the STFT. The reconstructed



5.5. Experimental Results 101

sound sources were solved independently at every frame, meaning the interpolated
signal of a frame cannot be certain to synchronize in phase/amplitude with the in-
terpolated signal of the adjacent frames, especially for the pulse signal (which is
asynchronous to the frame). The length of the artifact will be varied depending on
the size of the frame. This is the main disadvantage of the method presented in this
chapter, and the author has yet to identify the solution to this issue. Fortunately,
this artifact is mitigated when applying the beamforming to the signals (shown in
the bottom of Fig. 5.26), since the artifact at an interpolated microphone is a random
noise, which means the beamforming could suppress this form of noise. As Fig. 5.26
shows, we carried out the interpolation for 25× 25 microphones before the beam-
forming for the interpolated DUA was applied (the steering angle is the direction of
the sound source).

FIGURE 5.26: Waveform of the signals (from top to bottom of the fig-
ure): microphone 5, microphone 26 (verification microphone), inter-
polated microphone by the OMP, and beamforming. The horizontal

axes are the time (s), the vertical axes are the amplitude.

In order to verify the function of beamforming, we applied the beamformings for
the interpolated DUA, which steer to (φ, θ) = (0o, 90o) (the direction of the source
source) and (φ, θ) = (180o, 90o) (the inverted direction of the source source). The
results are shown in Fig 5.27 and Fig. 5.28, where the waveform and spectrum of mi-
crophone 5, the beamforming signal toward (φ, θ) = (0o, 90o) and the beamforming
signal toward (φ, θ) = (180o, 90o) are presented.

It is clearly seen that beamforming toward the source of interest could preserve
the signal of the sound source, while beamforming toward another direction will
suppress the signal of the sound source, and reverberation is reduced in both cases.
In this experiment, we aimed to verify the signals of the interpolated microphones
and their conjunction with broadband beamforming. The properties of the beam
pattern have to be verified by using an anechoic room, which was not covered here.

5.5.2 Experiment 2

Speaker 1 at the direction (φ, θ) = (0o, 0o) played the sound, while a person at the
direction (φ, θ) = (80o, 180o) (interference sound) also spoke into the microphone
array. We carried out the interpolation for the DUA with the sparse sound source
reconstruction, before applying the beamforming steering in the direction of speaker
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FIGURE 5.27: Waveform of the signals (from top to bottom of the
figure): microphone 5, the beam signal steers to the direction of the
source of interest, and the beam signal steers to the inverted direc-
tion of the source of interest. The horizontal axes are the time (s), the

vertical axes are the amplitude.

FIGURE 5.28: Spectrogram of the signals (from top to bottom of the
figure): microphone 5, beam signal steers to direction of source of
interest, and the beam signal steers to the inverted direction of the
source of interest. The horizontal axes are the time (s), the vertical

axes are the frequency (kHz).

1 (φ, θ) = (0o, 0o) and comparing the beamforming signal in relation to the signal of
a microphone.

As presented in Fig. 5.29, beamforming improves the quality of signal of interest
while suppressing the interference sound, even in the case of overlapping speech
between the source of interest and interference (zone 1, 2 in Fig. 5.29). It should be
noted that testing was performed in a reverberant room.

From the results of the simulations and experiments, it was demonstrated that
the proposed interpolation method successfully interpolates the DUA from the ir-
regular microphone array. As such, the irregular microphone array could be used
for broadband beamforming.
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FIGURE 5.29: Spectrogram of the signals (from top to bottom of the
figure): the spectrum of the beamforming steering to the speaker 1 at
(φ, θ) = (0o, 0o) and the spectrum of microphone 5 (there are over-
lapping sounds on zone 1, 2). The horizontal axes are the time (s), the

vertical axes are the frequency (kHz).

5.6 Conclusions

In this chapter, a new approach for an irregular microphone array design is pro-
posed. Based on the CS framework, we also propose a method for obtaining the
interpolated microphone array with beamforming performed on the array. The
method’s performance is comparable to a dense and uniform array with a much
larger number of microphones. In theory, in the presence of noises, the irregular
microphone array could even outperform a DUA, largely because the sparse sound
source reconstruction acts as the noise reduction filter for the interpolated micro-
phones. In comparison with other sparse array designs, the number of microphones
in the proposed array is reduced. For example, only 25 microphones are required
in comparison to the 81 required for the sparse array in [LS20]. Furthermore, a sin-
gle microphone array deployment presents a versatile design that can be used for
different beam patterns since the proposed design is not based on a reference beam
pattern; rather it is aimed at adopting the sparse recovery algorithms.

Generally speaking, the number of measurements M larger than four times S-
sparse offers a “reasonably high” probability of successful reconstruction [CRT06;
Mig14]. With the use of 25 microphones, as used in our experiments, it is feasible
to reconstruct the sparse sound source with a maximum of six active sources at a
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frequency. It is also feasible to measure an environment with more active sources by
increasing the number of microphones in the irregular array.
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Chapter 6

Discussion and Future Directions

6.1 Discussion

As mentioned over the entire content of this dissertation, beamforming is an impor-
tant topic in array signal processing that enables the spatial selectivity of incoming
signals to recover the signal of interest and/or suppress the unwanted components
in the sensor signal. There are several important aspects of beamformers that need
to be considered during design a beamformer, such as frequency-independence, ro-
bustness, steering ability, array gain, .etc. The work in this dissertation mainly fo-
cused on finding good methods for broadband beamformer designs, including de-
ciding the number of sensors, the position of sensors and their coefficients.

Over the last decades, using uniform arrays for beamforming attracts extensive
researches and is widely deployed in practical applications. The advantages of uni-
form arrays are the simple physical models in which researchers could apply a va-
riety of existing mathematical theories to solve every particular problem of beam-
forming, such as frequency-independence, directivity factor, white noise gain and
steering ability. As the demand for new features is increasing, the bandwidth of in-
terest is also expanded. To deal with broadband signals, a uniform array needs a lot
of sensors, that is sometimes impractical. Recently, based on the evolution of mathe-
matical tools likes compressed sensing, optimization techniques, machine learning,
etc., the sparse array is gaining more and more attentions, largely due to the ability
to reduce the number of sensors.

In this dissertation, we considered several critical issues regarding sparse arrays
with broadband beamforming. First of all, a closed-form solution of beamforming
for sparse arrays is difficult to derive, since the sensor deployments are somewhat ir-
regular and sometimes random. Different approaches with different objective func-
tions yield different array deployments. Among various array deployments, which
one is the optimal one is still not clear in mathematical sense. In Chapter 4, we pro-
pose a new approach to design the sparse arrays for data-independent beamforming
that outperforms the state-of-the-art approaches, that is, with similar amount of sen-
sors the new design could gain a better directivity factor, white noise gain as well
as frequency-independence. Besides, the computational complexity of the proposed
method is efficient, it spends less than one second to find the layout of a planar array,
while other methods are either infeasible or time-consuming. To the best of author’s
knowledge, the proposed method is one of the first methods that uses a dense and
uniform array as an input and the clustering algorithm as a core component. This
contribution provides a new approach for sparse array design. However, we cannot
claim our array is the optimal design for the sparse array, since we did not dig into
mathematics to analyze this concern yet.

From a different standpoint with Chapter 4, Chapter 5 proposes an irregular mi-
crophone array in a random sense, that array has maximum the distinct distances
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between sensors and it aims to be used with adaptive beamforming. This strange
objective function is actually a reasonable choice for sound field reconstruction via
compressed sensing framework. From an irregular microphone array, we also pro-
pose a simple method to interpolate a dense and uniform array that then is to be
processed with a beamforming algorithm. The proposed method helps to reduce
the number of sensors substantially, while its performance is equivalent to a dense
and uniform array. Besides, the irregular microphone array is a versatile design that
the desired beam pattern is arbitrary and can be changed online (at running time).
However, finding such an array deployment is an NP-hard problem, in this research
we use a stochastic approach to find a good array layout but we do not know how
close the solution comes to optimal solutions. A further study to analyze this result
is valued to evaluate the efficiency of the proposed method.

Although Chapter 3 only focuses on the uniform array design, its outcomes are
also important for the proposed sparse array designs. We introduce the inverse beam
pattern transform, which deduces the sensor coefficients from an arbitrary desired
beam pattern. As based on the bijection of the inverse beam pattern functions, we
propose the bound constraints for spatial sampling from broadband beamforming
perspective. Although the uniform arrays work well with broadband beamforming,
a few approaches use the information of uniform arrays as the input for sparse array
design.

Last but not least, Appendix A presents the beamformer in general form where
two variants of general sidelobe canceler (GSC) beamformers were proposed. One
is a data-independent beamforming and another is an adaptive beamforming. The
proposed methods exhibits some advantages, i.e., the computational complexity is
reduced and the signal-to-noise-plus interference is increased. Besides, the method
can be applied to combine multiple sensor arrays.

6.2 Future Directions

Regarding the sparse array with data-independent beamforming mentioned in Chap-
ter 4, some parameters are empirically set in the proposed approach such as the
number of the groups or the number of representative sensors for each group. These
settings need to be addressed in a mathematical viewpoint in future work. Further-
more, other common classification algorithms such as the support vector machine
or relevance vector machine could be applied to identify the critical sensors instead
of taking the closest sensors to the group’s centroid of K-means clustering.

For the method mentioned in Chapter 5 (adaptive beamforming), the extension
of the irregular array to three-dimensional (3D) is a worthwhile examination. The
restricted isometry property is improved substantially if we extend the array to 3D,
that may increase the performances of beamforming significantly. Moreover, that
3D array could use for other applications such as sound field reconstructions, sound
source localization, etc.

Chapter 3 introduces the transformation that transforms an arbitrary beam pat-
tern to beamforming coefficients of an uniform array. This study only focuses on the
far-field signal, a study of the transformation for near-field signal is an interesting
research, since for audio applications the far-field assumption is not always assured.
Furthermore, the constraint of equi-distance of sensors in X-axis and Y-axis could be
removed, that is the equi-distance in X-axis could be different with that of Y-axis. In
such a case, we need to build a new formula for the inverse beam pattern function
based on the ellipsoid expansion.
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In this work, we mainly focus on theories and simulations, other than Chapter 5
containing some experiments, more experiments to validate the results of proposed
methods would consolidate the contributions of our work.
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Appendix A

Alternative Approaches to
Generalized Sidelobe Canceler

The generalized sidelobe canceler (GSC) decomposes the beamforming into two
paths: The upper path is to preserve the desired signal, the lower path is to sup-
press the desired signal. More specifically, the upper path is equipped with a con-
ventional beamformer, while the lower path is equipped with a blocking matrix and
least mean squares (LMS) filters. The subtraction between the signal in the upper
path and the signal in the lower path could remove the unwanted signals.

Overview of generalize sidelobe canceler.

The GSC design was proposed in the time-domain, then it is easily applied for
the broadband beamforming. From beam pattern viewpoint, we propose alternative
approaches to the GSC, the new algorithms mainly modify in the lower path, that
is, instead of using the blocking matrix to suppress the desired signal, we design a
beamformer that contains the nulls at the look direction and some other directions.
We claim that the beamforming with a null at look direction performs a similar func-
tion to the blocking matrix. Moreover, the GSC subtracts two beam patterns to sup-
press the side-lobes, this amplifies noise when the sidelobes of the upper path beam
pattern are not identical to the lower path beam pattern, especially at the null posi-
tions of the upper path beam pattern. To tackle this issue, we insert those nulls to
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the lower path beam pattern to increase the similarity of the beam patterns at two
paths. By doing so, we propose two variants of the GSC, one is the fixed beamform-
ing where the adaptive filter in the lower path of the GSC is removed and the other
is the adaptive beamforming where only one adaptive filter is used.

A.1 Introduction

Array signal processing (ASP) [KV96; Mai17] has been widely employed in diverse
areas such as acoustics [Bra01; BCH08], radio-interferometry [RTMSJ17; Sim15], radar
and sonar systems [Mai17; Hay85], wireless networks [God97; PP97; HS16] and
medical imagery [LL00; Raf15]. Beamforming is an important topic in ASP [KV96],
that is the process of performing spatial filters to preserve the signal from directions
of interest while suppressing interfering signals and noise arriving from other di-
rections. A fixed beamformer is a beamformer whose coefficients are independent
on the measurement signals, it normally uses to suppress stationary noise. On the
other hand, an adaptive beamformer is a beamformer whose coefficients depend on
or adapt to measurement signals, it is capable of suppressing interferences but it
suffers from computationally intense and signal distortions. In some applications,
the bandwidth of signals of interest spreads over several octaves, therefore the char-
acteristics of the beamformer should be invariant over the frequencies of interest,
which is achieved via so-called broadband beamforming.

For instance, if noise fields are stationary and well-defined, then using fixed
beamforming is a reasonable choice. Most fixed beamformers have closed form ex-
pression for the beamformer coefficients, it means the beamformer coefficients could
be computed offline from the noise models. For example, the delay and sum beam-
forming (DSB) is the simplest beamforming technique where the signals of sensors
are delayed to align in phase and then be summed [VT04]. Actually, the beam-
former coefficents of DSB are the optimal solution for the noise suppression when
only white noise is immersed in the signal. Later, superdirective beamforming (SD)
[Elk00] was proposed to consider the presence of diffuse noise. However, at low
frequencies, SD beamforming amplifies white noise. Therefore, the regularization
of SD, considering the white noise, is commonly used in practical applications. For
acoustic signals, differential microphone arrays (DMA) are used in the variety of
applications. Conventional DMA is based on the spatial derivatives of the acoustic
pressure field [Elk00; Elk04; BJ12]. Since the sensor spacing of the DMA is much
smaller than the acoustic wavelength, the DMA is small in size which can be easily
mounted into other devices. On the other hand, based on the short-time Fourier
transform (STFT), spatial filtering is applied to form a differential beamformer in
each subband [TE04; BCC15; ZBC14; CPC15]. The order of the differential beam-
former could be designed by selecting the number of null-constraints and the type
of differential beamformer could also be obtained by assigning the null positions
and/or changing the optimization objective function such as maximum front-to-
back ratio for a supercardioid beam pattern, maximum directivity index for a hy-
percardioid beam pattern, etc.

The early adaptive beamforming technique is the linearly constrained beam-
forming [For72], which minimizes the energy of an array output with subject to
distortion-less at look direction. Over the years, the general approach for this class
of beamformer has been studied as the so-called linearly constrained minimize vari-
ance (LCMV) [VT04; Dob10; SBA10] where the objective is to minimize the variance
of the array output, that enables to resolve the problem from statistic viewpoint. In
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LCMV, the input signals are modeled to the covariance matrix computed via multi-
ple frames observation, then the closed form expression for the solution is derived
for some simple cases. An alternative approach to linearly constrained adaptive
beamforming was proposed by J. Griffiths and W. Jim in [GJ82], that is the general
sidelobe canceler (GSC) beamformer. In GSC, they modified the constrained prob-
lem in [For72] to unconstrained problem by introducing a fixed beamforming at the
upper path and a blocking matrix at the lower path. The lower path signals are fil-
tered by the adaptive FIR filters before be subtracted from the upper path signal.
This scheme could preserve the signal of interest (SOI) in the upper path while re-
moving the noise in the lower path. This simple approach could be easy to deploy
in the real-time implementation. Besides, the GSC is designed and processed in the
time-domain, it is well-suited to broadband signals. However, the subtracting in
GSC has some drawbacks, e.g., the GSC does not assure the noises/interferences in
the lower path and in the upper path are almost identical, then substracting them
does not suppress the noises/interferences effectively. In this chapter, we explain
this issue from the beam pattern perspective. We regard the blocking matrix as the
first order differential beamformings with a null at the look direction. Then, we an-
alyze the difference between upper path’s and lower path’s beam patterns. In most
of cases, the sidelobes of upper path beam pattern is much different with the lower
path’s beam pattern and the difference is varying over frequency. Then, the sub-
traction can not remove the sidelobes effectively. Furthermore, the blocking matrix
generates multiple almost identical beam patterns at the lower path, that is some-
what redundant.

To overcome those problems, we propose modified GSCs, that is, instead of using
a blocking matrix in the lower path, we design a beamformer that has a null at look
direction and some nulls at the nulls’ position of the upper path beamforming. Some
extra nulls at the lower path make the lower path beam pattern is more similar to
the sidelobes of the upper path beam pattern. Besides the shape of beam patterns,
the phase of beam patterns is also important that should be aware before subtracting
the signals. For instance, the phase of the upper path and lower path beam pattern
are almost stable over the direction, we can use a fixed scale value in the lower path
to correct the phase and amplitude of the subtracted signal. That is the case when
the array layout is symmetric and the reference point is selected at the center of the
array. As such, a fixed beamforming is proposed, referred to as a variant of the GSC.
On the other hand, if the phase difference is varying over the direction, we use an
adaptive FIR filter at the lower path. Depending on the direction of interferences at
an instance time, the FIR filter can scale the amplitude and adjust the phase of the
lower path beam pattern accordingly. This adpative beamforming is also considered
as another variant of the GSC. We briefly summarize the contributions of our work
on beamforming design as follows:

1. We present some new insight into the GSC beamformer where we claim that
the response of the blocking matrix is similar with that of first order Cardiod
beam patterns with the null at look direction. From a beam pattern standpoint,
we draw some disadvantages of the GSC.

2. We propose a fixed beamforming design for a symmetric array layout. For this
kind of array layout, we prove that the complex-valued beam pattern of su-
perdirective beamforming contains only the real part if we select the reference
point at the center of the array. The beamforming designed by this approach
has a frequency-invariant mainlobe and the sidelobes are suppressed as much
as possible.
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3. For an arbitrary array layout, we propose an adaptive beamforming design.
Its performance is not only superior to other methods, the computational com-
plexity is also reduced. Moreover, this methodology gives the opportunity to
combine multiple arrays to form a single expected beam pattern.

As the basis of our proposed approaches, we review the GSC beamforming in
Section A.2. In Section A.3, we propose two alternative approaches to the GSC: A
fixed beamforming with suppressed sidelobe (FBSS) and an adaptive beamformer
with suppressed sidelobe (ABSS). The simulations and their results are provided in
Section A.4. Finally, the conclusion is drawn in Section A.5.

A.2 Generalized Sidelobe Canceler

Consider an array with M sensors, the GSC algorithm was proposed in the time-
domain [GJ82] where the signal of sensor m at the discrete time index n is defined
by

xm(n) = sm(n) + nm(n), m = 1, . . . , M

where sm(n) and nm(n) are the signal of interest (SOI) and noise, respectively. We
can present the SOI at a sensor as the wave propagation from the source to the sensor

sm(n) = am ∗ s0

where am is the transfer function of the wave propagation, s0 is the source signal and
‘∗’ is the convolution operation.

Let xA(n) be the time-alignment towards the look direction of x(n) = [x1(n), . . . , xM(n)]T,
normally xA(n) is implemented by fraction delays of the measurement signals. Fig. A.2
plots the overview of GSC.

FIGURE A.2: Schematic description of the decomposition of the opti-
mal weight vector into two orthogonal parts.

In the lower path, the SOI portion sm(n) m = 1, . . . , M is aligned and suppressed
via a blocking matrix

xB(n) = BxA(n)

where xB(n) size of M − 1 is the vector output of the blocking matrix, this signal
vector should exclude the SOI. To do so, the blocking matrix B has to fulfill the
following properties [GJ82; BS01]:



A.2. Generalized Sidelobe Canceler 113

• The size of the matrix is (M− 1)×M

• The sum of all values in one row is zero

• The matrix has to be of rank M− 1.

An example of blocking matrix for the case M = 4 is

B =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (A.1)

The vector xB is processed with adaptive FIR filters H = [h1, . . . , hM−1]
T and then

be subtracted from the upper path’s signal (e.g., the output of DSB) to get the noise-
reduced signal, that is

y(n) =
L−1

∑
i=0

yDSB(n− i)g f [i]−
M−1

∑
i=1

L−1

∑
j=0

{
xB(n− j)

}
[i]hi[j] (A.2)

where [.] indicates an element in a vector/matrix, yDSB(.) is the output of the DSB,
g f is a fixed FIR filter which ensures a specified gain and phase response for the
output signal, L is the length of FIR filters.

The early paper of GSC [GJ82] used an iterative procedure to adaptive updating
hi, ∀i = 1, . . . , (M− 1) in the least-mean-square sense

{hi[k])}n+1 = {hi[k]}n + µ0y(n){xB(n− k)}[i], k = 1, . . . , L (A.3)

where µ0 is the normalized step size computed from a small factor β0 by

µ0 =
β0

∑M−1
i=1 ∑L−1

j=0 ({xB(n− j)
}
[i])2

. (A.4)

In summary, (A.2), (A.3) and (A.4) are the procedure of the GSC algorithm. The
beamforming in the upper path and the blocking matrix are selected flexible. How-
ever, how the selections affect the performance of GSC is analytically complicated.

From beam pattern standpoint, we observe that one output of the blocking ma-
trix xB[m], m = 0, . . . , M− 2 is equivalent to the output of differential beamforming,
that is delayed and subtracted the signals. In case of a uniform linear array (ULA),
its output contains M− 1 almost identical first-order Cardioid beam patterns having
null at look direction.

As example for the ULA, at rotation frequency ω, the mth output element of the
blocking matrix in (A.1) to the signal at an incident direction θ is given by

bm(ω, θ) = e−jω mdH cos θ
c e−jTm − e−jω (m+1)dH cos θ

c e−jTm+1

= e−jω mdH cos θ
c ejω mdH

c − e−jω (m+1)dH cos θ
c ejω (m+1)dH

c

= e−jωmdH
cos θ−1

c (1− e−jωdH
cos θ−1

c )

where Tm and Tm+1 are the time delays at the sensor m and m+1, respectively, dH is
the inter-distance of sensors, c is the wave speed and j is the imaginary unit. Then,

|bm(ω, θ)| = |1− e−jωdH
cos θ−1

c |
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FIGURE A.3: An output of the blocking matrix.

is the first order Cardioid beam pattern with null at θ = 0o if dH << πc/ω [GB12],
as illustrated in Fig. A.3.

In the upper path, if a DSB is selected, then the gain of the beam pattern obtains
the maximum value at the look direction and less than that for other directions, e.g.
Fig. A.4 plots the DSB beam pattern of ULA (endfire) with nine sensors (the inter-
distance is 2.5 cm) at different frequencies.

FIGURE A.4: Example for the DSB’s beam patterns of the ULA at
different frequencies.

It is clearly seen that the sidelobes of the upper path beam patterns are much
different with the first-order Cardiod beam patterns in the lower path and the dif-
ference is varied over frequency. Therefore, the GSC needs to use adaptive filters
that act as gain and phase controls for the first-order Cardiod beam patterns before
subtracting them from upper path beam pattern. Also, the GSC uses M− 1 almost
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identical beam patterns in the lower path, that is somewhat redundant, because scal-
ing and summing many identical beam patterns are equivalent to scaling a single
beam pattern. That motivates us to modify the GSC in this study.

A.3 Alternative Approaches to Generalized Sidelobe Canceler
Beamformer

The problem of subtracting different beam patterns in the GSC could be mitigated if
we can design the lower path beamformer whose beam pattern is almost identical to
the sidelobes of upper path beam pattern. That implementation is indeed feasible via
the SD with multiple constraints where the nulls position can be inserted arbitrarily.

At a narrow band in STFT, let x(ω) = [x1(ω), . . . , xM(ω)]T be a measurement
vector of the array at the rotation frequency ω , then the array response with beam-
forming is

y(ω) = w(ω)Hx(ω) (A.5)

where w(ω) = [w1(ω), . . . , wM(ω)] is the weight vector of the beamformer. The
objective of SD with multiple constraints is to minimize the noise energy with subject
to distortionless at the look direction and nulls at certain directions. Assume we
want to design a beam pattern having N nulls at θ1, . . . , θN and the distortionless at
θ0, then the optimization problem is given as

minimize
w(ω)

w(ω)H(Γ(ω) + µI)w(ω)

subject to

w(ω)HD(ω) = iT

(A.6)

where D(ω) = [d(ω, θ0), d(ω, θ1), . . . , d(ω, θN)] is the matrix size of M × (N + 1)
containing N + 1 steering vectors, Γ(ω), I are the correlation matrix of diffuse noise
and white noise, respectively, µ is a number deciding the noise model and i =
[1, 0, . . . , 0]T is a vector size of N + 1.

Using the Lagrange multiplier method, the solution of SD with multiple con-
straints is given by [VT04]

w(ω) =
(Γ(ω) + µI)−1D(ω)

D(ω)H(Γ(ω) + µI)−1D(ω)
i. (A.7)

For conciseness, we omit ω in the formulas in the remainder of this section whenever
possible.

To manipulate the shape of beam pattern, instead of using the DSB in the upper
path, we also use a SD beamfomer in the upper path where the look direction is
assured by the distortionless constraint, the sidelobe’s shape and beamwidth are
designed by nulls’ positions. For instance, the different phase response of the beam
patterns at the lower and upper paths are almost equal over the spatial directions
except the mainlobe region of upper path beam pattern, we could apply a fixed filter
to align the phase and scale the amplitudes before subtracting them. That enables
us to use fixed beamforming as an alternative approach to GSC. On the other hand,
the different phase response of the beam patterns at the lower and upper paths is
much varying over the spatial directions or we want to use more beamfomers at the
lower path, we need to use the adaptive filter at the lower path, that is considered as
a variant of GSC.
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A.3.1 Fixed Beamforming with Suppressed Sidelobes

At a narrow band in STFT, we design two beamformers, one is to construct the main-
lobe with expected beamwidth (upper path beam pattern) and the other is to repli-
cate the sidelobes of the upper path beam pattern (lower path beam pattern). Then,
we subtract the scale of lower path’s signal from the upper path’s signal to achieve
a beam pattern with suprressed sidelobes. Fig. A.5 plots the block diagram of the
fixed beamforming with suppressed sidelobes (FBSS).

FIGURE A.5: Fixed beamforming with suppressed sidelobes.

On the upper path, the beamformer is designed by

wu =
(Γ + µI)−1Du

DH
u (Γ + µI)−1Du

iu (A.8)

where Du = [d(θ0), d(θ1), . . . , d(θN)] is the matrix size of M × (N + 1) containing
N + 1 steering vectors, and iu = [1, 0, . . . , 0]T is a vector size of N + 1.

On the lower path, the beamformer is designed by

wl =
(Γ + µI)−1Dl

DH
l (Γ + µI)−1Dl

il (A.9)

where Dl = [d(θm), d(θ0), d(θ1), . . . , d(θN), . . . , d(θN+K)] is the matrix size of M ×
(N + K + 2) containing N + K + 2 steering vectors, θm is any direction that makes
wl 6= 0 (e.g. θm is at the peak of sidelobes of upper path beam pattern), θN+1, . . . , θN+K
are the extra null directions in the upper path beam pattern added by spatial alias-
ing effect when changing the frequency and il = [1, 0, 0, . . . , 0]T is a vector size of
N + K + 2.
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The array response of the upper path beamforming at direction θm is

α = wH
u d(θm) = iT

u
DH

u (Γ + µI)−1d(θm)

DH
u (Γ + µI)−1Du

. (A.10)

Beamforming with suppressed sidelobes is designed by

w = wu − αwl . (A.11)

Consider the class of arrays which are symmetric to the reference point, then the
array response at the lower path and upper contain the real value only. For example,
a ULA has a reference sensor at the center of array (M is an odd number), the steering
vector is defined as

d(θ) = [e
jω(M−1)dH cos θ

c , . . . , e
−jω(M−1)dH cos θ

c ]T = [aT, 1, aH ]T.

Similarly, we could present Du as two conjunction parts

Du = [AT
u , 1, AH

u ]
T

where 1 is the vector size of N + 1 containing one for all element. The array response
at the upper path,

Bu(θ) = wH
u d(θ) = iT

u
DH

u (Γ + µI)−1d(θ)
DH

u (Γ + µI)−1Du

or

Bu(θ) = iT
u
[AH

u , 1, AT
u ](Γ + µI)−1[aT, 1, aH ]T

[AH
u , 1, AT

u ](Γ + µI)−1[AT
u , 1, AH

u ]
T (A.12)

is a real number (see Appendix A.6: Phase response of beamforming).
We can obtain the similar result for the lower path beamforming. Then, this

kind of array could be applied with the FBSS. From (A.11), it is clear that the FBSS
is a beamforming that can be used to design a broadband beamforming where the
mainlobe is maintained over frequency, while the sibelobes are suppressed as much
as possible but may vary over frequency.

In a nutshell, we use (A.8), (A.9), (A.10) and (A.11) to design fixed beamforming
for a symmetric array layout. The numerical simulation section will present some
examples of this approach.

A.3.2 Adaptive Beamforming with Suppresed Sidelobe

Analogous to the GSC, in this section, the proposed method is presented in the time-
domain.

In case of spatial phase response of beamforming is complicated (vary over di-
rection), we need a robust approach that can update adaptively the phase and gain
of lower path beamforming before subtracting it from the upper path beamforming,
which is called an adaptive beamforming with suppressed sidelobes (ABSS). De-
pending on the interference directions, at a narrow band, the appropriate gain and
phase shift for the lower path beamforming is updated via an adaptive FIR filter.

In Fig. A.6, beamforming of the lower path and upper path is designed similarly
to the FBSS, except that the coefficients are transformed to the time-domain as a set
of fixed spatial filters, i.e., Wl , Wu are spatial filters’ coefficients in time-domain for
the lower path and upper path, respectively.
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FIGURE A.6: Adaptive beamforming with suppressed sidelobes.

Beamforming at lower path is performed in the time-domain by spatial filtering

yl(n) =
M−1

∑
i=0

L1−1

∑
j=0
{x(n− j)}[i]Wl [i, j] (A.13)

where L1 is the length of the spatial fitter of the lower path, Wl has a dimension of
M× L1, computed from (A.9) for the frequencies of interest.

Beamforming at the upper path is performed in the time-domain by spatial fil-
tering

yu(n) =
M−1

∑
i=0

L2−1

∑
j=0
{x(n− j)}[i]Wu[i, j] (A.14)

where L2 is the length of the spatial fitter of the lower path (normally we set L1 = L2),
Wu has a dimension of M× L2, computed from (A.8) for the frequencies of interest.

The final output of ABSS is given as

y(n) = yu(n)−
L−1

∑
i=0

yl(n− i)h[i] (A.15)

where L is the length of the adaptive FIR filter h.
The objective function is to minimize the energy of the output signal, that is the

unconstrained optimization given by

E(h) := minimize
h

y(n)2 = (yu(n)−
L−1

∑
i=0

yl(n− i)h[i])2. (A.16)

That is a quadratic function, the gradient is given explicitly by

g = −2y(n)b

where b = [yl(n), . . . , yl(n− L + 1)]T. The gradient descent method can be applied
to update h iteratively,

{h}n+1 = {h}n − αn{g}n

where αn is the step size and {.}n is the vector/matrix at nth iteration. For very small
values of αn, the correction of {h}n is small and the movement down the quadratic
surface is slow, and as αn is increased, the rate of descent increases. However, there
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is an upper limit on how large the step size may be. For values of αn that exceed this
limit, the trajectory of {h}n becomes unstable and unbounded [Hay09].

In Fig. A.6, we adopt the normalized least-mean-square (LMS) algorithm for the
adaptive FIR filter, that is

{h}n+1 = {h}n +
β

bTb
y(n)b, (A.17)

where β is the normalized step size with 0 < β < 1. With the normalization of
the step size by bTb, that avoids the gradient noise amplification when b is large
[Hay09]. The computation in (A.17) has the complexity of O(2L), then the total
computational complexity of the proposed method is O(ML1 + ML2 + 3L) which is
less than that of the GSC, O(ML1 + ML2 + 3ML).

From the beam pattern subtracting pointview, for the instantaneous interfer-
ences, the gain and phase in the lower path beam pattern are updated accordingly
to synchronize to the gain and phase of critical sidelobes of the upper path beam
pattern. Updating is performed via the sense of minimizing the output signal’s en-
ergy. Analogous to the GSC, this unconstrained LMS algorithm is the simplest form
compared to other adaptive beamformings, e.g. Frost beamforming [For72], LCMV
or minimum variance distortionless response. Compared to the GSC, the compu-
tational complexity of this method is reduced, since only one adaptive FIR filter is
used instead of M− 1 adaptive FIR filters. Moreover, the proposed method aims to
avoid the drawbacks of the GSC, then its performance is superior the GSC that will
be illustrated in the simulation section.

A.4 Numerical Simulation

A.4.1 Fixed Beamforming with Suppressed Sidelobe

The white noise gain (WNG) shows the ability of the array to suppress the incoher-
ence noise, such as self-noise, array imperfection, etc. That is given by [BS01],

W (w(ω)) =

∣∣wH (ω) d(ω, θ0)
∣∣2

wH (ω)w (ω)
(A.18)

where w(ω) is the weight vector of beamforming, d(ω, θ0) is the steering vector of
the look direction.

Another index used to evaluate the beam pattern is the directivity factor (DF), it
measures the ability to preserve the source of interest while suppressing the signal
coming from other directions [BS01],

D(w(ω)) =

∣∣w(ω)Hd(ω, θ0)
∣∣2

w(ω)HΓ(ω)w(ω)H (A.19)

where Γ(ω) is the pseudo-coherence matrix of the diffuse noise field,

Γ (ω) [i, j] = sinc
(

ωdij

c

)
where dij is the distance between sensor i and sensor j, c is the wave speed.

We simulated broadband beamforming for a uniform linear array of M = 7 mi-
crophones with the inter-distance dH = 0.02 m, the reference microphone is in the
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(A) 1 kHz.

(B) 4 kHz.

(C) 5.5 kHz

FIGURE A.7: Beam patterns at some frequencies: (left) upper path
beam pattern, FBSS and SDM, (right) lower path beam pattern.

middle of the array. The upper path beam pattern has a look direction at 0o and fixed
nulls at 70o, 150o. Then, the lower path beam pattern has fixed nulls at 0o, 70o and
150o, and we set θm = 180o. Due to spatial aliasing at high frequencies, there are
some extra nulls at the upper path beam pattern, we need to insert these nulls to the
lower path beam pattern as well. The noise model parameter µ in (A.7) is set 0.1 for
all simulations.

In comparison, we also design superdirective beamforming with multiple con-
straints (SDM) with look direction at 0o and fixed nulls at 70o, 150o and 180o. In
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Fig. A.7, we plotted the beam patterns at 1 kHz, 4 kHz and 5.5 kHz, it is clear that
the sidelobes of the upper path beam pattern are suppressed for all frequencies, es-
pecially the sidelobe that contains θm = 180o is almost completely suppressed. In
comparison with the superdirective beamforming with multiple constraints, both
always assure the nulls at 70o, 150o and 180o, but the FBSS has smaller sidelobe re-
gions at high frequencies, e.g., 4 kHz and 5.5 kHz in Figs A.7b and A.7c, respectively.
Note that the number of nulls at Figs. A.7a, A.7b and A.7c are different, that causes
the spatial aliasing effect.

Fig. A.8, Fig. A.9 and Fig. A.10 plot the broad beam pattern from 1 kHz to 6 kHz
for the upper path beam pattern, lower path beam pattern and FBSS’s beam pattern,
respectively.

FIGURE A.8: The broadband beam pattern of the upper path.

FIGURE A.9: The broadband beam pattern of the lower path.

The WNG and DF of upper path beamforming, FBSS and SDM are plotted in
Fig. A.11. It is clearly seen that, the FBSS improves the DF compared to others, while
the WNG is still in the acceptable range. Although the results of this simulation do
not surprise us, i.e. a design with the regularization of the WNG and DF, the target
of FBSS is frequency-invariant mainlobe and minimizing the sidelobes’ region. This
objective function is different with other approaches in the literature. Moreover,
the proposed method enables to use multiple sensor arrays to form a single desired
beam’s shape, e.g. the upper path is an endfire array aims to build the mainlobe and
the lower path is another linear array aims to reproduce the sidelobes, in such a case,
combining the beamforming of two arrays can be performed via an FSBB.
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FIGURE A.10: The broadband beam pattern of the FBSS.

(A) WNG.

(B) DF.

FIGURE A.11: WNGs and DFs over frequency.

A.4.2 Adaptive Beamforming with Suppressed Sidelobe

The signal-to-noise ratio (SNR) is defined as

SNR = 10 log10
σ2

s
σ2

n
(A.20)
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where σ2
s and σ2

n are the variances of SOI and additive noise, respectively.
There are two interferences impinging on the array that have the variance σ2

1 , σ2
2 ,

then the signal-to-interference ratio (SIR) is defined as

SIR = 10 log10
σ2

s

σ2
1 + σ2

2
. (A.21)

To evaluate the performance of adaptive beamforming, we measure the signal’s
error (SE) between the signal of interest (SOI) and beamforming output, that is

SE = E[(y(n)− s(n))2] (A.22)

where E[.] is the expectation value, y(n) is the beamforming signal and s(n) is the
SOI.

In the first simulation, we set SNR = 40 dB and σ2
1 = σ2

2 = σ2
s , that is SIR = -3 dB.

The SOI at 0o contains two impulse response signals, as shown in Fig. A.13.

(A) GSC.

(B) ABSS.

FIGURE A.12: Comparison between the GSC and ABSS.

We set L = 35 for both ABSS and GSC. For beamformings inside ABSS, we use
similar beamformings designed in Section A.4.1 for a frequency range from 1 kHz
to 6 kHz and applied an inverse discrete Fourier transfrom to obtain Wl , Wu with
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L1 = L2 = 128, β is set 0.01. The waveform of beamformings, measurement signal
and SOI are plotted in Fig. A.12. Both methods are able to suppress noise, while
preserving the SOI in the output beamformings.

More specifically, the comparison of the ABSS and GSC from 362.5 ms to 427.5
ms is plotted in Fig. A.12 where the SEs of GSC and ABSS are 0.0064 and 0.0039,
respectively.

FIGURE A.13: Comparison between the GSC and ABSS from 362.5
ms to 427.5 ms.

Next, the SOI is simulated by summing a sinuous signal and two impulse re-
sponses and the SIR is changed from -30 dB to 10 dB, the SNR is set to 10 dB or 20
dB. We measure the SEs over SIR for the GSC, FBSS and ABSS with 25 Monte Carlo
trials. Fig.A.14 shows that the ABSS outperforms the GSC in terms of preserving
the SOI and suppressing the interferences. It is worth noting that the computational
complexity of ABSS is less than that of GSC.

FIGURE A.14: SEs over SIR for the ABSS, FBSS and GSC, two inter-
ferences at 90o and 150o (a null position).
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Another example, the interferences come from 90o and 180o (the directions are
different with nulls’ direction of the designed beam patterns at 70o and 150o), the
SEs over SIR are plotted in Fig. A.15.

FIGURE A.15: SEs over SIR for the ABSS, FBSS and GSC, two inter-
ferences at 90o and 180o.

A.5 Conclusions

In this chapter, we have proposed two alternative approaches to the generalized
sidelobe canceler beamformer: One is for fixed beamforming, another is for adap-
tive beamforming. The proposed fixed beamforming applies for a symmetric array
layout and the reference point must be at the center of the array. With that constraint,
the difference of phase response between the lower path beamforming and the up-
per path beamforming is almost constant over the direction, so we can use a fixed
scale number to compensate for the difference before subtracting. For the proposed
adaptive beamforming, it can apply for an arbitrary array layout. As presented in
the simulation section, this proposed method outperforms the generalized sidelobe
canceller in terms of interference suppression and preserving the signal of interest.
Moreover, the computational complexity of this method is less than that of the gen-
eralized sidelobe canceler because the proposed method uses one adaptive FIR filter,
while the GSC uses M− 1 adaptive FIR filters. In comparison to other adaptive de-
signs, the problem of the proposed method is the unconstrained optimization and
the beamformer coefficients are updated via the normalized least-mean square algo-
rithm, that is much simpler than the constrained optimization-based methods, such
as Frost beamforming, MVDR, LCMV, etc. Besides, the proposed method could ex-
tend the lower path to multiple lower paths where each path has a different beam
pattern and it may belong to different sensor arrays. That enables the ability to com-
bine multiple arrays where one aims to build the mainlobe, others aim to suppress
the sidelobes.

A.6 Appendix: Phase Response of Beamforming

Consider a complex number is defined by

bm = [aH
m , 1, aT

m]R[aT, 1, aH ]T
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where [aH
m , 1, aT

m] is the row m of the matrix DT
u and R = (Γ + µI)−1.

First, we prove for the case µ = 0, then R = Γ−1. Note that Γ(ω) is the pseudo-
coherence matrix of the diffuse noise field

Γ (ω) [i, j] = sinc
(

ωdij

c

)
,

and the array is symmetric then Γ has a special structure, .i.e,

Γ =

Γ1 γ Γ2
γ 1 γ
Γ2 γ Γ1

 .

Moreover, Γ is a symmetric matrix, it can be decomposed as

Γ = VDV−1

where V is formed by eigenvectors of Γ and D is diagonal matrix of eigenvalues. So,
we have

Γ−1 = VD−1V−1.

That implies Γ−1 has similar structure with Γ, then R can be presented by

R = r

R1 r R2
r 1 r

R2 r R1


where r is a real number used to scale the center’s value of matrix to one, r is the
real-valued vector and R1, R2 are the real-valued matrix. Thus,

bm/r = aH
m R1a + aH

m r + aH
m R2a∗

+ aTr + 1 + aHr

+ aT
mR2a + aT

mr + aT
mR1a∗

= 1 + 2Re{aH
m R1a}+ 2Re{aH

m R2a∗}
+ 2Re{aT

mr}+ 2Re{aTr}

(where (.)∗ is the conjugate operator, Re{.} is the real part of a complex number) is
a real number. It leads to [AH

u , 1, AT
u ](Γ + µI)−1[aT, 1, aH ]T is the real-valued vector

and [AH
u , 1, AT

u ](Γ + µI)−1[AT
u , 1, AH

u ]
T is the real-valued matrix. As a result, Bu(θ)

in (A.12) is a real number.
For the case µ 6= 0, applying Woodbury’s formula [Woo50], we have

R = (µI + VDV−1)−1

=
1
µ

I− 1
µ

V(D−1 +
1
µ

V−1V)
1
µ

V−1

=
1
µ

I− 1
µ2 (VD−1V−1 +

1
µ

I)

= (
1
µ
− 1

µ3 )I−
1
µ2 Γ−1

has a similar structure with Γ−1, then Bu(θ) in (A.12) is also a real number.
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Appendix B

DOA Estimation via an
Annihilating Filter

An annihilating filter (AF) is a filter that can suppress the signal, it is mainly used in
sampling signal reconstruction with a finite rate of innovation. Based on the proper-
ties of the AF for a uniform linear array, the direction-of-arrivals (DOAs) are deduced
accurately by finding the roots of the AF. In this study, we propose a new method
for DOA estimation based on the design of AF for multiple frames. The proposed
method is compared to the conventional method where the AF is designed for a
single frame. The proposed method can detect more DOAs and be less sensitive to
noise. We also compare the proposed method to the MUSIC algorithm, the new ap-
proach can detect the DOAs with a higher resolution since its principle does not base
on the search grid procedures. Moreover, the AF-based approaches use less compu-
tation than the subspace approaches in general. Also, we propose an extension for
the MUSIC algorithm that takes diffuse noise into account. The simulation shows
that, in the case of diffuse noise, only the extended MUSIC can estimate the DOAs
properly.

B.1 Introduction

It is fact that array signal processing (ASP) [KV96; Mai17] has been widely employed
in diverse areas such as acoustics [Bra01; BCH08], radio-interferometry [RTMSJ17;
Sim15], radar and sonar systems [Mai17; Hay85], wireless networks [God97; PP97;
HS16] and medical imagery [LL00; Raf15]. Direction-of-arrival (DOA) estimation
is an important topic in ASP [KV96], that is the process of retrieving direction in-
formation of electromagnetic/sound sources by using a sensor array. Signals im-
pinge to the array can be coherent or incoherent. The DOA for incoherent signals
can be obtained by applying various subspace methods like MUSIC [Sch86] and
ESPRIT [RK89]. However, the subspace-based methods are sensitive to coherent
signals [LHZ12] that are challenging to separate signal and noise subspaces, lead-
ing an incorrect estimation of the spatial spectrum. To deal with coherent audio
signals, various preprocessing techniques have proposed to decorrelate signals. In
particular, Pillai et al. [PK89] suggested two different spatial smoothing techniques:
forward spatial smoothing and forward backward spatial smoothing techniques for
preprocessing the received signals. Recently, based on the annihilating filter’s prop-
erties, Vetterli et al. [VMB02] proposed the finite rate of innovation concept that
reconstructs the signal perfectly from uniform sampling. This reconstruction con-
cept can be directly applied to DOA estimation where the active sources act as a



128 Appendix B. DOA Estimation via an Annihilating Filter

stream of Dirac (pulse). However, the method is very sensitive to noise, since the
directions are deduced from the roots of an annihilating filter (AF) with complex
exponential forms. Besides, in order to build a full-rank convolution matrix, the
number of active sources must be less than half the number of measurements, then
the number of detectable DOAs should be less than half of the number of sensors.
To tackle these problems, we propose the design of AF for multiple snapshots that
can detect more sources and its output is robust to noise. However, the proposed
approach only works for frame-variant source signals where the strength and phase
of sources vary over frame. If the sources are frame-invariant, the measurement
signals at different frames are highly dependent, the proposed approach is false to
estimate the DOAs because in such a case the rank of the computation matrix is less
than number of active sources. In addition, the study suggests an extended MUSIC
algorithm that considers white noise as well as diffuse noise that is often inevitable
in some audio applications. The extended MUSIC is simple but it is useful for many
practical applications, i.e. audio applications.

These remaining sections of this chapter are organized as follows. Section B.2
reviews the MUSIC algorithm from which we extend the conventional MUSIC algo-
rithm to a general form considering diffuse noise as well as white noise. Section B.3
presents the AF design for DOA estimation which covers the approaches for a single
data frame and multiple data frames. The numerical simulations and performance
comparison are then presented in section section B.4. Finally, conclusions are drawn
in section B.5.

B.2 MUSIC with Sound Noise Model

Consider the far-field, then the wave reaching the sensors is planar. The signal of ith

sensor at a rotation frequency ω is modeled as

pi(ω) =
N

∑
n=1

ai(θn, ϕn, ω)sn(ω) + ni(ω), ∀i = 1, . . . , M

where N is the number of active sound sources, M is the number of sensors, sn(ω)
presents for the strength and phase of a source signal at direction (θn, ϕn), ai(θn, ϕn, ω)
is the transfer function of the wave propagation from ith sensor to a reference sen-
sor and ni(ω) is additive noise. For conciseness, the remaining of this chapter ω
is omitted whenever possible. For the array, the output could be presented by a
measurement vector

p1
p2
· · ·
pM

 =
[
d1 d2 · · · dN

] 
s1
s2
· · ·
sN

+


n1
n2
· · ·
nM

 (B.1)

where di is the steering vector at ith direction. (B.1) could be presented in a short
form

p = As + n. (B.2)

The covariance matrix of the measurement signals is defined as

R = E[ppH ]
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where E[.] is the expectation operation. For noise n, the covariance matrix is given
by

E[nnH ] = εN (B.3)

where N is the noise correlation matrix, ε is a scale number representing the signal-
to-noise ratio (SNR).

Suppose that noise is incoherent to the source signals, then from (B.2) and (B.3)
we have

R = ASAH + εN (B.4)

where S is the sound source covariance matrix, rank(S) = N, the diagonal elements
indicate the power of the sources and the off-diagonal elements indicate the coher-
ence between them. If the source signals are uncorrelated, S is a diagonal matrix. For
audio applications, N is the combination of white noise and diffuse noise correlation
matrices, then we could decompose the N in (B.4) to obtain a new form

R = ASAH + σ2
d Γ + σ2

wI (B.5)

where σ2
d and σ2

w is the noise power of diffuse noise and white noise, respectively, I
is the identity matrix, Γ is the pseudo-coherence matrix of the diffuse noise field. Γ

is given by [Elk00]

Γij(ω) = sinc(
ωdij

c
)

where dij is the distance between sensor i and sensor j, c is the speed of sound. If
σ2

d + σ2
w 6= 0, (B.5) can be rewritten as

R = ASAH + (σ2
d + σ2

w)
σ2

d Γ + σ2
wI

σ2
d + σ2

w

then ε = σ2 = σ2
d + σ2

w and N =
σ2

d Γ+σ2
wI

σ2
d+σ2

w
= αΓ+I

α+1 where α = σ2
d /σ2

w is a ratio repre-
senting for the noise model.

N is a symmetric matrix, so it is invertible. Thus, (B.5) becomes

R′ := RN−1 = ASAHN−1 + σ2I (B.6)

Now we decompose R′ to signal subspace and noise subspace by finding the
eigenvalues and eigenvectors of R′ and categorize them (based on the amplitude of
eigenvalues).

R′ = VDV−1

where V is formed by the eigenvectors of R′ and D is diagonal matrix of eigenvalues

D =



λ1s + σ2
1 0 · · · · · · · · · 0

0 · · · · · · · · · · · · · · ·
· · · · · · λNs + σ2

K · · · · · · · · ·
· · · · · · · · · σ2

N+1 · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · σ2

M


where λ1s, . . . , λNs, 0, . . . , 0 are the eigenvalues of ASAHN−1 (this is rank-deficient
matrix if the number of active sources is less than number of sensors). Also, ASAHN−1

is the semi-positive definite matrix then its eigenvalues are non-negative (λ1, . . . , λN ≥
0). In theory σ2

1 = · · · = σ2
M = σ2 but in practice they are a set of smallest values. As
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based on the amplitude of eigenvalues, we can separate the eigenvector of R′ into
noise subspace vectors VN and signal subspace vectors VS

V = [VS, VN ].

Note that V is an unitary matrix, then noise subspace is orthogonal to signal sub-
space. We can also explain this property by a simple modification in the equations,
that is, taking an column vector vi in noise subspace VN and multiplying it to both
sides of (B.6) we obtain

R′vi = (ASAHN−1 + σ2I)vi

σ2vi = ASAHN−1vi + σ2vi

ASAHN−1vi = 0

AH(N−1vi) = 0

Let us define a vector v′i := N−1vi then

AHv′i = 0 (B.7)

Or dH
n v′i = 0 for all dn corresponding to the active sources. Since (B.7) is true for all

column vector of the noise subspace VN , we have dH
n V′N = 0 where V′N = N−1VN .

Herein, we suggest the extended MUSIC that takes the diffuse noise into account,
that is, the noise model ratio α = σ2

d /σ2
w is considered as an input.

• Perform eigenvalues decomposition on R′ = R( αΓ+I
α+1 )

−1 to obtain the non-
increasing eigenvalue λ1 ≥ · · · ≥ λN > λN+1 ≥ · · · ≥ λM.

• Based on the amplitude of eigenvalues, group the corresponding eigenvectors
into two groups: group of signal subspace VS = [v1, . . . vN ] and group of noise
subspace VN = [vN+1, . . . vM].

• Modify the noise subspace to consider the diffuse noise

V′N =
(αΓ + I

α + 1
)−1VN .

• Construct the power spectrum function as

P(di) =
1

dH
i V′HNV′Ndi

.

• Search the peaks of P(di) to detect the active sources.

B.3 DOA Estimation with Annihilating Filter

Consider the uniform linear array (ULA) with the inter-distance dH, then di =
[1, e−jωdH cos θi/c, . . . , e−jω(M−1)dH cos θi/c]T is the steering vector towards the signal in-
cident angle θi, where c is the wave speed. Then, the signal at the ith sensor is

pi(ω) =
N

∑
n=1

sn(ω)e−jω(i−1)dH cos θn/c + ni(ω), ∀i = 1, . . . , M.
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Thus,

p =
N

∑
n=1

tnsn + n (B.8)

where tn = dn = [a0
n, a1

n, . . . , aM−1
n ]T, an = e−jωdH cos θn/c. If n 6= 0, then p is the

linear combination of N complex exponential vectors tn. Let us define a filter with
the z-transform

A(z) =
N

∑
m=0

A[m]z−m

having N zeros at un = an = e−jωdH cos θn/c, ∀n = 0, . . . , N − 1. Then, A(z) can be
presented by

A(z) =
N

∏
n=1

(1− anz−1)

Note that A[m], m = 0, . . . , N is the convolution of N first-order filters with coeffi-
cients [1,−an]. It is easy to observe that the convolution [1,−an] ∗ tT

n = 0. Therefore,
the defined filter A(z) suppresses the active directional signals in the measurement
signals, that is the so-called annihilating filter [VMB02].[

A[0], . . . , A[N]
]
∗ pT = [1,−a1] ∗ · · · ∗ [1,−aN ]

∗ (
N

∑
n=1

tT
n sn + nT)

= (
N

∑
n=1

sn[1,−a1] ∗ · · · ∗ [1,−aN ] ∗ tT
n )

+ [1,−a1] ∗ · · · ∗ [1,−aN ] ∗ nT

= 0 + [1,−a1] ∗ · · · ∗ [1,−aN ] ∗ nT

=
[
A[0], . . . , A[N]

]
∗ nT.

By definition of A(z), we know A[0] = 1 and M ≥ N + 1 to complete the convolu-
tion. In case of noiseless (n = 0), we have the definition of the AF [VMB02][

A[0], . . . , A[N]
]
∗ p = 0. (B.9)

Given the measurement signal of the array, a simple way to find the coefficients
of the filter A[m] is to build the equations which are deduced from (B.9)

p1 p2 · · · pN+1
p2 p3 · · · pN+2
· · · · · · · · · · · ·
pN pN+1 · · · p2N




A[N]
· · ·

A[1]
A[0]

 =


0
0
· · ·
0

 ,

assign A[0] = 1, then
p1 p2 · · · pN
p2 p3 · · · pN+1
· · · · · · · · · · · ·
pN pN+1 · · · p2N−1




A[N]
· · ·

A[2]
A[1]

 = −


pN+1
pN+2
· · ·
p2N

 . (B.10)

This system has a unique solution [VLG83], then we can find a unique set of A[m].
After solving (B.10), we find the roots of A(z) = ∑N

m=0 A[m]z−m to obtain a0, . . . , aN−1,
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then the direction of active sources can be achieved by

θn = arccos
jc log an

ωdH
, ∀n = 0, . . . , N − 1. (B.11)

Note that, to achieve (B.10), M ≥ 2N needs to be satisfied that is the number of
sensors is greater than or equal to two times the number of sources and the SRN
needs to be very high to assure n ≈ 0. Besides, the roots of AF associated with the
true DOAs stay on the unit circle, then we can utilize this property to evaluate an,
that is

Re{log an} ≤ β (B.12)

where Re{.} is the real part of a complex number, β is a small value (e.g. β =
0.02). The inequality (B.12) is used to select a reliable an, thus we can estimate DOAs
without knowing the number of DOAs in advance. In order to deal with different
SNR levels, we could decrease or increase β to compromise between the accuracy
and the robustness of the algorithm.

In summary, the method in [VMB02] and the constraint in (B.12) can be applied
for the DOA estimation of coherence signals but the number of sources is limited
and the result is sensitive to noise.

In order to detect more DOAs in noisy environments, we apply a similar idea of
AF design for multiple data frames (snapshots). Suppose that the signal of active
sources is time-variant, that means the amplitude and phase of the signals are vary-
ing over time, then the signals at different snapshots are almost independent. This
assumption is reasonable for many applications like audio, radar, etc. Similarly to
(B.10), let us build the equations for the AF from K snapshots

p′T1
p′T2
. . .
p′TK




A[M− 1]
· · ·

A[2]
A[1]

 = −


pM,1
pM,2
· · ·

pM,K

 (B.13)

where p′k, ∀k = 1, . . . , K is the measurement signal at snapshot k after removing the
last value pM,k (value of the last sensor). Thus, we can find A[m] from least-mean-
square error sense, that is

A[M− 1]
· · ·

A[2]
A[1]

 = −(P′HP′)−1P′H


pM,1
pM,2
· · ·

pM,K

 . (B.14)

where P′ =


p′T1
p′T2
. . .
p′TK

.

The solution in (B.14) is robust against noise and it is possible to detect maximum
M − 1 sources. In practice, (P′HP′)−1 can be updated iteratively over the frame to
reduce the complexity of the inverse operation. By applying Woodbury’s formula
[Woo50], we have

(P′Hk+1P′k+1)
−1 = (P′Hk P′k + p′k+1p′Hk+1)

−1
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= B−1
k − B−1

k p′k+1(I + p′Hk+1B−1
k p′k+1)p

′H
k B−1

k

where Bk = P′Hk P′k is the matrix of P′HP′ at the frame k. The computation of B−1
k+1

has the complexity of O(M2), then (B.14) has the complexity of O(KM2). The total
complexity of the proposed AF is O(KM2 + M3), including finding the roots of the
polynomial by computing the eigenvalue decomposition [Sto+15].

From the coefficients of AF A[m], applying a similar approach to the AF for a
single frame, we obtain the direction of sources via (B.11).

B.4 Numerical Simulations

B.4.1 Simulations in White Noise Environment

In this section, a ULA with M = 11 sensors and half-wavelength inter-distance of
sensors is examined. In Fig. B.1a, five incoherent sources at θ0 = −24o, θ1 = −12o,
θ2 = 0o, θ3 = 12o and θ4 = 24o impinge to the array, the SNR is 80 dB and there are
100 snapshots. For such a high SNR, all methods seem work well.

In Fig. B.1b, we reduce the SNR to 40 dB. The performance of AF for multiple
frames (AFM) method is compatible with that of MUSIC, they estimate accurately
the direction of sources, while the AF for single frame (AFS) does not detect the
DOAs properly. In order to estimate the performance, we use the root-mean-squared
error (RMSE) criteria defined as

E =

√√√√ 1
N

N

∑
i=1

(θi − θ̄i)2,

where θ̄i denotes estimated DOA of the source i and θi is the true DOA. Then, the
RMSE of MUSIC, AFS and AFM are 0o, 3.1o and 0o degree, respectively.

Fig. B.2 shows another example, where the number of active sources increases
to N = 10. In this examination, we only compare between MUSIC and AFM ap-
proaches, since the AFS can not apply for N > M

2 . At the SNR = 20 dB, the RMSEs
are 0.23o and 0.05o for MUSIC and AFM, respectively. Fig. B.3 plots RMSE over SNR
with 1000 Monte Carlo trials, it is clearly seen that the AFM outperforms the MUSIC
in terms of the RMSEs.

To emphasize the grid-less based property of the AF-based approach, we simu-
late for the off-grid case of DOAs, that is, the active sources are not placed on the
search grids of MUSIC algorithm. Suppose the resolution of search grids of MUSIC
is 1o, three active sources with SNR = 20 dB at −40.5o, 15.6o and 20.2o impinge to
the array and the power spectrum are shown in Fig. B.4. For the MUSIC algorithms,
three sources at −40o, 16o and 20o are detected, while the AFM detects three sources
at −40.5378o, 15.6486o and 20.2451o. Then, the RMSEs of MUSIC and AFM are 0.5o

and ≈ 0o, respectively. Therefore, in real scenarios, the RMSE of AFM has a better
performance.

B.4.2 Simulations in White Noise and Diffuse Noise Environments

For instance, the noise contains the diffuse noise with σ2
d /σ2

w = 25, only the ex-
tended MUSIC for general noise can estimate successfully the direction of active
sources, as shown in Fig. B.5. The RMSEs of MUSIC, extended MUSIC for general
noise and AFM are 2.1o, 0.0o and 28.6o, respectively. Note that, for this example, the
inder-distance of sensors is reduced to less than half of the wavelength to achieve a
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(A) SNR = 80 dB, N = 5.

(B) SNR = 40 dB, N = 5.

FIGURE B.1: Power Spectra of different methods: MUSIC, AFS, AFM
and the true DOAs.

FIGURE B.2: Power Spectra of different methods (SNR = 20 dB, N =
10): MUSIC, AFS, AFM and the true DOAs (on-grid).

reasonable diffuse noise correlation matrix (the off-diagonal elements of Γ are not 0).
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FIGURE B.3: RMSE over SNR of MUSIC and AFM, N = 10, 1000
Monte Carlo trials.

FIGURE B.4: Power Spectra of different methods (SNR = 20 dB, N =
3): MUSIC, annihilating filter for single frame, annihilating filter for

multiple frames and the true DOAs (off-grid).

B.5 Conclusions

In this study, we have proposed an annihilating filter-based technique for DOA esti-
mation. The proposed method processes on multiple frames under the constrain of
frame-variant signals. The maximum number of detectable sources is almost twice
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FIGURE B.5: Power Spectra of different methods (SNR = 20 dB con-
tains the white noise and diffuse noise): MUSIC, extended MUSIC for
diffuse noise, and the true DOAs are presented in the top figure, the

blow is for the AFM.

times of that of annihilating filter for single frame. Besides, the proposed method is
independent with the grid directions, then its RMSE’s performance outperforms the
MUSIC algorithm in terms of accuracy. Moreover, the computational complexity of
new method is O(KM2 + M3), which is less than the computational complexity of
subspace-based techniques. However, when the diffuse noise presents in the mea-
surement signal, only the extended MUSIC, which is also newly proposed in this
study, could estimate the DOA successfully.



137

Appendix C

Matlab Code: Simulated Annealing
for Sensor Array Deployment

1 clear

2 clc

3 close all

4

5 M = 25;

6 Mx = floor(sqrt(M));

7 My = floor(sqrt(M));

8 Ni = 5;

9 Np = 100000;

10 T0 = 1;

11 e_d = 0.01;

12

13 % A random sequence

14 Seq = (1:M);

15 [dum ,idx] = sort(rand(1,M));

16 L_r = Seq(idx(:));

17

18 C = M*(M-1) /2; % A big number

19 C_best = C;

20 Cp=[];

21 grid_points = zeros(Mx*My ,2);

22 max_n = 1;

23 for yPos = 1: M

24 for xPos = 1:M

25 grid_points(xPos + M*(yPos -1), 1) = (xPos);

26 grid_points(xPos + M*(yPos -1), 2) = (yPos);

27 end

28 end

29

30 mic_pos = zeros(M,2);

31 np = 0;

32 Koordinaten=zeros(M,1);

33 for k = 1:Ni

34 T = T0/k; % hyperbolic annealing law

35 for l = 1:Np

36 % create new array geometry by permutation

37 L_p = perm_array(L_r);

38

39 iLoop = 0;

40 A=reshape(L_p ,Mx,My) ';

41 v=1;

42 for n=1:Mx

43 for m=1:My

44 P = A(m,n);

45 nx=rem(P - 1,Mx); % from 0 to M-1

46 mx=floor ((P -1)/Mx); % from 0 to M-1
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47 mic_pos ((m - 1)*Mx + n,2) = (m-1)*Mx + mx + 1 ; % line

48 mic_pos ((m - 1)*Mx + n,1) = (n-1)*Mx + nx + 1 ; % column

49 Koordinaten(v)=mic_pos ((m - 1)*Mx + n,2)+1i*mic_pos ((m -

1)*Mx + n,1);

50 v=v+1;

51 end

52 end

53

54 drawnow

55 plot(grid_points (:,1), grid_points (:,2),'+','MarkerEdgeColor ','

b','MarkerFaceColor ','r' ,...

56 'MarkerSize ' ,2);

57 hold on

58 plot(mic_pos (:,1), mic_pos (:,2),'o','MarkerEdgeColor ','k','

MarkerFaceColor ','r' ,...

59 'MarkerSize ' ,6);

60 grid on

61 daspect ([1 1 1]);

62 hold off

63

64 % Berechnen der Abstaende

65 for n=1:M

66 index =1+(n-1)*M;

67 D(index:index+M-1)=floor(abs(Koordinaten(n)-Koordinaten)*(1/

e_d));

68 end

69

70 D(D==0) =[];

71 D_k = unique(D);

72 nBin = histcounts(D, D_k);

73 C1 = M*(M-1)/2 - length(nBin);

74

75 % update best solution

76 if C1 < C_best

77 C_best = C1;

78 mic_pos_best = mic_pos;

79 Koordinaten_best = Koordinaten;

80 L_best = L_p;

81 end

82 % check cost function

83 dC = C1 - C;

84 if (dC < 0) || (rand (1,1) < exp(-dC/T))

85 L_r = L_p;

86 C = C1;

87 % tracking value

88 Cp = [Cp;C];

89 np = np+1;

90 if mod(np ,10) == 0

91 disp(fprintf('%d. iteration , %d. permutation , C = %f', k

, l, C));

92 end

93 end

94 end

95 end

96

97 figure (2);

98 plot(grid_points (:,1), grid_points (:,2),'+','MarkerEdgeColor ','b','

MarkerFaceColor ','r' ,...

99 'MarkerSize ' ,2);

100 hold on

101 plot(mic_pos_best (:,1), mic_pos_best (:,2),'o','MarkerEdgeColor ','k','

MarkerFaceColor ','r' ,...

102 'MarkerSize ' ,6);
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103 grid on

104 daspect ([1 1 1]);

105 hold off

106

107 % Berechnen der Abstaende

108 for n=1:M

109 index =1+(n-1)*M;

110 D(index:index+M-1)=floor(abs(Koordinaten_best(n)-Koordinaten_best))

;

111 end

112 idx = 1;

113 Do =zeros(M*(M-1)/2,1);

114 for n=1:M

115 Do(idx:idx + M - n) = D((n-1)*M + n :n*M);

116 idx = idx + M - n + 1;

117 end

118

119 Do(Do==0) =[];

120 Do=sort(Do);

121 figure (3); histogram(Do(Do >0) ,2000);

122 xlabel('Distance between two microphones (cm)');

123 ylabel('Number of repreated distances ');

124

125 figure (4); plot(Cp)

126 xlabel('Sequence of updating ');

127 ylabel('Cost value tracking ');

128

129 function y = perm_array(x)

130 % randomly exchange two active sensors in an array

131 y = x;

132 N = length(x);

133 [~,idx] = sort(rand(1,N));

134 y(idx(1)) = x(idx(2));

135 y(idx(2)) = x(idx(1));

136 end
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Appendix D

Matlab code: Orthogonal Matching
Pursuit (OMP)

1 function [Sest] = omp(A,u,tol ,Kmax)

2 % omp: Orthogonal machting pursuit

3 % Input

4 % A : measurement matrix

5 % u : measured vector

6 % Kmax : sparsity of Sest

7 % tol : tolerance for approximation between successive solutions

8 % Output

9 % Sest : Solution found by the algorithm

10 %

11

12 % Initialization

13 Sest = zeros(size(A,2) ,1);

14 v = u;

15 k = 1;

16 numericalprecision = 1e-12;

17 T = [];

18 disIn = norm(u);

19 while (k <= Kmax) && (norm(v) > tol*disIn)

20 y = abs(A'*v);

21 [vals ,z] = sort(y,'descend ');

22 Omega = find(y >= vals (1) & y > numericalprecision);

23 T = union(Omega ,T);

24 b = pinv(A(:,T))*u;

25 Sest = zeros(size(A,2) ,1);

26 Sest(T) = b;

27 v = u - A(:,T)*b;

28 k = k+1;

29 end
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