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Abstract. 

We discuss mapping and Lipschitz continuity properties of the 

Preisach model for hysteresis in the spaces BV[O,ll and 

WLlCO,ll. 
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is the so-ca 

denotes, for 

P = (P: P=(P ,P 1 2) E IR Y P1LP2f 

lied Pre isach plane, p is a measure on P, and W P 

any p E P, the thermostat switching from -1 to 1 

if x(t) reaches p2 and from 1 to -1 if s(t) reaches pl. This 

model is of special interest in the description of ferro- 

magnetic materials [9,131; moreover, it includes several other 

formalizations of hysteresis as a special case. 

The mathematical properties of the Preisach hysteresis operator 

have been studied extensively in C2,4,5,9,121. In particular, 

the Preisach operator is, with the exception of degenerate 

cases, not differentiable. It is therefore of interest to find 

out the situations in which it is Lipschitz continuous. In the 

present paper, we give sufficient conditions for Lipschitz 

continuity with respect to the norm of BVCO,ll. Roughly speak- 

ing, the Preisach operator maps RV[O,ll and W l'lco,ll into 

itself if the measure /J has a bounded density, and is Lipschitz 

continuous on W 1'1[0,11 if th. e measure p has a Lipschitz 

continuous density; it is Lipschitz continuous on BVCO,ll if 

the measure p has a density e of the form e(pl,p2) = e(P1-P2). 

1. Introduction 

The Preisach model for hysteresis [lOI essentially consists of 

a continuous family of thermostats (i.e. relays with hyster- 

esis). It is customarily formalized as an operator W defined by 

(Wx)(t) = S (WPx)(t) dp(p) , 
P 

mapping an "input functiontt x: CO,11 + IR to an "output func- 

tion" Wx: CO,11 + IR; here, 
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This paper is not intended as an introduction to the Preisach 

operator; we refer to C2,5,121 for that matter. We just remark 

that the memory or internal state of the Preisach model given 

at any time t by 

qp,(WPx)(t)) : P E PI 

can be represented by the curve 7 separating the regions where 

(WPx)(t) = tl resp. -1 in the Preisach plane as in figure 1. 

Figure 1 

The time evolution of this separating curve is studied in [2]; 

we use it here, too, but mainly in the slightly different 

approach of C71, since the latter reduces the "hysteresis part" 

of the Preisach operator to the hysteresis operator defined by 

figure 2, sometimes called "shaft", which is much easier to 

deal with. Therefore, we consider the latter operator first, 

namely in section 2 of this paper, and extend the results to 

the Preisach operator in section 3. 

- 3 - 



2. BV properties of the shaft 

Consider the diagram in figure 2. It shows two boundary lines 

parallel to the main diagonal with abscissae * u, the space in 

between being filled continuously with horizontal segments. The 

direction of possible movement is indicated by the arrows. 

Figure 2 

The corresponding hysteresis operator Wu has been studied in 

detail (and in more generality) in C51, chapter 1. In particu- 

lar, it is shown there how to define Wu on the space Reg[O,ll 

of regulated functions (= completion of the step functions in 

the sup norm), and that Wu is Lipschitz continuous on this 

space. Moreover, several theorems on mapping and continuity 

properties of Wu in different function spaces are stated, 

among them the Lipschitz continuity of Wu in W l"[O,ll and 

BV[O,ll, the former also being a special case of a result in 

Clll, elaborated in chapter 6 of [51. The aim of this section 

is to provide a simple proof (which seems to be new) of the 

wLl result and a full proof of the RV result, along with some 

lemmata which might be of interest. 

Returning to figure 2, we may look upon it as defining a family 

gut ' ,Y) of piecewise linear curl'es by 

g,,(s,y) = min(stu, mas(s-u,y) 1. 

Here, gu(s,y) is the output value corresponding to an input 

value s , if we start at the level p, which is the old output 

value . 

It is then clear that the following definition gives the 

correct output, if the input is a step function. 
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2.1 DefinitioB 

Let. s : CO,11 + IR be a step function with values x. on 
1 

successive intervals I., 
1 

l&i&n, and let y, E IR. For u=O we 

define Wu(x,yo) to be the step function on LO,11 with values 

Yi on I., where 1 

Yi = gu(xi’Yi_l) ) l-Li-Ln, 

gu(x,y) = min(x+u, max(x-u,y)). 

Obviously, this definition does not depend upon the choice of 

the partition. 

Let now Reg[O,ll, the space of regulated functions, denote the 

closure of the space of step functions in the space of bounded 

measurable functions on CO, 11, endowed with the sup norm. One 

immediately obtains the Lipschitz continuity of Wu in Reg[O,l): 

2.2 Proposition -___ 

Definition 2.1 yields on operator 

wu : Reg[O,ll x IR + Reg[O,ll 

with 

11 Wli ( s 1 ,~~01)-WU(x2,y02)~~m L mas~~~sl-x2~m,~y01-y02~~ 

for any arguments in the space above. 

Proof: The function gtl has the property that 

1 6 ( 2 ) v "u 1 ‘1 )-g,(z2,y2) 1 -L mas( 1zl-z21,1yl-y21 ). 

The result now follows for step functios x1 and x2 by induc- 

tion and for functions in Reg[O,ll by continuous extension. 

0 

For a continuous and piecewise monotone input x: [O,ll + IR, the 
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output Wux is explicitly given by 

. 
wtl ( x, Y, 1 ( 0 ) = g,,(x(O) >Y,) 

if A = 1t.j 
1 

is a monotonicity partition for x. Therefore, Wu 

maps CCO,ll into itself. 

We now want to obtain an estimate of w~lxl-wux2 in the norm 

defined by the total variation. It turns out to be convenient 

to consider, along with the function g u ' the function 

. 
elastic-plastic element studied in 161 and also in [5,8l. 

The basic lemma is the followi ng. 

2.3 Lemma 

We have 

for any x 

= I(s y2)-(Y1-Y2)’ 

1s 2 9Y 1 1s 2EIR,where 

hll(s,y) = x - g,,(s,y). 

Proof: One easily computes that 

hyZ,Y)-Y = minfx-ytu,maxix-y-u,01 1, 

hJx,y) = maxI-u,min(u,x-y)l. 

Both left hand sides are, therefore, nondecreasing functions of 

s - y . 9 so 
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2.ri Definition 

Let x: [O,ll + IR be piecewise monotone. A partition a = (ti) 

of CO,11 is said to be compatible with x, if xl1 is monotone 

for every interval I = (t++l) of a. 

We introduce some notation, mostly standard, for the BV 

setting. For s: CO,11 + IR and any partition A = it ,..., 
0 

of LO,11 we denote 

We def 

n-l 
VarA(s) = 1 

i=l 
'x(ti+l )-s(L)' , 

Var(x) = sup(VarA(x) : A partition of [O,ll). 

ine 

tnt 

BVtO,l! = (x1x: CO,11 + IR, Var(x) L tm) . 

It is well known that BVCO,ll is a Banach space with the norm 

II s II 
BV = Ix(O)1 t Var(x) , 

and we also have 

BV[O,ll c RegCO,ll , 

since every monotone function can be uniformly approximated by 

step functions. Furthermore, 

wl'lco,ll = (x1x E Ll(O,l) ) K E Ll(O,l)) 

is a closed subspace of (BV[O,l], II.IIBV). The piecewise linear 

functions form a dense subset of W lY1[o,ll, and for any piece- 

wise linear function .x: CO,11 + IR we have 

: lx(t) ldt = Var(x) = VarA(x) , 
0 
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if the partition A = it.1 
1 is compatible with x, so the BV 

norm coincides with the standard norm on W l’l[o,ll. 

We first estimate the variation of Wuxl-Wux2 for piecewise 

linear inputs. 

2.5 Lemma 

Let x1,x2 E C[O,ll be piecewise linear, let y 01 'YO2 E IR and let 

the partition A be compatible with x, and x.,. Then 

6 VarA(xl-x2 

)-wu(x2’Yo2)) 

)+ IhJx 1 'YOl) -hJx2,yo2)’ . 

Proof: We apply lemma 2.3 with the arguments 

Since A is compatible with xl and x2, for j=1,2 and any i we 

have 

and consequently 

hu(xj(ti+l)'Wu(s~j'" Oj)(ti)) = xj(ti+~)-wu(xj'YOj)(ti+l)' 

We obtain from lemma 2.3 

'CWu(S~~YO~)-WU(s2,Y02)l(ti+l) - Ew~~(xl'YO~)-w~~(x2'Y02)1(ti)' 

d l(x1-x2)(ti+l)-(x1-x~~(ti~~ + 

+ t(x~~s2)(ti~~Cw~~(x~~Y01)-Wuol(ti)' - 

- ~(x~~s2)(ti+~)~~Wu(x1’Y01)-WUo3(t~~~ 

Summation over i now yields the assertion, since 
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From this, we will now deduce the Lipschitz continuity of Wu on 

wLl CO,ll. 

2.6 Proposition 

The operator Wu: w140,11 x IR + wLl co,11 is Lipschitz 

continuous, and for any s ) x 
1 2 

E wl'l[O,ll and yo1,yo2 E IR we 

have 

'I wtl ( x 1,yo1)-wu(x2,Yo2) lBV L “X1-S2”BV + 2. ‘Yop()& 

Proof: It suffices to prove the inequality for piecewise linear 

functions xI,x2. We have 

and for any partition 9 compatible with s 1 and x 2 we conclude 

from lemmata 2.5 and 2.3 that 

L VarA(xl-x2 )+~(sl(o)-s2(o))-(~~ol-Yo2) l+‘Yo1-Yo2’ 

L 'Is -x 'I 
1 2 BV +2 ‘Yo~-Yo2 1 . 

This proves the result, since an arbitrary partition i can 

always be refined to a partition compatible with XI and x2. 
cl 

The Lipschitz constants in proposition 2.7 are best possible, 

as simple examples show; of course, they depend upon the way 

one treats the constant functions in the BV norm. 

If we want to know the output Wu(x,yo) only at finitely many 
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points, we may replace x by a suitable chosen interpolate x: 

2.7 Proposition 

Let s E CCO,ll and y, E IR, let A = (ti) be a partition of 

CO,ll. Then there exists a refinement A of A such that, for 
0 

all refinements i of A 
0’ 

the piecewise linear interpolate s 

of ,x on A satisfies 

WLl(;,yo)(ti) = WJs,yo)(ti) 

for all grid points t. of A. 
1 

Proof: Assume u'0; otherwise W u is the identity operator. We 

also may assume that 

osc(s;I) L 2u 

for all I = [ti,ti+ll, t. E A, l where osc(s;I) denotes the 

oscillation of x on the set I. To obtain A from A, for each 
0 

I = [ti,ti+ll adjoin r.,s. E I to A, where 
1 I. 

s(ri) = min x , x(y) = max x. 
I I 

We now prove inductively that, for any refinement i of A with 
0 

piecewise linear interpolate s of x on i, the output values 

Y.A = wJ~,yoHti) ) t 1 i 
E A , 

do not depend upon the special choice of i. Firstly, we have 

ye(b) = w&Yo)(o) = R,,(sw,Y,) = R~l(sw,YoL 

On the interval I = [ti'ti+l I, two cases may occur: 

Case 1. We have 

yi(A)-u L s(r.1 -L x(s.1 L y.(i)tu . 
1 1 1 

The the curve (x(t),$(t)) with i(t) = Wu(s,yo)(t) never hits 

a boundary line for t E I (compare figure 21, and 

Y i+l(~) = yi(~) ’ 
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Case 2. The curve (x(t),;(t)) hits a boundary line for some 

t E I. Since osc(x;I) L 211, the curve can hit only one boundary 

line, and it is easy to check that 

v ,i+l(b) = x(si) - u , or . 

Y i+l(i) = x(ri) t u , 

depending on whether the curve hits at the right or at the 

left. This completes the induction step and proves the lemma, 
- I 

since we may choose a sequence (xn, An) having the properties 

above, with G n + x uniformly, and apply proposition 2.2. 

2.8 Lemma_ 

For any x1,x2 E C[O,ll o BVCO,ll and any yo1,yo2 E 1R we have 

6 Var(x2-x2 ) + 'hll(~lW,~~ol) - hu(x2(0),yo2) 1 . 

oe a partition of CO,ll. According to 

choose a refinement A of A such that 

Proof: Let A = it.1 1 
1 

proposition 2.i we may 

WllGj,‘ ojHt. 1 

for j=1,2 and any t E i 

) = wJ~j,Yoj) W) 

A, where s 
j 

is the piecewise linear 
- - 

interpolate for x 
j 

on A. Applying lemma 2.5 to (x 1,x2) on i, we 

obtain 

q 

= VarA(Wu(G1,yol '-"ll("2,Yo2') 

6 Vari(Wll(S 1 ,Yol)-wL~(~2’Po2)) 

L Var,(sl-x2) t lhu(~l(0),yol l-hll(~220 ,yo2) ' 

’ Var(xl-s2) + 'hu(xl(0),yol)-hu(x2(0),yo2)l . 
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In order to generalize a result concerning Wu on C[O,ll to 

Reg[O,ll, the following device has been developed in C51, p. 

44. For x E RegCO,ll, one interprets the output Wus as restric- 

tion of the output Wus A for some continuous input xA, which 

interpolates the discontinuities of x in a suitable way. This 

is possible since x has an at most countable number of discon- 

tinuities, and the right resp. left sided limits x(t+) and 

s(t-) exist for all t E CO,ll, see C31, p. 16ff. 

2.10 Definition 

Let A = (a.). 
J J~J 

be an at most countable subset of [O, 

b=lt C 2-j, 
jtJ 

11. Set 

and choose the transformation T: [O,bl + CO,ll, defined below, 

with the following properties: 

(i) T is absolutely continuous and nondecreasing, 

(ii) T(0) = 0, T(b) = 1, 

(iii) I 
ci 

:= Tml(Caj 1) is an interval of length 2-', 

(iv) T-'(it!) is a 

To achieve this, def ine the left endpoint of I. 
3 

number 

and set 

single point for t k A. 

a 
j 

+ c 2-k 
keJ,al/a. \ J 

T(s) = "s v(T)dT , 
0 

t o be the real 

where v=O on the union of the I 
j 

and v=l elsewhere. 
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C  

2.11 Definition 

Let A = Ia.) 
J iEJ and T be as in definition 2.10. For any 

s E Reg[O,ll we define xA : CO,bl + IR by 

(i) sAlI 
,i 

is the linear interpolant for the values ~(a.- 
J' 

and x(ajt) at the endpoints of I., s(a) at the midpoint 
J 

of I., 
J 

(ii) xA(s) = s(Ts) otherwise. 

For any z E RegCO,bl we define zR- . CO,11 + IR by 

(i’) = z(r), if j E J and r is the midpoint of I., 
J 

(ii') zR(t) = z(T -Q, otherwise. cl 

As stated in CSI in a slightly d ifferent way, the following 

properties hold. 

(i 

(i) 

(ii) 

ii) 

(iv) 

Proof: 

2.12 Lemma 

In the situation of definitions 2.10 and 2.11, the following 

assertions are true for any s E Reg[O,ll and z E RegCO,bl: 

We have sA E Reg[O,bl and zR E Reg[O,ll. 

If A includes all discontinuity points of x, then 

xA E C[O,bl. 

We have 

\'ar(x*) = Var(x) , if s E BV[O,ll 

Var(zR) 6 Var(z) , if z E BV[O,bl. 

We have for any y, E IR 

WLlhYO) = Cwu(xA,yo)lR . 

The mappings x I--)x A and z I--,ZR are linear and 

continuous on Reg[O,l] resp. RegCO,bl and map step functions 
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to regulated functions. This proves (i) and also (iv), since 

(iv) holds for step functions, and Wu is continuous by proposi- 

tion 2.2. The proofs of (ii) and (iii) are elementary. 
0 

As remarked in L51, p. 46, the output Wux has bounded variation 

if we exclude the case u=O where W u is the identity operator. 

This is a byproduct of proposition 2.7, compare also proposi- 

tion 2.2 in C21. 

2.13 Lemma 

The operator Wu maps Reg[O,ll x IR into BVCO,ll, if ~'0. 

. 

Proof: Let y, E IR. Consider the case where x E C[O,ll is piece- 

wise linear. The number of changes of the monotonicity direc- 

-1 tion of Wus is obviously bounded by ltw(x;2u) , where 

u(x;h) = supir: It-s1 L r => Ix(t)-s(s)1 L hr. 

Therefore we have 

Var(Wu(s,yo)) 6 2nxu0;(2tw(s;2u) -5 , 

Applying proposition 2.2, this inequality extends to any 

x E CCO,ll, since 

For arbitrary x E Reg[O,ll, lemma 2.12 yields the assertion. 

0 

We conclude this section with the statement of Lipschitz 

continuity of W 
U 

in BV[O,ll. 
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2.14 Theorem 

The operator Wll: BVCO,ll x IR + BV[O,ll is Lipschitz 

continuous, and for any x1,x2 E BV[O,ll and any yo1Y~02 E IA 

we have 

11 wl, ( x 1,Yo1)-wll(x2,Yo2)‘~Bv L "x1-x2flBV + 2’Yo1-Yo2’ ' 

Proof: Let A consist of all points where x1 or x2 are discon- 

tinuous. A A Applying lemma 2.8 to x1 and x2, repeated use of lemma 

2.12 yields 

h Var(xl-x2) + Ihu(w,(0),yo,,-hu(x2(O),yo2)I. 

From this, the assertion follows, using lemma 2.3 in the same 

way as in the proof of proposition 2.6. Cl 
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A BV prgperties of the Preisach operator 3 

As already mentioned in the introduction, there are various 

ways to define the Preisach operator. Nevertheless, one always 

has to consider the time evolution of the boundary curve 

depicted in figure 1. If one takes the natural coordinates 

p2-p1 p2+p1 11 = 
2 9 v = 

2 , 

then a particular boundary curve may be written as v = e(u), 

and it turns out that the boundary curve 6 = 9(t) at time t 

is related to the operator W 
u 

from section 2 by 

+(th = wll(s,~o(~d)(tj , 

if q. is the initial boundary at time t=O. This motivates the 

following definition of the Preisach operator. 

3.1 Definition 

Let IZ be a finite Bore1 measure on LO,-) x IR, let 

qo: [O,w) + IR be Lipschitz continuous with Lipschitz constant 

not greater than 1 and with compact support, let c+,c E IR. 

Then for any s E Reg[O,ll we define the Preisach operator W 

by 

(ws)(t) = W(s,p,$o)(t) = E($/(t),p) , 

where 

(q(t) )u = WLl(X,?yU) 1 (t) , 

E(+,p) = c++v~+(u))) + c P((V'*(U)~) , 

if *: CO,-) + IR is Bore1 measurable. 

Several comments on this definition are in order. First, for 

continuous inputs it yields the operator considered in 121, 

'section 3. This can be checked from the definitions and basic 
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continuity properties. In particular, for any fixed t, the 

boundary curve q(t) is then Lipschitz continuous, a fact which 

carries over to inputs x E Reg[O,ll because of lemma 2.12. 

Therefore, E(+(t),p) is well defined. Second, the operator W 

coincides with the operator defined via elementary thermostats 

if and only if the measure p, seen in (u,v)-coordinates, satis- 

fies lpi(L) = 0 for every straight line L of slope 1 or -1; 

this condition also characterizes the continuity of W on 

C[O,ll. 

If one writes the Preisach operator W as in definition 3.1, it 

is natural to split the measure p in the following way. 

3.2 Proposition 

Let p be a finite nonnegative Bore1 measure on IR+ x IR. Then we 

have for any measurable set Q c IR + x IR 

P(Q) = .f W,Q,) dx(u) , 

where pi is the projection of p onto IR+, 

x(A) = /J(A x IR) , 

if ACIR t is a Bore1 set, 

Q,, = iv E IR: (u,v) E Q, , 

and L: = L'(~,B) is a certain real-valued function defined for 

any u E IRt and any Bore1 set B C IR with the properties 

u 1 - ~1 ( u , B ) is x-measurable 

B 1 - 1.' ( u , B ) is a Bore1 measure. 

Proof: This is a basic result in probability theory, related to 

the existence of a conditional probability distribution, so we 

sketch the arguments briefly. For a Bore1 measurable set B c IR, 
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one obtains u I+ v(u,B) as the Radon-Nikodym derivative of 

the measure pD(A) := p(AxB) with respect to x. Thus, v(u,B) is 

determined n-a.e. for fixed B. Defining a countable generator G 

of the Bore1 a-algebra on IR by finite unions, intersections and 

complements of open intervals with rational endpoints, one 

obtains a finitely additive set function B I+ u(u,B) on G 

for any u except from a x-null set. This can be shown to be a 

measure B I----) l)(u,B) on the Bore1 algebra, yielding in turn 

a measure p on IR+ x IR, if we set 

i(Q) = S 14u,Q,,) d-rr(u) , 

which must be equal to F since it coincides with p on sets of 

the form Q = AxB. 0 

l 

Proposition 3.2 enables us to write the Preisach operator in 

the form 

(Wx)(t) = ; c++1 ,(v+(t)u)) t c ~'(u,(vh$(t)u)) dx(u) , 
0 

and if we define f: IR x IR + by 

f(u,z) = ?,(ll, (VLZ)) ) 

we obtain the following result, a generalization of the 

representation in 171. 

3.3 Proposition 

In the setting of definition 3.1, assume that ~10. Then we have 

W(x,P,$o)(t) = Y (c+ 
0 

-c_)f(u,WU(s,~,(u))(t)) dn(u) + 

where 

t c p(IR+ x IR) , 

f(u,z) = I/(u,(v E IR: v L ~1) , 
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and the measures TT and v(u,*) are obtained from p as in propo- 

sition 3.2. 

Proof: This is immediate from definition 3.1 and proposition 

3.2. 0 

For the case of an absolutely continuous measure p, this 

representation is due to [7]. It shows the Preisach operator W 

as a combination of a superposition process and the family of 

hysteresis operators described in figure 2. If p is concen- 

trated on (u=O), then W is a superposition operator; if ,j~ is 

the one-dimensional Lebesgue measure concentrated on some line 

~u=uo 1 for u "0, 
0 

then W is the operator Wu of figure 2. (We 

tacitly extend definition 3.1 to the a-finite case.) Some BV 

properties of Wu are given in the previous section; for BV 

properties of the superposition operator defined by f, we refer 

to the survey paper Cl], section 8 and 9. The results presented 

in Cl1 motivate the following definition. 

3.4 Definition 

Let /J be a finite nonnegative Bore1 measure on IR+xlR, let L',n,tf 

be as in propositions 3.2 and 3.3, We say that ,u has property 

(L1), if 

for any z1,z2 E IR and any u&O, where Lf: IR+ -j IR+ is some func- 

tion with 

; Lf(u) dn(u) L o) . 
0 

We say that /-J has property (L2), if moreover f is differen- 

tiable almost everywhere w.r.t. z, and also 
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lDzf(u,z$-DZf(u,z2)I = Lf(u)lzl-221 

for almost all z1,z2 E IR and any u&O. 

We consider the most important special case. 

3.5 Lemma 

Let JJ be a measure with density e E Ll(IR+ x IR), e&O. 

(i) If 

; ess sup e(u,v) du L m , 
0 v E IR 

then P has property (L1). 

(ii) If moreover the partial derivative D,e(u,v) exists a.e. 

and 

; ess sup 
0 v E IR 

IDve(u,v)I du L m , 

then P has property (L2). 

Proof: It is easy to see that the measure 7~ from proposition 

3.2 has density 

P(U) = 7 e(u,v) dv , 
--m 

and that L f defined by 

P(u)Lf(u) = ess sup e(u,v) , 
v E IR 

with Lf(u) = 0 if P(u) = 0, yields property (L1) for P, since 

z1 
P(U)(f(U,Z,)-f(u,z,)) = .I- e(u,v) dv . 

z2 

Similarly, (L2) is obtained. 

We now present the main result of this section. 
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3.6 Theorem 

Let W be the Preisach operator of definition 3.1. 

(i) 

(ii) 

If the measure p has property (Ll), then W maps bounded 

subsets of SVCO,ll into bounded subsets of BVCO,ll for 

any fixed initial condition $,. Moreover, W maps 

W1'l[O,ll into itself. 

If the measure )J has property (L2), then for any bounded 

subset B of W 191 CO,11 there is an L such that 

IIW(xl, ~,,)-w(s,,~,,)ll,, 6 L(nxl-x2$V + (~$01-~02~~J 

for any x1,x2 E B and any initial condition $01,$02. 

Proof: Using propositions 3.2 and 3.3, we may write W as 

Co 
(Wx)(t) = k+ -c ) S (sllwJx,~o(u)) j(t) dn(u) + c-"P" 3 _ o 

where S ~1 denotes the superposition operator defined by the 

function f, i.e. 

(SllY)W = f(u,y(t)) 

for any function y: CO,11 + IR. Since the measure /J has 

property (Ll), for any partition A of CO,11 and any x E BVCO,ll 

we get 

VarA(Wx) L Ic+-c _I 7 VarA(SuWll(xr~,("))) dx(u) 
0 

L Ic -c 
+ - 

1 T Lf(u)VarA(Wu(x,io(u))) dn(u) 
0 

6 Ic -c 
+ 

_I ; am dn(u) 
0 

l (  llXllBV +2* II~oIlm) , 

. 

the latter inequality with the aid of theorem 2.14. This, 

together with an easy estimate of (Wx)(O), proves the first 

part of assertion (i). To prove that W maps W 191 into itself, 
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by theorem 4.13 in CZI it is sufficient to show that 

k(t) i CC 

with C independent from 6, where 

k(#) = lc+-c- l~up~p(R~(A,~+~)): X E IR, i=l or 2) , 

Rl+ X2) = {(u,v): U&O, ytu 6 v 6 Xp) 9 

R2P1, X2) = {(u,v): u&O, y-u 6 v 6 +I~ l 

But because of property (Ll), 

p(Rl(X,M)) = 7 f( u,Xt[tu)-f(u,h+u) dn(u) 
0 

4 ; Lf(u) dn(u) . < , 
0 

and with an analogous estimate for RZ(h,h+6), the proof of (i) 

is complete. Now assume that P has property (L2). We first 

consider the superposition operator. Fix any z ,z 
1 2 E Wl’l[O,ll. 

I f " - " 1 denotes Ll-norm, we have 

II+ z dt ul -Suz2) '1 = 
1 

= : IDZf( 
0 

%z,(t))z,(t)-DZf(u,z2(t))z2(t)I dt 

4 : L hu) Iz it'-z ,$t, I 
1 

0 
Ii jt)Idt + J- ID ;(u,z,(t))l li2(t)Idt 

0 

b Lf(U)(llill1111Zl-z211m t Cllli -i 
1 2 "1) 

with some constant C 1' since DZf has compact support. 

Therefore, 

with some nondecreasing function C 
2’ 

Now take any x1,x2 E B 

and any partition A of (0,l). We then have, using the estimate 

just derived, 
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0, 
4 Ic 

+ -C-I J- V~r~~SuWu(~1,301(~~))-sLlwu~~2,~02~~~~~~ dx(u) 
0 

m 

L Ic t -c-l S Lf(u)C2(Var(WU(x~,~o1))))~W~~(x~,~o~)-W~~(x2~~o2)~Bv~ 
0 

l dx(u) 

5 Ic -c I*C3 ; Lf(u) d~(u)*(llx1-x2~~BVtl~~Ol-~0211~) , t - 0 

the latter inequality being true for some constant C3 because 

of theorem 2.14, since x 1 varies in the bounded set B and we 

may restrict the initial conditions + oi to have values in a 

bounded set, containing the support of p. This completes the 

proof of the theorem. I3 

As it is to be expected, theorem 3.6 links properties of the 

Preisach operator W to properties of the measure p. In view of 

the results included in [II, it seems that the assumptions (L1) 

and (L2) cannot be weakened substantially, but we do not 

attempt to give a complete characterization. Moreover, theorem 

9.3 in Cl1 implies that the superposition operator S u generated 

by f=f(u,z) is Lipschitz continuous in BV[O,ll if and only if 

f is linear with respect to z; this means that p has constant 

density along all lines (u=u ), 0 respectively along all lines 

parallel to the main diagonal in the (Pl,P2)-coordinates. The 

corresponding Preisach operator W then becomes the so-called 

Ishlinskii operator. Accordingly, we conjecture that the 

Preisach operator is Lipschitz continuous in BVCO,ll if and 

only if it is an Ishlinskii operator, the "if"-part being a 

direct consequence of theorem 2.14. 
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We now return to the study of the time evolution of the bound- 

ary curve in figure 1. As an immediate corollary of theorem 

2.14 we obtain 

3.7 Proposition 

The mapping (s,$~) I-+ II/ defined by 

$( t,u) = wLl(x,Iso(u)) (t) 

yields a Lipschitz continuous operator from 

BV[O,ll x Lm(lR+) into L"(IR+;BV[O,ll), mapping 

,I, 1 co,11 x Lm(lR+) into I,"'(IR+;W1'l [O,ll). 

However, viewing 1L(t,n) as the boundary curve at time t, it is 

more natural to ask for regularity in spaces of functions 

9: [O,Tl + '4, where 9 is a suitable space of boundary curves. 

Basic properties of II, and time regularity with respect to the 

sup norm have been studied extensively in CZI, section 3. The 

remainder of the present section is intended as an addendum to 

these results. We therefore introduce the relevant notation 

without discussion; for this we refer to C21, section 3. 

3.8 Definition 

We set 

Yl = ($I+: CO,a) + IR, @ has compact support and is 

Lipschitz continuous with Lipschitz constant 61). 

On Fl we introduce the distances d 1' dol and dl,l which corre- 

1 spond to the norm in L , Lm and the seminorm 

t 

We def ine G : IR x 'I' 

= ; I+'(u)1 du . '@'l,l o 

1 -+P 1 by 
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G(x,@)(u) = minlx+u,max(x-u,@(u) )I, 

and define F(x,?o): CO,11 + Y'l for any II, E 81 
0 

and any 

piecewise monotone x f- C[O,ll with monotonicity partition 

A = it..) by 
1 

F(x,ioUO) = G(x(O),$~) 

F(x,io)(t) = G(x(t),F(x,io)(ti)), if t E [ti,ti++ 

Since G is linked to gu from definition 2.1 by 

G(x,+)(u) = g,(x,@(u)), 

one easily checks that, if one extends F to C[O,llxlkl, 

[F(x,+o)(t)l(u) = CwJx,~ow)l(t). 

We are now interested in continuity properties of F in the 

space W "'[O,ll. Again, from theorem 2.14 we obtain the 

following result. 

3.9 Proposition 

The definitions in 3.8 yield a mapping 

F: W l'lro,ll x q1 + WIY1 UWU'l,dl)L 

For any bounded subset B c W +0,11 and any M10, 

F: B x ('I' lM,dJ + w l'l(O,l;('+l,dl)) 

is Lipschitz continuous. (Here YIM denotes the subset of ql 

consisting of functions with support in [O,Ml.) 

Proof: For any q. E Y1 and any piecewise linear x E C[O,ll 

one checks that 

+(t,u) = [Wu(x,+o(u))l(t) = [F(x,$o)(t)l(u) 

* gives a Lipschitz continuous function 9: CO,11 x IR+ with 



= c 
tid 

~F(Xl,~ol)(ti+l)-F(X2,i02)(ti)l 
hR+) 

= c 7 IWu(xl 
tieA 0 

,~ol(u))(ti+l)-Wu(X~~~~~(U))(ti)' du 

= ;v 
0 

a'pCWU(Xl,~ol(U))-Wu~x2,~02~~~~l du 

6 max~M,IIxlIIm,Ilx II 
2 @J f*( llX1-X211BV+211~01-~0211m)’ 

ing a consequence of theorem 2.14 and 

large enough. For general x1 and x2, 

the assertion now follows with a density argument. 

the latter inequality be 

the fact that W =0 for u 

compact support, so qt E L1( LO,11 x IR+) and 

Fbdo) E W1'l(O,l;(+l,dl)) as claimed. Now let x1,x2 E CCO,lI 

be piecewise linear and $01,$02 E VIM. For any partition 

A = It.) 
1 of CO,11 we have 

VarA(F(x,,~ol)-F(x2,~02)) = 

q 

The result of proposition 3.9 no longer remains valid if we 

replace (ql,dl) by (ql,dm), even if we do not vary the initial 

state. This is shown by the following counterexample. 

3.10 Example 

Set qol = qo2 = 0. Define x,xz E CCO,ll by 

x(t) = x,(t) = t ) O&16$ 

x(t) = 1-t 1_ , 2 
6 t L 1 

x,(t) = * 9 L 6 1 6 1+, 
2 2 

x,(t) = x(t-x) , A+, 
2 

LtLl, 
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Then we have 

11x-x II = 11x-x II 
L BV = 

c 
L 03 

and 

(wuYH;, = (WllX&)($ = ; 

Moreover, for 0 g u 6 ; 

(Wtlx)(t) = min{l-t+u,A-uj 2 

(Wus,Ht) = WLlX)W4 

This can also be written as 

' 1 --u , 2 
(Wux) (t) = 

l-t+u ) 

Now set 

a&Q) = (Wux)(t)-(Wus~,)(t). 

For t p ;+r, 2u = t-i we obtain 

therefore 

sup 16r(u,ttr)-6E(u,t) I 2 L , 
u '0 

t-; 6 2u 

t-i h 2u . 

If we partition [$, 11 by A = it,), t = .$+nr, n the preceding 

considerations yield 

VarA[sup (W~lx-Wu~E)] k F . k = i , 
U'O 

so F(x L,O) does not converge to F(x,O) in the space 

W1'l(O,l;('Pl,d_)). 

If we allow a loss of time regularity, we obtain Lipschitz 

continuity of F with respect to the distance d 
191 

in ly 1 

generated by the seminorm 

= ; 11L'(u)I du . '%,l o 
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We need the corresponding property for the mapping G. 

3.11 Lemma 

For any x1,x2 E IR and any $l,$, E 'I'1 we have 

IG(xl, ilkG(x2,i2)' 1,l L 

d w1-~211,1 + wl(o)-~z(o) b-(x,-x,) ' 

Proof: We freely use basic properties of G given in CZI, 

section 3. We first consider the case xl 6 $1(O), x2 6 $2(O). 

Setting 

Oi(u) = G(x~,+~)(u)-$~(u) , u k 0, 

we conclude that 

o,p) 6 0 5 o;(u) 8.e. in IR+, 

so 

'01-02'l,l = a o;(u)-o;(u) du = 02(0)-@l(O) 

= (+1(o)-92(o)) - (y-x2) , 

and the triangle inequality yields the assertion. Now assume 

that s l L lcl(0), x2 L q,(O). Set 

z ( u ) = G(s,,~,)(u)-G(x,,~,)(u), 

and define u ,u 12 E IR by 

11 . = infiu: s. - 11 1 1 
L ?yu) L xi+ul . 

If u1'u2 (the reverse inequality is treated similarly), we have 

z(u) = y-x2 9 0 4 u L ul, 

z’(u) 6 0 a.e. in Cu,,u,l, 

z ( u ) = y+-~,(u) , u2 4 u. 
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Since 

U 
2 
J lz'(u)ldu = z(ul)-z(u2) = (xl-x2)-($l(u,)-$,(u,)) 

u 1 

U 2 
= (x,-x2~-(~,(o~-~2(o)~ - S ~;(u,-~~(u) du , 

0 

we obtain 

u2 
IG(x~,~~)-G(x~,~~)~~ 1 = s Iz'(u) 1 + 

, 
; y(u)-$J;(u) 1 du 

Ll 1 u 2 

which was to be proved. The cases x 1 A yo), s2 k 12(o) and 

X 1 1 yo), x2 1 +2(o) are treated analogously. 
q 

ipschitz continuity From lemma 3.11, we readily obtain the L 

of F. 

3.12 Proposition 

The mapping F satisfies 

F: W"l[O,l] x '4'1 + C(O,l;(Yl,dl,l)) , 

and 

sup 
te[0,11 

IF(sl;$' ol)(t)-F(x2,~02)(t)~l,l L 

i 11 s 1 -s2 I& + 2~~ol-*02~l,l 

for any xl's2 E wl'lco,ll and any 11101,~02 6 ql. 

Proof: If x E w l'lCO,ll is piecewise monotone, the continuity 

of F(x,qo): CO,11 + ('4'1,dl 1) with respect to t follows direct- 
, 

ly from lemma 3.11. If x1,x2 E wl'lco,ll are piecewise monotone 

with corresponding common partition A = (t. i 
1 

of CO,ll, we 

have, using lemma 3.11 again, 
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(F(sI, 'OI)(ti+l ) - F(x 2"02)(ti+l'l,l = 

= 'G(x~(ti+l)'F(xl,~Ol)(ti)) - G(x2(ti+l)'F(x2'~2)(ti')'~ 1 3 

-L IF(x l,~ol)(ti)-F(X2,~02)(ti) '1 1 + 9 

t 1(x l-x2)(titl)-(x1-x2)(ti)' , 

therefore for any t E CO,11 

IF(x ,,~,,)W - F(x2,~02)o'l 1 L , 

4 Var(xl -x2)+'G(xl(0) do1 )-G(x~(O),~~~)'~ , , 

-L IIX -x 
1 

II 
2 BV +'~ol-~02'l,l+'~ol(o)-102(o)~ . 

Since the unique Lipschitz continuous extension to W l'lro,ll 

coincides with F as defined on C[O,ll, the proof is complete. 
0 
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