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Kurzfassung

Das zerstörungsfreie Testen von Erzeugnissen mehrlagiger Materialien wird so-
wohl im wissenschaftlichen als auch im industriellen Umfeld zunehmend einge-
setzt. Insbesondere die Entwicklungen in der Millimeterwellen- und Terahertztech-
nik eröffnen durch die nicht-ionisierenden Eigenschaften dieses Wellenlängenbe-
reichs neue Anwendungsfelder wie der berührungslosen Schichtdickenmessung.
Bei den hierfür häufig verwendeten Messverfahren führen übliche Analysemetho-
den zu einer Auflösungsbegrenzung, die von der Bandbreite des Messsystems
abhängt. In dieser Arbeit wird analysiert, wie sich mit einem modellbasierten
Signalauswertungsansatz Schichtdicken unterhalb dieser Auflösungsgrenze zuver-
lässig bestimmen lassen.

Im Kontext dieser Arbeit wird die elektromagnetische Strahlung durch das fre-
quenzmodulierte Dauerstrichverfahren (FMCW von frequency-modulated contin-
uous-wave) erzeugt und detektiert. Hierfür werden Proben mit Wellen bestrahlt,
deren Frequenzen kontinuierlich erhöht werden, um das frequenzspezifische Über-
tragungsverhalten zu erfassen. Die Grenzschichten zwischen Materialien un-
terschiedlicher Brechungsindizes erzeugen Reflexionen, die sich im resultieren-
den Messsignal als additive Schwingung einfügen, deren Frequenzen von den
Laufzeiten der Wellenanteile abhängen. Um deterministische Störanteile wie die
Reflexionen durch das Messsystem zu kompensieren, werden die Messdaten kali-
briert. Durch eine genaue Bestimmung der korrigierten Frequenzanteile können
somit die Dicken der einzelnen Materialschichten berechnet werden. Zur Ana-
lyse kann die diskrete Fouriertransformation verwendet werden. Eine einzelne
Schwingung im Messsignal wird auf einen ausgedehnten Hauptanteil (peak) mit
einem Maximum an der gesuchten Frequenz abgebildet. Um diesen herum treten
Nebenanteile (side lobes) auf. Die Messdauer bzw. die Bandbreite der Frequenz-
modulation bestimmt die Breite dieser Spektralanteile und somit den Abstand
zwischen demMaximum und der nächsten Nullstelle, der als Rayleigh-Auflösungs-
grenze bezeichnet wird. Schichtdicken unterhalb dieses Wertes können ausschließ-
lich durch den Fouriertransformationsansatz nicht bestimmt werden, da sich die
Hauptanteile überlagern. Für dünnere Schichten werden in dieser Arbeit alter-
native Signalverarbeitungsmethoden untersucht, die nicht durch die Rayleigh-
Auflösungsgrenze limitiert sind. Hierzu wird das Messsignal einerseits durch spek-
trale Schätzverfahren und andererseits durch einen alternativen modellbasierten
Ansatz nachgebildet.
Spektrale Schätzverfahren basieren auf Modellen, die es ermöglichen, das Leis-



tungsdichtespektrum des Messsignals durch wenige zu bestimmende Parameter
zu nähern. Zwei spezielle Varianten der Verfahren, die modifizierte Kovari-
anzmethode und der MUSIC-Algorithmus (multiple signal classification) werden
gewählt, um beispielhaft ihre Zuverlässigkeit für die Schichtdickenauswertung zu
analysieren. Die modifizierte Kovarianzmethode basiert darauf, dass sich An-
teile des Messsignals aus vorangegangenen Punkten abschätzen lassen. Demnach
kann ein Filter entworfen werden, welches diese Charakteristik aufweist und eine
Nachbildung spezieller Eigenschaften des Leistungsdichtespektrums ermöglicht.
Unter Anwendung der Systemtheorie ergibt sich aus der Anzahl der Exponen-
tialfunktionen des Messsignals die Modellordnung, die Vielzahl der Polstellen des
Filters. Aus den Positionen der Polstellen wiederum lassen sich Schätzwerte für
die gesuchten Frequenzanteile berechnen. Das Modell des MUSIC-Algorithmus
gleicht einer Überlagerung komplexer Exponentialfunktionen und additiven weiß-
en gaußschen Rauschen. Aufgrund der Orthogonalität beider Anteile lassen sich
durch Eigenwertzerlegung Rauscheigenvektoren bestimmen. Diese werden zur
Erzeugung eines Filters verwendet, dessen Inverses eine Schätzung des Leistungs-
dichtespektrums und der gesuchten Frequenzanteile ermöglicht. Durch Simula-
tionen wird dargelegt, dass die Auflösungsgrenze der diskreten Fouriertransfor-
mation unterschritten werden kann, und, dass keine Nebenanteile zu beobachten
sind. Die Kalibrierung und das vergleichsweise niedrige Signal-Störleistungsver-
hältnis beeinflussen jedoch die Modellcharakteristik und hierdurch die Modell-
ordnung für beide Verfahren. Demnach können verfälschte Frequenzanteile und
abweichende Schichtdicken beobachtet werden.
Die Verwendung eines alternativen modellbasierten Verfahrens kann die Auswer-
tung falscher Frequenzanteile reduzieren: Ein Modell, welches der formalen Be-
schreibung des Messsignals entspricht, wird an dieses angepasst, wobei die Korre-
lation zwischen beiden als Gütemaß dient. Die Parameter, die das Modellsignal
mit der höchsten Übereinstimmung erzeugen, entsprechen dann einer geeigneten
Schätzung der Schichtdicken. A priori Abschätzungen der einzelnen Dicken kön-
nen verwendet werden, um Suchintervalle entsprechend einzuschränken. Die for-
male Beschreibung des Messsignals besteht aus Hauptreflexionen, den ersten
Strahl- bzw. Signalanteilen, die von den verschiedenen Grenzflächen erzeugt
werden, und weiteren Mehrfachreflexionen. Es konnte gezeigt werden, dass der
Einfluss Letzterer signifikant ist, wenn die Kontraste zwischen den Brechungsin-
dizes benachbarter Materialien hoch sind, oder, wenn sich der Schichtaufbau auf
einem leitenden Substrat befindet. Um Mehrfachreflexionen effizient zu berech-
nen, wird eine Transfermatrixmethode modifiziert. Sie beschreibt die einzelnen
Schichten als Vierpole und die Wellenausbreitung als Matrixmultiplikation. Die
Modifikation besteht darin, dass anstelle der vollständigen Beschreibung lediglich
die Auswirkungen auf das Messsignal berechnet werden. Die Auswertung von
gemessenen Signalen kann das Verfahren sowie die Fähigkeit des modellbasierten
Ansatzes validieren, Schichten unterhalb der Rayleigh-Auflösungsgrenze zu be-
stimmen.
Neben dem Auflösungsvermögen ist die Genauigkeit der Messergebnisse ein ent-
scheidendes Kriterium für die Zuverlässigkeit des Mess- und Auswertungsver-



fahrens. Dabei wird in zwei maßgebende Aspekte, Richtigkeit und Präzision, un-
terschieden. Die Richtigkeit bezieht sich auf den systematischen Fehler, dem in
diesem Fall durch die verwendete Kalibrierung weitgehend entgegengewirkt wird.
Die Präzision beschreibt die Messunsicherheit, die sich mit Hilfe der Schätztheorie
methodisch analysieren lässt. Hierfür wird die Cramér-Rao-Schranke, das theo-
retische Minimum der Varianz, speziell für das FMCW-Verfahren hergeleitet.
Zugrunde liegt die Annahme, dass es sich bei den Störungen im Messsignal
um additives weißes gaußsches Rauschen handelt, welche durch Hypothesen-
tests bekräftigt wurde. Die berechnete Schranke stellt den Zusammenhang zwi-
schen der Varianz der Messung und dem Signal-Störleistungsabstand dar und
wird mittels Simulationen und Messungen validiert. Die hohe Präzision und die
Richtigkeit der Messergebnisse weisen das Potenzial des modellbasierten Ansatzes
für einen zuverlässigen Einsatz in Messanwendungen nach.
Im Hinblick auf zeitliche Anforderungen im industriellen Kontext werden ver-
schiedene Methoden für den Anpassungsprozess zwischen dem modellierten und
dem gemessenen Signal verglichen. Zuerst wird die Exhaustionsmethode ange-
wendet, die sämtliche potenzielle Modellsignale berechnet. Solange die Schritt-
weite klein genug gewählt wird, stellt die Methode sicher, dass das globale Op-
timum gefunden wird. Einer hohen Rechenzeit wird durch eine parallele Verar-
beitung auf Grafikprozessoren entgegengewirkt. Zur vereinfachten Berechnung
des Gütemaßes kann an Stelle der Korrelation direkt die Kostenfunktion, der
euklidische Abstand zwischen beiden Signalen, berechnet werden. Die Simula-
tion der Lösungsräume charakteristischer Messszenarien zeigte eine hohe Anzahl
von lokalen, weitgehend äquidistanten Minima auf. Es wird gezeigt, dass gene-
tische Algorithmen, ein stochastisches Verfahren, das zufällig gewählte Punkte
im Lösungsraum miteinander kombiniert, ungenaue Dickenwerte ermitteln. Auf-
grund dessen wird ein alternatives Optimierungsverfahren entworfen, das speziell
für die hohe Anzahl lokaler Optima konzipiert ist. Für dieses wird im ersten
Schritt der mittlere Abstand der Minima mittels Fourieräquivalenzen berechnet.
Danach wird ein engeres Raster an äquidistanten Startpunkten initialisiert, um
in den jeweils konvexen Teilumgebungen die nächstgelegenen Extremwerte mit-
tels Gradientenverfahren bzw. dem Nelder-Mead Algorithmus anzunähern. Die
erste Variante nutzt für jede Iteration die Richtung des negativen Gradienten, da
diese den lokal steilsten Abstieg anzeigt. Da der jeweils konvexe Ausschnitt des
Lösungsraums nicht verlassen werden soll, wird eine vergleichsweise kleine, heuris-
tisch bestimmte konstante Schrittweite verwendet. Der Nelder-Mead Algorith-
mus basiert auf einem initialen Simplex im Lösungsraum, dessen Eckpunkt mit
dem höchsten Kostenfunktionswert iterativ durch einen Neuen mit niedrigerem
Wert ersetzt wird, welcher sich aus den vorherigen Ecken ergibt. Beide Varianten
identifizieren mit einer signifikanten Reduktion der Rechenkomplexität sowohl die
meisten lokalen als auch das globale Minimum. Insbesondere der Nelder-Mead
Algorithmus stellt aufgrund der Richtigkeit und Präzision der Ergebnisse eine
effiziente Alternative zur Exhaustionsmethode dar.
Das Potenzial des modellbasierten Ansatzes für Anwendungen im Bereich des
zerstörungsfreien Testens wird anhand industrieller Proben dargelegt. Dazu zäh-



len dreischichtige Rohre mit einem Rezyklatschaumkern. Vergleichsmessungen
mit dem technisch und zeitlich aufwendigen Terahertz-Zeitbereichsspektroskopie-
verfahren validieren die gemessenen Ergebnisse. Eine weitere Messreihe an Po-
lyesterfolien zeigt, dass Dicken bis 121 µm (6% der Rayleigh-Auflösungsgrenze)
mit Abweichungen kleiner als 4% bestimmt werden können.
Für das im Rahmen der Untersuchungen erarbeitete modellbasierte Verfahren
wurden methodische Aspekte und Messergebnisse veröffentlicht. Zu den wesent-
lichen wissenschaftlichen Beiträgen zählen die folgenden Punkte:

� Abschätzung der Präzision: Im Gegensatz zu vorherigen Arbeiten wird bei
der Herleitung der Cramér-Rao-Schranke die Abhängigkeit der Nullphase
und der Frequenz der verschiedenen Schwingungen des FMCW-Messsignals
berücksichtigt. Die Schranke stellt die Abhängigkeit der Präzision vom
Signal-Störleistungsabstand des Messsystems, den Brechungsindizes der Ma-
terialien und weiteren Parameter der Messung dar.

� Effiziente Berechnung der Mehrfachreflexionen: Die Modifikation der Trans-
fermatrixmethode ermöglicht die vollständige Betrachtung der Mehrfach-
reflexionen unter der vereinfachten Annahme von homogenen, linearen und
dispersionsfreien Materialien, indem anstelle der Wellenausbreitung lediglich
deren Auswirkungen auf das Messsignal berechnet werden. Die Anpassun-
gen basieren darauf, dass sich eine Amplitudenänderung der elektromag-
netischen Welle in gleicher Weise auf die Signalstärke auswirkt, und, dass
sich Frequenz und Nullphase des Signalanteils linear zu einer längeren Aus-
breitung im Material verschieben. Für den gegebenen Fall reduziert sich
der Rechenaufwand auf einen Bruchteil von dem der klassischen Variante.

� Angepasstes Optimierungsverfahren: Eine spezielle Methode wird erstellt,
die auf der äquidistanten Charakteristik des Lösungsraums basiert. Durch
eine Kombination der Abschätzung des mittleren Abstands der Minima,
einem Raster aus entsprechenden Initialpunkten und der Verwendung des
Nelder-Mead Algorithmus zur Näherung des nächstgelegenen Minimums,
kann das globale Optimum sowohl richtig als auch präzise ermittelt werden.



Abstract

The nondestructive testing of multilayered materials is increasingly applied in
both scientific and industrial fields. In particular, developments in millimeter
wave and terahertz technology open up novel measurement applications, which
benefit from the nonionizing properties of this frequency range. One example is
the noncontact inspection of layer thicknesses. Frequently used measuring and
analysis methods lead to a resolution limit that is determined by the bandwidth
of the setup. This thesis analyzes the reliable evaluation of thinner layer thick-
nesses using model-based signal processing.

In context of this work, the electromagnetic radiation is generated conforming
the frequency-modulated continuous-wave (FMCW) approach. For this purpose,
the samples-under-test are illuminated by waves, whose frequencies are linearly
increased. Hence, their frequency-specific response is captured. Boundary sur-
faces between layers of different refractive indices cause characteristic reflections.
Each of them corresponds to one superposed oscillation in the measured signal,
whose frequency is determined by the propagation time of the wave. The mea-
surement data is calibrated in order to compensate for spurious interfering echos
such as reflections from the measurement system. If the adapted frequency por-
tions of the signal are accurately determined, the thicknesses of the material layers
can be calculated. For such a frequency analysis, the discrete Fourier transform
is often applied. Then, a single oscillation is represented by a broad peak, whose
center corresponds to the quested frequency. Additionally, side lobes are present
in its approximation. The measurement duration or rather the bandwidth of the
frequency modulation determine the width of these spectral portions. The dis-
tance between the maximum and the closest zero is referred to as the Rayleigh
resolution limit. Layer thicknesses below this value cannot be determined solely
by applying the Fourier transform, since their main peaks overlap. In this work,
alternative signal-processing methods are analyzed, which are not restricted by
the Rayleigh limit. For this purpose, on the one hand, spectral estimation algo-
rithms are applied. On the other hand, the measured signal is replicated by an
alternative model-based approach.
Spectral estimation algorithms are based on models to approach the power spec-
tral density of the measured signal. For this, few parameters have to be de-
termined. The total number of significant oscillations influences the quantity of
required parameters, which is referred to as model order. Two specific algorithms
are chosen to investigate the reliability of spectral estimation for FMCW thickness



analysis: modified covariance method and MUSIC (multiple signal classification)
algorithm. The modified covariance method is based on the model, that portions
of the measurement signal can be estimated using previous data points. Accord-
ingly, a filter can be designed which models this property and enables to estimate
certain characteristics of the power spectral density. Applying system theory,
the number of exponential functions of the measured signal results in the model
order, the quantity of poles of the filter. Evaluating the positions of these poles,
the frequency portions can be estimated. For MUSIC algorithm, the measured
signal is expected to consist of complex exponential functions in additive white
Gaussian noise. Due to the inherent orthogonality between both portions, noise
eigenvectors can be calculated based on an eigenvalue decomposition. These vec-
tors determine the coefficients of a filter, whose inverse enables estimating the
power spectral density and the frequency portions. It can be shown by simula-
tions that the thickness resolution can be extended to thinner layers. Moreover,
side lobes cannot be observed for the resulting (pseudo) power spectra. However,
the calibration and the comparatively low signal-to-noise power ratio influence
the model order for both methods. Therefore, inaccurate frequency portions and
deviating layer thicknesses can be observed.
Applying an alternative model-based approach, the evaluation of inaccurate fre-
quency portions can be reduced. For this purpose, a model, which corresponds to
the mathematical description of the expected measurement signal, is generated
and adapted to it. The conformity between both is quantified by the correlation
in the first place. The parameters of the best fit indicate an appropriate approx-
imation of the thicknesses. A priori estimates of the different layer gauges enable
to correspondingly delimit the search intervals. The expected measurement signal
is characterized by main reflections, which are the first beam or signal portions
caused by the different boundary surfaces. Additional multiple reflections can be
observed as well. It can be shown that their influence is significant either, when
the contrasts between the refractive indices of adjacent materials are high, or,
when the layered structure is attached on a conductive substrate. To efficiently
calculate multiple reflections, a transfer matrix method is modified. It remodels
the individual layers as quadrupoles and the wave propagation as matrix multi-
plications. For the modification, instead of the entire wave propagation, solely
its effects on the measurement signal are calculated. The evaluation of measured
data validates the method and the ability of the model-based approach to deter-
mine layers below the Rayleigh resolution limit.
Besides the resolution, the accuracy and the precision of the results are signifi-
cant criteria for the reliability of a measurement system and evaluation process.
The accuracy relates to the systematic error, which in this case is largely coun-
teracted by the calibration. The precision instead classifies the measurement
uncertainty. It is analyzed theoretically by applying estimation theory. For this
purpose, the Cramér-Rao lower bound, which approximates the minimum vari-
ance for unbiased estimators, is derived. It is assumed that the signal is interfered
with additive white Gaussian noise, which is indicated by hypothesis tests. The
calculated bound represents the relation between variance of the results and the



signal-to-noise power ratio. It is validated by simulations and measurements or
representative examples. High accuracies and precisions of the results demon-
strated the potential of the model-based approach for a reliable use in measure-
ment applications.
With regard to potential real-time requirements in industrial production lines,
different optimization methods for the fit process between the modeled and the
measured signal are compared. Firstly, exhaustive search is applied, which re-
quires the calculation of all potential modeled signals within the search intervals.
As long as the step size is chosen as small enough, the method ensures that the
global optimum is found. The high computation time is counteracted by parallel
computing on graphics processors. To simplify the calculation of the correlation
between modeled and measured signals, the cost function, the Euclidean distance
between both, can be determined. Simulating solution spaces of representative
measurement scenarios invariably shows a high number of local, rather equidis-
tant minima. It is demonstrated that genetic algorithms, a stochastic procedure
that combines randomly selected points in the solution space, frequently achieves
imprecise thickness values for such spaces. An alternative optimization method
is established for FMCW considering the high number of local optima. Firstly,
the mean distance between the minima is calculated using Fourier equivalences.
Afterwards, a set of narrower initial points is generated in order to approximate
the closest extreme values in the respective convex section of the space. For this
step, the gradient method or the Nelder-Mead algorithm are applied. For each
iteration, the first variant shifts the points towards the direction of the locally
steepest descent indicated by the negative gradient. Since the respective convex
section should not be exceeded, a comparatively small, heuristically determined
step size is used. Nelder-Mead algorithm is based on initial points in the solution
space arranging a simplex. Iteratively, the vertex with the highest cost function
value is replaced by a point with a lower value. Both variants identified the global
and almost all local minima determined by the exhaustive search. However, the
computation load and time is significantly reduced. Particularly, Nelder-Mead
variant is an efficient alternative due to the high accuracy and precision of the
results.
Different measurement results indicate the potential for industrial applications.
Multilayered tube wall sections characterized by a recyclate foam core are ex-
emplary analyzed and the results validated by comparing terahertz time-domain
spectroscopy measurements. The minimum measurable thickness is determined
for biaxially-oriented polyethylene terephthalate sheets resulting in value of 121 µm
corresponding to 6% of the Rayleigh limit with a bias of less than 4%. In terms
of future application, the bandwidth is reduced to outline the potential of the
signal-processing approach for compact systems such as monolithic microwave
integrated circuit.
While model-based approaches have been used for numerous previous applica-
tions, different aspects of the thickness evaluation show a significant degree of
novelty, which is discussed in the following.

� Estimation of precision: in contrast to former work, the Cramér-Rao lower



bound is derived with a special consideration on the dependency of frequen-
cies and zero phases of the signal’s oscillations. Since both quantities are
simultaneously processed in case of the model-based approach, this char-
acteristic is significant. The bound represents the dependency of the mea-
surement uncertainty on the signal-to-noise ratio, material characteristics,
and setup parameters.

� Efficient calculation of multiple reflections: the modification of the transfer
matrix method particularly for FMCW computes multiple reflections for
linear, homogeneous, isotopic, and dispersion-free materials by observing
the influence of the wave propagation directly on the measured signal. It is
based on the linear amplitude relation of reflections and signal portions as
well as a frequency, and zero phase shift in case of varying the optical path
length. For the presented case, instead of millions, solely thousands data
points are required.

� Optimization process: based on the equidistant characteristic of the solution
space with numerous local optima, an optimization strategy is customized
for FMCW thickness measurements. Utilizing Fourier transform equiva-
lences, the average distance between adjacent minima is derived. A set of
equidistant initial points is then initialized to approach the closest optimum,
respectively. For the presented examples, the evaluated thicknesses are al-
most as accurate and precise as exhaustive search, while the computation
load and time is significantly reduced.
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1. Introduction

On the one hand, the functionality and safety of different industrial products can
only be guaranteed by achieving certain minimum layer thicknesses. On the other
hand, material resources can be saved if the layers are simultaneously chosen as
thin as possible. Therefore, thickness measurements are essential for nondestruc-
tive testing. The aim of this work is to determine multilayers without requiring
contact between sensor and object using millimeter and terahertz waves, which
resulted in a significant amount of publications [1]–[22]. Several alternative thick-
ness measurement systems are already commercially available such as mechanical,
ultrasonic, and X-ray approaches. In the following, an overview of established
techniques and their requirements is given.
Mechanical measurement systems such as millimeter gauges are often cost-efficient.
However, they are based on a direct contact between sensor and sample-under-
test (SUT). The mechanical tension between both can affect the accuracy of the
results. Depending on the choice of the measurement spot, the SUT even has
to be removed (which is usually quite cost-intensive such as for tubes in service
[23]) or to be destroyed (for instance cut into smaller sections). For single layers,
alternative approaches are eddy current and capacitive techniques. Eddy current-
based sensors enable determining single conductive layers [24], [25] and dielectric
coatings [26] but they still are contact-based. Capacitive sensors have to be large
in comparison to the measured object, because otherwise, the dependency of the
thickness on the capacity is nonlinear and biased results may be obtained. Thus,
both methods are not practical in certain scenarios.
All of the following techniques are based on measuring the propagation time of
electromagnetic or acoustic waves. The boundary surfaces of the SUT generate
characteristic reflections. Propagation time differences result in distinctive time,
phase or frequency shifts, which are processed to evaluate the thicknesses.
Optical methods such as interferometry [27] enable highly accurate thickness eval-
uations due to the low wavelength of the electromagnetic waves. Nevertheless,
since many materials are opaque for the visible spectrum, not any information
of the internal structures may be detected. Instead of the single thicknesses of
the different layers, solely the width of the entire SUT can then be determined.
Even thinner layers are resolvable by X-ray techniques, because of the reduced
wavelength and transparency of respective materials. However, because of the
low wavelength and high photon energy, the radiation is ionizing. Therefore, a
high effort for shielding can be required in case the production lines have to be
accessible for humans.
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In terms of ultrasound techniques, one approach for the design of setups and sys-
tems is based on generating and detecting pulses [28]. The time differences be-
tween the different reflections indicate the thicknesses. For thinner pulse widths,
the minimum measurable thickness is lower. Such short pulses correspond to
broad amplitude spectra in the frequency range. A continuous-wave radiation
with a linearly increasing frequency is characterized by a broad spectrum and
therefore enables thickness determination as well. This approach is referred to as
frequency-modulated continuous-wave (FMCW). The measurement signal how-
ever corresponds to a sum of oscillations, whose frequencies and zero phases are
shifted according to the propagation times of the beam portions.
Usually, ultrasonic techniques are applied for thicknesses in the order of the cor-
responding wavelengths. Using signal processing, thinner multilayers can be pro-
cessed such as by deconvolution [29] or by fitting a signal model to the mea-
sured data and utilizing the model’s parameter as an appropriate estimate of
the quested thicknesses. The model itself for instance corresponds to a sum of
Gaussian wavelets [28]. Based on resonance models characteristics [30], even the
thickness of thin fluids can be determined. However, ultrasound systems provide
moderate measurement rates of roughly 5Hz–250Hz [31] due to the low acoustic
propagation velocity [32]. Moreover, ultrasonic systems usually benefit from cou-
pling between sensor and SUT. Despite developments of novel noncontact sensors
[33], the propagation velocity of the acoustic waves is highly influenced by the
temperature [34]. In industrial environments, temperature fluctuation cannot be
prevented which may affect the accuracy of the results.

1.1 Thickness Measurements Using Millimeter

and Terahertz Waves

In comparison to optical and X-ray frequency ranges, the electromagnetic spec-
trum from several gigahertz to few terahertz is both nonionizing and transpar-
ent for many dielectric materials. Within the terahertz frequency region from
100GHz to 10THz [35], setups and measurement systems are often designed ac-
cording to the time-domain spectroscopy (TDS) approach [36]. It is based on
electromagnetic pulses [3] which are generated using a photoconductive antenna
[37]. For multilayered samples-under-test, the propagation times of the reflec-
tions by the different boundary surfaces indicates the thicknesses of the single
layers. In case the time delay of two reflections is shorter than the pulse width,
signal-processing techniques allow an accurate resolution. Similar to ultrasonic
approaches, potential method are the comparison of measured data with modeled
signals [4], [38] or deconvolution [39]. In [40] instead, the data is extrapolated by
calculating novel points based on the given set. Based on the model approach,
layers down to approximately 6 µm [38] in case of car paints are determined.
However, due to the stronger attenuation of the higher frequency portions, the
penetration depth of the pulses is restricted depending on the material.
In [41], a continuous-wave approach is presented using lower frequencies of ap-
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proximately 10GHz: a multilayer SUT is illuminated by an electromagnetic waves
with constant frequencies. The signal of the transient time, the delay until re-
flections by all boundary surfaces attain the receiver, can be processed to achieve
the single thicknesses. For both, this continuous-wave approach and for TDS,
the required sampling frequency is higher than the one of available detectors.
Therefore, the radiation is sub-sampled requiring one pulse or transition per data
point. Resulting measurement rates are rather low such as 100Hz for TDS [42].
The frequency range 30GHz–300GHz is referred to as millimeter waves [43].
Within the spectrum of their applications, different approaches are adapted for
distance and thickness measurements. For instance, continuous-wave interfero-
metric radar configurations of multiple ports support testing conducting sheet
thicknesses [44] by ranging distances from two opposite sides of the SUT. For
vector network analysis [45], the frequency of the radiation is increased step-
wise, to sample the respective frequency response of the SUT. For a priori given
thicknesses [46]–[48], the material parameters can be determined. Inversely, with
information of the refractive indices, thicknesses could be evaluated as well. How-
ever, since the frequency is stepped slowly, rather lower measurement rates are
achievable depending on the number of steps and the bandwidth.
Utilizing the FMCW approach allows for rates up to kilohertz. Different thickness
measurement applications have already been investigated based on it: in [49], the
frequency band of 1 − 2GHz is applied for measuring layers within coal mines
and to detect anomalies. The measurement of snow thickness is presented in [50]
using roughly 8− 12GHz. For millimeter wave application, the thickness of steel
strips has been evaluated by two separate distance measurements detecting the
face and back of the sheet [51], respectively. However, the resolution is restricted
for FMCW: in case the frequency analysis of the measured oscillations is per-
formed by the Fourier transform, one reflection results in a main peak with side
lobes. The width of a single peak restrict the ability to separate it from a second
one. The aim of this work is to analyze alternative model-based signal-processing
techniques to expand for thin layer resulting in interfering peaks.

1.2 Requirements for Applications

Utilizing the FMCW approach enables novel application scenarios for nondestruc-
tive thickness testing. One promising example is the inspection of multilayered
polyvinyl chloride tube walls. Due to the attenuation of the higher frequency
portions, the penetration depth is restricted for TDS. Thus, solely thinner walls
can be determined. Some tube configurations also exhibit recyclate foam cores,
which may affect the signal quality and hence accuracy of ultrasound measure-
ments. In contrast, FMCW W band transceivers provide high penetration depths
for polyvinyl chloride, other kinds of plastics, glass or ceramics. However, the
resolution is affected: since frequency multiplication is utilized to generate the
radiation, addressing a rather low frequency range (such as W band) results in
a reduced bandwidth. The width of the peaks however increases. The ability to
separate reflections and to determine their center frequencies, which indicate the
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quested thicknesses, is affected.
Since the aim of this work is to expand for layers below this restriction by the
peak width, novel layer compositions such as thin layers hidden behind thick
structures could be addressed. Besides the resolution, repeatability as well as un-
biased results are required for reliable testing. For that purpose, all error sources
of respective setups should be identified and sufficiently compensated. On the
one hand, the fast measurement rates of FMCW systems may be an important
step towards real-time requirements of production processes. On the other hand,
the computational load of advanced model-based signal-processing approaches
could not instantly fulfill this demand. Therefore, the potential of promising
optimization processes should be exploited.

1.3 Aspects of Novelty

Similar to ultrasound [28] and TDS [38] applications, the replication of the mea-
sured signal with modeled versions results in estimation of parameters, that cor-
responds in accurate thicknesses below the resolution restrictions. However, novel
procedures and characteristics are introduced, discussed, and validated in [1]–[22].
The most significant aspects are summarized.

� Optimization method based on equidistant characteristic of solution space:
the Euclidean distance between a measured and a modeled signal corre-
sponds to the cost function, which has to be minimized for the model-based
approach. The corresponding solution space is observed to be characterized
by numerous equidistant minima. A procedure is presented in [7] which sig-
nificantly reduces the calculation time in comparison to exhaustive search:
the average distance of the optima is calculated as a function of setup pa-
rameters utilizing Fourier transform equivalences. Afterwards, an equidis-
tant set of initial points approaches the respectively closest minima using
a classical optimization method such as Nelder-Mead algorithm. Accuracy
and precision of the results are similar to exhaustive search. The procedure
is validated by measurements.

� Modification of the transfer matrix method to efficiently calculate multiple
reflections: for an accurate signal model, the entire sum of reflections has to
be integrated. The complete wave propagation within multilayer materials
can be described by a transfer matrix method. However, a modification
of it [1], [9] further reduces the computation load by solely observing the
effects on the measured signal. Instead of millions, the number of required
data samples reduces to few thousands for the W band setup.

� Analysis of the precision for reliable results: an important quantity for
analyzing the quality of determined thicknesses is the precision or rather the
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measurement uncertainty. Estimation theory enables the calculation of the
theoretical minimum variance, referred to as Cramér-Rao lower bound. The
limitation is derived in [6] under special consideration of the dependency of
frequency and zero phase of the FMCW signal’s oscillations. The applied
assumption of additive white Gaussian noise is indicated by hypotheses
tests.

Additionally, the results of the model-based approach are compared with the
one of spectral estimation algorithms in [2]. Besides static single sensors, other
setup configuration such as for imaging [12] and a handheld device [4], [19] were
presented.

1.4 Structure

This thesis is organized in 7 chapters. In the following one, the FMCW approach
is presented. A focusing setup configuration is introduced resulting in a restricted
lateral resolution, which is estimated as the width of the beam. A calibration pro-
cedure is discussed, which removes spurious echos from the measured signals. In
case the Fourier transform is performed to determine the thicknesses, the reso-
lution is restricted by the peak width. This characteristic is described, e.g., by
introducing the Rayleigh limit, the distance between maximum and the first zero
of one peak.
Chapter 3 presents spectral estimation approaches, which are tested to resolve
layers below the Rayleigh limit. For this purpose, the algorithms utilize models
of the measured signal such as expecting oscillations in additive noise. The influ-
ence of the calibration on the model order, which usually depends on the number
of significant reflections, is discussed. Two variants of spectral estimation al-
gorithms are chosen, modified covariance method and MUSIC (multiple signal
classification) algorithm. They are tested using simulated signals for which the
noise of the setup is estimated.
The following chapter presents a model-based approach, which fits models re-
sulting from a priori given estimates of the thicknesses to the measured signal.
By maximizing the correlation coefficient, layers below the previous limit can be
evaluated, since the parameters of the best fit indicate the quested thicknesses.
The influence of multiple reflections is discussed. A modification of the trans-
fer matrix method is presented to calculate their effects on the measurement
signal, efficiently. Measured data validates the approach. The presented signal-
processing approaches are compared and discussed.
Chapter 5 addresses the influences on bias and repeatability of the results. The
theoretical minimum of the variance, referred to as Cramér-Rao lower bound,
is derived taking special consideration on the dependency of frequency and zero
phase of each oscillation within the measured signal. The calculated limit is val-
idated by simulation and measurements.
Since the fitting process of the modeled signals comes with a high computation
load in case of an exhaustive search, alternative techniques are discussed. Nu-
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merous local optima of the solution space require a modification of classical opti-
mization algorithms. For this purpose, the average distance between the optima
is theoretically derived. A set of equidistant initial values enables approaching
the closest optima, respectively. The procedure is tested for validation using sim-
ulated and measured signals.
The following chapter analyzes the potential for future applications. The novel
resolution limit is determined exemplarily for single-layered biaxially-oriented
polyethylene terephthalate sheets. Thickness determinations on industrial tube
sections validate the model-based approach. Finally, the potential for future
setups based on compact transceivers such as monolithic microwave integrated
circuits is presented. Such sensors are usually characterized by a reduced band-
width and the signals are virtually adapted to this condition by reducing their
lengths.

In this work, the term simulation describes numerical calculations of physical
processes, of which the parameters are partially or completely given. For simplic-
ity, abbreviations are introduced in each chapter.
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2. Distance and Thickness Mea-
surements

For both distance and thickness measurements using electromagnetic waves, the
samples-under-test are illuminated. At each boundary surface, the radiation is
separated into reflected and transmitted portions. A sum of such beams is de-
tected by the setup. Their propagation time differences indicate the thicknesses
of the single layers. For interferometry using a single frequency continuous wave,
the propagation time is indicated by a phase shift. However, the ambiguity range
is small, e.g., 1.5mm for 100GHz, since it equals half of the wavelength. In case
of pulsed radiation, the time delay of the pulses are processed. One of these short
pulses corresponds to a broad spectrum in the frequency domain. A similar spec-
trum can be generated by a continuous wave, whose frequency is increased linearly
over time. This approach is referred to as frequency-modulated continuous-wave
approach (FMCW) [52]. By a frequency-specific analysis of the samples-under-
test, distances and thicknesses can hence be measured.
For terahertz application, the pulse-based time-domain spectroscopy is widely
used for thickness measurements. Corresponding technically complex setups of-
fer bandwidths of roughly up to 6THz [42]. Dispersion may affect the accuracy
of the results and can be implemented in the signal processing. The FMCW
approach is chosen in this work. Setups operating in the W band provide higher
penetration depths such as in plastics. Due to typically smaller bandwidth such
as 40GHz, the influence of dispersion is inherently reduced. The FMCW tech-
nique has already been applied for precise ranging [53]–[56]. The measurement
signal corresponds to a sum of oscillations, whose frequencies are determined by
the propagation times of the beam portions. Usually, a Fourier transform is per-
formed for evaluating the frequency portions and hence thicknesses. However, for
multitargets, inaccurate results can be observed [57] due to the superposition of
frequency peaks. The aim of this chapter is to systematically analyze the limita-
tions of the Fourier transform-based evaluation in case of thickness measurements.

In the following, the FMCW approach is introduced. For each measurement,
a sum of oscillations is detected, whose frequency portions indicate the propaga-
tion times. Based on this approach, a measurement setup operating in reflection
mode is presented, whose sampling frequency determines the ambiguity range. To
focus the beam into the samples-under test, optics are included. The correspond-
ing lateral resolution, which depends on the width of the beam, is estimated. To
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reduce reflections by the surroundings of the setup, a calibration is discussed next.
Finally, the resulting depth resolution is analyzed. Due to the superposition of
different frequency peaks, the ability to separate them is restricted. The Rayleigh
criterion, which is a common quantity to describe this limitation, is introduced
and discussed.

2.1 Frequency-Modulated Continuous-Wave Ap-

proach

The FMCW approach is based on the schematic of uniform plane waves. The
electromagnetic wave equations resulting from Maxwell’s equations describe the
propagation through source-free unbound free-space media. For FMCW, the
frequency f of a wave is modulated linearly over time t and radiates a sample-
under-test (SUT). The oscillation can be described by the equation,

st(t) = ℜ{st(t)}, (2.1)

with the operator ℜ{·}, which evaluates the real part of the complex representa-
tion

st(t) = exp

(
j2πF1t+ jπ

B

T
t2
)
, (2.2)

with start frequency F1, modulation bandwidth B, measurement duration T ,
and imaginary unit j. In this work, all equations and quantities conform to the
International System of Units (SI) [58]. The underscore · indicates that the signal
or quantity is complex.
As depicted in Figure 2.1 left, the radiation propagates through the layers. At
each boundary surface of materials with different complex refractive indices η

0
,

η
1
, and η

2
, it is separated into a reflected and transmitted portion. The first

reflections of the respective boundary surfaces are referred to as main and the
remaining ones as multiple reflections. The angle of incident is usually chosen as
approximately normal, but tilted for this schematic.
The complex refractive index of an isotropic homogeneous medium,

η = η + j · κ, (2.3)

with real η and imaginary part κ determines the degree of reflection and trans-
mission of the wave: the Fresnel equations enable calculating the amplitude ratio
for each separation at boundary surfaces. The reflection coefficient r01 at normal
incidence results in

r01 =
−η

1
+ η

0

η
1
+ η

0

. (2.4)

The transmission coefficient t01 equals

t01 =
2 · η

0

η
1
+ η

0

. (2.5)
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For the W band, the real part of the refractive indices is usually significantly
larger than the imaginary value for characteristic materials-under-test such as
plastics. Hence, the coefficients are typically approaching real values. Within
one layer, amplitudes of the beams are reduced due to attenuation caused by
absorption, scattering etc. With the extinction coefficient κ, the loss or the
amplitude reduction can be described by exp{−κd2πf

c0
} [59], with the depth d,

and vacuum speed of light c0.
In case of reflection mode, the optical path is passed twice. The antenna receives
the signal sr(t) corresponding to a sum of reflected and propagation time τl-
delayed portions of the oscillations

sr(t) = ℜ{sr(t)} = ℜ{
∑
l

alst(t− τl)} (2.6)

for the lth of L significant reflection with the resulting (approximately real) am-
plitude al. The signals sr(t) and st(t) are mixed to transfer the information into
the intermediate frequency range, which is more convenient to measure. The
complex representation of the output equals

sIF (t) = st(t) · s∗r(t). (2.7)

The operator (*) denotes complex conjugate. The real discretized measurement
signal results in

sIF [n] =
∑
l

al cos

(
2πfb,l

n

fs
+ ϕτl

)
(2.8)

with sampling frequency fs, digital index of time n ∈ {0, 1, ..., N − 1}, and the
number of samples N . The beat frequency fb,l =

B
T
τl and the zero phase ϕτl =

2π ·
(
F1 − 1

2
B
T
τl
)
· τl ≈ 2πF1τl are functions of τl.

In Figure 2.1 right, the relation of FMCW quantities for a single reflection Rx
is schematically depicted. Tx denotes the transmitted signal characteristics. In
case of an ideal linear rise, the frequency difference between both, fb, is a constant
value.

t

f B

τ T

fb

Tx

Rx

η0 η1 η2

Figure 2.1: left : schematic of multilayered SUT of different refractive indices, main
(solid) and multiple (dotted) reflections, right : relation of FMCW quantities for one
reflector

The time delay τ and hence the beat frequency enable determining the optical



10 Chapter 2. Distance and Thickness Measurements

path length. Considering the refractive indices, distances and thicknesses can be
evaluated.

2.2 Frequency-Modulated Continuous-Wave

Setup

Based on the FMCW approach, a setup is designed for distance and thickness
measurements. Figure 2.2 shows its schematic. To generate a linearly frequency-
modulated oscillation, a voltage-controlled oscillator is driven by the data acqui-
sition unit of a computer. Ideally, it transfers an increasing input voltage into
an oscillation whose frequency linearly rises over time. To compensate for a non-
linear rise, the input is counteractively predistorted [60]. The oscillation has a
center frequency of 15GHz (Ku band) and a bandwidth of 6GHz. It is frequency-
multiplied afterwards into the radio frequency range of roughly 70− 110GHz.

SUT

VCOx6
dir. coupler

horn
antenna

focusing
unit

th6  harm

PCDAQ

IF

RF Ku

Figure 2.2: Schematic of an FMCW setup including a focusing unit, radio frequency
(RF), directional coupler (dir. coupler), frequency multiplier (x6), voltage-controlled
oscillator (VCO), data acquisition unit (DAQ), computer (PC), 6th harmonic mixer
(6th harm), intermediate frequency (IF)

A directional coupler divides the paths of the emitted and received signal. It
guides the multiplied output to a conical Pickett-Potter antenna. This variant of
a horn emitter is characterized by a high symmetry of electric and magnetic field
plane pattern and a low side lobe level [61].
Due to a rectangular waveguide, the radiation is linearly polarized. The beam is
collimated by a lens and focused by an off-axis parabolic mirror into the center of
the SUT. The received reflection is mixed with the 6th harmonic of the currently
emitted oscillation. The intermediate frequency portion is analog-to-digital con-
verted by the data acquisition with a sampling frequency of fs = 10MHz. To
avoid ambiguity with regard to distance measurements, the Nyquist theorem

fb <
fs
2

(2.9)
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has to be fulfilled. The term fs/2 is referred to as Nyquist frequency. The
corresponding distance

dN =
c0Tfs
4B

(2.10)

describes the ambiguity range 2dN in air. For the presented setup parameters
and T = 170 µs, dN = 3.19m is many orders larger than the focus length of the
parabolic mirror of 7.5 cm. Therefore, potential reflections from distant regions
are blurred and attenuated.
In comparison, for utilizing a single constant frequency, the ambiguity range
equals half of the wavelength and hence less than few millimeters. However, the
thickness of many samples-under-tests is larger. For TDS, the scanning range is
modifiable because it is determined by the delay unit of the system. For instance
in [42], it equals 3, 200 ps or rather 96 cm in air. Nevertheless, in case of larger
scanning ranges, the size of the system and the duration of the measurement
increases. The FMCWmethod inherently provides a high ambiguity range, which
however can only be fully exploited when using a collimating setup.

2.3 Lateral Resolution

For thickness measurements, the depth resolution is an important quantity, be-
cause it describes the minimum thickness that can be evaluated. For simplicity,
it is assumed that the width of the measurement spot approaches the value zero.
However, this ideal cannot be achieved. Nevertheless, in case the SUT layers are
plane-parallel in approximation within the illuminated area, the point reflector
model serves as an appropriate approximation. Therefore, the lateral resolution
is a significant value, and discussed in this section.
For simplicity, the beam is assumed to be Gaussian such as in Figure 2.3. Its sym-
metric intensity ι(d, r) decreases perpendicular to the optical axis corresponding
to a Gaussian bell shape [59]:

ι(d, r) = ι(d, 0) · exp
(
−2

r2

w(d)2

)
(2.11)

with the on-axis intensity ι(d, 0), radius w(d), and radial distance from the center
axis r. For r = w(d), the intensity is decreased to ι(d, 0)/e2 ≈ 0.14ι(d, 0). The
thinnest section of the focused Gaussian beam is the waist with radius w0.
At the waist, the wave front is assumed to be plane in approximation due to a
larger distance between the SUT and the components as well as the utilization
of a focusing unit. The radius w(d) for all distances can be described by

w(d) = w0

[
1 +

(
λd

πw2
0

)2
] 1

2

(2.12)

with wavelength λ. The waist w0 is estimated using the parameters of the
parabolic mirror of 2 inch (5.08 cm) diameter and a focal length of θ = 7.5 cm.
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The radius can be approximated as

w (d) ≈ λd

πw0

(2.13)

for a larger d. The equation indicates that for a lower frequency band, the lateral
resolution limit increases. Significant estimates of w0 are depicted in Table 2.1
representing the variations of the beam width during the frequency modulation:
the upper width limit varies from 3.97mm to 2.55mm.
A practical quantity for applications is the Rayleigh length, the distance for which
the cross section doubles in comparison to the beam waist:

dR =
πw2

0

λ
. (2.14)

To achieve the highest lateral solution, the SUT is positioned in the focus, and
its extensions are not exceeding the Rayleigh length.
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Figure 2.3: Schematic of focused Gaussian beam left : radius w(d) (blue) as function
of distance, right : transverse intensity profile at Rayleigh length dR

Table 2.1: Estimated Upper Limit of Rayleigh Length dR and Beam Waist w0 for the
W Band Transceiver

frequency upper limit w0 upper limit dR

71.1GHz 3.97mm 11.71mm

90.9GHz 3.10mm 9.16mm

110.6GHz 2.55mm 7.53mm

Figure 2.4 depicts a schematic of two different reflector surfaces. The three arrows
represent the on-axis beam and two off-axis ones. They illustrate the different
portions of a Gaussian beam, schematically. In Figure 2.4 left with the plane
surface the propagation times τl are equal for all cases, while in right they differ.
Therefore, an averaged time delay between τl and τl + ∆τ will be measured.



2.4. Preprocessing 13

Material density fluctuations may result in different propagation times between
portions of the beam as well. However, a rather constant curvature such as of a
tube wall can be compensated by using a similarly curved conducting object for
the calibration. This procedure is described in the following section.

τl τl

τ+Δτl  τl

τl τ+Δτl  

Figure 2.4: Schematic of reflections by left : plane and right : curved boundary surfaces

2.4 Preprocessing

A frequency analysis of the measured signal determines the propagation times
of the beam sections and hence, thicknesses of the SUT layers. However, it also
contains reflections by the measurement system, which have to be compensated.
Therefore, a preprocessing procedure is performed. The included calibration re-
quires an analytic representation of the signal, which is calculated first.
Figure 2.5 illustrates the complete procedure. To reduce noise, the measured
signal can be buffered and averaged. A bandpass filter is used afterwards for two
reasons. On the one hand, it suppresses the frequency portions corresponding to
distances, which are not representing the region-of-interest. In this way, direct
current portions can be reduced. On the other hand, a band-limited signal is
required for the calculation of the analytic representation.

signal
raw calibrated 

signal
buffer + 
averager

H

calibration

j

analytic 
representation

Figure 2.5: Preprocessing: averager to reduce noise, bandpass to cut off insignificant
frequency portions, analytic representation (≡ real and imaginary part are related by
Hilbert transform H), and calibration to remove reflections caused by the setup

Originally, the term analytic specifies continuous signals with zero spectral com-
ponents at negative frequencies. Hence, an analytic signal has to be complex
in values. It also has the property, that its real and imaginary part are related
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by a π/2 shift in time domain. In the frequency domain, their relation can be
mathematically described by Hilbert transform. For data transmission, by ideally
shifting the center frequency of a band-limited signal to an appropriate higher
frequency range, this modulated signal does not contain any negative frequency
portions. Then, it is sufficient to solely transfer the real part of the signal. The
Hilbert transform property of analytical signals allows to reconstruct their imag-
inary parts from the real portions as shown in Figure 2.5.
In [62], a definition is proposed for a discrete-time signal. It requests a π/2 phase
shift between its real and imaginary part as well. Since the measurement signals
are not inherently band-limited, the bandpass removes portions, which cannot
be reconstructed afterwards. Therefore, it is advantageous to cut off frequency
portions that do not represent the SUT.
One method to calculate an analytic representation of the signal is based on utiliz-
ing the discrete Fourier transformation (DFT). The real bandpass-filtered signal
sBC is transformed into the frequency range and multiplied with the Heaviside
function

Θ[k] =


1, if k > 0
1
2
, if k = 0

0, otherwise

(2.15)

with digital frequency k. The inverse transformed results in a complex signal
sBP [n], whose real and imaginary part are related by Hilbert transform H:

sBP [n] = sBP [n] + j (H{sBP}[n]) . (2.16)

Figure 2.8 left displays the artifacts of this calculation variant comparing an
ideal signal with a version utilizing the procedure. The positive peak at the beat
frequency f = 30.98 kHz corresponds to a reflector at d = 10 cm. Due to the
restricted measurement duration or rather bandwidth, the spectrum corresponds
to a sinc function instead of an ideal Dirac distribution. The resulting DFT-
based signal slightly differs from the ideal one in terms of side lobe level and their
maxima positions.
An alternative method for generating an analytical signal is the utilization of a
finite length impulse response (FIR) filter. Its impulse response equals

hFIR[n] =

q∑
υ=1

bυδ[n− υ] (2.17)

with filter length q, coefficients b1, b2, ..., bq, n ∈ {0, 1, ..., N − 1}, and the number
of samples N . The equation 2.17 indicates that the current sample of the output
depends on q weighted variants of the input. The discrete Dirac distribution δ[n]
is defined by

δ[n] =

{
1, if n = 0

0, otherwise.
(2.18)

One advantage of FIR filters is their stability inherently given by their finite
impulse response. Since the passband is limited in this case, they enable to ad-
ditionally substitute the bandpass filter of Figure 2.5 resulting in Figure 2.6.
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With MATLAB, a Hilbert FIR filter has been designed using the function de-
signfilt [63]. Since the distance between the focus and the transceiver is constant,
this value can be used to allow a wide transition band. Figure 2.7 left depicts the
amplitude of the frequency response of such a configuration with a filter length
of 50 samples and a distance between sensor and focus of 60 cm. Due to the wide
transmission band of 30 cm, potential passband ripples are minor. The phase of
the filter is linear, which prevents the distortion of the signal. If necessary, the
linear phase shift can be compensated by forward-backward filtering or by the
following calibration.

raw 
signal

calibrated 
signal

buffer + 
averager

calibrationFIR

Figure 2.6: FIR-based preprocessing: averager, FIR filter as bandpass and to calculate
the analytic representation, as well as calibration
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Figure 2.7: Frequency response of an FIR Hilbert filter left : amplitude, right : linear
phase

For DFT, the windowing process usually results in ringing, which was suppressed
by removing signal portions at the origin and the end. For FIR, the sequence has
been cut off according to the filter length. Figure 2.8 right shows the influence
of an FIR Hilbert filter for a transmission width of 20 cm indicating a higher
conformity between the resulting and ideal signal.
The calibration according to [64] is based on the assumption of three different
main disturbing influences in case of reflectivity measurements in free space –
leakage of the signal, the frequency response of the whole system, and an imper-
fect impedance matching. Since the setup includes a horn antenna, the impact of
a mismatch may be negligible. To compensate for the two remaining influences,
two individual measurements are sufficient referred to a two-term (2T) calibra-
tion. In this context, the calibration standards empty room and conducting plate
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Figure 2.8: Influence of calculating an analytic representation of an ideal signal using
left : DFT and right : FIR

depicted in Figure 2.9 were chosen. The ideal empty room represents a measure-
ment scenario without any reflections apart from the ones of the internal system
such as by the optical unit or leakage. Therefore, it is proposed to apply a gate
to reduce remaining reflections by the room walls in [64]. The conducting plate,
which is perpendicular to the optical axis, corresponds to the maximum reflec-
tion. Ideally, it is positioned at the beam waist, to achieve the highest lateral
resolution.

FMCW

focusing unit

FMCW

Empty Room Conducting Plate

conducting plate

Figure 2.9: Calibration standards left : empty room approached by reflecting the
beam away from the optical axis, right : conducting plate corresponds to maximum
reflection

To suppress the influence of noise, the corresponding signals sER and sCP of
empty room and conducting plate are averaged. The calibration process of the
bandpass-filtered signal sBP is described by

s2T [n] = −sBP [n]− sER[n]

sCP [n]− sER[n]
(2.19)

with the calibrated output s2T .
For analytic signals, modulation and demodulation can be described, the mul-
tiplying the time representation by a complex exponential function. The ideal
conducting plate standard corresponds to a single oscillation. The division of
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equation 2.19 can therefore be interpreted as demodulation as well. Then, the
new beat frequencies are relative differences between the old position and the
conducting plate, referred to as reference plane. By dividing by sCP [n]− sER[n],
propagation time differences of beam portions along the plane are compensated
for this position.
Since the conducting plate defines the shape of the reference plane, for the mea-
surement of tube walls, a conducting tube section with the same diameter is
beneficial to compensate for phase shifts between beam portions. In chapter 3
and 5, the measurements of the conducting plate standard are used to estimate
the characteristic of the setup noise, because not any alignment of the SUT is
then required. The preprocessed signal enables analyzing the propagation time
information to evaluate distances or thicknesses.

2.5 Depth Resolution

For determining beat frequencies of the different reflections illustrated by equa-
tion 2.8, the DFT can be applied. After calibration, the distance between one
peak in the frequency domain and the origin is supposed to be proportional to the
distance between boundary surface and the reference plane. Utilizing the Fourier
transform, an infinite signal length and a single reflection would result one Dirac
distribution at the exact beat frequencies. However, the resulting finite length
can be expressed by multiplying the signal by a rectangular window function [65].
Therefore, the spectrum of the corresponding infinite length signal is convoluted
with a sinc function. The potential of separating two reflections originating from
different distances is referred to as depth resolution. Due to the interference in
case of more than one reflection, the resolution depends on the width of the peaks.
For the following simulations, a setup according to section 2.2 was used. In Figure
2.10 left, the amplitude spectrum of a conducting plate is calculated applying the
inherent rectangular window function (conducting rectangular). The resulting
sinc function represents a single main reflection. It has been interpolated by zero
padding: by adding zeros at the end of the signal, the number of frequency points
can be increased to interpolate the spectrum [66], [67]. The width of the main
lobe restricts the ability to separate this signal from a second reflection.
According to the Rayleigh criterion, the minimum distance which can be evalu-
ated is approached as the difference of the maximum and its first zero crossing.
The corresponding Rayleigh resolution limit ∆rR equals

∆rR =
c0
2ηB

(2.20)

[68]. For the setup parameters of section 2.2, ∆rR equals 3.9mm for η = 1. The
limit is inversely proportional to the refractive index η and the bandwidth B.
In case of a constant B, the product ∆rR · η remains unchanged. It indicates
the optical path length of the limit, which enables generalized observation on the
resolution. In case of a single reflection, the center frequency fb of the sinc func-
tion is proportional to the propagation time τ . Then the x-axis can be linearly
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transformed into the optical path length.
The following simulations indicate difficulties for layer thicknesses in approxima-
tion of the Rayleigh limit. For simplicity, in this section, solely main reflections
have been considered because for many samples-under-test, the multiple reflec-
tions are much smaller than the main ones. Figure 2.10 left illustrates a shift of
the main lobe of the conducting plate (conducing rectangular) by adding a second
peak (dielectric rectangular) at an optical path length of 4.1mm. The amplitudes
of the first and second reflections were 1 and −1, respectively. For absorption-free
single layers in air, this ratio1 of −1 is rough estimate for single layers. To reduce
the influences of different sinc functions on each other, the time-domain signal
can be multiplied by a window function. The function solely suppresses the side
lobes but increases the width on the main lobes such as for a dielectric sheet
and for applying the Hamming window (dielectric Hamming). For this example,
only one peak can be evaluated demonstrating that window functions are not
beneficial for evaluating thin layers due to the reduced resolution.
Figure 2.10 right illustrates the measurement error as a function of the optical
path length of the thickness. Solely for values, which are larger than 2∆rR, evalu-
ating the maxima (peak detection) delivers rather accurate results with deviations
smaller than 5% of the absolute thickness. This threshold of 2∆rR corresponds
to the distance of the main lobe and first zero crossing after applying Hamming
window. However, for thicker samples, also a more selective window function
could be chosen, which increases the width, but further suppresses side lobes.
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Figure 2.10: left : simulated signal of conducting plate (black), dielectric sheet (blue)
and dielectric sheet using Hamming window (dashed, gray), right : thickness error by
peak detection as function of optical path length, vertical lines at Rayleigh limit ∆rR
and 2∆rR

Hence, the Rayleigh limit does not indicate the minimum thickness, which can
be accurately evaluated by peak detection, since also the side lobes can affect
the maxima position. For this reason, an alternative heuristic resolution limit is
proposed as the distance between main peak and the first side lobe:

∆rS ≈ 0.72 · c0
ηB

. (2.21)

1For η < 2, the deviation from this value equals less than 12%.
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Due to the approximate symmetry of the amplitude spectrum in this point, the
influence of the side lobe on the peak positions is reduced. The optical path
length ∆rS ≈ 5.5mm indicates a negligible error for the rectangular window.
Above 2∆rS, peak detection after applying the Hamming window even results in
deviations smaller than 0.7%.
For the given setup, the only way to improve the depth resolution is to increase
the bandwidth. In case of frequency multiplication, the lateral resolution is si-
multaneously improved but a higher bandwidth comes with an increased center
frequency and therefore, a lower penetration depth. However, several applica-
tions require measuring thin layers in composition with thicker materials. One
solution is the combination of utilizing the lower frequency range with the maxi-
mum penetration depth and to expand the resolution limit to thinner layers using
signal-processing techniques.
Figure 2.11 represents an additional observation: two signals with a rather high
conformity. The boundary surfaces are positioned at optical path length of 0mm
and 3.5mm as well as -1mm and 4.5mm, respectively. The corresponding thick-
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Figure 2.11: Calculated signals of thicknesses of 3.5mm and 5.5mm, Rayleigh limit
∆rR

nesses equaled 3.5mm and 5.5mm. Applying peak detection, similar thicknesses
would be evaluated. To differentiate both cases and similar ambiguities is an
additional difficulty for accurate signal processing.
For FMCW, solely applying DFT is invariably limited by the measurement dura-
tion or the bandwidth. However, since information of the measurement signal is
given, since it conforms to oscillation in additive noise, model-based approaches
represent an alternative option for frequency analysis. In the next chapter, spec-
tral estimation techniques are discussed, which enable estimating the power spec-
tral density of the signal based on few parameters.
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3. Spectrum Estimation

For a frequency-modulated continuous-wave (FMCW) measurement signal, the
propagation time of a single reflection transfers linearly into its frequency and
zero phase values. If the Fourier transform is applied for a frequency analysis of
time-limited measurement signal, the inherent width of the peaks restricts resolv-
ing two or more reflections. Additionally, for thin layers, interference shifts the
maxima positions. If such distances are calculated to determine the propagation
times and hence thicknesses, biased results are obtained. Spectrum estimation
algorithms enable approaching the power spectral density for ergodic1 processes
using information of the signal such as expecting exponential functions in ad-
ditive noise. Using the evaluated parameters, the corresponding power spectral
densities are not restricted by the measurement duration (or bandwidth in case of
FMCW) resulting in thinner peaks particularly in case the model fits the process
[67].
Several variants for estimation algorithms are described in [67], [69]. Three dif-
ferent sets of variants are separated in [69]: nonparametric, parametric and sub-
space2 methods. The nonparametric variants are based on estimates of the auto-
correlation function, which is Fourier-transformed afterwards to approach the
power spectral density. The quality of the estimation is supposed to be improved
such as by compensating for noise utilizing averaging. However, the resolution
remains a function of the length of the data set. It even downgrades in case of
applying a window function similar to section 2.5. Therefore, these algorithms
are not as promising for the thickness measurements and not considered in the
following sections.
The parametric algorithms are based on autoregressive models: for the ideal
signal, the current data sample can be estimated using previous ones. One hy-
pothetical application to illustrate the potential of such methods is the option of
extrapolating signal points based on the model. For Fourier transform, the signal
values are assumed to be 0 outside the measurement interval. Adding samples,
which differ from 0, the bandwidth is artificially increased and the Rayleigh res-
olution limit reduced. However, in case of a poor estimation, the signal quality
is adversely affected which could lead to biased results. The measured signal or
autoregressive process can be designed as the output of an all-pole infinite im-
pulse response filter, whose input corresponds to additive white noise. Instead of

1The characteristic of ergodicity is introduced in chapter 5 and, e.g., requires the process to
be wide-sense stationary.

2Subspace methods are also referred to as frequency estimation approaches.
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extrapolating the data, the parameters of the filter are directly processed because
they already contain significant information of the signal: the poles of the filter
indicate the quested frequencies.
Subspace methods separate the signal and noise information into two different
subspaces utilizing their orthogonality. For oscillations, the orthogonal character-
istic is given in case of additive white noise. The resulting signal or noise subspace
then enables designing a filter, which determines the estimated frequencies and
approaches the power spectral density of the signal as well.
Variants of parametric and subspace methods have been tested in [57], [70]–[72]
for similar applications to increase the distance resolution between targets or the
resolution of images [73]. However, distances in the range or below the Rayleigh
limit can lead to inaccurate results as shown in [70], [71]. The aim of this chapter
is to systematically analyze the applicability of spectrum estimation algorithms
for reliable thickness evaluations using the presented setup of section 2.2. Besides
the ability to separate neighboring peaks, the bias between evaluated and true
thickness values, is an important criterion.

In this chapter, for each variant of parametric and subspace methods, one promis-
ing algorithm is exemplarily introduced: modified covariance method and multi-
ple signal classification (MUSIC). Both are based on the model order, which is
a linear function of the number of significant reflections for the ideal case. The
influence of the preprocessing procedure on it is analyzed. Finally, the signal-to-
noise ratio of the setup is estimated and its influence on the results is discussed.

3.1 Parametric Estimation

The parametric estimation algorithms are based on the autoregression model. For
such signals, the current data sample depends linearly on previous ones according
to model order p. The Z-transform indicates, that for such a model of a closed
feedback loop, a time delay of one lag corresponds to a pole in the Z-domain, and
therefore as well for the discrete Fourier transform (DFT) spectrum. An estimate
of these poles indicate a pseudo power spectrum PAR,

PAR[k] =
|b|2∣∣1 +∑p

l=1 ale
−jl2π k

N

∣∣2 (3.1)

for autoregressive processes with digital frequency index k, complex factors b, a1,
a2,...,ap, and the total number of samples N . The term pseudo suggests that the
spectrum usually differs from the power spectral density. While the positions of
the frequencies are approached by peaks, the total power differs from the one of
the actual signal.
However, an alternative method is the covariance method that is restricted to the
measured data points and therefore more promising in terms of resolution. It is
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based on the covariance equation, which is then minimized:


rx(1, 1) rx(2, 1) · · · rx(p, 1)

rx(1, 2) rx(2, 2) · · · rx(p, 2)
...

...
. . .

...

rx(1, p) rx(2, p) · · · rx(p, p)

 ·


a1

a2
...

ap

 = −


rx(0, 1)

rx(0, 2)
...

rx(0, p)

 (3.2)

with

rx(ν, υ) =
N−1∑
n=p

x[n− υ]x∗[n− ν] (3.3)

for the entry (ν, υ) with ν, υ ∈ {0, 1, ..., p}. The term x[n] denotes a signal,
which is superposed with additive noise, and x∗[n] corresponds to its complex
conjugate. A disadvantage of the covariance method is that unstable results can
occur: applying system theory, it can be derived that poles outside the unit
circle do not result in stable filters. However, the covariance method does not
restrict the position of the poles. Therefore, in this work, the modified covariance
method3 is preferred with the modified covariance function

rx(ν, υ) =
N−1∑
n=p

x[n− υ]x∗[n− ν] + x[n− p+ υ]x∗[n− p+ ν]. (3.4)

The first term of the sum equals the covariance method and can be interpreted
as a forward prediction error. Then, the second term equals the backward error.
For modified covariance method, both are minimized at once. The combination
is justified, since x[n] and x∗[n− ν] result in the same auto-correlation function.
However, in case the forward filter is unstable, the backward error would grow
and dominate the total error. Since the same compensation can be analogously
observed for the inverse case, the probability of unstable solutions is reduced.
The modified covariance method [74] is a promising variant for FMCW thickness
evaluation due to additional reasons. The estimated spectra are statistically sta-
ble [75] and the peak positions are not as sensitive to the initial phase as other
algorithms [74].

Equation 3.2 results in estimates of the coefficients
(
a1, a2, . . . ap

)T
with the trans-

position operator {·}T . The denominator of equation 3.1 can be rewritten as a
product of roots indicating the beat frequencies of the signal [69].

3The method is also referred to as forward-backward method, least square method or
forward-backward least square method [69].
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3.2 Subspace Method

The subspace methods4 are based on the estimation of complex exponential func-
tions in additive white noise ω[n] with variance σ2

n:

x[n] =

p∑
l=1

ale
j2πkl

n
N + ω[n] (3.5)

with model order p, complex amplitude al, and frequency parameter kl. By
comparing equation 3.5 and the analytic representation of 2.8, it can be derived
that al models the approximate real amplitude al as well as the phase shift by
zero phase ϕτl . The quotient of beat and sampling frequency in contrast equals
the term kl/N .
Since the white noise is uncorrelated, its auto-correlation function equals σ2

nδ[n]
with Dirac distribution δ[n]. Then, the auto-correlation function of the sum of
signal and noise corresponds to

rx[υ] =

p∑
l=1

Ple
j2πkl

υ
N + σ2

nδ[υ] (3.6)

with power Pl = |al|2. It indicates the orthogonality between signal and noise
for each υ under the assumption of additive white Gaussian noise (AWGN). The
M ×M auto-correlation matrix with M > p

Rx = Rs +Rn

=


rx[0] rx[−1] · · · rx[−M + 1]

rx[1] rx[0] · · · rx[−M + 2]
...

...
. . .

...

rx[M − 1] rx[M − 2] · · · rx[0]

+ σ2
n · IM

(3.7)

is therefore the sum of matrices of signal Rs and noise Rn. The term IM repre-
sents the unity matrix with rank M . The rank of Rs equals p. Performing an
eigenvalue decomposition enables the separation into signal and noise subspace.
Usually, the condition M = p+ 1 is sufficient for the decomposition. The lowest
eigenvalue serves as an estimate of the noise variance σ2

n. Then, the noise sub-
space is characterized by a dimension of one and is spanned by the corresponding
eigenvector. However, a more precise estimate of the variance can be evaluated
by averaging. In this thesis, the MUSIC algorithm [76] was chosen due to its
promising results in [57], [71] for distance evaluations. It requires M > p + 1.
Then, the M − p lowest eigenvalues are estimates of the noise variance σ2

n which
can also be averaged. One of the corresponding noise eigenvectors is orthogonal
to the signal vectors, since their product equals 0 for the estimated frequencies.

4also referred to as frequency estimation in [69]
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For its multiplicative inverse, these zeros corresponds to poles. Due to averaging,
the resulting pseudo spectrum can be estimated precisely as

PM [k] =
1∑M

m=p+1 |evm|2
(3.8)

with noise eigenvectors vp+1,vp+2, . . . ,vM of the (M − p) lowest eigenvalues, e =

(1, e−j2πk 1
N , ..., e−j2πkM−1

N ). Again, the quested frequencies are indicated by the
positions of the poles.

3.3 Model Order

For evaluating measured data, both, modified covariance method and MUSIC
algorithm, require the determination of the model order p representing the mea-
surement scenario. Usually, it equals 1 for one complex exponential function and
hence, 2 for one sinusoid5. For an ideal signal of L + 1 significant reflections, it
then corresponds to 2L + 2 for the real representation. The amplitudes of the
main reflections are usually rather high. Then, all of them have to be considered
for calculating the model order. The amplitudes of multiple reflections are often
low or even approach 0 after few reflections. Depending on the refractive indices,
the number of significant reflections has to be determined individually for each
SUT. Moreover, spurious echoes and noise can affect the model order. For in-
stance, in [69], different functions are compared to estimate this value for given
data sets. The model order is varied until a minimum of this function is found.
Then, the corresponding value is assumed to serve as an appropriate estimate.
In [77], the effects of wrong values such as peaks at zero or half of the sampling
rate are used to approach the best fit.
In the following section, the influence of the preprocessing (calculation of analytic
representation and calibration according to Figure 2.5) is analyzed by simulations
based on the Signal Processing Toolbox of MATLAB [78]. For simplicity, mul-
tiple reflections were not included. An ideal analytical signal for L layers solely
consists of L+1 spectral peaks. Therefore, a model order of p = L+1 is assumed.
However, Figure 3.1 indicates an influence of the FIR-based preprocessing. For
two reflections, model orders of p = 2, p = 4 and p = 8 were not sufficient for
modified covariance method to separate two reflectors at 0mm and 4mm. In con-
trast, p = 30 resulted in the exact positions6. However, in case the model order
was adapted, the modified covariance method determined the exact frequency
portions, which could not be extracted from the DFT spectrum even though the
distance of 4mm is slightly larger than the Rayleigh limit of 3.9mm. For mod-
ified covariance method, the width of the peaks and hence the resolution limit
were significantly reduced. Moreover, side lobes cannot be observed in the pseudo

5which can be illustrated by Euler’s formula
6Similar results were obtained for the alternative configurations, DFT-based generation of

an analytic representation and for MUSIC algorithm.
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spectra of the modified covariance method. This characteristic could be signifi-
cant for thickness measurements, if the amplitude of a reflection was smaller than
the side lobes of another one.
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Figure 3.1: Power spectral density of the simulated signal via discrete Fourier trans-
form (DFT) and pseudo spectra of modified covariance method using different model
orders for FIR-based preprocessing according to section 2.4. The x-axis was rescaled
from left to right in order to improve the visibility of the peaks. The vertical lines in
right correspond to positions of reflectors at 0mm and 4mm.

In terms of the model order, Figure 3.2 shows more gradual results of additional
simulations for both MUSIC and modified covariance method. The model order
varies from 2 to 50 in steps of 2. Four simulations were performed for each value:
The position of the first reflector remained at 0mm, while the second one moved
from 1mm to 4mm in 1mm steps. The optical path length is depicted in Figure
3.2. Hence, markers at 0mm, 1mm, 2mm, 3mm and 4mm were expected even
at a model order of 2.
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Figure 3.2: Evaluated positions of different model orders using left : finite impulse
response (FIR), right : discrete Fourier transform (DFT)-based preprocessing utilizing
MUSIC and modified covariance method (mCov)

For the preprocessing in section 2.4, two different options were presented to gen-
erate analytical representations of the signals: a finite impulse response (FIR)
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and a DFT variant. For FIR filtering represented in Figure 3.2 left, p = 16 ap-
pears to be sufficient to accurately determine all thicknesses. The DFT variant in
right requires p = 26 for accurate estimates. For higher model orders, additional
markers can occur such as at p = 28, which would be processed as an inaccurate
thickness. Nevertheless, since all distances are close or smaller than the Rayleigh
limit, the resolution is significantly improved in comparison to the DFT-based
evaluation.
Again, the model order was affected. While the real signals (before preprocessing)
were simulated as ideal, the generation of an analytical representation and the
calibration are identified as an influences on p. The calibrated signal is assumed
to not ideally conform to the described autoregressive model (characterized by the
original p). For instance, the influence on the calibration is analyzed: in case of
an ideal conducting plate signal, the division would correspond to a demodulation
and shift the peak position which would not affect p. However, the conducting
plate signal is non-ideal because it is influenced by the artifacts of the bandpass
filtering (such as presented in Figure 2.8 right). However, for measured signals,
the calibration cannot be neglected, because it significantly improves the quality
of the signals. Particularly, for measured data, the model order can additionally
be affected by additive noise, which is analyzed in the next section.

3.4 Influence of Additive White Gaussian Noise

To determine a realistic model of the setup’s noise, its characteristic is analyzed.
A statistic 500 measurements of a conducting plate standard (which served as
a calibration standard in section 2.4) was performed at the reference plane. At
this position, the ideal signal solely consists of entries of one, due to the division
within the calibration process. The deviation from this value for each time sam-
ple is assumed to be caused by AWGN7. A resulting noise variance of 3.42 · 10−4

was observed.
Figures 3.3 and 3.4 present the results of corresponding simulations. The first re-
flector was positioned at 0mm, while the second one varied from 0mm to 10mm.
In contrast to the previous section, the signals corresponded their ideal analytic
representations consisting of one complex exponential function for one reflection.
A value of p = 2 was used for all cases. The resulting thickness errors without
the presence of noise are represented in Figure 3.3. For the modified covariance
method, the error equaled 0 for all positions. MUSIC algorithm resulted in biased
values in particular for the smaller distances. This deviation could be influenced
by the absence of AWGN, which was however assumed for MUSIC: the noise
eigenvectors are the basis to determine the poles of the filter.
In Figure 3.4, results are given for the estimated noise characteristic. Errors up to
distance of 3.19m, which equals half of the sampling rate, occurred. Even in the
region of optical path lengths close to 10mm, the maximum error is still larger
than 1mm. However, these distances can be evaluated accurately by Fourier

7Chapter 5 will present indications for this assumption.
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transform-based peak detection.
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Figure 3.3: Evaluated distance error without the presence of noise by MUSIC algo-
rithm and modified covariance method (mCov)

It can be observed, that the AWGN influences the order p: for rather high noise
levels, it will be modeled by the process resulting in biased peaks. Evaluating a
distance equal to half of the sampling rate indicates that the procedure of [77] to
estimate the resulting model order might not work in this case: it may classify
the order as too high, while it is in fact too low to separate the neighboring peaks
(in particular for distances below the Rayleigh limit of 3.9mm). Even in case
the measured signal conforms to the model, AWGN might still affect the values.
Hence, for each data set, a new model order would have to be chosen. Therefore,
it is assumed that evaluated results may significantly vary and be unreliable sim-
ilar to an exemplary measurement of a tube wall sections evaluated in [2].
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Figure 3.4: Evaluated distance error in the presence of AWGN by MUSIC algorithm
and modified covariance method (mCov) left : linear scale, right : logarithmic scale

Based on simulated signals, both modified covariance method and MUSIC al-
gorithm enable to determine distances and hence layer thicknesses below the
Rayleigh limit, since the resulting pseudo spectra were characterized by peaks
thinner than the sinc functions resulting from DFT. Due to the absence of side
lobes, the quality of thickness measurements but also imaging could be signifi-
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cantly improved in case the model order could be adapted for each single mea-
surement. However, in presence of significant multiple reflection, the model does
not differentiate between those and the main reflections. Therefore, an investi-
gation would be required, to trace the single reflections and extract the resulting
distances. One additional disadvantage of the spectral estimation methods is
that peaks cannot be restricted to a priori given distance intervals. Due to the
focusing unit, a region-of-interest is inherently defined, which could be utilized
by the processing. The model of the approach, which is discussed in the follow-
ing chapter, exactly conforms to the measured signal of FMCW. Then, multiple
reflections can be included and the search intervals be adapted to a priori given
interval.
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4. Model-Based Signal Process-
ing

As demonstrated in the last chapters, the frequency-modulated continuous-wave
(FMCW) signal consists of oscillations whose frequencies are linear functions of
the propagation time of the beam portions. If their frequencies were determined,
accurately, the thicknesses could be calculated as proportional values to their dif-
ferences. In case of a Fourier transform-based analysis, the smallest determinable
thickness is restricted to few millimeters [1], [68] due to the superposition of
frequency peaks, referred to as Rayleigh resolution limit. For thicknesses in ap-
proximation of this limit, biased results are evaluated influenced by side lobes.
Spectral estimation algorithms enable modeling the power spectral density of the
signal based on few parameters to analyze the frequencies. However, they are
likely to result in the evaluation of inaccurate thicknesses [2], [70], [71]: the noise
as well as the calibration of the signal influence the model order which is required
for an accurate model. In the presence of significant multiple reflections, the
origin of all oscillations has to be identified in case of a Fourier transform-based
as well as spectral estimation analysis. Only through this, the exact number of
layers can be determined and the significant propagation time differences calcu-
lated.
Moreover, both method analyze the complete frequency range determined by the
sampling process. However, a wide range of frequencies can be inherently ex-
cluded for the presented setup. In case of larger distances between corresponding
reflectors and the focus of the optical unit, the amplitudes of those reflections
are usually highly reduced. Thus, a certain region-of-interest is inherently given
and the processing could be restricted, e.g., to the range corresponding to the
Rayleigh length. For many industrial applications, rough or accurate estimates
of the layer thicknesses are additionally given. It appears to be beneficial to re-
strict the search intervals, correspondingly. An alternative model-based approach
is presented in this chapter. It compares the measured signal to simulated ones
which are calculated by the formula description. The parameters of the best fit
then indicate the thicknesses. In case the formula description includes multi-
ple reflections, they are inherently considered and support the accuracy of the
thickness analysis. Such model-based approaches have been utilized for terahertz
time-domain spectroscopy [4], [38] and material characterization using vector net-
work analysis [79] to resolve structures below the respective resolution limits and
are therefore promising for FMCW.
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In this chapter, a model-based approach is introduced, which is based on a priori
evaluated search intervals for the reflector positions. Fitting a modeled signal
to a reference, a high correlation indicates appropriate estimates of the quested
thicknesses. The first iteration is based on exhaustive search calculating all poten-
tials models within the intervals. For accurate models, the number of significant
reflections is analyzed by observing the influence of multiple reflections. A mod-
ification of the transfer matrix method is derived to efficiently calculate them by
observing the influence of the wave propagation on the measured signal. The
procedure is tested for validation. Finally, the model-based method is compared
to peak detection, spectrum estimation, and an additional signal-processing tech-
nique [80].

4.1 Model-Based Approach

For testing thicknesses in the range of the Rayleigh resolution limit ∆rR discussed
in section 2.5 and smaller, an alternative signal-processing approach has to be
employed. A promising method is to fit modeled signals to the measured data
[1], [5], [8]. For the fitting process either exhaustive search or an optimization
algorithm can be applied. The model-based approach is advantageous in case
that the number of layers is a priori given.
The model-based approach is introduced using an illustrative example. According
to the setup described in section 2.2, a sample-under-test (SUT) with boundary
surfaces at optical path lengths of 0mm and 4mm as well as amplitudes1 of 1
and −1 has been observed. The parameters resulted in a reference signal, which
was restricted to the main reflections for simplicity. Figure 4.1 left depicts the
frequency representation. Exhausted search was chosen for the first implementa-
tion. Within the search intervals of −5mm to 5mm and 0mm to 10mm for the
boundary surface positions, all combinations of equidistant reflector position were
calculated. They were separated by a step size of 50 µm. In order to guarantee
accurate results, this size has to be chosen small to hit the global maximum and
to minimize the rasterization effects.
The modeled signals have then been calculated conforming to equation 2.8. Figure
4.1 right represents the solution space featuring numerous local maxima besides
the global one (both indicated by dark shades). The step size of exhausted search
then corresponds to width and height of one pixel. Such local optima indicate the
conformity of modeled signals with different thicknesses. One of such examples
was presented in Figure 2.11. It is caused by the shift of the zero phase as the
propagation time increases. The optimization procedure of chapter 6 can utilize
the characteristic of several local optima to efficiently evaluate the global one.
The reference sref and modeled signals sSM were compared using the Pearson

1For moderate refractive indices such as 1.8, the actual amplitude of the two main reflec-
tions are 0.29 and −0.26, and therefore, an amplitude ratio of −1 might be an appropriate
approximation. The associated thickness would be 2.22mm.
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Figure 4.1: left : reference and best fit of modeled signals, vertical lines represent
the reflector positions at 0mm and 4mm right : solution space, grayscale indicates the
conformity between modeled signal and reference

correlation coefficient rP :

rP =

N−1∑
n=0

(
sref [n]− sref

)
· (sSM [n]− sSM)

∗√
N−1∑
n=0

(
|sref [n]− sref|

)2 ·√N−1∑
n=0

(|sSM [n]− sSM|)
2

(4.1)

with total number of time samplesN . The operator · denotes the arithmetic mean
value. The nominator corresponds to the cross-covariance function to compare
the signals. The denominator normalizes the value. For real signals, rP varies
from −1 to 1. For uncorrelated signal, the coefficient equals zero. In this case,
the maximum value is quested.
In case of exhausted search, depending on the search intervals of the SUT and
the number of layers, several millions of signal models are usually required. To
compensation for the high computation time, the calculations are processed in
parallel using graphics processors. For this simulation, the exact signal could be
found to identify the accurate thickness of 4mm. However, for measurements,
influences of noise, a nonideal calibration etc. might affect the quality of the
results. The measured signal also contains multiple reflections, which can affect
the accuracy. Therefore, in the next sections, the compositions are analyzed for
which their influence is significant and has to be considered.

4.2 Influence of Multiple Reflections

The influences of multiple reflections on thickness measurements is discussed in
the following sections based on the separation of two different cases: for single
layers, solely the beam portions of the second boundary surface can influence the
evaluation of the main peaks. In case of multilayers, different constellations of
main and multiple reflections can interfere.
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4.2.1 Single Layers

For single layers in air or on a metal substrate, the most significant influence on
the main peak in terms of multiple reflections is the first one of them caused by
the second boundary surface. Its amplitude is the highest and the time delay
the lowest. The ratio of its amplitude and the one of the second main reflection
equals:

ξ =
η1 − 1

η1 + 1
· η1 − η2
η1 + η2

(4.2)

with the approximately real refractive indices, η1 of the material and η2 of the
substrate or air utilizing equations 2.4 and 2.5 and neglecting attenuation. For
a large ξ, the influence of multiple reflections increases. Two significant config-
urations can be extracted of the equation: on the one hand, in case of a metal
substrate, η2 can be approximated by a high value to describe the reflection pro-
cess. It results in rather large absolute values of ξ. On the other hand, for a
single layer in air, η2 equals 1. The value of ξ rises as η1 increases.
Based on the presented setup, a set of simulations is performed to validate these
cases. Figure 4.2 depicts the evaluated error of different materials caused by
neglecting multiple reflections. The Fourier transform-based peak detection was
applied for the frequency analysis, since the procedure is the most illustrative.
For the variants (η1 = 1.6, air) and (η1 = 4, air), samples-under-test in air were
simulated, whereas (η1 = 1.6, con) represents a layer on a conducting plate. In
case of (η1 = 1.6, air), the error was negligible for optical path lengths larger
than 1mm. For the other configurations, the error was more significant. The
maximum error of (η1 = 4, air) even equaled 1.8mm for the optical path length
of 1.9mm. This simulation confirmed that multiple reflections are more signifi-
cant for conducting substrates and for higher contrasts. However, also for small
thicknesses, their influence has to be considered.
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Figure 4.2: Influence of the first one of the multiple reflections on peak detection
varying the refractive indices

Figure 4.3 represents the impact of neglecting multiple reflections for a layer of
η1 = 1.6 in air for different bandwidths. For 40GHz, the maximum error equals
0.27mm. Solely for optical path lengths larger than 1.2mm, deviations smaller
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than 26 µm or rather 2.2% of the thickness were determined. By cutting off half
and three quarter of the signal’s data points, its bandwidth was virtually reduced
to 20GHz and 10GHz. The peaks got wider and the degree of interference with
multiple reflections increased. Hence, the evaluated error grew. For 10GHz, sig-
nificantly high deviations of up to 1.7mm occurred. The results indicated that
for closer peaks, e.g., in case of reduced bandwidths, the influence of multiple
reflections grows.
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Figure 4.3: Influence of the first one of the multiple reflections on peak detection
results varying the bandwidth: from left to right the y-axis is rescaled to visualize the
range of lower error values.

4.2.2 Multilayers

For multilayer compositions, all multiple reflection can interfere with the different
main portions of boundary surfaces depending on the optical path lengths of the
layers. Hence, different amplitude ratios can be observed. For each layer system,
a rough knowledge of the thicknesses can identify the peaks, which are prone to
be superposed. An estimate of the refractive indices delimits the possible ampli-
tudes.
In Figure 4.4, the distance deviation of a single reflector’s position is depicted
interfering with a second unconsidered peak. They represent a main and the first
one of the interfering multiple reflection. The main peak is positioned at 0mm
and the second one varies from 0mm to 10mm. The amplitude of the second
reflection varies along the y-axis. The maximum error is depicted in Figure 4.4
right and equals 1.8mm.
Using the estimates of layer thicknesses, the maximum error caused by the respec-
tive portion of the multiple reflections can be evaluated. Generally, increasing
the amplitude of the second reflection results in a higher deviation. However, a
larger distance does not linearly result in a reduced error, since the phase of the
second peaks varies. If the multiple reflections can be neglected, the complexity
of the modeled signal reduces to the calculation of the main reflections. However,
in case they are significant, an efficient method to calculate them is presented in
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the next section.
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Figure 4.4: Thickness error by interference using peak detection: the position and
the amplitude of the second reflection varies. From left to right, the maximum depicted
value (grayscale) is increased to illustrate the maximum error.

4.3 Modified Transfer Matrix Method

To calculate multiple reflections, different methods can be applied. One ap-
proach is to ray trace the beam, which is separated into two parts at each bound-
ary surface [81]. Then, the computational load increases exponentially for each
additional layer. The tracing has to be terminated by reaching an amplitude
threshold, because in theory the length of the propagation is infinite. Depending
on the choice of this threshold, the approach may result in inaccurate thickness
values. An alternative recursive procedure is the Rouard method [82] used in [38]
for time-domain spectroscopy thickness measurements. Starting with the last
boundary surface, the reflected beam portion is calculated and enables the com-
putation of the second last reflection etc. until the first is attained. However, the
recursive characteristic of ray tracing and Rouard method may result in rather
high computation times.
The iterative transfer matrix method (TMM) [83], [84] instead offers flexibility for
parallel computing because intermediate results are independent of each other.
Besides reflected, also transmitted signal portions are calculated, which makes
the method more flexible for different setup configurations. For the TMM, each
layer and boundary surface represents equations based on inputs and outputs
according to Figure 4.5. They can be rewritten as matrices, which are multi-
plied to calculate the complete SUT-specific transfer function. If the TMM was
directly applied to an FMCW setup, the sequence of the flow chart in Figure
4.6 left would have to be executed: a frequency modulation of 70GHz–110GHz
has to be calculated considering the Nyquist theorem. With a duration of 170 µs,
2 ·110 ·109 ·170 ·10−6 = 37.4 ·106 data points are required. For each, an individual
transfer matrix is necessary to calculate a transfer function of the respective SUT,
which is multiplied with the Fourier-transformed of the signal. The inverse trans-
formed of the product is mixed with a second, time-shifted frequency-modulated
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signal. Afterwards, the result must be resampled to conform the sampling fre-
quency of the analog-to-digital converter.

η0 η1

sE0,1 sE1,0 sE1,2 sE2,1

sR0,1 sR1,0 sR1,2 sR2,1

η2

Figure 4.5: Notation of transfer matrix method, each layer corresponds to a
quadrupole
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Figure 4.6: Comparison of left : classical, right : modified TMM, Fourier transform
(FT), frequency modulation (FM) for an FMCW setup

A modification of the TMM [1], [9] instead is restricted to compute only the
data points of the resulting measurement signal, which equals N = 1700 for
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fs = 10MHz and does not require any Fourier transform. Its float chart is de-
picted in Figure 4.6 right. Exclusively, the effects of the wave propagation on the
measured data are observed. The idea for the modification can be shown by com-
paring the reflected wave and the detected signal represented in equations 2.6 and
2.7: variations of amplitudes of the reflections linearly transform the amplitudes
of the measured signal’s oscillations. Moreover, an increase of propagation time
proportionally (by approximation) shifts the beat frequency and the zero phase
of the measured signal’s oscillations.
The modified transfer matrix for a layer l of L is also based on a crossover matrix
Dl,l+1 and a propagation matrix Pl+1. The beams of Figure 4.5 result in the
following equations for virtual versions of start signal sE0,1

, reflected sRl,l+1
and

emitted sEl,l+1
portions for attaining the boundary surface between layers l and

l + 1 from layer l. The signal sR0,1
describes the entire sum reflections:

sEl+1,l
[n] = tl,l+1 · sEl,l+1

[n] + rl+1,l · sRl+1,l
[n] (4.3)

sRl,l+1
[n] = tl+1,l · sRl+1,l

[n] + rl,l+1 · sEl,l+1
[n]. (4.4)

The real approximations of reflection rl,l+1 and transmission coefficient tl,l+1 cor-
respond to the ones of the electromagnetic wave according the Fresnel equations
2.4 and 2.5. For this purpose, the materials are assumed dispersion-free.
Using matrix Dl,l+1,

Dl,l+1 =


1

tl,l+1

rl,l+1

tl,l+1

rl,l+1

tl,l+1

1
tl,l+1

 ,

the equations 4.3 and 4.4 can be rewritten, assEl,l+1
[n]

sRl,l+1
[n]

 = Dl,l+1 ·

sEl+1,l
[n]

sRl+1,l
[n]

 . (4.5)

Neglecting attenuation, the effect of a propagation corresponding to τ equals a fre-
quency and zero phase shift of the measured signal of exp (j2πτ(nB/(Tfs) + F1)).
The modified propagation matrix is based on the approximated multiplicity of
such shifts: by adding a layer l+1 causing a time increase of ∆τl+1 the complete
propagation

exp

(
j2π

B

Tfs
(τ +∆τl+1)n+ j2πF1 (τ +∆τl+1)

)
= exp

(
j2π

B

Tfs
τn+ j2πF1τ

)
· exp

(
j2π

B

Tfs
∆τl+1n+ j2πF1∆τl+1

) (4.6)

corresponds to the product of the single terms for τ and ∆τl+1. The novel prop-
agation equations for the (l + 1)th layer result in:

sEl+1,l+2
[n] = exp

(
j2π∆τl+1

(
B

Tfs
n+ F1

))
sEl+1,l

[n] (4.7)
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and

sRl+1,l
[n] = exp

(
j2π∆τl+1

(
B

Tfs
n+ F1

))
sRl+1,l+2

[n]. (4.8)

With matrix Pl+1[n],

Pl+1[n] =

e−j2π∆τl+1( B
Tfs

n+F1) 0

0 ej2π∆τl+1( B
Tfs

n+F1)

 ,

the propagation can be described bysEl+1,l
[n]

sRl+1,l
[n]

 = Pl+1 ·

sEl+1,l+2
[n]

sRl+1,l+2
[n]

 . (4.9)

The complete transfer matrix M[n] is the product of the single matrices

M[n] = D0,1 ·P1[n] ·D1,2 ·P2[n] · ... ·PL[n] ·DL,L+1 =

M00[n] M01[n]

M10[n] M11[n]

 (4.10)

including two layers representing air (l = 0 and l = L+ 1). The equivalent time
function he[n] equals:

he[n] =
M10[n]

M00[n]
(4.11)

to describe the complete reflection. As shown in Figure 4.6 right, this function is
solely multiplied with an appropriate start signal such as a set of ones in case of
a virtual start at the reference plane.

4.4 Validation of Model-Based Approach

To validate the modification of the TMM and the model-based approach, mea-
surements of an acrylic glass sample were performed. Figure 4.7 depicts the SUT.
In the first step, the plate was positioned in a way that the composition of air,
acrylic, and air was measured to determine the refractive index. To reduce an
error propagation, an accurate result and hence a small step size of 1 µm were
required. A search interval2 corresponding to an optical path length of 2.0mm to
2.7mm resulted in a refractive index of 1.59 for the signal model of solely main
reflections and 1.58 for TMM. The corresponding Rayleigh limit equaled 2.4mm.
In order to address a typical measurement scenario, the thickness was analyzed
afterwards based on the refractive indices. The SUT was measured from the back
in a way that its metallic label served as a reflector beneath the acrylic layer.
For the processing, the evaluated refractive indices of the different algorithms
were used to calculate the thicknesses. A typical estimate of the thickness (0mm

2A rough estimate of η is required.
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to 2mm) was chosen as the search interval. The step size3 was 3.1 µm. Table
4.1 represents the evaluated thicknesses for 5 individual measurements. A stan-
dard deviation of 0 for the model of main reflections is assumed to result from
the choice of the step size: for a reevaluation with 2.5 µm, it was 0.6 µm. As
expected, in case of a metal substrate, the TMM has to be chosen because the
results of the model of main reflections were biased. For TMM, the thickness
below the Rayleigh limit was determined accurately.

Figure 4.7: Acrylic sample of a thickness of 1.5166mm ±0.4%

Table 4.1: Evaluated Thickness of Acrylic Sheet Using the Model of Main Reflections
and TMM

evaluated standard

thickness deviation

model of main reflections 0.5mm 0 µm

TMM 1.53mm 1.3 µm

This example indicates that the model of main reflection is often sufficient for
dielectric materials4 in air, because both variants resulted in similar refractive
indices. However, in case of a conducting substrate, the amplitudes of the multi-
ple reflections increased requiring TMM. After the validation of the model-based
approach, it is compared with the alternative signal-processing approaches.

4.5 Comparison of Algorithms

For a final comparison of the signal-processing algorithms, the simulated exam-
ple of section 2.5 in Figure 2.11 with optical path length of 3.5mm and 5mm

3To remain the computation complexity, the step size was increased as the interval width
was expanded.

4for moderate values such as 1.8
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was used. Table 4.2 represents the results evaluated by Fourier transform-based
peak detection, the model-based variant and a matching pursuit decomposition
of [80], which iteratively compares a single reflection with the measured signal
and subtracts the evaluated portion afterwards.
As expected and discussed in section 2.5, the peak detection utilizing a rect-
angular window delivered biased values. While the estimation of the matching
pursuit decomposition was accurate for the example above the Rayleigh limit
of ∆rR = 3.9mm, for the thinner sample, the result is significantly biased. It
indicates that the superposition of the peaks cannot be neglected for smaller
thicknesses. For the model-based approach search intervals of −5mm to 5mm
and 0mm to 10mm were used as well as a step size of 50 µm. It resulted in
accurate values. Therefore, it is the most promising algorithm for thin layers.

Table 4.2: Evaluated Optical Path Lengths of Different Signal-Processing Algorithms

optical peak matching model-based

path detection pursuit approach

length decomposition

5.5mm 5.6mm 5.5mm 5.5mm

3.5mm 4.5mm 5.0mm 3.5mm

Table 4.3 summarizes the previous results comparing the signal-processing meth-
ods. The model-based approach includes the multiple reflections in case of the
TMM, while the remaining algorithms either neglect them or require a separate
analysis of each peak. The model-based approach is the only method enabling
accurate results below the Rayleigh resolution limit. A higher computation time
utilizing a central processing unit (CPU) and an exhaustive search can be com-
pensated by parallel computing on a general-purpose graphics processing unit
(GP-GPU).
The model-based approach highly conforms to the principle of a maximum-
likelihood receiver in data communication: the received signal, which is assumed
to be superposed by additive white noise, is correlated with potential data series.
As for the MUSIC algorithm in section 3.2, both are assumed orthogonal. In
an approximated absence of intersymbol interference, the maximum-likelihood
receiver converts into a matched filter. The ratio of signal and noise power is
maximized, while the error rate is minimized. Hence, the matched filter is opti-
mal in this regard [86]. Due to the conformity, it is not expected that potential
alternative signal-processing approaches may result in more accurate estimates
of the thicknesses.
Since the requirement of resolving thin layers is fulfilled, the quality of the mea-
sured results such as the measurement uncertainty is analyzed in the next chapter
utilizing theoretical aspects as well as measurements.
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Table 4.3: Characteristics of Signal-Processing Algorithms

peak matching spectral model-based

detection pursuit estimation approach

decomposition

multiple - - - +

reflection usually analysis analysis implemented

neglected [85] required [80] required by TMM

thicknesses - - - +

below not feasible inaccurate inaccurate most

∆rR (Figure 2.10) (Table 4.2) (model order) accurate

computation + + + -

time (CPU) (→ GP-GPU)
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5. Accuracy and Precision

In the previous chapter, a model-based approach was presented to determine
layer thicknesses below the Rayleigh resolution limit for a frequency-modulated
continuous-wave (FMCW) setup. Utilizing high penetration depths of W band
transceivers, the approach is an important first step towards novel industrial ap-
plications inspecting combinations of thick substrates and thin layers. However,
the resolution is only one aspect to describe the quality of a measurement ap-
proach. An additional requirement is the reliability of the evaluated results.
Since a measured signal interferes with noise, it can be classified as a stochastic
process. Exemplarily, the Gaussian probability density function (PDF) px of a
random variable X such as a noise sample is depicted in Figure 5.1. It differ-
entiates two important aspects to determine the reliability of measurements, the
accuracy and precision. The accuracy is determined by the average bias of the
result: it can be quantified as the distance between the expectation value E{X}
and the reference (true) value. The precision instead classifies the repeatability
of the resulting values. It is related to the width of the PDF, which inversely
depends on the variance

var(X) = E{(X − E{X})2}
= E{X2} − (E{X})2

(5.1)

or its square root, the standard deviation σ. For a sharp peak, the variance is low
and the precision high. For industrial applications, both, accurate and precise,
results are required.
In terms of reliability, it is additionally desirable, that at least the average value
of the measured quantity does not depend on the start time of the measurement.
This behavior is described by the concept of a wide-sense stationary process. For
many applications, this characteristic is at least required over a short period of
time. Otherwise, in dependency on the start time of the measurement, different
results would be observed. Wide-sense stationarity also was a requirement for
spectral estimation techniques of chapter 3. For these reasons, it is assumed for
the presented setup.

In this chapter, the influences of the physical components on accuracy and pre-
cision are discussed. While their impact on the bias can be compensated by
the calibration procedure, the resulting noise still determines the variance of the
results. Therefore, the noise characteristic is investigated. An analysis of the re-
sulting signal-to-noise ratio provides the basis to derive the minimum theoretical
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variance, the Cramér-Rao lower bound. Finally, the evaluated limit is tested for
validation by simulated and measured signals.
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Figure 5.1: Accuracy and precision of a random variable X characterized by a biased
normal probability density function

5.1 Influences of Components and Processing

Several influences caused by sample-under-test (SUT), setup, surroundings, and
processing affect the accuracy and the precision of thickness measurements. In
case that these effects can be described by deterministic methods, they tend to
have an impact on the bias or accuracy. Influences that are characterized using
stochastic methods rather affect the precision.
The block diagram of Figure 5.2 represents the setup and the preprocessing. In
terms of accuracy, all components can have an influence, since their impulse re-
sponses are convoluted with the signal. One considerable example is a potential
nonlinearity of the frequency modulation slope. It would result in a radio fre-
quency that is slightly larger than the linearly interpolated value. Then, the beat
signal would contain portions with a marginally higher frequency, which may shift
the center of the peaks and widen them. However, the counteractive predistortion
widely compensates for this kind of nonlinearity.
The influence of the geometry of the SUT can be illustrated based on the estima-
tion of the lateral resolution in section 2.3. It was assumed, that the materials
are homogeneous and the boundary surface plane-parallel at least within the il-
luminated area. Small deviations from this ideal may affect the accuracy of the
results. Then, an average value of the complete measurement spot is evaluated
such as indicated in Figure 2.4. A similar influence can be caused by material
density variations, because they result in different propagation times of the beam
portions. Reflections by the surroundings such as by walls and the focusing unit
can cause additional peaks in the measured signal. Depending on the distances
of the setup components, they may interfere with the significant reflections (by
the SUT) and affect the accuracy.
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However, such influences have been considered for the setup design. Due to the
focusing unit of the setup, only reflections, which are originated from boundary
surfaces in approximation of the Rayleigh length, are intensified. The remaining
portions such as reflections caused by the setup are compensated by the calibra-
tion procedure.
The calibration procedure itself cannot only be interpreted as demodulation but
also as a kind of deconvolution. The measured signal is divided by the conduct-
ing plate measurement (equation 2.19) resulting in an ideal peak in the frequency
domain. Therefore, the combination of conducting plate and empty room com-
pensates for a significant fraction of such influences in approximation of reference
plane and hence Rayleigh length.

processingcalibration

ADC

DAC

VCO x6

SUT

6th
harm.

IF

analytic 
representation

antenna

antenna

phase noise

quantization
noise

amplifier 
noise

Figure 5.2: Block diagram of measurement system and processing indicating noise
sources: digital-to-analog converter (DAC), lowpass filter, voltage-controlled oscilla-
tor (VCO), frequency multiplication (x6), a mixer using 6th harmonic (6th harm)
of one input, analog-to-digital converter (ADC), and bandpass filter to prepare for
(pre)processing, IF: intermediate frequency

In terms of precision, different influences have been identified such as phase noise
by the voltage-controlled-oscillator [54], thermal noise by all components, noise
resulting from the analog-to-digital conversion (ADC) [54], [55], and amplifier
[55]. The one of quantization is assumed to be negligibly low due to the 12 bit
dynamic range of the ADC. Depending on the system configuration and mea-
surement rates, averaging of measured signals enables to reduce of the resulting
noise. Previous studies [54], [55], [87], [88] have shown that phase noise has a
decisive influence on precision. It is therefore examined in the next section using
simulations.
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5.2 Influence of Phase Noise

To analyze the influence of phase noise φn, different simulations have been per-
formed. Its impact can be included in the description of the transmitted signal
as

st(t) = exp

(
j2πF1t+ jπ

B

T
t2 + jφn(t)

)
(5.2)

with start frequency F1, time t, bandwidth B, and duration T for the linearly
frequency-modulated oscillation [54]. Hence, the intermediate frequency signal
results in

sIF [n] =
∑
l

al cos

(
2πfb,l

n

fs
+ ϕτl +∆φn

(
n

fs
, τl

))
(5.3)

with amplitude of the lth reflection al, time index n ∈ {0, 1, ..., N − 1}, beat
frequency fb,l, and zero phase ϕτl . The phase is disturbed by the resulting phase
noise difference:

∆φn

(
n

fs
, τl

)
:= φn

(
n

fs

)
− φn

(
n

fs
− τl

)
(5.4)

in comparison to the ideal signal in equation 2.8.
The PDF of the phase noise was not determined for the presented setup. How-
ever, distinctive examples were simulated and compared. Under the assumption
of additive white Gaussian phase noise (AWGPN), a simulated signal of a con-
ducting plate is depicted in Figure 5.3 left. After the calibration, its amplitude
equaled one. For the variance, an arbitrary value but high of 0.1 was chosen.
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Figure 5.3: left : simulated signal of one conducting reflector at 0.6m disturbed by
AWGPN, right : comparison of peaks under the presence and without phase noise

Equation 5.3 indicates, that an additive phase portion may influence the mea-
sured signal in a way, that the current frequency of the beat signal might be
larger for certain time samples and lower for other ones. However, due to the fast
fluctuations of the noise, its average value for small section of the signal equals
zero. Hence, the width and center frequency of the main peak in Figure 5.3 right
remain unchanged.
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Figure 5.4 depicts the peaks exemplarily for other PDFs: the Rayleigh phase noise
(left) represents a distribution with a biased mean value: for variance 4−π

2
σ2
R with

scale parameter σR, it equals σR

√
π/2. The amplitude of the peak is reduced in

comparison to the ideal signal. The peak in Figure 5.4 right is affected by Brow-
nian motion phase noise representing fluctuations, which can be modeled as a
recursive memory similar to a closed feedback loop. Due to calculating the phase
difference of equation 5.3, the bias and feedback are both eliminated for Rayleigh
and Brownian motion phase noise.
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Figure 5.4: Comparison of peaks without (ideal) and under the presence of left :
Rayleigh, right : Brownian motion phase noise

Figure 5.5 shows a histogram of amplitude fluctuations caused by the AWGPN
of Figure 5.3 left. To analyze its distribution, a hypothesis test has to be chosen.
One typical option is calculating the p value, which can be used to strengthen
or weaken an assumption. For this purpose, a hypothesis is assumed to be true
and its statistical significance is calculated. To interpret the results, a significance
level has to be chosen. Typical values are 0.01 or 0.05 [89]. If the calculated signif-
icance, the p value, is smaller than the chosen level, the hypothesis is rejected, or
else classified as significant. However, the p value is not a definitive test whether
an assumption is true or false [89]. In this case, the histogram indicates, that
the amplitude fluctuation could be either Gaussian or Laplace-shaped. Using the
SciPy hypothesis testing [90], they are rejected to be one of both due to p values
lower than 3 ·10−8 contradicting the assumption of additive white Gaussian noise
(AWGN) which was presumed in [88]1 for instance.
The distance fluctuations of 500 simulations were analyzed resulting in the his-
togram in Figure 5.5 right. Testing for AWGN resulted in p values of 0.71, 0.62,
and 0.76 for AWGPN, Rayleigh and Brownian motion phase noise using the SciPy
hypothesis test [92]. Therefore, the measured results are assumed to be normally
distributed for the resulting phase noise of the setup as well. After these theoret-
ical considerations, the resulting noise of the measured signal is analyzed in the
next section.

1The authors of [88] apply estimations of the variance which were derived under the assump-
tion of AWGN. However, this requirement is not explicitly mentioned [88] but in their reference
[91].
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Figure 5.5: left : histogram of amplitude difference by AWGPN, right : histogram of
500 evaluated distances disturbed by AWGPN

5.3 Analysis of Resulting Signal Noise

Due to the presence of noise, the measured signal corresponds to a stochastic
process. To analyze the influence of the noise on the results, two characteristics
have to be estimated, the signal-to-noise ratio and the PDF. For the estimation,
two different sets of observations are utilized, the sample function and the ensem-
ble characteristic. In case of FMCW thickness determinations, a sample function
corresponds to a single measurement signal as shown in Figure 5.6. To create an
ensemble, a statistic of several measurement signals has to be generated. It then
corresponds to a set of data points of one time index.
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x [n]:M
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.

x [0]    x [1]   ...   x [N-1]1 1 1

x [0]    x [1]   ...   x [N-1]2 2 2

x [0]   x [1]   ...   x [N-1]M M M

ensemble

sample 
function

Figure 5.6: Ensembles and sample functions x1, x2, ..., xM with time index n ∈
{0, 1, ..., N − 1}

In terms of the spectrum estimation algorithms, the PDF and the signal-noise-
ratio were required to simulate the noise and to generate sample functions of the
signals. Characteristic sample functions are also included in the resulting refer-
ence signals for the comparison of different optimization algorithms in chapter
6. In terms of analyzing the theoretical variance and hence, the precision, the
characteristics of the ensembles are required.
In case of an ergodic process, the mean value of a sample function and the ex-
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pected value of an ensemble for any time index are equal with a probability of
one. This implies that the mean value does not depend on the starting point of
the measurement. Therefore, ergodicity requires the characteristic of wide-sense
stationary, which has been assumed for this FMCW setup. A benefit in case of er-
godic processes is the simplified calculation of characteristic values: the expected
value of an ensemble can be estimated by only observing a randomly chosen sam-
ple function. Hence, the sample functions generated to compare the spectrum
estimation algorithms also served as estimates for the ensemble characteristics.
However, since for this work, a statistic of 500 signals could be directly recorded,
the characteristic of ergodicity can be tested.
In the next section, a statistic of ensembles and then a set of samples functions
are analyzed for their mean value.

5.3.1 Ensemble Characteristic

Measuring a conducting plate at the calibration position enables the estimation
of the noise characteristics. The ideal real signal is assumed to be interfered with
additive noise resulting in the sum xm[n]. Due to the calibration, the entries of
the analytic representation of the ideal signal xm[n] would equal 1 for all time
indices. Under the assumption, that fluctuations are mainly caused by additive
noise, the variations can be used to estimate its characteristics. A statistic of
M = 500 measurements was performed. For each time index n, mean value and
variance were calculated. The time-domain ensemble signal-to-noise ratio SNRE

is the average value of the single SNRn,E,

SNRn,E =
1

M

M∑
m=1

|xm[n]|
2

|1− xm[n]|
2 . (5.5)

In Figure 5.7, the mean value (blue) and standard deviation (gray surroundings)
are depicted as functions of the time indices n. Their values are determined by the
left y-axis. The respective quotient of squared mean value and variance resulted
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Figure 5.7: Left y-axis: ensemble average (blue) and standard deviation (gray), right
y-axis: SNRn,E (black) using 500 individual measurements of a conducting plate
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in the SNRn,E (right y-axis). An average value of SNRE = 4133 was evaluated,
based on it. The mean values of all ensembles approached a value of one.
To analyze the noise distribution, Figure 5.8 left depicts the histogram of one
randomly chosen and representative example, the 1301st time index, indicating
the Gaussian bell shape. A quantile-quantile plot to test the hypotheses of nor-
mal distribution in Figure 5.8 right can be used to graphically analyze the data.
It compares a theoretical normal distribution with the one of the data. For this
purpose, the single amplitude values are ordered and plotted according to the
theoretical quantity of a Gaussian distribution. The linear rise indicated that the
distributions are likely to be equal strengthening the assumption.
To avoid individual graphic tests for each time index, the p values introduced
in section 5.2 was calculated for each point. Their average was calculated after-
wards. Even though the average of p values does not necessarily conform to a
p value [93] anymore, it enables to indicate an overall tendency. Testing for a
normal distribution, it resulted in a value of 0.27 applying the SciPy hypothesis
testing [90]. The p value indicates the assumption of AWGN, because for such
high levels, the hypotheses cannot be rejected.
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Figure 5.8: left histogram and right quantile-quantile plot of the real part of the
measured signal for the 1301st time index using hypothesis testing [90], tested for
normal distribution

Generating an analytic representation of a measurement signal within the pre-
processing procedure, the noise is inevitable transformed as well. Figure 5.9
depicts the quantile-quantile plot of the calculated imaginary part, which due
to the linear rise appears to be normal-distributed as well. The average p value
equaled 0.55. However, real and imaginary parts of the noise are dependent:
their Fourier-transformed are π

2
phase shift versions of each other corresponding

to the requirement for the generation of the analytic representation of section 2.4.
Therefore, the time-domain representations are related by the Hilbert transform.
Table 5.1 summarizes the estimates of the evaluated quantities.
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Figure 5.9: Quantile-quantile plot of the imaginary part, tested for normal distribu-
tion

Table 5.1: Analysis of Ensemble Characteristic of the Resulting Noise

SNRE 4133 (36.2 dB)

mean value 1 (±3.34 · 10−4)

average p value 0.27 (real part)

for AWGN 0.55 (imaginary part)

5.3.2 Sample Function Characteristic

Based on the set of measurements of the conducting plate, also the sample func-
tion characteristic was analyzed. For themth sample function xm, the correspond-
ing time-domain signal-to-noise ratio SNRS is calculated as the average value of
SNRm,S with

SNRm,S =
1

N

N−1∑
n=0

|xm[n]|
2

|1− xm[n]|
2 . (5.6)

Figure 5.10 depicts the single observations. The mean values of the single sample
functions are determined by the left y-axis. They approached a value of one.
A hypothesis test [90] was performed testing for normal distribution resulting
in an average p value of 0.0094, which is smaller than the one of the ensemble.
Since it is close to the typical significant levels of 0.01, it is classified as not
rejected in this context. The quantile-quantile plot of the randomly chosen 5th

sample function is depicted in Figure 5.11 representing a conformity with AWGN
as well. The results are summarized in Table 5.2.
One variant of ergodicity, the ergodicity of the means, requires sample functions
and ensembles to exhibit the same mean values [94]. Both approaching a value
of 1 for all single observations, indicates this characteristic. In addition, the
variances are approaching similar values of 3.3 · 10−4 and 3.4 · 10−4 for ensembles
and sample functions, respectively.
Based on the evaluated SNR, the theoretical precision is analyzed next.
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Figure 5.10: left y-axis: average value (blue) and standard deviation (gray), right
y-axis: SNRm,S (black) of each measured sample function
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Figure 5.11: Quantile-quantile plot of the 5th measurement signal tested for normal
distribution

Table 5.2: Analysis of Sample Function Characteristic of the Resulting Noise

SNRS 3310 (35.2 dB)

mean value 1 (±3.42 · 10−4)

average p value 0.0094 (real part)

for AWGN 0.0094 (imaginary part)

5.4 Limitation of Precision

For nondestructive testing, the reproducibility or precision of measured values is
an important aspect for reliable results. The term is related to standard deviation
or variance. Estimation theory allows a theoretical analysis. One quantity is the
Cramér-Rao lower bound (CRLB), which describes the theoretical minimum of
the variance for all unbiased estimators. In [53], [95], an estimation of the bound
is used, which is not considering the dependency of beat frequency and zero phase
of a reflection (represented in equation 2.8). Since both quantities are processed
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sequentially, the evaluated limitation nevertheless may result in rather appropri-
ate estimates. In [96], a CRLB is estimated for two-tone FMCW reflectometry
including this dependency.
For FMCW thickness measurements, the bound is derived in the following section
considering the relation of beat frequency and zero phase as well, because both
quantities are simultaneously processed [6]. For simplicity, in the first step, dis-
tance evaluations are examined. Afterwards the results are extended for thickness
determinations. It is assumed, that the exact amplitudes of the reflections are
a priori given. For other cases, they have to be classified as variable, which can
affect the bound in a way that higher variances will be observed. Furthermore,
multiple reflections are not considered to simply the deviation. Due to their low
amplitudes, they often can be neglected. However, their influence is discussed in
the end of this chapter.

5.4.1 Distance Measurements

For simplicity, the real representation of the measured signal is used. This variant
is justified because the actually measured signal is a real quantity. A distance
which has to be evaluated depends on the time delay τ , which is proportional to
the optical path length between reflector and reference plane. The ideal measured
signal2 results in

sIF [n, τ ] = a cos(2π
B

Tfs
τn+ 2πF1τ) for 0 < τ <

T

2B
fs (5.7)

with amplitude a. However, the signal interferes with noise. Under the assump-
tion of AWGN ω[n] with the variance σ2

n, the resulting signal x[n] equals

x[n] = sIF [n, τ ] + ω[n]. (5.8)

Subtracting sIF [n, τ ] from both sides, the PDF yields:

px(x, τ) =
1

(2πσ2
n)

N
2

exp

(
− 1

2σ2
n

N−1∑
n=0

(x[n]− sIF [n, τ ])
2

)
(5.9)

with x = (x[0], x[1], ..., x[N − 1])T .
One requirement for the CRLB is the regularity condition, which is used in the
derivation in [91]. In case it is fulfilled, an integration and derivative process can
be substituted by each other simplifying the calculation. The expectation value
E of the logarithmic derivative of the PDF with respect to the PDF has to equal

2The signal sIF [n, τ ] corresponds to sIF [n] of equation 2.8 in case of a single reflection. Since
the dependency on τ is significant in the following sections, this notation is preferred.
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0,

E{∂ ln(p(x, τ))
∂τ

}

= − 1

σ2
n

N−1∑
n=0

(E{x[n]} − a cos(2π
Bτ

Tfs
n+ 2πF1τ))

· ((2π B

Tfs
n+ 2πF1) · a sin(2π

B

Tfs
τn+ 2πF1τ))

= 0,

(5.10)

which is guaranteed, since the expectation value E{x[n]} equals sIF [n, τ ]. The
CRLB for an arbitrary signal is derived in [91]:

var(τ̂) ≥ σ2
n∑N−1

n=0 (
∂sIF [n,τ ]

∂τ
)2
, (5.11)

resulting in

var(τ̂) ≥ 1

4π2 a2

σ2
n

∑N−1
n=0 (

B
Tfs

n+ F1)2 sin
2(2π B

Tfs
τn+ 2πF1τ)

(5.12)

for the present problem [6]. The notation ·̂ highlights that the respective quantity
is estimated. The parameters of the setup influence the bound as well as the ratio
a2/σ2

n. The maximum value of a equals 1. It can be observed when measuring
the conducting plate. Then, the ratio a2/σ2

n equals the ensemble signal-to-noise
ratio SNRE and the lowest value for the variance is observed. The condition
0 < τ < Tfs/(2B) is required, because, otherwise the influence of the frequency
is lower and more difficult to identify. Therefore, positions close to 0 as well as
3.19m are excluded.
In Figure 5.12, the CRLB is depicted as a function of the distance for different
numbers of samples N . The relation can be interpreted as follows: with increas-
ing N , the amount of received information is grown and hence, the variance is
reduced. Moreover, Figure 5.12 shows that the variance is assumed to vary more
strongly in approximation of the excluded positions 0 and 3.19m than for points
in between them. The calibration procedure, which results in positions close to
zero, might therefore not be optimal, because rather high fluctuation can be ex-
pected in approximation of the reference plate position which then equals zero.
On the one hand, larger distances could shift the values to a region with a rather
constant precision. On the other hand, such a shift would significantly downgrade
the accuracy of the results.

5.4.2 Thickness Measurements

For thickness measurements and for neglecting multiple reflections, the number
of significant reflections L + 1 can be determined based on the number of layers
L. The sum x[n, τ ] of AWGN ω[n] and ideal signal sIF [n, τ ] equals

x[n, τ ] = sIF [n, τ ] + ω[n] =
L∑
l=0

al · cos(2π
B

Tfs
τln− 2πF1τl) + ω[n]. (5.13)
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Figure 5.12: CRLB (standard deviation) as a function of the optical path length
between object and calibration plane, number of samples N varies

The term τ = (τ0, τ1, ..., τL)
T should be estimated while the amplitudes al are

again assumed to be given. Analog to equations 5.9 and 5.10, the regularity
condition is fulfilled for each τ0, τ1, ..., τL.
In case that more than one quantity is estimated the Fischer information matrix
I(τ ) has to be calculated [91]. The diagonal elements of the inverted matrix
correspond to the variances of the estimated quantities. The (l1, l2)

th element of
I(τ ) is defined by

[I(τ )]l1l2 =
1

σ2
n

N−1∑
n=0

∂sIF [n, τ ]

∂τl1
· ∂sIF [n, τ ]

∂τl2
(5.14)

for l1, l2 ∈ {0, 1, ..., L}. For the calculation, two cases can be separated: diagonal
l1 = l2 and nondiagonal l1 ̸= l2 elements.
For the diagonal entries, the partial derivation with respect to the delay τl1 was
squared similar to equation 5.11:

[I(τ )]l1l1 =
1

σ2
n

N−1∑
n=0

(al1(2π
B

Tfs
n+ 2πF1)

· (− sin(2π
B

Tfs
τl1n+ 2πF1τl1)))

2

=
1

2σ2
n

N−1∑
n=0

(a2l1(2π
B

Tfs
n+ 2πF1)

2

· (1− cos(4π
B

Tfs
τl1n+ 4πF1τl1)))

(A)
≈ 1

2σ2
n

N−1∑
n=0

a2l1

(
2π

B

Tfs
n+ 2πF1

)2

(B)
≈

2π2a2l1
σ2
n

(
1

3

(
B

Tfs

)2

N3 +
B

Tfs
F1N

2

)
.

(5.15)
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Approximation (A) was based on the observation, that the sum of cosines is
significantly smaller than the remaining sum terms. Therefore, the estimate from
[91], [97] was used:

1

N

N−1∑
n=0

nm cos (4πf0n+ 2ϕ) ≈ 0 (5.16)

for m ∈ {0, 1, 2} and digital frequency f0, which is not located close to 0 or 0.5.
Therefore, again the approximation of positions 0 and 3.19m are excluded. After
factoring out and applying sum formulas, the insignificant terms were neglected
for approximation (B).
For nondiagonal elements, the partial derivatives with respect to the delay τl1
and τl2 were multiplied:

[I(τ )]l1l2 =
1

σ2
n

N−1∑
n=0

(al1al2(2π
B

T
fsn+ 2πF1)

2

· sin(2π B

Tfs
τl1n+ 2πF1τl1)

· sin(2π B

Tfs
τl2n+ 2πF1τl2))

(C)
≈ 0.

(5.17)

For (C), the multiplication of two sine terms resulted in a cosine term, which
again was negligible in comparison to the diagonal elements with higher values
(as in equation 5.16).
The combined Fischer matrix was approximated as:

I(τ ) ≈


[I(τ )]00 0 . . . 0

0 [I(τ )]11 . . . 0
...

. . . . . .
...

0 0 . . . [I(τ )]LL

 . (5.18)

For a diagonal matrix, its inverse is diagonal as well. The diagonal entries are
the inverted elements of I (τ ):

[I(τ )−1]ll ≈ 1/[I(τ )]ll. (5.19)

The approximated minimum variance of the lth reflection equals

var(τ̂l) ≥ 1/[I(τ )]ll ≈
1

2π2a2l N
2

σ2
n

(1
3
( B
Tfs

)2N + B
Tfs

F1)
. (5.20)

For thickness measurements, the variance of the difference τl2−τl1 is relevant. Un-
der the assumption that both positions are stochastic independent, the combined
variance var(τ̂l2−l1) results in

var(τ̂l2−l1) = var(τ̂l1) + var(τ̂l2). (5.21)
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The transformation of time delay τl1l2 to optical path length dl1l2 is linear, and
hence, the factor is squared in terms of variance [91]

var(d̂l2−l1) = var(τ̂l2−l1) ·
c20
4
. (5.22)

Then, the assumed minimum variance for FMCW thickness measurements, the

CRLB, corresponds to
var(d̂l2−l1

)

η2
.

The amplitudes of multiple reflections are usually much smaller than the ones of
the main portions. Since the amplitudes are included in equation 5.20 as squares,
their influence is further reduced. However, in case they are significant, they
would increase the amount of processed information, which is assumed to reduce
the variance.

5.5 Precision of Simulations and Measurements

The previously evaluated CRLB for the precision is validated by simulations
and measurements in the following sections. The analysis is separated into dis-
tance and thickness measurements. Besides the model-based approach, alterna-
tive signal-processing techniques are applied to compare the respective standard
deviations to identify the most precise method and to compare the values with
the bound.

5.5.1 Distance Measurements

For both simulations and measurements, a statistic of 500 individual signals was
generated. Three different signal-processing algorithms to evaluate distances were
compared: Fourier transform-based peak detection introduced in section 2.5, the
model-based approach of chapter 4, and an additional variant based on the cur-
rent phase [53] of the signal. Peak detection solely processes the beat frequency
information. The phase evaluation variant utilizes this peak as an initial value to
approach the frequency by phase information. Since the modeled signals depend
on both, the model-based approach uses the complete amount of information and,
therefore is expected to result in the highest precision.
For simulations and measurements, a conducting sheet reflector at the optical
path length 0mm was analyzed. This position was chosen, because potential
influences such as a nonlinear slope of the frequency modulation are compen-
sated by the predistortion and preprocessing. Moreover, not any adjustment is
required, because the plate is already positioned in the reference plane after the
calibration. The evaluated distances3 are depicted in Figure 5.13.
For peak detection and the phase evaluation, the Chirp-Z transform [62] was
applied, to calculate the frequency spectrum. Instead of adding zeros to the
time-domain signal and computing the discrete Fourier transform, the Chirp-Z

3The values vary from the ones in [6] because a different value of the SNR was used.
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transform enables to determine only a part of this interpolated spectrum for in-
stance the region-of-interest. Thus, a small distance between calculated frequency
points can be achieved without exceeding the available storage. The chosen dis-
tance of 0.075Hz corresponded to an optical path length of 50 nm. Such small
values are required to accurately determine small variations and to reduce the
effect of rasterization.
For the model-based approach, the same step size of 50 nm was chosen to en-
able a comparison of the results. The search interval was −1mm to 1mm. The
evaluated values of the simulations in Figure 5.13 left fluctuate much lower in
amplitude then the ones of the measurements in 5.13 right. As a result, the vari-
ances of the simulations in Table 5.3 are lower than the ones of the measurements
in Table 5.4.
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Figure 5.13: Statistic of 500 distances based on left : simulated, right : measured sig-
nals, peak detection (peak), additional phase evaluation (phase), model-based approach
(model)

For simulations and measurements, the model-based approach resulted in the
lowest standard deviation, and hence, the highest precision. The accuracy of
evaluating simulated signal is higher than the one of the measured data. While
the peak detection results in the lowest bias for the simulations, the method
showed the highest value for the measurements.

Table 5.3: Precision of Distance Evaluations based on Simulations at Optical Path
Length 0mm

mean standard

value deviation

distance and CRLB 0mm 0.22 µm

model-based approach 316 nm 0.28 µm

peak detection 34 nm 1.51 µm

phase evaluation 303 nm 0.56 µm
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Table 5.4: Precision of Distance Evaluations based on Measurements at Optical Path
Length 0mm

mean standard

value deviation

model-based approach 2.91 µm 1.91 µm

peak detection 5.39 µm 14.80 µm

phase evaluation 3.89 µm 10.70 µm

Originally, the model-based approach was introduced to expand the thickness
evaluation for thinner layers. Nevertheless, it shows that is also improves the ac-
curacy and precision of distance measurements. In term of the evaluated CRLB,
the estimated value serves as a lower limit for both measurement and simulation,
even though the distance of 0mm was excluded for the derivation.

5.5.2 Thickness Measurements

In order to keep the influence of the side lobes on the result of the evaluation low,
an SUT with a thickness that is significantly larger than the Rayleigh limit of
3.9mm was selected. Figure 5.14 shows the chosen Pertinax layer with a thick-
ness of 6.28mm. Based on the frequency spectrum, amplitude values of a1 = 0.31
and a2 = −0.13 were obtained. The model-based approach estimated a refractive
index of 1.8.

Figure 5.14: Photograph of the Pertinax sample-under-test
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Then, an SUT with an optical path length of 11.34mm and the determined am-
plitudes was simulated and evaluated based on the different algorithms. The
resulting thicknesses are depicted in Figure 5.15. The phase evaluation method
of [53] solely supports one reflector and hence was not processed for this thick-
ness analysis. In contrast to the distance measurements, the differences between
simulations and measurements are insignificant. Thicknesses evaluated by peak
detection tend to be slightly higher than the ones of the model-based approach.
The results4 are summarized in Tables 5.5 and 5.6.
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Figure 5.15: Statistic of 500 optical path lengths left : simulated, right : measured
signals, peak detection (peak), model-based approach (model)

Table 5.5: Precision of Thickness Evaluations based on Simulations of Optical Path
Length 11.34mm

mean standard

value deviation

optical path length and CRLB 11.34mm 1.85 µm

model-based approach 11.34mm 1.93 µm

peak detection 11.36mm 11.9 µm

Table 5.6: Precision of Thickness Evaluations based on Measurements of Optical Path
Length 11.34mm

mean standard

value deviation

model-based approach 11.34mm 1.68 µm

peak detection 11.35mm 19.76 µm

Comparing the values resulting from simulated and measured data, the model-
based approach resulted in a lower standard deviation and a higher accuracy.

4In [6], the value of the SNR differs which leads to different results.
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At the expense of a higher computational load, this method not only expands
the resolution, but also improves these two aspects. Even though the thickness is
clearly larger than the Rayleigh limit of 3.9mm, the mean value of peak detection
is slightly biased.
It is notable, that the standard deviation of the measured thicknesses of 1.68 µm
is slightly lower than the evaluated CRLB of 1.85 µm for the model-based ap-
proach. To analyze this observation, it has to be considered, that the bound was
derived in equation 5.21 under the assumption of independent reflector positions.
For that case, the variance of the difference should equal the sum of the single
variances. The comparison

var(d̂l2−l1) = 2.83 · 10−12m2

var(d̂l1) + var(d̂l2) = 8.63 · 10−12m2 + 4.16 · 10−12m2
(5.23)

indicates inequality and hence a certain degree of stochastic dependency.
For simulation instead, an approximate equality

var(d̂l2−l1) = 3.81 · 10−12m2

var(d̂l1) + var(d̂l2) = 0.55 · 10−12m2 + 3.33 · 10−12m2
(5.24)

can be observed. Therefore, stochastic independence is indicated.
The reasons for the obtained discrepancy cannot be clearly determined. One as-
pect may be multiple reflections. They were neglected but are in fact functions of
both positions. However, even for measurements, the derived CRLB is a rather
accurate estimate of the standard deviation. For comparison, in [53], the value
determined by measurements was approximately 5 times larger than their evalu-
ated bound.
The CRLB delivers an estimate of the precision depending on the amplitude of
the signal portions or rather refractive indices of the corresponding materials.
Therefore, it enables an estimation of the minimum variances of different layer
composition. For future applications, it could be a basis to estimate in advance,
whether a required precision can be theoretically fulfilled for novel applications.
Moreover, it allows monitoring the measured results, since far higher variances
than the CRLB may indicate the presence of error sources.
For industrial applications, not only accurate and precise results are necessary.
Often specific timing requirements are given by the production lines. Hence, an
option to substitute the computationally intensive exhaustive search might be
beneficial. For this purpose, different optimization algorithms are analyzed in
the next chapter. Since besides the SNR of the setup, also the signal process-
ing was shown to determine the quality of the results, both the accuracy and
the precision are also important criteria to compare the potential of respective
optimization approaches.
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6. Optimization

To evaluate the propagation times of the respective beam portions and hence
thicknesses of layers, the beat frequencies of the frequency-modulated continuous-
wave (FMCW) signal’s oscillations have to be determined. In the previous chap-
ters, a signal-processing approach was presented to resolve thicknesses below the
Rayleigh resolution limit by fitting a model to conform the measured signal. The
model parameters then indicate estimates of the frequencies of the oscillations.
To quantify the conformity between measured and modeled signals, the Pearson
correlation coefficient has been calculated. An exhaustive search was applied and
thus, the entire multitude of modeled signal within a predefined search interval
had to be calculated. To counteract the high computing effort, they were com-
puted in parallel on graphics processors. However, often millions of signals are
required. Then, in case of graphics processing units, sets of hundreds of them
have to be iteratively computed increasing the calculation time.
To reduce the computation load, different optimization procedures are discussed
next. One difficulty is the presence of a significant amount of local optima in
exemplary solution spaces. Such a characteristic complicates the search for dif-
ferent optimization methods such as the gradient descent, which benefit in case of
convex spaces. Instead of maximizing the correlation coefficient, the cost function
is minimized in the following to reduce the amount of required arithmetic opera-
tions. In terms of reliability, an optimization strategy is required with results of
similar accuracy and precision as exhaustive search.

In this chapter, the cost function is analyzed first. Since it depends on the choice
of a distance norm, different options are compared. Solution spaces of represen-
tative measurement scenarios are simulated, which are invariably characterized
by numerous local rather equidistant minima. Their average distance is observed
to be a function of the phases of the signal’s oscillations. Based on Fourier trans-
form equivalences, this distance is then calculated. It represents the foundation
of an optimization procedure, which is introduced specifically for FMCW thick-
ness evaluations: a set of equidistant initial points is generated each enabling to
approach the closest optimum by the use of the gradient descent or Nelder-Mead
algorithm. For validation, simulations and measurements are performed. The
results are compared to the ones of an alternative established stochastic opti-
mization method, a genetic algorithm. Finally, an overview of the characteristics
of the different algorithms is given.
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6.1 Cost Functions

For the comparison of modeled and measured signals in the previous chapters,
the Pearson correlation coefficient of equation 4.1 has been used to quantify their
conformity. It normalizes the signals and simultaneously compares them. How-
ever, in case amplitude variations are not expected, the conformity of two signals
can also be maximized by minimizing the distance between them. At the same
time, the computational load can be decreased due to the reduced number of
arithmetic operations.
A real value p has to be chosen, which defines a p-norm distance and the cost
function,

gℓp (τ ) =

(
N−1∑
n=0

∣∣sref [n]− sτ [n]
∣∣p) 1

p

(6.1)

with p ≥ 1. The reference sref corresponds to the calibrated representation of the
measured signal. However, for validation of the following algorithms, also sim-
ulated signals can be used. Operator |·| denotes the calculation of the absolute
value function.
Unless denoted differently, the reference sref [n] and modeled signal sτ [n] are re-
stricted to main reflections in the first place. They then correspond to the ap-
proximated analytic representation

sτ [n] =
L∑
l=0

al exp

(
j2π

B

Tfs
τln+ j2πF1τl

)
(6.2)

with number of layers L, time index n ∈ {0, 1, ..., N − 1}, quested time delay
τl, amplitude al of the lth reflection of L, start frequency F1, bandwidth B,
and measurement duration T . In case that multiple reflections are significant,
the signals can be calculated efficiently by the modified transfer matrix method
(TMM) of section 4.3.
The optimization problem is defined by

minimize gℓp (τ ) , (6.3)

with τ = (τ0, τ1, ..., τL).
In this section, special consideration is taken on the Euclidean ℓ2

gℓ2 (τ ) =

√√√√N−1∑
n=0

∣∣sref [n]− sτ [n]
∣∣2, (6.4)

the taxicab ℓ1,

gℓ1 (τ ) =
N−1∑
n=0

∣∣sref [n]− sτ [n]
∣∣, (6.5)

and for the limit p → ∞, the maximum ℓ∞ norm distance,

gℓ∞ (τ ) = max
n=0,...,N−1

(∣∣sref [n]− sτ [n]
∣∣) (6.6)
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as cost functions. The operation max (·) represents the calculation of the max-
imum value. In the following, the solution space of the correlation coefficient is
compared to the ones of the different cost functions for one representative ex-
ample. Depending on convergence and practicability, one option of the distance
norms is then chosen for the evaluation of additional data.
For the following simulations, an acrylic glass sample-under-test (SUT) depicted
in Figure 4.7 was used as well as T = 170 µs, fs = 10MHz, F1 = 71.1GHz,
B = 39.5GHz, and N = 1700. A refractive index1 of η = 1.56 [5] was assumed.
Unless denoted differently, the amplitudes of the first and second reflections were
0.22 and −0.21 according to Fresnel equations neglecting absorption. Along the
x-axis as well as the y-axis, the positions of the reflectors of the modeled signal are
varied. For each combination (pixel), the simulated data was compared with the
reference signal. The real part of correlation coefficient rP of equation 4.1 is rep-
resented in Figure 6.1. The grayscale indicates the conformity between measured
and simulated signals. The maximum for the x-value 2.34mm and the y-value
0mm indicated an optical path length of the sample of 2.34mm. After dividing
by the refractive index, the exact thickness of 1.5166mm could be determined.
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Figure 6.1: Solution space of the correlation coefficient: reference signal of SUT of
optical path length 1.5166mm·1.56 = 2.34mm, from left to right the depicted range of
the correlation coefficient is rescaled to intensify the visibility of the significant maxima

The characteristic of numerous local optima besides the global maximum com-
plicates the optimum search. Several optimization algorithms such as gradient
approach are not efficient in case of nonconvex spaces: for small step sizes, the
values may be stuck to a local optimum. If the size is chosen as too high, however,
the values are likely to jump between the partial convex spaces in approximation
of the different optima. The probability that the global maximum can be found
is therefore reduced. Apart from that, it is notable, that the distance between
adjacent optima is rather equidistant apart from interference effects.
The solution space applying the ℓ2 norm is depicted in Figure 6.2 with a high
similarity to the one in Figure 6.1. However, in this case, the minimum indicates
the highest conformity. The high similarity shows that the cost function is an

1The value varies from 1.58 evaluated in chapter 4, because a different (4.9mm) plate for
the reference measurement has been used.
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appropriate substitute for the correlation coefficient. In case the refractive indices
or rather amplitudes were not accurately given and normalization was necessary,
the signal could be divided by their maximum values before calculating the cost
function.
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Figure 6.2: Solution space of the ℓ2 distance, reference signal of SUT of optical path
length 2.34mm, from left to right the maximum depicted distance is reduced to its
half, to enhance the visibility of the significant optima

Figure 6.3 presents the solution space of the ℓ1 norm. In comparison to ℓ2, the
contrast between maxima and minima is slightly reduced: the complete space is
darker in shade in average. The representation in right indicates that the ℓ1 norm
resulted in additional minima with rather high values, which are slightly lower
for ℓ2. This effect could be interpreted as a slower convergence.
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Figure 6.3: Solution space of the ℓ1 distance, variation of maximum depicted value
from left to right to intensify the visibility of significant minima, reference signal of
SUT of optical path length 2.34mm

Figure 6.4 is based on the maximum norm ℓ∞. It is characterized by a higher
contrast between the minima and the rest of the solution space in comparison to
other norms: the total area of light shades is increased. Therefore, in 6.4 right a
reduced amount of optima is visible. The decrease of areas of low cost function
values (dark shades) could simplify the minimum search, because it could lead to
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faster convergence for methods, which are based on the calculation of the deriva-
tive. Moreover, the area of interest is reduced and the difference between global
and local minima is enhanced which simplifies their distinction.
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Figure 6.4: Solution space of the ℓ∞ distance, variation of maximum depicted value
from left to right, reference signal of SUT of optical path length 2.34mm

Due to the higher contrast, the ℓ∞ norm seems to be the most promising choice.
However, the position of the minimum and hence corresponding distance could
be affected in the presence of statistical outliers. In case of additional influences
besides additive white Gaussian noise such as a nonlinear frequency ramp, the
ℓ∞ norm distance may be more prone to false results, because only the maximum
deviation between the measured and modeled signals is determined. Other norms
that summarize the values such as ℓ1 and ℓ2 are assumed to be more robust.
The slightly increased contrast of ℓ2 values in comparison the ones the of ℓ1 could
be beneficial due to the reduced amount of significant local minima. Moreover,
the square of the ℓ2 cost function gℓ2 (τ ) is differentiable in case of real signals
because the calculation of the absolute value can be omitted, which is not the
case for ℓ1. This is an advantage for derivation-based optimization algorithms.
For these reasons, the ℓ2 norm is chosen for the following sections.
The choice of the ℓ2 norm can also be motivated by the method used when detect-
ing specific signals in the presence of additive white Gaussian noise (AWGN) with
minimum error probability. The maximum-likelihood solution has to consider the
conditional PDFs, which in case of AWGN result in normal distributions. Using
the logarithm of PDFs, the error probability can be minimized by choosing the
signal from all potential variants, that has the smallest ℓ2 norm distance between
it and the received signal. In the same way for the present thickness measure-
ments, the probability of errors is expected to be minimized for the model-based
variant when the ℓ2 norm distance is used to indicate the conformity of measured
and modeled signals.
Although different functions for comparison (cost functions and correlation coef-
ficient) as well as parameters were used for the presented simulations, all of the
solution spaces have shown a significant amount of local optima. These are largely
equidistantly distributed except for interference effect. In the following section,
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the influences on the average distance between adjacent minima are analyzed to
determine the reasons for this characteristic.

6.2 Influences on Solution Space

The equidistant characteristic of the solution space could be influenced by the
refractive indices and hence the amplitudes of the signal portions as well as the
thicknesses of the SUT layers. Both are varied in comparison to Figure 6.2 next.
Firstly, the thickness of the simulated acrylic plate is changed from 1.5166mm
to 3.0332mm and 6.0664mm in Figure 6.5. The position of the global optima of
the cost function as well as significant local ones close to it are shifted but the
equidistant characteristic remains.
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Figure 6.5: Solution space varying the optical path length of the SUT to left : 1.56 ·
3.0332mm= 4.68mm, right : 1.56 · 6.0664mm= 9.36mm

In Figure 6.6, the thickness is changed back to 1.5166mm but the amplitude of
the second reflection is reduced to its half and fourth. This reduction decreases
the influence of the corresponding signal portion. However, the equidistant char-
acteristic remains for changing to position of the first reflector.
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Figure 6.6: Solution space of an SUT of the optical path length 1.5166 · 1.56mm =
2.34mm varying the amplitude of the second reflection to left : −0.105, right : −0.0525
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Hence, the amplitudes and the thicknesses determine the positions of the op-
tima. In case of their variation, interference effects are simultaneously changing.
However, the equidistant characteristic always remains and the average distance
appears to be constant.
To evaluate this average distance, a single reflection is analyzed. An oscillation
according to equation 6.2 can be rewritten considering the inherent measurement
window:

s[n] = exp

(
j2π

B

Tfs
τln+ j2πF1τl

)
· rect

(
n− N−1

2

N

)
(6.7)

with the rectangular function rect(n), which equals 1 for n ∈ {0, 1, ..., N −1} and
0, otherwise. Its discrete Fourier-transformed results in

S[k] = N exp

(
j2πF1τl − jπ

N − 1

N
(k −ml)

)
sin (π (k −ml))

sin(π(k−ml)
N

)
(6.8)

with substitution ml =
fb,l
fs

= Bτl
Tfs

. The argument of the exponential function

determines the phase of S[k] and the quotient of sinusoids the amplitude of it. In
case the optical path length varies, the signal’s phase changes as well.
If two oscillations show the same reflector positions, their correspondence is the
highest and the distance is the smallest. If the optical path length for a reflector
changes, the distance changes accordingly and becomes larger. After the phase
has reached the value π, the conformity increases again until it again reaches a
maximum at 2π. Hence, the optical path length which corresponds to a phase
shift of Φi = 2π is calculated based on the phase term of equation 6.8. The
distance between an optimum and the closest neighbor then corresponds to a
time delay shift of τl to τ ′l and an optical path length difference of d′l − dl

2πF1τ
′
l − 2πF1τl +

π (N − 1)m′
l

N
− π (N − 1)ml

N
!
= 2π

⇔ 2F1 (τ
′
l − τl) +

(N − 1)

fs

(
B

T
(τ ′l − τl)

)
= 2

⇔ (2d′l − 2dl)

cη

(
2F1 +

B (N − 1)

fsT

)
= 2

⇒ d′l − dl =
cη

2F1 +
B(N−1)

fsT

(6.9)

with medium speed of light cη.
The distance only depends on the setup and material parameters. Figure 6.7
indicates a rather high conformity between a signal and its 2π-shifted variant
which is the reason for the equidistant characteristic. However, for a second,
third etc. reflector superposition effects may occur between the peaks, which
appears to be the reason for the interference effects.
This average distance can be used for the optimization process. A corresponding
approach is presented in the next section.
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Figure 6.7: Real parts of signals shifting the phase

6.3 Optimization Algorithms

Within the spectrum of millimeter waves and terahertz applications, different
optimization approaches have already been applied such as for model-based sig-
nal processing. For terahertz time-domain spectroscopy (TDS), determinations of
material parameter [98] and layer thicknesses [38] have been optimized in terms of
calculation load. Different schemes of optimization approaches can be identified:
stochastic and gradient-based methods. One example for stochastic variants are
genetic algorithms based on a set of randomly distributed initial values, which
are stacked corresponding to their cost function values. In each iteration, the
current points are combined to novel ones, which ideally have lower values. For
gradient approaches, an initial value is moved towards the direction of its nega-
tive gradient resulting in a novel value closer to the respective minimum.
For network analysis, genetic algorithms have been applied in [46], [79] to extract
material quantities based on reflection or transmission (S-parameter) measure-
ments. For a convex solution space, gradient-based methods such as in [99] can
be applied. Even a combination is presented in [100], utilizing gradient descent
and genetic algorithm, sequentially. For FMCW, an alternation of Gauss-Newton
and finite differences method allows characterizing single layers [101].
In this work, typical solutions spaces are characterized by numerous equidistant
local optima. Based on the calculation of their average distance, an equidistant
set of initial values such as in Figure 6.8 is generated. Each point then enables
approaching the closest local minimum, respectively [7]. Besides others, this can
be achieved either by gradient descent or by Nelder-Mead algorithm, which are
presented in the following. The approach based on this equidistant set is then
compared to a genetic algorithm. In the first step, multiple reflections are not
considered for simplicity. Afterwards, the adaptive steps are discussed which are
necessary to integrate them.
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Figure 6.8: Optimization based on a set of equidistant initial points, population of
each iteration (blue dots) and after 25 iterations (burgundy crosses)

6.3.1 Gradient Descent

The gradient descent approach is based on the derivative of the cost function. In
a convex space, the minimum is approached by shifting an initial value toward the
direction of its negative gradient. By choosing a set of equidistant initial points,
each one can converge the closest minimum within the respective monotonous
section of the space.
For the presented norms and for observing the complex representation of the
signals in equation 6.1, the calculation of the absolute value function is required,
which is not differentiable in all points. Therefore, the real representation is
analyzed instead in this section. The square of gℓ2 ,

gGD (τ ) =
N−1∑
n=0

|sref [n]− sτ [n]|2

=
N−1∑
n=0

(sref [n]− sτ [n])
2,

(6.10)

exhibits the same minima as gℓ2 , due to the strictly increasing monotony of the
square function. However, the calculation of the square root and absolute value
function can be avoided for gGD (τ ).
For the algorithms, a local minimum can be found by shifting the current value
towards the direction of the negative gradient (steepest descent). An initial value
of τ 0 generates a sequence τ i corresponding to

τ i+1 = τ i + αi · di, i = 0, 1, ..., I (6.11)
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with the step size αi of the ith iteration of I. The descent direction di is calculated
by

di = −Di · ∇gGD

(
τ i
)

(6.12)

with a positive definite matrix Di and the gradient ∇gGD (τ i),

∇gGD

(
τ i
)
=

(
∂gGD(τ

i)

∂τ0
,
∂gGD(τ

i)

∂τ1
, ...,

∂gGD(τ
i)

∂τL

)T

. (6.13)

ForDi, the unity matrix is chosen in this work to reduce the amount of arithmetic
operations. Then, the procedure corresponds to the steepest descent. However,
a different choice could improve convergence.
The gradient entries consist of the partial derivatives of the cost function with
respect to τ0, τ1,...,τL. For a τl1 with l1 ∈ {0, 1, ..., L}, it equals,

∂gGD(τ
i)

∂τl1
= 4π

∑
n

al1

(
B

Tfs
n+ F1

)
sin

(
2π

(
B

Tfs
n+ F1

)
τl1

)

·

(
sref [n]−

∑
l

al cos

(
2π

(
B

Tfs
n+ F1

)
τl

))
.

(6.14)

The choice of step size αi influences the convergence of the algorithm significantly,
as shown in Figure 6.9 left. On the one hand, if the chosen value is too small such
as αsmall, a large amount of iterations is required. On the other hand, for rather
large values αlarge, the calculated point can exceed the approximation of the local
minimum. In case of αopt, the amount of required iterations is the lowest.
The optimal value of the step size can be found by the exact line search: for each
iteration, the term gGD(τ

i−αi∇gGD(τ
i)) is minimized. However, this method is

beneficial in case of applications for which solving this equation is cost-efficient
in comparison to the descent direction [102], which is not the case for the present
problem.
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marker: potential points of next iteration right : backtracking line search , ℓ2 norm
distance cost function g as function of αi (gray), tangents scaled by T = 1 (black) and
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A more practicable alternative is the backtracking line search, which is inexact
but less complex [102]. The procedure is summarized in Algorithm 1. Instead of
the optimum size, each value, that minimizes the function value fulfilling

gGD

(
τ i + αidi

)
≤ gGD

(
τ i
)
+ αiT ∇gGD

(
τ i
)T · di (6.15)

with T ∈ [0, 0.5], is classified as appropriate. Figure 6.9 right depicts the tan-
gents2 for T = 1 and T = 0.5. For small T , the probability of hitting a valid
value is increased, while for larger ones the cost value reduction is usually more
significant. In case the equation cannot be fulfilled, the step size αi is reduced by
factor β ∈ [0, 1].

Algorithm 1 Backtracking Line Search

Require: descent direction ∇gGD (τ i), parameters T ∈ [0, 0.5] and β ∈ [0, 1]
step size of the ith iteration αi

while equation 6.15 is TRUE, do
αi := β · αi

end while

For the present optimization problem, small starting values such as α0 = 5·10−26s2

have been chosen instead of the typical value 1 to not exceed the convex area.
Such small values have been determined heuristically using rough estimates of
1GHz for descent and 10 fs for time delay. Figure 6.10 depicts an example for
steepest descent with the initial point (-1.5mm, −10mm) comparing backtrack-
ing line search with choosing a constant step size of 5·10−26 s2. After 20 iterations,
the accuracy of approaching the optimum (determined by exhaustive search) was
comparable. Therefore, and to reduce the computation load with regard to a fast
implementation, a constant step size was chosen.
One remarkable advantage of the gradient descent methods is that the second or-
der derivative, the Hessian matrix HgGD

, guarantees the presence of a minimum
instead of saddle point or maximum in case of nonconvex spaces: the diagonal
elements of it are

∂2gGD(τ
i)

∂τ 2l1
= 8π2al1

∑
n

(
B

Tfs
+ F1

)2

·

(
sin

(
2π

(
B

Tfs
n+ F1

)
τl1

)2

−

(
sref [n]

∑
l

al cos

(
2π

(
B

Tfs
n+ F1

)
τl

)
· cos

(
2π

(
B

Tfs
n+ F1

)
τl1

)))
(6.16)

2The value T = 1 is excluded.
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for the entry (l1, l1) and nondiagonal ones equal,

∂2gGD(τ
i)

∂τl1∂τl2
= 8π2al1al2

∑
n

(
B

Tfs
n+ F1

)2

sin

(
2π

(
B

Tfs
n+ F1

)
τl1

)
· sin

(
2π

(
B

Tfs
n+ F1

)
τl2

) (6.17)

for entry (l1, l2) with l1, l2 ∈ {0, 1, ..., L}. In case HgGD
is positive definite, which

is the case for positive eigenvalues or positive minorants, the present extreme
value is proven to be a minimum.
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Figure 6.10: Comparison of steepest descent including backtracking line search with
utilizing a constant step size, optimum of exhaustive search

One disadvantage of gradient descent in terms of FMCW thickness measurements
is the adaptation for multiple reflections. In case they have to be considered, the
complexity increases significantly. The equivalent transfer function of equation
4.11 has to be calculated for the general case and differentiated afterwards for
gradient and Hessian matrix. Since the following Nelder-Mead algorithm solely
requires cost function values, only the transfer function for the specific cases have
to be determined. Through this, the calculation load might be distinctively lower
in case of multiple reflections.

6.3.2 Nelder-Mead Algorithm

In convex spaces, the Nelder-Mead (downhill simplex) algorithm [103] is based
on points within the solution space, which create a simplex. Iteratively, one or
more of these vertices is replaced by a novel point with a lower function value to
approach the minimum such as in Figure 6.11. It requires neither calculating a
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derivative nor solving a second optimization problem such as exact line search of
gradient descent.
Based on the set of equidistant initial points, a simplex is generated for each of
them. The distance of its vertices is chosen to be smaller than half of the average
minima spacing estimated in equation 6.9. The simplex is shifted to approach
the closest minimum. Iteratively, the vertex with highest cost function value is
replaced by a novel point (with a lower value). For its determination, the al-
gorithm provides the options reflection, expansion, contraction, and shrinking.
They are processed successively until an appropriate novel point is found: firstly,
the vertex with the highest cost function τ 2 is mirrored around the centroid τ
of the remaining points as depicted in Figure 6.12 resulting in τr. If the cost
function of the novel point is below the previous values, the distance is expanded
to τe. For higher values, it is reduced to τc referred to as contraction. If the cost
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Figure 6.11: Adaption of simplex within the solution space left : 2 iterations, right :
10 iterations, initial (init) simplex (black), intermediate (inter) simplices (blue), final
simplex (gray)
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function value of the previous vertex is higher than the centroid, a value within
the old simplex is calculated and otherwise outside of it. In case all calculated
points exhibit higher function values, the simplex is shrunk. While keeping the
point with the lowest value, the other points are moving towards it by replacing
τ 1 and τ 2 with ν1 and ν2.
The procedure and the required equations are summarized in Algorithm 2. Typi-
cal choices for the parameters are ρ = 1 for reflection, χ = 2 for expansion, γ = 1

2

for contraction, and σ = 1
2
for shrinking [104]. The algorithm terminates either

when a maximum number of iterations is reached or when the deviation of the
values as well as function values are getting smaller than chosen thresholds.

Algorithm 2 Nelder-Mead Algorithm

Require: L+ 2 initial points τ 0, τ 1,...,τL+1 for L layers
scaling parameters: ρ = 1, χ = 2, γ = 1

2
, σ = 1

2

1: Order τ 0, τ 1,...,τL+1 according to the function values

g
(
τ 0
)
≤ g

(
τ 1
)
≤ ... ≤ g

(
τL+1

)
.

Calculate the centroid τ of the L best values τ 0,...,τL.
2: Reflect the worst point τL+1:

τr = (1 + ρ)τ − ρτL+1

Function value g(τr) between function values of best and worst value?
Replace worst value with τr and go to step 1.

3: Function value g(τr) smaller than best function value?
Expand

τe = (1 + ρχ)τ − ρχτL+1.

Replace worst value with τr or τe depending on the smaller function
value and go back to step 1.

4: Chose τ or τL+1 depending on the smaller function value.
τ?

Outside contraction: τc = (1 + ργ)τ − ργτL+1

τL+1?
Inside contraction: τc = (1− γ)τ + γτL+1

Function value smaller than worst function value?
Replace worst value with τc and go back to step 1.

5: Shrink: Replace τ 1,...,τL+1 with ν1,...,νL+1 with

ν l = τ 0 + σs

(
τ l − τ 0

)
and go back to step 1.

One disadvantage of Nelder-Mead algorithm is the absence of a minimum guar-
antee as the Hessian matrix of gradient approach. However, using the standard
parameter, the algorithm does not require the calculation of a step size, even
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though the width of the initial simplex and the choice of the parameters have a
certain regulation characteristic. Since not any time derivation is required, the
TMM can be directly adapted to observe multiple reflections.
For the novel optimization approach based on the equidistant set of initial points,
both gradient descent and Nelder-Mead algorithm are used in the following. In
order to compare the results with a classical optimization method, a genetic al-
gorithm is presented next.

6.3.3 Genetic Algorithm

Genetic algorithms [105] are stochastic optimization methods. As depicted in
Figure 6.13 left, they are based on randomly distributed initial values in the so-
lution space, which are combined to create a novel population in each iteration.
Ideally, some of the novel points are lower in their cost function values. The
complete procedure is summarized in Figure 6.13 right. For all presented opti-
mization algorithms, a stop criterion has to be chosen, e.g., value variations are
below a certain threshold. For each iteration, the steps selection, crossover, and
mutation are performed. The steps are illustrated in the following using a small
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Figure 6.13: Genetic algorithm left : solution space with population of the first iter-
ation (burgundy crosses) and of the 20th iteration (blue dots), right : float diagram of
the genetic algorithm

population as an example. Six randomly distributed points in the search space
are chosen. The corresponding cost function values are calculated. Afterwards,
the points are encoded as binary strings (chromosomes) such as in Table 6.1.

Selection

Based on the initial population in Table 6.1, a set of chromosomes for the next
iteration is generated. Depending on the cost function value, different options
are operated.
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� The chromosome with the lowest value is selected and transferred to the
population of the next iteration: chromosome 5.

� The chromosome with the highest cost function value is discarded: chro-
mosome 4.

� Chromosomes are randomly chosen for the following crossover depending
on the choice of a crossover probability. Exemplarily, for a probability of
0.5, two of the four remaining chromosomes are required. In this case, the
chromosomes 2 and 6 are chosen.

� The remaining chromosomes 1 and 3 are transferred to the novel set.

Table 6.1: Example of Initial Population of a Genetic Algorithm

index chromosome cost function value decision

1 10000010001 10001110111 64.57 new population

2 11010100111 01110010001 231.95 crossover

3 01001010110 10101001001 295.18 new population

4 00100100110 00101011001 408.78 discard

5 10000001111 00111001010 5.92 new population

6 10100001010 11010011000 172.54 crossover

The blue and gray coloring highlights the sections which are recombined for
the following crossover.

Crossover and Mutation

For the next population, two novel chromosomes, the children, are created by
combining portions of the binary codes of respectively two parents such as the
blue and gray sections of the chromosomes 2 and 6 of Table 6.1. Table 6.2 repre-
sents the resulting children. This procedure is referred to as crossover. According
to a mutation probability, few bits of all chromosome structures are varied. The
children are then transferred to the novel population.

Table 6.2: Exemplary Set of Children before and after Mutation

child 1 child 2

before mutation 11010100111 11010011000 10100001010 01110010001

after mutation 01010100111 11010011001 10100001010 11110010011

The new population combines mutated chromosome of previous population (such
as 1, 3, and 5), the mutated children, and an additional random chromosome
such as the one in Table 6.3. The set is used as the initial population of the next
iteration.
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Table 6.3: Random Chromosome

chromosome 00100111000 01111110001

Since genetic algorithms are stochastic methods, it cannot be guaranteed whether
the global minimum can be found. The probability of a hit however depends on
the various parameters: the probability is higher if a sufficiently large start pop-
ulation is chosen. Moreover, the crossover and the mutation probability have to
be chosen in a way that they correspond to the solution space. If the number of
crossovers increases, the global optimum can be found within a smaller number
of iterations in some cases. For other problems, values close to the global min-
imum can be discarded and the population then may be stuck to a fraction of
the space. The mutation induces a certain degree of randomness, which can be
advantageous in widely varying spaces.
For the following simulations and measurements, the size of the population equaled
the set size of the other algorithms to simplify their comparison. Probabilities of
0.8 for crossover and 0.1 in terms of mutation were selected to prevent limiting
the candidates to a section of the solution space and allow novel candidates.

6.4 Comparison of Algorithms

The functionality of all presented algorithms are compared in the following.
Firstly, they are tested for validation. Afterwards, a static of simulations is
performed to compare the computation time of the different methods as well as
the accuracy and precision of their results. Then, measurement results are shown
for thin single layers. To present the potential for multilayers, a two-layered SUT
is simulated and evaluated by the different algorithms. Finally, a discussion of
the characteristics of all approaches is given.

6.4.1 Validation of Algorithms

The presented algorithms were tested for validations based on simulations. The
acrylic glass SUT (Figure 4.7) with a thickness of 1.5166mm and optical path
length of 2.34mm was simulated. The variance of additive white Gaussian noise
was modeled as 1/3309.57 according to the SNRS of Table 5.2. To apply the
presented algorithms, a stop criterion had to be chosen. For the comparing
exhaustive search, a step size of 10 µm/1.56 was used. Therefore, the optimization
algorithms were stopped either if the variations were smaller than this value or
after a maximum number of 50 iterations. For the Nelder-Mead algorithm, the
MATLAB implementation [106] was utilized. For steepest descent, a constant
step size of αi = 3 · 10−27s2 was heuristically determined considering estimates
for each gradient entry of THz, while the τl were estimated as 1 fs. Additionally,
the step size had to be chosen even smaller to restrict novel points to the convex
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areas, respectively.
Figure 6.14 depicts the final populations. The values of the genetic algorithm
tended to accumulate to the left side. Such an accumulation could prevent hitting
the global optimum. If the population is restricted to a section of the solution
space, then the probability of approaching the global minimum by the crossover
procedure is very low. The steepest descent and the Nelder-Mead algorithm
have identified almost all local minima evaluated by exhaustive search. For this
example, all algorithms approached the global minimum.
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Figure 6.14: Comparison of final values of different optimization algorithms exhaus-
tive search (ES), steepest descent (SD), Nelder-Mead algorithm (NM), and genetic
algorithm (GA), global minimum (GM)

6.4.2 Computation Time, Precision, and Accuracy

In order to create a statistic, the simulation for the previous section was repeated
100 times utilizing different noise sample functions. Figure 6.15 presents the
evaluated values of each algorithm and repetition as well as the expected global
optimum for this SUT. Several times, the genetic algorithm approached a local
minimum instead of the global one, while steepest descent and Nelder-Mead ap-
proached the exact value each time.
The results are summarized in Table 6.4 with the highest accuracy of Nelder-
Mead algorithm. The corresponding variance approaching zero is assumed to
not represent the actual precision but to be influenced by the choice of the stop
criterion. Steepest descent required the lowest average calculation time of 418ms
in MATLAB3 which may be influenced by the lowest amount of iterations. The

3Intel Core i7-8565U central processing unit, 1.80GHz, 4 physical cores, MATLAB R2019a
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accuracy of genetic algorithm is insufficient for reliable results, since the bias al-
most equaled 10% of the reference value. The variations of its results depicted in
Figure 6.15 transfer to a high standard deviation of 492 µm, which is unreliable
as well.
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Figure 6.15: Evaluated global optima of 100 independent simulations using genetic
algorithm (GA), steepest descent (SD), and Nelder-Mead algorithm (NM), global min-
imum (GM) of the SUT

Table 6.4: Results of Optimization Algorithms Steepest Descent, Nelder-Mead, and
Genetic Algorithm Evaluating Simulated Data

steepest Nelder- genetic

descent Mead algorithm

mean value 1.49mm 1.50mm 1.36mm

standard deviation 77 nm 556 fm 492 µm

calculation time MATLAB 418ms 1.45 s 1.01 s

average number of iterations 19.9 29.3 50

With regard to time-efficient implementations of the algorithms, an alternative
approach is substituting the previous criterion of small variations of the cost func-
tion value by a constant amount of repetitions to prevent queries. An appropriate
value can be evaluated heuristically, since solution spaces do not vary significantly
as shown in Figures 6.1 – 6.6. An amount of 100 simulations was performed and
discontinued after 25 iterations.
Table 6.5 represents the results with reduced computation time for all variants.
For Nelder-Mead and genetic algorithm, the value is less than half of the previ-
ous one. Even though the number of iteration was increased for gradient descent,
the calculation time was decreased presumably just due to the prevention of the
queries. The results of steepest descent and Nelder-Mead are again accurate
and their variances were low: below 1 µm. Hence, their results are classified as
reliable. The bias of the genetic algorithm is larger than 20%.



82 Chapter 6. Optimization

Table 6.5: Values of Optimization Algorithms Steepest Descent, Nelder-Mead, and
Genetic Algorithm after 25 Iterations Evaluating Simulated Data

steepest Nelder- genetic

descent Mead algorithm

mean value 1.50mm 1.51mm 1.17mm

standard deviation 0.16 µm 0.25 µm 745.75 µm

calculation time MATLAB 305ms 712ms 408ms

6.4.3 Measurement Results

Then, the algorithms have also been tested using measured signals. For this pur-
pose, well-defined calibration samples consisting of acrylic with different thick-
nesses were utilized. Figure 6.16 shows the samples-under-test, which have also
been measured for [5], [7], [11]. The thickest plate of 4.9mm was used as a
reference to calculate the refractive index of 1.56. The optimization algorithms
have been discontinued after 25 iterations again to take into account that this
variant would be advantageous for later implementations by preventing queries.
For steepest descent, a constant step size of 3 · 10−27s2 was again heuristically
evaluated. The distance between the initial values however was assessed conser-
vatively as a quarter of the expected distance between optima. A search interval
of 3.2mm to 6.4mm was used for exhaustive search.

Figure 6.16: Photograph of acrylic samples-under-test

Table 6.6 summarizes the results of five individual measurements for each SUT.
For comparison, TDS-evaluated values are provided as well. Since it determined
slightly larger values particularly for the 1.5166mm plate, it indicates, that the
refractive indices of the different samples could be marginally different.
The genetic algorithm resulted in a bias of more than 20% for the 1.5166mm
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SUT. Additionally, its values are imprecise with high standard deviations of up
to 864 µm, while to ones of exhaustive search, steepest descent and Nelder-Mead
algorithm were below 2 µm. Steepest descent yielded a bias of roughly 7% but
only for the thinnest SUT of 773 µm. Results of Nelder-Mead algorithm highly
conform to the ones of exhaustive search and are therefore the most promising.

Table 6.6: Results of Steepest Descent, Nelder-Mead, Genetic Algorithm, Exhaustive
Search, and TDS Evaluating Measurements of Acrylic Sheets

thickness TDS search exhaustive steepest Nelder- genetic

interval search descent Mead algorithm

4.9mm 4.9mm 3.2mm 4.9mm 4.9mm 4.9mm 5.1mm

±1% – 6.4mm ±0.6 µm ±0.3 µm ±1.2 µm ±501.4 µm

1.5166mm 1.53mm 0mm 1.55mm 1.61mm 1.55mm 1.18mm

±0.4% –3.2mm ±0.6 µm ±1.4 µm ±0.0 µm ±863.9 µm

959 µm 964 µm 0mm 976 µm 978.7 µm 975.5 µm 978.7 µm

±1% –3.2mm ±0.0 µm ±0.1 µm ±0.6 µm ±13.2 µm

773 µm 776 µm 0mm 775 µm 825.3 µm 779.5 µm 749.1 µm

±1% –3.2mm ±0.8 µm ±0.4 µm ±0.5 µm ±42.5 µm

6.4.4 Multilayers

Exemplarily, for multilayers, a two-layered SUT was simulated. Thicknesses and
refractive indices were 1.5mm and 2.034mm as well as 1.56 and 1.8, respectively.
The search intervals of each boundary surface had optical path length widths of
10mm and the step size equaled 10 µm. The exhaustive search required a calcu-
lation time of roughly 66 h in MATLAB.
The results of 10 repetitions are shown in Table 6.7 for the optimization algo-
rithms. For steepest descent, a constant step size of 5 · 10−27 s2 was used. The
algorithms have been discontinued for value changes of less than an optical path
length of 10 µm or after finishing 250 iterations. In comparison to exhaustive
search, the calculation time was significantly reduced for all cases. The evalu-
ated thicknesses of Nelder-Mead and genetic algorithm were accurate, while the
values of steepest descent were biased. The offset for instance equaled 37% for
the second layer. Due to the combination of accurate and precise results, the
Nelder-Mead algorithm is again determined as the most promising approach.
For each additional layers, the difference between exhaustive search and its alter-
natives is expected to be even more significant. However, for inline measurements,
the implementation has to be further optimized such as by parallel computing
on graphic processors. Alternatively, the width of the search intervals could be
reduced.
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Table 6.7: Results of Optimization Algorithms Steepest Descent, Nelder-Mead, and
Genetic Algorithm Evaluating Two-Layered SUT

steepest Nelder- genetic

descent Mead algorithm

layer 1 1.75mm 1.50mm 1.50mm

(1.56mm) ±5 nm ±1.56 µm ±20.13 µm

layer 2 3.20mm 2.03mm 2.04mm

(2.034mm) ±6 nm ±154 nm ±9.49 µm

calculation time 10 s 37 s 93 s

6.4.5 Discussion of Algorithms

The optimization approach based on an equidistant set of initial points and ap-
plying gradient descent or Nelder-Mead algorithm was presented and compared to
exhaustive search and a genetic algorithm. Each approach exhibited individual
advantages and disadvantages. The exhaustive search required a high compu-
tation time utilizing MATLAB, but evaluated all local minima for a sufficiently
small step size. Especially for additional layers and more complex solution spaces
with a higher degree of interference of peaks in the frequency domain, the detec-
tion of a significant amount of local optima appears to be an important criterion
for comparison. Steepest descent and Nelder-Mead algorithm detected almost all
of the local optima for the presented example of the acrylic layer. For genetic
algorithm, values tended to accumulate in a section of the solution space which
could result in inaccurate values. The accuracy and precision of Nelder-Mead
algorithm highly conformed to the ones of the exhaustive search for all presented
examples.
All optimization algorithms enabled to compute the results much faster than for
exhaustive search such as less than 2min instead of 66 h for the two-layered sam-
ples. However, in terms of real-time applications, even faster implementations
might be required. One method to further reduce the calculation time is par-
allel processing. Usually the exhaustive search is ideal for parallelization since
it conforms to a single instruction multiple data operation. However, since of-
ten several million of modeled signal have to be calculated, typical numbers of
parallel processors of graphic processing units are exceeded which increases the
calculation time due to sequential processing. Steepest descent and Nelder-Mead
algorithm based on equidistant initial values are suitable for parallelization as
well, since each candidate can be individually processed. However, the genetic
algorithm recombines values after each iteration, which would avoid any compu-
tational advantage of parallel computing.
Multiple reflections for a varying number of layers have not been completely de-
scribed by an iterative formula, but by the modified TMM. For exhaustive search,
Nelder-Mead, and genetic algorithms, this method can be directly applied to cal-
culate the respective signal of the current parameters. Since steepest descent is
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based on the calculation of the first and optional second order derivative, it re-
quires to determine the matrix and transfer function for the general case, which
results in a significant increase of complexity. Nevertheless, gradient methods can
guarantee for the presence of a minimum instead of other stationary points for
positive definite Hessian matrices. Such a criterion is not inherently given for the
other variants. However, the solution spaces of the different examples have been
rather similar and such a guarantee has not been required, yet.
Table 6.8 summarizes all discussed aspects. It should be noted that the deter-
mined properties were influenced by the choice of parameters. For instance in
case of the genetic algorithm, different configurations such as with an increased
number of individuals could lead to results that are more accurate. However,
genetic algorithms still tend to be rather slow optimization variants [105] in gen-
eral.

Table 6.8: Summarizing Comparison of Exhaustive Search, Steepest Descent, Nelder-
Mead, and Genetic Algorithm

exhaustive steepest Nelder- genetic

search descent Mead algorithm

hit local optima ++ + + -

accuracy ++ + ++ -

precision ++ ++ ++ -

potential for parallel computing + ++ ++ -

modified transfer matrix method ++ - ++ ++

minimum guarantee - ++ - -

calculation time MATLAB - ++ + +

For a complete analysis, the convergence properties of the algorithms also has to
be discussed. Since the genetic algorithm is a stochastic method, it cannot be
guaranteed that the global minimum can be found. The steepest descent method
is proven to approach the corresponding optimum [107] at least for special re-
quirements such as using direct line search and analyzing convex spaces4. The
Nelder-Mead algorithm was observed to converge towards a nonstationary point
even in convex areas [108]. However, for all examples presented in this work, it
always approached the global minima. Since the solution spaces do not signifi-
cantly vary, convergence can be expected for further measurements.
With increasing number of reflections, and for considering the multiple reflections,
solution spaces are assumed to get more divers, particularly, the interference ef-
fects. It cannot be guaranteed, that in approximation of the convex section of
the global minimum, an initial point is located to approach it. For these cases
however, the distance of the initial points could be reduced. For thickness mea-
surements, resolution, accuracy, and precision appear to be the most important

4Both requirements have not been fulfilled for the presented examples.
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criteria. It is therefore recommended to focus on the Nelder-Mead algorithms in
future works.
Based on the findings of the previous chapters, the potential of the model-based
approach for being used in future applications is discussed in the following one.
Measurements of industrial samples are presented and the minimum measurable
layer thickness is heuristically determined.
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7. Applications

In the previous chapters, a model-based approach was presented for an accu-
rate determination of layer thicknesses below the Rayleigh limit for frequency-
modulated continuous-wave (FMCW) systems. The method was validated based
on well-defined plane-parallel samples-under-test. Based on the previous findings,
this chapter presents additional thickness results illustrating the potential of the
approach for evaluating measurements of industrial samples and hence being used
in future applications.

For this purpose, a rotation-based setup is presented for the inspection of tube
walls in this chapter. Promising circumference measurement results of a multi-
layered section are shown and validated by terahertz time-domain spectroscopy
(TDS). The influence of discontinuities is analyzed based on an additional mea-
surement series of a tube section with a stepped profile. The minimum measur-
able thickness is determined exemplarily for polyethylene terephthalate sheets.
Since compact transceivers such as monolithic microwave integrated circuits and
commercial systems-on-chip usually provide lower bandwidths, their potential for
future setups in combination with the model-based approach is demonstrated by
virtually reducing the bandwidth of measured signals.

7.1 Measurement Setup

The rotation measurement setup of Figure 7.1 left enables the analysis of cylin-
drical samples-under-test such as tube walls. The object can be positioned on
rollers and rotated to measure along the circumference. The rectangular cut out
in the metal rack enables the illumination by the beam. A combination of a
2 inch (5.08 cm) collimator lens and a parabolic mirror in Figure 7.1 right are
guiding the beam in a way that its focus approaches the center of the sample-
under-test (SUT). The high frequency components of the measurement head such
as antenna, directional coupler, and frequency multiplier are produced by RPG
Radiometer Physics GmbH. For data acquisition, the board NI PCI 6115 [109]
of National Instruments is utilized. Table 7.1 summarizes the parameters of the
setup.
The measurement head can be activated by a graphical user interface based on
LabVIEW. This interface can be used either to save the data or to directly process
them. Different modes are available for signal processing. The peak detection



88 Chapter 7. Applications

Figure 7.1: left : reflection mode setup for rotation measurements, right : focusing
unit of collimating lens and parabolic mirror

Table 7.1: Parameters of the Rotation Measurement Setup

quantity symbol value

duration of frequency modulation T 170µs

sampling frequency fs 10MHz

number of samples N 1700

start frequency of frequency modulation F1 71.1GHz

bandwidth of frequency modulation B 39.5GHz

Rayleigh depth resolution limit ∆rR 3.9mm

variant including a Hamming window for rather thick layers enables a fast evalu-
ation. Instead of a zero-padded [67] discrete Fourier transform, which calculates
many data samples for equidistant frequency points in the complete range, the
Chirp-Z transform [62] is utilized. It enables to solely determine a predefined
section such as the region-of-interest. The second option, the model-based pro-
cessing, activates the dynamic-link library to operate the general-purpose graph-
ics processing unit (GP-GPU) to compute modeled signal in parallel. The setup
configuration includes an NVIDIA GeForce GTX 9801. For each potential combi-
nation of boundary surface positions required for exhaustive search, a new thread
is activated on it. In case all of them are processing, the different sets of models

14096 MBytes global memory, 2048 CUDA Cores, 1.3GHz maximum clock rate, CUDA 10.2



7.2. Measurement Results 89

are scheduled, sequentially.

7.2 Measurement Results

Polyvinyl chloride tubes are used for water transport for instance. In order to
guarantee safety, their production is regulated by different norms [110], [111]. The
millimeter and terahertz waves technology represents a novel method to test them
without requiring any contact. Corresponding setups show the potential to be in-
tegrated into the extrusion process to instantly inspect the product requirements
such as achieving a minimum thickness. Simultaneously, by controlling the input
parameters of the production, material resources could be saved. Based on the
setup presented in the previous section, the wall thickness of a tube is measured
in the following as a first example.

7.2.1 Tube Wall Inspection

Some light-weight polyvinyl chloride tube variants are filled with a foam instead
of a solid core. Electromagnetic radiation of the W band has a rather high pen-
etration depth in these materials, which is the reason for the selection of this
frequency band. Exemplarily, the tube of Figure 7.2 is analyzed in this section.
It consists of three individual layers. Outer and inner polyvinyl chloride layers in
orange are solid and thinner than 1mm, while the recyclate foam core between
them has a rough thickness of 6mm. The measurement was performed along its
circumference.

Figure 7.2: Photographs of a multilayered tube SUT

The evaluated optical path lengths are presented in Figure 7.3. In terms of search
intervals, the memory of the GPU restricted the number of modeled signals, which
can be processed in one iteration. The amplitudes of the first to fourth reflection
have been fitted as 0.25, -0.06, 0.04, and -0.19. Utilizing a step size of 50 µm,
in case of 3 layers or rather 4 boundary surfaces, interval widths of optical path
lengths of 1.5mm guaranteed a stable processing for the exhaustive search within
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less than 2 s.
Due to the excentricity of the tube, the first boundary surface was moving up and
down by the rotation on the rollers, which exceeded constant search intervals. To
compensate for that, the peak detection was used to adapt the intervals accord-
ing to the first resulting peak. Even though this maximum does not accurately
identify the position of the first boundary surface, it correspondingly varies. The
resulting intervals are depicted in Figure 7.3 indicated by the gray surroundings
of the resulting positions (rfl.). They were chosen as disjoint.
Instead of thicknesses, solely optical path lengths are presented. The determi-
nation of the refractive indices exhibited difficulties, because single-layered test
samples of the different materials have not been available2. Moreover, the mea-
sured positions are also not accessible for a caliper gauge. The resulting values for
the refractive indices were therefore not sufficiently accurate. However, thickness
variations, which can be even more important than absolute values for several
applications, are also indicated by optical path length variations.
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Figure 7.3: Adapted search intervals (gray) of circumference measurement, rfl: re-
flector

For Figure 7.4, the optical path lengths are represented as distances between the
corresponding reflector and the first boundary surface. This conversion allows the
comparison with values evaluated by TDS. For the TDS measurement system,
the distance between sensor and first boundary surface had to be constant due
to the length of the delay line. The high conformity of the evaluated positions by
both methods validates the FMCW results. The slight differences of the values
may be caused by positioning inaccuracies when rotating the tube. For an angle
of 138◦, the conformity between modeled and measured signal is low for both,
TDS and FMCW. This deviation is assumed to be caused by a feature of the
SUT such as a weld.
Using a millimeter gauge, the optical path length between the center of the wall

2An attempt to cut the SUT into different single-material section resulted in stripes which
were thinner than the beam width. In case of the solid material, these were highly convex due
to the tension of the surface affecting the accuracy of any kind of reference measurement. For
the foam core, the material sections were expanding and therefore not representative for the
compressed material.
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Figure 7.4: Circumference measurement of tube section: optical path length evaluated
by FMCW and TDS (left y-axis), correlation coefficient in case of FMCW (right y-axis),
threshold (dotted) of 0.99

and the inner boundary surface has been evaluated as well, which is the basis for
the polar representation in Figure 7.5. The lower layer in the Figures 7.3 and 7.4
then corresponded to the outer one. All representations show that the optical
path lengths and hence thicknesses fluctuate. Detecting such variations appears
to be beneficial to control the safety of the tube.
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Figure 7.5: Polar representation of circumference measurement results

For the presented SUT, the boundary surfaces have been continuous. However,
for different application, discontinuities may occur. Since the measurement spot
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is roughly few millimeters in size, such features can have an influence on the
evaluation of points in their approximation.

7.2.2 Stepped Tube Wall Section

To analyze the effect of discontinuities, stepped wedges were cut into a tube sec-
tion depicted in Figure 7.6 left. This SUT is thicker than the one of Figure 7.2.
The height of such a step equaled 300 µm. Figure 7.6 right represents the evalu-
ated optical path lengths. Each point corresponds to a mean value of five single
measurements. Search intervals of 1.6mm to 3.7mm, 11.5mm to 14.9mm, and
0.5mm to 4.5mm for the lower, center, and upper layers have been chosen, re-
spectively. The edges of the steps are indicated by black squares. The amplitudes
of the first to the fourth reflections have been fitted as 0.26, -0.045, 0.095, and
-0.16.
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Figure 7.6: Photograph and evaluation of the stepped tube section measurement, ref.:
reflector

Figure 7.7 depicts a magnified rescale on the range in approximation of the 4th

boundary surface. It indicates that points close to the edges of the steps could
not be accurately evaluated. For these points, sinc functions with different center
frequencies were interfering in the frequency domain. They were weighted corre-
sponding to the intensity of the Gaussian beam profile. Solely average frequency
values could be determined for such positions. The correlation coefficient is lower
at these points. For reliable results, a threshold of 0.99 indicated by the dotted
line could be implemented to validate the results. For lower values, the evaluation
could be classified as not valid.
In terms of future implementations of the measurement software, the optimiza-
tion method of chapter 6 based on equidistant initial points could be applied to
reduce the calculation load. Those were based on minimizing the ℓ2 norm distance
between modeled and measured signal. For such discontinuities, the correlation
coefficient might be more suitable, since the resulting amplitudes vary in approx-
imation of the step edges due to the superposition of sinc functions with different
center frequencies. The normalization, which is inherently executed for the cal-
culation of the correlation coefficient, can compensate for a certain degree of such
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variations. However, in case the ℓ2 was preferred, an additional normalization of
the measured signal could be beneficial as well.
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Figure 7.7: Optical path length of 4th reflector (left y-axis) and correlation coefficient
(right y-axis), gray area corresponds to measurement uncertainty, dotted line indicates
threshold of 0.99

7.2.3 Minimum Thickness

The previous chapters have shown, that the model-based approach enabled the
evaluation of layers below the Rayleigh limit. However, the minimum measurable
thickness has not been determined. Since this value is an important criterion for
characterizing measurement processes and compare them to other methods, it is
analyzed in the following.
Since the Rayleigh limit depends on the bandwidth and the approximate real
part of the refractive index, the minimum measurable thickness is expected to be
influenced by those values as well. An additional impact might be attenuation.
It is assumed, that a reflection with a small amplitude cannot be as accurately
separated by a second one as a stronger reflection: the distinction between a
side lobe of a high peak and a second main lobe becomes more difficult when
the amplitude decreases. A single layer is assumed to have a different resulting
resolution limit than a composition of layers, because the amplitudes of the re-
flections are usually higher. Moreover, additional main and multiple reflections
may interfere for multilayers.
However, to heuristically identify the order of the minimum measurable thick-
ness in case of the model-based approach, a set of biaxially-oriented polyethylene
terephthalate sheets has been measured. Their thicknesses are represented in
Table 7.2 and vary from 291 µm to 72.7 µm. The thickest sample is depicted in
Figure 7.8. It has been used as a reference to determine the refractive index.
For both, TDS and FMCW, it resulted in 1.9. Hence, the Rayleigh limit equaled
2.03mm. A step size of 1 µm for layers thicker or equal to 121 µm was used and
a value of 0.5 µm for thinner sheets.
The measured thicknesses are presented in Table 7.2. In case of FMCW, a statis-
tic of five single signals was measured for each thickness. For TDS, only one
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measurement per sheet was performed. However, the uncertainty is estimated as
0.2 µm corresponding to typical empirical values. The TDS results indicate that
the refractive index could slightly vary between the different sheets.

Figure 7.8: Biaxially-oriented polyethylene terephthalate reference sample-under-test

Table 7.2: Evaluated Thicknesses of Biaxially-Oriented Polyethylene Terephthalate
Sheets

thickness FMCW TDS search

(µm) (µm) (µm) interval

(µm)

291 ± 1.5 291 ± 4 291 ± 0.2 0 – 370

248 ± 1.5 240 ± 3 248.1 ± 0.2 0 – 370

243 ± 1.5 230 ± 3 246.8 ± 0.2 0 – 370

186 ± 1.5 195 ± 3 189.1 ± 0.2 0 – 370

186 ± 1.5 185 ± 3 189 ± 0.2 0 – 370

184 ± 1.5 180 ± 2 186 ± 0.2 0 – 370

125 ± 1.5 129 ± 3 126.9 ± 0.2 0 – 370

124 ± 1.5 120 ± 3 125.2 ± 0.2 0 – 370

121 ± 0.5 125 ± 2 122 ± 0.2 0 – 370

100.6 ± 0.5 111 ± 2 100.4 ± 0.2 0 – 190

100.4 ± 1 107 ± 2 100.5 ± 0.2 0 – 190

99.7 ± 1 109 ± 2 99.7 ± 0.2 0 – 190

72.7 ± 1 80 ± 3 73.9 ± 0.2 0 – 190

For FMCW, layers down to 121 µm could be determined accurately with devi-
ations of less than 4% in case of the model-based approach. For these values,
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the measurement uncertainty equals roughly 1− 2%. Thinner layers were biased
with offsets up to 10%. Hence, it can be summarized, that thicknesses of down
to roughly 6% of the Rayleigh resolution limit could be determined.

7.2.4 Towards Lower Bandwidths

For industrial applications, in-line testing is the most effective inspection method
to save costs and material resources. Therefore, it is beneficial to design mea-
surement systems in way that they can be integrated into production lines. In
dependency of the available space, compact sensors might be required for in-
stance. FMCW radars are already available as monolithic microwave integrated
circuits [112]–[114]. In this section, the potential of the model-based approach
for such sensors is demonstrated.
While the monolithic microwave integrated circuit in [114] provides a bandwidth
of up to 60GHz, chips of 25.6GHz [112] or only 6GHz [113] tend to be less
complex. They also show a tendency to enable faster rates due to the reduced
bandwidth. Even commercial options such as cost-efficient and low power radars-
on-chip and radars-in-package [115] are already available such as in automotive
driver assistance systems with bandwidth of 4GHz [116], [117]. Further sensors
of 2GHz [118] and 5GHz [119] are announced to be launched in the near future.
Due to the current developments towards autonomous vehicles [120], a further
reduction of the costs as well as more flexible designs with regard to the band-
width can be expected [115].
To analyze the impact of reduced bandwidths, the measurement signals of the
tube section of Figure 7.6 are evaluated again. The parameters discussed in sec-
tion 7.2.2 have been used. By cutting off samples at the origin and the end of the
signal, the bandwidth is accordingly decreased. Evaluated thicknesses are repre-
sented in Figure 7.9 and 7.10 indicating that half of the bandwidth, 19.8GHz, is
sufficient for accurate results in case of this SUT. This result is remarkable, be-
cause cutting off the samples not only decreases the bandwidth but also reduces
the ratio of signal and noise power. For a value of 9.9GHz, the second and third
boundary surfaces were determined with offsets for several distances.
To determine the reason for this bias, the measured signals for the distances 8mm
and 11mm are exemplarily compared. For 8mm, the accurate thickness could
be determined, while for 11mm an offset was observed for the second boundary
surface. The corresponding signals are presented in Figure 7.11 indicating am-
plitude differences between the resulting peaks: the right peak in Figure 7.11 left
is lower for 11mm than for 8mm. Such differences can be caused by any kind of
nonidealities within the SUT such as variations of boundary surfaces. It seems
as if small deviations from the ideal of homogeneous materials and plane-parallel
interfaces are more significant for this case.
In case of reducing the bandwidth, the width of the peaks increased. For 9.9GHz,
the resulting Rayleigh limit even equals 15.2mm. The amplitudes of the second
and third peak appear to be lower than the first and fourth one: the contrast
between the refractive indices of the single sample materials appears to be lower
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than the contrast between outer layers and air. Therefore, the evaluation of sec-
ond and third peaks may be more prone to the discussed influences on precision
and accuracy.
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Figure 7.9: Optical path lengths of stepped tube section for reduced bandwidths,
markers correspond to step edges
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Figure 7.10: Correlation coefficient of stepped tube section for reduced bandwidths,
marker correspond to step edges

Figure 7.10 depicts the calculated correlation coefficients. For some of the in-
accurately evaluated positions for B = 9.9GHz, the values are larger than the
previously mentioned threshold of 0.99. Since the amplitudes of the second and
third main reflections are rather low, the corresponding positions only have a
minor influence on the correlation coefficient. In particular, for cases below the
resolution limit, the remaining sum peak can also be modeled by a single reflec-
tion. Therefore, a coefficient above 0.99 cannot automatically serve as a quantity
to guarantee an accurate result.
As described, Figure 7.9 shows that accurate results were observed for 19.8GHz,
while biased values occurred for 9.9GHz. The difference between these two cases
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Figure 7.11: Measured signals corresponding to distances of 8mm and 11mm of
Figure 7.9, from left to right, the bandwidth is reduced from 39.5GHz to 9.9GHz

is examined in the following. Figure 7.12 depicts measured signals for different
bandwidths. For 19.8GHz in left, two reflections respectively interfere to one
separate peak resulting in 2 peaks for 4 reflections. In right, even the resulting
peaks are interfering. The distance between one peak and its zero, the Rayleigh
limit, equaled 15.2mm for a bandwidth of for 9.9GHz. For instance, for the sec-
ond reflection, both the first and the third main peak are superposed. Therefore,
the interference of three reflections appears to be a novel kind of resolution limit
for multilayers applying the presented model-based signal processing: positions
of boundary surfaces resulting in reflections with low amplitudes are likely to be
inaccurately evaluated, if more than two peaks are closer than the Rayleigh limit.
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Figure 7.12: Measured and modeled signal at distances of 8mm in case of reducing
the bandwidth, reflector positions indicated by the modeled signal correspond to dotted
lines, from left to right the processed bandwidth was reduced from 19.8GHz to 9.9GHz

However, the model-based approach enabled to accurately resolve layers of in-
dustrial samples in approximation and below the Rayleigh resolution limit as
long as only two main peaks are superposed. Its potential for different indus-
trial applications such as tube wall measurement has been illustrated and val-
idated. For single-layered biaxially-oriented polyethylene terephthalate sheets,



98 Chapter 7. Applications

thicknesses down to 120 µm were evaluated, which corresponds to only 6% of the
Rayleigh resolution limit.



99

8. Summary and Outlook

The aim of this work has been to analyze the potential of frequency-modulated
continuous-wave (FMCW) millimeter and terahertz waves for nondestructive
thicknesses testing of multilayered dielectrics. For each boundary surfaces, ad-
ditive oscillations with characteristic frequencies can be observed. The previous
signal-processing method based on a frequency analysis using the Fourier trans-
form was limited by the width of the peaks in the frequency domain. In this
work an alternative model-based approach was therefore introduced, validated
and applied.

The FMCW measurement principle and setup operating in the W band were
presented. Based on the focusing unit, the lateral resolution was estimated as
few millimeters. To prepare the signal for the processing, a calibration technique
based on empty room and conducting plate standards was presented, e.g., to
compensate for spurious reflections such as by the setup. It required analytical
representations of the signals, which were calculated by a specifically designed
finite-impulse response filter. In case of a Fourier transform frequency analysis,
the width of one peak or rather the distance between the maximum and its zero
was introduced as the Rayleigh depth resolution limit. It was determined by the
bandwidth as well as the refractive index of the layer and typically equals few
millimeters.
To determine layers below the Rayleigh limit spectral estimation algorithms were
introduced. Based on a predefined model, they enable approaching the power
spectral density of the measured signal based on few parameters, which have to
be determined. Two algorithms, the modified covariance method and multiple
signal classification (MUSIC), were chosen and analyzed for this application. The
resulting peaks of the power spectral densities were observed to be thinner than
the ones of the Fourier transform. However, the calibration of data and the noise
level of the setup affected the required model order, which usually corresponds
to the number of significant reflections. Hence, inaccurate results have been ob-
served.
A promising alternative model-based method was introduced. It utilized a priori
given thickness intervals and estimates of the refractive indices. A modeled sig-
nal is fitted to conform the measured data. Then, the parameters of the model
indicate the quested thicknesses. For the most accurate calculation, the influence
of multiple reflections was analyzed. In particular, for high refractive indices
contrasts and for conducting substrates, their impact was significant. To calcu-
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late multiple reflections efficiently, a modification of a transfer matrix method
was introduced, which solely observed the propagation effects on the measured
signal instead of calculating the complete electromagnetic wave propagation. A
comparison of the different signal-processing methods indicated, that the model-
based approach was the only solution for reliable thickness evaluation below the
Rayleigh depth resolution limit.
To characterize the quality of the results, the terms accuracy and precision were
introduced, which respectively describe the bias and the repeatability of results.
The different setup influences and their effect on these quantities have been dis-
cussed. The theoretical minimum of the variance, the Cramér-Rao lower bound,
was derived and validated particularly for FMCW distance and thickness mea-
surements. Depending on the signal-to-noise ratio of the setup and the refractive
indices of the layers, it typically equaled a standard deviation of several microm-
eters. The comparison to other frequency or phase evaluation [53] algorithms
indicated, that the highest precision for distance and thickness measurements
was achieved by the model-based approach.
The calculation load of the model-based approach was significantly higher than
the ones of other methods because the first implementation utilized exhaustive
search for the fitting process. For compensation, in the first step, parallel com-
puting on a general-purpose graphics processing unit was utilized exemplarily
reducing the calculation time to less than 2 s for a presented three-layered tube
section instead of hours for a central processing unit. However, optimization al-
gorithms were analyzed as more efficient alternatives for future setups. Unlike
promising results for time-domain spectroscopy [38] or vector network analysis
[46], genetic algorithms have been observed to deliver biased thickness values for
FMCW due to approaching local minima. Hence, typical solution spaces were
analyzed. Numerous, apart from interference effects, equidistant local minima
were observed. For a novel specific optimization strategy, the average distance of
two adjacent minima was derived for the presented system using Fourier trans-
form equivalences, which resulted in a value of 1.7mm. Then, a set of equidistant
initial points enabled approaching the respectively closest optimum based on the
steepest descent or Nelder-Mead algorithm. The procedure has been validated by
measurements. The strategy enabled to identify almost all local minima deter-
mined by exhaustive search for the presented examples. The most accurate and
precise results could be achieved by the Nelder-Mead algorithm.
Finally, the potential of the model-based approach for being used in future ap-
plications was presented including measurements of industrial samples such as
multilayered tube wall sections. The bandwidths of the measured signals was
also virtually reduced to replicate measurement conditions of compact radars
(with usually lower bandwidth), which could be used for future systems.

To resolve thicknesses below the respective limits, utilizing model-based signal
processing has been applied before such as for ultrasonic [28], terahertz time-
domain spectroscopy [38], and vector network analysis [46] systems. However,
a combination of different findings is novel and promoted researching distinctive
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aspects published in [1]–[22].

� The Cramér-Rao lower bound was derived for FMCW thickness measure-
ments [6] taking a special consideration on the dependency of frequency
and zero phase of the signal’s oscillations. Both quantities are processed
simultaneously in case of the model-based approach and their relation can
therefore not be neglected. Unlike former work [53], [95], more accurate
estimates of the minimum variance could be provided.

� A modification of a transfer matrix method was derived particularly for
FMCW to efficiently calculate multiple reflections. Due to the significantly
reduced calculation load, the modified transfer matrix method is an im-
portant step towards the requirements of industrial applications: instead
of millions solely 1700 data points had to be calculated for the presented
setup.

� A novel method for optimizing the adaptation of the model has been pre-
sented, based on the observation of numerous rather equidistant minima of
representative solution spaces. The calculation time for a central process-
ing unit was significantly reduced, e.g., from 66 h to less than 1min for a
two-layered sample-under-test. The obtained results were more precise and
accurate than the ones for a comparing genetic algorithm.

� Different dielectric materials such as ceramics [9], acrylics, and recyclate
foams have been tested, which validated the model-based approach. Be-
sides ideal plane-parallel objects, industrial samples such as multilayer tube
walls have been measured identifying thickness variations. The minimum
measurable thickness of the model-based approach depends on the refrac-
tive indices of the materials. However, for single-layered biaxially-oriented
polyethylene terephthalate sheets, a value of 120 µm was evaluated, which
corresponds to 6% of the Rayleigh resolution limit. For multilayers, the su-
perposition of three peaks was heuristically determined to be an additional
limitation: for closer peaks, biased values can be observed.

While the model-based approach of this work is a significant step towards re-
liable thickness measurements based on FMCW, additional process is required
for industrial applications. To reduce the computation time, the presented opti-
mization procedure could be implemented for the graphic processors, which have
already been used for exhaustive search. This step could be the basis to enhance
the usability of the processing software. So far, estimates of the refractive in-
dices have been required for the evaluation. In case the optimization algorithm
expands for additional variables, the material parameters could be fitted simul-
taneously with the thicknesses requiring less a priori information or additional
measurements.
Accurate results have been obtained, by approaching the refractive indices by
constant values. However, measuring the frequency dependency of them should
further increase the accuracy and potentially expand the approach for even thin-
ner layers. Such measurements could be performed by vector network analysis,
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by FMCW reference measurements using a priori information of the thicknesses,
or by measuring different angles of incidence.

In terms of future setup configurations, it had been shown, that even a band-
width of 20GHz is sufficient for samples such as the presented tube walls. The
model-based approach could be implemented for one of the available monolithic
microwave integrated circuit solutions [112]–[114] to step toward the realization
of compact measurement systems. For the processing, developments in terms
of computers are expected to offer more time and cost-efficient solution in the
near future: on the one hand, for graphics processing units, sizes and costs are
continuously reducing. Simultaneously, the computation performance increases:
the number of operations has roughly doubled within 4 years [121]. On the other
hand, the increasing number of cores of central processing units [122] could be suf-
ficient for a fast parallel implementation of the optimization approach within the
next years. Developments of multicore embedded chips [123] might even enable
the realization of fully integrated radar and signal-processing solutions.
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List of Abbreviations

ADC analog-to-digital converter

AWGN additive white Gaussian noise

AWGPN additive white Gaussian phase noise

CPU central processing unit

CRLB Cramér-Rao lower bound

DAC digital-to-analog converter

DFT discrete Fourier transform

FIR finite impulse response, digital filter

FMCW frequency-modulated continuous-wave

GP-GPU general-purpose graphics processing unit

MUSIC multiple signal classification

PDF probability density function

SNR signal-to-noise ratio

SUT sample-under-test

TDS time-domain spectroscopy

TMM transfer matrix method
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List of Variables, Symbols, and Operators

The physical quantities conform to the International System of Units (SI) [58].

·∗ complex conjugate

{·}T transpose of matrix or vector

·̂ estimated value

· arithmetic mean

|·| calculation of absolute value

E{·} expectation value

H{·} discrete Hilbert transform

max (·) calculation of maximum

ℜ{·} extraction of real part of a complex value

var(·) variance

αi step size of the ith iteration

β scaling coefficient of the backtracking line search algo-
rithm

γ = 1
2

contraction parameter of Nelder-Mead algorithm

δ[n] digital Dirac distribution

η = η + j · κ complex refractive index

η real part of refractive index η

θ focal length

Θ[n] Heaviside function

ι(d, r) intensity of axial distance d and radial distance from the
center axis r

κ imaginary part of refractive index η

λ wavelength

ξ amplitude ratio

ρ = 1 reflection parameter of Nelder-Mead algorithm

σ = 1
2

shrinking parameter of Nelder-Mead algorithm

σn variance of noise

σR scale parameter of Rayleigh distribution
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σx variance of random variable X

τ time delay of one reflection

τ = (τ1, τ2, ...., τL) vector of time delays

τl time delay of the lth reflection

φn(t) phase noise

ϕ zero phase

χ = 2 expansion parameter of Nelder-Mead algorithm

ω[n] sample function of noise

a amplitude of a reflection

a1, a2, ..., ap spectral estimation coefficient

a = (a1, a2, ...aL) vector of amplitudes

al amplitude of the lth reflection

b zeros of filters or pseudo spectra

B bandwidth of frequency modulation

c0 vacuum speed of light

d axial distance

di descent direction of ith iteration of gradient descent

Di positive definite matrix for calculation of di

dN Nyquist distance

dR Rayleigh length

F1 start frequency of frequency modulation

fb beat frequency

fb,l beat frequency of the lth reflection

fs sampling frequency

g cost function

gℓp cost function of ℓp norm

Hg Hessian matrix of cost function g

i index of the iteration

I total number of iterations

I(τ ) Fischer information matrix

j imaginary unit
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k index of digital frequency

l index of the reflection

L total number of reflections

ℓp norm of order p

M rank of auto-correlation matrix

n index of time sample

N total number of time samples

p order of norm, order of frequency estimation model

px probability density function of X

q order of FIR filter

r radial distance

∆rR Rayleigh depth resolution limit

rP Pearson correlation coefficient

rl,l+1 Fresnel reflection coefficient

rl,l+1 real approximation of rl,l+1

rx[υ] auto-correlation function

rx(υ, ν) (modified) covariance function for time samples υ and ν

Rx auto-correlation matrix of signal x

s[n] analytic representation of signal s[n]

s[n] real representation of signal

SNRE time-domain ensemble signal-to-noise ratio

SNRS time-domain sample function signal-to-noise ratio

t continuous time

T duration of frequency modulation

tl,l+1 Fresnel transmission coefficient

tl,l+1 real approximation of tl,l+1

w beam radius

w0 beam waist

X random variable

x value of random variable

x[n] superposition of ideal signal and noise, real representa-
tion
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x[n] superposition of ideal signal and noise, analytic represen-
tation

xm[n] mth sample function
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[82] A. Vasicek, “Sur la réflexion de la lumière sur des verres supportant des
couches minces multiples,” Journal de Physique et le Radium, vol. 11,
no. 7, pp. 342–345, Jul. 1950.

[83] C. Katsidis, and D. Siapkas, “General Transfer-Matrix Method for Opti-
cal Multilayer Systems with Coherent, Partially Coherent, and Incoherent
Interference,” Appl. Opt., vol. 41, no. 19, pp. 3978–3983, Jul. 2002.

[84] O. Heavens, “Optical Properties of Thin Films,” Reports on Progress in
Physics, vol. 23, no. 1, pp. 1–65, Jan. 1960.

[85] J. Jebramcik, I. Rolfes, N. Pohl, and J. Barowski, “Millimeterwave Radar
Systems for In-Line Thickness Monitoring in Pipe Extrusion Production
Lines,” IEEE Sensors Letters, vol. 4, no. 5, May 2020.

https://de.mathworks.com/help/signal/spectral-analysis.html
https://de.mathworks.com/help/signal/spectral-analysis.html


124

[86] A. Ludloff, Praxiswissen Radar und Radarsignalverarbeitung, 4th ed. Wies-
baden, Germany: Vieweg+Teubner Verlag, 2009.

[87] M. El-Shennawy, B. Al-Qudsi, N. Joram, and F. Elinger, “Fundamental
Limitations of Phase Noise on FMCW Radar Precision,” in International
Conference on Electronics, Circuits and Systems, Monte Carlo, Monaco,
Dec. 2016, pp. 444–447.

[88] S. Ayhan, S. Scherr, A. Bhutani, B. Fischbach, M. Pauli, and T. Zwick,
“Impact of Frequency Ramp Nonlinearity, Phase Noise, and SNR on FMCW
Radar Accuracy,” IEEE Transactions on Microwave Theory and Tech-
niques, vol. 64, no. 10, pp. 3290–3301, Oct. 2016.

[89] R. Nuzzo, “Statistical Errors,” Nature, vol. 506, pp. 150–152, Feb. 2014.

[90] “SciPy.” (Jul. 2020), [Online]. Available: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.kstest.html.

[91] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc., 1993.

[92] “SciPy.” (Jul. 2020), [Online]. Available: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.normaltest.html.

[93] V. Vovk and R. Wang, “Combining p-values via averaging,” Biometrika,
vol. 107, no. 4, Jun. 2020.

[94] A. Papoulis, Signal Analysis. New York City, New York, USA: McGraw-
Hill, 1977.

[95] S. Scherr, S. Ayhan, M. Pauli, and T. Zwick, “Accuracy Limits of a K-
Band FMCW Radar with Phase Evaluation,” in Proceedings of the 9th

European Radar Conference, Amsterdam, Netherlands, Oct.–Nov. 2012,
pp. 246–249.

[96] F. Bao, “Sparce Overcomplete Representation Applied to FMCW Reflec-
tometry for Non-Uniform Transmission Lines,” Ph.D. dissertation, Tech-
nical University of Munich, Munich, Germany, Oct. 2015.

[97] P. Stoica, R. Moses, B. Friedlander, and T. Söderström, “Maximum Like-
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