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Industrial Mathematics: General Remarks and Some Case Studies

H. Neunzert, Arbeitsgruppe Technomathematik

Industrial mathematics has many faces; but its essential feature
is the cooperation of partners - from industry and from
universities - with quite different interest (business versus
academic carreer), normally working on different time scales.
They measure success in a different way (selling rate against
citing index), they have different hierarchies of values and are
very often distrusting each other. Industry doubts that mathema-
ticians are willing and/or able to produce something real
practical and useful (and the mathematicians should not be too
much surprised about this attitude, they very often doubt them-
selves) - mathematicians are afraid to loose their competence
(their ideal of scientific truth, to say it more idealistic-
ally), to sell their souls.

The only way to convince both sides of the usefulness of such a
messalliance is to show examples, which satisfy both: Examples
with practical success, where "real" (i.e. publishable)
mathematics is involved - even better: where real mathematics
has to be invented. As an ideal, at least from a mathematical
point of view, one might consider the following remark, which
Euler made in a letter from 1736 [1]: "Therefore you may see,
most Honourable Sir, that this solution according to its
character has almost no connection to mathematics, and I do not
understand why such a solution should be expected more from a
mathematician than from any other human being. The solution is
based only on reason, and principles of mathematics are not
necessary 1in order to find it." The solution he mentions was
that of the Kdénigsberg seven bridges problem, the origin of
topology.

Our mathematical dreams are certainly not identical with the
dreams of those, who pose us the problems - this was even true
for Euler, about whom the Prussian king Frederic the Great was
complaining in a letter to Euler: "The lifting tackle was built
according to mathematical calculations and as yet cannot 1lift a
single drop of water up to 50 feet from its container. Vanity of
vanities! Vanity of Mathematics!" The origin of many

disharmonies between the partners is a different meaning of the



word "solution". Solution for mathematicians means: Existence
and uniqueness - a qualitative explanation of a typical
behaviour - a numerical algorithm; solution for people in praxis

today means very often: Software; they want an instrument for
checking an old, designing a new system, they have no time to
study carefully "the interior" of such an instrument, it must be
reliable and easy to handle. I believe that this idea of what a
solution should be is held by a strong majority - inspite of the
fact that "the industry" does not exist, as does not "the
mathematician”. Just to name two extremes: Aeronautical industry
and the computational fluid dynamist are partners, who have very
little problems with each other. But there are many sometimes
quite small companies producing specialities with a highly
developed very sophisticated technology, who never thought about
mathematics - inspite of the fact that mathematics is hidden
everywhere in their production process. And there is on the
other hand the pure mathematician, who cannot see any
application of his knowledge - inspite of the fact that he would
be gquite happy if such an application would exist. There are
many of these small companies and many pure mathematicians - and
both would gain something in a partnership, if they would dare
to try. '

That’s somehow the policy my "Arbeitsgruppe Technomathematik"
(Laboratory for Technomathematics) at the University of Kaisers-
lautern follows. Educated as a pure mathematician and starting
the academic carreer with existence theorems for equations of
mathematical physics, 15 years ago I became interested in the
question what mathematics means outside the university, what our
students were doing when leaving the university after
graduation. Travelling through German industry of all kind and
asking for open problems which might be solvable by mathematical
methods (and not selling my special competence), I established a
cooperation with until now more than 30 companies, most of them
relatively small but also including for example Siemens, AUDI
and Marcel Dassault, Cooperation comprises education and
research: Companies are posing problems for student seminars and
for master thesis - or we make research contracts with them.
Contract means that industry pays the salary for the researcher
- money 1is 1in this case an honest measure for their interest.

Taking money certainly cfeates the danger to become dependent,



to do only simple programming or classified work. Being éware of
this danger makes it easy to avoid it (for example one should
insist in making the mathematical content of the research
publishable but should accept to keep all informations about the

industrial partner secret).

In order to illustrate the kind of problems, which satisfied
both partners in being mathemtically nice and practically
successful, I shall now present two examples taken from our work

during 1988.

I. Quality Control for Artificial Fabrics (see [2])

Artificial fabrics are sometimes produced by air spinning
processes. Several hundreds of plastic fibres are drawn by wind,
at the end moving turbulently and falling on a rolling ribbon
(see figure 1); there they stick together and a texture is

produced, which has a huge variety of applications.

Figure 1



There are many aerodynamical problems involved - some of them
extremely difficult. For example: Make a mathematical model for
the interaction of fibres and flow, which explains the
dependence of the fibre thickness on the air speed and which
describes the fluttering of the fibres as elements of the whole
ensemble. We are working in this direction but do not have
enough results to report on it. But there is a much simpler
problem connected: The tissue produced always shows some
defects, irregularities which are <called clouds (spots of
several centimeters diameter which are darker or brighter than
the average in through-shining light) or stripes (an anisotrpy
in the fibre structure, which appear when several fibres stick
together); these defects become more severe, when the plant,
i.e. the wind channel becomes polluted during the production.
What is needed is a quantitative measure for the irregularity,
which can be calculated online and may therefore be used for
quality and production control. One may assume that there is a
laserbeam used, which gives the absorption through the texture
on 4 parallel lines along the tissue. What is delivered are 4
functions showing the absorption  along these 1lines, functions
similar to stochastic time functions. But we are not interested
in the statistical properties of these functions, but only in
the regularity of the material; therefore we need a concept for
the uniformity of the tissue.

Consider a piece @ of the fabric as a pattern, given by the
absorption: If M is a subset of 2, p(M) will denote the power of
the 1light passing through M. Since we are only interested in
deviations from uniformity, we can normalize p(0)=1. g can be
considered as a normalized Borel measure on 2. The ideal

pattern, i.e. the uniformity of the fabric is given by £, where
A(M) is just the proposition of the area of M compared to the

area of 0

0 _ area(M)
A(M) = area(0)

1

—— Q
areal(n) for all x € .

£ has the density f(x)

1l

Deviation from uniformity means distance between g and £.
Irregularity of g = I(p) = distance(p,g)

Which distance? p and [ are normalized measures - which concepts

for a distance does the theory offer?



To make things simpler (and more realistic), assume that 0 is

segmented into N pixels and p is just given by the values

pl,...,pN in the§e Pixels pu %0 and iglp = 1.
The corresponding g is ﬁi = % for all i=1,...,N.

Now we have the following possibilities:

(a) Relative Entropy, where

N .
distance (u,f8) := E(p/f) := ¥ u.ln :i = -In N +
= H. i

1N~z

E.In p.
1 1 i

This distance, suggested by statistical physics is in fact a
measure for nonuniformity - but not the appropriate one for
us: E(p/£) is not "influenced by order" and this means here:

One "big hole" in the fabric counts as many "small holes".
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Figure 2

This does not correspond to the companies idea of quality.

(b) Bounded Lipschitz Distance, where

N
1
distance (p,R) = D(p,f) := max I I a.(p.-3)
1 1 N
aeD 1i=1
N 1]
i += | -a.l £ =
with D : [g e R/ ai+1 al N

One realizes that the definition of this metric corresponds

. N

to a quite strange norm in R
N

i := max I a.p

D aeD i=1 Tt

This distance filters somehow the holes (like a car driving
over a road with hole$ on a certain speed), so that large

holes are worse than many small ones. Mathematically speak-



(c)

ing, D generates the weak topology in the space of probabil-
ity measures - which means practically that small pattern
shifts create small distance deviations.

D is a reasonable measure, but a little bit elaborate to be

computed numerically. G. Rote ([3]) realized that the dual

. problem (in the sense of linear programming) is a curve

smoothing problem allowing a quite simple and fast
algorithm.

Further and in general as good is the

Discrepancy, where

B
distance(p,p) = Dis(pip) = max | ) (P.~é)
léaéﬁ_‘_N j-_-o( J
This concept originates from numbertheoretic consideration
already in papers by Hermann Weyl (1916) (see also [4]) and
is related to the Kolmogorov-Smirnov distance in statistics.

Again Rote [3] proposed a very simple algorithm:

Put
k
£ iz p,-%, j=1,...,N, F,_:= 3§ f., F_ = 0.
J jN’ ’ y 3 k . l’ o
i=1
Then
Dis(fi,p) = max IFi—F.l = max(Fi)—min(Fi).
0<i<j<N v i i
The algorithm works as follows:
MAX := 0, MIN := 0, F :=0
for k=1 to N do F := F+fk.
If (F>MAX) : MAX := F
If (F<MIN) : MIN := F

Then Dis(f,p) = MAX - MIN.



Figure 3

Figure 3 shows discrepancy measurements along only one line of
laser scanning; each value of Dis(p,f) is calculated for 0 being
a ca. 1 m long piece of this line (which means that Q@ is one
dimensional, which we had implicitly assumed already in our
definitions; these definitions can be easily extended to 2 or
more dimensions - but not the algorithms!). Each abscissa in the
diagram corresponds to such a piece of the line, each ordinate
to the corresponding discrepancy. The discrepancy is in average
increasing until the channnel is cleaned (x % 1200).

Discrepancy proves to be in general a useful measure of irreg-
ularity, even with only one scanning track. This is especially
true, if clouds are the main source of defects. If stripes are
more important, one has to define a measure for anisotropy -
here different methods, maybe something like an 2d-wavelet

analysis, should be tried. This work is in progress.



IT. Computer Aided Design with Worst Case Tolerances (see [5]

and [61])

The problem arose in car industry: Construction drawings of
gears are normally given with tolerances for the sizes of the
construction elements. A construction drawing consists of
finitely many points in the plane together with straight lines
and circles determined by these points and some additional in-
formation like the radii of the circles. These points are
constructed recursively in using simple elementary construc-
tions.

"Chains" of points PO,P

.+.,P . can be recursively constructed,

1" N
if the (cartesian or polar) coordinates of Pj with respect to a

coordinate system with a fixed basis origin at Pj— are given;

PO:O is fixed "general origin". Each point can nowlbe used as
center of a circle with given radii, two points can be used to
determine a straight line. Circles and straight lines may be now
used again to define further points through intersection. There
fore, if we consider only construction by circle and straight
edge, a point is recursively defined by previously given points

through the following data:

(a) the coordinates with respect to a coordinate system with
another point as origin,
(b) as intersection of straight lines and/or circles defined

by pairs of points and by point and radius respectively.

The problem of tolerances is now easily defined: The data
(coordinates, radii) are subject to given tolerances. Therefore
the positions of the points are not uniquely defined. One may
think of probability distribution instead of points - but the
recursion leads quickly to hopelessly complicated formulae for
these distributions, so that only simulation can be considered,
if the number of points is more than say 10. Moreover, in the
case of the gears, cne is mainly interested in worst case
considerations: Which positions of the point are in accordance
with data and tolerances?

Instead of points P we consider tolerance sets Tol(P), which are
also depending on the tolerance sets for the previously
constructed points, the data and their tolerances and certainly

the construction method (i.e. (a) or (b)).



As example we consider only constructions without circle. In
(a), the point P1 is given with respect to a fixed origin O with

Tol(0) = {0} by his coordinates. We write here TOlo(pl) -
certainly a rectangle for cartesian
coordinates but a set like

for polar coordinates.

If a point Q is given with respect to a coordinate system, whose

origin P is again in a tolerance set, then we get
Tol(Q) = Tol(P) @& TolO(Q)

where A®B denotes the Minkovski sum ‘a+b/ae A,b € B!.

For chains we get

Tol(P, ) = TolO(P & ... @ Tolo(P

N 1) N—1)'
Figure 4 shows such a tolerance set with Tol(P) as the interior
of a circle and TolO(Q) as the tolerance domain for polar

coordinates.

4

Figure 4
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One may realize that the computational effort will soon increase
enormously. The essential idea now is to enlarge the tolerance
domains a little bit by taking the convex hull as new tolerance
set. This changes a little bit TolO(P) for P

given by polar coordinates. The enlargement

is not very significant and since the

Minkovski sum of convex sets remains convex,

everything else discussed above has not to be changed.

Let’s now consider straight lines g, defined by the tolerance

set for two points Pl’ P2' One get again sets, which may be
denoted by
Tol{g) := ix/x lies on a straight line, which intersects

Tol(Pl) and Tol(Pz)}.

Tol(g) is not convex and is not convexified. The construction
(b) defines a point P as intersection of two straight lines g

and h, and we may try to define
Tol(P) := convex hull of Tol(g) n Tol(h) .

Figure 5 shows what may happen: Tol(g) n Tol(h) is a convex or
nonconvex polyeder, maybe unbounded, even disconnected. In the
first two cases Tol(P) is really defined as above; if

Tol(g) » Tol(h) becomes unbounded, the construction is not
acceptable, a CAD programme will inform the user about the

rejection.



Figure 5
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In any case, the computational effort lies in determining the
convex hulls and the Minkovski sums. But since the set is
polyedric (or, if we use circles, "quasipolyedric", with bound-
aries consisting of pieces of straight 1lines or circular
arcs),it is enough to find the extremal points. This is in
general a linear programming task; the extremal points of the
Minkovski sum are given as sums of the extremal points of the
terms, if the interior of the normal cones at those points have
nonempty intersection. There is some convex geometry involved -
not deep, but nice - and one finds that there are very quick
gsimple linear programming algorithms sufficient to do the
computations. The state of art now is, that we have an algorithm
and a simple CAD programme to determine the tolerance domains
for 2d construction drawings, if circle-circle are excluded. To
complete +the task means some programming effort (even new
rejection criteria will become necessary).

I think that the practical relevance of this idea is evident.
Where is the mathematical fun? Now, there have been many
attempts to solve the problem of toleranced CAD, all more or
lese failing, if the drawing has a high complexity, since the
effort increases very strongly with the numbers of points (for
our method, it’s essentially linear). Moreover, one can do a
little bit axiomatic geometry - with convex sets instead of
points etc. The situation is similar to what is called interval
arithmetic - a theory much further developed but maybe even less

rich and exciting in structure.

Conclusion

The two examples given above are chosen in order to illustrate
‘the flavour of what we call industrial mathematics. The mathem-
atics there 1is Dborrowed not from the classical fields of
applications like pde, statistics etc.; it can be done by every
mathematician, whatever his strict field of interest is - but
{the engineers may apologize) it can be done only by mathemati-
cians., Therefore 1it’s worthwhile for the industrialist to
discuss with mathematicians - they may be a source of innova-
tion. And its worthwhile for the mathematician to consider the
problems posed by industry - they give fun, prestige, even some
money for his group. It’s quite rare for scientists that fun and

profit goes together.
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ARBEITSGRUPPE TECHNOMATHEMATIK
aMm  FACHBEREICH MATHEMATIK per UNIVERSITAT KAISERSLAUTERN

Leiter: Prof. Dr. H. Neunzert, Universitdt Kaiserslautern

Die Arbeitsgruppe Technomathematik hat es sich zur Aufgabe gemacht, neue
Formen und M&glichkeiten einer Kooperation zwischen Universitdt und Indu-
strie im Bereich der Mathematik zu erarbeiten und durchzufiihren. Dabei

beschdftigt sich die Arbeitsgruppe mit den folgenden Schwerpunkten:

EINBEZIEHUNG KONKRETER FRAGESTELLUNGEN AUS DER INDUSTRIE IN
DIE MATHEMATISCHE FORSCHUNG.

Im Rahmen des von der W-Stiftung geférderten Forschungsprojekts ""Techno-
mathematik'' werden mathematische Probleme aus der industriellen Praxis in
Form von Problemseminaren, Diplomarbeiten und Forschungsauftrigen bearbeitet.
Als Beispiele flir schon bearbeitete oder in Bearbeitung befindliche Probleme
seien genannt

- die Optimierung von Kurbelgetrieben, Nocken und Felgen;
- die analytische und numerische Untersuchung spezieller strdmungsdynamischer
und akustischer Probleme;

- die Simulation stochastischer Prozesse in der Zuverldssigkeitsanalyse.

PRAXISORIENTIERTE GESTALTUNG DER MATHEMATISCHEN AUSBILDUNG IM
HINBLICK AUF EINE BESSERE VORBEREITUNG DER ABSOLVENTEN AUF DIE
BERUFSWIRKLICHKEIT.

Dies geschieht z.B. durch den Studiengang ''"Technomathematik''; die wesentlichen
Lernziele sind dabei:

- Bildung mathematischer Modelle fiir technische Probleme,

- Kenntnis von mathematischen Methoden zur analytischen und numerischen
Auswertung der Modelle,

- Beherrschung des Computers als Werkzeug,

- Kommunikationsfdhigkeit mit Ingenieuren.

Auch in die Mathematikausbildung der Ingenieure sollen Modellbildung und
moderne, insbesondere numerische und stochastische Methoden verst3rkt inte-
griert werden.

MATHEMATISCHE WEITERBILDUNG FUR DEN PRAKTIKER.

Das aus dem ''Modellversuch zur mathematischen Weiterbildung'' hervorgegangene
Konzept filir eine mathematische Weiterbildung fiir Ingenieure, Naturwissen-
schaftler und Mathematiker wird weiterentwickelt und fortgesetzt. Die angebo-
tenen Kurse dienen der

1

Unterstiitzung bei der Bewdltigung praktischer Probleme,

- Anpassung an den neuesten wissenschaftlichen Erkenntnisstand,

Einordnung des praktisch-beruflichen Wissens in einen theoretisch-wissen-
schaftlichen Rahmen,

Auffrischung von Hochschulwissen.

1

Die Arbeitsgruppe Technomathematik setzt sich aus Professoren und Mitarbeitern
der Universitdt Kaiserslautern und einer Gruppec von Mathematikern an der Tech-
nischen Hochschule Darmstadt unter der Leitung von Prof. Dr. T&érnig zusammen.
Univ.-Bibl
Kalserslauter



