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Abstract: A theorem due to Mayergoyz states that a hysteresis 
operator is a Preisach operator if and only if it has the 
congruency and wiping out property. We present a formal 
statement, proof and generalization of this result. 
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1. Introduction 

In [6l, Preisach formulated a mathematical model in order to 
describe hysteresis loops arising in ferromagnetism. It can be 
viewed as an operater W, which maps an input function 
u:[O,l]+R, representing the (scalar) magnetic induction, to 
an output function w:[O,l]+R, representing the magnetization. 
Usually one defines W by 

(1) Wu) (t) = I P 
Up) W db W I 

where D is a finite Bore1 measure on the Preisach plane 

(2) P = r:r = (r,,r,), rl L r2 c R2 1 I 

and Wr denotes an elementary switch with hysteresis, switching 
to the value 1 when u(t) increases to the value r2 and to the 
value -1 when u(t) decreases to rI. In addition, an initial 
condition has to be specified for each elementary switch. 

Since the action of an ideal switch is instantaneous, this 
model obviously is rate independent, i.e. 

W(uo0) = (Wu)os 

for any (monotone) transformation + of the time scale. Also, 
any periodic input u(t) yields a periodic output w(t) with the 
same period. Thus, the map t + (u(t), w(t)) generates a hys- 
teresis loop in the (u,w)-plane. Consider a periodic input 
(e.g. a sine function) oscillating between the values rl and 
and r2 . The height of the corresponding hysteresis loop 
(assuming F nonnegative) is given by 

h(+ r2) = 2WU f 

A being the triangle {(sl, s2) : rlLslLs2Lr2} in the Preisach 
plane. Using this equality, one may determine the measure p 
from experiment: on the other hand it shows that the height of 
the loop does not depend upon the past history. Moreover, the 
entire shape of the hysteresis loop is fixed by the measure p 
independent from past history, and any change of input from 
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rI to r2 and back to rl erases any memory due the previous 
input variation in the interval [rl, r2]. 

Again, from the behaviour of individual switches it is obvious, 
that the Preisach model has the properties stated above. It 
was Mayergoyz who pointed out in [4] that the latter two 
properties, which he calls congruency and wiping out property 
respectively, are also sufficient for a (nonanticipative and 
rate independent) operator to be a Preisach operator. 
The aim of the present paper is to provide a formal statement 
and proof of this result. We try to clarify the role of the 
various assumptions: also, we admit general Bore1 measures p. 
For more material on the Preisach operator, we refer to 
[1,2,3,71 l 

2. The characterization of the Preisach operator 

Throughout this paper, we set T = [O,l] and denote by M(T) the 
set of all real valued functions on T. 

Definition 1 

Let UcM(T). An operator W:U + M(T) is 'tailed a hysteresis 
operator if it is rate independent and nonanticipative, i.e. 
if 

W(uo*) = (Wu)o* vueu 

for any continuous nondecreasing *:T + T with e(O) = 0, 

* (1) = 1 and uo*eU; 

u1 = u2 on [O,tl => Wul = Wu2 on [O,t] 

for any ul, u2eU and any teT. 
0 

Let Mpm(T) resp. Cpm (T) denote the set of all piecewise mono- 
tone continuous functions: 

MpmP) = ulu:T + R, 3 0 = tlLt2L...Lt n = 1 such 

that UI[ti,ti+l I is monotone for all 1LiLn 
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Cpm(T) = Mpm(T) n C(T) l 

The action of a rate independent operator W on ueC pm(T) is 
essentially specified by the values x.= U(ti) on a mono- 
tonicity partition {ti) of u. 

1 
If w is nonanticipative, the 

knowledge of the final value (Wu)(l) for all u is sufficient. 
Note also that definition 1 implies that if ueU = C pm(T) is 
constant on some closed interval IcT, then so is Wu, since we 
may contract I to a single point. 
We formalize these considerations. 

Definition 2 

Let 

x0 = xIx=(xl,..,xn), ne N, XieR} U (p} 

be the set of all strings of real numbers including the empty 
string /a, set 

X = xmexo, length (x) a 2 

Define a concatenation xuy for x,y,eXo by 

XUY = (x,, 0-r X,,Yy l .,Y,> 
and generate an equivalence relation cI on X from 

05,x2,x3) Y (x1,x3) if X1LX2LX3 or x1&x2=x3 

X-8 => yuxuz - yu5!uz w, zexo, 

forming the reflexive, symmetric and transitive hull. 

Definition 3 

We define p:M pm(T) + X/N by 

P(U) = (xI'"',xn) 

where x. = U('i) and 0 = tlL...L tn 
tition tar u such that (u(ti+I) 

= 1 is a monotonicity par- 

- u(ti)) ("(ti)-u(ti-l)) ' O 
for 1LiLn. UcMpm(T) is called rich, if piU is surjective. 

0 
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For example, the set of all piecewise linear functions on T is 
rich. 

Proposition 1 

Let UcCpm(T) be rich. Then for any hysteresis operator 
W:U + M(T), 

Wf 00 = Wu) (11, x = P(U) 

defines a mapping Wf : X/" -B R. Conversely, any mapping 

wf : X/" + R defines a hysteresis operator W : M pm(T) - M(T) 
by 

(Wu) (t) = Wf(P(ut))' 

where we set u t = u on [O,t] and ut = u(t) on [t,l]. Moreover, 
these correspondence establish a bijection between the set of 
all hysteresis operators W:U + M(T) and the set of all real 
valued mappings on X/". 

Proof: Using the identities 

(UO’)t = u 
* (t-1 09, P(uo*) = P(U) 

for * as in definition 1, one easily checks that the corre- 
spondences W -B W f and Wf ----) 
each other. 

In this manner, we obtain 

W are well defined and inverse to 

a canonical prolongation for a 
hysteresis operator W defined on UcC pm(T) to Mpm(T). However, 
we remark that a general rate independent and nonanticipative 
operator on Mpm(T) cannot be reduced to an operator on X resp. 
x/-t since the, discontinuity structure of the inputs yields 
additional degrees of freedom. We will exclude this from our 
discussion from now on. 

Definition 4 

A hysteresis operator W : M pm(T) - M(T) is called regular if 
it coincides with its canonical prologation from C pm(T) via 
proposition 1. 0 
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The first distinguishing feature of the Preisach model is its 
memory erasure mechanism. Again, we describe this by an 
equivalence relation. 

Definition 5 

We generate an equivalence relation E on X by the monotone 
reducing rule from definition 2 

(X1’X2’X3) = 0+x,) if x2e conv (XlfX3)f 

the memory erasure rule 

(El (x1,x2+) 1 (x2,x,) if x 1 e conv {xz!xJ 

together with 

x z 8 => yuxuz *! yuxuz w, zexot 

again forming the reflexive, symmetric and transitive hull. We 
say that a regular hysteresis operator W has property (E), if 
Wf factorizes through S, i.e. if x s y implies W,(x) = Wf(y). 

0 
For a hysteresis operator with property (E) it therefore 
suffices to consider its action on X/z. We now give the normal 
form of an element of X/Z. 

Proposition 2 

For any yeX there exists an xeX and an men with xgy, having 
the form 

or the one with inequalities reversed. 

Proof: Apply monotone reducing and memory erasure to y from 
right to left. 0 

We now turn to the second characteristic property of the 
Preisach model, which states that the height of any hysteresis 
loop corresponding to inputs of the form 
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only depends on rl and r2 but not on x. Due to memory erasure, 
only the first period (rl,r2,rl) has to be considered. Its 
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x u (rl,r2+,r2,r1,r2, l 4 

first half can be influenced by the past, its second half can- 
not. 

Definition 6 

We say that a regular hysteresis operator W has property (H) 
if there exists a function h:R2- R with 

bW (r, ,r2) 1 - Wf WJ (rl,r2,r1)) = h(rl,r2) I I 

h(r2, rl) 

for any rI,r2e 

= - h(rlfr2) 

R and any xex 0. 
0 

Since for any xeX in the normal form of X/S we may view any 
part (Xi,X. 1+1 ) of x as second half of the first period of a 
periodic input, with property (H) we can reduce general inputs 
to monotone inputs. 

Proposition 3 

Any regular hysteresis operator W having properties (E) and 
(H) is uniquely determined by the function h and its values 
wf(x), x = (xl,x2)eR2. 

Proof: For any xeX in the normal form of X/S with 
x=(x 1 ,-+J, n p 3, we have 

(x I’ 1 l -tq = (X1”“‘xn-2’xn’xn-1,Xn) 

(x 1 I***Ixn-l = 1 (x 1 ‘““Xn-2’xn’xn-l 1 

and therefore (H) implies 

Wf(X1’“., xn) = Wf(xl,-vxn-l) + h(x,-l,xn) l 
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The values Wf(x), xeR2, are, in general, unequal to h(x) since 
they also include information from the initial condition, i.e. 
the initial configuration of the individual switches. Since it 
is not easy to translate general configurations of switches 
into properties of Wf(x1,x2), and since it would not really 
contribute to the charaterization of the Preisach model, we do 
not attempt to do this, but restrict ourselves to the 
following remarks. If we assume that the initial configuration 
is the result of a previous input, we have the compatibility 
condition 

(c) 3xoeR : wf(x) = wf(xoux) vxex, 

x0 being the final value of the previous input. If we moreover 
consider the special situation where x0 is a lower bound for 
all threshold values r 1 of existing individual switches, then 
all switches are on -1 initially and we must have 

(1) Wf(Xo'X1) = 
I 
h(xo,xl) - P(P) if xlh x 0 

-P(P) if xla x 0 

Together with proposition 2, this yields the following. 

Corollary 1 

Any regular 

W and (1) 

hysteresis operator W having properties (E), (H), 
is uniquely determined by the function h. 

0 

Now we discuss the function h describing the height of the 
hysteresis loops, also called demagnetization function in [31. 
Since for rlL r2 we should have 

(*) h(rl,r2) = U(A(rltr2)) 

with 

A(rltr2) = (s,,s,) : rib sIL s2-L r2 

in the case of a nonnegative measure p the function h has to 
satisfy the inequalities [3] 
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h(r1,r2) h 0 

(NJ 
h(rl,r2) + h(rl+b,r2-8) h h(rl,r2-8) + h(rl+b,r2) 

for any r1L r2 and any 0 4 8 L r2-rl, as can be seen if one 
draws the corresponding triangles. It was remarked in [31 that 
(N) plus one sided partial continuity of h is also sufficient 
for (*) to hold for some measure 1. We present a more detailed 
formulation. Let us denote by ale2h the mixed second partial 
derivative of h in the sense of distributions. If h is smooth, 
then one easily sees that (*) holds with 2~ having density 
-81a2h. In general, one has the following result. 

Lemma1 

Assume that h : R2+ R satisfies (N). Let 

h(‘lrr2)I if rlL r 2 
ho(r1,r2) = 

0 , otherwise 

Then the following is true: 

(i) -a a h L 0. 120 

(ii) hois nonincreasing w.r.t. rl and nondecreasing w.r.t. r2 

(iii) ho(rl-,r2+) = -ala2ho(A(r,,r2)), rlL r2, 

where 

ho(rl-,r2+) = inf 
SILrl 

inf h(sl,s2) 
s2hr 2 

Proof: For test functions 9, we have 

<-a1a2ho, clr> = <ho,-a1a2q>' 

Apply (N) to difference quotients of $ and pass to the limit 
to obtain (i). Assertion (ii) is a consequence of 

ho(rl~r2) h ho(rlA + ho(r,TZ), "1- 2' LrLr 
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From (i) we know that -a1a2ho is a regular nonnegative Bore1 
measure. Assertion (iii) is obtained through approximation of 
the characteristic function of A(rl,rI) from above and below 
by suitable test functions. 

If we do not require the measure D to be nonnegative, then h 
must be a difference hl - h2 where hI and h2 satisfy (N). This 
is equivalent to an older notion of a BV function h:R2* R, 
elaborated in detail in section 46 of McShanels book 151, not 
to be confused with the at present more standard notion that 

is BV if grad(h) is a measure - recall that we 
be a measure. 
the main theorem. 

a function h 
want aIe2h to 
We now obtain 

Theorem 1 

For an operator W:U + M(T) with U = C pm(T) (or U a rich sub- 
set of C ,(T)) to following assertions are equivalent: 

(i) W is a Preisach operator with (signed) finite Bore1 
measure p with compact support in the Preisach plane P 
without atoms on the main diagonal, and initial con- 
figuration = -1. 

(ii) W is a regular hysteresis operator satisfying (E), (H), 

(Cl and (11, where the function h in (H), extended to 
zero in t y=r2 I 1 has bounded variation 15, section 461 
and satisfies 

h(rlrr2) = h(rl-, r2+) 

Proof: The implication (i) " => (ii) is discussed in the intro- 
duction and easily formulized using well known results 
[1,2,3,71 - For the converse, 
i defined by the measure 2~ = 

consider the Preisach operator 
-ele2h and initial configuration 

-1. i also has the properties stated in (ii) , and because of 
uniqueness obtained in corollary 1, i has to be equal to W. 

0 

In theorem 1, essentially only measures of form D = 8 
excluded. 

(r,r) are 
Such a measure corresponds to a simple switch at u=r 
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without hysteresis. However, individual switches with 
hysteresis as well as a continuous distribution of switches 
without hysteresis are included. 
We finally pose the question: When is a given hysteresis 
operator W : C(T) + M(T) a Preisach operator? 
If W:C(T) --) C(T) is continuous, then W is a Preisach if and 
only if WIG pm(T) is, since if W maps Cpm(T) into C(T), the 
measure h must be zero along horizontal and vertical lines in 
P, which is sufficient for a Preisach operator to be contin- 
uous on C(T). If W is not continuous on C(T), this argument 
does not work. In this case, consider at first inputs defined 
as linear interpolate for u(ti) = xi, u(t,) = u(1) = x*, where 
tiTt*L 1. Letting XoD be the space of convergent sequences 
ixn), for a given hysteresis operator W we may define 
W : X,/ --) X,/& by 

(k, = Wf(X1,“,Xn) 

The uniqueness result of corollary 1 still holds for c since 
it holds for all (Gx),. Therefore, one only has to formulate a 
version of the memory erasure property which reduces C(T) to 

xd To this end, describe the memory by a family Mt of egui- 
valence relations on C(T) as follows: 

u -t v <=> wu = WV on [t,13 v(U,V) e F, 

F = (U,V) I : uI[O,tl = u, vI[O,tl = v, UI[tZ,l] = o[t,Il) 

This is just the general notion of Nerode equivalence. The 
memory erasure property (E') consists of two parts. Let 
OLsLtLl. We demand that 

u([s,tl) C'conv {u(s),u(t)) => U" v, t 
where we obtain v from u replacing ul1 by a straight line 
interpolating u(s) and u(t); moreover we demand that 

u([O,sl) c conv {u(s),u(t)) => uMtv 

with v = u(s) on [O,s] and v = u on [s,ll. It is then not 
difficult to show that for any veC(T) and any teT there exists 
a ueC(T) which can be represented by an xeXop/" as above, with 
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vwtu and 

(WV)(~) = (Wu)(t) = lim (Wx),. 
n+- 

(One constructs v resp. x in the same way as if one wants to 
define (WV)(~) for an arbitrary veC(T), teT and a given 
Preisach operator W, see e.g. [3].) 
With this modification (El) of (E), theorem 1 also holds for U 
= C(T). 
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