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Abstract: Bees are recognized as an indispensable link in the human food chain and general ecological system. 
Numerous threats, from pesticides to parasites, endanger bees and frequently lead to hive collapse. The varroa 
destructor mite is a key threat to bee keeping and the monitoring of hive infestation level is of major concern for 
effective treatment. Sensors and automation, e.g., as in condition-monitoring and Industry 4.0, with machine 
learning offer help. In numerous activities a rich variety of sensors have been applied to apiary/hive 
instrumentation and bee monitoring. Quite recent activities try to extract estimates of varroa infestation level by 
hive air analysis based on gas sensing and gas sensor systems. In our work in the IndusBee4.0 project [8, 11], an 
hive-integrated, compact autonomous gas sensing system for varroa infestation level estimation based on low-
cost highly integrated gas sensors was conceived and applied. This paper adds to [11] with the first results of a 
mid-term duration investigation from July to September 2020 until formic acid treatment. For the regarded hive 
more than 79 % of detection probability based on the SGP30 gas sensor readings have been achieved. 
 
Keywords: Multi-modal bee health monitoring, Varroa infestation level estimation, Gas sensing, Machine 
learning, Apiary intelligence. 
 
 
 
1. Introduction 

 

Major issues from environmental pollution to 
invasive species are threatening our ecological system 
and the human food supply. Insects, and honey bees in 
particular, play a decisive role, e.g., for pollination. 
The varroa mite parasite is a major threat to bee 
keeping and the cause of many bee colony losses. The 
monitoring of the varroa infestation level is one 
important task of conventionally operating bee 
keepers. Though there is a community practicing 
treatment free bee keeping [1], the majority of bee 
keepers follows standard treatment practice, e.g., by 
formic acid, which needs to know the right time to start 
treatment based on the hive infestation level.  

Sensors and automation approaches, e.g., 
condition-monitoring, and Industry 4.0, can both 
alleviate hive keeping and also make it much more 
effective (see, e.g., [8, 11]). In addition to common 
monitoring modalities, like temperature, moisture, 
visual/IR images, or sound patterns, the hive air 
attracted attention, both due to therapeutic interest for 
patients with respiratory ailments [3], and for extended 
hive condition monitoring based on simple and cost 
effective gas sensors, in particular MOX sensors [2], 
e.g., for CO2 or VOC concentration measurement. The 
aspect of estimating the varroa infestation level by 
means of such gas sensors combined with pattern 
recognition and machine learning techniques has 
attracted numerous researchers. The approach shows 
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potential to be generalized to other parasites or  
illness, e.g., the emerging pest of SHB (Small Hive 
Beetle), or foulbrood. 

In [4-7] interesting activity based on a multi-gas 
sensor system of Figaro gas sensors can be found. A 
principal and useful relation between the gas sensor 
readings and varroa infestation level was reported. The 
ground truth in [4] was obtained by employing the 
flotation method to the same hive. The external 
measurement setup, however, reportedly implied 
challenges, e.g., with regard to dew point issues and 
context dependence due to day time of measurement 
[6], and monitoring times were rather limited, i.e., 
continuous monitoring for a whole bee season or 
development cycle of a hive was not reported yet. 

In our IndusBee4.0 project, started end 2017, in-
hive cost-effective integrated sensor systems and 
machine learning based data analysis, continuous state 
or condition monitoring, and automated decision 
making is pursued [8, 11] for longer period, preferably 
covering the decisive part of the bee season from the 
onset of breeding activity to the first formic acid 
treatment [11] and finding effective cues in the 
monitoring data to estimate the desired infestation 
level. In Section 2, the ground truth obtaining will be 
outlined, Section 3 describes the details of the data 
acquisition, and Section 4 gives the first results 
obtained from July to September. 

 
 

2. Varroa Monitoring Options 
 

There are several standard methods available for 
conventional varroa infestation level assessment for 
the required ground truth. They all have in common, 
that they imply substantial effort for the bee keeper 
and deliver results only at larger time steps. The 
analysis of hive debris including mites, dropping from 
the hive bottom and collected on a slider or tray, is 
most common. Usually, three days are expended until 
a manual, or more recently (semi) automated vision-
based analysis, of the debris for the number of varroa 
mites can be conducted. The hive infestation level can 
be estimated from this count [8]. Another common 
approach, also denoted as flotation method, used in 
[4], extracts a bee sample from the hive and effectively 
drowns them to separate bees and varroa to count the 
mites. The powder sugar and the CO2-based sedation 
method are two alternative, more bee-friendly, 
variants. Sample adequateness will probably depend 
on the location of extraction in the hive. A more recent 
principle approach tries to scrutinize in and out going 
bees at the flight hole for varroa mites clinging to 
them, e.g., [8, 9]. 

Here, the conventional established tray analysis 
was employed and more frequently repeated for the 
instrumented hives. 

 
 

3. Data Acquisition by BeE-Nose 
 

For the continued and unobtrusive measurements 
in individual bee colonies and a complete apiary, a 

modular monitoring system has been conceived, that 
networks the instrumented hives and combines them 
with hive keeper assistance systems, as outlined in  
[8, 11]. The block diagram of the IndusBee4.0 Apiary 
Monitoring system is shown in [11, Fig. 1]. The basic 
building block is the SmartComb in-hive autonomous 
measurement system [11, Fig. 4]. In the monitored 
hive, the SmartComb is located in the middle of the 
second super of a three super hive, i.e., in the very 
center. The monitoring can be controlled and read-out 
via WLAN. The regarded hive has been instrumented 
also with hive and honey room scales in addition to 
temperature, moisture, sound patterns, and gas sensors 
readings. The focus of this report here is on the SGP30 
gas sensor, with fortunate properties of baseline 
determination [12], and its monitoring results. At a 
later point, context from the other sensors will be 
included in the analysis.  

In the following experiments, the SGP30 gas 
sensor readings of time intervals from July to 
September 2020, due to issues in employed libraries 
and several required restarts, have been merged. 

 
 

4. Experiments and First Results 
 
For the first hive monitoring investigations by 

BeE-Nose, the data was acquired in the interval from 
9th July to 11th September with about 6 readings  
per minute. 

The development of the varroa population was 
monitored more frequently than usual by established 
tray analysis as outlined in Section 2. The obtained 
varroa count development confirmed the validity of 
the chosen observation time. The regarded 
instrumented hive had released a strong swarm end  
of April. 

Fig. 1 shows the SGP30 gas sensor recordings over 
the July to September campaign. The two raw data 
outputs for ethanol and hydrogen as well as the 
computed e-CO2 and TVOC outputs are displayed. 
This is complemented by the scaled varroa ground 
truth, which was obtained concurrently to gas 
measurements by following the standard procedure of 
counting the daily average drop of varroa on the tray, 
here 0, 2.5, 8.6, 14, and scaling this to an estimate of 
the actual population in the hive by the standard factor 
150. For the sake of visibility, in the Fig. 1 the floored 
resulting values were additionally scaled by a factor of 
10. As can be seen, in this hive the varroa population 
ramps up during the campaign until the critical level 
for required treatment, commonly more than 10 per 
day, is reached in September.  

Fig. 2 shows a scatter plot from the immediate 
SGP30 sensor data, i.e., ethanol and hydrogen outputs, 
picking in a hold-out approach every thousandth 
sample from the available 1003919 of the baseline 
corrected readings as training set of a size of 
1003 samples, in this first step without further 
preprocessing or feature extraction. A corresponding 
test set of the same size has been picked from the same 
sensor readings with a temporal displacement of 
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500 samples to the training data. The four varroa level 
estimations obtained from counting and related varroa 
population size estimate as displayed in Fig. 1 have 
been translated to four classes from ‘1, No Varroa’, ‘2, 
Low Varroa’, ‘3, Mid Varroa’, to ‘4, Treatment !’. 
However, the boundaries between classes 1, 2 and 3 
are rather arbitrary, but make classification definitely 
much harder and error prone. Thus, with regard to the 
actual binary issue ok or treatment needed alert, this 
was simplified to just two classes ‘1, Ok’, here 
summarizing former classes 1 to 3 and former class 4 
as ‘2, Treatment !’ in the remaining conducted 
classification experiments. 

 
 

 
 

Fig. 1. SGP30 gas sensor recordings over the July to 
September campaign for the computed e-CO2 and TVOC 
values complemented by the scaled varroa ground truth 

obtained from tray analysis. 
 
 

 
 

Fig. 2. Scatter plot of the training subset of SGP30 ethanol 
and hydrogen gas sensor readings over the July to 

September campaign. 
 
 

The scatter plot in Fig. 2 shows for four assumed 
classes a mediocre support of the hypo-thesis, that the 
SGP30 readings give a cue on varroa infestation level. 
Unfortunately, even reducing to a two class problem 
or alert detector for treatment, inter class distance is 
small and a substantial overlap in the currently 
acquired sensor data can be observed. This advocates 
both the use of additional sensors as well as efficient 
feature computation [13-15]. 

Fig. 3 correspondingly shows a scatter plot for the 
e-CO2 and TVOC sensor readings, training set, with a 
comparable outcome as observed in Fig. 2.  

 
 

 
 

Fig. 3. Scatter plot of the training subset of SGP30 e-CO2 
and TVOC gas sensor readings over the July  

to September campaign. 
 
 

Classification experiments were conducted for 
both SGP30 ethanol/hydrogen and e-CO2/TVOC data 
sets for several common and relevant classifiers and 
the results are summarized in Table 1. 

 
 

Table 1. First classification results for the SGP30 data 
and a voting kNN-classifier (k = 3), RNN, PNN, 

and SVMs. 
 

Classifier 
No. of 

Classes 
Resubstitution 

Generali-
zation 

SGP30 ethanol and hydrogen output 
kNN 4 89.0 % 79.8 % 
kNN 2 98.5 % 97.4 % 
RNN 2 100 % 96.91 % 
PNN 2 100 % 97.41 % 
SVM 2 93.15 % 93.15 % 

NLSVM 2 98.00 % 97.91 % 
SGP30 e-CO2 and TVOC output 

kNN 4 88.33 % 82.85 % 
kNN 2 99.1 % 98.6 % 
RNN 2 100 % 97.81 % 
PNN 2 100 % 97.61 % 
SVM 2 98.4 % 98.0 % 

NLSVM 2 98.9 % 98.6 % 
SGP30 ethanol, hydrogen, e-CO2 & TVOC output 

kNN 2 99.1 % 98.7 % 
 
 

The classifications were predominantly carried out 
based on the sklearn package of Python, RNN and 
PNN were employed in the proprietary QuickCog tool. 
RNN does not require parameters, PNN kernel width 
was set to 2 in resubstitution and 4 and 7 in 
generalization for the reported results. For the kNN, 
k=3 was determined and employed. The linear SVM 
was employed with C = 1.0, the nonlinear SVM with 
rbf-kernel, C = 1.01, and gamma = 2.6 · 10-5. 
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The kNN runs for the four class case give the worst 
results of 79.8 % and 82.85 % in generaliza-tion, 
which is not unexpected and due to the granularity of 
currently determined varroa counts and resulting class 
thresholds, and the overlap at class boundaries.  

Reducing to two classes, i.e., an alert detector for 
treatment needed, however, returns more than 97 % in 
all cases, which is encouraging. Table 2 and Table 3 
show the confusion matrices of the kNN 
classifications of SGP30 ethanol and hydrogen output 
for four and two classes of Table 1, respectively. The 
confusion between classes 3 and 4, and 1 and 2, 
respectively, gives only 82.6 % recognition (True 
Positives, TP) of the class 2 treatment needed. 

 
 

Table 2. Confusion matrix for the SGP30 data and a voting 
kNN-classifier with k = 3 and four classes. 

 
SGP30 ethanol and hydrogen output 

 1 2 3 4 
1 118 38 1 0 
2 45 403 56 0 
3 0 36 223 14 
4 0 0 12 57 

 
 

Table 3. Confusion matrix for the SGP30 data and a voting 
kNN-classifier with k = 3 and two classes. 

 
SGP30 ethanol and hydrogen output 

 1 2 
1 920 14 
2 12 57 

 
 

This is repeated in Table 1 for e-CO2 and TVOC 
output and the corresponding confusion matrices are 
given in Table 4 and Table 5. 

 
Table 4. Confusion matrix for the SGP30 data and a voting 

kNN-classifier with k = 3 and four classes. 
 

SGP30 e-CO2 and TVOC output 
 1 2 3 4 
1 141 16 0 0 
2 62 394 47 1 
3 0 33 232 8 
4 0 0 5 64 

 
 

Table 5. Confusion matrix for the SGP30 data and a voting 
kNN-classifier with k = 3 and two classes. 

 
SGP30 e-CO2 and TVOC output 

 1 2 
1 925 9 
2 5 64 

 
 

The confusion between class 3 and 4, and 1 and 2, 
respectively, now gives 92.75 % recognition (TP) of 
the class 2 treatment needed for e-CO2 and TVOC 
output. Finally, in the last row of Table 1, one more 
experiment just for kNN with k=3 can be observed, 

where the four sensor outputs have been merged, 
which left resubstitution unchanged and gave a minor 
increase in generalization from 98.6 % to 98.7 %. 

 
 

5. Discussion 
 

The employed SGP30 gas sensor and the related 
measurements indicate a moderate correlation with the 
manually determined onset of varroa infestation in the 
bee hive. However, the SGP30 sensor readings cannot 
realistically be expected to give a direct indication of 
the present varroa population, the observed correlation 
or dependency can be accredited to indirect indication 
of changes in bee hive climate due to the imposed 
influence and stress of the growing mite population on 
the bee colony. This clearly advocates to add 
additional sensors, e.g., as inspired by [4-7], but in 
hive-integrated embodiment. The popular Bosch 
SENSORTEC BME680, which even allows 
temperature modulation, has already been included 
[11] and will be incorporated in the future analysis. 
This will in general also demand for effective domain-
specific feature computation as, e.g., presented in  
[13-15], which will also give credit to the temporal 
nature of the data. For instance, analyzing the temporal 
sequence of occurrence of current misclassifications, 
it became obvious, that these were predominantly 
singular or temporarily isolated events. As the 
treatment decision allows to accumulate decisions 
over a longer intervall, e.g., several hours, singularities 
could be masked by a voting approach for a more 
robust alert. 

Further, the number of manual inspections and 
related varroa counts are still sparse or coarse and 
would ask for a more fine grained, i.e., more frequent, 
determination in future measurement campaigns. 
Also, in the current investigation, samples have been 
adopted from any time of the 24 h observation cycle in 
the regarded campaign of three months. In the light of 
[6], the context of time of day and colony activity 
should be definitely included in the choice of 
classification data for improved detection and alert 
generation capability. 

 
 

6. Conclusions 
 
IoT, Machine Learning, and Artificial Intelligence 

massively move in the agro-tech domain, striving for 
fully automated farming solutions [10]. The 
importance of bees in agriculture and the overall 
ecosystem as well as the stringent need for 
technological support and alleviation of bee keeping is 
undisputed [4-7, 8, 9, 11]. In this work, a step towards 
continuous varroa infestation level determination by a 
low-cost, small, and unobtrusive in-hive monitoring 
system with gas sensor extension [11] has been 
achieved. First results obtained by this BeE-Nose from 
a mid-term observation time in a hold-out approach 
harmonize with those reported in [4-7], which were 
based on comparably macroscopic hive-external 
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equipment, shorter observation time, but richer  
sensor palette. 

Though ad hoc use of this first SGP30 data already 
delivered a moderate leverage for the infestation level 
estimation and treatment alert generation, the role of 
context, robustness, and stability of the results, varroa 
threshold settings, as well as generalization issues to 
different hives have to be thoroughly investigated in 
the next steps. 

In future work, more sophisticated feature 
computation [13-15] and multiple gas sensor 
employment, starting with adding BME680 
information, will be regarded. Exploitation of further 
cues from acoustical data [8, 11] and merging those 
with the gas sensor information for increase of robust 
varroa infestation level estimation and treatment alert 
generation will be investigated (see [11], Fig. 10). 

Potential generalization to other pests and  
illnesses as the SHB or variations of foulbrood open 
further opportunities. 
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