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Abstract 
In this paper we introduce the concept of an adaptive synchronization controller. 
Synchronization is modelled as an adaptive tracking problem for families of 
interconnected linear systems. Stabilization and tracking results are obtained for 
minimum phase systems. 

1. INTRODUCTION 

Synchronization phenomena, or entrainment as they are sometimes referred to, appear in 

different areas like mechanical and electrical engineering, chemistry, biology and macro- 

physiology (cf. [4] - [ll]). A further domain, which attracted a lot of research activities 

in recent years is the explanation of brain functions. Memory, speech recognition and vision 

as well as their beginning computer implementations are far away from being completely 

understood in the context of neural networks. However it seems to be clear that parallel 

processes in highly interconnected networks of neurons and particularly synchronization 

phenomena will play a role in the explanation of those phenomena. 

We believe that complex collective behavior often can be explained as a result of 

synchronization of many interconnected simple subsystems (frequently harmonic 

oscillators). Furthermore we believe that feedback and adantation mechanisms are key 

concepts in the modelling of synchronization in particular when learning processes are 

involved. In this paper we propose a control theoretic setup in which certain mathematical 

models for synchronization processes can be embedded. 

In quite general terms, the task of adaptively synchronizing a family of coupled dynamical 

systems is to find an adaptive controller which forces the outputs of the various subsystems 

to asymptotically match each other, or even more generally, to track a given set of 

reference signals. Thus the adaptive synchronization task can be viewed as an adaptive 



2 

tracking problem for families of interconnected dynamical systems. In more precise terms 

we consider the following concept of an adaptive synchronization scheme. 

An adaptive svnchronization scheme (ASS) for finite-dimensional linear systems consists 

Of: 

6) A family of finitely many (N) linear systems 

‘i(t) = Aixi(t) + Biui(t) 

,t20 

xi(t) E (Rni, ui(t) E lRmi , yi(t) E lRpl belonging to system classes 

Ei(ni,mi,pi), i = l,..., N, with fixed numbers of inputs, mi, outputs, pi, and 

possibly unknown numbers ni of states. 

(ii) Prescribed classes 

Ri C Cpc( L&m), Rpi) 

of admissible (piecewise continuous) reference (svnchronized) signals ri( m). 

. (iii) An N x N - interconnection matrix 

fll -” flN 
F=; 1 

&, . . . &J 

of Cm-coupling functions f..: lR 
Pi m* 

+ lR 
iJ 

‘, i,j = l,..., N. 
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(4 An adantive svnchronization controller (ASyCo) for ((I;i l&N), (rili E E), F) 

consisting of 

a) Finite dimensional parameter spaces IR qi for the feedback gains ki(t), 

b) N smooth local control laws 

‘iCt) = fi(ki(t), Yi(t)l ri(t)> 

with Cm-functions 

c) N parameter adaptation laws 

‘iCt) = gi(ki(t)9 Yi(t)> ri(t)) 

with Cm-functions 

4’” 
qi+2Pi qi 

. . --tlR 

which satisfy the svnchronization task: 

w For any (Ai, Bi, Ci) E Ci, i = l,..., N, any initial data Xi(O), ki(0), i = l,.., N 

and any sequences (ri( .) Ii E N), ri( .) E Ri, there exists a unique solution of 

the interconnected closed loop system 

pi = Aixi(t) + Biui(t) 

N 
ui(t) = ’ fij(yj(t)) + fi(ki(t)> YiCt)l Q(t)) 

j=l 

‘i(t) = gi(ki(t), yi(t), ri(t), i = l,...,N, 

for all t > 0 and satisfies 
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- lim [yi(t)-ri(t)] = 0 for i E B 
t+m 

. 3 lim ki(t) = ki m <m for i E E. 
t+m 1 

In this paper we consider the special case, where all systems (Ai,bi,ci), i = l,...,N, are 

scalar (m=p=l), linear, minimum phase systems of relative degree 1, the interconnections 

are linear and the reference signals ri( .) are solutions of ordinary differential equations of 

the form pi(D)ri( .) : 0, where the pi(s), i = l,...,N, are polynomials with real coefficients. 

In a recent paper [13] a synchronization problem has been studied for N simple-integral 
K. 

plants of the form 4, i = l,... ,N with the objective to make all the N steady-state outputs 

identical to one another. 

2. ADAPTIVE STABILIZATION FOR COUPLED LINEAR SYSTEMS 

We consider N scalar time invariant linear systems: 

‘Li = Aixi + b.u. 
1 1 

yi = cixi 

Ai E lRnixni for i = l,...,N 

coupled via linear output-input connections: 

u(t) = F y(t) + v(t) 

where: 

(2.la) 

(2.lb) 

u= [!i] EIRN,y= [L?] ERN,v(t)ERNandF~lRNXN a possibly time varying matrix. 

Furthermore we assume that the systems (Ai,bi,ci) belong to S+(ni), the class of scalar 

linear systems (A,b,c) which satisfy: 



-cb>O 

- det is a Hurwitz polynomial. 

Otherwise, the system parameters, i.e. the entries of (Ai,bi,ci), i = l,...,N, as well as the 

system orders ni are unrestricted and can be assumed to be unknown. We will show that 

indeuendent of the couoling structure F any subsystem configuration of the form (2.1) is 

adaptively stabilized by local feedback compensators of the form 

. ‘iCt) = - ki(t)Yi(t) 

(2.lc) 

ki(t) = yi(t)2. 

As a preparatory result we need the following extension of a result due to Wazewski (cf. 

[2], chap. 29, Ex. 3). 

Lemma 2.1 

Let 

A(t) = 

be a piecewise continuous matrix function on [O,m) such that A12(t), A21(t) are uniformly 

bounded on [O,m) and xl(t) = All(t)xl(t) is exponentially stable. Suppose there exist 

constants c 2 0, a > 0 such that the maximal eigenvalue Am(t) of A22(t) + Az2(t)’ 

satisfies for all t 2 to 2 0 

; 0 Xm T dr < - a(t-to) + c 
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(where ’ means transposed). Then the system x(t) = A(t)x(t) is exponentially stable. 

Proof 

Consider Aal(t)xl(t) as the output of the system 

jqt) = A#qt) + A1#qt>. 

By a straightforward extension of a result in [13] to the time-varying case there exist 

. constants Ml, M2 > 0, p> 0 and exponentially bounded functions cl(t), c2(t): 

0 < ci(t) < Mie-p(t-to), t E [to,m), i = 1,2 

such that for all xl(to) E R”’ and t E [t,,m): 

Let x(-) = [:$:iJ be a solution of x(t) = A(t)x(t). 

(2.2) 

. 
Then 

$ l~x~(t)l12 = 2 (Azl(t)xl(th~2~t)) + ((a,,(t)-tA,,(t)~)x,(t),x,(t)) 

and thus 

& Il~~(t)l12 s 2qw&to)l12 + W2(t> + ~m(t))llx2(w 

Using the above exponential bounds for cl( .),c2( a) one concludes that for all t E [t,,m) 



ll~(t)112 5 K-e to - llx2(tJl12 

for a suitable constant K 2 0. Thus, by the assumption on Am(t), ]]x2(t)]j2 goes 

exponentially to zero as t -+ m. Let 4(t,t,) denote the fundamental matrix for 

z(t) = AII(t)z(t). 

Since 
t 

it follows that xl(t) is exponentially stable. 

Remark 

If Am(t) satisfies that weaker condition 

then the above proof shows that x(t) = A(t)x(t) is asymptotically stable. 

We use Lemma 2.1 to prove the following generalization of the high gain theorem 

(Tychonov’s singular perturbation theorem) (cf. [l] ): 
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Prouosition 2.2 

Let (Ai,bi,ci) E X+(ni) and ki( .) : R+ + R piecewise continuous with 1 im ki(t) = m, 
t+m 

i= l,...,N. Let M(t) be an arbitrary block matrix 

M(t) = 

satisfying 

. . . . . . 
_ MNl(t) “’ MNN(t) 

9 t E R+ 

(a) Mij : R+ * R nixnj is uniformly bounded and continuous 

(b) For all t E lR+ and i,j E x the image of Mij(t) is contained in the one4imensiona.l 

subspace of Rni spanned by bi. 

Then the system 

jc(t) = [diag(Ai - ki(t)bici) + M(t)lX(t) 

is exponentially stable. 

(2.3) 

Proof 

Because of assumption (b) we can write: 

wi 

Mij(t) = bimij(t) 

I uniformmly bounded row vectors mij(t) E IR lxn. Consider the closed loop system (2.3): 

Xl 
I- 

A1 +bl(mll -klcl) blm12 . * * blmlN xl 

x2 = b2m21 A2+b2(m22-k2 c2). . -b2m2N 72 

jCN 

. . . 
bNmN1 . . . AN+bN(m;N-kN c N ) _ _ XN 

Because (Ai,bi,ci) E X+(ni) is time invariant, there exists a (time invariant) change of 

coordinates of IR” such that for i = l,...,N, 
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, dim z. = ni - 1, 
1 

with pi > 0 constant and a(Ai(l,l)) C C -. By a suitable permutation of the coordinates of 

. lRn, (2.3) is state space equivalent to the system 

I . 

. 

. 

I ’ 

. 

(2.4a) 

All = diag (Al(l,l),...,AN(l,l)) is Hurwitz (2.4b) 

,. L 
A12(t), A21(t) are uniformly bounded and continuous on R+ (2.4~) 

A, ( 2 ,2)+Bl(m~l- kl) PlmT2 - - - Plyi 
2 ,. 

I 

f12m21 
A22 = : 

A2W)+82(42- k2> . . - B2m& 

-2 
BNmNl . . - AN& 2 )+&#&-kN) _ 

(2.4d) 

It is an easy exercise to prove that the maximal eigenvalue of A22(t) + A22(t)’ satisfies the 

condition in Lemma 2.1. Thus the result follows immediately from Lemma 2.1. 
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Remark 

The following example shows that a condition like (b) in Proposition 2.2 is necessary for 

stability: 

with Ml = M2 = 

and (A,,b,,c,) = (A2,b2,c2) = (A,b,c) E E+(2) is given by 

A= [-i&b= [;],c=(O,I) 

It is easily verified that the closed loop matrix 

is not Hurwitz for any k 1 0. 

The announced stabilization result for the interconnected systems is now a corollary of 

Proposition 2.2. 

Theorem 2.3 

For every family of systems (Ai,bi,ci) E X+(ni), i = l,...,N, and every uniformly bounded 

time varying feedback matrix F(t) E lRNxN the time varying closed loop system 

“1 
%2 

jCN ! 

Al+bl(fl+l)cl 
= b2f21C1 

bNf NICl . . . 

x1 
x2 
. 

XN I (2.5a) 

ii(t) = yi(t)2, i = l,...,N (2.5b) 

. 
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. 

satisfies for all initial conditions xi(to), ki(to) and i = 

- lim yi(t) = 0 
t-+m 

- lim ki(t) = ki m E IR. 
t+m 9 

1 N ,‘“, 

(2.6a) 

(2.6b) 

Proof 

Consider the closed loop system (2.5). Suppose that ki( -) is unbounded for some 1 < i < N. 

0 By a suitable permutation of the coordinates we can assume without loss of generality that: 

, ki(t) + m for i = l,...,~ 

lim ki(t) = ki m exists for i = s+l,...,N 
t-fm 9 

Then: 

5 

“2 = 
. 

-"N- 

0 f12blcl * . . flsblcs 

diag(A1,..., As)+ f21b2c1 ’ . . . f2sb2cs 

-fslbscl . . . ’ 6 

- ~a~((kl-fll)blcl~~~~~~~s-~ss)bscs) 
52 

X - s 

+ 

blfls+l ’ . - blflN %+1 

bsfss+l ’ ’ ’ bsf s N- - yN 

(2.7a) 

(2.7b) 

x1 
x2 
. 

- xs 
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However by (2.7b) we have y s+j(.) E L2(R+,R) for j = l,..., N-s. 

Therefore Proposition 2.2 implies that the xi(.), i = l,..., s are exponentially decaying and , 

hence the ki( a), i = 1 ,....,s, are bounded. Contradiction. Thus yi( a) E L2 (lR+,lR) for 

i = l,...,N. 

Because (Ai,bi,ci) E Z+(ni), we can decompose (2.8) as follows (dim zi = ni-1): 

ii = Ai(l,l)zi + Ai(l,2)yi 

pi = Ai(2,1)zi + Ai(2,2)yi + pi fijyj-k.y. 
1 1 1 

with ai > 0 constant and r~ (Ai(l,l)) c C-. But zi is the response of a stable system to an 

La-input. This implies together with yi( a) E L2(IR+,lR): 

Xi(.) E L2(R+,R”‘) for i = l,..., N. 

Furthermore ‘ci( .) E L2(lR+,lRni) and therefore yi( a) E L2(lR+,lR), which implies (2.6). 

0 

Assume now that the systems to be stabilized are given in an input-output differential 

operator description: 

Pii(D)Yi = ui (2.9a) 

Pii = sni+pi (ni-l)sni-l + +p(O)sO . . . i 

i = l,...,N. 

(2.9b) 
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The couplings are in differential operator form too: 

Ui = ’ P.-(D)yj+vi 
j&i ‘J 

(2.10a) 

Pij(s) E fk [s] 9 deg Pij 5 deg Pii-l (2.10b) 

and for the local adaptive controller we assume the following full state-feedback control 

law: 

v. = 
1 

-ki - *i( D)yi (2.11a) 

ii = yy (2.11b) 

where we require: 

. ai = o(“‘-~)s~~-~+...+&,!~)~O Hurwitz polynomial 
1 

. ,(ni-l) 
i > 0 for i = l,...,N 

Then: 

Corollarv 2.4 

(2.12a) 

(2.12b) 

Let P(s) E R[slNxN, o(s) E IR[slN satisfy (2.9b), (2.10b) and (2.12). Then the closed loop 

system (2.9) - (2.12) is adaptively stabilized in the sense of (2.6). 

Proof 

With xi := (yr”),...,yinrl) ) as state vector, (2.9) - (2.11) admit the following state space 

description: 

jcl *ll *12’. . *lN 

‘2 = *21 *22--*2N 

-XN- -*Nl *N2 ’ ’ * *NN 

x1 

XN 

x1 

- k.BC x2 

-XN 
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where the A. . are of the form: 
U 

-0 1 

A.. := : ’ - * 
11 

, A..:= 

0 1J . . . 0 1 
* . . . * n.xn. 

- 1 1 

B and C are given as: 

0 0 . . . 

0 0 * * . . . 

. 

C := 

h1 0 0 0 

0 c2 O 0 

0 0 0 0 

0 0 0 CN 
and 

k := diag(klInlxn ,...,kNIn 
1 

xn ). 
N N 

But then 

cibi = aini-‘) > 0 

and 

= 4s) Hurwitz polynomial 

, iij 

nixn. 
J 

‘i 
:= [,(O) a CniB1)] 

i ‘** i 

imply that (Aii,bi,ci) E X+(ni). Since image (Aij) c image (bi) we are in the situation of 

Proposition 2.2 and the result follows. 
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We next consider again N linear systems (2.la) coupled via linear output - input 

connections (2.16), however no assumptions on the sign of the high frequency gains Cibi # 0 

are made. This means we only require the systems to belong to the class x(ni) of scalar, 

relative degree 1, minimum phase systems, instead of the smaller class X+(ni). Then 

switchinp concents become necessary. 

We introduce local adaptive feedback compensators of the form: 

where the functions Ni : IR + R are of Nussbaum type, i.e. for 

we require 

SUP ‘i(k) = +m 
k>O 

inf Fi(k) z-m 
k>O 

. 

(2.lc’) 

(2.13a) 

13b) 

and additionallv the following restriction for the location of the local minima and maxima 

of Fi(k) holds: 

There exist monotonically increasing sequences (ki n)nED(, (ki n)nEDI of local 
, 9 

maxima, minima, resp. of Fi, i = l,..., N such that: 

- 

- 

are monotonically increasing, decreasing, resp., with 

(2.14a) 



lim Fi(ki n) = m 
n+m 2 
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(2.14b) 

1 im Fi(ki n) = - m 
n-rm , 

The sewn~s (ki n+l-ki n)nEwl , 9 (ki , n+l-ki n)nEM , 
are bounded. (2.14~) 

i = l,...,N. 

Remarks 

- Only the boundedness of the sequences (ki n+l-ki n)nED(, 9 , (kj,n+l-ki,n)nED1 

constitutes the additional condition. 

- An example of a function satisfying the above requirements is N(k) = k2cos k. 

Theorem 2.5 

For every family of systems (Ai,bi,ci) E I: (ni), i = l,...,N and constant coupling matrix 

F E lRNxN and for any initial data (xi(O), ki(0)), i = l,...,N, the solutions of the closed loop 

system configuration (2.1 a,b,c’) satisfy: 

lim yi(t) = 0 
t+m 

(2.6a) 

lim ki(t) = ki m <m 
t+m , 

(2.6b) 

Proof L 

(2.6b) implies (2.6a) by exactly the same reasoning as in the proof of Theorem 2.3. To 

show that (2.6a) is satisfied, we again decompose the i-th subsystem to obtain: 
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(2.15a) 

(2.15b) 

Integration of (2.15b) multiplied by yi from 0 to t yields: 

I . 
;yf(t) = ;yf(O) + ; A. 

t N t 

o 13111 x. y.d7 + ~ (“i+~iNi(ki))y~d7 + .C B.f.. I y.y.dr 
J=l 1130 1 J 

. 

Applying a result of ([13]) to the system (2.15a) with output Ai3xil, we obtain 

t 2 2 IAi3XilYiIdrS Ci + Mi { YidT 

with ci, Mi constants. 

And since lyiyjl < !&yt+y$ we C~UI estimate 

From this follows by substitution CT = ki(7) (da = y:dT): 

0 I ~~ + ~iki(t) + pi 
0 

Ni(a)da + ! r-k.(t) 
j=l J J 

(2.16) 

with rij > 0, pi # 0, ai, 77i constants. 

. 

. 
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Now suppose (2.6b) were not true. We show that the inequalities (2.16) then lead to a 

contradiction. We can assume that all ki(t) are unbounded. For if it were not so we would 

only consider the inequalities (2.16) for i with unbounded ki(t) and remove from these the 

bounded kj(t) by a suitable modification of the constants pi. 

Now choose Tl > 0 such that for t 2 Tl: 

ki(t) > i (2.17) 

i = l,...N 

(2.18) 

For each i choose a monotone sequence f. = (ki n)nE,,, of local maxima of 
1 > 

ii(k) := -‘i-p X Ni(a)dc, tending to OD, such that ki n+l-ki n 5 Li’ n E D(, and , , 

CiiCki n))n(Zm > 
is monotone and tends to +m (possible because of (2.14)). There are t; 2 Tl 

such that ki(ti) E fi and 

Fi(ki(tj)) > C 7.. + L + 1 
j 9 

where L := YZ X r..L.. 
ij J1 

(2.20) 

Now for i = l,...,N define ti to be the greatest number 5 T2 := max { I t;,...,yJ 
such that ki(ti) E fi, ki(ti) = kin < ki,ni+l. Let t; be such that ki(ty) = ki,ni+l. By P i 
defition of ti we have ti 5 ti 5 T2 < ty. Monotonicity of ki( 0) therefore implies: 

(2.19) 

ki(‘j) -  ki(ti> I  ki(ty) -  ki(ti) I  ki,ni+l -ki n. I  Li 

> 1 

i,j = l,...,N 

and 

Fi(ki(ti)) > Fi(ki(tj)), i = l,...,N. 

(2.21) 

(2.22) 
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Hence, 

If I: r..k.(t.) + L 
(2.20) 

II I: 7.. (k.(t.) + Li) 
(2.21) 

= 
ij Jll ijP l1 

2 If Ii 7.. k.(t.) = X Z yij kj(ti) 
ijP1J ij 

P-8) (2.17 - 2.19), (2.22) (2.17) 
zC(- i 

i +t-J i $ + ‘i(ki(ti)))ki(ti) > f (J ‘~ji+L) ki(ti) > X C 7*-k-(t-)+L 
iii J1ll 

a contradiction. So we have shown (2.6b) 

cl 

3. ADAPTIVE SYNCHRONIZATION 

Now where we have established adaptive stabilization of interconnected systems we can go 

ahead and apply the tracking results of [3] to this situation. So in (2.la), (2.lb) we are 

employing local adaptive tracking controllers of the type presented in [3]. 

For this N reference signals ri( 0) are given which satisfy the differential equations 

Pi(D)ri 5 0 (3.1) 

where 

pi(s) = ,li + pi(liwl)JiB1 +...+ pi(o 

are known real polynomials with zeros in the closed left half plane c- = {SEC; Res < 0). 

The synchronization task is to design local adaptive feedback controllers ensuring 

asymptotic tracking of these reference signals: 

lim (yi(t)-ri(t)) = 0 for i = l,...,N 
t+al 

(3.2) 

where the system parameters (Ai,bi,ci) and initial conditions Xi(O), i = l,...,N are 

unknown. 
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Let first p(s) = se+pe-lse-l + . . . + pas’ denote the least common multiple of 

pl(s) ,..., pN(s). Let further q(s) = se+qeBls e-1 + . . . + 9,s’ be any Hurwitz polynomial 

and let (Ar,br,cr,l) be a minimal realization of g(s) = #. Now we define the 

synchronization controller as follows: 

v. 
1 

= CrXi + Ni(ki)ei 

kri = Arxi + b,Ni(ki)ei 

ki = ef 

with ei = yi - ri. 

(3.3a) 

(3.3b) 

(3.3c) 

We claim the following is true: 

Claim 

For any N systems in x(ni) (2.la) coupled via any linear time invariant output-input 

connections (2.lb): 

u. 
1 = Vi + E f. .y., i = l,..., N, - U J J 

and for any initial data (xi(O), xri(0), ki(O)) the local feedback compensators (3.3) assure 

for the closed loop solution 

lim ei(t) = 0 
t+m 

i = l,...,N 

lim ki(t) = ki ,<m. 
t-+m 1 

Remarks 

(9 As in the last section the Ni( a) are special switching functions of Nussbaum type. In 

case sgn (Cibi) is known for all i we can choose Ni( k) = - sgn(cibi) k. 

(ii) In [3] we have proved this claim for series couplings of systems, i.e. if f.. = 0 for 
iJ 

j # i-l. The proof for the general situation contains some technical difficulties and 

will be included in a forthcoming paper. 
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4. SIMULATIONS 

We illustrate the results of this paper by means of simulation examples. They show 

asymptotic synchronization of interconnected systems to sinussoidal behavior. 

First an interconnection of four systems and then an interconnection of eight systems is 

simulated, each of which is synchronized by controllers (3.3) both of the nonswitching 

(Ni(k) = --sgn (cibi)k) and the switching type (Ni(k) = k2 cos k). 

The transfer functions of the systems are: 

x2 : !$b) = 
s3+4 s 2+5 s +2 

s4-5 s 3+3 s 2+ 4 s-l 

x3 : g&s) = A 

x4 : g/&s) = 
s2+2s+l 

s3+2s 2 +3 s -2 

85 : g&s) = 
s4+4s3+6s 2 +4s+l 
s5_s4-s3+s2-s 

‘(5 : g&) = & 

q-j : g&s) = 
s2+4s+4 

s3+3 s 2+ 2 s-l 

. 

In the nonswitsching case the sinussoidal reference signals are ri(t) = sin(t+$&), such 

that according to (2.7) p(s) = s2+1, and in the switching case ri(t) = sin(4tG) such that 

P(s) = s2+16. In either case q(s) = (s+T)~. 
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The first configuration to be simulated consists of the four systems Xl, X2, X3, X4 

interconnected by the matrix 

F = 

0 2 1 ; 

10;; 

; 1 0 1 

1 3 3 
Yf ;f 2 O 

(44 

f23 

The following 3-D plots visualize the desired synchronization. The output functions yl(t), 

y2(t), y3(t), Yq(t) are graphed in parallel t-y-planes from left to right; at equidistant 

points of time the graphs are connected by straight lines. 
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Output behaviour of (4.1), 

- in the nonswitching case: 

-in the switching case: 

. 

. 
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I  

As a second example we consider a series coupling of the eight systems X1,...&. This is 

achieved by the interconnection matrix F = (fij) with fij = 1 if j=i-1, i=2,...,8, and fij = 0 

otherwise: 

f21 B,-X f32 f43 f87 
2 -c F...FC 3 8 

Again, 3-D plots visualize the desired synchronization of (4.2) 

- in the nonswitching case: 

P-2) 

- in the switching case: 
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