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Zusammenfassung

Das große Interesse an robusten Überdeckungsproblemen ist vielfältig, beson-
ders durch die Vielzahl realer Anwendungsmöglichkeiten und die zusätzliche
Betrachtung von Unsicherheiten, die vielen praktischen Problemen innewoh-
nen.
In dieser Arbeit stellen wir ein neues robustes Überdeckungsproblem

vor, das wir Robust Min q-Multiset Multicover nennen, wobei q eine fixe
natürliche positive Zahl darstellt. Dieses und weitere verwandte Probleme
werden sorgfältig ausgearbeitet. Die gemeinsame Idee dieser Probleme ist
es, bei gegebener Auswahl an Teilmengen einer Grundmenge, die Auswahl-
häufigkeit jeder Teilmenge so zu bestimmen, dass die unsichere Nachfrage
aller vorkommenden Elemente erfüllt ist. Im Unterschied zu allgemeinen
Überdeckungsproblemen darf hier jede Teilmenge höchstens q ihrer Ele-
mente überdecken. Durch Variation der Eigenschaften der vorkommenden
Elemente entstehen so vier interessante robuste Überdeckungsprobleme, die
untersucht werden.
Wir analysieren ausführlich die Komplexität dieser Probleme. Dabei

betrachten wir auch Einschränkungen in spezielle Klassen von Unsi-
cherheitsmengen. Für ein gegebenes Problem geben wir entweder einen
Polynomialzeit-Algorithmus an oder zeigen, dass es, solange nicht P = NP
gilt, einen solchen Algorithmus nicht geben kann. Weiterhin beweisen wir
für den Großteil der Fälle sogar, dass aller Voraussicht nach auch ein
polynomielles Approximationsschema für die schweren Varianten nicht
möglich ist.
Außerdem streben wir nach Approximationen und Approximations-

algorithmen für diese schweren Varianten. Hier fokussieren wir uns
auf Robust Min q-Multiset Multicover. Für eine umfangreiche Klasse
von Unsicherheitsmengen präsentieren wir den ersten Polynomialzeit-
-Approximationsalgorithmus für Robust Min q-Multiset Multicover mit
beweisbarer Güte.
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Abstract

The great interest in robust covering problems is manifold, especially due
to the plenitude of real world applications and the additional incorporation
of uncertainties which are inherent in many practical issues.
In this thesis, for a fixed positive integer q, we introduce and elaborate

on a new robust covering problem, called Robust Min q-Multiset Multicover,
and related problems. The common idea of these problems is, given a
collection of subsets of a ground set, to decide on the frequency of choosing
each subset so as to satisfy the uncertain demand of each overall occurring
element. Yet, in contrast to general covering problems, the subsets may only
cover at most q of their elements. Varying the properties of the occurring
elements leads to a selection of four interesting robust covering problems
which are investigated.

We extensively analyze the complexity of the arising problems, also for
various restrictions to particular classes of uncertainty sets. For a given
problem, we either provide a polynomial time algorithm or show that, unless
P = NP, such an algorithm cannot exist. Furthermore, in the majority of
cases, we even give evidence that a polynomial time approximation scheme
is most likely not possible for the hard problem variants.
Moreover, we aim for approximations and approximation algorithms for

these hard variants, where we focus on Robust Min q-Multiset Multicover.
For a wide class of uncertainty sets, we present the first known polynomial
time approximation algorithm for Robust Min q-Multiset Multicover having
a provable worst-case performance guarantee.
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1. Introduction

This thesis studies particular robust covering problems. In this chapter, we
motivate and summarize its main content.

Motivation
Informally, an instance of a covering problem comprises a collection of
subsets of a finite ground set and a coverage requirement for every element
of the ground set. The task is to choose a selection of subsets in order to
fulfill all requirements. Problems of this type arise in plenty of real world
applications and, hence, the need for efficient algorithms and well-performing
approximations is ubiquitous. Therefore, there has been a lot of research
regarding this area of optimization and the studies are still on-going. Most
commonly, the developed algorithms exploit the specific structure of the
considered covering problem. Thus, when introducing a novel problem of
this type, we should integrate the problem into the present classification
scheme and survey the adaptability of available algorithms. Even if the
available algorithms are not applicable directly, we might still be able to
extract ideas for the development of algorithms precisely fitting our new
problem.

The classical Set Cover problem is listed in Karp’s famous initial list of 21
NP-complete decision problems, cf. [Kar72]. An instance of this problem
consists of a collection of subsets of a finite ground set and a positive integer
B ∈ N>0. With such an instance, the question to answer is whether there
exists a cover of the ground set of size at most B, i.e., a selection of at
most B subsets such that every element of the ground set appears in at least
one selected set. By Karp’s result there is no polynomial time algorithm
to solve the corresponding optimization problem Min Set Cover, unless
P = NP. Hence, we need to make use of potentially exponential time
algorithms to solve every given instance to optimality. The same holds
true for every generalization of this elementary problem. In many practical
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1. Introduction

applications today, optimality is a goal in farther distance as the sizes of the
instances are enormous. Then, the computation of approximate solutions,
which guarantee the obtained solution to attain a solution value located
within a ratio of the optimal value, is of particular interest.

Moreover, in practice there are various sources of uncertainty that can
affect the performance of a proposed solution, possibly in an undesired
direction. On the one hand, the mathematical covering problem may not
exactly mirror the practical issue. In this case, adjustments or refinements
of the theoretical model are necessary to decrease the degree of uncertainty.
On the other hand, the practical problem itself may contain inherent un-
certainties, e.g., parameters depending on insecurities in measurements or
on unknown future events. For the latter case, there are two mathematical
fields handling parameter uncertainties in optimization. If the probability
distributions of the uncertain parameters are – potentially only partly –
known, stochastic optimizers include this additional information into the
model and aim to optimize a certain stochastic measure, for instance, the
expected value. On the contrary, the area of robust optimization does not
assume a specific probability distribution for each uncertain parameter and
is unbiased in that sense. It accounts for the uncertainty by determining
a distribution-free set of possible realizations for each parameter. Now,
by its worst-case oriented philosophy, the goal is to find a solution that
takes into account any variation of the parameters within their prescribed
sets. Furthermore, the solution should not behave too badly in case the
combination of realizations of the uncertain parameters is disadvantageous.
Naturally, there is a higher price to pay when implementing a robust solution
as it is uncertainty-immunized and therefore less vulnerable.

Hence, in this thesis, we introduce and elaborate on a new robust covering
problem named Robust Min q-Multiset Multicover for a fixed integer q ∈
N>0. It has applications in the strategic location and resource planning
of emergency facilities. Compared to other robust covering problems, the
distinctive attribute is that the sets of an instance are only implicitly given
and their cardinalities are bounded by q. This leads to a decrease in the
instance sizes which especially influences the complexity propositions and
the design of (approximation) algorithms. Moreover, considering the robust
setting we allow to switch the selection of sets between different realizations
of the parameters to some extent. This results in a more flexible robust
covering model at a lower price of robustness. Altogether, Robust Min
q-Multiset Multicover integrates itself nicely into the field of robust covering
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problems and leads to interesting research questions concerning algorithms
and complexity.

Literature Review

Already the classical (non-robust) Min Set Cover problem emerges in many
scientific fields, e.g., optimization, computer science, and operations research.
By its elementary structure, there is a plenitude of real world applications
based on the Min Set Cover problem. Exemplarily, we mention computer
virus detection, crew scheduling, and diagnostic systems, see [Wil98; CNS98;
Vem98]. From the theoretical perspective, the problem unifies many indi-
vidual problems, especially in the field of graph theory, e.g., Min Vertex
Cover, Min Edge Cover, and Min Graph Coloring [GJ79; HLS09].
In order to capture even more specific issues, more complex extensions

of the problem have been formulated and studied. These generalizations
include multisets, set costs, integral coverage requirements (demand) of
the elements in the ground set, or the option to choose subsets multiple
times [Vaz03; KY05]. Possible applications of this setup involve placing
service facility locations and increasing the reliability of communication
networks [Vem98; KP16].

With the challenge of uncertainty in the input data, stochastic as well as
robust Min Set Cover problems have gained more interest in recent years.
From the robust perspective, the common idea is to select a cover that is
feasible for the considered problem for every realization of the uncertainty.
That means we aim to hedge against the uncertainty. In literature, there
are various studies on probabilistic and robust covering problems. They
mainly differ in terms of the applied uncertainty concept. There are three
parameter types whose uncertainty is currently studied: the set costs, the
set availability, and the demand of the elements of the ground set.

Uncertainty in the objective is considered in [PA13]. Therein, the Min Set
Cover problem with interval uncertainty in the cost coefficients is analyzed
and exact algorithms for computing a min-max regret solution are presented.

Uncertain set availability is covered in [HCL04] and [FM12]. In [HCL04],
the authors apply concepts of fuzzy set theory, where each element is
contained in a set only with a certain probability. They define a fuzzy Min
Set Cover problem which is subsequently reduced to a non-linear integer
programming problem. In [FM12], it is assumed that each set has a certain
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1. Introduction

probability to disappear while, on the other hand, each element needs to
be covered with probability at least a given threshold. The authors study
the problem from a polyhedral point of view by presenting compact as well
as cutting-plane formulations. Further, in [Lut+17], a robust version of
the problem introduced in [FM12] is considered using Γ-robustness [BS04].
Various formulations are derived and the approach is applied to the problem
of placing emergency service facilities.
Demand uncertainty, which is also called right-hand side uncertainty,

is studied in various aspects. In [BR02], the requirement of covering an
element is modeled using a binary random variable. Then, joint probabilistic
constraints are introduced to account for the occurring uncertainty. Based
on this, equivalent MIP formulations for this problem are given in [SGL10].
In [GNR14], the authors study another robust variant of the Min Set Cover
problem, where each scenario specifies a subset of the ground set of a certain
fixed size to be covered. They provide approximation algorithms for robust
two-stage problems: Some of the sets may be selected in a first stage at
lower cost and in a second stage, after the scenario is known, the remaining
sets are chosen. Originally, this problem was introduced in [Dha+05] in a
more general fashion. Therein, the authors give approximation algorithms
for several robust versions of well-known combinatorial problems, e.g., Min
Cut. Further, in [Fei+07], these results are extended to an exponential
number of scenarios and approximation algorithms are developed using
an online algorithm for Min Set Cover, cf. [Alo+09; BN05], within an
LP-rounding-based algorithm.

Outline and Contribution

In this thesis, we investigate a new robust covering problem called Robust
Min q-Multiset Multicover and related problems. We contribute extensive
complexity analyses, also for restrictions of these problems. For a given
problem, we either provide a strongly polynomial time algorithm or show
that, unless the complexity classes P and NP coincide, there is no polynomial
time algorithm. Moreover, in most cases, even the existence of a polynomial
time approximation scheme, i.e., a polynomial time algorithm that is capable
of providing arbitrarily good approximations, is most-likely excluded for the
hard problem variants. Furthermore, we aim to provide approximations and
approximation algorithms for these hard variants, in particular for Robust
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Min q-Multiset Multicover. For a wide class of uncertainty sets, we give
the first known polynomial time approximation algorithm for Robust Min
q-Multiset Multicover with provable worst-case performance guarantee.
The outline of this thesis is as follows. First of all, Chapter 2 comprises

our notational conventions and various overviews on specific mathematical
fields that are applied throughout this thesis.

In Chapter 3, we introduce the Min q-Multiset Multicover (Min q-MSMC)
problem for a fixed positive integer q ∈ N>0. An instance of this optimization
problem consists of a finite ground set, an integral demand value for every
element, and a collection of subsets from this ground set. The goal is to
choose a minimum number of subsets, where multiple choices of a subset
are allowed, such that the demand of every element is covered. Additionally,
we require that each chosen subset may only cover up to q of its elements,
where again multiple choices are allowed. We show that Min q-MSMC is
APX-complete for any fixed q ≥ 3. For Min 1-MSMC and Min 2-MSMC,
we present strongly polynomial time algorithms.

The story is quite different for the robust version of this problem, called
Robust Min q-Multiset Multicover (Robust Min q-MSMC), which forms the
main focus of this thesis. In an instance of this robust problem, the demand
of the elements is replaced by a set of scenarios U – the uncertainty set –
containing various possible demand vectors. Now, we aim to choose as few
subsets as possible from our given collection, possibly multiple times, such
that, for every scenario, the selection of sets is a solution to the corresponding
instance of Min q-Multiset Multicover where the necessary demand vector is
given by the scenario. We prove that Robust Min q-MSMC is APX-hard for
any fixed value of q. Further, we show that certifying feasibility of a given
tentative solution, a task which is trivial for the non-robust version of the
problem, constitutes a hard problem in the robust case. The representation
and the handling of the uncertainty present additional challenges in designing
solution methods for Robust Min q-MSMC. Due to our hardness results, we
provide various integer programming formulations for the non-robust as well
as the robust problem which allow us to design exact solution algorithms.
It turns out that, especially for the robust problem, these formulations
reveal constraint generation to be a promising solution approach. For this
approach, the above mentioned feasibility problem is of great interest. Hence,
when restricting Robust Min q-MSMC to various classes of uncertainty sets,
we investigate the complexity of the problem itself and of its particular
feasibility problem. We consider discrete, interval, budgeted, multi-budgeted,
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1. Introduction

ellipsoidal, and Γ-uncertainty. For instance, for discrete uncertainty, we
show that Robust Min q-MSMC restricted to instances with q · |U| ≥ 3 is
APX-complete. On the other hand, instances with q · |U| ≤ 2 are polynomial
time solvable.

The exhaustive complexity analysis of Robust Min q-MSMC suggests the
development of approximations and, in particular, approximation algorithms
for this problem. This constitutes the purpose of Chapter 4. First of all,
we concentrate on approximate solutions that arise from the problem’s
close relation to Min Adjustable Robust Covering problems and are widely
applied. We focus on common solution policies, e.g., the strict and the affine
policy, and analyze their performances in relation to an optimal solution. It
turns out that these policies are able to yield constant factor approximations
for special cases, but the respective computation of these solutions forms
NP-hard problems. Moreover, we show how to extend the ideas of an
approximation algorithm for the Multiset Multicover problem to obtain a
framework for an approximation algorithm for Robust Min q-MSMC. The
crucial point is to guarantee the polynomial running time of the algorithm
despite the size of the uncertainty set. If the elements of the uncertainty
set can be enumerated in polynomial time, this leads to an approximation
algorithm whose approximation guarantee is bounded by

∑k
i=1

1/i with
k := q · |U|. Otherwise, we utilize the concept of dominating uncertainty
sets to regain an approximation algorithm that applies to any uncertainty
set having a polynomial time optimization oracle. In this case, the ratio is
deteriorated by a factor of O(

√
|J |) where J denotes the ground set of the

given instance.
In Chapter 5, we analyze new variants of Robust Min q-MSMC which

limit the power of the decision maker and increase the impact of uncertainty.
To that end, we include behavior patterns for the elements of the ground
set since the demand of an element can also be interpreted as a present
amount of clients. In the original problem, the clients have no influence
on the problem’s solution. We focus on three patterns: (a) Free clients,
that independently choose the subset by which they want to be covered,
(b) adapting clients, who are independent as well but need to choose their
favorite subset from a restricted set, and (c) ordered clients, who reveal
a preference order over their corresponding subsets and are covered by
their favorite available subset. This leads to the optimization problems
Robust Min q-Free Clients, Robust Min q-Adapting Clients, and Robust Min
q-Ordered Clients. For each of these, we provide an extensive complexity
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analysis for both the non-robust and the robust variant. Further, we also
concentrate on restrictions of the problems to the above mentioned classes
of uncertainty sets. Our analyses reveal these problems to be substantially
different compared to the initial (Robust) Min q-MSMC problem. For
instance, Min q-Free Clients can be solved in linear time while its robust
variant is NP-hard for any fixed value of q ∈ N>0. On the other hand, Min
q-Adapting Clients leads to a special Min Set Cover problem which provides
the basis for proving APX-hardness for any fixed q. Hence, this result also
holds for the robust variant of this problem. For Robust Min q-Ordered
Clients, we show APX-completeness in case q · |U| is fixed and exceeds the
value of 1. For the only remaining case, where q = 1 as well as |U| = 1, we
provide a linear time algorithm.

Finally, in Chapter 6, we conclude this thesis and provide various further
research directions in the area spanned by the problems encountered.

Publications
As parts of this thesis are already published, we provide a full list of these
publications here. In each case, more details on the relation of the content
of the chapter and the publication can be found at the very beginning of
the corresponding chapter.
Some parts of Chapter 3 are published in [KSS19] and are the result of

mutual collaboration with Sven O. Krumke and Manuel Streicher. The basis
of Chapter 5 is developed in [Büs+21] which is joint work together with
Christina Büsing, Martin Comis, and Manuel Streicher. Hence, some results
of Chapter 5 are published in a similar form in Martin Comis’ thesis [Com21].
Due to the mentioned journal publications and further joint research in
these fields, for both mentioned chapters, several similar considerations also
appear in Manuel Streicher’s thesis [Str21].
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2. Preliminaries

In this chapter, we mainly settle our mathematical notation and definitions
to avoid misconceptions. In large parts, we stay in line with common
notational conventions and definitions. Further, we give brief overviews
on particular mathematical fields as, for instance, robust optimization.
For each section, we provide additional literature in which full details are
available. We assume the reader is familiar with fundamental mathematical
concepts and the theory of linear and integer optimization. For a thorough
introduction to these fields, we refer to [Rud76; Beu94; Roc97; Heu08;
Heu09] as well as [GLS93; Sch98; NW88].

2.1. Basic Notation
In this section, we list our basic notation concerning sets, numbers, vectors,
matrices, and functions. For details on these definitions we additionally
refer the reader to [Sch02].

Sets A collection is used as a synonym for a set. We denote by ∅ the empty
set that contains no elements with max∅ := −∞ as well as min∅ := ∞.
For two sets A and B, we write A ⊆ B if every element of A is also contained
in B, i.e., the set A is a subset of B and B is a superset of A. If both
A ⊆ B and B ⊆ A, we write A = B. Hence, if A ⊆ B but A 6= B, we
also write A ( B. Further, with A ∩ B we note the intersection of these
sets while A ∪B denotes their union. If additionally A ∩B = ∅, we write
A∪̇B and say that A and B are disjoint. With A \B we denote the relative
complement of B in A, i.e., the set of elements that are contained in A but
not in B. Further, the set A×B denotes the product set of A and B which
is the set of all ordered pairs (a, b) with a ∈ A and b ∈ B. A partition of a
set A is a collection of pairwise disjoint subsets of A whose union gives A.
Moreover, we write |A| ∈ R ∪ {∞} for the cardinality or size of a set A,

i.e., the number of elements contained in A. If |A| = k <∞ for some k ∈ N,
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we say that A is finite and also call A a k-set. For a k-set, we implicitly
assume that the elements are indexed from 1 to k and identify an element
with its index if no ambiguities can occur. With 2A we refer to the power
set of A, i.e., the set of all subsets of A. Note that, for a k-set A with k ∈ N,
we have |2A| = 2k. A multiset is a set that may contain an element multiple
times. With m(x,A) ∈ N we denote the multiplicity of an element x in the
set A with m(x,A) := 0 if x /∈ A. Hence, for a multiset or set A, we have
|A| =

∑
x∈Am(x,A).

Numbers We denote by N the set of natural numbers, i.e, N = {0, 1, . . .}.
Similarly, we let Z, Q, and R be the sets of integer, rational, and real
numbers, respectively. We set B := {0, 1}. If we only want to consider
non-negative or positive elements of these sets, we add a subscript ≥0 or >0,
e.g., Z>0 := N>0 := {n ∈ N : n > 0}. For other restrictions, we adapt the
subscript appropriately.

For a number x ∈ R, we denote by bxc the largest integer y with y ≤ x and
by dxe we denote the smallest integer y with y ≥ x. These procedures are
called rounding down and rounding up, respectively. For k ∈ N>0, the kth

harmonic number, or simply harmonic number, is the value H(k) :=
∑k
i=1

1/i.
By [Kla79] we get that H(k) ≤ 1 + ln k for the natural logarithm ln.

Vectors and Matrices For n ∈ N>0, we often consider the vector space Rn
equipped with the Euclidean norm ‖·‖2. A vector (or point) x ∈ Rn is
assumed to be a column vector and xT denotes the corresponding row
vector. For a finite set A = {a1, . . . , an} with n ∈ N>0, we identify a
function x : A→ R with the vector x′ ∈ Rn defined by x′i := x(ai). Further,
for i ∈ {1, . . . , n}, we denote by ei ∈ Rn the ith unit vector and, with slight
abuse of notation, we write 1 and 0 for the vectors in Rn of all ones and all
zeros, respectively. In any case, it will be clear from the context whether
we refer to a number or a vector when using this notation.

For two vectors x, y ∈ Rn, we write x ≤ y if xi ≤ yi for every coordinate
i ∈ {1, . . . , n} and we say that y dominates x. Analogously, we define x < y,
x > y, and x ≥ y. For vectors x ∈ Rn and y ∈ Rm with n + m ≥ 3, we
write (x, y) to refer to the (column) vector in Rn+m whose first n entries
are determined by x and the last m entries are determined by y. For a
vector x ∈ Rn and a set S ⊆ {1, . . . , n}, we use the common notation
x(S) :=

∑
i∈S xi. Furthermore, the incidence vector χS ∈ Bn of S is given
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by χSi := 1 if and only if i ∈ S.
A vector x ∈ Rn is called a linear combination of the vectors x1, . . . , xk ∈

Rn for k ∈ N>0 if there is λ ∈ Rk such that x =
∑k
i=1 λix

i. If additionally∑k
i=1 λi = 1, the vector x is called an affine combination. If additionally

λ ≥ 0, the vector x is called a convex combination. Moreover, the vectors
x1, . . . , xk of Rn are linearly independent if the only solution λ ∈ Rk to the
equations

∑k
i=1 λix

i = 0 is given by λ = 0. Otherwise, they are linearly
dependent. The vectors x1, . . . , xk of Rn are affinely independent if the only
solution λ ∈ Rk to the equations

∑k
i=1 λix

i = 0 and
∑k
i=1 λi = 0 is given

by λ = 0. Otherwise, they are affinely dependent.
With Rm×n we denote the set of all real matrices with m rows and n

columns. Analogously, we define the set of matrices with entries from B,
N, Z, or Q. We write In for the unit matrix in Rn×n, i.e., the diagonal
matrix with only ones on the diagonal. For a matrix A ∈ Rm×n, we refer
to the entry of A in row i ∈ {1, . . . ,m} and column j ∈ {1, . . . , n} as Aij .
Moreover, we write Ai· and A·j to refer to the ith row and jth column
of A, respectively. A quadratic matrix A ∈ Rn×n is symmetric if A = AT .
Throughout this thesis, we identify a matrix Y ∈ Rm×n with the vector
y ∈ Rmn by ym(i−1)+j := Yij for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, i.e., the
rows of the matrix Y successively set up the vector y. For a quadratic matrix
A ∈ Rn×n, we write A−1 for its inverse if it exists. A matrix A ∈ Rn×n is
positive definite if xTAx > 0 for every x ∈ Rn. Moreover, we know that A
is invertible in this case. If, for a quadratic symmetric matrix A ∈ Rn×n, we
have |Aii| >

∑
j 6=i |Aij | and Aii > 0 for every i ∈ {1, . . . n}, we get that A

is positive definite, cf. [HJ12].

Sets in Rn For a set X ⊆ Rn, a vector y ∈ Rn, and a scalar λ ∈ R, we
set λ · X := {λ · x : x ∈ X} and X + λ · y := {x+ λ · y : x ∈ X}. For two
sets X,Y ⊆ Rn, the set Y dominates X if, for every x ∈ X, there is y ∈ Y
dominating x.
A subset X ⊆ Rn is convex if, for any two vectors x, y ∈ X and any

λ ∈ [0, 1], we have λx + (1 − λ)y ∈ X. For a general set X ⊆ Rn, we
write conv(X) to denote the convex hull of the set X, i.e., the set of all
finite convex combinations of vectors of X. If X is a set of n+ 1 affinely
independent vectors, we call conv(X) a simplex. The affine hull of X,
denoted by aff(X), is the set of all finite affine combinations of vectors of X.
Then, the dimension of the set X, dim(X), is the dimension of aff(X).
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Further, a set X ⊆ Rn is bounded if there is r ∈ R≥0 such that ‖x‖2 ≤ r
for every x ∈ X. For a vector x ∈ Rn and a number r > 0, we write Br(x) :=
{y ∈ Rn : ‖x− y‖2 < r} to denote the (open) Euclidean ball around x with
radius r. For a subset X ⊆ Rn, we denote by Xo the interior of X, i.e.,
the set of all vectors x ∈ X, such that there exists r > 0 with Br(x) ⊆ X.
The relative interior of X is the set of all vectors x ∈ X such that there
is r > 0 with Br(x) ∩ aff(X) ⊆ X and labeled as Xri. Hence, Xo ⊆ Xri.
The set X is open if Xo = X. Further, we say that Y ⊆ Rn is closed if
Rn \ Y is open. If Y is additionally bounded, we say that Y is compact. In
particular, we have that every finite set Y ⊆ Rn is compact. For a compact
set X ⊆ Rn and a vector c ∈ Rn, we know that max

{
cTx : x ∈ X

}
as well

as min
{
cTx : x ∈ X

}
exist. If X is additionally convex and has a non-empty

relative interior, we call X a convex body, cf. [BF06].
For a set X ⊆ Rn and a positive integer p ≤ n, we write X|p to

denote the projection of X onto its first p coordinates, i.e., X|p :=
{(x1, . . . , xp) : x ∈ X}. A polyhedron P(A, b) in Rn is defined by a ma-
trix A ∈ Rm×n and a vector b ∈ Rm with P(A, b) := {x ∈ Rn : Ax ≤ b}.
If P(A, b) is bounded, we call the set a polytope. Furthermore, a poly-
hedron P(A, b) is rational if A ∈ Qm×n as well as b ∈ Qm. For
a positive definite matrix A ∈ Rn×n and a vector a ∈ Rn, the set
E(A, a) :=

{
x ∈ Rn : (x− a)TA−1(x− a) ≤ 1

}
is called an ellipsoid. For an

ellipsoid E(A, a) ⊆ Rn, let C be the unique positive definite matrix with
A = C2. Then, we have E(A, a) = {Cx+ a : ‖x‖2 ≤ 1}. Furthermore, the
subsequent lemma concerning the optimization of a linear function in an
ellipsoid holds.

Lemma 2.1 ([GLS93]). For an ellipsoid E(A, a) ⊆ Rn and a vector c ∈ Rn
it holds true that

max
{
cTx : x ∈ E(A, a)

}
= cTa+

√
cTAc,

min
{
cTx : x ∈ E(A, a)

}
= cTa−

√
cTAc.

Functions For two sets A,B and a bijection f : A→ B, we denote by f−1

its inverse. For A ⊆ R, a function f : A → R is monotonically increasing
if, for x, y ∈ A with x < y, we have f(x) ≤ f(y). We write ln for the
natural logarithm and log for the logarithm to the base 2. For two functions
f, g : N→ N, we say that f(n) is O(g(n)) if there is n0 ∈ N and a constant
c > 0 such that, for all n ≥ n0, we have f(n) ≤ c · g(n). If f(n) is O(g(n)),
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we also say g(n) is Ω(f(n)). If both f(n) is O(g(n)) and g(n) is O(f(n)),
we say that f(n) is Θ(g(n)).

2.2. Complexity and Approximation
In this section, we list our basics concerning complexity and approximation.
For details we refer to the books [GJ79; Sch02; Aus+02; WS09; AB17] from
which the definitions are extracted.

Decision and Optimization Problems The theory of NP-completeness
only applies to decision problems. Hence, we define: A decision problem P
consists of a set DP of instances and a subset YP ⊆ DP of yes-instances.
An instance in NP := DP \ YP is called a no-instance. The complementary
problem Pc corresponding to P is given by DPc := DP and YPc := NP . As
customary, we define a decision problem by giving a generic instance and
stating a yes-no question.
On the other hand, we analyze optimization problems: An optimization

problem P is given by

(a) a set DP of instances,

(b) a function fP that returns, to any instance I ∈ DP , the set of solutions,

(c) an objective function SOLP which, given an instance I and a solution x ∈
fP(I), returns the solution value SOLP(I, x) ∈ Q>0 of the solution x,
and

(d) the information whether P is a maximization or a minimization problem.

A solution x ∈ fP(I) is also called feasible. Similarly, an instance I ∈ DP
is called feasible if fP(I) 6= ∅. Again, according to the usual practice, we
define an optimization problem P by stating a generic instance, its generic
set of solutions, and the objective function. The information whether P is a
minimization or maximization problem is given in the problem’s name using
the prefixes Min or Max. Let P be a minimization problem and I ∈ DP .
A solution x? ∈ fP(I) is called optimal if SOLP(I, x?) ≤ SOLP(I, x) for
every x ∈ fP(I). The optimal value OPTP(I) of the instance I is given by
OPTP(I) := SOLP(I, x?). The decision problem corresponding to P asks,
for an additionally given integer B ∈ N, whether there exists a solution
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x ∈ fP(I) with SOLP(I, x) ≤ B. Analogously, we define these terms in
case of a maximization problem.

Algorithms The encoding length 〈I〉 of an instance I of a decision or
optimization problem P is the number of bits needed to encode I in some
natural encoding scheme, i.e., a scheme that does not include superfluous
information and in which numbers are encoded in binary. More generally,
we denote with 〈X〉 the encoding length of an object X. For instance, for a
vector x ∈ Nn, we have 〈x〉 =

∑n
i=1 log xi.

Let A be an algorithm for a decision problem P. This means, for any
instance I ∈ DP , the algorithm A returns the correct answer. An algo-
rithm A for an optimization problem P returns, for any instance I ∈ DP ,
either an optimal solution or the information that no feasible solution exists.
Apart from the problem type of P, we say that A solves P. We measure
the running time TA of algorithm A with input I ∈ DP as a function of 〈I〉
using the algorithmic model of the unit-cost random access machine. With
this model, elementary arithmetic operations like addition, subtraction,
multiplication, division, and comparison can be accomplished in one compu-
tational step. Other operations, like taking the square root, take time linear
in the encoding length of the considered number and |log ε| where ε > 0 is
the desired precision. This model is convenient as the encoding lengths of
the numbers appearing in our algorithms can be bounded by a polynomial
in 〈I〉.
Further, to suppress constants and technical characteristics of the ma-

chines, we concentrate on asymptotic running times. The worst-case running
time of algorithm A on input size n ∈ N is given by

TA(n) := max {TA(〈I〉) : I ∈ DP ∧ 〈I〉 ≤ n} .

Then, we say that A has time complexity (upper bound) O(g(n)) if TA(n)
is O(g(n)) for a function g : N→ N. If TA(n) is Ω(g(n)), we say that A has
time complexity (lower bound) Ω(g(n)). If TA(n) is Θ(g(n)), algorithm A
has time complexity exactly Θ(g(n)). For instance, we say that A runs in
time O(g(n)) and P is solved in time O(g(n)). Further, the algorithm A
is a polynomial time algorithm if its time complexity is O(nk) for some
fixed k ∈ N. In this case, we call P polynomial time solvable or tractable.
Otherwise, algorithm A is called an exponential time algorithm. Moreover,
we say that A is a strongly polynomial time algorithm if its time complexity
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is polynomially bounded in the dimension of the input, cf. [GLS93]. For an
instance I of P , we denote by max(I) the magnitude of the largest number
occurring in I. We call A a pseudo-polynomial time algorithm if, for every
instance I of encoding length n ∈ N, its time complexity is bounded by a
polynomial in n and max(I).
Let P be an optimization problem. For some r ≥ 1, an r-approximation

algorithm for P is a polynomial time algorithm A that, given an instance
I ∈ DP , either concludes that I is infeasible or computes a solution A(I)
for I with the property that SOLP(I,A(I)) ≤ r ·OPTP(I), if P is a mini-
mization problem, or r · SOLP(I,A(I)) ≥ OPTP(I) if P is a maximization
problem. Disregarding the running time of A, we call A(I) an r-approximate
solution or an r-approximation. The value r is called (performance) ratio
or guarantee. Analogously, we can define an r(n)-approximation algorithm
for some function r : N→ [1,∞) which, given an instance I with 〈I〉 ≤ n
for n ∈ N, outputs in polynomial time either a solution with performance
ratio r(n) or the information that I is infeasible. The definition of an
r(n)-approximate solution follows easily.

Complexity Classes In general, a complexity class is a collection of ei-
ther decision or optimization problems. For a function g : N → N, let
DTIME(g(n)) be the set of all decision problems which can be solved by a
(deterministic) algorithm with time complexity O(g(n)). Then, we define
P :=

⋃∞
k=0 DTIME(nk), i.e., P is the class of decision problems solvable in

polynomial time in the encoding length of the input.
A non-deterministic algorithm is an algorithm that is also allowed to

“guess” values from a finite set of possibilities, e.g., the set {0, 1}, during its
execution. Depending on these guesses the continuation of the algorithm
varies so that its outcome can be represented by a tree, in which each guess
corresponds to a vertex, cf. Section 2.3. Given a decision problem P and
n ∈ N, we say that a non-deterministic algorithm A solves P in time T (n) if,
for any instance I ∈ DP with 〈I〉 ≤ n, we have I ∈ YP if and only if there
exists a sequence of guesses such that A returns yes in time at most T (n).
Observe that the length of the guess sequence is bounded by T (n). For a
function g : N → N, let NTIME(g(n)) be the set of all decision problems
which can be solved by a non-deterministic algorithm in time O(g(n)).
Finally, we define NP to be the class of decision problems that can be solved
by some non-deterministic algorithm in polynomial time in the encoding
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length of the input. Hence, NP :=
⋃∞
k=0 NTIME(nk). Let P be a decision

problem. Then, P ∈ NP if and only if there exists a polynomial p and,
for every instance I ∈ DP , we have: I ∈ YP if and only if there exists
a certificate y(I) with 〈y(I)〉 ≤ p(〈I〉) and, given y(I), we can confirm
I ∈ YP in time polynomial in 〈I〉. The class of decision problems that are
complementary to some problem in NP is denoted by co-NP.
Complexity classes containing optimization problems are given by the

two classes NPO and PO. We start by considering the class NPO. An
optimization problem P is contained in NPO if

(a) DP is recognizable in polynomial time,

(b) there is a polynomial p such that, for any instance I and any solution x ∈
fP(I), 〈x〉 ≤ p(〈I〉),

(c) for any instance I and any x with 〈x〉 ≤ p(〈I〉), we can decide in
polynomial time whether x is feasible, and

(d) the objective function SOLP can be computed in polynomial time.

For an optimization problem P ∈ NPO, we get by definition that its
corresponding decision problem is contained in NP. Furthermore, the set
of optimization problems in NPO which are polynomial time solvable is
denoted by PO.

We now define two additional complexity classes of optimization problems
which are contained in NPO. The class APX contains all problems P
in NPO such that, for some fixed r ≥ 1, there exists an r-approximation
algorithm for P . Further, a polynomial time approximation scheme (PTAS)
for P is an algorithm A which, given an instance I and a fixed rational
r > 1, returns in time polynomial in 〈I〉 either an r-approximate solution
or the information that I is infeasible. With slight abuse of notation, we
denote with PTAS the class of problems in NPO that admit a polynomial
time approximation scheme.

Reductions A decision problem P1 Karp-reduces to a decision problem P2

if there exists an algorithm A : DP1
→ DP2

with the property that I ∈ YP1

if and only if A(I) ∈ YP2
. If A runs in polynomial time with respect to

the input size, the algorithm is also called a polynomial time reduction and
we write P1 ≤p P2. Hence, if P2 ∈ P and P1 ≤p P2, we get P1 ∈ P. We
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say that P is closed with respect to ≤p and ≤p preserves membership in P.
Furthermore, for decision problems P1,P2,P3 with P1 ≤p P2 and P2 ≤p P3,
we get that P1 ≤p P3, i.e., polynomial time reductions are transitive.

For a more general reduction, we need to define the notion of an oracle:
Let P be a decision or an optimization problem. We say that an algorithm
is an oracle for P if we suppose that the algorithm solves any instance of P
in one computational step. Now, let P1 be a decision or an optimization
problem. We say that P1 Turing-reduces to a problem P2 if there exists
an algorithm A for P1 which has access to an oracle for P2. If A runs in
polynomial time with respect to the input size, we write P1 ≤T P2. Again,
for two decision problems P1,P2, we get that P2 ∈ P and P1 ≤T P2 implies
P1 ∈ P. As above, we also have that P is closed with respect to ≤T. For
an optimization problem P and its corresponding decision problem P ′, we
directly get that P ′ ≤T P. Note that Turing reductions are transitive as
well.

For optimization problems, we need to define approximation preserving
reductions. There are several concept available, cf. [Cre97] for a survey. To
promote readability, we mostly omit the index P in the following.

A minimization problem P1 AP-reduces to a minimization problem P2 if
there is a fixed value α > 0 such that, for each instance I of P1 and any
fixed rational r > 1, the following holds:

(a) We can compute in polynomial time an instance I ′r of P2.

(b) For any solution yr to I ′r, we can compute in polynomial time a solu-
tion x(yr) to I and SOL(I ′r, yr) ≤ r ·OPT(I ′r) implies

SOL(I, x(yr)) ≤ (1 + α · (r − 1)) ·OPT(I).

Analogously, we can define an AP-reduction in case P1 or P2 is a maximiza-
tion problem. If P1 AP-reduces to P2, we write P1 ≤AP P2. Both classes
APX and PTAS are closed with respect to ≤AP.

Finally, to simplify proving the existence of AP-reductions, we introduce
L-reductions: An optimization problem P1 L-reduces to an optimization
problem P2 (P1 ≤L P2) if there are positive constants α, β > 0 such that,
for each instance I of P1, the following holds:

(a) We can compute in polynomial time an instance I ′ of P2 with
OPT(I ′) ≤ α ·OPT(I).
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(b) For any solution y to I ′, we can compute in polynomial time a solu-
tion x(y) to I such that

|OPT(I)− SOL(I, x(y))| ≤ β · |OPT(I ′)− SOL(I ′, y)| .

As hinted above L-reductions are useful for the following reason: If P1 ≤L P2

and P1 ∈ APX, then P1 ≤AP P2. Throughout this thesis, we make use
of this observation. Similar to AP-reducibility, we get that L-reductions
preserve membership in PTAS and, for minimization problems, also in APX.
Furthermore, both reductions are transitive. For instance, if P1 ≤AP P2

and P2 ≤AP P3, we have P1 ≤AP P3.

Completeness and Hardness A decision problem P is NP-complete if
P ∈ NP and, for any decision problem P ′ ∈ NP, we have P ′ ≤p P.
By transitivity it suffices to provide an NP-complete problem P ′ such
that P ′ ≤p P to show that a decision problem P ∈ NP is NP-complete.
Analogously, we define co-NP-completeness. Note that a decision problem is
co-NP-complete if and only if its complementary problem is NP-complete.
A decision or optimization problem P is NP-hard if, for every decision

problem P ′ ∈ NP, we have P ′ ≤T P. Thus, if there exists some NP-
complete problem P ′ with P ′ ≤T P , we get that P is NP-hard as polynomial
time reductions are a special case of polynomial time Turing reductions
and by transitivity. Further, with this definition we have that any NP-
complete problem is also NP-hard. As P is closed with respect to ≤T, we
see that an NP-hard problem cannot be solved in polynomial time unless
P = NP. Finally, for an optimization problem P and its corresponding
decision problem P ′, we get that NP-completeness of P ′ directly leads to
NP-hardness of P.
Once more, let P be a decision or optimization problem. Then, P is

strongly NP-hard if there exists a polynomial p such that P restricted to
instances I with max(I) ≤ p(〈I〉) is NP-hard. If additionally P ∈ NP, we
say that P is strongly NP-complete. Hence, if there is a pseudo-polynomial
time algorithm for some strongly NP-hard problem P, we directly get that
P = NP. Analogously, we define strong co-NP-completeness.

An optimization problem P is APX-hard if, for every optimization prob-
lem P ′ ∈ APX, we have P ′ ≤AP P. Further, an APX-hard problem P
is APX-complete if P ∈ APX. If there is a PTAS for some APX-hard
problem, we get APX = PTAS as ≤AP preserves membership in PTAS.
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This implies P = NP. Hence, no APX-hard problem can have a PTAS
unless P = NP. By our observations, we have that an APX-complete
problem P ′ with P ′ ≤L P directly leads to APX-hardness of P. This
constitutes our standard technique in proving APX-hardness results.

2.3. Graph Theory

In this section, we briefly formulate our notation concerning graphs and
graph-theoretical concepts. This notation is guided by [Sch02; KN12; Die17].
Yet, observe that we directly exclude the possibility of parallel edges in
undirected as well as directed graphs.

Graphs An (undirected) graph G is a tuple (V,E) in which V is a non-
empty set of vertices or nodes and E is the set of edges with V ∩E = ∅. The
set E is a collection of 2-multisubsets of V . Hence, the graphs considered
in this thesis do not contain parallels. Let e = {u, v} ∈ E. The vertices u
and v are called the end vertices of the edge e. We also say that e connects
its end vertices. According to notational convention, we also write [u, v] for
an edge {u, v} ∈ E. If {u, u} ∈ E, we write [u, u] and call this edge a loop.
A graph G is of order n if |V | = n for some n ∈ N>0. Two vertices

u, v ∈ V are adjacent or neighbors if there is an edge [u, v] ∈ E. Further,
an edge e ∈ E and a vertex v ∈ V are incident or cover each other if
v ∈ e. We denote by NG(v) the (open) neighborhood of v ∈ V in G, i.e.,
the set of all vertices adjacent to v. Further, the closed neighborhood of v is
given by NG[v] := NG(v) ∪ {v}. For a subset S ⊆ V , NG(S) is the set of
all nodes adjacent to some node in S. We say that a vertex v dominates
another vertex u if u ∈ NG[v]. In particular, the vertex v dominates itself.
Concerning incidence, we denote by δG(v) the set of incident edges of a
vertex v ∈ V and degG(v) :=

∑
e∈δG(v) m(v, e) is called the degree of the

vertex v. Vertices with degree zero are called isolated. The degree of G is the
maximum degree of its vertices and denoted by ∆G. Furthermore, two edges
e1, e2 ∈ E are incident if there is a vertex v ∈ V such that e1, e2 ∈ δG(v).
A graph without loops is called simple. Further, a graph G is complete

if E is the set of all 2-element subsets of V . A graph G whose vertex set
can be partitioned into two sets, i.e., V = I ∪ J with I ∩ J = ∅, such that
each edge connects a vertex of I with a vertex of J is called bipartite. A
bipartite graph G is complete if NG(i) = J for every i ∈ I. Note that,
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by our definitions, bipartite graphs are always simple. When illustrating
bipartite graphs in this thesis, we use boxes for the vertices of one vertex
set and circles for the other vertices. A path P in a graph G = (V,E) is a
sequence of vertices P = (v0, v1, . . . , vn) with vi ∈ V for every i ∈ {0, . . . , n}
such that [vi, vi+1] ∈ E for every i ∈ {0, . . . , n− 1}. Observe that these
edges are uniquely defined by their end vertices. We say that P has length n
and connects v0 and vn. If v0 = vn and n ≥ 2 we call P a cycle. A graph
that merely consist of a cycle of length 3 is called a triangle. Further, a
graph is connected if any two of its vertices are connected by a path. A
tree is a connected graph that does not contain a cycle. For two graphs
G = (V,E) and G′ = (V ′, E′), we define their union G ∪G′ as the graph
with vertex set V ∪ V ′ and edge set E ∪ E′. For a graph G = (V,E), a
subgraph of G is given by a graph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. Further, for a subset E′ ⊆ E, the subgraph induced by E′ is the
subgraph G[E′] = (V ′, E′) with V ′ :=

⋃
e∈E′ e.

An edge cover of a graph G = (V,E) is a subset of the edges E′ ⊆ E
such that every vertex v ∈ V is incident to some edge in E′. Moreover,
a matching of G is a loopless subset E′ of the edges such that any two
edges of E′ do not share a common end vertex. A matching is perfect if it
is a matching as well as an edge cover. These concepts naturally lead to
optimization problems.

Problem 2.2 (Min Edge Cover).
Instance: A simple graph G = (V,E).
Solution: An edge cover E′.
Measure: The cardinality of E′.

Problem 2.3 (Max Matching).
Instance: A simple graph G = (V,E).
Solution: A matching E′.
Measure: The cardinality of E′.

Both problems can be solved in polynomial time [Sch02]. In particular, an
instance G of Min Edge Cover is typically solved using an algorithm for Max
Matching on G and augmenting the found matching greedily in time O(m),
where m ∈ N is the number of edges of G.

20



2.3. Graph Theory

Directed graphs A directed graph G is a tuple (V,R) in which V is a
non-empty set of vertices or nodes and R ⊆ V 2 is a set of (directed) edges
or arcs. Hence, in correspondence to undirected graphs, we do not allow an
arc to appear multiple times. For an arc a = (u, v) ∈ R, we call u its start
vertex and v its end vertex. Moreover, we say that a leaves u and enters v.
Hence, the vertex u is a predecessor of v and the vertex v is a successor
of u. The notions of incidence and adjacency are defined analogously to
undirected graphs. For a vertex v ∈ V , we denote by N+

G (v) the set of
successors of v. Analogously, by N−G (v) we denote the set of predecessors
of v. Further, δ+

G(v) denotes the set of arcs leaving v while δ−G(v) is the set
of arcs entering v. For a subset S ⊆ V , we write δ+

G(S) for the set of arcs
with start vertex in S and end vertex in V \ S. Then, the degree degG(v)
of a vertex v ∈ V is defined as the sum of its in-degree |δ−G(v)| and its
out-degree |δ+

G(v)|. A network G = (V,R, c) is a directed graph G together
with a mapping c : R→ Q≥0.

For directed as well as for undirected graphs, we omit the subscript G if
the considered graph is clear from the context. Further, in both cases, we
assume the vertex and edge sets to be finite.

Flows and Cuts Given a network G = (V,R, c) and two distinct vertices
s, t ∈ V , a (feasible) s-t-flow in G is a mapping f : R→ Q≥0 such that, for
every vertex v ∈ V \ {s, t}, it holds true that f(δ+(v)) = f(δ−(v)) and, for
every arc r ∈ R, we have f(r) ≤ c(r). The first set of constraints is called the
flow conservation constraints while the second set of constraints is referred
to as the capacity constraints. Further, val(f) := f(δ+(s)) − f(δ−(s)) is
called the flow value of f . To simplify notation we set f(u, v) := f((u, v))
for an arc (u, v) ∈ R. Moreover, an s-t-cut (S, T ) in G is a partition of the
vertex set V into two sets S and T with s ∈ S and t ∈ T . The capacity of the
s-t-cut is given by c(S, T ) := c(δ+(S)). If the vertices s and t are given from
the context, we speak of flows and cuts for simplicity. These two concepts
on networks lead to the following optimization problems.

Problem 2.4 (Max Flow).
Instance: A network G = (V,R, c) and two distinct vertices s, t ∈ V .
Solution: An s-t-flow f .
Measure: The flow value val(f).
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Problem 2.5 (Min Cut).
Instance: A network G = (V,R, c) and two distinct vertices s, t ∈ V .
Solution: An s-t-cut (S, T ).
Measure: The cut capacity c(S, T ).

It is a well-known result that, for an instance of these problems, the optimal
values coincide and can be computed in polynomial time. For a proof of this
result and a survey on possible running times, we refer to [AMO93; Sch02].

Theorem 2.6 (Max-Flow-Min-Cut Theorem). Given a network G =
(V,R, c) and two distinct vertices s, t ∈ V , it holds true that

max {val(f) : f is an s-t-flow} = min {c(S, T ) : (S,T) is an s-t-cut} .

2.4. Set Cover Problems
In this section, we define several generalizations and specifications of the
well-known Min Set Cover problem that are apparent throughout this thesis.
In an informal fashion, some of them have already been introduced in
Chapter 1. Nevertheless, Min Set Cover is formally defined as follows,
cf. [GJ79; Aus+02]:

Problem 2.7 (Min Set Cover).
Instance: A collection C of subsets of a finite set S.
Solution: A (set) cover for S, i.e., a subset C′ ⊆ C such that every element
in S is contained in at least one set of C′.
Measure: The cardinality of C′.

The decision version of this problem, called Set Cover, is well-known to be
NP-complete [Kar72]. This result directly follows from NP-hardness of this
special variant of Set Cover [GJ79].

Problem 2.8 (Exact Cover by 3-Sets).
Instance: A set S with |S| = 3r for r ∈ N>0 and a collection C of 3-element
subsets of S.
Question: Does C contain an exact cover for S, i.e., a subcollection C′ ⊆ C
such that every element of S appears in exactly one set of C′?

22



2.4. Set Cover Problems

Yet, a simple polynomial time greedy algorithm, which always chooses the
set covering the greatest number of new elements, achieves an approximation
ratio of H(k), where k ∈ N is the maximum subset size of the given in-
stance [Joh74; Lov75]. Up to additive constants in the ratio, this guarantee
is essentially optimal: We have H(k) ≤ 1 + ln k, see [Kla79], and Min Set
Cover cannot be approximated within (1− ε) lnn for any fixed ε > 0 unless
P = NP where n := |S|, cf. [DS14; Mos15]. A further inapproximability
result is given in [KR08] and more details on approximation algorithms
for covering problems are presented later in this thesis, cf. Section 4.2.1.
Furthermore, a study on recent exact algorithms for Min Set Cover can be
found in [CTF00].
Another specification of the Min Set Cover problem is the restriction to

instances whose sizes of the subsets are bounded by some constant K ∈ N.
This problem is denoted by Min Set Cover(K) and is APX-complete for
fixed K ≥ 3, compare [Aus+02; AK00]. For K = 1, the problem is trivially
solvable in linear time. Further, for K = 2, an instance of Min Set Cover(2)
corresponds to an instance of Min Edge Cover by identifying the finite set S
with the vertices of a graph, in which each edge corresponds to one subset
C ∈ C. Hence, Min Set Cover(2) can also be solved in polynomial time
according to Section 2.3.
In the following, further relevant generalization of Min Set Cover are

given in Table 2.1. To ease notation we introduce the element-set incidence
matrix MSC ∈ Bm×n for a given finite set S = {s1, . . . , sm} and a collection
C = {C1, . . . , Cn} of subsets of S: For si ∈ S and Cj ∈ C, we set MSC

ij := 1
if and only if si ∈ Cj . For each problem in Table 2.1, the variable xj refers
to the frequency of choosing the jth column of the corresponding constraint
matrix. Constraints which serve as upper bounds for the variables x, i.e.,
x ≤ d for d ∈ Nn, are called multiplicity constraints (MC). Note that
these constraints are redundant for Min Set Cover but constitute a different
problem when added to its generalizations. Here, the multiplicity constraints
are only appended to the most general problem Min CIP to capture all
necessary definitions.

Considering Table 2.1, we see that in the weighted Min Set Cover problem,
compared to the classical problem, the objective is to minimize the total
cost of the chosen subsets. Moreover, in an instance of Min Set Multicover,
each element si ∈ S is assigned a demand value bi ∈ N>0 expressing
the number of times the element si needs to be covered, cf. [HH92]. A
further generalization is given by Min Multiset Multicover in which the
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Name Instance Definition

Weighted Min Set Cover
S, C
c ∈ Nn>0

min cTx

s.t. MSCx ≥ 1

x ∈ Bn

Min Set Multicover
S, C
b ∈ Nm>0

c ∈ Nn>0

min cTx

s.t. MSCx ≥ b
x ∈ Nn

Min Multiset Multicover
A ∈ Nm×n

b ∈ Nm>0

c ∈ Nn>0

min cTx

s.t. Ax ≥ b
x ∈ Nn

Min Covering IP
(Min CIP∞)

A ∈ Qm×n≥0

b ∈ Qm>0

c ∈ Nn>0

min cTx

s.t. Ax ≥ b
x ∈ Nn

Min Covering IP with MC
(Min CIP)

A ∈ Qm×n≥0

b ∈ Qm>0

c, d ∈ Nn>0

min cTx

s.t. Ax ≥ b
x ≤ d
x ∈ Nn

Table 2.1.: Min Set Cover generalizations.

subsets in the collection C of a given instance are allowed to be multisets,
see [Hua+09]. This fact is represented by the matrix A ∈ Nm×n as an
entry Aij can be interpreted as the multiplicity of the element si in the
set Cj . Analogously to Min Set Cover(K), we define Min Set Multicover(K)
as well as Min Multiset Multicover(K). Dropping the integrality constraints
on A and b results in a general covering integer program (Min CIP∞),
cf. [KY05]. Adding multiplicity constraints gives Min CIP. Furthermore,
besides Min Set Cover all problems are weighted by definition although this
is not directly implied by the problem’s name. Concerning complexity, the
above mentioned hardness results for Min Set Cover carry over. However,
if each set in an instance of Min Multiset Multicover contains at most
two elements, we can solve the instance in polynomial time by reducing
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the problem to a generalized Min Edge Cover problem, cf. Section 3.1
and [Sch02]. Exact exponential time algorithms for Min Set Multicover
and Min Multiset Multicover are given, for instance, in [Hua+09] based
on dynamic programming and in [HH92] based on heuristics together with
branch and bound.

2.5. Constraint Generation
Constraint generation algorithms are widely used when it comes to solving
(mixed integer) linear programs containing a huge number of constraints.
Famous examples here are the Traveling Salesman problem, cf. [GJ79; PR91],
or the application of Benders decomposition [Ben62; NW88]. We briefly
sketch the basic idea of constraint generation. Different applications of this
idea lead to varying implementations of constraint generation algorithms,
e.g., see [PR91; Mit02] for the concept of branch and cut or [NW88]. Further-
more, note that by duality constraint generation for linear programs is closely
related to column generation and the Dantzig-Wolfe reformulation [DDS05;
Lüb10].
For the general concept, suppose we aim to solve the following linear

program

min
{
cTx : Ax ≤ b, x ≥ 0

}
(2.1)

with A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and a non-empty polytope P :=
P (A, b) ∩ Rn≥0. Denote with z ∈ R its optimal value. If this program
contains a very large number of constraints, i.e., m is large, a possible
strategy is to start with the consideration of only a subset of the constraints.
Let the constraints be indexed from 1 to m and let M ′ ⊆M := {1, . . . ,m}.
Then, a relaxed problem is given by

min
{
cTx : AM ′x ≤ bM ′ , x ≥ 0

}
(2.2)

in which AM ′ and bM ′ are the restrictions of A and b to the rows of M ′,
respectively. Let z′ ∈ R∪ {−∞} be its optimal value. The idea is that (2.2)
is potentially easier to solve as |M ′| ≤ m. Trivially, any solution to (2.1)
is also feasible for (2.2) so that z′ ≤ z. On the other hand, if (2.2) has a
finite optimal solution x′ which is also feasible for (2.1), we have found an
optimal solution to (2.1). In case x′ is not feasible for (2.1), there must be a
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constraint i′ ∈M \M ′ which is violated by x′, i.e., Ai′·x′ > bi′ . The same
holds for a vector x ∈ P(AM ′ , bM ′) ∩ Rn≥0 if (2.2) is unbounded. Hence,
in the separation step, given a finite optimal solution x′ (or a solution x′
with cTx′ small in case (2.2) is unbounded) of the relaxed problem, we
need to find a constraint i′ ∈M which is violated by x′ or assess correctly
that none exits. If no such constraint exists, x′ is optimal for (2.1) and the
procedure stops. On the other hand, if we find a violating constraint i′, we
know that i′ ∈ M \M ′ and we update M ′ by adding i′. This means, we
add a feasibility cut to the relaxed problem. Now, the relaxed problem is
resolved and the procedure iterates. Initially, we can start with M ′ = ∅
or some arbitrary desired subset M ′ ⊆ M . As m < ∞, the algorithm
terminates in a finite number of steps and in the worst case we reach a point
with |M ′| = m.

Hence, for the effectiveness of constraint generation methods, the com-
putational complexity of the performed separation steps is an important
issue. Depending on the applied constraint generation algorithm, these
steps differ slightly. In this thesis, we stay with the presented classical
approach. With this approach, a famous theorem in [GLS88] states that, if
a bounded polyhedron P ⊆ Rn is well-described1, the following problems
are polynomial time equivalent:

(a) Given a vector c ∈ Qn, find a vector x ∈ P maximizing cTx on P or
assert that P is empty.

(b) Given a vector y ∈ Qn, decide whether y ∈ P . If not, find a vector
c ∈ Qn with cT y > max

{
cTx : x ∈ P

}
.

This means, (a) can be solved in time polynomial in 〈P 〉+ 〈c〉 if and only
if (b) can be solved in time polynomial in 〈P 〉+ 〈y〉. We also refer to (b)
as the separation problem for P . Hence, if the separation step in the
above constraint generation algorithm can be solved in polynomial time
and {x ∈ Rn : Ax ≤ b, x ≥ 0} is well-described, we can solve our original
problem (2.1) in polynomial time.

1A polyhedron P ⊆ Rn is well-described if there is ρ ∈ N such that P can be described
by rational linear inequalities, each of which having encoding length at most ρ. The
encoding length of P is n+ ρ, cf. [GLS88].
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2.6. Robust Optimization
In recent years, the concept of robustness and the theory of robust opti-
mization have received an increasing interest in the operations research
community since people are interested in hedging against various eventu-
alities, e.g., data uncertainty. The basic idea of robust optimization can
be described as follows: When solving an instance of an optimization prob-
lem, not all data of the instance may be known exactly at the time of
computation. To account for these uncertainties, instead of given values
for the parameters of the instance, we are given a set of scenarios U , the
uncertainty set, in which each scenario defines values for p ∈ N>0 predefined
parameters. In this thesis, a scenario is given by a vector ξ ∈ Rp in which
each entry corresponds to some particular parameter of the instance. We
assume that any of the scenarios contained in U may actually occur. Yet,
we do not know the true scenario beforehand. Hence, the aim is to find a
solution which takes all scenarios of the given uncertainty set into account.

The idea of robust optimization was pioneered in [Soy73] and, subsequently,
it became a major research area within the optimization community with
Ben-Tal and Nemirovsky, cf. [BN98; BN99; BN00], and El Ghaoui et al.,
cf. [EL97; EOL98]. A thorough general introduction and overview is available
in [BGN09; KY97]. Furthermore, a recent survey is given in [GMT14]. A
detailed compilation of various robustness concepts, such as strict, regret,
or adjustable robustness, is given in [GS16]. Here, we focus on strict and
adjustable robustness.

More formally, in robust optimization we deal with uncertain optimization
problems in which an instance I corresponds to a collection of instances
of an optimization problem P and each scenario ξ ∈ U defines a single
instance of the optimization problem, i.e., I = {Iξ ∈ DP : ξ ∈ U}. For
this introduction, we let P be a minimization problem. An analogous
consideration is certainly possible for maximization problems as well.

Strict Robustness We start with considering the concept of strict ro-
bustness. Due to our above interpretation of the uncertainty set U , we
seek a solution x in the intersection

⋂
ξ∈U fP(Iξ), i.e., a solution x which

is feasible for every given instance Iξ encoded by the uncertainty set U .
Such a solution is called robust feasible or a robust solution for I and
sup {SOL(Iξ, x) : ξ ∈ U} is called the corresponding robust solution value.
Note that this implicitly claims the instances Iξ for ξ ∈ U to be of a common
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structure. To hedge against the prevalent uncertainty, it is now natural
to ask for a robust solution with the best possible worst-case outcome.
Hence, we aim to find a robust solution such that its robust solution value
is minimum. To achieve this, we aggregate the instances Iξ for ξ ∈ U and
consider the robust counterpart of the given uncertain problem, i.e., the
optimization problem

min {t : SOL(Iξ, x) ≤ t, x ∈ fP(Iξ) for ξ ∈ U} . (2.3)

We call an optimization problem of type (2.3) robust optimization problem.
The corresponding decision problem is called robust decision problem. For
an optimal solution (x?, t?) to (2.3), we get that x? is robust feasible for I
and t? is the minimum robust solution value. We also say that x? is robust
optimal for I.

In current literature, various methods for defining classes of uncertainty
sets have been proposed. We list [BS04; BS03; KY97; Kas08] for a general
overview. In this thesis, an uncertainty set U is a non-empty and compact
subset of Rp≥0 for some p ∈ N>0. Moreover, we assume that 〈U〉 is Ω(p)
as well as maxξ∈U ξj > 0 for every coordinate j ∈ {1, . . . , p}. Further, we
suppose that the encoding length of every scenario ξ ∈ U is polynomial
in 〈U〉. We mostly deal with uncertainty sets contained in Np. Hence, these
uncertainty sets are always finite.
In the following, we specify some classes of uncertainty sets that we

encounter in this thesis. Note that, unusually, all presented classes are
composed of subsets of Np. Let J := {1, . . . , p} denote the corresponding
index set.

Discrete Uncertainty One arising concept is that of discrete uncertainty
in which, for some fixed k ∈ N>0, the uncertainty set is given as an explicit
list of k scenarios, cf. [KY97; KZ16]. Hence, we have UD :=

{
ξ1, . . . , ξk

}
⊆

Np and the encoding length is given by 〈UD〉 =
∑k
l=1

〈
ξl
〉
. A robust

optimization or decision problem P restricted to instances with discrete
uncertainty is referred to as P with discrete uncertainty. For an application
of discrete uncertainty, we mention [Dha+05].

Interval Uncertainty Soyster introduced interval uncertainty in the 1970s
in the early stages of the theory of robust optimization, cf. [Soy73]. When
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considering interval uncertainty, the uncertainty set is described by the
integral points of a hypercube, i.e., UI := {ξ ∈ Np : a ≤ ξ ≤ b} for some
a, b ∈ Np with a ≤ b. Here, we have 〈UI〉 = 〈a〉+ 〈b〉. A robust optimization
or decision problem P restricted to instances with interval uncertainty is
referred to as P with interval uncertainty. Despite its conservatism, interval
uncertainty is frequently used and it gives first insights into a robust problem
by its simple structure [KY97]. An application of interval uncertainty to
Min Set Cover is given in [PA13].

Budgeted Uncertainty We investigate budgeted uncertainty as a gener-
alization of interval uncertainty, i.e., UB := {ξ ∈ Np : a ≤ ξ ≤ b, ξ(J) ≤ Γ}
with a, b ∈ Np, a ≤ b, and Γ ∈ N. We have 〈UB〉 = 〈a〉+ 〈b〉+ 〈Γ〉. Note that
this definition of budgeted uncertainty set differs from other settings using
the same expression, e.g. [NO13; Cha+18; BPP19; HG18]. Here, we bound
the total sum of the uncertain values. Moreover, this type of uncertainty is
especially meaningful if there is a common interpretation of the uncertain
parameters among the entries ξ1, . . . , ξp of a scenario ξ ∈ UB. A robust
optimization or decision problem P restricted to instances with budgeted
uncertainty is referred to as P with budgeted uncertainty. Budgeted un-
certainty sets are widely applied in practice, e.g., in scheduling surgery
blocks [Den+10], in emergency logistics planning [Ben+11], in inventory
control [AP05], as well as in energy hub management [PVV12].

Multi-budgeted Uncertainty When considering multi-budgeted uncer-
tainty, we extend the notion of budgeted uncertainty. To that end, let S be
a finite collection of subsets of the given index set J . Then, for each
S ∈ S, we are given two non-negative integers aS , bS with aS ≤ bS .
The corresponding multi-budgeted uncertainty set is defined as UM :=
{ξ ∈ Np : aS ≤ ξ(S) ≤ bS for S ∈ S} and for the encoding length we get
〈UM〉 = 〈S〉+

∑
S∈S (〈aS〉+ 〈bS〉). A robust optimization or decision prob-

lem P restricted to instances with multi-budgeted uncertainty is referred to
as P with multi-budgeted uncertainty.

Ellipsoidal Uncertainty Ellipsoidal uncertainty sets and its generaliza-
tions belong to the most extensively studied uncertainty sets because of
their wide range of advantages in modeling and computing. In this the-
sis, an ellipsoidal uncertainty set is given by an ellipsoid E(A, a) ⊆ Rp≥0
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for a positive definite matrix A ∈ Qp×p and a vector a ∈ Np. We have
UE :=

{
ξ ∈ Np : (ξ − a)TA−1(ξ − a) ≤ 1

}
, i.e., UE contains all integral vec-

tors of the underlying ellipsoid E(A, a). We get 〈UE〉 = 〈A〉+ 〈a〉. Observe
that this definition of ellipsoidal uncertainty is more restrictive than the one
given in [BN99]. A robust optimization or decision problem P restricted
to instances with ellipsoidal uncertainty is referred to as P with ellipsoidal
uncertainty. Concerning applications, ellipsoidal uncertainty is often moti-
vated from the field of stochastics, especially from the normal distribution.
Here, deterministic ellipsoidal uncertainty can be used to model stochastic
uncertainty [BN98; BN99]. In [BN99], this approach is applied to a portfolio
problem.

Γ-Uncertainty Γ-uncertainty was first introduced in [BS03; BS04] as
a possibility to overcome the drawbacks of Soyster’s conservative model
of uncertainty, cf. [Soy73]. In this thesis, a Γ-uncertainty set is given
by UΓ := {ξ ∈ Np : a ≤ ξ ≤ a+ â, | {k : ξk 6= ak} | ≤ Γ} with nominal vector
a ∈ Np, deviation â ∈ Np, and Γ ∈ {0, . . . , p}. Hence, 〈UΓ〉 = 〈a〉+ 〈â〉+ 〈Γ〉.
Observe that, unlike [BS03; BS04], we only allow a positive deviation
from the nominal vector. We will see that this restriction is without loss
of generality as the uncertainty set will model demand scenarios. Note
that Γ-uncertainty is closely related to budgeted uncertainty: Atamtürk
shows that Γ-uncertainty is a special case of a generalization of budgeted
uncertainty in which, for every scenario, the weighted total sum of its entries
is bounded [Ata06]. A robust optimization or decision problem P restricted
to instances with Γ-uncertainty is referred to as P with Γ-uncertainty.
In [BPP19], the concept of Γ-uncertainty is applied to a scheduling problem
while, in [Gab+14], it is used for a location-transportation problem.

Polyhedral Uncertainty More generally, a polyhedral uncertainty set is
defined as UP := P(A, b)|p ∩ Np for a polytope P(A, b) ⊆ Rp+l≥0 for some
l ∈ N. The polytope P(A, b) is then called the underlying polytope. We have
〈UP〉 = 〈A〉+ 〈b〉+ 〈p〉. Observe that polyhedral uncertainty sets include
interval, budgeted, multi-budgeted, as well as Γ-uncertainty sets. If the
polytope P(A, b) is integral, we call U integral polyhedral. A robust optimiza-
tion or decision problem P restricted to instances with (integral) polyhedral
uncertainty is referred to as P with (integral) polyhedral uncertainty. For
applications of polyhedral uncertainty, we refer to the already mentioned
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examples above.
In particular, with slight abuse of notation, we note that interval, budgeted,

and Γ-uncertainty sets are integral polyhedral as

UI = {x ∈ Rp : a ≤ x ≤ b} ∩ Np,
UB = {x ∈ Rp : a ≤ x ≤ b, x(J) ≤ Γ} ∩ Np,

UΓ =

{
x ∈ Rp :

aj ≤ xj ≤ aj + âj · wj for j ∈ J,
w(J) ≤ Γ, 0 ≤ w ≤ 1, x ≥ 0

}
∩ Np,

(2.4)

and the underlying polytopes are integral [BS04; Ata06].

A robust optimization or decision problem P is referred to as P with
polynomial time optimization uncertainty if, for every instance I ∈ DP with
uncertainty set U ⊆ Rp≥0 and every vector c ∈ Qp, the optimization problem
maxξ∈U c

Tx can be solved in polynomial time in the encoding length of I
and c. We also say that U has a polynomial time optimization oracle.
By (2.4), this applies to discrete, interval, budgeted, and Γ-uncertainty.

Further, a robust optimization or decision problem P is referred to as P
with polynomial time enumeration uncertainty if, for every instance I ∈ DP
with uncertainty set U ⊆ Rp≥0, |U| is polynomial in 〈I〉, there exists an
algorithmA and a point ξ0 ∈ U such that the elements of U can be recursively
generated from ξ0, i.e., U =

{
ξ0,A(ξ0),A(A(ξ0)), . . .

}
, and A runs in time

polynomial in 〈I〉, cf. [Hem+91]. We also say that U is polynomial time
enumerable. It can readily be seen that this applies to discrete uncertainty.

2.6.1. Adjustable Robustness

The concept of adjustable robustness was introduced in [Ben+04] to overcome
some modeling drawbacks of the general strict robustness approach. A recent
survey concerning this approach is given in [YGH19]. According to the
strict approach, it is assumed that all decisions have to be made before
the actual scenario reveals itself, i.e., all variables correspond to so-called
here and now decisions. But in many applications we encounter variables
which do not represent this kind of decisions. For instance, these could
be auxiliary variables for linearizing a model or variables corresponding to
actual wait and see decisions, which can be made when the true scenario is
already known. To account for this differentiation, when applying adjustable
robustness, we split up the set of variables of a given optimization problem
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into two sets: a set of non-adjustable variables corresponding to here and
now decisions and a set of adjustable variables corresponding to auxiliary
variables or wait and see decisions. Hence, the adjustable variables may
depend on the data and can be adapted after the uncertainty is known.
More generally, this idea can be extended to model variables that depend
on only a part of the data, cf. [BGN09]. For our purposes, we stay with the
more specific approach. Hence, for an uncertain problem {Iξ ∈ DP : ξ ∈ U}
with minimization problem P, we have a set of non-adjustable variables x
and a set of adjustable variables {y(ξ) : ξ ∈ U} and the adjustable robust
counterpart is given by

min {t : SOL(Iξ, (x, y(ξ))) ≤ t, (x, y(ξ)) ∈ fP(Iξ) for ξ ∈ U} . (2.5)

We also call problems of type (2.5) adjustable robust optimization prob-
lems and we refer to the corresponding decision problems as adjustable
robust decision problems. For a solution {x, {y(ξ) : ξ ∈ U}} to (2.5), we also
write (x, y) to stay in line with vector-type notation. On the contrary, the
usual robust counterpart of {Iξ ∈ DP : ξ ∈ U} is

min {t : SOL(Iξ, (x, y)) ≤ t, (x, y) ∈ fP(Iξ) for ξ ∈ U} , (2.6)

which is more stringent than the adjustable robust counterpart. Observe
that, by definition of (2.5) and (2.6), we can distinguish between a solu-
tion (x, y) to (2.5) and a solution (x, y) to (2.6) so that no ambiguities can
occur. In case P is a maximization problem, we define the adjustable robust
counterpart analogously.
In [Ben+04], the authors particularly consider adjustable robust linear

programs and analyze polynomial time solvable cases. But in general, the
optimization problem given in (2.5) is NP-hard. Therefore, the extension of
the notion of approximation algorithms for adjustable robust problems is of
interest. To incorporate the adjustable variables appropriately we define:

Definition 2.9 ((Adjustable) Approximation Algorithm). Let an adjustable
robust minimization problem P ′ as in (2.5) be given. For some r ≥ 1, an (ad-
justable) r-approximation algorithm for P ′ is an algorithm A that, given an
instance I = {Iξ ∈ DP : ξ ∈ U} of P ′, computes a solution (x, y) to I with
the property that SOL(I, (x, y)) ≤ r ·OPT(I). The algorithm A computes x
in time polynomial in 〈I〉 and, for every ξ ∈ U , A computes y(ξ) in time
polynomial in 〈I〉. Analogously, we define an adjustable r-approximation
algorithm in case P ′ is a maximization problem.
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In the remainder of this section, we focus on a specific adjustable robust
problem, namely the Min Adjustable Robust Covering problem (Min ARC)
which is introduced, for instance, in [BG10]. Given

(a) constraint matrices A ∈ Qm×n1 and B ∈ Qm×n2 ,

(b) objective function vectors c ∈ Qn1

≥0 and d ∈ Qn2

≥0,

(c) two non-negative integers p1 ≤ n1 and p2 ≤ n2,

(d) and an uncertainty set U ⊆ Rm≥0,

solving an instance of Min ARC corresponds to solving the mixed integer
program Parc(U):

Parc(U) min
x, y

cTx+ max
ξ∈U

dT y(ξ)

s.t. Ax+By(ξ) ≥ ξ for ξ ∈ U
x, y(ξ) ≥ 0 for ξ ∈ U

x ∈ Rn1−p1 × Np1

y(ξ) ∈ Rn2−p2 × Np2 for ξ ∈ U .

We assume that Parc(U) is feasible and let zarc(U) ∈ R≥0 denote its optimal
value. This problem and straightforward variations are extensively studied
in literature. Exemplarily, we refer to [BG10; BC10; BGS11; BG11]. For
our current purposes, we close this section by showing that, for p2 = 0, we
can assume the uncertainty set U to be convex.

Lemma 2.10. For an instance of Min ARC with p2 = 0, it holds true
that zarc(U) = zarc(conv(U)). Further, we can assume that, in any solu-
tion (x, y) to Parc(conv(U)), we have that, for ξ ∈ conv(U), y(ξ) is a convex
combination of the vectors {y(ξ′) : ξ′ ∈ U}.

Proof. It holds that zarc(U) ≤ zarc(conv(U)) as U ⊆ conv(U). Let (x, y) be
feasible for Parc(U). Any scenario ξ′ ∈ conv(U) can be written as a finite
convex combination of k ∈ N scenarios in U , i.e.,

ξ′ =

k∑
l=1

αl · ξl

33



2. Preliminaries

with ξl ∈ U for every l ∈ {1, . . . , k}, α ∈ Rk≥0 as well as
∑k
l=1 αl = 1.

We define a solution (x′, y′) to Parc(conv(U)) by setting x′ := x and, for
ξ′ ∈ conv(U),

y′(ξ′) :=

k∑
l=1

αl · y(ξl).

Then, we have x′ ≥ 0 and, for all ξ′ ∈ conv(U), y′(ξ′) ≥ 0 as well as

Ax′ +By′(ξ′) = Ax+

k∑
l=1

αl ·By(ξl) =

k∑
l=1

αl ·
(
Ax+By(ξl)

)
≥

k∑
l=1

αl · ξl = ξ′.

Thus, the constructed solution is feasible. For the solution value, it holds
true that

cTx′ + max
ξ′∈conv(U)

dT y′(ξ′)

= cTx+ max

∑
ξ∈U ′

αξ · dT y(ξ) : U ′ ⊆ U finite, α ∈ R|U
′|

≥0 , α(U ′) = 1


= cTx+ max

ξ∈U
dT y(ξ).

In particular, if (x, y) is optimal for Parc(U), we get that

zarc(conv(U)) ≤ cTx+ max
ξ∈U

dT y(ξ) = zarc(U).
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3. Robust Min q-Multiset
Multicover

In this chapter, we define and investigate our main problem of interest,
namely the Robust Min q-Multiset Multicover problem for a fixed integer
q ∈ N>0. This problem forms a special robust Multiset Multicover problem
as the multisets are not explicitly given and their cardinalities are bounded
by q. We present two integer programming formulations of the problem that
further allow for interpretations as a robust flow or a robust cut problem.

We begin with the non-robust variant of the problem in Section 3.1. We
provide two equivalent formulations of the problem that we make use of in
subsequent chapters and sections. Furthermore, we give polynomial time
algorithms for the cases q = 1 and q = 2 and show APX-completeness
for the remaining values of q. In Section 3.2, the problem is extended in
a robust manner by introducing demand scenarios. Here, the equivalence
result of the previous section neatly carries over and leads to two robust
integer programs. After the problem’s complexity analysis depending on the
value of q, we describe the means for solving it using both formulations in
Section 3.3. We propose constraint generation as a possible solution method
and therefore analyze the emerging separation problem. It turns out that
the structure of the considered uncertainty set plays a major role during
the solution process. Therefore, in Section 3.4, we investigate restrictions of
the problem to specific classes of uncertainty sets. We conclude this chapter
with a brief consideration of special instances in Section 3.5.

Some parts of this chapter are also published in [KSS19] and [Str21] where,
in [KSS19], the main focus is on budgeted uncertainty. Further, all findings
presented in this chapter are joint work with Sven O. Krumke and Manuel
Streicher. With this collaboration, also Manuel Streicher’s thesis contains a
chapter that covers some of the results mentioned here, cf. [Str21].
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3. Robust Min q-Multiset Multicover

3.1. Problem Definition and Classification
Let us directly start with formally defining the non-robust version of our
Multiset Multicover problem for a fixed positive integer q ∈ N>0. Note that
the value q is not part of the input of an instance of our problem. We will
see that it determines the maximum possible cardinality of the implicitly
given sets.

Problem 3.1 (q-Multiset Multicover (q-MSMC)).
Instance: A finite set J , a demand value dj ∈ N>0 for each j ∈ J , a
collection of subsets J ⊆ 2J , and an integer B ∈ N>0.
Question: Is there x ∈ N|J | with x(J ) ≤ B such that there exists
y ∈ N|J |×|J| satisfying∑

A∈J :
j∈A

yAj ≥ dj for j ∈ J and
∑
j∈A

yAj ≤ q · xA for A ∈ J ?

To obtain a first intuition of the problem consider the following reformulation
of the stated question: Can we choose no more than B subsets of J , with
multiple choices being allowed (xA ∈ N), such that the demand of each
element j ∈ J is covered, when each subset may only cover up to q of its
elements, where again multiple choices are allowed (yAj ∈ N). For a subset
A ∈ J and an element j ∈ J , the integer yAj in the problem definition
models the amount of the demand of element j covered by the subset A.
Note that we can assume yAj = 0 if j /∈ A. The problem is closely related
to Multiset Multicover as the following remark reveals.

Remark 3.2 (Relation to Multiset Multicover). Let an instance of q-MSMC
be given. If, instead of regarding the subset A ∈ J , we regard all multi-
subsets of cardinality q of A, we get an instance of Multiset Multicover(q),
cf. Section 2.4: For A ∈ J and lA ∈ N>0, let A1, . . . , AlA denote the multi-
subsets of size q of A. Our constructed instance of Multiset Multicover(q) is
given by the ground set J and the subsets C := {A1, . . . , AlA : A ∈ J }. The
demand of element j ∈ J remains dj ∈ N>0. Let x̄ ∈ N|C| be a solution to
the constructed instance of Multiset Multicover(q), i.e., x̄Ak

∈ N represents
how many times subset Ak is chosen. We define a solution (x, y) to the given
instance of q-MSMC by xA :=

∑lA
k=1 x̄Ak

and yAj :=
∑lA
k=1 m(j, Ak) · x̄Ak

for A ∈ J and j ∈ J . As by construction
∑
j∈Am(j, Ak) ≤ q for every
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k ∈ {1, . . . , lA}, we obtain, for A ∈ J ,

∑
j∈A

yAj =
∑
j∈A

lA∑
k=1

m(j, Ak) · x̄Ak
=

lA∑
k=1

∑
j∈A

m(j, Ak) · x̄Ak

≤
lA∑
k=1

q · x̄Ak
= q · xA

and the second set of constraints in Problem 3.1 is already fulfilled. Rewriting
the remaining constraints we get, for j ∈ J ,

∑
A∈J :
j∈A

yAj =
∑
A∈J :
j∈A

lA∑
k=1

m(j, Ak) · x̄Ak
≥ dj

as x̄ is feasible. Further, x(J ) =
∑
A∈J

∑lA
k=1 x̄Ak

≤ B, so that (x, y) is a
solution to the given instance of q-MSMC. Likewise, given a solution (x, y)
to the instance of q-MSMC, we can compute a solution x̄ to the Multiset
Multicover(q) instance in polynomial time. Observe that lA =

(|A|+q−1
q

)
is O(|A|q) so that the input size is raised only by a polynomial factor as q is
not part of the input. Thereby, q-MSMC is, in some sense, a representation
of certain Multiset Multicover(q) instances having smaller input sizes as the
multisets are not explicitly given.

In the sequel, we mostly work with the following alternative definition
of q-MSMC where the given collection of subsets J is represented using a
bipartite graph, cf. Section 2.3.

Problem 3.3 (q-Multiset Multicover (q-MSMC)).
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0 for
each j ∈ J , a bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that there exists y ∈
N|I|×|J| satisfying∑

i∈N(j)

yij ≥ dj for j ∈ J and
∑

j∈N(i)

yij ≤ q · xi for i ∈ I?

Identifying each element i ∈ I with its neighborhood NG(i) ⊆ J yields the
equivalence of the two problem definitions. For an instance of q-MSMC,
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5 d5 = 2

4 d4 = 2

3 d3 = 3

2 d2 = 1

1 d1 = 2

ax̄a = 1

bx̄b = 2

cx̄c = 2

2
0
1
3
0
2
2

Figure 3.1.: Bipartite graph G defined in Example 3.4. A possible allocation
of locations to regions is given as edge labels.

we call the set I locations and the set J regions. Further, the value dj
describes the number of clients or the total demand of region j ∈ J . The
variable xi denotes the number of suppliers in location i ∈ I while the
allocation variable yij describes the number of clients of region j covered
by the suppliers in location i. Note that the clients in region j can only be
covered by locations in NG(j) and, conversely, every supplier in location i
can only cover clients in NG(i). Therefore, without loss of generality, the
variable yij can be set to zero if [i, j] /∈ E. Finally, the value q can be
interpreted as the capacity of a supplier, i.e., the total number of clients a
single supplier can serve. The following example illustrates the problem.

Example 3.4. Let q := 2 and consider the bipartite graph G shown in
Figure 3.1 with locations I := {a, b, c}, regions J := {1, 2, 3, 4, 5}, demand
vector d := (2, 1, 3, 2, 2)T , and B := 6. Throughout this thesis locations
are drawn as boxes and regions are illustrated as circles. If we put one
supplier in location a and two suppliers in each of the locations b and c,
we obtain a solution: For x̄1 := 1 and x̄b := x̄c := 2, a possible choice of
values for ȳ ∈ N3×5 is shown as edge labels, e.g., the supplier in location a
covers two clients in region 1 and no client in region 2. Note that this
interpretation of the suppliers is not always unique, e.g., in location c there
are two possible interpretations for the two suppliers: Either each supplier
covers a single region or they both split their capacity across the regions 4
and 5. As the total number of suppliers is 5 ≤ 6, we have a yes-instance.
When considering the problem as a Multiset Multicover(2) problem, we first
identify each location with its neighborhood in G and obtain N(a) = {1, 2},
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N(b) = {2, 3}, and N(c) = {3, 4, 5}. Observe that these three sets would
make up the set J in the original definition, i.e., Problem 3.1. Now, we
consider all multisubsets of size 2 of these sets and obtain the sets

N(a) {1,1}, {1, 2} , {2, 2} ,
N(b) {2, 2} , {2,3}, {3,3},
N(c) {3, 3} , {3, 4} , {3, 5} , {4, 5} , {4,4}, {5,5}.

A set {j1, j2} corresponding to location i captures the information that a
supplier in location i can cover one client in region j1 and one client in
region j2. Selecting the multisets printed in bold corresponds to our choice
of y. Note that this is not the only possible selection of multisets: For
location c, it is also possible to select the set {4, 5} twice. This relates to
the two possible interpretations of the suppliers in location c. All in all, this
example demonstrates another difference to classical Multiset Multicover(q)
problems as the presented solution (x̄, ȳ) corresponds to more than one
choice of multisets. /

In the optimization version of q-MSMC, that we call Min q-Multiset
Multicover (Min q-MSMC), we aim for a minimum number of suppliers.
Subsequently, we show that the following mixed integer program P(d) models
Min q-MSMC for some demand vector d ∈ N|J|>0:

P(d) min
x, y

∑
i∈I

xi (3.1a)

s.t.
∑

i∈N(j)

yij ≥ dj for j ∈ J (3.1b)

∑
j∈N(i)

yij ≤ q · xi for i ∈ I (3.1c)

yij ≥ 0 for i ∈ I, j ∈ J (3.1d)
xi ∈ N for i ∈ I. (3.1e)

We also refer to P(d) as the allocation formulation. Note that the variables y
are not forced to be integral. Theorem 3.8 argues why this is no restriction.
We begin with stating some trivial bounds for a given instance of Min
q-MSMC.
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Observation 3.5. First of all, an instance of Min q-MSMC is feasible if
and only if every region j ∈ J is adjacent to at least one location i ∈ I.
This condition can be checked in time O(|J |). Therefore, we restrict our
analysis to feasible instances from now on. Observe that we have |J | ≤ |E|
then. Further, as we aim to minimize, it suffices to only consider solutions
x ∈ N|I| where, for every i ∈ I, xi ≤ d(N(i)). Hence, for every i ∈ I, the
variable xi can be bounded from above without cutting off the optimal
solution. Moreover, any solution (x, y) to P(d) fulfills∑

i∈I
q · xi ≥

∑
i∈I

∑
j∈N(i)

yij =
∑
j∈J

∑
i∈N(j)

yij ≥
∑
j∈J

dj = d(J).

Thus, P(d) has a finite optimal solution (x?, y?) and we have∑
i∈I

x?i ≥
⌈
d(J)

q

⌉
and x?i ≤

⌈
d(N(i))

q

⌉
for all i ∈ I, cf. [Mey74; Sch98].

Example 3.6. By Observation 3.5 we directly obtain that the solution x̄
given in Example 3.4 is optimal. /

Furthermore, we observe a link to the capacitated Min Facility Location
problem [Sri95]. In an instance of this problem, we have given a set I of
locations and a set J of regions. Each location i ∈ I has a set-up cost fi ∈ N
and a capacity qi ∈ N>0 and each region j ∈ J has a demand dj ∈ N>0.
Furthermore, for i ∈ I and j ∈ J , cij ∈ N is the cost of transporting one
demand unit from location i to region j. The goal is to find an optimal
solution to

min
x, y

∑
i∈I

fi · xi +
∑
i∈I

∑
j∈J

cij · yij

s.t.
∑
i∈I

yij = 1 for j ∈ J∑
j∈J

dj · yij ≤ qi · xi for i ∈ I

yij ≥ 0 for i ∈ I, j ∈ J
xi ∈ B for i ∈ I,
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i.e., we want to decide on the locations to be set up and on the proration
of locations to regions such that the demand of each region is satisfied,
the capacity of each location is respected, and the total cost is minimized.
Taking a closer look, there are three main differences to mention: In an
instance of Min q-MSMC,

(a) the capacity of a location is a multiple of q and is not bounded from
above,

(b) both cost values and the allocation variables y do not appear in the
objective function, and

(c) the bipartite graph G does not need to be complete.

Especially the last two items are the reasons why we decided to define the
problem as a covering problem. Another reason for this decision is given
by the upcoming Theorem 3.8 where we prove that Ps(d) is an alternative
formulation to P(d) which does not use the variables y.

Ps(d) min
x

∑
i∈I

xi (3.2a)

s.t.
∑

i∈N(S)

q · xi ≥
∑
j∈S

dj for S ⊆ J (3.2b)

xi ∈ N for i ∈ I. (3.2c)

In correspondence to the allocation formulation, we sometimes refer to Ps(d)
as the subset formulation. Before proving the mentioned theorem, we define
a directed network that will be of use not only in Theorem 3.8.

Definition 3.7 (Network HG(q · x, d)). Given an instance I of Min q-
MSMC with bipartite graph G = (I ∪ J,E) and a vector x ∈ N|I|, we define
the directed network HG(q · x, d) = (V,R, c) with V := I ∪ J ∪ {s, t} and
R := RG ∪Rs ∪Rt, where s, t /∈ I ∪ J , RG contains all edges of E directed
from I to J , Rs := {(s, i) : i ∈ I}, and Rt := {(j, t) : j ∈ J}, cf. Figure 3.2.
We set the capacity of each arc r ∈ R to

c(r) :=


∞, r ∈ RG,
q · xi, r ∈ Rs,
dj , r ∈ Rt.
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s

i

...

j

... t

q · xi

∞

dj

Figure 3.2.: Network HG(q · x, d) of Definition 3.7 where the capacity of an
arc is given as an arc label. All thick arcs have infinite capacity.

Theorem 3.8. For an instance I of Min q-MSMC, it holds that x ∈ N|I| is
a solution to Ps(d) if and only if there exists y ∈ R|I|×|J|≥0 such that (x, y) is
a solution to P(d). Furthermore, without loss of generality, we can assume
y ∈ N|I|×|J|.

Proof. If (x, y) is a solution for P(d), then x is also feasible for Ps(d), as for
any S ⊆ J we have:∑

i∈N(S)

q · xi ≥
∑

i∈N(S)

∑
j∈N(i)

yij =
∑

i∈N(S)

( ∑
j∈N(i)∩S

yij +
∑

j∈N(i)\S

yij

)
≥

∑
i∈N(S)

∑
j∈N(i)∩S

yij =
∑
j∈S

∑
i∈N(j)

yij ≥
∑
j∈S

dj .

Now, suppose we are given a solution x for Ps(d). We claim that the
maximum s-t-flow in HG := HG(q · x, d) = (V,R, c) has flow value d(J),
where G is the bipartite graph of the instance I. Note that, given an s-t-
flow f with flow value d(J), due to the flow conservation and the capacity
constraints we can define a solution (x, y) to P(d) where yij := f(i, j) for
all (i, j) ∈ RG. Further, the flow value of any s-t-flow can never be larger
than d(J) as the s-t-cut (S?, T ?) with T ? := {t} has cut capacity d(J). Thus,
it suffices to show that a maximum s-t-flow in HG has flow value no less
than d(J). To this end, let (S, T ) be a finite s-t-cut in HG. Let J ′ := J \ S,
possibly being the empty set. If any location in the neighborhood of J ′ is
contained in S, the s-t-cut contains an arc with infinite capacity. Hence,
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assume N−HG
(J ′) ∩ S = ∅ so that N−HG

(J ′) ⊆ T . Since x is a solution
to Ps(d), we obtain, for any subset Q ⊆ J ,∑

i∈N−HG
(Q)

q · xi =
∑

i∈NG(Q)

q · xi ≥
∑
j∈Q

dj .

We get

c(S, T ) ≥
∑
j∈J∩S

dj +
∑

i∈N−HG
(J′)

q · xi ≥
∑
j∈J∩S

dj +
∑
j∈J′

dj =
∑
j∈J

dj .

Thus, every s-t-cut has capacity larger or equal to d(J) and by Theorem 2.6
we obtain the desired result for y ∈ R|I|×|J|≥0 . Furthermore, the capacities
of the arcs in Rs and Rt of the network HG are integral. Thus, there
exists an integral flow f in HG if and only if there exists a continuous
flow f ′ in HG and integrality of y can be assumed without loss of generality,
cf. [AMO93].

In particular, Theorem 3.8 shows that the interpretation of the variables x
does not change between P(d) and Ps(d).

Observation 3.9. Taking a closer look at the proof of Theorem 3.8 we
observe that the integrality of x ∈ N|I| is only needed to show that an integral
solution for y ∈ R|I|×|J|≥0 exists. Hence, the corresponding LP-relaxations
of P(d) and Ps(d) are equivalent as well. Furthermore, Theorem 3.8 also
applies for d ∈ N|J|.

At first glance, this reformulation of Min q-MSMC seems to be of limited
use, as we increase the number of constraints exponentially, i.e., we obtain a
non-compact formulation of the problem. Nevertheless, this new formulation
also comes with a decrease in the number of variables and will become
helpful when introducing demand uncertainty in Section 3.2.
In the remainder of this section, we analyze the complexity of q-MSMC

for different values of q ∈ N>0. We see that, while there are polynomial
time algorithms for the cases q = 1 and q = 2, we shall not hope for such
an algorithm if q ≥ 3. For q ∈ {1, 2}, the polynomial time solvability is
directly given by polynomial time solvability of Min Multiset Multicover(K)
for K ≤ 2 [Sch02]. Nevertheless, here we present strongly polynomial time
algorithms exploiting the structure of our problem.
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Proposition 3.10. Min 1-MSMC can be solved in time O(|I|+ |J |).

Proof. Given an instance of Min 1-MSMC, in any solution, each client
needs to be assigned a unique supplier. Thus, we initialize x := 0 and, for
each client in some region j ∈ J , we put a single supplier in some location
i ∈ N(j). This yields a solution with d(J) suppliers which is optimal by
Observation 3.5. We can find this solution in time linear in |I|+ |J |.

Transforming an instance of Min 1-MSMC to an instance of Min Multiset
Multicover(1) leads an instance with |J | many elements and |E| many sets,
where E is the edge set of the given bipartite graph. The constructed
instance can then be solved in time O(|J |) leading to a total running
time of O(|E|). Hence, the procedure presented in Proposition 3.10 is
evidently superior. For q = 2, we can still solve Min q-MSMC in strongly
polynomial time. Specifically, we show how to compute an optimal solution
using an algorithm for Min b-Edge Cover which is a generalization of
Problem 2.2.

Problem 3.11 (Min b-Edge Cover).
Instance: A graph G = (V,E) and a vector b ∈ N|V |>0 .
Solution: A b-edge cover x ∈ N|E|, i.e.,

∑
e∈δ(v) m(v, e)·xe ≥ bv for v ∈ V .

Measure: The value x(E).

As for Min Edge Cover, an instance of Min b-Edge Cover can be solved
in polynomial time by first solving the corresponding instance of Max b-
Matching. Then, the computed vector is augmented to an optimal solution
in time O(|E|) [Sch02].

Problem 3.12 (Max b-Matching).
Instance: A graph G = (V,E) and a vector b ∈ N|V |>0 .
Solution: A b-matching x ∈ N|E|, i.e.,

∑
e∈δ(v) m(v, e) ·xe ≤ bv for v ∈ V ?

Measure: The value x(E).

Theorem 3.13. Min 2-MSMC can be solved in time O(|I|5/2|J |5/2).

Proof. Let an instance of Min 2-MSMC be given. Note that we may
bound the number of clients dj of any region j ∈ J by the number of
locations |I|: Suppose dj ≥ |I|+1 for some j ∈ J . Then, in any solution (x, y)
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to P(d), there is some i ∈ N(j) such that yij ≥ 2. Thus, given an optimal
solution (x?, y?), we can find i′ such that y?i′j ≥ 2. Removing one supplier
from location i′ now yields an optimal solution to the same instance except
for the demand of region j being dj − 2. Label this instance as I ′. On
the other hand, we may also solve I ′ and then add an additional supplier
to any location adjacent to j to get an optimal solution to I. We can
therefore decrease the demands of all regions j with dj ≥ |I| + 1 to |I|,
respectively |I|−1, by adding d1/2(dj − |I|)e many suppliers to some location
connected to j. This can be done in constant time for every region j ∈ J .
Now regard the following procedure. We transform a given instance

of the modified Min 2-MSMC problem into an instance of Min Multiset
Multicover(2): Each region j ∈ J determines an element of the ground
set and, for every 2-element multiset {j1, j2} of J , we check whether there
is a location i ∈ N(j1) ∩ N(j2). If so, we add the set {j1, j2}. This
gives an instance with |J | many elements and at most |J |2 many sets
in time O(|I||J |2). In fact, this also yields an instance of a Min b-Edge
Cover problem if we set up a vertex for each element j, an edge for each
set connecting the vertices of the set and b := d, cf. [Sch02]. According
to [Sch02] the corresponding Max b-Matching instance can be solved in
time O(|I|5/2|J |5/2) which determines the running time.

In the following, we see that Min q-MSMC is a generalization of Min Set
Cover(q). Since Min Set Cover(K) is an APX-complete problem for any
fixed K ≥ 3 (cf. Section 2.4), we obtain the subsequent result.

Theorem 3.14. For any fixed q ≥ 3, Min q-MSMC is APX-hard.

Proof. We present an L-reduction from the APX-complete problem Min
Set Cover(3). To that end, let an instance I of Min Set Cover(3) be given,
i.e., let S be a set and C be a collection of subsets of S where |C| ≤ 3 for
all C ∈ C. We create an instance I ′ of Min q-MSMC in the following way:
Due to legibility, assume the subsets C ∈ C have unique indices iC ∈ N. Let
I := {iC : C ∈ C}, J := S, and define the bipartite graph G by N(iC) := C
for all C ∈ C. Further, let dj := 1 for all j ∈ J . Clearly, this construction
can be accomplished in polynomial time.
Now, let C′ ⊆ C be an optimal solution to I. Clearly, setting xiC to 1 if

C ∈ C′ and zero otherwise yields a solution to I ′ with
∑
C∈C xiC = OPT(I).

Therefore, we have OPT(I ′) ≤ OPT(I).
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On the other hand, in any solution x to I ′, we can assume that, for all
C ∈ C, xiC ≤ 1 as q ≥ 3 ≥ |N(iC)|. Thus, C′ := {C ∈ C : xiC = 1} is a
solution to I with value

∑
C∈C xiC and we get

SOL(I, C′)−OPT(I) =
∑
C∈C

xiC −OPT(I)

≤ SOL(I ′, x)−OPT(I ′).

Observe that, if x is an optimal solution for I ′, we also get OPT(I) ≤
OPT(I ′).

Corollary 3.15. For any fixed q ≥ 3, q-MSMC is strongly NP-complete.

Proof. As a consequence of Theorem 3.8, for a given instance of q-MSMC,
we may test if a vector x ∈ N|I| is feasible by one Max Flow computation.
As we can assume that xi ≤ d(N(i)) for i ∈ I, cf. Observation 3.5, we get
that q-MSMC is contained in NP. Moreover, NP-hardness directly follows
from the proof of Theorem 3.14 as a solution to I with at most B ∈ N sets
leads to a solution to I ′ with value at most B in polynomial time and vice
versa.

Remark 3.2 reveals Min q-MSMC to be a special case of Min Multiset
Multicover(q). It is well-known that Min Multiset Multicover can be ap-
proximated within a factor of H(s), where s ∈ N is the size of the largest
multiset of an instance, compare [Dob82]. If we regard Min q-MSMC as
a Min Multiset Multicover problem as in Remark 3.2, all multisets have
fixed size q. We therefore automatically get an H(q)-approximation for Min
q-MSMC.

Observation 3.16. There is an H(q)-approximation algorithm for Min
q-MSMC.

This directly leads to an enhancement of Theorem 3.14 as Min q-MSMC
is contained in APX.

Corollary 3.17. For any fixed q ≥ 3, Min q-MSMC is APX-complete.

After having introduced Min q-MSMC and having analyzed its complexity,
we now concentrate on a robust version of the problem. Therefore, we often
refer to Min q-MSMC as the non-robust version.
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3.2. Problem Definition and Classification of
the Robust Version

In this section, we extend the initial problem Min q-MSMC to include
uncertainty in the number of clients dj of each region j ∈ J . We apply
concepts of robust optimization such as strict and adjustable robustness,
see Section 2.6. Thus, we consider an uncertainty set U ⊆ N|J| of possible
demand scenarios that we have to take into account while we do not know
the true scenario yet. Hence, each scenario ξ ∈ U defines a single problem
instance in the fashion of Min q-MSMC when denoting the number of clients
of region j by dj := ξj for j ∈ J . But note that, for j ∈ J , ξj = 0 is
feasible now to account for the possibility of absent clients in region j in
some scenario ξ. We define the following decision problem for a fixed integer
q ∈ N>0.

Problem 3.18 (Robust q-Multiset Multicover (Robust q-MSMC)).
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every subset
S ⊆ J and every scenario ξ ∈ U , we have∑

i∈N(S)

q · xi ≥
∑
j∈S

ξj?

The minimization problem corresponding to Robust q-MSMC, called Robust
Min q-MSMC, can be formulated as follows:

min
x

∑
i∈I

xi (3.3a)

s.t.
∑

i∈N(S)

q · xi ≥
∑
j∈S

ξj for S ⊆ J, ξ ∈ U (3.3b)

xi ∈ N for i ∈ I. (3.3c)

The intuition of the robust version of Min q-MSMC is to allocate the
suppliers among the locations, such that, in any scenario ξ ∈ U , all clients
may be served. However, which client is served by which location can be
decided separately for every scenario. Taking a closer look at (3.3), the
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uncertain data only occurs on the right-hand side of the constraints. Thus,
the equivalence to the following formulation is immediate.

Ps(U) min
x

∑
i∈I

xi (3.4a)

s.t.
∑

i∈N(S)

q · xi ≥ max
ξ∈U

∑
j∈S

ξj for S ⊆ J (3.4b)

xi ∈ N for i ∈ I. (3.4c)

We refer to this formulation as Ps(U) for a given uncertainty set U . There
should be no risk of confusion to Ps(d) defined on Page 41 because, in
the robust case, the argument is a set instead of a vector. Nevertheless,
note that Ps({d}) = Ps(d). We also call (3.4) the (robust) set formulation
where we usually omit the adjective “robust” if the considered variant is
clear from the context. All in all, we can reformulate the question posed
in Problem 3.18: Is there x ∈ N|I| with x(I) ≤ B such that, for all subsets
S ⊆ J , we have ∑

i∈N(S)

q · xi ≥ max
ξ∈U

∑
j∈S

ξj?

Remark 3.19. As the uncertainty set U is assumed to be compact and
non-empty, cf. Section 2.6, we know that maxξ∈U ξ(S) exists for every S ⊆ J .

The above maximization term will appear more often in this thesis. Thus,
we define:

Problem 3.20 (Max Robust Sum).
Instance: An uncertainty set U ⊆ Nn and a subset S ⊆ {1, . . . , n}.
Solution: A scenario ξ ∈ U .
Measure: The value ξ(S).

We refer to the decision version of Max Robust Sum as Robust Sum. It is not
surprising that Robust Sum is an NP-hard problem as the uncertainty set U
can be used to model the set of solutions of some other NP-complete problem.
Nevertheless, we give a short formal proof of this result in which we apply
the well-known Independent Set problem [GJ79; PY91].
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Problem 3.21 (Independent Set).
Instance: A simple graph G = (V,E) and a positive integer B ≤ |V |.
Question: Does G contain an independent set of size at least B, i.e., a
subset V ′ ⊆ V with |V ′| ≥ B and no two vertices in V ′ are neighbors?

Lemma 3.22. Robust Sum is strongly NP-complete even for S =
{1, . . . , n}.

Proof. Robust Sum is contained in NP by our assumptions on U , cf. Sec-
tion 2.6. To show NP-hardness, we consider an instance of Independent
Set, i.e., a simple graph G = (V,E) and an integer B ∈ N>0 with B ≤ |V |.
Let V = {1, . . . , n} for n ∈ N>0. We define

U := {ξ ∈ Bn : ξu + ξv ≤ 1 for [u, v] ∈ E} ,

i.e., the set U is the set of all incidence vectors of independent sets of G.
Furthermore, we set S := {1, . . . , n}. Then, a subset V ′ ⊆ V is an indepen-
dent set of size at least B if and only if there exists a scenario ξ ∈ U with
ξ(S) ≥ B. As the instance of Robust Sum can be constructed in polynomial
time, the claim follows.

Remark 3.23. For later reference, we note that Robust Sum is strongly
NP-complete even if the bound B ∈ N>0 of the instance is a multiple of q
for some fixed q ∈ N>0. To see this we apply the above construction to the
graph G′ that is the union of q copies of G, i.e.,

U := {ξ ∈ Bqn : ξi·n+u + ξi·n+v ≤ 1 for [u, v] ∈ E and i ∈ {0, . . . , q − 1}}

with S := {1, . . . , qn}. Then, an independent set of G of size at least B leads
to an independent set ofG′ of size at least q·B and, hence, to a scenario ξ ∈ U
with ξ(S) ≥ q·B. On the other hand, let a scenario ξ ∈ U with ξ(S) ≥ q·B be
given. Then, ξ encodes an independent set in G′ of size at least q ·B. There
must exist some i′ ∈ {0, . . . , q − 1} with

∑
v∈V ξi′·n+v ≥ B as otherwise

ξ(S) < q ·B. Then, V ′ :=
{
v ∈ V : ξ′i′·n+v = 1

}
is an independent set of G

of size at least B. Note that this idea also shows that Independent Set
remains NP-complete if the given bound is a multiple of q. We will make
use of this restriction in Chapter 5.

Analogously to the proof of Lemma 3.22, we can show that Max Robust Sum
is APX-hard by an L-reduction from the APX-complete Max Independent
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Set(3) problem, where the degree of the input graph is bounded by 3 [PY91;
BF95]. On the other hand, we have:

Observation 3.24. Max Robust Sum with polynomial time optimization
uncertainty is contained in P. In particular, this holds if the uncertainty sets
are polynomial time enumerable. Altogether, polynomial time solvability is
given for discrete, interval, budgeted, and Γ-uncertainty, cf. Page 31.

As in Section 3.1 we aim to obtain an equivalent robust allocation formu-
lation for Robust Min q-MSMC. A first idea is to formulate the following
mixed integer program.

min
x, y

∑
i∈I

xi (3.5a)

s.t.
∑

i∈N(j)

yij ≥ ξj for j ∈ J, ξ ∈ U (3.5b)

∑
j∈N(i)

yij ≤ q · xi for i ∈ I (3.5c)

yij ≥ 0 for i ∈ I, j ∈ J (3.5d)
xi ∈ N for i ∈ I. (3.5e)

Consider the worst-case vector ξwc with ξwcj := maxξ∈U ξj . Since an optimal
solution (x?, y?) to (3.5) needs to be feasible for P(ξ) for every scenario ξ (see
Page 39), we can compute (x?, y?) by solving P(ξwc). In general P(ξwc) =
Ps({ξwc}) = Ps(U) does not hold, e.g., if U is a budgeted uncertainty set
(cf. Section 3.4.3), and we see that we need to apply a relaxed approach.

Actually, computing a global allocation y is far too conservative and
applying strict robustness is unrewarding. Moreover, (3.5) does not match
the intuition of Robust Min q-MSMC as we have to fix yij before the
actual scenario is revealed. Recalling the interpretation of the variable yij
on Page 47, it is meaningful to fix yij only after the realization of the
true scenario ξ is known. Thus, we merely need to settle the decision
over the number of suppliers xi needed in every location i ∈ I before the
realization becomes apparent. Additionally, we need to ensure the existence
of an allocation y of suppliers to clients. Therefore, we apply the concept
of adjustable robustness with x representing the non-adjustable variables
and y corresponding to the adjustable variables, cf. Section 2.6.1. Then,
our aim is to find x ∈ N|I| minimizing x(I) such that, for every ξ ∈ U , there

50



3.2. Problem Definition and Classification of the Robust Version

exist y(ξ) with (x, y(ξ)) being feasible for P(ξ). This approach leads to the
adjustable robust formulation P(U) that we also call the (robust) allocation
formulation:

P(U) min
x, y

∑
i∈I

xi (3.6a)

s.t.
∑

i∈N(j)

y(ξ)ij ≥ ξj for j ∈ J, ξ ∈ U (3.6b)

∑
j∈N(i)

y(ξ)ij ≤ q · xi for i ∈ I, ξ ∈ U (3.6c)

y(ξ)ij ≥ 0 for i ∈ I, j ∈ J, ξ ∈ U (3.6d)
xi ∈ N for i ∈ I. (3.6e)

Again, note the difference between P(U) and P(d) defined on Page 39.
The variables y(ξ) are also called adjustable variables as they can adjust
themselves in the second stage – when the scenario ξ reveals – to a given
solution x from the first stage. Problems of this type are also known as
two-stage adaptive optimization problems [BG10; BGS11].

Now, we are able to prove the equivalence between the robust set formu-
lation and the robust allocation formulation.

Theorem 3.25. Ps(U) and P(U) are equivalent formulations of Robust
Min q-MSMC. In particular, it holds that x ∈ N|I| is feasible for Ps(U) if
and only if, for every scenario ξ ∈ U , there is y(ξ) ∈ R|I|×|J|≥0 such that (x, y)

with y := (y(ξ1), y(ξ2), . . .) is feasible for P(U). Furthermore, without loss
of generality, we can assume y(ξ) ∈ N|I|×|J| for every ξ ∈ U .

Proof. Since the objective functions are identical, it remains to show that any
solution (x, y) of P(U) yields a solution x of Ps(U) and vice versa. Thus, let
U =

{
ξ1, ξ2, . . .

}
and (x, y) be feasible for P(U) with y = (y(ξ1), y(ξ2), . . .).

Fix a scenario ξ ∈ U . Then, (x, y(ξ)) is feasible for P(ξ). Due to the
equivalence of the formulations in the non-robust version by Theorem 3.8
and Observation 3.9, we get that x fulfills∑

i∈N(S)

q · xi ≥
∑
j∈S

ξj

for S ⊆ J . As this argument holds true for any fixed scenario ξ, we obtain
that x is feasible for Ps(U).
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On the other hand, given a solution x of Ps(U), for any fixed scenario ξ,
there exists y(ξ) ∈ N|I|×|J| such that (x, y(ξ)) is feasible for P(ξ) due to
Theorem 3.8. In total, we obtain that (x, y) with y = (y(ξ1), y(ξ2), . . .) is
feasible for P(U).

Observation 3.26. Similar to Observation 3.9 we see the following:

(a) The corresponding LP-relaxations of P(U) and Ps(U) are equivalent.

(b) If the uncertainty set U has exponentially many scenarios, both formu-
lations are non-compact.

The equivalence of the two formulations allows for an interpretation of
Robust Min q-MSMC as a real world problem. We briefly address this
application in the following.

Example 3.27. A possible implementation of Robust Min q-MSMC lies in
the strategic facility and resource planning of emergency services. Consider
a map area with a given set of potential ambulance stations that forms the
set of locations I. Suppose we discretize the map area so that it consists
of a finite set of points. For each such point on the map, we can find the
subset of potential stations that are located within a reasonable response
time, e.g., a car travel time of 15 minutes. Then, points in the map sharing
the same subset are aggregated and form a region j ∈ J . In that manner,
we construct a bipartite graph G where each location is adjacent to its close
regions. Now, we aim to plan the necessary ambulances and, hence, also the
necessary ambulance stations for a given shift type, e.g., a general night shift.
Strategically, we assume that any ambulance can cover q emergencies in this
shift type for a given fixed integer q ∈ N>0. As the occurrence of emergencies
is uncertain, we introduce an uncertainty set U ∈ N|J| comprising all possible
emergency scenarios in the given shift type. To that end, for a scenario
ξ ∈ U , the value ξj ∈ N describes the number of emergencies happening
in region j in scenario ξ. This construction forms an instance of Robust
Min q-MSMC where the variable xi describes the number of ambulances
needed in location i. Let (x̄, ȳ) be feasible for P(U). Then, no matter which
scenario ξ occurs, there is an allocation ȳ(ξ) of locations to regions saying
that the ambulances in location i cover ȳ(ξ)ij emergencies in region j in
case scenario ξ occurs. Moreover, each emergency occurring in scenario ξ
is covered and the capacity q · x̄i of each location is observed. Altogether,
we make sure that, despite the uncertainty of occurring emergencies, every
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emergency can be reached by some free ambulance within a reasonable time
frame. Including the limited number of available ambulances in practice, we
aim for a solution using a minimum number of ambulances. For more details
on this approach and computational results we refer to [KSS19]. Therein,
the authors focus on budgeted uncertainty. /

The above application of Robust Min q-MSMC leads to an interpretation
of the problem as a robust facility location problem similar to the non-robust
variant. For a survey on robust facility location problems we refer to [Sny06].
However, as the reasons mentioned in Section 3.1 remain valid also for the
robust problem by Theorem 3.25, we refrain from going into detail here.

Similar to the non-robust case, formulation P(U) contains more variables
than Ps(U). On the other hand, the number of constraints in P(U) is
given by |U| · (|I|+ |J |) compared to 2|J| constraints in Ps(U). Hence P(U)
might be meaningful if the number of scenarios can be bounded from above
while Ps(U) might be of use for large uncertainty sets, compare [KSS19].

Further, we see that our initial link to Multiset Multicover(q) given in
Remark 3.2 seems to be lost when including robustness since the allocation
variables can be specified in a subsequent step. In the robust case, the value
xi ∈ N has to be specified in advance for all locations i ∈ I so that, for each
possible scenario ξ ∈ U , there exists, for each location i, a selection of xi
multisets of N(i) of size q that satisfy the upcoming demand. Thus, here
we have a special robust Multiset Multicover problem. In Section 4.2.3, we
present one possibility of regaining a Multiset Multicover representation, but
in general the polynomial relation between the input sizes is not retained.
Therefore, the inclusion of robustness leads to a new problem in comparison
to Section 3.1 which we investigate further in the following. Before we
concentrate on the complexity of Robust q-MSMC, we state the analogue
to Observation 3.5.

Observation 3.28. By our assumptions on U in Section 2.6, we get that an
instance I of Robust Min q-MSMC is feasible if and only if, for every region
j ∈ J , there is some adjacent location i ∈ N(j). Again, we restrict our
considerations to feasible instances as these can be identified in time O(|J |).
Then, a given instance I has a finite optimal solution x? ∈ N|I| with∑

i∈I
x?i ≥

⌈
maxξ∈U ξ(J)

q

⌉
and x?i ≤

⌈
maxξ∈U ξ(N(i))

q

⌉
for all i ∈ I.
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In the following, we utilize the Min Dominating Set(K) problem to
show APX-hardness of Robust Min q-MSMC. The former problem
is APX-complete for K ≥ 3, cf. [LY94; Aus+02], and defined as fol-
lows:

Problem 3.29 (Min Dominating Set(K)).
Instance: A simple graph G = (V,E) with ∆ ≤ K.
Solution: A dominating set V ′ ⊆ V for G, i.e., for all u ∈ V \ V ′, there is
v ∈ V ′ dominating u.
Measure: The cardinality of V ′.

Theorem 3.30. For any fixed q ∈ N>0, Robust Min q-MSMC is APX-hard.

Proof. We show that there exists an L-reduction from Min Dominating
Set(3) to Robust Min q-MSMC. To this end, let a simple graph G = (V,E)
with ∆G ≤ 3 be given and call the instance I. Without loss of generality,
let V = {1, . . . , n} for n ∈ N>0. To construct an instance I ′ of Robust Min
q-MSMC we set I := V and J := {n+ 1, . . . , 2n}. For every edge [u, v] ∈ E,
we add the edge [u, n + v] and the edge [v, n + u] to the bipartite graph
G′ = (I ∪ J,E′). Additionally, for every v ∈ V , the edge [v, n+ v] is added
to G′. Finally, let

U :=
{
ξ ∈ N|J| : 0 ≤ ξ ≤ 1, ξ(J) ≤ 1

}
= {0, e1, . . . , en} ⊆ Nn (3.7)

so that maxξ∈U ξ(S) = 1 for every non-empty subset S ⊆ J .
Let V ′ ⊆ V = I be an optimal solution to I. Then, we set xi := 1 for

all i ∈ V ′ and zero otherwise. Fix a non-empty subset S ⊆ J as otherwise
there is nothing to prove. We need to show that∑

i∈NG′ (S)

q · xi ≥ 1.

Thus, we argue that at least one value xi for i ∈ NG′(S) is set to 1, i.e.,
NG′(S)∩V ′ 6= ∅. Choose an arbitrary element n+v ∈ S with v ∈ {1, . . . , n}.
The set V ′ is a dominating set for G, so we have v ∈ V ′ or there is u ∈ V ′
adjacent to v in G. In the former case, xv = 1 and v ∈ NG′(S) since G′
contains the edge [v, n + v]. In the latter case, xu = 1 and u ∈ NG′(S)
since G′ contains the edge [u, n+ v]. Thus, q · x(NG′(S)) ≥ 1 holds true in
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any case. As S was arbitrary, x is a solution to I ′ with SOL(I ′, x) = |V ′|
and we obtain

OPT(I ′) ≤ OPT(I). (3.8)

Conversely, suppose that x ∈ N|I| is a solution to I ′. Since maxξ∈U ξ(S) = 1
for all S ⊆ J , S 6= ∅, we can assume that xi ≤ 1 for all i ∈ I. Otherwise,
we can easily improve our given solution. The set V ′ is defined to contain
all vertices v ∈ V such that xv = 1. We claim that V ′ is a dominating
set for G. To this end, choose a vertex u ∈ V and consider the set S :=
{n+ u} ⊆ J . Since x is feasible, there is v ∈ NG′(S) with xv = 1, i.e.,
v ∈ V ′. Since v ∈ NG′(S), either v = u or the vertices u and v are adjacent
in G by construction of G′. Hence, every vertex in G is dominated by
some vertex in V ′. We get SOL(I, V ′) ≤ SOL(I ′, x) and, in particular,
OPT(I) ≤ OPT(I ′). With (3.8) we obtain that

SOL(I, V ′)−OPT(I) ≤ SOL(I ′, x)−OPT(I ′).

Observe that the previous proof also holds for Robust Min q-MSMC with
polynomial time enumeration uncertainty by (3.7). Further, it directly leads
to the following:

Corollary 3.31. For any fixed q ∈ N>0, Robust q-MSMC is strongly
NP-hard.

Corollary 3.32. For any fixed q ∈ N>0 and for any fixed ε > 0, Robust
Min q-MSMC cannot be approximated within a factor of (1 − ε) ln |J | or
(1− ε) ln

∑
ξ∈U ξ(J) unless P = NP.

Proof. By [DS14; Mos15] the Min Dominating Set problem cannot be
approximated within (1− ε) lnn for any fixed ε > 0 unless P = NP, where
n ∈ N is the number of vertices of the given simple graph. The proof of
Theorem 3.30 reveals that, for an instance I of Min Dominating Set with n
vertices, we can construct in polynomial time an instance I ′ of Robust Min
q-MSMC with |J | =

∑
ξ∈U ξ(J) = n such that every solution x to I with

x ≤ 1 corresponds to a solution to I ′ with identical objective values and
vice versa.

Additionally, when inspecting the proof of Theorem 3.30, we see that the
result may translate to various classes of uncertainty sets.
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Remark 3.33. Let C be a class of uncertainty sets such that, for n ∈ N>0,
there is U ∈ C with U ⊆ Rn and maxξ∈U ξ(S) = 1 for every non-empty
subset S ⊆ {1, . . . , n}. From the proof of Theorem 3.30 we get that, for any
fixed q ∈ N>0, Robust Min q-MSMC with uncertainty C is APX-hard and
its decision version is strongly NP-hard. Examples of such classes can be
found in Section 3.4.3 and Section 3.4.6.

Note that we did not prove NP-completeness of Robust q-MSMC. Given an
instance of the problem, a polynomial time algorithm for checking feasibility
of a vector x̄ ∈ N|I| is not obvious at first sight as we potentially have to check
exponentially many subsets S ⊆ J or we need to compute y(ξ) for every
scenario ξ ∈ U . This leads to the analysis of the following complementary
decision problems.

Problem 3.34 (Feasibility for Robust Min q-MSMC (Feasibility)).
Instance: Finite sets I, J with I∩J = ∅, a vector x̄ ∈ N|I|, an uncertainty
set U ⊆ N|J|, and a bipartite graph G = (I ∪ J,E).
Question: Does q · x̄(N(S)) ≥ maxξ∈U ξ(S) hold for every subset S ⊆ J?

Problem 3.35 (Separation for Robust Min q-MSMC (Separation)).
Instance: Finite sets I, J with I∩J = ∅, a vector x̄ ∈ N|I|, an uncertainty
set U ⊆ N|J|, and a bipartite graph G = (I ∪ J,E).
Question: Is there a subset S ⊆ J such that q · x̄(N(S)) < maxξ∈U ξ(S)?

For an instance I of Separation or Feasibility, the corresponding instance I ′
of Robust Min q-MSMC is obtained by disregarding the given vector x̄.
We start with considering Feasibility and Separation restricted to specific
instances that will become important in Chapter 4.

Theorem 3.36. Feasibility and Separation with polynomial time enumera-
tion uncertainty are both contained in P.

Proof. Consider an instance I of Separation with bipartite graph G and
let ξ ∈ U . Let (S, T ) be a minimum s-t-cut in the network HG(q · x̄, ξ)
from Definition 3.7. This s-t-cut can be computed in time O(N2M) with
N := |I| + |J | and M := |I| + |J | + |E|: We first compute a maximum
flow in time O(N2M) and then find a corresponding minimum s-t-cut in
time O(M), cf. [AMO93]. We know that c(S, T ) < ∞ and, thus, no arc
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with infinite capacity contributes to the s-t-cut. If c(S, T ) < ξ(J), we get
that

c(S, T ) =
∑
i∈I∩T

q · x̄i +
∑
j∈J∩S

ξj <
∑
j∈J

ξj ⇔
∑
i∈I∩T

q · x̄i <
∑

j∈J∩T
ξj .

Furthermore, we have NG(J ∩ T ) ⊆ I ∩ T as otherwise c(S, T ) = ∞.
Therefore, ∑

i∈NG(J∩T )

q · x̄i <
∑

j∈J∩T
ξj

and we obtain the solution J ∩ T for I. Otherwise, c(S, T ) = ξ(J) and x̄
is feasible for scenario ξ and we move on to the next scenario. As U is
polynomial time enumerable, we can decide in polynomial time whether x̄ is
feasible for the corresponding instance of Robust Min q-MSMC or whether
there is a solution for I.

Corollary 3.37. For any fixed q ∈ N>0, Robust q-MSMC with polynomial
time enumeration uncertainty is strongly NP-complete.

Similar to Robust Sum, the uncertainty set in an instance of Feasibility
or Separation can be used to model NP-complete problems, cf. Lemma 3.22
and Remark 3.23. Thus, in a similar manner we get the subsequent result
for general instances of Separation.

Theorem 3.38. For any fixed q ∈ N>0, Separation is strongly NP-complete
even for U ⊆ B|J|.

Proof. Separation is contained in NP as, for an instance I and a scenario
ξ ∈ U , we can compute in polynomial time the maximum flow value in
the network HG(q · x̄, ξ), where G is the corresponding bipartite graph
of I. To show NP-hardness we provide a polynomial time reduction from
Independent Set. Let a simple graph G = (V,E) and a positive integer
B ≤ |V | represent an instance of such a problem. Suppose V = {1, . . . , n}
for n ∈ N>0. We construct an instance of Separation as follows: Let I := {0}
and J := {1, . . . , qn}. The edge set E′ of the bipartite graph G′ = (I∪J,E′)
consists of the edges [0, j] for every j ∈ J . Furthermore, let x̄0 := B− 1 and

U := {ξ ∈ Bqn : ξi·n+u + ξi·n+v ≤ 1 for [u, v] ∈ E and i ∈ {0, . . . , q − 1}} .
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3. Robust Min q-Multiset Multicover

Thus, the uncertainty set U comprises all incidence vectors of independent
sets of the graph that is the union of exactly q copies of G.
If V ′ ⊆ V is an independent set of G with |V ′| ≥ B, we consider the

scenario ξ′ with ξ′i·n+v = 1 if v ∈ V ′ and i ∈ {0, . . . , q − 1} and zero
otherwise. By construction of U we have ξ′ ∈ U and we get

max
ξ∈U

∑
j∈J

ξj ≥
∑
j∈J

ξ′j = q · |V ′| ≥ q ·B > q · (B − 1) = q · x̄0.

Thus, J is a solution for the constructed instance of Separation. On the
other hand, let S be a subset of J with

max
ξ∈U

∑
j∈S

ξj >
∑

i∈NG′ (S)

q · x̄i.

Then, S is non-empty and we get q · x̄(NG′(S)) = q · (B − 1). Thus, there
is a scenario ξ′ ∈ U with at least q · (B − 1) + 1 non-zero entries. There
exists some i′ ∈ {0, . . . , q − 1} with

∑
v∈V ξ

′
i′·n+v ≥ B as otherwise we get

ξ′(J) ≤ q · (B− 1). Let V ′ :=
{
v ∈ V : ξ′i′·n+v = 1

}
. Then, |V ′| ≥ B and V ′

is an independent set in G by construction of U .

Corollary 3.39. For any fixed q ∈ N>0, Feasibility is strongly co-NP-
complete even for U ⊆ B|J|.

Together with the polynomial time equivalence of optimization and sepa-
ration of linear programming, cf. Section 2.5, and our general assumptions
on U in Section 2.6, Theorem 3.38 gives:

Corollary 3.40. The LP-relaxation of Robust Min q-MSMC, i.e., asking for
x ∈ R|I|≥0 such that x is feasible for the LP-relaxation of Ps(U), is NP-hard
to solve.

In this section, we have seen that, in general, we cannot even hope for
a polynomial time algorithm to solve the LP-relaxation of Robust Min
q-MSMC. In the following, we nevertheless analyze solution approaches for
Robust Min q-MSMC. Even if these approaches might not yield an optimal
solution to every instance of the problem in an acceptable amount of time,
they can still be applied to small instances and lead to new insights into
the problem’s structure.
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3.3. Solving Robust Min q-Multiset Multicover
In the previous section, we have shown that Robust Min q-MSMC is an
APX-hard problem for any fixed value of q ∈ N>0. Now, we are aiming
for solution techniques. Besides the exponential time exact algorithms for
Multiset Multicover problems published in [Hua+10], Robust Min q-MSMC
can be solved using constraint generation, cf. Section 2.5. For adjustable
robust problems, this is a widely applied practice, cf. [Gab+14; SWW19]
and references therein. As both formulations of the problem as (mixed)
integer linear programs contain a large, potentially exponential, number of
constraints, this approach appears to be intuitive and suitable.
Let an instance of Robust Min q-MSMC be given. If we focus on the

subset formulation Ps(U) and the classical constraint generation approach,
at any point in the constraint generation process, a collection of subsets
S ⊆ 2J is given. We solve a relaxed problem obtained from only considering
the constraints corresponding to sets S ∈ S in Ps(U). In the separation
step, given an optimal solution x̄ to the relaxed problem, we are looking for
a solution S ⊆ J to the corresponding instance of the Separation problem,
cf. Problem 3.35. If such a set S is found, it must hold that S /∈ S and S is
updated by adding S. Then, the relaxed problem is solved once more. If
there exists no such set S, we know that x̄ is optimal for the given instance
of Robust Min q-MSMC. Initially, the set S is the empty set yielding the
optimal solution x̄ = 0 in the relaxed problem. Likewise, it is possible to
start with a non-empty sets S.
The important step of constraint generating methods is an efficient way

to solve the occurring separation problems. Hence, we begin with defining
names for the solutions to these problems.

Definition 3.41 (Violating Subset/Scenario). Let an instance of Separation
be given. A solution S ⊆ J to this instance is called violating subset (with
respect to x̄). A scenario ξ ∈ U such that there is no y ≥ 0 satisfying∑

i∈N(j)

yij ≥ ξj for j ∈ J and
∑

j∈N(i)

yij ≤ q · x̄i for i ∈ I (3.9)

is called violating scenario (with respect to x̄).

Note that in the definition of Separation in Problem 3.35 we can equiv-
alently ask for the existence of a violating scenario instead of a violating
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subset by Theorem 3.8. Hence, the above exemplary constraint generation
procedure can similarly be applied to the allocation formulation P(U) using a
subset U ′ ⊆ U of the scenarios. Here, the relaxed problem is given by P(U ′).
If, for an optimal solution (x̄, ȳ) to P(U ′), the vector x̄ is not feasible for
the given instance of Robust Min q-MSMC, there exists a violating scenario
ξ ∈ U \ U ′ and ξ is added to U ′. Observe that this approach generates new
variables in every iteration.

Using Farkas’ Lemma, cf. [Sch98; GLS93], a scenario ξ ∈ U is violating
if and only if there are vectors µ ∈ R|I|≥0 and ν ∈ R|J|≥0 with µi ≥ νj for all
locations i ∈ I and regions j ∈ N(i) and∑

i∈I
q · x̄i · µi <

∑
j∈J

ξj · νj . (3.10)

In the following, we investigate the correspondence of violating subsets
and violating scenarios. Due to Theorem 3.25 we immediately obtain the
formal statements corresponding to the introduction of this section.

Observation 3.42. Let an instance of Separation be given and let I be the
corresponding instance of Robust Min q-MSMC. With respect to x̄ ∈ N|I|
we get:

(a) There is a violating scenario ξ ∈ U if and only if there is a violating
subset S ⊆ J . In this case, the vector x̄ ∈ N|I| is not feasible for I.

(b) The vector x̄ ∈ N|I| is feasible for I if and only if there does not exist a
violating scenario.

(c) The vector x̄ ∈ N|I| is feasible for I if and only if there does not exist a
violating subset.

Our aim is to strengthen the statements of Observation 3.42 and to
analyze whether it is possible to switch between both formulations during
the constraint generation. From the proof of Theorem 3.36 we obtain that,
for an instance I of Robust Min q-MSMC and a violating scenario ξ with
respect to a vector x̄ ∈ N|I|, every minimum s-t-cut in the networkHG(q·x̄, ξ)
leads to a violating subset, where G is the corresponding bipartite graph.
Thus, such a violating subset can be found in polynomial time and there
might be more than one violating subset corresponding to a violating
scenario ξ. For instance, in the first iteration with U ′ = ∅ every set {j}
with ξj > 0 is violating. For the other direction, we define:
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Definition 3.43 (Violating Extreme Scenario). Let an instance of Separa-
tion be given. A scenario ξ ∈ U is called violating extreme scenario (with
respect to x̄) if there is a violating subset S ⊆ J with respect to x̄ such that
ξ ∈ arg maxξ′∈U ξ

′(S).

First of all, we need to show that violating extreme scenarios are in
fact violating. Moreover, we prove that it suffices to restrict ourselves to
violating extreme scenarios when applying constraint generation to P(U).

Lemma 3.44. Let an instance of Separation be given and let I be the
corresponding instance of Robust Min q-MSMC. With respect to x̄ ∈ N|I|
we get:

(a) Every violating extreme scenario ξ ∈ U is a violating scenario.

(b) There is a violating extreme scenario ξ ∈ U if and only if there is a
violating subset S ⊆ J .

(c) The vector x̄ ∈ N|I| is feasible for I if and only if there does not exist a
violating extreme scenario.

Proof. Let S ⊆ J be a violating subset with respect to x̄ and let ξ be a
violating extreme scenario with ξ ∈ arg maxξ′∈U ξ

′(S).

(a) Let (S′, T ′) be an s-t-cut in HG(q · x̄, ξ) with T ′ := N(S) ∪ S, where G
is the corresponding bipartite graph of the given instances. Then, we
get

c(S′, T ′) =
∑

i∈N(S)

q · x̄i +
∑
j∈J\S

ξj <
∑
j∈S

ξj +
∑
j∈J\S

ξj =
∑
j∈J

ξj .

Thus, every maximum flow in HG(q · x̄, ξ) has flow value less than ξ(J)
and there is no y ≥ 0 fulfilling (3.9) due to Theorem 3.8. Therefore, ξ
is a violating scenario.

(b) Follows from (a), Observation 3.42, and Definition 3.43.

(c) Follows from (b) and Observation 3.42.

We see that a violating subset S in turn leads to a set of violating extreme
scenarios, namely the set arg maxξ∈U ξ(S). In general, we cannot assume
that a violating extreme scenario can be obtained in polynomial time as
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we have to solve an instance of Max Robust Sum, cf. Theorem 3.22. In
Section 3.4, we consider several classes of uncertainty sets, some of which
allow for a computation of a violating extreme scenario from a violating
subset in polynomial time. For these special classes, it is possible to switch
between both formulations in polynomial time. Altogether, each violating
subset and violating extreme scenario corresponds to a set of violating
extreme scenarios and violating subsets, respectively.

As Separation is NP-complete by Theorem 3.38, we propose the following
mixed integer programs to solve this problem. If we are looking for a
violating scenario, applying (3.10) leads to the following formulation:

Sep(U) min
µ, ν, ξ

∑
i∈I

q · x̄i · µi −
∑
j∈J

ξj · νj (3.11a)

s.t. µi ≥ νj for i ∈ I, j ∈ N(i) (3.11b)
µi, νj ≥ 0 for i ∈ I, j ∈ J (3.11c)

ξ ∈ U . (3.11d)

The complexity of Sep(U) mainly depends on the structure of U . For
example, if U is polyhedral, Sep(U) turns into a (non-convex) quadratic
mixed integer program. Observe that the optimal value of Sep(U) never
exceeds zero as setting µ := 0, ν := 0 and choosing an arbitrary scenario
ξ ∈ U yields a solution. On the other hand, if there is a solution (µ, ν, ξ)
with solution value less than zero, we get that (λµ, λν, ξ) is feasible for every
λ > 0. Hence, the problem is unbounded.

Theorem 3.45. Let an instance of Separation be given. The optimal value
of Sep(U) is zero if and only if x̄ is feasible for the corresponding instance
of Robust Min q-MSMC.

Proof. For sufficiency fix a scenario ξ ∈ U . If the optimal value of Sep(U)
is zero, the following system of inequalities has no solution∑

i∈I
q · x̄i · µi <

∑
j∈J

ξj · νj

µi ≥ νj for i ∈ I, j ∈ N(i)

µi, νj ≥ 0 for i ∈ I, j ∈ J.

Thus, by Farkas’ Lemma, there is y ≥ 0 fulfilling (3.9) and ξ is not violating.
Feasibility of x̄ follows by Observation 3.42 as this holds for every scenario ξ ∈
U . Reversing these arguments also yields necessity.
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In addition, we want to regain a linear objective for Sep(U). The next
lemma provides the basis for this result.

Lemma 3.46. If there is a solution to Sep(U) with value less than zero,
there also exists an integral solution with value less than zero and µ ∈ B|I|,
ν ∈ B|J|.

Proof. If there is a solution to Sep(U) with value less than zero, we get
from Theorem 3.45 that there exists a (non-empty) violating subset S ⊆ J .
Setting vj := 1 if j ∈ S and zero otherwise, µi := 1 if i ∈ N(S) and zero
otherwise, and choosing a scenario ξ ∈ arg maxξ′∈U ξ

′(S) yields an integral
solution (µ, ν, ξ) to Sep(U) with solution value less than zero.

Thus, it suffices to consider the following mixed integer program SepB(U)
with linear objective and binary variables µ and ν. Additionally, the
constraints (3.11b) are aggregated.

SepB(U) min
µ, ν, ξ, ω

∑
i∈I

q · x̄i · µi −
∑
j∈J

ωj (3.12a)

s.t. |N(i)| · µi ≥
∑

j∈N(i)

νj for i ∈ I (3.12b)

ωj ≤ ξj for j ∈ J (3.12c)
ωj ≤ νj ·max

ξ′∈U
ξ′j for j ∈ J (3.12d)

µi, νj ∈ B for i ∈ I, j ∈ J (3.12e)
ξ ∈ U . (3.12f)

The constraints (3.12c) and (3.12d) together with the objective function
ensure that, in an optimal solution (µ?, ν?, ξ?, ω?), we have ω?j = ξ?j if ν?j = 1
and zero otherwise.

Theorem 3.47. Let (µ?, ν?, ξ?, ω?) be an optimal solution to SepB(U) with
solution value less than zero. Then, ξ? is a violating extreme scenario and
S =

{
j ∈ J : ν?j = 1

}
is a violating subset.

Proof. By optimality of (µ?, ν?, ξ?, ω?) we get that N(S) = {i ∈ I : µ?i = 1}
and ω?(J) = ξ?(S). For the same reason, we have ξ? ∈ arg maxξ∈U ξ(S). As
the solution value is less than zero, we directly obtain that S is a violating
subset and ξ? is a violating extreme scenario.
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Note that, similar to the proof of Theorem 3.47, any solution (µ, ν, ξ, ω)
of SepB(U) with solution value less than zero leads to a violating subset and
a violating, but not necessarily extreme, scenario. If we are only interested
in violating subsets, it suffices to consider

SepBs (U) min
µ, ν

∑
i∈I

q · x̄i · µi −max
ξ∈U

∑
j∈J

ξj · νj

 (3.13a)

s.t. |N(i)| · µi ≥
∑

j∈N(i)

νj for i ∈ I (3.13b)

µi, νj ∈ B for i ∈ I, j ∈ J. (3.13c)

Analogously to the proofs of Theorem 3.45 and Theorem 3.47, we obtain:

Corollary 3.48. Let an instance of Separation be given. The optimal value
of SepBs (U) is zero if and only if x̄ is feasible for the corresponding instance
of Robust Min q-MSMC. If the optimal value of SepBs (U) is less than zero
and (µ?, ν?) is an optimal solution, then S =

{
j ∈ J : ν?j = 1

}
is a violating

subset.

Certainly, the crux of this smaller formulation is the maximum term in
the objective function. In the following section, we consider some specific
classes of uncertainty sets. For some of these classes, this maximum can be
replaced by a closed formula which turns the problem into a binary integer
program.

3.4. Specific Classes of Uncertainty Sets

We now consider Robust Min q-MSMC for various specific classes of un-
certainty sets and analyze the complexity of the emerging problems. We
focus on uncertainty sets that are often applied in robust optimization as,
e.g., interval uncertainty or ellipsoidal uncertainty. Throughout this section,
we fix an instance of Robust Min q-MSMC and we successively assume
that its uncertainty set U belongs to some particular class of uncertainty
sets. We refer the reader to Section 2.6 for an introduction to the classes of
uncertainty sets appearing in this section.
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|U| = 1 |U| = 2 |U| = k ≥ 3

q = 1 linear time polynomial time APX-complete
q = 2 polynomial time APX-complete APX-complete
q ≥ 3 APX-complete APX-complete APX-complete

Table 3.1.: Complexity analysis of Robust Min q-MSMC for a fixed number
of scenarios k ∈ N>0.

3.4.1. Discrete Uncertainty
In this section, we assume that U is given as an explicit list of k scenarios
for some fixed k ∈ N>0, i.e.,

U =
{
ξ1, . . . , ξk

}
.

By Theorem 3.36 and Corollary 3.37 we already know that Feasibility and
Separation are polynomial time solvable and Robust q-MSMC is contained
in NP. Furthermore, for discrete uncertainty, the allocation formulation P(U)
is compact and, given a vector x̄ ∈ N|I|, violating scenarios can be found in
polynomial time. Additionally, in the constraint generation, the number of
iterations is bounded by k. Concerning the value of k we concentrate on
k ≥ 2 as the results for k = 1 can be found in Section 3.1. Our findings are
summarized in Table 3.1. We begin with analyzing the case where q = 1
and |U| = 2.

Theorem 3.49. Robust Min 1-MSMC restricted to instances with |U| = 2
can be solved in time O(|I||J |2 + |J |3).

Proof. Given an instance of Robust Min 1-MSMC with U =
{
ξ1, ξ2

}
, we

construct a networkH = (V,R, c) similar to the one of Definition 3.7. To ease
notation let J = {1, . . . , n} and define J ′ := {n+ 1, . . . , 2n}. We set V :=
J ∪ J ′ ∪ {s, t} with s, t /∈ J and R := {(s, j) : j ∈ J} ∪ {(j, t) : j ∈ J ′} ∪RJ ,
where RJ contains the arc (j, j′) for j ∈ J , j′ ∈ J ′ if there is a location
i ∈ NG(j) ∩NG(j′ − n). The capacities of the arcs are defined as follows

c(r) :=


ξ1
j , if r = (s, j),

∞, if r ∈ RJ ,
ξ2
j , if r = (n+ j, t),
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Figure 3.3.: Network H constructed in the proof of Theorem 3.49 where the
capacity of an arc is given as an arc label. All thick arcs have
infinite capacity.

for r ∈ R. An illustration of the constructed network is shown in Figure 3.3.
Next, we compute an integral maximum flow f in H and use it to

define a solution x for our instance of Robust 1-MSMC. We start with
initializing xi := 0 for all i ∈ I. For every arc (j, j′) ∈ RJ , we select a
location i ∈ NG(j) ∩ NG(j′ − n) and increase xi by f(j, j′). This relates
to putting f(j, j′) many suppliers into location i who cover f(j, j′) many
clients in region j in scenario ξ1 and f(j, j′) many clients in region j′ − n
in scenario ξ2. Additionally, for every region j ∈ J , we choose a location
i ∈ N(j) and increase xi by

max
{
ξ1
j − f(s, j), ξ2

j − f(n+ j, t)
}
.

Due to the flow conservation constraints and the additional increase in the
last step, we directly get that the constructed vector x is feasible. We now
show that x is also optimal. First, note that, for l ∈ {1, 2}, it holds true
that∑
j∈J

ξlj = val(f)+
∑
j∈J

(
ξlj − f(s, j)

)
= val(f)+

∑
j∈J

(
ξlj − f(n+ j, t)

)
. (3.14)

Now, consider some solution x′ for the instance of Robust 1-MSMC. There
exist integral vectors y(ξ1) and y(ξ2) such that, for l ∈ {1, 2}, we have∑

i∈NG(j)

y(ξl)ij ≥ ξlj for j ∈ J and
∑

j∈NG(i)

y(ξl)ij ≤ x′i for i ∈ I, (3.15)
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where we can assume equality in the first set of constraints. Now, we
construct a flow f ′ in the network H beginning with f ′ := 0. Consider
a location i ∈ I. Set Ti := minl∈{1,2}

∑
j∈NG(i) y(ξl)ij . For each r ∈

{1, . . . , Ti}, we can choose two regions j1, j2 ∈ NG(i) with f ′(s, j1) < c(s, j1)
and f ′(n+ j2, t) < c(n+ j2, t) by our assumption on (3.15). We increase f ′
by 1 along the path (s, j1, n + j2, t). This procedure ends in a feasible
flow with val(f ′) = T (I). With no loss of generality, we can assume that
x′i = maxl∈{1,2}

∑
j∈NG(i) y(ξl)ij and we get∑

i∈I
x′i =

∑
i∈I

x′i + val(f ′)− val(f ′)

=
∑
i∈I

∑
j∈NG(i)

(
y(ξ1)ij + y(ξ2)ij

)
− val(f ′)

=
∑
j∈J

(
ξ1
j + ξ2

j

)
− val(f ′).

On the other hand, we have∑
i∈I

xi = val(f) +
∑
j∈J

max
{
ξ1
j − f(s, j), ξ2

j − f(n+ j, t)
}

= val(f) +
∑
j∈J

(
ξ1
j − f(s, j)

)
+
∑
j∈J

(
ξ2
j − f(n+ j, t)

)
(3.14)

=
∑
j∈J

(
ξ1
j + ξ2

j

)
− val(f),

where the second equality follows as f is maximum. As val(f) ≥ val(f ′), we
obtain optimality of x.
For the running time, note that constructing H needs time O(|I||J |2).

Further, computing a maximum flow in H can be done in time O(|J |3),
cf. [AMO93; Sch02]. Distributing the flow values among the xi for i ∈ I
takes time O(|I|+ |J |2) (if we store the location corresponding to each edge
during the construction of H) and increasing the xi in the final step needs
time O(|J |).

Table 3.1 already reveals that all remaining cases lead to APX-complete
problems. What is not revealed is that all these cases break down to
showing APX-completeness of the following problem, which is closely related
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3. Robust Min q-Multiset Multicover

to the APX-complete Max 3-Dimensional Matching problem [Aus+02;
Kan91].

Problem 3.50 (Min 3-Dimensional Cover).
Instance: Disjoint sets W , X, Y and a subset C ⊆W ×X × Y .
Solution: A cover C′ for W ∪X ∪ Y , i.e., a subset C′ ⊆ C such that every
element z ∈W ∪X ∪ Y appears in at least one element (w, x, y) of C′.
Measure: The cardinality of C′.

Problem 3.51 (Max 3-Dimensional Matching).
Instance: Disjoint sets W , X, Y and a subset M ⊆W ×X × Y .
Solution: A matching M ′ for W ∪X ∪ Y , i.e., a subset M ′ ⊆ M such
that no two elements of M ′ agree in any coordinate.
Measure: The cardinality of M ′.

Observe that, in an instance of Min 3-Dimensional Cover, we can assume
that every element in W ∪ X ∪ Y appears in at least one element of C.
Moreover, if the sets W , X, and Y have equal cardinality r ∈ N>0, asking
for a 3-dimensional matching of size r, i.e. a perfect matching, corresponds
to asking for a cover of size r. Thus, NP-hardness of the decision version of
Problem 3.50 follows directly from NP-hardness of 3-Dimensional Match-
ing [GJ79]. Moreover, in the theory of hypergraphs, Problem 3.50 is also
known as the 3-partite Edge Cover problem [BZ08; Leh82]. To the best of
our knowledge, the APX-completeness result is not present in the literature
yet.

Before proving it, we briefly recall a property of the analogous Min 2-
Dimensional Cover problem. In this case, a minimum 2-dimensional cover
corresponds to a minimum edge cover in a bipartite graph G = (W ∪X, C)
which can be computed in polynomial time by first solving the corresponding
(2-dimensional) Max Matching problem on G and then augmenting the
matching to an edge cover greedily. Vice versa, a maximum matching in G
can be obtained from a minimum edge cover by choosing one edge from each
component of the subgraph induced by the edges of the cover [GJ79; Law76].
However, this relation is lost when going from two to three dimensions as
the following example shows.

Example 3.52. In the following, we use a graph which is given as the
union of r ∈ N>0 triangles to define an instance of Min 3-Dimensional
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Figure 3.4.: Graph corresponding to Example 3.52.

Cover. The vertex set of the graph can be partitioned into three sets W , X,
and Y such that every triangle in the graph has exactly one vertex from
each of these sets. Thereby, each triangle represents one element of the
set C ⊆ W ×X × Y . Then, a cover C′ ⊆ C for W ∪X ∪ Y corresponds to
a selection of triangles in the constructed graph such that every vertex is
covered. Observe that the graph may contain more than r triangles.

Consider the graph shown in Figure 3.4 with the set assignments labeled
next to the vertices. This graph has a (unique) maximum matching of size 3
as shown by the blue triangles. Yet, taking this matching and augmenting
it to a cover leads to a cover of size 6. On the other hand, selecting the
triangles that contain the green vertices leads to a cover of size only 5 and
the maximum matching contained in that cover has size 2.

The reason for this construction to work is that the green vertices are not
contained in any other triangle. Thus, the triangles having a green vertex
have to be selected for the cover anyway and, hence, the blue triangle in
the middle is already covered by this selection. /

For the complexity analysis of Min 3-Dimensional Cover, we consider the
following well-known optimization problem that originates from the famous
3-SAT problem, cf. [GJ79; Aus+02]:

Problem 3.53 (Max 3-SAT).
Instance: A set U of variables and a collection C of disjunctive clauses of
at most three literals, where a literal is a variable or a negated variable
of U .
Solution: A truth assignment f : U → {true, false}.
Measure: The number of clauses satisfied by the truth assignment f .

For later reference, we note that, given an instance I of Max 3-SAT with
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3. Robust Min q-Multiset Multicover

m ∈ N>0 clauses, there always exists a truth assignment fulfilling at least
half of these clauses, i.e.,

2 ·OPT(I) ≥ m. (3.16)

To see this consider the assignment f that sets every variable to true and
the assignment f̄ that sets every variable to false. Then, we must have
SOL(I, f) + SOL(I, f̄) ≥ m as the clauses which are not fulfilled by f are
fulfilled by f̄ . Hence,

SOL(I, f) ≥ m

2
or SOL(I, f̄) ≥ m

2
.

To show APX-hardness of Min 3-Dimensional Cover we provide an L-
reduction from Max 3-SAT(3), where each variable appears at most three
times and each clause has at most three literals. By [Aus+02] even this
restricted version of Max 3-SAT remains APX-complete. Furthermore, as
the instances of Max 3-SAT(3) need to fulfill further requirements, we can
make some additional assumptions that will be helpful throughout this
thesis.

Assumption 3.54. Let an instance of Max 3-SAT(3) with m ∈ N>0 clauses
C1, . . . , Cm and n ∈ N>0 variables X1, . . . , Xn, where each variable appears
at most three times and each clause has at most three literals, be given. We
may assume that each variable Xi appears at least one time negated and at
least one time non-negated in the given clauses. Otherwise, we can assume
that, in any optimal solution to the given instance, the only appearing
literal L of variable Xi is evaluated to true as this assignment can only
improve the number of satisfied clauses. Thus, we can disregard the clauses
containing L and any solution to the smaller instance leads to a solution to
the original instance with linear difference in the solution values. Hence, we
can apply this assumption when L-reducing from Max 3-SAT(3). As the
total number of literal occurrences over all clauses is bounded by 3m, this
gives

2n ≤ 3m. (3.17)

Furthermore, each literal L ∈
{
Xi, Xi : i ∈ {1, . . . , n}

}
appears at most

twice as otherwise there is a variable appearing more than three times. For
a literal L, we denote by L its corresponding negated literal.
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Figure 3.5.: Constructing of a variable gadget GXi
corresponding to vari-

able Xi. The colored vertices are the literal vertices. Exem-
plarily, the literal Xi only appears once in the set of clauses.
On the right, the triangles of a cover (assuming x̄1

i is already
covered) are colored.

Theorem 3.55. Min 3-Dimensional Cover is APX-complete.

Proof. Min 3-Dimensional Cover is contained in APX as the Greedy Set
Cover approximation algorithm gives a H(3)-approximation, cf. [Joh74;
Lov75]. We now present an L-reduction from Max 3-SAT(3) to also obtain
APX-hardness. Given an instance I of this problem with m ∈ N>0 clauses
C1, . . . , Cm and n ∈ N>0 variables X1, . . . , Xn, we make use of Assump-
tion 3.54. The instance I ′ of Min 3-Dimensional Cover is constructed using
a graph of triangles as in Example 3.52.

For each variable Xi, we build a “star” containing four triangles as shown
in Figure 3.5a and call this subgraph GXi

. Observe the set affiliation of
every vertex here. For later reference, we refer to the tips of the star, i.e.,
the elements contained in X, as x1

i , x̄1
i , x2

i , and x̄2
i as shown in Figure 3.5b.

We call these vertices literal vertices and the complete gadget is named
variable gadget. These gadgets are inspired by [Kan91].

Consider the clauses C1, . . . , Cm in increasing order of their indices. As
each literal appears at most two times, we can label the literals by their
first and potentially second occurrence, e.g., X

1

i and if existent X
2

i . If, for
some i ∈ {1, . . . , n}, a literal L ∈

{
Xi, Xi

}
appears only once, we append

an additional triangle to the literal vertex of variable gadget GXi that
corresponds to the missing second occurrence, see Figure 3.5c.

For each clause Cj , we now construct a clause gadget GCj depending on
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Figure 3.6.: Construction of the clause gadgets GCj
depending on the num-

ber of literals appearing in clause Cj . The literals are labeled
according to their first and potentially second occurrence in the
given formula.

the number of literals present in the clause. If a clause Cj contains only
one literal L, we construct the gadget shown in Figure 3.6a. If L is the lth
occurrence of literal Xi (Xi) with l ∈ {1, 2}, the leftmost vertex of the clause
gadget corresponds to the vertex xli ∈ X (x̄li ∈ X). Moreover, observe the
assignments of vertices to the sets W , X, and Y for the remaining vertices
in Figure 3.6a. If a clause Cj contains two literals, i.e., Cj = L1 ∨ L2, the
gadget of Figure 3.6b with the shown set correspondences is constructed.
Again, if L1 is the lth occurrence of literal Xi (Xi) with l ∈ {1, 2}, the
leftmost vertex of the clause gadget corresponds to the vertex xli ∈ X
(x̄li ∈ X). Analogously, we proceed with L2 and the rightmost vertex of the
clause gadget. Similarly, we construct the clause gadget if Cj = L1∨L2∨L3

(cf. Figure 3.6c). Observe that these constructions are compatible with
the set assignments of the variable gadgets. Examples of literal vertices
appearing in the clause gadgets are shown in Figure 3.6.

Altogether, the graph

G :=

(
n⋃
i=1

GXi

)
∪

 m⋃
j=1

GCj

 ,

which is a union of triangles, now induces our instance of Min 3-Dimensional
Cover, say I ′, as in Example 3.52. Denote by C the set of all triangles of G.
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Figure 3.7.: Selection of triangles for a 2-literal clause gadget depending on
whether the literal vertices are already covered (indicated by
the half-done colored edges).

Observe that the gadgets only share vertices contained in X, so that

|C| =
m∑
j=1

(4|Cj | − 2) + 4n+ 4n−
m∑
j=1

|Cj | = 8n− 2m+ 3

m∑
j=1

|Cj |.

We now derive an upper bound on the total number of triangles needed
to cover every vertex of G, i.e., the total number of elements of C needed to
cover W ∪X ∪ Y . Given an optimal truth assignment for I, we obtain a
cover C′ for I ′ by first choosing the 4n−

∑m
j=1 |Cj | additionally appended

triangles of the variable gadgets and, for each variable gadget, the two
oppositely located triangles that contain the literal vertices corresponding
to the true literal.
Now, consider a clause gadget GCj . If |Cj | = 1 and if the literal vertex

of this gadget is already covered by its corresponding variable gadget, we
choose the triangle of uncovered vertices for C′. Otherwise, we choose both
triangles of the clause gadget for C′. Observe that, in both cases, selecting
less triangles does not lead to a feasible cover.

Now, suppose |Cj | = 2. If one or both literal vertices are already covered
by variable gadgets, we add two more triangles to C′ to cover the remaining
vertices. Less triangles are not possible as there are two elements of Y that
need to be covered. If no literal vertex is already covered, we select three
more triangles. Again, choosing less triangles is not possible as there are
three elements ofX that need to be covered. Illustrations of the various cases
are shown in Figure 3.7. An already covered literal vertex is represented by
two colored incident edges that have no other end vertex.
Finally, suppose |Cj | = 3. If one or more literal vertices are already

covered by variable gadgets, we choose three more triangles for C′ to cover
all remaining vertices of the gadget. If no literal vertex is already covered
by variable gadgets, four more triangles are added to C′ to cover all vertices
of the gadget. As before, choosing less triangles is not possible as there
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Figure 3.8.: Selection of triangles for a 3-literal clause gadget depending on
whether the literal vertices are already covered (indicated by
the half-done colored edges).

are either three elements of Y or four elements of X that still need to be
covered. Illustrations of the most important cases are shown in Figure 3.8.
All remaining cases work out analogously to the shown cases.

Hence, for each clause gadget corresponding to a clause with r ∈ N literals,
we choose r many additional triangles if the clause is true and r + 1 many
additional triangles if the clause is false, cf. Figures 3.7 and 3.8. Thus, we
get

OPT(I ′) ≤ 4n−
m∑
j=1

|Cj |+ 2n+

m∑
j=1

(|Cj |+ 1)−OPT(I)

= 6n+m−OPT(I) (3.18)
≤ 10m−OPT(I)

≤ 19 ·OPT(I),

where the inequalities are obtained using the estimates (3.16) and (3.17).
On the other hand, given a cover C′ ⊆ C, we know that each additionally

appended triangle of the variable gadgets is contained in C′. Furthermore,
we can assume that exactly two more triangles are chosen in each variable
gadget and that they are located oppositely: If two more triangles are
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chosen and not located oppositely, the solution C′ is not feasible. If three
more triangles are chosen, there is one triangle T chosen whose opposite
triangle is not chosen. Denote by x the literal vertex of triangle T . We do
not deteriorate our given cover C′ if we swap the chosen triangle to some
other triangle that also contains x, which is either an additionally appended
triangle or it is contained in a clause gadget. If four more triangles are
chosen, we do not worsen our solution if we analogously swap the triangles
containing the negated literal vertices. With these modifications we assign
the variable Xi the value true if and only if the two oppositely located
triangles of the variable gadget GXi

containing the literal vertices x1
i and x2

i

are in the cover C′. This gives our truth assignment f . An example is given
in Figure 3.5c where f(Xi) = true.
By construction of I ′ a clause Cj is fulfilled if its corresponding clause

gadget GCj
contains a literal vertex which is covered by its corresponding

variable gadget. Let t ∈ N be the number of clause gadgets where no literal
vertex is covered by its corresponding variable gadget. Thus, SOL(I, f) =
m− t. Further, by our above argumentation we can assume:

(a) For a clause gadget GCj
having a literal vertex that is already covered

by its variable gadget, the cover C′ contains at least |Cj | many triangles.

(b) For a clause gadget GCj
having no literal vertex that is already covered

by its variable gadget, the cover C′ contains at least |Cj | + 1 many
triangles.

This gives

|C′| ≥ 4n−
m∑
j=1

|Cj |+ 2n+

m∑
j=1

|Cj |+ t = 6n+ t. (3.19)

In total we obtain

OPT(I)− SOL(I, f) = OPT(I)−m+ t

(3.18)
≤ 6n+m−OPT(I ′)−m+ t

(3.19)
≤ |C′| −OPT(I ′).

Hence, Max 3-SAT(3) L-reduces to Min 3-Dimensional Cover.
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Thus, unless P = NP, there is no PTAS for Min 3-Dimensional Cover.
Note that this result also implies APX-completeness of Min Set Cover(3)
even if every set contains exactly three elements. Moreover, aside from the
argumentation on Page 68, for the decision version 3-Dimensional Cover
the above proof reveals:

Corollary 3.56. 3-Dimensional Cover is strongly NP-complete.

Proof. Given a subset C′ ⊆ C, we can check whether each element is covered
in polynomial time. Thus, the problem is contained in NP. Moreover, the
proof of Theorem 3.55 shows that a solution to I with at least t ∈ N satisfied
clauses leads to a solution to I ′ with value at most 6n+m− t in polynomial
time and vice versa.

The next theorem shows why APX-completeness of Min 3-Dimensional
Cover directly leads to APX-hardness of Robust Min q-MSMC restricted
to instances with |U| fixed and q · |U| ≥ 3.

Theorem 3.57. For any fixed q, k ∈ N>0 with qk ≥ 3, Robust Min q-MSMC
with discrete uncertainty and |U| = k is APX-hard.

Proof. We show that, for any fixed value of qk ≥ 3, Min 3-Dimensional
Cover L-reduces to Robust Min q-MSMC with exactly k scenarios. Thus, let
an instance I of Min 3-Dimensional Cover be given, i.e., a set C ⊆W×X×Y
for disjoint sets W , X, and Y . Similar to the proof of Theorem 3.14, we
construct a bipartite graph G = (I ∪ J,E) with I := C, J := W ∪X ∪ Y
and N((w, x, y)) := {w, x, y} for all (w, x, y) ∈ C. The definition of the
uncertainty set U depends on the value of k.
For k = 1, we set U := {1}, cf. Theorem 3.14. For k = 2, we set
U :=

{
ξ1, ξ2

}
with

ξ1
j :=

{
1, if j ∈W ∪X,
0, if j ∈ Y,

and ξ2
j :=

{
0, if j ∈W ∪X,
1, if j ∈ Y,

for j ∈ J . For k = 3, we set U :=
{
ξ1, ξ2, ξ3

}
with

ξ1
j :=

{
1, if j ∈W,
0, otherwise,

ξ2
j :=

{
1, if j ∈ X,
0, otherwise,

ξ3
j :=

{
1, if j ∈ Y,
0, otherwise,
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Figure 3.9.: Bipartite graph G constructed in the proof of Theorem 3.57.

for j ∈ J . For k > 3, we add k − 3 many dummy locations and equally
many dummy regions to the bipartite graph where one dummy location
is connected to one dummy region. The uncertainty set U contains the
scenarios defined for the case of three scenarios plus one additional scenario ξ
for each dummy region j with ξj = 1 and zero otherwise. Note that, in
any solution x to the constructed instance I ′ of Robust Min q-MSMC, we
can assume that xi = 1 if i is a dummy location. An illustration of the
constructed graph is given in Figure 3.9.
Let C′ ⊆ C be an optimal cover for W ∪X ∪ Y . We set xi := 1 if i ∈ C′

or i is a dummy location and zero otherwise. By construction this gives a
solution to the instance I ′ with

OPT(I ′) ≤ OPT(I) + max {0, k − 3} (3.20)
≤ max {1, k − 2} ·OPT(I).

Further, the regions in N(C) can be partitioned into three disjoint sets
such that each location in C is adjacent to exactly one element from each
set. Additionally, we have, for every location i,

(a) maxξ∈U ξ(N(i)) ≤ 3 if k = 1,
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(b) maxξ∈U ξ(N(i)) ≤ 2 if k = 2, and

(c) maxξ∈U ξ(N(i)) ≤ 1 if k ≥ 3

by construction of the scenarios. Observe that, if k = 1 and k = 2, we must
have q ≥ 3 and q ≥ 2, respectively. Therefore, in any solution x to I ′, we
can assume that xi ≤ 1 for every location i ∈ C and xi = 1 for every dummy
location i. Given such a solution x we choose C′ := {i ∈ C : xi = 1}. By
construction of the scenarios C′ is feasible for I and we get with (3.20)

SOL(I, C′)−OPT(I)

= x(C)−OPT(I)

≤ (SOL(I ′, x)−max {0, k − 3})− (OPT(I ′)−max {0, k − 3})
= SOL(I ′, x)−OPT(I ′).

Moreover, if x is optimal for I ′, we also get OPT(I) ≤ OPT(I ′) −
max {0, k − 3}.

Corollary 3.58. For any fixed q, k ∈ N>0 with qk ≥ 3, Robust q-MSMC
with discrete uncertainty and |U| = k is strongly NP-complete.

Proof. As |U| is fixed, it is easy to see that the problem is contained in NP.
Furthermore, by the proof of Theorem 3.57, we get that a solution to I
with l ∈ N elements leads to a solution to I ′ with value l+ max {0, |U| − 3}
in polynomial time and vice versa.

In Chapter 4, we provide an H(q|U|)-approximation algorithm for Robust
Min q-MSMC with discrete uncertainty and, hence, we obtain the desired
APX-completeness result.

Corollary 3.59. For any fixed q, k ∈ N>0 with qk ≥ 3, Robust Min q-
MSMC with discrete uncertainty and |U| = k is APX-complete.

Having a discrete set of scenarios is a quite strong restriction. We move
on to polyhedral uncertainty sets in the following.

3.4.2. Interval Uncertainty
When applying interval uncertainty, we assume that the demand ξj in any
region j ∈ J varies in a given interval [aj , bj ] with aj ≤ bj , bj ≥ 1, and
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aj , bj ∈ N, i.e., we consider the integral points of a hypercube and

U =
{
ξ ∈ N|J| : a ≤ ξ ≤ b

}
.

Utilizing interval uncertainty for Robust Min q-MSMC, we can easily solve
the maximization problem in Ps(U) as maxξ∈U ξ(S) = b(S). Therefore, it
suffices to only consider the worst-case scenario b and we obtain Ps(U) =
Ps(b). Thus, by Proposition 3.10 and Theorem 3.13 we get that Robust
Min q-MSMC with interval uncertainty is polynomial time solvable for
q = 1 and q = 2. For q ≥ 3, Robust q-MSMC with interval uncertainty
is strongly NP-complete by Corollary 3.15 and its optimization version is
APX-complete by Corollary 3.17. To complete this list of results, we note
that Feasibility, Separation, and Max Robust Sum are polynomial time
solvable for interval uncertainty.

To overcome the drawbacks of conservatism of interval uncertainty, in the
next section, we tighten the uncertainty set by additionally introducing an
upper bound on the total number of clients.

3.4.3. Budgeted Uncertainty

As with interval uncertainty here we assume that the demand ξj in region
j ∈ J is lower bounded by aj ∈ N and upper bounded by bj ∈ N. Concerning
the total number of clients in all regions, we additionally require this value
to not exceed some given bound Γ ∈ N to prevent the global worst case,
which caused the conservatism in interval uncertainty. Thus, we consider
uncertainty sets of the form

U =
{
ξ ∈ N|J| : a ≤ ξ ≤ b, ξ(J) ≤ Γ

}
(3.21)

with a, b ∈ N|J|, a ≤ b, and Γ ∈ N.

Assumption 3.60. In order to obtain a meaningful budgeted uncertainty
set, we make the following assumptions:

(a) It holds true that a(J) ≤ Γ ≤ b(J) so that U 6= ∅.

(b) For every region j ∈ J , we have bj ≥ 1 as otherwise region j is
redundant.
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(c) The value Γ is chosen in such a way that bj + a(J \ {j}) ≤ Γ for
every j ∈ J . Otherwise we can decrease the upper bound bj in the
corresponding region.

Observe that, in the special case of Γ = b(J), we regain the previous
interval uncertainty set. Moreover, the results of this section also apply
when considering only scenarios of U whose entries sum up to exactly Γ.
As it suffices to consider only non-dominated scenarios in an instance of
Robust Min q-MSMC, we could therefore restrict our analysis to this smaller
uncertainty set. Yet, to simplify proofs and notation we decide to stay with
the form given in (3.21). First of all, we directly obtain by Remark 3.33:

Theorem 3.61. For any fixed q ∈ N>0, Robust Min q-MSMC with budgeted
uncertainty is APX-hard and its decision version is strongly NP-hard.

Proof. For n ∈ N>0 many regions, setting a := 0, b := 1, and Γ := 1
yields the uncertainty set U = {0, e1, . . . , en} and the claim follows by
Remark 3.33.

We continue with the consideration of Max Robust Sum restricted to
budgeted uncertainty sets as this leads to the key changes compared to the
previous section.

Lemma 3.62. Given an instance of Max Robust Sum with budgeted uncer-
tainty, we have that

max
ξ∈U

∑
j∈S

ξj = min {b(S),Γ− a(J \ S)}

with J := {1, . . . , n}. Thus, Max Robust Sum can be solved in time O(n).

Proof. Let U ⊆ Nn be of the form (3.21) and S ⊆ J . By definition of U it
follows that, for ξ ∈ U , we have ξ(S) ≤ b(S) as well as ξ(S) + a(J \ S) ≤ Γ.
Hence,

max
ξ∈U

ξ(S) ≤ min {b(S),Γ− a(J \ S)} .

If b(S) + a(J \ S) ≤ Γ, then obviously maxξ∈U ξ(S) = b(S). On the other
hand, if b(S) + a(J \ S) > Γ, we have b(S) > Γ − a(J \ S) and also
a(S) ≤ Γ− a(J \ S) by Assumption 3.60. Thus, there exists a scenario ξ
with ξ(S) = Γ−a(J \S) and ξ(J \S) = a(J \S) and we have maxξ∈U ξ(S) =
Γ− a(J \ S).
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Lemma 3.62 reveals that, in the case of budgeted uncertainty, we can com-
pute a violating extreme scenario given a violating subset S in time O(|J |)
using an iterative procedure. Moreover, we can replace maxξ∈U ξ(S) in Ps(U)
with

min {b(S),Γ− a(J \ S)} . (3.22)

But in comparison to the non-robust formulation Ps(d) on Page 41, the
value (3.22) cannot be split into a sum over clients in the regions of S
anymore.
In the following, we show that Separation with budgeted uncertainty is

NP-complete. To prove this result, we additionally need the definition of
the Knapsack problem, cf. [GJ79].

Problem 3.63 (Knapsack).
Instance: A finite set U , a size su ∈ N>0 and a profit pu ∈ N>0 for each
u ∈ U , and two integers B,K ∈ N>0.
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U ′ su ≤ B as well as∑

u∈U ′ pu ≥ K?

Theorem 3.64. For any fixed q ∈ N>0, Separation with budgeted uncer-
tainty is NP-complete.

Proof. As in Theorem 3.38 we get that Separation with budgeted uncertainty
is contained in NP. We show that Knapsack reduces to Separation in
polynomial time. To that end, let an instance of Knapsack be given with a set
U = {1, . . . , n}, a size su and a profit pu associated with each element u ∈ U ,
and two integers B,K ∈ N>0. We define a bipartite graph G = (I ∪ J,E)
with I := U ∪ {2n+ 1}, J := {n+ 1, . . . , 2n} and

E := {[u, n+ u], [2n+ 1, n+ u] : u ∈ U} .

Moreover, we set x̄u := su and bn+u := q · (pu + su) for all u ∈ U . Further,
we let x̄2n+1 := K− 1 and Γ := q · (B+K). Finally, we define aj := 0 for all
j ∈ J . For an illustration of the constructed bipartite graph see Figure 3.10.

Now, given a solution U ′ ⊆ U ⊆ I of the Knapsack instance with
s(U ′) ≤ B and p(U ′) ≥ K, we choose S := {n+ u : u ∈ U ′} ⊆ J . Then, S
is non-empty since U ′ 6= ∅ and we have

Γ

q
− x̄(U ′) = B +K − s(U ′) ≥ B +K −B = K
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1x̄1

2x̄2

3x̄3

...

nx̄n

2n+1x̄2n+1

n+1 bn+1

n+2 bn+2

n+3 bn+3

...

2n b2n

Figure 3.10.: Bipartite graph G constructed in the proof of Theorem 3.64.

as well as

b(S)

q
− x̄(U ′) =

∑
u∈U ′

bn+u

q
−
∑
u∈U ′

x̄u =
∑
u∈U ′

(pu + su)−
∑
u∈U ′

su

=
∑
u∈U ′

pu ≥ K,

yielding

min

{
b(S)

q
,

Γ

q

}
− x̄(U ′) ≥ K.

Subtracting K − 1 = x̄2n+1 on both sides we obtain:

min

{
b(S)

q
,

Γ

q

}
− x̄(U ′)− x̄2n+1 ≥ 1 ⇔ min

{
b(S)

q
,

Γ

q

}
− x̄(N(S)) ≥ 1,

i.e., min {b(S),Γ} − q · x̄(N(S)) > 0. Thus, the set S is a solution for the
constructed instance of Separation.

On the other hand, let S ⊆ J be a solution for the instance of Separation
with the property

min {b(S),Γ} > q · x̄(N(S)). (3.23)

Thus, the set S is non-empty and contains an element of the form n+ u for
some u ∈ U . Set U ′ := {u : n+ u ∈ S} ⊆ U . Our aim is to show that U ′
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is a solution to the Knapsack instance. We have N(S) = U ′ ∪ {2n+ 1}.
Reformulating the right-hand side of (3.23) we get

x̄(N(S)) = x̄(U ′) + x̄2n+1 = x̄(U ′) +K − 1.

Thus, in total we have min {b(S),Γ} − q · x̄(U ′) > q · (K − 1), i.e.,

min

{
b(S)

q
,

Γ

q

}
− x̄(U ′) ≥ K.

When inserting the above definitions this expression becomes

min {p(U ′) + s(U ′), B +K} − s(U ′) ≥ K. (3.24)

Now, we need to differentiate between two cases:
If p(U ′)+s(U ′) ≤ B+K, (3.24) yields p(U ′) = p(U ′)+s(U ′)−s(U ′) ≥ K

and s(U ′) ≤ B +K − p(U ′) ≤ B +K −K = B.
If p(U ′)+s(U ′) > B+K, (3.24) yields B+K−s(U ′) ≥ K, i.e., s(U ′) ≤ B.

Furthermore, p(U ′) > B +K − s(U ′) ≥ B +K −B = K.
Thus, the set U ′ is a solution for our given Knapsack instance.

Corollary 3.65. For any fixed q ∈ N>0, Feasibility with budgeted uncer-
tainty is co-NP-complete.

Due to Lemma 3.62 we can adapt formulation SepBs (U) on Page 64 to
budgeted uncertainty sets UB. This yields the following MIP that we refer
to as SepBs (UB):

SepBs (UB) min
µ, ν, π

∑
i∈I

q · x̄i · µi − π (3.25a)

s.t. π ≤
∑
j∈J

bj · νj (3.25b)

π ≤ Γ−
∑
j∈J

aj +
∑
j∈J

aj · νj (3.25c)

|N(i)| · µi ≥
∑

j∈N(i)

νj for i ∈ I (3.25d)

µi, νj ∈ B for i ∈ I, j ∈ J,
(3.25e)
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3. Robust Min q-Multiset Multicover

where x̄ ∈ N|I| is the given vector which we wish to test for feasibility.
Note that, by Lemma 3.62 and the constraint (3.25b) as well as (3.25c), the
variable π is upper bounded by the worst-case demand of the potentially
violating subset S := {j ∈ J : νj = 1}. In an optimal solution, this bound is
attained. When looking for violating extreme scenarios, we can analogously
adapt SepB(U) on Page 63 using that maxξ∈UB ξj = bj and including the
definition of UB.

3.4.4. Multi-budgeted Uncertainty
As a further step of generalizing interval uncertainty and also generalizing
budgeted uncertainty, we consider multi-budgeted uncertainty sets in this
section. We assume we have given a set S ⊆ 2J of subsets of J and, for
each S ∈ S, two non-negative integers aS , bS with aS ≤ bS . Then, the
uncertainty set under consideration is

U =
{
ξ ∈ N|J| : aS ≤ ξ(S) ≤ bS for S ∈ S

}
.

In comparison to budgeted uncertainty sets, which are able to prevent the
global worst case as the total sum of demands is limited, multi-budgeted
uncertainty sets are additionally able to prevent local worst cases as, for
every set S ∈ S, the sum of the demands in regions of S is bounded.
Observe that interval uncertainty is regained by letting S := {{j} : j ∈ J}
with a{j} := aj as well as b{j} := bj for every region j ∈ J . Moreover,
budgeted uncertainty is represented by adding the set J to S and setting
aJ := 0 and bJ := Γ. Thus, by Theorem 3.61 we have:

Theorem 3.66. For any fixed q ∈ N>0, Robust Min q-MSMC with multi-
budgeted uncertainty is APX-hard and its decision version is strongly NP-
hard.

Additionally, we can apply more results of the previous section. By
Theorem 3.64 and Corollary 3.65 we directly obtain that, for any fixed
q ∈ N>0, Separation and Feasibility with multi-budgeted uncertainty are NP-
and co-NP-complete, respectively. Further, recalling the NP-completeness
proof of Robust Sum in Lemma 3.22, given a simple graph G = (V,E) with
n ∈ N>0 vertices, we construct the uncertainty set

U := {ξ ∈ Bn : ξu + ξv ≤ 1 for [u, v] ∈ E}
= {ξ ∈ Nn : 0 ≤ ξu + ξv ≤ 1 for {u, v} ∈ S}
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with S := {{u, v} : [u, v] ∈ E}. Hence, together with Remark 3.23, we also
get the following result.

Lemma 3.67. Max Robust Sum with multi-budgeted uncertainty is APX-
hard and its decision version is strongly NP-complete even if S = {1, . . . , n}
and B ∈ N>0 is a multiple of q for some fixed q ∈ N>0.

By the previous lemma we need to adjust SepB(U) for the usage with
multi-budgeted uncertainty sets UM and we obtain SepB(UM):

SepB(UM) min
µ, ν, ξ, ω

∑
i∈I

q · x̄i · µi −
∑
j∈J

ωj

s.t. |N(i)| · µi ≥
∑

j∈N(i)

νj for i ∈ I

ωj ≤ ξj for j ∈ J
ωj ≤ νj · max

S∈S : j∈S
bS for j ∈ J

aS ≤
∑
j∈S

ξj ≤ bS for S ∈ S

µi, νj ∈ B for i ∈ I, j ∈ J
ξj ∈ N for j ∈ J.

Observe that, in comparison to SepB(U), we only included the definition
of UM and the trivial upper bound max {bS : S ∈ S ∧ j ∈ S} for the jth
coordinate of ξ ∈ UM.

3.4.5. Ellipsoidal Uncertainty

In this section, we move away from polyhedral uncertainty sets by considering
ellipsoidal sets which are widely used in robust optimization, cf. Section 2.6.
The results presented here are joint work with Andrea Maier [MS18].

Let us assume that the uncertainty set U has the form

U =
{
ξ ∈ N|J| : (ξ − a)TA−1(ξ − a) ≤ 1

}
⊆ E(A, a) ⊆ R|J|≥0

for a vector a ∈ N|J| and a positive definite matrix A ∈ Q|J|×|J|. Note
that, by assumption, we have x ≥ 0 for every vector x in the underlying
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ellipsoid E(A, a). Thus, the uncertainty set U contains all integral vectors
of E(A, a). We start with analyzing the complexity of Robust Min q-MSMC
with ellipsoidal uncertainty. Here, we need to subdivide our proofs depending
on the value of q. For q ≥ 3, we can recover previous results.

Theorem 3.68. For any fixed q ≥ 3, Robust Min q-MSMC with ellipsoidal
uncertainty is APX-hard.

Proof. For q ≥ 3, we directly obtain the result from APX-completeness of
Min q-MSMC with demand vector d ∈ N|J|>0 (Theorem 3.14) by choosing U
to be a closed Euclidean ball around d with radius 1/2, i.e.,

U :=
{
ξ ∈ N|J| : 4 · (ξ − d)T (ξ − d) ≤ 1

}
= {d} .

Note that the underlying ellipsoid
{
x ∈ R|J| : 4 · (x− d)T (x− d) ≤ 1

}
is

contained in R|J|≥0 as d > 0.

For q = 1 and q = 2, we have to use a different approach. As in
Section 3.4.1 we consider Max 3-SAT(3) to provide appropriate L-reductions.
To that end, recall Assumption 3.54 which we utilize frequently in the
subsequent proofs.

Theorem 3.69. Robust Min 2-MSMC with ellipsoidal uncertainty is APX-
hard.

Proof. We present an L-reduction from Max 3-SAT(3) which is a well-
known APX-complete problem [GJ79; Aus+02]. Let such an instance I
be given, i.e., we have n ∈ N>0 variables X1, . . . , Xn and m ∈ N>0 clauses
C1, . . . , Cm, each containing at most three literals from the set of literals{
X1, X1, . . . , Xn, Xn

}
. We construct the following bipartite graph G =

(V,E): Let

I := {x1, x̄1, . . . , xn, x̄n, y1, . . . ym} ,
J := {a1, . . . , an, b1, . . . bm, c1, . . . cm} ,

so that V = I∪J . For every variable Xi, we add the edges [xi, ai] and [x̄i, ai].
For every clause Cj , we add the edges [yj , bj ] and [yj , cj ] and, for every
literal L ∈ Cj , we add the edge [l, cj ] with l being the location corresponding
to L.
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x1
a1 α1 = 1

x̄1

...
...

xn
an αn = 1

x̄n

y1

...
...

ym

c1 γ1 = 2

b1 β1 = 1

cm γm = 1

bm βm = 1

Figure 3.11.: Bipartite graph G constructed in the proof of Theorem 3.69.

Furthermore, for p := n+ 2m, we set

U :=

(α, β, γ) ∈ Np :

n∑
i=1

2(αi − 1)2 +

m∑
j=1

(
2(βj − 1)2 + (γj − 1)2

)
≤ 1


= E(A−1, 1) ∩ Np,

where A ∈ Np×p is a diagonal matrix with value 2 in the first n + m
columns and value 1 for the remaining columns. Clearly, the matrix A is
positive definite. Consider a scenario (α, β, γ) ∈ U . For every i ∈ {1, . . . , n},
the entry αi describes the demand of ai. For every j ∈ {1, . . . ,m}, the
entries βj and γj describe the demand of bj and cj , respectively. Note that
the only possible scenarios are of the form (1, 1, 1) or (1, 1, 1) ± (0, 0, er)
for r ∈ {1, . . . ,m}. Hence, it suffices to focus on scenarios where, for some
j ∈ {1, . . . ,m}, the demand of region cj is 2 and all other regions have
unit demand. Furthermore, E(A−1, 1) ⊆ Rn+2m

≥0 since any negative entry
would not satisfy the given ellipsoidal constraint. Clearly, constructing this
instance I ′ of Robust 2-MSMC can be carried out in polynomial time. An
example of the constructed graph G with one possible scenario is shown in
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Figure 3.11.
Now, suppose we have an optimal truth assignment for I satisfying k ∈ N

of the m clauses. To simplify notation, we utilize a mapping f ′ : I → N
to represent a solution to I ′. If Xi is true, we set f ′(xi) := 1 and zero
otherwise. Analogously, we proceed with Xi. Since either Xi or Xi is true,
it holds that f ′(xi) + f ′(x̄i) = 1 for every i. Furthermore, we set f ′(yj) := 1
if clause Cj is satisfied and f ′(yj) := 2 otherwise. Thus, in total we have a
solution value of n+ 2m− k. We claim that f ′ is a solution to I ′.
Let a scenario (1, 1, 1) + (0, 0, er) for some r ∈ {1, . . . ,m} be given. For

i ∈ {1, . . . , n}, the demand of each region ai is either covered by xi or x̄i.
For j ∈ {1, . . . ,m}, we have f ′(yj) ≥ 1 and the demand of each region bj
is covered as well as the demand of each region cj 6= cr. For region cr,
one of its two clients can be served by yr. If clause Cr is satisfied by the
truth assignment, then there is a literal L ∈ Cr with f ′(l) = 1 for the
corresponding location l. Hence, location l can cover the remaining client
in cr as q = 2. Otherwise, we have set f ′(yr) = 2 and the remaining demand
of cr is covered as well. Thus, f ′ is feasible and we obtain

OPT(I ′) ≤ n+ 2m−OPT(I) (3.26)
(3.17)
≤ 3

2
m+ 2m−OPT(I) =

7

2
m−OPT(I)

(3.16)
≤ 6 ·OPT(I).

On the other hand, let f ′ : I → N be a solution to I ′. By construction,
it must hold that f ′(yj) ≥ 1 for all j ∈ {1, . . . ,m} and f ′(xi) + f ′(x̄i) ≥ 1
for all i ∈ {1, . . . , n}. First of all, we need to adjust our solution slightly.
Note that we can assume f ′(yj) = 1 for every j, as otherwise we can switch
the additional suppliers to some other location l adjacent to cj . In a second
step, if there is a location xi with f ′(xi) ≥ 2, we can decrease the value to 1
without loosing feasibility by construction of the scenarios. The same holds
for a location x̄i with f ′(x̄i) ≥ 2. Thus, suppose our solution f ′ already has
this form with SOL(I ′, f ′) = n+m+ k for some k ∈ N. If f ′(xi) = 1 and
f ′(x̄i) = 0, we set the variable Xi to true. If the values are switched, we
assign Xi the value false. Additionally, if both f ′(xi) = 1 and f ′(x̄i) = 1,
we choose the literal L ∈

{
Xi, Xi

}
to be true which appears in at least as

many clauses as its negation. If Xi and Xi both appear once, we choose Xi

to be true. Call the constructed truth assignment f .
Fix a variable Xi with f ′(xi) = f ′(x̄i) = 1. By Assumption 3.54 the

variable Xi appears at most three times in the instance I of Max 3-SAT(3).
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Furthermore, it appears at least one time negated and at least one time
non-negated. Hence, at most one clause containing Xi or Xi is evaluated
to false by our truth assignment. Thus, in total at most k clauses are
false and our truth assignment f for I satisfies at least m− k clauses. This
implies

OPT(I)− SOL(I, f) ≤ OPT(I)−m+ k

(3.26)
≤ n+ 2m−OPT(I ′)−m+ k

= n+m+ k −OPT(I ′)
= SOL(I ′, f ′)−OPT(I ′).

The claim follows as our adjustments only improved the solution f ′.

In the remaining case q = 1, we use a similar construction as in the proof
of Theorem 3.69. Yet, as q = 1, we need to enforce the existence of some
additional suppliers.

Theorem 3.70. Robust Min 1-MSMC with ellipsoidal uncertainty is APX-
hard.

Proof. As above, let an instance I of Max 3-SAT(3) be given. Since every
supplier can only cover one client, we need some auxiliary locations and
regions. We set

I := {x1, x̄1, . . . , xn, x̄n, y1, . . . ym, z1, . . . , zn} ,
J := {a1, . . . , an, b1, . . . bm, c1, . . . , cm, d1, . . . , dn} ,

so that the vertex set of the constructed bipartite graph G is given by
V = I∪J . The edge set E consists of the edges in the proof of Theorem 3.69
plus the edges [zi, ai] and [zi, di] for i ∈ {1, . . . , n}. For p := 2(n+m) we
define the positive definite matrix A ∈ Np×p as a diagonal matrix with
value 2 on the diagonal for the first n columns and value 1 otherwise. We
set U := E(A−1, 1) ∩ Np so that any vector (α, β, γ, δ) ∈ U satisfies

n∑
i=1

(
2(αi − 1)2 + (δi − 1)2

)
+

m∑
j=1

(
(βj − 1)2 + (γj − 1)2

)
≤ 1.

Call the constructed instance I ′. The interpretation of the vectors α, β,
and γ is as in Theorem 3.69 while the vector δ describes the demand of the
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Figure 3.12.: Bipartite graph G constructed in the proof of Theorem 3.70.

regions d1, . . . , dn. Again, it suffices to focus on the scenarios of the form
(1, 1, 1, 1) + (0, er) with r ∈ {1, . . . , n+ 2m} and we have E(A−1, 1) ⊆ Rp≥0.
This construction can be accomplished in polynomial time. An example of
the constructed graph is illustrated in Figure 3.12.

Now, suppose we have an optimal truth assignment for I satisfying k ∈ N
of the m clauses. As in the proof of Theorem 3.69 we use a mapping
f ′ : I → N to construct a solution to I ′. If Xi is true, we set f ′(xi) := 1
and zero otherwise. Analogously, we proceed with Xi. Furthermore, we
set f ′(zi) := 2 for all i ∈ {1, . . . , n}. For j ∈ {1, . . . ,m}, we set f ′(yj) := 2
if clause Cj is true and f ′(yj) := 3 otherwise. Thus, in total we have
SOL(I ′, f ′) = 3n + 2k + 3(m − k) = 3n + 3m − k. We claim that f ′ is
feasible for I ′.

Let (α, β, γ, δ) = (1, 1, 1, 1) + (0, er) ∈ U for some r ∈ {1, . . . , n+ 2m} be
given. Depending on the value of r we distinguish three cases:

(a) If βj = 2 for some j, the demand of region bj is covered by yj . If
clause Cj is true, there is one literal L ∈ Cj with f ′(l) = 1 for its
corresponding location l. Thus, the demand of region cj can be covered
by location l. If clause Cj is false, we have f ′(yj) = 3 so that yj also
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covers region cj . Furthermore, the demand of the regions ai and di are
covered by zi for all i. The demand of all remaining regions bj′ and cj′
for j′ 6= j is covered by the suppliers in yj′ .

(b) If γj = 2 for some j, the argumentation is analogous to item (a).

(c) If δi = 2 for some i, the demand of region di is covered by zi. For
every i′, the demand of region ai′ is covered by xi′ or x̄i′ and, for every j,
the demand of the regions cj and bj is covered by yj .

Thus, we obtain

OPT(I ′) ≤ 3n+ 3m−OPT(I) (3.27)
(3.17)
≤ 15

2
m−OPT(I)

(3.16)
≤ 14 ·OPT(I).

On the other hand, let f ′ : I → N be a solution to I ′. Due to the
scenarios, we know that f ′(yj) ≥ 2 for all j and f ′(zi) ≥ 2 for all i.
By the analogous switching argument as in the proof of Theorem 3.69,
we can assume f ′(yj) = f ′(zi) = 2 for all i, j. Then, it also holds that
f ′(xi) + f ′(x̄i) ≥ 1 for all i due to the scenarios with δi = 2. We can
additionally ensure that f ′(xi) ≤ 1 as well as f ′(x̄i) ≤ 1 by construction
of U . Hence, let SOL(I ′, f ′) = 3n + 2m + k for some k ∈ N. We obtain∑n
i=1 f

′(xi) + f ′(x̄i) = n+ k with k being the number of pairs (xi, x̄i) such
that f ′(xi) = f ′(x̄i) = 1. Now, we replicate the truth assignment f of
the proof of Theorem 3.69. This gives a solution to I with at least m− k
satisfied clauses implying

OPT(I)− SOL(I, f) ≤ OPT(I)−m+ k

(3.27)
≤ 3n+ 3m−OPT(I ′)−m+ k

= 3n+ 2m+ k −OPT(I ′)
= SOL(I ′, f ′)−OPT(I ′).

Again, the claim follows as our adjustments only improved the given solu-
tion f ′.

Corollary 3.71. For any fixed q ∈ N>0, Robust q-MSMC with ellipsoidal
uncertainty is strongly NP-hard.
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Proof. For q = 1, we obtain from the proof of Theorem 3.70 that a solution
to I with at least k ∈ N satisfied clauses leads to a solution to I ′ with value
at most 3n+ 3m− k in polynomial time and vice versa.

For q = 2, we obtain from the proof of Theorem 3.69 that a solution to I
with at least k ∈ N satisfied clauses leads to a solution to I ′ with value at
most n+ 2m− k in polynomial time and vice versa.

For q = 3, the result follows from Theorem 3.15.

By Corollary 3.71 and the previous theorems it is necessary to analyze the
separation problem corresponding to Robust Min q-MSMC with ellipsoidal
uncertainty. To that end, we reconsider the Independent Set problem,
cf. Problem 3.21. We show that Robust Sum with ellipsoidal uncertainty is
strongly NP-complete which also leads to NP-completeness of Separation
for this type of uncertainty.

Theorem 3.72. Robust Sum with ellipsoidal uncertainty is strongly NP-
complete even for S = {1, . . . , n}.

Proof. As in Lemma 3.22 we get that Robust Sum with ellipsoidal un-
certainty is contained in NP. To show NP-hardness of Robust Sum with
ellipsoidal uncertainty we provide a polynomial time reduction from Inde-
pendent Set. Hence, let an instance of Independent Set be given, i.e., a
simple graph G = (V,E) and a positive integer B ≤ |V |. Let V = {1, . . . , n}
for n ∈ N>0 and let M ∈ Bn×n be the adjacency matrix of G, i.e., Muv = 1
if and only if the vertices u and v are adjacent in G. Consider the matrix

A :=
1

2B

(
2 · In +

1

n
·M
)
∈ Qn×n.

As G contains no loops, we get that Avv >
∑
u 6=v |Avu| for every v ∈ V .

Hence, by [HJ12] the matrix A is positive definite, cf. Section 2.1, and
according to [Var75] we have∣∣A−1

vv

∣∣ ≤ max
v′∈V

∑
u∈V

∣∣A−1
v′u

∣∣ ≤ 1
1
B −

n−1
2Bn

≤ 2Bn (3.28)

for v ∈ V . Consider the ellipsoid E(A−1, 0). By (3.28) and Lemma 2.1
we get that xv ∈ [−2Bn, 2Bn] for every x ∈ E(A−1, 0) and v ∈ V . Hence,
with K := 2Bn and a := K · 1 we have E(A−1, a) ⊆ Rn≥0 and we define
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U := E(A−1, a) ∩ Nn. Observe that A−1 can be computed in polynomial
time from A. For a scenario ξ ∈ U , we write ξ = a+ x with x ∈ Zn and we
infer

(ξ − a)
T
A (ξ − a) ≤ 1

⇔ xTAx ≤ 1

⇔
∑
v∈V

2 · x2
v +

∑
[u,v]∈E

2

n
· xu · xv ≤ 2B

⇔
∑
v∈V

n · x2
v +

∑
[u,v]∈E

xu · xv ≤ nB.

(3.29)

Finally, we set S := V and B′ := nK +B.
Let V ′ ⊆ V be an independent set of G with |V ′| ≥ B. If necessary, we

delete vertices from V ′ so that |V ′| = B. For v ∈ V , we set x̄v := 1 if v ∈ V ′
and zero otherwise. Consider the scenario ξ := a+ x̄. With (3.29) we get
that ∑

v∈V
n · x̄2

v +
∑

[u,v]∈E

x̄u · x̄v = n · |V ′| = nB

so that ξ ∈ U with ξ(S) = nK + x̄(V ) = nK +B = B′.
Now let ξ ∈ U be a scenario with ξ(V ) ≥ B′ = nK + B. First of all,

we rewrite ξ = a+ x̄ for x̄ ∈ Zn so that x̄(V ) ≥ B. We show that we can
assume x̄ ≥ 0. First, assume there is v ∈ V with x̄v < 0 and |x̄v| ≥ |x̄u| for
every u ∈ N(v). Then, it holds true that

n · x̄2
v +

∑
u∈N(v)

x̄v · x̄u ≥ n · x̄2
v −

∑
u∈N(v)

|x̄v| · |x̄u| ≥ n · x̄2
v −

∑
u∈N(v)

x̄2
v ≥ 0.

Hence, we can improve our given scenario without loosing feasibility by
reassigning x̄v := 0. Now, assume that, for every v ∈ V with x̄v < 0, there is
some u′ ∈ N(v) with |x̄v| < |x̄u′ |. Let v′ ∈ V be a vertex with x̄v′ ≤ x̄v for
every v ∈ V . If x̄v′ ≥ 0, we get that x̄ ≥ 0. Otherwise, there is u′ ∈ N(v′)
with |x̄v′ | < |x̄u′ |. By choice of v′ we must have |x̄v′ | < x̄u′ . Furthermore,
without loss of generality we can assume that x̄u′ ≥ x̄u for every u ∈ N(v′).
Consider the new scenario ξ′ := a+ x′ with

x′v :=


x̄v′ + x̄u′ if v = u′,
0 if v = v′,
x̄v otherwise,
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for v ∈ V . Observe that x′(V ) = x̄(V ) and that the number of negative
entries in x′ is one less than the number of negative entries in x̄. We show
that ξ′ ∈ U . With (3.29) we get that∑
v∈V

n · (x′v)2 +
∑

[u,v]∈E

x′u · x′v

=
∑

v∈V \{v′,u′}

n · x̄2
v + n · (x̄v′ + x̄u′)

2 +
∑

[u,v]∈E

x̄u · x̄v − x̄u′ · x̄v′

−
∑

u∈N(u′),
u 6=v′

x̄u · x̄u′ −
∑

u∈N(v′),
u 6=u′

x̄u · x̄v′ +
∑

u∈N(u′),
u 6=v′

x̄u · (x̄v′ + x̄u′)

≤ nB + (2n− 1) · x̄u′ · x̄v′ −
∑

u∈N(v′),
u6=u′

x̄u · x̄v′ +
∑

u∈N(u′),
u6=v′

x̄u · x̄v′ .

Thus, we get ξ′ ∈ U if we can show that

(2n− 1) · x̄u′ ≥
∑

u∈N(v′),
u 6=u′

x̄u −
∑

u∈N(u′),
u 6=v′

x̄u. (3.30)

By choice of u′ we have∑
u∈N(v′),
u 6=u′

x̄u ≤
∑

u∈N(v′),
u6=u′

x̄u′ ≤ (n− 1) · x̄u′ .

Furthermore, by choice of v′ we have, for u ∈ V , x̄u′ > |x̄v′ | ≥ |x̄u| whenever
x̄u < 0. Hence, we get∑

u∈N(u′),
u6=v′

−x̄u ≤
∑

u∈N(u′),
u6=v′,x̄u<0

−x̄u ≤
∑

u∈N(u′),
u6=v′,x̄u<0

x̄u′ ≤ (n− 1) · x̄u′ .

Therefore, Equation (3.30) is fulfilled and ξ′ ∈ U . If there is v ∈ V with
x′v < 0 we can restart the whole procedure. Thus, after at most n iterations
we have a scenario ξ = a+ x̄ in U with x̄ ∈ Nn and x̄(V ) ≥ B. First of all,
assume that x̄(V ) > B. But then (3.29) cannot be fulfilled as

∑
v∈V x̄

2
v > B

and x̄ ≥ 0. Thus, x̄(V ) = B. If
∑
v∈V x̄

2
v > B, we again obtain a
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contradiction to (3.29) as x̄ ≥ 0. Hence,
∑
v∈V x̄

2
v ≤ B. If

∑
v∈V x̄

2
v < B,

we get that also x̄(V ) < B as x̄ ∈ Nn in contradiction to x̄(V ) = B. Thus,
we also have that

∑
v∈V x̄

2
v = B and, hence, x̄u · x̄v = 0 for every edge

[u, v] ∈ E. Now, assume there is u ∈ V with x̄2
u > x̄u. Then, we have∑

v 6=u

x̄v ≤
∑
v 6=u

x̄2
v = B − x̄2

u < B − x̄u

in contradiction to x̄(V ) = B. Hence, we must have x̄v ∈ B for every v ∈ V .
We choose V ′ := {v ∈ V : x̄v = 1}. By our above argumentation we know
that V ′ is an independent set of G of size B.

Note that the previous theorem shows that it is NP-hard to maximize a
linear function over the integral points of an ellipsoid even if the coefficients
of the linear function are binary and the set of feasible solutions is non-empty.
As in Theorem 3.38 we can apply the construction of the previous proof to
also show NP-hardness of Separation with ellipsoidal uncertainty.

Corollary 3.73. For any fixed q ∈ N>0, Separation and Feasibility with
ellipsoidal uncertainty are strongly NP- and co-NP-complete, respectively.

Proof. We see that Separation with ellipsoidal uncertainty is contained
in NP, cf. Theorem 3.38. To show NP-hardness we again consider an
instance of Independent Set with a simple graph G = (V,E) and a positive
integer B ∈ N>0. Let V = {1, . . . , n} for some n ∈ N>0 and let G′ be the
simple graph that is the union of q copies of G. We apply the construction
in the proof of Theorem 3.72 to the graph G′ to obtain our instance of
Separation with ellipsoidal uncertainty. That means, with M ′ ∈ Bqn×qn
being the adjacency matrix of G′, we have

A :=
1

2(qB)
·
(

2 · Iqn +
1

qn
·M ′

)
∈ Qqn×qn

and a := K · 1 with K := 2 · qB · qn = 2Bq2n. The uncertainty set is
given by U := E(A−1, a) ∩ Nqn and fulfills the required properties. We set
I := {0}, J := {1, . . . , qn}, and E := {[0, j] : j ∈ J} to obtain the bipartite
graph H = (I ∪ J,E). Furthermore, we set x̄0 := 2Bq2n2 +B − 1.
An independent set V ′ ⊆ V of G with |V ′| = B directly leads to an

independent set in G′ of size exactly q · B. Analogously to the proof of
Theorem 3.72 we find a scenario ξ ∈ U with ξ(J) = qn · K + q · B =
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q · (2Bq2n2 +B) > q · x̄0. Thus, the set J is a solution to the constructed
instance of Separation.

On the other hand, let a subset S ⊆ J and a scenario ξ ∈ U with ξ(S) >
q · x̄(NH(S)) be given. Then, S is non-empty and we get q · x̄(NH(S)) =
q · (2Bq2n2 +B−1). Analogously to the proof of Theorem 3.72 we can write
ξ = a+ x̄ for x̄ ∈ Nqn. Then, we have x̄(J) > q · (B − 1). By construction
of U there is some i′ ∈ {0, . . . , q − 1} with

∑
v∈V x̄i′·n+v ≥ B as otherwise

we get x̄(J) ≤ q · (B − 1). Analogously to the proof of Theorem 3.72
we get that V ′ := {v ∈ V : x̄i′·n+v = 1} is an independent set of G with
|V ′| = B.

Remark 3.74. Along the lines of the above proof we can show that Robust
Sum with ellipsoidal uncertainty is NP-complete even if the bound B ∈ N>0

of a given instance is a multiple of q for some fixed q ∈ N>0. Similarly, we can
also see this with Theorem 3.72 as Independent Set remains NP-complete
if the given bound is a multiple of q, cf. Remark 3.23. This observation will
be of use in Chapter 5.

Notably, when relaxing the integrality constraints on the scenarios, Max
Robust Sum with ellipsoidal uncertainty is solvable due to Lemma 2.1.
Furthermore, we can use this lemma to deduce

max
ξ∈U

ξj ≤ aj +
√
Ajj .

for an ellipsoidal uncertainty set U = E(A, a)∩N|J|. Thus, for the separation
step, we solve the following convex integer program in the case of ellipsoidal
uncertainty UE where M := aj +

√
Ajj :

SepB(UE) min
µ, ν, ξ, ω

∑
i∈I

q · x̄i · µi −
∑
j∈J

ωj

s.t. |N(i)| · µi ≥
∑

j∈N(i)

νj for i ∈ I

ωj ≤ ξj for j ∈ J
ωj ≤ νj ·M for j ∈ J

(ξ − a)TA−1(ξ − a) ≤ 1

µi, νj ∈ B for i ∈ I, j ∈ J
ξj ∈ N for j ∈ J.
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The interpretation of the constraints follows readily from SepB(U) on Page 63
and the definition of UE. Of course, it is not clear whether

√
Ajj ∈ Q for

every j ∈ J . For better readibility we use this upper bound here. To ensure
encoding we can also use a poorer bound by approximating

√
Ajj from

above.

3.4.6. Γ-Uncertainty

As a final common uncertainty set we consider Γ-uncertainty. Let a nominal
vector a ∈ N|J| and a deviation â ∈ N|J| be given. Similar to interval
uncertainty, the demand ξj of region j varies in a given interval [aj− âj , aj +
âj ] around its nominal value aj ∈ N. But now, the number of regions
whose demand deviates from its nominal value is upper bounded by an
integer Γ ∈ {0, 1, . . . , |J |}, cf. Section 2.6. In our context, it suffices to focus
on positive deviations. Thus, we consider the uncertainty set

U =
{
ξ ∈ N|J| : a ≤ ξ ≤ a+ â, | {k : ξk 6= ak} | ≤ Γ

}
. (3.31)

By the same arguments as in Section 3.4.3 we refrain from considering only
scenarios where the demand of exactly Γ regions deviates. By Remark 3.33
we directly obtain the following result on the complexity of Robust Min
q-MSMC with Γ-uncertainty:

Theorem 3.75. For any fixed q ∈ N>0, Robust Min q-MSMC with Γ-
uncertainty is APX-hard and its decision version is strongly NP-hard even
for a = 0 and â = 1.

Proof. Setting the parameters to a := 0, â := 1, and Γ := 1 yields the
uncertainty set U =

{
0, e1, . . . , e|J|

}
as in the proof of Theorem 3.30.

Thus, the consideration of Separation and Robust Sum with Γ-uncertainty
is of interest. Due to the basic structure of Γ-uncertainty sets and their
relation to budgeted uncertainty sets, cf. [Ata06], we deduce the following
result.

Lemma 3.76. Max Robust Sum with Γ-uncertainty can be solved in time
O(|S|).
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Proof. Let U ⊆ Nn be an uncertainty set of the form (3.31) with J =
{1, . . . , n} and S ⊆ J . By definition, it holds true that

max
ξ∈U

ξ(S) = a(S) + max {â(T ) : T ⊆ S, |T | ≤ Γ} .

If Γ ≥ |S|, this evaluates to a(S) + â(S). Otherwise, we can find the Γ-
largest element in {âj : j ∈ S}, say α ∈ N, in time O(|S|) using a linear
time selection algorithm, cf. [Cor+09]. Then, max {â(T ) : T ⊆ S, |T | ≤ Γ}
is obtained by first summing up all values in {âj : j ∈ S} with value greater
than α. Suppose this sum consists of r ∈ N values. Then, r < Γ and we
add (Γ− r) · α. Again, this takes time O(|S|).

As with budgeted uncertainty, Γ-uncertainty allows to compute a vio-
lating extreme scenario given a violating subset in linear time. Therefore,
concerning Separation with Γ-uncertainty, we seek a subset S ⊆ J with

q · x̄(N(S)) < a(S) + max
T⊆S,|T |≤Γ

â(T ).

Unfortunately, we see that Separation with Γ-uncertainty is NP-complete.
To prove this result, we consider the special case where a = 0. For this case,
the problem simplifies as shown below.

Lemma 3.77. For a = 0, Separation with Γ-uncertainty is equivalent to
asking for a subset T ⊆ J with |T | ≤ Γ and

q · x̄(N(T )) < â(T ). (3.32)

Proof. Let an instance of Separation with Γ-uncertainty be given and let
S ⊆ J be a subset with q ·x̄(N(S)) < max {â(T ) : T ⊆ S, |T | ≤ Γ}. Further,
let T ′ ⊆ S be an optimal solution to the expression on the right-hand side.
Then, we get

q · x̄(N(T ′)) ≤ q · x̄(N(S)) < max
T⊆S,|T |≤Γ

â(T ) = â(T ′).

On the other hand, given a subset T ′ ⊆ J with |T ′| ≤ Γ satisfying (3.32),
we can choose S := T ′ and obtain

q · x̄(N(S)) < â(S) = max
T⊆S,|T |≤Γ

â(T ).

98



3.4. Specific Classes of Uncertainty Sets

With the help of Lemma 3.77 we obtain the mentioned hardness result.
We present a polynomial time reduction from Clique which is a well-known
NP-complete problem, see [GJ79].

Problem 3.78 (Clique).
Instance: A simple graph G = (V,E) and a positive integer B ≤ |V |.
Question: Does G contain a clique of size at least B, i.e., a subset V ′ ⊆ V
with |V ′| ≥ B such that every two distinct vertices in V ′ are adjacent in G?

Observe that this problem remains NP-complete even if B ≥ 4. Furthermore,
we can restrict ourselves to instances with |E| ≥

(
B
2

)
as otherwise it must

be a no-instance.

Theorem 3.79. For any fixed q ∈ N>0, Separation with Γ-uncertainty is
strongly NP-complete even for a = 0.

Proof. The problem is contained in NP, see Theorem 3.38. To show NP-
hardness, we provide a polynomial time reduction from Clique. Thus, given
an instance of this problem, i.e., a simple graph G′ = (V ′, E′) and an
integer B with 4 ≤ B ≤ |V ′| and |E′| ≥

(
B
2

)
, we construct an instance

of Separation with Γ-uncertainty as follows: We set I := V ′, J := E′,
and E := {[v, e] : v ∈ e} to obtain the bipartite graph G = (I ∪ J,E). For
all regions j ∈ J , we set aj := 0 and âj := 2qB. Moreover, for every
location i ∈ I, we define

x̄i := 2B ·
(
B − 1

2
− 1

B

)
= B · (B − 1)− 2.

Finally, let Γ :=
(
B
2

)
= B(B−1)

2 ≤ |J |. Since a = 0, we apply Lemma 3.77.
Given a clique C ⊆ V ′ in the graph G′ of size at least B, we fix B vertices

of this clique and obtain a subset C ′ ⊆ C. To define the set T ⊆ J we
choose the corresponding edges of C ′, i.e., T := {[u, v] : u, v ∈ C ′}. Then,
|NG(T )| = B and |T | =

(
B
2

)
≤ Γ and we obtain

∑
i∈NG(T )

q · x̄i = |NG(T )| · 2qB ·
(
B − 1

2
− 1

B

)
= B · 2qB ·

(
B − 1

2
− 1

B

)

= 2qB ·
((

B

2

)
− 1

)
< 2qB ·

(
B

2

)
= 2qB · |T | =

∑
j∈T

âj .
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Now, given a subset T ⊆ J with |T | ≤ Γ =
(
B
2

)
and q · x̄(NG(T )) < â(T ),

we claim that NG(T ) ⊆ I is a clique of size B in G′. First of all, we insert
the given values and reformulate the expression.

|NG(T )| · q · 2B ·
(
B − 1

2
− 1

B

)
< |T | · 2qB ≤

(
B

2

)
· 2qB

⇔ |NG(T )| ·
(
B − 1

2
− 1

B

)
< |T | ≤

(
B

2

)
. (3.33)

Suppose |NG(T )| ≥ B + 1. Then, we have

|NG(T )| ·
(
B − 1

2
− 1

B

)
≥ (B + 1) ·

(
B − 1

2
− 1

B

)
=

(
B

2

)
− 1 +

B − 1

2
− 1

B

=

(
B

2

)
+
B2 − 3B − 2

2B
≥
(
B

2

)
,

where the last inequality holds as B2 − 3B − 2 ≥ 0 for B ≥ 4. This is a
contradiction to (3.33). Now, suppose |NG(T )| ≤ B − 1. Let l := |NG(T )|.
We get:

|NG(T )| ·
(
B − 1

2
− 1

B

)
= l ·

(
B − 1

2
− 1

B

)
−
(
l

2

)
+

(
l

2

)
=
l (B − 1)

2
− l

B
− l (l − 1)

2
+

(
l

2

)
=
l (B − l)

2
− l

B
+

(
l

2

)
B>l
≥ l

2
− l

B
+

(
l

2

)
≥
(
l

2

)
≥ |T |.

Again, this contradicts (3.33). Thus, we must have |NG(T )| = B. Due
to (3.33) we get |T | =

(
B
2

)
. As G′ is simple, we get that NG(T ) is a clique

of size B.

Corollary 3.80. For any fixed q ∈ N>0, Feasibility with Γ-uncertainty is
strongly co-NP-complete.

100



3.4. Specific Classes of Uncertainty Sets

Remark 3.81. In the proof of Theorem 3.36 we have seen that, for an
instance I of Separation with Γ-uncertainty with a = 0 and bipartite
graph G, computing a minimum s-t-cut in the network HG(q · x̄, â) leads
to an answer to the question whether there exists a subset T ⊆ J with
q · x̄(NG(T )) < â(T ). In comparison to this result, Theorem 3.79 reveals
that the additional constraint |T | ≤ Γ turns this problem into a hard one.

Thus, to solve the separation step in the case of Γ-uncertainty, we propose
the following mixed integer program SepBs (UΓ) for an uncertainty set UΓ of
type (3.31).

SepBs (UΓ) min
µ, ν, ν̃

∑
i∈I

q · x̄i · µi −
∑
j∈J

aj · νj −
∑
j∈J

âj · ν̃j (3.34a)

s.t. |N(i)| · µi ≥
∑

j∈N(i)

νj for i ∈ I (3.34b)

ν̃j ≤ νj for j ∈ J (3.34c)∑
j∈J

ν̃j ≤ Γ (3.34d)

ν̃j ≥ 0 for j ∈ J (3.34e)
µi, νj ∈ B for i ∈ I, j ∈ J. (3.34f)

In an optimal solution (µ?, ν?, ν̃?) we can assume that ν̃? ∈ B|J| as Γ ∈ N
and ν? ∈ B|J|. Thus, when setting S :=

{
j ∈ J : ν?j = 1

}
the variables ν̃?

encode the set T ⊆ S with |T | ≤ Γ due to the constraints (3.34c) and (3.34d).
Then, the term ∑

j∈J
aj · ν?j +

∑
j∈J

âj · ν̃?j

reflects the worst-case demand of the set S by Lemma 3.76. A scenario ξ ∈ UΓ

attaining this worst-case demand can be obtained by setting, for every region
j ∈ J ,

ξj =

{
aj + âj , if ν?j = ν̃?j = 1,

aj , otherwise.

After this extensive study of various classes of uncertainty sets, we briefly
draw our attention to some variants of Robust q-MSMC to which all the
previous reductions cannot be applied.
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3.5. Bounding Locations or Regions
In the preceding section, we encountered quite a lot of NP-hardness proofs
showing that Robust q-MSMC is NP-hard for a broad amount of uncertainty
set classes. A common feature of all these reductions is that the number of
locations or regions is not bounded by a fixed constant in the construction
of the instance of Robust q-MSMC. Thus, the question arises whether this
feature is, among others, responsible for NP-hardness in many cases. In this
section, we aim to analyze this question by considering instances of Robust
q-MSMC with |I| or |J | being bounded from above by a fixed constant. We
start with considering the location case.

Let an instance of Robust q-MSMC with |I| ≤ k for some fixed k ∈ N be
given. Then, there are only constantly many variables but exponentially
many constraints present in Ps(U), cf. Page 48. To also decrease the number
of constraints, the idea is to change the perspective by considering the
problem from the supplier side. We show that Ps(U) is equivalent to the
following integer program:

min
x

∑
i∈I

xi (3.35a)

s.t.
∑
i∈I′

q · xi ≥ max
ξ∈U

∑
j∈S′

ξj for I ′ ⊆ I (3.35b)

xi ∈ N for i ∈ I, (3.35c)

with S′ := {j ∈ J : N(j) ⊆ I ′}.
Lemma 3.82. A vector x ∈ N|I| is a solution to Ps(U) if and only if it is
a solution to (3.35).

Proof. Suppose x ∈ N|I| is feasible for Ps(U) and let a subset I ′ ⊆ I be
arbitrary. As N(S′) ⊆ I ′, we have that∑

i∈I′
q · xi ≥

∑
i∈N(S′)

q · xi ≥ max
ξ∈U

∑
j∈S′

ξj .

Therefore, x is feasible for (3.35). Now, let x ∈ N|I| be feasible for (3.35)
and let S ⊆ J be arbitrary. Consider the set I ′ := N(S). Note that S ⊆ S′
and we get ∑

i∈N(S)

q · xi ≥ max
ξ∈U

∑
j∈S′

ξj ≥ max
ξ∈U

∑
j∈S

ξj .
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Therefore, x is feasible for Ps(U).

Note that (3.35) has a fixed number of variables as well as a fixed number
of constraints if |I| ≤ k for some fixed k ∈ N. Thus, if, for all I ′ ⊆ I,
the right-hand side of (3.35b) can be computed in polynomial time, the
formulation (3.35) is polynomial time solvable for any fixed q ∈ N>0 [Len83].
For example, this is the case with discrete, interval, budgeted, and Γ-
uncertainty. Yet, for the general case, we obtain NP-hardness due to the
flexibility of the uncertainty set U .

Theorem 3.83. For any fixed q ∈ N>0, Robust q-MSMC is NP-hard even
if |I| = |J | = 1.

Proof. We consider the NP-complete problem Quadratic Congruences. In
an instance of this problem, we have given positive integers a, b, and c and
the question is whether there is a positive integer x with x < c and x2 ≡ a
mod b, cf. [GJ79].
We construct an instance of Robust q-MSMC by defining a bipartite

graph G that consists of the edge [1, 2] with I := {1} and J := {2}.
Furthermore, we set B := 1 and

U :=
{

1 + ξ : ξ ∈ N>0, ξ < c, ξ2 ≡ a mod b
}
∪ {1} ,

i.e., the uncertainty set U contains the solutions to the instance of Quadratic
Congruences increased by 1 and the value 1.
Now, suppose we have an oracle that returns the answer to the

constructed instance of Robust q-MSMC. If the answer is “yes”, we
know that x := 1 is feasible for the constructed instance and hence{
ξ ∈ N>0 : ξ < c, ξ2 ≡ a mod b

}
must be empty, i.e., the instance of

Quadratic Congruences is a no-instance. If, conversely, the answer of
the oracle is “no”, we know that{

ξ ∈ N>0 : ξ < c, ξ2 ≡ a mod b
}
6= ∅

so that the instance of Quadratic Congruences is a yes-instance.

The above proof heavily relies on the property that the uncertainty set
does not need to belong to a specific class. It can be generalized as follows.
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Corollary 3.84. Let C ⊆ 2R>0 be a class of uncertainty sets such that,
given U ∈ C, asking whether U 6= ∅ is an NP-complete problem. Then, for
any fixed q ∈ N>0, Robust q-MSMC with uncertainty C is NP-hard even in
the case of |I| = |J | = 1.

Observe that Theorem 3.83 also covers the case of bounded number of
regions. Nevertheless, we aim to establish the result of polynomial time
solvability for certain classes of uncertainty sets. If |J | ≤ k for some fixed
k ∈ N, Ps(U) contains at most 2k many constraints and polynomially many
variables. Furthermore, without loss of generality, we can assume that
N(i) 6= N(i′) for two distinct locations i, i′ ∈ I. Hence, there are at most 2k

many distinct locations and the number of variables is upper bounded by
this value. Thus, we get that, for any fixed q, k ∈ N>0, Robust q-MSMC
restricted to instances with |J | ≤ k and for which U has a polynomial time
optimization oracle can be solved in polynomial time.

Conclusion
In this chapter, we studied the problem Robust Min q-MSMC for general
uncertainty sets and also for various specific classes of uncertainty sets. We
presented two equivalent formulations of the problem and used them to
analyze solution techniques, in particular, constraint generation. Further,
we derived numerous results concerning the complexity of Robust Min
q-MSMC. If a set of instances of Robust Min q-MSMC formed an APX-
hard problem, the analysis of the corresponding Separation and Feasibility
problems was conducted. Here, NP-completeness of the Separation problem
implies co-NP-completeness of the corresponding Feasibility problem and
NP-hardness of the corresponding LP-relaxation of Robust Min q-MSMC.
Notably, even for uncertainty sets for which Robust Sum is polynomial time
solvable, the corresponding Separation problem is NP-complete in some
cases. Moreover, if Robust Sum is polynomial time solvable, it is possible to
compute violating extreme scenarios from violating subsets in polynomial
time and vice versa. Table 3.2 summarizes our main results.
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3.5. Bounding Locations or Regions

Uncertainty Robust Min q-MSMC Separation/Feasibility Robust Sum

General APX-hard NP/co-NP-complete NP-complete
Discrete

q · |U| ≤ 2 PO P P
q · |U| ≥ 3 APX-complete P P

Interval
q ≤ 2 PO P P
q ≥ 3 APX-complete P P

Budgeted APX-hard NP/co-NP-complete P
Multi-budgeted APX-hard NP/co-NP-complete NP-complete
Ellipsoidal APX-hard NP/co-NP-complete NP-complete
Γ APX-hard NP/co-NP-complete P

Table 3.2.: Summary of results for Robust Min q-MSMC and related prob-
lems. If not stated otherwise, the results hold for any fixed
q ∈ N>0.
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4. Approximating Robust Min
q-Multiset Multicover

In the previous chapter, we have seen that almost all considered variants of
Robust Min q-MSMC are APX-hard. Hence, the existence of polynomial
time solution algorithms for these variants is rather unlikely. This motivates
to aim for approximate solutions that can be computed with less effort.
These solutions are helpful as they serve as upper bounds and start solutions
for the constraint generation process. Since Robust Min q-MSMC admits for
an interpretation as an adjustable robust problem and as a (robust) Multiset
Multicover problem, we differentiate our considerations in Section 4.1 and 4.2.
Our aim in this chapter is to present an approximation algorithm that is
simultaneously applicable for various classes of uncertainty sets and also for
the non-robust version. Hence, we intend to impose only mild assumptions
on the given uncertainty sets.
Observe that, when talking about approximation algorithms for Robust

Min q-MSMC, we want to compute a solution x to a given instance in
polynomial time. By Theorem 3.8, given x and a scenario ξ ∈ U , we can
compute the corresponding adjustable variables y(ξ) in polynomial time
so that we stay in line with Definition 2.9. Furthermore, in this chapter,
we again restrict our considerations to feasible instances of Robust Min
q-MSMC. By our assumptions on U in Section 2.6, such an instance can be
identified in time O(|J |), where J denotes the set of regions of the given
instance.

To illustrate our results and to gain more insights, we additionally focus
on a distinct class of uncertainty sets. We choose budgeted uncertainty, i.e.,
UB =

{
ξ ∈ N|J| : a ≤ ξ ≤ b, ξ(J) ≤ Γ

}
with a, b ∈ N|J|, a ≤ b, and Γ ∈ N,

cf. Section 3.4.3 and Assumption 3.60.
In Section 4.1, we start with an extensive literature review on approxima-

tions and approximation algorithms for the Min Adjustable Robust Covering
problem which is introduced in Section 2.6.1. The results obtained therein
are applied and extended to Robust Min q-MSMC in Section 4.1.2.
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Further, Section 4.2 begins with reviewing relevant literature on approxi-
mation algorithms for the Min Set Cover problem and its generalizations,
cf. Section 2.4. We concentrate on one particular algorithm for Min Set
Cover in Section 4.2.2 and utilize this algorithm as our starting point to
develop an approximation for Robust Min q-MSMC in Section 4.2.3.

4.1. Approximation based on Adjustable
Robustness

Given an instance of Robust Min q-MSMC, we have seen in Section 3.2
that it corresponds to the mixed integer program P(U), cf. Page 51. In
this section, we concentrate on the relation of P(U) to the Min Adjustable
Robust Covering problem (Min ARC) introduced in Section 2.6.1. Of course,
this relation is likewise valid for Ps(U). To reduce recurrences we stay with
formulation P(U) in this section.

4.1.1. Literature Review

Recall that an instance of Min ARC of Section 2.6.1 leads to solving the
following MIP:

Parc(Z) min
x, y(ζ)

cTx+ max
ζ∈Z

dT y(ζ) (4.1a)

s.t. Ax+By(ζ) ≥ ζ for ζ ∈ Z (4.1b)
x, y(ζ) ≥ 0 for ζ ∈ Z (4.1c)

x ∈ Rn1−p1 × Np1 (4.1d)

y(ζ) ∈ Rn2−p2 × Np2 for ζ ∈ Z, (4.1e)

with A ∈ Qm×n1 , B ∈ Qm×n2 , c ∈ Qn1

≥0, d ∈ Qn2

≥0, p1 ≤ n1, p2 ≤ n2, and an
uncertainty set Z ⊆ Rm≥0. If p2 = 0, we can additionally assume that Z is
convex, cf. Lemma 2.10. Let zarc(Z) denote the optimal value of Parc(Z)
which we assume exists.

The optimization problem Min ARC together with formulation Parc(Z)
is extensively studied in the literature. Here, we concentrate on results
concerning complexity and approximation algorithms that lead to prov-
able approximation ratios. For a general overview on robust multi-stage
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4.1. Approximation based on Adjustable Robustness

optimization problems, we refer the reader to [DI15]. It can readily be
seen that Min ARC is strongly NP-hard as it captures the famous Min
Set Cover problem, compare Section 2.4. Thus, for practical purposes, we
seek approximate solutions that are close to an optimal solution in terms
of their corresponding solution values. But recall that Min ARC cannot
be approximated in polynomial time with ratio better than lnm unless
P = NP [DS14; Mos15].
In literature, a wide range of solution policies, where the adjustable

variables y(ζ) are assumed to have a specified structure, is used to obtain
approximations as we see in the following. We say that a policy is optimal
if it can be imposed on Parc(Z) without deteriorating its optimal value.
In [Ben+04], Ben-Tal et al. define the adjustable robust counterpart

of an uncertain linear programming problem as a relaxation of its robust
counterpart, cf. Section 2.6.1. They show that the LP-relaxation of Parc(Z)
can be rewritten as a linear program if Z is given as the convex hull of a finite
set. Thus, in this special LP-case the problem is polynomial time solvable.
Furthermore, they consider the strictly robust/static policy where one single
variable vector y replaces all variable vectors y(ζ), i.e., adjustability is
discarded and the problem becomes a single-stage optimization problem.
If Z is a constraint-wise1 uncertainty set, they prove optimality of the strictly
robust policy. Moreover, they introduce a generalization of this policy
which is later called affine policy : To approximate the adjustable robust
counterpart, one assumes that y(ζ) affinely depends on the uncertain data ζ,
i.e., y(ζ) = Wζ+w for a matrixW and a vector w of appropriate dimensions.
Applying this transformation, problem Parc(Z) turns into a problem with
variables x, W , and w. With this assumption and a computationally
tractable2 uncertainty set Z, they show that the LP-relaxation of Parc(Z)
is computationally tractable as well. There are already several results on
the strong performance of the affine policy in practice, see e.g., [Ben+04;
Ben+05].

In [BG10], Bertsimas and Goyal introduce Parc(Z) as a two-stage adaptive
optimization problem. They define and investigate the adaptivity gap, i.e.,
the ratio between the optimal value zrob(Z) of the strictly robust policy and
the optimal value zarc(Z) of Parc(Z). In doing so, they prove upper bounds
for this gap for several classes of uncertainty sets including symmetric and

1Z is a direct product of m uncertainty sets, compare [Ben+04; BGN09].
2The separation problem for Z is polynomial time solvable, cf. Page 26 and [Ben+04].
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positive sets, cf. Section 4.1.2.
The notion of the strictly robust policy is extended by Bertsimas and

Caramanis in [BC10] by defining a piecewise static/finitely adaptable policy.
Here, the idea is to partition the uncertainty set into finitely many pieces
where each piece Ui obtains one adjustable variable vector y(Ui). However,
they show that finding the optimal pieces is NP-hard. This policy is similarly
applied in [BGS11]. Therein, a finitely adaptable policy is provided yielding
approximate solutions to Parc(Z) with ratio depending only on the geometric
properties of the uncertainty set Z. But for a two-stage problem, this policy
coincides with the strictly robust policy. Subsequently, the geometric results
are extended by Bertsimas and Bidkhori in [BB14] who investigate the
relation of the optimal value zaff(Z) of the affine policy to zarc(Z).

In [BG11], a wide range of further approximation results for Parc(Z) with
focus on the affine policy is given by Bertsimas and Goyal. They show
that this policy is optimal for simplex uncertainty sets. In particular, this
shows that a piecewise affine policy, where the uncertainty set is partitioned
and one applies the affine policy on each piece, is optimal for polytope
uncertainty sets [BGE19]. Note that piecewise affine policies generalize
piecewise static policies. Moreover, if the constraint matrix A only contains
non-negative data, the optimal value of the affine policy approximates zarc(Z)
within a factor of O(

√
m) [BG11]. For the general case, Bertsimas and

Goyal also give a (non-affine) solution with ratio O(
√
m) by considering a

simplex uncertainty set containing m+ 1 many scenarios and dominating
the uncertainty set Z, cf. [BG11]. In [BGE19], similar ideas are used to
obtain an O(

√
m)-approximation for the LP-relaxation of Parc(Z). Therein,

the ratio heavily relies on the fact that one can assume Z ⊆ [0, 1]m for
the LP-case. Further extensions and improvements of the affine policy for
the LP-case are given in [CZ09] and [XB17] but no stronger approximation
ratios are presented.
In [Lu16], the idea of a dominating uncertainty set from [BG11] for

the LP-relaxation of Parc(Z) is reconsidered. Therein, Lu uses a scaled
dominating uncertainty set and presents specific classes of uncertainty sets
for which this approach provides better bounds than recently known.
In the following, we investigate the possible implications of the above

findings to obtain approximations of Robust Min q-MSMC. In particular,
we need to take care of the integrality constraints on x, the integrality of
the scenarios, and the complexity of the resulting problems.
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4.1. Approximation based on Adjustable Robustness

4.1.2. Application to Robust Min q-Multiset Multicover
In this section, we analyze the relation between Min ARC and Robust
Min q-MSMC and how this link leads to approximation algorithms for
special cases of Robust Min q-MSMC. In particular, we focus on budgeted
uncertainty. First of all, we establish the following result.

Lemma 4.1. For any fixed q ∈ N>0, Robust Min q-MSMC is a special case
of Min ARC.

Proof. Let an instance I of Robust Min q-MSMC be given with n := |I|
and m := |J |. Consider the formulation Parc(Z) on Page 108. Then, we set
c := 1, d := 0, and

Z :=
{

(ξ, 0)T ∈ Nm+n : ξ ∈ U
}
⊆ Nm+n.

As U is non-empty, compact, and finite, these properties also hold for Z.
Note that we only have m uncertain parameters as the last n entries of
every scenario ζ ∈ Z are fixed to zero. The matrices A ∈ N(m+n)×n

and B ∈ Z(m+n)×(nm) have the following structure:

A :=

(
0

q · In

)
and B :=

(
B11 B12 · · · B1n

B21 B22 · · · B2n

)
where B1i ∈ Bm×m and B2i ∈ {−1, 0}n×m for i ∈ {1, . . . , n}. Finally, for
i ∈ {1, . . . , n}, the matrices B1i and B2i have zero entries except for the
following ones: (B1i)jj := 1 if i ∈ N(j) and (B2i)ij := −1 if j ∈ N(i). Note
that B1i only has non-zero entries on the diagonal and B2i only has non-zero
entries in row i. Last but not least, we require x ∈ Nn and y(ζ) ∈ Rnm for
ζ ∈ Z so that p1 := n and p2 := 0. By our identification of Rnm with Rn×m,
cf. Section 2.1, the constructed instance of Min ARC corresponds to I as
the formulations Parc(Z) and P(U) coincide. Hence, Robust Min q-MSMC
is a special case of Min ARC.

Using the terminology of stochastic programming and robust optimization
the matrix B is called recourse matrix and we see that B is a fixed recourse
as it is not affected by uncertainty [Pré95; Ben+04]. In the following, we
analyze approximation results for Robust Min q-MSMC, especially with
budgeted uncertainty, based on Section 4.1.1. The findings can be assigned
to three different groups: We investigate
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4. Approximating Robust Min q-Multiset Multicover

(a) the performance of applying strict robustness,

(b) the performance of imposing the affine policy, and

(c) the performance of dominating uncertainty sets.

Performance of Strict Robustness

In this section, we concentrate on the performance of the strictly robust
policy applied to Robust Min q-MSMC. We see certain geometric properties
of the uncertainty set U that allow to calculate approximation ratios. To
obtain an intuition of these ratios, we analyze the geometric characteristics
for budgeted uncertainty sets. Thus, let us apply strict robustness to Robust
Min q-MSMC and consider

Prob(U) min
x, y

∑
i∈I

xi

s.t.
∑

i∈N(j)

yij ≥ ξj for j ∈ J, ξ ∈ U

∑
j∈N(i)

yij ≤ q · xi for i ∈ I

yij ≥ 0 for i ∈ I, j ∈ J
xi ∈ N for i ∈ I.

It can readily be seen that Prob(U) is feasible. Furthermore, an optimal
solution to Prob(U) corresponds to an optimal solution to the corresponding
instance of Min q-MSMC with the worst-case demand vector ξwc, where
ξwcj := maxξ∈U ξj for j ∈ J . Let (x?, y?) be optimal for Prob(U). We
call x? an optimal strictly robust solution for I. It is easy to see that a
solution (x, y) to Prob(U) gives a solution x to I showing that x? is indeed
feasible for I. Denote by zrob(U) the optimal value of Prob(U) and by z(U)
the analogue of P(U). Hence, we get that z(U) ≤ zrob(U). The adaptivity
gap, cf. [BG10],

zrob(U)

z(U)

is bounded by ∑
j∈J

⌈
ξwcj
q

⌉
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4.1. Approximation based on Adjustable Robustness

and our aim is to improve this bound. For the cases in which Min q-MSMC
is polynomial time solvable, e.g., q ∈ {1, 2}, and ξwc can be computed
in polynomial time, we then obtain approximation algorithms for Robust
Min q-MSMC. Observe that the consideration of the adaptivity gap is only
meaningful if |U| ≥ 2 as otherwise the optimal values coincide. Thus, for
the remainder of this section, we assume that the uncertainty set U of
our instance of Robust Min q-MSMC contains at least two scenarios. All
presented ratios rely on the following fact which is similarly proven in [BG10;
BGS11].

Lemma 4.2. Let an instance I of Robust Min q-MSMC be given. If there
is ξ′ ∈ conv(U) and α ∈ R such that α · ξ′ ≥ ξ for all ξ ∈ U , then an optimal
strictly robust solution is an dαe-approximate solution to I.

Proof. Let (x?, y?) be an optimal solution to P(conv(U)) and let α and ξ′
be given as above. Consider the vector (x, y) with x := dαe · x? and
y := α · y?(ξ′). We show that (x, y) is feasible for Prob(U). For j ∈ J and
ξ ∈ U , we have ∑

i∈N(j)

α · y?(ξ′)ij ≥ α · ξ′j ≥ ξj .

Furthermore, for i ∈ I, it holds that∑
j∈N(i)

α · y?(ξ′)ij ≤ q · dαe · x?i = q · xi

by feasibility of x? and y?(ξ′) for P(conv(U)). Thus, the vector (x, y) is
feasible for Prob(U) and we obtain by Lemma 2.10

zrob(U) ≤ dαe · x?(I) = dαe · z(conv(U)) = dαe · z(U).

To take advantage of Lemma 4.2 we define some properties of subsets
of Rp where p ∈ N>0. In particular, we focus on convex bodies, i.e., compact
and convex sets having a non-empty relative interior.

Definition 4.3 (Symmetric Set [BF06; BG10]). A set P ⊆ Rp is symmetric
if there exists some u0 ∈ P such that, for any z ∈ Rp, u0 + z ∈ P if and
only if u0 − z ∈ P . The point u0 is called a point of symmetry of P .

In fact, by [BG10; BF06], the point of symmetry u0 of a symmetric convex
body P ⊆ Rp is uniquely given by u0 := 1/2 · (x+ y) with xj := minx′∈P x

′
j
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and yj := maxx′∈P x
′
j for j ∈ {1, . . . , p}. Hence, the subsequent property is

well-defined.

Definition 4.4 (Positive Set [BG10]). A convex body P ⊆ Rp≥0 is positive
if there exists a symmetric convex body S ⊆ Rp≥0 such that P ⊆ S and the
point of symmetry of S is contained in P .

As in the proof of Lemma 4.2 we can consider the uncertainty set U+ :=
conv(U) instead of U . Hence, by our assumptions on U , we get that conv(U)
is a convex body and the results of [BG10] are applicable to our problem.
In [BG10], Bertsimas and Goyal show that the adaptivity gap equals 1 if
the uncertainty set U+ is a hypercube, see also Section 3.4.2. Moreover,
they prove that, if U+ is symmetric or positive with point of symmetry ξ0,
then 2 · ξ0 ≥ ξ for all ξ ∈ U+. By Lemma 4.2 the adaptivity gap is therefore
bounded from above by 2 for these classes of uncertainty sets. Thus, if we
additionally have q = 1 or q = 2 and the vector ξwc can be computed in
polynomial time, we obtain a 2-approximation algorithm for Robust Min
q-MSMC.

Example 4.5 (Budgeted Uncertainty). For an instance of Robust Min q-
MSMC with budgeted uncertainty UB ⊆ N|J|, we get that the adaptivity gap
is bounded from above by |J |: Let UB =

{
ξ ∈ N|J| : a ≤ ξ ≤ b, ξ(J) ≤ Γ

}
as

on Page 107. Then, it holds true that

zrob(UB) ≤
∑
j∈J

⌈
bj
q

⌉
≤
∑
j∈J

⌈
Γ

q

⌉
= |J | ·

⌈
Γ

q

⌉
≤ |J | · z(UB).

The convex set U+
B := conv(UB) is a hypercube if b(J) = Γ implying that

an optimal strictly robust solution x? leads to an optimal solution (x?, y?)
for P(UB).
For a general consideration, suppose U+

B is a convex body. We show
that U+

B is positive if and only if there are vectors δ1, δ2 ≥ 0 such that the
following constraints are fulfilled:

a− δ1 ≥ 0

a+ δ2 − δ1 ≤ b
b+ δ2 − δ1 ≥ a

b(J) + a(J) + δ2(J)− δ1(J) ≤ 2Γ.

(4.2)

114



4.1. Approximation based on Adjustable Robustness

If U+
B is positive, let S ⊆ R|J|≥0 be a symmetric convex body with U+

B ⊆ S such
that the point of symmetry u0 of S is contained in U+

B . Define x, y ∈ R|J|
with xj := minx′∈S x

′
j ≤ aj and yj := maxx′∈S x

′
j ≥ bj for j ∈ J . Then,

by [BG10], we get u0 = 1/2 · (x+ y). With δ1 := a− x and δ2 := y − b the
claim follows as u0 ∈ U+

B . On the other hand, suppose there are δ1, δ2 ≥ 0

fulfilling (4.2). Then, the hypercube S :=
{
x : a− δ1 ≤ x ≤ b+ δ2

}
⊆ R|J|≥0

is a symmetric convex body with point of symmetry

u0 :=
a− δ1 + b+ δ2

2

and we get u0 ∈ U+
B as well as U+

B ⊆ S.
Hence, if U+

B is positive, an optimal strictly robust solution gives a 2-
approximation. In particular, this holds if 1/2 · (a+ b) ∈ U+

B . /

In addition to the above results, in [BGS11], it is shown that zrob(U)
approximates the optimal value z(U) by a factor of⌈

1 +
ρ(U+)

sym(U+)

⌉
, (4.3)

where ρ(U+) is the translation factor of U+ and sym(U+) is the symmetry
factor of U+, which we subsequently define. The symmetry factor generalizes
Definition 4.3 for convex bodies:

Definition 4.6 (Symmetry Factor [BGS11]). For a convex body P ⊆ Rp
and some u ∈ P , the symmetry of P with respect to u is defined as

sym(u, P ) := max {α ≥ 0: u+ α · (u− u′) ∈ P for u′ ∈ P} . (4.4)

Then, the symmetry factor of P is defined as

sym(P ) := max {sym(u, P ) : u ∈ P} (4.5)

and an optimizer u0 of (4.5) is called point of symmetry of P .

Hence, the value sym(u, P ) describes the maximum possible factor α ≥ 0
such that any point u′ ∈ P can be reflected through u by the factor α and the
reflection is still contained in P . For a point of symmetry u0 of P , we have
u0 ∈ P ri by (4.4). We note that no ambiguities can occur when speaking
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of a point of symmetry of a given set. Let P be as in Definition 4.6. If P
is symmetric with unique point of symmetry u0 as given in Definition 4.3,
we have that, for every u ∈ Rp, u ∈ P if and only if u0 + (u0 − u) ∈ P .
Compactness of P and P ri 6= ∅ give sym(u, P ) ≤ 1 for every u ∈ P . Hence,
sym(u0, P ) = 1 and sym(P ) = 1 so that u0 maximizes (4.5).

Definition 4.7 (Translation Factor [BGS11]). For a convex body P ⊆ Rp≥0

and some u ∈ P , the translation of P with respect to u is defined as

ρ(u, P ) := min {α ≥ 0: u′ − (1− α) · u ≥ 0 for u′ ∈ P} .

Then, the translation factor of P is defined as

ρ(P ) := min
{
ρ(u0, P ) : u0 ∈ arg max {sym(u, P ) : u ∈ P}

}
. (4.6)

Thus, for some u ∈ P , the set P ′ := P − (1− ρ(u, P )) · u is the maximum
possible translation of P into direction −u such that P ′ ⊆ Rp≥0 still holds.
As any point of symmetry of P is contained in P ri, we see that 0 < ρ(P ) ≤
1. The following lemma provides the foundation for the approximation
factor (4.3).

Lemma 4.8 ([BGS11]). Let U ⊆ Np be an uncertainty set with |U| ≥ 2.
Let U+ := conv(U) with a point of symmetry ξ0. Then,(

1 +
ρ(ξ0,U+)

sym(U+)

)
· ξ0 ≥ ξ

for all ξ ∈ U+.

Proof. By the properties of U ⊆ Np we get that U+ ⊆ Rp≥0 is a convex body.
Let U ′ := U+ − (1 − ρ(ξ0,U+)) · ξ0 ⊆ Rp≥0. Then, sym(U ′) = sym(U+) by
Definition 4.6 and a point of symmetry of U ′ is given by ξ1 := ρ(ξ0,U+) · ξ0.
Let ξ ∈ U+ and ξ′ := ξ − (1− ρ(ξ0,U+)) · ξ0. By Definition 4.6 we get

ξ1 + sym(U+) · (ξ1 − ξ′) ≥ 0 ⇔
(

1 +
1

sym(U+)

)
· ξ1 ≥ ξ′.

Inserting the definitions for ξ1 and ξ′ gives(
1 +

ρ(ξ0,U+)

sym(U+)

)
· ξ0 ≥ ξ.
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To obtain the approximation factor given in (4.3) we apply Lemma 4.2
and Lemma 4.8 with a point of symmetry that minimizes (4.6). If such
a minimizer cannot be found in practice, Lemma 4.8 still applies to some
arbitrary point of symmetry ξ0 and we get a bound of⌈

1 +
ρ(ξ0,U+)

sym(U+)

⌉
for the adaptivity gap.

As the translation factor of a set is bounded by 1 and dim(U+)·sym(U+) ≥
1 by [BF06] we have an upper bound of 1 + dim(U+) for (4.3). Note that,
if U+ is symmetric, we reobtain the bound 2 as ρ(U+) > 0.
In the following, we analyze these geometric factors for an instance

of Robust Min q-MSMC with budgeted uncertainty UB ⊆ N|J|. In case
a(J) = Γ we have UB = {a} and zrob(UB) = z(UB). Thus, for the remainder
of this section, we assume that a(J) < Γ ≤ b(J) so that UB fulfills the
requirements of Lemma 4.8.

Lemma 4.9. Let U+
B be the convex hull of a budgeted uncertainty set UB ⊆

N|J| with a(J) < Γ. The (unique) point of symmetry ξ0 of U+
B , the symmetry

factor sym(U+
B ), and the translation factor ρ(U+

B ) are given by the following
formulas:

ξ0 = a+ λ · (b− a),

sym(U+
B ) =

Γ− a(J)

b(J)− a(J)
,

ρ(U+
B ) = max

j∈J

λ · (bj − aj)
aj + λ · (bj − aj)

,

with

λ :=
Γ− a(J)

Γ + b(J)− 2a(J)
.

Proof. First consider the scalar λ ∈ R>0. As Γ ≤ b(J), we get that λ ≤ 1/2.
Furthermore, by [BF06], the symmetry factor and a point of symmetry
of U+

B are obtained from an optimal solution to the following quadratic
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program:

max
s, ξ

s (4.7a)

s.t. (ξj − aj) · s ≤ bj − ξj for j ∈ J (4.7b)
(bj − ξj) · s ≤ ξj − aj for j ∈ J (4.7c)

(ξ(J)− a(J)) · s ≤ Γ− ξ(J) (4.7d)

ξ ∈ U+
B . (4.7e)

We argue that

s? :=
Γ− a(J)

b(J)− a(J)
and ξ? := a+ λ · (b− a)

is an optimal variable assignment for (4.7). First of all, note that

1− λ = 1− Γ− a(J)

Γ + b(J)− 2a(J)
=

b(J)− a(J)

Γ + b(J)− 2a(J)
> 0

so that s? = λ/1−λ. As λ ≤ 1/2, we have λ ≤ 1 − λ. Now, let j ∈ J with
aj < bj as otherwise (4.7b) and (4.7c) are trivially fulfilled. Then, we have

s? =
λ

1− λ
≤ 1− λ

λ
=

(bj − aj)(1− λ)

(bj − aj)λ
=
bj − ξ?j
ξ?j − aj

and

s? =
λ

1− λ
=
ξ?j − aj
bj − ξ?j

.

Further, plugging in the definition of λ yields

Γ− ξ?(J)

ξ?(J)− a(J)
=

Γ− a(J)− λ(b(J)− a(J))

λ(b(J)− a(J))
=

λ

1− λ
= s?. (4.8)

Note that the constraints (4.7c) and (4.7d) are fulfilled with equality. Last
but not least, we have a ≤ ξ? ≤ b and (4.8) gives

(1− λ) · (Γ− ξ?(J)) = λ · (ξ?(J)− a(J))

⇔ ξ?(J) = (1− λ) · Γ + λ · a(J).
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4.1. Approximation based on Adjustable Robustness

As a(J) ≤ Γ, we have ξ? ∈ U+
B . Now, let s ∈ R, ξ ∈ U+

B be feasible for (4.7).
If there is j ∈ J with ξj ≤ ξ?j , (4.7c) leads to

s ≤ ξj − aj
bj − ξj

≤
ξ?j − aj
bj − ξ?j

= s?.

Note that ξ?j < bj . But if ξj > ξ?j for all j ∈ J , we get by (4.7d):

s ≤ Γ− ξ(J)

ξ(J)− a(J)
<

Γ− ξ?(J)

ξ?(J)− a(J)
= s?.

Again, note that ξ?j > aj for all j. Thus, s ≤ s? for any solution (s, ξ)
to (4.7). In particular, s < s? if ξ 6= ξ? showing that (s?, ξ?) is the unique
optimal solution. For the translation factor ρ(U+

B ), we solve

min
{
α ≥ 0: ξ − (1− α) · ξ? ≥ 0 for ξ ∈ U+

B

}
.

As ξ ≥ a for all ξ ∈ U+
B , it suffices to consider the constraint for scenario a

and we get:

aj − (1− α) · (aj + λ · (bj − aj)) ≥ 0 for j ∈ J
⇔ −λ · (bj − aj) + α · (aj + λ · (bj − aj)) ≥ 0 for j ∈ J

⇔ α ≥ λ · (bj − aj)
aj + λ · (bj − aj)

for j ∈ J.

This proves the formula for ρ(U+
B ).

Since λ ≤ 1/2 we have ξ0 ≤ 1/2 · (a+ b). Furthermore, for the translation
factor we deduce:

Corollary 4.10. Let UB be as in Lemma 4.9. If there is j ∈ J with aj = 0,
we have ρ(U+

B ) = 1. Otherwise it holds that

arg max
j∈J

λ(bj − aj)
aj + λ(bj − aj)

= arg max
j∈J

bj
aj
.

Proof. If there is j ∈ J with aj = 0, the result directly follows from
Lemma 4.9. Otherwise, fix j ∈ J with aj > 0. If aj = bj , region j is
redundant for the translation factor. Thus, with aj 6= bj we get

λ · (bj − aj)
aj + λ · (bj − aj)

=
λ

λ+ 1
bj/aj−1

and the claim holds as λ > 0 and bj/aj > 1.
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a

b

(a+b)/2

ξ0

λ(
b−
a)

ξ0(J)

a(J)

aj ξ0j bj Γ

Γ

τ

Figure 4.1.: Illustration of geometric factors for budgeted uncertainty UB
with τ := a−

(
1− ρ(U+

B )
)
· ξ0.

Note that the point of symmetry ξ0 of U+
B is located on the first half of

the line segment between a and b. It is exactly the scenario ξ where the
ratios

Γ− ξ(J)

ξ(J)− a(J)
and

ξj − aj
bj − ξj

coincide for all j ∈ J . For the translation factor ρ(U+
B ), we get that scenario a

is moved as far as possible into direction −ξ0 until the first entry attains
the value zero. An illustration is shown in Figure 4.1.

For an interpretation of the approximation factor, suppose there is j ∈ J
with aj = 0. Then, we have

1 +
ρ(U+

B )

sym(U+
B )

= 1 +
1

sym(U+
B )

= 1 +
b(J)− a(J)

Γ− a(J)
= 2 +

b(J)− Γ

Γ− a(J)
. (4.9)

120



4.1. Approximation based on Adjustable Robustness

Thus, the ratio (4.9) increases when increasing the lower or upper bounds a, b.
Similarly, the ratio increases if Γ decreases. This also captures intuition
as we actually decrease the degree of uncertainty in the adjustable model
with decreasing Γ or increasing either a or b, while the strictly robust model
assumes Γ = b(J) by Assumption 3.60. In all cases, the uncertainty set
becomes “less” symmetric. On the other hand, for Γ → b(J), we increase
the degree of uncertainty and the adjustable model moves towards the
strictly robust model. Here, the ratio approaches 2 from above which was
the guarantee shown by [BG10] if U+

B is positive, cf. Example 4.5. Note
that, unless Γ = b(J), rounding up yields an actual factor of 3 and that, for
Γ = b(J), it holds that z(UB) = zrob(UB).

If a > 0, let j? ∈ arg maxj∈J bj/aj and let ω := bj?/aj? > 1, i.e., bj − aj ≤
(ω − 1) · aj for all j ∈ J . According to the proof of Corollary 4.10 we get

ρ(U+
B )

sym(U+
B )

=
λ

λ+ 1
ω−1

· 1− λ
λ

=
1− λ
λ+ 1

ω−1

.

Thus, ρ(U+
B ) < 1 and the ratio improves compared to (4.9). Moreover, we

can express λ by means of the symmetry factor sym(U+
B ):

λ =
1

1 + 1
sym(U+

B )

.

Hence, the closer U+
B is to a symmetric set and the closer ω is to 1, the

better our approximation ratio. In addition to the previous observations for
a 6> 0, we get that

1− λ
λ+ 1

ω−1

≤ 1 ⇔ λ ≥ 1

2
− 1

2(ω − 1)
,

so that the ratio 2 is also attained for λ < 1/2, i.e., Γ < b(J).
All in all, we have seen that an optimal strictly robust solution leads to

approximations whose ratios depend only on the geometry of the uncertainty
set. Exemplarily, for budgeted uncertainty, we have extensively studied
these geometric properties. Unfortunately, we only obtain approximation
algorithms if either q = 1 or q = 2 and if the scenario vector ξwc can be
computed in polynomial time.
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Performance of Affine Policy

After having analyzed the strictly robust policy in the context of approxima-
tions, we now turn to applying the affine policy as introduced in Section 4.1.1.
Thus, we assume that, for a given instance I of Robust Min q-MSMC and a
scenario ξ ∈ U , the adjustable variables y(ξ) are of the form y(ξ) = Wξ+w
for a matrix W and a vector w of appropriate dimensions. This means
we concentrate on the quality of the optimal value zaff(U) to the following
problem:

Paff(U) min
x,W,w

∑
i∈I

xi

s.t.
∑

i∈N(j)

y(ξ)ij ≥ ξj for j ∈ J, ξ ∈ U

∑
j∈N(i)

y(ξ)ij ≤ q · xi for i ∈ I, ξ ∈ U

y(ξ) = Wξ + w for ξ ∈ U
y(ξ)ij ≥ 0 for i ∈ I, j ∈ J, ξ ∈ U

xi ∈ N for i ∈ I
W ∈ R|I||J|×|J|

w ∈ R|I||J|.

Observe that we apply the identification of R|I|×|J| and R|I||J| as men-
tioned in Section 2.1 on the variables y(ξ) here. As the affine policy is
a generalization of the static policy of the previous section, we directly
get that Paff(U) is feasible and has an optimal solution (x?,W ?, w?). We
call x? an optimal affine solution for I. Obviously, for any solution (x,W,w)
to Paff(U), the vector x is feasible for I so that x? is indeed a solution to I.
The results concerning the affine policy given in [Ben+04] are applicable
to the LP-relaxation of Robust Min q-MSMC. But in general, we cannot
assume that y(ξ) affinely depends on the scenario ξ in an optimal solution
as the subsequent example shows.

Example 4.11 (Suboptimality of Affine Policy). Consider the following
instance of Robust Min q-MSMC with I := {A,B}, J := {1, 2, 3, 4}, and
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A

B

1

2

3

4

1

2
3
4
5

6

Figure 4.2.: Bipartite graph G corresponding to Example 4.11.

the uncertainty set

U :=



q
q
0
0

 ,


q
0
q
0

 ,


q
0
0
q

 ,


0
q
q
0

 ,


0
q
0
q

 ,


0
0
q
q


 .

Furthermore, let NG(A) := {1, 2, 3} and NG(B) := {2, 3, 4} and let E be the
corresponding edge set. The bipartite graph G := (I ∪ J,E) is illustrated in
Figure 4.2. It can readily be seen that the optimal value of the instance is 2
which is attained by setting x?A = x?B = 1. Note that this optimal solution
is unique. We show that, given x?, no solution for y(ξ) is an affine function
of ξ. To see this, we label the edges as depicted in Figure 4.2. To ensure
legibility we omit y(ξ)ij if i /∈ NG(j) and write y(ξ) = (y(ξ)1, . . . , y(ξ)6)T .
Then, we must have

y


q
q
0
0

 =


q
0
0
q
0
0

 , y


0
0
q
q

 =


0
0
q
0
0
q

 , y


q
0
q
0

 =


q
0
0
0
q
0

 , and y


0
q
0
q

 =


0
q
0
0
0
q

 .

Now, suppose y(ξ) = Wξ + w for a matrix W ∈ R6×4 and a vector w ∈ R6.
This leads to the following contradiction:

W


q
q
q
q

+ 2w = y


q
q
0
0

+ y


0
0
q
q

 6= y


q
0
q
0

+ y


0
q
0
q

 = W


q
q
q
q

+ 2w.
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Thus, the variable vector y(ξ) does not affinely depend on ξ in an optimal
solution to the constructed instance. Moreover, this result also holds for
budgeted uncertainty as

U ⊆
{
ξ ∈ N4 : 0 ≤ ξ ≤ q · 1, ξ(J) ≤ 2q

}
and x? is also optimal for the extended uncertainty set. /

Despite the previous example, in [BG11], it is shown that an optimal
affine solution for I does not behave too badly compared to an optimal
solution. The ratio of the corresponding solution values can be bounded by
3
√
|I|+ |J |+1. In our case, this bound can even be improved to 3

√
|J |+1 as

we only have |J | uncertain parameters. Thus, we need to compute an optimal
affine solution to approximate z(U) within this ratio. Unfortunately, the
computation of an optimal affine solution is APX-hard which can be shown
by an L-reduction from Min Dominating Set(3) similar to Theorem 3.30.
We formalize the adapted optimization problem and present the necessary
adjustments of the proof.

Problem 4.12 (Robust Min q-MSMC with affine policy).
Instance: An instance of Robust Min q-MSMC.
Solution: A solution (x,W,w) to Paff(U).
Measure: The value x(I).

Theorem 4.13. For any fixed q ∈ N>0, Robust Min q-MSMC with affine
policy is APX-hard.

Proof. Let an instance I of Min Dominating Set(3) be given, i.e., a simple
graph G = (V,E) with V = {1, . . . , n} for n ∈ N>0 and ∆G ≤ 3. To
construct the instance I ′ of Robust Min q-MSMC with affine policy, we
refer to the proof of Theorem 3.30. Note that U = {0, e1, . . . , en} and let G′
be the constructed bipartite graph.

Let V ′ ⊆ V = I be an optimal solution to I. Then, we set xi := 1 for all
i ∈ V ′ and zero otherwise. By Theorem 3.30 we get that x is feasible for
the corresponding instance of Robust Min q-MSMC. As |U| = n+ 1, we can
compute a solution ȳ to the (non-affine) adjustable variables y(e1), . . . , y(en)
in polynomial time using n Max Flow computations. We set

W :=
(
ȳ(e1), . . . , ȳ(en)

)
and w := ȳ(0) := 0.
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4.1. Approximation based on Adjustable Robustness

Hence, (x,W,w) is feasible for I ′ and OPT(I ′) ≤ OPT(I).
Conversely, suppose that (x,W,w) is a solution to I ′. Then, x is feasible

for the corresponding instance of Robust Min q-MSMC and we can assume
thatW is given as above as well as w = 0. Furthermore, by construction of U
we can assume that xi ≤ 1 for i ∈ I. We define V ′ := {v ∈ V : xv = 1} and
claim that V ′ is a dominating set for G. To this end, select a vertex u ∈ V .
As eu ∈ U and by feasibility of (x,W,w), we know that there is v ∈ NG′(u)
with xv = 1, i.e., v ∈ V ′. By construction of G′, either v = u or the vertices u
and v are adjacent in G. Therefore, SOL(I, V ′) ≤ SOL(I ′, (x,W,w)) and
SOL(I, V ′)−OPT(I) ≤ SOL(I ′, (x,W,w))−OPT(I ′). In particular, we
also have OPT(I) ≤ OPT(I ′).

In the proof of Theorem 4.13, we repeatedly exploit the fact that the convex
hull of the constructed uncertainty set U = {0, e1, . . . , en} is a simplex for
which the affine policy is optimal, cf. [BG11]. Despite this hardness result
of applying the affine policy, the O(

√
|J |)-ratio is appealing when utilizing

an optimal affine solution as a start solution in the constraint generation
method (if the instance size allows for a computation of the optimal affine
solution).

Performance of Dominating Uncertainty Sets

As a final approximation concept for Min ARC we investigate the perfor-
mance of dominating uncertainty sets. Considering Parc(Z), the idea is
to replace the uncertainty set Z with an “easier” uncertainty set Z ′ that
additionally dominates Z, i.e., for every ζ ∈ Z, there is ζ ′ ∈ Z ′ with ζ ≤ ζ ′.
Note that Z does not need to be a subset of Z ′ here.

Definition 4.14 (Dominating Solution). Let an instance of Min ARC with
uncertainty set Z ⊆ Rm≥0 be given and let Z ′ ⊆ Rm≥0 be an uncertainty
set dominating Z. Let (x′, y′) be feasible for Parc(Z ′). A solution (x, y)
to Parc(Z) with x := x′ and, for every ζ ∈ Z, y(ζ) := y′(ζ ′), where ζ ′ ∈ Z ′
dominates ζ, is called a dominating solution with respect to (x′, y′). If
(x′, y′) is optimal for Parc(Z ′), we call (x, y) an optimal dominating solution.

As implicitly given in Definition 4.14 it can readily be seen that a dominat-
ing solution is feasible for Parc(Z). Further, the optimal value of Parc(Z ′) is
an upper bound on the optimal value of Parc(Z): For an optimal dominating
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4. Approximating Robust Min q-Multiset Multicover

solution (x, y) with respect to (x′, y′), we have

zarc(Z) ≤ cTx+ max
ζ∈Z

dT y(ζ) ≤ cTx′ + max
ζ′∈Z′

dT y′(ζ ′) = zarc(Z ′). (4.10)

as c, d ≥ 0 and by definition of (x, y).
For our purposes, let p2 = 0 and assume without loss of generality that

the first r ∈ N constraints in Parc(Z) have an uncertain right-hand side.
Then, the problem can be rewritten as

P′arc(Zr) min
x, y(ζ)

cTx+ max
ζ∈Zr

dT y(ζ)

s.t. Ax+By(ζ) ≥
(
ζ
ζ̄

)
for ζ ∈ Zr

x, y(ζ) ≥ 0 for ζ ∈ Zr
x ∈ Rn1−p1 × Np1

y(ζ) ∈ Rn2 for ζ ∈ Zr,

with uncertainty set Zr ⊆ Rr≥0 and ζ̄ ∈ Qm−r≥0 fixed. Denote by z′arc(Zr)
the optimal value of P′arc(Zr).

Definition 4.15 (Prevailing Set [BG11]). Given P′arc(Zr) with uncertainty
set Zr ⊆ Rr≥0, a prevailing set Z0 corresponding to Zr is given by

Z0 :=
{

2β,
⌈
2
√
r
⌉
· β1, . . . ,

⌈
2
√
r
⌉
· βr
}
,

where, for j ∈ {1, . . . , r}, βj ∈ arg maxζ∈Zr
ζj and β is obtained from

Algorithm 4.1. The vectors β, β1, . . . , βr are called generating vectors corre-
sponding to Zr and we say that Z0 is generated by β, β1, . . . , βr.

Example 4.16. For an illustration of a prevailing set, consider the convex
hull of a budgeted uncertainty set

Z :=
{
ξ ∈ R2 : 0 ≤ ξ ≤ 4 · 1, ξ1 + ξ2 ≤ 7

}
with r := 2. We can choose β1 = (4, 0)T and β2 = (0, 4)T . Algorithm 4.1
applied to Z may choose the scenario u1 := (3, 4)T in the first iteration as

3

4
+

4

4
= 1.75 >

√
2.
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Algorithm 4.1 Computation of scenario β for Z0 [BG11].

Input: An uncertainty set Z ⊆ Rr≥0.
Output: Scenario β for a prevailing set Z0.
1: J1 := {1, . . . , r}, J2 := ∅, β := 0
2: µj := maxζ∈Z ζj for j = 1, . . . , r
3: while ∃ζ ∈ Z with

∑
j∈J1

ζj/µj >
√
r do

4: u ∈ arg maxζ∈Z
∑
j∈J1

ζj/µj

5: β := β + u
6: J ′ := J1

7: for j ∈ J ′ do
8: if βj ≥ µj then
9: J1 := J1 \ {j}

10: J2 := J2 ∪ {j}
11: end if
12: end for
13: end while
14: return β

Thus, we get J1 = {1} and J2 = {2} and the algorithm stops. Hence, we
have β = u1 = (3, 4)T and a prevailing set Z0 corresponding to Z is given
by

Z0 =

{
2

(
3
4

)
, 3

(
4
0

)
, 3

(
0
4

)}
.

The sets Z and Z+
0 := conv(Z0) are shown in Figure 4.3. /

Lemma 4.17 ([BG11]). Let Zr and Z0 be as in Definition 4.15. Then,
Z+

0 := conv(Z0) dominates Zr and, given ζ ∈ Zr and J1 ⊆ {1, . . . , r} from
Algorithm 4.1, a scenario ζ ′ ∈ Z+

0 dominating ζ can be found in polynomial
time.

In particular, in [BG11], the authors show that, if p1 = p2 = 0 and r = m,
the uncertainty set Z+

0 leads to a non-affine 4
√
m-approximation for Parc(Z)

as
zarc(Z+

0 ) ≤ 4
√
m · zarc(Z) (4.11)

and by (4.10). In fact, the proof of (4.11) in [BG11] can be adapted to the
case of only r ≤ m uncertain parameters and p1 ≥ 0, p2 = 0, cf. Appendix A.
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Z

Z+
0

β

2β

3β2

3β1

β2

β1

Figure 4.3.: Sets Z and Z+
0 corresponding to Example 4.16.

With Lemma A.1 we get that

z′arc(Z0) ≤
(
4
√
r + 1

)
· z′arc(Zr)

for a prevailing set Z0 corresponding to Zr. Given an optimal solution (x, y)
to P′arc(Z0), we augment (x, y) to an optimal solution (x, y′) to P′arc(Z+

0 )
by Lemma 2.10. By Lemma 4.17 an optimal dominating solution (x, ȳ)
to P′arc(Zr) corresponding to (x, y′) yields a (4

√
r+ 1)-approximate solution

to P′arc(Zr) as

cTx+ dT ȳ(ζ) ≤ z′arc(Z+
0 ) = z′arc(Z0) ≤

(
4
√
r + 1

)
· z′arc(Zr)

for every ζ ∈ Zr. Concerning Algorithm 4.1, in [BG11], it is shown that
the number of iterations is bounded by 2

√
r implying that its running time

mainly depends on the computation of Step 4. Let (x, y), (x, y′), and (x, ȳ)
be as above. If

(a) a set of generating vectors corresponding to Zr,

(b) an optimal solution (x, y) to P′arc(Z0), and,

(c) for every scenario ζ ∈ Zr, a dominating scenario ζ ′ ∈ Z+
0 and the

corresponding second stage solution ȳ(ζ) = y′(ζ ′) to P′arc(Zr)
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can be accomplished in polynomial time, this gives an approximation al-
gorithm for Min ARC with r uncertain parameters and p2 = 0 (cf. Defini-
tion 2.9).

Considering a general instance I of Robust Min q-MSMC with bipartite
graph G = (I ∪ J,E), n := |I|, m := |J |, and uncertainty set U ⊆ Nm,
we have m uncertain and n certain parameters. Further, in addition to
the parameters given in the proof of Lemma 4.1, we set Zm := U and
ζ̄ := 0 ∈ Nn. Then, P′arc(Zm) = P(U). Let U0 ⊆ Nm be a prevailing set
corresponding to U . The generating vectors β, β1, . . . , βm can be computed
in polynomial time if, for any c ∈ Qm≥0, maxξ∈U c

T ξ can be solved in poly-
nomial time, i.e., the uncertainty set U has a polynomial time optimization
oracle. Considering item (c) and an optimal solution (x, y) to P(U0), we
can directly obtain our adjustable variables by computing maximum flows
in the networks HG(q · x, ξ) for ξ ∈ U , cf. Theorem 3.8. Thus, item (b)
remains to be investigated.

Problem 4.18 (Robust q-MSMC with dominating uncertainty).
Instance: An instance of Robust q-MSMC with uncertainty set U and
generating vectors β, β1, . . . , β|J| corresponding to U .
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every subset
S ⊆ J and every scenario ξ in the prevailing set generated by β, β1, . . . , β|J|,
we have q · x(N(S)) ≥ ξ(S)?

We show that Problem 4.18 is NP-complete. Hence, most likely, we do not ob-
tain an approximation algorithm for Robust Min q-MSMC with performance
guarantee 4

√
|J |+1 when applying this approach. We consider the {k}-Dom-

ination problem for a given fixed integer k ∈ N>0 [Gai+03]:

Problem 4.19 ({k}-Domination).
Instance: A simple graph G = (V,E) and an integer B ∈ N>0.
Question: Is there x ∈ N|V | such that x(V ) ≤ B and x(N [v]) ≥ k for
v ∈ V ?

In [Gai+03], Gairing et al. show that {k}-Domination is NP-complete for
any fixed k ∈ N>0 by providing a polynomial time reduction from Set Cover.
This reduction can be extended to an APX-hardness proof, cf. Appendix B.
With an instance of Set Cover consisting of N ∈ N>0 items and M ∈ N>0

sets, they construct a graph with a total of 2 +M +N · (3k + 1) vertices.
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Following their proof, we observe that it also applies if k is polynomial in M
and N as the construction remains a polynomial time reduction. Thus, we
can show NP-completeness of the following problem:

Problem 4.20 (Poly-Domination).
Instance: A simple graph G = (V,E) with n ∈ N>0 vertices, a positive
integer k that is O(n2), and an integer B ∈ N>0.
Question: Is there x ∈ N|V | such that x(V ) ≤ B and x(N [v]) ≥ k for
v ∈ V ?

Theorem 4.21. Poly-Domination is strongly NP-complete even if k ≥ 2
√
n

and k is even.

Proof. Given an instance of Set Cover with N ∈ N>0 items and M ∈ N>0

sets, we choose k := 18N2 + 8N + 2M + 4. Note that k is even and it can
be verified that

k2 ≥ 4 · (2 +M +N · (3k + 1)).

Thus, constructing the graph G = (V,E) with |V | = 2+M+N ·(3k+1) as in
the proof of Theorem B.1, we additionally have the property that k ≥ 2

√
|V |

and k is O(|V |2). As k is polynomial in N andM , we can replicate this proof
and obtain NP-hardness of Poly-Domination with Corollary B.2. Finally,
Poly-Domination is contained in NP as k is polynomially bounded in the
number of vertices of the given graph.

Remark 4.22. The proof of Theorem 4.21 applies to any function f : N→ R
such that, for any a, b ∈ N>0, the inequality

k ≥ f(a+ b · k)

has an integral solution k ∈ N>0 that is polynomial in a and b. Given any
such fixed function f , we obtain NP-completeness of Poly-Domination even
if k ≥ f(n), where n ∈ N>0 is the number of vertices of the graph. For
instance, this holds for linear functions with slope less than 1.

To show NP-completeness of the initial Problem 4.18, we subsequently
prove NP-completeness of the following, more specific, domination prob-
lem:
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Problem 4.23 (Order-Domination).
Instance: A simple graph G = (V,E) with n ∈ N>0 vertices and an
integer B ∈ N>0.
Question: Is there x ∈ N|V | such that x(V ) ≤ B and x(N [v]) ≥ 2

√
n for

v ∈ V ?

Theorem 4.24. Order-Domination is strongly NP-complete even if n = p2

for some p ∈ N>0.

Proof. Order-Domination is contained in NP: Given a value xv ∈ N with
xv ≤ 4n for every vertex v ∈ V , we can check in polynomial time whether
(x(N [v]))2 ≥ 4n holds for every v ∈ V .

Further, NP-hardness follows by a polynomial time reduction from Poly-
Domination with k ≥ 2

√
n and k even. Given a simple graph G = (V,E)

with n ∈ N>0 vertices, we add l := k2/4−n singletons to G. Note that l ∈ N
by our assumptions on k. Denote the new graph by G′ = (V ′, E) and observe
that k = 2

√
n+ l = 2

√
|V ′|. The construction of G′ can be accomplished

in polynomial time as k is O(n2). In the following, we assume that, in any
solution (x, x′) ∈ Nn+l of the Order-Domination problem on G′, we have
x′i = k for every newly added singleton i as this only improves our solution.
Then, a vector x ∈ Nn is a solution to the Poly-Domination problem on G
with value at most B ∈ N>0 if and only if (x, x′) ∈ Nn+l is a solution to the
Order-Domination problem on G′ with value at most B + l · k.

The proof of Theorem 4.24 reveals NP-completeness of Order-Domination
even if the input graph G contains a quadratic number of vertices. We are
now ready to show our desired complexity result.

Theorem 4.25. For any fixed q ∈ N>0, Robust q-MSMC with dominating
uncertainty is NP-complete.

Proof. Let an instance I of Robust q-MSMC with dominating uncertainty
with bipartite graph G and m := |J | be given. Then, the corresponding
prevailing set is

U0 :=
{

2β,
⌈
2
√
m
⌉
· β1, . . . ,

⌈
2
√
m
⌉
· βm

}
.

To check feasibility of a given vector x̄ ∈ N|I|, it suffices to compute the
maximum flow values in the networksHG(q·x̄, ξ) for ξ ∈ U0, cf. Theorem 3.36
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4. Approximating Robust Min q-Multiset Multicover

and Corollary 3.37. This can be done in polynomial time, especially as
we can assume a fixed precision of the square root

√
m due to rounding.

Furthermore, note that we can assume 〈x̄〉 to be polynomially bounded
in the encoding length of I. Thus, Robust q-MSMC with dominating
uncertainty is contained in NP.

We show NP-hardness by a polynomial time reduction from Order-Domi-
nation. Given a simple graph G = (V,E) with V =

{
1, . . . , p2

}
for p ∈ N>0

and a positive integer B ∈ N>0, we construct the bipartite graph G′ =
(I ∪ J,E′) as in the proof of Theorem 3.30. Then, |I| = |J | = p2 and let

U :=
{
ξ ∈ Np

2

: 0 ≤ ξ ≤ q · 1, ξ(J) ≤ qp
}
.

Given p2, the value p can be found in polynomial time as we can simply
test all values in

{
1, . . . , p2

}
or apply binary search. To that end, note that

the encoding length of G is at least p2.
Considering Algorithm 4.1 applied to U , we see that β = 0 as, for any

scenario ξ ∈ U , ∑
j∈J

ξj
µj
≤ qp

q
= p =

√
p2.

Thus, a prevailing set U0 is given by βj := q · ej for j ∈ J and we get

U0 =
{

2β, 2
√
p2 · β1, . . . , 2

√
p2 · βp

2
}

=
{

0, 2pq · e1, . . . , 2pq · ep2
}
.

The constructed instance of Robust q-MSMC with dominating uncertainty
asks for x ∈ N|I| with x(I) ≤ B and

q · x(NG′(S)) ≥ max
ξ∈U0

ξ(S) = 2pq for S ⊆ J, S 6= ∅

⇔ x(NG′(S)) ≥ 2p for S ⊆ J, S 6= ∅
⇔ x(NG′(j)) ≥ 2p for j ∈ J.

Note that the last equivalence follows as the right-hand side does not depend
on S ⊆ J . Rewriting this in terms of the graph G, we get

x(NG′(j)) ≥ 2p for j ∈ J ⇔ x(NG[v]) ≥ 2p for v ∈ V.

Thus, x ∈ Np2 is a solution to the Order-Domination problem on G with
value at most B if and only if x is a solution to the constructed instance of
Robust q-MSMC with dominating uncertainty with value at most B.
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4.2. Approximation based on a Set Cover Approach

Remark 4.26. In the proof of Theorem 4.25 we can also choose the
uncertainty set U =

{
q · e1, . . . , q · ep2

}
that only contains p2 many scenarios

and, hence, is polynomial time enumerable. The choice of the budgeted
uncertainty set will be of use in Section 4.2.3.

All in all, for now, we may only use the optimal solution to an instance of
Robust Min q-MSMC with dominating uncertainty to obtain an approximate
start solution to the corresponding instance of Robust Min q-MSMC for
small instances. Due to Appendix A, the so found optimal dominating
solution has an approximation ratio of 4

√
|J | + 1, where J is the set of

regions of the given instance. Nevertheless, in Section 4.2.3, we see that
prevailing sets become useful for instances of Robust Min q-MSMC with an
exponential number of scenarios.

4.2. Approximation based on a Set Cover
Approach

In the previous section, we encountered hardness results concerning possible
approximations for Robust Min q-MSMC. The solution policies present
in literature mainly lead to NP-hard problems when applied to Robust
Min q-MSMC. Yet, as mentioned in Section 3.2, Robust Min q-MSMC also
admits for an interpretation as a robust Min Multiset Multicover problem.
In this section, we aim to exploit this property to obtain an approximation
algorithm for many classes of uncertainty sets.

4.2.1. Literature Review

We review results concerning approximations and approximation algorithms
for Min Set Cover and its generalizations. For the definitions of these
problems we refer to Section 2.4.
The research on approximation algorithms for the classical Min Set

Cover problem starts with Johnson and Lovász, who introduce a greedy
algorithm that always chooses the set containing the most newly covered
elements [Joh74; Lov75]. Later, Chvátal generalizes this idea for the weighted
Min Set Cover problem [Chv79]. They show that their algorithms provide
an approximation guarantee of H(k), where k ∈ N is the maximum number
of elements of a set, and also give examples for which the ratio is tight.
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Later, an extension of the algorithm achieves a guarantee of H(k) − 1/6,
cf. [GHY93]. The general algorithm is adapted to the Min Set Multicover
problem in [FW82]. For an instance of this problem with sets C1, . . . , Cn and
corresponding cost values c1, . . . , cn, let β1 := maxj |Cj |/cj and β2 := minj cj .
Fisher and Wolsey show an approximation guarantee of 1 + ln(β1 · β2) for
the extended greedy, cf. [FW82].
Moreover, the authors in [Hoc82] and [BE85] present approximation

algorithms for the weighted Min Set Cover problem with ratio f where
f ∈ N is the maximum number of sets containing a common element. This
result is generalized to Min Set Multicover in [HH86] and to Min CIP
in [PC10]. In this case, the ratio corresponds to the maximum number
of non-zero entries in any row of the constraint matrix A. Moreover, an
LP-based approximation combining the values k and f is given in [SS12].
Results for approximating the Min Multiset Multicover problem are

presented by Dobson [Dob82] as well as Vazirani [Vaz03]. Therein, it is
shown that the greedy algorithm can be augmented and one reobtains the
ratio of H(k). Note that the elements in a set are now counted multiple
times.
Besides these sequential guarantees, there are several publications that

provide approximation algorithms for Min CIP∞ based on randomized
rounding, e.g., [Sri01; KY05; Sri06; CHS16; CQ19]. These algorithms require
an optimal solution to the LP-relaxation of the corresponding covering
problem. For Robust Min q-MSMC, we see in Section 4.2.3 that its covering
equivalent leads to an IP where the number of variables is potentially
exponential in q and |U|. Thus, these rounding-based algorithms are only
applicable efficiently for |U| fixed.
Hence, for Robust Min q-MSMC, we now concentrate on the details of

Dobson’s greedy algorithm.

4.2.2. Dobson’s Algorithm
In [Dob82], Dobson introduces a greedy algorithm for approximating the
optimal value of instances of Min Multiset Multicover, cf. Section 2.4. Hence,
he considers integer programming problems of the form

min
{
cTx : Ax ≥ b, x ∈ Nn

}
(4.12)

for A ∈ Nm×n, b ∈ Nm>0, and c ∈ Nn>0 with Aij ≤ bi for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}. The procedure is a direct generalization of the approximation
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Algorithm 4.2 Dobson’s greedy algorithm to solve (4.12).

Input: A ∈ Nm×n, b ∈ Nm, c ∈ Nn, Aij ≤ bi for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}.

Output: A solution x ∈ Nn to (4.12) with solution value z ∈ N.
1: x := 0, z := 0
2: while

∑m
i=1 bi ≥ 1 do

3: k ∈ arg minj∈{1,...,n}
cj∑m

i=1 Aij

4: xk := xk + 1
5: bi := bi −Aik for all i ∈ {1, . . . ,m}
6: Aij := min {Aij , bi} for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
7: z := z + ck
8: end while
9: return x, z

algorithms for Min Set Cover in [Chv79; Lov75; Joh74]. In these works, one
iteratively chooses the set/column, which minimizes the cost over utility
ratio, and increases its corresponding variable by one. In the case of (4.12),
this leads to selecting a column j ∈ {1, . . . , n} which minimizes the ratio

cj∑m
i=1Aij

in the first iteration. The algorithm is depicted in Algorithm 4.2. According
to [Dob82], it runs in polynomial time with at most n+m iterations using
a slightly enhanced implementation. Further, the returned solution x ∈ Nn
fulfills

cTx ≤ H

(
max
j

m∑
i=1

Aij

)
· cTx?, (4.13)

with x? ∈ Nn being an optimal solution to (4.12). The bound is tight due
to the results in [Joh74; Chv79]. In fact, the ratio in (4.13) can even be
strengthened as it also holds if x? is replaced by an optimal solution xLP to
the LP-relaxation of (4.12). Hence, we additionally obtain a bound on the
the integrality gap.
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4.2.3. Application of Dobson’s Algorithm
In this section, we see that even the robust version of Min q-MSMC can
be interpreted as a Min Multiset Multicover problem. But, in comparison
to Min q-MSMC, the input size of the related Min Multiset Multicover
problem might be exponential in the input size of Robust Min q-MSMC,
cf. Remark 3.2.
Throughout this section, let an instance I of Robust Min q-MSMC be

given with bipartige graph G = (V,E) and uncertainty set U . Let k := |U|
for k ∈ N so that U =

{
ξ1, . . . , ξk

}
and, for i ∈ I, let Si contain all

multisubsets of N(i) of size q. Consider an element S in

Ski :=
k×
l=1

Si,

i.e., S = (S1, . . . , Sk) with Sl ∈ Si for l ∈ {1, . . . , k}. We interpret S as
putting a supplier into location i who, for every l, covers the clients in the
set Sl in scenario ξl ∈ U . Note, that

|Ski | = |Si|k =

(
|N(i)|+ q − 1

q

)k
≤ |N(i)|qk

and that, for two distinct locations i1, i2, it is possible that Ski1 ∩ S
k
i2
6= ∅.

Now, let x(S, i) ∈ N be the frequency of choosing S ∈ Ski . Then, Robust
Min q-MSMC is equivalent to

min
x

∑
i∈I

∑
S∈Sk

i

x(S, i) (4.14a)

s.t.
∑
i∈I

∑
S∈Sk

i

m(j, Sl) · x(S, i) ≥ ξlj for j ∈ J, l ∈ {1, . . . , k} (4.14b)

x(S, i) ∈ N for i ∈ I, S ∈ Ski . (4.14c)

In this manner, we reformulate I into an instance I ′ of Min Multiset
Multicover with k|J | many constraints and at most |I||J |qk many variables.
This means, the instance I ′ has a ground set of k|J | many elements and at
most |I||J |qk many sets, which is exponential in the input size of I, unless k
is fixed. Of course, practically, this reformulation appears to be pointless as
we need to encode a tremendous amount of sets. Yet, it is of theoretical
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interest as we fulfill the requirements of [Dob82] of non-negative and integral
data. Thus, if we reduce m(j, Sl) to ξlj whenever necessary, we may apply
the approximation procedure described in Section 4.2.2. Note that each
column of the constraint matrix in (4.14) sums up to at most qk. Thus, the
solution value returned by the greedy algorithm approximates the optimal
value by a factor of H(qk).

Consider the case of fixed k, where both the number of constraints and
the number of variables of (4.14) is polynomially bounded in the input
size of I. Here we obtain a constant factor approximation algorithm, i.e.,
Robust Min q-MSMC with discrete uncertainty is contained in APX, see
also Section 3.4.1. On the other hand, in this special case, we can apply
the randomized rounding algorithms mentioned in Subsection 4.2.1 and we
may obtain improved results. For instance, with [CQ19] we can obtain an
approximation algorithm with ratio ln k + ln ln k + O(1) if ξlj ≥ q for all
j ∈ J , l ∈ {1, . . . , k}.

For the general case, let us analyze Algorithm 4.2 applied to (4.14). Our
aim is to ensure a running time polynomial in |I|, |J |, and k. Thus, we have
to circumvent encoding the constraint matrix as well as the solution vector
corresponding to (4.14). Furthermore, for j ∈ J and l ∈ {1, . . . , k}, we need
to ensure implicitly that the entries of the matrix in the row corresponding
to ξlj do not exceed the value ξlj .

For iteration r ∈ N>0 of the algorithm, let ξl,rj reflect the number of clients
in region j in scenario ξl that still need to be covered at the beginning of
iteration r. While

∑k
l=1 ξ

l,r(J) is not zero yet, we seek a location i ∈ I
and an element S = (S1, . . . , Sk) ∈ Ski that together maximize the newly
covered demand

k∑
l=1

∑
j∈N(i)

min
{
m(j, Sl), ξ

l,r
j

}
. (4.15)

Note that, when choosing S ∈ Ski , the choice of Sl for scenario ξl is
independent from the choices of Sl′ for l′ 6= l, as the inner minimization
in (4.15) only depends on the lth coordinate of S, the region j, and the
current iteration r. Thus, fixing a location i ∈ I, we get

max
S∈Sk

i


k∑
l=1

∑
j∈N(i)

min
{
m(j, Sl), ξ

l,r
j

}=

k∑
l=1

max
T∈Si

 ∑
j∈N(i)

min
{
m(j, T ), ξl,rj

}.
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Lemma 4.27. Let an iteration r ∈ N>0, a location i ∈ I, and a scenario ξl ∈
U be fixed. Then,

max
T∈Si

 ∑
j∈N(i)

min
{
m(j, T ), ξl,rj

} = min
{
q, ξl,r(N(i))

}
(4.16)

and an optimal solution T ? ∈ Si can be computed in time O(|N(i)|).

Proof. Let T ∈ Si. It holds true that∑
j∈N(i)

min
{
m(j, T ), ξl,rj

}
≤

∑
j∈N(i)

m(j, T ) ≤ q.

Therefore, we get that

max
T∈Si

∑
j∈N(i)

min
{
m(j, T ), ξl,rj

}
≤ min

{
q, ξl,r(N(i))

}
.

We define T ′ := ∅ and successively consider the regions j ∈ N(i). For
j ∈ N(i), we add min

{
q − |T ′|, ξl,rj

}
many copies of region j to T ′ if

min
{
q − |T ′|, ξl,rj

}
> 0. If q ≤ ξl,r(N(i)), we have |T ′| = q. Thus, T ′ ∈ Si

and ∑
j∈N(i)

min
{
m(j, T ′), ξl,rj

}
=

∑
j∈N(i)

m(j, T ′) = q.

On the other hand, if q > ξl,r(N(i)), we have |T ′| < q. To enforce
|T ′| = q we fix a region j′ ∈ N(i) and additionally add q− |T ′| many copies
of region j′ to T ′. Then, T ′ ∈ Si and we have∑

j∈N(i)

min
{
m(j, T ′), ξl,rj

}
= ξl,r(N(i)),

as T ′ contains at least ξl,rj many copies of region j for each j ∈ N(i). It is
easy to see that in both cases we can find the set T ′ in time O(|N(i)|).

Corollary 4.28. In iteration r ∈ N>0, the maximization problem

max
i∈I

max
S∈Sk

i


k∑
l=1

∑
j∈N(i)

min
{
m(j, Sl), ξ

l,r
j

} (4.17)
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Algorithm 4.3 Approximation algorithm for Robust Min q-MSMC.
Input: An instance I of Robust Min q-MSMC.
Output: A solution x ∈ N|I| to I.
1: x := 0
2: while

∑k
l=1 ξ

l(J) ≥ 1 do
3: Compute S = (S1, . . . , Sk) ∈ Ski for some i ∈ I maximizing (4.17).
4: xi := xi + 1
5: ξlj := max

{
0, ξlj −m(j, Sl)

}
for all j ∈ J , l ∈ {1, . . . , k}

6: end while
7: return x

can be solved in time O(k|E|) with solution S ∈ Ski′ for some i′ ∈ I, where
S = (S1, . . . , Sk) and, for l ∈ {1, . . . , k}, the set Sl is a solution to (4.16).

Using Lemma 4.27 there is no need to execute Step 6 of Algorithm 4.2
if applied to an instance of Robust Min q-MSMC. Further, we adapt the
algorithm slightly to completely avoid encoding the constraint matrix and
the variables corresponding to (4.14). The resulting procedure is shown
in Algorithm 4.3. The algorithm acts as applying Algorithm 4.2 to (4.14)
with reducing the matrix entries appropriately in a preprocessing step. The
only difference is that we do not store the chosen maximizer S in Step 3
of Algorithm 4.3 as we are only interested in the location from which the
element originates. In fact, this enables us to avoid encoding the variables
of (4.14). Further, we can improve the approximation ratio from H(qk) to

H

(
max
i∈I

k∑
l=1

min
{
q, ξl(N(i))

})
,

as by Lemma 4.27 the maximum column sum of the constraint matrix (after
adapting its entries) corresponds to

max
i∈I

max
S∈Sk

i


k∑
l=1

∑
j∈N(i)

min
{
m(j, Sl), ξ

l
j

} = max
i∈I

k∑
l=1

min
{
q, ξl(N(i))

}
.

By Corollary 4.28 we can bound the running time of one iteration of
Algorithm 4.3 by O(k|E|). All in all, only the total number of iterations
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remains to be analyzed. Currently, the algorithm needs at least⌈∑k
l=1 ξ

l(J)

qk

⌉
many iterations. Similar to the idea in [Dob82], we want to limit the
number of iteration by a polynomial in |I| and k. Suppose xi′ is increased
in iteration r ∈ N>0, i.e., location i′ ∈ I maximizes the value

k∑
l=1

min
{
q, ξl,r(N(i))

}
over all i ∈ I. For a location i ∈ I, only the scenarios with ξl,r(N(i)) > 0
contribute to this sum. We define the set of active scenarios U ′ and a
minimum active scenario ξl

′
with respect to i′ as follows:

U ′ :=
{
ξl ∈ U : ξl,r(N(i′)) > 0

}
and ξl

′
∈ arg min

ξ∈U ′

{
ξl,r(N(i′))

}
.

If ξl
′,r(N(i′)) < q, then the total demand of N(i′) in scenario ξl

′
is covered

after iteration r, i.e., ξl
′,r+1(N(i′)) = 0. On the other hand, if ξl

′,r(N(i′)) ≥
q, then the total demand of every scenario ξl ∈ U ′ is decreased by q. Thus,
for ξl ∈ U ′, we have

ξl,r+1(N(i′)) = ξl,r(N(i′))− q ≥ 0 (4.18)

and ξl,r+1(N(i′)) = ξl,r(N(i′)) = 0 for ξl ∈ U \ U ′. If ξl
′,r+1(N(i′)) ≥ q

still holds, then location i′ also maximizes Step 3 of Algorithm 4.3 for
iteration r + 1 as, for i ∈ I, we have

q · |U ′| =
k∑
l=1

min
{
q, ξl,r+1(N(i′))

}
=

k∑
l=1

min
{
q, ξl,r(N(i′))

}
≥

k∑
l=1

min
{
q, ξl,r(N(i))

}
≥

k∑
l=1

min
{
q, ξl,r+1(N(i))

}
.

Thus, if location i′ is chosen, by (4.18) we can directly chose the location

max

{
1,

⌊
ξl
′,r(N(i′))

q

⌋}
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many times. Then, if location i′ is chosen again in the course of the algorithm,
we know that there exists a scenario ξl such that the total demand in the
neighborhood N(i′) for this scenario is covered. Thus, the total number of
iterations is bounded by 2k|I|. Using this implementation we get a total
running time of O(k2|I||E|) as the running time of one iteration is still
dominated by Step 3. Altogether, we have proven the following theorem.

Theorem 4.29. For any fixed q ∈ N>0, Algorithm 4.3 is an approximation
algorithm for Robust Min q-MSMC with polynomial time enumeration uncer-
tainty. Let I be such an instance. Algorithm 4.3 runs in time O(|U|2|I||E|)
and outputs a solution x to I which satisfies

x(I) ≤ H

max
i∈I

∑
ξ∈U

min {q, ξ(N(i))}

 · z(U)

with z(U) being the optimal value of I.

Observe that

max
i∈I

∑
ξ∈U

min {q, ξ(N(i))} ≤ min

q · |U|,∑
ξ∈U

ξ(J)

 .

Hence, the ratio is bounded from above by 1 + ln
∑
ξ∈U ξ(J) and by Corol-

lary 3.32 it is essentially optimal up to additive constants in the factor.
Furthermore, tightness follows from [Joh74] and the construction in the
proof of Theorem 3.30, where we have

max
i∈I

∑
ξ∈U

min {q, ξ(N(i))} = max
i∈I
|N(i)|.

Recalling Section 4.1.2, we can make use of a prevailing set for the
cases in which the uncertainty set is not polynomial time enumerable,
cf. Definition 4.15. Let an instance I of Robust Min q-MSMC with m := |J |
and uncertainty set U ⊆ Nm be given. Let β, β1, . . . , βm be some generating
vectors corresponding to U , i.e., βj ∈ arg maxξ∈U ξj for j ∈ J and β is
obtained from Algorithm 4.1 applied to U . Consider the prevailing set U0

of integral scenarios

U0 :=
{

2β,
⌈
2
√
m
⌉
· β1, . . . ,

⌈
2
√
m
⌉
· βm

}
.
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In a first step, we replace U by U0 in the given instance I and approximate
the optimal value z(U0) using Algorithm 4.3. Then, we apply Lemma 2.10
and Lemma A.1 saying that

z(U0) = z(conv(U0)) ≤
(
4
√
m+ 1

)
· z(U),

where z(U) is the optimal value of I. Denote by x0 the output of Algo-
rithm 4.3 applied to U0 and by αU0 the corresponding ratio from Theo-
rem 4.29. We obtain

x0(I) ≤ αU0 · z(U0) ≤ αU0 ·
(
4
√
m+ 1

)
· z(U).

In this case, Algorithm 4.3 runs in timeO(m2|I||E|) provided the uncertainty
set U0 is already given. Note that the vector x0 is feasible for I as conv(U0)
dominates U and by Lemma 2.10. It remains to specify the running time to
obtain U0: The scenarios β, β1, . . . , βm can be computed in timeO(m·T (U)),
where T (U) is the time needed to solve maxξ∈U c

T ξ for any given vector
c ∈ Qm≥0 and T (U) is Ω(m). Further, the final computation of the scenarios
of U0 needs time O(m2). Note that the desired precision of the square root
can be assumed fix due to rounding. Altogether, we have:

Theorem 4.30. For any fixed q ∈ N>0, there is an approximation algorithm
for Robust Min q-MSMC with polynomial time optimization uncertainty.
Let I be such an instance. The algorithm runs in time O(|J |2|I||E|+ |J | ·
T (U)) and outputs a solution x to I which satisfies

x(I) ≤ αU0 ·
(
4
√
|J |+ 1

)
· z(U).

for some prevailing set U0 corresponding to U .

With the notation of Theorem 4.30 we have

αU0 = H

max
i∈I

∑
ξ∈U0

min {q, ξ(N(i))}

 ≤ H(q · (m+ 1)) .

There are various classes of uncertainty sets for which Theorem 4.30 applies,
e.g., budgeted uncertainty, Γ-uncertainty, or integral polyhedral uncertainty
in general. Further, recall Theorem 4.25 showing that the computation
of z(U0) is NP-hard for budgeted uncertainty. Hence, unless P = NP, it is
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4.2. Approximation based on a Set Cover Approach

meaningful to apply the concept of domination together with Algorithm 4.3
for budgeted uncertainty. Last but not least, Theorem 4.30 also applies to
instances with polynomial time enumerable uncertainty sets. In particular,
for instances with |J | small, this approach might lead to an approximation
algorithm with faster running time and a comparatively small loss in the
approximation guarantee.

Conclusion

In this chapter, we have studied approximations and approximation algo-
rithms for Robust Min q-MSMC by applying two different approaches: the
representation of Robust Min q-MSMC as an Min ARC problem and its
representation as a Min Multiset Multicover problem.

We have seen that an optimal strictly robust solution is a 2-approximation
for positive uncertainty sets. For interval uncertainty UI, a solution of this
type is even optimal by the results of Section 3.4.2. Therefore, for budgeted
uncertainty UB, an optimal strictly robust solution is optimal if b(J) = Γ
and provides a 2-approximate solution if the vector 1/2 · (a+ b) is contained
in U+

B . Moreover, we have determined the symmetry factor sym(U+
B ) as well

as the translation factor ρ(U+
B ) to apply a result of [BGS11] showing that

zrob(UB) ≤
⌈

1 +
ρ(U+

B )

sym(U+
B )

⌉
· z(UB).

An optimal strictly robust solution can be computed in polynomial time
if q = 1 or q = 2 and if the vector ξwc with ξwcj := maxξ∈U ξj for j ∈ J
can be computed in polynomial time. Hence, we obtain approximation
algorithms for Robust Min 1-MSMC and Robust Min 2-MSMC with interval
or budgeted uncertainty. Considering the affine policy, we have shown that it
leads to suboptimal solutions and that computing an optimal affine solution
is NP-hard. Similarly, replacing the uncertainty set U with a corresponding
prevailing set U0 also leads to NP-hard problems. Therefore, these policies
are most likely not applicable efficiently in practice.
Furthermore, we have provided an approximation algorithm for Robust

Min q-MSMC with polynomial time enumeration uncertainty that runs in
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time O(|U|2|I||E|) and outputs a solution which guarantees a ratio of

αU := H

max
i∈I

∑
ξ∈U

min {q, ξ(N(i))}

 ,

that is essentially best possible up to additive constants in the factor.
Moreover, we presented an approximation algorithm for Robust Min

q-MSMC with polynomial time optimization uncertainty that has a running
time of O(|J |2|I||E| + |J | · T (U)) and outputs a solution guaranteeing a
ratio of αU0 ·

(
4
√
|J |+ 1

)
, where U0 is a prevailing set corresponding to the

given uncertainty set U and αU0 ≤ H(q · (|J |+ 1)).
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5. Including Behavior Patterns
of Clients

In the previous chapters, we have dedicated our analysis to the problem
Robust Min q-MSMC in which the clients have no influence on the choice
of the location they are served by. Thus, they are completely dependent on
the decision maker and their own interests are not taken into account in
any way. Motivated by this imbalance, we introduce (partly) independent
clients in this chapter who are able to enforce their preferences. We realize
this empowerment of the clients by specifying different behavior patterns
for the clients depending on their ability to influence the solution. For each
such pattern, we analyze the non-robust as well as the robust variant of the
emerging problem. In particular, we highlight the implications for different
specific classes of uncertainty sets. As the different behavior patterns lead
to structurally different optimization problems, we include related literature
into the respective sections.
In Section 5.1, we begin with the most independent form of a behavior

pattern in which each client is allowed to determine the location by which
they want to be covered. As the decision maker does not know the choices
of the clients in advance, they must implement a solution that is capable of
handling all possible distributions of clients. With this set-up, the optimal
solution can be stated with low expenditure. Hence, we narrow the power
of the clients in Section 5.2 by limiting the set of available locations. That
means, in a first step, the decision maker decides on a set of available
locations. The independent clients need to adapt to these changes as they
can only be served by the locations chosen by the decision maker. But still,
multiple locations need to prepare for the demand of a single region. Hence,
in Section 5.3, we aim to decrease the responsibilities of the locations. For
the clients of a region, we demand a common preference order over their
adjacent locations. Now, the decision maker decides on a set of available
locations and each client is served by their most preferred location.

Some parts of this chapter also appear in [Büs+21; Com21; Str21]. Specif-
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ically, in [Büs+21], a combination of steerable and unsteerable clients is
considered in the context of mobile medical units. This publication extends
the Robust Min q-MSMC problem in a practical application by including
clients with preferences, cf. Sections 5.3. Altogether, the content of this
chapter is joint work together with Christina Büsing, Martin Comis, and
Manuel Streicher. Based on this cooperation, both Martin Comis and
Manuel Streicher also have chapters in their theses that associate with the
findings presented here, see [Com21; Str21].

5.1. Min q-Free Clients
We begin with the consideration of completely free clients in a non-robust
setting. That means, the clients themselves can exactly determine the
location by which they want to be served. Moreover, the decision maker is
not aware of this decision in advance. The only information for the decision
maker is whether the clients of a region consider a location as a possible
service location or not. As in the previous chapters, the number of clients
within a region is represented as the demand of the region. Thus, the
decision maker needs to provide sufficiently many suppliers in the locations
for every possible combination of choices of the clients. Formally, for a fixed
integer q ∈ N>0, this leads to the following problem:

Problem 5.1 (q-Free Clients (q-FC)).
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0 for
each j ∈ J , a bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for all y ∈ N|I|×|J|
with

∑
i∈N(j) yij = dj for j ∈ J , it holds that∑

j∈N(i)

yij ≤ q · xi for i ∈ I?

We refer to the optimization version of q-FC as Min q-Free Clients (Min
q-FC). From the above definition, the value yij ∈ N can be interpreted as
the number of clients in region j that want to be served by location i. Thus,
a matrix y ∈ N|I|×|J| with the above properties represents one possible
combination of choices of the clients. Then, a solution x ∈ N|I| is in that
sense robust against these choices as it provides enough suppliers in each
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5.1. Min q-Free Clients

location, no matter how the clients decide. Further, the instance I leads to
a corresponding instance I ′ of Min q-MSMC as the input data coincides and
the feasibility condition for I ′ carries over, cf. Observation 3.5. Therefore,
the feasibility of a given instance can be verified in time O(|J |) and, from
now on, we only consider feasible instances. The subsequent theorem shows
that finding an optimal solution for I can be accomplished in linear time.

Theorem 5.2. For any fixed q ∈ N>0, the optimal solution x? to an instance
of Min q-FC is given by

x?i :=

⌈
d(N(i))

q

⌉
for every location i ∈ I and can be computed in time O(|I|+ |E|).

Proof. Fix a location i ∈ I. For every region j /∈ N(i), choose an arbitrary
location ij ∈ N(j) and consider the matrix yi ∈ N|I|×|J| defined as follows:
For i′ ∈ I and j ∈ J , let

yii′j :=


dj , if j ∈ N(i) and i′ = i,

dj , if j /∈ N(i) and i′ = ij ,

0, else.
(5.1)

Then,
∑
i′∈N(j) y

i
i′j = dj for every j ∈ J and

∑
j∈N(i) y

i
ij = d(N(i)). Thus,

any solution x must satisfy

xi ≥
⌈
d(N(i))

q

⌉
= x?i (5.2)

for every location i. Now, let y ∈ N|I|×|J| with
∑
i∈N(j) yij = dj for all

j ∈ J be given. For every region j and every location i ∈ N(j), we must
have yij ≤ dj . Then,

∑
j∈N(i) yij ≤ d(N(i)) ≤ q ·x?i for every i ∈ I implying

feasibility of x?. Optimality of x? is then given by (5.2) and we see that x?
is the only optimal solution. The running time follows by initializing x?
and considering each edge exactly once.

The interpretation of the optimal solution x? is evident: Each location
prepares for the worst-case scenario, meaning the greatest possible number
of clients they need to serve.
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5 d5 = 2

4 d4 = 2

3 d3 = 3

2 d2 = 1

1 d1 = 2

a

b

c

Figure 5.1.: Bipartite graph G corresponding to Example 5.3.

Example 5.3. Recall Example 3.4 where q = 2. The constructed bipartite
graph G is given once again in Figure 5.1. In the new setting, the given
vector x̄ = (x̄a, x̄b, x̄c)

T = (1, 2, 2)T is not feasible anymore as location a
might need to serve three clients at once. Similarly, locations b and c have to
prepare for at most four and seven clients, respectively. Thus, the optimal
solution x? of this instance of q-FC is x?a := 2, x?b := 2, and x?c := 4 and in
total we need three additional suppliers compared to the optimal value of 5
of the corresponding instance of q-MSMC. /

5.1.1. Including Uncertainty

As this non-robust variant of free clients can be solved in linear time, we
now include some uncertainty in the demand of each region. Similar to
Robust q-MSMC, we introduce an uncertainty set U of possible demand
scenarios. We will see that this substantially changes the complexity of the
problem.

Problem 5.4 (Robust q-Free Clients (Robust q-FC)).
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for all ξ ∈ U and
for all y ∈ N|I|×|J| with

∑
i∈N(j) yij = ξj for j ∈ J , it holds that∑

j∈N(i)

yij ≤ q · xi for i ∈ I?
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Now, for a scenario ξ ∈ U , the value yij ∈ N represents the number of clients
of region j that want to be served by location i in case scenario ξ occurs.
Thus, in this robust situation, the decision maker has to prepare for any
combination of choices of the clients no matter which scenario reveals. When
looking for a solution with minimum value of x(I), we call the problem
Robust Min q-Free Clients (Robust Min q-FC). Again, we restrict ourselves
to feasible instances of Robust Min q-Free Clients since feasibility can be
checked in time O(|J |), cf. Observation 3.28. Let I be such an instance.
By the same argumentation as in the proof of Theorem 5.2, we get that the
unique optimal solution x? to I is given by

x?i :=

⌈
maxξ∈U ξ(N(i))

q

⌉
(5.3)

for every location i ∈ I with the analogous interpretation. By (5.3) com-
puting x?i for some i ∈ I requires to solve an instance of Max Robust Sum.
This leads to the subsequent hardness result.

Theorem 5.5. For any fixed q ∈ N>0, Robust Min q-FC is NP-hard.

Proof. Let an instance of Robust Sum be given, i.e., an uncertainty set
U ⊆ Nn, a set S ⊆ {1, . . . , n}, and an integer B ∈ N>0. By Lemma 3.22 we
know that this problem is NP-complete. In fact, we can even assume that B
is a multiple of q by Remark 3.23. Thus, let B = q ·B′ for some B′ ∈ N>0.
We construct two instances of Robust Min q-FC. To that end, we set I := {0},
J := S, and J ′ := S ∪ {n+ 1} and define the complete bipartite graphs
G = (I ∪ J,E) and G′ = (I ∪ J ′, E′). Let U ′ := {(ξ, 1) : ξ ∈ U} ⊆ Nn+1.
Now, let I and I ′ denote the instances of Robust Min q-FC with bipartite
graphs G and G′ and uncertainty sets U and U ′, respectively. Further, let x̄0

and x̄′0 denote the optimal solutions to I and I ′, respectively. Note that
x̄0 ≤ x̄′0 ≤ x̄0 + 1. Then, we get

q · (x̄0 − 1) < max
ξ∈U

ξ(S) ≤ q · x̄0

and

q · (x̄′0 − 1) < max
ξ∈U

ξ(S) + 1 ≤ q · x̄′0.

Thus, if B′ ≤ x̄0 − 1, we know that the given instance of Robust Sum
is a yes-instance. If B′ > x̄0, the instance is a no-instance. Further, if
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B′ = x̄0 = x̄′0, the instance is a no-instance. Finally, if B′ = x̄0 = x̄′0−1, the
instance is a yes-instance. Thus, having an oracle for Robust Min q-FC, we
can decide whether the instance of Robust Sum is a yes-instance or not.

Observe that we did not show APX-hardness in Theorem 5.5 as the
reduction requires optimal solutions to the constructed instances of Robust
Min q-FC and not only the transfer of solutions. Certainly, computing x?
by (5.3) mainly depends on the structure of the uncertainty set. In general,
we cannot rely on such a structure so that we propose the following integer
program for Robust Min q-FC:

PFC(U) min
x

∑
i∈I

xi (5.4a)

s.t.
∑

j∈N(i)

ξj ≤ q · xi for i ∈ I, ξ ∈ U (5.4b)

xi ∈ N for i ∈ I. (5.4c)

The correctness of formulation PFC(U) is immediate. If Max Robust Sum
can be solved efficiently on U , the constraints (5.4b) can be replaced with
maxξ∈U ξ(N(i)) ≤ q · xi for i ∈ I to regain a compact formulation. If this is
not the case, we can apply constraint generation starting with an initially
empty uncertainty set U ′, cf. Section 2.5. If x̄ ∈ N|I| is optimal for PFC(U ′),
we need to check whether there exists a scenario ξ ∈ U and a location i ∈ I
such that ξ(N(i)) > q · x̄i. Thus, we need to solve |I| many instances of
Max Robust Sum which is, in general, a hard task due to Lemma 3.22.

If, e.g., the uncertainty set U is polynomial time enumerable, the instance
of Robust Min q-FC can be solved in polynomial time. For example, this
applies to discrete uncertainty:

Theorem 5.6. For any fixed q ∈ N>0, the optimal solution x? to an instance
of Robust Min q-FC with discrete uncertainty is given by

x?i :=

⌈
maxξ∈U ξ(N(i))

q

⌉
for i ∈ I and can be computed in time O(|I|+ |E|).

Also for interval, budgeted, and Γ-uncertainty introduced in Section 3.4
we obtain positive results as Max Robust Sum restricted to theses classes of
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uncertainty sets can be solved efficiently by Lemma 3.62 and Lemma 3.76.
Moreover, we can directly state the optimal solution.

Theorem 5.7. For any fixed q ∈ N>0, the optimal solution x? to an instance
of Robust Min q-FC with interval uncertainty is given by

x?i :=

⌈
b(N(i))

q

⌉
for i ∈ I and can be computed in time O(|I|+ |E|).

Theorem 5.8. For any fixed q ∈ N>0, the optimal solution x? to an instance
of Robust Min q-FC with budgeted uncertainty is given by

x?i :=

⌈
min {b(N(i)),Γ− a(J \N(i))}

q

⌉
for i ∈ I and can be computed in time O(|I|+ |E|).

Theorem 5.9. For any fixed q ∈ N>0, the optimal solution x? to an instance
of Robust Min q-FC with Γ-uncertainty is given by

x?i :=

⌈
a(N(i)) + max {â(T ) : T ⊆ N(i), |T | ≤ Γ}

q

⌉
for i ∈ I and can be computed in time O(|I|+ |E|).

Proof. For the running time, we refer to the proof of Lemma 3.76.

On the contrary, Robust Sum is NP-complete for multi-budgeted as well
as ellipsoidal uncertainty by Lemma 3.67 and Theorem 3.72. In both cases,
this remains true if we restrict to instances whose bound is a multiple of q
for some fixed q ∈ N>0, cf. Remark 3.74. For that reason, Robust Min q-FC
restricted to these classes of uncertainty sets is still NP-hard. In both cases,
the proof is analogous to that of Theorem 5.5.

Theorem 5.10. For any fixed q ∈ N>0, Robust Min q-FC with multi-
budgeted uncertainty is NP-hard.

Theorem 5.11. For any fixed q ∈ N>0, Robust Min q-FC with ellipsoidal
uncertainty is NP-hard.
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As given by (5.3), the clients completely determine the optimal solution
to Robust Min q-FC while the locations do not have any scope of action.
To change this situation slightly we allow locations to be closed in the
following. We see that this admission drastically increases the complexity
of the problem already for the non-robust variant.

5.2. Min q-Adapting Clients

In this section, we consider free clients as in Section 5.1. But now, the
decision maker is allowed to select only a subset of the locations to be opened
whereas, in Section 5.1, at any time, every location needs to prepare for
clients. Thus, the set of available locations for each client is restricted and
the clients have to adapt to these circumstances. Naturally, we require at
least one open location for every client. This leads to the following decision
problem for a fixed positive integer q ∈ N>0.

Problem 5.12 (q-Adapting Clients (q-AC)).
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0 for
each j ∈ J , a bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J , there
is i ∈ N(j) with xi ≥ 1 and, for all y ∈ N|I|×|J| with

∑
i∈N(j) : xi≥1 yij = dj

for j ∈ J , it holds that∑
j∈N(i)

yij ≤ q · xi for i ∈ I with xi ≥ 1?

The problem of minimizing x(I) in instances of q-AC is named Min q-
Adapting Clients (Min q-AC). Let I be an instance of this problem. Then,
as in Section 5.1 the instance I has a feasible solution if and only if we
have N(j) 6= ∅ for every region j ∈ J . As this condition can be checked
in time O(|J |), we restrict our analysis to feasible instances. Let I ′ :=
{i ∈ I : xi ≥ 1} be the set of open locations for a given solution x to I. We
call a location i /∈ I ′ closed. Similar to Section 5.1, for i ∈ I ′ and j ∈ J ,
the value yij ∈ N can be interpreted as the number of clients in region j
that want to be served by location i ∈ I ′. For every i ∈ I ′, consider the
vector yi which is defined analogously to (5.1) with the adaption that, for
j /∈ N(i), the location ij is now chosen from N(j) ∩ I ′. Then, we must
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have
∑
j∈N(i) y

i
ij = d(N(i)) ≤ q · xi since x is feasible. As in the proof of

Theorem 5.2 setting

x′i =

⌈
d(N(i))

q

⌉
(5.5)

if i ∈ I ′ and zero otherwise leads to another solution x′ with x′(I) ≤ x(I).
Given I ′ ⊆ I, we can compute the solution x′ in time O(|I|+ |E|). Thus,
an optimal solution to the instance I is determined only by the choice of
open locations.

Definition 5.13 (Feasible Locations). Let an instance of q-AC be given.
A subset I ′ ⊆ I such that, for every j ∈ J , there is i ∈ N(j) ∩ I ′ is called
feasible.

Let x be feasible for an instance of q-AC. The corresponding set of open
locations is denoted by Ix := {i ∈ I : xi ≥ 1}. Then, Ix is feasible. Let us
consider a small example.

Example 5.14. We reconsider Example 3.4 in this new setting. Observe
that locations a and c need to be opened as otherwise regions 1 and 5 cannot
be covered. As {a, c} is feasible, we directly get that x?a := 2, x?b := 0, and
x?c := 4 is an optimal solution to this instance of Min q-Adapting Clients.
Compared to the optimal values of 5 and 8 of the corresponding instances
of Min q-MSMC and Min q-FC, respectively, we see that this variant leads
to a compromise solution, cf. Example 5.3. /

For a feasible set I ′ ⊆ I, the corresponding solution defined by (5.5) is
called the solution induced by I ′. Due to the previous argumentation, it
suffices to restrict our considerations to feasible sets of locations and their
induced solutions. Hence, Min q-AC can be formulated as the following
integer program.

PAC(d) min
z

∑
i∈I

⌈
d(N(i))

q

⌉
· zi (5.6a)

s.t.
∑

i∈N(j)

zi ≥ 1 for j ∈ J (5.6b)

zi ∈ N for i ∈ I. (5.6c)
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Due to (5.6b) and the objective function, we can assume that zi ∈ B for every
i ∈ I. Hence, the variable zi indicates whether location i ∈ I is contained
in the set of open locations or not. For a solution z̄ ∈ B|I| to PAC(d), the
set {i ∈ I : z̄i = 1} is feasible by (5.6b). In any case, the vector z′ := 1 is
another solution and we get that PAC(d) has a finite optimal solution [Sch98;
Mey74]. Additionally, this program reveals that we are actually dealing
with a special weighted Set Cover problem: We need to find a feasible set
of locations I ′ such that ∑

i∈I′

⌈
d(N(i))

q

⌉
is minimum, cf. Section 2.4. Here, the weight of a set N(i) for i ∈ I solely
depends on the elements contained in the set. Observe that, if d(N(i)) ≤ q
for every i ∈ I, we obtain an instance of the classical Min Set Cover problem
and all known solution techniques for this problem are applicable. This
close relation leads to the subsequent result. Recall that Min 3-Dimensional
Cover is APX-complete by Theorem 3.55.

Theorem 5.15. For any fixed q ∈ N>0, Min q-AC is APX-hard.

Proof. Let an instance I of Min 3-Dimensional Cover be given, i.e., a
collection C ⊆W ×X × Y with disjoint sets W , X, and Y . We construct a
bipartite graph G = (I∪J,E) analogously to the proof of Theorem 3.57: Let
I := C, J := W ∪X ∪ Y and N((w, x, y)) := {w, x, y} for all (w, x, y) ∈ C.
Furthermore, we set dj := q for every j ∈ J . Note that, for every i ∈ I,⌈

d(N(i))

q

⌉
= 3.

This constitutes our instance I ′ of Min q-AC. Given an optimal cover C′ for I,
we set zi := 1 if i ∈ C′ and zero otherwise. Then, x := 3z is feasible for I ′
and we have OPT(I ′) ≤ 3 ·OPT(I). On the other hand, given a solution x
to I ′, we can assume that x is of the form 3z for some z ∈ B|I|. Then, by
feasibility of x, the vector z encodes a solution to I and we get 3·SOL(I, z) ≤
SOL(I ′, x) so that 3 · (SOL(I, z)−OPT(I)) ≤ SOL(I ′, x)−OPT(I ′). In
particular, this also gives 3 ·OPT(I) ≤ OPT(I ′).

Corollary 5.16. For any fixed q ∈ N>0, q-AC is strongly NP-complete.
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Proof. Given a vector x ∈ N|I| with xi ≤ d(N(i)) for i ∈ I, we can check
in polynomial time whether Ix is feasible and whether q · xi ≥ d(N(i)) for
every i ∈ Ix. Thus, the problem is contained in NP. NP-hardness follows
from the proof of Theorem 5.15 as a solution to I with value B ∈ N leads
to a solution to I ′ with value 3B in polynomial time and vice versa.

5.2.1. Including Uncertainty
The above complexity results show that a polynomial time algorithm for Min
q-AC is very unlikely. Unfortunately, this does not change when including
robustness. For the sake of completeness, we nevertheless state the problem
and the consequent findings.

Problem 5.17 (Robust q-Adapting Clients (Robust q-AC)).
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J ,
there is i ∈ N(j) with xi ≥ 1 and, for all ξ ∈ U and for all y ∈ N|I|×|J|
with

∑
i∈N(j) : xi≥1 yij = ξj for j ∈ J , it holds that∑

j∈N(i)

yij ≤ q · xi for i ∈ I with xi ≥ 1?

Again, for a solution x ∈ N|I| and a scenario ξ ∈ U , the value yij ∈ N for
i ∈ Ix and j ∈ J describes the number of clients of region j that want to be
served by location i in case scenario ξ occurs. By the same argumentation as
for the non-robust case, we restrict ourselves to feasible instances. Then, an
optimal solution to an instance of the corresponding minimization problem
Robust Min q-Adapting Clients (Robust Min q-AC) is given by a feasible
set of locations I ′ ⊆ I such that∑

i∈I′

⌈
maxξ∈U ξ(N(i))

q

⌉
is minimum. Thus, the (robust) solution induced by I ′ is given by

xi :=

⌈
maxξ∈U ξ(N(i))

q

⌉
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if i ∈ I ′ and zero otherwise and as before it suffices to only consider
solutions of this type. By Theorem 5.15 and Corollary 5.16 we directly get
the subsequent result.

Theorem 5.18. For any fixed q ∈ N>0, Robust Min q-AC is APX-hard
and its decision version is strongly NP-hard.

As in the proof of Theorem 5.5 we get that computing the solution induced
by some feasible set I ′ ⊆ I is NP-hard. For completeness, we also state the
integer program corresponding to Robust Min q-AC.

PAC(U) min
x, z

∑
i∈I

xi (5.7a)

s.t.
∑

i∈N(j)

zi ≥ 1 for j ∈ J (5.7b)

zi ·
∑

j∈N(i)

ξj ≤ q · xi for i ∈ I, ξ ∈ U (5.7c)

xi, zi ∈ N for i ∈ I. (5.7d)

Again, we can assume z ∈ B|I| and the variable vector z encodes the chosen
feasible set of locations. If, for a solution (x̄, z̄) and some i ∈ I, z̄i = 0, we
can assume that also x̄i = 0 as (5.7c) is redundant for i and every scenario
ξ ∈ U and we aim to minimize x̄(I). On the other hand, if z̄i = 1 for some
i ∈ I, we must have ξ(N(i)) ≤ q · x̄i for every ξ ∈ U . Therefore, in an
optimal solution (x?, z?) to PAC(U), the vector x? is the solution induced
by {i ∈ I : z?i = 1} and x? is optimal for the given instance of Robust Min
q-AC. This shows the correctness of the formulation.

As for Robust Min q-Free Clients, the constraints (5.7c) can be replaced
by zi · maxξ∈U ξ(N(i)) ≤ q · xi for i ∈ I. Hence, this gives a polynomial
number of constraints if maxξ∈U ξ(N(i)) can be solved efficiently for every
i ∈ I. Otherwise, we can apply constraint generation to the constraints (5.7c)
starting with a (potentially empty) subset U ′ of the scenarios, cf. Section 2.5.
Let (x̄, z̄) be feasible for PAC(U ′). In the separation step, we seek a scenario
ξ ∈ U and a location i ∈ I with z̄i = 1 such that ξ(N(i)) > q · x̄i. As in
Section 5.1, this leads to solving instances of Max Robust Sum.
Every class of uncertainty sets we consider in this thesis can be forced

to contain only one single scenario, cf. Section 2.6. Hence, Theorem 5.18
also applies to Robust Min q-AC restricted to instances of a specific class of
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uncertainty sets. At least, for discrete, interval, budgeted, and Γ-uncertainty,
given a feasible set I ′ ⊆ I, we can obtain the corresponding induced so-
lution in polynomial time, cf. Section 5.1. Furthermore, for these classes,
formulation (5.7) can be condensed to obtain a compact formulation as men-
tioned above. Hence, in these cases, we even obtain that the corresponding
decision problems are contained in NP and, thus, are NP-complete with
Theorem 5.18.

Altogether, ensuring this degree of freedom to the clients while passing
only little information on the clients’ behavior to the decision maker leads
to solutions in which various locations need to provide suppliers for the
demand of a single region. In the following section, we consider another
compromise behavior pattern in which, in any solution, there is, for every
region, exactly one responsible location.

5.3. Min q-Ordered Clients
In this section, we showcase a behavior pattern of the clients that in-
creases the level of information for the decision maker and decreases the
responsibilities of the locations. So, we aim for a trade-off between the
self-determination of the clients and the provision of supply by the locations.
We assume that every region has a globally known preference order over
its set of adjacent locations. Clients within a region share the preference
order and the region’s cardinality sets up its demand. To formalize this
requirement, let us define a general preference order over a finite set.

Definition 5.19 (Preference Order). Given a finite set S, a preference
order over S is a bijection σ : {1, . . . , |S|} → S.

Hence, a preference order σ over S induces a linear order of the elements
of S [Sch02]. We interpret the preference order as σ(1) being the most
preferred element and σ(|S|) being the least preferred element. For better
readibility, the function σ is often given as a tuple (σ(1), . . . , σ(|S|)) ∈ S|S|.
Observe that the preference order is strict as σ is a bijection, i.e., for any
two distinct elements of S, we can decide which element is preferred over
which.

Thus, having a bipartite graph G = (I ∪ J,E) and, for every region
j ∈ J , a preference order σj : {1, . . . , |N(j)|} → N(j), we assume that the
decision maker selects a feasible set of locations I ′ ⊆ I in a first step, cf.
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Definition 5.13. In a subsequent step, the clients of each region demand
to be served by their most preferred location in I ′. As the orders are
strict, the actions of the clients are unique and the decision maker cannot
influence their behavior. Such two-stage problems are a special type of
bilevel optimization problems, cf. [VKK09]. For a fixed integer q ∈ N>0,
this leads to the following problem definition.

Problem 5.20 (q-Ordered Clients (q-OC)).
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0

for each j ∈ J , a bipartite graph G = (I ∪ J,E), a preference order σj
over N(j) for each j ∈ J , and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J ,
there is i ∈ N(j) with xi ≥ 1 and, for y ∈ B|I|×|J| defined by

yij :=

{
1, if i ∈ arg min

{
σ−1
j (i′) : i′ ∈ N(j) ∧ xi′ ≥ 1

}
,

0, otherwise,

for i ∈ I, j ∈ J , it holds true that
∑
j∈N(i) dj · yij ≤ q · xi for i ∈ I?

The optimization version of this problem is referred to as Min q-Ordered
Clients (Min q-OC) and, again, feasibility of an instance is given as in
Observation 3.5. Hence, from now on, we only consider feasible instances.
Let x ∈ N|I| be feasible for an instance of q-OC with corresponding feasible
set of locations Ix := {i ∈ I : xi ≥ 1}. Then, fixing i ∈ I and j ∈ J , the
entry yij in Problem 5.20 is set to 1 if the location i is contained in N(j)∩Ix
and i is the most preferred location of region j among the open locations Ix.
Otherwise, the entry is set to zero. Note that this choice is unique so that∑
i∈I yij = 1 for every j ∈ J . Further, the definition of y depends on Ix

only and not on the specific values of x. Therefore, we define:

Definition 5.21 (Responsibility, Active Neighborhood). Let an instance of
q-OC be given and let I ′ ⊆ I be feasible.

(a) For a region j ∈ J , the unique location i ∈ N(j) ∩ I ′ with σ−1
j (i) ≤

σ−1
j (i′) for all i′ ∈ N(j)∩I ′ is called responsible for region j with respect

to I ′.

(b) For a location i ∈ I, the set of regions location i is responsible for (with
respect to I ′) is called active neighborhood of location i and denoted
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by N ′(i), i.e., for i ∈ I ′, we have

N ′(i) :=
{
j ∈ N(i) : σ−1

j (i) ≤ σ−1
j (i′) for all i′ ∈ N(j) ∩ I ′

}
and N ′(i) := ∅ for i ∈ I \ I ′.

Observe that
⋃̇
i∈IN

′(i) = J . Using Definition 5.21 we obtain an equiva-
lent reformulation of the matrix y in Problem 5.20.

Definition 5.22 (Assignment Matrix). Let I ′ ⊆ I be feasible for an instance
of q-OC. The assignment matrix y(I ′) ∈ B|I|×|J| is given by

y(I ′)ij :=

{
1, if location i is responsible for region j with respect to I ′,
0, otherwise,

for i ∈ I, j ∈ J .

Thus, the matrix y in Problem 5.20 corresponds to the assignment ma-
trix y(Ix). In the following, we show that it suffices to consider feasible
subsets of the locations similar to Section 5.2.

Lemma 5.23. Let an instance of Min q-OC be given and let I ′ ⊆ I be
feasible. Define x′ ∈ N|I| by

x′i :=

⌈
d(N ′(i))

q

⌉
(5.8)

for i ∈ I. Then, the vector x′ is feasible and x′(I) ≤ x(I) for every solution x
with y(Ix) = y(I ′).

Proof. Consider the assignment matrix y(I ′) and note that, by definition
of x′, we have Ix′ ⊆ I ′ and y(I ′) = y(Ix′). For every location i ∈ I, we have∑

j∈N(i)

dj · y(I ′)ij = d(N ′(i)) ≤ q · x′i

implying feasibility of x′. Now, let x ∈ N|I| be feasible with y(Ix) = y(I ′).
Then, we have that d(N ′(i)) ≤ q · xi for every i ∈ I. Hence, x′(I) ≤ x(I)
by definition of x′.
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As in Section 5.2 we call x′ defined by (5.8) the solution induced by I ′.
Observe that we have Ix′ ⊆ I ′ since a location in I ′ might not be responsible
for any adjacent region. All in all, by Lemma 5.23 solving an instance I of
Min q-OC reduces to computing a feasible set I ′ ⊆ I such that∑

i∈I
x′i =

∑
i∈I′

⌈
d(N ′(i))

q

⌉
(5.9)

is minimum. Observe the slight difference to (5.5) due to the active neigh-
borhood N ′(i). Given I ′ ⊆ I, the corresponding induced solution value
can be computed in time O(|I| + |E|). Thus, from now on we restrict
ourselves to feasible subsets of the locations and their induced solutions. As
in Section 5.2, the whole set of locations I is trivially feasible so that I has
a finite optimal solution. Let us consider some examples.

Example 5.24. Recall Example 3.4 where q = 2 and d = (2, 1, 3, 2, 2)T .
To obtain an instance of q-OC we define the following preference orders:
σ1 := (a), σ2 := (b, a), σ3 := (b, c), and σ4 := σ5 := (c). As in Example 5.14
fix the feasible set {a, c} ⊆ I which leads to the assignment matrix

y({a, c}) =

1 1 0 0 0
0 0 0 0 0
0 0 1 1 1

 ,

where the first, second, and third row correspond to the locations a, b, and c,
respectively. Then, the value dj · y({a, c})ij is given as an edge label on
edge [i, j] in Figure 5.2a. Therefore, any solution x with corresponding
feasible set {a, c} needs to satisfy xa ≥ 2 and xc ≥ 4 so that the best
possible solution value under these assumptions is 6. On the other hand,
Figure 5.2b shows the value dj · y(I)ij on edge [i, j] in case of opening all
locations. Here, we have

y(I) =

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1


and we can set x′a := 1, x′b := 2, and x′c := 2 to obtain a solution x′ with
value 5. Note that this is also the optimal value of the corresponding
instance of Min q-MSMC where we disregard the preference orders. /
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5 d5 = 2

4 d4 = 2

3 d3 = 3

2 d2 = 1

1 d1 = 2

a

b

c

2
1
0
0
3
2
2

(a) Open locations a and c.

5 d5 = 2

4 d4 = 2

3 d3 = 3

2 d2 = 1

1 d1 = 2

a

b

c

2
0
1
3
0
2
2

(b) Open all locations.

Figure 5.2.: Bipartite graph G with two possible choices of open locations
corresponding to Example 5.24.

We have seen that opening the least possible number of locations does
not necessarily lead to an optimal solution. Due to the preference orders
the task is to open a feasible set of locations I ′ ⊆ I such that∑

i∈I′

⌈
d(N ′(i))

q

⌉
=
∑
i∈I′

d(N ′(i))

q
+
∑
i∈I′

(⌈
d(N ′(i))

q

⌉
− d(N ′(i))

q

)
=
d(J)

q
+
∑
i∈I′

(⌈
d(N ′(i))

q

⌉
− d(N ′(i))

q

)
is minimized. Thus, we aim to minimize the total sum of rounding errors
and opening a new location might change the assignment matrix in a way
that these errors decrease. In a second example, we see an instance of
Min q-OC in which the optimal value of its corresponding instance of Min
q-MSMC is strictly better.

Example 5.25. Consider the setting in Example 5.24 and reverse the
preference order of region 2, i.e., σ2 := (a, b). Analogously to Example 5.24,
opening locations a and c leads to an induced solution with solution value 6.
On the other hand, when opening all locations the corresponding induced
solution is given by xa := xb := xc := 2 with solution value 6 as well. Hence,
the optimal value of this instance is 6. By Example 3.4 the optimal value of
the corresponding instance of Min q-MSMC is 5. /

With our new interpretation of the problem we now argue why instances
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of Min q-OC with unit demands are of particular interest. To that end,
let T (n) be the time needed to solve an instance of Min q-OC with unit
demands and encoding length n ∈ N. Naturally, we assume that T : N→ N
is monotonically increasing.

Lemma 5.26. Let an instance I of Min q-OC be given with encoding length
n ∈ N. The optimal solution to I can be found in time O(|E|+ T (qn)).

Proof. Consider the demand values dj ∈ N>0 of the given instance I. For
every j ∈ J , there exist unique values sj ∈ N and rj ∈ {1, . . . , q} such that
dj = sj · q + rj . These values can be computed in time O(|J |). Let I ′ ⊆ I
be feasible. We reconsider the solution value of the solution induced by I ′:

∑
i∈I′

⌈
d(N ′(i))

q

⌉
=
∑
i∈I′

⌈∑
j∈N ′(i) sj · q + rj

q

⌉

=
∑
i∈I′

(
s(N ′(i)) +

⌈
r(N ′(i))

q

⌉)
= s(J) +

∑
i∈I′

⌈
r(N ′(i))

q

⌉
. (5.10)

As s(J) does not depend on I ′, we can find a solution to I by considering
the corresponding instance I ′ in which the demand value dj ∈ N>0 is
replaced by rj ∈ N>0 for every j ∈ J . Given an optimal solution x′ to I ′ we
simply add, for every region j, sj many suppliers to the location i which is
responsible for j with respect to Ix′ . This can be done in O(|E|). By (5.10)
the so constructed solution is optimal for I. To obtain an instance with
unit demands, we simply copy every region j ∈ J exactly rj many times
and connect each copy with N(j). Hence, each region and each edge needs
to be copied at most q times. The encoding length of this instance is at
most qn and every optimal solution to it is also optimal for I ′ and vice
versa. The running time follows as |J | ≤ |E|.

Corollary 5.27. If T (n) is O(nk) for some fixed k ∈ N, an instance of
Min q-OC with encoding length n ∈ N can be solved in time O(nk).

Proof. As q is fixed, T (qn) is O((qn)k) = O(nk). Further, for the edge
set E of the given bipartite graph we have |E| ≤ n. Thus, the result follows
from Lemma 5.26.
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Corollary 5.27 implies that a polynomial time algorithm for an instance
of Min q-OC with unit demands leads to a polynomial time algorithm for
general instances. Thus, we now focus on the existence of such algorithms
by starting with the case q = 1. As the following algorithm is as simple
as it can get, we refrain from only considering unit demands and directly
handle the general case.

Proposition 5.28. Min 1-OC can be solved in time O(|I|+ |J |).

Proof. In every solution to an instance of Min 1-OC, each client needs their
own supplier. Thus, we initialize x := 0 and, for every region j ∈ J , we
add dj suppliers to location σj(1). This leads to an optimal solution in
time O(|I|+ |J |).

Unfortunately, polynomial time solvability for cases other than q = 1 is
very unlikely as we see in the following. First of all, we show that there
exists a constant factor approximation algorithm for Min q-OC.

Lemma 5.29. For any fixed q ∈ N>0, Min q-OC is contained in APX.

Proof. Let I ′ ⊆ I be feasible for an instance I of Min q-OC with induced
solution x′. Then, we get

x′(I) ≤
∑
j∈J

⌈
dj
q

⌉
≤ d(J)

q
+
∑
j∈J

q − 1

q
=
d(J)

q
+
q − 1

q
· |J |

≤ OPT(I) + (q − 1) ·OPT(I) = q ·OPT(I)

as dj ≥ 1 for all j ∈ J and hence OPT(I) ≥ |J|/q. Thus, the solution x̄
induced by the feasible set {σj(1) : j ∈ J} leads to a q-approximation. As x̄
can be computed in time O(|I|+ |E|) and q is fixed the claim follows.

Theorem 5.30. Min 2-Ordered Clients is APX-complete even for unit
demands.

Proof. By Lemma 5.29 we get that Min 2-Ordered Clients can be ap-
proximated within a ratio of 2. To show APX-hardness, we present an
L-reduction from the APX-complete problem Max 3-SAT(3), where each
variable appears at most three times and each clause has at most three
literals. Therefore, recall Problem 3.53 and Assumption 3.54. We start by
constructing an instance of Min 2-Ordered Clients containing regions with
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x1 x̄1

θ1

1

θ̄1

1

x2 x̄2

θ2

1

θ̄2

1

x3 x̄3

θ3

1

θ̄3

1
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2

γ2

2

γ3

2

Figure 5.3.: Construction of instance I ′ in the proof of Theorem 5.30 for
C1 = X1∨X2∨X3, C2 = X1∨X2, and C3 = X3∨X1. A solid
edge is preferred to a dashed edge which itself is preferred to a
dotted edge. The demand of each region is shown as a vertex
label.

demand 2. Nevertheless, at the end of the proof, we see how to adapt this
instance to obtain an instance with unit demands. Thus, given an instance I
of Max 3-SAT(3) with m ∈ N>0 clauses C1, . . . , Cm and n ∈ N>0 variables
X1, . . . , Xn, we define the following Min 2-Ordered Clients instance I ′:

Procedure 5.31. For each literal L ∈
{
Xi, Xi : i ∈ {1, . . . , n}

}
, there is a

location, i.e., I := {x1, x̄1, . . . , xn, x̄n}. As with literals, for a location l ∈ I,
we write l̄ for its corresponding “negated” location. For each i ∈ {1, . . . , n},
there are two regions θi and θ̄i which are both adjacent to xi and x̄i.
Region θi prefers xi to x̄i while region θ̄i prefers x̄i to xi. Furthermore, for
each clause Cj , there is a region γj which is adjacent to every location l
whose corresponding literal is contained in Cj . Thus, the regions are

J := Jθ ∪ Jθ̄ ∪ Jγ := {θ1, . . . , θn} ∪
{
θ̄1, . . . , θ̄n

}
∪ {γ1, . . . , γm} .

If Cj = L1 ∨ L2 ∨ L2 with corresponding locations l1, l2, l3 ∈ I, we use the
same order for the preference order of region γj , i.e., σγj = (l1, l2, l3). We
proceed analogously if |Cj | ∈ {1, 2}.
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The demand of the regions in Jθ∪Jθ̄ is set to 1 while the regions in Jγ have
demand 2. In total, constructing the instance I ′ can be done in polynomial
time. An example of the constructed instance is illustrated in Figure 5.3.

Now, given a truth assignment f for I fulfilling exactly r ∈ N clauses, we
obtain a solution to I ′ with the following procedure.

Procedure 5.32. We start by opening a location l ∈ I if the corresponding
literal L is evaluated to true. Further, for each unsatisfied clause Cj , we
open the location l corresponding to the first literal appearing in the clause.

Hence, each region has an open location in its neighborhood and the set of
open locations is feasible. By the choice of the preference orders, every open
location must have one supplier who serves one or both clients of the regions
in Jθ ∪ Jθ̄, i.e., these sum up to at most n + m − r many. Furthermore,
for every region γj ∈ Jγ , there is one supplier in some adjacent location
covering its demand of 2. Thus, the induced solution value is bounded by
n+ (m− r) +m = n+ 2m− r. By Assumption 3.54 we obtain

OPT(I ′) ≤ n+ 2m−OPT(I) (5.11)
(3.17)
≤ 3

2
m+ 2m−OPT(I) =

7

2
m−OPT(I)

(3.16)
≤ 7 ·OPT(I)−OPT(I) = 6 ·OPT(I).

On the other hand, given a solution I ′ ⊆ I to the instance I ′ of Min
2-Ordered Clients, we obtain a truth assignment f as follows:

Procedure 5.33. For a variable Xi, we set f(Xi) := true if the corresponding
location xi is open and location x̄i is closed. If location xi is closed but x̄i
is open, we set f(Xi) := false. If there is a variable Xi such that both
locations xi and x̄i are open, we set f(Xi) := true if |N(xi)| ≥ |N(x̄i)|
and f(Xi) := false otherwise.

This means, if xi ∈ I ′ and x̄i ∈ I ′, the variable Xi is true if the
corresponding literal Xi appears at least as often in the given formula as its
negation Xi, otherwise the variable Xi is set to false. By construction we
have, for every i ∈ {1, . . . , n}, xi ∈ I ′ or x̄i ∈ I ′ so that the definition of f is
complete. Let r ∈ N be the number of variables such that both locations xi
and x̄i are open. Then, we have SOL(I ′, I ′) ≥ n+m+ r. As I ′ is feasible
for I ′, we get that, for every clause Cj , there is at least one open location l
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such that the corresponding literal L is contained in Cj . If location l̄ is
closed, then clause Cj is satisfied by the constructed truth assignment f .
If location l̄ is open, then clause Cj is satisfied if L appears more often
than L in the given formula. If L appears at most as often as L, then L
appears exactly once by our Assumption 3.54. Thus, Cj is the only clause
containing L or L that is potentially not satisfied by f . Therefore, we have
SOL(I, f) ≥ m − r as whenever both xi and x̄i are open and we choose
one of the corresponding literals to be true by the prescribed rule, at most
once clause containing Xi or Xi is not satisfied. Altogether, we get

OPT(I)− SOL(I, f) ≤ OPT(I)−m+ r

= n+m+ r − (n+ 2m−OPT(I))

≤ SOL(I ′, I ′)− (n+ 2m−OPT(I))

(5.11)
≤ SOL(I ′, I ′)−OPT(I ′).

Finally, by replacing each γj for j ∈ J in the construction with two of its
copies with demand 1 each we obtain the desired result.

Corollary 5.34. 2-Ordered Clients is strongly NP-complete even for unit
demands.

Proof. Given a subset I ′ ⊆ I, it can be checked in polynomial time
whether I ′ is feasible and whether the solution value of the corresponding
induced solution x′ satisfies the given bound B. Observe that, for i ∈ I, x′i
is bounded by d(N(i)). Further, the proof of Theorem 5.30 shows that a
solution to I with at least r ∈ N satisfied clauses leads to a solution to I ′
with at most n+ 2m− r suppliers in polynomial time and vice versa.

In particular, Theorem 5.30 and Corollary 5.34 show that including
preference orders for the regions leads to a new problem with different
structural properties compared to Min q-MSMC. Last but not least, we
briefly analyze the case q ≥ 3. Here, we can recover previous proofs.

Theorem 5.35. For any fixed q ≥ 3, Min q-OC is APX-complete and its
decision version is strongly NP-complete even for unit demands.

Proof. Due to Lemma 5.29 and the proof of Corollary 5.34 we get that Min
q-OC is contained in APX and q-OC is in NP. Let q ≥ 3 be fixed. In
the proof of Theorem 3.14, we can define a preference order σs for every
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s ∈ S, e.g., by the order of increasing indices iC for iC ∈ N(s). Then, we
can recover the remainder of the proof as, for any feasible I ′ ⊆ I and any
location iC , we have |N ′(iC)| ≤ |N(iC)| ≤ 3 ≤ q. This yields APX-hardness
of Min q-OC and NP-hardness of q-OC follows directly.

Observe that the reduction used in the proof of Theorem 5.35 reveals that,
if q ≥ d(N(i)) for every i ∈ I, Min q-OC is a Min Set Cover(q) problem as
the preference orders are not relevant then. Hence, as for Min q-AC, all
known solution methods for Min Set Cover can be applied in this case.
In general, to solve an instance I of Min q-OC with q ≥ 2 we propose

a mixed integer program. In literature, preference orders are a common
feature in facility location problems [HP87; VK10; Cán+07; Koc11]. We
refer to [HP87] for an overview of possible formulations of preference orders.
Consider the following program for I:

POC(d) min
w, x, y

∑
i∈I

xi (5.12a)

s.t.
∑

i∈N(j)

wi ≥ 1 for j ∈ J (5.12b)

∑
j∈N(i)

dj · yij ≤ q · xi for i ∈ I (5.12c)

wi −
σ−1
j (i)−1∑
k=1

wσj(k) ≤ yij for j ∈ J, i ∈ N(j) (5.12d)

yij ≥ 0 for i ∈ I, j ∈ J (5.12e)
wi, xi ∈ N for i ∈ I. (5.12f)

We show that there exists an optimal solution (w?, x?, y?) to POC(d) with
w? ∈ B|I| such that the variables can be interpreted in the following way:
I? := {i ∈ I : w?i = 1} is feasible with induced solution x? which is optimal
for I and y? = y(I?). With this interpretation, we see that (5.12b) enforces
feasibility of I? and (5.12c) together with the optimality of the considered
solution ensure that x? is induced by I?. The constraints (5.12d) are subject
of the next lemma.

Lemma 5.36. Let (w, x, y) be feasible for POC(d). Then, there is a so-
lution (w′, x′, y′) with w′ ∈ B|I|, x′(I) ≤ x(I), and the property that, for

167



5. Including Behavior Patterns of Clients

I ′ := {i ∈ I : w′i = 1}, x′ is the corresponding induced solution and y′ = y(I ′).
Given (w, x, y), the vectors w′, x′, and y′ can be computed in time O(|I||J |).

Proof. First of all, consider the vector w ∈ N|I| and fix j ∈ J . By (5.12b)
there is some i ∈ N(j) with wi ≥ 1. Let

ij ∈ arg min
{
σ−1
j (i) : i ∈ N(j) ∧ wi ≥ 1

}
and note that ij is unique. Thus, by (5.12d) and (5.12e) it holds true that
yijj ≥ wij ≥ 1 and yij ≥ 0 for i ∈ I \ {ij}. We set I ′ := {ij : j ∈ J} and
w′i = 1 if i ∈ I ′ and zero otherwise. Then, (w′, x, y) is feasible for POC(d)
and with (5.12b) we get that I ′ is feasible. Consider a region j ∈ J and a
location i ∈ N(j). If location i is responsible for region j with respect to I ′,
it holds true that

w′i = 1 and
σ−1
j (i)−1∑
k=1

w′σj(k) = 0.

Otherwise there is some location i′ ∈ N(j) with w′i′ = 1 and σ−1
j (i′) < σ−1

j (i)
and location i is not responsible for j. Hence, (5.12d) reduces to yij ≥ 1. If
location i is not responsible for region j with respect to I ′ we have

w′i = 0 or
σ−1
j (i)−1∑
k=1

w′σj(k) ≥ 1.

In every case, (5.12d) is redundant and (5.12e) enforces yij ≥ 0. Thus,
setting y′ := y(I ′) leads to a solution (w′, x, y′) with y′ ≤ y. Moreover,
by (5.12c), for every location i ∈ I, it holds true that

d(N ′(i)) =
∑

j∈N(i)

dj · y′ij ≤
∑

j∈N(i)

dj · yij ≤ q · xi.

Thus, setting x′ to be the solution induced by I ′ leads to a solution (w′, x′, y′)
with x′(I) ≤ x(I). The vector w′ can be computed in time O(|E|). As x′
can be computed from w′ in time O(|E|) and y′ can be computed from w′

in time O(|I||J |), we obtain the claimed running time.

Corollary 5.37. Let an instance I of Min q-OC be given. A vector x ∈ N|I|

is optimal for I if and only if there are w ∈ N|I| and y ∈ R|I|×|J|≥0 such
that (w, x, y) is optimal for POC(d).
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Proof. Let x′ ∈ N|I| be optimal for I. With no loss of generality, we can
assume that x′ is the induced solution of a feasible set I ′ ⊆ I. Define, for
every i ∈ I, w′i := 1 if i ∈ I ′ and zero otherwise, as well as, for every i ∈ I
and every j ∈ J , y′ij := 1 if location i is responsible for region j with respect
to I ′ and zero otherwise. Analogously to the proof of Lemma 5.36, we get
that (w′, x′, y′) is feasible for POC(d). Now, let (w, x, y) be some arbitrary
solution to POC(d). By Lemma 5.36 we can assume that w ∈ B|I| and
that I ′′ := {i ∈ I : wi = 1} is feasible for I with induced solution x. By
optimality of x′ we must have x′(I) ≤ x(I). Thus, the solution (w′, x′, y′)
is optimal for POC(d).
Now, let (w′, x′, y′) be optimal for POC(d). By Lemma 5.36 we can

assume that w′ ∈ B|I|, I ′ := {i ∈ I : w′i = 1} is feasible for I with induced
solution x′, and y′ = y(I ′). Let I ′′ ⊆ I be an arbitrary solution to I
with induced solution x′′. Setting w′′ and y′′ analogously to above leads
to a solution (w′′, x′′, y′′) to POC(d) and we must have x′(I) ≤ x′′(I) by
optimality of (w′, x′, y′). Hence, the solution x′ is optimal for I.

All in all, we have shown that POC(d) is a valid formulation for Min q-OC.
Thus, with the help of an MIP-solver we are now able to compute optimal
solutions to instances of Min q-OC.

5.3.1. Including Uncertainty

After the study of Min q-OC we now introduce robustness by consider-
ing uncertain demands of the regions. Introducing an uncertainty set to
capture these uncertainties leads to the following problem for some fixed
q ∈ N>0:

Problem 5.38 (Robust q-Ordered Clients (Robust q-OC)).
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), a preference order σj over N(j) for each
j ∈ J , and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J ,
there is i ∈ I with xi ≥ 1 and the assignment matrix y := y(Ix) ∈ B|I|×|J|
satisfies ∑

j∈N(i)

ξj · yij ≤ q · xi for i ∈ I, ξ ∈ U?

169



5. Including Behavior Patterns of Clients

For the sake of completeness, let Robust Min q-Ordered Clients (Robust
Min q-OC) be the minimization problem corresponding to Robust q-OC. As
before we restrict our considerations to feasible instances of these problems.
In comparison to Problem 5.20, now the locations need to provide suppliers
that are capable of covering the demand no matter which scenario occurs.
Observe that, given an instance I of Robust Min q-Ordered Clients, we
cannot assume that ξ > 0 for every ξ ∈ U compared to the non-robust case.
Nevertheless, we assume that, for every region j ∈ J , there is a scenario ξ
with ξj > 0, cf. Section 2.6. Therefore, we must have

OPT(I) ≥ |J |
q · |U|

(5.13)

since there exists a scenario with at least |J|/|U| many non-zero entries.
As for the non-robust variant we can show that concentrating on feasible
subsets I ′ ⊆ I suffices.

Lemma 5.39. Let an instance of Robust Min q-OC be given and let I ′ ⊆ I
be feasible. Define x′ ∈ N|I| by

x′i :=

⌈
maxξ∈U ξ(N

′(i))

q

⌉
(5.14)

for i ∈ I. Then, the vector x′ is feasible and x′(I) ≤ x(I) for every solution x
with y(Ix) = y(I ′).

Proof. Fix ξ ∈ U and consider the assignment matrix y(I ′) = y(Ix′). Then,
for every location i ∈ I, we have

∑
j∈N(i) ξj · y(I ′)ij = ξ(N ′(i)) ≤ q · x′i. As

this holds for every ξ ∈ U , we get that x′ is feasible. Now, let x ∈ N|I| be
feasible with y(Ix) = y(I ′). Then, we have ξ(N ′(i)) ≤ q · xi for every i ∈ I
and every ξ ∈ U . Hence, x′(I) ≤ x(I) by definition of x′.

We refer to x′ defined by (5.14) as the (robust) solution induced by I ′.
Again, we have Ix′ ⊆ I ′ and solving an instance I of Robust Min q-OC
reduces to finding a feasible set of locations I ′ ⊆ I such that∑

i∈I
x′i =

∑
i∈I′

⌈
maxξ∈U ξ(N

′(i))

q

⌉
is minimum. As the uncertainty set U is finite and I itself is feasible, we
know that the instance I has a finite optimal solution.

170



5.3. Min q-Ordered Clients

Observation 5.40. After having introduced all behavior patterns we
briefly note that the optimal values of corresponding instances are related.
Let IOC be an instance of Robust Min q-OC and let I, IFC, and IAC be the
corresponding instances of Robust Min q-MSMC, Robust Min q-FC, and
Robust Min q-AC, respectively, where we disregard the preference orders.
Then, we have

OPT(I) ≤ OPT(IOC) ≤ OPT(IAC) ≤ OPT(IFC).

This relation is informally already intended due to the motivation of the
behavior patterns in the beginning of each section. More formally, it can
readily be seen that the optimal solution to IFC is feasible for IAC as
the whole set of locations I is feasible. Hence, OPT(IAC) ≤ OPT(IFC).
Moreover, we can assume that an optimal solution xAC to IAC is induced
by some feasible set IAC ⊆ I. Then, the set IAC leads to an induced
solution x for IOC with x(I) ≤ OPT(IAC) as, for each location i ∈ I, the
number of necessary suppliers is bounded from above by xACi . Therefore,
OPT(IOC) ≤ OPT(IAC). Finally, an optimal feasible set IOC ⊆ I with
induced solution xOC for IOC leads to a feasible solution (xOC, ȳ) for I
by setting ȳ(ξ)ij := ξj · y(IOC)ij for i ∈ I, j ∈ J , and ξ ∈ U . Hence,
OPT(I) ≤ OPT(IOC).

In contrast to the non-robust version, computing the induced solution from
a given feasible set I ′ ⊆ I corresponds to solving instances of Max Robust
Sum and we cannot expect to do this in polynomial time, cf. Theorem 5.5.
Therefore, we obtain the subsequent result which essentially makes use of
the same ideas as the proof of Theorem 3.30.

Theorem 5.41. For any fixed q ∈ N>0, Robust Min q-OC is APX-hard
and its decision version is strongly NP-hard.

Proof. We show that Min Dominating Set(3) L-reduces to Robust Min q-OC.
Let an instance I of Min Dominating Set(3) be given, i.e., a simple graph
G = (V,E) with V = {1, . . . , n} for n ∈ N>0 and ∆G ≤ 3. To construct
an instance I ′ of Robust Min q-OC we refer to the proof of Theorem 3.30.
Then, we have I = V , J = {n+ 1, . . . , 2n}, and G′ = (I ∪ J,E′). Further,
we get U = {0, e1, . . . , en} ⊆ Nn. For the preference orders we let region
j ∈ J prefer i1 ∈ NG′(j) over i2 ∈ NG′(j) if i1 < i2.

Let V ′ ⊆ V = I be an optimal solution to I. Define I ′ := V ′ ⊆ I. As V ′
is a dominating set in G and by construction of the bipartite graph G′, we
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get that, for every j ∈ J , there is at least one location i ∈ NG′(j)∩I ′. Then,
the induced solution x′ is given by

x′i =

⌈
maxξ∈U ξ(N

′(i))

q

⌉
≤
⌈

1

q

⌉
= 1 (5.15)

for i ∈ I. Note that x′i = 0 for i /∈ I ′. Thus, setting xi := 1 for i ∈ I ′ and
zero otherwise yields a solution to I ′ so that OPT(I ′) ≤ x(I) = OPT(I).
Now, let x ∈ N|I| be a solution to I ′. By Lemma 5.39 we can assume

that x is induced by some feasible set I ′ ⊆ I and analogously to (5.15) it
holds that xi ≤ 1 for every i ∈ I. We define V ′ := {v ∈ V : xv = 1} and
claim that V ′ is a dominating set for G. To that end, select a vertex u ∈ V .
As eu ∈ U and by feasibility of x, we know that there is v ∈ NG′(u)
with xv = 1, i.e., v ∈ V ′. By construction of G′, either v = u or the
vertices u and v are adjacent in G. Therefore, SOL(I, V ′) ≤ SOL(I ′, x) and
SOL(I, V ′)−OPT(I) ≤ SOL(I ′, x)−OPT(I ′).

Using the inapproximability result of Min Dominating Set due to [DS14;
Mos15], we obtain analogously to Corollary 3.32:

Corollary 5.42. For any fixed q ∈ N>0 and for any fixed ε > 0, Robust
Min q-OC cannot be approximated within a factor of (1− ε) ln |J | or (1−
ε) ln

∑
ξ∈U ξ(J) unless P = NP.

By the previous results an integer programming formulation is meaningful
to be able to compute a solution to an instance of Robust Min q-OC. Hence,
we extend POC(d) and obtain:

POC(U) min
w, x, y

∑
i∈I

xi (5.16a)

s.t.
∑

i∈N(j)

wi ≥ 1 for j ∈ J (5.16b)

∑
j∈N(i)

ξj · yij ≤ q · xi for i ∈ I, ξ ∈ U (5.16c)

wi −
σ−1
j (i)−1∑
k=1

wσj(k) ≤ yij for j ∈ J, i ∈ N(j) (5.16d)

yij ≥ 0 for i ∈ I, j ∈ J (5.16e)
wi, xi ∈ N for i ∈ I. (5.16f)
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Analogously to Lemma 5.36 and Corollary 5.37 it follows:

Lemma 5.43. Let (w, x, y) be feasible for POC(U). Then, there is a solution
(w′, x′, y′) with w′ ∈ B|I|, x′(I) ≤ x(I), and the property that, for I ′ :=
{i ∈ I : w′i = 1}, x′ is the corresponding induced solution and y′ = y(I ′).

Corollary 5.44. Let an instance I of Robust Min q-OC be given. A vector
x ∈ N|I| is optimal for I if and only if there are w ∈ N|I| and y ∈ R|I|×|J|≥0

such that (w, x, y) is optimal for POC(U).

Observe that, in contrast to PFC(U) and PAC(U), we cannot aggregate
the constraints (5.16c) directly here. To solve POC(U) applying constraint
generation for the constraints (5.16c) is therefore a meaningful method,
cf. Section 2.5. Here we iteratively solve POC(U ′) for a smaller uncertainty
set U ′ ⊆ U , which might be empty in the first iteration. Let (w′, x′, y′) be
feasible for POC(U ′) with induced feasible set I ′ ⊆ I. In the separation step,
we seek a scenario ξ ∈ U and a location i ∈ I with ξ(N ′(i)) > q · x′i. Thus,
again we need to solve |I| instances of Max Robust Sum and the complexity
of the separation step is particularly determined by the structure of U .
Let us briefly consider a case for which we can reobtain a compact

formulation. To that end, let (w̄, x̄, ȳ) be feasible for POC(U). By (5.16c)
we get that, for i ∈ I,

max
ξ∈U

 ∑
j∈N(i)

ξj · ȳij

 ≤ q · x̄i. (5.17)

Thus, if the left-hand side of (5.17) can be reformulated, we might get
an easier formulation for Robust Min q-OC that can be solved directly
using some IP-solver. For instance, for interval uncertainty, where UI ={
ξ ∈ N|J| : a ≤ ξ ≤ b

}
, it can readily be seen that (5.16c) is equivalent to∑

j∈N(i) bj · yij ≤ q · xi for i ∈ I and the total number of constraints
of POC(UI) is polynomially bounded.

Now, more generally, suppose the uncertainty set U under consideration
is given by U =

{
ξ ∈ N|J| : Aξ ≤ b

}
for a matrix A ∈ Ql×|J| and a vector

b ∈ Ql with l ∈ N>0 and an integral underlying polytope {ξ : Aξ ≤ b, ξ ≥ 0}.
That means, the uncertainty set U is integral polyhedral. Then, by LP-
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duality we get

max
{
cT ξ : Aξ ≤ b, ξ ∈ N|J|

}
= max

{
cT ξ : Aξ ≤ b, ξ ≥ 0

}
= min

{
bTπ : ATπ ≥ c, π ≥ 0

} (5.18)

for a vector c ∈ Q|J|. Note that all problems have a finite optimal solution
as |U| <∞ and by duality, cf. [Mey74]. Applying (5.18) to (5.17) gives, for
i ∈ I,

min
{
bTπ : ATπ ≥ ȳi, π ≥ 0

}
≤ q · x̄i (5.19)

where ȳi ∈ R|J| with (ȳi)j := ȳij for j ∈ J . Note that we can assume
ȳij = 0 for j /∈ N(i). If a vector π̄ ∈ Rl is feasible for the left-hand side
of (5.19) with bT π̄ ≤ q · x̄i, we directly get that (5.19) is fulfilled as for the
optimal solution π? ∈ Rl we have bTπ? ≤ bT π̄, cf. [BS04]. Therefore, (5.19)
is satisfied if and only if there is a solution π ∈ Rl to

bTπ ≤ q · x̄i
ATπ ≥ ȳi

π ≥ 0.

Observe that our initial solution (w̄, x̄, ȳ) only appears on the right-hand side
here and thus, for every i ∈ I, we can replace (5.16c) with these constraints.
We get a variable vector πi ∈ Rl for every location i:

min
w, x, y, π

∑
i∈I

xi (5.20a)

s.t.
∑

i∈N(j)

wi ≥ 1 for j ∈ J (5.20b)

bTπi ≤ q · xi for i ∈ I (5.20c)

ATπi ≥ yi for i ∈ I (5.20d)

wi −
σ−1
j (i)−1∑
k=1

wσj(k) ≤ yij for j ∈ J, i ∈ N(j) (5.20e)

yij ≥ 0 for i ∈ I, j ∈ J (5.20f)
wi, xi ∈ N for i ∈ I (5.20g)

πi ≥ 0 for i ∈ I. (5.20h)
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Again, we denote by yi the vector with (yi)j := yij for j ∈ J and π :=
(π1, . . . , πr) with r := |I|.

Theorem 5.45. Let an instance I of Robust Min q-OC be given with
U = P(A, b) ∩ N|J| for an integral polytope P(A, b) ⊆ R|J|≥0 with A ∈ Ql×|J|,
b ∈ Ql for l ∈ N>0. A vector x ∈ N|I| is optimal for I if and only if there
are w ∈ N|I|, y ∈ R|I|×|J|≥0 , and πi ∈ Rl≥0 for i ∈ I such that (w, x, y, π) is
optimal for (5.20).

Proof. By Corollary 5.44 and the preceding argumentation it suffices to
show that (w, x, y) is feasible for POC(U) if and only if, for every i ∈ I,
there is πi ∈ Rl such that (w, x, y, π) is feasible for (5.20). Let (w, x, y) be
feasible for POC(U). Without loss of generality, we can assume that, for
every i ∈ I and j ∈ J , yij = 0 if j /∈ N(i). Denote by πi an optimal solution
to min

{
bTπ : ATπ ≥ yi, π ≥ 0

}
. Then, for every i ∈ I,

bTπi = max
ξ∈U

∑
j∈N(i)

ξj · yij ≤ q · xi.

Thus, (w, x, y, π) is feasible for (5.20). On the other hand, let (w, x, y, π) be
feasible for (5.20). Then, for every i ∈ I,

max
ξ∈U

∑
j∈N(i)

ξj · yij ≤ bTπi ≤ q · xi

so that (w, x, y) is feasible for POC(U).

Analogously, the above consideration is also valid for general integral
polyhedral uncertainty sets, cf. Page 30, but omitted for convenience.

Corollary 5.46. For any fixed q ∈ N>0, Robust q-OC with integral polyhe-
dral uncertainty is strongly NP-complete.

Proof. NP-hardness follows from the proof of Theorem 5.41 as the con-
structed uncertainty set is integral polyhedral. Furthermore, given a solution
to (5.20) as a certificate, we can verify a yes-instance in polynomial time.
Observe that we can assume the encoding length of the solution to be
polynomially bounded in the encoding length of the given instance [Sch98].
Hence, the problem is contained in NP.

As in the previous sections, we now aim to increase the level of detail by
considering specific classes of uncertainty sets.
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|U| = 1 |U| = k ≥ 2

q = 1 linear time APX-complete
q ≥ 2 APX-complete APX-complete

Table 5.1.: Complexity analysis of Robust Min q-OC for a fixed number of
scenarios k ∈ N>0.

5.3.2. Specific Classes of Uncertainty Sets
In this section, we analyze Robust Min q-OC restricted to instances for which
the uncertainty sets belong to a specific class. Hence, we fix an instance of
Robust Min q-OC and we successively assume that its uncertainty set U
belongs to some particular class of uncertainty sets. An overview and general
assumptions on these classes can be found in Section 2.6.

Discrete Uncertainty

We start by considering discrete uncertainty, i.e., U =
{
ξ1, . . . , ξk

}
for some

fixed k ∈ N>0. It is easy to see that we can separate in polynomial time
here and POC(U) is a compact formulation. Furthermore, given a subset
I ′ ⊆ I, the corresponding induced solution x′ can be computed in time
O(|I|+ |E|). The complexity results for k = 1 are subject of Section 5.3.
Therefore, here we concentrate on k ≥ 2. Table 5.1 summarizes our results.
First of all, we show that Robust Min q-OC with discrete uncertainty is
contained in APX.

Lemma 5.47. For any fixed q ∈ N>0, Robust Min q-OC with discrete
uncertainty is contained in APX.

Proof. Similar to the proof of Lemma 5.29 we show that every induced
solution to an instance I of Robust Min q-OC with |U| = k for some fixed
k ∈ N>0 leads to a constant factor approximation. Let I ′ ⊆ I be feasible
with corresponding induced solution x′ and let

ξi ∈ arg max
ξ∈U

ξ(N ′(i))

for i ∈ I ′. Further, denote by ij ∈ I ′ the location responsible for j ∈ J . Note
that q · OPT(I) ≥ ξi(J) for every i ∈ I ′ and

⋃̇
i∈IN

′(i) = J . With (5.13)
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we have

x′(I) =
∑
i∈I′

⌈
ξi(N ′(i))

q

⌉
≤
∑
j∈J

⌈
ξ
ij
j

q

⌉

≤
∑
j∈J

(
ξ
ij
j

q
+
q − 1

q

)
≤ k ·OPT(I) +

q − 1

q
· |J |

(5.13)
≤ (k + k · (q − 1)) ·OPT(I) = qk ·OPT(I).

Hence, the feasible set {σj(1) : j ∈ J} ⊆ I leads to a qk-approximation. As
the corresponding induced solution can be computed in polynomial time
and k is fixed, we obtain the desired result.

For k = 1, the approximation algorithm of Lemma 5.47 reproduces the
q-approximation algorithm of Lemma 5.29. When additionally using the
construction in the proof of Theorem 5.30 we are now able to complete the
right column of Table 5.1.

Theorem 5.48. For any fixed k ≥ 2, Robust Min 1-OC with discrete
uncertainty and |U| = k is APX-complete.

Proof. The membership in APX is given by Lemma 5.47. To show APX-
hardness, we present an L-reduction from Max 3-SAT(3), where each variable
appears at most three times and each clause has at most three literals,
cf. Problem 3.53 and Assumption 3.54. We start with the case k = 2. Thus,
given an instance I of Max 3-SAT(3) with m ∈ N>0 clauses C1, . . . , Cm
and n ∈ N>0 variables X1, . . . , Xn, we apply Procedure 5.31 to obtain
the bipartite graph G = (I ∪ J,E) with locations I = {x1, x̄1, . . . , xn, x̄n},
regions J = Jθ ∪ Jθ̄ ∪ Jγ , and the preference orders of the regions. The
uncertainty set U consists of two scenarios ξ1 and ξ2 with

ξ1
j :=

{
1, if j ∈ Jθ ∪ Jγ ,
0, else,

and ξ2
j :=

{
1, if j ∈ Jθ̄ ∪ Jγ ,
0, else.

Note that ξ1(J) = ξ2(J) = n+m. This polynomial time construction results
in our instance I ′ of Robust Min q-OC with U =

{
ξ1, ξ2

}
. An example of

the constructed instance is illustrated in Figure 5.4.
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x1 x̄1

θ1

(1, 0)

θ̄1

(0, 1)

x2 x̄2

θ2

(1, 0)

θ̄2

(0, 1)

x3 x̄3

θ3

(1, 0)

θ̄3

(0, 1)

γ1

(1, 1)

γ2

(1, 1)

γ3

(1, 1)

Figure 5.4.: Construction of instance I ′ in the proof of Theorem 5.48 for
C1 = X1∨X2∨X3, C2 = X1∨X2, and C3 = X3∨X1. A solid
edge is preferred to a dashed edge which itself is preferred to a
dotted edge. The first and second entry of the vertex label of
region j represent ξ1

j and ξ2
j , respectively.

Now, given a truth assignment f for I fulfilling exactly r ∈ N clauses, we
obtain a solution I ′ ⊆ I to I ′ by applying Procedure 5.32. Then, by the
choice of the scenarios and the preference orders, in every open location
i ∈ I ′, there is one supplier who covers the demand of the regions in Jθ
and Jθ̄, i.e., these sum up to at most n+m−r many. Furthermore, for every
region γj ∈ Jγ , there is one supplier in some adjacent location covering its
demand in both scenarios. Thus, the induced solution value is bounded by
n+ 2m− r and as in the proof of Theorem 5.30 we obtain

OPT(I ′) ≤ 6 ·OPT(I).

On the other hand, given a solution I ′ ⊆ I to I ′, we obtain a truth assign-
ment f for I by applying Procedure 5.33. Again, we obtain SOL(I ′, I ′) ≥
n+m+r for r ∈ N being the number of variables such that both locations xi
and x̄i are open. Analogously to Theorem 5.30 we get SOL(I, f) ≥ m− r
and this gives

OPT(I)− SOL(I, f) ≤ SOL(I ′, I ′)−OPT(I ′).
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For k ≥ 3, we include dummy locations, dummy regions, and dummy
scenarios as in the proof of Theorem 3.57. Observe that for a dummy
region there is only one feasible preference order. Now, as OPT(I ′) ≤
6 · OPT(I) + (k − 2) ≤ (k + 4) · OPT(I), the proof goes along the same
lines as for k = 2.

Corollary 5.49. For any fixed k ≥ 2, Robust 1-OC with discrete uncertainty
and |U| = k is strongly NP-complete.

Proof. Robust 1-OC with discrete uncertainty is contained in NP. By the
proof of Theorem 5.48 we get that a solution to I with at least r ∈ N satisfied
clauses leads to a solution to I ′ with at most n+ 2m− r + max {0, k − 2}
suppliers in polynomial time and vice versa.

Corollary 5.50. For any fixed q, k ∈ N>0 with qk ≥ 2, Robust Min q-OC
with discrete uncertainty and |U| = k is APX-complete and its decision
version is strongly NP-complete.

Proof. For q = 1, the result follows from Theorem 5.48 and Corollary 5.49.
For q = 2, the result follows from Theorem 5.30 and Corollary 5.34 with
the help of dummies as in Theorem 5.48 and Corollary 5.49. For q ≥ 3,
the result follows from Theorem 5.35 also with the help of dummies as in
Theorem 3.57 and Corollary 3.58.

All in all, we have seen that the value of the product q · |U| is crucial
for the polynomial time solvability of the problem. This is also the case
for Robust Min q-MSMC with discrete uncertainty, cf. Section 3.4.1. Yet,
for Robust Min q-OC with discrete uncertainty, we can only guarantee a
polynomial time algorithm for q = 1 and |U| = 1. For q · |U| ≥ 2, the
problem is already APX-complete. For Robust Min q-MSMC this border is
crossed as recently as q · |U| ≥ 3.

Interval Uncertainty

If we consider interval uncertainty sets, we have U =
{
ξ ∈ N|J| : a ≤ ξ ≤ b

}
for vectors a, b ∈ N|J| with a ≤ b. It can readily be seen that it suffices
to consider the worst-case scenario b so that POC(U) = POC(b) and the
complexity results of Min q-OC carry over. Hence, Robust Min q-OC
with interval uncertainty is solvable in time O(|I| + |J |) for q = 1 and
is APX-complete otherwise. As for the non-robust case, given a feasible
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set of locations, the corresponding induced solution can be computed in
time O(|I|+ |E|).

Budgeted and Γ-Uncertainty

Let us first analyze budgeted uncertainty where, in addition to interval
uncertainty, we aim to prevent the global worst-case scenario by imposing an
upper bound on the total sum of clients. Thus, we look at the uncertainty set
U =

{
ξ ∈ N|J| : a ≤ ξ ≤ b, ξ(J) ≤ Γ

}
for some Γ ∈ N, cf. Assumption 3.60.

Consider an instance of Robust Min q-OC with budgeted uncertainty and a
feasible set I ′ ⊆ I. For the corresponding induced solution x′, we have

x′i =

⌈
maxξ∈U ξ(N

′(i))

q

⌉
=

⌈
min {b(N ′(i)),Γ− a(J \N ′(i))}

q

⌉
for i ∈ I by Lemma 3.62. Hence, x′ can be computed in time O(|I|+ |E|).

Similarly, for Γ-uncertainty, we allow some demands to shift to their upper
bound. Recall that U =

{
ξ ∈ N|J| : a ≤ ξ ≤ a+ â, | {k : ξk 6= ak} | ≤ Γ

}
with a, â ∈ N|J| and Γ ∈ {0, 1, . . . , |J |}. Now, the corresponding induced
solution x′ is given by

x′i =

⌈
a(N ′(i)) + max {â(T ) : T ⊆ N ′(i), |T | ≤ Γ}

q

⌉
for i ∈ I by Lemma 3.76. Therefore, computing x′ needs time O(|I|+ |E|),
cf. Theorem 5.9.

In the proof of Theorem 5.41, we construct the uncertainty set

{0, e1, . . . , en} ⊆ Nn,

which is clearly a budgeted as well as a Γ-uncertainty set. Furthermore,
budgeted and Γ-uncertainty are both integral polyhedral, cf. Page 31. Hence,
as in Corollary 5.46 we get that Robust q-OC with budgeted or Γ-uncertainty
is contained in NP.

Theorem 5.51. For any fixed q ∈ N>0, Robust Min q-OC with budgeted
uncertainty is APX-hard and its decision version is strongly NP-complete.

Theorem 5.52. For any fixed q ∈ N>0, Robust Min q-OC with Γ-
uncertainty is APX-hard and its decision version is strongly NP-complete.
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Let UB and UΓ be a budgeted and a Γ-uncertainty set, respectively. We
aim to regain a compact formulation for POC(UB) and POC(UΓ). Thus, with
slight abuse of notation, applying LP-duality for c ∈ Q|J| gives

max
ξ

cT ξ

s.t. ξ ∈ UB

= min
α, β, γ

bTβ − aTα+ Γ · γ

s.t. βj − αj + γ ≥ cj for j ∈ J
α, β, γ ≥ 0,

and

max
ξ

cT ξ

s.t. ξ ∈ UΓ

= min
α, β, γ, δ

aTβ − aTα+ Γ · γ + 1T δ

s.t. βj − αj ≥ cj for j ∈ J
δj + γ − âj · βj ≥ 0 for j ∈ J

α, β, γ, δ ≥ 0,

cf. Page 31. For example, when applying Theorem 5.45 to an instance of
Robust Min q-OC with budgeted uncertainty, we obtain the following mixed
integer formulation with additional variable vectors αi, βi ∈ R|J| and γi ∈ R
for i ∈ I:

min
w, x, y, α, β, γ

∑
i∈I

xi (5.21a)

s.t.
∑

i∈N(j)

wi ≥ 1 for j ∈ J (5.21b)

bTβi − aTαi + Γ · γi ≤ q · xi for i ∈ I (5.21c)

βi − αi + γi ≥ yi for i ∈ I (5.21d)

wi −
σ−1
j (i)−1∑
k=1

wσj(k) ≤ yij for j ∈ J, i ∈ N(j) (5.21e)

yij ≥ 0 for i ∈ I, j ∈ J (5.21f)

αi, βi, γi ≥ 0 for i ∈ I (5.21g)
wi, xi ∈ N for i ∈ I, (5.21h)

where α = (α1, . . . , αr), β = (β1, . . . , βr), and γ = (γ1, . . . , γr) for I :=
{1, . . . , r} with r ∈ N>0. Furthermore, we have (yi)j := yij for i ∈ I and
j ∈ J .
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Multi-budgeted Uncertainty

With multi-budgeted uncertainty we consider uncertainty sets of the form
U =

{
ξ ∈ N|J| : aS ≤ ξ(S) ≤ bS for S ∈ S

}
where S ⊆ 2J and aS , bS ∈ N

with aS ≤ bS for every S ∈ S. As this class constitutes a generalization of
budgeted uncertainty, we directly obtain:

Theorem 5.53. For any fixed q ∈ N>0, Robust Min q-OC with multi-
budgeted uncertainty is APX-hard and its decision version is strongly NP-
hard.

In contrast to the previous classes of uncertainty sets, we know that Max
Robust Sum is NP-complete for multi-budgeted uncertainty, cf. Lemma 3.67.
Thus, analogously to the proof of Theorem 5.5, we have:

Lemma 5.54. Given an instance of Robust Min q-OC with multi-budgeted
uncertainty and a feasible set I ′ ⊆ I, computing the corresponding induced
solution x′ is NP-hard.

Ellipsoidal Uncertainty

Last but not least, we focus on ellipsoidal uncertainty sets, i.e., a scenario
ξ ∈ U fulfills (ξ − a)TA−1(ξ − a) ≤ 1 for a vector a ∈ N|J| and a positive
definite matrix A ∈ Q|J|×|J|. Recall, that we assume that the underlying
ellipsoid E(A, a) is part of the non-negative orthant. By Theorem 3.72 we
know that Robust Sum with ellipsoidal uncertainty is NP-complete. Hence,
with Remark 3.74 we get:

Lemma 5.55. Given an instance of Robust Min q-OC with ellipsoidal
uncertainty and a feasible set I ′ ⊆ I, computing the corresponding induced
solution x′ is NP-hard.

Furthermore, for q ≥ 2, we can apply Theorem 5.30, Corollary 5.34, and
Theorem 5.35 and analogously to the proof of Theorem 3.68 we get:

Theorem 5.56. For any fixed q ≥ 2, Robust Min q-OC with ellipsoidal
uncertainty is APX-hard and its decision version is strongly NP-hard.

Thus, we stay with the remaining case q = 1. Observe that the proof of
Theorem 3.70 is build on the fact that the assignment of suppliers to regions
varies over the scenarios. Thus, when including any preference order in this
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construction, the utilized arguments no longer apply. Nevertheless, there is
also the possibility to use the construction of Theorem 5.48. Choosing an
appropriate uncertainty set leads to the following result.

Theorem 5.57. For any fixed q ∈ N>0, Robust Min q-OC with ellipsoidal
uncertainty is APX-hard and its decision version is strongly NP-hard.

Proof. It remains to prove the case q = 1. To show APX-hardness we
provide an L-reduction from Max 3-SAT(3), where each variable appears at
most three times and each clause has at most three literals, cf. Problem 3.53
and Assumption 3.54. Thus, given an instance I of Max 3-SAT(3) with m ∈
N>0 clauses C1, . . . , Cm and n ∈ N>0 variables X1, . . . , Xn, we construct
the bipartite graph G = (I ∪ J,E) of Procedure 5.31 with locations I =
{x1, x̄1, . . . , xn, x̄n} and regions J = Jθ∪Jθ̄∪Jγ . We also copy the preference
orders of the regions from the proof of Theorem 5.30. The ellipsoidal
uncertainty set U is defined as follows: For p := 2n+m we set

U :=

(ϕ, ϕ̄, τ) ∈ Np :

n∑
i=1

(
(ϕi − 1)

2
+ (ϕ̄i − 1)

2
)

+

m∑
j=1

2 (τj − 1)
2 ≤ 1

 .

For a scenario (ϕ, ϕ̄, τ) ∈ U and i ∈ {1, . . . , n}, ϕi represents the demand of
region θi and ϕ̄i represents the demand of region θ̄i and, for j ∈ {1, . . . ,m},
τj represents the demand of region γj . We have U = E(A−1, 1)∩Np with A
being a diagonal matrix with p columns and rows having value 1 on the
diagonal for the first 2n columns and value 2 otherwise. Thus, the matrix A is
positive definite and E(A−1, 1) ⊆ Rp≥0. Taking a closer look at the definition
of U , we see that it suffices to focus on the scenarios (1, 1, 1) + (ek, 0) with
k ∈ {1, . . . , 2n}. All in all, this polynomial time construction results in our
instance I ′ of Robust Min 1-OC with ellipsoidal uncertainty.
Now, given a truth assignment f for I fulfilling exactly r ∈ N clauses,

we obtain a solution I ′ ⊆ I to I ′ by applying Procedure 5.32. Consider a
location xi. If x̄i is closed, we need three suppliers in location xi to cover
the demands of the regions θi and θ̄i by the choice of the scenarios. If x̄i
is open, we need two suppliers in xi as well as two suppliers in x̄i to cover
these demands by the construction of the preference orders. In total, these
suppliers sum up to at most 3n+m−r many. Furthermore, for every region
γj ∈ Jγ , there is one additional supplier in some adjacent location covering
its demand in all scenarios. Thus, the induced solution value is bounded by
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3n+ 2m− r. This gives

OPT(I ′) ≤ 3n+ 2m−OPT(I) (5.22)
(3.17)
≤ 9

2
m+ 2m−OPT(I) =

13

2
m−OPT(I)

(3.16)
≤ 12 ·OPT(I).

On the other hand, given a solution I ′ ⊆ I to I ′, we obtain a truth assign-
ment f for I by applying Procedure 5.33. Then, we obtain SOL(I ′, I ′) ≥
3n + m + r for r ∈ N being the number of variables such that both loca-
tions xi and x̄i are open. Furthermore, we get SOL(I, f) ≥ m− r as in the
proof of Theorem 5.30 and with (5.22) we infer

OPT(I)− SOL(I, f) ≤ OPT(I)−m+ r

= 3n+m+ r − (3n+ 2m−OPT(I))

≤ SOL(I ′, I ′)−OPT(I ′).

NP-hardness of Robust 1-OC follows as the proof reveals that a solution
to I with at least r ∈ N satisfied clauses leads to a solution to I ′ with at
most 3n+ 2m− r many suppliers in polynomial time and vice versa.

This concludes our study of specific classes of uncertainty sets. For most
of the results, we were able to adapt and extend previous ideas and findings
on the problems Robust Min q-MSMC, Robust Min q-FC, and Max Robust
Sum. Yet, each of these adaptions needed particular care.

5.3.3. Approximating Robust Min q-Ordered Clients

We have seen that, unless q = 1 and |U| = 1, Robust Min q-Ordered Clients
is a hard problem even when restricted to specific classes of uncertainty sets.
For this reason, we briefly analyze ideas to approximate this problem in
this section.
For Min q-OC we already have a q-approximation algorithm due to

Lemma 5.29 that simply opens, for every region, its most preferred location.
Using the same procedure, we get a qk-approximation algorithm for Robust
Min q-OC where |U| = k for k ∈ N>0, cf. Lemma 5.47. Thus, we get a
constant factor approximation algorithm in case of discrete uncertainty.
As mentioned on Page 167, if for an instance of Min q-OC it holds true

that q ≥ d(N(i)) for every i ∈ I, the problem reduces to a Min Set Cover(q)
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problem. Hence, present approximation algorithms for this problem might
be of use here, cf. Section 4.2.1.

Definition 5.58. Let an instance I of Robust Min q-OC be given. We
say that the Min Set Cover instance with S := J and C := {N(i) : i ∈ I}
corresponds to I.

For an instance I of Robust Min q-OC, every solution to the correspond-
ing Min Set Cover instance ISC is given by a subset I ′ ⊆ I such that
{N(i) : i ∈ I ′} is a cover for J , i.e. I ′ is feasible. Conversely, let x ∈ N|I| be
feasible for I. Any region j ∈ J is adjacent to some i ∈ N(j) with xi ≥ 1.
Thus, the set Ix is a cover for ISC and we have OPT(ISC) ≤ OPT(I).
Further, to utilize ISC we derive a new upper bound on the value of an
induced solution similar to the proof of Lemma 5.29.

Lemma 5.59. Let I ′ ⊆ I be feasible for an instance I of Robust Min q-OC
with induced solution x′. Then, it holds true that

x′(I) ≤ |U| ·OPT(I) +
q − 1

q
· |I ′|.

Proof. We have

x′(I) =
∑
i∈I′

⌈
maxξ∈U ξ(N

′(i))

q

⌉
≤
∑
i∈I′

(
maxξ∈U ξ(N

′(i))

q
+
q − 1

q

)
.

For each i ∈ I ′, let ξi ∈ arg maxξ∈U ξ(N
′(i)) and set U ′ :=

{
ξi : i ∈ I ′

}
. As

{N ′(i) : i ∈ I ′} is a partition of J , we have∑
i∈I′

maxξ∈U ξ(N
′(i))

q
=
∑
i∈I′

ξi(N ′(i))

q
≤
∑
ξ∈U ′

ξ(J)

q
≤ |U| ·OPT(I).

Combining these observations yields the desired result.

Corollary 5.60. Let an instance I of Robust Min q-OC be given. If, for
c ≥ 1, we have a c-approximation algorithm for Min Set Cover, there is a
solution x for I with

x(I) ≤
(
|U|+ c · q − 1

q

)
·OPT(I).

If induced solutions for I can be computed in polynomial time, this leads to
an approximation algorithm.

185



5. Including Behavior Patterns of Clients

Proof. Let I ′ ⊆ I be a c-approximation for the Min Set Cover instance ISC
corresponding to I. Let x′ be the solution induced by I ′. With Lemma 5.59
we get

x′(I) ≤ |U| ·OPT(I) +
q − 1

q
· |I ′|

≤ |U| ·OPT(I) +
q − 1

q
· c ·OPT(ISC)

≤ |U| ·OPT(I) +
q − 1

q
· c ·OPT(I)

=

(
|U|+ c · q − 1

q

)
·OPT(I)

as OPT(ISC) ≤ OPT(I).

Observe that, for an instance I of Robust Min q-OC and a feasible set of
locations I ′ ⊆ I, we can assume that |I ′| ≤ |J |. Otherwise, we can remove
locations from I ′ without changing the induced solution value. Hence, for the
corresponding induced solution x′, we have x′(I) ≤ min {|I|, |J |} ·OPT(I).
All in all, using the classical Greedy approximation algorithm for Min Set
Cover with approximation ratio H(k), where k ∈ N is the maximum number
of elements of a set, we find a feasible set I ′ ⊆ I such that the corresponding
induced solution value approximates OPT(I) within a ratio of

min

{
|I|, |J |, |U|+ H

(
max
i∈I
|N(i)|

)
· q − 1

q

}
. (5.23)

For discrete, interval, budgeted, and Γ-uncertainty, we can compute induced
solutions in polynomial time. Hence, for these cases, we even obtain approx-
imation algorithms. Moreover, if H(maxi∈I |N(i)|) < q · |U|, this algorithm
improves the previous q|U|-approximation.

Conclusion
In this chapter, we considered three different behavior patterns for clients
in the setting of a Robust Min q-MSMC problem:

(a) Completely free clients which independently choose a location by which
they want to be served (Section 5.1),
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(b) free clients that need to adapt to a selection of available locations
(Section 5.2), and

(c) clients which reveal a ranking over their adjacent locations and want to
be served by their most preferred available location (Section 5.3).

For each of these patterns, a solution to a given instance is also feasible
for the corresponding instance of Robust Min q-MSMC. We investigated
the complexities of the problems for the non-robust as well as the robust
variant and analyzed the restrictions to various classes of uncertainty sets.
Our findings are summarized in Table 5.2, Table 5.3, and Table 5.4. While
an optimal solution to an instance of Robust Min q-FC is easy to formulate
theoretically (although not easy to compute), for Robust Min q-AC and
Robust Min q-OC, the concept of induced solutions is of importance. We
showed that, for instances of Robust Min q-AC and Robust Min q-OC,
it suffices to analyze solutions which are induced by a feasible subset of
the locations. Such a feasible set corresponds to a cover of the regions.
Furthermore, we presented mixed integer programming formulations for
the hard problem variants. For integral polyhedral uncertainty sets, these
programs can be reformulated to obtain a compact formulation. In case of
a non-compact formulation, constraint generation is a meaningful solution
method. Here, the separation problems correspond to instances of Max
Robust Sum.

Uncertainty Robust Min q-FC

General NP-hard
Discrete PO
Interval PO
Budgeted PO
Multi-budgeted NP-hard
Ellipsoidal NP-hard
Γ PO

Table 5.2.: Summary of results for Robust Min q-FC. All results hold for
any fixed q ∈ N>0.
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Uncertainty Robust Min q-AC Induced Solution

General APX-hard NP-hard
Discrete APX-hard PO
Interval APX-hard PO
Budgeted APX-hard PO
Multi-budgeted APX-hard NP-hard
Ellipsoidal APX-hard NP-hard
Γ APX-hard PO

Table 5.3.: Summary of results for Robust Min q-AC and related problems.
All results hold for any fixed q ∈ N>0.

Uncertainty Robust Min q-OC Induced Solution

General APX-hard NP-hard
Discrete

q · |U| ≤ 1 PO PO
q · |U| ≥ 2 APX-complete PO

Interval
q ≤ 1 PO PO
q ≥ 2 APX-complete PO

Budgeted APX-hard PO
Multi-budgeted APX-hard NP-hard
Ellipsoidal APX-hard NP-hard
Γ APX-hard PO

Table 5.4.: Summary of results for Robust Min q-OC and related problems.
If not stated otherwise, the results hold for any fixed q ∈ N>0.
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This thesis comprises a study of the optimization problem Robust Min
q-MSMC. In particular, in the case of discrete uncertainty, we were able to
exactly determine the transition from polynomial time solvable instances
to hard instances in terms of the fixed value q ∈ N>0 and the number of
present scenarios |U|. For instances with q · |U| ≤ 2, we provided strongly
polynomial time algorithms depending on the exact values of q and |U|. To
show APX-hardness for the remaining instances, the Min 3-Dimensional
Cover problem played a particular role as it was shown to be APX-complete.
Moreover, the equivalence of the two integer programming formulations P(U)
and Ps(U), originating from the famous Max-Flow-Min-Cut Theorem, lead
to the co-existence of a strictly robust and an adjustable robust formulation
for instances of Robust Min q-MSMC. Additionally, it lead to the analysis
of the corresponding separation problem as both formulations are non-
compact. Surprisingly, even for classes of uncertainty sets that admit for
a polynomial time optimization oracle, e.g., budgeted or Γ-uncertainty,
verifying the feasibility of a given tentative solution is co-NP-complete.
On the contrary, this problem can be solved easily in the non-robust case
revealing one of the additional challenges of including uncertainty. Hence,
the further identification of classes of uncertainty sets which allow to identify
a solution in polynomial time is of great interest. For practical purposes, the
development of heuristic approaches for the separation problems might have
a great impact on the constraint generation process. Another interesting
version of Robust Min q-MSMC may be the consideration of an absolute
assignment as in the case of Robust Min q-OC, i.e, in each scenario, the
demand of a region has to be covered by just one location.
As the structure of the given uncertainty set highly influences the com-

plexity of Robust Min q-MSMC, we developed an approximation algorithm
for instances whose uncertainty sets have a polynomial time optimization
oracle. Here, we neatly combined results on approximation algorithms
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for Min Multiset Multicover and Min ARC and excessively exploited the
structure of our problem. The difficulty was to ensure a polynomial running
time despite the generality of the given uncertainty set. The implicit set
structure in Robust Min q-MSMC was the key to overcome this challenge.
We were able to bound the performance ratio by H(q · |U|) · O(

√
|J |) in

the general case, which can be improved for polynomial time enumerable
uncertainty sets. In the latter case, the presented ratio is tight and also
optimal – up to additive constants in the ratio – unless P = NP. Thus, the
question of tightness of the general ratio remains open. Moreover, approxi-
mations or approximation algorithms for other classes of uncertainty sets
are still unknown. For instance, our algorithms do not apply to ellipsoidal
uncertainty.
To increase the influence of the regions and their clients, we introduced

further variants of Robust Min q-MSMC by imposing behavior patterns
on the clients. This lead to the problems Robust Min q-FC, Robust Min
q-AC, and Robust Min q-OC. Here, we theoretically deduced the unique
optimal solution to an instance of Robust Min q-FC and we showed that, for
instances of Robust Min q-AC and Robust Min q-OC, it suffices to restrict
our analysis to feasible subsets of the locations. These results revealed
these problems to be substantially different to Robust Min q-MSMC. Yet,
despite this structural outcome for Robust Min q-AC, we proved APX-
hardness of the problem even for the single scenario case. In further contrast
to Robust Min q-MSMC, we only provided a linear time algorithm for
instances of Robust Min q-OC with q = |U| = 1. For general instances,
we showed that the problem is APX-hard. Moreover, we analyzed the
complexity of Robust Min q-FC, Robust Min q-AC, and Robust Min q-OC
when restricted to specific classes of uncertainty sets. We saw that instances
of Robust Min q-FC with polynomial time optimization uncertainty can
be solved efficiently. This result pertained to discrete, interval, budgeted,
and Γ-uncertainty. Moreover, the above mentioned linear time algorithm
also applied to instances of Robust Min 1-OC with interval uncertainty.
All remaining restrictions were shown to be NP-hard, APX-hard, or even
APX-complete. Hence, an extensive analysis of possible approximation
algorithms for these variants of Robust Min q-MSMC is meaningful. In
particular, these could help in the solution process for large-scale instances.
Moreover, the introduction of further variants of Robust Min q-MSMC
leading to simpler problems in terms of complexity is appealing.

Besides these theoretical research aspects, new interesting directions are
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possible due to the mentioned practical application of Robust Min q-MSMC,
cf. Example 3.27. For instance, a differentiation between types of regions
may be meaningful to account for rural and urban areas. Hence, covering
an emergency in a rural area may consume more capacity of an emergency
ambulance than covering an urban emergency. This could lead to a different
handling of the given value q ∈ N>0. Moreover, the combination of different
sources of uncertainty, similar to [Büs+21], might reveal further potential
applications in locating emergency service facilities.

Altogether, with the introduction of Robust Min q-MSMC we have opened
a new interesting field of research in robust covering problems which is, by
all means, not exhausted yet.
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A. Approximating Min
Adjustable Robust Covering

In this chapter, we consider the Min ARC problem introduced in Sec-
tion 2.6.1:

Parc(Z) min
x, y(ζ)

cTx+ max
ζ∈Z

dT y(ζ)

s.t. Ax+By(ζ) ≥ ζ for ζ ∈ Z
x, y(ζ) ≥ 0 for ζ ∈ Z

x ∈ Rn1−p1 × Np1

y(ζ) ∈ Rn2−p2 × Np2 for ζ ∈ Z,

with A ∈ Qm×n1 , B ∈ Qm×n2 , c ∈ Qn1

≥0, d ∈ Qn2

≥0, non-negative integers
p1 ≤ n1, p2 ≤ n2, and an uncertainty set Z ⊆ Rm≥0. As before we assume
that the optimal value zarc(Z) of Parc(Z) exists. Further, for j ∈ {1, . . . ,m},
let

βj ∈ arg max
ζ∈Z

ζj .

In [BG11], Bertsimas and Goyal show that the uncertainty set

Z̃ := conv
(
2β, 2

√
m · β1, . . . , 2

√
m · βm

)
, (A.1)

where scenario β is obtained from Algorithm 4.1, dominates Z. Moreover,
if p1 = p2 = 0, it holds true that zarc

(
Z̃
)
≤ 4
√
m · zarc(Z).

In this section, we provide an adaption of Z̃ to obtain a ratio of (4
√
r+ 1)

if, for r ∈ N>0, only r ≤ m parameters are uncertain, p1 ≥ 0, and p2 = 0.
Thus, let Zr ⊆ Rr≥0 for r ≤ m be non-empty and compact. Then, we can

193



A. Approximating Min Adjustable Robust Covering

rewrite Parc(Z) as follows:

P′arc(Zr) min
x, y(ζ)

cTx+ max
ζ∈Zr

dT y(ζ)

s.t. Ax+By(ζ) ≥
(
ζ
ζ̄

)
for ζ ∈ Zr

x, y(ζ) ≥ 0 for ζ ∈ Zr
x ∈ Rn1−p1 × Np1

y(ζ) ∈ Rn2 for ζ ∈ Zr,

with ζ̄ ∈ Qm−r≥0 fixed and optimal value z′arc(Zr) ∈ R≥0. The proof of the
subsequent lemma goes along the same lines as in [BG11].

Lemma A.1. For P′arc(Zr), it holds true that

z′arc(Z0) ≤
(
4
√
r + 1

)
· z′arc(Zr),

where Z0 is a prevailing set corresponding to Zr, i.e., with βj for j ∈
{1, . . . , r} and β as in (A.1), we have

Z0 :=
{

2β,
⌈
2
√
r
⌉
· β1, . . . ,

⌈
2
√
r
⌉
· βr
}
.

Proof. Let (x?, y?) be optimal for P′arc(Zr). Let vj := d2
√
re · βj for j ∈

{1, . . . , r} and vr+1 := 2β, where β =
∑K
l=1 u

l and ul ∈ Zr is the scenario
found in Step 4 and iteration l ∈ {1, . . . ,K} for K ∈ N>0 of Algorithm 4.1.
We define a tentative solution (x, y) to P′arc(Z0) as follows:

x :=
⌈
4
√
r
⌉
· x?,

y(vj) :=
⌈
4
√
r
⌉
· y?(βj) for j ∈ {1, . . . , r} ,

y(vr+1) :=
d4
√
re

K

K∑
l=1

y?(ul).

Note that we have K ≤ 2
√
r by [BG11]. Now, we show that (x, y) is feasible

for P′arc(Z0). First, let j ≤ r. Then, we have

Ax+By(vj) =
⌈
4
√
r
⌉
·
(
Ax? +By?(βj)

)
≥
⌈
4
√
r
⌉
·
(
βj

ζ̄

)
≥
(
vj

ζ̄

)
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as r ≥ 1. For j = r + 1 we compute

Ax+By(vr+1) =
d4
√
re

K

K∑
l=1

(
Ax? +By?(ul)

)
≥ d4

√
re

K

K∑
l=1

(
ul

ζ̄

)
≥ 2
√
r

K

(
2β

2K · ζ̄

)
≥ 2
√
r

K

(
vr+1

ζ̄

)
≥
(
vr+1

ζ̄

)
since 1 ≤ K ≤ 2

√
r. For the solution value, we obtain for j ≤ r:

cTx+ dT y(vj) =
⌈
4
√
r
⌉
·
(
cTx? + dT y?(βj)

)
≤
(
4
√
r + 1

)
· z′arc(Zr)

as c, d ≥ 0. Finally, let j = r + 1. Here, we infer

cTx+ dT y(vr+1) =
d4
√
re

K

K∑
l=1

(
cTx? + dT y?(ul)

)
≤ d4

√
re

K

K∑
l=1

z′arc(Zr)

≤
(
4
√
r + 1

)
· z′arc(Zr)

and the claim follows.
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B. APX-hardness of Min
{k}-Domination

In this chapter, we focus on the {k}-Domination problem and extend the
NP-hardness proof of [Gai+03] to an APX-hardness proof. Thus, call the
optimization version of the problem Min {k}-Domination. We provide an
L-reduction from Min Set Cover(3), which was also used to show APX-
hardness of Min q-MSMC for fixed q ≥ 3 in Theorem 3.14. In the following,
only slight changes to the proof of [Gai+03] are made.

Theorem B.1. For any fixed k ∈ N>0, Min {k}-Domination is APX-hard.

Proof. Let I be an instance of Min Set Cover(3). This is a finite set
S = {s1, . . . , sn} and a collection C = {C1, . . . , Cm} of subsets of S with
|Cl| ≤ 3 for l ∈ {1, . . . ,m}. We construct the graph G of the instance I ′ of
Min {k}-Domination as follows: For each element si ∈ S, we build k paths
of three vertices each. Label the vertices aij , bij , and cij for j ∈ {1, . . . , k}.
Then, the c-vertices are connected to a common vertex di. We refer to this
element gadget as Gi with vertex set V (Gi). Furthermore, for each set Cl,
we have a vertex ul. All u-vertices are connected to a common vertex v
and v has another adjacent vertex w. Finally, consider an element si ∈ S
and a set Cl ∈ C. If si ∈ Cl, we connect all a-vertices of gadget Gi with the
vertex ul.

Given an optimal solution to I, i.e., a cover C′ ⊆ C, we define a solution
to I ′ as follows: Set x(aij) := 0, x(bij) := k − 1, x(cij) := 1, and x(di) := 0
for all i, j. Furthermore, set x(v) := k, x(w) := 0, and x(ul) := 1 if Cl ∈ C′
and zero otherwise. It is easy to see that x is a solution to I ′ with value
k2|S|+ k + |C′|. Thus, we get

OPT(I ′) ≤ k2|S|+ k + OPT(I) (B.1)

≤
(
3k2 + k + 1

)
·OPT(I)

using that |S| ≤ 3 ·OPT(I) as C′ covers S and |Cl| ≤ 3 for l ∈ {1, . . . ,m}.
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On the other hand, let x be a solution to I ′. First of all, we need to adjust x
slightly. As x(w) + x(v) ≥ k, we do not lose feasibility if we set x(w) := 0
and x(v) := k. Moreover, as x(aij) + x(bij) + x(cij) ≥ k for every i, j,
we get that x(Gi) ≥ k2 for every i ∈ {1, . . . , n}. If x(Gi) = k2, we must
have x(aij) + x(bij) + x(cij) = k for every j ∈ {1, . . . , k} so that x(di) = 0.
Therefore, we have that x(bij)+x(cij) = k and x(aij) = 0. If x(Gi) > k2, we
can reassign x(aij) := 0, x(bij) := k−1, and x(cij) := 1 for all j ∈ {1, . . . , k}
and x(di) := 0. Furthermore, we choose one subset Cl with si ∈ Cl and set
x(ul) := 1. Our adjusted solution x is still feasible and its solution value did
not increase. Thus, we can assume that SOL(I ′, x) ≥ k2|S|+ k+ r for some
r ∈ N. Consider the set C′ := {Cl ∈ C : x(ul) = 1} with |C′| = r. We claim
that C′ is a cover for S. Let si ∈ S. Then, there is a vertex cij ∈ V (Gi)
with x(cij) > 0 as otherwise the vertex di is not dominated. Thus, by our
construction of x we have x(bij) < k. As x(aij) = 0 there must be some
vertex ul adjacent to aij with x(ul) = 1. In total, we obtain

SOL(I, C′)−OPT(I) = r −OPT(I)

= k2|S|+ k + r −
(
OPT(I) + k2|S|+ k

)
(B.1)
≤ SOL(I ′, x)−OPT(I ′).

As k is fixed, this constitutes an L-reduction from Min Set Cover(3) to
Min {k}-Domination. As Min Set Cover(3) is APX-complete, the claim
follows.

Corollary B.2. For any fixed k ∈ N>0, {k}-Domination is strongly NP-
complete.

Proof. From the proof of Theorem B.1, we see that a solution to I with
value at most r ∈ N leads to a solution to I ′ with value at most k2|S|+k+r
in polynomial time and vice versa. As {k}-Domination is also contained
in NP, we obtain the desired result.
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C. Problem Index

In this chapter, we give a full, alphabetically sorted list of the decision prob-
lems encountered in this thesis. Note that the corresponding optimization
problems can be derived from the list with little effort and are therefore not
mentioned separately.

b-Edge Cover
Instance: A graph G = (V,E), a vector b ∈ N|V |>0 , and an integer B ∈ N>0.
Question: Is there a b-edge cover x ∈ N|E| of size at most B, i.e., x(E) ≤ B
and

∑
e∈δ(v) m(v, e) · xe ≥ bv for v ∈ V ?

b-Matching
Instance: A graph G = (V,E), a vector b ∈ N|V |>0 , and an integer B ∈ N>0.
Question: Is there a b-matching x ∈ N|E| of size at least B, i.e., x(E) ≥ B
and

∑
e∈δ(v) m(v, e) · xe ≤ bv for v ∈ V ?

Clique
Instance: A simple graph G = (V,E) and a positive integer B ≤ |V |.
Question: Does G contain a clique of size at least B, i.e., a subset V ′ ⊆ V
with |V ′| ≥ B such that every two distinct vertices in V ′ are adjacent in G?

Covering Integer Program (CIP∞)
Instance: A matrix A ∈ Qm×n≥0 , vectors b ∈ Qm>0, c ∈ Nn>0, and an integer
B ∈ N>0.
Question: Is there x ∈ Nn with cTx ≤ B and Ax ≥ b?
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Covering Integer Program with multiplicity constraints (CIP)
Instance: A matrix A ∈ Qm×n≥0 , vectors b ∈ Qm>0, c, d ∈ Nn>0, and an
integer B ∈ N>0.
Question: Is there x ∈ Nn with cTx ≤ B, x ≤ d, and Ax ≥ b?

Cut
Instance: A network G = (V,R, c), two distinct vertices s, t ∈ V , and a
rational B ∈ Q>0.
Question: Does G contain an s-t-cut with cut capacity at most B, i.e.,
a partition of V into two sets S, T with s ∈ S and t ∈ T such that
c(S, T ) ≤ B?

Dominating Set
Instance: A simple graph G = (V,E) and an integer B ∈ N>0.
Question: Does G contain a dominating set of size at most B, i.e., a
subset V ′ ⊆ V with |V ′| ≤ B such that, for all u ∈ V \ V ′, there is v ∈ V ′
dominating u?

Dominating Set(K)
Instance: A simple graph G = (V,E) with ∆ ≤ K and an integer
B ∈ N>0.
Question: Does G contain a dominating set of size at most B, i.e., a
subset V ′ ⊆ V with |V ′| ≤ B such that, for all u ∈ V \ V ′, there is v ∈ V ′
dominating u?

Edge Cover
Instance: A simple graph G = (V,E) and an integer B ∈ N>0.
Question: Is there an edge cover for G of size at most B, i.e., a subset
E′ ⊆ E with |E′| ≤ B such that every vertex v ∈ V is incident to some
edge in E′?
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Exact Cover by 3-Sets
Instance: A set S with |S| = 3r for r ∈ N>0 and a collection C of 3-element
subsets of S.
Question: Does C contain an exact cover for S, i.e., a subcollection C′ ⊆ C
such that every element of S appears in exactly one set of C′?

Feasibility for Robust Min q-MSMC (Feasibility)
Instance: Finite sets I, J with I∩J = ∅, a vector x̄ ∈ N|I|, an uncertainty
set U ⊆ N|J|, and a bipartite graph G = (I ∪ J,E).
Question: Does q · x̄(N(S)) ≥ maxξ∈U ξ(S) hold for every subset S ⊆ J?

Flow
Instance: A network G = (V,R, c), two distinct vertices s, t ∈ V , and a
rational B ∈ Q>0.
Question: Is there an s-t-flow f with flow value at least B, i.e., a mapping
f : R → Q≥0 with val(f) ≥ B such that, for v ∈ V \ {s, t}, it holds true
that f(δ+(v)) = f(δ−(v)), and, for r ∈ R, we have f(r) ≤ c(r)?

Independent Set
Instance: A simple graph G = (V,E) and a positive integer B ≤ |V |.
Question: Does G contain an independent set of size at least B, i.e., a
subset V ′ ⊆ V with |V ′| ≥ B and no two vertices in V ′ are neighbors?

Independent Set(K)
Instance: A simple graph G = (V,E) with ∆ ≤ K and a positive integer
B ≤ |V |.
Question: Does G contain an independent set of size at least B, i.e., a
subset V ′ ⊆ V with |V ′| ≥ B and no two vertices in V ′ are neighbors?
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{k}-Domination
Instance: A simple graph G = (V,E) and an integer B ∈ N>0.
Question: Is there x ∈ N|V | such that x(V ) ≤ B and x(N [v]) ≥ k for
v ∈ V ?

Knapsack
Instance: A finite set U , a size su ∈ N>0 and a profit pu ∈ N>0 for each
u ∈ U , and two integers B,K ∈ N>0.
Question: Is there a subset U ′ ⊆ U such that s(U ′) ≤ B as well as
p(U ′) ≥ K?

Matching
Instance: A simple graph G = (V,E).
Question: Does G contain a perfect matching, i.e., a subset E′ ⊆ E with
|E′| = 1/2|V | such that any two edges of E′ do not share a common end
vertex?

Multiset Multicover
Instance: A matrix A ∈ Nm×n, vectors b ∈ Nm>0, c ∈ Nn>0, and an integer
B ∈ N>0.
Question: Is there x ∈ Nn with cTx ≤ B and Ax ≥ b?

Multiset Multicover(K)
Instance: A matrix A ∈ Nm×n with

∑m
i=1 aij ≤ K for every j ∈

{1, . . . , n}, vectors b ∈ Nm>0, c ∈ Nn>0, and an integer B ∈ N>0.
Question: Is there x ∈ Nn with cTx ≤ B and Ax ≥ b?

Order-Domination
Instance: A simple graph G = (V,E) with n ∈ N>0 vertices and an
integer B ∈ N>0.
Question: Is there x ∈ N|V | such that x(V ) ≤ B and x(N [v]) ≥ 2

√
n for

v ∈ V ?
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Poly-Domination
Instance: A simple graph G = (V,E) with n ∈ N>0 vertices, a positive
integer k that is O(n2), and an integer B ∈ N>0.
Question: Is there x ∈ N|V | such that x(V ) ≤ B and x(N [v]) ≥ k for
v ∈ V ?

q-Adapting Clients (q-AC)
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0 for
each j ∈ J , a bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J , there
is i ∈ N(j) with xi ≥ 1 and, for all y ∈ N|I|×|J| with

∑
i∈N(j) : xi≥1 yij = dj

for j ∈ J , it holds that∑
j∈N(i)

yij ≤ q · xi for i ∈ I with xi ≥ 1?

q-Free Clients (q-FC)
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0 for
each j ∈ J , a bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for all y ∈ N|I|×|J|
with

∑
i∈N(j) yij = dj for j ∈ J , it holds that∑

j∈N(i)

yij ≤ q · xi for i ∈ I?

q-Multiset Multicover (q-MSMC)
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0 for
each j ∈ J , a bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that there exists y ∈
N|I|×|J| satisfying∑

i∈N(j)

yij ≥ dj for j ∈ J and
∑

j∈N(i)

yij ≤ q · xi for i ∈ I?
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q-Ordered Clients (q-OC)
Instance: Finite sets I, J with I ∩ J = ∅, a demand value dj ∈ N>0

for each j ∈ J , a bipartite graph G = (I ∪ J,E), a preference order σj
over N(j) for each j ∈ J , and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J ,
there is i ∈ N(j) with xi ≥ 1 and, for y ∈ B|I|×|J| defined by

yij :=

{
1, if i ∈ arg min

{
σ−1
j (i′) : i′ ∈ N(j) ∧ xi′ ≥ 1

}
,

0, otherwise,

for i ∈ I, j ∈ J , it holds true that
∑
j∈N(i) dj · yij ≤ q · xi for i ∈ I?

Quadratic Congruences
Instance: Integers a, b, c ∈ N>0.
Question: Is there x ∈ N>0 with x < c and x2 ≡ a mod b?

Robust q-Adapting Clients (Robust q-AC)
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J ,
there is i ∈ N(j) with xi ≥ 1 and, for all ξ ∈ U and for all y ∈ N|I|×|J|
with

∑
i∈N(j) : xi≥1 yij = ξj for j ∈ J , it holds that∑

j∈N(i)

yij ≤ q · xi for i ∈ I with xi ≥ 1?

Robust q-Free Clients (Robust q-FC)
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for all ξ ∈ U and
for all y ∈ N|I|×|J| with

∑
i∈N(j) yij = ξj for j ∈ J , it holds that∑

j∈N(i)

yij ≤ q · xi for i ∈ I?
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Robust q-Multiset Multicover (Robust q-MSMC)
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every subset
S ⊆ J and every scenario ξ ∈ U , we have q · x(N(S)) ≥ ξ(S)?

Robust q-MSMC with affine policy
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Are there x ∈ N|I|, W ∈ R|I||J|×|J|, and w ∈ R|J| with
x(I) ≤ B such that, for all ξ ∈ U , y(ξ) := Wξ + w ≥ 0 and∑

i∈N(j)

y(ξ)ij ≥ ξj for j ∈ J and
∑

j∈N(i)

y(ξ)ij ≤ q · xi for i ∈ I?

Robust q-MSMC with dominating uncertainty
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|,
generating vectors β, β1, . . . , β|J| corresponding to U , a bipartite graph
G = (I ∪ J,E), and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every subset
S ⊆ J and every scenario ξ in the prevailing set generated by β, β1, . . . , β|J|,
we have q · x(N(S)) ≥ ξ(S)?

Robust q-Ordered Clients (Robust q-OC)
Instance: Finite sets I, J with I ∩ J = ∅, an uncertainty set U ⊆ N|J|, a
bipartite graph G = (I ∪ J,E), a preference order σj over N(j) for each
j ∈ J , and an integer B ∈ N>0.
Question: Is there x ∈ N|I| with x(I) ≤ B such that, for every j ∈ J ,
there is i ∈ I with xi ≥ 1 and the assignment matrix y := y(Ix) ∈ B|I|×|J|
satisfies

∑
j∈N(i) ξj · yij ≤ q · xi for i ∈ I, ξ ∈ U?
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Robust Sum
Instance: An uncertainty set U ⊆ Nn, a subset S ⊆ {1, . . . , n}, and an
integer B ∈ N>0.
Question: Is there a scenario ξ ∈ U with ξ(S) ≥ B?

Separation for Robust Min q-MSMC (Separation)
Instance: Finite sets I, J with I∩J = ∅, a vector x̄ ∈ N|I|, an uncertainty
set U ⊆ N|J|, and a bipartite graph G = (I ∪ J,E).
Question: Is there a subset S ⊆ J such that q · x̄(N(S)) < maxξ∈U ξ(S)?

Set Cover
Instance: A collection C of subsets of a finite set S and an integer B ∈ N>0.
Question: Does C contain a (set) cover for S of size at most B, i.e., a
subcollection C′ ⊆ C with |C′| ≤ B such that every element in S is contained
in at least one set of C′?

Set Cover(K)
Instance: A collection C of subsets of a finite set S with |C| ≤ K for every
C ∈ C and an integer B ∈ N>0.
Question: Does C contain a (set) cover for S of size at most B, i.e., a
subcollection C′ ⊆ C with |C′| ≤ B such that every element in S is contained
in at least one set of C′?

Set Multicover
Instance: A collection C of subsets of a finite set S, a demand value
bi ∈ N>0 for each si ∈ S, a weight cj for each Cj ∈ C, and an integer
B ∈ N>0.
Question: Is there x ∈ N|C| with cTx ≤ B and, for each element si ∈ S,
we have

∑
Cj∈C m(si, Cj) · xj ≥ bi?
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Set Multicover(K)
Instance: A collection C of subsets of a finite set S with |Cj | ≤ K for
every Cj ∈ C, a demand value bi ∈ N>0 for each si ∈ S, a weight cj for
each Cj ∈ C, and an integer B ∈ N>0.
Question: Is there x ∈ N|C| with cTx ≤ B and, for each element si ∈ S,
we have

∑
Cj∈C m(si, Cj) · xj ≥ bi?

3-Dimensional Cover
Instance: Disjoint sets W , X, Y , a subset C ⊆W ×X×Y , and an integer
B ∈ N>0.
Question: Does C contain a cover for W ∪X ∪ Y of size at most B, i.e.,
a subset C′ ⊆ C with |C′| ≤ B such that every element z ∈ W ∪ X ∪ Y
appears in at least one element (w, x, y) of C′?

3-Dimensional Matching
Instance: Disjoint sets W , X, Y with r ∈ N>0 elements each and a subset
M ⊆W ×X × Y .
Question: Does M contain a perfect matching, i.e., a subset M ′ ⊆ M
with |M ′| = r such that no two elements of M ′ agree in any coordinate?

3-SAT
Instance: A set U of variables, a collection C of disjunctive clauses of at
most three literals.
Question: Is there a truth assignment f : U → {true, false} fulfilling
all clauses?

3-SAT(K)
Instance: A set U of variables, a collection C of disjunctive clauses of at
most three literals, where each variable appears at most K times, and an
integer B ∈ N>0.
Question: Is there a truth assignment f : U → {true, false} fulfilling
all clauses?
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2-Dimensional Cover
Instance: Disjoint sets W and X, a subset C ⊆ W ×X, and an integer
B ∈ N>0.
Question: Does C contain a cover for W ∪X of size at most B, i.e., a
subset C′ ⊆ C with |C′| ≤ B such that every element z ∈ W ∪X appears
in at least one element (w, x) of C′?

Weighted Set Cover
Instance: A collection C of subsets of a finite set S, a weight cj for each
Cj ∈ C, and an integer B ∈ N>0.
Question: Does C contain a (set) cover for S of weight at most B, i.e.,
a subcollection C′ ⊆ C with c(C′) ≤ B such that every element in S is
contained in at least one set of C′?
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