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ABSTRACT

Data is the new gold and serves as a key to answer the five W’s (Who,
What, Where, When, Why) and How’s of any business. Companies
are now mining data more than ever and one of the most important
aspects while analyzing this data is to detect anomalous patterns to
identify critical patterns and points. To tackle the vital aspects of time-
series analysis, this thesis presents a novel hybrid framework that
stands on three pillars: Anomaly Detection, Uncertainty Estimation,
and Interpretability and Explainability.

The first pillar is comprised of contributions in the area of
time-series anomaly detection. Deep Anomaly Detection for Time-series
(DeepAnT), a novel deep learning-based anomaly detection method, lies
at the foundation of the proposed hybrid framework and addresses
the inadequacy of traditional anomaly detection methods. To the best
of the author’s knowledge, Convolutional Neural Network (CNN) was
used for the first time in Deep Anomaly Detection for Time-series
(DeepAnT) to robustly detect multiple types of anomalies in the tricky
and continuously changing time-series data. To further improve the
anomaly detection performance, a fusion-based method, Fusion of
Statistical and Deep Learning for Anomaly Detection (FuseAD) is pro-
posed. This method aims to combine the strengths of existing well-
founded statistical methods and powerful data-driven methods.

In the second pillar of this framework, a hybrid approach that com-
bines the high accuracy of the deterministic models with the posterior
distribution approximation of Bayesian neural networks is proposed.
Deterministic deep learning models are unarguably one of the best
choices for classification. However, they don’t provide any informa-
tion that how confident they are about their decision. These confi-
dent decisions are required in the domains where critical decisions
are based on network decisions.

In the third pillar of the proposed framework, mechanisms to en-
able both HOW and WHY parts are presented. Due to the black-box
nature of deep learning methods, their acceptability is rather low.
The trustworthiness of a system can be achieved by enabling it to
answer HOW and WHY of a decision. Time-series Visualization frame-
work (TSViz), a visualization tool that demystifies convolutional deep
learning models for time-series data contributes to the HOW part.
This tool highlights the parts of the input that are influential to a net-
work’s decision. However, Time-series Explanation framework (TSXplain)
contributes to the WHY part by generating natural language explana-
tions of the decisions made by a Deep Neural Network (DNN).
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INTRODUCTION

1.1 MOTIVATION

With every passing day, data is becoming more and more valuable.
Companies from every sector like automotive, medicine, dairy, man-
ufacturing, hospitality, and logistics are investing a lot of their re-
sources [50, 147, 197, 200] to mine the data. They leverage the mined
data to provide quality products and services at competitive prices. It
would not be wrong to say that, data is the new gold [64, 217, 252].

Time-series data mining process facilitates extracting meaningful
insights and patterns from a given time-series using different classi-
fication, clustering, association, and anomaly detection methods [71,
76]. Anomaly detection has become the focus of many researchers
and practitioners because of its applicability to a wide range of do-
mains and use-cases [25]. It has been studied for fraud detection, net-
work traffic monitoring, data leakage prevention, detecting issues in
Electrocardiography (ECG), and machine failure detection [5, 35, 37,
46, 157]. Anomaly detection methods enable to 1) improve the prod-
uct quality, 2) cut the product cost, 3) optimize the manufacturing
process, 4) reduce production time, 5) take preemptive measures, 6)
generate risk portfolios, 7) detect fraudulent behavior, and most im-
portantly, 8) determine the root cause of a failure. There exists a lot
of anomaly detection methods in literature to detect anomalies in a
traditional setting; mostly for non-time-series data. Therefore, such
methods have limited performance when applied to time-series data.
To address this issue, anomaly detection methods are proposed in
this thesis to detect different types of anomalies specifically in time-
series data. Moreover, Deep Neural Networks (DNNs) have also not
been explored extensively for anomaly detection in time-series data.
To fill this gap, DNN based anomaly detection methods for time-series
data are also proposed.

It has been well established that DNNs are superior to other meth-
ods available at hand and give near human-level accuracy for some
tasks [33, 79]. The same implies to DNN-based anomaly detection
methods, as they perform better than traditional anomaly detection
methods for time-series data. However, DNN-based methods are not
embraced in critical domains like health care, connected vehicles,
counter-terrorism, and law enforcement because of the lack of confi-
dence in their own decision and their black-box nature [48, 202, 210].
In critical domains, the minimum requirement is to know the confi-
dence of a decision, so that it is clear either one can trust the decision
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or not. Every aspect of a network’s decision needs to be validated
to avoid any possibility of a wrong decision that could affect human
life. Deterministic deep learning models are unarguably one of the
best choices for classification [119, 207, 270]. However, they don’t pro-
vide any confidence measure about the decision. On the other hand,
Bayesian neural networks place a probability distribution on network
weights [27, 180] and provide a way to generate posterior distribution
which can be used for an uncertainty estimation. The disadvantage
of directly using Bayesian neural networks is the high computation
time due to wider parameter space [180, 253]. To provide an uncer-
tainty estimation of network decisions, a hybrid method is proposed
in this thesis so that the decisions with low confidence can be vali-
dated again to void any unforeseen situation due to a bad decision.

Confidence together with the decision is a minimum requirement
in critical domains. However, to better gain the trust of a user, in-
terpretation and explanation of the decision are also a requisite. To
open the DNN mysterious black-box, many visualization and inter-
pretation tools have been provided in the literature [224, 234, 259,
261, 262]. Most of these proposed tools are for the image modality.
To fill this vacuity, a DNN interpretability tool for time-series data
is proposed in this thesis that helps end-user in understanding the
decision-making process of a DNN. The visualizations in this tool
highlight the anomalous data point that contributed towards a par-
ticular decision. Nevertheless, expert knowledge is required for the
intelligibility of such visualizations which keep these approaches out
of the range of an end-user. Also, they don’t provide any justification
or reason for the decision. When humans make a decision, they have
certain experiences and rules in the back of their minds that can be
presented as their version of a justification. Likewise, justification of
a machine decision is mandatory in critical systems. To use Artificial
Intelligence (Al) for pragmatic solutions, an explanation framework is
presented in this thesis that provides natural language-based explana-
tions of a network decision. Based on the most influential data points
and other time-series features, simple and detailed explanations are
provided for novice and expert users.

As a result of all these advancements, a hybrid framework is pre-
sented in this thesis. This framework consists of three major compo-
nents or pillars: i) Anomaly Detection, ii) Uncertainty Estimation, and
iii) Interpretability and Explainability.

1.2 RESEARCH QUESTIONS AND GOALS

Following are the research questions of this thesis:

1. Is it plausible to use DNN for anomaly detection in time-series
data?
Goal: Explore different DNN architectures and propose anomaly
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detection method(s) for time-series data. Also, compare their
strengths and weaknesses in different scenarios and for dif-
ferent data sets. Moreover, compare the DNN with traditional
anomaly detection methods to validate the detection improve-
ments if any.

2. Is it possible to fuse two disjoint worlds of statistics-based
and deep learning-based anomaly detection?
Goal: Combine statistics-based anomaly detection models with
DNN-based anomaly detection models. Investigate how these
two disjoint worlds can be combined on a model level instead
of merely ensembling the results.

3. Is it possible to get an uncertainty estimation of a network
decision instead of merely relying on the decision?
Goal: Propose a solution to confidently give the network de-
cision for the classification problem. Extend the current state
of Bayesian neural networks as they are very computationally
expensive by fusing the two different worlds i.e. deterministic
and probabilistic to benefit from both. Furthermore, evaluate
the method on time-series data and compare the results with
traditional Bayesian neural network and deterministic neural
network.

4. Is it possible to go beyond the decision, and locate and ex-
plain the actual cause of the decision in natural language?
Goal: Use the interpretability tool(s) to get the insights of a
neural network. Exploit those insights and other time-series
features, to express the networks” decision in natural language
that eventually facilitates novice and expert users. Furthermore,
align statistical features of time-series with DNN to generate ex-
planation and gain user trust.

1.3 CONTRIBUTIONS

Following are the contributions of this thesis:

1. This thesis presents a novel approach to detect long-term
anomalies in Heating, Ventilation and Air Conditioning (HVAC)
time-series data. In contrast to the traditional anomaly detec-  Anomaly detection
tion methods, the proposed approach brings context into con-  for HVAC systens
sideration and builds a knowledge base of long/short-term pat-
terns based on normal data points that keep growing over time.
The proposed method outperforms the state-of-the-art methods
for anomaly detection in terms of different performance indica-
tor measures i.e., Area Under the Curve (AUC) 99.4%, precision
and recall of 0.91 and 0.80 respectively. Another contribution of
this method is the generation of meaningful anomaly scores as
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the anomaly scores produced by the existing methods for HVAC
time-series is sometimes misleading and does not correlate with
the significance of anomalies.

. Deep Anomaly Detection for Time-series (DeepAnT) is proposed

to detect time-series point and contextual anomalies as well as
time-series discords in an unsupervised fashion. To the best of
authors’” knowledge, this is the first method to use Convolu-
tional Neural Network (CNN) for time-series point anomalies.
It is shown in the study that this method is applicable to uni-
variant as well as to multi-variant time-series in anomaly de-
tection and novelty detection scenarios. Generally, it is consid-
ered that Long short-term memory (LSTM) is the only and best
choice for time-series analysis. To invalidate this hypothesis, it is
highlighted in this study that the proposed CNN-based anomaly
detection method performs better than LSTM-based anomaly de-
tection. The evaluations show that in an anomaly detection set-
ting, DeepAnT outperforms Yahoo EGADS and Twitter anomaly
detection methods in three out of four Yahoo Webscope data
sets by a significant improvement of 34% - 39% in the F-score.
The detailed evaluations validate our hypothesis (mentioned in
Section 1.2) that DNNs can be used for time-series anomaly de-
tection.

. Since anomaly detection is an old research topic, there exist

different statistics-, clustering-, machine learning-, and deep
learning-based anomaly detection methods. In most of the in-
dustrial and practical use-cases, traditional statistics-based mod-
els are used because of their transparency and end-user trust.
On the other hand, deep learning-based anomaly detection is
mostly used in the research community because of its automatic
feature engineering and high accuracy. To bring these two dis-
joint worlds together, this thesis presents a hybrid anomaly de-
tection approach: Fusion of Statistical and Deep Learning for
Anomaly Detection (FuseAD). The major contribution of this ap-
proach is the residual learning scheme that lets the network
learn how to produce the best forecasting outcome based on two
different kinds of models. In FuseAD, a statistics-based model —
Autoregressive Integrated Moving Average (ARIMA) is merged
with a deep learning-based model — CNN. This fusion mecha-
nism enables the network to complement the strengths of the
underlying two disjoint models by fusing the information en-
capsulated in them. This study validates our second hypothesis
that the two different worlds of statistics and deep learning can
be fused for time-series anomaly detection problem.

. With all the rapid developments in the area of anomaly detec-

tion, there exists a small number of comparative studies for
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anomaly detection methods. Even in the existing studies, the
comparison of different anomaly detection methods only on
traditional data set is presented, also there is no comparison
with deep learning-based anomaly detection methods. In this
thesis, a detailed comparative analysis of traditional and deep
learning-based anomaly detection methods on time-series data
sets is presented. In this study, 13 anomaly detection methods
are compared on two commonly used streaming data sets. Four
different evaluation metrics are used to evaluate the methods
from different perspectives.

. Deterministic models have unarguably achieved near-human
performance in many image classification tasks. However, they
are incapable of capturing all possible combinations of the net-
work weights which results in a biased predictor towards their
initialization. On the other hand, Bayesian neural networks pro-
vide uncertainty estimation; at the cost of high computation ex-
pense. In this thesis, a novel hybrid convolutional neural net-
work is presented which combines the high accuracy of deter-
ministic models with posterior distribution approximation of
Bayesian neural networks. The evaluation results show that the
proposed approach performs superior to both deterministic and
Bayesian methods in terms of classification accuracy and also
provides an estimate of uncertainty for every prediction. This
study validates our third hypothesis mention in Section 1.2.

. Interpretability plays a vital role in demystifying deep learning.
There exist different interpretability methods and tools, how-
ever, only for the image domain. Generally, those methods are
not directly applicable to the time-series domain. To fill this gap,
an interpretability and visualization tool for time-series data is
presented in this thesis. This tool identifies and highlights the
parts of the input time-series that are influential to a network’s
decision.

. Interpretability tools are not directly intelligible by an end-user.
In most cases, expert knowledge is required to get the leads
from the visualizations and reach to a certain conclusion. To
bring research to the real world, an explainability tool is pro-
posed in this thesis. The main contribution of this tool is the
generation of natural language explanations of a network de-
cision. In order to assess the reliability of a given explanation,
a sanity check is also performed. Moreover, it is also impor-
tant to evaluate the generated explanations and measure the
correctness of those explanations. The survey conducted for the
evaluation of the explanations showed that the generated expla-
nations are relevant, correct, and satisfactory. This contribution
validates our fourth hypothesis (Section 1.2) that explanations
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methods for
time-series data

Uncertainty
estimation

Identification and
visualization of most
influential data
points

Enable networks to
explain their
decisions in a
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of DNN decisions can be provided which actually serves as the
justification of a decision.

1.4 THESIS STRUCTURE

After the motivation (Section 1.1), research questions (Section 1.2),
and contributions (Section 1.3) of this thesis, industrial perspective of
data analytics (Chapter 2) is discussed in Part 1. Chapter 2 provides
a number of data analytics solutions and trends that are followed in
major industries.

The rest of this thesis is divided into three pillars of the proposed
hybrid framework for time-series analysis. The contributions of this
thesis in the direction of time-series anomaly detection are mentioned
in Part 11. In this part, first a detailed background, basic concepts,
characterization of anomaly detection methods, common data sets
for anomaly detection, and commonly used methods are mentioned
in Chapter 3. After that, an anomaly detection method for HVAC sys-
tems is presented in Chapter 4. Furthermore, a deep learning-based
anomaly detection method — DeepAnT, and a fusion-based anomaly
detection method — FuseAD are proposed in Chapter 5 and Chapter 6
respectively. As the last chapter of this part, a detailed comparison of
different anomaly detection methods on different data sets is given
in Chapter 7.

Other two pillars of this thesis; uncertainty estimation and inter-
pretability and explainability are mentioned in Part 111 and Part 1v
respectively. In Part 111, Chapter 8 explains in detail the confident clas-
sification of DNNs. The two important aspects of a network’s decision;
HOW and WHY are explained in Chapter 9, where the significance
of interpretability and explainability, along with our solutions are ex-
plained.

Incorporation of expert knowledge in DNNs is presented in Chap-
ter 10 as an associated research. Finally, the thesis is concluded in
Chapter 11 along with the limitations and future work.



DATA ANALYTICS

Data analytics is a process of applying statistical and/or logical tech-

niques to evaluate and describe data. The purpose of data analytics is

to extract meaningful information from the data by reducing a large

chunk of data into smaller fragments. This information can then be Extracting

used to optimize processes to increase the overall efficiency of a sys-  information from the
tem and to facilitate the business decision-making process. The whole raw data

data analytics process involves, but not limited to the following steps.

The steps involved in this process varies according to the use-case and

requirements. Each step in this workflow is key for good analytics.

¢ Data Acquisition
As a first step of the data analytics process, data engineers iden-
tify the data sets and their sources with the help of domain
experts and field engineers. It is important to define the right
set of data, as whole analytics will be based on it.

¢ Data Integration
In most of the use-cases, data is coming from different sources.
It needs to be combined via different integration routines and
transformed into a common format that is required by the ana-
lytics system.

¢ Data Cleaning
Once the data is acquired and transformed into a required for-
mat, the next step is to ensure the data quality. To do so, data
profiling and data cleaning are performed that make sure that
the information in the data is consistent and there are no dupli-
cates and missing values in the data set.

¢ Data Modeling

It is the core step of the data analytics process. This step aims to
extract meaningful information out of the given data. To achieve
it, data engineers may use different analytics software like Rapid-
Miner, IBM Analytics, KNIME, Google Analytics, and SAS Advance
Analytics etc., or programming languages like R, Python, Scale,
and Matlab. Moreover, several statistical, machine learning, and
deep learning methods exist for data modeling.

¢ Data Visualization
As the final step, the findings of the analytical models are com-
municated to the right audience. It is important to understand

This chapter is an adapted version of the work published in [181]
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the audience before visualization as business executives might
only be interested in high-level numbers whereas, domain ex-
perts might be interested in getting full insights into the analyt-
ics. So, depending on the audience and the requirements, the
visualizations are curated. There are different Business Intelli-
gence (BI) dashboard applications like R Shiny Dashboard and
Tableau, that give the possibility of displaying data on a single
screen and can be updated in real-time as new information be-
comes available.

2.1 INDUSTRIAL PERSPECTIVE AND SOLUTIONS FOR STREAM-
ING DATA

Over the past few years, a lot of devices and machines around us are
becoming ‘smart’. Based on the idea of the Internet of Things (IoT), dif-
ferent devices and machines can connect to the internet and commu-
nicate with each other. IoT refers to the network of physical devices,
vehicles, buildings, and other items embedded with electronics, soft-
ware, sensors, actuators, and network connectivity that enable these
objects to collect and exchange data [251]. Such internet-enabled de-
vices are continuously observing their environment and logging a lot
of data in the back-end database. By applying data analytics to the
gathered Big Data, smart decisions can be taken to facilitate the end-
user according to the current situation. This capability of adaptive
decision making makes ordinary devices and machines smart’. These
devices and machines are becoming intelligent by learning about
their surroundings from different sources and develop the ability to
avoid unforeseen situations by analyzing the data.

Recent studies show that the global IoT market is growing and will
continue to grow a lot over the next few years. It is expected that a
market value of nearly 1, 102 billion US dollars will be reached by the
year 2026 [75]. Due to these internet-enabled devices, companies are
now continuously getting live streams of huge amounts of data. This
data is usually collected over a continuous interval of time, which
results in time-series data.

With the help of data analytics on streaming/time-series data, com-
panies can keep an eye on different aspects, e.g., reducing mainte-
nance costs, avoiding equipment failures, and empower them to up-
grade existing processes by creating and tracking new business mod-
els. Moreover, retailers, restaurant chains, and makers of consumer
goods can use the data from smartphones, wearable technologies, and
in-home devices to do targeted marketing and promotions — the busi-
ness side of the IoT’s futuristic world of connected consumer gear.

Almost every industrial sector, be it health care, agriculture, man-
ufacturing, dairy farming, logistics, or automotive is now redefining
their products and enabling them to IoT for gaining maximum ben-
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efits. Due to these developments, different industrial solutions are
also available focusing specifically on time-series based data analyt-
ics. This section provides a comprehensive overview of how different
industrial players are using data analytics to provide better services to
their customers and improve their internal processes and workflows.
It is also discussed here how different industries use data analytics to
gain vital insights for providing better healthcare to the public, mak-
ing homes more secure, increasing crop yield, delivering goods more
quickly, reducing the downtime of a machine, and avoiding disease.
An overview of different analytics platforms and solutions used in
different industries for time series and streaming data are also dis-
cussed in this section.

2.1.1 Data Analytics in Agriculture

With the increase of the world population and the amelioration of
living standards, the demand for high-quality food is increasing.
Agricultural mechanization is playing a vital role to fulfill this need
with the help of large-scale production. However, the physical per-
formance of mechanization and mass production are limited even
with the advancements in the fields of IoT and cloud computing. In
the agriculture sector, data analytics can be applied to the machinery
and farming data to reduce loss, improve efficiency, and lower costs
under the condition of unchanged physical properties. This enables a
modern farming concept called Precision Agriculture (PA) or Satellite
Farming. This kind of farming helps the farmer to recognize the varia-
tions in the farming land and to adjust input for different parts of the
land to optimize the output. A Global Positioning System (GPS) is the
backbone of PA. With the help of GPS, a farmer can identify the exact
area where soil conditions vary. In conjunction with the precise loca-
tion, different measures like air quality, moisture level, field terrain,
crop yield, crop maturity, and gas levels are recorded and turned into
meaningful information using data analytics.

Data-driven decision-making has been extended from the busi-
ness sector to the agricultural sector. Many large enterprises in the
agribusiness are becoming involved in data analytics research and
development. They are providing solutions for PA and for a variety
of other issues in agriculture. Fierce competition between companies
has already begun.

John Deere converted their equipment to the paradigm of IoT to
help farmers manage their fleet, reduce downtime, and the cost of
production. The local weather data, soil data, crop characteristics,
and other data sets from different sources are combined to achieve
the aforementioned goals. MyJohnDeere.com is a platform for data an-
alytics, that provides the possibility to store, analyze, and visualize
results on a web-portal (as well as on a mobile application called
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Mobile Farm Manager). With the help of such platforms, farmers can
figure out when and where to plant which kind of crops, when to
plough and when to harvest, and which optimized path should be
followed during the work. The right decision can help farmers to im-
prove their efficiency. The data collected during different phases of
farming are massive. To take advantage of the collected data, John
Deere already steps into big data analysis for the future of farming.

IBM and SignalDemand have developed a data analytics system
which uses predictive analytics to predict the demand and optimize
the margin to meet the needs of different agribusiness companies.
While large agricultural enterprises have large data sets, advanced
equipment, data scientists, and domain experts at their disposal; the
majority of farmers neither have access to such information nor the
resources to get benefits from advancements in technology. To help
farmers who are working on a small-scale and lack the technology
infrastructure, IBM built a back-office network. They supply corn-
specific information on a regular basis, along with generalized in-
formation on fertilizer and weather conditions to registered farmers
via their mobile phones. A farmer can get timely agronomic intelli-
gence simply via automated voice mail or text messages on his mobile
phone.

aWhere (an American corporation) collects and analyzes over a
billion points of data (which is a pivot element for analysis) from
around the globe each day to create unprecedented visibility and in-
sight which is known as Agricultural Intelligence. This intelligence is
used for critical decision making from farm level through to national
policy. High-quality weather data is combined and analyzed purely
for agricultural use. Their major data analytics solutions are In-Time
Weather Data , Weather Insights, and Maps4ER.

The Climate Corporation (a San Francisco-based company) exam-
ines weather data to provide insurance to farmers who can lock in
profits even in the case of drought, heavy rains, or other adverse
weather conditions. FieldView is their data analytics solution, which
combines farmers’ field data with real-time and past — soil, crop, and
weather data to help them efficiently manage their operations and
gain insights into their fields [70]. In addition to the FieldView, they
also provide a hardware solution SeedSense for Planter Monitoring.
Perfect planter performance can be achieved by maximizing planter
speed and adjusting vacuum pressure by using SeedSense. It also en-
ables the farmer to sow precisely, maintain depth, avoid compaction,
and troubleshoot mechanical problems.

The CropOS is a data analytics platform, which uses machine learn-
ing and cloud biology to improve crop performance and help scien-
tists and breeders with some of the biggest challenges in the agricul-
ture sector. It is developed and maintained by Benson Hill Biosystems,
which is an agricultural solutions company. They unlock the global
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genetic potential of plants to enhance the sustainability of food, feed,
fiber, and fuel production [176]. CropOS represents a uniquely pow-
erful platform at the intersection of big data, machine learning, and
plant biology. CropOS empowers researchers to significantly increase
the yield of major food crops and identify the most promising plant
genetics in weeks instead of studying long growing seasons.

CLAAS focuses very much on self-propelled machines, developing
and producing combine harvesters, self-propelled forage harvesters,
and tractors [108]. Self-propelled machines are very important espe-
cially for crops like wheat, rye, barley, and corn; that have to be har-
vested at just the right point of maturity. Once this harvest maturity
has been reached, the combine harvesters work in the fields day and
night. In this process, up to 50 parameters from the reel to the chopper
influence the harvest yield. The operator has to continuously moni-
tor and evaluate around a dozen of these parameters. Hardly any
operator is capable of keeping an eye on everything and tapping the
machine’s full potential. To solve this problem, CLAAS also moved
toward IoT enabled combine harvesters. In addition to this, an assis-
tance and analytics system is used, that permanently monitors the
harvesting process and automatically adjusts the machine setting to
the current conditions — faster and more precise when compared
to a human operator. Furthermore, together with the German Re-
search Center for Artificial Intelligence, and the Fraunhofer Institute,
CLASS is working on extending the data analytics to improve the
performance of mobile work machines with unsupervised anomaly
detection algorithms, which can detect unexpected events without
any previous domain knowledge.

2.1.2 Data Analytics in Healthcare

Similar to agriculture, data analytics is playing a vital role in the
advancement of the healthcare sector. With the easy availability of
smart devices (including smart watches, smart phones, and smart
wristbands), a new dimension of healthcare has emerged — Smart
Healthcare. End-user smart devices are continuously collecting users’
data regarding different activities performed over a day, month, or
year using different sensors.

Data analytics on smart sensors” data have opened new dimensions
of research and applications in Connected or Smart Healthcare. Smart
healthcare is supporting, and slowly replacing traditional healthcare.
By analyzing the streaming data generated by smart wearables, it is
possible to see if a user is healthy, or if some preventive measures are
required, in order to avoid a potential health problem. Now doctors
can remotely examine their patients and suggest treatments on the
go. Smart healthcare offers many new possibilities for patients too.
Patients can stay updated with their health and fitness data all the
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time, find other patients suffering with the same disease to discuss
various treatments, and easily track the post-surgical needs. The dig-
itization of patients” health data encourages the communication and
collaboration of all the stakeholders involved in the patient’s health
in the following ways:

¢ Government institutes can use the data to extract different statis-
tics and to make policies as needed.

¢ Pharmaceutical companies can use the data to track the positive
or negative effects of different medicines.

¢ Doctors can use this data to choose a treatment when a patient
has high cardiovascular risk, etc.

With smart healthcare, healthcare is shifting from being episodic/re-
active to preventive/proactive. Different companies (mentioned be-
low) are providing solutions for connected-, smart-, and preventive-
healthcare.

IBM Healthcare is a data analytics solution, which focuses on
health monitoring and intervention, analyzing streaming data (such
as data generated in Intensive Care Unit (ICU)), and helping in de-
tecting signs of various changes occurring in a patient’s health. The
detected early signs are used to generate medical alerts for proactive
intervention. It also enables healthcare providers to improve opera-
tional performance, reduce cost of care, and counter fraud in health-
care by using integrated data management and analytics. Further-
more, it provides consumer level analytics to understand consumer
preferences and behaviors by capturing data from different sources
such as claims, clinical history, and social platforms; and then merges
all the data into one unified view. It also helps building a predic-
tive model that evaluates the risk of readmission for patients with
chronic obstructive pulmonary disease [127]. Researchers at National
Institutes of Health (NIH) are using IBM PureData System for ana-
lytics to unlock new insights from data gathered over decades. With
the help of this system, researchers can run analysis on large, com-
plex data sets (both clinical and genomic research data) and generate
reports faster than ever before [126].

SAP Real-Time Analytics is a complete solution for patient care, hu-
man resources, finance, care collaboration, and healthcare analytics.
The big health data collected from electronic health records, research,
physician notes, insurance claims, and social media data are used by
SAP Real-Time Analytics to reduce cost and improve quality of care.
This solution enables data scientists to separate noise from signals
and derive meaningful insights from the data. The unified analytics
model transform data from a wide range of sources into actionable
information. Seoul National University Bundang Hospital (South Ko-
rea) has developed its Clinical Data Warehouse (CDW) using SAP Data
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Services and SAP HANA. Their CDW is used to automate the clinical
indicators system, gather critical data in real-time, provide instanta-
neous feedback to clinicians, and provide multidimensional analyses
based on patient characteristics, diseases, and location [211].

General Electric (GE) provides many healthcare solutions in gen-
eral. Some of those solutions are based on data analytics in the areas
of diagnosis, clinical decision-making, and asset monitoring. The GE
Marquette 12SL ECG analysis program provides diagnostic confidence
to care providers by giving fast and reliable cardiac care decisions.
In the area of patient monitoring, GE provides CARESCAPE Central
Station that allows the integration of different medical devices and
systems to access patient’s historical data. When a patient moves to
a care area, this solution enables care providers to perform in-depth
analyses and offers clinical decision support. They also provides Cen-
tricity Imaging Analytics, a real-time dashboard that provides visibility
into the workflows of the radiology department for increasing depart-
ment throughput and patient care [81].

Combined Applications to Reduce Exposure (CARE) (by Siemens) com-
bines a variety of advanced technologies and applications. CARE for
Patients is an analytics solution, which is designed to improve dose
monitoring in different interventional radiology systems. The dose of
an individual patient is recorded in addition to other data, such as
CT-dose index, dose length product, and total recording time. This
data is also used to enhance dose reporting and assessment, trans-
parency regarding dose per case, reporting on patient dose history,
and cross-institutional reporting [222].

Apple CareKit is an open source platform for creating health related
applications to regularly track care plans, monitor users’ progress,
and share their insights. One Drop (by Informed Data Systems, Inc.)
is an example of such a mobile application created using CareKit.
Apple ResearchKit equip developers to create applications, that enable
researchers and doctors to gather robust and meaningful data for
their health related studies, and obtain a complete history of their
patients. The real life data collected is used to find physical patterns,
correlation between physical history and medication, predict a partic-
ular problem, and recommend diet and fitness plans. With the help
of ResearchKit and CareKit, researchers use Apple Watch to predict
seizures before they actually happen. For instance, EpiWatch (an Ap-
ple Watch application by Johns Hopkins University) enables people
to accurately track the onset and duration of seizures in real time.
A patient sensing an impending seizure launches the application on
Apple Watch and an alert is automatically sent to a designated fam-
ily member or caregiver. Similarly, Asthma Health (by Weill Medical
College), Concussion Tracker (by New York University Langone Medi-
cal Center), GlucoSuccess (by Massachusetts General Hospital), and C

15

General Electric

Siemens

Apple Inc.



16

Industrial Internet
of Things

DATA ANALYTICS

Tracker (by Boston Children’s Hospital) are examples of such applica-
tions that are built on top of ResearchKit and CareKit [11].

2.1.3 Data Analytics in Manufacturing

Data analytics provides a granular approach to diagnose and improve
whole manufacturing limitations. It is always in the manufacturers’
interest to improve their production processes, product quality, pro-
duction cycle, and the amount of output per unit of input. Due to
the involvement of a number of players and processes in the man-
ufacturing life cycle, it is challenging to find the cause of failure or
inefficiency. With the growth of Industrial Internet of Things (IloT)
in recent years, everything is going digital and connected. By virtue
of this digitization and connectivity, a lot of streaming data related
to equipment, automation, production lines, systems, and products
are generated and stored. Figure 2.1 shows how advance data analyt-
ics can help decode and improve complex manufacturing processes.
Manufacturers can use data analytics to leverage the data collected
from on-the-floor factory machinery alongside other traditional (fac-
tory logs) and social data. Some of the advantages of using data ana-
lytics in manufacturing are following:

¢ Get unexpected insights from different processes.

* Increase accuracy, quality, and yield (amount of output per unit
of input).

¢ Improve the forecast of product supply and demand.

¢ Enhance the understanding of plant performance across multi-
ple metrics.

* Boost the product quality.

¢ Track all products with defected components.

* Predict machine failure.

¢ Quantify how daily production impacts financial performance.

¢ Provide preemptive maintenance and service by continuously
monitoring a product instead of fixed term maintenance.

¢ Identify the root cause of a failure.

The main challenges in manufacturing are a lack of collaboration
across different departments, disparate systems and data sources,
and difficulty in coordinating supply and demand chains. Such chal-
lenges, among others are tackled in the solutions discussed in this
section by different companies using advanced data analytics.
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IBM Analytics provides a complete analytics solution to be used
in automotive, defense, chemical, petroleum, energy, aerospace, elec-
tronics, and other industries to uncover deeper insights into op-
erations, inventory, market demands, supply chain, and perfor-
mance [130]. By applying advanced data analytics on aggregated data
from different sources (such as different sensors, maintenance logs,
and production systems), manufacturers can efficiently achieve their
demand, production, and supply requirements; while properly man-
aging all the resources at minimal cost. Their analytics solution can in-
tegrate structured as well as unstructured data from different sources.
It can unveil a number of critical manufacturers questions, such as
how operating costs can be reduced while having better project fi-
nancial performance, how greater visibility into supply chains can
be achieved, how the supply chain’s needs can be predicted, and
how the maintenance cost can be cut down. Moreover, it can also
uncover insights into customers’ behavior, their needs, and market
trends to make better business decisions. Nowadays, production as-
sets and consumer products are transmitting vital operational data to
backend data warehouses. IBM Predictive Maintenance and Quality soft-
ware solution leverages the data collected from different sources and
predicts when a particular asset or machine needs maintenance. In
contrast to the traditional scheduled maintenance, predictive main-
tenance recommends when maintenance is required and when it is
not. This type of maintenance helps to keep critical production lines
and consumer products running, while saving money and minimiz-
ing customer inconvenience. Muller Inc., USA, is a retailer and man-
ufacturer of metal products. They used IBM Cognos Business Intelli-
gence, IBM Cognos TM1, IBM SPSS Modeler, and IBM Business An-
alytics to pull data from all points of sale, inventory, and Enterprise
Resource Planning (ERP) systems; so that the employees can view and
analyze company data, measure individual performance, and access
how their work affects the bottom line [128]. The Vaasan group (a
leading bakery operator in Northern Europe) used IBM Analytics to
enhance forecasting and inventory management. The solution based
on the IBM Cognos Controller, IBM Cognos Intelligence, and IBM Cognos
8 Planning enabled the bakery to predict production requirements
and helped them prepare for fluctuating orders [124].

SAP provides multiple solutions in the domain of manufactur-
ing. SAP Manufacturing Execution System connects, monitors, and con-
trols different manufacturing operations. With the help of automated
data collection, it provides visibility into the manufacturing processes
which helps process managers to find and resolve quality issues. Its
asset utilization functionality improves overall equipment effective-
ness, facilitates predictive maintenance, and minimizes downtime.
SAP ERP is an enterprise level system for streamlining the manufac-
turing, services, sales, finances, and human resource processes. It is
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composed of different modules, which accelerate the entire manufac-
turing process, boost sales and customer satisfaction, provide sup-
port for administration tasks, streamline and automate financial oper-
ations, and provides real-time analytics based on ERP data. SAP Man-
ufacturing Integration and Intelligence is the solution for smart man-
ufacturing which exploit the data collected from IloT. It automates
the IloT and facilitates in manufacturing data transformation and in-
tegration. This software is equipped with the Manufacturing Analytics
Platform, which provides statistical process control and predictive ana-
lytics. It can also identify the root cause of machine downtime and ef-
ticiency loss; which makes the maintenance task easy for technicians
and helps the operation team to improve efficiency. The SAP Predic-
tive Maintenance and Service solution leverages the IoT data to trans-
form reactive maintenance to predictive maintenance. It provides the
visibility into manufacturing asset and consumer product health by
remotely observing their behavior and patterns. By analyzing the Big
Data collected, future needs are predicted [212].

Microsoft Azure 10T is a complete suite for connecting IoT devices,
collecting IoT data, analyzing the collected data, and mining disparate
data [177]. Existing data and systems can also be integrated with new
data sources to create new insights and business models. A Predictive
Analytics module in Azure provides insight into how a certain prod-
uct behaves in normal conditions and in other special conditions by
finding patterns and correlations in historical and new sensor data.
Based on such analytics, this suite is able to provide warning signs,
identify where a problem exists, and notify when equipment needs
maintenance. With such preemptive warnings, small repairs can be
made before big failures occur. It also helps in prioritizing the main-
tenance task by providing information about which equipment is at
high risk. Once an actual root cause of the failure is detected, it can
facilitate a technician by recommending the error code (with pos-
sible fixes) for that condition. The technician’s time of finding the
root cause of a failure is saved, now he just has to fix the defective
component (with the help of some recommendations about possible
fixes). This suite enables manufacturers to remotely monitor their as-
sets, which are deployed outside the factory. Automatic notifications
can be triggered on this live data to get real-time asset feedback and
maintenance requests.

GE Brilliant Manufacturing is a software suite, which connects peo-
ple, machines, materials, and processes in IoT. This suite maximizes
manufacturing production performance and optimizes operations
through advanced real-time analytics. It allows the integration and
aggregation of whole manufacturing life cycle data from the begin-
ning till the end. Data driven analytics from disparate manufacturing
sources allow manufacturers to take optimal decisions to drive im-
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provements in end-to-end production [8o]. This suite includes differ-
ent products including the following;:

e Efficiency Analyzer provides an up-to-date view of the entire
production process and transforms real-time machine data into
action efficiency metrics. Such unified metrics help plant man-
agers to reduce unplanned downtime, maximize yield, improve
production quality, increase flexibility, and maximize team pro-
ductivity.

® Production Quality Analyzer analyzes data to catch non-
conforming events before they occur to help quality engineers
to easily identify the problem.

* Production Execution Supervisor digitizes documentation, instruc-
tions, orders, and process steps, enabling manufacturers to get
the right information at the right time.

* Product Genealogy Manager builds a record of all equipment, raw
materials, tools, and personnel which are required to build the
finished goods. It helps service personnel to manage services in
an efficient way.

Manufacturing Analytics by BOSCH is a solution for analyzing produc-
tion data. Different types of data such as test, process, and machine
data from different sources can be combined to improve the produc-
tion process and product quality while reducing the cost with the
help of this suite. This suite can integrate the existing production

BOSCH data with the new data. The predictive models can be applied to real-
time data for predictive maintenance and root cause analysis. Data
analytics unveils the previously unknown correlations in data and
helps manufacturers in gaining new insights. The newly discovered
data insights and prediction models can be applied using this suite
to automate the analytics process.

SAS provides different solutions to get the best out of the manufac-
turing life cycle. SAS Demand-Driven Planning and Optimization suite
improves the supply and demand planning processes. This suite uses
analytical insights of demand patterns to help manufacturers in mak-
ing supply plans, that are aligned with the demand forecast. Produc-
tion and logistics can also be managed to match the ever-changing
customer needs and market dynamics. SAS Quality Analytics suite in-
cludes data mining and predictive analytic technologies for predictive

SAS maintenance and identification of potential problems. It also helps in
reducing the total cost of quality by reducing the scrap and rework,
and identifying design and production defects. SAS Field Quality Ana-
Iytics helps in making aftermarket service efficient by integrating and
analyzing internal and external data sources. It helps in detecting and
prioritizing warranty and service issues. SAS Customer Intelligence 360
collects, analyzes, and reports on customer experiences to improve
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sales and marketing performance. It provides insight into customer
segmentation: which customer groups are more likely to buy which
kind of product and why. With the help of such forecasts, advertising
and promotion campaigns can be planned and targeted at customer

groups [213].
2.1.4 Data Analytics in Connected Vehicles

A connected vehicle is a vehicle designed with the capability of con-
necting to the internet and other connected devices including smart
phones, traffic lights, other vehicles on the road, smart home appli-
ances, etc. A study reveals that more than 286 million connected pas-
senger cars will be added globally during the 2019 — 2025 period and
the revenues from connected cars globally are projected to grow five-
fold, reaching over 24 billion US dollars by the year 2025 [170]. The
accumulated data based on driver’s behavior, car machinery, sensors
installed in the car and in the surroundings can leverage data ana-
lytics in the following functional areas: autonomous driving, safety,
infotainment, well-being of driver’s health, vehicle management, mo-
bility management, and smart home integration [244]. Different au-
tomotive manufactures including BMW and Volkswagen are making
these connected vehicles smart by introducing functionalities like au-
tonomous car parking and emergency assist respectively. Data analyt-
ics provides car manufacturers with crucial insights into the vehicle
system, behavior of the vehicles in certain conditions, and drivers’
patterns. Thousands of components inside the vehicle are continu-
ously logging data. Even if the test driver observes an unexpected
shifting characteristic, it is hard for a manufacturer to exactly find the
defective component or the contributing components. But, with the
help of data analytics, the defective component and the contributing
components can be figured out precisely.

Ford and IBM are working together to develop a platform which
analyzes data collected from a vehicle. Based on the small chunks
of vehicular data, this platform can spot patterns, correlations, and
trends to help the driver make efficient transportation decisions. Data
collected from Ford Smart Mobility Experimentation Platform helps their
scientists to spot tendencies and behaviors, and their customers to
have a better travel experience. They are working on using real-time
analytics to learn about a problem on a particular route by taking
data feed from different systems [129]. In the domain of predictive
maintenance, Ford is working on sending personalized oil change
and brake maintenance notifications to drivers. The collected data is
statistically analyzed in order to evaluate the maintenance needs for
each vehicle separately [187].

Daimler is making their cars and trucks intelligent by enabling
them with anticipatory planning. Based on data from different
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sources, their vehicles are able to operate on an anticipatory basis in
which they can foresee different things that the human eye cannot see.
Their trucks and buses are equipped with Predictive Powertrain Con-
trol (PPC), that can anticipate the terrain and adjust the vehicle accord-
ingly. Based on the 3D map data, PPC adjusts the vehicle speed and
gear selection optimally to the topography of the transport route [58].
This control reduces fuel consumption by up to 5%.

BMW group is also using IBM Big Data and Analytics technology
to optimize their products, repairs, and maintenance processes. IBM
SPSS predictive analytics software is used to combine and analyze
data from different sources like pre-production sensor data, work-
shop notes, and numerous test drives of prototypes [125]. In this way,
different vulnerabilities can be identified quickly, and eliminated be-
fore the model goes into series production. Before this automated
process, this evaluation took months to complete. IBM Big Data and
Analytics are used to analyze data from all available sources to dis-
cover anomalous patterns and predict maintenance needs.

Volkswagen is introducing Volkswagen Automotive Cloud that is pow-
ered by Microsoft’s Azure cloud and IoT Edge Platform. This cloud
service allows the automotive group to leverage consistent mobility
services and provide services and solutions for in-car consumer expe-
riences, telematics, and the ability to securely connect data between
the car and the cloud. Based on the Automotive cloud, the connec-
tions between vehicles, cloud-based platform, and customer-centric
services will be significantly optimised [63]. By combining the cus-
tomer data with vehicle data, and notes written by technicians at the
service centers, upcoming maintenance can also be predicted.

Tesla car manufacturer is collecting data from their connected cars
and using telematics to batch stream key data points to back-end big
data pool. The collected data enable engineers and manufacturing
lines to resolve the issues and send back fixes with their over-the-air
software updates. They are providing continuously improving cus-
tomer experience based on the data and analytic views [85].

Audi is also making its vehicles intelligent with a vision to reduce
fuel consumption. The predictive efficiency assistant enables the vehi-
cle to slow down or automatically adjust the speed to the conditions
in an anticipatory manner. The system analyzes the route topography,
speed limits, road users ahead, and navigation data.

Caterpillar Inc. is the world’s leading manufacturer of construction
and mining equipment. They have created a new organizational divi-
sion called Analytics and Innovation to form a broad and connected
analytics ecosystem. The data collected from gigantic machines are
used to develop predictive and prescriptive information. This predic-
tive diagnostics is shifting their customers from reactive (repair after
failure) to proactive (repair before failure) mode [93]. By using data
analytics, they are able to point out inefficiencies in the operation
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of a particular machine by comparing its operational data with that
machine’s benchmark data.

2.1.5 Data Analytics in Logistics

Logistics service providers move masses of goods from one location
to another. A lot of data related to shipments, origin, destination, size,
weight, and content are stored per shipment. Some of the advantages
of using data analytics in the logistics sector are:

¢ Optimization of delivery time, resource utilization, and geo-
graphical coverage.

¢ Goods storage capacity and required resources forecast.
® Valuable insight into customer sentiment and product quality.
¢ Insight into the global flow of goods.

DHL uses big data analytics to make their operations more effi-
cient. Rapid processing of real-time information enables their Smart-
Truck to optimize the delivery route in real-time. Delivery routes are
also automatically updated according to traffic conditions. Unsuccess-
ful delivery attempts are avoided in intelligent routing, based on the
availability and location information provided by the recipient. Smart-
Trucks are re-routed on the go, based on the combined analytics of
geographical factors, environmental factors, and recipient data [131].
It is important for a logistics company to plan operational capacity in
time. The optimal planning cannot be done by neglecting external fac-
tors, such as unexpected bankruptcy, a regional outbreak disease, or
natural disasters etc. DHL Solutions and Innovation is working on an
analytics tool to measure external factors on the expected volume of
shipment to make efficient shipment volume prediction. Based on the
shipment records, DHL provides an online geo marketing tool Geo-
vista, to analyze business potential. This tool provides a sales forecast
and local competitor analysis. DHL also offers Supply Chain Risk Man-
agement Solution that leverages emerging technologies to help busi-
nesses assess, predict, and mitigate evolving risks in their growing
supply chain networks. This software improves the resilience of logis-
tic providers entire supply chain with the help of predictive analytics
on a global scale (by aggregating data from different local sources
such as politics, economy, nature, health, etc.).

Amazon was the first company to give recommendations about
items in which a user might be interested. Today, it uses different
parameters (such as, which items are bought by a particular user be-
fore, what he has in his wish list and virtual cart, which items he has
rated or viewed, and which items a similar user has bought) to cus-
tomize the browsing and buying experience. Predictive analytics is
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used to ensure that the right item must be in stock when a customer
orders it. Amazon is taking data analytics to a different level with its
patent on Anticipatory Shipping. The patent is officially called "Method
and system for anticipatory package shipping’. The idea of anticipa-
tory shipping is to predict who will order what and when, and then
ship that item even before it is ordered. Another scenario is also dis-
cussed in patent for ‘speculative shipping’. In this type of shipping,
a package is sent to a geographical area, without completely specify-
ing the delivery address at the time of shipment - the package might
remain in near continuous transit on trucks until a customer makes
a purchase [167]. In this way, the package is shipped to the customer
instantaneously.

2.1.6 Data Analytics in Milk Production and Cattle Monitoring

The current trend of automation and data exchange in modern man-
ufacturing is inextricably linked with the production industry as it
helps making cars autonomous or factories more productive. Nowa-
days, not only these industries can benefit from IoT, but one of the
oldest sector of mankind, i.e. milk production, is also taking advan-
tage of smart technologies. For a long time, the dairy market has
been suffering from low prices, which means that modern technolo-
gies and data analytics can neither influence market prices, nor the
bargaining power of the dairy, nor the retail industry. However, these
new technological trends can help farmers to reduce their production
costs and enable them to produce more milk by keeping a keen eye
on their livestocks” health.

Effects of the globalized milk market are already noticeable. Farm-
ers are suffering mostly from the extremely sharp fall in prices. The
low milk prices make it nearly impossible for farmers to obtain prof-
its, as they are not covering costs. They are forced to optimize their
production. Legal requirements and a change in social perception re-
stricted many alternatives, like the prophylactic use of antibiotics in
Europe, for optimization [84]. The only chance to raise their economic
performance is to reduce costs and increase the efficiency of their pro-
duction.

The welfare of cows is of enormous importance for farmers because
only healthy and happy cows give the maximum amount of milk. The
farmers are able to determine the health of their cows themselves, but
this is only true for small herd sizes. Farmers lack the time to monitor
each cow individually in herds of dozens or hundreds of cows as
can be found nowadays [249]. This is why farmers are making more
frequent use of tracking systems and data analytics for the automatic
health monitoring of their herd and cattle.

These tracking systems take advantage of the architecture of mod-
ern barns in Central Europe and North America, in which cows can
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move around freely. Everyday movement and activity behavior of
cows is an important indicator of their health and whether they are
in heat. In general, sick cows move less than cows without any dis-
eases as shown in Figure 2.2. When cows are in heat, they move much
more. The movement behavior is commonly measured with either ac-
celerometers or pedometers embedded into the collar of each cow.
These sensors are the central component in these systems as they are
measuring the activity and vital parameters of the equipped cows
continuously and autonomously.

Motion Index in Steps

500

400 -

300 Diseased

In Heat

200 N7 et NoTmal

100 -%_
‘\.

00.00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:.00

Figure 2.2: Simplified movement behavior of cows. Different conditions of
cows can be classified based on their movement patterns.

In more recent times, acceleration sensors are used instead of pe-
dometers. They are superior since they cannot only recognize the
amount of activity, but also the precise type of movement: walking,
running, or lying. From a data perspective, the sensors are just count-
ing steps, which do not tell the farmer anything directly about the
health of a cow. However, the number of steps per day is a strong
indicator, and it is directly linked to diseases and in heat detection
of individual cows in the herd. The smart dairy products are sold by
SCR Europe, Lely, DairyMaster, and DeLaval. They have all placed sen-
sors in the collars of cows and the data is transferred wirelessly to the
server station (in most cases, by using proprietary radio standards).
By analyzing that data, data analytics provide meaningful informa-
tion about the cow’s health and notify when it is in heat. SCR Europe
product named Heatime and Lely product named Quwes-H also inte-
grate rumination detection. It tells the farmer how much time each
cow spends on ruminating which is an essential indicator for their
health and whether they are in heat if the average time per day dif-
fers significantly [22].

In the year 2014, the first tracking system based on locating cows
within the barns entered the market. Smartbow and CowView draw
the diagnosis from positioning data of cows instead of using pedome-
ters or accelerometers. Both systems utilize an ultra-wide band Radio-
frequency Identification (RFID) techniques in combination with an ap-
proach based on Time Difference of Arrival for locating the cows [23].
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Indoor location techniques directly measure the distance traveled
by cows instead of indirectly "guessing" them based on step counts
or accelerometer values. Data analytics in this case works the same
way as for the step count: under certain thresholds, which already
had been figured out in studies a priori, cows are marked as in heat
while they are classified as diseased above this threshold.

Beyond health monitoring, the determination of being in heat is a
very sensitive process as the determination of the correct time is es-
sential for a successful insemination. A failed insemination not only
leads to repeated insemination costs, but also results in lower milk
production. Nowadays, the insemination of cows in the dairy indus-
try is done synthetically. In contrast to bulls (which can smell the
hormones of cows and interpret their behavior), humans can only
draw their conclusions based on the interpretation of their behavior.
Studies show that the in heat observation plays a time-consuming
role — three times a day, 15 minutes of observation are needed for
complete heat detection (in addition to the normal working hours in
the cowshed) [249]. It is understandable that the farmers need auto-
mated heat detection as an alternative to the time-consuming manual
observation. The same kind of sensors as used for health monitoring
can also be used for in heat detection. Cows in heat, feature a special
characteristic in their movement behavior which significantly differs
from healthy as well as diseased cows (see Figure 2.2). This movement
behavior can be used to draw conclusions not only about health, but
also about being in heat. The tracking systems help farmers to reduce
their costs for insemination and again, increase their milk yield.

Now farmers are able to access data about the health and move-
ment behaviors of their herd from their Personal Computer (PC), note-
book, or smartphone anywhere and at anytime. More importantly,
they are notified if a cow shows an abnormal pattern like a reduced
feeding behavior. These alarms enable the farmer to look after their
cows and call a veterinarian if required before it is too late. Not only
the welfare of cows, but also the economic performance of farmers is
also improved. Sick cows cause high veterinarian and drug costs for
the farmers. Tackling these issues in time also leads to a better yield
due to increased milk production. As a result, modern IoT-based prod-
ucts as well as data analytics improve the quality of dairy products
and enable farmers to spend less time in the barn.

2.1.7 Data Analytics in Smart Homes

The Information Technology (IT) market research company, Gartner
predicts that in 2022, there will be more than 500 smart objects in
an average family household [78]. The smart home market is now
flooded with IoT based devices. Many of the manufacturers are em-
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bedding wireless data exchange and interoperability into their de-
vices.

Heating control is one of the areas in smart homes where peo-
ple can actually save money. Products like Thermostat+ (by ELV) and
Comet Blue (by EUROtronic Technology) can easily be installed with-
out even drilling a single hole [134, 135]. Heating control devices are
easily plugged onto radiators, and are commonly shipped together
with sensor windows (to get the knowledge if the window is close or
open) and a gateway. The gateway bridges the heating control devices
wirelessly so that a PC or smartphone can control the whole system.
These smart devices enable customers to define the rules for temper-
ature by the room, and to control and monitor their heating remotely
from anywhere. Customers can specify the required temperature and
define different time slots when they are not at home. With the help
of data analytics applied on the collected data, people can analyze
their habits and behaviors to save energy and more importantly for
them; money.

Radio-controlled sockets are cheap and small devices which can be
plugged between normal sockets and the device to be powered, such
as Parce One [136]. They are commonly equipped with Bluetooth 4.0
alias Low Energy and are easily connectible with modern Android
or iPhone based smart phones. With the help of these smart sockets,
i) customers can (gain the possibility to) monitor the exact power
consumption of their electronic devices and, ii) they can define rules
when the device gets switched on or off. With these smart sockets, all
of the electrical devices can be turned into smart devices by switching
them on and off autonomously. The data of the consumed energy can
be analyzed per device, that gives customers the possibility to limit
the use of a particular device which helps in minimizing the overall
energy consumption.

The scope of smart homes is not confined only to the inside area
of a home. Gardena is regularly offering new products in order to
make gardens and gardening smart [103]. Gardena’s Sensor Control Set
contains a smart gateway (which has to be installed indoors and con-
nected via Wi-Fi or cable to the network), magnetic valves for taps,
and plant sensors. The plant sensor measures temperature, soil hu-
midity, and light intensity. These values can be used to define irriga-
tion profiles. The goal of this application is to automatically identify
if the plant needs some water or fertilizer. There is a link between the
level of photosynthesis within a plant and its energy supply. Once the
soil is dry, the magnetic valve is automatically opened. Customers can
fine-tune the irrigation rules, for instance, based on the type of plant.
Aquatic plants need more water than a cactus that will survive even
if the soil is dry. Environmental factors complicate the data analyt-
ics part in this application field. However, a smart irrigation system
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saves a labor force and more importantly, helps plants to survive even
if their owners are not present.

Now, most smart home devices are capable of measuring their sur-
roundings, such as temperature, power consumption, or soil humid-
ity. Additionally, they have the possibility to interact with their envi-
ronment like switching off devices, activating the heating, or watering
plants. What they currently lack is autonomous learning to interact
with their environment based on the measured values. Nowadays, the
customers still have to manually define some rules for each device.
But, there are some systems which are becoming intelligent with the
help of analyzing data from different sensors.

Apple wanted to change this situation with the development of
HomeKit: a powerful, interoperable smart home control system which
is easy and fast to set up and usable on iOS devices out of the box
[24]. Certified vendors and products (which are currently limited in
number) can be connected to iOS over Wi-Fi or Bluetooth 4.0. After-
wards, the connected devices can be verbally configured, controlled,
and monitored via Apple Siri.

Vivint is one of the largest home automation companies in North
America. Different smart home devices including small appliances,
HVAC, security systems, video devices, thermostats, smart doors and
locks, smart bulbs, and smoke alarms are connected via Vivint touch-
screen panel and construct a network of smart devices. That network
produces a lot of streaming data, which is stored in Hadoop: an open
source framework, for processing and storage of extremely large data
sets. They use Datameer (a big data analytics platform) to shorten
the time of using raw data for different analytics and actionable in-
telligence purposes [60]. The collected data is analyzed to better un-
derstand the usage patterns of different smart devices, which can be
further used to improve the service and reduce energy consumption.

Google Nest offers smart devices including security cameras, ther-
mostats, and smoke detectors. These are devices of daily use that have
been in use for ages. But, data analytics and big data have changed
the way these devices work. Before becoming ‘smart’, these devices
were used to just record videos, maintain heating to a certain level,
and sound the alarm when smoke is detected, respectively. Now, by
learning user behavior, Nest’s smart thermostat adapts to the user’s
usage and seasonal changes. It automatically controls the tempera-
ture by learning the user schedule. By detecting unwanted events
inside and outside a home, and making smart alerts, Nest Aware soft-
ware makes security cameras intelligent. In contrast to the old secu-
rity cameras that only record the video, Nest’s smart security cam-
eras can make custom alerts for the activities a user is interested in.
By making the smart notifications, Nest’s smoke detectors can tell the
user (by speaking or by making mobile notification) in which room
there is smoke and gives early warnings to avoid any emergency situ-
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ation. It can distinguish between steam, food burn, carbon monoxide,
and smoke. These smart devices can also be connected to each other
to make a home safer and more secure. For example, security cam-
eras, light bulbs, and window shades can work together to give an
impression that you are at home when you are away. Or, when a
thermostat is set to ‘away’, it can automatically turn on the security
camera. By using data analytics, such smart devices can build up a
profile that allows them to intelligently adjust themselves to the en-
vironment, minimize human effort, maximize human safety, improve
service quality, and save energy [92].

The smart home vision affords many business opportunities, but
also faces many challenges. Currently, smart devices are hindered by
a lack of interoperability and the communication standard between
products designed by different manufacturers. There are different
products which are trying to integrate and bridge as many different
products, protocols, and wireless standards as possible. Mediola Gate-
way V4+ produced by Mediola supports both 433 and 868 MHz [102].
The advantage is that various sensors and products of different man-
ufacturers can interoperate which enable customers to mix them in
rules and profiles. This works quite well; at least as long as Mediola
supports them.

The smart home market is a mix of many different networking tech-
nologies and protocols, that are mostly proprietary and not designed
for interoperation. All producers in the domain of smart home want a
big piece of the cake to consolidate their market position. Thus, they
are intending to raise barriers for new producers to enter this market
by using proprietary protocols and prevent interoperability between
different products. From a consumer point of view, their biggest con-
cern is data privacy. There is a need to develop a trust between the
service provider and the consumer. It is very important for a con-
sumer that the important information collected about their private
life is only used to facilitate them, and not for earning money by
selling that information to a third party without the consent of the
consumer.
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Anomaly detection has been one of the core research areas for a long
time due to its ubiquitous nature. In everyday life, we observe the
abnormalities that instantly become the focus of our attention. When
something deviates largely from rest of the distribution, it is labeled
as an anomaly. In computer science, anomaly detection refers to the
techniques of finding specific data points, that do not conform to the
normal distribution of the data set.

The term ‘Anomaly’, is widely used and it refers to different prob-
lems in different domains. For example, an anomaly in network secu-
rity system could be an activity related to a malicious software or a
hacking attempt [88]. Whereas, in the manufacturing domain, a faulty
product is considered as an anomaly.

Detecting and mitigating anomalies is vital in the manufacturing
and industrial sector and also crucial in the healthcare and surveil-
lance sector. A timely detected anomaly can improve machine per-
formance, avoid a machinery downtime, reduce a disease outbreak,
and even save a human life [183, 196]. In this era of digitization, com-
panies from different sectors including manufacturing, automotive,
healthcare, lodging, traveling, fashion, food, and logistics are invest-
ing a lot in collecting big data [50, 147]. They leverage data analytics
to increase their profits and to provide their customers better user
experience. In the whole data analytics process, anomaly detection
is one of the most important tasks [20, 30]. In most of the cases, the
collected data is streaming time-series data and due to its intrinsic
characteristics, it is a challenging problem to detect anomalies in con-
tinuously changing environment.

There is no defined distinction between anomalies and outliers. In
some studies, outliers are considers as corruption in data (like mea-
surement errors), whereas anomalies are considered as irregular data
points with a specific pattern [96]. On the other hand, the following
citation is referred to prove that both terms actually point to a same
concept:

“Outliers are also referred to as abnormalities, discordants,
deviants, or anomalies in the data mining and statistics
literature.” — Aggarwal [3]

In the context of this thesis, both terms, anomalies and outliers are
used interchangeably.

Versatile problem

Most important task
in data analytics

Anomalies vs.
Outliers
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3.1 TERMINOLOGY

For the general understanding of the reader, most common terminolo-
gies used in this thesis are briefly explained in this section.

3.1.1  Time-series

A series of data points indexed in time order or correlated in time
compose a time-series. It is also referred to as a sequence of numeric
data points recorded in successive order. A daily record of minimum
and maximum temperature of New York city and daily closing value
of Apple stock price are a couple of time-series examples. A time-
series consist of one or more of the following components: 1) Trend,
2) Seasonality, 3) Cyclicity, 4) Structural break, and 5) White noise.

3.1.2 Time-series Forecasting

Time-series forecasting is the process of predicting future activity
based on historical values and associated patterns. The number of
timestamps that are intended to be predicted in the future is called
time-series Horizon. A time-series horizon could start from 1 and go
to any number. Forecast horizon of 1 means that only next timestamp
is forecasted, whereas the forecast horizon of 5 means that the value
of the next five timestamps will be forecasted. In some studies, all of
the next five timestamps are forecasted, whereas, in others, only the
fiftth one is forecasted.

3.1.3 Time-series Data Mining

It is a process that generally consists of multiple steps including data
cleaning, data integration, data selection, modeling, and evaluation.
In this pipeline, the modeling step is the core step where a num-
ber of complex classification, prediction, clustering, association, and
anomaly detection methods are deployed. These methods are used to
extract meaningful information and examine how the changes in as-
sociated data can facilitate the decision. Time-series data mining term
is also sometimes interchangeably used as ‘"Time-series Analysis’.

3.1.4 Anomaly Detection

Anomaly detection refers to the techniques of finding specific data
points, that do not conform to the normal distribution of the data set.
The most relevant definition of an anomaly with respect to computer
science is given by Grubbs [94]: “An outlying observation, or ‘outlier’,
is one that appears to deviate markedly from other members of the
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sample in which it occurs”. In the context of this thesis, anomalies
and outliers are used interchangeably as used by Aggarwal [3].

3.1.5 Interpretability

By definition, interpretability is to explain or tell the meaning of some-
thing in an understandable way. In the context of Al, “Interpretability
is the degree to which a human can understand the cause of a deci-
sion in a given context” [178]. It is an attempt to open the machine
learning black-box so that it becomes easier for an end-user to com-
prehend why certain decisions or predictions have been made by a
machine learning model.

3.1.6 Explainability

Explainability is an emerging term in the context of Explainable Arti-
ficial Intelligence (XAI) where it deals with the explanations of inter-
nal mechanics of a machine or deep learning system which eventu-
ally lead to a specific decision. In some studies, interpretability and
explainability are used interchangeably. However, it is not the case
in the context of this thesis. Explainability is the answer to a WHY
question and gives reason to justify a decision. On the other hand,
interpretability is about being able to discern the mechanics without
explaining the reason.

3.2 FOUNDATION

In this section, the fundamental concepts and different aspects of
anomalies categorizations are explained.

3.2.1 Local vs. Global Anomalies

Local anomalies are deviated data points with respect to their direct
neighbors or inside some seasonal pattern. Whereas, global anoma-
lies are data points that are deviated vastly from rest of the data
points and it is far outside the entirety of the data set in which it is
found. For the purpose of better understanding, an illustration of dif-
ferent clusters and anomalies is shown in Figure 3.1 [go]. Two data
points, x; and x, can easily be identified as anomalies as they are
far from all of the data clusters (c;, ¢, and c;). Based on their distin-
guishing attributes, these data points are called global anomalies. By
considering the data set globally, x3 can be considered as a normal
data point since it is not too far from the cluster c,. However, this data
point is considered as a local anomaly with regard to the cluster c,.
Data point x3 is clearly at more distance as compared to the average
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Figure 3.1: An illustration of global anomalies (x; and x;), local anomaly
(x3), and micro cluster (c3) [90].

distance between neighbors of cluster c,. Regarding the cluster c;, it
can be considered as a normal cluster or three anomalous data points.
Such clusters can be called micro cluster.

3.2.2  Categorization of Anomaly Detection Approaches

Due to the large variety of scenarios and use-cases, anomaly detection
problem is categorized in different ways. The most common catego-
rization is based on the level of supervision required by the algo-
rithm:

¢ Supervised Anomaly Detection

In supervised anomaly detection methods, all the data points
present in training and testing data sets are fully labeled as nor-

Fully labeled mal or anomalous data points. This scenario is similar to most
of the traditional pattern recognition task except the classes are
likely to be very unbalanced. However, this scenario is not prag-
matic because of the absence of anomalous data points labels
in real scenarios. In most of the scenarios, anomalies are not
known in advance as they might occur spontaneously.

¢ Semi-supervised Anomaly Detection

Semi-supervised anomaly detection methods refer to the cases
where only normal data points are labeled during the training
Only normal data process. It is also possible that training data set only consists
points are labeled of normal data points. The idea of providing only normal data
points is to make the model learns only the normal behavior
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and whatever deviates from the learned normal behavior is
considered an anomaly. In some studies, this scenario is also
known as novelty detection [86]. One-class SVMs [215] and au-
toencoders [105] are algorithms that are commonly used in this
scenario.

¢ Unsupervised Anomaly Detection

It is the most flexible and practical scenario, where no labels
are required at all. In this scenario, an anomaly detection algo-
rithm is applied on unlabeled data and the algorithm identifies
anomalous data points solely based on intrinsic properties of
the data set. Most of the well known anomaly detection meth-
ods like LOF [31], COF [231], HBOS [89], and mostly DNN-based
anomaly detection methods [173, 184, 185] lie in this category.

Anomaly detection methods can also be categorized based on the
given data:

¢ Sequential vs. Non-sequential Data

The choice of the anomaly detection method also depends on
the input data. The input data can be divided in two major
categories — Sequential and Non-sequential data. Data coming
from video, speech, time-series, and text sources lie under se-
quential data category. Whereas, images are categorized as non-
sequential data.

e Univariate vs. Multivariate data

Univariate refers to one- variable/dimension data. For example,
a list of weights of all pupils in a class is a univariate data. On
the other hand, multivariate data consists of data from multiple
variables/dimensions. Data set comprising weight, height, age,
and number of courses of all pupils in a class is an example of
multivariate data.

Furthermore, anomaly detection methods can also be categorized
based on the underlying methods and models [3]. For example, prob-
abilistic models, statistical models, linear models, proximity-based,
distance-based, and deep learning-based — anomaly detection. In the
scope of this thesis, all the anomaly detection methods are divided
into the following categories:

e Statistical Approaches
¢ Traditional Machine Learning Approaches

* Deep Learning Approaches
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Figure 3.2: Monthly temperature over time is plotted here over months. Tem-
perature at t; and t; are same, but t; occurs in a different context
that makes it a contextual anomaly [42].

3.2.3  Types of Anomalies

Following are the three types of anomalies:

¢ Point Anomalies

It is the simplest type of the anomaly where a data point is
Deviates considered as anomalous if it deviates from the rest of the data.
significantly from The point anomaly refers to an individual data point that stands
the rest of the data out. In a real-life scenario, consider a fraud detection case for a
credit card. Let the data set represents the daily spending. A
transaction for which the spending is very high as compared
to the normal range of daily spending, is considered as a point

anomaly.

¢ Contextual Anomalies

If a data point is anomalous in a certain context, but not oth-
erwise, then that data point is known as contextual anomaly. It
is important to note that, as name suggests, context is very im-
A normal point portant to define a contextual anomaly. Depending on the con-
becomes anomalous text and the surrounding behavior, a data point is considered
in a specific context anomalous, whereas it is considered normal in another context.
In a real-life scenario, temperature of 35°F might be considered
normal temperature during December (t; in Figure 3.2). Now
consider having the same temperature during summers shown
as t; in Figure 3.2. In the context of summers, such temperature
is considered as an anomaly.

¢ Collective Anomalies

In some cases, it is possible that a data point or a set of data

points is not anomalous by itself. However, when they occur

together in a collection, they are termed as collective anoma-

The data points lies. Figure 3.3 refers to an output of human ECG. Timestamps
occur in a sequence are shown across x-axis, whereas ECG values are shown across
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y-axis. ECG values shown in blue represent normal behavior,
whereas the data points in red show anomaly. An individual
data point from the red region is not considered anomalous if it
occurs once. When these normal data points keep occurring col-
lectively for a specific period of time, they highlight a problem
in the ECG (shown in red).

3.2.4 Time-series Characteristics

Following are the time-series characteristics that make their analysis
different from other types of data.

3.2.4.1 Trend

Time-series data may have a deterministic component that is propor-
tionate to the time period. When it is the case, the time-series is said
to have a trend. A trend can be positive or negative based on the in-
creasing or decreasing values in the time-series. The stock price is a
good example of a time-series that most of the time has a trend.

3.2.4.2 Seasonality

Seasonality refers to a repeating pattern(s) in a time-series. These sea-
sonal patterns may occur over a specific period e.g. week, month, or
year. When a time-series is influenced by a seasonal factor (e.g., the
quarter of the year, the month, day of the week, specific holidays like
Christmas and New Year), then it is said to have regular seasonal
pattern(s) in it. An example of a time-series with seasonality is retail
sales of a clothing brand, that often increase between November to
December due to Christmas and New Year eve.

-4

"

500 1000 1500 2000 2500 3000

Figure 3.3: Human ECG output: Red data points show collective anomaly
as the data points collectively occur for an undesired time period

[42].
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3.2.4.3 Cyclicity

A time-series is said to have a cyclicity when a cyclic pattern exists
in it. In cyclic patterns, rises and falls of data points can be observed
that are not of fixed period. If the period is unchanging and associ-
ated with some aspect of the calendar and event, it is considered as
seasonality. Whereas, in cyclicity, the fluctuations and cyclic patterns
are not of fixed period.

3.2.4.4 Structural Breaks

Sudden shifts in the level of the data at certain points show struc-
tural breaks in time-series. These sudden changes are also known as
breakpoints. The structural break can occur due to any unexpected
change.

3.2.4.5 White Noise

White noise in a time-series is due to the presence of an irregular
component in it. This random variation is not explained by any other
factor.

3.3 APPROACHES FOR TRADITIONAL ANOMALY DETECTION

In this section, commonly used traditional anomaly detection meth-
ods are described. These methods can be applied to time-series data,
however, mostly in literature, these methods are applied on data sets
that lack one or more time-series characteristics.

3.3.1 k-nearest-neighbor (kNN) Anomaly Detection

The k-nearest-neighbor (kNN) Anomaly Detection [10] is one of the
most commonly used distance-based anomaly detection methods. It
is a simple technique that works out-of-the-box in most of the cases
and detects global anomalies precisely. For each data point in a
streaming data set, the k-nearest-neighbors have to be found. Based
on these neighbors, the anomaly score is calculated. The anomaly
score depends on the average distance to all the k neighbors. This
technique is highly dependent on the value of k. If the value of this
parameter is too low, the density estimation might not be reliable.

3.3.2 Local Outlier Factor (LOF)

The LOF [31] is also a distance-based anomaly detection method. It
is used for detecting local anomalies based on the local densities. In
this method, the k-nearest-neighbors have to be found for each data
point in a given streaming data set. By using k-nearest-neighbors, the
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local density of each data point is estimated by computing the Local
Reachability Density (LRD). Finally, the anomaly score is computed by
comparing the LRD of a data point with all the LRDs of its k neighbors.

3.3.3 Connectivity-based Outlier Factor (COF)

The connectivity-based outlier factor [231] is an improved version of
LOF. In LOF, it is assumed that a given data is distributed in a spheri-
cal way around a given instance. For the cases in which this indirect
condition is not fulfilled, the density estimation is incorrect and leads
to poor anomaly detection. This limitation is addressed in COF by esti-
mating the local density of the neighborhood using chaining distance.
Chaining distance is a shortest-path approach which is the minimum
of the sum of all distances connecting all k neighbors and the instance.
Jin et al. [132] proposed Influenced Outlierness (INFLO) that is also an
improved variant of LOF.

3.3.4 Local Correlation Integral (LOCI)

In all of the distance-based anomaly detection approaches, the selec-
tion of parameter k plays a vital role in the overall performance. There
is no fix rule on the basis of which the value of k can be estimated. So,
it requires a lot of effort to come up with the best k for a particular
data set. This limitation is addressed in LOCI [194] with the help of a
maximization approach. It defines the r-neighborhood by using a ra-
dius 1. The radius is expanded over time that makes this method very
computational expensive. LOCI automatically flags outliers based on
probabilistic reasoning. In addition to that, it also provides informa-
tion regarding the data in the vicinity of the instance, determining
clusters, micro-clusters, inter-cluster distances, and their diameters.

3.3.5 Cluster-based Local Outlier Factor (CBLOF)

All the aforementioned anomaly detection methods are based on den-
sity estimation using nearest-neighbors. On the other hand, clustering
based anomaly detection methods use clusters to determine the dense
areas in the data. In CBLOF [107], data points are clustered using k-
means (or any other) clustering algorithm. Then the set of clusters
is sorted according to the amount of instances in each cluster. The
anomaly score in this method is computed by the distance of each
instance to its cluster center multiplied by the instances belonging to
its cluster. For small clusters, the distance to the closest large cluster
is used [90]. As this approach is based on clustering algorithm, the
problem of choosing the right number of clusters arises, and repro-
duction of the same anomaly score also becomes impossible due to
non-deterministic nature of clustering algorithms.
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3.3.6 Histogram-based Outlier Score (HBOS)

It is a statistical unsupervised anomaly detection method. As the
name of the method indicates, this method is based on histograms
for detecting anomalies in a given streaming data. First, a histogram
for each feature of the data is generated. Then the inverse height of
the bins it resides of all features is multiplied for each instance of the
data set. HBOS provides two histogram creation modes: i) static bin
sizes with a fixed bin size and ii) dynamic bin width with a fixed
amount of items in each bin [89]. This method is far less computa-
tional expensive as compared to distance-based and clustering-based
anomaly detection methods.

3.4 APPROACHES FOR TIME-SERIES ANOMALY DETECTION

As the demand for time-series anomaly detection methods boosted a
lot in recent years, there exists a variety of anomaly detection meth-
ods for time-series data in literature. These methods are categorized
into following three categorizes as mentioned in Section 3.2.2.

3.4.1 Statistical Approaches

Statistical anomaly detection methods are widely used in practical
use-cases and scenarios. Although some statistical approaches men-
tioned here are forecasting methods, the anomaly detection methods
are closely linked to the forecasting methods.

3.4.1.1 Autoregressive Model

Autoregressive (AR) Model is a basic stochastic process used com-
monly for time-series. It specifies that the output variable depends
linearly on its own previous (independent) values and an error value.

P
X¢ = Zai-Xt_i+c+£t (3.1)
i=1

The AR(p) model is shown in Equation 3.1, where p shows length
of preceding window. This equation can also be called AR process of
order p and can be presented as AR(p). X; represents current data
point and ¢ represents an error value. By using the training data and
solving corresponding linear equation, the values of the coefficients
aj..ap and c can be approximated. After the approximation, ¢ for

each X; can be computed, that represents anomaly score [30].

3.4.1.2 Moving Average Model

Moving Average (MA) Model is also used commonly for time-series
modeling. MA Model considers the current data point X; as a linear
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combination of the last q prediction errors {e¢,€¢_1, ..., €t q} instead
of linear transformation of the last p observations of the time-series
as done in AR model.

q
X¢ = Z ai-€t—i+ 1+ et (3.2)
i=1

The MA(q) model is shown in Equation 3.2, where q shows length
of preceding window. This equation can also be called MA process
of order q and can be presented as MA(q). Mean of time-series is
represented by p and the coefficients are learned. In MA process, it is
complicated to learn the coefficients as compared to AR. In AR model,
the preceding values are already known, whereas in MA model, the
prediction errors {e¢, €¢_1, ..., £ q} are not known at beginning of the
process. These error values are known after the model is fitted, that
makes the optimization process sequential. Once the model is learned,

the deviations from the actual data points represent anomalies.

3.4.1.3 ARMA Model

Autoregressive Moving Average (ARMA) is a stationary stochastic pro-
cess in terms of two polynomials, one for the AR and other for the MA.
It is a combination of AR and MA. An ARMA(p, q) model is depen-
dent on last p observations and q errors as shown in Equation 3.3.

p q
Xi = Z ai - Xi—i+ Z ai-eri+&¢ (3-3)
i=1 i=1

The main challenge in ARMA modeling is the selection of appropri-
ate values of p and g. If these values are too big, the model is likely
to over fit that might results in too many false negatives. On the other
hand, if these values are too small, the model is likely to underfit
resulting false positives.

3.4.1.4 ARIMA Model

In all of the aforementioned statistical approaches, it is mandatory to
have a stationary time-series. However, in real-life scenarios, mostly
non-stationary data is only available for analysis. To address this is-
sue, Autoregressive Integrated Moving Average (ARIMA) was intro-
duced which is a generalization of ARMA model. As name suggests,
ARIMA consists of the following three parts: AR, ‘Integrated’, and MA.
The difference between ARIMA and ARMA is the presence of the 'Inte-
grated’ part in ARIMA. This part, also referred by d, is responsible for
making a non-stationary time-series a stationary time-series. The sta-
tionarity is achieved by replacing the data values with the difference
between their values and the previous values, this process is called
differencing process.The parameter d defines the number of times the
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time-series is differenced. Non-seasonal ARIMA models are generally
denoted by ARIMA(p, d, q), where parameters p,d, and q are non-
negative integers. After fitting the ARIMA model, the deviation of the
predicted point to the observed point is considered as an anomaly.

3.4.1.5 Seasonal Hybrid Extreme Studentized Deviate Model

Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) [113] is a sta-
tistical technique for automatically detecting anomalies in time-series
data. This technique is based on generalized Extreme Studentized De-
viate (ESD) [204] to handle more than one outliers, and Seasonal and
Trend Decomposition using Loess (STL) [49] to deal with the decom-
position of time-series data and seasonality trends. ESD computes k
test statistics iteratively to detect k point outliers. At each iteration,
the most outlying observation is removed. Mean and standard devi-
ation are used in ESD, that are sensitive to anomalous data. Whereas
in S-H-ESD, statistics median and Mean Absolute Deviation (MAD) is
used to detect anomalies. By using these metrics, the number of false
positives detected by the model could be minimized, especially in the
data sets with larger number of anomalies. S-H-ESD is computation-
ally expensive as compared to ESD, but it is more robust to higher
percentage of anomalies.

3.4.1.6 Twitter Anomaly Detection

Twitter Inc. open-sourced its anomaly detection package® [138] in
2015, that is based on S-H-ESD algorithm. This method can detect both
local and global anomalies. For long time-series such as six months of
minutely data, the algorithm employs piecewise approximation. The
following two anomaly detection functions for detecting anomalies in
seasonal univariate time-series are provided:

* AnomalyDetectionTS function is used when input is a series of
< timestamp, value > pairs.

* AnomalyDetectionVec function is used when input is a series of
observations.

3.4.1.7 Yahoo EGADS

Extensible Generic Anomaly Detection System (EGADS) [155] detects
anomalies in large scale time-series data. It was released® by Yahoo
Labs. EGADS consists of two main components: Time-series Modeling
Module (TMM) and Anomaly Detection Module (ADM). For a given
time-series, TMM models the time-series and produces an expected

Source code of Twitter Anomaly Detection:
https://github.com/twitter/AnomalyDetection/releases
EGADS Java Library:

https://github.com/yahoo/egads


https://github.com/twitter/AnomalyDetection/releases
https://github.com/yahoo/egads
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value u; at a timestamp t for a data point x;. ADM compares the
expected value with the actual value and computes number of errors
E. The prediction error mentioned in Equation 3.4 is used as a notion
of deviation and the relative error mention in Equation 3.5 is used for
detecting errors or anomalies. Anomalous data points are marked by
thresholding the relative error, RE;.

PEt =Xt — Ut (34)

Xt — Ut

RE; = (3-5)

Ut

An end user can pick one of the time-series model in TMM com-
ponent: Olympic Model, MA Model, Exponential Smoothing Model,
Regression Models, ARIMA, (T)BATS Family, and Spectral Kalman Fil-
ter. TMM component can be extended by adding more models. Most
of the models used in TMM component are statistic-based models, but
other models can also be added to this component. Furthermore, fol-
lowing three models are used in ADM component to detect anomalies:
Extreme Low Density Model Outlier, Kernel-based Change Point De-
tection, and K-Sigma Model Outlier.

3.4.2 Machine Learning Approaches

In this section, classical machine learning approaches commonly used
for anomaly detection are discussed. In contrast to the statistical
anomaly detection approaches, machine learning approaches try to
detect anomalies without assuming a specific generative model. Gen-
erally, it is assumed in statistical approaches that the data is generated
by a specific statistical model. On the other hand, machine learning
approaches try to learn only from the given data and consider the
data generation process as a black-box [30].

3.4.2.1 iForest

iForest [166] anomaly detection method is based on the concept of
‘isolation’; in contrast to the widely-used distance and density mea-
sures. In this approach, the anomalies are ‘isolated” from normal
instances. The data instances that are few in numbers and their
attribute-values are very different from the rest of the data instances
are the instances that are more susceptible to be put in isolation. This
method uses a binary tree structure called isolation tree (iTree) to
isolate such instances. The anomalous instances are more likely to be
isolated closer to the root of an iTree.
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3.4.2.2  One-Class Support Vector Machines

One-Class Support Vector Machines (OC-SVM) is based on the idea
of Support Vector Machines (SVM). SVM was proposed by Vapnik
and Chervonenkis [242] as a linear supervised approach. This algo-
rithm was further extended by Boser, Guyon, and Vapnik [28]. They
made SVM capable of making non-linear classification by introduc-
ing the kernel trick. Furthermore, in the context of novelties detec-
tion, Scholkopf et al. [215] introduced OC-SVM. OC-SVM is an unsu-
pervised approach, where only one class, i.e. normal data points are
required for the training step. Once the model is fitted on the given
normal data, test data is classified as similar to the normal data or
not. The data points that are not close to the normal data are con-
sidered as novelties. The basic idea of this machine learning-based
approach is to learn a decision boundary that achieves the maximum
separation between the points and the origin. Generally, OC-SVM is
sensitive to the outliers when no labels are given. To tackle this short-
coming, Amer, Goldstein, and Abdennadher [8] enhanced OC-sVM for
unsupervised anomalies by proposing two modifications that make
the outliers contribute less to the decision boundary as compared to
the normal instances. Hu et al. [116] proposed an anomaly detection
method for detecting abnormal sub-sequences in a given time-series.
First, the meta-features of a given univariate or multivariate time-
series are generated and then the outliers are detected based on the
OC-SVM optimized on the transformed samples.

3.4.2.3 Principle Component Analysis

Principle Component Analysis (PCA) is a linear dimensionality reduc-
tion method that projects data to a lower dimensional space by using
singular value decomposition. The possible correlated variables are
converted into a set of linearly uncorrelated variables called major
and minor principal components, known as principle components. In
the context of anomaly detection, major components can show global
deviations from the majority of data, whereas minor components can
show local deviations. Shyu et al. [220] proposed an anomaly detec-
tion method based on PCA. The predictive model is generated based
on the major and minor principal components of the normal data.
Kwitt and Hofmann [152] proposed a Robust Principle Component
Analysis (:PCA) method based on PCA. In this method, Minimum Co-
variance Determinant (MCD) is employed for the computation of co-
variance and correlation matrix.

3.4.2.4 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) [47] is a machine learning ap-
proach based on the Tree boosting algorithm used to solve many data
science problems in a fast and accurate way. The main advantage of
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using XGBoost is its scalability. Extreme Gradient Boosting Outlier De-

tection (XGBOD) [266] is an ensembling method based on XGBoost. It

is a relatively new semi-supervised method for detecting anomalies.

XGBOD combines the strengths of both supervised and unsupervised

machine learning methods that exploit each of their individual perfor-

mance capabilities in anomaly detection. It ensembles multiple unsu-

pervised outlier mining methods to extract useful representations of

the provided data. XGBOD is a three-phase framework. In first phase,

various outlier detection methods are applied to the original data

to get transformed outlier scores. In the second phase, only the use-  Three-phase
ful outlier scores are kept and combined with the original features,  framework
that creates a new feature space. In the last phase, XGBoost classifier

is trained on the new feature space and its output is regarded as

the prediction result. The predictive capabilities of this method are

improved as compared to the other ensembling methods by using
stacking-based outlier ensembling.

3.4.2.5 Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a theory of intelligence

based on neuroscience research. The neocortex is the seat of intelli-

gence in the brain, and it is structurally homogeneous throughout.

This means that a common algorithm is processing all the sensory

input regardless which sense is sending the data. Following the same

principles, in computer science domain, there are learning algorithms

at the core of HTM that can store, learn, infer, and recall high-order

sequences. HTM networks continuously learn time-based patters and

model the spatio-temporal characteristics of their inputs. The real-  Models the
time implementations of HTM are well suited for predictions task [56,  spatio-temporal
193]. However, they do not model anomalies and do not provide a characteristics
mechanism for a usable anomaly score. To adapt it for the purpose

of anomaly detection, two anomaly detection methods Numenta and

NumentaTM [4, 157] are proposed by Numenta3. These techniques

model the temporal sequences in a given data stream. At a given time

t, HTM makes multiple predictions for next timestamp. These predic-

tions are further compared with actual value to determine if a value is

normal or anomalous. For each timestamp, anomaly likelihood score

is calculated that is thresholded to finally reach a conclusion regard-

ing the presence or absence of anomaly.

3.4.2.6 Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [72] is a clustering based outlier detection method. It is
based on the idea of clusters and noise as it can be assumed that
clusters can be of any arbitrary shape and data may contain noise.

3 https://numenta.org/


https://numenta.org/
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For each point of the cluster, the neighborhood of a given radius has
to contain at lest a minimum number of points. This algorithm has
two parameters: € and u, where € defines the neighborhood around a
data point and p is the minimum number of points each cluster must
have. This method classifies a data point into three categories:

¢ Core Point:
A point is classified as a core point if it has more than p within
€.

¢ Border Point:
A point is classified as a border point when it has fewer than p
within e but it is in the neighborhood of a core point.

¢ Anomaly or Noise:
A point that is not a core point nor a border point is classified
as an anomaly.

Celik, Dadaser-Celik, and Dokuz [39] used DBSCAN for anomaly de-
tection in time-series data. They have used deseasoned temperature
data for evaluation and comparison with statistical anomaly detection
approaches. This study shows that DBSCAN is capable of detecting
anomalies even when they are not extreme values.

3.4.3 Deep Learning Approaches

DNNs have been widely used for computer vision tasks including clas-
sification, object detection, and segmentation because of their excep-
tional performance. In recent years, DNNs are also getting famous
for time-series anomaly detection task. They are similar to machine
learning techniques as they also do not rely on the underlying data
generation process.

3.4.3.1 Multilayer Perceptron

Multilayer Perceptron (MLP) belongs to the family of feed-forward
neural networks. It is a basic Artificial Neural Network (ANN) that
consists of at least three layers of nodes: input layer, hidden layer, and
output layer. Each layer requires input from the previous layer. It uti-
lizes supervised learning scheme called backpropagation for training
and the parameters are learned from the data. This ANN can be used
for time-series data. Like AR model, lagged values of a time-series can
be used as input to a neural network. Hyndman and Athanasopoulos
[120] called such network a Neural Network Autoregression (NNAR).
This feed-forward network with one hidden layer is represented by
NNAR(p, k), where p is number of lagged inputs and k is number
of nodes in hidden layer. p can also be considered as a window size
of sliding window used in time-series and window size is equal to
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number of neuron in the input layer. The network is applied itera-
tively for the purpose of forecasting. For one step ahead forecasting,
the available historical inputs are used. By finding the error between
forecasted and the actual value, anomalous data points can be de-
tected using this approach. Haselsteiner and Pfurtscheller [104] used
MLP for time-series classification.

3.4.3.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) also belongs to the family of
feed-forward neural networks. Convolutional networks were inspired
by biological processes of visual cortex in which the visual informa-
tion is passed from one cortical area to another and each cortical
area is more specialized. The neurons in the specific visual field (also
known as receptive field) only respond to the specific actions. The
entire visual field is eventually covered as the receptive fields of dif-
ferent neurons partially overlap. In the context of Al, the heart of the
CNN is a mathematical operation called convolution. A convolution is
a linear operation that involves the multiplication of a set of weights
with the input. The objective of the convolution is to extract the high-
level features from the given input. Three main types of layers: convo-
lutional layers, pooling layers and fully-connected layers are used to build
CNN architectures in addition to input and output layers. One of the
main advantage of CNN is that it reduces the input in a form that is
easier to process, yet keeping all the important (feature) information
intact. This makes the overall learning process efficient.

CNNs have a lot of applications in image and video recognition,
recommender systems, image classification, medical image analysis,
natural language processing, and many more. Due to their success
in a wide range of domains, there has been an increasing interest
in deploying CNNs for time-series use-cases. Zheng et al. [268] used
CNN for multivariate time-series classification. They proposed Multi
Channel Deep Convolutional Neural Network (MC-DCNN) where each
channel takes a single dimension of multivariate time-series data as
input, and learns the features individually. This is followed by a
layer of MLP to perform classification. Experimental results show that
MC-DCNN outperforms competing baseline method that is K-nearest
neighbor (based on Euclidean Distance and Dynamic Time Warp-
ing (DTW)). Instead of separating multivariate time-series into uni-
variate for individually learning features, Zhao et al. [264] proposed
a CNN framework for time-series classification in which the multi-
variate time-series is jointly trained for feature extraction. They al-
ternatively used two convolution and two pooling layers to generate
raw features of the given data set. Furthermore, the features are con-
nected to a MLP for classification. Cui, Chen, and Chen [57] proposed
a Multi-scale Convolutional Neural Network (MCNN) for time-series
classification. The input is fed into multiple branches that are a set
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of consecutive convolutional and pooling layers. These branches per-
form different transformations of the time-series that helps in extract-
ing features of different frequency and time scale.

3.4.3.3 Long Short Term Memory

Long short-term memory (LSTM) belongs to the family of Recurrent
Neural Network (RNN). In contrast to the feed-forward neural net-
works, RNNs have a feedback connection that enable them to use the
current output for the next input. The vanilla RNNs suffer from short-
term memory due to the vanishing gradient problem. If a sequence
is long enough, it will be hard for a RNN to carry information from
the earlier timestamps to later ones. This limitation is addressed in
LSTM [114] that is generally composed of a cell and three gates i.e.
input gate, output gate, and forget gate. The purpose of these gates
is to learn which data in a given sequence is important to keep and
which information is unnecessary to keep. By doing so, it can pass the
relevant and useful information down the long chain of sequences.

LSTMs are applied to a wide range of problems including speech
recognition, language modeling, translation, and image captioning.
Due to the recurrent manner, LSTMs are used for univariate and mul-
tivariate time-series analysis. The anomaly detection technique pro-
posed by Malhotra et al. [174] is based on stacked LSTMs model that
is composed of two hidden LSTM layers. Their predictive model is
trained on normal timestamps, that is further used to compute er-
ror vectors for given sequences. Based on the error threshold, a time-
series sequence is marked as normal or anomalous. Chauhan and Vig
[46] used similar approach to detect anomalies in ECG data. They used
RNN, augmented with LSTM, to detect 4 different types of anomalies.
The network is trained on non-anomalous data and used as a predic-
tor. The prediction errors are used to fit a multivariate Gaussian dis-
tribution and a probability is assigned to each observation. Based on
the probability and the threshold, anomalous behaviors are detected.
Lipton et al. [164] employed LSTM to classify a time-series as nor-
mal or abnormal. They demonstrated that LSTM trained on only raw
time-series with target replication outperforms MLP trained on hand
engineered features. The evaluation was provided on an anonymized
clinical data set.

3.4.3.4 Autoencoder

Autoencoder (AE) is a type of neural network which is used to learn
efficient data codings in an unsupervised way. They belong to the
family of feed-forward neural networks. AE tries to learn an approxi-
mation to the identity function, so that the output is similar to the in-
put. It consists of two parts: encoder and decoder. The network learns
how to efficiently compress the data (encoder) and how to reconstruct
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the data back to a representation close to the input data (decoder).
The trick lies in limiting the number of hidden units; also referred to
as bottleneck, that helps in discovering the interesting structure about
the data. A simple AE might end up learning a low-dimensional re-
presentation similar to a PCA. In AE-based anomaly detection, AEs are
used to detect anomalous instances by calculating the reconstruction
error. Schreyer et al. [216] used deep AEs to detect anomalies in large-
scale accounting data in the area of fraud detection. Amarbayasgalan,
Jargalsaikhan, and Ryu [7] also proposed a novelty detection tech-
nique based on deep AEs. Their approach computes the error thresh-
old from deep AE model and passes to a density-based cluster. Then,
density-based clustering is applied to the compressed data to get nov-
elty groups with low density. Sakurada and Yairi [208] proposed an
approach to detect anomalies in time-series using AE and compared
the results with linear PCA and kernel PCA.

3.5 DATA SETS
3.5.1 Types of Data

In this section, different characteristics of a data set are described that
are generally considered for an anomaly detection method’s evalua-
tion.

3.5.1.1 Labeled vs Unlabeled Data

A data set is considered labeled when an annotation exists for each
data point present in the data set. A data point can be normal or
anomalous. When this information is attached to each data point, a
supervised algorithm can learn this information which enables it to
detect anomalies. A data set can consists of only normal data points,
in this case, semi-supervised methods can be used to detect anoma-
lies. On the other hand, unlabeled data is used by unsupervised
anomaly detection methods.

3.5.1.2 Real vs Synthetic Data

The data which comes directly from a scenario where system is up
and running. For instance, data captured from a machine in an in-
dustrial setting is a real data. Real data captures the actual working
setting which might be keep on changing over time. On the other
hand, data captured by running a simulation of a particular scenario
is considered as synthetic data. It is an alternate to recording real data,
as it provides full control over the scenario and configurations. Also,
sometime it is expensive to record real data, whereas synthetic data is
inexpensive to generate and number of anomalies can be controlled
in the generation process.
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3.5.2 Data Sets Included in Thesis

In this section, real and synthetic anomaly detection data sets which
are used in this thesis are explained. Some of these data sets are also
most commonly used data sets in anomaly detection studies.

3.5.2.1 HVAC

This data set contains real operational data gathered from 77 HVAC
systems, that were operational at different locations in Germany.
Data* collected from the household boilers over the span of 2.5 years
are used to find operational anomalies. To analyze and control the
behavior of a HVAC system, each system is equipped with a lot of
sensors. These 'smart’, IoT based HVAC systems transmit all of the
operational data to a back-end database. A specific sensor used in
boilers is analyzed in the scope of this thesis, which generates a uni-
variate time-series. Each time-series generated by a HVAC system is
treated separately. However, here the goal is to have same anomaly
detection setting/threshold along all the systems. This data set con-
tains some long-term anomalies; it means that the observed sensor
is continuously and slowly deviating from its normal behavior. This
kind of long-term or slow moving data anomalies are not easy to
detect.

3.5.2.2 ECG

An ECG time-series from MIT-BIH ECG Database, available at Phys-
ioNet [87] is also used in this thesis. According to PhysioNet, the ECG
readings were digitized at 360 samples per second per channel with
11-bit resolution over a 10 Millivolts (mV) range. Two or more cardi-
ologists independently annotated each record. Record numbered 108
is used in this thesis from this database>. It is a univariate time-series
with 2160 data points. This time-series contains different ventricular
abnormalities, which are represented as contextual anomalies.

3.5.2.3 Yahoo Webscope A1

Yahoo Webscope A1 data set is a part of Yahoo Webscope Benchmark
[257], open-sourced by Yahoo Labs. Yahoo Webscope Benchmark is a
popular anomaly detection benchmark for time-series. The univari-
ant, Yahoo Webscope A1 data set contains real network-traffic data to
Yahoo log-in services. This data set is comprised of 67 different time-
series that are annotated by humans. The hourly data is recorded

Due to the data protection and privacy policy of the affiliated company, we are
unable to open-source the data or provide details of the observed sensor.

Direct link to database:

https://www.physionet.org/physiobank/database/mitdb/


https://www.physionet.org/physiobank/database/mitdb/

3.5 DATA SETS

in each time-series and each time-series consists of about 1400 data
instances. There are almost 1.9% anomalies in this data set.

3.5.2.4 Yahoo Webscope A2

Yahoo Webscope Az data set is also a part of Yahoo Webscope Bench-
mark [257]. This synthetic data set is comprised of 100 time-series.
Each time-series consists of about 1421 time instances. Anomalies are
inserted randomly by the publishers in this data set and there are
almost 0.3% anomalies in this data set.

3.5.2.5 Yahoo Webscope A3

Another part of Yahoo Webscope Benchmark [257] is Yahoo Webscope
A3 data set. This synthetic data set is comprised of 100 time-series
where each time-series consists of about 1680 data instances. In con-
trast to the Yahoo Webscope A1 and Yahoo Webscope A2 data sets,
the time-series present in this data set have seasonality in addition to
anomalies. The presence of this time-series characteristic makes the
anomaly detection process hard in this data set. There are almost 0.3%
anomalies in this data set.

3.5.2.6  Yahoo Webscope A4

This data set is also part of Yahoo Webscope Benchmark [257]. It is
also a synthetic data set having 100 time-series. Each time-series con-
sists of 1680 data instances. There are almost 0.5% anomalies in this
data set. The time-series present in this data set contain change-point
anomalies. Other time-series characteristics are also present in this
data like trend and noise.

3.5.2.7 NAB AWS Cloud Watch

Amazon Web Services (AWS) Cloud Watch data set [157] is part of
Numenta Anomaly Benchmark (NAB). NAB is an anomaly detection
benchmark open-sourced by Numenta in 2015. Different AWS server
metrics like Central Processing Unit (CPU) Utilization, Network Bytes In,
and Disk Read Bytes are recorded in AWS Cloud Watch data set. These
metrics are recorded with the help of AmazonCloudwatch service. This
data set consists of 17 real time-series.

3.5.2.8 NAB Ad Exchange

Ad Exchange data set [157] is also part of the NAB. This data set
records the online advertisement clicking rates. Two metrics, cost-per-
click (CPC) and cost-per-thousand impressions (CPM) are included in
this data set. This data set consists of 6 real time-series.
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3.5.2.9 NAB Known Cause

As a part of NAB, Known Cause data set [157] consists of time-series
for which the cause of anomaly is known. This data set is not hand
labeled. For example, one time-series records the temperature sensor
data of an internal component of a large industrial machine. First
anomaly in this time-series is a planned shutdown of the machine.
Another time-series in this data set records the number of taxi pas-
sengers in New York City (NYC). Here, five anomalies occur during
NYC marathon, thanksgiving, Christmas, new years day, and a snow
storm. There are 7 real time-series in this data set.

3.5.2.10 NAB Traffic

Traffic data set [157] is a real time-series data set which is also part of
NAB. Real-time traffic data from Twin Cities Metro area in Minnesota,
USA are recorded in this data set. The recorded metrics include occu-
pancy, speed, and travel time. There are 7 real time-series in this data
set.

3.5.2.11  NAB Tweets

Tweets data set [157] is another real data set provided in NAB. This
data set is a collection of Tweets that mention large publicly-traded
companies like Google, Facebook, and IBM. There are 10 time-series
in this data set.

3.5.2.12 NAB no Anomaly

No Anomaly data set [157] in NAB is a synthetic time-series data that
contains no anomaly in it. There are 5 time-series in this data set.

3.5.2.13 NAB with Anomaly

With Anomaly data set [157] is also part of NAB. This data set consists
of artificially-generated time-series with different types of anomalies.
There are 6 time-series in this data set.

3.5.2.14 Shuttle

Shuttle is NASA’s shuttle data set that is already divided into train
and test set by the publisher. This real data set is available at UCI
Machine Learning Repository [65] and OpenML [241]. All the data
instances that belong to class 4 are removed as it is done by Liu,
Ting, and Zhou [165]. Rest of the classes except class 1, are treated as
anomalies. This multivariate time-series consists of ¢ features and it
has 49097 data instances. There are 7% anomalies in this time-series.
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3.5.2.15 DPima

Pima is a diabetes data set collected at the National Institute of Di-
abetes and Digestive and Kidney Diseases, USA. This real data set
is available at UCI Machine Learning Repository [65] and OpenML
[241]. Pima is a diagnostic data set that shows if a patient has signs of
diabetes or not. The target value ‘pos” indicates that a patient is suf-
fering from diabetes and the corresponding data point is treated as
anomalous. This multivariate time-series consists of 8 features and it
has 768 data instances. There are 34.9% anomalies in this time-series.

3.5.2.16  Forest Cover

Forest Cover data set (also known as Covertype in UCI repository)
has target values in integers, which are different tree species. This
real data set is available at UCI Machine Learning Repository [65] and
OpenML [241]. The data set comprised of 54 features in total, where
44 features are categorical. Therefore, we only use 10 non-categorical
features for training a model. Out of the 7 target classes, we use 2
classes as done in [165]. All the instances from class 4 are considered
anomalous, while instances from class 2 are considered normal. This
multivariate time-series has 286048 data instances and there are 0.96%
anomalies in this time-series.

3.5.2.17 lonosphere

Ionosphere is a radar data set. The target attribute is ionosphere,
which is considered as ‘good’” if radar shows evidence of some type of
structure in the ionosphere, otherwise it is considered as ‘bad’. ‘Bad’
ionospheres are considered as anomalous. This real data set is avail-
able at UCI Machine Learning Repository [65] and OpenML [241].
Ionosphere is a multivariate time-series which consists of 32 features
and 351 data instances. There are 36% anomalies in this time-series.

3.5.2.18 HITTP

HTTP is a subset of KDD CUP ‘99 network intrusion data. A wide va-
riety of anomalies (i.e. network attack) were hand-injected in the nor-
mal network data. Th data set is used in a lot of studies. We have used
this data set in a standard way described in [258]. It can be down-
loaded from UCI Machine Learning Repository [65] and OpenML
[241]. This multivariate time-series consists of 3 features and it has
567497 data instances. There are 0.39% anomalies in this time-series.

3.5.2.19 SMTP

SMTP is also a subset of KDD CUP ‘99 network intrusion data. This
data set is also used as described in [258]. It can be downloaded
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from UCI Machine Learning Repository [65] and OpenML [241]. At-
tack class is considered as an anomalous class. This multivariate time-
series consists of 3 features and it has 95156 data instances. There are
0.03% anomalies in this time-series.

3.5.2.20 Mulcross

Mulcross data set is obtained from a synthetic data generator known
as Mulcross. Mulcross [203] generates a multi-variate normal distri-
bution with a selectable number of anomaly clusters. We have used
same settings (contamination ratio, distance factor, and anomaly clus-
ters) for this data set as mentioned in [165]. It can be downloaded
from UCI Machine Learning Repository [65] and OpenML [241]. This
multivariate time-series consists of 4 features and it has 262144 data
instances. There are 10% anomalies in this time-series.

3.5.2.21  Mammography

Mammography data set is publicly available at OpenML [241]. All
the data instances with class value 1 are considered anomalous. This
multivariate time-series consists of 6 features and it has 11183 data
instances. There are 2% anomalies in this time-series.

3.5.2.22 NASA Shuttle

NASA space shuttle valve data set [74] consists of multiple time-
series. The time-series in this data set are current measurements on
a Marotta MPV-41 series valve. These valves are used to control flow
of fuel on the space shuttle. This data set is different from aforemen-
tioned data sets as whole time-series is labeled as normal or abnormal
sequences.

36 EVALUATION METRICS

The evaluation metrics used in this thesis are explained in this section.

3.6.1 Precision

As name of this metric implies, it is the fraction of relevant instances
among the retrieved instances. In other words, it highlights the pro-
portion of positive identifications that were actually correct. In the
form of a formula, precision is a ratio of True Positive (TP) to the total
of the TPs and False Positives (FPs) as shown in Equation 3.6. If there
are no false positives, then the precision of the employed model will
have the maximum value of 1. Based on the false positives, precision
will decrease.
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TP

P . . _
recision 7_1_]) TP

(3-6)

3.6.2 Recall

Recall is the fraction of retrieved instances among all relevant in-
stances. In literal terms, recall highlights how many of the TPs are
actually found or recalled. The recall rate is penalized whenever a
False Negative (FN) is predicted. Recall is defined in Equation 3.7. The
maximum recall value of 1 shows that a model has no false negative.
Recall is also known as True Positive Rate (TPR).

TP

Recall = m

(3-7)

3.6.3 F-score

F-score is a one of the best singleton metrics which serves as a good
indicator of the model’s performance. Precision and recall highlights
different aspects of a system. To combine these different aspects of a
system, F-score is used. This score is also defined as harmonic mean
of a model’s precision and recall as shown in Equation 3.8. The high-
est possible value of F-score is 1, which indicates best precision and
recall. If either of the precision or recall is 0, the F-score is 0, that is
the lowest value of this metric.

precision - recall

F-score =2 —
precision +recall

(3-8)

In some cases, it is required to weight precision or recall more
highly than the other. The weighted F-score is shown in Equation
3.9. By setting 3 to 2 in Equation 3.9, recall is considered twice as im-
portant as precision. If 3 is set to 1, this equation becomes equivalent
to Equation 3.8.

precision - recall
(B2 - precision) + recall

Fg=(1+B%)- (3-9)

3.6.4 False Positive Rate

The False Positive Rate (FPR) measures the ratio of false positives
within the negative samples. It is the proportion of negative cases
incorrectly identified as positive cases in the data, that’s why, this
measure is also known as false alarm ratio. The FPR is calculated as the
ratio between FPs and the total number of ground truth negatives (i.e.
FP and True Negative (TN)). FPR is defined in Equation 3.10.
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3.6.5 ROC

Receiver Operating Characteristic (ROC) curve is a graphical represen-
tation of a classification model which shows the diagnostic ability of
that model. The ROC curve is created by plotting TPR against FPR for
different threshold settings, providing a broader overview of an algo-
rithm’s classification capability. This metric helps in uncovering the
maximum potential of an algorithm whose performance is dependent
on selecting the best threshold. The best threshold depends upon the
need and other criteria for a use-case, such as the maximum number
of true positives and the minimum number of false alarms. By low-
ering the threshold, more items are classified as positive (anomalies
in the context of this thesis) which increase both false positives and
true positives. In the context of this thesis, ROC is referred to ROC-
AUC where ROC is a probability curve and AUC represents degree or
measure of separability. The ROC value near to 1 represents a good
measure of separability.

3.6.6 Precision-Recall Curve

To have a better performance overview of a system with an un-
balanced class distribution, Precision-Recall (PR) curve is preferred.
Precision-Recall (PR) curve is a plot of the precision against the recall
for different thresholds. In the context of this thesis, the area under
the Precision-Recall (PR) curve is reported which ranges from 0 to 1.
A value close to 1 represents an accurate classifier.

3.6.7 Inference Time

The time required to ‘infer” the results on a given test set is referred
here as an inference time. The machine used to compute inference
time was equipped with Intel Xeon(R) processor with 8 cores and
one NVIDIA GeForce GTX 1070 GPU.
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Anomalies have always been of great interest to humans. In every-
day life, we observe that abnormal things and happenings attract our
attention. In some cases, anomaly detection is also used as leading
indicator of unwanted events, also known as early warning.

Each year, the usage trend, as well as the number of loT-based
household devices (e.g., smart heaters, smart air conditioners, smart
tire alarms, smart TVs, and smart security cameras), are enormously
increasing. According to a study released by Statistica [229], HVAC
market size worldwide is expected to reach 367.5 billion US dollars
by the year 2030. It is also projected that HVAC market volume world-
wide will reach to 151 million units by the year 2024.

Figure 4.1 shows the current share of internet-connectable house-
hold devices. A clear shift from traditional computer network equip-
ment to other smart and IoT-based household devices can be seen
in this figure. In 2010, the share of personal computers and wire-
less routers (which lie in computer network equipment category) was
about 75% of all household devices, which was decreased to 45% in
2016 and further decreased to about 25% by 2020. On the other hand,
the share of internet enabled HVAC systems is increasing day by day.
It is clear from this figure that the dominating segment in IoT-based
household devices in the year 2020 is HVAC systems with a total share
of almost 35% [192]. HVAC manufacturers have already enabled their
devices with internet connectivity; so that they can store and analyze
the operational and usage log of their devices. This connectivity with
the surrounding environment and the back-end servers has opened
new horizons for HVAC manufacturers and their users. The analy-
sis of the collected data enables HVAC manufacturers and third-party
companies to offer new services specifically tailored according to the
customers’ need. For service providers and manufacturers, the oper-
ational data can be used to monitor the internal state of a system,
and to directly identify the root cause of a problem in case of system
breakdown. By applying predictive data analytics on the devices’ in-
ternal data, service provider can offer predictive maintenance even
before the actual issue arises in a system.

An important use case of analyzing the internal state of HVAC sys-
tems is to find the anomalies in the running system and finally reach
the root cause of the problem. The early correct detection of such
anomalies is the basis of predictive maintenance.

This chapter is an adapted version of the work published in [183].
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Figure 4.1: Share of Internet-connectable consumer household devices [192].

In the context of HVAC systems, the long-term anomalies are of
great interest, where the sensor value is deviating from its normal
behavior continuously and slowly. Such anomalies can be detected if
data is analyzed in the context of the previous data. At this point,
most of the existing distance-based and statistical-based anomaly
detection techniques fail. The main reason of this failure is the co-
existence of a lot of data points that have deviated from the rest of
the normal data points.

There are many methods available for anomaly detection [8, 29,
89, 107, 138, 152, 162, 201]. However, in most of the cases, the per-
formance is unsatisfactory when real HVAC time-series data are pre-
sented to them. Most of the methods are unable to detect impor-
tant anomalies, and/or if detected, have meaningless or misleading
anomaly score. Sometimes, significant anomalies have low anomaly
score as compared to less significant anomalies. Furthermore, as the
existing methods generate anomaly score based on the distribution
of each HVAC system, the range of anomaly score also varies from
device to device. Due to this factor, it becomes difficult to select a
suitable threshold which can efficiently detect anomalies in a num-
ber of same HVAC systems. The evaluation of different distance-based,
statistical-based, and time-series anomaly detection algorithms shows
that they are less precise to detect long-term anomalies in HVAC data
set. To address these issues, an unsupervised pattern-based contex-
tual anomaly detection technique is presented in this chapter. Fur-
thermore, existing anomaly detection techniques are also evaluated
on real HVAC data set. The presented method uses a knowledge base
of only normal data points extracted from the given data. The knowl-
edge base is updated with the passage of time where new normal
points are included automatically in it and all of the anomalous
points are neglected. The presented method is capable of detecting
long/short -term contextual anomalies as well as point anomalies in
time-series data.



4.1 LITERATURE REVIEW

Main contributions of this chapter are:

¢ A pattern-based contextual anomaly detection approach for IoT-
based HVAC systems.

¢ Generation of meaningful anomaly score (an added advantage
of the proposed method) for detected anomalies, i.e. high score
to most significant anomalies and less score to less significant
anomalies.

* A detailed evaluation of existing and proposed approaches on
real HVAC operational data set.

4.1 LITERATURE REVIEW

Leng, Chen, and Li [162] proposed a method to detect anomalous
patterns in time-series data. Their method has two stages. First, a
time-series is segmented into different patterns and then anomalous
patterns are detected. Each pattern is compared to other patterns of
different sizes using Dynamic Time Warping (DTW) to calculate the
anomaly factor. This method highly depends on the correct time-
series segmentation and other thresholds. It is also not clear if this
method is capable of detecting point anomalies or not. A fast vari-
ant of this anomaly detection method was proposed by Vy and Anh
[246]. Another DTW-based anomaly detection method for ECG data
was proposed by Boulnemour, Boucheham, and Benloucif [29]. In
this improved version of DTW, called I-DTW, time-series of different
lengths and periods are aligned better to each other as compared to
standard DTW. For anomaly detection, a normal ECG segment and an
ECG segment with the abnormality (a query segment) are given to the
system. The I-DTW reconstructs normal segment onto query segment
and the morphological difference between two segments less than a
threshold shows anomaly. They only reported results on ECG data, so
the performance of this method on HVAC data set is not known. Also,
only visual anomaly detection is shown with no information about
anomaly score. Miyata et al. [179] introduced a CNN-based fault de-
tection and diagnosis method for HVAC systems. First they generate
a fault database by detailed simulation, then a CNN is trained on that
database. Finally, they apply the trained model on real data set to de-
tect faults. The detected faults are further used for diagnosis purposes.
They have used a six layered CNN including two convolution layers,
two max pooling layers, and two fully connected layers. Chakraborty
and Elzarka [40] have introduced an XGBoost-based method for early
detection of faults in HVAC systems. They have also proposed dy-
namic threshold method to determine occurrences of faults in real
time. Their method adjusts the threshold value dynamically accord-
ing to the real-time moving average and moving standard deviation
of the predictions.
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Figure 4.2: Examples of HVAC time-series data set. This data set contains
both point and contextual anomalies.

4.2 DATA SETS

Two real data sets, HVAC data set and ECG data set are used for the
evaluation of the proposed technique. These data sets are already ex-
plained in Section 3.5.2.1 and Section 3.5.2.2 of Chapter 3. Figure 4.2
shows examples of normalized time-series of observed sensor from
Real HVAC and two HVAC systems. In the early stages, when a boiler is installed, it
ECGdata ig observed that the sensor works perfectly fine (1.0 is the normal/ex-
pected running value of the observed sensor). However, with the pas-
sage of time, the observed sensor value starts deteriorating or shows
anomalous behavior on some days. These abnormal behaviors indi-
cate that the sensor needs to be repaired before it completely breaks.
Normal data points are shown in green color, whereas black circles
having a dot inside them show anomalous data points. These data
points serve as anomaly ground truth, that were marked by a domain
expert. This data set contains both point (Figure 4.2a) and long-term
(Figure 4.2b) anomalies.
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Figure 4.3: Proposed pipeline for anomaly detection on HVAC data.

4.3 PROPOSED PIPELINE FOR ANOMALY DETECTION

This section provides a detailed insight of the presented pipeline for
anomaly detection. Figure 4.3 shows the complete workflow of the
presented anomaly detection method that is divided into three main
steps i.e. pre-processing, feature generation, and anomaly detection.
The pre-processing and feature generation steps are explained accord-
ing to the HVAC data set. However, these steps can be followed for
other HVAC data sets. The other data set used in this study ECG, does
not require any pre-processing as it is already in a format that is gen-
erally required by machine-learning algorithms.

4.3.1  Pre-processing

The data recorded from a HVAC system usually have missing data and
some data that is of no use to anomaly detection process. Therefore, it
is required to transform the HVAC data into the form that is generally
required by anomaly detection methods. Following are the challenges
that are faced in the used HVAC data set pre-processing. This step is
turther divided into two steps:

¢ Data Selection
The purpose of this step is to select relevant data that is suitable
for anomaly detection. It is possible that not all of the HVAC sys-
tems are ready for analysis; there might be some systems, that
have logged very small amount of data since their installation
due to various reasons. This may happen because the router,
that is registered to transmit the data over the internet is perma-
nently changed or switched off. In addition, each HVAC system
logs a lot of information from multiple sensors. However, only
few of the sensors might be relevant and suitable for further
analysis. Therefore, in our case, those HVAC systems are short-
listed for further analysis that stayed online at least for one year.
The selected systems transmit huge amount of the data, consist-
ing hundreds of internal and external sensors. In practice, not
all of the sensor data can be passed to anomaly detection algo-
rithms. Therefore, the sensors, which are most critical to be ob-
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served are selected, based on the expert’s knowledge. However,
in the scope of this chapter, our focus is only on one sensor.

¢ Data Cleaning and Transformation

The purpose of this step is to tackle the issue of missing data.
From a HVAC system to the database, the data passes through
different connectivity bridges. Connectivity loss in any one of
these bridges causes missing data in the database. A missing
gap can be of few minutes, an entire day, or even of months.
The systems which have missing gaps of more than consecu-
tive 3 days are called unhealthy systems. 24 healthy systems
are shortlisted for further analysis which have the maximum
number of consecutive data and minimum number of missing
gaps. The sensor data are stored in the back-end database in
an unstructured format and could not be used directly for anal-
ysis purposes. So, it is transformed into a structured comma-
separated values (CSV) format in which the sensor values are
extracted against a unique timestamp for each HVAC system.

4.3.2 Feature Generation

The operational data logged in the database is unevenly spaced time-
series data. In an unevenly spaced or an irregular time-series data,
observation time is not constant. In other words, the observations for
each system are logged at the different time. It is, therefore, hard to
find a common pattern among different systems as there is no com-
mon logging time-line among different systems. To compare different
systems and the behavior of the recorded system, it is important to
define the data on a common timeline. In feature generation step, ex-
cessive and unevenly spaced time-series data are removed and mean-
ingful features out of the raw data are generated.

In general, a feature is defined as an aggregated quantity (of some
parameter) per unit. In our case, a feature is the mean value of a se-
lected parameter per day. So, we take mean of the observed sensor at a
particular time of day that shows the actual behavior of that sensor.
This results into the data that is evenly spaced time-series and can be
compared to all other systems for further analysis.

4.3.3 Anomaly Detection

The presented pattern-based anomaly detection is an unsupervised
technique, that builds a knowledge base of long-term patterns. The
knowledge base, which is based on normal data points, keeps grow-
ing over the time. The presented approach works based on the as-
sumption that first n instances of an operational log are normal data
points and does not contain contaminated/anomalous data. This as-
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sumption is generally true, because a new device when installed for
the first time, is expected to have a normal behavior. These initial
1 points (in our case, n = 50) serves as a basis of knowledge base
containing normal patterns.

The size of the knowledge base (Kg) keeps growing over the time.
A new point is added to the knowledge base if it is detected as a nor-
mal data point. To mark a data point as normal or anomaly, current
data point (x), as well as its contextual information, is used. The se-
quence containing the context and the original value can be defined
as follows:

t
S¢= U Xi (4.1)
i=t—N
Using equation 4.1, knowledge base (Kg) in initial state can be de-
fined as follows:
Kp ={Sn} (4-2)

This sequence/window S; is compared with the knowledge base
(Kg) by using an overlapping window of the same size as input se-
quence. This means that knowledge base is divided into overlapping
windows of size N + 1. All of these overlapping windows from knowl-
edge base are compared with the window /sequence of the current
data point. The comparison between the context of the current win-
dow and all the windows in the knowledge base is done using DTW.
The minimum DTW distance (equation 4.3) finds the most similar se-
quence from the knowledge base.

dist(S¢) = miny (DTW(S, Ki)) VK € Kp (4-3)

A threshold T is used to distinguish between a normal data point
and an anomalous data point. Equation 4.4 defines the use of equa-
tion 4.3 for detection of anomalous point as well as accumulation of
knowledge base.

. Anomaly, if dist(Si) >~
f(dist(Sy)) = Y i (44)
SiUKg, otherwise

Where dist is a DTW distance between the current window and
all the sequences in the knowledge base. All of the remaining data
points that do not satisfy the first criteria in Equation 4.4 are marked
as normal and added to the knowledge base. In this way, the knowl-
edge base keeps on growing with time (t) incorporating long-term
patterns.

4.4 EVALUATION

This section provides a detailed analysis of the following exist-
ing state-of-the-art unsupervised anomaly detection techniques and
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Figure 4.4: ROC plot comparing the proposed technique with the state-of-
the-art anomaly detection techniques.

the presented anomaly detection technique on real HVAC and ECG
data sets: kNN Global Anomaly Score [201], CBLOF[107], HBOS [89],
OC-sVM [8], Twitter Anomaly Detection [138], rPCA [152].

For comparison with the existing techniques, the standard imple-
mentation of the above-mentioned algorithms in RapidMiner is used.
These anomaly detection algorithms are freely available as an ex-
tension to RapidMiner. This Anomaly Detection Extension' contains
many other unsupervised anomaly detection algorithms too. There
are different hyperparameters of the selected algorithms that need
to be tuned. A number of experiments on different hyperparameters
was performed and the best parameters were used for the final evalu-
ation. Same parameters are used for both data sets. A detailed evalua-
tion is only provided for HVAC data set (on the basis of ROC, ROC-AUC,
Precision, and Recall). Whereas, for ECG data set, visual evaluation is
provided to show the issues in other anomaly detection methods and
to highlight the generic nature of the proposed method.

Performance measures like ROC and ROC-AUC are used in this anal-
ysis section to show an overall performance of different algorithms
and the proposed method. In the ROC plot shown in Figure 4.4, the
performance of a method is considered best whose curve is most close
to the upper left corner. In addition to that, precision and recall are
also calculated to gain insights of each algorithm.

Generally, all anomaly detection algorithms provide an anomaly
score for a given data point. To classify a data point as normal or
anomalous, a suitable threshold is required (that might vary for each

RapidMiner Anomaly Detection Extension is available at:
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.
xhtml?productId=rmx_anomalydetection
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Table 4.1: Precision and recall of proposed and other observed techniques
on HVAC data set. The best threshold is selected by equal error

rate.

Algorithm Precision Recall

Proposed Technique 0.91 0.80

HBOS 0.47 0.90

CBLOF (K=2) 0.50 0.74

CBLOF (K=3) 0.56 0.54

kNN (k=10) 0.34 0.54

kNN (k=20) 0.36 0.61

OC-SVM 0.19 0.38

rPCA 0.42 0
Twitter Anomaly Detection 0.23 0.95

algorithm). It is important to find the threshold that is a true repre-
sentative of the classifier. In this study, the best threshold is selected
on the basis of Equal Error Rate (EER). FPR and TPR from ROC curve
are used to find EER. Usually, the threshold where both FPR and TPR
become equal is considered as the best threshold. However, in some
cases, it is also possible that these two measures do not match exactly.
For such cases, we calculate the difference between the two measures.
The best threshold is considered at the point where the difference is
minimum. Table 4.1 shows the precision and recall of all the evalu-
ated methods on the HVAC data set. The overall precision and recall
of the proposed technique are better than other anomaly detection
methods. The recall of HBOS and Twitter Anomaly Detection is better
than proposed technique, but a balance between precision and recall
is more important than only relying on precision or recall.

4.4.1  Analysis

Here, it is important to note the notation we have used for normal and
anomalous data points — anomalies are considered as positive records,
whereas normal data points are considered as negative records. As
we are interested in anomalous data points, so they are marked as a
positive hit.

The analysis of Table 4.1 shows that HBOS performs best on HVAC
data set from the group of the state-of-the-art techniques with maxi-
mum AUC of 96.4%. HBOS clearly performs better than distance-based
and clustering-based techniques. It is mainly of two reasons: i) The
data points are spread in a way that very less number of data points
lie in the same bin, that generates high anomaly score, and ii) The
height of histograms is normalized, so the anomaly score of different
systems is more representative. It can be observed in Table 4.1 that
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Figure 4.5: Color coded anomalies show anomalies detected by respective
methods. Abnormal patterns exit in the highlighted area. Only
the proposed method is able to detect these contextual and point
anomalies.

the overall precision and recall of HBOS is better than other state-of-
the-art techniques. Whereas, on ECG data set, HBOS is only able to
detect point anomalies as shown in Figure 4.5c. In Figure 4.5¢, the
data points that lie far from the most of the data points space, are
incorrectly marked as anomalies (in red) towards the end of the time-
series. This behavior shows the limitation of HBOS. In Figure 4.5, the
three highlighted areas in all sub-figures are where actual anomalous
points exist.

After HBOS, clustering-based technique, CBLOF performs well on
HVAC data set with the AUC of 95.6%. We did experiments with dif-
ferent number of clusters and report the results on two clusters size,
i.e. 2 and 3 clusters. It can be observed in Figure 4.4, that AUC of
CBLOF method is decreased with the increase in the number of clus-
ters for the HVAC data set. Depending on the nature of data and num-
ber of clusters, this technique can cause a problem when a number
of anomalous data points form a separate cluster because of their
high co-existence. This can happen in the case of long-term anomalies,
where a sensor starts to continuously give slightly deviated value. In
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Figure 4.6: Comparison of precision (P) and recall (R) of different anomaly
detection techniques and the presented technique on a specific
HVAC system. Here, the precision and recall are calculated for a
single HVAC system.

this case, the whole cluster can be wrongly detected as normal data
points. However, in the case of two clusters and existence of a rela-
tively low number of anomalous data points, as compared to normal
data points, 2 clusters give relatively good results as compared to
larger cluster number.

Widely used, kNN-based anomaly detection technique shows AUC
of 91.4% for HVAC data set, that is less than CBLOF and HBOS. This
method is also tested for different set of parameters and best are re-
ported, i.e. Kis set to 10 and 20. This distance-based technique is good
for the detection of point anomalies as they are easily distinguishable
from the rest of the data. However, in the case of time-series data sets,
where anomalies occur due to the change in pattern or due to the
small deviations, this technique is unable to detect important anoma-
lies. Also, in the case of long-term anomalies, this technique is unable
to detect anomalies because the distance between normal and abnor-
mal points does not change drastically. Same is observed in ECG data
set, all of the anomalies are not detected in this case too (Figure 4.5a).

Experiments with different parameter combinations are performed
using Twitter Anomaly Detection technique. In most of the cases for
HVAC data set, this technique is able to detect all of the anomalies,
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but with high false alarm rate. But for ECG data set, this method is
unable to detect contextual anomalies and the marked anomalies are
incorrect as shown in Figure 4.5b. Overall results of OC-SVM and rPCA
are poor on HVAC data set.

The above-mentioned issues in different anomaly detection tech-
niques are addressed in the proposed pattern-based contextual
anomaly detection technique. As shown in Figure 4.4, the proposed
approach performs better than other anomaly detection techniques
with the AUC of 99.4%.

Figure 4.6 shows the results of some of the observed anomaly detec-
tion techniques on a specific HVAC system. The anomalous data points
(marked with red asterisk (x)) detected by the mentioned technique
are shown along the ground truth information. When (x) is inside a
black circle, it represents true positive; i.e. an anomalous data point is
correctly detected by the respective algorithm. Whereas, only asterisk
mark shows false alarm. The purpose of this figure is to visually un-
derstand the issues of current anomaly detection techniques on HVAC
data set. Precision and recall shown in this figure are calculated for
this HVAC system based on the commonly selected threshold.

Figure 4.6a shows the result of kNN Global Anomaly Score tech-
nique, where all of the anomalies are detected correctly (recall is
100%) with a lot of false alarms, that degraded the overall perfor-
mance and precision decreases to 18.18%. For the kNN technique, the
accuracy is slightly increased with greater k on the whole data set
as shown by the AUC in Figure 4.4. The parameters, like the number
of clusters and k in nearest neighbor techniques, cannot be general-
ized as they depend on the distribution of the data. Twitter Anomaly
Detection technique performs worst on the observed HVAC system
(Figure 4.6b). Even the small variations in data are falsely marked as
anomalies by this technique. Figure 4.6c shows that HBOS is able to
detect all anomalies correctly. However, similar to kNN-based method,
its precision is low. In comparison to existing techniques, Figure 4.6d
shows the result of the proposed pattern-based technique, that out-
performs other methods and achieves a precision and recall of 100%
on the observed HVAC system. Likewise on ECG data set, the proposed
technique is clearly able to detect point and contextual anomalies (Fig-
ure 4.5d) that are missed by most of the other mentioned methods.

4.4.2  Problem of Misleading Anomaly Score

In addition to the low precision and recall, another problem with
most of the existing anomaly detection techniques is the misleading
anomaly score, across multiple systems of the same type. Ideally, an
anomalous data point that is far off should have a high anomaly score,
whereas a low anomalous score should be assigned to a data point
that is not so far from the distribution of normal data points. The
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Figure 4.7: Color-coded anomaly scores given by HBOS and the presented
pattern-based technique. Anomalies toward the bottom of the
curve are given relatively low anomaly score by HBOS. Whereas,

correct anomaly score behavior is given by the proposed tech-
nique.

best threshold must provide best precision and recall on all systems.
In most of the cases, the recall score is very good, but the precision is
not so good. The data distribution of all the systems is different due
to which it is hard to standardize the anomaly score threshold for
all the systems. Without a defined threshold, the anomaly detection
algorithm cannot be used practically. In HVAC data set, there are some
systems in which small deviations of sensor value are observed. On
such small deviations, existing algorithms give high anomaly score
because of the inability of incorporating context, which makes the
threshold selection process (for all systems of the same type) very
difficult.

The second best technique mentioned in Figure 4.4 for the HVAC
data set is HBOS. Figure 4.7a shows color-coded anomalies marked by
HBOS for a HVAC system. This is an example of a long-term anomaly
scenario. All the anomalies are detected by HBOS in this case. How-
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ever, the anomaly score is not the true representative of the anomalies
when the data of the whole system is observed. The highest anomaly
score is given to anomalous data point in the middle of the curve, and
then anomaly score decreases towards the end of the curve (which
should be increasing). It is due to the fact that when more data points
occur in the anomalous region, then anomaly score decreases. In the
context of HBOS algorithm, if more data points exist for a defined
bin, their possibility of being anomalous decreases. Whereas in real
data, there are cases when a relatively high number of data points
exist in the anomalous region and it is important to detect all of those
anomalous points with correct anomaly score. Same anomaly score
behavior is also observed in kNN Global Anomaly Score technique for
HVAC data set. In comparison to the existing methods, the presented
technique provides correct anomaly score behavior as shown in Fig-
ure 4.7b, in which, anomaly score increases for more distant anoma-
lous data points. The anomaly score generation technique makes the
anomaly score true representative of the anomalies. Figure 4.5d also
shows correct anomaly score behavior on ECG data set. For an anoma-
lous data point, anomaly score is calculated from the normal data
points saved in the knowledge base. This gives the correct represen-
tation how far an anomalous data point is.
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The term ‘Anomaly’, is widely used and it refers to different prob-
lems in different domains. For example, an anomaly in network se-
curity system could be an activity related to a malicious software
or a hacking attempt [88]. Whereas, in the manufacturing domain, a
faulty product is considered as an anomaly. Companies from differ-
ent sectors including manufacturing, automotive, healthcare, lodging,
traveling, fashion, food, and logistics are investing a lot [50, 147] in
collecting big data and exploring the hidden anomalous patterns in
it to facilitate their customers. In most of the cases, the collected data
are streaming time-series data and due to its intrinsic characteristics
(cyclicity, trend, seasonality, and noise), it is a challenging problem
to detect a slightly deviating data point in a period. Also, it is very
important to detect anomalies in good time so that the big issues like
financial system hack, total machine failure, or a tumor in human
body can be avoided.

Recent years have witnessed an enormous increase in the use of
DNN. They are used as a function approximation or an estimation
tool. Nowadays, DNNs are widely used in domains like image/video
processing, data mining, and finance for classification and prediction.

They can learn different features based on the training data and
classify the test data into different target classes on which a network
is learned. DNNs achieve good performance and flexibility by learning
to represent the data as a nested hierarchy of concepts within layers of
the neural network [41]. Simple features are learned in lower layers,
whereas, complex features are learned in higher layers. In most of
the cases, DNNs work better than traditional machine learning and
shallow neural networks as shown in Figure 5.1.

Furthermore, in most of the real life scenarios, it is practically im-
possible to label enormous amount of data, therefore, the demand
of unsupervised anomaly detection methods is very high. Although
many unsupervised methods are available, but most of them don’t
handle the intrinsic characteristics of time-series data very well. In
most of the cases, they are evaluated for a particular scenario or on
a domain specific data. Flexibility and adaptability of anomaly de-
tection systems are open questions that need to be addressed. The
proposed unsupervised approach incorporates context, seasonality,
and trend into account for detecting anomalies. This approach can
be adapted for different scenarios and use cases, and works on differ-
ent types of data sets.

This chapter is an adapted version of the work published in [185].

Detecting anomalies
in time-series is a
challenging task

DNN in general

Unsupervised
anomaly detection
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Figure 5.1: Performance comparison of traditional machine learning and
Deep Neural Network (DNN) [6].

This chapter presents Deep Anomaly Detection for Time-series
(DeepAnT): a novel unsupervised deep learning-based anomaly detec-
tion approach for streaming data. This approach doesn’t rely on label-
ing of anomalies, it rather leverages the original time-series data even
without removing anomalies (given that the number of anomalies in
the data set is less than 5% [88]). DeepAnT leverages the CNN as its fore-
casting module. This module predicts the next timestamp of a given
time-series window. Furthermore, the forecasted value is passed to
a detector module which compares that value with the actual data
point to detect anomalies in real-time. The approach is realistic and
suitable even for domains where time-series data are collected from
heterogeneous sources and sensors. DeepAnT achieves good general-
ization capabilities in data scarce scenarios where less training data
are available. Only a few number of training samples (e.g. 568 data
points) are sufficient to build a prediction model due to its effective
parameter sharing during feature extraction. DeepAnT when tested on
publicly available anomaly detection benchmarks, outperformed the
state-of-the-art anomaly detection methods in most of the cases. In
addition to classifying whole time-series as normal or abnormal (as
done in [43, 46, 164, 174]), DeepAnT is also capable of detecting point
anomalies. In particular, following are the main contributions of this
chapter:

1. To the best of our knowledge, DeepAnT is the first deep learning-
based approach which is capable of detecting point anomalies,
contextual anomalies, and discords in time-series data in an un-
supervised setting.

2. The proposed pipeline is flexible and can be easily adapted for
different use-cases and domains.

3. In contrast to the LSTM-based approach, CNN-based DeepAnT is
not data hungry. It is equally applicable to big data as well as
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small data. We are only using 40% of a given time-series to train
a model.

4. We gathered different anomaly detection benchmarks at one
place and provided extensive evaluation of 15 state-of-the-art
methods in different settings on 10 data sets (covering both
steaming and non-streaming cases) which contain 433 time-
series in total. DeepAnT has gained the state-of-the-art perfor-
mance on most of the data sets.

5.1 PROPOSED APPROACH FOR TIME-SERIES ANOMALY DETEC-
TION

The proposed DeepAnT consists of two modules. The first module,
Time-series Predictor predicts timestamps for a given horizon and
the second module, Anomaly Detector is responsible for tagging the
given data points as normal or abnormal. Deep learning has been
employed in a wide range of applications primarily because of its
capability to automatically discover complex features without having
any forehand knowledge. This automatic feature learning capability
makes the neural networks a good candidate for time-series anomaly
detection problem. Therefore, DeepAnT also uses only raw data and
uses CNN as a time-series predictor. Also, it is robust to variations
as compared to other neural networks and statistical models. It is
shown in literature [82, 114] and in practice that LSTM performs well
on temporal data, due to its capability to extract long-term trends in
the encountered time-series. However, it is shown in this chapter that
CNNs can be a good alternate for uni-variate as well as multi-variate
time-series data due to its parameter efficiency. Deep CNN has been
employed for forecasting in time-series predictor, whereas CNNs and
LSTMs are usually used for time-series classification in literature (as
done in [164, 268]).

Time series Conv1 Output Max Pooling Conv2 Output Max Pooling Dense Layer Output

Figure 5.2: DeepAnT architecture for time-series prediction: A convolutional
neural network with two convolutional layers, two max pooling,
and a fully connected layer.
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5.1.1 Time-series Predictor

The predictor module of DeepAnT is based on CNN. CNN is a type of ar-
tificial neural network that has been widely used in different domains
like computer vision and natural language processing in a range of
different capacities due to its parameter efficiency. As the name in-
dicates, this network employs a mathematical operation called convo-
lution. Normally, CNN consists of sequence of layers which includes
convolutional layers, pooling layers, and fully connected layers. Each
convolutional layer typically has two stages. In the first stage, the
layer performs the convolution operation which results in linear acti-
vations. In the next stage, a non-linear activation function is applied
on each linear activation. In simplest form, convolution is a mathemat-
ical operation on two functions of real valued arguments to produce
a third function. The convolution operation is normally denoted as
asterisk:

s(t) = (x xw)(t) (5.1)

This new function s can be described as a smoothed estimate or
a weighted average of the function x(t) at the timestamp t, where
weighting is given by w(—t) shifted by amount t. In Equation 5.1,
function x is referred to as the input and function w is referred to as
the kernel. The output is referred to as the feature map. One dimen-
sional discrete convolution is defined as:

[o¢]
s() =) x(Dw(t—1) (5.2)
T=—00

In DeepAnT, similar to other well known methods [123, 149], the
output of a convolutional layer is further modified by a pooling func-
tion in a pooling layer. A pooling function statistically summarizes
the output of the convolutional layer at a certain location based on
its neighbors. Most commonly used, max-pooling operation is used in
DeepAnT which outputs the maximum activation in a defined neigh-
borhood. Since there exists more than one feature maps, therefore the
pooling function is applied on all of these feature maps.

After pair of convolutional and max-pooling layers, the final layer
of connections in DeepAnT is a fully connected layer. In this layer, each
neuron from a previous layer is connected to all output neurons. The
activation for convolutional and fully connected layers are given in
Equation 5.4 and Equation 5.6 respectively, where k is defined as
|FliterSize/2].

k
zji =) Whal| +bj (53)
—k

aj; = max (zj;,0) (5.4)
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e

zf =Y Wial'+b} (5.5)
k=1

aj = max (zj,0) (5.6)

In Equation 5.4, a}i refers to the activation of the j*" neuron in the
1t" layer at the i'" input location of a convolutional layer. Whereas,
a]-1 refers to the activation of the j'" neuron in the 1" fully connected
layer in Equation 5.6.

Like other artificial neural networks, a CNN uses training data to
adapt its parameters (weights and biases) to perform the desired task.
In DeepAnT, parameters of the network are optimized using Stochastic
Gradient Descent (SGD). The idea of training or learning of a neural
network is to reduce the cost function C. In this predictor module,
a cost function computes the difference between the network’s pre-
dictions and the desired prediction. In a learning process, that differ-
ence is minimized by adapting the weights and biases of the network.
The process of calculating the gradient that is required to adjust the
weights and biases is called backpropagation. It is obtained by calcu-
lating the partial derivatives of the cost function with respect to any
weight w or bias b as 9C/dw and 9C/0db respectively.

There are four steps of backpropagation algorithm:

1. Feed-forwad pass

2. Backpropagation to the output layer

3. Backpropagation to the hidden layer(s)
4. Update weights and biases

Initially, the weights of a network are randomly initialized. In the
teed-forward pass, the output of all the hidden neurons along with
the final output of a network is computed. The error between the net-
work output and the cost function is backpropagated to the initial
layers and the gradient with respect to network parameters is com-
puted. The error (§) of j*™ neuron at the output layer L is calculated
as shown in Equation 5.8.

dC dalt
L _ )
5i - aa}- az}- (5.7)
oC
sk = — "(zF,0 8
j aaijax (z) ) (5.8)

The gradient of error with respect to the output layer is backpropa-
gated to all the neurons in the hidden layer as shown in Equation 5.9.
If the value of input x exceeds 0, then the gradient of Rectified Lin-
ear Unit (ReLU) is 1 and remains O otherwise. As max-pooling layer
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is applied on ReLU activation of convolutional layer, so the gradient
of max-pooling layer is 1 when the maximum quantity occurred and
remains O otherwise as shown in Equation 5.10.

5} = <(W%)T 6}“) ©max’ (z,0) (5.9)

1, ifx>0
max’(x,0) = X (5.10)

0, otherwise

The rate of change of cost with respect to the bias and weights is
given in Equation 5.11 and Equation 5.12 respectively.

oC
a0l = Ga1)
)
oC 1-151
_— 6 .
owt, ~ % (5.12)

In order to leverage CNN for forecasting, time-series data needs to
be changed in a compatible form for the system to operate on. For
each element x; at timestamp t in a time-series, next element X 1
at timestamp t + 1 is used as its label. Input data is transformed into
several sequences of overlapping windows of size w. This window
size defines the number of timestamps in history, that are taken into
account (referred as a history window). It also serves as the context of
x¢. The number of timestamps required to be predicted is referred as
prediction window (p_w). In some studies, prediction window is also
called as (Forecasting) Horizon [68, 233].

Consider a time-series:

{XOI X1y Xt—1,Xt, Xt 41, }
For w =5 and p_w = 1, the sequence at index t will be as follow:
Xt—4,Xt—3,Xt—2,Xt—1,Xt — Xt41

In a regression problem (as ours), the left hand side is treated as
input data and right hand side is treated as label. In this case, it can
be called as many_to_one prediction. When p_w > 1, it can be called as
many_to_many prediction.

Architecture Summary: We did extensive experiments to finalize
the architecture and its hyperparameters. Two convolutional layers,
each followed by a max-pooling layer are used in this architecture (as
shown in Figure. 5.2). The input layer has w input nodes, as we have
converted the data into w vectors. Each convolution layer is composed
of 32 filters (kernels) followed by an activation function. Element-wise
activation function, ReLU as shown in Equation 5.13 is used as an ac-
tivation function. Last layer of the network is a fully connected layer
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in which each neuron is connected to all the neurons in the previ-
ous layer. This layer represents the network prediction for the next
timestamp. The number of nodes used in the output layer are equal
to p_w. In this case, the model is predicting only the next timestamp,
so the number of output node is 1. However, in Section 5.5 of this
chapter, when the model is predicting a sequence instead of a sin-
gle data point, the the number of nodes in output layer is changed
accordingly.

f(x) = max(0,x) (5.13)

Loss Function: Mean Absolute Error (MAE), shown in Equation 5.14
has been employed as an indicator of the discrepancy between the
desired and the predicted output. By reducing the error between the
predicted and the desired value, the network can learn to predict the
normal behavior of the time-series. We normalized each time-series
based on the training data.

n

1
MAE=—3 |y;—9;
j=1

(5.14)

5.1.2 Anomaly Detector

Once the prediction of next timestamp x¢,7 is made by the Time-
series Predictor, this module detects anomalies in a given time-series.
The value predicted by the predictor module is passed to this module
and the difference between actual and predicted value is calculated.
Euclidean distance shown in Equation 5.15 is used as a measure of
the discrepancy.

(e, yg) =/ (Yt —yg)? (5.15)

where y¢ is actual value and yj is predicted value.

The Euclidean distance is used as anomaly score. A large anomaly
score indicates a significant anomaly at the given timestamp. A
threshold, based on the time-series type needs to be defined for this
module; that is generally required by most of the anomaly detection
algorithms.

5.2 EXPERIMENTAL SETTING-I

For the better understanding, the experimental setup is divided into
several parts, because different anomaly detection methods in litera-
ture are evaluated on different benchmarks based on different met-
rics.
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5.2.1 Data set

One real and three synthetic data sets from Yahoo Webscope data set
(A1, A2, A3, and Ay) are used in this experimental setting. Details of
these data sets are given in Section 3.5.2. One time-series from each
data set is shown in Figure 5.3. Actual time-series is shown in blue,
whereas red vertical lines show anomaly ground truth.

15000

Value

Timestamp Timestamp

(a) A1 Benchmark (b) A2 Benchmark

Value
Value

Timestamp Timestamp

(c) A3 Benchmark (d) A4 Benchmark

Figure 5.3: One time-series from all of the four Yahoo Webscope data set is
shown here. Actual streaming data are shown in blue, whereas
red vertical lines highlight anomalous data points based on the
provided labels.

5.2.2  Evaluation Metric and Experimental Setup

F-score is employed as the evaluation metric for our models. All the
anomaly detection methods in this experimental setting are applied
on each time-series of all the data sets separately. Average F-scores
per data set is reported for each method.

DeepAnT Parameters: We are using only 40% of each time-series
as a training set and rest of the 60% data as a test set. We further
split the training set and use 10% of the training set for validation.
Since it is an unsupervised approach, we don’t use any label informa-
tion in training process. For each time-series, only next timestamp is
predicted and marked as either normal or anomalous data point. To
compare the performance of CNN with LSTM in the context of anomaly
detection, we have also used LSTM in the Time-series Predictor module
of DeepAnT. We used the same 40% training data scheme for training
LSTM as we did for CNN. For LSTM-based model, we used two LSTM
layers (as done in [174]) of 32 memory cells each. For both techniques,
we used same w for whole data set.
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Table 5.1: This table shows the selected history window and thresholds
which are used to evaluate DeepAnT on Yahoo data set.

Sub-benchmark  Threshold  History Window

Al 0.50 45
A2 0.75 45
A3 0.65 35
A4 0.55 35

Finding the best threshold is very important for evaluation. Nor-
mally, each time-series has its own characteristics, so finding a generic
threshold which works for all of the time-series, is not a straightfor-
ward task. Since each Yahoo Webscope data set shares common prop-
erties, therefore, we searched for the best threshold for each data set
based on the validation data. Based on the data set threshold, we are
calculating F-score of DeepAnT.

Another parameter, History Window (w), also plays a vital role in
improving the prediction model. Again, there is no fixed window
size, that can be used for all of the time-series. For reproducibility,
we list the combination of thresholds and window size yielding the
best F-score in Table 5.1. We shortlisted the window sizes of 25, 35,
and 45 after hyperparameter optimization. Figure 5.4 shows the effect
of w on average F-score, in each data set. These plots also show the
importance of selecting the right number of w.

Twitter Anomaly Detection Parameters: We used AnomalyDetec-
tionTS function provided in Twitter anomaly detection for A2, A3,
and A4 data sets. For A1 data set, we used AnomalyDetectionVec func-
tion, because timestamps are replaced by integers with an increment
of 1in this data set by the publisher. We used all default parameters
of this method except the following two:

1. Alpha: This parameter defines the level of statistical significance
with which to accept or reject anomalies. We used three values
for this parameter i.e. 0.05,0.1, and 0.2.

2. Direction: This parameter defines the directionality (positive or
negative) of anomalies to be detected. We used ‘both’, as anoma-
lies can be in any direction in this data set.

Yahoo EGADS Parameters: We are using Olympic Model in TMM
and EGADS ExtremeLowDensityModel Outlier in ADM. Default values
of all the other parameters are used. Both Twitter anomaly detection
and EGADS calculate threshold themselves for each time-series and
give timestamps or indexes (if input data does not contain timestamp)
of the anomalous data points as output. To evaluate these two meth-
ods, we used the same 60% test data of each time-series that is used
to evaluate DeepAnT.
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Figure 5.4: Average F-score of each Yahoo Webscope data set is plotted per
history window used in DeepAnT. Plots of three shortlisted win-
dows per data set are shown. For AT and A2 data sets, w = 45
provides better average F-score, but for A3 and A4 data sets,
w = 35 performs good.

5.2.3 Results

DeepAnT anomaly detection results on a single time-series are shown
in Figure 5.5. In this figure, actual time-series is depicted in blue color,
the predictions on training data are depicted in yellow color (not used
in reported results), while the predictions on test data are depicted
in red color. Vertical blue doted lines are anomalies ground truth
in training and testing data. Small dotes are placed on the ground
truth when same data points are detected as anomalous points (true
positive).

It can be seen in this example that there are anomalies in training
data, but the network correctly captured the data generating distribu-
tion disregarding the anomalies. Predicted data points (red) are super
imposed on the actual time-series in order to highlight the generaliza-
tion capabilities of the model. The observed time-series is a combina-
tion of periodicity/cyclicity and a trend. In such cases, anomaly is not
just a spike that is clearly distinguishable, but, it can be a data point
that is locally deviated from the actual cycle. These local deviations
are hard to detect robustly. Examples of such anomalies are magni-
fied in Figure 5.5. It can also be seen in this figure that w data points
are missing from the beginning of training and testing data set. In
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Value

Predictions on == Anomalies Ground = True Positive
Testing Data Truth

Figure 5.5: An example of time-series prediction and anomaly detection us-
ing DeepAnT is shown in this figure. Actual time-series is shown
in blue color. 40% data of actual time-series are used as train set,
while the rest of the 60% as test set. Time-series shown in yellow
color are prediction results on train data, and time-series shown
in red color are prediction results on test data. Vertical blue dot-
ted lines are anomalies ground truth, and vertical blues line with
dotes on them show point anomalies detected by DeepAnT (true
positive). DeepAnT F-score is 1 for this time-series, whereas, Ya-
hoo EGADS and Twitter anomaly detection F-score is o.

both of the cases, this is the starting sequence (history window), after
which the predictions are made.

On a detailed level, Table 5.2 shows a comparison of DeepAnT with
EGADS, Twitter Anomaly Detection (AD), and LSTM (DeepAnT using
LSTM as a predictor) on whole Yahoo Webscope data set. DeepAnT
outperforms other methods in two data sets and for the rest, it is
a runner up. Al data set consists of anomalies where there is no
trend and seasonality effect. Mostly, the anomalies are just the spikes
in Al data set. Since we are computing F-score based on the data
set-level threshold, DeepAnT is not on top. Whereas, other methods
are computing threshold separately for each time-series. For A3 and
A4 data sets, F-scores of DeepAnT are significantly better than other
methods. Twitter anomaly detection didn’t work at all on A2 data set.

Table 5.2 also shows that the parameter ‘Alpha’” does not have a
significant impact in this case. It is also important to note in this table
that CNN-based DeepAnT performs better than LSTM on three data sets
and performs slightly poor for one data set. It shows that CNN could
be used in the cases when only limited amount of training data are
available.

As DeepAnT’s Anomaly Detector module is dependent on the Time-
series Predictor module, good forecasting performance will result in
better anomalous points detection. Figure 5.6 shows a plot of ground
truth versus prediction evaluated on the test data of a time-series. Ide-
ally, this should be a smooth line, but in practice, this line is uneven
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Table 5.2: Average F-scores of Twitter AD, Yahoo EGADS, DeepAnT, and
LSTM (DeepAnT using LSTM as time-series predictor) on Yahoo
data set are given in this table. Bold F-scores are the best scores
for corresponding Yahoo Webscope data set.

Yahoo Twitter AD Twitter AD  Twitter AD
Data set DeepAnT LSTM

EGADS Alpha=0.05 Alpha=0.1 Alpha=02

Al 0.47 0.48 0.48 0.47 0.46 0.44
A2 0.58 0 0 0 0.94 0.97
A3 0.48 0.26 0.27 0.30 0.87 0.72
A4 0.29 0.31 0.33 0.34 0.68 0.59

0.8

Prediction (t+1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ground Truth (t+1)

Figure 5.6: Time-series ground truth values at (t+ 1) are plotted against pre-
dictions at (x + 1) to show the accuracy of the prediction model.
The data points away from the diagonal line show anomalies.

due to minor errors in the prediction model. In this figure, points
away from the diagonal line show the anomalous data points in the
test data.

5.3 EXPERIMENTAL SETTING-II
5.3.1 Data set

In this experimental setting, five real and two synthetic NAB data
sets, namely Artificial no Anomaly, Artificial with Anomaly, Real
Tweets, Real Traffic, Real Known Cause, Real Ad Exchange, and Real
AWS Cloud Watch are used. Details of these publicly available NAB
data sets are provided in Section 3.5.2. These data sets contain 58
data streams, each with 1,000 - 22,000 instances. These data sets are
comprised of streaming data from different domains including road-
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traffic, network utilization, on-line advertisement, and internet-traffic.
The data set is labeled either based on the known root cause of an
anomaly or as a result of following the defined labeling procedure
(described in [157]). Each data file consists of timestamps and actual
data values. Anomaly labels of each data file are given in a separate
set of files.

Although NAB provides a diverse labeled streaming anomaly detec-
tion data set, but there are a few challenges [225] that makes it hard to
be used as a practical anomaly detection benchmark. Each data point
with ground truth anomaly label is centered by a defined anomaly
window (10% the length of a data file), that makes the ground truth
label of normal data points as an anomaly. Each data point with
ground truth anomaly label is centered by a defined anomaly win-
dow, and the data points in the whole anomaly window are also
labeled as anomalous. For example, for an anomaly window of size
350, all of the 350 data points in a data stream are labeled anoma-
lous, whereas, there could be just 2-3 actual point anomalies in the
center of this anomaly window. This kind of labeling helps in calcu-
lating good NAB score and leaves the recall very low. NAB score is
introduced in [157] as an anomaly detection score that is designed
to reward early anomaly detection and penalize later detection based
on the true and false detection within an anomaly window.

5.3.2 Experimental Setup and Evaluation Metric

A high NAB score shows that a particular algorithm has a higher ten-
dency to detect early anomalies. However, it does not show how good
that algorithm is in terms of maximum true detection of anomalies
and minimum false alarms. In real life scenarios, in addition to early
anomaly detection, it is equally important to detect correct number
of anomalies. It is shown in [225] that in some cases, the NAB score
is high, but the precision and recall is low, which means that the al-
gorithm was not able to detect maximum number of anomalies. Two
levels of same experiment are shown in this section. On the first level,
we applied five time-series anomaly detection algorithms in addition
to DeepAnT, on 20 NAB time-series from different domains. We picked
same time-series as mentioned in [225]. The algorithms are evaluated
on the basis of precision and recall. On the second level of this ex-
periment, we have done the detailed analysis of 11 algorithms and
compared them with DeepAnT on all the NAB data sets. The evaluated
algorithms include Twitter AD (Twitter ADVec), context OSE, Skyline,
Numenta, Multinomial Relative Entropy [247], Bayes changepoint de-
tection [1], EXPoSE [214], and simple sliding threshold. All of these al-
gorithms are used in same settings and with same parameters as men-
tioned in [4]. Ahmad et al. [4] have done extensive parameter tuning
for each algorithm and used the optimal parameters. We have used
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F-score for this detailed evaluation so that an overall performance of
an algorithm can be reported. We are not reporting NAB score here
because we want to evaluate an algorithm on the basis of the number
of detected and rejected anomalies and the other arguments made
in [225]. Since NAB benchmark consists of multiple time-series from
different domains, we have reported the mean F-score per domain.

5.3.3 Results

Table 5.3 shows results of the first level of our NAB experiment. In
most of the cases, high precision is followed by low recall. The main
reason of such low recall is the labeling mechanism used in the NAB
data set. It can be observed in this table that each algorithm is ca-
pable of achieving the precision close to 1, but recall stays in be-
tween 0.001 — 0.36. In such cases, algorithms detect T —4 anomalies
out of 346 — 401 anomalies. Whereas, DeepAnT gives relatively better
recall with equivalent precision as other algorithms (e.g., ec2-request-
latency-system-failure, speed-t4013). Table 5.4 shows mean F-scores
of a wide range of algorithms on the whole NAB data set that repre-
sents the results of second level of this experimental setting. It can
be noted here that DeepAnT outperforms other algorithms with signif-
icant margin. DeepAnT is 2 — 13 times better than the best performing
algorithm for different domains in the NAB data set.

5.4 EXPERIMENTAL SETTING-III
5.4.1 Data set

In this experimental setting, we have used 7 real and 1 synthetic data
sets (mentioned in Table 5.5) that are most commonly used in clas-
sic anomaly detection settings. These multi-variant data sets are ex-
plained in Section 3.5.2. Each data set consists of different number
of features and varying percentage of anomalies. Known anomaly
cases are marked as ground truth in these data sets. We have removed
all non-continuous attributes as done in [86, 165]. Data properties of
these data sets are shown in Table 5.5. The number of features and
anomaly percentage varies significantly between these data sets. The
target class (anomaly) of each data set is also given in this table.

5.4.2 Evaluation Metric and Experimental Setup

For the evaluation of different anomaly detection algorithms and
the DeepAnT, ROC-AUC measure has been utilized in this experimen-
tal setting. ROC-AUC is used most commonly for reporting results of
anomaly detection techniques for mentioned data sets. The evalua-
tion is done in a semi-supervised fashion. In a semi-supervised set-
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5.5 EXPERIMENTAL SETTING-IV

Table 5.5: Data properties of the used anomaly detection benchmarks.

Data set No. of No. of Anomaly Class Anomaly
Instances  Features Percentage
Shuttle 49097 9 classes # 1 (class 4 removed) 7%
Pima 768 8 pos 34.9%
ForestCover 286048 10 class 4 (vs. class 2) 0.96%
Ionosphere 351 32 bad 36%
Http 567497 3 attack 0.39%
Smtp 95156 3 attack 0.03%
Mulcross 262144 4 2 clusters 10%
Mammography 11183 6 class = 1 2%

ting (also known as novelty detection [86]), training data consist of
only normal data. In this setting, all the anomalies from the training
set are removed in a pre-processing step.

We compare the results of three state-of-the-art anomaly detection
methods, iForest, OC-SVM, and LOF with DeepAnT on the aforemen-
tioned data sets. For the model-based methods (iForest, OC-sVM, and
DeepAnT), 40% of the actual data are used for training and rest for
testing. To train iForest model, we have used the default parameters
ie.p =128 and t = 100, as suggested in [165]. For OC-SVM, we have
used Radial Basis Function (RBF) kernel. Commonly used setting of
k = 10 is applied for LOF. For DeepAnT, history window of 2 is used,
with the rest of the parameters being intact.

5.4.3 Results

Evaluation results of semi-supervised or novelty detection setting are
shown in Table 5.6. DeepAnT shows best AUCs for most of the used
data sets. In novelty detection setting, OC-SVM is considered the best
method, but DeepAnT outperforms it in most of the data sets. These
results show that DeepAnT is capable of finding anomalies in multi-
variant data set too.

5.5 EXPERIMENTAL SETTING-IV
5.5.1 Discord Detection

In the previous sections, we have shown that DeepAnT has the capa-
bility of detecting point anomalies as well as contextual anomalies
in streaming and non-streaming data. In this section, we show that
DeepAnT is also capable of detecting time-series discord. Time-series
discords are sub-sequences of a longer time-series, that are different
from rest of the sub-sequences [140]. Discords are considered as the
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Table 5.6: Comparison of the state-of-the-art anomaly detection methods in
semi-supervised (novelty detection) setting. DeepAnT performs
best in most of the cases (best AUC in bold).

iForest OC-SVM  LOF  DeepAnT

Shuttle 0.98 0.99 0.56 0.99
Pima 0.40 0.26 0.48 0.31
ForestCover 0.78 0.70 0.57 0.85
Ionosphere 0.82 0.84 0.83 0.85
Http 0.98 0.99 0.42 0.99
Smtp 0.80 0.67 0.41 0.75
Mulcross 0.99 0.99 0.59 0.99
Mammography 0.85 0.89 0.72 0.99

anomalous sequences in a time-series. For this experiment, we have
picked NASA space shuttle valve data set [74] that is explained in Sec-
tion 3.5.2. In this data set, some sub-sequences are normal whereas
few are abnormal. We have down sampled this data set by 70% to
show that time-series discord can be detected on far less data us-
ing CNN. Normal sub-sequences are shown in blue highlighted area
in upper plot of Figure 5.7, whereas, the abnormal sub-sequence is
shown in red highlighted area (to the right of the plot). Each sub-
sequence is separated by a blue vertical line in this figure. Instead of
extracting all the sub-sequences and converting them to some sym-
bolic representation (as done in [140]), we simply train our predictor
model on normal time-series. Same DeepAnT architecture and param-
eters are used here except the history window and the horizon. On a
given test time-series, the DeepAnT predictor tries to predict the whole
sub-sequence. By aggregating the anomaly score calculated at each
timestamp (shown in bottom plot of Figure 5.7) of a sub-sequence,
an anomaly score of whole sub-sequence is calculated. Based on the
threshold applied to a sub-sequence anomaly score, discord is de-
tected. In addition to the discord detection, the behavior of actual
time-series that actually caused the discord can be detected using
DeepAnT. It can be seen in the red highlighted area of the bottom plot
that the anomaly score of the corresponding abnormal behavior is
much higher that actually caused the discord.
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(a) Time Series
Subsequences

(b) Anomaly Score

| L 1
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Figure 5.7: DeepAnT can also be used to detect time-series discords. Nor-
mal sub-sequences of a time-series are highlighted in blue color
in plot (a), whereas, sub-sequence highlighted in red color
is a discord. Lower plot (b) shows corresponding point-wise
anomaly score of a sub-sequence, which is accumulated (per sub-
sequence) to detect a discord.
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FUSION OF STATISTICAL AND DEEP LEARNING
FOR ANOMALY DETECTION

In the current era of smart and connected devices, the sensors in IoT
devices are continuously generating streaming data that can be an-
alyzed to a) monitor the device health, b) foresee the problems that
could arise in the device, and c) make the device intelligent by adapt-
ing to varying behaviors. Nowadays, common use of the streaming
data is to detect the anomalies in a system for fault diagnosis and
predictive analytics [19, 36, 155, 181]. The connected devices are gen-
erating a large amount of data per second, so it is nearly impossible to
analyze them manually. Therefore, it is vital to have a robust anomaly
detection technique for streaming data.

Considering the importance of anomaly detection and its wide area
of applicability, there exists a lot of methods for anomaly detection
in general [31, 89, 165, 206] and for streaming data in specific [138,
155, 157, 185]. In the context of streaming data, different methods
have shown their supremacy over other methods for a particular set
of use-case. However, no such method exists that can be deployed
in every use-case [41]. Statistical models have proved to be quite
effective in some areas for anomaly detection, while deep learning-
based anomaly detection techniques have shown promising results
in other domains. Each technique has its own advantages and limita-
tions. Nowadays, much of the research is focused on deep learning-
based approaches, whereas statistical models are widely accepted in
a practical environment i.e. in industry, specifically due to their trans-
parency. Both techniques are well suited for anomaly detection, but
the choice of determining a technique depends on the use-case and
the type of data. To fill this gap of picking ‘one” model for a specific
use-case and to increase the accuracy of the detected anomalies, we
propose a fusion technique — Fusion of Statistical and Deep Learning
for Anomaly Detection (FuseAD). This technique is based on the idea
of fusing statistical and deep learning models for anomaly detection.
By combining these two disjoint worlds as of now, we can profit from
both. The main advantage of such a fusion is that where one model
is weak, the strength of other model plays its role and improves the
overall process of anomaly detection. In particular, the contributions
of this chapter are as follows:

¢ A novel fusion method for combining deep learning-based and
statistical model-based anomaly detection techniques is pro-
posed. In contrast to the ensembling based anomaly detection

This chapter is an adapted version of the work published in [184].

The streaming data
can be analyzed for
multiple purposes

Combining two
disjoint worlds
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methods in which one out of different forecasting results is
picked based on the lowest error, the proposed residual scheme
lets the network learn itself how to produce the best forecast-
ing outcome based on two different kinds of models. In addi-
tion, the fusion mechanism enables the network to complement
the strengths of the underneath two disjoint models by fusing
the information encapsulated in them. As a result, the fused
network performs better in such cases where a single model is
unable to produce good results.

e Extensive evaluation of different distance-based, machine
learning-based, and deep learning-based anomaly detection
methods including iForest [165], OC-svM [8, 169], LOF [31],
PCA [220], Twitter AD [138], DeepAnT [185], Bayes ChangePT [1],
Context OSE [4], EXPoSE [214], HTM Java [4], Numenta [157],
Relative Entropy [247], Skyline [4], and Windowed Gaussian [4]
on 11 anomaly detection data sets is provided. These data sets
contain in total 425 time-series.

* An ablation study is provided in order to identify the contri-
bution of the different components in FuseAD. In this study, we
highlight the significance of using the fused model by compar-
ing the results with each individual model.

6.1 LITERATURE REVIEW

Generally, for streaming data, the anomaly detection methods consist
of two modules; a value at the next timestamp is forecasted first and
then it is compared with the actual value to mark the data point as
normal or anomalous [32, 185]. In most of traditional anomaly detec-
tion cases [256, 260], the forecasting module is based on ARIMA, that

Traditional methods is a generalization model of ARMA [250]. It consists of three compo-
nents, i) the Auto-Regression part uses the dependent relation between
an observation and prior (lagged) values, ii) the Moving Average part
incorporates the dependency between an observation and a residual
error from a model applied to lagged observations, and iii) the Inte-
grated part represents the difference between the observed values and
the previous values.

With the rapid increase in the applicability of ANN in different do-
mains like automotive [137], government [238], health [55], security &
surveillance [151]; more deep learning-based anomaly detection tech-
niques are being introduced. Malhotra et al. [173] introduced LSTM-
based anomaly detection technique for time-series data. They train
stacked LSTM on non-anomalous data and use it as a predictor over
different timestamps. The prediction errors are further modeled to
access the likelihood of anomalous sequences. Chauhan and Vig [46]
also proposed a similar approach based on deep LSTMs. The anoma-
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lous pattern detection technique for multivariate clinical time-series
proposed by Lipton et al. [164] is also based on LSTMs. They have
shown in their study that a LSTM trained on raw data is superior to a
MLP trained on hand engineered features. Zheng et al. [268] proposed
a CNN-based approach for multivariate time-series classification prob-
lem. Each channel of the proposed multi-channel deep CNN learns
features individually when multivariate data is presented and classi-
fies it as a normal or anomalous sequence. We have also proposed a
CNN-based anomaly detection technique for time-series data in Chap-
ter 5. In the area of network monitoring, Lopez-Martin et al. [168] in-
troduced a method for network traffic classification. They combined
LSTM and CNN models to better classify the network sequences with-
out providing any hand engineered features. In order to apply CNN
to time-series data, they proposed an approach to render the data
as an associated pseudo-image. In contrast to all the aforementioned
DNN-based anomaly detection techniques, DeepAnT detects point and
contextual anomalies. It is relatively difficult to precisely detect point
anomalies in streaming data as compared to the traditional classifi-
cation of a sequence into normal or abnormal class because of the
presence of seasonality and trend.

Du et al. (2017) [69] introduced a method for network fusion, in
which they fuse together the soft metrics from different networks
to generate the final confidence score. However, their approach is
not directly applicable in our case where we aim to fuse a statisti-
cal model and a deep learning model to get benefit from the two
different approaches. The anomaly detection technique proposed by
Buda, Caglayan, and Assem [32] is merging the predictions from dif-
ferent LSTMs models and statistical models in the forecasting module.
They proposed two approaches for merging the results of time-series
forecasting. In the Single-step merge, each model forecasts the next
value and the forecasted value with the lowest Root Mean Square
Error (RMSE) is selected. In Vote merge, the best forecasting model
is voted based on the training data. In their approach, each model
works independently, and the best forecast is selected from a number
of models. However, this is not the case in the technique that we pro-
pose in this chapter. In FuseAD, a network learns itself how and when
to fuse the statistical and deep learning forecasting to generate the
best forecasting results.

6.2 METHODOLOGY

In this section, we explain the two forecasting models from the sta-
tistical and deep learning domains that we have selected for fusion
in the presented technique. ARIMA and CNN forecasting models are
building blocks of the proposed FuseAD and combined in such a way
that both complement each other. These two models are used to fore-
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Actual time-series

Forecasted time-series Anomaly labels
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Figure 6.1: FuseAD overview: The system consists of two modules, Forecast-
ing Pipeline and an Anomaly Detector.

cast the next timestamp in a given time-series. The forecasted value
is further passed to an anomaly detector module that marks a data
point as normal or anomalous.

6.2.1 Statistical Model: ARIMA

ARIMA is a well-known and widely used statistical technique for time-
series forecasting [122]. We used ARIMA as our statistical model since
it has been employed successfully for a wide range of use-cases in
Used widely in industry to handle time-series regression tasks [52, 54, 95]. To get
industry for — best out of the ARIMA model, it is important to find the right set
regyi;’:i;se;sz of parameters for a given time-series. Non-seasonal ARIMA models
are denoted as ARIMA(p, d, q), where p, d, and q are non-negative
integer parameters. Lag order (p) is the number of lag observations
included in the model, degree of differencing (d) is the number of
nonseasonal differences needed to make the series stationary, and
moving average window size (g) is the number of lagged forecast
errors in the prediction. Other details related to ARIMA can be found
in Section 3.4.1.

6.2.2  Deep Learning-based Model: CNN

CNN has proved its superiority over other ANN variants in many
computer vision applications [146] and also in time-series anomaly
detection applications [185]. The CNN model used in this study is
composed of 2 convolutional layers, where each convolutional layer
Proved superiority is followed by a max-pooling layer. Finally, the output is generated
in many research through a fully-connected layer producing continuous valued out-
and practical puts. The network is trained through MAE as the loss function since
e the output is real-valued. We keep the architecture simple with a min-
imal number of parameters in order to make sure that the network
can be successfully constrained to a reasonable solution with a very
limited amount of data, which is a common case in publicly available
time-series data sets. CNN is commonly used as a directly forecasting
model. This formulation can be represented as:
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Figure 6.2: FuseAD forecasting pipeline.

ﬁt = (D([Xt_w,...,th]]) (61)

where @ ([xt_, ..., xt—1]) indicates the output of the network and %
indicates the output of the system that are same in this case. In Equa-
tion 6.1, w is the size of history window. Therefore, the network learns
a mapping from the input space X to the output space Y.

6.2.3 FuseAD: The Proposed Method

The proposed technique consists of two modules as shown in Fig-
ure 6.1. First module is called Forecasting Pipeline: actual time-series
is fed into this module and it generates a forecasted time-series. This
forecasted time-series is further passed to an Anomaly Detector mod-
ule, that is responsible for detecting anomalies. Based on the fore-
casted time-series and the actual time-series, Anomaly Detector marks
each timestamp as normal or abnormal. Both modules are discussed
in detail in this section.

6.2.3.1 Forecasting Pipeline

Instead of using both statistical and deep learning-based models
in isolation, we combine these models in a novel residual learning
scheme as shown in Figure 6.2. This enables the system to comple-
ment each other’s strengths by using the information encapsulated
in the other system. In this formulation, instead of treating the CNN
as a mapping from the input space X to the output space Y, we con-
sider it to be a mapping from input space X to an intermediate space
Z € R. We then add an offset (the output of ARIMA) to transform it
back to the output space Y.

The new formulation, therefore, is a mixture of the two models
in a residual scheme. We simply augment the output of the CNN by
introducing a summation layer in the end. In this way, the output
of CNN can be considered as a correction term for the output of the
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ARIMA model. In a case where the output of ARIMA is accurate, CNN
can suppress its output in order to retain the prediction made by
ARIMA. On the other hand, when the prediction is significantly off,
the network can generate large offsets in order to compensate for the
error made by the ARIMA model. In this way, the network itself can
decide its reliance on the output of ARIMA during training to adapt
its behavior so as to overcome its limitations. The new formulation
can be written as:

R = O (Xt oy oo Xt 15 %)) %, (6.2)

where x; indicates the output from ARIMA, @ ([X¢—y, ..., X¢—1 ;x;]) in-
dicates the output of the CNN network and % indicates the output of
the whole forecasting pipeline. It is important to note that we condi-
Correction term tion the output of CNN on the output of ARIMA. This step is essential
as we want to generate an offset or a correction term to the predic-
tion made by ARIMA, therefore, the network should have access to the
prediction made by ARIMA.

There can be many possible strategies to achieve this conditioning.
We resorted to the easiest possible formulation by directly stacking
the prediction of ARIMA in a different channel to the actual signal.
This enables the network to keep in consideration the conditioning
Single-step ahead term at every point in the sequence. This conditioning strategy might
forecasting - be problematic for cases where multi-step-ahead prediction is desired,
however, we restrict ourselves to single-step-ahead forecasting that is
required for anomaly detection scenarios. This is an unsupervised
learning technique that can benefit from a large amount of unlabeled
data. Instead of ARIMA and CNN, other statistical and deep learning-

based forecasting models can also be used to make predictions.

6.2.3.2 Anomaly Detector

When the forecasting model generates a prediction, it is passed to the
anomaly detection module. Based on the anomaly score produced by
this module, a timestamp is marked as a normal (0) or an abnormal
(1) instance. The anomaly score (shown in the lower plot of Figure 6.3)
is computed based on the distance between the predicted value and

Euclidean distance the actual value. We use Euclidean distance (as mentioned in [185])
given in Equation 6.3 as an anomaly score.

(xt,R¢) =1/ (x¢ —R¢)? (6.3)

where x; is the actual value and X is the predicted value by the
system computed using Equation 6.2.
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Figure 6.3: Forecasting and anomaly detection results of FuseAD on TS11
time-series from Yahoo A3 data set. The upper plot shows ac-
tual time-series and forecasting results on test data, whereas the
lower plot shows anomaly score at each timestamp. Anomaly la-
bel (i.e. 1) is assigned to data points that have a high anomaly
score.

6.3 EXPERIMENTAL SETTING-I
6.3.1 Data set and Experimental Setup

In this experimental setup, 4 Yahoo Webscope data sets namely, Ya-
hoo Webscope A1, Yahoo Webscope A2, Yahoo Webscope A3, and
Yahoo Webscope A4 are used. Details of these data sets are given in
Section 3.5.2.

We have used Auto ARIMA [122] to get the best ARIMA model for
forecasting, as ARIMA requires data specific tuning to obtain the best
results. Since each time-series has a different trend, change point, and
seasonality, we tune the ARIMA model separately for each time-series.
ARIMA model with a different set of parameters is tuned on 40% of a
time-series, and the best model is selected based on the lowest Akaike
Information Criterion (AIC) value. The best model is used to make a
single-step-ahead (horizon of 1) forecast on the rest of the 60% data.
For CNN-based forecasting, we have used the same hyperparameters
as mentioned in Chapter 5. Same 40/60 data split is used here as used
for the ARIMA model.

We have used area under the ROC curve (ROC-AUC) to provide an ag-
gregated measure of the used models’ performance. AUC value near
to 1 represents a good measure of separability. Average AUC per Ya-
hoo Webscope data set is reported as each data set contains multiple
time-series.
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Figure 6.4: Zoomed-in plots of two out of three anomalies detected in Fig-
ure 6.3. It shows that FuseAD is capable of correctly detecting
point anomalies in streaming data where traditional anomaly de-
tection methods fail normally.

Table 6.1: Comparative evaluation of state-of-the-art anomaly detection
methods on the Yahoo Webscope data set. Average AUC per sub-
benchmark is shown in this table.

’ Data set ‘ iForest [165] ‘ OCSVM [169] ‘ LOF [31] ‘ PCA [220] ‘ TwitterAD [138] ‘ DeepAnT [185] ‘ FuseAD ‘

Al 0.8888 0.8159 0.9037 0.8363 0.8239 0.8976 0.9471
A2 0.6620 0.6172 0.9011 0.9234 0.5000 0.9614 0.9993
A3 0.6279 0.5972 0.6405 0.6278 0.6176 0.9283 0.9987
A4 0.6327 0.6036 0.6403 0.6100 0.6534 0.8597 0.9657

6.3.2 Results

Figure 6.3 shows the forecasting and anomaly detection results of
FuseAD on a sample time-series from the Yahoo Webscope A3 data
set. In the upper plot of this figure, the actual time-series is shown in
blue, whereas the predictions are superimposed in orange. It can be
seen in this plot that the network is able to learn the time-series trend
and cycles. In the lower plot of this figure, anomaly score per times-
tamp is given. FuseAD detected three instances with a high anomaly
The proposed method score (peaks in lower plot) in the mentioned time-series. The zoomed-
precisely detects in plots of two of the detected anomalies (of Figure 6.3) are shown in
point anomalics Figure 6.4. In these plots, the normal behavior learned by the model is
predicted per timestamp, that deviates from the observed behavior at
index 350 and 641 respectively. It is clear from these zoomed-in plots
that FuseAD is able to precisely detect point anomalies that are oth-
erwise easily overlooked by traditional distance-based and density-
based anomaly detection methods in time-series data. We have com-
pared the ROC-AUC of FuseAD with other state-of-the-art anomaly
detection methods including LOF [31], iForest [165], OC-SVM [169],
PCA [220], Twitter AD [138], and DeepAnT [185] on Yahoo Webscope
data sets. Table 6.1 compares the average AUCs of FuseAD with the
mentioned methods. It can be seen in this table that FuseAD has out-
performed the other methods.
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Figure 6.5: Snippets of NAB data sets from different time-series. Actual time-
series are shown in blue, whereas the highlighted area shows an
anomaly window. (a) Real Tweets (Twitter_volume_AMZN), (b)
Artificial With Anomaly (art _increase_spike_density), (c) Real
Ad Exchange (exchange-3_cpm_results), (d) Real Traffic (Travel-
Time_451_whole).

6.4 EXPERIMENTAL SETTING-II
6.4.1 Data set and Experimental Setup

NAB data sets are used in this experimental setup. There are 2 syn-
thetic and 5 real NAB data sets, namely Artificial no Anomaly (Arti-
ficial nA), Artificial with Anomaly (Artificial wA), Real Tweets (Real-
Tw), Real Traffic (Real-Tr), Real Known Cause (Real-KC), Real Ad Ex-
change (Real-AdE), and Real AWS Cloud Watch (Real-AWS). Details
of these data sets are given in Section 3.5.2. There are total 58 time-
series in these data sets, where each sequence is comprised of 1000
- 22000 instances. The snippets of few time-series are shown in Fig-
ure 6.5. Actual time-series is shown in blue, whereas the highlighted
region shows anomaly labels.

We have used 40% of each time-series of these data sets to train
FuseAD in the same fashion as it is done for Yahoo Webscope data
sets. We compared FuseAD with 9 other anomaly detection methods
for the evaluation. The results of all the algorithms are reported on
60% of the actual time-series (test data).

For this experimental setup, we have used ROC-AUC to provide an
aggregated measure of the used models” performance. Average AUC
per NAB data set is reported as each data set contains multiple time-
series.
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Table 6.2: Comparative evaluation of anomaly detection methods on the
NAB data set. Average AUC per domain is reported here. Bold
numbers show highest AUC in a particular domain.
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Artificial- | o500 | 0316 | 05144 | 0653 | 0531 | 0505 | 0558 | 0503 | 0406 | 0555 | 0544
wA

Real-AdE 0.509 0.307 0.581 0.568 0.576 0.505 0.534 0.504 0.538 0.562 0.588

Real-AWS | 0499 | 0311 | 0594 | 0587 | 0542 | 0506 | 0.602 | 0503 | 0.614 | 0583 | 0572

Real-KC 0.501 0.486 0.533 0.584 0.590 0.503 0.610 0.504 0.572 0.601 0.587

Real-Tr 0.507 0.310 0.613 0.691 0.679 0.508 0.556 0.505 0.553 0.637 0.619

Real-Tw 0.498 0.304 0.594 0.549 0.586 0.500 0.559 0.505 0.560 0.554 0.546

6.4.2 Results

Table 6.2 shows comparative results of FuseAD and other streaming
and kernel-based anomaly detection methods on NAB data sets. Aver-
age AUC per domain is reported for each anomaly detection method.
We have used DeepAnT [185], Bayes ChangePT [1], Context OSE [4],
EXPoSE [214], HTM Java [4], Numenta [157], Relative Entropy [247],
Skyline [4], Twitter AD [138], and Windowed Gaussian [4] anomaly
detection methods for the comparison. It can be observed in this ta-
ble that there is no single anomaly detection method that outperforms
others. There is high variance in the performance of every method on
different data sets, where the average performance of every method

No clear winner is close to random guess. It is not because any of these methods are
not capable of detecting anomalies in streaming data, but due to the
poor labeling mechanism used in the NAB data sets. It can be seen in
Figure 6.5(b) and Figure 6.5(c) that there is a small number of data
points that are actually anomalous, but NAB labeling mechanism has
labeled all the data points in an anomaly window as anomalous data
points. Most of the data points in these windows are apparently nor-
mal. On the other hand, there are no anomalous data points in the
anomaly windows shown in Figure 6.5(a) and Figure 6.5(d), whereas
the actual anomalous data points are not labeled as anomalous. Due
to these issues and other issues mentioned by Singh and Olinsky
[225], it is hard for an anomaly detection method to have high AUC
under these conditions. Most of the methods end up in random de-
tection of anomalies for the NAB data sets.



65 ABLATION STUDY

Table 6.3: Ablation study on the Yahoo Webscope data set.

Al A2 A3 A4
ARIMA v v v v v v v v
CNN v v v v v v v v
AUC 0.920 0.936 0.947 0.999 0.999 0.999 0.992 0.986 0.998 0.949 0.928 0.965

6.5 ABLATION STUDY

We performed an ablation study on FuseAD framework in order
to identify the contribution of different components in the overall
pipeline. FuseAD combines the statistical model — ARIMA, and the deep
learning model — CNN, in a novel residual scheme. This combined
prediction is fed to the anomaly detection module that decides if an
instance is normal or abnormal. In the ablation study, we remove one
of the forecasting modules i.e. either the CNN or the ARIMA model to
check the influence of that model on the overall anomaly detection
process.

We first remove the CNN from the formulation presented in Equa-
tion 6.2. This leaves the final prediction to only rely on the prediction
made by the forecasting model. Therefore, the new formulation be-
comes:

Ry = x; (6.4)
where x, represents the prediction made by the statistical model and
%¢ represents the overall output of the system. Similarly, we remove
the ARIMA model from the original formulation (Equation 6.2). In this
case, CNN learns the complete input to output space projection. This
formulation can be written as:

R = O([xe—w) oo Xt —1]) (6.5)

where @ ([xt_w,...,xt—1]) represents the prediction made by the net-
work and X represents the overall output of the system. We also
remove the conditioning term since there is no statistical model avail-
able in this case. This formulation is exactly the same as the one from
Equation 6.1 where we trained a CNN for forecasting except the pres-
ence of the FuseAD anomaly detection module in the end.

We use the same data splits as used by FuseAD for training the
respective model, in order to have a fair comparison. The results from
the ablation study on the Yahoo Webscope data sets are presented in
Table 6.3. It is apparent from the table that a novel combination of the
components leveraged by FuseAD significantly improves performance
in most of the cases. The results from the ablation for NAB data sets
are presented in Table 6.4. As evident from the table, the results are
again chaotic due to the poor quality of the data set itself.

To highlight the importance of fusing statistical and deep learn-
ing models, comparative analysis of FuseAD based on the ablation
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Table 6.4: Ablation study on the NAB data set.

Arﬁf:a' Artifical-wA Read-AdE Real-AWS Real-KC Real-Tr Real-Tw
-n.

ARIMA | v V| v v | v v | v v | v v | v v | v v
CNN Vv v | v v | v v | v v | v v | v v | v
AUC |00 0]049]053]0.54]0.56]0.58 058055058 |057|050]0.60]0.58]0.58]0.61]0.61]0.55]0.55]054

study are shown in Figure 6.6 on two different time-series from Ya-
hoo Webscope data set. First, we remove the CNN forecasting model
from FuseAD and show anomaly detection results generated by the
ARIMA model (first column). Then, we remove the ARIMA forecasting
model, which means only the CNN model is used for forecasting in
FuseAD (second column). Finally, we use both forecasting models in
actual FuseAD setting (third column). In this figure, actual time-series
are shown in blue, whereas predictions are superimposed in orange.
To highlight the detected anomalies and the performance of differ-
ent models, true positives are shown in green, false negatives in blue,
and false positives in red vertical lines. We use the same parameters
as mentioned in [185] to detect anomalies and calculate F-score (men-
tioned in Figure 6.6). It can be observed in these plots that in both
ARIMA plots, all of the anomalies are not detected (false negative) and
Reduced number of there are many false alarms (false positive) too. In ARIMA cases, the
false alarms in false alarms are given just after the actual anomalous data point (nor-
FuseAD mally 1 - 2 indexes), that shows that the forecasting is not very robust
when there exist cycles and trends. In CNN plots, there are no false
alarms, but there exist false negatives. FuseAD results presented in this
figure show that an anomaly which is not detected by using a model
in isolation is detected by fusing both models. By learning from both
models, the number of false alarms is also reduced in FuseAD.
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Figure 6.6: Comparative analysis of FuseAD and anomalies detected by
ARIMA and CNN models on two Yahoo Webscope time-series.
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COMPARATIVE STUDY OF TRADITIONAL AND
DEEP LEARNING-BASED ANOMALY DETECTION

Anomaly detection is an old research topic and a lot of advancements
have been made in this area. There are two main modalities in which
this wide research area can be divided: image-based and non-image-
based. The notable modality is the image-based, in which it is easy to
highlight a detected anomaly and most of the research studies are
available for this modality. However, in the current era of the IoT
and manufacturing advancement, where each device is connected to
the internet and generating a bulk of data, non-image-based modal-
ity or time-series modality is also getting prominent for quite some
time. Recent amplification in the usage of internet-enabled devices
has created a high demand for robust anomaly detection methods
for streaming sensor data. The presence of the intrinsic characteris-
tics of a sensor-based streaming data makes the process of robustly
detecting and representing anomalies hard.

Vital developments in the area of DNN have proved them to be
a very good option for most of the classification and regression
problems [149]. There exist different deep learning-based and tradi-
tional approaches for anomaly detection, but their direct comparison
on non-image streaming data is missing in the literature. Generally,
when a new algorithm is proposed, it is reported in a particular set-
ting and for a specific data set. Each method has its strengths and
weaknesses. However, no such method exists that can be deployed in
every use-case [41].

The focus of this study is to draw a comparative analysis for most
commonly used traditional and deep learning-based anomaly detec-
tion methods for non-image streaming data. Given the superiority
of DNNs in many recent studies, we hypothesize that DNN-based
anomaly detection algorithms may outperform commonly used tra-
ditional methods on streaming data. We analyze these methods to
find out if there is any benefit in using deep learning for anomaly
detection or the same results can be achieved using traditional meth-
ods? Also, this study will help in deciding for which type of data set
it is beneficial to use deep learning-based methods.

7.1 LITERATURE REVIEW

Recently, DNN-based approaches have enjoyed significant attention,
owing to their amazing performance in various domains. Hence, it

This chapter is an adapted version of the work published in [182].

Modalities of
anomaly detection

There exist no silver
bullet that works for
every use-case

Focus of study
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is no surprise that there has been an increase in DNN-based methods
for anomaly detection as well. Chalapathy and Chawla [41] provides
a review of DNN-based methods for anomaly detection employed in
Deep learning-based different application scenarios. Techniques reviewed in their study
methods include both image as well as time-series domains with applications
ranging from fraud detection, intrusion detection to medical anomaly
detection and video surveillance. Although, their survey provides a
comprehensive review of DNN techniques, there is no comparative
analysis of DNN-based techniques with traditional anomaly detection
techniques. Similarly, Chandola, Banerjee, and Kumar [42] provides
a comprehensive survey of anomaly detection techniques comprising
not only of methods based on simple machine learning, like cluster-
ing and nearest neighbours, but also based on statistical approaches
and information theory with a diverse range of applications. Again,
there is no comparative study among the techniques discussed in
the article. Blazquez-Garcia et al. [25] provided a review study on
anomaly detection specifically for time-series data. They have pro-
vided anomaly detection methods review on both uni-variant and
multi-variant time-series, albeit without any experimental results
Goldstein and Uchida [9o] provides a comparative study of dif-
ferent anomaly detection techniques for a range of different data
sets. Although this study does compare different techniques on the
same data sets to give a better comparison, it primarily focuses on
multivariate tabular data and does not incorporate recent DNN-based
Comparative studies anomaly detection approaches. Similarly, Gupta et al. [99] have per-
formed an extensive survey on outlier detection techniques for tem-
poral data. Their study provides an extensive overview of different
techniques employed in multiple temporal data sets, but it lacks
DNN-based techniques and their comparative analysis. Similarly, Ki-
ran, Thomas, and Parakkal [144] provides a review of DNN-based ap-
proaches for anomaly detection in videos. Adewumi and Akinyelu [2]
provides a comprehensive survey of DNN-based approaches in the do-
main of fraud detection. Similarly, Hodge and Austin [115] provides
an extensive survey on statistical and some of the earlier machine
learning-based outlier detection methodologies. A similar work is re-
cently presented by Braei and Wagner [30] in which they have pro-
vided a quantitative evaluation on five data sets based on three eval-
uations metrics. Whereas, in our study, we have evaluated anomaly
detection methods on 10 data sets based on 4 evaluation metrics.
Most of the surveys in the literature are general in nature that span
over techniques that are proposed for different problems. Moreover,
most of the review articles lack quantitative comparison that can de-
termine the performance of a method. In this study:

* A wide range of distance-based, density-based, kernel-based,
cluster-based, and DNN-based anomaly detection methods
have been evaluated. The total number of methods is 13.
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Figure 7.1: Sample time-series from Yahoo Webscope data sets. Actual
streaming data are shown in blue, whereas red vertical lines are
anomalous data points based on the provided labels.

¢ To analyze the anomaly detection methods from different per-
spectives, we used the following evaluation metrics: Precision
@ Rank n (P@n), ROC-AUC, Area Under Precision-Recall (PR) curve,
and Inference Time.

7.2 EXPERIMENTAL SETTING
7.2.1 Data sets

We have selected time-series data sets from Yahoo Webscope and NAB
benchmarks, that are already labeled by the publishers. There are to-
tal 10 real and synthetic data sets, namely Yahoo Webscope A1, Ya-
hoo Webscope A2, Yahoo Webscope A3, Yahoo Webscope A4, Artifi-
cial with Anomaly, Real Tweets, Real Traffic, Real Known Cause, Real
Ad Exchange, and Real AWS Cloud Watch that consist of 425 time-
series. Details of these data sets are given in Section 3.5.2. Examples of
time-series from Yahoo Webscope data sets are shown in Figure 7.1.
In these figures, red vertical lines represent the labels of anomalies.
Figure 7.1a and Figure 7.1b have random point anomalies, whereas,
Figure 7.1c and Figure 7.1d have changing trends with pre-specified
seasonalities. Figure 7.2 shows sample time-series from NAB data sets.
In these figures, red highlighted areas represent the anomaly window.
Details of these data sets are given in Section 3.5.2.
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Figure 7.2: Sample time series from different NAB data sets. Actual stream-
ing data are shown in blue, whereas the highlighted area shows
anomaly window.

It is important to mention that only the data sets that have time-
series characteristics and contain point and contextual anomalies are
used in this study. There exists a lot of other data sets [38] that are
converted to time-series from image and signal domains (e.g. Breast
Cancer Wisconsin [38]). Such data sets are generally used for time-
series classification, that is not the scope of this study.

7.2.2  Experimental Setup

The initial 40% of a time-series is used to build a DNN model and
the rest of 60% for testing. For the distance-based and density-based
anomaly detection methods that do not require a training process, we
have only used 60% of the data for consistency and fair comparison
with deep learning-based methods. Since all data sets consist of mul-
tiple time-series for a particular domain, the presented results are av-
eraged per data set. We have selected the following algorithms for the
evaluation: i) kNN Anomaly Detection [10], ii) LOF [31], iii) COF [231],
iv) LOCI [194], v) iForest [166], vi) OC-SVM [215], vii) PCA [220], viii)
HBOS [89], iX) XGBOD [266], X) AE [267], Xi) XGBoost [47], Xii) DeepAnT
[185], xiii) FuseAD [184]. All these anomaly detection methods are ex-
plained in Chapter 3, 5 and Chapter 6. For all the anomaly detection
methods used for evaluation, the default settings mentioned in [267]
are used, except for DeepAnT and FuseAD. For these two methods, the
settings mentioned in Chapter 5 and Chapter 6 are used.
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7.2.3  Evaluation Metrics

To analyse the anomaly detection methods from different perspec-
tives, we have used following evaluation metrics:

® P@n
e Area Under ROC Curve (ROC-AUC)
¢ Area Under PR Curve

¢ Inference Time

7.3 RESULTS AND ANALYSIS

The comparative results of distance-based, density-based, kernel-
based, and deep learning-based anomaly detection methods on 10
streaming data sets are shown in Table 7.1 and Table 7.2. Important
evaluation metrics, the area under the ROC and PR curves are pro-
vided in Table 7.1, while the supporting metrics, P@n and inference
time are provided in Table 7.2. For the Yahoo Webscope data sets,
DNN-based anomaly detection methods are in lead by a clear margin
in the terms of ROC and PR curves. For Yahoo Webscope A1 and Yahoo
Webscope A2 data sets, kNN and LOF also show high ROC and perform
on par in terms of the PR curve as compared to deep learning-based
methods. It is mainly because of the relatively less complicated time-
series in these data sets, also the spikes are very sharp in these time-
series that are easily detected by distance-based methods. For Yahoo
Webscope A3 and Yahoo Webscope A4 data sets, DNN-based methods
are way ahead of the traditional methods in terms of both ROC and PR
curves. The presence of trends, seasonality, and change-points make
these data sets hard for traditional anomaly detection methods. These
time-series characteristics also cause low PR curve value in traditional
anomaly detection settings. DNN-based anomaly detection methods
showed around 29% improvement in the ROC as compared to the
best traditional anomaly detection method COF for Yahoo Webscope
A3 data set and 25% improvement for Yahoo Webscope A4 data set.
There are also noticeable improvements in terms of the PR curve for
Yahoo Webscope A3 and Yahoo Webscope A4 data sets that actually
shows the robustness of DNN-based methods in the streaming data.
The PR curve increased 34% in DNN-based methods as compared to
XGBoost for Yahoo Webscope A3 data set and 16% for Yahoo Webscope
A4 data set. In terms of P@n metric, the same improvement trend is
observed for DNN-based methods. For Yahoo Webscope A4 data set,
even an improvement of 50% in P@n is observed in DNN-based meth-
ods. One downside of using DNN-based anomaly detection methods
for this data set is a relatively high inference time. Although the in-
ference time of deep learning-based methods is on par or even better

111

Deep learning-based
methods are
generally in lead for
Yahoo Webscope data
sets



112 COMPARATIVE STUDY OF TRADITIONAL AND DEEP LEARNING-BASED ANOMALY DETECTION

than some statistical and distance-based methods, it is not the mini-
mum inference time. For the Yahoo Webscope data sets, PCA detects
anomalies in minimum time. In comparison with other traditional
anomaly detection methods, PCA performance is quite good. Its ROC,
PR curve, and P@n is on par with other traditional methods, but it
is far more superior than others in terms of producing results. LOCI
turns out to be a bad choice for anomaly detection because of its
moderate results and very high time complexity. Due to its high time
complexity, we are unable to report the results for all of the data sets.
The overall performance of all anomaly detection methods is not
very convincing on the NAB data sets. It is not due to the incom-
petence of these methods, but the labeling mechanism used in these
No clear winner for data sets. For these data sets, a mix performance of anomaly detection
NAB data set methods is observed. There is no clear winner for these data sets as all
methods perform on par. For some NAB data sets, DNN-based meth-
ods perform better in terms of ROC, whereas the traditional methods
perform better in terms of other evaluation metrics. For these data
sets, HBOS provides anomaly results in minimum time and kNN has
maximum P@n in most of the cases.
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Over the last decade, CNNs have made phenomenal strides in vari-
ous classification tasks using a wide array of input modalities. These
powerful algorithms have achieved impressive performance, often at
par with human experts, in many challenging natural scene image
recognition tasks [119, 207, 270] and even in sensitive and critical ap-
plication areas like medical image analysis for disease prediction [16,
73, 100, 198, 199]. These CNNs gained significant attention due to
their parameter efficiency, in contrast to other deep learning models
like densely connected MLPs, resulting in comparatively better gen-
eralisation performance. They are particularly powerful in analysing
visual modalities like images and videos [159] but have also proved
their worth in time-series analysis where they have been used for
classification [268] and anomaly detection [185] (as shown in Chapter
5)-

The fundamental principle behind conventional CNNs is to learn the
optimal combination of network parameters (weights and biases) that
can capture encoded representation of input training data. These con-
ventional CNNs use point-estimates to represent network parameters
and although they work astonishingly well in most image recognition
tasks, where they have large insatiable appetite for data [112]. Addi-
tionally, the softmax function tips the odds in favor of one class by
squashing classification probabilities for others. Therefore, it might
results in overly confident predictions even when the network is com-
pletely wrong. This compulsive behavior of traditional point-based
neural networks to always be relentlessly assertive in their prediction
raises serious concerns in many crucial application areas like med-
ical image analysis, security, autonomous driving, financial transac-
tions and IoT-based human health monitoring. Also, the very nature
of these point-based classifiers prohibits them to associate uncertainty
with their predictions, which is a highly desired characteristic of any
Al-based classifier.

Bayesian estimation introduces a probabilistic perspective to the
neural networks and addresses many shortcomings of traditional
point-based neural networks. It represents each parameter with a
probability distribution instead of a single point-estimate. As a result,
Bayesian neural networks are able to learn effectively from relatively
small amount of data and thus are fairly robust to over-fitting [218].
They can provide an inherent regularisation effect [227] by constrain-
ing the network parameters within a distribution instead of letting

This chapter is an adapted version of the work published in [15].
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them increase out of bound. Most importantly, Bayesian inference
can allow to estimate network’s uncertainty about any prediction.
However, a full Bayesian estimation over all network parameters is
computationally expensive and finding true posterior probability is
intractable. These limitations are normally addressed by employing
various tricks like Markov Chain Monte Carlo (MCMC) sampling [188]
and Variational Inference (V1) [133], or a combination of the two [209)],
to approximate the true posterior with a manageable distribution.
A CNN trained using Bayesian estimates for network parameters is
shown to lag its counterpart, trained using point-estimates, in terms
of classification accuracy [218, 219].

In this chapter, we recognize specific merits of each approach dis-
cussed above and combine them into a hybrid training paradigm.
This hybrid approach integrates deterministic CNNs, where each pa-
rameter assumes only one value. With probability driven Bayesian
CNNs, where each parameter may take any value drawn from a prob-
ability distribution characterized by a mean and a standard deviation.
This probability distribution is learned for each parameter during
training. The proposed hybrid training method provides an estimate
of uncertainty, using Bayesian classifier, without compromising on
classification accuracy owing to deterministic feature extractor. It also
captures maximum weight configurations from small data sets while
still remaining computationally manageable. The proposed approach
is tested on 13 different classification data sets including benchmark
image data sets, fine-grained medical image data sets and time-series
data sets. The proposed hybrid method is proved to be superior to
both fully deterministic and fully Bayesian CNN approaches in terms
of classification accuracy.

8.1 LITERATURE REVIEW

Conventional CNNs have demonstrated their worth in various image
recognition tasks since long [160] and have resurged into popular-
ity in 2012 with Alexnet [149]. They have lately evolved into awfully
complicated networks spanning thousands of layers [106].

Although applications of Bayesian method into neural networks
have also been investigated for many decades [26], it was only af-
ter Blundell et al. [27] proposed Bayes by backpropagation that train-
ing of deep neural networks was made possible using Bayesian es-
timation. This method of VI allowed backpropagation of so called
Expected Lower BOund (ELBO) loss and regularising weight distribu-
tions. A CNN trained using Bayesian method was recently proposed
by Shridhar et al. [219] as a fundamental construct for other network
architectures. They used Bayes by backpropagation for training con-
volutional network and reported comparable results on many bench-
mark data sets.
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Acknowledging the excessive computational cost of Bayesian mod-
els, Gal and Ghahramani [77] proposed a Monte Carlo dropout
method to approximate Bayesian inference in deep Gaussian pro-
cesses. The method is equivalent to performing multiple forward
passes through the network and taking the average of results to model
the uncertainty of the network. Kwon et al. [153] recognized the im-
portance of uncertainty quantification especially in medical domain
and proposed to calculate it by splitting the uncertainty into aleatoric,
that corresponds to model’s uncertainty; and epistemic uncertainty,
that represents inherent noise in the data. Kendall and Gal [139] stud-
ied the advantages of modelling epistemic uncertainty as compared
to aleatoric uncertainty in deep Bayesian models.

Combining deterministic and probabilistic models in various fash-
ions has also been studied for long. Tang and Salakhutdinov [232]
pointed out that the conditional distribution p(Y|X) does not need
to be unimodel, as normally assumed by MLPs, but can also be rep-
resented as a multimodel output distribution for many structured
prediction problems. They proposed a hybrid Sigmoid Belief Net-
works (SBNs) with some stochastic hidden variables and some deter-
ministic hidden variables and achieved superior performance on syn-
thetic and facial expression data sets. Similarly, other neural networks
with partially Bayesian parameters have been proposed for regression
tasks as alternative to Gaussian Processes [158, 227], that do not scale
well with the number of training samples.

The problem of estimating uncertainty has been addressed in va-
riety of ways, for example out-of-distribution (OOD) samples detec-
tion [110, 161] and density estimation using flow based models. Nor-
malizing flows and autoregressive models have been successfully
combined to produce state-of-the-art results in density estimation,
via Masked Autoregressive Flows (MAF) [195]; and to accelerate state-
of-the-art WaveNet-based speech synthesis to 20x faster than real-
time [190], via Inverse Autoregressive Flows [143]. Huang et al. [118]
presented Neural Autoregressive Flows and demonstrated that these
models are universal approximators for continuous probability distri-
butions, and their greater expressivity allows them to better capture
multimodal target distributions. Adding on to their work, De Cao,
Titov, and Aziz [62] proposed Block Neural Autoregressive Flow that
is a much more compact universal approximator of density functions,
where a bijection is directly modeled using a single feedforward net-
work. Dinh, Sohl-Dickstein, and Bengio [67] introduced a set of trans-
formations called real-valued Non-Volume Preserving (real NVP) as
a tractable and expressive way to modelling high-dimensional data.
Ardizzone et al. [12] extended real NVP architecture and argued that
their proposed Invertible Neural Networks are well suited for de-
termining full posterior parameter distribution conditioned on train-
ing data. They noted that alternating backward and forward training
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Input Image Convolutional Feature Extractor FC Classifier

Figure 8.1: Proposed Hybrid Model. Convolutional Layers are trained sepa-
rately using point estimates. The parameters of the convolutional
layers are then frozen and Bayesian classifier is trained.

passes and accumulating gradients from both sides before updating
parameters allows efficient training. Kingma and Dhariwal [142] fur-
thered flow-based generative models [66] that are useful for calculat-
ing exact log-likelihood, performing exact latent-variable inference,
and parallelising training and synthesis pipelines. Their Generative
flow model uses an invertible 1 x 1 convolution and is shown to be
capable of efficient and accurate synthesis of large images.

8.2 METHODOLOGY

A CNN primarily consists of two main modules: a feature extractor
and a classifier. The proposed network consists of a set of convolu-
tional layers trained with point estimates followed by fully-connected
layers trained using Bayesian estimate. It provides a trade-off between
high accuracy of deterministic models and uncertainty estimation of
Bayesian models. It also restricts the parameter space of the network
as compared to fully Bayesian models because only the classifier part
of the network treats its parameters as random variables. Figure 8.1
shows schematic diagram of the hybrid model proposed in this work.
The network initially trains to optimize parameters for both convolu-
tional feature extractor and dense classifier as given below.

& Wi = arg min > L(“’( (6 We); W )”> (8.1)

We, Wo | |(xy ceXxY

where £ denotes the loss function, ® represents the convolutional
part of the network parameterised by W and 1 represents the dense
layers (forming the classifier) parameterised by Wp.

Once the network is trained using point-estimates, we reinitialize
fully connected layers with random variables following normal distri-
bution and retrain them using Bayesian estimation. The parameters of
convolutional feature extractor are frozen throughout this retraining.
This whole training paradigm allows us to capitalize on economically
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learned features by deterministic convolutional block and use expen-
sive Bayesian inference only to approximate posterior distribution,
that might then be used for uncertainty estimation. Mathematically,
the learning of Fully-connected (FC) classifier of hybrid model is given
by;

5 = arg min |]DC| Z L (‘{/((I)(X;W*C);GD),y) (8.2)
oo (xy)EeXxY

where ¥ represents the Bayesian layers learned through Bayes by
backpropagation and 6p denotes the distribution of weights. Since
the weights are described by a distribution instead of point-wise es-
timates, £ in this case denotes the ELBO loss. Convolutional feature
extractor trained with point-estimates learns crisp features of the in-
put data while probabilistic classifier allows to sample from posterior
distribution and offers an insight into network’s confidence.

After this retraining is finished, we perform inference by passing
test samples a number of times from our network. Since the param-
eters of the last FC layers of the network are sampled from a proba-
bility distribution, each pass of the same test sample gives a different
prediction. These output predictions are used to draw a posterior dis-
tribution and estimate network’s uncertainty. Complete algorithms
used for this task is given in Algorithm 1.

For uncertainty analysis in Bayesian and hybrid architectures dur-
ing inference, the algorithm works by sampling 10 classifier models
from Bayesian weights distribution for every test sample and take
their output predictions. This way, instead of a single prediction, we
get a set of predictions representing a probability distribution on net-
work’s output. This set of predictions are normalized in [0 — 1] range
using min-max normalization for direct comparison. Predictions for
top two classes are taken and difference in their values is recorded.
After having the normalized differences, we build a distribution of
all these differences and use a percentile value (40% in this case) to
automatically select a threshold for the measure of uncertainty. The
percentile value of 40% is determined heuristically. This parameter
can be considered as a knob to control how confident predictions
are desired in any given application area. In circumstances where no
prediction is deemed better than a wrong prediction (medical diag-
nosis, for example), this value can be raised to ensure that only the
most confident predictions are given by the network. For other, rel-
atively less critical scenarios, this knob can be adjusted accordingly.
The underlying assumption for our uncertainty estimation is that if
the output for two classes is fairly distinctive then the difference in
top two classes should be greater than the threshold and the model is
regarded as certain about prediction otherwise it is considered uncer-
tain. If a test sample is regarded as certain by more than half models
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Algorithm 1 Uncertainty Estimation

Inputs modelOutput: Array containing softmax probabilities of all
images for all models

allPredictions: Array containing class predictions for all images
and for all models

allTargets: Array containing actual targets for all images and for all
models

percentile: A scalar parameter to ascertain uncertain images to
ignore

consensus: A scalar parameter representing minimum number of
confident models to reach certain prediction

Outputs certainAccuracy: Accuracy when model is certain
uncertainlmages: A percentage of uncertain images filtered out

1: procedure ESTIMATEUNCERTAINTY

2: for each model i in allModels do

3: for each image j in alllmages do

4 differences = differences of top two classes’ probabili-
ties in modelOutput[i][j]

5: end for

6: end for

7 threshold = calculate for each model by filtering percentile
number of images from differences of each model and average

them.
8: for each image j in alllmages do
9: Let confPred = 0, uncertain = 0, confModels = 0 be
new variables
10: for each model i in allModels do
11: if differencesli][j] > threshold then
12: if allPredictionsli][j] == allTargets[i][j] then
13: increment confModels
14: end if
15: end if
16: end for
17: if confModels >= consensus then
18: increment confPred
19: else
20: increment uncertain
21: end if
22 end for
23: return confPred/(len(alllmages) — uncertain),

uncertain/len(alllmages)
24: end procedure
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Table 8.1: Time and space requirement of deterministic, Bayesian and hybrid
models for some data sets.

Network Parameters (Millions) Execution Time per epoch (s)

Data set
Deterministic Bayesian Hybrid Deterministic Bayesian Hybrid
[219] [Ours] [219] [Ours]
MNIST 2.457 4914 2.459 15 70 27
CIFAR-10 5.851 11.703  9.528 25 129 49
ISIC-Subset 58.294 116.587 112.840 338 832 602
ORIGA 58.29 116.579 112.831 5 16 6
Electric Devices 0.655 3.277 0.577 2 16 3
Mallat 3.801 33.423  3.486 2 10 3
Thorax-1 2.726 24589  2.569 2 10 5

(represented by consensus parameter), using simple majority voting,
then it is output as a fairly certain prediction.

8.2.1  Time and space complexity analysis

The proposed hybrid model uses fewer parameters than its Bayesian
counterpart as is evident from Table 8.1. This table shows the num-
ber of trainable parameters in each method and training time per
epoch for some of the data sets. The hybrid model does not incur any
additional cost for combining the benefits of both deterministic and
Bayesian methods.

The time complexity of the proposed algorithm is O(2ZM x I),
where M represents number of Models sampled and I denotes the
number of test samples. Also, the algorithm computes in constant
space since, regardless of number of total models and test samples,
only one model and one test sample are loaded at any given time.

83 EXPERIMENTAL SETUP AND DATA SET

We used 13 data sets of disparate modalities and from diverse areas
of application to ascertain the viability of the proposed hybrid CNN
architecture. A brief description of all the data sets used and overall
experimental setup is given in this section.

8.3.1 Data sets

Table 8.2 gives an overview of all the data sets used in this work. We
picked standard benchmark image data sets, as well as challenging
fine-grained medical image classification data sets and many time-
series data sets so that the validity of our approach on a broad range
of data sets may be extensively investigated.
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Table 8.2: Distribution of data sets used to evaluate proposed architecture

No. of No.of Samples

Data sets Modality
Classes Train Test Total

Image Data sets

MNIST Grey Images 10 70k 10k 80k
CIFAR-10 Color Images 10 50k 10k 60k

Medical Image Data sets

ORIGA Color Retinal Fundus Images = 2 520 130 650
ISIC-Subset Color Clinical Skin Images 3 5201 600 5801

Time Series Data sets

Fish Image-derived data 7 175 175 350
ShapesAll Image-derived data 60 600 600 1200
Plane Sensor data 7 105 105 210
TwoPattern Simulation data 4 1000 4000 5000
ECG5000 ECG data 5 500 4500 5000
Medicallmages Image-derived data 10 381 760 1141
ElectricalDevices Device data 7 8926 7711 16637
Mallat Simulation data 8 55 2345 2400
ECG Thorax1 ECG data 42 1800 1965 3765

8.3.1.1 Image Data sets

We used two of the most common benchmark data sets i.e.

MNIST [160] and CIFAR-10 [235] and two publicly available medi-

cal image data sets i.e. ORIGA [263] and a subset of ISIC Archive to

evaluate the performance of our proposed approach. For MNIST and

CIFAR-10, standard pre-defined train and test splits are used. ORIGA

data set provides clinical ground truth to benchmark segmentation of

MNIST, CIFAR-10,  optic disc and classification of healthy and glaucomatous images. It
ORIGA, ISIC provides optic Cup-to-Disc Ratio (CDR) and labels for each image as
glaucomatous or healthy. This data set has been used as a standard

data set in many recent state-of-the-art researches for glaucoma clas-

sification. Since this data set is very small and no predefined train

and test splits are given, we used 5-fold Cross Validation (CV) for

this data set such that in each iteration of CV there are 130 images in

validation fold and 520 images in training fold. The second data set

of medical images was taken from ISIC Archive 2018 version. It con-

sists of around 24, 000 clinical and dermoscopic images of skin lesions

categorized into 7 classes. Some of the classes in this data set have as

fewer as 122 images per class, therefore, we took a subset of the whole

data with three largest classes namely Benign Keratosis-like Lesions
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(BKL), Melanoma (MEL), and melanocytic Nevi (NV) and randomly
divided them into training and test sets.

8.3.1.2 Time series Data sets

We selected 9 publicly available data sets, namely Fish, ShapesAll,
Plane, TwoPattern, ECG5000, Medicallmages, ElectricalDevices, Mal-
lat, and ECG Thorax1i from UCR archive [61]. The time series data
sets were generated based on different sources including device us-
age, sensors data, ECG, motion sensor, or simulation etc. Each time
series contains different number of classes; and the number of obser-
vations also vary in each data set. All data sets are already divided
into train and test sets by the publisher.

8.3.2  Data Pre-processing

To pre-process benchmark image data sets (MNIST and CIFAR-10),
we used random crop and normalization by mean subtraction. On
medical image data sets (ORIGA and ISIC Subset), histogram equal-
ization is applied to enhance contrast and normalize brightness. We
also made use of different data augmentation techniques like rota-
tions, flipping, and random crops to increase the data set size. Note
that in addition to pre-processed images, original images are also
kept in the data set. Data augmentation was done keeping in mind
the class ratio, such that the minor class can have more augmentations
and more copies generated. Time-series data sets are used without
any pre-processing.

8.3.3 Hyperparameter Selection

All of the image data sets were trained and compared with similar ex-
perimental setup. We used a 5-layer convolutional block as baseline
CNN, however, our experiments with varying depths and breadths of
CNN shows that the approach is fairly scalable to more advance CNN
architectures. We trained this CNN using Maximum Likelihood Esti-
mation (MLE) for 60 epochs with a learning rate of 0.001, weight decay
of 5 x 10~#, and batch size of 32. For probabilistic models, we used the
same setup as described above but instead of using point estimates
we trained convolutional and fully connected layers with distribution-
based weights using Bayes by backpropagation for 60 epochs. In our
proposed hybrid approach, we employed a FC classifier with frozen
convolutional feature extractor, pre-trained using MLE, and fine-tuned
it using Bayesian estimation for 60 epochs with similar parameters.
Two hyperparameters used in the proposed algorithm, percentile
and consensus can be selected as per use case requirements. In crit-
ical application areas, for example medical image diagnosis or stock
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Table 8.3: Comparison of deterministic, Bayesian, and proposed hybrid mod-
els on different data sets without using uncertainty estimation

Deterministic Bayesian [219] Hybrid [Proposed]

Data sets
Accuracy (%) Accuracy (%) Accuracy (%)
Benchmark Data sets
MNIST 99.0 99.01 99.3
CIFAR-10 88 72.0 88.7
Medical Image Data sets
ORIGA 76 74.4 80.3
ISIC-Subset 74 65.5 75.7
Time Series Data sets
Fish 85.1 80.7 84.7
ShapesAll 67.0 70.9 72.3
Plane 97.0 96.7 95.1
TwoPattern 89.0 81.0 89.4
ECG5000 92.0 93.2 91.9
Medicallmages 69.0 62.4 64.7
ElectricalDevices 55.0 54.0 56.6
Mallat 88.0 82.5 89.3
ECG Thoraxl1 90.0 89.1 91.3

market prediction, where there is little room for incorrect classifica-
tion, higher values of these parameters can be selected to ensure only
the most certain predictions are given by the network. In other appli-
cations, a relaxed criterion for uncertainty estimation might be accept-
able. In our experiments, we used percentile = 40% and consensus
of more than half models (i.e. 6 models). These values were selected
empirically and they worked well in all 13 data sets of different kind.
It should be emphasized here that, for a given data set, we used the
same underlying architecture (number, width, and depth of convolu-
tional layers and size of dense layers) in all three training paradigms,
i.e. fully deterministic, fully Bayesian and Hybrid, to ensure fair com-
parison among three approaches.

For time-series modality, we used CNN with two convolutional lay-
ers, each followed by a max pooling layer for deterministic model
analysis. On top of that, two FC layers were added as classifier. For
probabilistic and hybrid approach, we used the same setting as ex-
plained before.
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Figure 8.2: An analysis of confidence comparison for all three approaches
on various samples of CIFAR10 and ORIGA data sets. The actual
class is mentioned on left side of each image in bold vertical text.
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Table 8.3 summarizes classification accuracies obtained by traditional
fully deterministic CNN, Bayesian CNN [219], and our proposed hy-
brid approach. The table shows that the proposed hybrid approach
outperforms not only purely Bayesian CNNs but also their determin-
istic counterparts in 9 out of 13 data sets while giving comparable
results on rest of them. Even when the hybrid approach lagged other
methods in classification accuracies, the difference was very small
and came at no additional cost in terms of time or number of param-
eters as shown in Table 8.1. The results in Bayesian Accuracy field in
Table 8.3 are generated by our own experiments using the implemen-
tation of Shridhar et al. [219] for Bayesian CNN.

Figure 8.2 shows output probabilities of deterministic, Bayesian
and hybrid models for various correctly classified and misclassified
images from CIFAR-10 and ORIGA data sets. It can be observed in
Figure 8.2 that when hybrid model was unable to make a correct
prediction (sub-figures (b), (d), (e), and (h)), it associated relatively
smaller probability scores with its misclassification than its compet-
ing models who also misclassified but did so with overconfidence. For
example, consider Figure 8.2 (b) where the original label of the image
is Frog. Although hybrid model failed to correctly classify this image
but it predicted Deer with only 55.66 probability score and had Frog
at second place with 44.24 probability score. In contrast, determinis-
tic model also misclassified this image predicting it was a Deer with
85.56 probability score and assigned only 14.35 score to second pre-
diction. Additionally, in cases where both deterministic and Bayesian
models failed to correctly classify an image and hybrid network suc-
ceeded (sub-figures (c), (f), and (g)), it predicted very cautiously with
reasonable probability scores. The probability scores of hybrid model
were at par with other two methods for relatively easy examples as
shown in sub-figure (a).
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Table 8.4: Comparison of Bayesian and proposed hybrid models on different
data sets with uncertainty estimation

Bayesian Model [219] Hybrid Model

Overall Certain Uncertain Overall Certain Uncertain

Data sets
Accuracy Accuracy Samples Accuracy Accuracy Samples
(%) (%) (%) (%) (%) (%)
Image Data sets
MNIST 99.01 99.17 20.5 99.26 99.28 9.6
CIFAR-10 65.41 72 66.9 88.70 91.11 46.2
Medical Image Data sets
ORIGA 74.42 77.10 35.65 80.31 77.21 38.7
ISIC-Subset 58.15 65.48 34.3 75.67 81.5 53.8
Time Series Data sets

Fish 80.7 92.4 9.1 84.7 100.0 6.8
ShapesAll 70.9 71.8 1.0 72.3 72.9 1.3
Plane 96.7 98.9 0.95 95.1 97.1 0.0
TwoPattern 81.0 84.4 25.0 89.4 91.3 249
ECG5000 93.2 93.8 36.2 91.9 93.9 36.8
Medicallmages 62.4 62.9 0.13 64.7 66.5 0.13
ElectricalDevices  54.0 55.8 14.6 56.6 57.9 14.8
Mallat 82.5 84.2 35.6 89.3 92.1 37.7
ECG Thorax1 89.1 90.9 14.9 91.3 91.6 14.8

8.4.1  Uncertainty Estimation

Since deterministic model does not have intrinsic ability to estimate
uncertainty (although some works like [77, 97] have used determin-
istic models and applied some post-processing to get confidence es-
timates), in this section we focus on Bayesian and Hybrid models
only and compare their performance. Since the classifier part of both
Bayesian and Hybrid methods are trained using Bayesian estimates,
both networks provide posterior distribution that is used to estimate
uncertainty using Algorithm 1. Table 8.4 compares the accuracies of
both training methods before and after using Algorithm 1. In this
table, Overall Accuracy refers to the accuracy of the model before ap-
plying Algorithm 1, whereas Certain Accuracy refers to the accuracy
on the predictions for which the network was certain according to
Algorithm 1. When the algorithm is not sure about the prediction
it tags the test sample as uncertain. We can observe that accuracies
for both fully Bayesian and hybrid approaches improved after uncer-
tainty estimation algorithm was applied. The accuracy of our hybrid
approach is higher than fully Bayesian model especially when it was
fairly certain about the predictions.
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Figure 8.3 depicts the trade-off between number of uncertain sam-
ples and classification accuracy for both Bayesian and Hybrid mod-
els. We can see from this figure that the accuracy of the networks
increases with the increase in percentage of uncertain samples. It can
be argued from these curves that since, difficult samples have been
passed over by the classifier and prediction is given for easy samples
only, that is why we see a positive trend in accuracy with growing
number of uncertain samples. However, in many crucial application
areas, it is better to abstain from giving any half-cooked prediction
than making a potentially costly mistake. In medical image analysis,
for instance, such non-compulsive classifiers can reduce the workload
of human experts by screening relatively easy disease patterns and al-
lowing the physicians to focus their time and energy only on the most

challenging of the cases.
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Figure 8.3: Trade-off between number of uncertain samples and the accuracy
on remaining predictions. The threshold on x-axis is calculated

using percentile parameter as shown in Algorithm 1.
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INTERPRETABILITY AND EXPLAINABILITY OF
DNN

DNNs have become ubiquitous these days. They have been success-
fully applied in a wide range of sectors including automotive [137],
government [238], wearable [191], dairy [156], home appliances [226],
security and surveillance [151], health [55], and many more, mainly
for regression, classification, and anomaly detection problems [34, 88,
184, 185, 268]. Neural network’s capability of automatically discover-
ing features to solve any task at hand makes them particularly easy to
adapt to new problems and scenarios. However, this capability to au-
tomatically extract features comes at the cost of a lack of transparen-
cy/intelligibility of their decisions. The applicability of DNNs has also
been compromised due to their deficiency of explaining a decision
[175]. This is specifically true for domains like business, finance, nat-
ural disaster management, health-care, self-driving cars, industry 4.0,
and counter-terrorism where reasons for reaching a particular deci-
sion are equally important as the prediction itself [145].

In the domains where human lives are directly or indirectly linked
to a machine’s decision or the high-stakes decisions are based on
them, the trustworthiness of the decision-making system is more im-
portant than accuracy. This trustworthiness can be achieved by en-
abling a system to answer HOW and WHY of a decision. The HOW
part is answered when a system is capable of showing how it has
taken a particular decision. In this process, the system must highlight
the major observables to show how they are behaving and changing.
The WHY part is answered when a system provides an explanation
of a decision. It is important to provide reasons for a particular deci-
sion taken by a system. The attached facts to an explanation makes
an explanation more transparent which eventually makes the whole
system trustworthy.

In this chapter, we enable a system to answer HOW part with the
help of visualizations. There have been significant attempts to un-
cover the black-box nature of deep learning-based models [150, 224,
234, 259, 261, 262], where visualization of the model has been the
most common strategy. Almost all of the proposed visualization sys-
tems are image-centric where visualizing the images is directly in-
terpretable for humans (natural association to similar looking objects
like eyes, faces, dogs, cars etc.). These visualizations help humans
understand the thinking process of an ANN. Most of these visualiza-
tion and interpretability ideas are equally applicable to time-series,

This chapter is an adapted version of the work published in [221] and [186].
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but the unintuitive nature of the time-series data makes it difficult to
directly transfer these ideas to aid human understanding. To demys-
tify a deep model for time-series analysis, a portion of Time-series
Visualization framework (TSViz) is introduced in this chapter.

Though a picture is worth thousand words, still it provides an
overview, not a detailed explanation. To understand the details, it is
necessary to have a logical description of the picture. It has been well
established in the prior literature that an explanation of the decision
made by a DNN is essential to fully exploit the potential of these net-
works [9, 205], and explanations help in making a system trustworthy
[59, 240, 245]. With the rise in demand for these deep models, there
is an increasing need to have the ability to explain their decisions.
For instance, big industrial machines cannot be powered down just
because a DNN predicted a high anomaly score, until and unless the
system is trustworthy. It is important to understand the reason for
reaching a particular decision, i.e. why the DNN computed such an
anomaly score. Adequate reasoning of the decision increases a user’s
confidence in the system.

To address this WHY part, Time-series Explanation framework
(TSXplain) is introduced in this chapter. This framework is inspired by
the human psychology of logical reasoning for a particular decision.
It contributes to the WHY part by generating natural language expla-
nations of the decisions made by a DNN. Powerful statistical features
are aligned with the most influential data points for deep networks
(discovered by TSViz) to generate textual explanations. Main contribu-
tions of this chapter are as follow:

* An influence tracing algorithm to compute the input saliency
map in introduced as part of TSViz. It enables an understanding
of the regions of the input that were responsible for a particular
prediction. To the best of our knowledge, it is the first frame-
work for time-series interpretability that helps in understanding
the decision making process of a DNN.

e To fulfill the need of the hour, an explanation framework,
TSXplain is proposed that provides natural language explana-
tions of a DNN decision. To the best of our knowledge, TSXplain
is a pioneer in providing explanations for time-series data.

¢ The mechanism of providing two levels of explanations pro-
vides ample description of the decision made by the network
to aid an expert as well as a novice user alike.

* Our survey and reliability assessment test confirm that the gen-
erated explanations are meaningful and correct. We believe that
generating natural language based descriptions of a network’s
decisions is a big step towards opening up the ANN black-box.
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0.1 LITERATURE REVIEW

Over the past few years, there have been numerous advancements in
the field of network interpretation and visualization. For understand-
ing a DNN on an image classification task, Zeiler and Fergus [261]
proposed a technique for the visualization of deep convolutional neu-
ral networks. Their visualization reveals features in a fully trained
network. Highlighting the input stimuli that excites individual fea-
ture maps at different layers, helps in understanding what the net-
work has learned. For each feature map, they also visualize the cor-
responding image patches to enhance the visual understanding for
humans. Yosinski et al. [259] introduced DeepVizToolbox that helped
in understanding how neural network models work and which com-
putations they perform at the intermediate layers of the network at
two different levels. The first level visualizes the activations produced
on each layer while processing an image on a trained convolutional
neural network. Based on regularized optimization in image space,
the second level visualizes features that the different filters are re-
sponding to at each layer of the network. This toolbox visualizes the
top images for each unit, forward activation values, deconvolutional
highlighting, and preferred stimuli. Simonyan, Vedaldi, and Zisser-
man [224] also presented an approach to visualize the convolutional
neural networks developed for image classification. Their visualiza-
tion provides image-specific class saliency maps for the top predicted
class, that are extracted using a single backward pass through the
network.

Bau et al. [18] introduced a framework to interpret the deep visual
representations and quantify the interpretability of the learned CNN
model. First, they gather a broad set of human-labeled visual con-
cepts and then gather the response of hidden variables to known the
concepts. To understand a neural network, Mahendran and Vedaldi
[171] highlight the encoding learned by the network through inver-
sion of the image representations. They also study the locality of the
information stored in the representations. Melis and Jaakkola [175]
designed self-explaining models where the explanations are intrinsic
to the model for the robust interpretability of a network. They also
argued regarding the necessity of explicitness, faithfulness, and sta-
bility for interpretability. Bach et al. [14] introduced an approach to
achieve pixel-level decomposition of an image classification decision.
They generate heatmap for a well-classified image that segments the
pixels belonging to the predicted class. Their visualization helps to
highlight the contribution of single pixels to the prediction of kernel-
based classifiers as well as DNNs.

Theoretical contributions have also been made in order to under-
stand the amazing generalization capabilities of these deep models.
Zhang et al. [262] presented an empirical analysis to divert attention
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to the philosophical topic of what is actually perceived as generaliza-
tion. Koh and Liang [148] presented influence functions as a method-
ology to trace back model predictions in terms of its training data.

Despite these advancements, the area of network visualizations for
time-series analysis has remained unexplored until now. A recent at-
tempt has been made by Kumar, Taylor, and Wong [150] to visualize
the input points that were most influential for a particular prediction
through gradients (saliency).

Current DNN visualizations and interpretations only help an expert
to understand and improve the overall process. However, they still
lack the actual reasoning why a particular decision has been taken by
the learned model. There has been some work in the domain of image
captioning where visual attributes are leveraged to support the DNN
decision. Guo et al. [98] proposed a textual summarization technique
of image classification models. They train a model with the image
attributes that are used to support the classification decision. A filter-
level attribute probability density function is learned as a posterior
probability with the given images. In the same domain, Hendricks et
al. [109] proposed a model that predicts a class label and explains the
reason for the classification based on the discriminating properties of
the visual objects. Kim et al. [141] introduced a textual explanation
system for self-driving vehicles. They generate introspective explana-
tions to represent the causal relationships between the system’s input
and its behavior which is also the target of our study. On the basis of
the vehicle’s sensor measurements and the attention-based video-to-
text model, the textual descriptions and explanations are generated.
They also train another neural network, (LSTM), based on the human-
annotated explanations, to generate the final explanations. In most of
the aforementioned techniques, a neural network black-box is further
used to generate descriptions and explanations of another neural net-
work. Despite being a promising direction, this introduces another
level of opaqueness into the system.

In the domain of relation extraction, Hancock et al. [101] proposed
a supervised rule-based method to train classifiers with natural lan-
guage explanations. In their framework, an annotator provides a nat-
ural language explanation for each labeling decision. Furthermore,
the provided explanations are parsed into labeling functions that are
logical forms of explanations. These logical forms convert unlabeled
data into a large labeled data set that is used to train the classifier.
Similar work has been presented by Srivastava, Labutov, and Mitchell
[228], but they jointly train a task-specific semantic parser and classi-
fier instead of a rule-based parser. These systems, however, rely on a
labeled set of training examples that are not available in most of the
real-world applications.
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TSXplain

'
Raw Signal !

Figure 9.1: TSXplain system diagram. Based on a time-series classifier, the
time-series are passed on to the influence tracer module which
highlights the most influential data points. Furthermore, these
influential data points are used along with the point-wise and
sequence-wise statistical features to generate textual explana-
tions of the time-series.

9.2 METHODOLOGY

Different visualization and interpretation techniques developed
specifically to understand deep models aid an expert in understand-
ing the learning and decision-making processes of the network. How-
ever, the provided interpretation/visualization cannot be readily un-
derstood by a novice user. It is up to the user to draw conclusions
about the network’s decision with the help of the available informa-
tion. Many of the existing techniques use a separate deep network
that is trained for the generation of explanations using the primary
model [98, 109, 141]. These explanations still suffer from a lack of
transparency, as they are also generated by a deep model. Therefore,
we approach the problem of generating explanations in a way that sig-
nificantly improves the intelligibility of the overall process. We lever-
age the statistical time-series features to provide a concrete natural
language-based explanation of a sequence. These features also help
in gaining a user’s trust because of their lucid nature. The proposed
system is composed of different modules as highlighted in Figure 9.1.
The raw input is first passed on to DNN for classification. If the se-
quence is classified anomalous, the whole TSXplain system is activated,
which is composed of four modules: namely influence tracer TSViz, sta-
tistical feature extractor, sanity check, and textual explanation generator.
The influence tracer is employed to discover the most salient regions
of the input. The statistical feature extractor module extracts different
statistical features from the sequence. The results from previous two
modules are passed onto the textual explanation generator module in
order to come up with a natural language description of the encoun-
tered anomaly. Furthermore, we introduce a sanity check module to
get a coarse estimate of the system’s confidence regarding the gener-
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ated explanation. All of these modules are explained in detail in this
section.

9.2.1 Influence Tracer (TSViz)

The influence tracer module is based on the TSViz framework and it
targets the HOW part. The proposed influence tracing algorithm can
be used to trace the influence at several different levels. However,
we only consider the main influence for our method i.e. the influ-
ence of the input on the output. This information provides important
insights regarding the data points in the input that the network is ac-
tually responding to for computation of its output. The information
regarding the parts of the input that were responsible for a particu-
lar prediction is considered a viable explanation in many scenarios
including domains like self-driving cars [141], finance [150] and med-
ical imaging [269]. It is important to note that we also compute the
input’s influence for every filter along with the final output.

This value can be obtained by computing the gradient of the cur-
rent layer | w.r.t. the input layer. We use the absolute value of the
gradient as the magnitude is of relevance, irrespective of direction.
We denote the input as a®, therefore, this influence of the input can
be computed using Equation 9.3.

dal 0z
1 _ j
% = 2 0 (9-1)
i
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89 = — (9-2)
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In order to be able to visualize and compare the saliency of the
different filters, the absolute values of the influences are scaled using
the min-max scaling presented in Equation 9.4.

Imput rn].in I1nput
Iinput = I] A I) (94)
m).ax input mjm input

The computed influence values are visualized on top of the origi-
nal signals to provide a hint regarding the encapsulated information.
This visualization is presented in Figure 9.2, where color-coded data
points in each input channel are shown with respect to their influence
on the final decision of the DNN. The dark shade represents the high
influence of a data point. It can be observed in Figure 9.2 that the
network decision is mostly based on the small and big spikes in the
observed time-series.
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(a) Pressure signal (b) Temperature signal (c) Torque signal

Figure 9.2: Visualization of the saliency information along with the raw sig-
nal values. Influential data points are highlighted in the shades
of red, dark being more influential.

Siddiqui et al. [221] discussed the problem of extremely confident
predictions for the influence tracing algorithm and suggested a rem-
edy to overcome this issue by imposing regularization on top of the
activations itself when training the network. The new objective can
be written as:

o
W =argmin ) L(O6W),y) +AWIS+ B3 (g5

wo X (xy)EX XY

where @ defines the mapping from the input to the output space, W
encapsulates all the parameters of the network, zL denotes the acti-
vation values of the last layer before application of the sigmoid layer,
and A and (3 denotes hyperparameters controlling the contribution
of the regularization terms and the empirical risk. We use the same
modified objective to train our network in order to avoid extremely
confident predictions.

The influence tracer module consumes both the DNN model as well
as the raw input. Then, it performs the backward pass through the
network from output to input in order to obtain these influence val-
ues. The output from this module is consumed by the textual explana-
tion generator module (Section 9.2.3).

9.2.2 Statistical Feature Extractor

This module extracts different statistical features from the input se-
quence. Since we are dealing with sequential data comprising of
time-series, different point-wise as well as sequence-wise features are
calculated. These features include, but not limited to, lumpiness, level
shift, Kullback-Leibler (KL) score, number of peaks, and ratio beyond
r-sigma (explained below). These features have been previously used
by Bandara, Bergmeir, and Smyl [17] and have been proposed in [121,

248].

1. Lumpiness: Initially, daily seasonality from the sequence is re-
moved by dividing it into blocks of n observations. Variance of
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Anomalous time-series

Anomalous channel

aules

Influential data point

Highest KL-score Level-shift :
peak threshold threshold Stan_di?rd
deviation Points above
4 b / N / N mean Number of
No Yes Below Above Below Above peaks

Figure 9.3: An example of rules and statistical features used to generate tex-
tual explanations for a given anomalous time-series.

the variances across all blocks is computed, which represent the
lumpiness of the sequence.

2. Level shift: The sequence is divided into n observations and the
maximum difference in mean between consecutive blocks is con-
sidered as the level shift. It highlights the block that is different
from the rest of the sequence.

3. KL score: To calculate this score, the sequence is divided into con-
secutive blocks of n observations. This score represents the max-
imum difference in Kullback-Leibler divergence among consec-
utive blocks. A high score represents high divergence.

4. Number of peaks: This feature identifies the number of peaks in
a sequence. The sequence is smoothed by a Ricker wavelet for
widths ranging from 1 to n. It detect peaks with sufficiently
high signal-to-noise ratio.

5. Ratio beyond r-sigma: It gives the ratio of data points that are r
standard deviations away from the mean of a sequence.

6. Standard deviation: This feature represents the standard devia-
tion of a sequence.

In addition to the above mentioned sequence-wise features, we
also use point-wise features including peak, valley, maximum point,
minimum point, highest spike, and lowest valley, etc. The fusion of
sequence-wise and point-wise features provides vivid characteristics
of the highly influential data points.

9.2.3 Textual Explanation Generator

The influential points determined by the influence tracer module along
with the features computed by the statistical feature extractor module
are passed onto this module for the generation of the textual explana-
tions of a given anomalous sequence. This module also receives input



9.2 METHODOLOGY

Most influential channel in the given time series is Torque signal because of the
\//“JX presence of anomalous data point(s) at index(s) 37. The value(s) at given index
N

(s) is/are -2.4982. The data point(s) is/are anomalous because there is/are

/ valley(s) around the mentioned index(s) and there is/are 1 valley(s) in this

M/\/\ series. The lowest valley is the one detected. The anomalous point is also the

\ / minimum point of the series. The anomalous data point(s) is/are -2 standard

S deviation(s) away from the mean of the series, where the mean is -0.0728 while

B the standard deviation is 1.0457. Level shift of 1.1573 also shows that there is

a consecutive block (with anomalous point) in this series for which the

difference between means is relatively low. Kullback-leibler score of 3.5623
represents the presence of clearly separable density distributions in the series.

Sanity Check: The system is fairly confident regarding the provided

explanation.
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Figure 9.4: Channel-wise natural language explanations generated for the
expert users. The second time-series in this figure represents a
failure-case where the explanations are not accurate, which is
also detected in the sanity check.

from the sanity check module (explained in Section 9.2.4) that allows
the system to specify its confidence over the generated explanation.

We designed a set of rules to incorporate a range of features. These
rules are defined based on the statistical time-series features in a
way that explains different characteristics of a given sequence. Based
on the classification decision given by the network, along with the
time-series features, this module provides explanations of the data
points that influence the network decision. The explanations are
generated channel-wise so that the anomalous data points in each
channel can be highlighted. An example of defining rules and an
overall hierarchy of this process is shown in Figure 9.3. The influen-
tial data points are provided by the influence tracer module and the
rules defined under the ‘Influential data point” parent node in Fig-
ure 9.3 are applied on those data points. The statistical features (mean,
standard deviation, points above mean, and number of peaks calcu-
lated on whole sequence mentioned on right branch of ‘Anomalous
channel” parent node in Figure 9.3) provide supporting arguments to
the defined rules. The values of child nodes (highest peak, KL-score,
level-shift, mean, standard deviation, points above mean, and num-
ber of peaks) in green are incorporated in the textual explanations.
For multi-channel input, the salient data points from an individual
channel are passed onto this module.

We have defined two levels of abstraction for the textual explana-
tions. The first level of explanation is defined for the users who are
not interested in detailed explanations or don’t have enough knowl-
edge of time-series data (novice user), but would like to get informa-
tion regarding the most salient regions and channels of the input. The
second level of explanation, on the other hand, is defined for the ex-
pert users. Such users are generally interested in knowing the details,
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such as, why a network took a particular decision? Sample explana-
tions for the expert users are shown in Figure 9.4. The explanations
shown in this figure clearly point out the anomalous channel in a
given anomalous time-series sequence. Moreover, characteristics of
anomalous data points and anomalous channel are also explained in
the form of feature values. Figure 9.5a shows an example of a simple
explanation that is generated for the novice users.

9.2.4 Sanity Check

In order to assess the reliability of the explanation generated by the
system, a simple sanity check is performed. The output of the textual
explanation generator module along with the original input are passed
onto this module. The data points corresponding to the explanation
are suppressed and this masked sequence is fed again to the network
for inference. The masking is performed by linear interpolation be-
tween the last and the first retained points.

If the removed data points were indeed causal for the network pre-
diction, we expect the prediction to flip. We use this sanity check to
compute confidence over the provided explanation. If we observe a
flip in the prediction, we assign high confidence to the provided ex-
planation. On the other hand, if the prediction is retained, we assign
low confidence to the provided explanation. This check confirms that
the generated explanations are correctly referring to the data points
that are actually contributing towards the classification decision taken
by the network. Finally, the sanity check output is passed back to the
textual explanation generator module with the confidence information
which is mentioned in Figure 9.4. In Figure 9.4, the second example
didn’t observe any flip in the prediction after the suppression of the
deemed causal point (a failure case), resulting in low system confi-
dence for the provided explanation. Figure 9.5 visualizes the process
of sanity check on an anomalous sequence. In Figure 9.5a, the tex-
tual explanation highlights an anomalous data point in the tempera-
ture signal (in orange color). The network prediction is flipped after
suppressing the mentioned anomalous data point in the temperature
signal as shown in Figure 9.5b.

9.3 EXPERIMENTAL SETUP AND DATA SET

To classify a time-series as normal or anomalous, we trained a CNN
model with three convolutional layers comprising of 16, 32 and 64
filters respectively, with Leaky ReLU as the activation function, fol-
lowed by a single dense layer. Since the focus of this chapter is on a
generation of textual explanations, we selected the hyperparameters
(e.g. number of layers, number of filters) based on our experience and
did not invest any significant effort into hyperparameter optimization
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(a) Anomalous sequence. (b) Effect of sanity check.

Figure 9.5: As a results of sanity check, the anomalous peak is suppressed
and sequence in (a) is classified as normal in (b).

or model selection. It is important to mention that we have chosen a
convolutional neural network as our DNN, because CNNs are generally
easier to optimize, achieved state-of-the-art results in anomaly detec-
tion [185, 268], and the base module of TSXplain (influence tracer mod-
ule) is also currently based on CNNs. To generate natural language
explanations on time-series data, we used the data sets mentioned in
this section.

9.3.1 Machine Anomaly Detection

It is a synthetic time-series classification data set' curated by Siddiqui
et al. [221]. This data set comprises of 60, 000 time-series with 50 times-
tamps each. Each sequence consists of three channels which repre-
sent values from pressure, torque, and temperature sensors. Random
point anomalies were introduced in the data set and the sequences
containing such point anomalies are marked as anomalous. Point
anomalies only exist in the torque and temperature signals, while
the pressure signal is kept intact. The data set is split into 45,000
training sequences with 7, 505 anomalous sequences, 5, 000 validation
sequences with 853 anomalous sequences, and 10,000 test sequences
with 1,696 anomalous sequences.

9.3.2  Mammography Data set

This breast cancer screening data set contains 11,183 time-series and
it is commonly used for classification purposes. Anomalies at certain
points/features make the whole time-series anomalous. The data set
is split into 8, 000 training time-series with 186 anomalous time-series,
1,000 validation time-series with 25 anomalous time-series, and 2, 183
test time-series with 49 anomalous time series. This data set is avail-
able at OpenML? [241].

1 Machine Anomaly Detection data set: https://bit.ly/2UNkOLo
2 Mammography Data set: https://www.openml.org/d/40907
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Figure 9.6: Summary of evaluation done by expert (left) and novice (right)
users on Machine Anomaly Detection data set [221] explana-
tions.

9.3.3 Shuttle Data set

This data set describes radiator positions in a NASA shuttle with 9
attributes. There are 46,464 time-series in this data set. We split the
data set into 25,000 training time-series with 483 anomalous time-
series, 5,000 validation time-series with 102 anomalous time-series,
and 16,464 test time-series with 293 anomalous time series. This data
set is available at OpenML?3 [241].

9.4 EVALUATION AND DISCUSSION

In order to completely assess the relevance and correctness of a given
explanation, we conducted a survey in which novice and expert users
were asked to evaluate the generated explanations. We provided 20
time-series from the Machine Anomaly Detection data set along with
the generated explanations to the participants and asked questions
related to whether the generated explanation was, i) relevant, ii) suffi-
cient, iii) meaningful, iv) correct, and v) satisfactory from the experts?
Whereas, the novice users were only questioned about i), ii), and iv).
There were 7 expert and 6 novice participants, who provided their
binary (agree/disagree) feedback to the aforementioned question cat-
egory. The results of this survey are summarized in Figure 9.6. The

3 Shuttle Data set with 7% anomalies: https://www.openml.org/d/40901


https://www.openml.org/d/40901

9.4 EVALUATION AND DISCUSSION

Table 9.1: Effect of masking the data points in Machine Anomaly Detection
data set which are relevant for the explanation.

Flipped prediction

Window size Anomalous sequence Percentage flipped

after masking
1511 1104 73.0%
3 1511 1319 87.3%

bar charts show the percentage of the participants who agreed to the
asked questions related to a specific aforementioned metric. By ana-
lyzing the accumulated feedback of the participants shown in Figure
9.6, it is clear that most of the participants considered the provided
explanations relevant, meaningful, and correct. The majority of the
experts were satisfied with the reasoning of the ANN decision pro-
vided in the explanation. Although, 20% experts and 22.5% novice
participants thought that the provided explanation is not sufficient.

In this study, we are trying to infer the causality through the pro-
vided explanations, so it is also important to assess the reliability
of the generated explanations. Therefore, we introduced the sanity
check module in the system pipeline to obtain a measure of confi-
dence over the provided explanations (as explained in Section 9.2.4).
We also computed this confidence estimate over the entire test set
of Machine Anomaly Detection data set in order to get an impression
regarding the overall reliability of the generated explanations. The
cumulative results are presented in Table 9.1. Since it is important to
compute these statistics only over examples where the classification
from the network was correct, we were left with 1,511 out of 1,696
total anomalous sequences in the test set. In the first setup, a masked
sequence is generated by suppressing the exact data points for which
the explanations have been generated by the textual explanation gener-
ator module. Since we are suppressing the exact point, we represent
this setup with a window size of one. In the second setup, a sequence
is masked with a window size of three, covering one preceding and
one following value in order to cover up any minor misalignment of
the most salient region highlighted by the textual explanation generator
module. In this case, a total of three data points were suppressed. We
represent this setup with a window size of three. The results shown
in Table 9.1 indicate that for 73.0% of the anomalous sequences, the
predictions were flipped by masking out the exact data points high-
lighted by the explanation module. When we relaxed the sanity check
criteria to a window size of three, the percentage of flipped sequences
rose up to 87.3%. This high success rate makes it evident that in most
of the cases, plausible explanations for the predictions made by the
network could be provided. However, it is important to note that this
experiment does not strongly imply causality.

In the traditional interpretation settings where only visual explana-
tions are available, it is difficult for a user to understand why a par-
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2.5 — Mammography TS The anomalous data point(s) is/are present at index(s) 3 with
value(s) of 2.5460. The data point(s) is/are anomalous because
there is/are peak(s) around the mentioned index(s). There is/are
1 peak(s) in the observed time-series and the highest peak is the
one detected. The anomalous data point(s) is/are 2.40 standard
deviation(s) away from the mean of the series, where the mean
is 0.9330 while the standard deviation is 1.0602. There is/are 4
such point(s) which crossed the mean of the series.

25 The anomalous data point(s) is/are present at index(s) 2, 5, 6
20 with value(s) of 2.29, -0.01, 2.53. The data point(s) is/are
5 anomalous because there is/are peak(s) around the mentioned
1o index(s). There is/are 2 peak(s) in the observed time-series and

the peak at index 6 is highest. The anomalous data point(s) is/are
1.89, -0.01, 2.09 standard deviation(s) away from the mean of
the series, where the mean is 0.5718 while the standard

 NASAShuttle TS deviation is 1.2121. There is/are 4 such point(s) which crossed
the mean of the series.

05
0.0
-05

-1.0
0 1 2 3 a 5 6 7 8

Figure 9.7: Sample explanations generated for Mammography (top) and
NASA Shuttle (bottom) time-series.

ticular decision is taken by the network just by looking at the plots.
However, it is relatively easy to understand the classification reason
by reading the explanations provided by our system for the corre-
sponding plots in Figure 9.4 and Figure 9.7. We specifically opted
for statistical features due to their strong theoretical foundations and
transparency. The point-wise features of an anomalous data point
help a user in understanding how that data point is different from
the rest of the sequence. Whereas, sequence-wise features help in
highlighting the overall behavior of an anomalous sequence. An end-
user can confirm part of the explanation by looking at the plot, which
elevates his trust in the system.
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Recent advances in computational hardware have made it possible
to achieve state-of-the-art performance in various domains, by uti-
lizing DNNs, ranging from image classification [271], playing board
games [223], natural language processing [53] to speech recogni-
tion [111]. As a result, there is heightened interest, both academically
and industrially in DNNs, with deep learning being listed at the top
of Gartner hype cycle for emerging technologies [51]. This increased
interest coupled with advances in hardware has paved the way for
the development of more sophisticated DNN algorithms, which may
contain millions of parameters to train and optimize. Version of NAS-
Net [271] model, for example, with highest accuracy on ImageNet
data set contains around 88.9M parameters. Optimizing such a huge
number of parameters is a challenge itself and requires equivalently
bigger training data set that allows the model to extract enough fea-
tures to train its parameters. As a result, these models perform excep-
tionally well in domains where ample data is available but in data
scarce domains, these models suffer as they can easily overfit. This is-
sue is even more significant in time-series domain, where scantiness
of data is further compounded by the fact that time-series often do
not have enough features for deep networks to work with.

In contrast to DNNs, humans tend to rely on their knowledge while
solving problems. This knowledge is acquired not only from problem
specific examples but also from other sources, like education and ex-
periences [154]. However, the very notion of "knowledge" is tricky to
explain, and equivalently difficult to collect and store in a form that is
understandable or transferable to a computing program. Knowledge-
based System (KS) aims to store such knowledge expressed in the
form of logic rules or some other declarative language that can then
be used to find solution to complex problems [239]. Similarly, there
are statistical methods that are based on strong logical reasoning, like
ARIMA, that do perform exceptionally well in their respective domains
and are used by many experts to aid them in decision-making pro-
cess.

Complementing DNNs with expert knowledge or some form of ex-
tra knowledge has been actively researched upon [32, 117, 243]. Most
of the work in the literature, although improves performance of the
DNNs but adds extra dependency on the network on quality of ex-
pert information used [117, 236]. In this chapter, Deep Expert (DeepEX)
is proposed that combines the knowledge driven and data driven

This chapter is an adapted version of the work published in [45].
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streams for multi-step time-series forecasting problems. The focus of
this work is to combine these seemingly parallel streams in a way that
retains advantages of both, while suppressing their individual dis-
advantages. Specifically, we aim to reduce the dependency of DNNs
on the data by leveraging information contained in the knowledge
stream. Finding state-of-the-art KS or DNN model is not the focus here,
but instead, the goal is to devise a knowledge incorporation scheme
that bridges the gap between data and knowledge driven approaches
and combines their strengths. We tested DeepEX on the CIF2016 and
NN5 time-series forecasting benchmarks to signify its performance.
In particular, following are the contributions of this chapter:

* A novel approach to combine knowledge and data driven sys-
tems in an end-to-end learning framework is introduced.

* A new regularization on the activity of the network that helps
the network in identifying strengths and weakness of both do-
mains and decide optimal combination of both domains is also
introduced.

¢ Introduction of a new network to capture the trend in order to
decompose the problem into sub-problems which can be effec-
tively solved.

¢ Scaling of the proposed method to multi-step ahead prediction
which is significantly difficult for the current generation of ex-
pert knowledge incorporation techniques.

10.1 LITERATURE REVIEW

Integrating domain knowledge or any sort of extra information
to boost DNN performance has been actively researched upon.
Ghazvininejad et al. [83] presented a knowledge-grounded conver-
sation model based on neural networks. In addition to utilizing data
containing the conversation history, they also conditioned the out-
put of their sequence-to-sequence (seqzseq) model on external details
within the context of conversation. The resulting conversation model
was able to produce more accurate responses that were labeled as
more informative and appropriate by human judges. Such schemes
encouraged knowledge incorporation to improve the performance of
the system, however, it made the system more dependent on external
contextual information data.

Knowledge-based Artificial Neural Networks (KBANN) was pro-
posed by Towell and Shavlik [236]. They utilized propositional rules
for knowledge representation which were structured in a hierarchical
manner. The neural network was designed to have a one-to-one corre-
spondence with the elements of the rule set. The rule set directly de-
fined the number of neurons along with their corresponding weights.



10.1 LITERATURE REVIEW

Additional neurons were also introduced to learn features not speci-
fied in the rule set. Tran and Garcez [237] followed a similar approach
where the network defined a logic rule set. Such techniques directly
incorporate the information contained in the knowledge stream into
the neural network. However, as a result of this direct incorporation,
the network is confined to a structure that strictly complies to the
hierarchical structure defined in the rule set. Additionally, this also
abolishes the flexibility to be able to use different network architec-
tures.

Venugopalan et al. [243] also proposed a neural network based
video descriptor model that leveraged knowledge from both a neu-
ral language model as well as semantics obtained from a large text
corpus in a LSTM-based architecture. The results demonstrated sig-
nificant improvements in grammar while also improving the overall
descriptive quality. They introduced two fusion techniques, namely
Late fusion and Deep fusion where they concatenated the hidden
states from both video to text network and language LSTM network,
fusing the information contained in both of the domains. The system
is strongly dependent on the quality of the expert which in turn is
dependent of large amount of data.

Buda, Caglayan, and Assem [32] used statistical forecasting models
to aid neural network in producing forecasting results for an anomaly
detection problem. They utilized multiple statistical forecasting mod-
els in conjunction with deep learning model. Predictions made by all
of these individual models were combined into one framework. The
predicted values from all models were compared with the ground-
truth and value giving the lowest Root Mean Square Error (RMSE)
score was selected as the final prediction. They refer this approach as
single-step merge. Another voting based approach was also proposed
where RMSE score is used to select a single model for all of the predic-
tions. The system treats the predictions from the individual models
separately, hence, it is not able to leverage the advantages from both
streams simultaneously. We have also used statistical methods to en-
hance performance of the neural network in anomaly detection prob-
lem (Chapter 6). We employed auto-ARIMA to forecast future values
of the time-series. These predictions were then integrated into neu-
ral network by using a residual scheme. The resulting model, FuseAD,
achieves better performance compared to individual networks when
used separately.

Hu et al. [117] again leveraged expert knowledge in the form of first
order logic rules. Iterative knowledge distillation technique is used to
transfer knowledge to network parameters. The expert network acts
as a teacher network to the student network. The student network
tries to follow the teacher network by mimicking its predictions. Both
the student and the teacher networks are updated at each iteration
step. The goal is to find the best teacher network that fits the predic-
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tion of the rule set while also staying close to prediction made by the
student network. Kullback-Leibler (KL)-divergence between the prob-
ability distribution of the predictions made by the teacher network
and the output distribution of predictions made by the student net-
work is used to minimize the difference between the two distributions.
The proposed framework achieved state-of-the-art performance for
the evaluated classification tasks. However, the framework strongly
relied on the expert network as the student network is trying to emu-
late predictions made by the teacher network.

Expert knowledge is incorporated for key phrase extraction by [91]
where they defined label-distribution rules that dictates the probabil-
ity of a word being a key phrase. For example, the rule enunciates
that a noun that appears in the document as well as in the title is
90% likely to be a key phrase and thus acts as posterior regulariza-
tion providing weak supervision for the classification task. Similarly,
KL-divergence between the distribution given by the rule set and the
model estimates is used as the objective function to be used for the op-
timization. Again, as the model utilizes knowledge to strengthen the
predictions of the network, it shifts the dependency of the network
from the training data to accurate expert knowledge which might
just be an educated guess in some cases. Similarly, [255] incorpo-
rated symbolic knowledge into the network by deriving a semantic
loss function that acts as a bridge between the network outputs and
the logical constraints. The semantic loss function is based on con-
straints in the form of propositional logic and the probabilities com-
puted by the network. During training, the semantic loss is added to
the normal loss of the network and thus acts as a regularization term.
This ensures that symbolic knowledge plays a part in updating the
parameters of the network.

Wu et al. [254] proposed a Knowledge Enhanced Hybrid Neural
Network (KEHNN). KEHNN utilizes knowledge in conjunction with
the network to cater for text matching in long texts. Here, knowl-
edge is considered to be the global context such as topics, tags, etc.
obtained from other algorithms that extracts information from mul-
tiple sources and data sets. They employed the twitter Latent Dirich-
let Allocation (LDA) model [265] as the prior knowledge which was
considered useful in filtering out noise from long texts. A special
gate, known as the knowledge gate is added to the traditional bi-
directional Gated Recurrent Units (GRU) in the model which controls
how much information from the expert knowledge flows into the net-
work.

Chattha et al. [44] proposed a residual learning scheme, called as
Incorporating expert knowledge in neural networks (KINN), where
they incorporated expert knowledge in the form of prediction in the
network by adding it to the network’s output. Although the approach
is highly promising, it couldn’t be scaled for multi-step predictions.



10.2 METHODOLOGY

The first limitation is its inability to control the network’s correction
factor. The network makes useless corrections even in cases where it
is not necessary. The second limitation is its inability to cope up with
trend present in the sequence. This proves to be an impediment in the
production of convincing results for complex time-series data. DeepEX
addresses both these limitations.

10.2 METHODOLOGY

DeepEX consists of different components, each targeted to cater for
a specific task as visualized in Figure 10.1. The first component is
the expert module which contains information about expert opinion.
The second component is the Seasonal and Trend decomposition us-
ing Loess (STL) decomposition module which decomposes the input
signal into its constituent parts. Finally, there are two CNN models,
where one model is dedicated to handle the trend part while the
other one handles the remaining signal.

The data and the expert model output is log normalized before
feeding it to the STL decomposition layer. Log normalization has two
major advantages: (i) re-scaling values and (ii) transformation of the
multiplicative relation between the STL components to an additive
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Figure 10.1: DeepEX pipeline.
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one, which makes it easier to decouple the decomposed components.
Each component further explained in detail in the following subsec-
tions.

10.2.1  STL Decomposition

STL is a well-known time-series decomposition method which splits
a time-series into three components, namely i) trend, ii) seasonality,
and the iii) residual. In DeepEX, input data and output of the expert
model are fed into the STL decomposition module. The trend from
Decomposition of a each of the signals is extracted from the rest of the signal. Residual
time-series and seasonal components are added together since only the trend is
of relevance to us. Hence, output of STL decomposition contains two
signals, trend and the rest of the signal that is a de-trended version
of the input comprising of the seasonal and the residual components.
These signals are then given to their respective CNN estimators as in-
puts. Although it is a common notion that neural networks are capa-
ble of modeling complex structures in data owing to their strong self
adapting generalizing capabilities, more recent studies argue decom-
posing input signal or filtering out some component prior to model-
ing can produce better forecasting results [17, 189, 230]. Hence, we
opt for a similar approach and decompose the original signal into
two relatively less complex components.

10.2.2  Expert Model

Knowledge driven techniques offer their own advantages. Knowl-
edge, however, can take many shapes and forms. It can be in the form
of a human expert, logic rules, or even some statistical method. One
of the strengths of DeepEX is that it does not limit itself to any specific
knowledge model as it is not dependent on architecture of the expert

4Theta model but rather its predictions. Therefore, any knowledge model ca-
pable of producing predictions can be used. The expert model can be
human feedback integrated into the system or a Ks. For this particular
study, we used the 4Theta method" as our expert network. 4Theta is
based on theta model that decomposes the original signal into theta
lines, where theta lines are derived by modifying the local curvature
of the time-series through the coefficient 0. This 0 is then applied
to the second differences of the data. 4Theta is an improvement to
the Theta model, enabling it to handle complex time-series more effi-
ciently which is evident from its performance on M4 benchmark data
set [172].

1 https://github.com/Mcompetitions/M4-methods/blob/master/4Theta%20method.R
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10.2.3 CNN Models

DeepEX has two different CNN models aimed to estimate trend and
de-trended signal which are obtained after STL decomposition. Al-
though the focus of this work is to develop a knowledge incorpora-
tion technique and not the individual DNN or knowledge models, but
considerable effort has been invested in estimating hyperparameters
of DNN. It was particularly observed that simple CNN model strug-
gled the most in modeling the trend component of the signal, hence,
model responsible for the estimation of trend is relatively complex
compared to the seasonal and residual signal estimator. The trend es-
timation network comprises of three residual blocks, each containing
two convolutional layers with 32 filters each. The other CNN model
comprises of two convolution layers with each layer having 64 filters.
It is important to mention that although we have chosen convolu-
tional neural network as our DNN (because CNNs are generally easier
to optimize), DeepEX is flexible enough to work with any other DNN
architecture.

10.2.4 Knowledge Incorporation Scheme

Expert predictions are incorporated in the form of a residual scheme,
where expert predictions are added to the output of the DNN model
and are also used for conditioning the DNN. This conditioning is
achieved by sequentially stacking the expert predictions (x!™') to the
input from the data. The proposed residual scheme changes the un-
derlying mapping learned by the network and instead of learning
the complete input to output projection, the network only learns the
modification factor needed in the input to give the desired output. In
a way it can be said that the DeepEX framework estimates efficacy of
expert model and makes corrections to it by using information from
the data. As we have used a statistical method (Section 10.2.2) as our
expert model, some portion of the data (25% of the training set) is
used to estimate parameters of 4Theta model. The resulting expert
model is then used for making predictions on remaining portion of
the data set, by employing a rolling window approach where fore-
cast for the next horizon is obtained by using all of the previous data.
DeepEX is trained on 75% of the training data, which is the only por-
tion of the data set where expert predictions are available, since we do
not have any expert predictions on 25% of the data on which 4Theta
is trained. It should be noted that the test set was never used in ei-
ther estimating parameters of the 4Theta model or in training DeepEX.
Validation set was obtained by max(0.2 * [X|, H) where |X| denotes the
cardinality of the training set, while H denotes the horizon.

The input signal and expert predictions both are decomposed us-
ing STL (Section 10.2.1). Trend from both, the expert predictions and
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the data is fed to CNN, that is responsible for trend estimation. This
optimization problem for the trend estimating CNN (@ : R" — RM)
can be represented as:

str otr otr _ tr tr tr L tr! ! tr’ .
R R Xl = @ X X X X1 e X1 W)

tr’ tr! tr’
+ I xirs o X1l (10.1)

where x!™' represents the decomposed trend values predicted by the

expert model, x{" represents the decomposed trend values of the orig-

Output of the inal input and &{" output trend values by the network. As the network
system is the sum of — jg just producing an offset, i.e. the required change in the input signal
the output of Hg\%o to produce the desired output, instead of finding the complete input
’ to output mapping, it makes the optimization problem significantly

easier to tackle. Expert predictions are incorporated in a similar fash-

ion as in case of other CNN model. Finally, the overall output of the

system is the sum of the output of the two CNNs, which can be repre-

sented as:

s S s str otr str SST oTT oTT
[Xt,Xt+],..,Xt+h7‘|:| - [Xt ’XtJr]/"’XtJrhf]] + [Xt ’Xt+1""Xt+hf1]

(10.2)

where %3" represents the output from the trend network, Xi" repre-
sents the output of the seasonality and residual network, and % rep-
resents the output of the overall system. Both of the CNN models are
optimized separately. A regularization term {3 is also added on top of
the network activations in order to hinder the network from making
unnecessary modifications. Therefore, the optimization problem for
the CNN can be represented as:

W* = arg min [|[x", X, 0 X w1
w

i ! i i i I
(O, x4 g e Xt X X1 e Xt 1 W) + I, Xy e X 1)) |12

!/ / !
+BIO(1,x ge Xi i Xt X X W2 (103)

where 3 is a hyperparameter which controls the activity of the net-
work. This formulation is used for both of the CNN models and the
value of {3 is obtained via validation.

10.3 DATA SETS

Two famous forecasting benchmarks, CIF2016 and NN5 are used in
this study.



10.4 RESULTS AND ANALYSIS

10.3.1 CIF2016 Data set

The Computational Intelligence in Forecasting (CIF) data set was part
of the International Time-series Forecasting Competition® held in
2076. This data set contains 72 monthly time-series, where 24 time-
series are originated from the banking domain and rest are synthetic
time-series. Two forecasting horizon, 6 and 12 were originally used
in the competition. 57 time-series have forecasting horizon of 12,
whereas the remaining 15 have horizon of 6.

10.3.2 NNbS Data set

NNb5 is a neural forecasting competition3 data set which was held
in 2008. This data set contains time-series from roughly two years
of daily cash money withdrawal amounts from one of various
Automated Teller Machine (ATM) or cash machines [230]. There are
total 111 daily time-series in this data set. The forecasting horizon
is 56 for all the time-series and there are 735 data points in each
time-series. The data may contain a number of time-series patterns
including multiple overlying seasonality, local trends, and structural
breaks.

10.4 RESULTS AND ANALYSIS

Figure 10.2 shows and compares the performance of DeepEX on a
randomly selected time-series from the NN5 data set. It is evident
from the Figure 10.2b that DeepEX does a better job at following the
trend of the time-series compared to the expert network, which strug-
gled in correctly modeling the magnitude of the peaks. KINN [44]
also closely followed the expert model. Similar pattern can be ob-
served from Figure 10.2a where DeepEX was able to capture minor
variations in seasonal and residual components, especially in cases of
minimas, as compared to the other models. DeepEX had a Symmetric
Mean Absolute Percentage Error (SMAPE) score of 15.04 on this par-
ticular time-series whereas the SMAPE score of the expert model was
22.40, highlighting the efficacy of DeepEX in modeling the sequence.
This dominance of DeepEX was found to be consistent on the entire
data set.

We performed a series of experiments in order to validate the ef-
fectiveness of DeepEX’s knowledge incorporation scheme in helping
DNN to reduce its dependence on data, along with its ability to scale
to multi-step ahead prediction. As mentioned previously, for the first
set of experiments, only 75% of the training data was utilized to train
parameters of the DNNs. For NN5 data set, the performance was eval-

2 Competition website: https:/ /irafm.osu.cz/cif/main.php
3 Competition website: http:/ /www.neural-forecasting-competition.com/NN5/
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Figure 10.2: Prediction of DeepEX and other networks on a randomly se-
lected time-series from the NN5 data set with a horizon 1

uated for a horizon of 1, 3, 8 and 56. Whereas, for CIF2016, the perfor-
mance was evaluated for a horizon of 1, 3 and 6/12. In the next set of
experiments, training data was further reduced to 50% while the hori-
zons were kept same. When the size of the data set was reduced to
half, many time-series in CIF2016 became so small that even having
a horizon of one in the validation set was not possible. Hence, in this
particular experimental setting, CIF2016 data set was not evaluated
for a horizon of 6/12.

Table 10.1 shows the results of the aforementioned experiments. In
most of the cases, DeepEX achieved lower SMAPE score compared to
the other techniques. Even in data scarce scenarios, DeepEX showed
an improvement of almost 46% in terms of SMAPE score when trained
on only 50% of the data from the NN5 data set with a horizon of 1.

Table 10.1: Results of CIF2016 and NN5 data sets when applied different
techniques. Minimum SMAPE is highlighted.

Data set CIF2016 NN5

Percentage | Horizon 4Theta KINN DeepEX | Horizon 4Theta KINN DeepEX

1 9.2 99.2 7.5 1 20.1 244 17.2

75% 3 10.1 117.0 9.4 3 20.6 27.2 18.2

6/12 13 96.0 12.8 8 20.6 29.3 19.8

56 21.5 65.0 21.4

1 30.4 99.0 18.9 1 35.3 39.5 19.0

50% 3 323  105.0 225 3 35.1 44.8 21.3

6/12 - - - 8 34.9 46.8 28.1

56 34.0 93.0 32.8
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Table 10.2: Results of CIF2016 data set of different techniques ordered by
mean SMAPE. DeepEX result is highlighted.

Method Mean SMAPE
LSTM.Cluster 10.53
LSTMs and ETS 10.83
ETS 11.87
MLP 12.13
REST 12.45
Seq-2-Seq(75%) 12.57
DeepLSF(75%) 12.70
ES 12.73
DeepEX (trained on 75% data) 12.80
FRBE 12.90
HEM 13.04
Avg 13.05
BaggedETS 13.13
LSTM 13.33
Fuzzy c-regression 13.73
PB-GRNN 14.50
PB-RF 14.50
ARIMA 14.56
Theta 14.76

Similarly, for the same experimental setting, it showed an improve-
ment of 38% for CIF2016 data set. It was also observed that for bigger
horizon, the percentage gain in terms of SMAPE was lower compared
to experiments with smaller horizon since the complexity of the task
was significantly enhanced. Nevertheless, even in these cases, DeepEX
still outperformed other techniques. KINN [44] particularly struggled
on these data sets as it could not handle time-series with trend com-
ponent.

We compared DeepEX with the top performing techniques for both
of these competitions i.e. NN5 and CIF2016. Table 10.2 shows the com-
parison of results on CIF2016 data set. DeepEX trained with 75% of the
training data outperformed most of the other techniques, including
BaggesETS [21], ARIMA and Theta methods, which were considered
as benchmarks in the competition and achieved comparative perfor-
mance with that of the top performing models.

Table 10.3 shows the results obtained on the NN5 data set including
both DeepEX and other state-of-the-art models. Similar to the case of
CIF2016, DeepEX trained on 75% of the data outperformed most of the
techniques and is even slightly better then LSTM.Cluster [17] which
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was the best performing model for the CIF2016 data set. This demon-
strates the robustness of DeepEX and its ability to work on different
data sets.
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Table 10.3: Results of NN5 data set of different techniques ordered by Mean
SMAPE. DeepEX results are highlighted.

Name Mean SMAPE
Wildi 19.9
Andrawis 20.4
DeepLSF(75%) 20.5
D’yakonov 20.6
Noncheva 21.1
DeepEX(trained on 75% data) 214
LSTM.Cluster 21.6
Rauch 21.7
Luna 21.8
Lagoo 21.9
Wichard 22.1
Gao 22.3
LSTM.AII 23.4
Puma-Villanueva 23.7
Seq-2-Seq(75%) 22.8
Autobox(Reilly) 24..1
Lewicke 24.5
Brentnall 24.8
Dang 25.3
Pasero 25.3
Adeodato 25.3
undisclosed 26.8
undisclosed 27.3
Tung 28.1
Naive Seasonal 28.8
DeepEx (trained on 50% data) 32.8

undisclosed 33.1
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CONCLUSION AND OUTLOOK

This chapter summarizes the challenges in the domain of time-series
anomaly detection and their solutions in the form of the framework
proposed in this thesis. The three main pillars of this framework:
Anomaly Detection, Uncertainty Estimation, and Interpretability and
Explainability are also summarized in this chapter as the solutions
to tackle the major problems in the area of time-series analysis. Fur-
thermore, the limitations of the presented work along the possible
research directions to overcome those limitations are also discussed.

11.1 CONCLUSION

This thesis is aimed at providing a comprehensive framework that
helps researchers and analysts in robustly finding time-series anoma-
lies and possible reasons of their occurrences. The back-bone, or the
tirst pillar of this thesis is time-series anomaly detection which serves
as a major contribution of this thesis. The proposed traditional, deep
learning-based, and hybrid anomaly detection methods are capable
of detecting point anomalies as well as time-series discords. In crit-
ical domains where human lives are directly or indirectly linked to
a machine’s decision, mere classification does not completely serve
the purpose, but a classification with high certainty score is actually
required. A hybrid confidence estimation method is proposed in this
thesis as a second pillar of the framework which provides a confi-
dence score on top of the classification. By keeping the importance of
interpretability and explainability of DNN in view, the third pillar of
the proposed framework contributes to highlighting the most influen-
tial data points of a time-series that help analysts in interpreting the
underneath DNN model. In addition to that, the decision of a DNN is
also explained in natural language, so that the reason for a particular
decision can easily be studied and argued.

In the current era of IoT and digitization, everything is connected to
the internet. With this connectivity, the internal state of machines and
their surroundings are recorded by employing hundreds of sensors.
The data is collected and stored in data warehouses that is further
used for different kind of analysis, including i) Diagnostic Analysis,
ii) Predictive Analysis, and iii) Prescriptive Analysis. As anomaly de-
tection is the backbone of different data analysis, major contributions
of this thesis are in the area of anomaly detection. First anomaly detec-
tion approach proposed in this thesis is characterized as a traditional
anomaly detection approach. This approach is proposed specifically

Anomaly detection
is the backbone of
data analysis
processes
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for HVAC systems, as it is evident from other studies [192] that HVAC
systems have a dominating share in IoT-based household devices.
HVAC systems are now part of everyday human life, so their well-
being and avoidance of any breakdown are very important for the
ease of customers. To achieve this goal, the proposed HVAC anomaly
detection method generates alarms for service providers as soon as
the method foresees a possible issue in the machine. This method
utilizes contextual information in addition to the current data points
to detect an anomaly as the environment of such systems keeps on
changing. It is shown in the thesis that the proposed method out-
performs different traditional anomaly detection methods including
CBLOF, rPCA, and Twitter anomaly detection. This method is evaluated
on two real data sets.

Due to the presence of intrinsic time-series properties like trend,
cycle, seasonality, and change-point in most of the real time-series
data sets, the traditional anomaly detection methods show limited
performance. This thesis contributes to tackling this issue by offer-
ing DeepAnT. To the best of the author’s knowledge, DeepAnT is the
first deep learning-based anomaly detection method that is capable
of detecting point and contextual anomalies. In addition to that, this
method can be used to detect time-series discords. This CNN-based
unsupervised anomaly detection method leverages the original time
series data even without removing the anomalies from the training
set. Another highlight of this method is its less appetite for data,
unlike other LSTM-based anomaly detection methods. It is equally
applicable to big data as well as small data. Only 40% of a given
time-series is used to train a model. A detailed evaluation of 15 state-
of-the-art methods in different settings on 10 data sets, that contain
433 time-series in total are provided in Chapter 5. DeepAnT has gained
the state-of-the-art performance on most of the data sets.

Another contribution of this thesis is to combine the strengths of
statistical-based anomaly detection and deep learning-based anomaly
detection for time-series in FuseAD. These two domains are considered
as two disjoint worlds in which each has its own advantages and dis-
advantages. Statistical-based anomaly detection methods are well es-
tablished, trusted, and used in most industrial settings mainly due
to their transparency. Conversely, deep learning-based anomaly de-
tection methods are gaining a lot of hype in the research community
mainly due to their automatic features selection and nearly human-
level accuracy in some tasks. The aim of the FuseAD is to benefit from
these two worlds by deploying residual mechanism that enables the
network to complement the strengths of the underlying two disjoint
models, by fusing the information encapsulated in them. The evalua-
tion shows that the proposed method outperformed other 12 anomaly
detection methods on 4 Yahoo Webscope data sets.



11.1 CONCLUSION

Anomaly detection, being an old and active research area has a
lot of practical applications and use-cases, both in the research com-
munity and industry. Due to this long history, there exists a vari-
ety of distance-based, density-based, kernel-based, and cluster-based
anomaly detection algorithms. As some of these methods were orig-
inally proposed for a specific use-case, their comparison with each
other on a variety of data sets, especially on time-series data is miss-
ing in the literature. In this thesis, a comparative study is presented
in which different traditional anomaly detection methods are evalu-
ated on time-series data. In addition to that, these methods are also
compared with deep learning-based anomaly detection methods. To
analyze the anomaly detection methods from different perspectives,
four different evaluation methods are used. In this study, a quantita-
tive comparison of 13 commonly used anomaly detection methods on
real and synthetic time-series data from a wide range of domains in-
cluding internet traffic, cloud services, automotive traffic, and online
advertisement is provided.

In many domains including health-care, automotive, and law en-
forcement, only classification of events or a given time-series is not
sufficient. In such domains, the impact of a machine’s decision on hu-
man life can be very significant. Even with the human-level accuracy
of deterministic methods, there is still a possibility that they gener-
ate a false alarm. Confident decisions are required in the aforemen-
tioned critical domains and use-cases. Bayesian neural networks pro-
vide a way to generate posterior distribution, which can be used for
the model’s uncertainty estimation. Due to a wide parameter space,
Bayesian neural networks are computationally very expensive. An-
other contribution of this thesis is to combine deterministic models
with the posterior distribution approximation of Bayesian neural net-
works. The proposed hybrid approach performs superior to both de-
terministic and Bayesian methods in terms of classification accuracy,
and also provides an estimate of uncertainty.

According to Lipton [163], the objective of machine learning might
be to reduce error, but their real-world purpose is to provide use-
ful information. The deficiency of this useful information from the
current state of DNNs makes their use in the aforementioned critical
domains questionable. To be deployed for real-world and practical
purposes, DNNs should be confident and trustworthy. Interpretabil-
ity and explainability of DNNs are the processes of opening-up these
black-boxes, so that their decision, and decision-making process can
be interpreted and explained to humans. Another major contribution
of this thesis is an effort of demystifying DNN and providing natural
language explanations of their decisions. This is achieved by enabling
a system to answer HOW and WHY a decision is made. TSViz — a vi-
sualization framework that demystifies convolutional deep learning
models for time-series data, contributes to the HOW part. This frame-
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work highlights the parts of the input that might be most influential
to a network’s decision. To answer the WHY part, TSXplain is pro-
posed. By aligning the powerful time-series statistical features with
the most influential data points, TSXplain generates natural language
explanations of DNN. Based on the defined rules, the explanations are
generated for novice and expert users. A survey presented in Chap-
ter 9 shows that the generated explanations are actually relevant and
correct. To the best of the author’s knowledge, TSXplain is a pioneer in
explaining a DNNs decision for time-series data.

In addition to the above mentioned contributions, this thesis also
looked into the area of knowledge incorporation into DNNs. In con-
trast to machines, humans reach to a decision, based on their knowl-
edge collected over time from different sources. This knowledge gives
added advantage to humans over machines in their decision-making
process. To make machines more intelligent, DeepEX is presented
in the associated research section that incorporates knowledge into
the data-driven systems. This new knowledge incorporating resid-
ual framework combines best of both knowledge- as well as data-
driven approaches. Expert predictions are incorporated in the form of
a residual scheme, where expert predictions are added to the output
of the DNN model and are also used for conditioning the DNN.DeepEX
aims to reduce the dependency of DNNs on the data by leveraging in-
formation contained in the knowledge stream. The evaluation shows
that DeepEX not only alleviates data dependence but also significantly
boosts the performance of the network. DeepEX trained on only 75%
of the data ranked at 6% place overall in the NN5 competition and at
7 place in the CIF2016 competition.

11.2 LIMITATIONS

The anomaly detection algorithms proposed in this thesis have two
modules, as most of the other deep learning-based methods. The
first module is generally responsible for predicting the next n times-
tamp(s), and the second module detects anomalies. The anomalies are
detected by finding a difference between the actual and the predicted
values. At this point, the defined threshold plays its role in marking a
data point as normal or abnormal. Although, the thresholds used in
the contextual anomaly detection (Chapter 4) and in DeepAnT (Chap-
ter 5) are selected systematically, they might not give the best results
on a different data set. This parameter needs to be tweaked for a dif-
ferent data set to get the best out of the proposed methods, as it is
generally true for other methods too.

This thesis presents some initial efforts in the area of interpretabil-
ity and explainability for time-series data. With the help of the pre-
sented work in this direction, we want to highlight the significance
of DNN decision explanation and its practical applications. One of the
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limitations of the TSXplain is its specificity for the task at hand. The
computed features and the rule-base are not easily transferable be-
tween different tasks. Currently, the explanations are generated based
on the defined rules. As the target audience, their expectations, and
data set change; the rules need to be amended according to the new
requirements. Statistical features are used in addition to sequence-
wise and point-wise features in the explanations. Another limitation
is regarding the availability of a suitable set of statistical features
for a particular task. In that case, existing features might need to be
dropped and new features might add on.

11.3 FUTURE WORK

In recent years, a lot of anomaly detection research papers for time-
series have been published. It shows the interest and need for robust
anomaly detection methods, specifically for time-series data. Most
of these papers test the algorithms on one or more of these most
common time-series benchmarks: NASA, Yahoo Webscope, and NAB.
These benchmarks contain both real and synthetic time-series, but
with one or more of the following issues:

¢ Incorrect Labeling: When a given time-series is analyzed visu-
ally, some anomalies are not labeled as anomalous, while some
normal data points are labeled as anomalous.

¢ Anomaly Density: Some time-series contain a large ratio of
anomalies as compared to the normal data points. By definition,
anomalies should be a very small ratio of whole time-series,
only then it is considered as an anomaly.

¢ Insignificance: There exist some time-series that might be very
trivial for an algorithm.

The presence of these problems in some time-series makes them un-
suitable for a good comparison. To avoid these problems in the future,
and for the sake of better, fair, and useful comparisons, it is planned
to offer a time-series anomaly detection benchmark.

XAI is another area in which a lot of papers have been proposed
recently which again highlights the need of the hour. As the trend
of practically using Al systems is increasing in many sectors, includ-
ing finance, medical, and automotive, the demand for having their
decision’s justification is also increasing. Researchers and practition-
ers are using interpretability and explainability of DNNs in an effort
to provide some kind of justification of the system’s decision-making
process and the actual decision. Due to the applicability of DNNs in
a wide range of domains, the proposed solutions span to different
niches in which the very own notions of interpretability and explain-
ability are used. The current state of XAl is that there exists not even

169

Specificity for the
task at hand

Time-series anomaly
detection
benchmarking



170

Formally define
interpretability and
explainability

CONCLUSION AND OUTLOOK

a single agreed-upon definition of interpretability and explainability.
There is not only a lack of clear understanding of these terms, there
exist no framework or a reference point according to which people
can claim that their proposed system is actually interpretable and
explainable. The traits of interpretable and explainable XAI methods
have also not been defined yet. We have already started a study to for-
mally define the interpretability and explainability terms and to come
up with a framework that can define if a given solution is actually in-
terpretable and explainable, or not. If the research community don’t
pay attention to these concerns, then it will also be a challenge to
compare XAl methods as the consensus of basic terminologies will be
missing from them, resulting in no common grounds for comparison.
Evaluation of XAI methods is also an open question. In most of the
studies, quantitative evaluation is missing, and expert evaluations are
conducted. We aim to address this issue too in future research work.
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