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Abstract

Multicore processors and Multi-Processor System on Chips (MPSoCs) have become
essential in Real-Time Systems (RTS) and Mixed-Critical Systems (MCS) because of
their additional computing capabilities that help reduce Size, Weight and Power (SWaP),
required wiring, and associated costs. In distributed systems, a single shared multicore or
MPSoC node executes several applications, possibly of different criticality levels. However,
there is interference between applications due to contention in shared resources such as
CPU core, cache, memory, and network. Existing allocation and scheduling methods
for RTS and MCS often rely on implicit assumptions of the constant availability of
individual resources, especially the CPU, to provide guaranteed progress of tasks. Most
existing approaches aim to resolve contention in only a specific shared resource or a
set of specific shared resources. Moreover, they handle a limited number of events
such as task arrivals and task completions. In distributed RTS and MCS with several
nodes, each having multiple resources, if the applications, resource availability, or system
configurations change, obtaining assumptions about resources becomes complicated.
Thus, it is challenging to meet end-to-end constraints by considering each node, resource,
or application individually.

Such RTS and MCS need global resource management to coordinate and dynamically
adapt system-wide allocation of resources. In addition, the resource management can
dynamically adapt applications to changing availability of resources and maintains a
system-wide (global) view of resources and applications. The overall aim of global
resource management is twofold. Firstly, it must ensure real-time applications meet
their end-to-end deadlines even in the presence of faults and changing environmental
conditions. Secondly, it must provide efficient resource utilization to improve the Quality
of Service (QoS) of co-executing Best-Effort (BE) (or non-critical) applications.
A single fault in global resource management can render it useless. In the worst

case, the resource management can make faulty decisions leading to a deadline miss in
real-time applications. With the advent of Industry 4.0, cloud computing, and Internet
of Things (IoT), it has become essential to combine stringent real-time constraints and
reliability requirements with the need for an open-world assumption and ensure that the
global resource management does not become an inviting target for attackers.
In this dissertation, we propose a domain-independent global resource management

framework for distributed MCS and RTS consisting of heterogeneous nodes based on
multicore processors or MPSoCs. We initially developed the framework with the French
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Aerospace Lab – ONERA and Thales Research & Technology during the DREAMS
project and later extended it during SECREDAS and other internal projects. Unlike
previous resource management frameworks MCS and RTS, we consider both safety and
security for the framework itself. To enable real-time industries to use cloud computing
and enter a new market segment – real-time operation as a cloud-based service, we
propose a Real-Time Cloud (RT-Cloud) based on global resource management for hosting
RTS and MCS.

Finally, we present a mixed-criticality avionics use case for evaluating the capabilities
of the global resource management framework in handling permanent core failures and
temporal overload condition, and a railway use case to motivate the use of RT-Clouds
with global resource management.

iv



“Two roads diverged in a wood, and I–
I took the one less traveled by,

And that has made all the difference.”

- Robert Frost
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I

Introduction

“A good problem statement often includes what is known, what is unknown, and
what is sought.”

– Edward Hodnett

Real-Time Systems (RTS), i.e., systems that must deliver the expected logical results
within stringent timing constraints, are found in various domains such as multimedia,
aerospace, railway, automotive, nuclear power plants, and healthcare. A substantial
number of RTS are embedded systems where it is not instantly evident that a computer
is involved. An illustration of an embedded RTS encountered in our daily life is a digital
media player, where failing to meet deadlines can cause an undesirable lag. We refer to
such RTS where failure to comply with real-time constraints causes loss of functionality
or performance without catastrophic consequences as Non-Critical Real-Time Systems
(NCRTS). Often, we put our lives in the hands of RTS without even realizing it and
rely on their proper functioning; for example, failure to meet deadlines in an airplane’s
RTS can have catastrophic outcomes. We refer to RTS where failure to meet real-time
constraints can lead to death or severe injury, loss or damage to property/equipment,
or cause environmental harm as Safety-Critical real-time Systems (SCS). SCS must
be certified by Certification Authorities (CAs) according to the appropriate industrial
standards, which ensure their safe operation by reducing risks to appropriate assurance
levels against failures.
Traditionally, many RTS have used federated architectures to host each real-time

application on a dedicated hardware platform (called a node). The nodes exchange
only control and sensor data among each other. The federated architectures ensure
fault containment, limit errors in a node from propagating to other nodes, and avoid
unwanted interactions by design. Thus each application can be certified in isolation from
the other. However, the recent increase in the implemented applications in these domains
has dramatically increased the number of nodes in the system, leading to an increase
in Size, Weight and Power (SWaP), required wiring, and the associated costs. These
considerations have prompted industries to move away from federated architectures and
move to a new age of integrated architectures.
Integrated architectures implement several real-time applications on a single shared

node. Integrated architectures have attained popularity as they counter the drawbacks
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2 Chapter I. Introduction

of federated architectures. Integrated architectures often use Commercial-Off-The-
Shelf (COTS) multicore processors and Multi-Processor System on Chips (MPSoCs).
Multicore processors and MPSoCs have multiple CPU cores on a single die, allowing
to increase the performance and integration of more applications without the physical
limitations of uniprocessors, thus contributing to a further reduction in SWaP, wiring,
costs, and environmental footprint. The industry is shifting to multicores not only
for their advantages but also because they expect mass-market obsolescence for single-
core processors soon[14]. Another notable trend in integrated architectures is Mixed-
Critical Systems (MCS). In MCS, applications of different criticality levels can execute
simultaneously on a node and share the node’s resources, e.g., the safety-criticality Flight
Management System (FMS) and the non-critical In-Flight Entertainment (IFE) for the
passengers can run in parallel on a single shared node.

The advantages of integrated architecture offer industries a compelling reason to use
them. However, there are some drawbacks. It is difficult to achieve the required isolation,
especially in multicore platforms and MPSoCs due to contention in the shared resources
such as CPU, shared-bus, memory (controller), and network. These shared resources can
cause unpredictable delays leading to deadline misses in real-time applications. Moreover,
the boundaries for fault isolation and error contamination are not as sharply defined as in
the federated architecture. As a result, ensuring that the RTS meet their deadline becomes
challenging, especially in the absence of suitable resources management techniques
for guaranteeing isolation and predictable shared resources access delays. Certifying
Real-time safety-critical applications without these guarantees is cumbersome. There
are also contrary goals for safety-critical and non-critical/best-effort applications that
exacerbate the preexisting resource management problem in integrated architectures. The
pessimistic Worst-case Execution Time (WCET) estimations of safety-critical applications
under-utilize the resources significantly in the average case. Simultaneously, the non-
critical/best-effort applications require efficient resource utilization to provide the best
possible Quality of Service (QoS).

Many allocation and scheduling methods exist for RTS and MCS. These methods rely
on implicit assumptions of constant availability of individual resources, especially the
Central Processing Unit (CPU). Classical scheduling algorithms like Round-Robin (RR)
or Earliest Deadline First (EDF) assume control over the entire CPU or a single core.
Methods such as XtrautuM hypervisor [15] or PikeOS [16] schedule to fixed proportions
and allow hierarchical scheduling. However, in these existing approaches availability of a
constant amount of processing is assumed to provide guaranteed progress of tasks. Such
pre-planned assumptions may be possible on single nodes; however, they become less
meaningful in distributed systems with several nodes, each having multiple resources.
If the applications, availability of resources, or system configurations change, obtaining
assumptions about resources becomes complicated. Moreover, it is challenging to meet
end-to-end constraints by considering each resource or node individually. A system with
dynamically changing availability and requirement of resources requires global resource
management to maintain a global (system-wide) view of resources and applications and
coordinate and adapt system-wide resource allocations. In addition, the global resource
management must adapt applications to changing resource availability.
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Most existing resource management frameworks, such as [17, 18, 19, 20] focus on non-
RTS. Some examples of existing approaches for resource management frameworks in RTS
are the Matrix framework [21], the ACTORS framework [22], the ACROSS framework
[23] and Real-Time Adaptive Resource Management (RTARM) [24]. The Matrix resource
management framework presented a method to manage NCTRS using home networks and
single-core CPUs as system resources. The resource management framework in ACTORS
project provided temporal isolation in RTS at CPU-level through resource reservation in a
single multicore platform. In Project ACROSS [23], a Trusted Resource Manager provided
the possibility to reschedule communication on Network-on-Chip (NoC). RTARM is
a adaptive resource management framework for end-to-end resource allocations on
heterogeneous COTS nodes to provide guaranteed QoS to applications. However, these
existing works have not considered an architecture consisting of distributed MCS and
RTS consisting of heterogeneous nodes based on multicore processors or MPSoCs.
A single fault in the global resource management can render it useless. In the worst

case, it can make faulty resource management decisions leading to a deadline miss in
real-time applications. Thus, it is essential to ensure the safety of the global resource
management itself by providing fault-tolerance in its components. Nevertheless, there
can be no safety without security. With the advent of Industry 4.0, cloud computing,
and Internet of Things (IoT), it has become essential to combine stringent real-time
constraints and reliability requirements with the need for an open-world assumption. As
a result, the global resource management for these systems becomes an inviting target for
passive and active attackers as it can actively decide on the system’s resource management.
For instance, the attackers can masquerade as a resource management component and
produce incorrect resource management decisions or obtain sensitive system information
from resource management communication. None of the existing frameworks consider
both, safety and security, together for the global resource management in RTS or MCS.

I.1 Scope of the Dissertation
This dissertation proposes a domain-independent global resource management framework
for distributed MCS and RTS consisting of heterogeneous nodes based on multicore pro-
cessors or MPSoCs. The global resource management framework can ensure efficient
resource utilization while providing the required resource isolation and predictable re-
source access behavior to guarantee that all real-time applications meet their deadlines
(and safety-critical applications adhere to their safety assurance levels). The framework
also provides fault-tolerance or recovery for real-time applications upon changes in oper-
ational conditions or availability of resources. Simultaneously, the resource management
can allocate resources to non-critical/best-effort applications to improve QoS. The global
resource management framework presented in this dissertation considers both safety and
security for the framework itself. To enable real-time industries to use cloud computing
and enter a new market segment, e.g., safety-critical operation as a cloud based service,
this dissertation extends the global resource management framework to develop a Real-
Time Cloud (RT-Cloud) for hosting RTS and MCS. Finally, this dissertation presents a
mixed-criticality avionics use case for evaluating the capabilities of the global resource
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management framework in handling permanent core failures and temporal overload
condition, and a railway use case to motivate the use of RT-Clouds with global resource
management.

I.2 Document Structure
The rest of this dissertation is structured into seven chapters. The structure is as follows:
Chapter II describes the terms and concepts used throughout this dissertation. The

chapter also provides the related work, relevant (EU) projects, and the state-of-the-art
resource management frameworks for RTS and MCS. In addition, the chapter explains
the problem statement of this dissertation and summarizes our contribution.
Chapter III presents our resource management framework for distributed MCS and

RTS. The chapter explains the requirements and challenges in designing the resource
management framework and our proposed solution to meet them.
Chapter IV explains the Local Resource Manager (LRM), a component that manages

a subsystem and provides adaptability within the subsystem upon changes in availability
and demands of resources. The chapter also explains in-depth the two main modular
sub-components of the Local Resource Manager (LRM): Local Resource Monitor (MON)
and Local Resource Scheduler (LRS). The chapter also introduces the newly implemented
Local Resource Monitor (MONs) and Local Resource Schedulers (LRSs). Finally, this
chapter explains the local resource management policies to manage permanent core
failures on a node and potential deadline overrun in critical applications while improving
the QoS of best-effort applications and overall resource utilization of a multicore node.
Chapter V explains the Global Resource Manager (GRM), a component that manages

and provides adaptability within the entire system with the help of the LRMs that it
controls and supervises. In addition, this chapter explains the introduced security
measures for the communication among a single central Global Resource Manager
(GRM) and the LRMs. Furthermore, this chapter extends this central GRM to make
distributed global resource management decisions instead of centralized ones to increase
fault tolerance. Finally, the chapter proposes to implement GRM for distributed decision-
making using a blockchain to achieve Byzantine fault-tolerance for the global resource
management decisions and security for the resource management communication.
Chapter VI presents the avionics use case from the DREAMS project. The chapter

explains how we use and evaluate our resource management framework for system-wide
adaptability upon core failures in an avionics system. The chapter also presents an
evaluation of how resource management improves the QoS of best-effort applications
and overall resource utilization of a multicore node while ensuring safety for the critical
avionics applications. Lastly, the chapter provides an evaluation of the secure resource
management communication.
Chapter VII explores virtualization technologies and cloud computing for migrating

an existing real-time safety-critical railway use case from dedicated hardware solutions.
The chapter examines existing virtualization technologies for deploying a (private) RT-
Cloud on COTS server hardware to run an existing railway use-case while meeting
stringent safety and security requirements. Based on the examination, the chapter
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provides insight into using existing virtualization technologies the resource management
architecture to safely and securely execute the railway use case applications. The chapter
also presents the evaluation of the distributed global resource management in a cloud-
based scenario. Finally, the chapter provides the evaluation of the Time-Triggered
(TT)-LRS with a cloud node running Kernel Virtual Machine (KVM) hypervisor.
Chapter VIII provides the conclusion and the future work.





II

Background, Related Work and Problem
Statements

“If I have seen further, it is by standing on the shoulders of Giants”
– Issac Newton

This chapter describes the terms and concepts used throughout this dissertation and
provides an overview of the relevant works and projects.

II.1 Distributed System
There is no single definition for a distributed system. In general, a distributed system is
a system where the software components run on multiple networked computer systems
called nodes to achieve common objectives. Alternatively, each node can run software
with individual goals, and the distributed system facilitates coordination for the use
of shared resources and provides services for different software to communicate. Each
node has its memory. They can be physically near each other and connected via a Local
Area Network (LAN) or located at a distance and connected via a Wide Area Network
(WAN). The software components can run on nodes with heterogeneous processors from
various vendors, and they communicate and coordinate by passing messages between
each other via the network. Figure II.F1 shows an example of a distributed system with
five nodes.

II.1.1 Federated and Integrated Architectures
Federated architectures host each functionality on a dedicated node. The nodes exchange
only control and sensor data among each other. The federated architectures ensure fault
containment, limit errors in a node from propagating to other nodes, and avoid unwanted
interactions by design.
However, the recent increase in the implemented functionalities in various domains

has dramatically increased the number of nodes in the system, leading to an increase
in Size, Weight and Power (SWaP), required wiring, and the associated costs. These

7
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considerations have prompted industries to move away from federated architectures to
integrated architectures which implement several functionalities on a single shared node
and counter the drawbacks of federated architectures. For example, Boeing and Airbus
have reported a significant reduction in weight and the number of required processors
due to the use of integrated architecture in the form of Integrated Modular Avionics
(IMA) [25]. Figure II.F2 shows examples of federated and integrated architectures.

Integrated architectures often use Commercial-Off-The-Shelf (COTS) multicore pro-
cessors or Multi-Processor System on Chips (MPSoCs) as they allow to increase the
performance and integration of more functionalities without the physical limitations
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of uniprocessors, thus contributing to a further reduction in SWaP, wiring, costs, and
environmental footprint. Furthermore, the industry is shifting to these processors not
only for their advantages but also because they expect mass-market obsolescence for
single-core processors soon[14]. Thus, in this dissertation, we consider integrated archi-
tectures consisting of nodes with multicore processors or MPSoCs. However, many of
the ideas discussed in this dissertation are relevant to single-core processors as well.

II.2 Multicore processor
A multicore processor is a single integrated circuit consisting of two or more processing
units called cores on the same die. The number of cores in a processor is usually to
a power of two. For example, a quad-core processor has four cores. A homogenous
multicore processor has cores with the same hardware architecture, while a heterogeneous
multicore processor has cores with different hardware architecture. The processor can
execute instructions parallelly on all its cores. In addition to cores, a multicore processor
has other shared resources such as caches, on-chip interconnect(s), Integrated memory
controller(s), and various peripheral I/O controllers. Figure II.F3 presents an example of
a multicore processor.
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Figure II.F3: Example of a Multicore Processor

II.2.1 Cache
Caches are fast data storage components located close to the core and store copies of
data from a slower data storage device: the main memory. They help to reduce the
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average time needed to read data from the main memory. The caches are usually much
smaller in size than the main memory to be cost-effective. Multicore processors often
have a hierarchy of cache levels starting from Level 1 (L1) and usually going up to L2
or L3. We refer to the cache at the last level in the hierarchy as Last Level Cache (LLC).
Caches generally increase in size and decrease in speed as we move along the hierarchy.
L1 caches are the smallest and the closest to the cores. Many processors have separate
instruction-specific and data-specific caches at Level 1, referred to as I-cache and D-cache,
respectively. L1 caches are usually private caches, i.e., accessible from only one core,
while LLC caches are usually shared caches and accessible by multiple cores.

There are two possible scenarios when a core accesses a cache:
1. A cache hit occurs if the core finds the requested data in a cache. Upon cache hit,

the core directly uses the data from the cache and performs the required operation.

2. A cache miss occurs if the core does not find the requested data in the cache. Upon
cache miss, the processor creates a new cache entry by copying the requested data
from a higher level cache or the main memory to the current cache in a fixed-size
block called the cache line. As a result, the core can now access the requested data
from this new cache entry. When there is no more space in the cache to make new
entries to serve cache misses, the cache evicts existing entries based on a cache
replacement policy such as the Least Recently Used (LRU) or First In First Out
(FIFO).

II.2.2 On-Chip (Shared) Interconnect
An on-chip interconnect consists of communication wires connecting the processor cores,
caches, and memory controller. Depending on the hardware architecture, it may also
connect additional components such as the peripheral I/O controllers and other buses
such as the Peripheral Component Interconnect. In the past, many on-chip interconnects
were shared bus-based architectures that connect multiple masters to multiple slaves.
The use of hierarchical buses was a step forward in the on-chip interconnect architecture
that facilitated complex multicore processor designs. Advanced Microcontroller Bus
Architecture (AMBA) [26] is an example of a bus-based on-chip interconnect. It supports
multiple buses such as the Advanced High-performance Bus (AHB) and Advanced
eXtensible Interface (AXI) for high-performance and high clock frequency systems, and
the Advanced Peripheral Bus (APB) for connecting low-bandwidth peripherals.
Crossbar is a non-blocking on-chip interconnect that eliminates serialization to a

considerable extent. A crossbar has N inputs ports and M outputs ports and can
simultaneously transport signals from the N input ports to the M output ports as far as
the signals do not have identical source or destination ports. An example of crossbar
architecture is the CoreNet Coherency Fabric (CCF) used in NXP T4240 [12].

A Point-to-Point (P2P) interconnect is another on-chip interconnect architecture that
uses dedicated wires to connect the components. Intel QuickPath Interconnect (QPI)
[27] is an example of a P2P interconnect.

Network-on-Chip (NoC) is an alternative interconnect architecture that provides better
scalability than the other options while still supporting high bandwidth and is thus
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suitable for designing multicore core processors with many cores. Routers are the basic
building blocks of NoCs. Various network topologies, such as Mesh and Ring topologies,
are possible for connecting them with each other and the network endpoints. [28] presents
and compares some well-known NoC topologies. Spidergon STNoC [29] is an example of
an NoC.

II.2.3 Integrated Memory Controller (IMC)
The Integrated Memory Controller (IMC) is an integral part of the multiprocessor and
acts as an interface between the cores and the main memory. Main memory usually
consists of Dynamic Random-Access Memory (DRAM). DRAMs store data as a presence
or absence of charge on a capacitor. Since the capacitors slowly leak electric charge,
DRAMs need an external circuit to perform a memory refresh periodically and ensure
data preservation. Hence, the IMC contains the logic to perform memory refresh as well.
The DRAM chip contains multiple banks. Each bank is a two-dimensional array

organized in rows (often referred to as Pages) and columns. The memory controller
manages the DRAM using the following essential signals:

• Activate (ACT): ACT opens a row of a DRAM bank for reading or writing.

• Row Access Strobe (RAS) and Column Access Strobe (CAS): The CPU uses RAS
to specify the row where the data exists, followed by using CAS a short time later
to specify the column.

• Precharge (PRE): PRE deactivates open rows in one or all banks. A row remains
open till it is deactivated using PRE.

A row is often referred to as a page. If data access occurs to an open row (page-hit),
then the memory controller must only issue CAS to read/write the data. However, if all
banks are idle, i.e., no rows are open (page-empty), then the memory controller issues
ACT (and RAS) followed by CAS after a short delay. Finally, if the access occurs to a
different row than the one currently open (page-miss), then the memory controller must
issue all the commands sequentially with a slight delay between them: PRE, ACT (with
RAS), and CAS.
In this dissertation, we refer to memory access time as the time between the start

and finish of a memory request. Memory cycle time is the minimum delay between
successive memory operations. Memory bandwidth indicates the number of bits or bytes
transferred from the memory to the CPU cores per second. Memory latency refers to
the amount of time (in clock cycles) taken to retrieve a byte (or a word) by a CPU core
after initiating a memory request for the byte. Memory latency is lower when a page
hits occurs, while it is higher when a page misses occurs.

II.3 System on a Chip (SoC)
System on a Chip (SoC) integrates almost all computer system components on a single
integrated circuit. There is no specification of components that an SoC must include;
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nonetheless, most SoCs include (multicore) CPU, memory, input/output ports alongside
other components such as Field Programmable Gate Array (FPGA), Graphics Processing
Unit (GPU), radio modems, or analog and digital processing units. SoCs provide higher
average performance and lower power consumption than traditional processors as they
tightly couple various components of a computer system. As a result, a new trend of
using SoCs is emerging across various industries.
An SoC must have at least one processor core. When an SoC integrates multiple

processors, we refer to it as a MPSoC. MPSoCs usually contain heterogeneous processing
elements such as microcontrollers, microprocessors, or digital signal processors geared
towards specific requirements of the targeted domain.

Similar to processors, SoCs have a memory hierarchy consisting of multiple caches and
main memory. Some SoCs feature On-Chip Memories (OCMs) that can store instruction
as well as data. SoCs also feature Shared on-chip interconnects to connect various
components. SoC manufacturers often use ARM’s AMBA standard for interconnect
design. A new trend towards using NoCs for SoC interconnects is emerging as they allow
integrating more components.

II.4 Examples of Multicore processors and SoCs
In this dissertation, we consider three different hardware platforms containing either a
multicore processor or a SoC. This section gives a high-level description of these three
hardware platforms.

II.4.1 NXP QorIQ T4240 with e6500 processor

Figure II.F4 shows an overview of NXP QorIQ T4240 [12]. We used this platform for
implementing the avionics demonstrator of Chapter VI. Our platform has 3× 8GB =
24GB DRAM. The QorIQ T4240 has an e6500 processor with the following relavent
features:

• 12 dual-threaded cores, arranged in three clusters of four cores each

• 64-bit architecture

• Maximum operating frequency of 1.8GHz

• 32KB I-L1 cache and 32KB D-L1 cache per core, 2MB L2 cache per cluster
(shared by cores of a cluster), and a 1.5 MB L3 cache (LLC) shared by all cores

• Shared on-chip interconnect in the form of CCF

• DDR3 memory controller

• Integrated 1Gbps and 10Gpbs Ethernet
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Figure II.F4: NXP QorIQ T4240 [12]

II.4.2 Xilinx ZC706 with Zynq-7000 SoC
The Xilinx ZC706 platform contains the Zynq-7000 SoC [13]. The platform has 1GB
component memory on the Processing System (PS) and 1GB Small Outline Dual In-line
Memory (SODIM) on the Programmable Logic (PL). We used this platform as the
DREAMS Harmonized platform (DHP) for developing the avionics demonstrator of
Chapter VI.

Figure II.F5 gives an overview of the Zynq-7000 SoC [13]. It has the following relavent
features:

• Dual-core ARM Cortex A9 processor (ARMv7-A architecture) (a.k.a. PS)

• 32-bit architecture for the ARM processor

• Maximum 866MHz operating frequency for the ARM cores

• 32KB I-L1 cache and 32KB D-L1 cache per ARM core, 512KB L2 cache (LLC)
shared by all ARM cores

• 256KB OCM (RAM)

• Xilinx Artix-7 FPGA (a.k.a. PL)

• ARM AMBA AXI [26] based shared on-chip interconnect

• DDR3 memory controller
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Figure II.F5: Xilinx Zynq-7000 [13]

• 10/100/1000Gpbs tri-speed Ethernet

II.4.3 Dell R640 Server with Intel Xeon Gold 5218 Processor

Dell R640 is a dual-socket platform for use in data centers. Our Dell R640 platform
contains a Intel Xeon Gold 5218 Processor [30, 31] and has 6× 16GB = 96GB DRAM.
We used this platform in building a Real-Time Cloud (RT-Cloud) for the railway
demonstrator from Chapter VII.

Figure II.F6 shows a simplified overview of the Xeon Gold 5218 processor. It has the
following features:

• 16 dual-threaded processor cores (Intel Cascade Lake architecture)

• 64-bit architecture

• Base operating frequency of 2.3GHz (3.9 Ghz maximum Turbo frequency)
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Figure II.F6: Intel Xeon Gold 5218 Processor

• 32KB I-L1 cache and 32KB D-L1 cache per core, 1MB L2 cache per core, and
22MB L3 Cache LLC shared by all cores

• Intel QPI [27] interconnect

• DDR4 memory controller

II.5 Real-Time Systems (RTS)

Real-Time Systems (RTS) are systems that must deliver the expected logical results
within stringent timing constraints. We refer to RTS where failure to meet real-time
constraints can lead to death or severe injury, loss or damage to property/equipment,
or cause environmental harm as hard or Safety-Critical real-time Systems (SCS). On
the contrary, we refer to RTS where failure to comply with real-time constraints causes
loss of functionality or performance without catastrophic consequences as Non-Critical
Real-Time Systems (NCRTS).
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II.6 Task
A task, τ , is an elementary term used in real-time systems to describe a piece of software
containing a sequence of instructions executed on a processor till completion. The
collection of tasks (τ1, τ2, . . . , τn) that execute on a computer system is referred to as a
taskset, Γ. A task τi ∈ Γ can be activated multiple times with possible different input
data. Each instant of a task activation with a specific input data is called a Job, J .
In this dissertation, we consider an application, A, to be a group of tasks (possibly)
communicating with each other and working together to achieve a common objective.

II.6.1 Task parameters
Each real-time task consists of specific properties dependent on the task implementation
and the hardware architecture of the targeted processor. Moreover, real-time tasks
consist of specific requirements put forth by the system designer. Each task has some
essential task parameters that express these properties and requirements. The task
parameters relevant to this dissertation are as follows:

• Worst-case Execution Time (WCET), Ci, is the maximum length of time needed
by a specific hardware platform to entirely execute a task, τi, without interruption
over all possible input data. Thus, the WCET of a task is also the upper bound to
the execution time of a task’s jobs.

• Release or activation time, ri is the time point when a job of a task, τi, becomes
ready for execution.

• Absolute deadline, Di, is a specific time point when a job of a task, τi, must finish
executing. The Relative deadline, di, is a time point when a job of τi must finish
executing relative to its own release time.

• Priority, PRIOi, is a value that represents the relative importance of a task, τi, in
a system with multiple tasks. In the context of this dissertation, we assign a task
with more importance a higher priority value.

• Preemption refers to the possibility of interrupting a task in favor of another task.
The intention is to resume the former task at a later point in time. Depending
on the time point when preemption is possible, real-time tasks can be divide into
three categories:

1. A fully preemptive task is interruptible at any point in time.

2. A non-preemptive task cannot be interrupted during its execution.

3. A partially preemptive task is only interruptible at specific time points, or it
cannot be interrupted during the execution of specific code sections.

• Real-time literature classifies tasks into hard, soft, and firm depending on the
consequences of a deadline miss. However, the definitions of these classifications
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vary. The IEEE Technical Committee on IEEE Technical Committee on RTS
(TCRTS) defines them as:

1. A task is hard if a deadline miss by a job of the task jeopardizes the correct
behavior of the system.

2. A task is firm if the result produced by a job of a task is entirely useless
upon deadline miss by the job, but it does not jeopardize the system’s correct
behavior.

3. A task is soft if the utility of the result produced by a job of a task reduces
upon deadline miss by the job, and it does not jeopardize the system’s correct
behavior.

• It is important to note that SCS tasks are not always hard, while NCRTS tasks
are not always firm or soft. For example, deadline misses in a digital media player,
a NCRTS, jeopardize the correct system behavior without causing catastrophic
outcomes. In practical engineering contexts, for some SCS, the occasional loss of
few deadlines can be tolerated due to the robustness of control algorithms and the
resultant ability to react appropriately at the next invocation step without severe
consequences.

• Criticality, li, is a designation for the level of assurance against failure needed
in a task, τi. Safety standards such as the automotive domain’s ISO26262 [32]
and avionics domain’s DO-178B [33] each define up to five criticality-levels called
Automotive Safety and Integrity Levels (ASILs) (ASILs) and Design/Development
Assurance Levels (DALs), respectively. As noted by [34] and others, different
Mixed-Critical System (MCS) papers and standards assign criticality varying
definitions.

II.7 Task models
In real-time systems, task models impose assumptions and focus on the essential task
properties while abstracting unnecessary details. Liu and Layland [35] introduced the
most predominantly used periodic model. In this task model, a task consists of an infinite
sequence of jobs released periodically with a fixed interval between the release times of
any two consecutive jobs. As a result, tasks in the periodic model have an additional
parameter:

• Period, Ti, of a task, τi, is the fixed interval between the release times of two
consecutive jobs of that task.

The periodic model assumes that the deadline of a job is implicitly equal to the task
period (di = Ti), and the release time of a job is at the period start. Besides, this model
considers that the tasks are independent of each other, have bounded execution time, and
the jobs of a task cannot suspend themselves. A final assumption is that the scheduling
overhead should be negligible. There exist various variations of this task model based on
the relationship between the task parameters, such as di < Ti or di > Ti.
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In real-time scheduling theory, the term hyperperiod represents the duration after which
the pattern of job release times starts to repeat for the whole taskset. The hyperperiod
of a taskset, Γ = {τ1, τ2, . . . , τn}, is equal to LCM(τ1, τ2, . . . , τn). The utilization, Ui, of
a task expresses the periodic load generated by the task. For a task, τi ∈ Γ, Ui = Ci/Ti.
The utilization, U , of the taskset, Γ, is equal to

∑n
i=1 Ui.

Another commonly used task model in real-time systems is the sporadic model[36],
which extends the periodic model by introducing a minimum time interval, called the
inter-arrival time, TSi, between two consecutive jobs of a task instead of a fixed time
interval (Period). Apart from periodic and sporadic tasks, a system can also have
aperiodic tasks [37]. Aperiodic tasks have a possibly infinite sequence of jobs without
any restriction on the time interval between two consecutive job releases. Aperiodic
tasks model tasks with infrequent jobs or jobs with irregular arrival patterns. There exist
other task models, but many of them are application-specific and not directly relevant
to this dissertation.

II.8 Mixed-criticality Systems (MCS)
Vestal [38] observed that it is not always possible to determine the WCET value of a task
with complete certainty. The WCET, Ci, of a task, τi, is dependent on the criticality
level, li, of τi. Since the verification process becomes more conservative with the increase
in the criticality levels, the process considers more pessimistic WCET estimations to
increase confidence and reduce uncertainties. Based on this observation, Vestal proposed
a mixed-criticality task model extending the periodic model by introducing the following:

1. An order set of Criticality levels, L = {A,B,C,D} with A being the highest
criticality level in the system.

2. A WCET, Cil, for each task, τi, at every criticality level li ∈ L. Since the WCET
increases with criticality of the task: CiA > CiB > CiC > CiD.

The goal of this model is to assure to level li that for all τi deadline is never missed.
[39, 40] extend the vestal model by allowing a task to have multiple deadlines based
on the criticality levels such that L1

i > L2
i than D1

i < D2
i . Similarly, they also allows

multiple periods based on the criticality levels. Some papers such as [41, 42] reduce the
complexity of the MCS task model by considering just two criticality levels: Low (LO)
and High (HI). In these dual-criticality models, a task, τi, has just two WCET values:
Ci(LO) and Ci(HI).

Many research papers in MCS consider that system can execute in different criticality
modes. The MCS starts executing in the lowest criticality mode, κ = 1, with criticality
L = 1. The system stays in this mode as long as all tasks comply with this mode. If a
job of a task executes longer (Cactual

i > CL
i ) or a task executes more often than permitted

during this mode (T actuali > TLi ), then a mode change occurs, and the MCS moves to a
higher criticality mode, κ+ 1 with criticality level L+ 1. The mode change results in
suspension of all tasks executing with criticality li less than equal to κ+ 1. Some papers
allow the criticality mode to only increase upwards. In contrast, other works allow the
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criticality mode to revert to lower ones upon reaching a specific online state or if the
system has slack.
However, Industrial safety standards such as ISO26262 [32] or DO-178C [43], do not

recommend different WCET estimation techniques for tasks with different criticality
levels. Mixed-criticality industries consider a task to have one single value on a specific
hardware platform based on the assurance required by the task’s actual criticality level.
Higher the required assurance, more rigorous are the techniques used to demonstrate
that the task meets the timing and the safety requirements. Industries consider a task
to have one single WCET value on a specific hardware platform based on the assurance
required by the task’s criticality level. Industries assign criticality levels to a task based
on the consequences of failure, the likelihood of failure occurrence, and the ability of
the system to deal with faults in the task. Tasks deemed as non-critical have minor
or non-catastrophic consequences of failure or negligible probability of occurrence. As
explained in [44], when two tasks, τ1 and τ2, have the same severity class for failures, but
if τ1 has a higher probability of occurrence for failure than τ2, then τ1 may be assigned
a higher criticality level than τ2. Thus, the criticality levels assigned to tasks do not
indicate the importance of the tasks. Consequently, favoring tasks with higher criticality
levels over lower criticality tasks is unwarranted.
Industrial standards recommend isolation between tasks of different criticality levels

even when they share the underlying system resources. Certification Authorities (CAs)
require evidence, especially from non-critical to critical applications, to prove (1) iso-
lation between tasks of different applications and (2) faults do not propagate between
applications. If applications are not isolated, all non-isolated applications must have their
tasks certified to the highest criticality non-isolated application to ensure meeting all
safety requirements and prevent vulnerabilities from security attacks. However, certifying
all tasks to the highest criticality level is extremely expensive and practically not viable.
In this dissertation, we consider the industrial notion of mixed-criticality tasks.
ARINC 653 [45] and AUTOSAR [46] are two examples of industry software spec-

ifications developed to meet these isolation and independence requirements. In this
dissertation, we consider ARINC 653 in the avionics use case (Chapter VI). Section
II.13.1 gives a basic idea of this software specification.

II.9 Scheduling
Scheduling is a decision-making approach for allocating resources, such as cores, memory,
and network bandwidth, to tasks of a taskset. A scheduling algorithm is a set of rules
to perform scheduling. A scheduler applies a scheduling algorithm and determines the
allocation of resources to jobs of tasks at the exact moments in time to produce a schedule.
A fully preemptible scheduler can preempt the currently executing job of a task and
apply a new scheduling decision. On the contrary, a non-preemptible scheduler does not
interfere with a currently running job and only applies new scheduling decisions after the
current job completes. A dispatcher is part of the scheduler that comes into play after
the scheduler makes the resource allocation decision. The dispatcher gives the job(s)
selected by the scheduler control over the desired resource(s).
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The schedule is referred to as valid if it ensures that all jobs meet their timing
constraints. Suppose there exists a valid schedule for a taskset in a system using a
particular scheduling algorithm. In that case, the taskset is referred to as schedulable on
this system using the specific scheduling algorithm.

Priority assignment to tasks forms an essential basis for the classification of real-time
system scheduling. In fixed-priority scheduling, tasks have a fixed priority throughout
the system’s runtime, i.e., all jobs of the same task execute at the same priority. The
Rate Monotonic Scheduling (RMS) algorithm is an example of fixed-priority scheduling.
In RMS, a task with a smaller period gets a higher priority than a task with a longer
period. [47] extended RMS to multiprocessor systems. The paper presented two different
approaches: partitioned and global. In the partitioned approach, jobs of a task are
bound to a processor and cannot migrate to another processor. Contrarily, in the global
approach, the jobs of a task can execute on different processors, i.e., task migration is
permitted.

In dynamic-priority scheduling, the priorities of a task can change at runtime, i.e., jobs
of the same tasks may have different priorities over time. The Earliest Deadline First
(EDF) algorithm is an example of dynamic-priority scheduling. In EDF, a task with
the next upcoming deadline in the system has the highest priority. Liu and Layland
[35] provided some initial analysis of fixed-priority and dynamic-priority schedulers on
single-core processors.
[48] presents a survey covering many hard real-time multiprocessor scheduling algo-

rithms. [49] gives a comprehensive overview of multicore scheduling algorithms.

II.10 Timebase

A safety-critical distributed system has multiple applications concurrently executing on
different nodes. Moreover, replicated nodes may be present for fault tolerance. All nodes
of the system have their own clocks. For Time-Triggered (TT) scheduling, the system
must have synchronized clocks forming a global timebase for use by all applications on
different nodes [50].
Depending on when the events from a set of significant events are allowed to occur

on a directed timeline consisting of an infinite set of instances (ordered and dense set),
there exist two kinds of timebase [50]:

1. In a system with a dense timebase, an event can occur at any instant of the timeline.

2. In a system with sparse timebase, an event can occur only at some fixed instances
in the timeline. Thus, there are time intervals between the fixed instances when
no events can occur. Fohler [51] referred to these minimum scheduling quantums
as slots, while Steiner [52] referred to them as macroticks. The Time Triggered
Architecture (TTA) uses a sparse-time base to ensure consistent ordering of events.
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II.11 Time-Triggered (TT) and Event-Triggered (ET) Task
Schedulers

There are two main scheduling approaches in real-time systems depending on the
scheduler’s activation: TT and Event-Triggered (ET). In TT scheduling, the scheduler
activation takes by the progression of global time, i.e., when the global time reaches
predefined points on the global timebase, the scheduler is activated to schedule a task.
On the contrary, scheduler activation in ET scheduling occurs due to significant events
from the environment or by the progression of the previous task. Examples of such
events are job releases, task job completion, and user actions.
The TT scheduler mainly consists of a dispatcher that assigns resource(s) to task(s)

based on an offline (during design phase) computed schedule. The scheduler receives this
schedule as a scheduling table consisting of all the necessary scheduling decisions and the
point in time the dispatcher should implement those decisions. Since TT scheduling uses
offline tables, it is referred to as offline scheduling as well.
To create the scheduling table for TT schedulers, the system designer must know all

tasks in the system before runtime. The scheduler cannot handle a task that is specified
offline. Since the exact activation times of sporadic or aperiodic tasks are unknown
before runtime, they must be considered as periodic tasks when creating the scheduling
table. Moreover, if the system designer needs to add a new task to an existing scheduling
table, he/she must recompute the entire scheduling table. While creating the scheduling
table, assignment of a resource to a task takes place based on the worst-case resource
demand. Nevertheless, most tasks utilize only a fraction of the allocated resources at
runtime in the average case.
In TT scheduling, since the creation and validation of the scheduling table takes

place offline, a system designer can factor in complex constraints such as latency and
precedence constraints, which would otherwise incur large overheads to handle directly
at runtime. A TT scheduler also enforces strong temporal isolation between tasks. Since
the scheduler is activated periodically, it can easily ensure that job of a task overrunning
its WCET does not hamper other tasks’ schedulability. Finally, a system using TT
scheduling is highly predictable as events occur pre-planned at fixed points in time. Thus,
testing and certifying the system is easier as there are only a few predictable scenarios
to consider.

A scheduling table that contains all possible decisions for the complete lifetime of the
system will be enormous and not easy to store on a node. Thus, there is a need to create
a comparatively much smaller scheduling table, for example, for a hyperperiod of the
taskset. The scheduler executes this smaller table on a cyclic basis for the system’s entire
lifetime. The smaller schedule stored in the scheduling table is referred to as a cyclic
schedule.

ET schedulers, such as EDF, offer much more flexibility than TT schedulers, as they
can handle events without pre-planning (before runtime). It is unnecessary to create
an offline scheduling table as the scheduler allocates resources to tasks during runtime
based on a scheduling algorithm and the actual demand. Once the tasks release the
resources (often before the worst-case resource demand), the resources become available
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for allocation to other tasks. The ET schedulers must handle all events quickly for them
to ensure timely reaction to future events. As a result, the ET schedulers require simple
scheduling algorithms to keep runtime overheads low (comparable to TT schedulers) and
do not usually consider complex constraints.

ET schedulers can have much higher overheads despite a simple scheduling algorithm
than TT schedulers, especially during peak load conditions [53]. Some scheduling
algorithms used in ET schedulers do not ensure system schedulability when the job
of a task overruns. Moreover, ET schedulers can produce widely different schedules
for the same system when the sequence or timing of events changes leading to lower
predictability. A system with an ET scheduler requires exhaustive testing using simulated
loads considering even the rarest events. However, it is not straightforward to prove that
the tests covered all possible scenarios that may occur at runtime. Kopetz [53] provides
a detailed comparision between TT and ET scheduling.

An intriguing research aspect is the development of an architecture that combines the
benefits of both the contrary schedulers. Fohler [54] presented the Slot-shifting algorithm
of TT and ET tasks. Schorr [55] extended the Slot-shifting algorithm to multiprocessor
systems. Syed [56] and Real et al. [57] presented a scheduler for admitting ET tasks in
a hierarchical TT system. Other works such as [58, 59, 60, 61] also provide scheduling
techniques that try to take advantage of both types of scheduling methods.

II.12 Time Triggered Architecture (TTA)

TTA provides a framework for the design and implementation of distributed SCS. In
TTA, the progression of time initiates all activities of the computer system [62]. In
most TTA implementations, interrupts caused by periodic overflows of a timer run the
TT scheduler that schedules significant activities according to the offline schedule at
pre-determined points in time. For consistent behavior in a distributed system using
TTA, the system must have synchronized clocks forming a global timebase for use by
all applications on different nodes. However, the finite precision of the global timebase
makes it hard to consistently order events based on global timestamps in a distributed
system. TTA ensures consistent ordering of events by using a sparse time base.

The TTA uses a two-phase design approach to support composability of applications
and reuse of prevalidated components:

1. In the architecture design phase, the interfaces and the interactions among the
distributed components in value and time domain are specified.

2. In the component implementation phase, the components are built, taking the
interface specifications from the architecture design phase as constraints.

The DREAMS cross-domain architecture [2] used in the avionics demonstrator of
Chapter VI is inspired by TTA and uses TT-Ethernet (TTE) for communication between
the distributed system nodes. The next section explains TTE.
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II.13 TT Ethernet (TTE)
Kopetz et al. [63] extended the standard ethernet (IEEE 802.3) with ideas from Time-
Triggered Protocol (TTP)/C [64] to form TT-Ethernet (TTE) for use in safety-critical
real-time and mixed-criticality systems. The main aim was providing services such as
predictable message transmission, clock synchronization, membership, and redundancy
management in distributed real-time systems. We use TTE for the mixed-criticality
avionics demonstrator in Chapter VI.
TTE maintains compatibility with standard ethernet. It uses Ethernet frames to

transfer data between nodes (referred to as End System (ES)) via special TTE switches. It
meets the requirements of real-time and non-real-time (including multimedia) applications
by providing several traffic classes in parallel on the same ethernet network:

1. Time-Triggered (TT) class: messages of the TT class get dispatched as per an
offline-defined communication schedule. Virtual Links (VLs) provide temporal
reservations for TT class messages on the physical links. They are defined by
period, frame size, source ES, destination ESs, and a route. An offline-defined table
stores time intervals (called windows) during which each VL gets access to the
physical link. An offline planning tool ensures that window assignment to TT VLs
is conflict-free, i.e., no two TT VLs will compete for the physical link. A dispatcher
sends a VL’s outgoing messages and receives its incoming messages during the
respective time window. The dispatcher discards any frame received outside the
time window. TTE provides a fault-tolerant clock synchronization protocol to
ensure synchronization of all nodes for proper functioning TT class. The avionics
demonstrator (Chapter VI) uses TT class messages for communication between
safety-critical applications. Moreover, we use TT class messages for the global
resource management communication in the avionics demonstrator.

2. Rate-Constrained (RC) Class : RC class messages on the same VL get dispatched
with a minimum inter-frame duration between them called Bandwidth Allocation
Gap (BAG). Thus, the RC VLs have BAG instead of period in their definition. RC
class does not require any form of synchronization. However, a system designer
must use static analysis to check the latency and jitter of a message and ensure
that they are within an acceptable range. The avionics demonstrator (Chapter VI)
uses TT class messages for safety-critical applications. We use RC class messages
for the non-critical frame-skipper application in the avionics demonstrator.

3. Best-Effort (BE) class : frames of the BE class get dispatched as per the best-effort
paradigm, i.e., the dispatcher sends BE frames when it does not send TT or RC
class frames.

Let us consider an example with three nodes: ES1, ES2, and ES3 communicating
via a TTE switch. For simplicity, assume that all links are unidirection as shown in
Figure II.F7. ES1 and ES2 must send safety-critical TT class messages every 3ms and
5ms respectively. Hence, a system designer must create a TT VL, A, with a 3ms period
having ES1 as the source and ES3 as the destination as shown in Table II.T1 (the table
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Virtual Link (VL) Type Source Destination Route
A TT ES 1 ES 3 ES 1->TTE SW->ES 3
B RC ES 1 ES 3 ES 1->TTE SW->ES 3
C TT ES 2 ES 3 ES 2->TTE SW->ES 3
D RC ES 2 ES 3 ES 2->TTE SW->ES 3

Table II.T1: Example of TTE VLs

doesn’t show the periods and BAG for simplicity).. Similarly, the system designer must
also create a TT VL, C, between ES2 and ES3 with a 5ms period. The system designer
can schedule the TT VLs using an offline planning tool. Apart from TT VLs, the nodes
ES1 and ES2 must send RC class messages to ES3. Thus, the system designer must
also create RC VLs, B and D, with an appropriate inter-frame gap. Moreover, ES1 and
ES2 send multiple BE class messages to ES3. Figure II.F7 shows a possible schedule for
the three nodes. The TTE dispatcher repeats the pattern of TT class messages shown in
the figure every 3ms× 5ms = 15ms cycle.

Schedule

1 A A A A A AB B B B

2 C C CD D

3 A A A A AC C CB D B D B B

BAGB BAGB BAGB

BAGD

3ms 3ms 3ms 3ms 3ms

5ms 5ms 5ms

3 × 5 = 15ms cycle

Key

TT class BE classRC class

ES 1

ES 2

ES 3TTE Switch1

2
3

Figure II.F7: Example of TTE Schedules

II.13.1 ARINC 653
ARINC 653 [45] is a software specification to support the isolation of multiple safety-
critical avionics applications, possibly with different criticality levels, hosted on a common
hardware platform in the context of IMA. ARINC 653 defines the APplication EXecutive
interface (APEX API) (APEX API) to decouple every application from the underlying
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Operating System (OS) or hypervisor. The APEX API components belong to the
following categories:

• Partition management: In ARINC 653 , the isolation is achieved through parti-
tioning techniques to allow separation among applications and support validation
and verification. Each application runs in an environment, called an application
partition, containing all the necessary data, context, and configurations needed to
execute the contained application. Henceforth, We shall refer to an application
partition simply as a partition. Each partition provides spatial and temporal
partitioning to the application running in it:

1. Temporal partitioning: The schedule of each partition should be deterministic,
with each partition executing for a fixed amount of CPU time. To acheive
this, ARINC 653 extends the concept of TT scheduling to provide temporal
partitioning. Each partition executes in a fixed time window called a Minor
Frame (MiF). A scheduling table-driven scheduler activates the MiFs on a
fixed cyclic basis while ensuring that the partitions executing in the MiFs
have uninterrupted access to the shared resources. Such a scheduler is called a
cyclic scheduler. Each partition executes at least once in a time duration called
the Major Frame (MaF), as shown in Figure II.F8. MaF is often referred to
as Major Cycle (MaC). The total time duration of a MaF equals the sum of
all MiFs’ duration belonging to the MaF.

Partition 1 Partition 2 Partition 1 Partition 3 Partition 1 Partition 2

MiF

MaF

. . .

time

Idle partition

Figure II.F8: ARINC 653 Minor Frame (MiF) and Major Frame (MaF)

When a MiF ends, the cyclic scheduler must preempt the currently executing
partition and execute the subsequent partition of the MaF. All preempted
partitions continue execution in the next MiF belonging to them.

System partitions are an additional type of partition that can optionally
exist in an ARINC 653 platform. These partitions can provide services not
supported by APEX API, such as fault-tolerance or device drivers. System
partitions can bypass the APEX API and communicate directly with the
underlying OS (or hypervisor).

2. Spatial partitioning: Each partition has a fixed assignment of memory alloca-
tion to it, and no partition can access memory regions outside those assigned
to it.

• Process management: Process management refers to the management of tasks
running in the partitions. There can be one or more periodic and sporadic tasks
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belonging to an application running in a partition. Periodic tasks execute during
each MiF of the partition, and they should be shorter than the duration of the MiF.
Each task has a fixed priority assignment. Only tasks with higher priority can
preempt tasks of lower priority. Tasks can only communicate with the underlying
OS or hypervisor via the APEX API. All code in a partition, including tasks,
execute in user mode only, i.e., they cannot perform privileged operations. Since
all tasks of a partition belong to the same application, blocking or terminating a
task in case of faults or overload situation is linked with the task’s importance for
the application rather than the task’s criticality.

• Intrapartition and interpartition communication: Tasks in a partition can
use buffers, blackboards, semaphores, and events for intrapartition communication
and synchronization. For interpartition communication, tasks in a partition can
send messages of finite length via offline-defined logical links called channels.
Channels can exist between a source partition and one or more destination partitions.
Partitions can access these channels via offline-defined access points called ports.
We will refer to a port in a partition sending a message as a source port and the
port in a partition receiving the message as a destination port. Two different modes
exist to configure source and destination ports:

1. Sampling mode: A port setup in sampling mode is suitable to transfer messages
of the same size and structure but containing variable data. A message
remains in the port until it is transmitted or overwritten by a new message.
A message remains in a destination port until overwritten by a new message
(non-consuming read). Thus, the destination partition always has access to
the last received message.

The system designer can define a time called the refresh period for which the
message remains valid. The destination partition can read messages from the
destination port after the refresh period, but it receives a flag indicating that
the refresh period has expired.

2. Queuing mode: A port setup in queuing mode is suitable to transfer messages
with varying unique data. Source and destination queuing ports do not
overwrite existing messages. A source port stores all messages written to it
in a queue before transmitting them. Once a message is transmitted, the
source port deletes the message from its queue. When a message is received,
the destination port stores the message in a queue as well. The destination
port deletes all messages read by the destination partition from its queue
(consuming reads).

The source and destination ports have buffers of predefined sizes. A task in a
source partition can get blocked when it causes a buffer overflow in the source
port. On the contrary, a task in a destination partition can get blocked when
it reads from a destination port with an empty buffer.

• Time management: ARINC 653 provides time slices for scheduling, deadlines,
periods, and timeouts of tasks in a partition. Process management and time
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management together ensure the timely execution of tasks in a partition.

Avionics domain often uses specialized virtualization techniques (hypervisors) that
implement the ARINC 653 APEX API. Section II.17 provides further information on
virtualization techniques.

Avionics and other safety-critical domains are shifting to multicores and MPSoCs
not only for their advantages but also because they expect mass-market obsolescence
for single-core processors soon[14]. As explained in Chapter I, multicore platforms and
MPSoCs suffer from contention in the shared resources, which can cause unpredictable
delays leading to deadline misses in safety-critical applications. The following section
explains the issues about contention in shared resources. The section further presents
some related work on methods to analyze the impact of shared resources on the execution
of tasks. Finally, it provides an overview of some existing solutions that deal with shared
resource contention.

II.14 Shared Resource Contention
In the past, RTS and MCS used single-core processors and federated architectures
that ensured deterministic response time and adequate resource isolation. Single-core
processors execute tasks sequentially, i.e., only one task runs on the CPU at a time
and accesses the node’s resources exclusively. To ensure that all the tasks meet their
resource demands, a resource allocation approach determines when a context switch
must occur to replace the current task with another one. These approaches, for example
EDF, primarily focus only on the CPU.
However, COTS multicore processors and MPSoCs are rapidly replacing single-core

processors. Unlike single-core processors, multicore processors (or MPSoCs) execute
multiple tasks concurrently on different processor cores. When these concurrently
executing tasks compete for access to a shared resource with limited bandwidth, it
results in unpredictable resource access delays. The main reason for such contention in
shared resources is the arbitration delay. For example, assume a shared resource that
can handle one resource access request at a time, but it receives two resource access
requests simultaneously from two cores. The resource selects one of the two requests
based on an arbitration algorithm and serves it. However, it can serve the remaining
request only after serving the first selected one. Some examples of shared resources in
multicore processors and MPSoCs leading to execution time variations for tasks are as
follows:

• Parts of the memory hierarchy (shared caches and main memories, including
memory controllers) are crucial points of contention since all tasks need to access
the memory regularly for fetching instructions and reading or writing data. Despite
multiple tasks accessing the memory, an IMC can only serve one memory request
at a time. Thus, tasks have a significant impact on memory access latency as a
result of memory contention. For example, Nowotsch et al. [65] demonstrated that
the latency for a single memory store operation on a P4080 multicore platform
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could increase by a factor of 25.82 when the number of active cores increases
from 1 to 8. Radojković et al. [66] reported a maximum slowdown of 10% due to
memory bandwidth contention and a 14.4× slowdown in different benchmarks due
to contention in the L2 (shared) cache when executing benchmarks on an Intel
Core2Quad processor

In most multicore and MPSoC architectures, it is tough to determine the actual
memory latencies of tasks. Some factors that contribute towards increasing the
complexity in determining the memory latencies are as follows:

– Concurrently executing tasks on different cores can access the main memory
simultaneously and thus compete for memory bandwidth. The memory con-
troller arbitrates memory access based on a hardware-implemented arbitration
algorithm. The hardware designers optimize this algorithm to improve the
system’s average-case performance without regard for providing real-time guar-
antees. Often, the actual arbitration algorithm or some parameters thereof are
unknown to the software designers. Similar concerns apply when concurrently
executing tasks on different cores access a shared cache.

– Concurrently executing tasks τi and τj operating on different memory pages
can cause a significant number of unexpected page-misses in the IMC. It is
very tough to determine which exact memory access of τi will have a page-miss
due to memory accesses of τj. As explained in Section II.2.3, a page-miss has
the highest memory access overhead.

– A task τi can cause a shared cache to evict cache lines required by a concur-
rently executing task τj. As a result, the following access from τj to the data
stored in the evicted cache line will take much longer due to a cache miss.

– Private caches of multiple cores can store a copy of the data from the same
memory address. When a core writes to the address stored locally in its private
cache, the private caches of other cores with data pointing to the same address
must reflect the change. We refer to this problem of keeping data consistent
between caches as the cache coherency problem. Cache coherency protocols
solve this problem. However, the overheads involved in the protocols make it
harder to analyze the worst-case behavior of tasks in multicore systems.

• The on-chip interconnect is another crucial juncture of contention since all cores
access shared resources via the on-chip interconnect. Moreover, the DMA controller,
IO/ devices, and cache coherence mechanism traffics are routed through the on-chip
interconnect. For example, authors in [67] show that tasks can have a 46% variance
in execution time due to interference from cache activities and I/O peripherals in
the on-chip interconnect on an Intel Core2 CPU.

Bus-based architectures serialize access to the on-chip interconnect, while cross-bar
architectures limit the total number of simultaneous accesses to the interconnect. In
both architectures, a hardware-implemented arbitration algorithm controls access
to the interconnect. NoC-based architectures also require some form of arbitration
in the NoC routers. Similar to the arbitration algorithms in memory controllers,
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interconnect arbitration algorithms aim to improve the system’s average-case
performance without regard for providing real-time guarantees. Often, the actual
arbitration algorithm or some parameters thereof are unknown to the software
designers.

• Contention can occur in other shared resources such as Direct Memory Access
(DMA) controllers, interrupt controllers, and I/O devices in multicore processors
and MPSoCs when tasks access them simultaneously. Moreover, MPSoCs have
additional shared resources such as GPU where contention may occur.

II.15 Existing Approaches for Addressing Shared Resource
Contention

There is a considerable amount of research on methodology to analyze the impact of
shared resources on the WCET of tasks in COTS multicore processors. For example,
Pellizzoni et al. [68] present an approach to calculate the upper bound for tasks delay due
to memory contention. Yan and Zhang [69] present an approach to bound the WCET for
threads on a multicore processor with shared instruction caches. The authors propose
to statically analyze the worst-case cache interferences between different threads based
on each thread’s program control flow information. Chattopadhyay et al. [70] propose
a unified WCET that considers shared caches, on-chip interconnect, and other micro-
architectural components such as instruction pipeline and branch predictor. Sensfelder
et al. [71] propose an approach based on timed automata to model and analyze the
interference caused by cache coherence. In general, these methods suffer from enormous
computational complexity as they need to search vast state spaces to consider all possible
task interactions. Mancuso et al. [72] propose a Single Core Equivalence (SCE) framework
by statically allocating 1/m of the shared resources such as DRAM banks, memory
bandwidth, and shared caches to each of the m cores of the COTS platform. An essential
aim of this framework was to provide WCET(m), a parametric WCET estimation for
a task running on top of such a statically partitioned platform. Contrary to the static
memory bandwidth allocation in SCE, Agrawal et al. [73] considered dynamic memory
bandwidth allocation. They presented a method to analyze the worst-case response time
of a task executing in a sequence of intervals, and each interval could have a different
memory bandwidth allocation.
There have been many different methods proposed for resource allocation on COTS

multicore processors. Some approaches propose developing completely new specialized
real-time processor hardware that achieves a balance between performance and pre-
dictability. For example, Edwards and Lee [74] suggested specialized processor hardware
called the Precision Timed (PRET) cores. Hardy et al. [75] proposed to reduce the worst-
case interference in shared caches by performing static analysis to identify repeatedly
used task blocks and only allow caching of these tasks blocks while forcing single-use task
blocks to bypass the caches. The implementation of this approach requires adding an
extra bit to the instructions set to control their cacheability. However, making changes to
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existing hardware architectures or developing a new processor architecture is expensive
and not applicable to COTS multicore processors and MPSoCs.

Some existing resource allocation techniques involve Time-Division Multiple Access
(TDMA) arbitration mechanisms where an arbiter grants resource access to tasks in
statically assigned time slices. For example, Rosen et al. [76] proposed storing a TDMA
based bus schedule in the memory that the arbiter can access at runtime. In addition,
Schranzhofer et al. [77] proposed a framework to analyze the worst-case response time
of tasks considering TDMA arbitration for a shared resource. Nevertheless, as noted in
[78], TDMA arbitration provides high predictability but yields poor resource utilization
due to wastage of unused time slices.

Some existing approaches propose deterministic execution models to limit the con-
tention in multicore processors. For example, in [79], authors proposed decomposing
tasks into a fixed sequence of superblocks and dividing each superblock into three phases:
acquisition, execution, and replication. This model allows tasks to only access shared
resources in the acquisition and replication phases. In addition, the model prevents
acquisition and replication phases of simultaneously executing tasks from overlapping
to avoid resource contention. However, this model requires a tight static analysis ap-
proach to work effectively, and any minor design changes can significantly increase a
task’s worst-case response time. The PRedictable Execution Model (PREM) [80] was
proposed to minimize contention from peripheral devices in COTS single-core processors.
Houdek et al. [81] provided building blocks for implementing PREM on an ARM-based
MPSoC. PREM splits task jobs into two non-preemptible intervals: a special predictable
interval with no system calls and interrupts and a compatible interval with no special
provisions. There are two phases in a predictable interval: a memory phase to prefetch
all task data and instructions into private caches and an execution phase to perform the
required task computation predictably without cache misses. The PREM model requires
code instrumentation to mark task sections for execution in predictable intervals and a
PREM-aware compiler for task compilation. Yao et al [82] introduced a memory-centric
scheduler to improve performance in a TDMA based memory arbitration and considered
a PREM model. The memory-centric scheduler increased the priority for all active jobs
in the memory phase on a core over jobs in the execution phase on the same core when
the TDMA scheduler granted a memory slot to that core. The sliced execution model
[83] divides the CPU execution time into multiple slices of two types: execution and
communication slices. In an execution slice, a core executes a task based on prefetched
instruction and data. While in a communication slice, the core flushes all data from the
previous execution slice to the DRAM and prefetches the instruction and data required
for the next execution slice. The sliced execution model requires a particular toolset
to generate the sliced architecture. All these models poorly utilize the resources [78].
Moreover, any requirement of code instrumentation makes it challenging to transition
single-core legacy safety-critical applications to COTS multicore processors and increases
the recertification costs. Biondi et al. [84] suggested taking advantage of a Logical
Execution Time (LET) model [85] that decouples a task’s CPU execution phase and the
communication phase. They proposed a LET-based model that restricts the memory
accesses of each task (prefetching and writing to memory) to precise time windows
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(communication phase) located at the beginning of a task’s period, thus avoiding memory
contention by design. As noted by the authors, such a model can have priority inversion
as the LET communication phase for a low-priority task can delay the execution of a
high-priority task.
Some approaches take inspiration from aperiodic servers. For example, in [67], the

authors proposed hardware servers that mask the unpredictable activity of I/O peripherals
in COTS single-core processors, similar to how aperiodic servers mask the unpredictable
aperiodic task arrival patterns. This idea can be extended to multicore processors as
well to control contention from I/O peripherals. Bellosa [86] proposed using monitors
built into the embedded hardware to count events occurring in the CPU, memory,
and I/O subsystem. In this dissertation, we refer to these inbuilt event monitors as
Performance Monitor Counters (PMCs). Bellosa also pointed out the possibility of
using PMCs in reserving memory bandwidth for soft real-time tasks employing memory
throttling mechanisms. The main idea of memory throttling is to limit the number
of memory accesses, thus regulating the memory bandwidth (similar to how aperiodic
servers work). Yun et al. [87] proposed an analytical method to calculate memory
throttling parameters that can guarantee memory bandwidth to a safety-critical task
executing on one core while limiting the impact on non-critical tasks executing on all the
other cores. To determine the number of memory accesses by a core, the authors used
the PMCs programmed to count the LLC misses. Yun et al. later extended these ideas
to develop MemGuard [88], a memory reservation mechanism that statically partitions
memory bandwidth between cores. Memguard divides the memory bandwidth between
as guaranteed and best effort. Once all cores have exhausted their guaranteed bandwidth,
they compete with other cores for the best effort bandwidth. Behnam et al. [89] proposed
a multi-resource server-based approach on Freescale P4080 processor, where the tasks
are guaranteed both CPU bandwidth and memory bandwidth.

Nowotsch et al. [65] proposed the concept of interference-sensitive WCET (isWCET),
which extends the classical WCET to account for shared resource contention in COTS
multicore processors. To determine the isWCET, the authors analyzed the WCET
and resource usage of tasks in isolation and computed (offline) the shared resource
interference delays resulting from co-executing tasks. Moreover, they complemented the
offline resource usage analysis with an online mechanism based on monitoring to bound
the maximum resource contention caused by a task (core). Based on the observation that
the average case WCET and resource access of tasks are significantly lower, Nowotsch
and Paulitsch [90] proposed an extension to the previous work to improve the utilization
of the multicore platform significantly. For a slot-based TT system executing on a COTS
multicore, Agrawal et al. [91] proposed two servers per core and use the isWCET concept.
One server controls the processor time, and the other manages the memory bandwidth.
Thus, both servers jointly control the contention between cores and the memory accesses
per slot.
Newer MPSoCs contain some IP blocks, such as the interconnect and the IMC, with

QoS mechanisms. The QoS mechanism aims to allow throttling the access of CPU cores,
DMA, GPUs, and other I/O devices to the IP blocks. Serrano-Cases et al. [92] performed
qualitative and quantitative analysis on various Quality of Service (QoS)-enabled IP
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blocks on a Zynq UltraScale+ MPSoC [93]. Their analysis suggested that a system
designer can exploit the QoS mechanisms in the IP blocks at design time to control
contention in shared resources at runtime.
Furthermore, there are approaches based on task profiling; for example, Envelope-

aWare Predictive model (E-WarP) [94] is a framework to profile tasks executing on CPU
cores and accelerators. The framework bounds the execution time of tasks by monitoring
DRAM activity via PMCs and enforcing memory-bandwidth regulation by a combination
of Memguard [88] (for CPUs) and ARM QoS Support [95] (for accelerators). In DNA
[96], the authors built an execution profile of tasks by analyzing their resource usage
patterns and broadly dividing the them into phases based on these patterns. Then, a
runtime mechanism dynamically allocates resources to tasks based on identification of
tasks’ phases. However, DNA only considers simple phase analysis and leaves considering
complex task behavior in phase analysis to future work.
Approaches such as [97] aim to minimize cache evictions by providing mechanisms

for cache partitioning. It is possible to implement these approaches in an Operating
System (OS) for COTS multicore processors. [98] provides a comprehensive survey
of cache partitioning techniques. Some OSs, such as FreeBSD [99], use page coloring
[100] techniques to achieve cache partitioning and improve the performance of shared
caches. However, Linux does not implement cache partitioning. As demonstrated
in [101], page coloring techniques are only beneficial in multicore processors in the
presence of extra hardware support. Furthermore, cache partition techniques often place
additional constraints on memory space allocation and increase virtual memory allocation
complexity and overheads. Recently, newer Intel Xeon processors [102] and AMD Zen2
processors [103] provide hardware-implement Cache Allocation Technology (CAT) to
support Last Level Cache (LLC) partitioning and allocation to cores.
Many works propose techniques for DRAM bank partitioning to avoid bank sharing

among cores for improving isolation on multicore processors. However, they require
making changes to the existing hardware, and thus, they do not apply to COTS processors.
PALLOC [104] is a technique to dynamically partition DRAM banks without requiring
any hardware modifications. PALLOC extends Linux virtual memory system to allocate
memory pages of tasks to specific DRAM banks. Specialized virtualization technologies
(e.g., XtratuM hypervisor [15]) provide strong spatial isolation at the DRAM level by
allowing a system designer to allocate memory regions to specific Virtual Machines
(VMs) (in addition to temporal partitioning at the CPU level). In Chapter VI of this
dissertation, the mixed-criticality avionics demonstrator uses the XtratuM hypervisor.
Section II.17 explains virtualization technologies further.

II.16 Modes
Most RTS and MCS exhibit multiple operation phases. In each phase, applications
may have different behavior and run different sets of tasks. For example, in an avionics
system, a different set of tasks execute during take-off, landing, and cruising. RTS and
MCS realize these operational phases as modes. Each mode contains a set of applications
consisting of a set of tasks. Some examples of common modes observed in different RTS
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and MCS are as follows:

• Initialization mode: Almost all systems require this mode to initialize different
hardware and software components.

• Maintenance/Recovery mode: Systems require this mode to perform recovery or
diagnostic operations or reinitialize faulty applications

Boot

Initialization Mode

Take-off Mode Landing ModeMaintenance Mode . . .

Figure II.F9: Example of Modes

Figure II.F9 shows a simple example of modes in an avionics system. Tasks in each mode
can take a drastically different amount of execution time. As a result, a system designed
without mode awareness can exhibit large latencies and jitter for critical applications,
leading to system failure. RTS and MCS can provide better latency and jitter if they
account for mode changes. For example, In a TT system, Fohler [105] captured mutually
exclusive operational phases as a result of a change in the system or the environment via
modes. A scheduling table represented each mode. Kopetz et al.[106] and Heilmann et
al. [107] used modes to consider different operating phases in TT networks.

A system with multiple modes switches modes at runtime when it encounters a trigger,
such as a change in environment or internal state. When the system encounters a trigger,
it produces a mode change request. Upon seeing a mode change request, the system
transitions from the source mode to the appropriate destination mode. Previous work
[105, 106] refers to this process of transitioning between two modes as mode change.
Jahanian [108] defined three variations of mode changes depending on the handling
of currently executing tasks. The first possibility is to abort all ongoing tasks of the
source mode, immediately perform a mode change and start running the tasks of the
destination mode. Contrarily, the second possibility is to entirely execute all ongoing
jobs of tasks from the source mode and then switch to the destination mode. Finally, the
third option is to selectively finish some jobs and then switch to the next mode. Fohler
[105] extended this concept by including transition modes that handle the termination
of activities of the source mode during mode changes. Kopetz et al. [106] called a mode
change as deferrable when the mode change can occur only at the hyperperiod, i.e., when
all ongoing jobs of tasks from the source mode finish executing. They refer to a mode
change as immediate when the mode change occurs soon after encountering the mode
change trigger. Some specialized hypervisors for RTS and MCS, such as XtratuM [15],
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support different operating modes and mode changes (see Section II.17.4). However,
they refer to modes as scheduling plans and mode changes as plan changes.

II.17 Virtualization
Virtualization is the technique by which we can run multiple simulated computer system
instances on a single (physical) computer system. To enable virtualization, we deploy a
software virtualization layer on top of a physical computer system that provides multiple
virtual environments called VMs. Each VM can use an instance of all or some of the
physical resources of a computer system (e.g., CPU, memory, and network interface). We
refer to the physical computer system as the host and the VMs running on the physical
system as the Guests. It should be noted that in specialized avionics hypervisors, each
ARINC 653 application partition runs as a VM of the real-time hypervisor. Hence, in
the context of avionics, we use the term VM and partition interchangeably.

II.17.1 Hypervisors
The virtualization layer consists of a hypervisor that manages the physical resources
and separates them from the VMs. The hypervisor is responsible for partitioning the
physical resources and allocating the appropriate resources to VMs as per requirement.
We refer to these resources as virtual resources. When a VM access a virtual resource,
the hypervisor schedules the resource access on an appropriate physical resource. A
hypervisor can easily reallocate resources between existing guests or allocate them to
completely new guests. Moreover, Many hypervisors support running existing legacy
applications without the need of modifying them. [109] provides a state-of-the-art survery
on hypervisors.
A virtualization layer can use two different types of hypervisors:

1. Type-1 or bare-metal hypervisor executes directly on top of the physical hardware.
A type-1 hypervisor directly allocates resources to a VM. Kernel Virtual Machine
(KVM) [110] and Xen [111] are two popular type-1 hypervisors.

2. Type-2 or hosted hypervisor executes on top of an operating system. A Type-2
hypervisor must request the underlying OS to allocate resources to a VM. Oracle
Virtual Box [112] is an example of type-2 hypervisor.

Enterprise data centers and other server-based environments often use type-1 hypervisors.
In addition, type-1 hypervisors are also gaining popularity in real-time and mixed-
criticality systems. In this dissertation, we only consider type-1 hypervisors as they suit
the considered use cases better. Figure II.F10 shows a type-1 hypervisor.

II.17.2 Virtualization techniques
There are three main types of virtualization techniques: full virtualization, hardware-
assisted virtualization, and paravirtualization.
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Figure II.F10: Type-1 (Bare metal) Hypervisor

In full virtualization, the application running in a guest VM is unaware that it runs
on top virtualized resources. In this technique, the hypervisor uses a combination of
binary translation and direct execution. Binary translation replaces certain privileged
operations carried out by the guest application code (parts of kernel-level code in the
case of a guest OS) at runtime to ensure the guest runs on the virtualized resources
as intended. Binary translation provides complete decoupling between the guest VM
and the hardware, and thus guest application needs no modifications to run it inside
a VM. However, binary translation adds significant overheads. The remaining guest
code (mostly user-level code in the case of a guest OS) runs directly on the underlying
physical resource. Direct execution helps to improve the performance. Most commercially
available generic hypervisors such as Xen and KVM support full virtualization.

Recently hardware vendors are introducing virtualization extensions at the hardware
level. Intel VT-x technology [113] is an example of hardware-assisted virtualization
extension. Such extensions aim to either eliminate or at least reduce the need for binary
translation. Whenever a guest application performs a privileged operation, the hardware
automatically traps it and invokes the hypervisor to handle the operation. However,
this technology is still in its infancy. Some hardware virtualization extensions have
lower overheads, while other extensions have higher overheads than binary translation
[114]. The high overheads are a result of the guest-hypervisor transitions involved in
the approach. Hypervisors depending purely on hardware-assisted virtualization can
only execute on hardware platforms supporting the particular virtualization extension.
We use Intel VT-x technology in the railway usecase (Chapter VII) for reducing some
virtualization overheads.

Paravirtualization (also know as OS-assisted virtualization) requires communication
between the guest application and the hypervisor. Thus, the guest must be aware that it
is running on top of a virtualization layer. The guest application designer must replace
privileged operations with hypercalls provided by the hypervisor. A hypercall is a request
by a guest for the hypervisor to perform some service required by the guest. As a result,
the hypervisor does not need to use the high overhead binary translation approach. The
changes necessary to the guest applications for paravirtualization are often easy to make.
Most commercially available hypervisors support paravirtualization for some parts of
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the guest application. For example, KVM provides Virtio [115] network and disk drivers
that a guest application designer can install in the Guest OS. However, many of them
do not support paravirtualization solutions at the CPU level. Specialized hypervisors
often support paravirtualization solutions to meet domain-specific requirements. For
example, XtratuM [15] and PikeOS [16] provide hypercalls to support ARINC 653 style
communication channels with sampling and queuing modes. We use such hypercalls for
development of the avonics use case in Chapter VI.
Virtualization technologies form the backbone of cloud computing. The following

section provides more information on cloud computing.

II.17.3 Hypervisors for Real-time and Mixed-Criticality Systems
At present, RTS and MCS research communities are directing considerable efforts towards
providing robust partitioning on multicore platforms, for example, [116], [117], and [118].
Since hypervisors are a efficient way to build partitioned systems, RTS industries are
starting to use hypervisors for deploying real-time and non-real-time applications as VMs
on the same multicore platforms. Similarly, MCS industries consider hypervisors for
deploying different criticality level applications as VMs on the same multicore platforms.
Hypervisor help to achieve the the following main advantages:

• Hypervisors help increase resource utilization and reduce SWaP and wiring costs
by hosting multiple VMs concurrently on the same multicore node (hardware con-
solidation). In turn, hardware consolidation results in a reduction in maintenance
cost and fewer spare parts. Hypervisors provide mechanisms for improved resource
sharing and help to allocate resources efficiently among various VMs.

• Hypervisors can partition the underlying hardware and ensure resource isolation
among the VMs. Depending on resource isolation (and allocation) mechanisms
implemented in a hypervisor, a hypervisor can limit the resource contention among
VMs and ensure that specific faults in a VM do not impact other non-faulty VMs.
Moreover, hypervisors can also assist in providing fault-tolerance to applications
[119].

• Hypervisors abstract the underlying hardware from guest VMs. As a result, they
allow easier reuse of legacy applications (and operating systems) and help overcome
hardware obsolescence issues. Moreover, running legacy applications as VMs on a
qualified hypervisor helps reduce recertification costs.

• Hypervisors also make it easier to monitor the VMs.

Generic hypervisors, i.e., hypervisors not specially designed for RTS or MCS already
provide some resource allocation strategies beneficial to RTS. For example, KVM and
Xen can provide temporal isolation to a certain extent at the CPU-level by using
SCHED_DEADLINE (EDF with Constant Bandwidth Server (CBS)) [120] and RTDS
[121], respectively. Vanderleest introduced an ARINC 653 CPU scheduler in Xen [122]
to support the development of ARINC 653 applications. They also offer spatial isolation
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to some extent by allowing to reserve memory regions for VMs. We present further
details and in-depth comparison between some generic hypervisors in Chapter VII and
present methods to use a generic hypervisor (KVM) for a safety-critical railway use case
in Chapter VII.

The resource allocation mechanisms in generic hypervisors are not always sufficient to
meet the stringent requirements of some RTS and MCS domains. We need to use specially
developed type-1 hypervisors, such as XtratuM [15] and PikeOS[16], that provide strong
temporal isolation at CPU level and spatial isolation at DRAM level. Moreover, these
hypervisors adehere to industy standards such as ARINC 653 [45] or ISO 26262 [32]. [123]
explains how a specialized hypervisor such as XtratuM can assist in safety certification
for industrial mixed-criticality systems.

II.17.4 XtratuM Hypervisor

XtratuM [15] is a free and open-source hypervisor for use with multicore processors
and MPSoCs. XtratuM aims at meeting the requirements of MCS. Moreover, XtratuM
supports execution environments partly compliant with the avionics ARINC 653 standard.
At the time of writing this dissertation, 220 satellites are flying using the XtratuM
hypervisor. In Chapter VI, we developed the global resource management framework for
the avionics demonstrator on top of the XtratuM hypervisor. Nevertheless, it is possible
to extend the ideas discussed in the dissertation for implementation on top of other
hypervisors.
XtratuM abstracts the underlying hardware and supports execution of multiple par-

titions with Time and Space Partitioning (TSP) as VMs1. XtratuM allows two kinds
of partition corresponding to ARINC 653 system and application partitions: system
partition and user partition.
XtratuM provides the following properties relevant for this dissertation:

• Spatial isolation: Based on input from the system designer, XtratuM allocates a
uniques memory region (address space) to a partition for storing the partition’s
code, data, and stack. This memory region is not accessible by other partitions.
However, XtratuM allows a system designed to define memory regions that partition
may share.

• Temporal isolation: XtratuM schedules partition on a cyclic basis (ARINC 653 schedul-
ing policy) using an offline defined table (in the form of a configuration file provided
by the system designer). It ensures that a partition cannot run longer than its
allocated time slot.

• Fault isolation and management : XtratuM implements a fault management model
to detect and handle faults in partitions. It ensures that faults in a partition do
not propagate to other partitions. Moreover, it provides facilities to partition to
manage faults concerning the partition’s execution. XtratuM has a Health Monitor

1In the context of XtratuM, the terms VM, guest, and partition are synonymous [15]
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(HM) that helps in the early detection of faulty states or behaviors and carrying
out recovery methods defined by the system designer.

• Predictability : XtratuM provides predictability concerning the operation of parti-
tions and management of interrupts.

• Security (and confidentiality): XtratuM ensures that all information of system and
partitions cannot be modified (or read) by unauthorized partitions.

• Inter-Partition Communication: XtratuM provides encapsulated ARINC 653 style
communication channels with sampling and queuing ports. A system designer must
define channels and ports for every partition at design time.

• Interrupt management : XtratuM provides an interrupt model to partitions and
adds 32 new sources of interrupts based on specific events.

• Tracing : XtratuM provides a mechanism to store traces generated by partitions
and the hypervisor itself.

• Hypercalls : XtratuM provides hypercall APIs to enable paravirtualization.

Scheduling Plans

A single scheduling plan (table) may be too restrictive. For example, the initialization
or maintenance of an application can need a different number of slots. However, the
system designer typically defines a plan with the regular operation of the applications in
mind. Thus, XtratuM allows the system designer to define multiple scheduling plans
(via a configuration file) that allow reallocating CPU time to partitions in a predictable
way. XtratuM uses mode changes to change scheduling plans. XtratuM reserves some
scheduling plans as follows.

1. XtratuM reserves Plan 0 for the initialization of applications in all partitions. The
system starts in Plan 0 and remains there until a (ARINC 653 ) system partition
requests a plan change. The plan switch occurs after all remaining slots of the
current plan finish execution. Henceforth, the system cannot go back to Plan 0.

2. XtratuM reserves Plan 1 as a maintenance plan. XtratuM switches immediately to
Plan 1 when the HM encounters a condition defined at design time that requires
switching to a maintenance plan or upon receiving a request from a system partition.

A system designer can define Plan X (X > 1). A system partition can request a switch
to them at any time. When switching plans, the switch is not immediate. The plan
switch occurs after all remaining slots of the current plan finish execution. Our global
resource management framework for the avionics demonstrator (Chapter VI) exploits
these scheduling plans to provide fault-tolerance in a MCS at runtime.
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II.17.5 Hierarchical Scheduling in Hypervisors
Often there are two levels of scheduling hierarchy involved when using hypervisors. On
the top level of the hierarchy, the VM scheduler of the hypervisor allocates physical
resources to the VMs for a fixed amount of time or budget using a specific scheduling
policy. Then, in the next level of the hierarchy, a task scheduler running in a VM assigns
the resources to the tasks of that VM. So, naturally, a task scheduler can only run and
assign the resources to a VM’s tasks when the VM scheduler allocates resources to the
particular VM.

In specialized avionics hypervisors, we refer to the VM scheduler of the hypervisor as
a partition scheduler. The partition scheduler is a cyclic scheduler that divides the CPU
execution time into well-defined time slots and assigns these slots to partition during
their MiF(s) based on an offline scheduling table (the partition scheduler repeats the
scheduling table every MaF). During each time slot assigned to a partition, the task-level
scheduler running in a partition divides the allocated CPU time among the tasks of that
partition. The task-level scheduler is often in the form of a cyclic executive or a part
of a small real-time operating system running in the partition. Figure II.F11 shows an
example of hierarchical scheduling in avionics. We use this technique for scheduling tasks
of avionics applications in Chapter VI.

Partition 1

Task 1 Task 2

Partition 2

Task 1 Task 2 Task 3

Partition 1

Task 1 Task 2

MiF

MaF

Key

Partition Scheduler Task Scheduler

Figure II.F11: Hierarchical Scheduling in Avionics

II.18 Cloud Computing
Cloud computing is the on-demand delivery of computing resources over the internet.
Hosting applications in the cloud supports ease of re-usability, reconfiguration, and
scalability while providing higher availability, less need for maintenance, and reduced
running costs. Moreover, cloud computing helps organizations reduce their carbon
footprint by letting them reduce resource over-provisioning. Clouds use hypervisors to
provide VMs to the users for hosting applications. The applications are neither aware
that they are running in a virtualized environment nor aware of the actual underlying
hardware resources. Thus, the reuse of existing applications is usually possible without
modifications by directly executing them in a VM hosted on a cloud. In [124], the authors
discuss various aspects of cloud computing technology, including definitions, features,
and enabling technologies.
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II.18.1 Public vs. Private Clouds
Public clouds are the most common form of cloud computing. A third-party service
provider owns the computing resources of a public cloud and manages all hardware,
software, and other infrastructure requirements. In the public cloud, a cloud user shares
the cloud resources with other cloud users. VMs of different users can share a single
node. The main advantages of public clouds are lower costs, no need for maintenance,
and very high scalability. Some popular public cloud service providers are Amazon Web
Services, Google Cloud, and Microsoft Azure.

A private cloud consists of cloud computing resources dedicated to a single organization.
The organization can have the cloud computing resources on its premises or from a
third-party provider. In any case, the organization has dedicated access and control over
the hardware and software. Private clouds make it easy for organizations to meet specific
IT requirements. The organization can do all maintenance over a private network. The
main advantages of private clouds are more flexibility and control than public clouds
while still offering scalability.

RTS and MCS industries, such as railways, want to benefit from the advantages of
cloud computing. Public clouds do not ensure predictable execution of safety-critical or
real-time VMs a third-party cloud service provider allocates resources among multiple
users without taking into account the fine-grained requirements of the VMs. [125] presents
some of the challenges in predictable cloud computing. However, in private clouds, an
organization has dedicated access and complete control over the cloud resources. In
Chapter VII of this dissertation, we propose a resource management layer to leverage a
private cloud for supporting the execution of Triple Modular Redundancy (TMR) safety-
critical railway VMs running the Thales TAS control platform. The next section explains
fault-tolerance, including techniques such as Triple Modular Redundancy (TMR).

II.19 Fault, Error, Failure
A fault is a defect in a hardware or software component. Faults remain dormant until
an event occurs that activates them. An error is an incorrect internal state that a
system may encounter during its operation (unobserved) when an event occurrence
triggers a fault. A failure is an incorrect behavior (observed) of the system (compared
to the expected behavior). When errors propagate, they lead to failures in the system.
Faults are classified as permanent, transient, and intermittent. Permanent faults persist
indefinitely (or until repaired) after their occurrence (e.g., incorrectly implemented or
damaged component). Transient faults persist for a short period and disappear (e.g.,
radiation-induced faults). Intermittent faults occur at irregular intervals in a system
that otherwise functions correctly.

II.20 Fault-tolerance
Fault tolerance refers to a system’s capability to stay operational without disruption
despite faults in one or more components. The main goal is to prevent a single point
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of failure and ensure high availability for safety-critical components. Unfortunately,
it is not always economically viable to design a system that can tolerate any fault
that may occur. Therefore, a system designer must precisely define a fault hypothesis
specifying assumptions, such as types and number of faults, the fault containment
regions, and error detection latency. Such a fault hypothesis helps ensure that the system
implementation uses an appropriate system design and validation concepts [126] and
supports the evaluation of assumption coverage [127]. A fault-tolerant system must
ensure the integrity of the output data, detect errors caused by faults, evaluate the
repercussions of the faults, and provide error recovery and fault isolation.
Fault tolerance is often based on some form of redundancy. Redundancy involves

replicating components in a system to provide fault tolerance and increase the system’s
reliability. Wensley [128] originally introduced the concept of software redundancy.
Redundancy often uses Consensus for the decision-making process in which the redundant
components agree to support an acceptable output for specific input. Consensus requires
some form of voting.

II.20.1 N-Modular Redundancy (NMR)

N-Modular Redundancy (NMR) is a technique to provide fault-tolerance where N
identical software components run in the SCS. The identical software components receive
the same input data. The SCS collects the output data produced by the replicas and
uses majority-voting to mask any potential faults in one or more components. For the
voting to be effective, the system requires N >= 3.
Triple Modular Redundancy (TMR) is the most well-known version of N-Modular

Redundancy (NMR) where N = 3. The main aim of TMR is to keep the system
operational when a single fault, such as a single event upset or hardware wear-out, occurs
in the reference frame of the fault hypothesis. Depending on the independence of the
replicas (for example, if the replicas run on the same computer system or three different
computer systems), the system can achieve different degrees of fault detection and
fail-over. The Thales TAS control platform [129] used in the railway use case (Chapter
VII) is an example of an industrial TMR-based system.

II.20.2 Reconfiguration for Fault-Tolerance

Classical redundancy-based solutions such as TMR require substantial hardware replica-
tion to provide the required degree of fault-tolerance and safeguard the systems against
failures. Unfortunately, these approaches do not exploit the system’s residual processing
capability to achieve fault tolerance. However, it is possible to monitor the system to
detect hardware component failures and use runtime reconfiguration for error recovery
and maintenance of the desired system state. Dynamic (runtime) reconfiguration enables
a system to dynamically adapt to resource failures. This section gives an overview of the
reconfiguration strategy.
It is possible to view a system as being composed of two levels:
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1. At the physical level, a distributed system consists of a set of resources such as the
processing elements and the network connecting the processing elements.

2. At the logical level, the system consists of functionalities and the communication
channels between them.

A system configuration is a mapping of physical elements to logical ones. For example,
functionalities and communication channels can be mapped to the physical processors
and the network elements. Reconfiguration involves mapping then the logical elements
elsewhere in the distributed system when a component fails. For example, when a
processor executing a functionality fails, a system reconfiguration takes place to allocate
another available processor in the distributed system to the functionality and reallocate
network elements to communication channels accordingly. Thus, reconfiguration not only
allows to move the functionalities from fault components to non-faulty ones but also
enables the possibility to maintain spare components among functionalities collectively.
Overall, reconfiguration maximizes the use of system hardware while ensuring the system
is operational.

Porcarelli et al. [130] proposed the Lira (Lightweight Infrastructure for Reconfiguring
Applications) framework for fault-tolerance in distributed systems based on reconfigura-
tion. The reconfiguration in safety-crtical systems should be predictable. Strunk et al.
[131] proposed reconfiguration to improve the dependability of fail-stop safety-critical
systems. Strunk and Knight [132] proposed a primary system design with low depend-
ability and complex applications with the possibility to reconfigure to a simple but highly
dependable system upon failures. Ellis [133] demonstrated the viability of reconfiguration
to provide hardware fault tolerance in safety-critical systems. The SCARLETT [134] and
DIANA [135] project reconfiguration strategies for IMA platforms based on single-core
processors. SCARLETT project proposed a centralized reconfiguration approach, while
DIANA project proposed a decentralized approach.

II.20.3 Byzantine fault tolerance (BFT)

A Byzantine fault [136] can occur in a system that requires consensus. A redundant
component (or node) with a Byzantine fault presents different output values to different
redundant components (or nodes) for the same input leading to disagreement during
voting. A Byzantine failure occurs when a system stops operating correctly due to
byzantine faults. Byzantine Fault Tolerance (BFT) aims at protecting systems against
Byzantine failures. The fault hypothesis for BFT does not impose any restrictions or
make assumptions about the behavior of nodes. Moreover, this fault is notoriously tough
to tolerate as it is an asymmetrical fault.
Let us consider an system with a set of replicated components R ∈ {r1, r2, . . . , rn}.

Assume that we provide all replicas belonging to set R with the same input, I. If a
replica rr ∈ R broadcasts the value of the output Or corresponding to input I to other
replicas belonging to set R, then in Byzantine fault-tolerant system:

1. all honest replicas ∈ R agree on the value Or broadcasted by rr for input I.
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2. all honest replicas ∈ R agree on the same value of the output O for input I.

BFT algorithm such as the Practical Byzantine Fault Tolerance (PBFT) algorithm [137]
requires n = 3f + 1 total replicas in a system with f faulty replicas to guarantee safety
and liveness. In the context of PBFT, safety means that the replicated components
behave like a centralized component executing one operation at a time in an atomic
manner, and liveness means that the client requesting the service from the replicated
component eventually receives a reply to their request.

Sawtooth [138] blockchain platform can use the PBFT algorithm for Byzantine fault-
tolerant consensus. In Chapter V, we use Sawtooth for implementing our distributed
global resource management framework.

II.21 Blockchain
Blockchain is a type of Distributed Ledger Technology (DLT) with a growing list of
blocks that allow recording transactions and the associated data. Blocks are basic
data structures containing the timestamp, transaction data, and the previous block’s
cryptographic hash. A cryptographic hash value is mapping data to a fixed-size bit map
(compactly stored array of bits) by an algorithm called a cryptographic hash function.
For adding (committing) new blocks, the blockchain must reach a consensus among
participating nodes using consensus mechanisms such as PBFT. The committed blocks
form a chain as all blocks contain the information of all prior blocks, thus reinforcing
the ones that came before them. Hence the data recorded in a single blockchain block
cannot be modified without reconstructing all the subsequent blocks. This property
makes the data stored on the blockchain immutable. Moreover, blockchain prevents a
single point of failure by maintaining copies of the distributed ledger on multiple (or all)
distributed system nodes. Blockchain has two types depending on who can participate
in the blockchain network.

1. Public (permissionless) blockchains allow anyone node to join the blockchain
network and access the blockchain data or request to commit new data on the
blockchain. In addition, all nodes in the blockchain network can participate in the
consensus as well.

2. Private (permissioned) blockchains set restrictions on which node can participate
in the network. Moreover, they can restrict nodes from participating in certain
transactions. Private blockchains are suited to application domains that require an
additional level of security, privacy, and performance.

Smart Contracts

Smart contracts are self-executing simple programs stored on the blockchain. They
execute automatically on nodes participating in the blockchain network consensus
mechanism when some predetermined conditions occur. Once the smart contracts finish
execution, the nodes update the result on the blockchain (via consensus).
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Hyperledger Sawtooth

Sawtooth [138] is a private blockchain platform with support for smart contracts. An
open-source collaborative effort called the Hyperledger project [139] hosted by the Linux
foundation developed the Sawtooth blockchain platform. Sawtooth supports the PBFT
algorithm for Byzantine fault-tolerant consensus. It provides a highly modular, scalable,
and secure platform for implementing transaction-based updates to a shared ledger.
Furthermore, Sawtooth separates the core functionality of the blockchain from the
application level by allowing users to create Sawtooth transaction families (containing a
smart contract, client, and data model) that can be deployed on top of the blockchain
platform. In Chapter V, we present an implementation of a new transaction family
for Sawtooth called the DGRM transaction family to realize components of our safe
and secure distributed global resource management framework. We implemented the
distributed global resource manager as a smart contract in this new transaction family.

II.22 Relevant EU Projects
This section gives an overview of completed and ongoing EU projects relevant to the
topics considered in this dissertation.

• GENESYS (Generic Embedded System Platform) project [140] provided a cross-
domain architecture with fixed core services and multiple optional services im-
plemented as self-contained system components. The project targeted industrial
challenges, such as integrated resource management, in automotive, avionics, in-
dustrial control, mobile, and consumer electronics domains. A follow-up project,
INDEXYS (INDustrial EXploitation of the genesYS cross-domain architecture)
[141], aimed to develop MPSoC based on GENESYS reference architecture.

• FRESCOR (Framework for Real-time Embedded Systems based on COntRacts)
aimed to develop a framework that integrates advanced flexible scheduling tech-
niques directly into the embedded systems design methodology. It covered all the
levels involved in the implementation, starting from the OS primitives, through
the middleware, up to the application level.

• DIANA (Distributed equipment Independent environment for Advanced avioNic
Applications) project [135] took one of the first steps towards developing a platform
for execution of avionics applications as VMs. In addition, the project also
incorporated a model-driven engineering approach.

• ACTORS (Adaptivity and ConTrol Of Resources in embedded System) project
[22] addressed the challenging problem of efficient design of embedded systems
for complex and demanding high-performance applications. The project approach
raised the abstraction level of the specifications and computing models, including
resource-constrained design exploration stages and real-time resource adaptation
by developing the appropriate models and tools supporting the design from the
specification down to the embedded implementation.
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• CESAR (Cost-Efficient Methods and Processes for SAfety Relevant Embedded
Systems) project [142] provided improved methods, tools, and demands for embed-
ded systems development in Aerospace, Automotive, Automation, and Railways.
CESAR addressed the entire system engineering life cycle by improving its disci-
plines and implementing fundamentals for interoperability in a reference technology
platform as an integrated tool platform.

• MULCORS (The Use of Multicore Processors in Airborne Systems) project [14]
provided guidance to EASA (European Union Aviation Safety Agency) on the
architecture, advantages, and adverse effects of multicore processors in airborne
systems. The project also provided recommendations on handling issues related to
multicore processors.

• SCARLETT (Scalable and reconfigurable electronics platforms and tools) project
[134] implemented the innovations in distributed modular electronics concept to
improve scalability, portability, adaptability, fault tolerance, and reconfiguration
capabilities in the current IMA.

• ACROSS (Artemis CROSS Domain architecture) project [23] aimed to realize a
cross-domain multicore chip with the service architecture defined in the GENESYS
project. It included an FPGA-based multi-processor system on a chip implemen-
tation of a TT NoC, tailored middleware components, and flexible embedded
tools.

• MultiPARTES (Multi-cores Partitioning for Trusted Embedded Systems) project
[117] aimed at developing tools and solutions for building trusted embedded systems
with mixed-criticality components on multicore platforms.

• vIrtical (SW/HW extensions for virtualized heterogeneous multicore platforms)
project [143] aimed the vertical and full development of the virtualization con-
cept addressing the specific requirements for effective embedded virtualization.
A virtualization-ready SoC platform and the associated programming models
are developed, tackling all the system layers: applications, programming model,
hypervisor, and hardware.

• ARAMiS (Automotive, Railway, and Avionics Multicore System) project [144]
goal was to improve the operational safety of automobiles, trains, and airplanes.
Timing, determinism, influence on safety, real-time applications, and certification
were significant fields of research. A follow-up project, ARAMiS II, [145] started
in 2016, aims at development processes, tools, and platforms for efficient use of
multicores in the industry.

• CONTREX (Design of embedded mixed-criticality control systems under con-
sideration of Extra-functional properties) project’s [146] main challenge was to
guarantee timing, power, temperature, and reliability requirements by control-
ling (shared) resource usage and access on the execution platform. It has also
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considered extra-functional constraints right from the beginning, represented extra-
functional properties in executable prototypes, and included them in local and
global scheduling and control decisions.

• EMC2 (Embedded Multicore systems for Mixed-Criticality applications in dynamic
and changeable real-time environments) project [147] explored solutions for dynamic
adaptability in open systems, provides handling of mixed-criticality applications
under real-time conditions, scalability and utmost flexibility, full-scale deployment,
and management of integrated toolchains, through the entire life cycle.

• SAFURE (Safety And Security By Design For Interconnected Mixed-Critical Cyber-
Physical Systems) project [148] targeted the design of cyber-physical systems by
implementing a methodology that ensures safety and security by construction.

• SAFEPOWER (Safe and secure mixed-criticality systems with low power require-
ments) project [149] aimed to combine power awareness with predictability, TSP,
reliability, and security for use in cross-domain MCS. The project considered use
cases from the avionics and railway domain to demonstrate the proof-of-concept
implementation for low-power MCS.

• De-RISC (Dependable Real-time Infrastructure for Safety-critical Computer) project
[150] aims to develop a platform based on the RISC-V multicore architecture and
a safety-critical hypervisor for safety- and security-critical systems for use in the
aerospace domain. This platform will primarily focus on mitigating interference in
a RISC-V SoC.

The work presented in this dissertation contributed towards two EU projects: DREAMS
and SECREDAS. The following two sections give a high-level overview of these projects.

II.23 DREAMS Project
DREAMS (Distributed REal-time Architecture for Mixed criticality Systems) project,
funded by the European Commission, aimed to develop a cross-domain architecture
and design tools for MCS executing in a distributed system with nodes consisting of
multicore processors and MPSoCs. The four-year project had 16 partners from renowned
academic institutes and industries across Europe.
The DREAMS cross-domain architecture was structured as a waistline inspired by

the Internet. The internet protocol acts as a stable waist for supporting various com-
munication technologies (e.g., Ethernet and wireless networks) below the waist and
different protocols (e.g., User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP)) above the waist. Similarly, the core services form the stable waist
of the DREAMS architecture and encapsulate all the domain-dependant and domain-
independent services needed in three mixed-criticality targeted application domains:
Avionics, Windpower, and Healthcare. Figure II.F12 shows the DREAMS waistline
architecture.
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Figure II.F12: DREAMS Architecture [2]

Four core services are required to instantiate a DREAMS architecture and build
higher-level services to maintain the desired architecture properties, such as TSP. These
four services are important for MCS and all three application domains. The four core
services are:

1. Secure and fault-tolerant global timebase: The global timebase core service provides
a local time to each node and other components of the distributed system. The
global timebase is synchronized among all distributed system nodes and within all
sub-components of each node. Similar to the TTA, the global timebase facilitates
the temporal coordination of activities, establishes deterministic communication
infrastructure, and links timestamps from different components.

2. Timely and secure communication services for TSP: This core service helps to
create end-to-end channels for message-based communication between components
over a hierarchical and heterogeneous network with mixed-criticality traffic. This
core service ensures that the DREAMS architecture meets the safety and security
requirements of the MCS and facilitates TSP based on prior knowledge about the
time and value domain behavior of applications and components in the.

3. Timely and secure execution for TSP: This core service ensures static temporal
partitioning of CPU cores and spatial partitioning at the memory level. Offline
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tools create a pre-computed scheduling table for use by this core service. DREAM
architecture realizes this core service using virtualization techniques.

4. Integrated resource management for TSP: On single nodes, pre-planned assumptions
may be possible to ensure the safe and timely execution of multiple mixed-criticality
applications. However, in DREAMS, multiple mixed-criticality applications execute
in a distributed system with multiple heterogeneous nodes, each with multiple
resources. In such systems, pre-planned assumptions become less meaningful. If
the applications, resource availability, or system configurations change, obtaining
realistic resource availability assumptions becomes difficult. Thus, the DREAMS
architecture provides a global integrated resource management core service to
handle system-wide constraints, such as end-to-end timing or reliability, without
incurring the complexity and overhead of individual negotiations among resources
directly. It also ensures system-wide adaptivity of mixed-criticality applications
consuming multiple resources.

The work presented in this dissertation contributed to the development of the integrated
resource management core service and its adaptation for the mixed-criticality avionics
use case.

II.23.1 Avionics Demonstrator
During the DREAMS project, an avionics demonstrator was developed together with
Thales Research & Technology and the French aerospace lab - ONERA. It was based
on a realistic avionics use case and followed the DREAMS reference architecture. The
demonstrator deployed five applications, three safety-critical and two non-critical, on
top of networked multicore and MPSoC nodes. The critical applications were: Flight
Management System (FMS), Display Management System (DMS), and Sensor Data
Provider (SDP). The non-critical applications were In-Flight Entertainment (IFE) and
Passenger and Cockpit panels.

The demonstrator highlighted the capabilities of the DREAMS core services, especially
the reconfiguration capabilities of the integrated resource management core service. This
dissertation contributed towards the tooling and integration of the resource management
core service in the avionics demonstrator. Chapter VI provides a detailed description of
the complete avionics demonstrator together with the integrated resource management
core service.

II.24 SECREDAS Project
SECREDAS (Product Security for Cross-Domain Reliable Dependable Automated Sys-
tems) Projects, funded by ECSEL Joint Undertaking, aims to improve security, safety,
and privacy in automated systems across three application domains: automotive, railway,
and healthcare. The project has 70 partners from renowned academic institutes and
industries across Europe. The main goal is to develop and validate multi-domain archi-
tecting methodologies, components, and suitable integration approaches for automated
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systems. The project also considers standardization, certification, and qualification in
the three domains, combining high security and privacy protection while preserving
functional safety and operational performance.

II.24.1 Common Technology Elements (CTEs)

One of the key aims of the SECREDAS project is to identify, validate and, if needed,
further develop several Common Technology Elements (CTEs) to ensure safety, security,
and operational performance in safety-critical domains like railway. CTEs are existing
industrial proven technologies (starting from Technology Readiness Levels (TRL) 7 [151])
and can be used to develop new security solutions in the different domains in SECREDAS.
The CTEs are domain-independent and are not limited to concrete implementations but
can also contain best practices and protocol specifications. Some examples of CTEs are
virtualization technologies, cryptography libraries, or blockchain. The railway use case
of SECREDAS leverages the hypervisor CTE to enable railway operation as a cloud-
based service. This dissertation contributed towards the identification and experimental
validation of the hypervisor CTE for the railway use case.

II.24.2 Railway Use Case

The railway use case of SECREDAS covers various safety and security aspects. This
use case involves a fault-tolerant computing Platform called TAS [129], a technology
platform developed by Thales to support various safety-critical transport applications.
The TAS Platform hosts railway-specific applications and provides them with fault
tolerance services such as time synchronization, membership service, voting, and fault
management.
Safety-critical systems often suffer from hardware obsolescence and scalability issues.

Moreover, they require high availability, redundancy, and ease of hardware re-usability
and dynamic reconfiguration. Cloud computing can help resolve these issues and
requirements. Thus, the SECREDAS project railway use case aims to explore hosting
safety-critical VM in a cloud. The safety-critical VMs must execute TMR safety-critical
railway applications using the Thales TAS platform [129]. TAS is a technology platform
developed by Thales to support various safety-critical transport applications. The TAS
Platform hosts railway-specific applications and provides them with fault tolerance
services such as time synchronization, membership service, voting, and fault management.
The ultimate goal of the railway use case is to enable railway operation as a cloud-based
service.
For achieving railway operation as a cloud-based service, the use case first aims to

show the technical feasibility of a virtualization approach using the hypervisor CTE. A
vital advantage of this approach is hardware abstraction and the ability to run multiple
virtualized safety-critical applications on one or more servers with COTS multicore
processors.

The main contribution of this dissertation is towards the identification of requirements
for safe and timely execution of safety-critical railway VMs, and the selection of cloud
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virtualization technologies (generic hypervisors) for hosting these VMs. However, as
demonstrated in this dissertation, cloud virtualization technologies alone are insufficient
to ensure the predictable execution of multiple safety-critical VMs, especially in the
presence of other non-critical VMs in the cloud. To this extent, we proposed to extend
a generic cloud hypervisor (KVM [110]) with a resource management layer to monitor,
control, and coordinate the cloud nodes and form a Real-Time Cloud (RT-Cloud). Such
a RT-Cloud can guarantee predictable execution of safety-critical VMs while reducing the
impact of resource over-provision on non-critical VMs. Based on some of the concepts
discussed in this dissertation, Thales Austria GmbH, together with the Austrian railways
(ÖBB), presented a live demonstration about hosting a safety-critical application (railway
interlocking) in a KVM-based cloud [152]. Chapter VII provides a detailed description
of the railway use case and the RT-Cloud with a resource managment layer.

II.25 Problem Statements
This section presents the problem statements considered in this dissertation.

II.25.1 Resource Management in Distributed Real-Time and Mixed-Criticality
System

Multicore processors and MPSoCs nodes have become essential in RTS and MCS because
their additional computing capabilities help reduce SWaP, required wiring, and associated
costs. In distributed systems, a single shared multicore or MPSoC node executes several
applications, possibly of different criticality levels. However, as seen in Section II.14,
there is interference between applications due to contention in shared resources such
as CPU core, cache, memory, and network. Therefore, such a system requires careful
planning and management of resources to ensure interference in shared resources does not
prevent the real-time applications from meeting their deadlines nor prevent safety-critical
applications from meeting their safety assurance levels. Besides, it is necessary to ensure
fault isolation and error contamination despite sharing of resources.

As explained in Section II.9 and II.8, many allocation and scheduling methods exist for
RTS and MCS. These methods rely on implicit assumptions of the constant availability
of individual resources, especially the CPU. Classical scheduling algorithms like Round-
Robin (RR) or EDF assume control over the entire CPU or a single core. Methods
such as XtratuM hypervisor [15] or PikeOS [16] schedule to fixed proportions and allow
hierarchical scheduling. As mentioned in Section II.15, a variety of models, analysis
techniques, and resource allocation approaches exist to deal with contention in shared
resources. Most of these approaches do not address all the shared resources of a node
and aim to resolve contention in only a specific shared resource or a set of specific shared
resources. Moreover, they handle a limited number of events such as task arrivals and
task completions and assume a constant amount of the availability of resources and
demands of applications to provide guaranteed progress of tasks. Such assumptions
may be possible on single nodes; however, they become less meaningful in distributed
systems with several nodes, each having multiple resources. If the applications, resource
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availability, or system configurations change, obtaining assumptions about resources
becomes complicated. Moreover, it is challenging to meet end-to-end constraints by
considering each node, resource, or application individually.
Existing OSs and hypervisors only consider a single node at a time, i.e., OSs and

hypervisors on a node make local resource allocation decisions and manage tasks locally
without a global view of the system. As a result, they cannot leverage the availability of
resources in other nodes to make resource allocation decisions to meet end-to-end con-
straints, improve fault-tolerance, improve QoS of non-critical (or best-effort) applications,
or increase the overall system-wide efficiency.
Modern RTS and MCS have other crucial differences compared to classical RTS

resource allocation. For example, RTS in the healthcare domain and other indoor
networks often consist of heterogeneous nodes, each with a diverse set of resources
and nodes communicating on different types of networks. Using previous approaches
that tightly couple global management of the entire network with node-level resource
allocation is unsuitable for adaptability in the system as it has high overheads and
requires a fixed set of devices and schedulers.

Finally, RTS and MCS have limited availability of resources which must host not only
the real-time applications but also the schedulers and resource managers.

Such RTS and MCS with dynamically changing availability and demand of resources
need resource management that maintains a global (system-wide) view of resources and
applications and coordinates and dynamically adapts system-wide resource allocations.
In addition, resource management can dynamically adapt applications to changing
availability of resources. Moreover, the resource management should have low overheads
and must decouple global management of the entire system with local (node-level)
resource allocation.
The overall aim of resource management is to ensure real-time applications meet

their end-to-end deadlines even in the presence of faults and changing environmental
conditions and ensure efficient resource utilization to improve the QoS of BE (or non-
critical) applications.

II.25.2 Exploitation of Multicore Processors for Fault-Tolerance (in Avionics)

As explained in II.20, safety-critical domains such as avionics and railway use classical
redundancy-based solutions such as TMR to safeguard the systems against failures. Such
redundancy-based techniques require substantial hardware replication to achieve the
required degree of fault tolerance. Unfortunately, they do not exploit the distributed
system’s residual resources to improve reliability.
DIANA [135] and SCARLETT [134] projects proposed reconfigurable-IMA for pre-

dictable fault-handling in avionics systems. These approaches consider single-core
processors. However, the introduction of multicore processors opens up more avenues to
reconfigure the system while ensuring safety. For example, a complete multicore node is
not faulty when one core encounters a fault. The system can still allocate other non-faulty
cores to safety-critical applications. Moreover, as seen in projects such as DREAMS [10],
the avionics domain is also exploring the use of heterogeneous nodes in mixed-criticality
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avionics networks. Previous approaches tightly couple global management of the entire
network with node-level resource allocation and are not suitable for adaptability in such
heterogeneous systems.

Newer resource management techniques must consider heterogeneous nodes and lever-
age multicore architectures for further improving reliability while ensuring the current
safety levels. In addition, resource management must provide low overhead reconfigu-
ration strategies. Such strategies will help to improve system performance further and
avoid unscheduled maintenance and associated costs.

II.25.3 Simultaneous Execution of Mixed-Criticality (Avionics) Applications

Avionics industries aim to co-execute applications of different criticality levels. Hence,
critical applications such as a FMS can execute simultaneously on the same node as
non-critical applications such as a IFE. Similarly, a real-time and a best-effort application
can co-execute on the same node. However, safety-criticality applications must adhere
to stringent industry standards such as [33, 43]. Thus, to co-execute applications of
mixed-criticality on a single node requires strict temporal and spatial isolation. Achieving
this isolation is not that straightforward in multicore processors or MPSoCs, primarily
because of the numerous shared resources. If applications of different criticality levels
are allowed to access the shared resources randomly, then a lower criticality application
accessing a shared resource can block the accesses of any simultaneously executing
high criticality application and severely affect the response time of the high criticality
applications. Thus, it is difficult to quantify the impact on response time because of
the limited knowledge about the behavior of low criticality applications in the system.
Moreover, some hardware resources in COTS platform, such as on-chip interconnect
arbitration, are available to the system designer (see Section II.14).

In MCS, there are conflicting goals for critical and non-critical (or best-effort) appli-
cations: the pessimistic WCET estimations of safety-critical (real-time) applications
under-utilize the resources significantly in the average case. On the contrary, the non-
critical or best-effort applications require efficient resource utilization to provide the best
possible QoS. It further adds complexity to the existing resource management problem.
Industrial concepts and standards, such as ARINC 653 for Integrated Modular Avionics
(IMA) [45] have recognized these issues.

As an initial step in avionics, safety-critical single-core avionics applications were
ported to a multicore processor by preserving the original schedule as well as the source
code and executing them on only one core. Historically, the avionics domain uses cyclic
scheduling. Some recent approaches such as Burns et al.[153] propose to extend cyclic
scheduling to multicore. The authors propose to coordinate schedules on all cores so
that all cores release the MiF at the same time and allow only applications of the same
criticality to execute concurrently. However, these approaches do not allow executing
applications of different criticality levels at the same time.
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II.25.4 Safety-Critical Operation as a Cloud-Based Service

As seen in recent projects such as SECREDAS[154], a new trend of deploying real-time
applications on cloud computing platforms is emerging in safety-critical domains. Hosting
applications in the cloud support ease of re-usability, reconfiguration, and scalability
while providing high availability, less need for maintenance, and reduced running costs.
Moreover, cloud computing helps organizations to reduce their carbon footprint by
letting them reduce resource over-provisioning. The cloud abstracts the underlying
hardware from the applications. This property of cloud computing helps to deal with
hardware obsolescence issues and makes possible the reuse of existing applications without
modifications .

As explained in Section II.18, the cloud hosts applications as VMs. Multiple VMs run
on each node in a cloud and share the underlying node resources. Cloud virtualization
environments, such as Xen or KVM, allow partitioning off some of these resources to each
VM. However, in a cloud with several nodes, each with several resources, partitioning some
resources per node is insufficient to ensure predictability for real-time applications. It is
tough to obtain realistic assumptions because the applications, availability of resources,
and system configurations can keep changing in a cloud. Moreover, cloud hypervisors
only consider a single node to make local resource allocation decisions and manage tasks
locally without a global view of the system. Thus, no resource allocation guarantees are
given to VMs in clouds. As a result, it is not possible to ensure (timing) predictability
of VMs in clouds. However, the safety-critical domains need predictability achieved by
careful management and allocation of resources to safety-critical VMs. These VMs must
adhere to stringent safety standards. Thus, running such safety-critical applications on
existing clouds is difficult.

Safety-Critical Railway Operation as a Cloud-Based Service

The railway domain has high reliability and availability requirements given by the CEN-
ELEC standards (e.g., [155, 156, 157]) used to certify safety-critical railway applications.
The long lifespan of such applications of more than 25 years needs to be considered,
as any change to the system should not compromise the safety requirements. Railway
operation is a layered and complex business. Indoor components (e.g., Radio Block
Centers (RBCs)) can control several interlocking stations parallelly to operate large
railway networks. Also, RBCs are responsible for the radio communication towards
European Train Control System (ETCS)-L2 operated trains and have widely increased in
number over the last decade due to the roll-out of high-speed lines. Thus, the demand for
a more scalable architecture has risen in the railway domain. Such architecture should
follow the cloud computing principles while still ensuring the highest safety and security
levels. Additionally, hosting applications in the cloud will support ease of re-usability
reconfiguration while providing higher availability, less need for maintenance, and re-
duced running costs. Furthermore, the virtualization layer of the cloud abstracts the
underlying hardware from the applications. This property helps to deal with hardware
obsolescence issues and makes the reuse of existing applications without modifications
possible. Virtualization can also ensure the required long application lifetime through
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continuous operation during updates and permit mixed-criticality applications in the
cloud. Therefore, the choice of suitable virtualization and cloud technology is essential
for ensuring the performance, predictability, availability, and safety of such a system. An
initial outlook on virtualization for safety-critical railway systems has been conducted in
[158], focusing on a contract-based safety approach for the possibility of mixed-criticality
as well as initial experiments on the real-time capability of different hypervisors. In
[159], the author predicts future developments in the railway industry without presenting
many technical details. He advocates the coded monoprocessor principle [160] to create a
cloud-based railway control system, highlighting the advantages of increased availability,
scalability, and performance with such an approach.

II.25.5 Open-world Assumptions: Safety- and Security-Aware Approaches

In the past, RTS and MCS were mainly concerned by safety and reliability requirements as
they were physically isolated and ran on dedicated hardware platforms. Nowadays, many
of these systems are networked and are moving towards an open-world assumption. For
example, the trend of Internet of Things (IoT) is coming to automotive systems; passenger
comfort and infotainment features continue to progress through the advancement of
in-vehicle networks and connectivity of the automotive system with its environment.
As a result, these systems can no longer be bounded by static system structures but
need to consider components entering and leaving the system at runtime. The challenge
here is not only to consider distributed and networked RTS and MCS but also to allow
dynamic system structures and open-world assumptions without compromising the safety
and reliability requirements of the systems. In addition, these systems have become a
promising target for active and passive attackers. In the worst-case, compromising a few
components can bring down the entire system. Therefore, an important aspect is ensuring
the continuous unmaintained real-time operation of the system while guaranteeing safety
and reliability requirements.

From a safety and security viewpoint, the resource management mechanism is a crucial
point of the system and a vulnerable target for attackers. The system can completely
lose resource allocation abilities even if single faults occur in the resource management.
In the worst-case, faults in the resource management can lead to incorrect resource
allocations directly impacting the execution of real-time applications leading to system
failure. Attackers can obtain sensitive system information from the resource management
and the communication among its components. Attackers can masquerade as a resource
management entity and manipulate the system by making wrong resource orchestration
decisions or provide incorrect information to other components. An attacker can cause
system-wide failures by manipulating key components of resource management. Thus,
the resource management mechanism must itself be both safe and secure. Existing global
resource management frameworks for RTS and MCS do not consider both safety and
security.
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II.26 Relevant Resource Management Frameworks for RTS and
MCS

This section presents existing resource management frameworks for RTS and MCS
relevant to this dissertation.

II.26.1 Matrix Resource Management Framework
The Matrix framework [21] proposes real-time resource management to efficiently trans-
port decoupled video streams with acceptable playout quality in dynamic environments
such as home networks with limited availability of resources in heterogeneous nodes.
The Matrix framework decouples the actual node-level scheduling from the system-wide
resource allocation for efficient information processing at appropriate levels. The frame-
work consists of a Resource Manager (RM) that makes system-side resource allocation
decisions and node-level Order Managers (OMs) that perform the local monitoring and
scheduling of CPU and network resources.
The RM maintains a status matrix with a system-wide view of resources based on

updates from node-level OMs. It makes system-wide decisions based on the information
in the status matrix. However, to keep the network and CPU overhead low, the OMs
updates the status matrix with the minimum relevant information about states of nodes
as needed by the RM instead of maintaining a fine-grained, accurate, and fresh view
of the system state. The framework accomplishes this by using only a few discrete
(abstract) Service Levels (SLs), such as HIGH, MEDIUM, and LOW, to indicate the
availability of resources and QoS achieved by applications. As a result, the framework
reduces the overheads in the system state determination and dissemination and abstracts
fluctuations, which could overload the scheduling of resources on individual nodes.

Each time a new connection is required, the RM checks the status matrix to determine
if the availability of resources is sufficient to satisfy the desired QoS of the new connection
without violating the QoS of existing ones. If the RM finds enough resource availability
in the status matrix to support the requested connection, it adds orders for resource
reservation into an order matrix. If a variation in the availability of resources affects an
active stream, the RM makes adjustments to QoS streams and allocates resources in
the order matrix. Finally, the OMs maps the resource reservation constraints (orders)
by the RM (placed in the order matrix) to the concrete scheduling specification of the
local schedulers on their nodes. The communication among the OMs and the RM in the
Matrix framework follows the publish/subscribe paradigm.

II.26.2 ACTORS Project Resource Management Framework
The ACTORS project [22] provided a generic framework for adaptability within a single
multicore device. The project managed applications by automatically assigning them
to Virtual Processors (VPs). VPs isolated applications from other applications and
abstracted the underlying physical hardware resources. A central Resource Manager
(RM) allocated resources among VPs.
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ACTORS project introduced the concept of Service Levels (SLs) for applications.
Each application can have multiple SLs, and each SL corresponds to a specific resource
requirement for an application and the QoS achievable by those resource requirements.
Moreover, each application has an importance parameter that a system designer can use
to indicate the more favorable applications. Finally, each application has a happiness
parameter to indicate to the RM if it achieved the QoS associated with the SL.

At runtime, the RM monitors the applications in the VPs and dynamically adjusts the
parameters of the VPs (including SLs of the applications) according to the monitored
resource consumption and taking into account happiness and importance parameters. If
a new application enters the system, it must inform the RM about its SLs, and the RM
triggers a reallocation of resources and corresponding reassignment of SLs.
The ACTORS project considered both the CPU bandwidth requirements and the

worst-case delay, after which the application requires CPU allocation again. The project
proposed using abstract service levels of CPU availability and application demands to
reduce runtime resource management overheads. The main application considered in the
project was an adaptive real-time MPEG-4 video decoding and streaming application.

II.26.3 Real-Time Adaptive Resource Management (RTARM)

RTARM [24] is a framework for adaptive resource management in real-time distributed
systems with heterogeneous COTS nodes. RTARM consists of Hierarchical Service
Managers (SMs) to manage individual resources and complete nodes. At the bottom
of the hierarchy, Lower-level Service Managers (LSMs) manage individual resources,
such as CPU and network, and controls access from applications to the resources. At
the top of the hierarchy, High-level Service Managers (HSMs) build services based on
the LSMs. In addition, HSMs coordinate with each other and negotiate end-to-end
resource allocations to provide guaranteed QoS to applications. Thus, the hierarchy
allows complex QoSs representations on top of basic services while simplifying application
design and facilitating consistent resource management across all applications in the
system.
An application requests an acceptable QoS range for each quality parameter to an

HSM. Firstly, the HSM translates this request into individual QoSs requests for its
services and LSMs. Then, it propagates the translated requests to its LSMs and receives
possible QoSs values between in the acceptable range that the LSMs can provide (if
any). Next, the HSM performs a reverse translation and adds the QoSs values from
LSMs into its own QoS representation. Finally, it checks the QoSs representation to
ascertain if the status of the service reservations meets the requirements and accordingly
commits or aborts the transaction. If there are insufficient resources to accept requests
from high criticality applications, then the HSM adapts the low criticality applications to
the minimum QoSs values and uses the newly released resources for the high criticality
application.

Each service manager consists of the following essential sub-components: 1) a negotiator
to broker admission control and delegate responsibilities to other components, 2) a
translator to translate QoSs requests and replies to and from LSMs, 3) a scheduler to
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determine the feasibility of allocation of resources, 4) an allocator to allocate and release
resources, an adaptor to adapt QoSs of applications when required, 5) an enactor to
enforce the changes in application QoSs or status, 6) a monitor for monitoring the QoSs
of applications, and 7) a detector for detecting conditions such as overloads and resource
underutilization.

II.26.4 Resource Allocation and Control Engine (RACE) Framework

RACE [161] is an adaptive resource management framework for real-time systems to
allocate resources efficiently and adapt the system to changes in resource availabilities
and demands. RACE prevents the need to redevelop or modify the framework for new
resource management strategies by decoupling resource management algorithms from
the middleware implementation and providing configuration options to support a wide
range of algorithms.

RACE framework consists of the following main components: 1) resource monitors to
monitor system-wide resources, 2) QoS monitors to monitor application QoS, 3) resource
allocators to allocate resources to applications as per their requirements and current
resource availabilities, 4) configurators that configure QoS parameters of applications, 5)
controllers to make end-to-end adaptation decisions that ensure the system meets the
QoS requirements of the applications, and 6) effectors that enact adaptation decisions of
the controller.

In addition, RACE provides QoS specification models that hide the low-level platform-
specific details from the system designers. This feature helps to shield system designers
from the tedious and error-prone process of determining platform-specific QoS configura-
tions for applications.

II.26.5 ACROSS Project Resource Management Framework

In the ACROSS project [23], a Trusted Resource Manager (TRM) and a communication
interface provide the possibility to contain faults and reconfigure communication on
an FPGA-based MPSoC with TT NoC. The communication interface is an element
between the TT NoC and an MPSoC component. It acts as a guardian for the respective
component and ensures the component can only send messages at predefined time
points according to a TT schedule. A component cannot modify the TT schedule in a
communication interface. Hence, a failure of a component cannot impact the timing or
messages of other components.

The TRM configures all communication interfaces with the TT schedule via a specific
channel on the NoC that directly provides access to register files and protected memories
on communication interfaces, which are not visible to the component. Moreover, the TRM
can dynamically reconfigure the communication interfaces to modify the communication
schedule. The TRM accepts new communication schedule proposals from components
and checks the validity of the schedule to ensure it is collision-free. The TRM rejects
schedules where a collision may occur or violates the fault containment hypotheses. If
the TRM accepts the schedule, it writes it transparently to the communication interface
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of the corresponding component. A component with special access to the NoC hosts
the TRM. Thus, if the TRM fails, it can take down the entire NoC and thus cause the
failure of the MPSoC. Therefore, the fault model of the ACROSS tightly couples the
TRM and the NoC.

II.26.6 Hierarchical Distributed Resource-management Architecture (HiDRA)

HiDRA [162] proposes a framework for simultaneous management of processors and
network bandwidth by a control-theoretic approach to handle fluctuations in resource
demands and availability. The resource management architecture is designed for a system
consisting of multiple wireless sender nodes that act as data sources and transmit data
to a receiver node. The receiver node acts as a data sink and performs post-processing
on the data. The architecture aimed to guarantee the end-to-end delay between the time
the source node produced the data to the time the receiver node produced an output.

There are three main components in HiDRA: 1) Monitors to update controllers with
resource utilization periodically, 2) Controller to implement algorithms that compute
adaptation decisions for each application and ensure the desired system resource utiliza-
tion and 3) Effectors to modify the applications and achieve the adaptation suggested
by the controllers.

To ensure that the applications meet end-to-end deadlines, the controller has a processor
control loop to handle the processor utilization at the receiver node and bandwidth
control loops located at the sender nodes to manage the bandwidth utilization. If the
processor and network control loops are isolated from each other, then it is not possible
to consider the coupling between network bandwidth and processor utilization required
for assuring the application requirements. Thus, HiDRA arranged these control loops
hierarchically with the processor control loop as an outer loop and the bandwidth control
loops on each sender node as inner loops.

II.26.7 Real-Time Common Object Request Broker Architecture (RT-CORBA)

RT-CORBA [163] is a middleware solution specification for providing end-to-end QoS
support in a fixed-priority real-time distributed system. TAO [164] is an example of a
RT-CORBA specification implementation.

RT-CORBA specification provides the following interfaces and QoS policies for appli-
cations to manage and configure resources in the entire system: 1) priority mechanisms,
thread pools, intra-process mutexes, and global scheduling service for CPU, 2) protocol
properties and explicit bindings for network, and 3) buffering requests in queues and
bounding the memory size of thread pools for memory.
RT-CORBA Object Request Brokers (ORBs) facilitate transparently handling com-

munication requests between clients and servers. In addition, ORBs provide interfaces
that allow applications to specify their QoS policy requirements.

A salient feature in RT-CORBA is an OS-independent priority scheme that allows the
system designer to use global RT-CORBA priorities for application in a heterogeneous
distributed system. These priorities help to relate the OS priorities of each node consis-
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tently while ensuring that no priority inversion occurs in the network for communication
requests between a client application and a server application. Each client application
invokes a service request to the server via an ORB. The ORB maps the client’s native
OS priority to an RT-CORBA priority-level and transmits the RT-CORBA priority to
the server as part of the message. ORBs along the path between the client and the server
also map the client’s CORBA priority to native OS priority and processes the request
at this priority. This propagation of priorities across the distributed system results in
a distributed priority inheritance and end-to-end predictability about the priorities of
applications.
The global scheduling service is responsible for allocating system-wide resources to

meet the QoS needs of the applications that share nodes. Applications can use this
service to specify parameters, such as WCET or period. To support multi-threading,
RT-CORBA specifies a thread pool model for servers designers to pre-allocate a group of
threads with specific thread attributes, such as priority levels. Thread pools are helpful
for ORBs and applications to leverage multi-threading while bounding the allocated
memory resources.
RT-CORBA leverages policies and mechanisms of the underlying communication

infrastructure that support resource guarantees. In addition, it provides interfaces for
allowing applications to select and configure transport-layer protocols and properties.
Moreover, the specification defines priority bands that contain any set of RT-CORBA
priorities. Priority banded connections allow the system designer to separate traffic types
by priority and dedicate separate connections between the client and the server for each
priority band.
RT-CORBA 2.0 [163] supports a dynamic scheduling framework by defining dis-

tributable threads with one or more execution parameters, such as deadlines and im-
portance. The distributable threads can span across multiple nodes and carry their
scheduling parameters beyond node boundaries. On each node, the middleware maps
the distributable thread onto a native OS thread. DynamicTAO [165] is an example of a
RT-CORBA 2.0 specification implementation.

II.26.8 Game-Theoretic Resource Management Framework for Real-Time
Applications

In the game-theoretic resource management framework [166, 167], a central Resource
Manager (RM) makes resource allocation decisions for shared resources on a COTS
multicore platform. Similar to the ACTORS project, the RM handles applications by
assigning them to VPs. This framework also considers that applications can function at
multiple SLs with different resource requirements. However, contrary to the ACTORS
project, this framework considers that the RM is unaware of the resource requirements
and SLs of applications due to intellectual property rights. Moreover, as the meaning of
quality is dependant on individual applications, the framework accounts for the RM’s
inability to compare quality delivered by different types of applications. Thus, the
framework decouples resource allocation decision-making from service level assignment
and leaves the assignment of service levels to the application level.
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The framework uses ideas inspired by the game theory to achieve decoupling. The
RM provides each application with a “payoff” (resource allocation via VPs), and each
application adjusts its SL internally to maximize the “revenue” (performance). Eventually,
the interaction establishes an equilibrium between the SLs of applications and resources
allocated by the RM. An advantage of such a decoupling is the reduction in resource
management complexity, and thus, the involved overheads. However, the applications
needed significant instrumentation.

II.26.9 Resource Manager for Guaranteeing End-to-End Deadlines over
Dynamic Topologies

Millnert et al. [168] presented a theoretical framework from modeling dynamic topologies,
such as IoT, Cloud, Edge, and Fog. They ensured the system always met deadlines by
limiting the way nodes and applications leave or join the network.

This framework considers applications as flows of packets through a network of nodes.
Flows are a set of interconnected services offered by nodes. A Resource Manager (RM)
handles all the requests from nodes and flows to join or leave the network. When a flow
sends a request to the RM for joining the network, the RM accepts or rejects the flow
based on the proposed theorems. A flow is allowed to notify and immediately leave the
network at any time. The RM can also force a flow to leave in certain conditions; for
example, a node along the path of the flow requests to leave the system.

Contrary to flows, a node can notify and immediately join the network without further
permission from the RM. However, when a node wants to leave the network, it must
send a request to the RM. Upon receipt of such a request, the RM notifies the flows
along the path to exit. Once the notified flows exit properly, the RM permits the node
to exit the network.

II.26.10 Miscellaneous
There exist many other generic resource management approaches that are not suitable
for use with RTS and MCS. For example:

• Hydra [17] is a multi-agent-based runtime distributed resource management frame-
work designed to integrate runtime services in a distributed way. It provides resource
reallocation if an application does not achieve the required QoS or resource failures
occur.

• M-Hub [18] is a resource management framework for the internet of mobile things
to assign Complex Event Processing tasks to different devices based on availability
and characteristics.

• Xu et al. [169] proposed a hierarchical resource management system to allocate
resources in virtualized data centers. The lower level of the hierarchy used fuzzy
logic-based approaches to deal with varying resource availability and demands.
The higher level of the hierarchy decided the resource allocation based on a profit
model to maximize the data center profit.
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• Tärneberg et al. [170] presented a set of resource management challenges for a mo-
bile cloud network based on a model that captures cost and capacity-heterogeneity
of the infrastructure. In addition, they proposed an algorithm for dynamic re-
source management that considers network link capacity, desired user latency, user
mobility, data center resource utilization, and server over provisioning costs.

• The resource management framework proposed in [19] uses blockchain to maintain a
record of available and spent resources in cloud nodes. Furthermore, the framework
uses blockchain transactions to perform VM migrations to save energy in the cloud.
The framework ensures a migration only occurs if enough CPU/GPU cores, DRAM
and hard disk space, or I/O devices are available on the destination node (as per
the record in the blockchain).

• Xu et al. [20] highlighted the potentials of the blockchain for resource management
in future Sixth-Generation (6G) networks for scenarios such as IoT.

II.27 Contributions

II.27.1 Global Resource Management Framework for Real-Time and
Mixed-Criticality Distributed System

We propose a domain-independent global resource management framework2 for dis-
tributed MCS and RTS consisting of heterogeneous nodes based on multicore processors
or MPSoCs. Our resource management framework combines the benefits of local and
global resource management strategies and keeps the overheads low by decoupling global
resource management from local resource management. It efficiently reallocates the
resources and adapts the QoS or modes of applications upon fluctuations and changes in
operating conditions. Furthermore, it supports the reallocation of resources at runtime
upon the occurrence of resource failures. In addition, it provides 1) monitoring service to
monitor the behavior of applications and availability or operational status of resources,
2) scheduling service to deterministically schedule access from applications to resources
and ensure the application requirements are met, and 3) local and global reconfiguration
services to allocate resources and adapt applications based on the current availability of
resources and the operational conditions. Our resource management architecture allows
multiple monitoring and scheduling techniques without tightly coupling them with the
implementation of the framework. This design allows a system designer to select the
appropriate monitoring and scheduling technique for each resource as per requirement
without significant modifications to the framework implementation.

Our resource management architecture is scalable and manages a distributed system
consisting of heterogeneous nodes with different operating speeds and locations in
the system structure. It can be error-prone and tedious for a system designer to

2We initially developed this framework together with the French Aerospace Lab - ONERA and Thales
Research & Technology during the DREAMS project and later extended it during SECREDAS and
other internal projects.
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correctly configure resource management according to each platform’s low-level details
in heterogeneous distributed systems. Therefore, our resource management framework
allows the system designers to provide resource management configuration parameters
abstractly and select Local Resource Monitor (MONs) and Local Resource Schedulers
(LRSs) for each platform without the need to know or set fine-grained platform-specific
configurations.

II.27.2 Exploitation of Multicore Processors for Fault-Tolerance (in Avionics)

We address fault-tolerance on distributed MCS and RTS with nodes consisting of
multicore processors or MPSoCs via our global resource management framework. Our
framework is capable of detecting core failures at runtime and reconfigure the system
as per requirement. Our framework detects core failure by running a newly developed
software monitoring service running on each core. Based on the current availability and
demand of resources, the global resource management framework reconfigures the system
partly or entirely upon core failures to ensure that all the critical applications remain
active.
In the avionics use case, we use a strategy based on offline defined reconfiguration

graphs (generated by ONERA’s GREC tool[171]) for our global resource management
framework to reconfigure the system upon core failures.

II.27.3 Simultaneous Execution of Mixed-Criticality (Avionics) Applications

We address the simultaneous execution of mixed-criticality applications via our framework.
Our framework includes a regulation solution inspired by the runtime WCET controller
[172]. The framework enables the concurrent execution of critical and non-critical
applications on a multicore node. It ensures the deadlines of critical applications are
met while improving the QoS of best-effort applications and overall resource utilization
of a multicore node. For this purpose, our framework continuously monitors the progress
of the critical applications. If a potential deadline overrun is detected, it stops the
concurrently executing non-critical applications until the end of the critical application’s
time window.

II.27.4 Safety-Critical Operation as a Cloud-Based Service

To enable real-time industries to use cloud computing and enter a new market segment,
safety-critical operation as a cloud-based service, we extend the global resource man-
agement framework to make it possible to develop a RT-Cloud for hosting RTS and
MCS. We also present an implementation for a low latency memory bandwidth aware
Time-Triggered (TT) scheduler for a cloud node running the KVM hypervisor. The
scheduler ensures that the safety-critical VMs are provided CPU execution time and
memory bandwidth precisely as per their requirement. Furthermore, we can use this
Time-Triggered (TT) scheduler with our global resource management framework.
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II.27.5 Railway Operation as a Cloud-Based Service
We explored virtualization technologies and cloud computing for migrating an existing
real-time safety-critical railway use case from dedicated hardware solutions. We examined
existing virtualization technologies for deploying a (private) RT-Cloud on COTS server
hardware to run an existing railway use-case while meeting stringent safety and security
requirements. Based on the examination, we provide an insight into using existing
virtualization technologies with our global resource framework architecture to safely and
securely execute the railway use case applications.

II.27.6 Safety- and Security-Aware Global Resource Management Framework
We consider safety and security for our global resource management framework itself.
In addition to using redundancy and periodic heartbeat signals for fault tolerance in
the framework, we propose a solution for secure communication among the resource
management components. This solution provides multiple levels of security and various
types of security algorithms that a system designer can select depending on the use
case’s requirements. Further, we propose distributing the global resource management
decision-making among a minimum number of different hardware platforms. We propose
implementing this solution using the Sawtooth blockchain platform to achieve Byzantine
fault-tolerance for the global resource management decisions and security for the commu-
nication among the resource management components. We also experimentally evaluate
the secure resource management communication (in an avionics use case) as well as the
blockchain-based distributed global resource management (in a cloud-based use case).
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Resource Management Framework

“Think globally, act locally.”
– René Dubos

This chapter presents our resource management framework for distributed MCS and
RTS initially developed with the French Aerospace Lab - ONERA and Thales Research
& Technology during the DREAMS project and later extended during the SECREDAS
and other internal projects. Our framework is inspired by the Matrix [21] and ACTORS
[22] resource management frameworks. We aim to manage RTS or MCS consisting of
heterogeneous nodes with multicore processors and MPSoCs.

III.1 System Structure

The system structure (Figure III.F1) consists of a set of clusters {C0, C1, . . . , Cc}. Each
cluster Cκ, has heterogeneous nodes {Nκ

0 , N
κ
1 , . . . , N

κ
nκ}, connected by an off-chip network

with a topology such as a star, bus, or ring. In addition, intercluster gateways act as the
connection between different clusters.

Each node is a multicore processor or an MPSoC containing multiple tiles connected
by an on-chip network such as a shared bus, crossbar, or NoC. If the on-chip network
is an NoC, each tile will have an Network Interface (NI) to communicate via the NoC.
A tile can be simply a single CPU core, a complex cluster of CPU cores with private
caches, or IP cores. Additionally, tiles can also be resources, such as memory controllers
or I/Os, that are shared by several other tiles of the node. Finally, at least one tile is a
gateway that connects the off-chip network with the on-chip network.

III.2 Resource Management Framework

We took into consideration various requirements and challenges for the design of our
resource management framework. This section presents these requirements and challenges
and explains how we solve them in our framework.
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Figure III.F1: System Structure

III.3 Low Overhead Resource Management

Many existing methods perform resource management either at the node-level (e.g., [22],
[23], and [166]) or at the system-level (e.g., [162], [161], and [168]). In node-level (local)
strategies, the resource management performs local resource allocation and adaptation
based on the local availability and demand of resources. The main advantage is that
resource management can use domain-and node-specific information for making resource
allocation decisions. However, these decisions are limited by the absence of a system-wide
view of resources and applications. For example, each node can only execute applications
in a timely manner if there are enough available resources on that node. If one node is
overloaded, the system cannot benefit from the availability of resources in another node
to execute the applications. Thus, these approaches are unsuitable for a complex system
structure such as the one we consider in this dissertation.

In the system-level (global) strategies, resource management has a global view of appli-
cations and the availability of resources. Therefore, it can make global resource allocation
and adaptation decisions to ensure the system meets the applications’ constraints. More-
over, it can leverage global resources to improve the overall system efficiency. However,
such approaches often have high overheads as nodes frequently communicate the demand
and availability of resources to the resource management. This problem worsens if the
system has highly fluctuating demand and availability of resources; the nodes not only
need to communicate more often with the resource management due to the fluctuations
but also the resource management must make more decisions and communicate all these
decisions back to the nodes. Thus, such approaches are unsuitable for adaptability in
the proposed system structure due to high overheads.
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Solution Our resource management architecture combines the benefits of local and
global resource management strategies and keeps the overheads low by decoupling global
resource management from local resource management. The architecture consists of a
Global Resource Manager (GRM) in combination with a set of a Local Resource
Manager (LRM) as shown in Figure III.F2.
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Figure III.F2: Basic Architecture of the Resource Management Framework

• The GRM handles long-term changes in the demand of applications and the
availability of resources. Moreover, it manages the system upon resource failures
that the LRMs cannot manage. Conceptually one GRM exists in the system,
although distribution is possible for scalability and fault-tolerance (as explained in
Chapter V). For simplicity, we assume the GRM as a single entity in this chapter.
The GRM gathers resource and application updates from the LRMs, and provides
new resource allocation orders to the LRMs, if necessary. The GRM orders can
include different pre-computed configurations for resources (e.g., time-triggered
schedules) or parameter ranges (e.g., resource budgets). Alternatively, the GRM
can dynamically compute new configurations.

• The LRMs takes care of temporal overloads and short-term fluctuations in demands
of application and availability of resources. The resources can be physical resources
such as a single processor core, core clusters, memory (space and bandwidth),
caches, I/O devices, hardware accelerators, and network bandwidth. The resources
can also be virtualized. Moreover, they can accommodate the failure of resources
up to a certain extent. In addition, the LRMs send updates to the GRM or request
global adaptation by the GRM upon significant changes in demands of applications
and availability of resources (as explained in Chapter IV).

III.4 Adapting to Fluctuations in Availability and Demand of
Resources

Real-time applications can miss their deadlines if their resource requirements are not met
(on time). Moreover, the pessimistic WCET estimations of safety-critical applications
under-utilize the resources significantly in the average case. On the contrary, the non-
critical or best-effort applications require efficient resource utilization to provide the
best possible QoS. Hence, significant under-utilization of the system is unacceptable as
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it reduces overall efficiency and increases operational costs. Thus, the availability and
demand of resources, such as CPU, memory bandwidth, cache, and network bandwidth,
may fluctuate over time and vary significantly when changes in operating conditions
occur.

Solution Our resource management efficiently reallocates the resources and adapts the
QoS or modes of applications upon fluctuations and changes in operating conditions.
Thus, our resource management architecture the following services:

• monitoring service to monitor the behavior of applications and availability of
resources,

• scheduling service to deterministically schedule access from applications to system
resources and ensure the application requirements are met, and

• local and global reconfiguration services to allocate resources and adapt applications
based on the current availability of resources and the operational conditions.

III.4.1 Adapting to Failures in System Resources
Failure in individual system resources, such as a CPU core or network, or complete failure
of nodes can occur in a system due to changing environmental conditions or phenomena,
such as wear-out and infant mortality [173]. RTS or MCS need reallocation of resources
at run-time upon the occurrence of resource failures with minimal (or no) interruption
of safety-critical applications.

Solution Our resource management provides the following special services:

1. monitoring operational status of resources,

2. prioritization service to prioritize applications (as per their safety-assurance levels),
and

3. local and global failure reconfiguration service to reallocate resources locally or
globally under reduced resource availability.

Chapter IV and V explain local and global reconfiguration services with more details.

III.5 Modular Monitoring and Scheduling of Resources
As explained in Section II.15, a variety of resource allocation approaches exist to deal
with contention in shared resources of a node. However, most of these approaches do
not address all the shared resources of a node and aim to resolve contention in only a
specific shared resource or a fixed set of shared resources. None of these algorithms are
suitable for all cases or perform better than all other algorithms, and each algorithm
has different associated overheads and limitations. Besides, different strategies may be
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preferable depending on the application domain and applicable standards. However,
many existing approaches (Section II.26) tightly couple global resource management
with local resource allocation and require a fixed set of schedulers. Similar to scheduling
techniques, different monitoring solutions exist to monitor the availability of system
resources and the behavior of applications. However, none of the existing solutions are
suitable for all cases or perform better than all other algorithms. Each solution also has
different associated overheads and limitations.

Solution Our resource management architecture must allow multiple monitoring and
scheduling techniques without tightly coupling them with the implementation of the
framework. Such a design will allow a system designer to select the appropriate monitor-
ing and scheduling technique for each resource as per requirement without any significant
modifications to the framework implementation. Thus, our resource management archi-
tecture has modular LRM design with two types of pluggable modules:

1. MON: This type of modules monitor resources and applications, and

2. LRS: This type of modules schedule and control access of applications to resources.
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Figure III.F3: Modular LRM design

As shown in Figure III.F3, each LRMλ provides interfaces to connect multiple MON
modules, {MON0

λ , MON1
λ , . . . , MONmλ

λ }, and multiple LRS modules, {LRS0
λ, LRS

1
λ,

. . . , LRSmλλ }. Thus, a system designer can connect different types and number of MON
and LRS into the LRMs as per requirement. For simplicity, henceforth we will refer to
MON modules and LRS modules as MONs and LRSs. The next chapter explains them
in more detail.

III.6 Tackling Heterogeneous Nodes, Complex System
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Structures, and Scalability
In the basic architecture shown in Section III.3, the GRM is at the top of the hierarchy
with a complete view of the entire system and directly supervises and controls all the
LRMs. All LRMs stand at the same level in the hierarchy. Together with MONs and
LRSs, each LRM manages a node. It directly communicates with the GRM. We refer to
this architecture as flat resource management architecture. The main advantage of flat
architecture is the simplicity of the design. Figure III.F4a shows an example of the flat
architecture.

The considered system structure consists of heterogeneous nodes, each with a diverse
set of resources, and nodes can communicate on different networks and realize their
activities at considerably different speeds. The flat architecture disregards the location
or operational speed of the nodes or resource(s). Thus, it cannot cope with granularity
issues, especially from a timing perspective. Different resources and nodes realize their
activities at considerably different speeds. When all LRMs are treated equally by the
GRM, it is not possible to consider that fact. Furthermore, there can be conditions that
require a reconfiguration of only a subset of resources, e.g., all resources inside a single
node. In a flat architecture, such conditions and the subsequent reconfigurations are only
addressable by a resource management component with a system-wide view: the GRM.
Finally, in a system with many nodes, the updates and reconfiguration requests from
LRMs can overwhelm the GRM in a flat architecture. As a result, the flat architecture
has limited scalability.

Solution An alternate to flat architecture is a hierarchical resource management ar-
chitecture where the GRM sits at the top of the hierarchy and LRMs are present at
different levels in the hierarchy. Figure III.F4b shows an example of the hierarchical
architecture. The GRM directly communicates with the LRMs at the second-highest
level of the hierarchy. In turn, these LRMs communicate with the LRMs below them.
Each LRM communicating to another LRM or set of LRMs introduces a new level in
the architecture. This structure allows the LRMs to act as a granularity interface and
hides fine-grained activities of a sub-system from the GRM’s view. As a result, the
GRM receives a limited number of resource updates. LRMs send reconfiguration requests
to the GRM only when a reconfiguration of the entire system is necessary. The final
result is a scalable resource management architecture that manages a distributed system
consisting of heterogeneous nodes with different operating speeds and locations in the
system structure.

III.6.1 Effective System reconfiguration
The resource management architecture must be flexible enough to accommodate hetero-
geneous nodes and resources while providing the essential services for reconfiguring the
system:

• System-level reconfiguration is required for reallocating resources (e.g., cluster
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and global network) to applications in case of long-term changes in availability
(including failures) or demand for resources. Applications can be entirely removed
from the system or redeployed to another cluster.

• Cluster-level reconfiguration is required for reallocating cluster resources (e.g.,
node and cluster network) to applications within the cluster in case of changes
or fluctuations in availability (including failures) or demand for resources. The
reconfiguration can redeploy applications (or VMs) on a different node in the
cluster.

• Node-level reconfiguration is needed for reallocating node resources (e.g., CPU cores,
memory, and cache) to the node’s applications in case of changes or fluctuations
in availability (including failures) or demand for resources. If the node employees
virtualization, then node-level adaptation can change the mapping of physical
resources to virtual resources to meet the demand and availability of resources.

• Suppose a virtualization layer is present on nodes. In that case, the virtualization-
level reconfiguration is needed to reallocate virtual resources (e.g., virtual CPU
(vCPU) and Virtual memory) to VMs in case of fluctuations in availability or
demand for virtual resources. A failure of physical resources can lead to a reduction
in the availability of virtual resources. Virtualization-level reconfiguration can
reallocate virtual resources to VMs in such a case as well. Note that resource
management treats the VMs similar to applications in the other (higher) levels.

• An application consists of several tasks. An application-level reconfiguration is
required for reallocating (virtual) resources among tasks of an application. It can
also remove tasks or throttle the QoS (or change the parameters) of one or more
tasks as per requirement.

The resource management architecture must perform the reconfigurations at all levels
in the system in a stable and coordinated manner. In a complex system structure such as
the one we consider in Section III.1, the GRM will have large overheads to coordinate the
reconfiguration at all levels. As a result, it may not perform reconfigurations at different
levels in a timely manner. From a temporal perspective, local reconfiguration in a
sub-system can be initiated by an LRM much sooner without waiting for communication
with the GRM. Moreover, the LRM can mitigate issues temporarily while waiting for
instructions by the GRM to implement a more permanent solution. In addition, a
reconfiguration at a lower level must only impact a higher level when it cannot internally
handle the change in demand/availability of resources or operational conditions. For
example, the resource management architecture must perform cluster-level reconfiguration
only when node-level reconfiguration is insufficient.

Solution We take advantage of the hierarchical resource management architecture to
introduce the concept of the resource management domains for effective reconfiguration
at all levels. We consider five different domains in the system structure to perform
resource management: System Domain, Cluster Domain, Node Domain, Virtualization
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Domain, and VM/application Domain. The domains represent the composition of the
system from the resource management perspective. Conceptually, they also correspond
to the architecture’s hierarchy levels.
The GRM controls and coordinates the LRMs in the cluster domain. It corresponds

to the highest level of the hierarchy of resource management components. In the other
domains, an LRM is in charge of coordinating and controlling the resources and lower-
domain LRMs. The resources can be controlled indirectly through communication with
a lower-level LRM or directly by communication with MONs and LRSs of the individual
resources of that domain. Figure III.F5 presents the composition of the system in
terms of resource management domains. It is important to note that Figure III.F5
does not intend to show where each GRM or LRM is physically implemented or where
they execute. Instead, the figure presents an abstract view of the resource management
domains established via the hierarchical architecture. In general, all resource management
building blocks can have hardware or software implementations, or a combination of
both, depending on the domain and type of resource.

System Domain

GRM

Cluster Domain

LRM

Cluster
Domain

LRM

. . .

Node Domain

LRM

Node
Domain

LRM

. . .

Virtualization Domain

LRM

Virtualization
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VM/Application
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VM/Application
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Figure III.F5: Resource Management Domains

It also depicts the LRM and LRMs in the system and the scope of their actions. We
can differentiate between LRMs in four types:

1. Cluster domain LRM

2. Node domain LRM

3. Virtualization domain LRM

4. VM/Application domain LRM
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A domain’s LRM manages all change internal to the domain without influencing
other domains. Any two LRMs of the same domain type cannot directly influence
or communicate with each other. Suppose a domain’s LRM cannot internally resolve
an issue. In such a case, the LRM immediately performs the most urgent subsystem
reconfiguration (e.g., prioritizing available resources to critical applications or switching
to a safe state) to ensure the system’s safety. Then it requests the next higher domain
(LRM or GRM) for a reconfiguration with a broader scope to efficiently resolve the issue
(a reconfiguration at a higher domain can be slower that the lower-domain reconfiguration
as it needs to redeploy applications between sub-systems). As a result, the GRM only
receives reconfiguration requests from the cluster domain LRMs.
The GRM does not need to perform the fine-grained adaptation in other (lower)

domains. The GRM only performs reconfiguration at the system level, while the LRMs
are responsible for adaptation in their respective domains based on order from the GRM.
Similarly, for example, the cluster domain LRM is only responsible for reconfiguration at
the cluster-level, while the node-level LRM is responsible for the fine-grained allocation
of node-level resources, such as CPU cores, memory, and cache, based on the order from
the cluster-domain LRM.

It should be noted that an instantiation of the resource management architecture can
contain the system domain and multiple other (local) domains. However, an instantiation
must not contain all the domains. For example, a minimal instantiation of the resource
management architecture requires the system domain and only one of the other domains
(flat architecture).

III.7 Dynamic addition or modification of applications

A system designer can initialize the RTS or MCS with a set of applications related to
the system’s primary objectives. The initial resource allocation is determined based on
these objectives and related applications. However, many RTS and MCS exhibit multiple
operation phases, each with different behavior and run different sets of applications. For
example, in an avionics system, different applications execute during take-off, landing,
and cruising. Moreover, the objective can change dynamically at run-time, and new
objectives may be added. As a result, the resource requirement of existing applications
may change, or reconfiguration may be required to allow the execution of new applications.
Nevertheless, the system should achieve these modified or added objectives under the
current availability of resources.

Solution The GRM manages an external input that can, in turn, trigger a global
reconfiguration. Such input could be given locally (I/O peripheral directly connected
to the GRM node) or remotely (via off-system Ethernet). A user can use this input to
provide new application(s) or constraint(s) to the system. The GRM can determine a
new configuration that satisfies the constraint or allocates the required resources to the
application(s). The input can also be an absolute reconfiguration decision. The GRM
directly communicates to the LRMs in the cluster domain, which in turn trickle down
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the appropriate reconfiguration decisions to the lower levels (and so on). Similarly, the
GRM can also trigger mode change in the system based on the external input.

III.8 Safety and Security for Resource Management
The resource management architecture is a crucial part of the system and a vulnerable
target for attackers. Attackers can obtain sensitive system information from the resource
management and the communication among its components. Attackers can masquerade
as a resource management entity and manipulate the system by making wrong resource
orchestration decisions or providing incorrect information to other components. An
attacker can cause system-wide failures by manipulating key components of resource
management. Moreover, the system can completely lose resource management abilities
even if a single resource management component is faulty. In the worst-case, faults in
resource management can lead to incorrect resource allocations, directly impacting the
execution of real-time applications leading to system failure.

Solution We can use redundant LRMs for fault tolerance in local resource management
domains. We provide an example of using redundant LRMs in the avionics use case of
Chapter VI. Moreover, LRMs can send periodic heartbeats to the next higher resource
manager (an LRM or the GRM) in the hierarchy, as explained in Chapter V.
This dissertation proposes two solutions for the system domain (global resource

management). The first solution offers only security for the communication amongst a
single central GRM and the LRMs by adding a security layer to the resource management
architecture. This solution provides multiple levels of security and various types of security
algorithms that a system designer can select depending on the use case’s requirements.
In addition, the solution has low overheads. Chapter V explains both these solutions in
detail.
The second solution proposes distributing the GRM among a minimum number

of different hardware platforms. The GRM makes the global resource management
decisions via coordination amongst its distributed components. This solution can achieve
Byzantine fault-tolerance for the global resource management decisions and security for
the communication amongst the distributed GRM components and the LRMs. Chapter
V explains both these solutions in detail.

III.9 Configuring Platform-Specific Resource Management
Components
Meeting the application requirements depends on the configurations in the underlying
hardware and software platforms, for example:

1. the configurations, such as the number of CPU cores, memory size, shared-
interconnect bandwidth, and settings of QoS enabled components, of multicore
processors or MPSoCs of the node,
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2. configurations of hypervisors (or OSs) such as supported scheduling and allocation
strategies for various resources and CPU models, and

3. network configurations such as QoS settings or traffic-classes.

These configurations are specific to a software platform or a hardware node. Therefore,
system designers need to be aware of the detailed configurations of each platform and
configure the resource management accordingly to deal with these platforms. However,
in heterogeneous distributed systems, with different types of processors, networks, and
underlying software, it can be error-prone and tedious for a system designer to correctly
configure the resource management for all the low-level details of each platform. Therefore,
the system designers must be able to specify these resource management configuration
parameters abstractly. In addition, the system designer must have the ability to easily
select MONs and LRSs for each platform (as discussed in Section III.5) without the need
to know or set fine-grained platform-specific configurations.

Solution As shown in Figure III.F6, the resource management framework has access to
a library containing the configurations of available hardware and software platforms, and
a library with security protocols for resource management. In addition, it has access to
MONs and LRSs libraries. These libraries can contain entire software implementations
for monitoring or scheduling on nodes. Alternatively, they can provide interfaces for the
resource management to configure/read/write existing platform-specific monitors (e.g.,
Hardware performance monitor counters and health monitors in hypervisors) or schedulers
(e.g., QoS setting in QoS-enabled IP blocks or network interface, application priorities in
OS and VM scheduling in the hypervisor). Moreover, the resource management framework
can be interfaced with offline scheduling tools, if needed, to generate offline schedules for
applications and resource management components. Similarly, the framework provides
an interface for tools that can generate a configuration for the selected hypervisor
platform (if any). The system designer must provide a high-level system configuration
providing information such as types of nodes, the interconnection between the nodes,
and name of the hypervisor or OS of the node. The system designer must not specify
the detailed configuration of the individual nodes (and hypervisors/OS). Instead, the
resource management framework gathers them directly from the platform configuration
library. In addition, the system designer must provide parameters and configurations of
applications to the resource management framework. Finally, the system designer must
specify the resource management configuration containing information such as resources
to consider, the names of the required MONs and LRSs per node (or in all system
nodes), resource management domains and hierarchy, the location (node) of LRMs and
GRM, and the safety and security protocols. Based on all the inputs and the platform
configurations, the resource management framework selects the appropriate MONs and
LRSs from the corresponding libraries. Then, it generates the platform-specific c-code for
the GRM and the LRMs and selects the appropriate platform-specific compilers from the
available ones to compile the generated code. The final result is resource management
binary files that a system designer can deploy on the respective platforms.
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Listing A.L1 and A.L2 of Appendix A show examples of a platform configuration
(library) file and system configuration file (user-defined). Listing A.L3 and A.L4 of
Appendix A show examples of resource management configuration file (user-defined) and
application configuration file (user-defined) similar to those used in the avionics use case
of Chapter VI.
The next chapter explains LRM, LRSs, and MONs in more detail, while Chapter V

elaborates the GRM and the (secure) communication among LRMs and the GRM.



IV

Local Resource Management

“We don’t believe we’ve solved the multicore-programming problem. But we
think we’ve built an environment in which a certain class of problems can take
advantage of the multicore architecture.”

– Rob Pike

This chapter elaborates on the LRM component of the resource management ar-
chitecture. As explained in Chapter III, LRMs contain two main modular types of
sub-components:

1. MONs provide monitoring services, such as monitoring availability and detecting
errors. This chapter explains the monitoring services in more detail. In addition,
it provides an overview of hardware and software-level monitoring opportunities,
existing work on monitoring for RTS or MCS, and new MONs that we developed
for RTS and MCS.

2. LRSs provide scheduling services and configuration services. This chapter explains
both the services and presents the LRSs that we developed for different use cases.

Finally, this chapter explains the local resource management services provided by the
LRMs and policies to manage permanent core failures and potential deadline overrun
in critical applications while improving the QoS of best-effort applications and overall
resource utilization of a multicore node.

IV.1 Monitoring Services
Each resource or application managed by the LRM has one or more MONs, each providing
different monitoring service. MONs can provide the following type of generic monitoring
services:

Availability Monitoring
Several distinct state parameters, such as the utilization or the operational status of
a resource, can be associated with the availability of the resource. Some examples for
MONs that provide services to monitor the availability of resources are:

79
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• MONs for determining memory, network, or CPU utilization

• MONs for detecting the resource’s operational status (such as CPU core failure)

• MONs performing diagnostics tests on resources can help to deduce the resource
availability and status.

Behavior Monitoring

Monitoring services are required to monitor resources, hypervisors/OSes, or applications
to obtain an insight into their behavior. Some examples of MONs with these services
are:

• Resource MONs to find out the number of waiting messages in a queue or pending
read/writes in the memory controller

• Hypervisor/OS MONs to determine the keep track of tasks/VMs in the ready
queue or the number of context switches in a given period

• Application MONs to determine the QoS of applications or the impact of multicore
contention on real-time tasks

Reliability Monitoring

There is a close link between errors and the reliability of the systems. Hence, RTS or
MCS require MONs that provide monitoring services to detect:

• Errors in temporal domain, such as violations of task period, arrival pattern of
messages, or (potential) deadline miss of by real-time task

• Errors in value domain, such as errors in the body of a message, errors in results
of computation at the application level, or corrupt memory space.

The LRMs can also extract resource reliability from the results of diagnostics tests
routinely performed in the system.

Energy Monitoring

Due to the limited battery size, it is essential to save energy in battery-operated RTS
or MCS, such as portable media players or drones. Energy-saving is also essential in
non-battery-operated RTS or MCS due to electric costs, cooling costs, and hot-spots that
impact system reliability. LRMs can use MONs to determine the energy consumption of
resources or applications and the battery level at runtime.
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IV.2 Monitoring opportunities
There are numerous existing hardware and software monitoring solutions that we can
use within our resource management framework. These opportunities are present inside
COTS multicore processors and MPSoCs and at the OS/hypervisor-level. To take
advantage of these opportunities for resource management, we need to encapsulate and
interface them by designing simple platform-specific MONs for the monitoring library.

IV.2.1 Hardware Performance Monitoring Counters
In most multicore processors and MPSoCs, there are a few special-purpose registers built
into the hardware to store the count of specific events, such as clock cycles and cache
misses, happening inside the processor or the SoC. In this dissertation, we refer to them
as individually as Performance Monitor Counters (PMCs). A set of PMCs packaged as a
single unit called Performance Monitor Unit (PMU) are present inside CPU cores and
some (or all) shared resources of a processor or a SoC.

Taking inspiration from the terminology found in technical reference manuals for Intel
x86 processors, we classify the PMUs into two main types depending on their location in
the processor or the SoC (Figure IV.F1):
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Figure IV.F1: Classification of PMUs

Uncore PMU

Uncore PMUs refers to PMCs residing in components and logic that are outside the
CPU cores (and their private memory) but still on the same die. Uncore components
and logic are usually shared resources. They include, among others, the cache coherency
logic, shared interconnect, Last Level Cache (LLC), I/O controllers and devices, power
control unit, and the Integrated Memory Controller (IMC). An example of such a PMU
can be encountered in a IMC. The PMU in IMC can count events such as the number of
DRAM refreshes and the number of DRAM commands (e.g., ACT, PRE, and CAS).
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The PMCs of uncore PMUs provide a total event count from all cores. If multiple
cores are simultaneously accessing the shared resource, it is not possible to attribute
the value of a PMC in that shared resource to a single core. Thus, we can use uncore
PMU for determining the overall utilization, operational status, and behavior of the
corresponding shared resource itself.
In Section II.4, we provided examples of three hardware platforms: NXP T4240 [12],

Xilinx Zynq 7000 [13], and Intel Xeon Gold 5218 [31]. Unfortunately, the information on
uncore PMUs is not available publicly for the T4240. For Zynq 7000, Xilinx provides an
uncore PMU IP block called the AXI Performance Monitor (APM) [174] that can be
synthesized for the Zynq Programmable Logic (PL) (on-chip FPGA). This PMU can
be used to monitor the transactions on the AXI bus (shared interconnect of the Zynq
7000). It should be noted that such a PMU cannot be used with other COTS platforms
that do not have an FPGA on the same die. The information on other uncore PMUs
(if available) is not documented. Lastly, the Xeon Gold 5218 provides uncore PMUs in
various shared resources of the platform [175], for example:

1. Integrated Memory Controller (IMC)

2. Caching/Home Agent (CHA) (component managing the interface between core,
LLC, on-chip interconnect and the I/O controller)

3. UltraPath Interconnect (UPI) Link Layer (on-chip interconnect)

Core PMU

Core PMUs are present inside CPU cores. They can count events related to the following:

1. The core: for example, clock cycles, mispredicted branches, and instructions
retired/architecturally executed.

2. The private memory of a core (usually Translate Lookaside Buffer (TLB) and private
caches): for example, L1-Data/Instruction cache hits/misses and TLB-refills.

3. Offcore: Offcore events refer to the activities of the core that are on the way to the
uncore. Examples of such events are access to shared interconnect, access to LLC
and L2-prefetch.

PMCs of core PMUs are beneficial to monitor the availability and behavior of a core
and its private memory. In addition, they are helpful to monitor the behavior of a task
running on the core. For example, we can develop a MON that uses a PMC of a core
PMU to estimate the progress of a task by counting the clock cycles or instructions
retired while that task is executing on the core (example in Section IV.4). Moreover,
it is also possible to develop MONs that monitor the reliability of applications based
on the event counted by the on core PMUs. We provide an example of such a MON in
Section IV.4.
The three hardware platforms from Section II.4 contain Core-type PMUs in each

CPU core. Each PMU in a CPU core contains a fixed number of PMCs. PMCs either
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count a fixed event or can be programmed to count events from a list provided by the
corresponding semiconductor manufacturer. Table IV.T1 provides the number of PMC
on each CPU core for the three platforms.

Table IV.T1: PMCs per Core PMU
Platform CPU core Programm-

able PMCs
(per core)

Fixed
PMCs
(per core)

Comments

T4240 e6500 [176]
(dual threaded)

12 - 6 programmable PMCs
per hardware thread

Zynq 7000 Cortex-A9 [177] 4 -
Xeon 5218 Xeon Scalable

2nd Gen. [178]
(dual threaded)

8 3 4 programmable PMCs
per hardware thread.
Fixed PMCs are com-
mon for both threads

PMU Events in Multicore Processors and MPSoCs

Appendix B provides examples of some interesting PMU events with respect to resource
management on the three hardware platforms:

1. Table B.T1 in the appendix provides examples of PMU events for the e6500 cores
[176] of NXP T4240 [12]

2. Table B.T2 and Table B.T3 in the appendix present examples of Cortex A9 core
PMU events [177] and the AXI shared interconnect uncore PMU (APM IP block
[174]) events in the Xilinx Zynq 7000 [13]

3. Table B.T4 and Table B.T5 in the appendix supply examples of Intel Xeon Gold
5218 core and uncore PMU events [179]

Discussion

Most modern processors and SoCs contain uncore PMUs. However, the information,
such as their addresses, events, and protocols to set them up, are often not present in
the public domain for many hardware platforms. In our experience, many semiconductor
manufacturers are usually reluctant to provide this information. Thus, it is not possible
to use uncore PMUs on such hardware platforms.
All hardware platforms support counting many different types of events. However,

some hardware platforms implement very few PMCs in a PMU. For example, ARMv7a
only implements four PMCs in a core PMU but supports upwards of fifty events [180].
As a result, ARMv7a cores can only count a maximum of four events together despite
support for many more events.
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We expect the PMCs to provide deterministic event counts. However, in reality, to
keep the implementation and validation cost low, PMCs generally have a small degree
of inaccuracy [181]. PMCs are known to show variation between runs of the same
benchmark in strictly controlled experiments. Furthermore, they often overcount events
in x86 architecture [182]. As these effects are counter-intuitive and unpredictable, it
becomes difficult to use them for resource management strategies that require a precise
event count.

IV.2.2 Intel CMT and MBM Monitoring Technologies
The Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM)
hardware technologies present in the Intel Xeon Scalable processors (2nd Gen.) [30]
provide the possibility to monitor the LLC occupancy and memory bandwidth usage of
an application running on a CPU core (or a hardware thread). The resource manager,
OS, or hypervisor can assign each scheduled application or core/thread with a Resource
Monitoring ID (RMID) (hardware feature). CMT and MBM monitor the LLC occupancy
and memory bandwidth for each assigned RMID. RMID[0] points to the overall LLC
occupancy and memory bandwidth usage. The Xeon Gold 5218 supports 127 RMIDs for
monitoring.

IV.2.3 XtratuM Hypervisor
XtratuM [15] maintains a Health Monitoring (HM) log and provides an API for user
partitions (VMs) to register application-level errors in the log. HM service is also capable
of detecting and reacting to certain anomalous states and events. However, these states
and events are only those that cannot be handled at the application level, for example,
execution of undefined instructions. Therefore, XtratuM does not manage all other
partition-level events and states. However, applications can use one of the ten generic
error categories, such as internal error, unexpected trap, scheduling error, and overrun,
or one of the nine architecture-specific categories, such as undefined instruction and
prefetch abort. In addition, it provides an API for system partitions to check the log.
Moreover, XtratuM provides the possibility to map predefined actions (such as partition
reboot) to each HM event via a configuration file.

IV.2.4 Linux/KVM
The main aim of the Linux Ftrace [183] is to trace the kernel execution flow by attaching
callbacks to the start of kernel functions. However, we can use it to attach MONs to the
start of kernel functions to collect monitoring information in addition to tracing.
Kprobes [183] allow breaking into any Linux kernel routines to collect information

at runtime. Most parts of the kernel can be trapped using Kprobes. Thus, we can use
Kprobes inside MONs to gather information from the kernel. Such a MON must be
created as a Kernel module.

A tracepoint [183] is a small piece of code placed in the Linux kernel that provides a
hook to attach a function at runtime. In applications with custom Linux kernels, we can
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add tracepoints at strategic locations in the kernel code and use them to attach MONs
to the Kernel at runtime.

Since KVM is based on the Linux kernel, we can use the same approaches in KVM.

IV.3 Existing Monitoring Approaches for RTS and MCS

Bellosa [86] pointed out the possibility of using core PMUs on the SPARC V9 architecture
to estimate the memory bandwidth usage of a task by counting the LLC miss event
when the task is executing. A similar idea has been used by approaches, such as [65]
and [91], for memory bandwidth monitoring in the avionics domain. Memguard [88],
a memory bandwidth regulation approach, also uses LLC miss event to regulate the
memory bandwidth of a core. For achieving the same on ARMv8 architecture, authors in
[81] suggested the possibility of counting L2-cache misses, L2-write backs, or bus access
events of the core PMUs.

Obermaisser et al. [184] presented an implementation for TTA that provided deter-
ministic and reproducible monitors without probe effects. The monitors were intended
for trace generation and gathering information, such as application status and event
detection. Bonakdarpour and Fischmeister presented an interesting tutorial focusing
on time-triggered monitors for real-time systems. Bonakdarpour and Fischmeister [185]
presented a tutorial on TT monitors for real-time systems. They used methods based
on TT path monitoring [186] and TT run-time verification [187]. Medhat et al. [188]
proposed a run-time monitor for cyber-physical systems that periodically reads the sys-
tem state and evaluates the system properties expressed in a specification language. The
monitor uses control theoretic techniques to change the monitoring period dynamically
to ensure low jitter for monitors and maximize the system utilization.

kritikakou et al. [172] proposed to instrument the code of the critical applications by
inserting observation points at fixed locations. Then, at run-time, a monitor executes
at each observation point to check if the task may have a potential deadline miss due
to multicore contention. The check is based on the isolation WCET and the current
task progress. Neukirchner et al. [189] present an approach for monitoring dynamically
changing activation patterns of tasks in MCS. The monitor checks if the number of task
activations is below a safe upper bound defined by the system designer. The monitoring
methodology uses an event model based on arrival functions [190].

Nolte et al. [191] proposed a monitor for Linux to keep an accurate view of the CPU
budget used under a real-time Linux scheduling class. The monitor was implemented as
a hook to the kernel scheduler tick function. Thus, the monitor gets activated on every
scheduling tick and updates the budget consumed by the tasks if a context switch occurs.

The run-time security monitor [192] for RTS takes as input the expected system
behavior model. It observes the actual system behavior at run-time and raises the alarm
if there is a deviation from the expected behavior.
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IV.4 New MONs for RTS and MCS
This section describes the new MONs that we created for use with our resource manage-
ment framework.

IV.4.1 Hardware MONs

We designed this type of MONs to interface with the existing monitoring features in the
hardware. Depending on the events we configure for the PMU, we can use the MONs for
directly or indirectly monitoring availability, behavior, reliability, or energy (in specific
platforms). These monitors are hardware platform dependent. We implemented three
different MONs for use with the following hardware platforms:

1. Zynq 7000 MPSoC (ARM Cortex A9 cores - ARMv7a): baremetal or running
XtratuM hypervisor

2. PowerPC T4240 (e6500 cores): baremetal or running XtratuM hypervisor

3. Xeon Gold 5218 (Xeon Scalable 2nd Gen. processor cores): running Linux or KVM
hypervisor.

The MONs can interface with PMUs on all the respective platforms. We implemented
the MONs in C and partly in Assembly. In each MON implementation:

• A header file contains the list of PMU events.

• The MON code provides functions for the LRM to initialize, reset and read the
PMU values. Listing C.L1 in Appendix C shows a pseudo-code of a hardware
MON. It should be noted that the subroutines in each MON are internally different
as they deal with the hardware registers in the platforms.

There were two main challenges in the design of the MONs:

Challenge 1

Each platform support many common PMU events. However, these events have different
names and event numbers; for example, the event for counting clock cycles in e6500 core
is called Processor cycles and had event number 1, while the same event for Cortex-A9 is
called CPU_CYCLES and has event number 0x11. This makes it difficult for a system
designer to configure the resource management framework.

Solution To reduce the difficulty for the system designer to configure the resource
management framework, the MONs use the same names for such common events. Still,
they point to the correct event number internally. Listing C.L2 in Appendix C shows a
code section of the header file for T4240 hardware MON.
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Challenge 2

The LRM can periodically read the hardware MON to get the values of the PMCs.
Periodically reading the values may be enough for determining the average resource
consumption of the applications/VMs. However, we are interested in precisely determin-
ing the resource consumption for each application/VMs. Hence, the MON must record
values of resource consumption only for the time an application/PMCs is scheduled by
an LRS on the CPU core.

Solution for XtratuM XtratuM schedules partitions using a cyclic scheduler (see Section
II.13.1 and Section II.17.4). An application (composed of multiple tasks) runs in a
partition during the assigned MiF(s) in every MaF. The LRM must execute the hardware
MON via an application-level task LRS at the start and end of every partition (or
upon completion of all application tasks in the partition) to gather application-level
resource consumption. Similarly, the task LRS can run the MON at the start and end
of every task to gather task-level resource consumption as shown in Figure IV.F2. The
basic idea is to read the PMC values at the start and end of a partition (or every task)
and only record the difference between the two values to determine the actual resource
consumption of the application (or task). The hardware MON provides two routines for
gathering resource consumption of the application as shown in Listing C.L3 (Appendix
C). We use and evaluate this approach in the avionics use case (Chapter VI).

Partition 1

Task 1 Task 2

Partition 2

Task 1 Task 2 Task 3

Partition 1

Task 1 Task 2

MiF

MaF

Key

Partition Scheduler HW MON Task Scheduler

Figure IV.F2: Hardware MON for XtratuM Partitions

Solution for Linux/KVM For Linux/KVM, we use tracepoints to register a monitoring
hook for a Linux/KVM scheduling (context switch) event, as shown in Listing C.L5
(Appendix C). We chose tracepoints as they have low overheads and are directly usable
with the mainline Linux kernel. The monitoring hook (handler) is activated every time a
context switch takes place. This monitoring hook saves the difference in the PMC values
between two context switches for the task running in between them. Listing C.L4 and
Listing C.L5 show pseudo-code for MON hooks in Linux/KVM on x86 platforms (Xeon)
and ARMv8a. We use this approach in the railway use case (Chapter VII).
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IV.4.2 Hardware Local Resource Monitor (MON) for Intel Cache Monitoring
Technology (CMT) and MBM

Apart from the MON for PMU, we implemented a MON for the Xeon platform (running
Linux/KVM) to interface with MBM and CMT features. This MON is useful in
monitoring availability and behavior of the IMC and the LLC. The basic idea of the
implementation is similar to Listing C.L1. Since we can use RMIDs to precisely track the
LLC and memory bandwidth usage per task/VM, we do not need to use a monitoring
hook for determining the resource consumption of each task. We use this MON in the
railway use case (Chapter VII).

IV.4.3 Core Failure MON

Permanent core failure can occur in a system due to changing environmental conditions
or phenomena, such as wear-out and infant mortality [173]. An LRM needs to detect
core failure(s) to ensure that such failures do not impact the execution of real-time
applications.
We1 designed this MON to detect permanent core failures on multicore platforms.

Thus, this MON helps to monitoring the availability (operational status) of a core. The
basic idea is to execute a MON instance on each core regularly. If the core is operational,
the service operates as expected and updates a shared data structure. However, if there
is a core failure, the MON instance cannot execute. Thus, the core cannot update the
data structure, and the LRM can catch the failure. For accurate and timely detection of
core failures, the MON instances must be precisely scheduled and order by the LRM
(via the LRS). With proper planning, we can use such an approach with any scheduler;
however, this approach is easy to use with TT scheduling as we can ensure the arrival
time and order of the LRM and MON instances. We use and evaluate this MON in the
avionics use case (Chapter VI).
As shown in Figure IV.F3, the MON instances running on each core updated a

shared data structure (synchronously or asynchronously). However, the MON instances
execute at fixed timepoints in every hyperperiod/MaF. All MON instances in the same
hyperperiod/MaF write the same value (either 0 or 1) to the data structure. The MON
instances in the next hyperperiod/MaF write the toggled value as compared to the
previous hyperperiod/MaF. The LRM runs towards the end of the hyperperiod/MaF to
detect if a core has failed. For fault tolerance, the LRM instances run on each core. In
Figure IV.F3, core 1 fails during the second hyperperiod/MaF. As a result, the core does
not update the shared data structure. The LRM instances of the working cores detect
this and subsequently consider core 1 as failed (see Section IV.9.1 further explanation).
The pseudo-code in Listing C.L19 (Appendix C) shows the essential parts of the core
failure MON.

Finally, we can execute the MON (and LRM) instances multiple times in a hyperperi-
od/MaF on each core to reduce the core failure detection time. The choice of the MON

1Together with ONERA and Thales R&T.
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Figure IV.F3: Core failure MON

and LRM frequency depends on the system requirements and the available time slots for
its execution, i.e., if there is a lot of spare time, the system can use it to execute multiple
instances.

IV.4.4 Deadline Overrun MON
As explained in Section II.25.3, there are conflicting goals for critical and non-critical
applications in a MCS: the pessimistic WCET estimations of critical (real-time) applica-
tions under-utilize the resources significantly in the average case. On the contrary, the
non-critical applications require efficient resource utilization to provide the best possible
QoS. We2 designed this MON to address the issue of running critical tasks concurrently
with non-critical tasks. The MON extends the ideas proposed in Kritikakou et al. [172]
to allow the detection of potential deadline overrun of critical VMs. Previous work only
considered standard tasks sets, and the schedule consisted of executing a task alone on a
core. Contrarily, we designed our MON for critical VMs (or ARINC 653 partitions) and
provided an interface for use with the LRM. Once a MON detects a potential deadline
overrun (reliability monitoring) due to the interference of low criticality applications, the
LRM can take preventive measures, such as suspending the execution of low-criticality
applications.
We assume that a critical VM run an application A consisting of multiple tasks
{τ1, τ2, . . . , τn}. The critical application uses deadline overrun MON instances to check
the execution of its own tasks and checks if the application is in danger of overrunning
its deadline. In the case, if a MON instance detects such a danger, it notifies the LRM.
The basic idea is that the application-level LRS schedules MON instances at fixed

observation points. The approach in [172] placed an observation point at every instruction.

2Together with ONERA and Thales R&T.
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Figure IV.F4: Deadline Overrun MON Location

Contrarily, to keep monitoring overheads low, we designed our resource management
framework to allow placing the observation points by using one of the following two
methods:

1. The easiest option is to place them in between two tasks of a critical application
(Figure IV.F4a). The main advantage of this approach is that it does not require
instrumentation of critical applications. However, the MONs can only detect
potential deadline overruns at task boundaries.

2. Another option is to place observation points inside each task of the application
(Figure IV.F4b). In this approach, the MONs can detect potential deadline
overruns sooner than the previous approach. However, this approach requires
instrumentation of critical application tasks similar to [172].

The MON checks a safety condition to evaluate whether a critical application can
tolerate interference by co-executing non-critical applications. The safety condition is
given by Equation IV.1.

RWCET isoA (x) + tMON + tLRM ≤ DA − ETA(x) (IV.1)

where:

• RWCET isoA (x) is the remaining WCET of an application, A, in isolated execution
from the observation point x until the end

• tMON is the maximum time from detection by MON until the MON informs the
LRM

• tLRM is the overhead of LRM for performing preventive measures
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• ETA(x) is the execution time used by A until the observation point x, as monitored
using a Hardware MON (from Section IV.4.1)

• DA is the deadline of A.

If the application-level LRS in the VM use offline (cyclic) scheduling, we can place
observation points at offline determined timepoints. This helps us to simplify the safety
check performed by the MON. Equation IV.2 presents the simplified safety check.

ETA(x) ≤ DA(x) (IV.2)

where DA(x) is the offline determined maximum possible internal deadline of application
A at observation point x.
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Figure IV.F5: Deadline Overrun MON

Figure IV.F5 illustrates this approach with an example. In the example, only core
0 and core 1 run critical tasks, while the remaining cores execute only non-critical
tasks. A MON in an application on core 0 detects a potential deadline overrun. It
informs the application-level LRM, which in turn takes preventive actions (stopping
co-executing non-critical applications on core 2 and core 3). The pseudo-code in Listing
C.L7 (Appendix C) shows the essential parts of the this MON using the first method
(observation points between two tasks). The observation points can be specified via the
system designers using the resource management configuration file as shown in Listing
C.L8.

IV.4.5 Health MONs (XtratuM)
We designed these application-level MONs for use with XtratuM hypervisors partitions
(reliability monitoring). However, a similar idea applies to other hypervisors as well. We
provide application-level MONs that can use the XtratuM HM API to write application
status or errors (not handled by XtratuM) to the HM log (Listing C.L9 in Appendix C).
An LRM running in a system partition can read this log file and perform advanced error
handling. Furthermore, our resource management framework (Section III.9) accepts as
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input (optional) an HM event and action mapping from the system designer (Listing
C.L10) and generates the XtratuM configuration, including these mappings.

IV.5 Local Resource Scheduler Services

Each resource managed by the resource management architecture is paired with a LRS.
Each LRS schedules the use of the resource and controls application access to the
resource. The LRS services and the LRS implementation are specific to each resource. In
general, the LRSs support different scheduling policies, which can be classified at a high
level as offline scheduling and online scheduling. Examples of scheduling services are
dispatching time-triggered messages, scheduling tasks according to offline tables, setting
online scheduling parameters, allocating cache or memory space to VMs, execution of
VMs on top of a virtualization layer, execution of tasks inside a VM, processing of queued
memory and I/O requests, and dispatching of time-triggered and aperiodic messages
at the network interfaces. (Re-)configuration services refer to the ability of an LRS to
accept orders from LRM for executing changes and updates on its own configuration.

IV.6 Scheduling Opportunities

All OSs provide some mechanism to schedule tasks. Similarly, hypervisors provide means
to schedule VMs. Many OSs and hypervisors also provide means to allocate memory
space to a task/VM. There are also some existing opportunities at the hardware level
for scheduling and allocation of resources.

IV.6.1 XtratuM Hypervisor

XtratuM [15] schedules partitions using cyclic scheduling (ARINC 653 scheduling policy).
Cyclic scheduling ensures that a partition cannot use a CPU core for longer than the
allocated time. Thus, a partition cannot impact the scheduling of another partition.
Time slots for each partition must be defined in the XtratuM configuration file. A system
designer can define the time slots for each partition easily via the resource management
framework configuration file(see Section III.9) as shown in Listing C.L12 (Appendix C).
If several tasks are assigned to a partition, the partition must implement its own

scheduling algorithm (hierarchical). Section IV.7.1 presents an application-level LRS
that we implemented to schedule tasks in a bare-metal partition or a VM. This LRS can
be used to schedule tasks in an XtratuM partition.
As explained in Section II.16, RTS and MCS exhibit multiple operation phases

and require mode changes. XtratuM implements mode changes via scheduling plans.
We exploit this feature to provide fault-tolerance upon failure of core(s) by changing
XtratuM plans (see Section IV.7.2). Scheduling plans must be defined via the XtratuM
configuration file. A system designer can define these plans easily via the resource
management configuration file (Listing C.L12 in Appendix C).
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IV.6.2 Linux/KVM

Recently, industry and academia have directed consideralbe effort towards Real-time
Linux. Linux supports a variety of new real-time features, such as SCHED_DEADLINE
scheduling policy (based on EDF and CBS) [120], priority inversion control (in locking
algorithms) and PREEMPT_RT (a fully preemptible kernel mode) [193]. Older real-
time scheduling policies in linux include SCHED_RR (based on RR scheduling) and
SCHED_FIFO (based on FIFO scheduling) [183]. Both these policies implement static
priorities.

Since KVM is based on the Linux kernel, we can use the same scheduling algorithms
in KVM to schedule VMs. Moreover, KVM supports features, such as allocation of CPU
cores and memory space to VMs. Chapter VII gives an overview of many other KVM
features.

IV.6.3 Intel CAT and MBA

Cache Allocation Technology (CAT) and Memory Bandwidth Allocation (MBA) [102]
are hardware functionalities supported by Intel Xeon Scalable (2nd Gen.) processors
[30] to allocate LLC space and memory bandwidth to a core, thread, application, or
VM [102]. Both techniques work based on an intermediate construct called CLasses Of
Service (CLOS). A CLOS acts as a resource control tag and can be assigned to a single
or group of cores, threads, applications, or VMs. The members of a CLOS can only
use the resource capacity (amount of LLC space or memory bandwidth) assigned to the
CLOS.
To allow cache allocation to a CLOS, Xeon provides capacity bitmasks that indicate

how much cache can be used by a CLOS. In addition, to support MBA, Xeon has a
programmable request rate controller for memory bandwidth allocation between the
private caches and the high-speed interconnect to the LLC, as shown in Figure IV.F6. A
user can configure this rate controller with a discrete delay value. The figure also shows
an example of cache allocation to CLOS with a 20 bit mask.

Our selected hardware (Intel Xeon Gold 5218) (Section II.4) supports MBA and CAT
as shown in Table IV.T2 [31]. A MBM delay value of 0 adds no delay to the request,
while a delay value of 90 adds the maximum possible delay. Unfortunately, Intel does
not provide the relation of discrete delay values to the actual inserted delay (in time
units) for memory requests in the public domain.

IV.6.4 TT-NoC Scheduler

Ahmadian et al. [195, 196] proposed a TT NoC synthesizable for the PL of Xilinx Zynq
7000 MPSoC and developed an LRS for use with our resource management to interface
with the NIs of the NoC. The avionics demonstrator of the DREAMS project used this
TT NoC and LRS.
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Table IV.T2: MBM and CAT properties Intel Xeon Gold 5218
Feature MBA CAT Errata
CLOS 8 16 -

Capacity bit mask - 0x7ff -
Discrete delay values 0, 10, 20,

30, . . . , 90
- Values > 10 and < 40 written to the

MBA delay value register (MSR 0xD50 to
0xD57) may be read back as 10 [194]. We
experimentally evaluated that this issue
is present in our platform. Delay value
of 10, 20, and 30 have the same effect on
the memory bandwidth allocation.

IV.6.5 Existing Approaches for Scheduling RTS and MCS

• Section II.7 and II.8 presents some common real-time and mixed-criticality task
models for scheduling.

• Section II.11 gives an overiew of TT and joint TT-ET scheduling techniques.

• Section II.15 provides a comprehensive survey about approaches addressing shared
resource contention in multicore systems.

• Section II.16 presents an overview of scheduling techniques that implement mode
changes.

• Section II.20.2 presents existing approaches that provide fault-tolerance via recon-
figuration.
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• Section II.13 gives an example of TT network scheduling.

IV.7 Newly Implemented LRSs

IV.7.1 LRS for Critical Partitions (XtratuM)
We3 created this LRS for use with a safety-critical (avionics) application running bare-
metal in a ARINC 653 partition (for example, XtratuM VM). The LRS runs in at least
two modes:

1. The LRS starts in the initialization mode during its first execution instance. It
launches the application initialization to set up its internal state for execution,
followed by initializing the application task schedule for different execution slots
(MiF) and planned modes (or configurations). The pre-computed schedules can be
stored in an additional configuration file or supplied to the LRS directly via the
application.

2. Once the LRS completes the initialization, it changes to a execution mode and
waits for the beginning of a slot (assigned to the application). In this mode, the
LRS sequentially executes the application tasks as per the predefined schedule.
Once all tasks assigned to a slot have finished execution, the LRS stops the further
execution even if there is time remaining in the slot. For simplicity, we assume
that the execution starts and ends in the same slot. However, conceptually, it is
possible that the execution can span multiple slots, i.e., it can start and end in
different slots. The LRS repeats the execution in each new slot in this mode unless
the LRM reconfigures it to execute in a different mode.

The critical partition application must follow a specific design to use this LRS. The
LRS applies the schedule to the application tasks by providing the following interfaces:

1. Application callback interface for application initialization.

2. Interface for applications to declare tasks.

3. Interface for applications to declare the offline computed schedule of tasks.

4. Task callback interface for the LRS to launch the task execution.

Figure IV.F7 shows an example of the LRS executing a application A1 with tasks
{τ1, τ2, τ3} during initialization and execution modes. In the initialization mode, the LRS
uses Interface 1 to initialize the application, Interface 2 and 3 to declare the three tasks
and their schedules. In the execution mode, LRS first executes the (application/VM
domain) LRM. The LRM can send any stop signals to critical applications if required by
the deadline MON from the previous instance. Next, the LRS executes the Hardware

3Together with ONERA and Thales R&T.
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Figure IV.F7: LRS for Critical Partitions

MON to initialize it for this application instance. After executing the MON, the LRS
executes the first task according to the offline defined schedule using Interface 4. This is
followed by executing the hardware MON and deadline overrun MON to check for any
potential deadline miss. Next, the LRS executes the (application/VM domain) LRM
to check if any preventive actions are required (e.g., stopping co-executing non-critical
applications). Other tasks are executed similarly. After executing the last task, the LRS
runs the hardware MON and the LRM one last in that slot. The hardware MON updates
the application statistics and status. Finally, the LRM undoes any preventive measures
(if applicable) and sends required updates to the higher-domain LRM (or GRM). To
end, the LRS stops any further execution in the current slot. The pseudo-code in Listing
C.L11 (Appendix C) shows the essential parts of this LRS. We use this LRS in the
avionics use case (Chapter VI).

IV.7.2 LRS for Online Reconfiguration (XtratuM)
We designed this simple LRS to assist the LRM in reconfiguring scheduling plan (modes)
in XtratuM. XtratuM supports immediate and deferred plan changes. The pseudo-code
in Listing C.L13 (Appendix C) shows the essential parts of this LRS. We use this LRS
in the avionics use case (Chapter VI).

IV.7.3 LRS for Intel CAT and MBA
We designed this LRS to provide an interface for the resource management to interact
with the CAT and MBA hardware features. Figure IV.F8 shows the essential functions of
this LRS. It takes configuration orders from the LRM and performs two major functions:

1. It allocates the memory bandwidth and LLC space to each CLOS by setting the
delay values and bitmasks, respectively.
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2. It maps applications to CLOS.

The pseudo-code in Listing C.L11 (Appendix C) shows the essential parts of this LRS.
We designed this LRS for the railway use case (Chapter VII).

IV.7.4 TT LRS for Linux/KVM
We designed this LRS to support scheduling of TT tasks/VMs in Linux/KVM (with
PREEMPT_RT patch). The LRS introduces a new scheduling policy, SCHED_TT_LRS,
in Linux. The CPU cores running TT LRS have a sparse timebase. Thus, an event can
occur only at some fixed instances in the timeline, and there are time intervals between
the fixed instances when no events can occur. We refer to these minimum scheduling
quanta as slots in the context of the TT LRS.
The new scheduling policy has the highest priority and sits on top of the hierarchy

of (native) Linux scheduling modules: TT_LRS > RT (Real-Time policy) > CFS
(Completely Fair Scheduling policy) > IDLE. If there are no runnable tasks of TT LRS
scheduler module, the Linux scheduler will look for a runnable task of each module in
decreasing priority order.

Unlike the existing scheduling modules in Linux, the LRM must explicitly enable the
TT LRS on a set of CPU cores. The LRM must also provide the LRS a list of TT tasks
to run in each slot (and core) as per the scheduling table (see Figure IV.F9). The LRM
runs as a real-time Linux task on a non-TT (housekeeping) core and has a period of
one slot length. Hence, an LRM instance occurs once in every slot. Note that similar
to Section IV.7.1, the LRS runs hardware, core failure, and deadline overrun MONs
(optional) before executing a task/VM. The figure omits these MON for simplicity.

Linux has a modular scheduling framework, and it implements each module as a set of
functions specified in the SCHED_CLASS structure. Listing C.L15 (Appendix C) shows
the definition of LRS_TT scheduling class, which implements the TT_LRS module.

The fields in the class are functions that act as a call back upon occurrence of specific
events. The following two are the most important functions of this scheduling class:

1. The task_tick_TT() function is called by Linux every scheduling tick (1ms) on
each TT CPU core. Every time the function is called, the TT_LRS of the core
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reduces a counter (tick_countdown) by 1. The counter is initialized as shown in
Equation IV.3.

tick_countdown =
Slot_size(inms)
Tick_size(inms)

(IV.3)

In our case, the tick size is 1ms. Thus, for example, to set a slot size of 1s, we
need to set the value of tick_countdown to 1000.

Only when the tick_countdown is zero (end of a slot), the LRS checks if the LRM
has assigned a new task for its CPU core. If there is a new task available, then it
marks the core for rescheduling. Listing C.L16 (Appendix C) shows the essential
parts of this function.

2. The pick_next_task_TT() function is called by the Linux __schedule() function
on each core. __schedule() is main entry point into the Linux task scheduler. The
main job of __schedule() is deciding which task to run next and then execute it.
To decide which process to run next, __schedule() uses the pick_next_task_TT()
function, when a TT class task is available. pick_next_task_TT() function returns
the task_struct of the task to be scheduled in the upcoming slot. If the task to be
scheduled resides on the run queue of another core, then this function migrates the
task to the run queue of the current core. Listing C.L17 (Appendix C) shows the
essential parts of this function.

Finally, the LRS provides a function TT_LRS_set_schedule() to be used by the LRM
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to provide the TT_LRS running on each core with a task id every slot. Moreover, this
function stores the list of tasks running the previous core for use by task_tick_TT()
function. We reduce the overheads of task_tick_TT() by using the list of previous tasks
as we do not need to mark the core for rescheduling if the next task to be executed is
the same as the previous task. Listing C.L18 (Appendix C) shows the essential parts of
this function. We designed this LRS for the railway use case (Chapter VII).

IV.8 Local Resource Management Services

In general, all local resource management components can have hardware or software
implementations, or a combination of both, depending on the domain and type of resource.
The actual physical implementation of the local building blocks is use case-specific. Figure
IV.F10 presents examples of where it is possible to implement LRMs in different domains.
The LRM in the node domain (Figure IV.F10a) can be implemented in hardware as a
IP block or as a software (application) executing directly on a CPU core. This LRM
supervises and controls the LRMs in the virtualization layer(s) of the node and all
non-virtualized resources. That includes the LRSs and MONs of the memory hierarchy
(private caches, shared LLC and IMC), I/O component(s), on-chip/off-chip gateway, and
NI (if applicable). The LRM in the Virtualization Layer domain must be a privileged
VM that can (re-)configure the hypervisor. This LRM is in charge of supervising and
controlling the LRSs and MONs (e.g., VM scheduler and health Monitors) for virtual
resources provided by the hypervisor. This LRM may also directly supervise and control
application components (e.g., guest OS scheduler or application QoS monitors) if the guest
does not have its own VM domain LRM. Finally, Application/VM domain supervises
and controls application components. Figure IV.F10b shows an example of where it is
possible to implement LRMs in the system structure.

Figure IV.F11 summarizes the important local resource management services provided
by the LRMs in various resource management domains. These services include the
following:

Read Information from MONs

Two paradigms are possible for gathering information from MONs: interrupt and polling.
In the first case, the MONs send information periodically to the LRM, while in the
second case, the LRM requests information from the MONs. Of course, a combination
of the two approaches is also possible. Alternatively, it is also possible that the LRM
triggers/executes diagnostics routines that the Monitoring services would evaluate. For
example, LRM can trigger DRAM Tests, instruction execution tests on a core, Cyclic
Redundancy Checks (CRC) on memory regions, Digital I/O Tests(such as toggling output
signals and reading them back), and Analog Digital Converter (ADC) Converter test by
applying predefined signals.
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Calculate Abstract Resource State
As explained in Section III.3, the resource management overheads must be kept to
a minimum. Suppose the LRMs communicate the change in resource availability to
the GRM (or a higher domain LRM) at every fluctuation in demand or availability of
the resources. In that case, the resource management will have very high overheads.
Moreover, the resource management will not be able to keep up with the fluctuations,
and the resource management decisions from the GRM (or a higher domain LRM) will
be made too late. Only the long-term changes in resource availability are of interest
to the next higher domain. Thus, taking inspiration from the Matrix framework [21]
and the ACTORS project [22], the LRMs calculate abstracted state variables of the
resources based on monitored information from the MONs. Abstract state variables
can be energy, availability, reliability, behavior, among others. Figure IV.F12 shows an
example of resource availability abstraction. In the figure, the LRM abstracts the resource
availability in one of the three resource levels: HIGH, MEDIUM or LOW. The level of
abstraction depends on the specific resources and available monitors. This approach
provides a resource view on an abstract level to reduce the overhead of disseminating
the low-level monitor variables and only present the minimum information required for
resource management by the GRM (or the next higher domain LRM). For example, in
Figure IV.F12, the LRM only sends a higher-domain (LRM or the GRM) if the resource
availability level (HIGH /MEDIUM /LOW ) changes, instead of sending an update at
every fluctuation.

Send Updates/Receive Orders to/from the GRM or a Higher-Domain LRM
Each LRM transmits abstracted updates of resources in its domain to a higher-domain
(LRM or the GRM), whichever is next in the hierarchy. The actual transmission takes
place via the network and middleware.

The LRMs can only receive orders from a higher-domain LRM or the GRM, whichever
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is next in the hierarchy. However, an LRM never receives orders from applications, other
system components, or LRMs at the same or lower levels in the hierarchy.

Send Orders/Receive Updates to/from Lower-Domain LRM(s)

LRMs receive updates and send orders (when necessary) to lower-domain LRM(s) directly
below them in the hierarchy.

Local Decision-Making and Reconfiguration

Small changes or fluctuations in the availability of resources or demands of applications
can be handled locally by an LRM in its domain. For example, a virtualization-domain
LRM can suspend a low-criticality VM that only communicates with other low-criticality
applications on the same node. In that case, the LRM will report the new state of the
resource (the application tile) to the GRM to maintain coherence in the system’s state.
An LRM only requests a reconfiguration from a higher domain if it cannot handle a
(long-term) change locally.

Translate Orders to Policies of LRSs

After receiving an order from the GRM or a higher-domain LRM, the LRM maps it to
the local scheduling policies of the LRS of the resource. For LRSs that implement online
scheduling of resources, the LRM can convert the orders to scheduling parameters for
the corresponding LRSs. On the other hand, the LRM can select or search appropriate
scheduling tables for the LRSs based on the received orders in the case of table-driven
scheduling policies. This approach is based on the conceptual separation between the
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implementation details of the resource schedulers and the abstract view of the resources
that the GRM maintains.

Configure LRSs
The LRM configures the LRSs in its domain (and sends orders to the LRMs in the
lower domains). For example, the LRM can set the selected parameters or provide the
scheduling table (directly or indirectly via a reference) to the LRSs.

IV.9 Local Resource Management Policies
The required local resource management policies are use case specific. In this dissertation,
we4 present LRM policies to manage the following:

1. permanent failure of CPU cores, and

2. node-level temporal overload situation (by potential deadline overrun monitoring).

IV.9.1 Core Failure Management
Permanent core failure can occur in a system due to changing environmental conditions
or phenomena, such as wear-out and infant mortality [173]. When a core fails, the
applications or VMs hosted on it cannot execute further. Such a situation can be mitigated
by an active redundancy (Section II.20.1) or by performing a reconfiguration (Section
II.20.2) to reallocate the cores to applications. Since modern multicore platforms provide
a high number of CPU cores, we decided to manage core failures via reconfiguration.
This section proposes a LRM policy to provide core failure management.

Suppose, an LRM detects core failure(s) via a MON (section IV.4.3). Then, the LRM
can locally reconfigure the node. Local reconfiguration involves reallocating the available
cores to the applications, translating the allocation to LRS (Task scheduler of OS or
VM scheduler of hypervisor) policy, and configure the LRSs accordingly. The LRM can
reallocate cores based on:

1. Offline pre-computed schedules: for example, the LRM can contain multiple
scheduling tables, each considering a different number of available CPU cores. The
LRM selects an offline table with an appropriate number of available cores. We
use this approach in the avionics use case (Section VI.4).

2. Online scheduling decisions: Instead of selecting from available offline schedules,
the LRM calculates new schedules online based on the reduced availability of cores.
The LRM may find a schedule where all applications are schedulable. Otherwise,
it will drop some applications.

In both online and offline scheduling, the LRM may or may not find a suitable schedule.
4Together with ONERA and Thales R&T.
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• If the LRM finds a suitable schedule that can host all the existing applications, it
reconfigures the LRS for using this new schedule. In offline scheduling, the LRM
will send (directly or indirectly via a reference) the new scheduling table for the
LRS and configure the LRS to use this table. In online scheduling, the LRM will
change some LRS parameters, such as the number of available CPU cores. After
reconfiguring the LRS, the LRM sends an update to the GRM informing about
the local reconfiguration.

• If the LRM finds no schedule for local reconfiguration that can schedule all existing
applications on the node, then it cannot host all the applications. Therefore,
it searches for a schedule by removing some applications. In general, the LRM
removes the best-effort applications before the critical ones. The LRM removes
critical applications in order of their priority. The system designer must configure
the order of removal and priority of the applications.

– For offline scheduling, this implies that different scheduling tables may schedule
a different number of applications. For example, the first scheduling table
allocates N cores to M1 applications (or VMs), the second table allocates
N − 1 cores to M2 applications, and so on. M1 = M2 = . . . until there is
enough CPU capacity available to schedule all applications while satisfying
the constraints; otherwise M1 > M2. The offline tables, by design, ensure that
the LRM removes low priority applications before high priority ones. After
finding a new table and reconfiguring the LRS, the LRM sends an update to
the higher domain (GRM or LRM), informing about the local reconfiguration,
including the selected table (by sending it directly or via a reference).

– For online scheduling, the LRM removes applications based on a heuristic and
changes scheduling parameters (if necessary). Then, it performs schedulability
tests to check whether the new set of applications are schedulable. Finally, after
finding a new table and reconfiguring the LRS, the LRM sends an update to
the higher domain (GRM or LRM) informing about the local reconfiguration,
including dropped applications and new scheduling parameters.

The higher domain (LRM or GRM) must address the applications removed from
the node. We assume that only complete applications can be removed from a node
or redeployed to another node.

In all the mentioned cases, the LRM can either perform an immediate or a deferred
(at the end of hyperperiod or MaF) reconfiguration (similar to immediate or deferred
mode changes). The relationship between the execution of a core-failure MON and the
execution of the LRM directly influences the response time for local reconfiguration
upon core failure. For immediate reconfiguration, the least response time occurs when
the LRM executes directly after the MON instance detecting the core failure. On the
other hand, for deferred reconfiguration, the best response time occurs when the LRM
executes after the MON in the same hyperperiod or MaF (Figure IV.F13a). We present
a concrete implementation for this approach in the avionics use case (Section VI.4).
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A core executing the LRM can also fail and render the system without resource
management capabilities. We execute an LRM instance on each core at the end of
every hyperperiod/MaF to deal with such a situation. The LRM instances in every
hyperperiod/MaF run synchronously (Figure IV.F13b). Among the LRM instances, one
of them is a master. Only the master can perform reconfiguration and communicate with
the higher domain LRM or the GRM. If the core executing the master fails, another LRM
instance on an active core becomes the master. A system designer must add this order of
selection in the resource management configuration file (Listing C.L19 in Appendix C).

IV.9.2 Temporal Overload Management

As explained in Section II.25.3, if we provide resources to application based on their
WCET, we under-utilize the multicore platform in an average case as the Average
Execution Time (AET) is much lower than the WCET. Thus, it is practical to over-
utilize a multicore platform to reduce SWaP and costs. This section presents the temporal
overload management strategy5 (via potential deadline overrun monitoring) for use by
an LRM.

Let us assume we have critical applications {Ac1, Ac2, . . . , AcI} and best-effort applications
{Abe1 , Abe2 , . . . , AbeJ }. Three conditions must be fulfilled to over utilize a multicore platform
with N cores, without endangering the critical applications.

1. The worst case utilization (U) of the critical applications must be less than the
number of cores on the hardware platform.

I∑
i=0

U c
i < N (IV.4)

2. The sum of the Average Utilization (AU) of the critical applications and the
best-effort applications must be much lower the number of cores on the platform.

I∑
i=0

AU c
i +

J∑
j=0

AU be
j << N (IV.5)

3. The sum of the worst case utilization (U) of the critical applications and the
best-effort applications must be greater than the number of cores on the platform.

I∑
i=0

U c
i +

J∑
j=0

U be
j ≥ N (IV.6)

As a result, only best-effort applications can lead to overutilization of the multicore
platform.

5Develped together with ONERA and Thales R&T.
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Suppose a deadline overrun MON (Section IV.4.4) detects a potential deadline miss.
Then, the LRM interrupts best-effort applications to ensure that the critical ones can
execute safely. The LRM resumes the best-effort applications once the the application
finishes its execution in the current hyperperiod /MaF.
The execution of LRM with respect to the MON has a tremendous influence on the

adaptation response time. The adaptation may be occurring too late if the LRM is not
being executed when the MON detects a potential overrun. Such an adaptation will be
pointless. Thus, we consider three options to execute the LRM:

1. Dedicate an entire core to execute the node domain LRM (Figure IV.F14a): This
approach provides almost immediate adaptation, i.e., tLRM = 0 in the safety condi-
tion (Equation IV.1) of the MON; however, the approach has lower performance
as an entire core is dedicated to the LRM.

2. Execute a node domain LRM at predefine time slots (Figure IV.F14b): This
approach utilizes the CPU better; however, it has a much longer delay from the
time the MON detects the overrun to the time the LRM applies the adaptation.
In the safety condition (Equation IV.1) of the MON tLRM = time to next LRM
instance from the execution of the MON. Another disadvantage of this strategy is
that it requires careful time planning of MON and LRM instances.

3. Adaptation by application/VM domain LRM executing directly after the MON
instance (Figure IV.F14c): In this approach, the application/VM domain LRMs
provide the adaptation. The adaptation is almost immediate as the LRM executes
directly after the MON, i.e., tLRM = 0. Moreover, this approach has very low
performance impact. The only restriction on use of this approach is that the
underlying hypervisor must allow reconfiguration from within a VM. Such features
can be found in real-time hypervisors; for example, XtratuM allows changing modes
(or reconfiguring the node) from system partitions.

Thales R&T evaluated temporal overload management by an LRM for the avionics
use case due to confidentiality issues in providing the complete code of the avionics
applications. This evaluation is presented in Chapter VI.

Under-utilization due to Deadline Overrun Management

As illustrated in Figure IV.F15a, the LRM suspends the best-effort applications running
on core 1 to 3 as a MON of a critical application detected a potential deadline overrun.
The LRM only resumes the best-effort applications once the critical application has
completed its execution. However, this approach has a considerable impact on the QoS of
the best-effort applications and the significant reduction in the utilization of the node’s
resources.
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Solution 1 We propose using hardware MON (Section IV.4.1) for best-effort tasks in
addition to critical tasks. Moreover, our solution takes inspiration from the ACTORS
project [22] for using Service Levels (SLs). Each best-effort application can have multiple
SLs, and each SL corresponds to a specific resource requirement for the application
and the QoS achievable by those resource requirements. For example, each best-effort
application can have three SLs: HIGH,MEDIUM,LOW ; SL HIGH corresponds to
high resource utilization and higher QoS achievable by the best-effort application. On the
other hand, SL LOW corresponds to low resource utilization and lower QoS achievable
by the best-effort application.

Suppose the LRM detects a potential deadline overrun (via MON). In that case, it looks
into the hardware MON information (PMU data) of the best-effort applications to find
out which application(s) are interfering with the critical application. The LRM reduces
the SLs of best-effort applications having shared resource access above a certain threshold
(Figure IV.F15b). The LRM determines the new SL of the best-effort application(s)
based on the feedback from the hardware MON for the critical application. Only if the
next deadline overrun MON instance still detects a potential deadline overrun, the LRM
stops the best-effort applications (Figure IV.F15c). Listing C.L20 in Appendix C shows
the modified parts of the deadline overrun MON to support this solution.

Solution 2 Thales R&T proposed another solution to this issue for nodes with cyclic
(TT) schedulers such as those used in avionics. We summarize this approach here. This
approach also uses the hardware MONs data and deadline overrun MONs data. Using
the hardware MONs data of the best-effort applications, the LRMs can determine which
best-effort application interfered with the critical application. Moreover, the LRMs can
also determine the deadline MONsitoring instances between which the critical application
encountered the most interference. For simplicity, we shall refer to the parts of critical
applications between two deadlines overrun MONs instances as segments. For example, in
Figure IV.F15d, base on the deadline MONs information from the first hyperperiod/MaF,
the LRM determines that the critical application had the most interference in segment
2 (marked with a red circle in the figure). It also determines that the interference was
caused by applications on core 2 and 3. Thus, in the next hyperperiod/MaF, the LRMs
suspends the best effort applications on core 2 and 3 only during the second segment
of the critical application. As a result, the LRMs improves the overall node utilization
and the QoS of the best-effort applications. We can combine this approach with the
first solution for further improvement. Thales R&T did a concrete implementation and
evaluated this solution [7].

IV.10 Chapter Summary
This chapter explained the LRM of the resource management architecture. There are
two main modular types of LRM sub-components:

1. Local Resource Monitor (MON): Each resource or application managed by the
LRM has one or more MONs, each providing different monitoring services, such as
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availability monitoring or reliability monitoring. We designed and implemented
the following new MONs:

• MON to interface with the hardware-specific monitoring features such as PMU
and Intel MBM and CMT. We proposed methods to use these MON with
XtratuM hypervisor and Linux/KVM to gather information about VMs/tasks.

• MON to detect permanent core failures on multicore platforms6.

• MON for detecting potential deadline overrun by a critical VM in the presence
of concurrently executing non-critical. VMs6.

• MON that can use the XtratuM HM API to write partition status or errors
(not handled by XtratuM) to a HM log.

2. Local Resource Scheduler (LRS): Each resource managed by the resource manage-
ment framework is paired with a LRS. Each LRS schedules the use of the resource
and controls application access to the resource. The LRS services and the LRS
implementation are specific to each resource. The LRSs can support offline or
online scheduling. We designed and implemented the following new LRSs:

• LRS for scheduling tasks of a critical application running in a XtratuM
hypervisor partition6.

• LRS to assist the LRM in reconfiguring scheduling plan (modes) of XtratuM
hypervisor6.

• LRS to provide an interface for the resource management to interact with
Intel CAT and MBA hardware features.

• LRS to support scheduling of TT tasks/VMs in Linux/KVM (with PRE-
EMPT_RT patch).

An Local Resource Manager (LRM) provides various services, such as reading in-
formation from its MONs, calculating abstract state of resources, sending/receiving
updates/orders to/from the GRM or a lower- or higher-domain LRM, making local
reconfiguration decisions, translating orders to policies of its LRSs, and configuring the
LRSs. In this chapter, we presented LRM policies6 to manage the following:

1. Permanent failure of CPU cores.

2. Node-level temporal overload situation (by potential deadline overrun monitoring).

The implementation of the presented local resource management policies is use case-
specific and explained in Chapter VI.

6Designed and implemented together with ONERA and Thales R&T.





V

Global Resource Management

“At the end of the day, the goals are simple: safety and security.”
– Jodi Rell

This chapter presents the global resource management services provided by the GRM
of our resource management framework. In addition, it explains the introduced security
measures for the communication among a single central GRM and the LRMs. Fur-
thermore, we propose distributing the GRM among a minimum number of different
nodes. The GRM components on different nodes make the global resource management
decisions via coordination amongst the distributed GRM components. We propose to
implement this solution using a blockchain and achieve Byzantine fault-tolerance for the
global resource management decisions and security for the communication amongst the
distributed GRM components and the LRMs.
The GRM is located at the top of the resource management hierarchy and directly

controls and supervises the LRMs in the next lower domain. These LRMs act as a
granularity interface and hide fine-grained activities of the subsystem from the GRM’s
view. Consequently, the LRMs only send updates to the GRM when necessary, e.g., when
an LRM changes a configuration of its domain. In addition, when a reconfiguration in
an LRM’s domain is not sufficient to meet the long-term changes, the LRM requests the
GRM for reconfiguration in the system domain. Henceforth, we refer to reconfiguration
in the system domain as global reconfiguration.
The GRM provides the following generic services:

Gather Updates from LRMs
The GRM obtains information about the current status of the subsystem from LRMs next
in the hierarchy. This LRM can be present in the cluster-domain or the node-domain. If
an LRM of a subsystem can handle a change locally, the LRM only notifies the GRM of a
local reconfiguration. It does not send any detailed information to the GRM. In the case
an LRM requires a global reconfiguration, it sends essential information to the GRM.
This information can include details such as type(s) of the resource(s), the abstracted
value(s) of the monitored resource(s), the failure(s), and parameters of application(s)
that need global redeployment.

113
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Global Reconfiguration Decision-Making

The GRM has knowledge of the complete system. The knowledge can be in abstract or
absolute information regarding the system components and applications. For example,
the GRM has information on the applications in the system and their criticality levels,
all pre-computed offline configurations of the system, system-wide global constraints,
abstract resource and application QoS levels, current abstract state of the system and
subsystems (received via the LRMs), and abstracted information about the availability
of resources in the system. By knowing such information, the GRM can make global
reconfiguration decisions when necessary. The GRM analyzes the abstracted information
from the LRM at the system level and takes reconfiguration decisions that allow the
system to adapt to different conditions. The GRM considers information from all highest
domain LRMs to make a global reconfiguration decision that satisfies system-wide
constraints.

Obtain or Compute a New Global Configuration

The GRM has access to the database of all offline pre-computed configurations provided
by offline scheduling tools. The GRM can store these configurations in a distributed or
centralized way. It selects one of these configurations from the database while making
a global reconfiguration decision. It transmits these decisions (as orders) to the LRMs
next in the hierarchy via the network (and the middleware).

Alternatively, the GRM can also compute new configurations at runtime by determining
new scheduling tables or changing scheduling parameters. However, online computation
of configuration is not feasible for all use cases due to large (time) overheads.

Send Orders to LRMs

Once the GRM has taken a global reconfiguration decision, it communicates the infor-
mation to the LRMs that is next in the hierarchy and involved in the reconfiguration
decision. These LRMs must further propagate the reconfiguration orders to the relevant
lower domain LRMs. For example, suppose the GRM decides on a global reconfiguration
that requires reconfiguring two nodes in different clusters. The GRM only sends orders
to the cluster domain LRMs involved in the reconfiguration. These cluster domain LRMs
distribute appropriate orders to the node domain LRMs of the nodes involved in the
reconfiguration. If needed, the node domain LRMs may, in turn, send orders to the
virtualization domain or Application domain LRMs that are below them. Orders can be
in the form of a simple reference to the actual configuration, or the GRM could transmit
the complete configuration via the network.
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Manage External Input
As explained in Section III.7, the GRM also provides a service to manage an external
input. Such input could be given locally (I/O peripheral directly connected to the
GRM node) or remotely (via off-system Ethernet). A user can use this input to provide
new application(s) or constraint(s) to the system. The GRM can determine a new
configuration that satisfies the constraint or allocates the required resources to the
application(s). The input can also be an absolute reconfiguration decision. The GRM
can trigger a global reconfiguration based on this input. Similarly, the GRM can also
trigger mode changes in the system based on the external input.
Figure V.F1 summarizes all the services.
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Figure V.F1: Global Resource Manager (GRM)

V.1 GRM Implementation Options
There are several options to implement the GRM. The first option is to implement it
in software in a separate dedicated node. On the one hand, this will make the GRM’s
development and the reconfiguration and optimization logic easier. On the other hand,
there will be some costs associated with dedicating a node exclusively to the GRM.
Another option is integrating the global resource manager into an existing node in the
system, e.g., assigning it to its VM. As a result, the overall cost for implementing the
GRM will reduce, and communication with some LRMs, such as the LRM present on the
same node, will be faster and have less overhead. However, it will make the development
of GRM harder and decrease its flexibility as it will be constraint by other applications
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Figure V.F2: Implementation Options for the GRM

running in that node. Figure V.F2 illustrates this option. Since the GRM only decides
on the global reconfiguration and the LRMs enforce the GRM orders, the GRM VM
does not need special privileges. Finally, a hardware implementation is possible, but it
would be too costly and not beneficial for implementation on most COTS platforms.

Conceptually, one GRM exists in the system, although distribution is possible for fault
tolerance and scalability. Therefore, the GRM can be realized either by a single node
or a set of nodes. Section V.6 explains the possibility of distributing the GRM among
a minimum number of different nodes and making global reconfiguration decisions via
distributed coordination. However, for simplicity of explanation, we will refer to the
GRM as a single entity for now.

V.2 Global Resource Management Communication
The GRM and the LRMs communicate with each other to exchange resource management
information:
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1. The LRMs send abstracted resource updates (or abstracted subsystem status)
to the GRM or next higher domain LRM. They can also send a reconfiguration
request.

2. The GRM or the LRMs in the higher domain send reconfiguration orders to the
LRMs directly below them.

3. For membership and failure detection, LRMs can send messages, such as a heartbeat
(periodic message), to the GRM.

Thus, we propose three conceptual communication channels between the GRM and the
LRMs (and between higher and lower domain LRMs): Update, Order, and Membership
channel, as shown in Figure V.F3.
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Figure V.F3: Conceptual Resource Management Communication Channels

V.2.1 Update Channel
The Update channel has an LRM as a source and GRM (or a higher domain LRM) as the
destination. An LRM uses this channel to send status updates and global reconfiguration
requests to the GRM (or a higher domain LRM). Each message on this channel consists
of:

• an abstracted resource state (or state of the LRM’s node), and

• the type of update, i.e., if the message is a reconfiguration request or just a status
update.
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The GRM (or a higher domain LRM) must receive all messages sent by the LRM on
the Update channel and in the correct order so the higher domain resource manager can
correctly make a reconfiguration decision.

V.2.2 Order Channel
The Order channel has GRM (or a higher domain LRM) as a source and an LRM
as a destination. The GRM (or a higher domain LRM) uses this channel to send
reconfiguration orders to an LRM. Each message on this channel consists of

• a new (abstract) reconfiguration that the destination LRM must apply in its
subsystem, and

• the time at which the LRM must apply the new reconfiguration: immediately or
at the end of the hyperperiod/MaF (deferred).

The destination LRM must receive the messages on this channel in the correct order.
However, the destination LRM must only consider the last received message sent by the
higher domain resource manager to ensure it applies only to the latest received order.
The GRM ensures that any new orders either encompass the older orders or completely
substitute them.

V.2.3 Membership Channel
The membership channel has LRM as a source and GRM (or a higher domain LRM)
as the destination. An LRM uses this channel to send heartbeat messages to the GRM
for membership and failure detection purposes. We chose heartbeat-based membership
because of simplicity and low overheads. A heartbeat message is an empty message to
indicate the operational status. Each LRMλ periodically sends a heartbeat to the GRM
(or a higher domain LRM) with a Tλ. If the higher domain resource manager does not
receive the expected heartbeat once every Tλ, it declares LRMλ as dead.
In a static system, such non-responsiveness from LRM can be simply from an LRM

failure or failure of the respective subsystem; for example, a node domain-LRM can
become non-responsive if the LRM’s node fails or the network connecting the LRM’s
node to the rest of the system fails. The GRM cannot rely on this subsystem (or node)
to ensure the execution of safety-critical applications. Thus, the GRM must trigger a
reconfiguration.

If LRMλ sends periodic updates to the higher domain resource manager, sending one
update at least every Tλ, then the Update channel messages also serve as the Membership
messages. Such cases do not require the use of an explicit Membership channel.

V.3 Global Resource Management: Core failure Scenario Example
This section presents a simple example of global resource management for a core failure
scenario. This example only aims to give a basic insight into the functioning of the GRM.
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We provide a concrete implementation of the GRM for the avionics use case in Chapter
VI.

Let us consider a simple system structure with three nodes N1, N2, N3 (Figure V.F4a).
Node N1 and N2 have a dual-core processor and can host critical and non-critical
applications. The nodes have a simple LRS that assigns only a CPU core to an application.
Thus, we can execute only one application per core. In addition, LRM and core-failure
MON run on each core periodically (as explained in Section IV.9.1). Initially, Node
N1 runs a critical application on core 0 and a best-effort application (BE1) on core
1. (Figure V.F4b), while Node N2 runs only a best-effort application (BE2) on core 0
(Figure V.F4c). N3 hosts only the GRM. The GRM expect messages from LRM1 and
LRM2 with a maximum interval of T1 and T2. If a message does not arrive from an
LRM within the given period, it assumes the corresponding node to be dead. LRM1 and
LRM2 send either of the following messages for this purpose:

1. If there was no local reconfiguration since the last sent message, the LRMs send
an (empty) message to the GRM via the membership. channel.

2. LRMs send an update message to the GRM via the update channel if a local
reconfiguration occurred since the last sent message.

On node N1, the LRM detects that core 0 has failed at t0. Since this core was hosting
a critical task, the LRM orders its LRS to stop executing BE1 on core 1 and orders the
LRS to assign core 1 to the critical application to ensure the least disruption of critical
services. Finally, the LRM informs the GRM of the local reconfiguration and requests
for a global reconfiguration.

Upon receiving the message, the GRM looks for a node capable of hosting BE1. The
GRM can achieve this by simply keeping track of the CPU utilization and availability of
each node or by using fixed offline configurations (as explained in the avionics use case
of Chapter VI). In this simple example, the GRM sends an order to LRM2 to host this
application. At t1, LRM2 receives the order from the GRM to host BE1 (Figure V.F4b).
The LRM instructs its LRS to host BE1. The LRS, in turn, hosts BE1 on the idling
core 1.
Let us assume, node N1 fails complete. Thus, the GRM stops receiving updates or

membership messages from LRM1. After a period of T1, with no messages from LRM1,
the GRM considers the node to be dead and sends an order to LRM2 for hosting the
critical application (Figure V.F4b).
At t2, LRM2 receives the order from the GRM to host the Critical application. The

LRM instructs its LRS to host BE1. Since there are only two cores available, the
LRS picks the application according to the priority Critical > BE1 > BE2 assigned
by the system designer. Thus, the LRS discards BE2 and executes only the critical
application and BE1. The LRM informs the GRM of the local reconfiguration via an
update message. However, the GRM cannot perform any further global reconfiguration
due to the limitation of resources. Thus, BE2 is completely discarded.
This example considers a simple scenario with the most basic LRS. It is only meant

to give an idea about the functioning of global resource management upon core failure.
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Note that the global resource management only takes place if enough resources are not
available locally to ensure continuity services. If enough resources are available locally,
LRM performs only a local reconfiguration and informs the GRM via an update message
(without a reconfiguration request). If a node does not have enough resources to ensure
continuity of services, then the LRS allocates resources to applications in order of their
priority defined by the system designers. By default, the resource management framework
prioritizes critical applications over non-critical applications. However, system designers
can pass the priority as input to the resource management via the resource management
configuration file.
The global reconfiguration delay after an LRM detects a core failure depends on the

relationship between the execution time of the GRM and the LRMs, and the network
overhead. Suppose we can ensure that the GRM and LRM execute at fixed time instances,
for example, by using TT network protocols. In this case, we can provide an upper
bound to the global reconfiguration delay.

We provide a concrete implementation of the GRM (using offline computed scheduling
tables) for the avionics use case in Chapter VI. The implementation also provides an
upper bound on the global reconfiguration delay.

V.4 Resource Management Security
Unsecured resource management has several weak spots that an attacker can exploit.
Therefore, together with the security experts from the University of Siegen, we analyzed
the resource management communication, LRM, and GRM from a security viewpoint.
Attacking specific resource management components, attackers can masquerade as a

GRM or an LRM, allowing them to decide on the local or global (re-)configuration. As
part of a spoofing attack, an attacker can successfully identify as a resource manager and
perform malicious actions or gain sensitive system information. By sending erroneous
orders to the lower domain resource managers, the attackers can influence one or more
subsystems. For example, an attacker masquerading as a GRM can send false global
reconfiguration messages. Vice versa is true with lower-level resource managers. An
attacker masquerading as a lower domain resource manager can send incorrect updates and
reconfiguration requests or incorrectly configure the LRSs. Such erroneous updates can
cause the higher-level resource managers to make unnecessary reconfiguration decisions.
For example, as an LRM, the attacker could locally reconfigure a subsystem and send
incorrect status updates to the higher domain resource manager.

In a sniffing attack, an attacker can intercept the resource management communication
by capturing the network traffic and using a packet sniffer. With such an attack, the
attacker can gain sensitive information about the system’s behavior. In addition, an
attacker can secretly relay and possibly alter the resource management messages by
performing a Man-in-the-middle on the communication network. Such an attack is
comparable to active eavesdropping, where a malicious entity connects multiple victims
independently and relays messages between them. The victims assume that their
connection is private, but the whole communication is, in fact, under the attacker’s
control.
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An attacker can also suppress the resource management messages. For example,
suppose the attacker suppresses the update messages from an LRM. In that case, the
higher domain resource manager will never find out if the lower domain LRM sends a
reconfiguration request or has a change in resource availability. Similarly, if the attacker
suppresses messages on the membership channel, the higher domain resource manager
will trigger a reconfiguration as it assumes that the subsystem (or node) is dead. On the
other hand, if the attacker suppresses the orders from a higher domain resource manager,
then the entire system can be jeopardized in the worst case.
In a packet injection attack, an attacker can send bogus messages to the resource

managers. The attacker makes the messages look like they are part of the regular resource
management communication, for example, by mimicking order or update messages. In a
replay attack, an attacker fraudulently sends the captured (valid) resource management
messages repeatedly. Although the message is valid, it is outdated. The GRM or the
LRM receiving outdated messages may not operate as intended, e.g., the GRM can select
inappropriate global configuration based on old messages.

V.4.1 Security Services

We can prevent these attacks using the following security services for resource management
communication:

1. Confidentiality to ensure the privacy of information.

2. Integrity to ensure that data is not modified.

3. Authenticity to ensure that data is genuine and that the actual origin of the data
is the same as the claimed origin.

4. Access Control to allow access based on permissions.

We provide these four security services by the cryptographic mechanisms.

• Encrypting message provides confidentiality and protects against the sniffing or
eavesdropping attacks described above.

• For ensuring integrity, authenticity, and access control, we use authentication codes.
By using authentication codes, we ensure:

– The resource management messages cannot be modified unnoticeably (in-
tegrity).

– The resource management messages are genuine, and the message originates
from the resource manager who claims it (authenticity), i.e., the resource
manager is part of the trusted resource management group.

– The resource manager has permission to use the service (access control).
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We protect resource managers against attacks by combining authenticity with access
control. Without knowing the correct cryptographic key, the attacker cannot act as a
credible resource manager since the attacker cannot decrypt existing resource management
messages nor send legitimate messages to other resource managers. Furthermore, any
message from the attacker received by a valid resource manager will fail authentication.
Thus, attackers cannot masquerade as resource managers. The same prevents man-in-
the-middle, spoofing, and packet injection attacks targeting the resource management
communication. We prevent replay attacks by adding a time-varying parameter in
the message authentication code protected message. The attacker cannot modify the
time-varying parameter, and the receiver can check the time-varying parameter of the
received message to detect a replayed message. If the attacker modifies the time-varying
parameter, the message will fail integrity check.

Another possibility is to use digital signatures that the resource managers can verify for
authenticity and access control. However, to keep the security overheads low, currently,
we do not consider this mechanism.

V.4.2 Security Levels
We categorize the resource management security services into three levels, as shown in
Table V.T1. Level 1 security service provides integrity to prevent the manipulation of
resource management messages and authenticity to verify the source of the messages and
ensure that the received messages originated from a trusted resource manager. Level 2
provides confidentiality in addition to Level 1. In addition, levels 1 and 2 both ensure
protection against replay attacks by using a time-varying code (both levels provide
integrity service to check the time-varying code). Lastly, Level 0 provides no security.
These security levels are helpful depending on the amount of security required for different
use cases. Moreover, different types of resource management communication channels
can use different security levels as explained in Section V.4.3.

Table V.T1: Resource Management Security Levels
Security Level Security Service

0 No security
1 Integrity and Authenticity
2 Integrity, Authenticity and Confidentiality

We can implement other security levels that provide a different combination of security
services than the two levels considered in the table. However, the other combinations
are not desirable. For example, using confidentiality without integrity is not meaningful.
Moreover, we were informed by security experts that most security algorithms for
confidentiality automatically provide authenticity. In the security domain, this is referred
to as Authenticated Encryption (AE) and Authenticated Encryption with Associated
Data (AEAD). Hence, we concluded that an additional level for the combination of
authenticity and confidentiality is not essential. Access control is not listed in the table
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because it is independent of the described security levels. However, it is used in parallel
to the security levels.

V.4.3 Security Levels for Resource Management Communication Channels

This section explains which security levels our resource management framework assigns
(by default) to each resource management communication channel.

Update Channel

An attacker targeting the Update channel can get information about the status of nodes
and resources. Moreover, the attacker can send manipulated or fraudulent updates and
reconfiguration requests, as explained earlier. Thus, we need to provide an integrity
service on this channel to protect against the manipulation of messages. A higher domain
resource manager must verify the origin of the update message and ensure a trusted
resource manager sent it. Hence, we need to implement an authenticity service on this
channel additionally. Moreover, the messages may contain sensitive system information,
with which an attacker can gain an undesirable advantage. Thus, to protect the data, we
need a confidentiality service on this channel. As a result, we assign security Level 2 to
the updates channel. By default, the resource management framework will use Level 2.
However, if the system designers deem it unnecessary for the use case, they can reduce
the security to Level 1 or altogether disable it (Level 0) via the resource management
configuration file (Listing C.L21).

Order Channel

It is vital to ensure that an attacker cannot manipulate or fake the messages on this
channel as they contain reconfiguration orders. Moreover, reconfiguration orders contain
essential system information. Hence, similar to the Update channel, we need to provide
all security services resulting in security Level 2 for the Order channel. Thus, the resource
management framework will select Level 2 by default here as well. However, the system
designers can reduce the security to Level 1 or altogether disable it (Level 0) via the
resource management configuration file (Listing C.L21).

Membership Channel

We need only to ensure that the messages are authentic and unchanged for the Membership
channel because the heartbeat messages usually do not hold any confidential data. Hence,
we need to provide Security Level 1 (integrity and authenticity) on this channel by
default. Nevertheless, the system designers can increase it to Level 2 or disable security
via the resource management configuration file (Listing C.L21).

Table V.T2 summarizes the default security levels used in the resource management
framework for the communication channels.
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Table V.T2: Default Security Levels for Resource Management Communication Channels
Channel Security Level
Update 2
Order 2
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Figure V.F5: Implementation of Resource Management Security Services

V.4.4 Implementation of Security Services
There are two options to implement the security services:

1. Implementation as a support module (Figure V.F5a)

2. Implementation as a layer between the resource managers and the underlying
hardware or software (hypervisor or OS) (Figure V.F5b)

The two implementations are different only in terms of the handling of the communica-
tion. In an implementation that contains the security as a separate support module, the
resource managers must handle the secure communication, i.e., each resource manager
acts as a source and destination for the messages. A resource manager must first send
a message to the security module. The security module performs encryption and adds
security envelop around the message before sending it back to the resource manager. The
resource manager must now send this secure message on a resource management channel.
Similarly, the resource managers must send every received message to the security module
to avail the security services. The security module performs the required checks and
decryption on the message, and if successful, it sends the essential data back to the
resource manager. If the checks fail, it indicates the failure to the resource manager. In
such a case, the resource manager discards the message.
In an implementation containing security as a sublayer, the sublayer handles secure

communication, i.e., the sublayer acts as the source and destination of the messages.
A resource manager needs only to send the messages to the security sublayer and
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indicate the resource management channel type for the message. The security sublayer
performs encryption and adds security envelop around the message before sending it to
the appropriate resource management channel. It receives messages from all channels
and performs the reverse actions; if successful, it sends the essential data back to the
resource manager; otherwise, it discards the message. At the end, both approaches
ensure end-to-end security for resource management communication. However, the main
benefit of the second option is the direct communication between security sublayers
and transparency for the resource managers. Hence, we chose this approach in the
implementation for the avionics use case (Chapter VI).

Selection of Security Algorithms

Based on suggestion from the security experts at the University of Siegen, we decided to
implement two options for algorithms in the security library of the resource management
framework (Section III.9):

1. ChaCha20-Poly1305 [197, 198]

2. CLEFIA [199] (in Offset CodeBook (OCB) operation mode)

Both these options are symmetric key algorithms of different types for use in the security
sublayer. Koller [200] explains the reasoning behind selection of symmetric key algorithms
for our resource management framework from a security viewpoint. He also explains
both algorithms in detail and the required key management. We do not cover these
points here as they are out of the scope of this dissertation.

From a resource management viewpoint, we need the algorithms to have low overheads
and applicability to all the system nodes. ChaCha20 is a low overhead stream cipher
and a derivative of an algorithm that is part of the eSTREAM portfolio [201]. CLEFIA
is a standardized lightweight block cipher algorithm. It is optimized for use in embedded
systems and has a low CPU, and memory overhead [202]. Both algorithms have the same
end goal of securing the resource management messages. In simple terms, a block cipher
is a symmetric key algorithm that encrypts and decrypts data in fixed-size blocks, while a
stream cipher does the same bit-by-bit. Stream ciphers are less resource-demanding and
have faster processing speed than block ciphers. However, this does not necessarily mean
that stream ciphers are better suited for resource management. Most trusted ciphers are
those that are widely used in many applications and tested by cryptographers worldwide.
As a result, the vulnerabilities of these ciphers are known and often fixed. The main
advantage of block ciphers lies here. Block ciphers are used nearly everywhere, while
stream ciphers are used only in few applications. Hence, block ciphers are more trusted.
We also considered other standardized algorithms but did not use them due to

higher overheads or usage complexity. For example, PRESENT algorithm [199] requires
bit-oriented permutations that have high overhead in software implementation [203].
Compared to a software implementation of AES-128-GCM [204], both the selected
algorithms are faster when we do not consider dedicated hardware extensions for security
[205, 206]; for example, the ChaCha20-Poly1305 construction is faster by a factor of
3, and PRESENT is faster by a factor of 2.5. On the other hand, when we consider
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hardware extensions, AES-128-GCM is undoubtedly faster [205]. Similarly, it is possible
to have a faster implementation of PRESENT in hardware consisting of bit-permutations
with simple wiring. However, since our system structure consists of COTS heterogeneous
hardware nodes, using a dedicated hardware extension or hardware implementation is
not desirable as all nodes may not support the extension.

Depending on the permissible overheads and trust required in the security algorithm,
a system designer can choose one of the two implemented algorithms via the resource
management configuration file (Listing C.L21). Moreover, we designed the security
sublayer to be modular, i.e., a system designer has an option to plug in a new security
sublayer algorithm if the two implemented ones do not suffice.
In the avionics use case (Chapter VI), we provide a concrete implementation for the

secure resource management communication channels. Moreover, we experimentally
evaluate the overheads for sending and receiving resource management messages over
different channels while using both the implemented algorithms (one at a time) in the
security sublayer.

Limitations of Security Sublayer

Using security only at a sublayer level is not sufficient for all use cases. As explained by
Koller [200], we require additional security strengthening measures at cluster-level, i.e.,
in Layer 2 devices, such as network interface cards and switches. He proposed Media
Access Control security (MACsec) layer 2 protocol for the cluster-level.

We consider that the attackers do not have physical access to the hardware platform.
If the attackers get physical access to the platform, they can potentially read stored keys
and masquerade as resource managers. Furthermore, attackers can potentially read and
manipulate all incoming and outgoing messages if attackers install malicious software
between the resource management and the security sublayer. The security sublayer is
not helpful if malicious code is present in the binary files of the resource managers, i.e.,
from the system development phase or added as part of a resource management update.

V.5 Using Existing Protocols For Resource Management
Communication

There exists a variety of open-source protocols and services, such as Message Queue
Telemetry Transport (MQTT) and Open Platform Communications Unified Architecture
(OPC UA), for communication in distributed systems. Apart from using the resource
management communication with security sublayer as explained in the previous sections,
we can use these existing protocols, especially in Linux-based use cases.

V.5.1 MQTT and OPC UA
In this section, we provide an overview about using two popular existing protocols,
MQTT and OPC UA, for resource management communication, taking into consideration
requirements such as membership, security, and reliable message delivery. MQTT is the
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most popular communication protocol for IoT, while OPC UA is gaining popularity in
industries. MQTT is a lightweight protocol designed for low-resource and low-power
nodes in low-bandwidth and high latency networks. On the other hand, OPC UA is
a platform-independent standard for industrial automation to unify communication
between the devices of different manufacturers.

OPC UA supports a request/response, and a publish/subscribe communication model,
while MQTT uses only the publish/subscribe communication model. In the request/re-
sponse model, a client node requests data or services, and a server node responds by
providing the data or service. Such a model is useful when data is needed on demand.
In publish/subscribe model, a central node (called a broker) receives and distributes

the data. The clients are nodes that interact with the broker, either by publishing
messages or subscribing to a topic. i.e., when a client node has new data, it publishes
the data to the broker node. Topics are the routes where the broker publishes data.
Thus, client nodes that subscribe to a topic automatically receive data from the broker
when new data is available. The broker moves the data from publishers to subscribers
without storing it. Thus, the publish/subscribe model allows for mass data distribution
efficiently and reduces network traffic by up to half compared to the request/response
model. Publish/subscribe is useful when data is not updated continuously (i.e., we
transmit discrete or abstracted values with well-defined intervals). Data does not have
to be updated on demand, and already published data can be used.
MQTT allows publisher nodes to send messages to a broker. The broker, in turn,

forwards the messages to the subscriber nodes. MQTT messages can have a variety
of data formats for the payload, such as JSON, XML, encrypted binary, or Base64.
However, the target client should have the ability to read the payload data. The MQTT
clients and broker exchange messages over TCP connection (unsecure) or an encrypted
Transport Layer Security (TLS) connection (secure).

MQTT keepalive ensures a broker and client connection is still open (for a predefined
time interval in seconds) and that both of them are aware of being connected. As far as
client and broker exchange messages frequently and do not exceed the keepalive interval,
an extra heartbeat message is not required for membership purposes.
MQTT offers three possible QoS levels:

• At most once delivery – The message is sent only once, and lost if the subscriber
node is not available.

• At least once – The publisher node temporarily stores the message and resends it
if and until an acknowledgment is not received from the broker within a specified
amount of time. However, a subscriber node may receive the same message more
than once.

• Exactly once – The subscriber node receives the message exactly once. However,
this form of message delivery has higher overheads due to more handshakes.

An OPC UA client may communicate with multiple servers, and a server can com-
municate with multiple clients. Moreover, a server acts as a client for communication
with other servers. OPC UA allows on-demand access permission-based read or write of
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data. It also allows nodes to subscribe to data and be notified when data changes based
on specific criteria. OPC UA servers define the services provided by them to clients,
possibility to be dynamically discovered by clients and data-types defined in by protocol,
such as bool, Int32, ByteString, and XmlElement.
OPC UA implements security mechanisms for authenticating clients and servers and

checking the integrity of communications. Moreover, it provides security (confidentiality)
at the transport level by encryption and signing messages.

OPC UA uses heartbeat for ensuring the liveness of the client and the server. To ensure
reliable delivery of messages, a OPC UA server must stores collected data and events in a
non-volatile memory until the client confirms reception (method SetSubscriptionDurable
defined in OPC 10000-5 [207]).
Table V.T3 summarizes the relevant properties of these protocols.

Table V.T3: Existing Communication Protocols for Resource Management
Property OPC UA[208] MQTT[209]
Security Yes Yes (with TLS version)

Membership Bidirectional Heartbeat Limited via MQTT Keep
Alive

Communication
model

Request/ Response or Pub-
lish/ Subscribe Publish/ Subscribe

Reliable delivery Yes Yes
Existing Imple-
mentation C, C++, Java, Python C, C++, Java, Python

Resource Management Communication with MQTT

MQTT broker(s) running on node(s) facilitates communication between the LRMs and
the GRM. In a flat resource management architecture, one broker is sufficient. On the
other hand, the hierarchical architecture (Figure V.F6a) requires multiple strategically
placed brokers (for example, one for each layer of the hierarchy) so that it is still possible
to tackle heterogeneous nodes, complex system structures, and ensure scalability. If only
one broker is present to deal with all levels of the hierarchy, then it may defeat the purpose
of the hierarchical architecture by acting as a bottleneck. We can implement the broker
on the same node with a LRM or a GRM or on a completely separate node to improve
performance. The higher domain resource managers (e.g., GRM) subscribe to updates
from the (lower domain) LRMs and publish orders. Contrarily, the (lower domain)
resource managers subscribe to orders from the (higher domain) resource manager and
publish updates.
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Resource Management Communication with OPC UA

An approach similar to MQTT is possible for OPC UA as well. However, we can simplify
the implementation as shown in Figure V.F6b.

Discussion

Previous work (such as [210] and [211]) have examined the overhead of using MQTT
and OPC UA. As expected, MQTT (with TLS) has much lower CPU overhead, memory
overhead, and network bandwidth consumption as compared to OPC UA. MQTT requires
data field coding, and its content is use case dependent. OPC UA has much wider use. It
is a full architecture where the communication protocol is only one part of the architecture.
OPC UA provides additional features such as node discovery, data structures, methods,
and two different communication models to access nodes of a distributed system with
services that allow reading, writing, and calling methods of the OPC UA servers.

We suggest using MQTT for resource management communication in conditions with
low-resource and low-power nodes using low-bandwidth and high latency networks.
Moreover, MQTT give more flexibility for use in specific applications. On the other hand,
OPC UA based resource management communication will benefit industrial environments,
where the unification of industrial devices from a different manufacturer is essential,
and overhead or network bandwidth consumption is not so critical as compared to
the advantages of OPC UA. We leave the actual experimental evaluation of resource
management communication via OPC UA and MQTT to future work.

V.6 Distributed Decision-Making for Global Resource
Management

In the previous section, we took the first step towards resource management security by
securing the communication between the LRMs and the GRM. In addition, we proposed
to add fault tolerance for the LRMs against cores failures by replicating LRMs on
multiple cores of a node and executing them synchronously (Section IV.9.1). Moreover,
it is possible to use NMR with the replicated LRMs. Furthermore, LRMs send heartbeat
messages to the GRM on the membership channels so that GRM can detect if an LRM’s
node is dead.
Until now, we considered the GRM as a single central entity that is present on

a dedicated or shared node in the system as shown in Figure V.F2 of Section V.1.
This single central entity participates in resource management to enable system-wide
adaptability in situations such as resource failures. Such a GRM is easier to implement
and has a low resource overhead. Besides, resource management makes consistent global
decisions without the risk of double-spending system-wide resources as the GRM is a
single entity controlling the entire system.
Nevertheless, a central GRM has limited scalability as it becomes a bottleneck for

resource management when it needs to keep up with increasing LRMs in the system.
Moreover, resource management with central GRM has a single point of failure. Suppose
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the GRM fails or the node running the GRM fails (or loses network connectivity to
the system). Then, the LRMs alone can only make node-level resource management
decisions without the possibility to leverage system-wide resources resulting in limited
adaptability in the system. Furthermore, any security flaws or faults in the GRM
can compromise global resource management. A faulty or compromised GRM can
make erroneous or fraudulent global reconfiguration decisions. It can also communicate
inconsistent decisions to the LRMs. These faults and flaws can impact the execution of
real-time applications. An attacker can also manipulate the stored system information or
current (abstract) status of the resources (or nodes) that the GRM has gathered so far
from the LRMs. Furthermore, as discussed in the previous section, if the attackers get
physical access to the platform, they can potentially read stored keys and masquerade
as a GRM. The attackers can also conceivably read and manipulate all incoming and
outgoing messages if attackers install malicious software between the GRM and the
security sublayer.

This section proposes extending the concepts discussed so far to make global resource
management safe and secure by using distributed global decisions instead of centralized
decisions. To do so, we eradicate the central GRM and add a new resource management
component, the Distributed Global Resource Manager (DGRM) component, on all
nodes with LRMs in the highest level of the hierarchy. Thus, such a node Nλ will
resource management components DGRMλ and LRMλ (as shown in Figure V.F7a). The
corresponding LRMs function almost the same as before. The only difference is that
instead of sending updates (including reconfiguration requests) to the central GRM, each
LRMλ sends updates to the DGRMλ on the same Node (Nλ). Instead of the central
GRM making the global decision on its own, the DGRM components on all these nodes
work together for making global decisions based on distributed coordination. A similar
concept applies to the flat resource management architecture. As a result, we have
two new resource management architectures, as shown in Figures V.F7b and V.F7c, in
addition to those explained in Chapter III.

V.6.1 Distributed Global Resource Manager (DGRM)
DGRM is a distributed component that participates in making global resource manage-
ment decisions. It receives abstracted monitoring updates from the LRM on the same
node. Based on these updates, the DGRMs on all nodes together maintain an abstracted
global view of the entire system. Henceforth, we will refer to the abstracted global view
stored in the GRM as the system state for simplicity. As before, the global resource
management decisions to mitigate the issues that a local reconfiguration alone cannot
resolve. In such cases, DGRMs work together in a distributed manner to find node(s) in
the system that can reallocate their resources to host the affected applications and meet
their resource demands. The DGRMs update their stored system state to reflect this
change and send reconfiguration orders to the LRMs in the subsystem affected by the
change. In turn, the LRMs translate these orders to the node’s local scheduling policy
and apply them via their LRSs. It is important to note that global resource management
does not perform resource scheduling itself; it only manages the allocation of resources
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in the system as a basis. The LRMs are responsible for actually scheduling (via LRSs)
the resources as per the global orders.

As we use DGRMs instead of the central GRM, there is neither a single point of failure
nor a bottleneck in the resource management anymore. However, we must ensure that
DGRMs are safe and secure themselves. Therefore, we identified the following challenges
and requirements concerning safety and security for building the DGRMs:

Requirement R1 The global resource management maintains a distributed system state
via the DGRMs. The stored system state should satisfy the following:

R1.1 The stored system state should be consistent across all DGRMs, i.e., no DGRM
should have a different system state view different from others at any point in time.

R1.2 It should not be lost upon failure(s) in one or few DGRMs. A reconfiguration in
any domain of the system should not result in the loss of the system state.

R1.3 The system state should be Byzantine fault-tolerant to include the possibility that
some DGRMs are malicious. Thus, in such a system, the DGRMs must reach a
consensus on the system state, and each DGRM must know when the quorum is
achieved.

R1.4 The system state must be readable or modifiable only by legitimate DGRMs
authorized by the system designers. This requirement safeguards sensitive system
information from malicious attackers and prevents attackers from masquerading as
a DGRM or manipulating the stored system state.

Requirement R2 The communication between the LRMs and DGRMs for sending updates
and reconfiguration orders should be secure. As before, the communication requires the
following:

R2.1 integrity, to protect exchanged messages from being manipulated

R2.2 authenticity, to ensure that the messages originated from legitimate LRMs and
DGRMs

R2.3 confidentiality, as there is sensitive system information in the messages

Requirement R3 Since the DGRMs make decisions with distributed coordination, we
need to ensure that they do not double-spend (over-allocate) resources.

Requirement R4 Instead of the LRMs, now the DGRMs require a membership protocol
among themselves to detect if all nodes are responsive. When a node is non-responsive,
the global resource management must take further action to ensure continuity of services.

Requirement R5 The system needs to log all global resource management decisions to
trace any errors that may occur. However, the log should not be readable or modifiable
by an attacker.
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V.7 Blockchain-Based Safe and Secure Distributed Global
Resource Management

This section describes the implementation of our global resource management approach
with distributed global resource management decision-making. The implementation
ensures that we meet the safety and security requirements highlighted in the previous
section.

The DGRMs do not perform the scheduling themselves; they only manage the allocation
of the system resources based on abstracted system state. Based on the global resource
management decisions received and translated (to local scheduling policy) by the LRMs,
the LRSs do the actual scheduling to ensure that the real-time applications running on
the node meet their resource demands. As a result of this decoupling, we can implement
the global resource management using a blockchain (Section II.21) without impacting
the currently executing real-time applications.
As explained in Section II.21, there are two types of blockchains – public or private

blockchain . Both are decentralized approaches to maintain a shared ledger of digitally
signed transactions. However, public blockchains have low transaction speeds, high costs,
and high energy consumption. On the other hand, private blockchains are permissioned,
and only participants pre-approved by a system designer can join the blockchain or initiate
adding a new entry to the distributed ledger. As a result, they have fast transaction
speeds, low costs for each transaction, and low energy consumption.

We choose a private (permissioned) blockchain called the Hyperledger Sawtooth [138]
for our implementation. Section II.21 provides an introduction to the Sawtooth platform.
Sawtooth has a modular design that helps us to separate the core blockchain platform
from resource management. As a result, we can use smart contracts to specify the global
resource management logic without knowing the underlying design of the blockchain
platform. Moreover, Sawtooth supports Practical Byzantine Fault Tolerance (PBFT)
algorithm for consensus; hence it is suitable for our requirements. Other open-source
private blockchain platforms do not have support for Byzantine fault-tolerant algorithms.
Sawtooth minimizes security and safety risks as it only allows a fixed set and semantics
of transactions via transaction families. A transaction family is a set of operations
or transaction types allowed on the distributed ledger. With transaction families, a
system designer can select the level of versatility and risk suitable for the system. Each
transaction family consists of a Client (CLI), a data model to store the data in the
distributed ledger, and a smart contract (also called a Transaction Processor (TP)). As
explained in Section II.21, smart contracts are small programs written in a programming
language such as C++. Smart contracts execute on the blockchain and facilitate the
implementation of use case-specific functions.

V.7.1 RM Transaction Family

We implemented a new Sawtooth transaction family called the Resource Manager (RM)
transaction family for implementing the DGRMs and the LRMs. As shown in Figure
V.F8a, the RM transaction family consists of the following:
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1. An LRM CLI to handle the local resource management logic.

2. A data model to record the system state in the blockchain.

3. A DGRM smart contract (TP) that runs in the blockchain and handles the global
resource management logic for distributed decision-making.

Sawtooth views a smart contract as a state machine. Smart contracts take transactions
(from a distributed log) and the distributed ledger’s current data state as input and
write back a new data state to the distributed ledger. A Sawtooth component called
the validator ensures that the same transaction results in the same transition and the
same resulting data state for all participants. This view of smart contracts matches our
perspective of the global resource management discussed in this chapter. Thus, we chose
smart contracts of the Sawtooth platform to implement the DGRM logic and associated
functions. Note that some parts of the logic implemented in the DGRM transaction
family are dependent on the use case-specific resource management requirements. An
example use case scenario is presented in Chapter VII to give a demonstration of the
RM transaction family.

The following subsections explain how we satisfy the requirements from Section V.6.1
using the Sawtooth blockchain platform and the RM transaction family. Figure V.F8b
shows the Sawtooth relevant components and how they interact with the RM transaction
family on the node, Nλ, in a system containing five nodes with DGRMs and LRMs.

Requirement R1.1 - R1.3

The DGRMs store the system state in the Sawtooth blockchain . Sawtooth blockchain is a
ledger distributed to all (potentially untrusted) nodes. There is no central administrator or
centralized database that could potentially leak transaction patterns or other confidential
information. The distributed ledger is demonstrably identical on all nodes, i.e., all nodes
in the system have the same information. Furthermore, since the ledger is available on
all nodes, it is not lost if a node fails or leaves the system. As a result, all DGRMs have
a consistent view of the stored system state. The system state is not lost if a few nodes
fail. The ledger is also immutable as Sawtooth uses block hashes to detect and prevent
attempts to alter the history. Any changes to the global system-state stored in the ledger
can only be performed via transactions and pre-defined transaction families. Applying
transactions involves submitting them to the validator via the REST API provided by
Sawtooth. A crucial function of the validator is to achieve consensus among all DGRMs
on the ordering of transactions. The validator also stores the resulting state in the
distributed ledger after processing each transaction. The Sawtooth platform provides
different consensus algorithms as plugins such as PBFT algorithm. We use the PBFT
algorithm plugin for our implementation so that the stored system state is Byzantine
fault-tolerant. Taking all these properties of the Sawtooth blockchain into account, we
fulfill requirements R1.1 to R1.3. Note that the PBFT algorithm requires at least four
participants to reach a consensus. Hence, our implementation requires at least four
Sawtooth enabled nodes with DGRMs.
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Requirement R1.4

The Sawtooth network design helps us solve the challenges of permissioned (private)
networks. The Sawtooth network only grants permissions to modify and read the system
state stored in the blockchain to legitimate DGRMs based on public-key cryptography.
These DGRMs must be authorized by a system designer during the design phase.
Sawtooth provides secure P2P communication over TCP to submit transactions and
messages. It provides security by requiring all transactions to be signed by known
identities (DGRMs in our case). It is possible to control who can connect to the network
and sync the current system state stored in the ledger, participate in the consensus
process, and submit DGRM transactions. Sawtooth also provides some inbuilt smart
contracts, such as the Settings TP and the Identity TP, that let us store and modify
Sawtooth settings. For example, these settings include who can participate in the
consensus or the minimum number of votes needed to accept a proposal. Besides, we use
the Settings TP to store settings needed by the DGRM smart contract at runtime. The
settings are stored on the blockchain itself, and hence, they are immune to manipulation
by an attacker and not lost if a few components fail. Considering all these points, an
attacker cannot read, manipulate the system state or make global decisions. Thus, the
Requirement R1.4 is met.

Requirement R2

The LRMs still use the conceptual resource management update channel from Section
V.2. Hence, it is possible to use the security sublayer that we developed in Section V.4.1
to send secure messages for global resource management. However, as seen in Figure
V.F8b, the DGRMs TP and LRM CLI communicate via the validator and the secure
Sawtooth network. Similarly, the messages exchanged by the DGRMs for achieving
consensus to store the system also pass through the secure Sawtooth network. As a result,
a result we do not need to use the sublayer. The sawtooth network already provides
security equivalent to security Level 2 from Section V.4.2. As a result, Requirements
R2.1 to R2.3 are fulfilled.

Requirement R3

All modifications to the system state stored in the blockchain take place as transactions.
Sawtooth ensures that all the transactions are processed by the DGRM smart contract
according to their order. The validator ensures the total ordering of every transaction.
The distributed ledger state is incremental per transaction execution only. So it is easy
to enforce rules in the DGRM smart contract to ensure that the resources are not double
spent, thus meeting Requirement R3.

Requirement R4

A list of known peers (other nodes running a validator) is available to each validator.
The validators maintain a list of active peers based on heartbeats and received consensus
messages from other nodes. LRMλ on a node Nλ can obtain this from the validator
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of Nλ list and determine if other nodes are reachable; if not, it informs the DGRMλ

smart contract about the failure, which can, in turn, trigger a global reconfiguration.
Consequently, Requirement R4 is satisfied.

Requirement R5

Sawtooth stores records of all transactions in a distributed log. The DGRMs or external
applications authorized by the system designer can access the distributed log. Since all
transactions are written in a distributed log, Requirement R5 is automatically fulfilled.

V.7.2 RM Transaction
As earlier, the MONs send monitoring information from resources and applications
to LRM CLIs regularly. Upon long-term changes in availability or demands of local
resources, the LRMs generate an update channel message. However, instead of sending
the messages to the security sublayer, the LRMs now package messages as Sawtooth
transactions. We will refer to these transactions as Update transactions.
An Update transaction consists of a header signed by an LRM CLI and a payload

containing the abstracted update (including reconfiguration request). The header infor-
mation includes the name and version of the DGRM smart contract and input/output
addresses to read/write from the blockchain. The validator securely receives the Update
transaction from the LRM CLI via the REST API. In general, a node with an LRM
CLI does not necessarily need a validator and DGRM smart contract to be present. For
example, Node Nβ shown in Figure V.F8b has no validator or DGRM smart contract
present on the same node. However, it can still send the transaction request to the
validator of another node (as authorized by the system designer).

The validator applies a cryptographic hash function to the content of the received
transaction. Then, the validator uses its private keys to sign the generated hash values,
and the other nodes use this signature to validate the authenticity and integrity of
the transactions. Next, the validator broadcasts the transactions to the validators of
other nodes in the Sawtooth network. The validators of nodes receiving this transaction
broadcast a (signed) consensus message if the received transactions pass authenticity
and integrity check; otherwise, the validators discard the transaction. Based on the
PBFT algorithm, the transaction is committed to the distributed log present on the
blockchain when 3f + 1 consensus messages are available in a system with f acceptable
faulty nodes. The consensus mechanism also ensures the total ordering of every update
transaction generated by the Coordinator CLIs. Once the transaction is committed to
the distributed log, the validators (on all nodes) send the payload to the DGRM smart
contract of their node for further processing.

DGRM smart contracts on all nodes are identical. They enforce checks on the payload
data to ensure it has the correct data format and passes the data sanity checks. For
example, if an update claims more resource availability than physically present on the
node generating the update, the check will fail. If one of the checks fails, the transaction
is considered faulty and not processed further. Therefore, the validator of that node
does not generate a consensus message. If the transaction payload passes the check,
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the DGRM smart contract of those nodes process the transaction further as per the
implemented global resource management logic (use-case specific) and generate a new
system state as an output. The new system state reflects the (abstracted) updates sent
by the LRMs and may contain reconfiguration orders for one or more LRM CLIs. The
new global system-state is sent to the validator on each node to write it in the blockchain.
As per the PBFT algorithm, if validators of 3f + 1 nodes agree on the generated system
state, then the system state is written to the blockchain. We use the Sawtooth event
subscriptions mechanism for subscribing the LRM CLIs to receive notifications about
any change in the system state related to their subsystem. Those LRM CLIs that receive
such a notification apply any orders present in the system state to their nodes via LRSs.

We provide fault-tolerance to the LRM CLIs via replication as explained in the previous
chapter. If a Sawtooth validator breaks, the corresponding LRM CLI cannot submit
transactions to it. In such a case, the LRM CLI submits them to a validator on another
node (offline defined order of node selection). It can continue functioning without an
active validator on the same node similar to Node Nβ in Figure V.F8b. Note that the
PBFT algorithm requires at least four validators to reach a consensus.
In Chapter VII, we present an example scenario with a concrete implementation of

the RM transaction family including the DGRM smart contract. Moreover, we perform
experiments to evaluate the RM transaction family and obtain the observed maximum
delay for global reconfiguration (including distributed global resource management
decision-making).

V.8 Chapter Summary
In this chapter, we introduced the Global Resource Manager (GRM) of our resource
management architecture. The GRM provides various services, such as gathering updates
from LRMs, global reconfiguration decision-making, obtaining or computing a new global
configuration, sending/receiving orders/updates to/from the LRMs, and managing an
external input. Conceptually, one GRM exists in the system, although distribution is
possible for fault tolerance and scalability. Therefore, the GRM can be realized either by
a single node or a set of nodes.
We proposed three conceptual communication channels between the central GRM

and the LRMs (and between higher and lower domain LRMs) to exchange information –
Update, Order and Membership channels. In addition, we provided an overview about
using two popular existing protocols, MQTT and OPC UA, for resource management
communication, taking into consideration requirements such as membership, security,
and reliable message delivery.

Unsecured resource management has several weak spots that an attacker can exploit.
Therefore, we1 analyzed the resource management communication, LRM, and GRM
from a security viewpoint. We proposed security services for resource management
communication to prevent various security attacks. In addition, we proposed three
different security levels (Levels 0, 1, and 2) for resource management communication and

1Based on inputs from the security experts at the University of Siegen
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two options to implement the security services – implementation as a support module or
implementation as a layer between the resource managers and the underlying hardware or
software (hypervisor or OS). Moreover, we1 discussed two options for security algorithms
– ChaCha20-Poly1305 and CLEFIA (in Offset CodeBook (OCB) operation mode).

Finally, in this chapter, we discussed several limitations of a single central global
resource manager. We proposed extending the concepts to make global resource manage-
ment safe and secure using distributed global decisions instead of centralized decisions. To
do so, we eradicated the central GRM and added a new resource management component,
the DGRM component, on all nodes with LRMs in the highest level of the hierarchy.
Furthermore, we identified the challenges and requirements concerning safety and security
for designing the DGRMs. We choose a private (permissioned) blockchain called the
Hyperledger Sawtooth [138] for the implementation as it helps us to meet the challenges
and requirements concerning safety and security. We designed a new Sawtooth transac-
tion family called the Resource Manager (RM)-transaction family for implementing the
DGRMs and the LRMs of our resource management framework.
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Avionics Use Case:
Resource Management for Distributed
Mixed-Critical System (MCS)

“Flying isn’t dangerous. Crashing is what’s dangerous.”
– Unknown

The following avionics use case was developed during the DREAMS project. The
avionics use case system consists of several multicore processors and Multi-Processor
System on Chips (MPSoCs) connected via a Time-Triggered (TT) network. The system
hosts three safety-critical avionics applications and multiple instances of a best-effort
application. We use the avionics use case to evaluate the proposed resource management
framework in two scenarios:

1. Permanent core failure: As a result of intensive integration of on-chip devices,
permanent core failures can occur due to phenomena such as wear-out and infant
mortality [173]. When a core fails, the resource management needs to redeploy the
application partition(s) executing on the failed core in one of the following ways
within the maximum allowed unavailability time as per offline defined schedules:
redeploy to another core of the same node (local reconfiguration) or redeploy to
another node in the system (global reconfiguration).

Our evaluation focuses on the fault tolerance capacity of the resource management
against core failures and the time taken for global reconfiguration on a realistic
platform (Section VI.5.1).

2. Temporal overload condition (potential deadline overrun): A temporal
overload can occur due to over-utilized resources in the nominal mode. Resource
management can ensure the timing constraints for the critical applications by sus-
pending the best effort applications based on potential deadline overrun monitoring
(local adaptation).

Our evaluation focuses on the efficiency of the resource management adaptation to
improve the system utilization while ensuring the critical applications meet their
timing requirements (Section VI.5.2).
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Finally, we present an experimental evaluation for the time taken by the secure resource
management communication (with single central Global Resource Manager (GRM)) in
the avionics use case using all three security levels and both security algorithms presented
in Chapter V.

VI.1 Avionics Use Case
The avionics use case consists of three safety-critical applications that are examples of
next-generation applications for use in future avionics systems [212]:

1. Flight Management System (FMS) [213] - It is responsible for services that provide
in-flight path management based inputs such as pre-defined flight plans, aircraft
position (determined by sensor data), and pilot directives. This application has
stringent real-time requirements and has a safety criticality level of DAL B.

2. Display Management System (DMS) - It is responsible for managing the information
displayed on the cockpit panel and sending the input provided by the pilot to
the applications, such as the Flight Management System (FMS), via the network.
Figure VI.F1 shows an example of such a display. The criticality level of Display
Management System (DMS) is the same as the highest criticality application
receiving input from the DMS. In our case, the DMS provides inputs to the FMS.
Hence, it has the same criticality level as the FMS.

Figure VI.F1: Example of a Flight Display Panel

3. Sensor Data Provider (SDP) - It is responsible for collecting the sensor data, such
as the GPS position, and forwarding it to the FMS as packets via the network.
This application has stringent real-time requirements and has a safety criticality
level of DAL A. Since the use case does not use actual physical components that
move, the Sensor Data Provider (SDP) values do not change. Instead, the use
case feeds the trajectory computations performed by the FMS back to the SDP for
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avoiding this problem. The SDP, in turn, uses this input to generate new data
and sends it to the FMS. As a result, in this use case, the communication is not
only in the direction of SDP to FMS, but also the reverse direction.

As best-effort application, we consider a Quality of Service (QoS)-enabled MPEG-2
video server [214]. A similar application was used in the demonstration of the Matrix [21],
and ACTORS project [22] resource management framework. The application provides
three QoS levels: HIGH/MEDIUM/LOW. At the HIGH QoS level, the application
process all MPEG-2 frames. However, at MEDIUM and LOW QoS levels, the application
selects only those frames which provide the best possible picture quality while using only
the available amount of resources for the corresponding service level.
In this use case, a cockpit panel (communicating with DMS) is treated as best-effort

tasks and simulated on separate x86 processors running Linux. Figure VI.F2 illustrates
the applications in the avionics system and the interactions among them.

DMS
(Display

Management
System)

Critical
Applications

SDP
(Sensor
Data

Provider)

FMS
(Flight

Management
System)

TTE (Time-Triggered Ethernet)

Panel
MPEG
Server

Best-effort
Applications

Figure VI.F2: Applications of the Avionics Use Case

Table VI.T1: Avionics Use Case Application Parameters

Application Criticality Level
(DAL)

Maximum
Unavailability (ms)

Number of Tasks
(Periodic,Aperiodic)

FMS B 600 26 (10,16)
DMS B 600 5 (4,1)
SDP A 1000 7 (6,1)

MPEG Server E ∞ Best-effort
Panel E ∞ Best-effort

Table VI.T1 summarizes the application parameters, such as the criticality level
(DAL), maximum unavailability, and the number of tasks for each application. Maximum
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unavailability corresponds to the maximum suspension time for the application due to
(resource) failures. Further information about the avionics applications is not provided
here due to confidentiality issues.

VI.2 Use Case Demonstrator
The demonstrator consists of two different types of hardware platforms:

• NXP QorIQ T4240 multicore processor board (introduced in Section II.4.1) with a
TT-Ethernet (TTE) PCI-Express card.

• DREAMS Harmonized platform (DHP): This platform has a Xilinx ZC706 board
with Zynq 7000 MPSoC. As explained in Section II.4.2, the Zynq 7000 MPSoC
contains an ARM Cortex-A9 dual-core processor and an FPGA on the same die.
The DHP implements a Spidergon TT Network-on-Chip (NoC) [29] (and the
required Network Interfaces (NIs)), Microblaze softcore processors and a TTE
controller in the Field Programmable Gate Array (FPGA). The TT NoC connects
the Cortex-A9 and the remaining components on the FPGA with each other. Note
that we do not use the Microblaze processors for this demonstrator.

In the demonstrator, three boards – two T4240 and one DHP, are connected via a TTE
network (Section II.13) explains TTE with an example), as shown in Figure VI.F3. The
demonstrator hosts the three safety-critical avionics applications and multiple instances
of the best-effort MPEG server application. An x86 PC, connected via regular Ethernet,
simulates the best-effort panels. However, henceforth, we will not refer to the x86 PC
as it is only present to simulate the panels and does not require resource management.
Each node runs the XtratuM hypervisor (introduced in Section II.17.4) that supports
ARINC 653 scheduling (explained in Section II.13.1) of partitions1 and ensures strong
temporal and spatial partitioning complaint with Integrated Modular Avionics (IMA) and
other avionics standards [33, 215]. FentISS and Valencia Polytechnic University (UPV)
extended XtratuM to provide interfaces for applications (including resource managers)
to access the TTE network based on an offline computed TTE schedule.

VI.3 Resource Management Implementation on the Demonstrator
We (together with Thales R&T and ONERA) implemented resource management services
on top of the T4240 and DHP nodes of the avionics demonstrator. The following sub-
sections provide the resource management components that we used in the avionics
demonstrator and explain the implementation choices for each component where required.
Figure VI.F4a and VI.F4b illustrate the resource management components on the two
T4240 boards and the DHP.

1XtratuM uses the term Virtual Machine (VM) and partition interchangeably.
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Figure VI.F3: Avionics Use Case Demonstrator

VI.3.1 Local Resource Schedulers (LRSs)

There are two types of LRSs present on each node:

1. LRS for Critical Partitions (Section IV.7.1) to execute tasks of a critical
application in a partition.

2. LRS for Online Reconfiguration (Section IV.7.2) to support the Local Resource
Manager (LRM) of a node.

VI.3.2 Local Resource Monitor (MONs)

There are three types of MONs present on each node:

1. Core failure MONs (Section IV.4.3): We implemented instances of core MON
as asynchronously executing XtratuM partitions on each core of a node. We
provide the schedule for executing core failure MON partitions on a node via the
offline-defined configuration.

2. Potenital deadline overrun MONs (Section IV.4.4) for critical application
partitions: In Section IV.4.4, we discussed two options to place instances of this
MON for use with the critical applications. From these two options, we chose
to add deadline overrun MON instances between the critical application tasks in
a partition as it avoids task instrumentation and helps to keep the monitoring
overheads to a minimum.

3. Hardware MONs to support deadline overrun MONs (Section IV.9.2): We
execute hardware MONs before and after each task of an application. Moreover, we
use hardware MONs to determine the overheads of the resource management itself
by executing this MONs before and after each resource management component
(not shown in Figure VI.F4 for clarity). Since this MON consists only a few lines
of assembly code, the monitoring overhead (probe effect) is negligible.
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Figure VI.F4: Resource Management Components in the Avionics Demonstrator
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Figure VI.F5: Deadline Overrun MON in Avionics

VI.3.3 LRMs
There are two LRMs present on each node as follows:

1. LRM in virtualization domain: This LRM provides local reconfiguration
upon core failure (Section IV.9.1). We implemented instances of this LRM as
synchronously executing XtratuM partitions on each core of a node at the end
of every Major Frame (MaF). As explained in Section IV.9.1, we execute LRM
instances synchronously on each core to ensure we do not lose local resource
management capabilities upon core failures. LRM instances are executed at end of
every MaF. Figure VI.F6 illustrates this as a reminder. We provide the schedule
for the execution of the LRM partitions on each node via the offline-defined
configuration. Section VI.4 explains the use case specific local reconfiguration
strategy.

Core 0

Core 1

. . .

Core n

Shared Data
Structure

MaF

1 1 . . . 1

Time

Master

Key

VM/
Application

Core
Failure MON
(asynchronous)

LRM
(synchronous)

LRM Master Order=
[Core 0, Core 1, . . ., Core n]

Figure VI.F6: LRM for Core Failure Management in Avionics

2. LRM for deadline overrun management: This LRM ensures that the critical
applications meet their timing constraints while improving the QoS of non-critical
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applications (Section IV.9.2).

The LRM requires each node to be over-utilized as per Equations IV.4, IV.5 and
IV.6 from Section IV.9.2. Moreover, the same section discussed three options (with
their advantages and disadvantages) to implement this LRM. We selected the
third option, i.e., executing the LRM in the application domain (LRM instances
executing directly after deadline overrun MONs instances). We chose this option
because the adaptation by the LRM is almost immediate since the LRM executes
directly after the MON (tLRM = 0 in Equation IV.1). Moreover, this approach
has a very low performance impact. The only restriction with this approach
was that the underlying hypervisor must allow starting or stopping best effort
partitions from within a critical application partition. Thanks to the XtratuM
extensions by FentISS and UPV, we can perform the required actions from within
a critical application partition. Figure VI.F7 illustrates the positioning of these
LRM instances as a reminder.
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VM/App
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Figure VI.F7: Potential Deadline Overrun Management in Avionics

To reduce the impact of deadline overrun management on the QoS of the best-effort
applications and increase the utilization of the node’s resources, Thales R&T
further implemented the second solution described in Section IV.9.2. However, we
don’t consider it in this dissertation.

VI.3.4 GRM
To keep the global resource management overheads low, we chose to implement a central
GRM on the DHP. The GRM facilitates recovery upon core failures when virtualization
domain LRMs cannot recover on their own. We implemented the GRM as an XtratuM
partition. The GRM partition does not need any extra privileges because it only decides
the reconfiguration but does not apply it. The LRMs on each node apply the actual
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reconfiguration via their LRSs. We provide the schedule for executing the GRM partition
on the DHP via the offline-defined configuration. Section VI.4 explains the use case
specific global reconfiguration strategy.

Table VI.T2 summarizes the implementation of the resource management components
discussed in the previous subsections.

Table VI.T2: Resource Management Component Implementation Summary
Component Location Function Description
LRS for critical

partitions
Critical application

partition
Execute critical
application tasks

Section
IV.7.1

LRS for
reconfiguration

Virtualization domain
LRM partition

Plan (mode) changes for
XtratuM

Section
IV.7.2

Core failure
MON

Asynchronous execution
as XtratuM partition on

each core
Core failure detection Section

IV.4.3

Potential
deadline

overrun MON

Execution between tasks
of a critical application

detection of potential
deadline overrun in
critical applications

Section
IV.4.4

LRM in
virtualization

domain

Synchronous execution
as XtratuM system

partition on each core
towards end of MaF

Core failure management
on a node

Section
IV.9.1

LRM in
application
domain

Execution immediately
after deadline overrun

MON

Deadline overrun
management in critical

partition

Section
IV.9.2

GRM Execution as XtratuM
partition on the DHP

Global core failure
management Section V.3

VI.3.5 Resource Management Communication
We implemented two resource management communication channels from Section V.2:

1. An order channel between the GRM (source) and each LRM (destination). The
GRM uses these channels to send reconfiguration orders to the LRMs. A message
is only sent on a order channel if there is a new reconfiguration order for the
destination LRM.

2. An update channel between the GRM (destination) and each LRM (source).
Each LRM sends periodic (every MaF) updates, including reconfiguration requests,
to the GRM on the update channels.

As explained in Section V.2.3, we do not require a membership channel as the LRMs
send periodic updates to the GRM.
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Figure VI.F8: Resource Management Communication Message Formats

The messages sent on update and order channels are 32-bit wide. Figure VI.F8 shows
the message format. The order message consists of the following fields:

1. Immediate (I): 1-bit field to indicate if the destination LRM must apply the new
offline schedule immediately (0) or deferred (1).

2. Configuration (Config): 31-bit wide field with the new offline schedule for the
destination LRM to apply on its node.

The Update message consists of the following fields:

1. Type (T): 1-bit field to indicate if the source LRM is sending a simple update
message (0) or a reconfiguration request (1).

2. Configuration (Config): 31-bit wide field with current configuration that the source
node is executing.

Table VI.T3: Resource Management Communication Implementation

Channel XtratuM Port TTE Virtual
Link (VL) Type Source Destination

Update Queuing TT LRM GRM
Order Sampling TT GRM LRM

To ensure timely delivery of resource management messages and bounded global
resource reconfiguration time, we implement these channels as TT VLs on the TTE
network. Furthermore, we provide the schedule for these VLs via the offline-defined
TTE schedule. Since XtratuM implements the ARINC 653 standard, each resource
manager can send messages on the TT VLs via sample or queuing ports (introduced
in II.13.1). As explained in Section V.2, the GRM needs all updates from the LRMs.
Thus, we use a queuing port for the Update channel. Contrarily, the LRMs require only
the latest order from the GRM. Thus, we use a sampling port for the Order channel.
Table VI.T3 summarizes the implementation of the communication channels. Note that
both GRM and LRM are present on the DHP, In this case, we do not use TTE VLs for
communication between the GRM and the LRM on the DHP. The GRM communicates
with this LRM via XtratuM sampling and queuing channels. Figure VI.F4 (on Page 148)
illustrates the communication channels for resource managers on the two T4240 boards
and the DHP.
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We implemented all three Security Levels – 0, 1, and 2, and both the security algorithms
from Section V.4.1. Each secure resource management message (Level 1 and 2) is sent
as a secure frame consisting of three parts as follows:

1. The first part is the header which is not encrypted but authenticated by the third
part of the message. In security domain, the header is also called as Additional
Authentication Data (AAD). The header includes:

• length of the header (aad length),

• length of the cipher text (ciphertext.length),

• nonce that includes a time-varying parameter,

• XtratuM source and the destination partition IDs (sourceID and DestID) for
the channel,

• XtratuM port descriptor (Portdesc),

• XtratuM port type (Ptype) - Sampling or Queuing port,

• flag field with variable length. We omit the flags currently, i.e., flags size is 0
Bytes. However, it is possible to use them in future extensions.

2. The second part of the frame is a payload containing the encrypted (cipher) text
for security Level 2 messages (chiper.text) or unencrypted (plain) text for security
Level 1 messages (plain.text). The payload can have variable length. ´ We use the
update and order message format shown in Figure VI.F8. Hence, message size is 4
Bytes. However, it is possible to send messages up to 32 bytes in future extensions.

3. The third part, Message Authentication Code (MAC), secures the first two parts.

aad.length cipher text length nonce
nonce Source ID Destination ID Port Desc

Port type Flags (if required - can be omitted)
Plain text in Level 1 or

Chiper text in Level 2 (Variable length)
MAC

0 16 Bytes84

Figure VI.F9: Secure Message Frame

Security Level 2 increases the message size at least by 416 bit over Level 0: 288 bit
for the header and 128 bit for the MAC. Figure VI.F9 shows an example of a Level 2
frame. The MAC in the third part authenticates both the first part (header) and the
second part (plain text) again. A Level 1 frame is similar to Level 3 in size. However,
there is plain text instead of the cipher text in the second part of the frame. Finally,
since Level 0 has no security mechanism, the header only contains plain text length and
port information. The second part of the frame is the plain text itself. We do not need
the third part of the message (MAC) at all. For both security levels, the maximum
size is 232 bytes as the size of the cipher text length field is 32 bit. Table VI.T4 shows
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the increase in size for the order and update messages in the current implementation.
Listing D.L1 in Appendix D contains a pseudo-code for the functions that send orders
and receive updates in the GRM. Similar functions exist in LRMs to receive orders and
send updates.

Table VI.T4: Resource Management Communication Message Sizes
Message
Type

Original
Message Size Secure Message

Size (Level 1 & 2)
Bytes Bytes Increase

Update or
order 4 56 1400%

VI.4 Reconfiguration Strategy for Core Failure
When a core MON instance detects a core failure, the resource management must take
recovery action. As explained in the scenario in Section V.3, a LRM initiates the recovery.
If there are not enough resources at the node-level to tolerate the failure, then the LRM
requests a global reconfiguration from GRM. In this demonstrator, we implemented a
recovery procedure based on mode changes (Section II.16) applied by the LRMs via
their LRSs. This entails that a set of possible configurations are computed offline with
a varying number of cores on a node. A reconfiguration involves moving from one
configuration to another via mode changes. The transition between the configurations
must be safe. Since we cannot present the strategy using names and parameters of
the avionics applications due to confidentiality issues, we explain it with a generalized
application model based on the requirements of the avionics applications.

VI.4.1 Application Model
The avionics use case hosts a series of applicationsA = {A1, A2, . . . , Aa}. The applications
have one of the following two types:

1. Safety critical applications Ac consisting of rc critical tasks. Each task τt,c of Ac has
a unique identifier t ranging from 1 to rc. Thus, we define a critical application Ac
as {τt,c = (Ct,c, AETt,c, Tt,c)}1≤t≤rc , where Ct,c, AETt,c, and Tt,c are the Worst-case
Execution Time (WCET), Average Execution Time (AET) and Period. All tasks
are non-preemptible. The system must meet the timing constraints of every critical
application.

2. Best-effort (non-critical) applications, which need to achieve a minimum QoS. We
define a best-effort application Aj as (Uj, AUj), where Uj and AUj are the worst
case utilization and average utilization of Aj . In the avionics use case, all best-effort
applications are composed of a singe task.
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We execute applications as XtratuM partitions. A partition can run in one or more slots
(Minor Frame (MiFs)) (Section II.13.1). A slot Ss is defined as (start(Ss), end(Ss), Cs),
where start(Ss) and end(Ss) are start and end time of Ss and Cs is the core ID of Ss.
Several tasks of an application can execute in a single slot. We must ensure that all tasks
of the critical application Ac belonging to the slot Ss fit completely within the slot, i.e,∑

∀τk,c∈Ss

Ck,c ≤ End(Ss)− Start(Ss)

An allocation alloc is defined as the mapping of applications ∈ A to one of the
three platforms (the DHP and the two T4240). Let alloc0 be the initial allocation of
applications to nodes defined by the system designer.

VI.4.2 Local Configuration

Each node has at least one offline defined (ARINC 653 style) schedule, called a local
configuration2. We define a local configuration LC as consisting of the following elements:

1. MaF with length |MaF |. We select a MaF such that the period of every critical
application task is either a integer multiple or a factor of the MaF period, i.e.,
|MaF | mod Tt,c = 0 or Tt,c mod |MaF | = 0 for all tasks of all critical applications.

2. A set of slots distributed over the processors cores and |MaF |. If |MaF | < Tt,c,
then the task τt,c of a critical application Ac must not be executed every MaF.

3. A mapping between tasks (jobs3) of allocated critical applications and the available
slots. Since jobs of tasks are unrolled over |MaF |, the offline scheduler maps each
job Jt,k of task τt (∈ Ai) to a slot Ss of a MaF. The offline scheduler also provides
the order in which the jobs must be executed in the slot. Each slot only contains
jobs of tasks belonging to the same critical application.

4. A mapping between allocated best-effort applications and the available (remaining)
slots. The offline scheduler maps each best-effort application Aj to one or more
slots Sj,1, Sj,2, . . . , Sj,s′ .

We determine both the partition slots and the schedule of tasks inside a slot using an
existing offline tool called Xoncrete [216] that is provided with XtratuM. Let LC0

DHP ,
LC0

T42401, and LC0
T42402 be the initial local configuration of the DHP and the two T4240

boards determined using Xoncrete. XtratuM executes these initial configurations upon
booting.

2Configurations are also commonly referred to as modes. Hypervisors often refer to them as plans.
3As a reminder, each instant of a task activation with a specific input data is called a Job.
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VI.4.3 Global Configuration
The global configurationGC consists of all the possible combination of local configurations
executed by the nodes in the system. GC0 is the initial global configuration, i.e,
GC0 = 〈LC0

DHP , LC
0
T42401, LC

0
T42402〉.

VI.4.4 Reconfiguration Requirements
When we consider core failures, each node can have multiple local configurations, each
considering the reduced number of slots available for executing applications (since slots are
fixedly distributed over the cores). The number of available slots depends on the number
and ID of working cores. XtratuM can store all the configurations as hypervisor plans.
We pass all the configurations to XtratuM via the resource management configuration
file as illustrated in Listing C.L12 of Section IV.6.1. A node’s virtualization domain
LRM stores pointers to the local configurations stored by XtratuM.
Multiple global configurations exist as a result of multiple local configurations. The

GRM stores the global configurations (via reference to the local configurations) and
keeps track of the local configurations via the update messages from the virtualization
domain LRMs of the nodes.
There are two important requirements for switching between configurations:

1. As far as resource availability allows, critical applications must be locally recon-
figured upon core failure, i.e., the priority of critical applications is greater than
the priority of best-effort applications, as discussed in the example scenario of
Section V.3. Thus, reconfiguration should first allocate available slots to critical
applications on the failed core(s) before allocating them to best-effort applications.

2. All applications that need redeployment must be moved entirely to a different node,
i.e., at any point in time, all tasks of an application must run on the same node.
Thus, a local configuration with a reduced number of cores should not allocate
slots to applications (after considering the first requirement) if they cannot execute
entirely under the new core availability.

The virtualization domain LRM sends the currently active local configuration to the
GRM via a periodic update message (every MaF). In this case, the LRM sets the field
T of the update message format (Figure VI.F8b) to 0 and field Config to the current
configuration. Naturally, if a LRM switches between local configurations, it sends the
new configuration with the next periodic update message.
During the MaF, the LRM collects a list of all failed cores. Then, based on the new

core availability, it decides on a possible (local) configuration. If the LRM is unable to
host all applications via the new configuration, it sends a reconfiguration request together
with the newly selected configuration by setting the type of the update message (field
T ) to 1. The other field is used as earlier. When the GRM receives the reconfiguration
request, it can decide whether to perform a global reconfiguration.
We pass the application set A, the initial global configuration GC0, all possible core

failure combinations to consider, and the requirements stated above as input to a tool
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called GREC [171] that was created by ONERA during the DREAMS project. GREC
determines local and global reconfiguration graphs based on a heuristic.

VI.4.5 Local Reconfiguration Graphs
A local reconfiguration graph is defined by 〈Ln,−→n, 999K n, LC

0
n〉, where

• Ln is the set of all local configurations of a node Nn.
• LC0

n is the initial configuration of node Nn.
• −→n⊆ Ln × Ln represents the set of local transitions between configurations of

node Nn upon failure of a core, i.e, local reconfiguration decisions.
• 999K n⊆ Ln × Ln represents the set of transitions between configurations of node
Nn due to orders from the GRM upon failures in other nodes (6= Nn), i.e., global
reconfiguration decisions.

Let the three nodes – DHP, T4240 1 and T4240 2, be represented by N0,N1, and N2.
Then, 〈L0,−→0, 999K 0, LC

0
0〉 represents the local reconfiguration graph for the DHP.

Similar graphs exist for the other nodes.

VI.4.6 Global Reconfiguration Graph
The global reconfiguration graph is defined by 〈G,−→, 999K , GC0〉, where

• G is the product of all local configurations from each node, i.e., G = L0 × L1 × L2.
• GC0 = 〈LC0

0 , LC
0
1 , LC

0
2〉

• −→⊆ G×G represents set of transition between configurations on a node according
to the order of the GRM, i.e, global reconfiguration decisions.

(〈LC0, LC1, LC2〉, 〈LC ′0, LC ′1, LC ′2〉) ∈−→
such that

∃i ∈ {0, 1, 2}, (LCi, LC ′i) ∈99K i ∧∀i 6= j, LCj = LC ′j

∧∃j,∃LC ′′j (LC ′′j , LC
′
j) ∈−→j

A global decision transition −→ from 〈LC0, LC1, LC2〉 to 〈LC ′0, LC ′1, LC ′2〉 can only
occur in the Global reconfiguration graph, if there exists at least one node Ni

with a transition 99K i from LCi to LC ′i (corresponding to a global reconfiguration
decision in Ni’s graph). For all other nodes, Nj, in the system (i.e., Nj 6= Ni),
there are two possibilities:

– No transitions occurred, i.e., LCj = LC ′j, or

– There is a transition −→ from LC ′′j to LC ′j , i.e., a local reconfiguration decision
(that does not require global reconfiguration).

• 999K ⊆ G×G represents the set of transitions between configurations made by a
node’s LRM and received by the GRM in an update message. 999K represents a
unique local transition.
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(〈LC0, LC1, LC2〉, 〈LC ′0, LC ′1, LC ′2〉) ∈99K
such that

∃i ∈ {0, 1, 2}, (LCi, LC ′i) ∈−→i ∧∀i 6= j, LCj = LC ′j

i.e., a local decision transition 99K from 〈LC0, LC1, LC2〉 to 〈LC ′0, LC ′1, LC ′2〉 can
only occur in the Global reconfiguration graph, if there exists at least one node
Ni with a transition −→i from LCi to LC ′i (corresponding to a unique local
reconfiguration decision without need of global reconfiguration). For all other
nodes Nj in the system (Nj 6= Ni), no transitions occurred, i.e., LCj = LC ′j.

Durrieu and Pagetti [171] explain the generation of these graphs by GREC in detail.
Since the resource management supports multiple core failures, GREC generates symmet-
ric and complete local and global configuration graphs, i.e., for any given combination of
failed cores, irrespective of the order of failure, the same configuration must be reached.
This implies that the number of failure states in a graph is equal to the number of
possible cores failure combinations minus one (the one state where all cores have failed
is not meaningful), i.e., 2num_cores − 1.

VI.4.7 Example of Reconfiguration Graphs
Let us consider an example with A = {A1, A2, A3, A4}. To simplify the example, let
us assume the N0 (DHP) cores cannot fail and no applications can be assigned to it.
Hence, we do not need to consider N0 for reconfiguration graphs. LRMs execute on
each node, while the GRM executes on N0 as explained in Figure VI.F4 (on Page 148).
To simplify the example further, we consider N1 and N2 (T4240s) only have four cores
each (instead of 12 cores). Thus, the total number of possible failure states for N1 and
N2 are 24 − 1 = 15 each. Figure VI.F10 shows these 15 failure states for N1 (on the
left). In addition, there are configurations that occur due to global decisions by the
GRM (indicated by 99K ), as a result of core failure on N2. In the graph, there is only
one such configuration (LCinit

g ), on the right side in the figure. For the graph to be
complete, we have all possible configurations from LCinit

g onward as well. To make
the representation of the graphs simpler, we draw the local reconfiguration graph of
N1 (Figure VI.F10) in a condensed format shown in Figure VI.F11a (note that both
graphs are essentially the same, but illustrated differently). Similarly, Figure VI.F11b
shows the local reconfiguration graph of node N2 in a condensed format. The resource
management framework takes the local reconfiguration graphs from GREC (via the
resource management configuration file) as input and automatically adds it as static
C-array to the code of the corresponding LRM. Listing D.L2 in Appendix D illustrates
the pseudo-code of this array generated by the resource management framework for the
example in Figure VI.F10.
Each local reconfiguration graph has 15 (left) + 15 (right) = 30 states. The global
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LCinit(A1, A2)No failure

Key

LCX(A1, A2)
1 failed core,
X ∈ [0, 1, 2, 3]

LCXY (A1)
2 failed core,

XY ∈ [01, 02, 03, 12, 13, 23]

LCXY Z()
3 failed core,

XY Z ∈ [012, 013, 023, 123]

LCinit
g (A1, A2, A3)

LCX
g (A1, A3)

LCXY
g (A1)

LCXY Z
g ()

Priority: A1 > A3 > A2

(a) Local Reconfiguration Graph of N1 (Condensed)

LCinit(A3, A4)No failure

LCX(A3, A4)
1 failed core,
X ∈ [0, 1, 2, 3]

LCXY (A4)
2 failed core,

XY ∈ [01, 02, 03, 12, 13, 23]

LCXY Z()

3 failed core,
XY Z ∈ [012, 013, 023, 123]

LCinit
g (A3, A4, A2)

LCX
g (A3, A4)

LCXY
g (A4)

LCXY Z
g ()

Priority: A4 > A3 > A2

(b) Local Reconfiguration Graph of N2 (Condensed)

Figure VI.F11: Examples of Local Reconfiguration Graphs (Condensed)

reconfiguration graph in this scenario can have up to 30 × 30 = 900 states in total.
However, here we have fewer states as some local reconfigurations also result in a
transition in global reconfiguration graphs as shown in Figure VI.F12a. Note that in this
figure only −→ indicate global reconfiguration decisions, while 99K are as a result of local
reconfiguration by LRM of N1 and N2. The GRM implementation only needs to take care
of −→. Since, in the actual use case, the number of −→ can vary from very low to very
high depending on the possible local reconfigurations, we cannot use a static structure to
store the global reconfigurations. Instead, the resource management framework takes the
global reconfiguration graph from GREC (via the resource management configuration
file) as input and automatically generates a C-function. Listing D.L3 in Appendix D
illustrates the pseudo-code of this function automatically generated by the resource
management framework for example in Figure VI.F12.
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VI.4.8 Network reconfiguration
At the network level, we need to reconfigure the network components according to
the reconfiguration decision of the resource management. Applications communicate
to other applications potentially over the network by means of VLs. At runtime, the
reconfiguration of an application on a different node requires the redirection of VLs.
The computation complexity involved in the construction of new network schedules for
TTE at runtime is far beyond the reasonable reaction time required for reconfiguration.
Several approaches exist to construct online schedules based on heuristics. However,
they are not deterministic and cannot guarantee the feasibility of schedules. Thus, we
rely on pre-computed network schedules. For each possible configuration that requires a
change in the communication scheme (reallocation of source or destination TTE ports to
different nodes), we require an offline defined alternative TTE VL. There are two ways
to use the alternative VLs:

1. We can pre-define a super schedule containing all VLs based on all possible locations
for each application resource. A super schedule is a single schedule combining all
possible network schedules required for all global reconfiguration. When a global
reconfiguration occurs, it reflects at the network level as a switch from the old
VL to a new one, which is already present in the network schedule but not in use
until now. The reaction time of such a switch between VLs is negligible since the
communication continues from the next scheduled slot of the newly activated VL.
Since the GRM never activates two different global configurations simultaneously,
the schedule remains conflict-free.

2. We can activate an entirely new pre-defined network schedule in one or several
nodes and switches upon global reconfiguration. However, this approach requires
the adaptation of internal tables and resetting of internal states that adds a
considerable latency to the reconfiguration.

In the avionics use case, we selected the super schedule approach. We were able to
create such a super schedule as a result of the modification carried out by TTTech to
their offline network scheduling tool, TTPlan, during the DREAMS project.
The three tools (Xoncrete, GREC, and TTPlan) required by the resource manage-

ment framework for reconfiguration were integrated into a toolchain created during
the DREAMS project. This toolchain generated all the user-defined configuration files
required for resource management in the avionics use case (Figure VI.F13).
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VI.5 Resource Management Evaluation
We set up resource management for the evaluation using the user-defined configuration
files generated via the DREAMS toolchain. Examples of such configuration files are
presented in Listing A.L3 of Appendix A. We performed the evaluation for determining
global reconfiguration delay and validate the local and global core failure management by
the GRM and the LRMs. We also determined the overheads of the resource management
components involved in the core failure management. Next, an evaluation for temporal
overload management by an LRM is presented. Finally, we performed an experimental
evaluation to determine the overheads for secure resource management communication.

VI.5.1 Evaluation of Local and Global Core Failure Management
We successfully validated the resource management in the avionics use case by simulating
core failures in a T4240 node. For reducing the executable file generation and the fault
injection demonstration, we used the scenario from the example in Section VI.4.7 where
only four cores (Core 0 to 3) were activated on each T4240 node. The LRMs execute
on both nodes synchronously as XtratuM partitions towards the end of each MaF as
described earlier. The GRM executes as a XtratuM partition on the DHP. In the initial
configuration (MaF 0, Plan 0), all three avionics applications (SDP, FMS, DMS) are
hosted on a T4240 node and MPEG server is hosted on the DHP.

Global Reconfiguration Delay

We observed that the overall delay for global reconfiguration depends on the allocation
of the GRM slots on the DHP in relation to the slots of LRMs on all the nodes.
Furthermore, the delay also depends on the network schedule. As a reminder, update and
order messages are sent over TT VLs. Thus, we can guarantee when the message reaches
the destination by planning VLs according to requirements. Moreover, the avionics use
case requires that reconfigurations only take place at end of the MaF. Therefore, the
order message immediate field (I) is always set to deferred (0) by the GRM. Hence,
nodes change their configuration according to the GRM orders only at the end of a MaF.

Case GRM Slot location TT VL period Reconfiguration
delay4

Update channel Order channel

1.
Occurs directly

before the slots of
LRMs

≤ |MaF |−
Start(GRMSlot)

≤ |MaF | 2 MaF (Figure
VI.F14a)

2.
Occurs betwen the
slots of LRMs (in
different MaF)

≤ |MaF |−
Start(GRMSlot)

≤
End(GRMSlot)−
Start(LRMSlot)

1 MaF (Figure
VI.F14b)

Table VI.T5: Global Reconfiguration Delay
4After core failure detection by an LRM
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DHP

T4240 1

T4240 2

GRM LRM GRM LRM GRM LRM

LRM LRM LRM

LRM LRM LRM

MaF 1 MaF 2 MaF 3

time

Key
Order Update

(a) Case 1: Two MaF

DHP

T4240 1

T4240 2

GRM LRM GRM LRM GRM LRM

LRM LRM LRM

LRM LRM LRM

MaF 1 MaF 2 MaF 3

time

(b) Case 2: One MaF

Figure VI.F14: Global Reconfiguration Delay

There are two cases with different global reconfiguration delays as shown in Figure
VI.F14. In the first case (Figure VI.F14a), when an LRM instance detects a core failure
(at end of MaF 1 in the figure) and requires a global reconfiguration, it sends an update
message to the GRM. The GRM instance of the next MaF (MaF 2 in the figure) receives
this update. This GRM instance will, in turn, send orders to the instance(s) of the
LRM(s) belonging to the following MaF (MaF 3 in the figure). The LRM belonging
to the following MaF applies the reconfiguration according to the GRM order. As the
reconfiguration takes place at the end of MaF, the total delay for global reconfiguration
is two MaFs after a LRM detected a core failure. The main benefit here is that resource
management communication has to occur less often, requiring less network bandwidth.
However, the drawback is a longer reconfiguration delay.
In the second case (Figure VI.F14b), when an LRM instance detects a core failure

(MaF 1 in the figure) and requires a global reconfiguration, it sends an update message.
The GRM instance of the following MaF (MaF 2 in the figure) receives this update.
This GRM instance will, in turn, send orders to the instance(s) of the LRM(s) belonging
to the same MaF. Then, the LRM(s) will apply the reconfiguration according to the
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order from the GRM at end of the MaF. As the reconfiguration takes place at the end
of MaF, the total delay for global reconfiguration is one MaFs after a LRM detected a
core failure. The disadvantage here is that resource management communication has
to occur more often, requiring more network bandwidth. However, the advantage is a
shorter reconfiguration delay.

In both cases, the delay for global reconfiguration is deterministic. Since the network
bandwidth was not an issue in the avionics use case, we selected the second option as
the reconfiguration delay is shorter (1 MaF).

Experimental Validation
Table VI.T6 shows an example where core 3, core 2 and core 1 of a T4240 (T4240 1) fail
in MaF 5, MaF 6, and MaF 7 respectively. We repeated the experiment 1000 times, but
with different order and time of core failure. We simulated core failure in three out of
four T4240 node cores in each case.
The evaluation confirmed that every core failure is correctly detected by the virtu-

alization domain LRM via the core failure MON. As expected, the LRM selected a
new configuration from the local reconfiguration graph (Plan 2, Plan 5, and Plan 12 on
failure of Core 3, Core 2, and Core 1 respectively in Table VI.T6). The LRM informed
the GRM upon local reconfiguration with update messages. Until the failure of two
cores (core 3 and core 2 in the table), the LRM always found a local configuration that
can accommodate all four applications on the same node. Upon failure of the third
core (core 1 in the table), the LRM found a configuration that hosted the three critical
applications; for example, in Table VI.T6, core 0 hosts SDP, FMS, and DMS. The LRM
correctly informed the GRM about the local reconfiguration and requested for a global
reconfiguration to host the MPEG server on another node. As expected, the GRM found
a new global configuration for the DHP that hosted MPEG server and informed the
virtualization domain LRM of the DHP via an order message. Each time we observed
that the DHP configuration changed at end of the MaF according to the GRM order.

Resource Management Overheads
The GRM, LRMs and core failure MON introduce run time overhead. Each of them
requires one slot to execute. During the slots for GRM, LRMs and MONs, we do not
allocate any application partition slots in parallel to avoid interference. GRM and LRM
overheads are not only caused by the resource management logic but also the updates
and orders communication. In addition, the LRM must reconfigure the system (via
the LRS for reconfiguration). The MONs have the least overhead. We measured the
overheads using hardware MONs (Performance Monitor Counter (PMC) configured for
counting CPU clock cycles). Table VI.T7 presents the maximum observed overheads for
the components on the DHP and the T4240. The overhead of the LRM includes the
time consumed by the LRS for reconfiguration as the LRS is called inside the LRM. As
the GRM only executes on the DHP, there is no GRM overhead on the T4240.
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DHP T4240 1

MaF Config-
uration

Core
ID5

Config-
uration Core ID5 Description

0 1 0 1 2 3

0 0 3 3 0 3 3 3 3

Initialization configuration; Move to
next configuration after
initialization completion

1-4 1 3 3 1 3 3 3 3
Nominal configuration - SDP, FMS,
DMS, MPEG server are on T4240

5 1 3 3 1 3 3 3 7

Core 4 failure detected; Local
reconfiguration at end of MaF and

update to GRM

6 1 3 3 2 3 3 7 7

Core 3 failure detected; Local
reconfiguration at end of MaF and

update to GRM

7 1 3 3 5 3 7 7 7

Core 2 failure detected; Local
reconfiguration at end of MaF and
reconfiguration request to GRM

8 1 3 3 12 3 7 7 7

GRM received reconfiguration
request. GRM searches for new
global configuration. GRM sends

order to involved LRM (new
configuration hosts the MPEG

Server on the DHP). LRM on DHP
receives order and applies order at

end of the MaF.

9 4 3 3 12 3 7 7 7
New configuration on DHP as a
result of global reconfiguration

Table VI.T6: Example of Local and Global Reconfiguration in Avionics Use Case
57= failed core, 3= active core

Component MON LRM GRM
DHP 80µs 1.9ms 1.5ms
T4240 20µs 900µs -

Table VI.T7: Resource Management Overhead
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VI.5.2 Evaluation of Local Temporal Overload Management
Thales R&T evaluated local temporal overload (potential deadline overrun) management
due to confidentiality issues in providing the complete code of the avionics applications.
We summarize the evaluation here. The evaluation was done on a T4240 using only
four cores. The three critical avionics application 6 (A1, A2, A3) are allocated to core
0. Four stressing benchmarks were added as non-critical applications: Write sequential
(ws), write random (wr), read sequential (rs), and read random (rr). Partitions of the
non-critical applications were assigned 8MB array (>Last Level Cache (LLC) size).
Each non-critical application accessed memory with 64bytes steps (=LLC line size). This
ensured cache misses and stressed the memory.
Three deployment scenarios were considered:

1. Isolation: Non-critical applications are deployed on core 1 to 3 and allocated in
time windows that do not coincide with critical application slots.

2. Interference: Non-critical applications are deployed on all four cores. Non-critical
applications are allocated on core 0 in time windows that do not coincide with
critical application slots. On core 1 to 3, non-critical applications use the complete
MaF.

3. Deadline overrun: This scenario is the same as the second one, but with poten-
tial deadline overrun MONs and application domain LRMs to manage temporal
overload.

Table VI.T8 shows the slot deadlines (D) per critical application. To compute the
slot deadline (D) of an application in the isolation scenario, the worst case observed
execution time of all tasks (from any run) are added. For example, suppose a critical
application Ai has three tasks, τ1,i, τ2,i, and τ3,i. Worst case observed execution time
C1,i for τ1,i occurs in the first run, Ciso

2,i for τ iso2,i occurs in the tenth run and Ciso
3,i for τ3,i

occurs in the fiftieth run. In this case, the resulting deadline Diso
i = Ciso

1,i + Ciso
2,i + Ciso

3,i .
This Diso

i is considered as 100%. Values are presented as percentages as actual values
cannot be provided due to confidentiality issue.

For the interference scenario, the isolation deadline is multiplied by a slowdown factor
to get the new deadline. The slowdown factor is the worst-case observed slowdown of
any task of any critical application divided by the worst-case observed time for the same
task in an isolation scenario. For example, suppose a task, τ1,j of critical application Aj
suffered the worst slow down from all tasks of all critical applications in the interference
scenario with the worst-case observed execution time Cint

1,j . The same task has a worst-
case observed execution time Ciso

1,j in the isolation scenario. In this case, the slowdown
factor is calculated as S = Cint

1,j /C
iso
1,j and the slot deadline as Dint

j = S ×Diso
j . The same

value of S is used for all applications. The actual value of S was determined to be 4.036.
Table VI.T8 presents the values as percentage of the slot deadline in isolation.

For the deadline overrun scenario, the slot deadline (D) of an application is the sum
of the worst-case observed execution time of all application tasks in isolation, plus the

6Application names anonymized due to confidentiality issue
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Appli Bench Isolation (%) Interference (%) Deadline Overrun (%)
cation mark D C MET D C MET D C MET

ws 85.6 79.7 342 238.1 104.1 99.6
A1 wr 100 86 79.7 403.6 175.1 165.2 247.5 96.7 90.4

rs 97.6 96.6 104.1 102.8 107.2 106
rr 97.7 96.7 104.5 103.5 107.2 106.1
ws 39.6 37.9 79.2 69.1 75.3 68.5

A2 wr 100 39.8 37.9 403.6 58.7 55.9 240.3 58.5 55.6
rs 51 50.9 55.3 54.8 58.5 57.9
rr 51.1 50.9 55.2 54.9 58.2 57.9
ws 93.6 93 152.2 139.9 98.5 97.3

A3 wr 100 93.7 93 403.6 113 111.9 258.9 98.3 95.5
rs 97.2 97.1 102.1 102 98.7 98.3
rr 97.1 97.1 102.5 102.2 98.4 98.3

Table VI.T8: Evaluation of Local Temporal Overload Management

largest of the application’s tasks worst observed execution time minus the execution time
of the same task in the isolation scenario. For example, suppose a critical application
Ak has an isolation deadline Diso

k . Let Cdo
1,k be the largest observed execution time of a

task from all tasks ∈ Ak in the deadline overrun scenario. The slot deadline of Ak in
this scenario is Ddo

k = Diso
k + Cdo

1,k − Ciso
1,k . Table VI.T8 presents the values in percentage

of the slot deadline in isolation.
As observed in the table, the local resource management in the deadline overrun

scenario helped to reduce slot deadline significantly for all three critical applications
(247.5%, 240.3%, and 258.9%) compared to the interference scenario (403.6%, 403.6%,
and 403.6%).
In addition, Table VI.T8 also presents the observed worst-case execution time (C)

and median execution time (MET) as percentage of the application deadlines when
running in the isolation scenario. The values are per deployment scenario and considering
non-critical applications with one of the four stressing benchmarks at a time. The most
significant reductions are observed in C and MET of A1 (with ws benchmark) in the
deadline overrun scenario (104.1% and 99.6%) as compared to the same in interference
scenario (342% and 238.1%). In some situations of the deadline overrun scenario (e.g.,
A1 and A2 values for rs and rr), the C and MET values are slightly higher than the
interference scenario. However, the slowdown is tiny compared to the speedup in other
situations, and the main advantage lies in having smaller slot deadlines. In all runs of
the deadline overrun scenario, the local resource management ensured that C remains
below the slot deadline, i.e., the maximum observed execution time (C) in the table is
less than the deadline (D).
Table VI.T9 shows the performance obtained by the four non-critical applications

(each running a different benchmark) in deadline overrun scenario compared to the
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Benchmark ws wr rs rr
performance 87% 93% 99% 92%

Table VI.T9: Performance of Non-Critical Applications in Deadline Overrun Scenario

performance in the interference scenario. The values in the table are calculated as:

Ido − I iso
I int − I iso × 100

where Ido, I iso, and I int are the amount of memory access iterations by the non-critical
applications in a fixed total number of MaF in the deadline overrun, isolation, and
interference scenarios.
Thales R&T evaluated the solution that they proposed for improving QoS of non-

critical applications to reduce the impact of deadline overrun management by the LRM
(second solution in Section IV.9.2). The evaluation can be found in [7].

VI.5.3 Evaluation of Secure Resource Management Communication
In this section, we present the experimental evaluation of the time taken by the GRM to
send orders (SO) and receive updates (RU), and the LRMs to receive orders (RO) and
send updates (SU). We need to consider two important instances of resource management
communication for the evaluation:

1. Communication between GRM and virtualization domain LRM on the DHP (see
Figure VI.F4 on Page 148 for reference): The GRM and the LRM read/write
messages to/from the XtratuM sampling and queuing ports and incur an overhead in
the process. The message is available to the GRM and LRM as soon as the GRM or
LRM partition time slot occurs. Hence, the only real overhead is sending/receiving
messages to/from the XtratuM ports.

2. Communication between GRM on the DHP and the virtualization domain LRMs
on two T4240 (see Figure VI.F4 on Page 148 for reference): The GRM and the
LRMs read/write messages to/from the XtratuM sampling and queuing ports (for
TTE) and incur an overhead in the process. Once the message is written to the
ports, it is sent to the destination node as a time-triggered message based on an
offline-defined network schedule. The time for delivery of message via the TTE
depends on the TT VL period. The only unknown overhead is sending/receiving
messages to/from the XtratuM TTE ports.

Thus, we evaluated the time for sending/receiving messages to/from the XtratuM (TTE)
ports. All messages pass through the security sublayer regardless of which security level
is selected. Although security Level 0 does not provide any security services, it still adds
some headers to the messages as explained in Section VI.3.5. Security levels 1 and 2
have a message size of 56 bytes.
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Message Type Security Level Security Algorithm
ChaCha20-
Poly1305

(ns)

CLEFIA
(ns)

GRM - 0 37.97
Receive Update 1 167.45 1564.68
(sampling port) 2 216.01 2295.86

LRM - 0 42.3
Receive Order 1 163.19 1551.29
(queuing port) 2 216.50 2264.88

LRM - 0 37.25
Send Update 1 165.79 1562.14

(sampling port) 2 223.93 2282.22
GRM - 0 29.19

Send Order 1 135.97 1534.49
(Queuing port) 2 187.29 2255.97

Table VI.T10: DHP – Maximum Observed Time for Resource Management Communication
Message Type Security Level Security Algorithm

ChaCha20-
Poly1305

(ns)

CLEFIA
(ns)

GRM - 0 13.73
Receive Update 1 54.82 1029.93
(sampling port) 2 72.21 1583.21

LRM - 0 21.32
Receive Order 1 61.32 1052.44
(queuing port) 2 78.46 1511.99

LRM - 0 13.04
Send Update 1 51.01 933.58

(sampling port) 2 67.32 1630.08
GRM - 0 13.30

Send Order 1 52.07 1029.32
(Queuing port) 2 68.68 1557.50

Table VI.T11: T4240 – Maximum Observed Time for Resource Management Communication
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We used hardware MONs (PMC set up for counting clock cycles) on both DHP
and T4240 to measure the time for reading/writing to/from the XtratuM (TTE) ports
accounting for all three security levels (Level 0, 1, and 2) and both security algorithms
(CLEFIA and Chacha20-Poly1305). Table VI.T10 and Table VI.T11 show the observed
maximum time (in nanoseconds) needed for sending and receiving messages (including
security sublayer overhead) for 1000 runs each on the DHP and a T4240. These values
are useful in determining the worst-case execution time of the GRM and the LRMs.
In Figure VI.F15, we further break down the observed average values for DHP and

T4240 into two components: security sublayer overhead and overhead for reading/writing
XtratuM ports. The evaluation shows that the time needed for reading/writing update
messages is higher than for order messages. This difference arises from using different
port types for order (sampling) and update (queuing) channels.

Overhead for security level 0 is minimal as the messages only pass through the security
sublayer without further processing for security purposes. However, security levels 1 and
2 have a more considerable overhead for reading/writing messages due to their larger
message size. Moreover, security level 2 has more overhead than security level 1 as it
adds confidentiality on top of authenticity and integrity.
Furthermore, the evaluation also indicates that the ChaCha20-Poly1305 algorithm

is much faster than the CLEFIA algorithm (in the OCB mode of operation). This is
because the stream cipher design of ChaCha20 allows for faster encryption and decryption.
However, stream ciphers, such as ChaCha20, are generally used only in few applications
and, thus, not closely scrutinized regarding security. Contrarily, block ciphers, such as
CLEFIA, are heavily used in many applications, and thus, are more trusted. In the end,
the trade-off between using ChaCha20-Poly1305 and CLEFIA lies in speed versus trust
in the algorithm.
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VII

Railway Use Case:
Real-Time Cloud via Resource Management

“Today, companies have to radically revolutionize themselves every few years
just to stay relevant. That’s because technology and internet have transformed
the business landscape forever.”

– Nolan Bushnell

In this chapter, we present an existing real-time safety-critical railway use case from
the EU SECREDAS project [154] and explore virtualization technologies and cloud
computing for migrating this use case from dedicated hardware solutions. We examine
existing virtualization technologies (hypervisors) for deploying a (private) Cloud on
Commercial-Off-The-Shelf (COTS) server hardware to run the use case while meeting
stringent safety requirements. We base our migration on qualitative and quantitative
benchmarking of the relevant hypervisors for specific railway requirements. Based on the
insights gained, we provide suggestions using an existing hypervisor with new RT-cloud
components to safely and securely run the railway use-case applications. The new
components include a resource management layer for the cloud based on our resource
management framework (Chapter III). Finally, we present an evaluation for the Time-
Triggered (TT)-Local Resource Scheduler (LRS), initial experiments with Intel Memory
Bandwidth Allocation (MBA) and the evaluation of the distributed global resource
management.

VII.1 Railway Use Case
The railway domain has high reliability and availability requirements given by the
CENELEC standards ([155, 156, 157]) to certify safety-critical railway applications. The
system has a long lifespan (≥ 25 years). Therefore, any change to the system should not
compromise the safety requirements. In addition, railway components require redundancy
to remove single points of failure. Multiple hardware components are required that can
host replicas of the same applications for safe operation. These components require high
availability and reliability to ensure continuous operation. However, building systems
with high availability and reliability incurs high costs.

175
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At present, railway domain applications are hosted on specialized dedicated hardware
platforms using federated architectures. The main benefit of using this architecture is
fault containment. However, with the increase in demand, many nodes are required to
host more safety-critical applications. Thus, the use of federated architecture has led to
an increase in Size, Weight and Power (SWaP), required wiring, and the associated costs
in the railway domain. Moreover, when there is a failure in a system with specialized
hardware, it is challenging to replace obsolete specialized platforms that are no longer
manufactured. Such situations result in prolonged downtime. Systems with obsolete
components begin to generate more failures which, in turn, require more time to remedy.
Eventually, a situation can arise where components cannot be fixed, or there is enormous
downtime. As a result, hardware obsolescence is a significant issue for the railway domain.
Obsolescence is a reality that any safety-critical system will eventually encounter.

Figure VII.F1: Layered railway domain [5]

Figure VII.F1 illustrates the different layers and complexity involved in the railway
domain. There exist numerous indoor and outdoor components. Indoor components
control several interlocking simultaneously and operate the ever-growing railway networks.
Radio Block Center (RBC) is an example of an indoor component that is responsible
for the radio communication towards the European Train Control System (ETCS)-L2
operated trains. As a result of increasing high-speed lines and the growth of railway
networks, such indoor components have widely increased recently. Such an increase has
led to the demand for a more scalable architecture in the railway domain. However, relying
on a limited amount of dedicated specialized hardware platforms hinders scalability.
Cloud computing principles provide a lucrative option for the railway domain to

deal with the earlier mentioned issues. Clouds abstract the underlying hardware from
applications by use of a virtualization technology. Clouds provide a virtualized equivalent
of a computer system, i.e., a Virtual Machine (VM), to host applications. The applications
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are unaware that they are running in a virtualized environment or know the underlying
hardware resources. Thus, the reuse of existing applications without modifications is
possible by directly executing them in a VM. As a result, clouds allow easier reuse of
legacy railway applications and help overcome hardware obsolescence issues of the railway
domain.
Cloud computing also provides high availability by creating clusters. The main idea

is that a group of servers that appear as a single server to the applications provide
continuous up-time. Thus, if a railway application is hosted on a cloud when one server
is unavailable, the other servers can replace it and provide continuity of service.

In the current on-premise hardware setup used in the railway domain, it is essential to
shut down the hardware to add new resources. However, when the hardware requirements
increase in a cloud, it is possible to add resources without interrupting the existing
applications seamlessly. Similarly, if the demand reduces, it is possible to downscale
the system seamlessly. The railway domain can benefit from the cloud to support the
increase in high-speed lines and the growth of railway networks over time. The cloud
can ensure the required long railway application lifetime through continuous operation
during updates. Moreover, it is possible to dynamically increase or decrease the available
hardware resources to support temporary fluctuations in computing requirements; for
example, to support increased requirements during peak hours.

Clouds help increase resource utilization and reduce SWaP and wiring costs by hosting
multiple VMs concurrently on the same multicore node (hardware consolidation). In
turn, hardware consolidation results in a reduction in maintenance cost and fewer spare
parts. Clouds provide basic mechanisms for improved resource sharing and help to
allocate resources efficiently among various VMs (via hypervisors). Moreover, clouds can
partition some of the underlying hardware, such as CPU and memory space, and provide
some form of isolation among the concurrently executing VMs. Such segregation can
form the basis for permitting railway applications of various criticality levels and other
non-critical applications in the cloud.
In general, hosting applications using cloud computing principles supports ease of

re-usability, reconfiguration, and scalability, while providing higher availability, less
need for maintenance, and reduction in running costs. Moreover, cloud computing
helps organizations reduce their carbon footprint by letting them reduce resource over-
provisioning.
Despite the advantages provided by clouds for the railway domain, there are some

hindrances. Multiple VMs run on each node in a cloud and share the underlying node
resources. Cloud virtualization environments (e.g., Xen or Kernel Virtual Machine
(KVM) hypervisors) allow partitioning off some of these shared resources to each VM.
For example, it is possible to use classic scheduling techniques (e.g., Round-robin, Earliest
Deadline First (EDF)) to provide a constant amount of computing time to each VM
or spatially divide memory space among VMs. However, most cloud hypervisors do
not support partitioning other shared resources, such as memory bandwidth or network
bandwidth.
As discussed in Section II.18, there are two types of cloud: public and private. In a

public cloud, the control of the entire cloud lies with the cloud service provider, who do
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not guarantee resource partitioning or precise resource allocation to VMs. However, to
achieve (timing) predictability, railway applications require careful allocation of resources
and isolation among VMs. As a result, the railway VMs cannot adhere to safety standards
and certification requirements if hosted on a public cloud.

Contrarily, in a private cloud, complete control over the cloud resources is possible. We
can adapt private clouds with our resource management techniques to partition/allocate
crucial resources and ensure all railway applications meet their safety-assurance levels.
Besides, our resource management can monitor the cloud to detect resource failures and
non-conformant behavior of railway VMs. We envisage such private Real-time clouds
(RT-clouds) in the near future.

Since virtualization is at the heart of cloud computing, the choice of a suitable virtual-
ization technology is essential for ensuring the performance, predictability, availability,
and safety required for the railway domain. Since virtualization is a new concept to the
railway domain, limited research has examined cloud virtualization techniques for use in
the railway domain. Resch [158] presented an initial step towards this goal. We take a
step further by examining virtualization technologies and cloud computing on COTS
server hardware for migrating an existing real-time safety-critical railway use case from
dedicated hardware solutions.

VII.1.1 TAS Control Platform

Railway operators widely use indoor and outdoor computer-based railway control systems,
such as electronic-interlocking systems, axle counters, and automatic onboard train
control systems. The components are used in both the mainline and urban rail markets.
Although these applications share similar stringent security and safety requirements,
their performance assumptions, operating conditions, and cost requirements are different.
Thales Austria GmbH developed the TAS Control Platform [129]. It is a computing

platform that meets these requirements and serves a common base with fault-tolerance
and reliability services for railway applications to build on. Thales has certified TAS
according to Safety Integrity Level (SIL) 4 requirements defined in the CENELEC
standards ([155, 156, 157]). As illustrated in Figure VII.F2, TAS Control Platform
functions on top of specialized hardware and contains different layers. The bottom
layer is based on a Linux-based operating system that provides basic services such as
file management, network protocols, and task scheduling. The top layer represents the
functional aspects of the system: the railway-specific applications. Lastly, the middle
layer provides the essential fault tolerance and reliability service required by the railway
applications together with an implementation of an API for use by the applications. This
layer acts as a bridge between the programming models and the operating system.

This use case requires us to move the indoor safety-critical railway applications from
Figure VII.F1 (e.g., RBCs) to a private cloud running on servers consisting of 2nd

Generation Intel Xeon Scalable processors [30]. Such a cloud-based approach using
COTS hardware has multiple advantages over the current deployment of TAS control
platform on dedicated hardware.
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Figure VII.F2: Layered Architecture of the TAS Control Platform [5]

• This move will enable the railway industry to eradicate the dedicated hardware
components near tracks.

• Virtualization will help to move away from custom hardware solutions by making
the TAS control platform independent of the underlying hardware.

• Virtualization will also eliminate or reduce re-certification costs upon a change in
the underlying hardware.

• The cloud will allow hardware consolidation by allowing multiple TAS control
platform VMs on a single node, and thus, promote efficient utilization of resources.

• Cloud will improve scalability, ease of maintainability, and thus, lower operating
costs while providing higher availability.

VII.1.2 TAS Control Platform in Cloud
Figure VII.F3 illustrates the architectural decisions made to run the TAS control platform
in a cloud environment. We can identify two major components that are novel compared
to the traditional approach of running the TAS Control Platform on dedicated hardware.
Firstly, a hypervisor can abstract the COTS hardware from the virtualized safety-critical
applications. In addition, the hypervisor can provide some degree of separation and
isolation. Secondly, When running a TAS Control Platform on dedicated embedded
devices, the network between these systems was dedicated and exclusive to the TAS
Control Platform and the safety-critical applications it hosted. However, introducing
virtualization and resource sharing makes the network interconnection between different
TAS Control Platform instances a shared resource. Therefore, besides virtualizing the



180
Chapter VII. Railway Use Case:

Real-Time Cloud via Resource Management

TAS Control Platform, we also need to employ a network virtualization technology
to separate the traffic from different virtual instances while still transporting it over
the same shared physical medium. In this dissertation, we investigate suitable cloud
hypervisor technologies to host the TAS control platform.
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Figure VII.F3: TAS Control Platform with Virtualization

VII.1.3 Safety Requirements for TAS VMs
TAS control platform is already an industrially accepted solution and provides the redun-
dancy, safety, and security measures required by the safety-critical railway applications.
Therefore, our primary focus is to ensure that the hypervisor running a TAS Control
Platform VM fulfills the requirements of the platform. Based on inputs from Thales
Austria GmbH, we identified safety requirements for these VMs. They mainly concern
encapsulation, predictability, safe connectivity, and real-time requirements.

• The VMs running safety-critical applications must be encapsulated with respect to
safety. Errors in VMs should not trigger any failure in other VMs or compromise
the node itself. We can achieve this by partitioning the different shared resources
used by the VMs to ensure isolation.

• Multiple VMs running on the same hardware require predictable timing behav-
ior (i.e., predictability despite multicore interference). They require some fixed
minimum allocation of resources to the safety-critical VMs. For example, the
virtualization layer must assign the VMs a minimum required time on the CPU and
a fixed amount of cache and memory allocation, shared-bus/interconnect, memory
bandwidth, and network bandwidth.

• Multiple safety-critical tasks within a VM require timely and correct execution.
We require hierarchical scheduling to ensure predictability for these tasks. The first
level of resource allocation allocates physical resources to each VM. The second
level allocates the virtual resources assigned to a VM among the tasks running
inside that VM.
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• VMs must safely connect to off-site equipment (e.g., axle counters and signals).
Another communication requirement is predictable timing and orderly message
delivery between different VMs or among VMs and off-site equipment. VMs require
a minimum guaranteed network bandwidth to achieve this.

• Predictable timing behavior for re-allocation of safety-critical applications because
of occurrence of faults.

• The virtualization overhead should not hinder the real-time constraints of safety-
critical applications.

• Monitoring is required to detect faults or non-conformant behavior of VMs.

The TAS Control Platform already contains several security hardening measures to
fulfill these requirements. Thus, the introduced virtualization technology must not
hamper any existing security requirements. Besides, the VMs running the TAS Control
Platform require security encapsulation.

VII.2 RT-Cloud Component Selection – Hypervisor
Hypervisors have emerged as invaluable virtualization technologies for running VMs
and driving innovation in a cloud environment. Since a hypervisor enables one host
node to support multiple simultaneous VMs, hypervisors have become important cloud
computing components. Hypervisors make VMs available to users across a virtual
environment while still enabling the administrator to maintain control over cloud’s
resources, applications, and sensitive data. We are interested in hypervisors that are
suitable for efficient execution on large clusters of COTS nodes. Cloud hypervisors must
support a wide range of COTS server hardware, partitioning of various node resources,
resource-efficient scheduling, dynamic reconfiguration (starting, stopping, and migrating
VMs at run-time), and generic interfaces, such as libvirt API [217]. Ideally, they should
also provide support for Intel Xeon-specific features to benefit from Intel Resource
Director Technology (RDT) (e.g., memory bandwidth management, cache allocation,
and monitoring technology) [102]. We considered four of the most widely used hypervisor
technologies for cloud computing:

1. Kernel Virtual Machine (KVM) [110] is a virtualization module in the Linux
kernel that allows the Linux kernel to function as a hypervisor. KVM requires a
processor with hardware virtualization extensions (Section II.17.2), such as Intel
VT [113]. KVM supports scheduling based on a combination of EDF and Constant
Bandwidth Server (CBS). Efforts to further support real-time VMs under KVM
are being made by use of PREEMT_RT real-time patch [193].

2. Xen [111] is an open-source (GPL) hypervisor. It is a type-1 hypervisor and
supports guests with para-virtualization and full or hardware-assisted virtualization.
Xen refers to guest VMs as domains. Every Xen installation contains a VM named
Domain Zero (Dom0) that contains a privileged Linux-based guest Operating
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System (OS) with drivers for the hardware and the tool stack to control the
hypervisors and other VMs. The remaining VMs are called User Domains (DomUs).
These VMs are not privileged and cannot control the hypervisor or other VMs.

RT-Xen [218] is an open-source platform that extends Xen to provide support for
hierarchical scheduling with real-time scheduling algorithms such as the discarding
periodic server (polling server) [219] and the (enhanced) sporadic server [220].

3. VMware ESXi [221] is a type-1 closed source hypervisor. It was leading the
development of virtualization technologies on the x86 platform back in the early
2000s. However, there is no explicit real-time support.

4. Microsoft Hyper-V [222] is Microsoft’s hardware virtualization product. It is
a type-1 hypervisor with support for full virtualization. However, it is a closed
source and not optimized for real-time performance.

VII.2.1 Qualitative Analysis
As a first step, we performed a qualitative analysis of the four hypervisor technologies.
In Table VII.T1, we compare the basic features of interest among these hypervisors.

Xen and KVM are open-source hypervisors, while ESXi and Hyper-V are closed source.
Open source hypervisors allow for a simplified business model and give high accessibility
than closed source ones. As a result, they are more affordable and scalable. A business can
increase the size of the cloud without fearing an increase in software budget. Moreover,
vendor lock-in is a significant issue as providers of closed source hypervisors often
require long-term contracts. For safety-critical domains like railways, it is paramount
that the component integration follows strict safety requirement norms. Open source
hypervisor can help make the component integration easier. Moreover, we can add new
functionalities and resource management features as per the use case requirement without
support from a hypervisor vendor. Therefore, we prefer an open-source hypervisor over
the closed ones.
All four hypervisors support the x86 architecture, and thus, support servers based

on 2nd Gen. Intel Xeon Scalable processors. All of them support full virtualization
and hardware-assisted (full) virtualization (Section II.17.2), which is essential for using
legacy railway applications based on the TAS control platform without modifying them.
In general, hardware-assisted (full) virtualization has better performance than full
virtualization. KVM and Xen additionally support para-virtualization (Section II.17.2).
KVM supports para-virtualized I/O drivers for Linux in form of the VirtoIO drivers
[115]. Xen supports para-virtualized drivers as well as para-virtualized OSs. Using
para-virtualization support Xen and KVM can improve the performance of a guest OS as
compared to full virtualization. However, using para-virtualized drivers with the railway
use case requires adding these drivers to the TAS control platform.
A CPU model is a set of CPU features presented by the hypervisor to the guest. A

host model presents the same hardware features of the host CPU to the guest; i.e., the
virtual CPU model is the same as the physical CPU model. A predefined (or named)
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Hypervisor properties KVM
[110] XEN [111] VMware

ESXi [221]
Hyper-V
[222]

Open Source Yes Yes No No
x86 hardware support Yes Yes Yes Yes

Para-Virtualization
I/O drivers
(Virtio
[115])

Yes No No

Full virtualization Yes Yes Yes Yes
Hardware assisted virtu-
alization Yes Yes Yes Yes

CPU model Host model, host pass-
through, predefined Host model

Host
model,
predefined

Cache model Emulate, pass-through, disable

Libvirt support Yes, full
support

Yes, Most
functionali-
ties

Limited Limited

Table VII.T1: Comparison of Virtualization Technologies for Cloud Computing

CPU model presents a specific set of virtualized features to the guest that is modeled
behind a particular CPU (not necessarily the host CPU). Predefined CPU models help
shield the guest against various CPU hardware flaws. They also make live migration
easier in a cloud with heterogeneous nodes. This is because predefined CPU model
support makes it possible for nodes to emulate the same fixed CPU model irrespective
of the host CPU heterogeneity. From the four hypervisors, KVM supports by far the
most types of predefined CPU models. All hypervisors support three cache models –
emulated, host pass- through, and disabled.

The railway use case requires the support of an open-source orchestration layer, i.e., a
layer that provides a system designer the ability to allocate resources, monitor the cloud,
and assist in recovery upon errors. Libvirt [217] is an open-source API and management
tool for hypervisors that can be used as an orchestration layer in clouds. Libvirt has
good support for KVM and Xen; unfortunately, it has limited support for the other two
hypervisors.
In Table VII.T2, we compare the existing resource management features of the four

hypervisors. Resource management features in hypervisors play a crucial role in ensuring
that the system meets the requirements of safety-critical VMs.
KVM, Xen, and ESXi allow CPU hard pinning and setting CPU affinity for VMs.

Hyper-V only allows setting CPU affinity. KVM and Xen allow allocating specific I/O
threads. However, we could not find any information on the topic for ESXi and Hyper-V.
All hypervisors allow allocation of global, per CPU Quota, memory space, and network
bandwidth to the VMs. Moreover, they all provide an interface to access the core
Performance Monitor Units (PMUs).
KVM and Xen provide support for some real-time scheduling policies, while ESXi

and Hyper-V have no support for real-time scheduling. KVM supports round-robin,
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First In First Out (FIFO), SCHED_DEADLINE (EDF + CBS). Further support for
real-time exists in KVM in the form of PREEMPT_RT [193]. PREEMPT_RT enables
full preemption of critical sections, interrupt handlers, and interrupt disabled code
sequences. Xen supports scheduling policy based on real-time deferrable server [111].
RT-Xen [218] supports hierarchical scheduling with deferrable server, periodic server,
discarding periodic server (polling server) [219], and the (enhanced) sporadic server [220].
All four hypervisors support Non-Uniform Memory Access (NUMA) node tuning.

Often cloud nodes contain multiple processors and memory modules. The relative
location of a memory module to a processor determines the memory access latency of
a VM running on that processor. A VM has better performance if the data accessed
by it is present in the memory module closet (local memory) to the processor. NUMA
node tuning helps to migrate data on demand to memory that is local to the processors
accessing that data.
All four hypervisors support some form of power-saving functionalities. Unchecked

power consumption leads to a large amount of excess heat production. As a result,
cooling costs also increase. Moreover, heating can lead to a reduction in the life span
of the hardware. Although servers have unlimited access to electricity, power saving is
required to keep the electric costs down. Hence, all hypervisors must have support for
power-saving functionalities.
As discussed in Chapter IV, 2nd Gen. Intel Xeon processors have special hardware

features to support monitoring and allocation of Last Level Cache (LLC) space and
memory bandwidth. To get the most advantage of nodes consisting of these processors,
hypervisor support for their features is essential. In newer versions of Xen and KVM
it is possible to access these features. However, ESXi and Hyper-V do not provide any
support. Moreover, since they are closed source, it is cumbersome for us to integrate
these hardware features with the hypervisors.
Based on the qualitative analysis done so far, we concluded that KVM and Xen are

better suited than ESXi or Hyer-V. ESXi and Hyer-V either miss or have limited support
for essential features such as predefined CPU models, Libvirt, and real-time scheduling
options. Moreover, they do not allow us to benefit from the Intel Xeon specific features.
Finally, since they are closed source, we cannot add missing or new functionalities or
resource management features as per requirement. Therefore, we narrowed down the
selection of hypervisor technology between KVM and Xen. In terms of requirements,
KVM and Xen equally suit our use case as per the qualitative analysis.

VII.3 Quantitative analysis
To further narrow down our choice, we performed a quantitative analysis of Xen and
KVM by running benchmarks to compare their performance. Most previous works
use benchmarks to compare the average performance of Xen and KVM for non-safety
critical systems (e.g., [223] and [224]). The works that consider real-time systems and
worst-case comparisons only present the Cyclictest benchmark [225] for a single core on
non-server-grade hardware platforms (e.g., [226]). We used the benchmarks to evaluate
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the worst-case performance on COTS server-grade hardware with the multicore processor.
Moreover, we ran benchmarks to observe the effect of multicore contention on the VMs.
Our experimental setup consists of a COTS Dell R640 server based on a single Intel

2nd Gen. Xeon 5218 processor (Section II.4) running at 2.30GHz. The processor has
16 dual-threaded CPU cores and 96GB memory (12 DDR4 Dynamic Random-Access
Memory (DRAM) modules × 8GB). We disabled hardware multi-threading (logical
processors) in the BIOS as it leads to an increase in shared resource contention. Thus,
we only have the 16 physical CPU cores available for use (instead of 32 logical cores).
Additionally, we disabled C-states and other hardware power-saving features in the BIOS
to ensure that frequency scaling does not affect the system behavior.
We used KVM and Xen with the following specifications:

1. KVM with Ubuntu server and Linux Kernel version 5.4.87-rt48 SMP PREEMPT_RT
as Host OS

2. Xen (version 4.11.4, Real-Time Deferrable Server - RTDS) with Ubuntu server
20.04.1 and Linux Kernel version 5.4.87 SMP Preempt as Dom0. We do not use
PREEMPT_RT version in Dom0 as a previous work has already shown that
PREEMPT_RT does not work well with Xen and incurs exceptionally high latency
[226].

Both, KVM and Xen, used hardware assisted virtualization (Intel VTx [113]). In the
case of KVM, we isolated cores 2 to 15 from SMP balancing and scheduler algorithms of
the host OS (by using the isolcpus kernel parameter). The only way to move a guest
VM onto or off an isolated CPU is by assigning CPU affinity. It ensures that KVM does
not place unwanted VMs or host OS threads on these CPU cores. Similarly, in the case
of Xen, we restricted Dom0 to physical CPU cores 0-1 and left CPU cores 2 to 15 for
executing guest VMs.
We considered three scenarios:

1. Scenario 0 – No virtualization + isolation: In this scenario, an Ubuntu server
20.04.1 (Linux kernel 5.4.87-rt48 SMP Preemt_RT) runs directly on the hardware
platform and employs no virtualization. We used this scenario to compare as a
baseline and observe the overheads introduced by Xen and KVM in the other two
scenarios. We executed the benchmarks alone (one at a time) on top of Linux and
pinned them to CPU 2. We did not use any other interfering benchmarks.

2. Scenario 1 – Virtualization + isolation: One Guest VM with 1 virtual CPU (vCPU)
pinned to physical CPU core 2. We allocated 4GB RAM to the VM. We ran the
benchmarks alone (one at a time) in this VM for Xen and KVM. We did not use
any other interfering benchmarks.

3. Scenario 2 – Virtualization + interference: 14 Guest VMs, each with 1 virtual CPU
and 4GB RAM. We pinned the vCPU on a physical CPU core between core ID 2
to 15 (only one vCPU ran on a physical core). We did not place any restrictions
on the amount of other shared resources (e.g., memory bandwidth and network
bandwidth) used by the VMs. We ran the benchmarks (one at a time) in each VM
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simultaneously for Xen and KVM. We aimed to observe the performance of the
hypervisors under resource contention.

Table VII.T3 and VII.T4 summarizes the three scenarios.

Scenario Host
Number
of
VM(s)

Description

0. No virtualization +
isolation Linux (isolcpus=2-15) none Benchmarks pinned to

core 2

1. Virtualization +
isolation

KVM (isolcpus=2-15)
or Xen (Dom0=0-1) 1

VM executing bench-
marks pinned to core
2

2. Virtualization +
interference

KVM (isolcpus=2-15)
or Xen (Dom0=0-1) 14

VMs executing bench-
marks pinned to core
2-15 each (one VM per
core)

Table VII.T3: KVM vs. Xen - Summary of the Three Scenarios

Scenario Core ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 VM No Virtualization

Benchmark 3

1 VM 3

Benchmark 3

2 VMs 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Benchmark 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Table VII.T4: KVM vs. Xen - Three Scenarios

Due to confidentiality issues, it was not possible to directly use TAS Control Platform
as Guest OS to present the results of this evaluation. Instead, we ran the Ubuntu server
(Linux Kernel version 5.4.87-rt48 SMP Preempt_RT) in all guest VMs. We chose Ubuntu
Linux with PREEMPT_RT as the guest OS because it is similar to a TAS Control
Platform and has out-of-the-box support for all the required benchmarks. In contrast to
the TAS Control Platform, it is not optimized towards extreme low latency, and therefore,
absolute numbers of the benchmarks are not representative of what we can achieve when
using the TAS Control Platform. However, the motivation for the benchmarks is to
compare KVM against Xen. The relative performance of both hypervisors remains
independent of whether we use the TAS Control Platform or Ubuntu.
We used four different benchmarks to compare the hypervisors with respect to CPU,

memory, and network performance. The railway applications of the use case do not rely
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on the filesystem during their operational phase. Instead, they have all the necessary
data pre-fetched to the memory. Thus, we did not use a benchmark to compare the
performance of reading or writing from the filesystem. The following subsections explain
the benchmarks and present the results of the benchmarks from the three scenarios.

Cyclictest Benchmark

Cyclictest [225] measures the latency of a (Linux-based) OS to a stimulus. Latency refers
to the delay between the occurrence of an event to the time when the kernel handles
the event. For example, the delay between the timer expiration and the kernel handling
the task (thread) waiting for that timer. Such latency exists in all OSs. The causes of
latency include scheduler overheads, delay due to high priority tasks, delay preempting
the currently running task, and interrupt overhead. Cyclictest measures latency by
calculating the time between when a timer expires and when the thread that sets the
timer runs.

It is problematic to ensure that a safety-critical railway task meets its deadline if the
guest OS experiences unpredictable latency due to the virtualization platform. Therefore,
the latency must not exceed an arbitrary threshold in the worst case. System designers
can determine this threshold based on the real-time parameters of the safety-critical
railway tasks in the VM. Unfortunately, the exact value for this threshold is not provided
due to confidentiality issues. However, we need the latency to be in a low microsecond
value.

We ran the cyclictest benchmark to determine the worst-case observed latency in the
VMs of our scenarios. Since executing an event from an idle state is usually spontaneous,
the results of cyclictest would not be meaningful if we ran the benchmark only for a short
period and without appropriate stress loads. We were interested in detecting the reaction
to an asynchronous event independent of the time and code-path when the event occurs.
Therefore, we ran additional CPU stressing benchmarks (Sysbench CPU) together with
cyclictest to determine the worst-case latency reliably. We ran cyclictest for continuous
1× 108 test cycles in each case. The base interval of the thread for cyclictest was 1000µs.

As observed in the graph in Figure VII.F4, scenario 0 (no virtualization) had the
lowest observed worst-case latency (9µs). The VM in Scenario 1 with KVM had the
closest worst-case latency (32µs) to scenario 0. However, Scenario 1 with Xen had a
much higher maximum observed latency (377µs) as compared to both scenario 0 and
scenario 1 with KVM.

As expected, we did not observe considerable differences between the results of scenarios
1 and 2 for the same hypervisor as CPU cores are not shared by the VMs. The maximum
observed values for scenario 2 with KVM and Xen were 45µs and 455µs. Limited usage
of shared resources, such as LLC and memory bandwidth, lead to the minor difference
in the observed values between scenario 1 and 2.

We conclude that KVM introduced lower virtualization overhead as compared to Xen.
Thus, if we use KVM to run the railway VMs, the safety-critical railway tasks of each

1Lower latency values are better
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Figure VII.F4: Cyclictest Bechmark1

VM can meet their deadline if the earlier mention threshold is > 45µs for this hardware
architecture. In Xen, this threshold must be > 455µs. Hence, we prefer KVM over Xen
for this scenario.

As a reminder, the experiments were performed with VMs running Ubuntu server (Linux
Kernel v5.4.87-rt48 SMP Preempt_RT) and not TAS platform due to confidentiality
issue. Therefore, the actual value for the TAS platform will be lower as it is geared
towards low latency performance. However, the relative latency of both hypervisors
remains similar.

Sysbench CPU Benchmark

We used Sysbench CPU benchmark [227] for benchmarking CPU capabilities in the
three scenarios. It measures CPU performance by counting how many operations are
performed within a given time or how long a benchmark takes to complete. It stresses the
CPU by performing prime number verification. Based on the reduction of performance
observed running this benchmark between Scenario 0 and the other two scenarios, we
can estimate the impact on the worst case execution time of a safety-critical railway
application (running in a VM) due to virtualization.
We ran this benchmark 1000 times for verifying prime numbers up to 20000. As

observed in the graph in Figure VII.F5a, Scenario 0 (no virtualization) had the lowest
observed worst-case execution time (5.64ms). The benchmark executing in the VM of
Scenario 1 with KVM had worst-case execution time (7.24ms), which is the closest to
scenario 0. In the case of Xen, the maximum observed execution time in scenario 1
(8.28ms) is higher than the former two cases.

As observed in the graph in Figure VII.F5, Scenario 0 (no virtualization) and scenario
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Figure VII.F5: Sysbench CPU Benchmark2

1 with KVM performed almost the same number of events per milliseconds (295 and
286 events/ms, respectively). However, scenario 1 with Xen performed lower events per
milliseconds (198 events/ms).

As expected, we did not observe considerable differences between the results of scenarios
1 and 2 for the same hypervisor as CPU cores are not shared by the VMs. The maximum
observed execution times for scenario 2 with KVM and Xen were 7.72ms and 9.08ms
(Figure VII.F5a), while the minimum observed events per milliseconds were 283 and
144 events/ms respectively (Figure VII.F5b). Limited usage of shared resources, such
as LLC and memory, leading to the minor difference in the observed values between
scenarios 1 and 2. Overall, scenario 2 with Xen had the worst performance impact.

Again, we conclude that KVM introduced lower virtualization overhead as compared
to Xen. If we use KVM to run the railway VMs, the performance impact is much lower
than compared to Xen. Hence, we prefer KVM over Xen for this scenario.

Sysbench Memory Benchmark

We used Sysbench Memory benchmark [227] for determining the memory read and write
bandwidths in the three scenarios. This benchmark allocates a memory buffer and then
reads or writes from it until the entire buffer has been read or written. The size of each
read or write is 64 bits. Based on the reduction of performance observed running this
benchmark between Scenario 0 and the other two scenarios, we can estimate the impact
on memory read or write bandwidth for the railway VMs due to virtualization.
We ran the benchmark 1000 times to read or write 100GB from/to the RAM by a

single thread. As observed in the graph in Figure VII.F6, Scenario 0 (no virtualization)
and scenario 1 with KVM achieved similar read bandwidth (1.39Gbps and 1.31Gpbs)
and write bandwidth (1.30Gbps and 1.22Gpbs). However, scenario 1 with Xen performed

2Lower execution time values and higher events per millisecond values are better.
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Figure VII.F6: Sysbench Memory Read and Write Benchmark3

poorly (read – 0.452Gbps and write – 0.44Gpbs). We experimented with different settings
for Xen. However, none of the settings provided any change in the available bandwidth
for the VMs.
Since the memory bandwidth is shared by the VMs in scenario 2, we observed

a considerable reduction in this scenario with KVM (read – 0.568Gbps and write –
0.40Gpbs). On the other hand, Scenario 2 with Xen (read – 0.39Gbps and write –
0.39Gpbs) performed similarly to Scenario 1 and incurred only a slight reduction in the
bandwidths. However, the performance of scenario 1 with Xen was already low. Overall,
scenario 2 with Xen had the worst performance impact.

Again, we conclude that KVM introduced lower virtualization overhead as compared
to Xen. Thus, if we use KVM to run the railway VMs, the VMs can potentially obtain a
higher memory bandwidth. Hence, we prefer KVM over Xen for this scenario.

iPerf3 Benchmark

We used iPerf3 [228] to benchmark the achievable bandwidth and delay jitter on IP
networks. The benchmark supports various parameters related to timing, buffers, and
protocols (such as TCP and UDP).
We hosted the iperf3 server on a separate computer connected via a gigabit router.

We ran this benchmark in the three scenarios. Firstly, we used TCP protocol with a
window size of 128KB for 1000 seconds (total transmitted data: 71.8GB) to measure the
sender/receiver network bandwidth. Secondly, we use the UDP protocol with a buffer
size of 1460B for 1000 seconds (total transmitted data: 125MB) to measure the delay
jitter.

3Higher bandwidth values are better.
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Figure VII.F7: iPerf3 benchmark4

Figure VII.F7 shows the results. We observed only a small reduction in sender and
receiver bandwidth in Scenario 1 (KVM – 617Gbps and Xen – 617Gbps for both, sender
and receiver) as compared to scenario 0 (638Gbps). Scenario 1 (KVM – 0.060ms and
Xen – 0.091ms) has higher worst-case delay jitter as compared to scenario 0 (0.037ms).

Since the network bandwidth is shared by the VMs in scenario 2, we observed a drastic
reduction in this scenario (KVM – 41Gbps and Xen – 41Gbps). However, Xen (0.97ms)
suffered from a higher worst-case jitter as compared to KVM (0.68ms). Thus, if we use
KVM to run the railway VMs, the VMs will suffer from a lower delay jitter.

VII.4 Demonstration
Taking into account the qualitative and the quantitative analysis, Thales Austria GmbH
selected KVM as the hypervisor of choice to host the safety-critical railway VMs.
For demonstrating the feasibility of using KVM, a test setup with a virtualized

RBC application (a Triple Modular Redundancy (TMR) application with TAS Control
Platform) was deployed by Thales in coordination with the Austrian federal railways
(ÖBB) [152]. In an actual deployment scenario, an RBC retrieves track-side information
from an interlocking. It communicates via a radio link to the On-Board Unit (OBU) of
a train and provides the OBU with movement authorities, such as how fast the train can
go and when the train needs to brake. Both the OBU and the interlocking are external
components connected via a secure tunnel to the cloud.
The demo setup emulated the OBU, interlocking, and other required components

by software simulations. The simulated components communicated with the RBC
similar to the real components. They used railway-specific protocols with additional

4Higher bandwidth values and lower delay jitter values are better.
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Figure VII.F8: Test Setup for the RBC Application

security protection and network isolation. Figure VII.F8 illustrates the test setup. The
demonstration showed that a KVM-based private cloud can safely run a safety-critical
RBC application.
This demonstration proved that our selected virtualization technology, KVM, can

fulfill the operation of safety-critical TMR railway applications based on the TAS Control
Platform in a private cloud.

VII.5 RT-Cloud Component Selection – Resource Management
Layer

We propose a KVM-based private cloud containing three zones. A zone is a deployment
area that is considered a single failure domain. We must deploy replica VMs of TMR
applications, such as the TAS control platform considered in the railway use case, in
different zones to increase availability, improve fault-tolerant VMs and help protect
against unexpected failures.

As observed in scenario 2 in the quantitative analysis, when we executed multiple VMs
in parallel, there was contention in the shared resources. Thus, KVM alone on a node is
not adequate to meet all the requirements for a safety-critical use case such as the railway
one described in this chapter. KVM neither supports partitioning and allocation of all
the node resources among the VMs, nor does it have a view of cloud-wide resources. As
explained in Section II.25, it is challenging to meet end-to-end constraints by considering
each node, resource, or application individually. On the contrary, we require monitoring,
control, and coordination of cloud nodes to ensure that the safety-critical VMs can meet
end-to-end deadlines (even in the presence of faults), while non-critical VMs can achieve
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the desired Quality of Service (QoS). Hence, we propose to use our resource management
framework explained in the previous chapters with a private cloud.
For resource management purposes, each node Nλ contains a virtualization domain

Local Resource Manager LRMλ (Section IV.8) to manage the resources in coordination
with KVM. Each Local Resource Manager (LRM) executes on top of KVM directly
and has multiple LRSs and Local Resource Monitor (MONs). For ensuring adequate
allocation of shared resources, we can use the LRSs proposed in Section IV.7 or use
existing schedulers as LRSs. For example:

• A table-driven scheduler for cloud hypervisors, such as Tableau [229] or ARINC
653 scheduler [111]. Each safety-critical railway VM has quite a few services and
subsequently various internal timeouts running. Suppose the hypervisor schedules
the VMs at any time. In that case, jobs running in the VMs might occur at any
arbitrary time without a fixed period in-between, albeit being overall restricted
with their CPU usage. To exploit existing KVM schedulers for the TAS Control
Platform would require reducing the internal functionality and aligning the “time
slices” with the host, which breaks the boundary of the VMs for synchronization
mechanism. A table-driven scheduler will ensure that the safety-critical VMs are
provided CPU execution time as per their Worst-case Execution Time (WCET)
precisely when required. Unfortunately, neither Tableau nor ARINC 653 scheduler
have an existing implementation for KVM, our hypervisor of choice. Both of them
have been implemented only for the Xen hypervisor. Due to the difference in the
internal functioning of Xen and KVM, we could not use these existing solutions
with KVM. Thus, we use our TT-LRS design (Section IV.7.4). Section VII.6.1
provides an evaluation and overheads for our TT-LRS.

• Intel Cache Allocation Technology (CAT) [102] and KVM memory allocation [110]
to allocate dedicated LLC line(s) and memory space(s) respectively to safety-critical
VM. The LLC line(s) and memory space(s) assigned to a VM are not accessible
by unauthorized VM, thus ensuring isolation among VMs. A minimum allocation
of LLC space helps reduce the pessimism in WCET estimation and contributes
towards ensuring that the safety-critical VMs meet their deadlines. For interfacing
with CAT, we use the LRS design presented in Section IV.7.3. We allocate memory
regions to VMs by using the KVM API [230].

• Intel MBA [102] or MemGuard [88] to allocate memory bandwidth to VMs. As
observed while running the memory benchmarks, there is a drastic reduction in
the maximum available memory bandwidth when concurrently executing VMs
access the memory. A minimum allocation of memory bandwidth helps reduce
the pessimism in WCET estimation and contributes towards ensuring that the
safety-critical VMs meet their deadlines. For interfacing with MBA, we use the
LRS design presented in Section IV.7.3. In Section VII.7, we present some initial
results from our evaluation of MBA to regulate the memory bandwidth.

• KVM network bandwidth allocation [110] to allocate average and peak inbound
and outbound network bandwidth to safety-critical VM. We can allocate network
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bandwidth to VMs by using the KVM API [230]. In the context of this dissertation,
we do not use this feature and leave it for future work.

For monitoring resource and applications, we can use the MONs proposed in Section
IV.4 or use existing solutions as MONs. For example:

• The CPU usage monitor in KVM [110] to monitor the CPU availability. Based on
the CPU availability, the LRM can decide on the scheduling of new VM on the
node. The LRM can take action if a VM misbehaves and exceeds its assigned CPU
budget.

• Intel Memory Bandwidth Monitoring (MBM) and Cache Monitoring Technology
(CMT)[102] to check the memory-bandwidth and LLC usage by each VM. The
LRM can take action if a VM exceeds its assigned memory bandwidth quota. For
interfacing with MBM and CMT, we use the MON design presented in Section
IV.7.3. A Network-bandwidth monitor, a KVM feature, has similar functionality
as MBM for the network.

• Potential deadline overrun MON (Section IV.4.4) and core failure MON (Section
IV.4.3).

The LRM of a node manages all the node’s resources based on the monitoring
information provided by the MONs. The LRM assigns the required resource to the VMs
(via LRSs) to ensure that the safety-critical VMs meet their safety assurance levels and
the non-critical VM can get the best possible QoS.
Similar to local and global resource management explained in Chapters IV and V,

the resource management reconfigures the cloud upon resource failures or change in
conditions at run-time. If node-level scheduling of a VM is not possible, the LRM
coordinates with the global resource management to find nodes that can accommodate
the VM. In addition, the global resource management ensures that no replica VMs of
TMR safety-critical applications are placed in the same Zone.

In the avionics use case (Chapter VI), we used a single central Global Resource
Manager (GRM) (IV.9.1) to provide reconfiguration for core failure management. As
illustrated in Figure VII.F9, we use the distributed global resource management here for
cloud-wide reconfiguration as it provides additional safety and security as explained in
Section V.6. A distributed Global Resource Manager DGRMλ can be present on a node
Nλ. However, all nodes do not need a Distributed Global Resource Manager (DGRM)
present on them. As a reminder, we only need 3f + 1 DGRMs to ensure Byzantine
fault tolerance. The LRMs of nodes without DGRMs participate in global resource
management via other nodes as explain in Section V.7.1.
In Section VII.8, we present the evaluation for reconfiguration in the cloud for core

failure management using the DGRM (Section V.6).
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VII.6 TT Scheduling on Cloud Nodes
This section describes our CPU-and memory bandwidth-aware offline scheduler that
generates a TT scheduling table for use with an LRM and a TT-LRS (Section IV.7.4).
For simplicity of explanation, we assume each VM requires only one virtual CPU. We
consider safety-critical VMs with a constant amount of memory accesses. Each VM is
granted at most one memory access at a time, resulting in waiting times for accesses
from other VMs. We assume that an ongoing memory access is not preemptible.

We consider global time whose progress is triggered by equidistant events, ε0, ε1, . . . , ε∞
[62]. We consider a sparse time base where the time duration separating two of these
events, εs and εs+1 respectively, is called a Slot, Ss [51]. ∆tSlot is the duration of each slot.
∆tSlot is constant and same for all slots. Slot start(S0) = ε0, end(S0) = start(S1) = ε1
and so on. A multicore slot on a cloud node can run P VMs at a time, where P is the
total number of CPU cores on the node. The sum of the reserved bandwidth for each of
the VMs running in a single slot must not exceed the maximum allowed bandwidth of
the node (BWmax). Each slot is represented by Ss(∆tSlot, BW p

S , Ms, SBWs) as shown
in Table VII.T5.

A slot Ss is described by: Units
CPU Allocation ∆tSlot in time units, e.g., milliseconds
Memory Bandwidth allocation BW p

s for
each core p ∈ {0, 1, . . . P − 1}

in memory accesses per regulation interval
of a slot

Mapping Ms of VMs (τ) allocated to Ss
to CPU cores

M:τ → p

Spare (unused) Memory Bandwidth SBWs in memory accesses per regulation interval
of a slot

Table VII.T5: Summary of Slot

We define a regulation interval as a slot-wide parameter that is small to enforce
memory bandwidth BW p effectively. In the most straightforward implementation, the
regulation interval can be equal to the slot length. However, this would lead to very
coarse memory bandwidth regulation. Although a small regulation interval is better
for predictability, there is a practical limit on reducing the period due to interrupt and
scheduling overhead; based on MemGuard [88], we set the regulation interval to 1ms.

We define a VM τt with a tuple 〈rt, Cs
t , d, φt, C

m
t 〉, where rt is the start slot of τt, Cs

t is
worst-case execution time of τt (in slots) when running in isolation and with no memory
bandwidth restrictions, dt is the absolute deadline of the τt (in slots), φt is the maximum
number of memory accesses τt is allowed to issue per regulation interval, and Cm

t is the
worst-case execution time of τt (in slots) when restricting the memory bandwidth of
the τt to φt accesses per regulation interval. Note that Cm

t is dependent on φt; as the
memory bandwidth of the task φt is increased, Cm

t will decrease. In other words, each
value for φt will produce a different Cm

t for each τt. Moreover, [65] demonstrated that
the latency for a single memory access operation increase significantly when the number
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of active cores increases.
We created a heuristic algorithm to assign slots to τt before runtime, considering the

points mentioned earlier. φt and its corresponding Cm
t are determined in such a way

that the τt is schedulable while using the minimum possible bandwidth from BWmax on
the node. Appendix E presents this heuristic. The result of the heuristic is a scheduling
table with slots consisting of BW p

s values, Ms, and SBWs per slot Ss.
This scheduling table is stored by the LRM of a cloud node. The LRM only runs on a

node’s non-TT (housekeeping) core and executes before the start of each slot (Figure
VII.F10). The LRM controls a TT-LRS (Section IV.7.4) on each core of the node and
executes VMs in a slot Ss as per the mapping Ms in the scheduling table. At the start
of a slot, the TT-LRS stops VMs currently executing and dispatches the new VMs as
ordered by the LRM. The LRM also controls a LRS based on Memguard [88] which
reserves memory bandwidth BW p

s for core p during slot Ss. If a VM finishes execution
early, the Ms is updated accordingly in future slots, and the BW p

s value stored for that
VM in future slots is freed (as a result, SBW increases for those slots).

If no TT VM is assigned to a core β in a slot Sρ, the LRM lets the Linux scheduler
execute any available non-TT VMs on core β only for duration of Sρ. However, the LRM
still restricts the memory bandwidth of these core β to ensure that it does not exceed
the spare memory bandwidth SBWρ of Sρ. If multiple such cores exist in a slot Sρ, then
SBWρ is divided among these cores proportional to the demand of the non-TT VMs
executing on the respective core. This ensures efficient use of the node resources without
impacting the TT VMs. Moreover, at end of a slot, the LRM of a node updates any
change in SBW and M of future slots, and status of applications to the GRM for global
resource management purposes.

An added advantage of this approach is that if an LRM has access to multiple scheduling
tables for its node, it can easily switch between them upon a change in operational modes
or a local/global reconfiguration without incurring any overhead. The LRM can change
the scheduling table at the end of a slot if an immediate mode change is required or at
the end of a hyperperiod if a deferred mode change is needed. The TT LRS remains
unaware of the mode change as it only dispatches VMs every slot as per the directive of
the LRM.

VII.6.1 TT-LRS Evaluation
As explained in Section IV.7.4, we designed a LRS to support scheduling of TT VMs in
KVM (with PREEMPT_RT patch). KVM schedules VMs based on the Linux scheduler.
The TT-LRS introduced a new scheduling policy in Linux (SCHED_TT ). The new
scheduling policy has the highest priority and sits on top of the hierarchy of (native)
Linux scheduling classes: TT > RT (Real-Time) > CFS (Completely Fair Scheduling)
> IDLE. If there are no runnable TT class VMs (or Linux processes), the Linux
scheduler looks for runnable VM (or Linux processes) in each class in decreasing priority
order.

Unlike the existing scheduling modules in Linux, the LRM (running on the housekeeping
core) must explicitly enable the TT-LRS on a set of CPU cores at runtime (Figure
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VII.F10). Before start of a slot Ss, the LRM provides the TT-LRS on each core with a
TT VMs (if available) as per the mapping Ms to run in Ss. The LRM itself runs as a
real-time Linux task on a non-TT (housekeeping) core and has a period equal to one
slot length (∆tSlot). Hence, an LRM instance occurs once every slot.
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Figure VII.F11: TT Dispatcher Overheads

The experiments were performed on an Intel i6500 CPU (4 physical cores) running
at 3.2 GHz with 8GB RAM. Core 0 was used as a housekeeping core, while core 1 to
3 were used to schedule the TT VMs. We measured the maximum observed overhead



200
Chapter VII. Railway Use Case:

Real-Time Cloud via Resource Management

VM Mi-
gration

T (Task
tick)

TS (Tick
skew)

ST (sched-
ule trigger)

S
(__schedule)

P(pick
next task
TT)

D (Total
dura-
tion)

Disabled 0.44 0.88 0.75 0.94 0.35 1.74
Enabled 0.47 0.34 0.69 2.31 1.58 2.9

Table VII.T6: Maximum Observed TT LRS Overhead (µs)

for using the TT-LRS with migration between CPU cores enabled or disabled (via the
offline scheduling table). The overhead includes the time taken for the complete Linux
scheduler including the time for executing the TT-LRS. We denote the overall maximum
observed overhead by D in Figure VII.F11 and Table VII.T6.
The Linux scheduler_tick() function is called regularly by a timer interrupt on each

core. scheduler_tick() function calls the task_tick_TT() function of our TT-LRS (on
each core). At start of each slot, the task_tick_TT() function checks if the LRM has
assigned a new VM for its CPU core. If there is a new VM available, then it marks the
core for rescheduling. We measure the scheduler_tick() function overhead including the
time for task_tick_TT() function. We denote this overhead by T in Figure VII.F11
and Table VII.T6. In addition, we observed that the timer interrupt for the Linux
scheduler_tick() does not occur synchronously on each core due to a small clock skew
between the cores. We denote the overhead due to this skew by TS.

If a core is marked for rescheduling, the Linux kernel triggers the __schedule() func-
tion, the main entry point to the Linux task (VM) scheduler. We denote the time
it takes for the Linux kernel to trigger the __schedule() function by ST in Figure
VII.F11 and Table VII.T6. To decide which process to run next, __schedule() uses the
pick_next_task_TT() function of our TT-LRS (on each core). pick_next_task_TT()
returns the task_struct of the VM to be scheduled in the upcoming slot. In turn, __sched-
ule() schedules this VM on the core. We denote the time taken to execute the __sched-
ule() and the pick_next_task_TT() functions by S and P . If pick_next_task_TT()
returns null on a core, i.e., LRM has assigned no TT-VM for that slot, then __schedule()
checks for an available non-TT-VM (Linux process) and schedules it. This non-TT-VM
can run until the end of the current slot.

Based on the global Slot-Shifting algorithm by Schorr and Fohler [231], we select the
slot size as 10ms. The overall maximum observed overhead to dispatch new VMs with
migration enabled and disabled is 1.74µs and 2.9µs (0.017% and 0.029% of the slot size),
which is considerably better than inbuilt Linux schedulers and slightly better than that
reported for tableau scheduler with Xen [229]. Graphs in Figures VII.F13 and VII.F12
show the results in more detail.
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Discussion - Adding Runtime Flexibility to TT Schedule in Cloud Nodes

To add new Event-Triggered (ET) VMs to the scheduling table at runtime, we propose
an initial idea for an algorithm inspired by the global Slot-Shifting [231] to the LRMs.
We propose to group a set of consecutive slots into a capacity interval (or simply

interval for short). We define an interval as a set of consecutive slots that possess the
same mapping M of VM(s) to CPU cores. In other words, a new interval starts on slot
Ss when the set of VMs assigned to this slot are different from the ones assigned to the
previous slot (Ss−1). Intervals may contain some cores that have not been assigned any
VM, resulting in idle slots within the interval. These slots define the Spare CPU Capacity
of an interval ιf (SCPUf).Furthermore, each core p is reserved memory bandwidth
BW p

f depending on which VM it was assigned for interval ιf . The unreserved memory
bandwidth for ιf is denoted as SBWf .

An LRM can use SCPUf and SBWf to add an ET VMs to the mappingM at runtime.
To do so, the LRM must execute an acceptance test and a guarantee routine similar to
Slot-Shifting [231]. When a new VM arrives, the acceptance test determines if there
is enough available SCPU and SBW in the intervals before the VM’s deadline. If the
acceptance test is successful, the guarantee routine is executed to add the VM to the
mapping M and update the SCPU and SBW of all affected intervals (and slots). As a
result, this routine shall guarantee the resource allocation to the new accepted VM. Note
that, unlike previous work, the new acceptance test and guarantee routine should take
into account the node’s SBW and the VM’s φ. We leave the detailed implementation of
the modified acceptance test and guarantee routine to future work.

If an LRM is unable to accept (and guarantee) a new ET VM due to unavailability of
resources, the LRM requests the GRM for cloud-wide adaptation. The GRM, in turn,
searches for another node with more appropriate resource availability and dispatches the
VM to that node. Similarly, if a node is unable to execute an existing VM or the VM
does not achieve the desired QoS due to a change in availability of resources, the LRM
informs this to the GRM. The GRM, in turn, redeploys the VM to another node in the
cloud. The change in availability of the resources can result from failure or a change in
the demand for resources.

VII.7 Intel Memory Bandwidth Allocation (MBA) Evaluation

Preventive methods are often used for memory bandwidth regulation, for example,
Memguard [88]. These methods limit the number of memory requests that each CPU
core can issue. The memory accesses performed by a core are determined by using a
Performance Monitor Counter (PMC), usually programmed to count the LLC misses.
However, PMCs can be highly accurate or highly inaccurate. Their accuracy depends
upon how they are accessed, the application running on the core, and the measured
event [232]. Moreover, existing approaches have high overheads and do not scale well
with the increase in CPU cores. In addition, they reduce the performance of the CPU.
For example, suppose a core utilizes the assigned number of memory accesses in the
regulation period. In that case, the application running on the core is preempted, and
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the core is forced to idle for the remaining time of the memory bandwidth regulation
period, thus reducing the CPU performance.

As explained in Section IV.6.3, Intel has introduced a new programmable bandwidth
controller in the 2nd Gen. Intel Xeon processors [30] as part of the MBA hardware
architecture. This approach does not require interrupting cores to regulate the memory
bandwidth. In theis Section, we present some initial results from our evaluation of
Memory Bandwidth Allocation (MBA) capability to regulate the memory bandwidth.

As explained in Section IV.7.3, we developed an LRS to interface with this hardware
feature. We used this LRS to set the MBA delay values and observe the effect on a
synthetic memory read benchmark. We ran the benchmark application on a fixed core
(core 2) of an Intel Xeon Silver 4208 processor (2.10GHz). We assigned a 512KB array
to the benchmark application. The benchmark application accessed memory (data load)
with 64bytes steps (= LLC line size). This ensured cache misses and stressed the memory
bandwidth. We performed the experiments under two scenarios:

• Scenario No-Write-Back (NWB): In this scenario, the LLC was (almost) empty
before the benchmark was executed. Each memory access from the benchmark
caused an LLC miss. As a result the corresponding cache line was fetched from
the memory and stored in the LLC.

• Scenario Write-Back (WB): In this scenario, the LLC was completely filled with
random data before the benchmark was executed. Each memory access from the
benchmark caused an LLC miss. As the LLC was completely full, an existing
cache line was evicted before a new cache line was fetched from the memory and
stored in the LLC. The evicted cache line caused additional memory traffic due to
write-backs.

The main aim of the experiment was to observe the variability in the execution time
of the benchmark and the number of memory accesses performed by the benchmark with
different MBA delay values. We measure the execution time by using a hardware MON
(a core PMU programmed to count clock cycles). Figure VII.F14a shows the observed
execution time of the benchmark in both scenarios with different delay values based
on 60 runs of the benchmark. As per the errata published by Intel [194], delay values
> 10 and < 40 written to the MBA delay value register (MSR 0xD50 to 0xD57) may be
read back as 10. We experimentally confirmed that this issue is present in our platform.
Hence, we do not show delay values 20 and 30 in the graph. As observed in the graph,
only delay values of 70, 80 and 90 showed considerable change in the execution time of
the benchmark as compared to 0 delay.
Furthermore, we performed experiments to compare the number of memory accesses

the benchmark could perform in a fix amount of time (= to time taken to perform 8192
memory accesses with no delay). We count the memory access by using a hardware
MON (an uncore PMU programmed to count read Column Access Strobe (CAS) of the
Integrated Memory Controller (IMC)). We only considered delay values of 70, 80 and 90
as they showed change in the execution time. Figure VII.F14b shows the results based
on 60 runs of the benchmark. The number of memory accesses between the two scenarios
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reduces by almost half in each case. This shows that MBA inserts delay to the memory
fetches as well as write-backs. This is an additional advantage over existing techniques
that are based on LLC misses and ignore memory bandwidth consumed by write-backs.
As part of the ongoing work, we are in the process of experimentally analyzing the

impact of multicore contention on MBA and determining how to use MBA for allocating
memory bandwidth to cores running safety-critical applications/VMs for ensuring that
they meet their deadlines.
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Figure VII.F14: Impact of MBA Delay Values on a Benchmark

VII.8 Distributed Global Resource Management Evaluation
In this section, we give a proof-of-concept demonstration and measure the delay for global
reconfiguration with the safe and secure blockchain-based distributed global resource
management (Section V.6) using a core failure scenario. The core failure scenario is similar
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to the one we considered for evaluation in the avionics use case (Section VI.5.1). However,
here we consider a KVM-based cloud with up to 12 Sawtooth-enabled (simulated) nodes
with DGRM smart contract for global resource management (instead of a single central
GRM).
As a reminder, we designed a new Sawtooth transaction family called the Resource

Manager (RM) transaction family (Figure V.F8b on Page 137) for implementing the
DGRM and the LRM on the nodes. The Resource Manager (RM) transaction family
consists of the following:

1. An LRM Client (CLI) to handle the local resource management logic.

2. A data model to record the cloud-wide system state in the blockchain.

3. A DGRM smart contract (Transaction Processor (TP)) that runs in the blockchain
and handles the global resource management logic for distributed decision-making.

We implemented the LRM CLI in a VM running Ubuntu server 18.04 LTS and
Sawtooth v1.1 on a dedicated core. In reality, only one LRM CLI VM (not including
replicas) must be present on a node. However, due to limitation of available experimental
hardware, we implemented 4 LRM CLIs on the first node (16 core Intel Xeon processor
running at 2.3 GHz). Each LRM CLI on this node managed a set of four fixed cores.
From these four cores, each LRM ran on a dedicated (housekeeping) core while the other
three cores were used to execute TT VMs. We simulated another 8 LRM CLIs on a
second node (8 core Intel Xeon processor running at 2.3 GHz). Each simulated LRM
CLI ran in a VM on a dedicated core of the second node.
Initially, we provided each LRM with a local reconfiguration graph. Each local

configuration contained a per slot mapping of TT VMs to TT CPU cores. Linux
scheduler (of KVM) ran core failure MONs together with TT-LRS on each slot boundary.
LRMs detected core failure via these MONs. Based on the information of the failed
cores and the mapping of VMs to cores, each LRM locally maintained a list of available
cores. For simplicity of demonstration, we assume the housekeeping core does not fail.
However, in reality this situation is possible. We can deal with it by replicating LRM
instances on other cores in a way similar to that explained in Section IV.9.1.
For the simulated LRMs on the second node, we used simulated core failure MONs

and TT-LRS. The simulated MONs gave simulated information to their respective LRM
CLIs about core failures, while the simulated LRSs gave the LRM CLIs an impression
that they have scheduled VMs as per the LRM directives.
All Sawtooth enabled VMs are connected by a 100Mbps (external) router. The data

model stored in the blockchain consists of the current configuration of each LRM (node).
A DGRM smart contract instance is present together with each LRM CLI VM and
executes on the blockchain. Together, the DGRM smart contract instances maintain the
current configuration of each LRM in the blockchain.
Similar to the update messages in the avionics use case (Section VI.3.5), LRM CLIs

generate two kinds of Sawtooth transactions:
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1. Update-Only-Transactions to send an update to the DGRM smart contract (via
the validator) when any changes occur to the availability of CPU cores. This
transaction consists of the current LRM ID (unique) and the current configuration.

2. Update-Failure-transaction to notify when the LRM CLI requires a global (cloud-
wide) reconfiguration. This transaction also consists of the current LRM ID and
the current configuration.

When a LRM CLI detects a core failure (via the MON), it changes to a new configura-
tion with reduced number of cores and sends an update-only-transaction via the Sawtooth
validator. Similar to the avionics use case, when the LRM CLI reconfigured to a configu-
ration that could not host all the allocated VMs, it requires assistance from the global
resource management. In this case, the LRM CLI sends an update-failure-transaction to
the DGRM smart contract via the Sawtooth validator.

In both cases, the transaction is processed via the Validator and DGRM smart contracts
as explained in Section V.7.1. When the DGRMs receives a transaction, they process it in
a distributed manner as per the type of the transaction. For an update-only-transaction,
the DGRMs perform a sanity check and update the current configuration of the LRM
accordingly in the blockchain (based on Practical Byzantine Fault Tolerance (PBFT)
consensus). For an update-failure-transaction, the DGRMs perform an additional step.
They also search for a new global configuration similar to the avionics use case. When the
DGRMs finds a new global configuration, they update the configuration of the involved
LRM in the blockchain.

Based on the Sawtooth event subscription for changes to the state space of the LRM
configurations in the blockchain, the LRM CLIs involved in the reconfiguration received
a notification about the change in the configuration. This notification acts as the order
message. The LRM CLIs further instruct their respective LRS according to the new
configuration. Figure VII.F15 shows the local and global resource management logic that
we implemented in the LRM CLI and the DGRM smart contract of the RM transaction
family.

To measure the global reconfiguration delay, we used the Hardware MONs (with PMU
programmed to count the clock cycles). We started measuring the time in a resource
management VM when a LRM CLI sent an Update-failure-transaction and stopped
measuring the time when the DGRM smart contracts assigned a new configuration and
updated the blockchain. To find out when to stop measuring, we enabled Sawtooth event
subscriptions on the node sending the update-failure-transaction to get a notification
when any change in configuration occurs for address space in the the blockchain corre-
sponding to any LRM. The plot in Figure VII.F16 shows the delay observed for 1000
global reconfiguration for system with 4, 8, and 12 DGRMs participating in making
global resource management decisions. As observed in the plot, the time for global
re-orchestration scales well with an increase in the participating DGRMs (Sawtooth
enabled nodes). Depending on the number of DGRMs, use cases that can tolerate a
maximum global re-orchestration delay as shown in the graph can benefit from this
approach.
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We tested the global resource management safety and security in multiple experiments
by injecting faults in an DGRM instance. We also experimented by shutting down
some Sawtooth enabled VMs so that they cannot participate in global decision-making.
Besides, we created a malicious VM sending false transactions. The blockchain-based
distributed global resource management functioned correctly in all experiments and the
LRM configuration stored in the blockchain was not lost on shutting down up to f
Sawtooth enabled VMs.

We assume non-critical applications also use the blockchain. The blockchain is not
present only for use by global resource management. Thus, we did not measure the
overhead of the blockchain. However, a previous work [233] presented such overheads.
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VII.8.1 Discussion
In the avionics use case, global reconfiguration delay in a core-failure scenario for a
system with three multicore nodes was equal to one Major Frame (MaF) of the system.
In the experiment for blockchain-based distributed global resource management, the
worst case observed delay for a similar scenario was 1.29s. We cannot compare the
results directly as the avionics use case had time-triggered communication resulting in a
deterministic global reconfiguration delay. Here we aimed at dynamic Real-Time Systems
(RTS) or Mixed-Critical Systems (MCS), such as railways and industrial automation,
with focus on safety and security and lower overheads for global reconfiguration delay.

It should be noted that the distributed global resource management only decides on the
global configuration. The LRSs perform the actual node-level resource scheduling based
on the global reconfiguration orders and local reconfiguration graph of their LRMs. The
LRSs ensure that the system meets the demand of resources of the allocated real-time
VMs. Hence, the global resource reconfiguration decision-making being non-deterministic
does not impact real-time VMs that are currently executing on each node.
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Conclusion

“Finally, in conclusion, let me say just this.”
– Peter Sellers

Real-Time Systems (RTS) and Mixed-Critical Systems (MCS) with dynamically
changing availability and demand of resources need global resource management to
coordinate and dynamically adapt system-wide resource allocations. In addition, resource
management can dynamically adapt applications to changing availability of resources
and maintains a global (system-wide) view of resources and applications. The overall aim
of the resource management is to 1) ensure real-time applications meet their end-to-end
deadlines even in the presence of faults and changing environmental conditions, 2) ensure
efficient resource utilization to improve the Quality of Service (QoS) of co-executing
Best-Effort (BE) (or non-critical) applications.
In this dissertation, we proposed a domain-independent global resource management

framework for distributed MCS and RTS consisting of heterogeneous nodes based on
multicore processors or Multi-Processor System on Chips (MPSoCs). We initially
developed the framework with the French Aerospace Lab - ONERA and Thales Research
& Technology during the DREAMS project and later extended it during SECREDAS
and other internal projects.
A single fault in global resource management can render it useless. In the worst

case, it can make wrong resource management decisions leading to a deadline miss in
real-time applications. With the advent of Industry 4.0, cloud computing, and Internet
of Things (IoT), it has become essential to combine stringent real-time constraints and
reliability requirements with the need for an open-world assumption. As a result, the
global resource management for these systems becomes an inviting target for passive and
active attackers as it can actively decide on the system’s resource management. Hence,
unlike previous resource management frameworks MCS and RTS, we considered both
safety and security for the framework itself.

To enable real-time industries to use cloud computing and enter a new market segment
– real-time operation as a cloud-based service, we proposed a Real-Time Cloud (RT-Cloud)
based on global resource management for hosting RTS and MCS.
Finally, we considered two actual industrial use cases for the resource management

framework. We presented an avionics use case to evaluate the global resource management
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framework for use with a MCS and a railway use case to motivate the use of RT-Clouds
with global resource management.

VIII.1 Overview of Contributions

VIII.1.1 Resource Management Framework for MCS and RTS

Our resource management framework combines the benefits of local and global resource
management strategies and keeps the overheads low by decoupling global resource
management from local resource management. The resource management architecture
consists of a Global Resource Manager (GRM) in combination with a set of Local
Resource Managers (LRMs).
Our resource management framework efficiently reallocates the resources and adapts

the QoS or modes of applications upon fluctuations and changes in operating conditions.
Furthermore, it supports the reallocation of resources at runtime upon the occurrence of
resource failures. In addition, it provides 1) monitoring service to monitor the behavior of
applications, and availability or operational status of resources, 2) scheduling service to
deterministically schedule access from applications to resources and ensure the application
requirements are met, and 3) local and global reconfiguration services to allocate resources
and adapt applications based on the current availability of resources and the operational
conditions.
Our resource management architecture allows multiple monitoring and scheduling

techniques without tightly coupling them with the implementation of the framework.
Such a design allows a system designer to select the appropriate monitoring and scheduling
technique for each resource as per requirement without significant modifications to the
framework implementation. We achieve this via Local Resource Monitor (MON) modules
that monitor resources and applications, and Local Resource Scheduler (LRS) modules
that schedule and control access of applications to resources. These modules can be
plugged in each LRM.
Two resource management architectures are possible –

1. A flat architecture where the GRM is at the top of the hierarchy with a complete
view of the entire system and directly supervises and controls all the LRMs.

2. A hierarchical architecture where the GRM sits at the top of the hierarchy and LRMs
are present at different levels in the hierarchy. The GRM directly communicates
with the LRMs at the second-highest level of the hierarchy. In turn, these LRMs
communicate with the LRMs below them. Each LRM communicating to another
LRM or set of LRMs introduces a new level in the architecture. The hierarchical
architecture allows the LRMs to act as a granularity interface and hides fine-grained
activities of a sub-system from the GRM’s view. As a result, the GRM receives a
limited number of resource updates. The LRMs send reconfiguration requests to the
GRM only when a reconfiguration of the entire system is necessary. The final result
is a scalable resource management architecture that manages a distributed system
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consisting of heterogeneous nodes with different operating speeds and locations in
the system structure.

We took advantage of the hierarchical resource management architecture to introduce
the concept of the resource management domains for effective reconfiguration at all
levels. We considered five different domains in the system structure to perform resource
management – System Domain, Cluster Domain, Node Domain, Virtualization Domain,
and Virtual Machine (VM)/application Domain. The domains represent the composition
of the system from the resource management perspective. Conceptually, they also
correspond to the architecture’s hierarchy levels.

It can be error-prone and tedious for a system designer to correctly configure resource
management according to each platform’s low-level details in heterogeneous distributed
systems. Therefore, our resource management framework allows the system designers to
provide resource management configuration parameters abstractly and select MONs and
LRSs for each platform without the need to know or set fine-grained platform-specific
configurations.

VIII.1.2 Local Resource Monitor (MON)
We designed and implemented the following new MONs:

• MONs to interface with the hardware-specific monitoring features such as Perfor-
mance Monitor Unit (PMU) and Intel Memory Bandwidth Monitoring (MBM) and
Cache Monitoring Technology (CMT). We proposed methods to use these MON
with XtratuM hypervisor and Linux/Kernel Virtual Machine (KVM) to gather
information about VMs/tasks.

• MON1 to detect permanent core failures on multicore platforms.

• MON1 for detecting potential deadline overrun by a critical VM in the presence of
concurrently executing non-critical VMs.

• MON that can use the XtratuM Health Monitoring (HM) API to write partition
status or errors (not handled by XtratuM) to a HM log.

VIII.1.3 Local Resource Scheduler (LRS)
We designed and implemented the following new LRSs:

• LRS1 for scheduling tasks of a critical application running in a XtratuM hypervisor
partition.

• LRS1 to assist the LRM in reconfiguring scheduling plan (modes) of XtratuM
hypervisor.

1Designed and implemented together with ONERA and Thales R&T.
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• LRS to provide an interface for the resource management to interact with Intel
Cache Allocation Technology (CAT) and Memory Bandwidth Allocation (MBA)
hardware features.

• LRS to support scheduling of Time-Triggered (TT) tasks/VMs in Linux/KVM
(with PREEMPT_RT patch).

VIII.1.4 Resource Management Policies
Fault-Tolerance via Local and Global Reconfiguration in Distributed Systems with Multicore
nodes

When a core fails, the applications or VMs hosted on it cannot execute further. Since
modern multicore platforms provide a high number of CPU cores, we decided to provide
a strategy1 to manage core failures via reconfiguration.

Upon detection of a core failure (via a MON), a LRM performs local reconfiguration
based on online or offline methods to reallocate the cores to applications or VMs. To
protect the LRM of a node itself against core failure, we proposed an approach based on
synchronous execution of LRM replicas on each core.
If an LRM alone cannot host all applications based on the new availability of core,

then it requests the GRM for a global reconfiguration. Based on the global view of the
system maintained by the GRM and offline or online methods, the GRM determines a
new global configuration. The new configuration redeploys the applications that could
not be hosted to new nodes. The GRM only makes the reconfiguration decision and
informs the LRMs of the nodes involved in the global reconfiguration. These LRMs, in
turn, apply the new configuration via their LRSs.
In the avionics use case, we implemented reconfiguration based on mode2 changes.

We assumed that all applications that need redeployment must be moved entirely to a
different node and that the GRM is fail-safe. We provided the LRMs and GRM with local
and global reconfiguration graphs obtained offline via the DREAMS toolchain (Xoncrete
and GREC tools). For network reconfiguration, we selected the super schedule approach.
The super schedule was generated by the modified TTPlan tool of the DREAMS toolchain.
Upon detection of core failure via a MON, an LRM applies new modes (based on the
local reconfiguration graph) by using the LRS for reconfiguring XtratuM hypervisor
scheduling plans. As far as resource availability allows, the LRM selects a new mode so
that the critical applications can be locally reconfigured upon core failure. Suppose any
non-critical applications cannot be locally reconfigured on the node. In that case, the
LRM sends a reconfiguration request to the GRM, which in turn selects a new global
configuration (based on the global reconfiguration graph). It informs the LRM involved
in the global reconfiguration to apply new local configurations on their nodes.
We successfully validated our approach using the avionics demonstrator and experi-

mentally evaluated the worst-case observed overheads for the MON, the LRM (including
the LRS for reconfiguration), and the GRM. In addition, we ensured determinism for
the maximum global reconfiguration delay. It is equal to one or two Major Frame (MaF)

2Also referred to as configurations or plans by hypervisors
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depending on the placement of the GRM with respect to the LRMs and the TT-Virtual
Link (VL) periods for the update and order channels.

Simultaneous Execution of Mixed-Criticality (Avionics) Applications by Local Temporal
Overload Management

If we provide resources to critical applications based on their Worst-case Execution Time
(WCET), we under-utilize the multicore platform in an average case as the Average
Execution Time (AET) is much lower than the WCET. Thus, we designed a strategy1 for
an LRM to support over-utilization of a multicore platform based on potential deadline
overrun monitoring of critical applications. When a deadline overrun MON detects a
potential deadline miss, the LRM interrupts best-effort applications to ensure that the
critical ones can execute safely. The LRM resumes the best-effort applications once the
application finishes its execution in the current hyperperiod/MaF.
We proposed two different approaches for executing the potential deadline overrun

MON instances. The easiest option is to place them in between two tasks of a critical
application. The main advantage of this approach is that it does not require the
instrumentation of critical applications. However, the MONs can only detect potential
deadline overruns at task boundaries. Another option is to place observation points
inside each task of the application. In this approach, the MONs can detect potential
deadline overruns sooner than the previous approach. However, this approach requires
the instrumentation of critical application tasks.

We proposed three different approaches for executing the LRM instances for potential
deadline overrun management. An immediate adaptation is possible if we dedicate an
entire core to execute the LRM. However, the CPU performance of the node reduces as
an entire core is dedicated to the LRM. To improve CPU utilization, we need to execute
LRM instances at predefined time slots. However, it has a much longer delay from the
time the MON detects the overrun to the time the LRM applies the adaptation. In
the third approach, we provide adaptation by application/VM domain LRM instances
executing directly after the MON instances. The adaptation is almost immediate, and
the performance impact is low. The only restriction on the use of this approach is that
the underlying hypervisor must allow reconfiguration from within a VM.
In the avionics use case, we placed the potential deadline overrun MONs in between

two tasks of a critical application to avoid task instrumentation. In addition, we placed
the LRM instances directly after the MON instances to keep the overhead low and
ensure fast adaptation. Due to confidentiality issues, only Thales R&T experimentally
evaluated the approach with the avionics use case. The deadline overrun management
helped to reduce critical application slot deadline significantly for all three avionics
critical applications) compared to the interference scenario with no management. In all
experiments, the local resource management ensured that the observed execution time
remained below the critical application slot deadline while the non-critical applications
still achieved considerable QoS.
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VIII.1.5 Resource Management Communication
The GRM and the LRMs communicate with each other to exchange resource management
information. We proposed three conceptual communication channels between the central
GRM and the LRMs (and between higher and lower domain LRMs) – Update, Order
and Membership channels.
An LRM uses an update channel to send status updates and global reconfiguration

requests to the GRM (or a higher domain LRM). The GRM (or a higher domain LRM)
uses an order channel to send reconfiguration orders to an LRM. An LRM uses the
membership channel to send heartbeat messages to the GRM for membership and failure
detection purposes. If an LRM sends periodic updates to the higher domain resource
manager, then the update channel messages also serve as the Membership messages.

Security Sublayer for Resource Management

Unsecured resource management has several weak spots that an attacker can exploit.
Therefore, we3 analyzed the resource management communication, LRM, and GRM from
a security viewpoint. Resource management requires 1) confidentiality to ensure the
privacy of information, 2) integrity to ensure that data is not modified, 3) authenticity
to ensure that data is genuine and that the actual origin of the data is the same as the
claimed origin, and 4) access control to allow access based on permissions.
We proposed security services for resource management communication to prevent

various security attacks. We provided the four essential security services by the crypto-
graphic mechanisms. For ensuring integrity, authenticity, and access control, we used
authentication codes. In addition, we used encryption to provide confidentiality.
We proposed three different security levels for resource management communication.

Level 0 provides no security. Level 1 security service provides integrity to prevent the
manipulation of resource management messages as well as authenticity to verify the
source of the messages and ensure that the received messages originated from a trusted
resource manager. Level 2 provides confidentiality in addition to Level 1. In addition,
levels 1 and 2 ensure protection against replay attacks by using a time-varying code
(both levels provide integrity service to check the time-varying code). These security
levels are helpful depending on the amount of security required for different use cases.
Moreover, Level 1 is suitable for the membership channel where there is no confidential
information, while Level 2 is suitable for update and order channels.
We proposed two options to implement the security services – implementation as

a support module or implementation as a layer between the resource managers and
the underlying hardware or software (hypervisor or Operating System (OS)). The two
implementations are different only in terms of the handling of the communication.
We implemented the second option as it supports the direct communication between
security sublayers of different nodes and provides transparency for the resource managers.
Contrarily, in an implementation with a security support module, the resource managers
must handle the communication while the security module only provides security services.
We3 decided to implement two options for algorithms in the security sublayer of the

3Based on inputs from security experts at the University of Siegen
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resource management framework – ChaCha20-Poly1305 and CLEFIA (in Offset CodeBook
(OCB) operation mode).

In the avionics use case, we experimentally evaluated the worst-case observed overheads
for all security levels and both security algorithms. Overhead for security level 0 (no
security) is the least, followed by security level 1 (authenticity and integrity). Security
level 2 has the highest overhead as it adds confidentiality on top of level 1. Furthermore,
the evaluation also indicates that the ChaCha20-Poly1305 algorithm is much faster than
the CLEFIA algorithm. However, stream ciphers, such as ChaCha20, are generally used
only in few applications and, thus, not closely scrutinized regarding security. Contrarily,
block ciphers, such as CLEFIA, are heavily used in many applications, and thus, are
more trusted. In the end, the trade-off between using ChaCha20-Poly1305 and CLEFIA
lies in speed versus trust in the algorithm.

Using Existing Communication Protocols For Resource Management

Apart from using resource management communication with the security sublayer, we
can use these existing communication protocols, especially in Linux-based use cases. We
provided an overview about using two popular existing protocols, Message Queue Teleme-
try Transport (MQTT) and Open Platform Communications Unified Architecture (OPC
UA), for resource management communication, taking into consideration requirements
such as membership, security, and reliable message delivery.

VIII.1.6 Blockchain-Based Distributed Global Resource Management

We discussed several limitations of a single central global resource manager. We proposed
extending the concepts to make global resource management safe and secure using
distributed global decisions instead of centralized decisions. To do so, we eradicated the
central GRM and added a new resource management component, the Distributed Global
Resource Manager (DGRM) component, on all nodes with LRMs in the highest level
of the hierarchy. The corresponding LRMs function is almost the same as before. The
only difference is that instead of sending updates (including reconfiguration requests) to
the central GRM, each LRM sends updates to its corresponding DGRM. Instead of the
central GRM making the global decision on its own, the DGRM components on all these
nodes work together for making global decisions based on distributed coordination. A
similar concept applies to the flat resource management architecture.
If we used DGRMs instead of the central GRM, there is neither a single point of

failure nor a bottleneck in the resource management anymore. However, we must ensure
that DGRMs are safe and secure themselves. Therefore, we identified the challenges and
requirements concerning safety and security for designing the DGRMs.

We choose a private (permissioned) blockchain called the Hyperledger Sawtooth [138]
for our implementation as it helps us to meet the challenges and requirements concerning
safety and security. We designed a new Sawtooth transaction family called the Resource
Manager (RM)-transaction family for implementing the DGRMs and the LRMs of our
resource management framework.
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As a reminder, the distributed global resource management only decides on the global
configuration. The LRSs perform the actual node-level resource scheduling based on the
global reconfiguration orders and local directives of their LRMs. The LRSs ensure that
the system meets the demand of resources of the allocated real-time VMs. Hence, the
global resource reconfiguration decision-making can be implemented via a blockchain
without impacting real-time applications or VMs that are currently executing on each
node.

We gave a proof-of-concept demonstration and measured the delay for global reconfigu-
ration with the distributed global resource management using a core failure scenario in a
KVM-based cloud with up to 12 Sawtooth-enabled (simulated) nodes with DGRM smart
contracts. We successfully validated the distributed global resource management and
observed that the global reconfiguration delay increased with the increase in Sawtooth-
enabled nodes with DGRM smart contract. In the experiments, the worst-case observed
delay for a scenario similar to that in the avionics use case was 1.29s. However, we cannot
compare the results with the avionics use case as it had time-triggered communication.
Table VIII.T1 highlights the differences of the block-based distributed global resource
management and the single central GRM.

Global resource
management

Use case Deterministic
node-level
scheduling
& allocation

Deterministic
global recon-
figuration
delay

Fault-tolerance Security

Single Central
GRM

Avionics
(Section
VI.5.1)

Yes Yes (with
TT-
Ethernet
(TTE) – 1 or
2 MaF)

For LRMs via
replication
(Section IV.9.1)

Via
security
sublayer
(Section
V.2)

Blockchain-
based DGRM
(Section V.6)

RT-
Cloud
(Section
VII.8)

Yes No (max.
observed de-
lay in Figure
VII.F16)

Byzantine
fault-tolerance
for global-level,
For LRMs via
replication

Yes (via
secure
Saw-
tooh
net-
work)

Table VIII.T1: Distributed vs. Central Global Resource Management

VIII.1.7 Safety-Critical Railway Operation as a Cloud-Based Service
Cloud computing is rapidly gaining popularity in many domains as they provide benefits
such as higher availability, scalability, and efficient hardware resource utilization. We
explored virtualization technologies and cloud computing for migrating an existing real-
time safety-critical railway use case from dedicated hardware solutions. We considered
four existing cloud virtualization technologies (hypervisors) – KVM, Xen, Microsoft
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Hyper-V, and VMware ESXi, for use with safety-critical railway VM running the Thales
TAS control platform.

Based on the qualitative analysis, we concluded that KVM and Xen are better suited
than ESXi or Hyer-V. ESXi and Hyer-V either miss certain features or have limited
support for essential features such as predefined CPU models, Libvirt, and real-time
scheduling options. Moreover, they do not allow us to benefit from the Intel Xeon-
specific features. Finally, since they are closed source, we cannot add missing or new
functionalities or resource management features as per requirement. To further narrow
down our choice, we performed a quantitative analysis of Xen and KVM by running
benchmarks to compare their performance.
We proposed a KVM-based private RT-Cloud containing three zones to increase

availability, improve fault-tolerant VMs and help protect against unexpected failures.
As observed in the quantitative analysis, when we executed multiple VMs in parallel
with any hypervisor, there was contention in the shared resources. Hence, we proposed
using our resource management framework to monitor, control, and coordinate the cloud
nodes.

Taking into account the qualitative and the quantitative analysis performed as part of
this dissertation, Thales Austria GmbH selected KVM as the hypervisor of choice to host
the safety-critical railway VMs. Thales in coordination with the Austrian federal railways
(ÖBB) successfully demonstrated the feasibility of using KVM to host a virtualized
Triple Modular Redundancy (TMR) Radio Block Center (RBC) application (with TAS
Control Platform).

VIII.1.8 Time-Triggered (TT) Scheduling in Cloud Nodes
To support TT scheduling of VMs, we proposed to use our TT-LRS with an LRM of a
RT-Cloud node. We provided a CPU-and memory bandwidth-aware offline scheduler
that generates a TT scheduling table for use with an LRM and a TT-LRS.

The TT-LRS introduced a new scheduling policy in KVM (Linux). The new scheduling
policy has the highest priority and sits on top of the hierarchy of (native) Linux scheduling
classes. If there are no runnable TT class VMs (or Linux processes), the Linux scheduler
looks for runnable VM (or Linux processes) in each class in decreasing priority order.
Unlike the existing scheduling modules in Linux, the LRM (running on the housekeeping
core) must explicitly enable the TT-LRS on a set of CPU cores at runtime. Before the
start of a slot, the LRM provides the TT-LRS on each core with a TT VMs. The LRM
itself runs as a real-time periodic task on a non-TT (housekeeping) core and has a period
equal to one slot length.

We measured the maximum observed overhead for using the TT-LRS with migration
between CPU cores enabled or disabled. The overhead included the time taken for the
complete Linux scheduler, including the time for executing the TT-LRS. The observed
results were considerably better than inbuilt Linux scheduling classes and slightly better
than that reported for the Tableau scheduler with Xen.
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VIII.2 Ongoing and Future Work
“Every new beginning comes from some other beginning’s end.”

– Seneca

VIII.2.1 Adding Flexibility to Time-Triggered (TT) Scheduling on RT-Cloud
Nodes

Existing TT approaches for cloud nodes, such as Tableau [229] or ARINC-653 scheduler
for Xen, require high-overhead table regeneration at runtime for adding new VMs. They
do not have the flexibility of appending new VMs to the existing table at runtime,
thus, undermining some important advantages of cloud computing. Moreover, these
approaches cannot execute non-TT VMs in the slack of TT VM.

Our TT LRS already allows execution of non-TT VMs in the slots where no TT VM
are assigned. The next step is to include support to add new Event-Triggered (ET) VMs
to the scheduling table at runtime. In Section VII.6.1, we discussed an initial idea for an
algorithm inspired by the global Slot-Shifting [231] to the LRMs. To do so, the LRM
must execute an acceptance test, and a guarantee routine similar to the Slot-Shifting
algorithm [231]. When a new ET VM arrives, the acceptance test determines if there
is enough available CPU and memory bandwidth before the VM’s deadline. If the
acceptance test is successful, the guarantee routine must be executed to add the VM to
the scheduling table and update the CPU and memory bandwidth availability.
As part of our ongoing work, we have currently developed the modified acceptance

test and guarantee routine and implemented them as part of an LRM (running on the
housekeeping core). Initial experiments performed on an Intel i7 9700k (3GHz, 7 out of 8
cores with TT scheduling) show promising results. We determined the overhead for the
LRM performing the acceptance test and guarantee routine for the following cases: i) 1
ET VM arrives and is rejected due to the lack of resource availability, and ii) when 1, 2,
and 4 ET VMs arrive on a node, and they are all accepted and added to the scheduling
table. In the worst case, we observed an overhead of 2.94 µs. Previous approaches,
such as Tableau [229], take much more time for table regeneration (> 100ms) when just
adding one new VMs to the scheduling table.

VIII.2.2 Evaluation of Global Resource Management in Time-Triggered (TT)
RT-Cloud

If an LRM is unable to accept (and guarantee) a new ET VM due to unavailability of
resources, the LRM requests the GRM for cloud-wide adaptation. The GRM, in turn,
searches for another node with more appropriate resource availability and dispatches
the VM to that node. Similarly, if a node is unable to execute an existing VM or the
VM does not achieve the desired QoS due to a change in availability of resources, the
LRM informs this to the GRM. The GRM, in turn, redeploys the VM to another node
in the RT-Cloud. As part of the ongoing work, we are working towards a strategy to
deterministically redeploy VMs in an RT-Cloud.
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VIII.2.3 Energy-aware Time-Triggered (TT)-Event-Triggered (ET) Joint
Scheduling in RT-Cloud Nodes

Energy consumption is not only a problem in portable devices but also in servers.
Unchecked power consumption leads to a large amount of excess heat production. As
a result, cooling costs also increase. Moreover, heating can lead to a reduction in the
life span of the hardware. Although servers have unlimited access to electricity, power
saving is required to keep down the electricity costs.
As part of our ongoing work, we are working towards making the LRM (and the TT

LRS) energy aware. The main idea is that the offline scheduler produces a scheduling
table with the aim to keep the frequency of the cores as low as possible while still meeting
the deadlines of the safety-critical VMs. At runtime, if a VM finishes execution before
its WCET, the LRM uses the newly available CPU slots to slow down the cores further.
Alternatively, at runtime, the LRM can also increase the frequency of cores to free up
slots and be able to accept and guarantee newly arrived ET VMs.

VIII.2.4 Memory bandwidth regulation for Safety-Critical real-time System (SCS)
on Intel Xeon Processors

Preventive methods, such as Memguard [88], are often used for memory bandwidth
regulation. These algorithms limit the number of memory requests that each CPU core
issues. The memory accesses of a core are determined by a PMC, usually programmed
to count the LLC misses. However, PMCs can be highly accurate or highly inaccurate.
Their accuracy depends upon how they are accessed, the application running on the core,
and the measured event [232]. Moreover, existing approaches have high overheads and do
not scale well with the increase in CPU cores. In addition, they reduce the performance
of the CPU. For example, suppose a core ends up utilizing the assigned number of
memory accesses in the regulation period. In that case, the application running on the
core is preempted, and the core is forced to idle for the remaining time of the regulation
period, thus reducing CPU performance.

Intel has introduced a new programmable bandwidth controller in the 2nd Gen. Intel
Xeon processors [30] as part of the MBA hardware architecture. The controller is
present between each core and the shared on-chip interconnect. It allows inserting a
programmable delay for the memory accesses from each core and supports up to 90%
throttling and in 10% steps. Thus, this approach does not require interrupting cores
to regulate the memory bandwidth. As part of our ongoing work, we are performing
experiments to understand the capability of the MBA architecture to deterministically
allocate memory bandwidth to cores.

VIII.2.5 Simultaneously Execution of Critical Applications in Multicore Nodes

As explained in Chapter IV, local temporal overload management (via potential dead-
line overrun monitoring) allowed us to execute multiple non-criticality applications
concurrently with critical applications. Future work here involves developing resource
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management techniques to execute applications of the same criticality levels concurrently.
There exist some work on control mechanisms that support concurrent execution of

critical applications (e.g., [234]). Combining such approaches with potential deadline
overrun monitoring could improve the utilization of a node and allow multiple critical as
well as non-critical applications simultaneously.

VIII.2.6 Application State and Fault-Tolerance via Global Reconfiguration
The global fault-tolerance mechanism implemented for the avionics use case considers
that the reconfigured applications are stateless. Therefore, the current state of the
applications is completely lost on a global reconfiguration that results in the deployment
of an application on a different node. Future work must consider the state of an
application before a global reconfiguration and how it can be recovered on a new node
without compromising the system.

VIII.2.7 Peripherals in Mixed-Critical System (MCS)
Current research strongly focuses on the use of multicores, and MPSoCs for MCS.
However, very few works addressed the usage of peripherals in MCS. In MCS many
functionalities depend on several sensors and external information. The applications
running on the CPU cores acquire external data from the sensors using specialized
interfaces rather than the memory hierarchy. These interfaces introduce new sources of
interference that should be addressed by the resource management.

VIII.2.8 Blockchain-Based Distributed Global Resource Manager (DGRM) in
RT-Cloud with Industrial Use Case

Future work involves integrating and testing our blockchain-based distributed global
resource management for a RT-Cloud with an industrial use case.

VIII.2.9 Resource Management Communication with MQTT and OPC UA
Future work involves experimental evaluation of resource management communication
via OPC UA and MQTT as well as testing the feasibility with an industrial use case.
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Configuration File Examples

Listing A.L1 and A.L2 show examples of a Platform configuration (Library) file and a
system configuration file (user-defined) for use with the resource management framework.

Listing A.L1: Platform Configuration (Library) File Example

ZC706_Zynq7000:
#Config file for Xilinx Zynq 7000 ZC706 board

hw_desc:
num_cores: 2
memory_layout:
# Default size is in MBs
- { type: rom, start: 0x0, size: 1}
- { type: sdram, start: 0x00100000, size: 1023 }
devices:
Uart: [ { id: 1, baud_rate: 115200, name: Uart } ]
TTE:

name: TTEthernet_1
base_address: 0x50000000

[...]
# default values for use if not specified in
# resource management configuration file

LRM_desc:
#LRM defaults for the platform

shared_data:
size: 32

LRM:
memory_area_size: 2
flags: [...]
console: Uart

MON:
memory_area_size: 2
[...]

# XtratuM hypervisor defaults for the board
xm_hypervisor:
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console: Uart
features: XM_HYP_FEAT_FPGA_PART_ACCESS
physical_memory_area: { size: 2 }

[...]
[...]

Listing A.L2: System Configuration File Example (User-Defined)

nodes:
- {name: Node1, id: 1, type:ZC706_Zynq7000}
- {name: Node2, id: 2, type:T4240_e6500}
- {name: Node3, id: 3, type:T4240_e6500}
[...]

devices:
- {name: TTESW1, id: 4, type:TTESW_8port}
[...]

cluster:
id:0
nodes: [Node1,Node2,Node3]
connections:

- [Node1,TTESW1]
- [Node2,TTESW1]
- [Node2,TTESW1]

[...]
[...]

Listing A.L3 and A.L4 show examples of resource management configuration file
(user-defined) and application configuration file (user-defined) similar to those used in
the avionics use case.

Listing A.L3: Example of Resource Management Configuration File for Avionics Use Case

Node:
- id: 1 # This node is Zynq ZC706

hypervisor: xtratum
Hypervisor_LRS_schedule:

schedule_table:
- id: 0 # core 0

configuration:
- id: 0

major_frame: 4000# MaF
slots:

# Application Slots(s)
# {Slot id, Start time, Duration,
Partition (VM), vCPU}

- { id: 0, start: 0, duration: 100,
APPpart: A1, vcpu: 0 }
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# Resource Management Slots(s)
- { id: 1, start: 100, duration: 50,
RMpart: CoreMON, vcpu: 0 }

- { id: 2, start: 800, duration: 3000,
RMpart:LRM, vcpu:0 }

- id: 1
major_frame:4000
slots:

- { id: 0, start: 0, duration: 50,
RMpart: CoreMON, vcpu: 0 }

- { id: 1, start: 50, duration: 100,
APPpart: A1, vcpu: 0 }

- { id: 2, start: 800, duration: 3000,
RMpart:LRM, vcpu: 0 }

- id: 2
major_frame: 4000
slots:

- { id: 0, start: 800, duration: 3000,
RMpart: LRM, vcpu: 0 }

- id: 3
major_frame: 4000
slots:

- { id: 0, start: 0, duration: 50,
RMpart: CoreMON, vcpu: 0 }

- { id: 1, start: 50, duration: 100,
APPpart: A1, vcpu: 0 }

- { id: 2, start: 800, duration: 3000,
RMpart: LRM, vcpu: 0 }

- id: 1
configuration:

- id: 0
major_frame: 4000
slots:

- { id: 1, start: 0, duration: 50,
RMpart: CoreMON, vcpu: 0 }

- { id: 2, start: 50, duration: 200,
RMpart: GRM, vcpu: 0 }

- { id: 3, start: 300, duration: 200,
APPpart: A2}

- { id: 4, start: 800, duration: 3000,
RMpart: LRM, vcpu: 0 }

- id: 1
major_frame: 4000
slots:
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- { id: 1, start: 0, duration: 50,
RMpart: CoreMON, vcpu: 0 }

- { id: 2, start: 50, duration: 200,
RMpart: GRM, vcpu: 0 }

- { id: 3, start: 800, duration: 3000,
RMpart: LRM, vcpu: 0 }

- id: 2
major_frame: 4000
slots:

- { id: 1, start: 0, duration: 50,
RMpart: CoreMON, vcpu: 0 }

- { id: 2, start: 50, duration: 100,
APPpart: A1, vcpu: 0 }

- { id: 3, start: 150, duration:
200, RMpart: GRM, vcpu: 0 }

- { id: 4, start: 800, duration: 3000,
RMpart: LRM, vcpu: 0 }

- id: 3
major_frame: 4000
slots:
- { id: 1, start: 0, duration: 50,

RMpart: CoreMON, vcpu: 0 }
- { id: 2, start: 50, duration: 100,

APPpart: A2, vcpu: 0 }
- { id: 3, start: 150, duration: 200,

RMpart: GRM, vcpu: 0 }
- { id: 4, start: 800, duration: 3000,

RMpart: LRM, vcpu: 0 }
reconfiguration_table:
# Local reconfiguration table

- [ -1 , -1 ]
- [ 2 , -1 ]
- [ -1 , -1 ]
- [ -1 , -1 ]

global_reconfiguration_table:
# global reconfiguration table

- { msg: [2,9,13,15], new: [-1,-1],
current_configuration: [-1,-1] }

- { msg: [3,4,5,10,11,14], new: [-1,6],
current_configuration: [-1,1] }

- { msg: [6,7,8,12], new: [-1,6],
current_configuration: [1,1] }

- { msg: [16,17,18,19,20,21,22,23,24,25,26,27,28,29],
new: [-1,-1], current_configuration: [-1,-1] }
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RM_description:
#General resource management description
shared_mem:

start: 0x10000000
size: 32

security_level:#options:0,1,2
update_channel: 2# Level 2 security
order_channel: 2
Membership_channel: -1# channel not required

security_algorithm: 1# ChaCha20-Poly1305
GRM:
#GRM description

memory_area_size: 2
part_desc_flags: [ boot, fp, system ]
part_desc_console: Uart
TTE_ports:

order_ports:
#1st T4240
- {node: 1, tte_ap_id: 1, ports: [8,10,12,14] }
#TTE ES port IDs in Master LRM order

#2nd T4240
- {node: 2, tte_ap_id: 1, ports: [9,11,13,15] }

update_ports:
#1st T4240
- {node: 1, tte_ap_id: 2, ports: [32,40,48,56] }
#TTE ES port IDs in Master LRM order

#2nd T4240
- {node: 2, tte_ap_id: 2, ports: [64,72,80,88] }

LRM:
#LRM description

memory_area_size: 2
part_desc_flags: [ boot, fp, system ]
part_desc_console: Uart
max_no_messages: 32
master_order:[0,1,2,3]
MON: [CoreMON, HWMON, DeadlineMON]
[...]

CoreMON:
# Core Failure Monitor

memory_area_size: 2
part_desc_flags: [ boot, fp, system ]
part_desc_console: Uart

APPpart_description:
# Scheduling specific description of
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# application partitions
- id: 0 # XtratuM partition ID

name: A1 # XtratuM partition name
APPid: 1 # applicaiton ID
APPname: App_crit1 # optional
DeadlineMON: 0 # not required
configurations:

- id: 1
slots:

- { id: 1, tasks: [ Task0 ] }
- id: 2
slots:

- { id: 2, tasks: [ Task0 ] }
- id: 3
slots:

- { id: 1, tasks: [ Task0 ] }
- id: 1

name: A2
APPid: 2
APPname: App_crit2 # optional
DeadlineMON: 1 # required
configurations:

- id: 3
slots:
- { id: 0, tasks: [ Task0, Task1, Task2 ],

DeadlineMON: [ 30, 50, 80 ] }
# Observation points for potential
# deadline overrun monitoring

Node: 2
[...]

Listing A.L4: Application Configuration File for use with Listing A.L3

apps:
#All apps in the system

# First App
- &myapp1

id: 1
name: App_crit1
LRS: LRS_critical
# Use critical partition LRS
tasks:

- { name: Task0, func: user_partition_launch,
state: task0_state}

- &myapp2
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# Second App for this node
name: App_crit2
id: 2
LRS: LRS_critical
tasks:

- { name: Task0, func: user_partition_launch,
state: task0_state}

- { name: Task1, func: user_partition_launch,
state: task1_state}

- { name: Task2, func: user_partition_launch,
state: task2_state}

[...]
Node:

-id: 1 # This node is Zynq ZC706
hypervisor: xtratum
App_description:
# Description of each application
- id: 1 # App 1

# node specific description
flags: [ system, boot, fp ]
console: Uart
physical_memory_areas:
- { start: 0x4000000, size: 2 }
app: *myapp1
tasks: # node specific task parameters

- { name: Task0, WCETiso: 10}
- id: 2

flags: [ system, boot, fp ]
console: Uart
physical_memory_areas:

- { start: 0x4200000, size: 2 }
app: *myapp2
tasks:

- { name: Task0, WCETiso: 10}
- { name: Task1, WCETiso: 10}
- { name: Task2, WCETiso: 10}

Node: 2
[...]
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Examples of Useful PMU events

Appendix B provides examples of some useful PMU events with respect to resource
management on the three hardware platforms: NXP T4240, Xilinx Zynq 7000, and Intel
Xeon Gold 5218.

1. Table B.T1 provides the examples of PMU events for the e6500 cores [176] of NXP
T4240 [12]

2. Table B.T2 and Table B.T3 present the examples of Cortex A9 core PMU events
[177] and the AXI shared interconnect uncore PMU (APM IP block [174]) events
in the Xilinx Zynq 7000 [13]

3. Table B.T4 and Table B.T5 supply the examples of Intel Xeon Gold 5218 core and
uncore PMU events [179]

231
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Table B.T1: Core PMU event examples of e6500 cores in T4240
Event number Event mnemonic Description

Ref:1 Processor cycles Counts every processor cycle
Ref:2 Instructions com-

pleted
For counting every completed instruction.
The value can increment by either 0, 1 or
2 per processor cycle

Com:222 Data L1 cache
misses

L1-D cache load and store misses. Similar
event is available for L1-I

Com:41 Data L1 cache
reloads

L1-D cache reloads for any reason. Similar
event is available for L1-I

Com:466 L2 miss per
thread

L2 cache load and store misses by a specific
core or a thread

Com:465 L2 access per
thread

L2 cache access by a specific core or a thread

Com:185 Memory Barriers
completed

For counting the completed memory barier
instructions such as msync, mbar, and miso.

Com:506 BIU master re-
quest

For counting the number of time a master
accesses the corenet shared interconnect

Table B.T2: Core PMU events of Cortex-A9 (Zynq 7000 MPSoC)
Event number Event mnemonic Description

0x01 L1I_CACHE_REFILL L1-I cache refill
0x14 L1I_CACHE L1-I cache access
0x03 L1D_CACHE_REFILL L1-D cache refill
0x04 L1D_CACHE L1-D cache access
0x08 INST_RETIRED Instruction architecturally exe-

cuted.
0x11 CPU_CYCLES CPU cycle
0x13 MEM_ACCESS Data memory access
0x16 L2D_CACHE L2(-D) cache access
0x17 L2D_CACHE_REFILL L2(-D) cache refill (miss in L2)
0x19 BUS_ACCESS Bus access
0x1D BUS_CYCLES Bus cycles
0x1A MEMORY_ERROR Local memory error
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Table B.T3: APM (uncore PMU) events (Zynq 7000 MPSoC)
Event name Description

Write Transaction Count Total number of write requests from/by an
agent

Read Transaction Count Total number of read requests from/by an
agent

Write Latency Time from issuing the write address to the
first/last write to the slave. At time of instan-
tiating the APM, it is possible to configure
the latency to calculate till either first of last
write. Similar event is available for read la-
tency

Write Count Bytes Total number of bytes written to/by an agent
Read Count Bytes Total number of bytes read by/from an agent
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Table B.T4: Core PMU events of Intel Xeon scalable processors (2nd Gen.)
Event number Event mnemonic Description

Events of Fixed PMC
EventSel=00H
UMask=01H

INST_RETIRED.ANY Number of instructions com-
pleted (retired from execu-
tion).

EventSel=00H
UMask=02H

CPU_CLK_UNHALTED.
THREAD

Number of core clock cycles
while a thread is not in a
halt state

EventSel=00H
UMask=02H
Anythread=1

CPU_CLK_UNHALTED.ANY Number of core clock cycles
while any thread of a CPU
is not in a halt state

EventSel=00H
UMask=03H

CPU_CLK_UNHALTED.
REF_TSC

Number of reference cycles
when the core is not in a halt
state

Events of Programmable PMC
EventSel=A3H
UMask=02H
CMask=2

CYCLE_ACTIVITY.CYCLES_
L3_MISS

Cycles while L3 cache miss
demand load is outstanding.
Similar events are available
for L1-I, L1-D and L2 caches
as well

EventSel=24H
UMask=24H

L2_RQSTS.CODE_ RD_MISS All instructions that have L2
cache misses

EventSel=24H
UMask=27H

L2_RQSTS.DEMAND_
DATA_RD_MISS

All data requests that have
L2 cache misses

EventSel=24H
UMask=3FH

L2_RQSTS.MISS All L2 Cache misses

EventSel=24H
UMask=FFH

L2_RQSTS.REFERENCES ALL L2 Requests. Similar
events for L2 instruction and
data requests are available

EventSel=B0H
UMask=10H

OFFCORE_REQUESTS.L3_
MISS_ DEMAND_RD

Data request with L3 cache
misses

EventSel=2EH
UMask=41H

LONGEST_LAT_
CACHE.MISS

All cachable requests that
have a L3 miss

EventSel=2EH
UMask=4FH

LONGEST_LAT_
CACHE.REFERENCE

All requests cachable in L3

EventSel=D3H
UMask=01H

MEM_LOAD_L3_MISS_
RETIRED.LOCAL_DRAM

Completed load instructions
where data sources had L3
miss (and thus, needed data
from DRAM).
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Table B.T5: Uncore PMU events of Intel Xeon scalable processors (2nd Gen.)
Event number Event mnemonic Description
EventSel=00H
UMask=00H

UNC_M_CLOCKTICKS Counts the Clock ticks of the
IMC

EventSel=00H
UMask=02H

UNC_M_ACT_COUNT.WR Counts DRAM page ACT
command due to a write re-
quest. Similar events are
available for PRE and CAS

EventSel=02H
UMask=01H

UNC_M_PRE_COUNT.
PAGE_MISS

Counts the number of page
misses

EventSel=43H
UMask=00H

UNC_M_POWER_SELF_
REFRESH

Counts cycles for which IMC
is performing a DRAM re-
fresh

EventSel=80H
UMask=00H

UNC_M_RPQ_OCCUPANCY Counts read pending queue
occupancy of the IMC. Simi-
lar event is present for write
pending queue.

EventSel=01H
UMask=00H

UNC_UPI_CLOCKTICKS Counts Clock ticks of the
UPI interconnect
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Pseudo-Code for MONs, LRSs, LRM, and GRM

C.1 MONitors (MONs)

C.1.1 Hardware MONs
Listing C.L1 shows a pseudo-code of a hardware MON (Section IV.4.1).

Listing C.L1: Pseudo-code for Hardware MON

int HW_MON_init(int TotalEvents,
int EventList[MAX_SUPPORTED_PMU_EVENTS]){

//LRM uses this function to initialize the PMU
//TotalEvents = Total number of events to configure
//EventList = List of Event Numbers

if(TotalEvents>MAX_SUPPORTED_PMU_EVENTS)
return CONFIG_ERROR;

if(enable_PMU()!=SUCCESS)
return PMU_ERROR;

for(int e=0; e < TotalEvents; e++){
configure_event_PMC(e,EventList[e]);

}
return SUCCESS;

}

int HW_MON_reset(){
//This function resets the PMCs of the PMU

if(reset_PMU()!=SUCCESS)
return PMU_ERROR;

else return SUCCESS;
}

void HW_MON_read(int TotalEvents,
lrm_mon_status_t *status){

//This function is used to read count of the
//initialized events stored in the PMC
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for(int e=0; e < TotalEvents; e++){
status->pmc[1]=read_PMC(e);

}
}

Listing C.L2 shows a code section of the header file for T4240 hardware MON.

Listing C.L2: Example of PMU events in Hardware MON Header file

//#define Common_Event_Names #EventNumbers
#define CLOCK_CYCLES 1
//Original name: Processor cycles
#define INSTRUCTIONS_COMPLETED 2
//Original name: Instructions completed
#define LLC_CACHE_MISSES 466
//original name: L2 Cache miss per thread

The hardware MON provides two routines for gathering resource consumption of the
application as shown in Listing C.L3.

Listing C.L3: Pseudo-code for XtratuM Hardware MON

void HW_MON_slot_start(PartitionID,SlotID,TaskID){
//This sub routine runs at start of every partition slot

HW_MON_read(&slot_start_values);
}

void HW_MON_slot_end(PartitionID,SlotID,TaskID){
//This sub routine runs at end of every partition slot

HW_MON_read(&end);
start = &slot_start_values;
for (i = 0; i < MAX_SUPPORTED_PMU_EVENTS; i++){

update_stats(&data->slots[slotID].pmc[i],
end.pmc[i] - start->pmc[i]);

}
data->slots[slotID].updated = 1;
//To indicate to the LRM that the data is updated

}

Listing C.L4 and Listing C.L5 show pseudo-code for hardware MON hooks in Lin-
ux/KVM on x86 platforms (Xeon) and ARMv8a.

Listing C.L4: Pseudo-code for Linux/KVM Hardware MON on Intel Xeon

static int init HW_MON_Tracer_init(void){
//This function must be used to register HW MON hooks
//Register the HW MON hook to occur on when
//the task stars to execute

if(tracepoint_probe_register(sched_process_exec,
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HW_MON_start_handler, NULL))
return TRACEPOINT_ERROR;

else
return SUCCESS;

//Similarly, we need to register other HW MON hooks
//for handling further scheduling events, such as
//task completion and context switch.
}
void HW_MON_start_handler(void *data, struct task_struct *p,

pid_t old_pid){
//This function is called the first time a task is scheduled.
// It is used to maintain the PMC values for each task
}

Listing C.L5: Pseudo-code for Linux/KVM Hardware MON on ARMv8a

static int init HW_MON_Tracer_init(void){
//This function must be used to initialize
// and register HW MON hooks

if(stp_tracepoint_init())
return TRACEPOINT_ERROR;

//Register the HW MON hook to occur on when
//the task stars to execute

if(STP_TRACE_REGISTER(sched_process_exec,
HW_MON_start_handler));
return TRACEPOINT_ERROR;

else
return SUCCESS;

//Similarly, for other hooks.
}

C.1.2 Core Failure MON
The pseudo-code in Listing C.L19 shows the essential parts of the core failure MON
(Section IV.4.3).

Listing C.L6: Pseudo-code for Core Failure MON

void MON_core_failure_init(){
//LRM uses this function to initialize the
//core failure MON

int *alive = data->alive_buffer;
//alive points to the data structure shared between
//the MON instances an the LRM.
for(int i=0; i < NODE_MAX_CORES; i++){

alive[i] = 0;
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}
}
void MON_core_failure_instance_run(){
//Core failure MON instance

int CoreID = get_CPUcore_id();
//CoreID contains the ID of the core
//where this MON instance runs
int *alive = data->alive_buffer;
//alive points to the shared data structure
alive[CoreID] = 1- alive[CoreID];

}

C.1.3 Deadline Overrun MON

The pseudo-code in Listing C.L7 shows the essential parts of the potential deadline
overrun MON (Section IV.4.4) using the first method (observation points between two
tasks). The observation points can be specified via the system designers using the
resource management configuration file as shown in Listing C.L8.

Listing C.L7: Pseudo-code for Deadline Overrun MON

void MON_DL_overrun_instance(){
Elapsed = HW_MON_vm_elapsed_cycles(); //ET(x)
Limit = vm->InternalDeadline[TaskID]; //D(x)
if(TaskID == vm->TotalTasks-1){

isolation_mode=0;
//if the current task that finished was
//the last task of the application, then
//signal LRM about critical app completion

return 0;
}
if(isolation_mode){
//if the a potential deadline overrun was
//already detected in this hyperperiod/MaF

return 0;
}
if(Elapsed>Limit){

isolation_mode=1;
//Signal LRM about potential deadline overrun
//in the critical application

return 1;
}

}
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Listing C.L8: Observation Points for Deadline Overrun MON in resource management
configuration file

Node:
- id 1

APPpart_description:
# Scheduling specific description of
# application partitions
- AppID: 1 #Application ID

APPname: App_crit2 # optional
DeadlineMON: 1 # required (1) or Not (0)
configurations:

- id: 1
slots:

- { id: 0, tasks: [ Task0, Task1, Task2 ],
DeadlineMON: [ 30, 50, 80 ] }

# Observation points for potential
# deadline overrun MON in milliseconds

[...]

C.1.4 Health MONs (XtratuM)

Listing C.L9 shows application-level MONs (Section IV.4.5) that can use the XtratuM
HM API to write application status or errors (not handled by XtratuM) to the HM
log. Listing C.L10 shows the resource management configuration file to accept as input
(optional) an HM event and action mapping from the system designer to generate the
XtratuM configuration.

Listing C.L9: Pseudo-code for Health MON

void MON_HM_instance(){
//This MON is called in an application upon
//detection of internal errors. The MON determines
//the cause of the error and selects the
//appropriate error event category

event=XTRATUM_EVENT_TYPE;
//Next, it writes this event to the XtratuM
//Health Monitoring log using the API provided
//by XtratuM

if(XM_hm_raise_event(event)!=XM_OK)
return INVALID_EVENT;

else
return SUCCESS;

}
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Listing C.L10: Health Monitor (HM) Event-Action Mapping for XtratuM in Resource Man-
agement Configuration File

Node1:
LRM_desc:
#LRM description

LRM:
MON: [CoreMON, HealthMON] #attached MON modules
[...]

HealthMON_desc:
# - {Error_Type,Action Type,Event Log,Partition ID}
# if partition id >= 0, than HealthMON is
# only for that specific partition
- [-1, XM_HM_EV_<TYPE1>,

XM_HM_AC_HYPERVISOR_<ACTION_TYPE1>,TRUE ]
- [ 0, XM_HM_EV_<TYPE2>,

XM_HM_AC_HYPERVISOR_<ACTION_TYPE2>,FALSE]
- [ 0, XM_HM_EV_<TYPE3>,

XM_HM_AC_HYPERVISOR_<ACTION_TYPE3>,TRUE ]
[...]

[...]
[...]

[...]

C.2 Local Resource Schedulers (LRSs)

C.2.1 LRS for Critical Partitions (XtratuM)
The pseudo-code in Listing C.L11 shows the essential parts of the LRS for Critical
Partitions (Section IV.7.1).

Listing C.L11: Pseudo-code for Critical Partition LRS

void LRS_Critical_Partition(){
//Initialize LRM and HW MON
TaskID=0;
LRM_slot_start(PartitionID,SlotID,TaskID);
HW_MON_slot_start(PartitionID,SlotID,TaskID);
execute_tasks(task_list[CurrentConfig][TaskID])
//From second to Last tasks
for(TaskID=1;TaskID<total_tasks;TaskID++){

statistics[TaskID-1] =
HW_MON_instance(PartitionID,SlotID,TaskID-1);

Deadline_Overrun_MON_instance(PartitionID,
SlotID,TaskID-1);

LRM_instance(PartitionID,SlotID,TaskID-1);
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execute_task(task_list[CurrentConfig][TaskID]);
}
//After Last Task
LRM_slot_end(PartitionID,SlotID,TaskID);
HW_MON_slot_end(PartitionID,SlotID,TaskID);

}

A system designer can define XtratuM plans easily via the resource management
configuration file as shown in Listing C.L12.

Listing C.L12: Time Slot Allocation to Partitions via Resource Management Configuration
File

Node:
- id: 1

hypervisor: xtratum
Hypervisor_LRS_schedule:

# if optional paramters are absent, framework uses default
# values for the platform from the platform config library

schedule_table: #corresponds to XtratuM processor table
- id: 0# Core 0

frequency: 400# optional
configuration:
- id: 0# corresponds to XtratuM plan 0

major_frame: 4000# MaF
slots:

# Application partition
- { id: 0, start: 0, duration: 100,
APPpart:APP1, vcpu:0}

# Resource Management Partition
- { id: 1, start: 100, duration: 50,
RMpart:CoreMON, vcpu:0}

- { id: 2, start: 900, duration: 1000,
RMpart:LRM, vcpu:0}

- id: 1# corresponds to XtratuM plan 1
major_frame: 4000# MaF
slots:
- { id: 0, start: 0, duration: 50,

RMpart: CoreMoN, vcpu: 0 }
- { id: 1, start: 50, duration: 500,

Apppart: APP1, vcpu: 0 }
- { id: 2, start: 900, duration: 1000,

RMpart: LRM, vcpu: 0 }
-id: 1 # Core 1
[...]

[...]
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C.2.2 LRS for Online Reconfiguration (XtratuM)
The pseudo-code in Listing C.L13 shows the essential parts of the LRS for Online
Reconfiguration (Section IV.7.2).

Listing C.L13: Pseudo-code for Reconfiguration LRS (XtratuM)

int NODE_LRS_Switch_Config(NewConfigID, Type){
XM_get_plan_status(&status);
//XtratuM plan in current MaF
CurrentConfigID = status->current;
//XtratuM plan in next MaF
NextConfigID = status->next;
//If LRM asks to change to the plan XtratuM is already
//executing, then something is amiss
if(NewConfigID==CurrentConfigID)

return PLAN_SWITCH_ERROR;
//If LRM asks to change to a plan XtratuM is already
//scheduled for the next MaF and type is not immediate
if((NewConfigID==NextConfigID)&&(Type!="Imm"))

return PLAN_SWITCH_ERROR;
switch(Type){

case "Imm"://Immediate configuration change
//Switch XtratuM mode (plan)
if(XM_switch_imm_sched_plan(NewConfigID,

&CurrentConfigID)!=XM_OK){
return PLAN_SWITCH_ERROR;

}
case "Def"://Deferred configuration change

//Switch XtratuM mode (plan)
if(XM_switch_sched_plan(NewConfigID,

&CurrentConfigID)!=XM_OK){
return PLAN_SWITCH_ERROR;

}
}
return SUCCESS;

}

C.2.3 LRS for Intel CAT and MBA
The pseudo-code in Listing C.L11 shows the essential parts of the LRS for Intel CAT
and MBA (Section IV.7.3).

Listing C.L14: Pseudo-code for CAT and MBA LRS

int CAT_MBA_LRS_init(){ //Initializes MBA and CAT
}
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int CAT_MBA_LRS_reset(){//Resets MBA and CAT
}
int CAT_MBA_LRS_set(CLOS[MAX_CLOS],Type){
//CLOS[MAX_CLOS] contains bitmasks for CAT or MBA delay

switch(Type){
case "CAT":
for(c=0;c<MAX_CAT_CLOS;c++){

set_CAT_CLOS_mask(c,CLOS_mask[c]);
}

case "MBA":
for(c=0;c<MAX_MBA_CLOS;c++){

set_MBA_CLOS_delay(c,CLOS_mask[c]);
}

}
}
int CAT_MBA_LRS_core(cores[MAX_CORE]){
//cores[MAX_CORE] contains mapping of cores to CLOS

for(c=0;c<MAX_CAT_CLOS;c++){
if(cores[MAX_CORE]!=-1)
set_CLOS_to_cores(c,cores[c]);

}
}

C.2.4 TT LRS for Linux/KVM
Listing C.L15 shows the definition of LRS_TT scheduling class (Section IV.7.4), which
implements the TT_LRS module.

Listing C.L15: Pseudo-code for Linux/KVM TT LRS Scheduling Class

DEFINE_SCHED_CLASS(TT_LRS) = {
.enqueue_task = enqueue_task_TT_LRS,
.dequeue_task = dequeue_task_TT_LRS,
.pick_next_task = pick_next_task_TT_LRS,
#ifdef CONFIG_SMP
.balance = balance_TT_LRS,
.select_task_rq = select_task_rq_TT_LRS,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
.task_tick = task_tick_TT_LRS,
.switched_to = switched_to_TT_LRS

};

Listing C.L16 shows the essential parts of the task_tick_TT() function.

Listing C.L16: Pseudo-code for Linux/KVM TT LRS Task Tick Function
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static void task_tick_TT_LRS(struct rq *rq,
struct task_struct *p, int queued){

//Linux executes this function every task tick
//length (1 ms) on each cpu core

if (!test_bit(TT_LRS_STARTED, &TT_LRS.flags)) {
//if the TT LRS was not started by the LRM
if (p->TT_LRS_id != 0)

resched_curr(rq);
rq->TT_LRS.tick_countdown = 1;

}
else {

//if the TT LRS was started by the LRM
if (--rq->TT_LRS.tick_countdown){
//At start of a slot, tick_countdown
//is set TT_LRS_TICK_PERIOD

return;
}
rq->TT_LRS.tick_countdown = TT_LRS_TICK_PERIOD;
//TT_LRS_TICK_PERIOD = Slot length (in ms) divide
//by Linux tick length (in ms)
cpu = cpu_of(rq); //get run queue of current core
//LRM sets sched_next_id[cpu] variable according to
//the task to be scheduled on this cpu core in the
//coming slot according to the offline table
new_tsk_id = TT_LRS.sched_next_id[cpu];
//sched_prev_id[cpu] contains the previously scheduled
//task on this cpu core
prev_tsk_id = TT_LRS.sched_prev_id[_idcpu];
if (new_tsk_id != prev_tsk_id) {
//if the previous and next tasks are not the same

if (new_tsk_id) {
rq->TT_LRS.resched_triggered = true;

}
//LRM will set sched_next_id[cpu] to 0 if there
//is no new task in the table for this cpu in
//the upcoming slot
resched_curr(rq); //mark CPU core for rescheduling

}
}

}

Listing C.L17 shows the essential parts of the pick_next_task_TT() function.

Listing C.L17: Pseudo-code for Linux/KVM TT LRS Pick Next Task Function



APPENDIX C 247

static struct task_struct

*pick_next_task_TT_LRS(struct rq *rq){
//function to pick next task for scheduling on this core

struct task_struct *next = NULL;
int cpu = cpu_of(rq); //get current core id
int sched_task_id = 0;
if (test_bit(TT_LRS_STARTED, &TT_LRS.flags)) {
//if the LRM has started the TT LRS, then the
//LRM sets sched_next_id[cpu] to the next task ID
//to be scheduled on this cpu core in the upcoming
//slot according to the offline scheduling table

sched_task_id = TT_LRS.sched_next_id[cpu];
//LRM will set sched_next_id[cpu] to 0 if there
//is no new task in the table for this cpu in
//the upcoming slot

if (sched_task_id) {
//TT_LRS_tasks is configured by LRM during the
//task initialization phase. It contains the pointer
//to the task structures
next = TT_LRS_tasks[sched_task_id];
if(next->cpu != cpu) {
//if the task resides on a different core’s run
//queue core, then remove it from that run queue,
//and add it to the current core’s run queue

src_rq = cpu_rq(next->cpu);
double_lock_balance(rq, src_rq);
deactivate_task(src_rq, next, 0);
set_task_cpu(next, cpu);
activate_task(rq, next, 0);
double_unlock_balance(rq, src_rq);

}
}

}
return next;

}

Listing C.L18 shows the essential parts of the task_tick_TT() function.

Listing C.L18: Pseudo-code for Linux/KVM TT LRS Set Schedule Function

void TT_LRS_set_schedule(
const unsigned int *sched_slot_task_id){

//this function is called by the LRM to set the tasks
//to be executed in the upcoming slot by the LRS
//sched_slot variable contains task IDs per cpu core

unsigned int *sched_new_id = TT_LRS.sched_new;
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for_each_possible_cpu(c) {
//for all cpu cores under TT LRS

sched_new_id[c] = sched_slot_task_id[c];
}
tmp = TT_LRS.sched_new_id;
TT_LRS.sched_new_id = TT_LRS.sched_prev_id;
TT_LRS.sched_prev_id = TT_LRS.sched_next_id;
TT_LRS.sched_next_id = tmp;

}

C.3 Local Resource Manager (LRM)
A system designer must the order of selection of master LRM for core failure management
(Section IV.9.1) in the resource management configuration file as shown in Listing C.L19.

Listing C.L19: LRM Master Order in Resource Management Configuration file

Node:
- id 1

RM_description:
shared_data:

start_address: 0x10000000
size: 32 # optional

physical_memory_addr: 0x12000000
# if optional paramters are absent, framework uses default
# for the platform from the platform configuration library

[...]
LRM:

memory_area_size: 2 # optional
master_order:[0,2,1,3] #optional master order Core ID
# Node has 4 cores on node. Default Order is in
# ascending Core ID: [0,1,2,3]
MON: [CoreMON, HWMON, DeadlineMON]
[...]

CoreMON:
memory_area_size: 2 # optional
[...]

[...]

Listing C.L20 shows the modified parts of the deadline overrun MON to support
Solution 1 for improving under-utilization due to deadline overrun management (Section
IV.9.2).

Listing C.L20: Pseudo-code for Deadline Overrun MON to support QoS management of
Solution 1
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void MON_DL_overrun_instance(){
Elapsed = HW_MON_vm_elapsed_cycles(); //ET(x)
Limit = vm->InternalDeadline[TaskID]; //D(x)
if(TaskID == vm->TotalTasks-1){

isolation_mode=0;
throttle_qos_mode=0;
//if the current task that finished was
//the last task of the application, then
//signal LRM about critical app completion
return 0;

}
if(isolation_mode){

//if the a potential deadline overrun was
//already detected twice
return 0;

}
if(Elapsed>Limit){

if(throttle_qos_mode){
isolation_mode=1;
//if the a potential deadline overrun
//was already detected
return 1;

}
else

throttle_qos_mode=1;
//Signal LRM about potential deadline overrun
//in the critical application
return 1;

}
}

C.4 Global Resource Manager (GRM)
System designers can set the security to Level 1/2 or altogether disable it (Level 0) via
the resource management configuration file as shown in Listing C.L21.

Listing C.L21: Security Level and Algorithm Selection in Resource Management Configuration
file

RM_description:
#common resource management description for the whole system

[...]
# Security level per channel
# Level 0: no usage security library
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# Level 1-2: use security library with desired level
security_level:

update_channel : 2
order_channel : 2
membership_channel : 1 # -1 if channel is not required

# Security algorithm selection
# Security algorithm 1: ChaCha20-Poly1305
# Security algorithm 2: CLEFIA-OCB
# Security algorithm 3: User-define algorithm module
security_algorithm: 1 # Explained in later sections
[...]

[...]
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Avionics Use Case-Specific Pseudo-Code of
GRM and LRM

Listing D.L1 shows a pseudo-code for the functions that send orders and receive updates
in the GRM. Similar functions exist in LRMs to receive orders and send updates.

Listing D.L1: Resource Management Communication from GRM

//Function to send Order to a LRM
send_order ( struct order_message msg,
xm_s32_t OrdersPort, uint32_t LRM_partition){

//package to two fields into one message
encode_uintx (&order_msg, msg.config, msg.immediate);
if(RM_config.security_lvl_order_ch >= 0){
//if secure RM communication channel level > 0
//Secure the message with appropriate security level
//and send it via the required channel
//XM_PARTITION_SELF = Current (source) partition ID
//LRM_partition = destination LRM partition ID
//OrderPort = XtratuM port descriptor

ret_cod=secure_and_send(order_msg,sizeof(order_msg),
XM_PARTITION_SELF, LRM_partition, OrderPort,
SAMPLING,...,RM_config.security_lvl_order_ch);

}
else{

//non-secure RM communication selected by configuration
ret_code = send_nonsecure_message(order_msg,
sizeof(order_msg),OrderPort,SAMPLING);

}
if( ret_code <0)

return RM_COMM_ERROR;//should not happen
else return RM_COMM_SUCCESS;

}
//Function to receive update from a LRM
receive_update (struct update_message *new_msg,

251
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xm_s32_t UpdatesPort, uint32_t lrm_part ){
if(RM_config.security_lvl_update_ch >= 0){

//if secure RM communication channel level > 0
//Receive the message via the required channel
//and authenticate and decrypt the message
//according to the security level
//XM_PARTITION_SELF = Current(destination) partition ID
//LRM_partition = source LRM partition ID
//UpdatePort = XtratuM port descriptor
ret_code = receive_and_authenticate(update_msg,
sizeof(update_msg),LRM_partition,XM_PARTITION_SELF,
UpdatePort,QUEUING,...,RM_config.security_lvl_update_ch);

}
else{

//non-secure RM communication selected by configuration
ret_code=receive_nonsecure_message(UpdatePort,update_msg,

sizeof(update_msg),QUEUING);
}
if(ret_code == XM_NOT_AVAILABLE)
//if XtratuM signal no new message has arrived

return RM_COMM_NO_NEW_UPDATE;//no new Update available
else if(ret_code<0)

return RM_COMM_ERROR;//should not happen
//convert to struct update_message format
new_msg = decode_uintx(update_msg,

sizeof(new_msg->type)
sizeof(new_msg->current_config));

return RM_COMM_SUCCESS ;
}

Listing D.L2 illustrates the pseudo-code of the static C-array for local reconfiguration
graph automatically generated by the resource management framework for the example
in Figure VI.F10 (Page 159).

Listing D.L2: Pseudo-code for Local Reconfiguration Graph in LRM of Node N1 (T4240 1)

//Auto-generated code section by Resource Management
//Framework based on input from GREC for T4240 1 (node1)
//Both T4240 start in LCinit (= 1)
//Configuration of the LRM is coded as follows:
//LCxtratum=0; xtratum boot to this plan.
//We initialize the Apps here and assume that cores do not
//fail during this plan

//LCinit=1, LC0=2, LC01=3, LC02=4, LC03=5, LC012=6, LC013=7,
//LC023=8, LC1=9, LC12=10, LC13=11, LC123=12, LC2=13, LC23=14
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//LC3=15, LCginit=16, LCg0=17, LCg01 =18 , LCg02=19, LCg03=20
//LCg012=21, LCg013=22, LCg023=23, LCg1=24, LCg12=25,
//LCg13=26, LCg123=27, LCg2=28, LCg23=29, LCg3=30

//Local_graph[TOTAL_CONFIGURATION][NUM_CORES]
static int static int Local_graph[30][4] = {
// IDd of the Failed core
// 0, 1, 2, 3

//Current Plan
{-1,-1,-1,-1}, //0.LCxtratum - no core failures assumed
{ 2, 9,13,15}, //1.LCinit: Move to Config2 if core 0 fails

//1.LCinit: Move to Config9 if core 1 fails
//1.LCinit: Move to Config13 if core 2 fails
//1.LCinit: Move to Config15 if core 3 fails

{ 2, 3, 4, 5}, //3.LC0: Move to Config3 if core 0,1 fail
//3.LC0: Move to Config4 if core 0,2 fail
//3.LC0: Move to Config5 if core 0,3 fail

{ 3, 3, 6, 7}, //4.LC01
{ 4, 6, 4, 8}, //5.LC02
{ 5, 7, 8, 5}, //6.LC03
{-1,-1,-1,-1}, //7.LC013 - no more configuration possible
{-1,-1,-1,-1}, //8.LC023 - no more configuration possible
{ 3, 9,12,11}, //9.LC1
{...}//similarly for LC12, LC13, LC123, LC2, LC23, LC3
//if we are in LCginit due to global reconfiguration
{17,24,28,30}, //16.LCginit
{17,18,19,20}, //17.LCg0
{18,18,21,22}, //18.LCg01
{...}//similarly for remaining entries
};

Listing D.L3 illustrates the pseudo-code of the function for global reconfiguration
graph automatically generated by the resource management framework for the example
in Figure VI.F12 (Page 161).

Listing D.L3: Pseudo-code for Global Reconfiguration Graph in the GRM

//Auto-generated code section by Resource Management
//Framework based on input from GREC
static int current_configuration [2]={1 ,1};
//for T4240 1 (node1) and 2 (node2)
//Both T4240 start in LCinit (= 1)
//We assume DHP does not fail. So we do not consider DHP here
//LConfiguration of each LRM is coded as follows:
//LCinit=1, LC0=2, LC01=3, LC02=4, LC03=5, LC012=6, LC013=7,
//LC023=8, LC1=9, LC12=10, LC13=11, LC123=12, LC2=13, LC23=14
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//LC3=15, LCginit=16, LCg0=17, LCg01 =18 , LCg02=19, LCg03=20
//LCg012=21, LCg013=22, LCg023=23, LCg1=24, LCg12=25,
//LCg13=26, LCg123=27, LCg2=28, LCg23=29, LCg3=30
//Cases for node N1 only
receive_update(&update_msg , port[0],...);
//Has LRM of Node 1 sent an update?
//Message corresponds to the current configuration
switch(update_msg.config){

case 2: case 9: case 13: case 15:
// just update the configuration

break ;
case 3: case 4: case 5: case 10:
case 11: case 14:
// unique failure in N0

if ( current_configuration [1]==1){
//A2 must be reallocated on N2
order_msg.config=6;
send_order(order_msg, port[1],...);
//Send order to LRM of Node 2 sent

}
break ;

case 6: case 7: case 8: case 12:
if(current_configuration [1]==1
&& current_configuration [0]==1){

//double failure in N0 during one MaF
//and both nodes were in Cinit before
order_msg.config=6;
send_order(order_msg, port[1],...);
//Send order to LRM of Node 2 sent

}
break ;

case 16:
case 17: case 24: case 28: case 30:

// A2 cannot be reallocated
case 18: case 19: case 20: case 29:

// A3 cannot be reallocated as well
case 21: case 22: case 23: case 25:
case 26: case 27:

break ;
}
current_configuration[0]=update_msg.config;
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Time-Triggered (TT) Scheduling for Cloud
Nodes

E.1 Heuristic for Generation of a Time-Triggered (TT) Scheduling
Table

• N = total number of Time-Triggered (TT) Virtual Machines (VMs).

• P = total number of TT CPU cores.

• S = Total number of slots. The last slot is equal to the last deadline in the system.
Each slot is a multicore slot. For simplicity, we assume each VM requires only one
virtual CPU allocated on a physical CPU. Thus, in a system with P TT cores, a
slot can execute P VMs at a time.

• τt,s ∈ {0, 1} such that VM t has to execute in slot s, than τt,s = 1: otherwise
τt,s = 0.

• We define a VM τn as a tuple 〈rn, Cs
n, d, φn, C

m
n 〉, where rn is the start slot of τn,

Cs
n is worst-case execution time of τn (in slots) when running in isolation and

with no memory bandwidth restrictions, dn is the absolute deadline of the τn (in
slots), φn is the maximum number of memory accesses τn is allowed to issue per
regulation interval, and Cm

n is the worst-case execution time of τn (in slots) when
restricting the memory bandwidth of the τn to φn accesses per regulation interval.
We consider τn has a constant amount of memory accesses.

Assumptions:

1. We assume that the values φn and Cm
n are provided by the system designer.

2. We assume that an ongoing memory access is not preemptible. Each VM is granted
at most one memory access at a time, resulting in waiting times for accesses from
other VMs.

The offline scheduler uses Integer Linear Programming (ILP) to generate a scheduling
table.
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ILP model

To schedule the VMs as late as possible, the model is shown in equation E.1.

maximize
S∑
s=0

N∑
n=0

s ∗ Cn ∗ dn ∗ τn,s (E.1)

Subjected to:

• VMs should not be schedule before their release times.
rn∑
s=0

τn,s = 0;∀n ∈ {0, N} (E.2)

• VMs should not be schedule after their deadlines.

S∑
s=dn

τn,s = 0;∀n ∈ {0, N} (E.3)

• At max, P (= total number of TT cores) VMs can be scheduled in a slot.

N∑
n=0

τn,s ≤ P ;∀s ∈ {0, S} (E.4)

• Each VM should be allocated the number of slots exactly equal to its Worst-case
Execution Time (WCET).

S∑
s=0

τn,s ≤ Cτn ;∀n ∈ {0, N} (E.5)

• The sum of memory bandwidth consumption of all VMs scheduled in a slot should
be ≤ 100%. We consider max. bandwidth as "100" (and not "1") as ILP only
allows for integer values. Using a maximum bandwidth of 1 means VMs have to
be assigned fractional bandwidth which is not possible here.

N∑
n=0

τn,s ∗ φn ≤ 100;∀s ∈ {0, S} (E.6)

If the ILP fails, scheduling all the VMs may or may not be feasible. But, if the ILP
succeeds, the offline scheduler gives a scheduling table with slots consisting of BW p

s

values, Ms, and SBWs per slot Ss.
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corollary
• Each VM τn can have multiple memory bandwidth allocations φin and corresponding
WCET values, Ci

n (see assumptions below). An example for VM τn is shown in
Table E.T1.

Selection variable Memory Bandwidth WCET Number of Interfering cores
x1n φ1

n C1
n IC1

n

x2n φ2
n C2

n IC2
n

. . . . . . . . . . . .
xMn
n φMn

n CMn
n ICMn

n

Table E.T1: Memory Bandwidth and WCET pairs for VM τn

• In table E.T1, xmn is a selection variable to select one of the possible (φmn , C
m
n )

pairs for VM τn. M is maximum total number of φn, Cn pairs for VM τn and
m ∈ {0,Mn}.

• τmn,s indicates VM n running in slot s with a (φmn , Cm
n ) pair from table E.T1.

• Assumptions:

1. φmn are the possible memory bandwidth values for τn in presence of interference
from all the P CPU cores, i.e., φmn takes into account the memory arbitration
overhead assuming up to P − 1 cores access the memory simultaneously as
indicated in the last column of table E.T1.

2. To formulate Table E.T1, following assumptions are taken

a) VM τn runs on Core 0 and is assigned a memory bandwidth φmn in
pre-determined steps. Only those pairs (φmn , Cm

n ) are considered where
Cm
n < dn − rn

b) This is assuming other memory intensive VMs run on the remaining
number of cores indicated in the last column of table E.T1 and each
of these interfering cores consumes a maximum bandwidth of (100 −
φmn )/(ICm

n )

3. We assume that a system designer provides Table E.T1 for each VM τn.

ILP Model:
The ILP model to schedule the VMs as late as possible and to have as less memory
bandwidth consumption as possible is:

maximize
S∑
s=0

N∑
n=0

Mn∑
m=0

s ∗ Cn ∗ dn ∗ τmn,s (E.7)
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(This is similar to Equation E.1).
This model is Subjected to:

• VMs should not be schedule before their release times.

rn∑
s=0

Mn∑
m=0

τmn,s = 0;∀n ∈ {0, N} (E.8)

• VMs should not be schedule after their deadlines.

S∑
s=dn

Mn∑
m=0

τmn,s = 0;∀n ∈ {0, N} (E.9)

• At max, P (= total number of CPU cores) VMs can be scheduled in a slot

N∑
n=0

Mn∑
m=0

τmn,s ≤ P ; ∀s ∈ {0, S} (E.10)

• We add a new condition for selection variable as follows:

Mn∑
m=0

xmn = 1;∀n ∈ 0, N (E.11)

This condition specifies that only one pair of (φmn ,Cm
n ) must be selected for VM τn.

• We add another new condition as follows:

Mn∑
m=0

τmn <= 1;∀n ∈ 0, N (E.12)

This condition specifies that if a VM executes in a slot, it can only execute using
one pair of (φmn ,Cm

n ) that has been selected for VM τn.

• Equation E.5 changes as:

dn∑
s=rn

τmn,s = Cm
τn ∗ xmn ;∀n ∈ {0, N},∀m ∈ {0,Mn} (E.13)

• Equation E.6 changes as:

N∑
n=0

Mn∑
m=0

τmn,s ≤ 100;∀s ∈ {0, S}¸ (E.14)
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• The following new condition ensure that a (φmn ,Cm
n ) pair is selected as per the

number of interfering cores (i.e., the number of cores executing VMs in parallel)

∀n ∈ {0, N}, ∀m ∈ {0,Mn}, ∀s ∈ {0, S}:

τmn,s ∗ (ICm
n + 1) ≥ (

N∑
n=0

Mn∑
m=0

τmn,s)− (1− τmn,s) ∗ P ; (E.15)

τmn,s ∗ (ICm
n + 1) ≤ (

N∑
n=0

Mn∑
m=0

τmn,s) + (1− τmn,s) ∗ P (E.16)

Explanation: equation E.15 and E.16 together represent the following:

if(τmn,s==1) then τmn,s ∗ (ICm
n + 1) = (

∑N
n=0

∑Mn

m=0 τ
m
n,s)
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Summary

Resource Management for
Real-Time and Mixed-Critical Systems
Chapter I

This chapter gives a high-level overview of the dissertation.

Chapter II

This chapter introduces the terms and concepts used throughout this dissertation and
presents the relevant work and relevant EU projects. In addition, it provides an overview
of existing techniques to deal with contention in shared resources. The chapter also
presents the state-of-the-art resource management frameworks for Real-Time Systems
(RTS) and Mixed-Critical Systems (MCS). Lastly, this chapter describes the problem
statements addressed in this dissertation.

Chapter III

This chapter presents our resource management framework and explains various require-
ments and challenges for the design of our framework.
The chapter explains how the framework combines the benefits of local and global

resource management strategies and keeps the overhead low by decoupling global resource
management from local resource management via a Global Resource Manager (GRM)
and a set of Local Resource Managers (LRMs). In addition, the chapter gives an overview
of how the framework allows multiple monitoring and scheduling techniques without
tightly coupling them with the framework implementation (via the introduction of Local
Resource Monitor (MON) and Local Resource Scheduler (LRS) modules).
The chapter introduces two resource management architectures:

1. A flat architecture where the GRM is at the top of the hierarchy and has a complete
view of the entire system and directly supervises and controls all the LRMs.

2. A hierarchical architecture where the GRM sits at the top of the hierarchy while
LRMs are present at different levels in the hierarchy. The chapter also explains
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the advantages of hierarchical architecture for developing a scalable resource
management framework to manage a distributed system consisting of heterogeneous
nodes with different operating speeds and locations in the system structure.

The chapter also presents the concept of resource management domains based on the
hierarchical resource management architecture. Resource management domains allow for
effective reconfiguration at different levels in the system.

It can be error-prone and tedious for a system designer to correctly configure resource
management according to each platform’s low-level details, especially in heterogeneous
distributed systems. The chapter explains how the resource management framework
makes it easier for the system designers to provide resource management configuration
parameters abstractly and select MONs and LRSs for each platform without the need to
know or set fine-grained platform-specific configurations.

Chapter IV

This chapter explains the Local Resource Manager (LRM) of the resource management
framework. There are two main types of modular LRM sub-components:

1. Local Resource Monitor (MON): Each resource or application managed by the
LRM has one or more MONs, each providing different monitoring services, such as
availability monitoring or reliability monitoring. The chapter presents the following
new MONs that we designed and implemented:

• MON to interface with the hardware-specific monitoring features such as
Performance Monitor Unit (PMU), Intel Memory Bandwidth Monitoring
(MBM), and Cache Monitoring Technology (CMT).

• MON1 to detect permanent core failures on multicore nodes.
• MON1 for detecting potential deadline overrun by a critical Virtual Machine
(VM) in the presence of interference from concurrently executing non-critical
VMs.

• MON that can use the XtratuM Health Monitoring (HM) API to write
partition status or errors (not handled by XtratuM) to a HM log.

2. Local Resource Scheduler (LRS): Each resource managed by the resource manage-
ment framework is paired with a LRS. Each LRS schedules the use of the resource
and controls application access to the resource. The chapter presents the following
new LRSs that we designed and implemented:

• LRS1 for scheduling tasks of a critical application running in a XtratuM
hypervisor partition (VM).

• LRS1 to reconfigure scheduling plans (modes) of XtratuM hypervisor.
• LRS to provide an interface for the resource management to interact with

Intel Cache Allocation Technology (CAT) and Memory Bandwidth Allocation
(MBA) hardware features.

1 Designed and implemented together with ONERA and Thales R&T.
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• LRS to support scheduling of Time-Triggered (TT) tasks or VMs in Linux or
Kernel Virtual Machine (KVM).

Moreover, this chapter explains the various services provided by an LRM, such
as reading information from its MONs, calculating the abstract state of resources,
sending/receiving updates/orders to/from the GRM or a lower- or higher-domain LRM,
making local reconfiguration decisions, translating global orders, and configuring the
LRSs. Finally, this chapter presents LRM policies1 to manage the following situations:

1. Permanent failure of CPU cores on a node.

2. Node-level temporal overload situation (by potential deadline overrun monitoring).

Chapter V

This chapter introduces the Global Resource Manager (GRM) of our resource management
architecture. The GRM provides various services, such as gathering updates from
LRMs, making global reconfiguration decisions, obtaining or computing a new global
configuration, and sending/receiving orders/updates to/from the LRMs. It also manages
external input. Conceptually, only one GRM exists in the system, although distribution
is possible for fault tolerance and scalability. Therefore, the GRM can be realized either
by a single node or by a set of nodes.
The chapter proposes three conceptual communication channels among the central

GRM and the LRMs (and between higher and lower domain LRMs) to exchange infor-
mation – Update, Order and Membership channels. In addition, the chapter provides
an overview about using two popular existing protocols (Message Queue Telemetry
Transport (MQTT) and Open Platform Communications Unified Architecture (OPC
UA)) for resource management communication, taking into consideration requirements
such as membership, security, and reliable message delivery.

Unsecured resource management has several weak spots that an attacker can exploit.
Therefore, the chapter analyzes the resource management communication, LRM, and
GRM from a security viewpoint2. The chapter proposes security services for resource
management communication to prevent various security attacks. In addition, it explains
the three different security levels (Levels 0, 1, and 2) for resource management communi-
cation and two options to implement the security services – implementation as a support
module or implementation as a layer between the resource managers and the underlying
hypervisor or Operating System (OS). Moreover, the chapter discusses two options for
security algorithms2 – ChaCha20-Poly1305 and CLEFIA (in offset codebook operation
mode).
Finally, this chapter discusses several limitations of a single central global resource

manager. The chapter proposes distributed global decision-making instead of centralized
decision-making to ensure fault-tolerance for global resource management. It describes
a new type of component, the Distributed Global Resource Manager (DGRM), to
replace the single central GRM. Furthermore, the chapter identifies the challenges and

2Based on inputs from the security experts at the University of Siegen



284 SUMMARY

requirements concerning safety and security for the DGRMs. The chapter explains
how a private (permissioned) blockchain called the Hyperledger Sawtooth [138] can
help us to meet the challenges and requirements concerning safety and security and
presents a design for a new Sawtooth transaction family called the Resource Manager
(RM)-transaction family for implementing the DGRMs and the LRMs of our resource
management framework.

Chapter VI

This chapter presents the avionics use case of the EU DREAMS project [2] consisting of
two multicore processors and a Multi-Processor System on a Chip (MPSoC) connected
via a TT-Ethernet (TTE) network. The system hosts three safety-critical avionics
applications and multiple instances of a best-effort application.
The chapter also presents the avionics use case-specific implementation of the local

and global resource management policy for core failure. It is based on mode3 changes. It
uses local and global reconfiguration graphs obtained offline via the DREAMS toolchain
(Xoncrete and GREC tools). The chapter also gives an overview of how network
reconfiguration can be achieved through a super schedule approach.
Furthermore, the chapter evaluates the proposed resource management framework

with the avionics use case in two scenarios:

1. Permanent core failure: The evaluation focuses on the fault tolerance capacity of
the resource management against core failures and the global reconfiguration delay
for the avionics use case.

2. Temporal overload condition: The evaluation focuses on the efficiency of the
resource management adaptation to improve the system utilization while ensuring
the critical applications meet their timing requirements.

Finally, the chapter presents an experimental evaluation for determining the overhead
of secure resource management communication (Chapter V) in the avionics use case.
The evaluation considers all three security levels and both security algorithms (Chapter
V).

Chapter VII

This chapter presents an existing real-time safety-critical railway use case from the EU
SECREDAS project [154]. It explores virtualization technologies and cloud computing
for migrating this use case from dedicated hardware solutions. The chapter examines
existing virtualization technologies (hypervisors) for deploying a (private) Cloud on
Commercial-Off-The-Shelf (COTS) server hardware to run the use case while meeting
stringent safety requirements. The chapter presents qualitative and quantitative analyses
of relevant cloud hypervisors considering railway-specific requirements. Based on the
insights gained, the chapter gives suggestions for using an existing hypervisor, Kernel

3Also referred to as configurations or plans by hypervisors
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Virtual Machine (KVM), with a new component to form a Real-Time Cloud (RT-Cloud)
that can safely run the railway use case applications. The new component is a resource
management layer that is based on our resource management framework. Finally, the
chapter presents an evaluation for our TT-LRS (Chapter IV), initial experiments with
Intel Memory Bandwidth Allocation (MBA) for memory regulation, and the evaluation
of our blockchain-based distributed global resource management (Chapter V).

Chapter VIII

This chapter gives the conclusions. In addition, it describes the ongoing and future work.





Zusammenfassung

Ressourcenmanagement für Echtzeit- und gemischt-kritische
Systeme
Echtzeitsysteme müssen die erwarteten logischen Ergebnisse innerhalb strenger Zeitvorga-
ben liefern. Sie lassen sich in verschiedenen Bereichen wiederfinden, wie z.B. Multimedia,
der Luft- und Raumfahrt, der Bahn- und Automobilindustrie, in Kernkraftwerken und
dem Gesundheitswesen. Ein beträchtlicher Anteil der Echtzeitsysteme sind eingebettete
Systeme bei denen es nicht sofort ersichtlich ist, dass ein Computer beteiligt ist. Ein Bei-
spiel für ein eingebettetes Echtzeitsystem, das uns im alltäglichen Leben begegnet, ist ein
digitaler Medienplayer, bei dem die Nichteinhaltung von Fristen zu unerwünschten Verzö-
gerungen führen kann. Wir bezeichnen solche Echtzeitsysteme, bei denen die Missachtung
von Echtzeitvorgaben zu Funktions- oder Leistungsverlust ohne katastrophale Folgen
führt, als unkritische Echtzeitsysteme. Oft legen wir, ohne uns dessen Bewusst zu sein, un-
ser Leben in die Hände von Echtzeitsystemen und verlassen uns auf ihr ordnungsgemäßes
Funktionieren. Die Nichteinhaltung von Fristen in den Echtzeitsystemen eines Flugzeugs
würde z.B. katastrophale Folgen haben. Als sicherheitskritische Echtzeitsysteme werden
Systeme bezeichnet, bei denen die Nichteinhaltung von Echtzeitvorgaben zum Tod, zu
schweren Verletzungen, zur Beschädigung bzw. zum Verlust von Eigentum/Ausrüstung
oder zu Umweltschäden führen kann. Sicherheitskritische Echtzeitsysteme müssen von
Zertifizierungsstellen nach den entsprechenden Industrienormen zertifiziert werden. Die
Zertifizierung ist erforderlich, um ihren sicheren Betrieb zu gewährleisten und die Risiken
auf ein angemessenes Maß an Ausfallsicherheit zu reduzieren.
Viele Echtzeitsysteme verwenden traditionellerweise föderierte Architekturen, bei de-

nen jede Echtzeitanwendung auf einer eigenen Hardwareplattform (einem so genannten
Knoten) läuft. Die Knoten tauschen untereinander nur Steuer- und Sensordaten aus.
Die föderierten Architekturen gewährleisten eine Fehlereingrenzung, begrenzen die Aus-
breitung von Fehlern in einem Knoten auf andere Knoten und vermeiden unerwünschte
Wechselwirkungen durch ihr Design. So kann jede Anwendung von den anderen isoliert
zertifiziert werden. Die derzeitige Zunahme der implementierten Anwendungen in diesen
Bereichen hat jedoch die Anzahl der Knoten im System drastisch erhöht. Infolgedessen
nehmen Größe, Gewicht und Leistung (Engl.: Size, Weight and Power - SWaP), die
erforderliche Verkabelung und die damit verbundenen Kosten zu. Diese Überlegungen
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haben die Industrie veranlasst, sich von föderierten Architekturen abzuwenden und zu
integrierten Architekturen überzugehen.
Integrierte Architekturen implementieren mehrere Echtzeitanwendungen auf einem

einzigen gemeinsamen Knoten. Integrierte Architekturen haben an Popularität gewonnen,
da sie den Nachteilen föderierter Architekturen entgegenwirken. Integrierte Architekturen
verwenden häufig COTS-Multikern-Prozessoren (Commercial-Off-The-Shelf-Multicore-
Processors) und Multiprozessorsysteme auf dem Chip (MPSoCs). Multicore-Prozessoren
und MPSoCs haben mehrere CPU-Kerne auf einem einzigen Chip. Dies ermöglicht es
ihnen eine bessere Leistung zu bieten und die Integration einer größeren Anzahl von
Anwendungen ohne die physikalischen Beschränkungen von Einprozessoren, welche nur
einen CPU-Kern auf dem Chip verwenden, zu unterstützen. So tragen sie zu einer weiteren
Reduzierung von SWaP, Verkabelung, Kosten und Umweltbelastung bei. Zusätzlich zu
den genannten Vorteilen stellt die Industrie auf Multicores um, weil sie erwartet, dass
Uniprozessoren bald auf dem Massenmarkt überflüssig werden.

Ein weiterer bemerkenswerter Trend bei integrierten Architekturen sind Systeme mit
gemischter Kritikalität. In gemischt-kritischen Systemen können Anwendungen unter-
schiedlicher Kritikalitätsstufen gleichzeitig auf einem Knoten ausgeführt werden und sich
die Ressourcen des Knotens teilen, z.B. kann das sicherheitskritische Flugmanagement-
system und die nicht-kritische Bordunterhaltung für die Passagiere parallel auf einem
einzigen gemeinsamen Knoten laufen.
Die Vorteile der integrierten Architektur sind für die Industrie ein überzeugender

Grund sie einzusetzen. Allerdings gibt es auch einige Nachteile. Es ist schwierig, die er-
forderliche Isolierung zu erreichen, insbesondere bei Multicore-Plattformen und MPSoCs.
Der Mangel an Isolierung entsteht durch die Konkurrenz um die gemeinsam genutzten
Ressourcen wie den CPU, dem Gemeinsamen-Bus, dem Speicherkontroller und Netzwerk.
Diese gemeinsam genutzten Ressourcen können unvorhersehbare Verzögerungen verursa-
chen, die bei Echtzeitanwendungen zu Fristüberschreitungen führen. Außerdem sind die
Grenzen für die Fehlerisolierung und -kontaminierung nicht so scharf definiert wie bei der
föderierten Architektur. Daher ist es eine Herausforderung, sicherzustellen, dass Echt-
zeitsysteme ihre Fristen einhalten, vor allem, wenn es keine geeigneten Techniken zum
Ressourcenmanagement gibt. Solche Techniken können die Isolierung und vorhersehbare
Verzögerungen beim Zugriff auf gemeinsame Ressourcen garantieren. Die Zertifizierung
von sicherheitskritischen Echtzeitanwendungen ohne diese Garantien ist schwierig.

Außerdem gibt es gegensätzliche Ziele für sicherheitskritische und nicht-kritische/“best-
effort“-Anwendungen, die das bereits bestehende Problem des Ressourcenmanagements
in integrierten Architekturen verschärfen. Die pessimistischen WCET (engl.: Worst
Case Execution-Time) -Schätzungen der sicherheitskritischen Anwendungen führen im
Durchschnitt zu einer erheblichen Unterauslastung der Ressourcen. Gleichzeitig erfordern
die nicht-kritischen/“best-effort“-Anwendungen eine effiziente Ressourcennutzung, um
die bestmögliche Servicequalität (engl.: Quality of Service, QoS) zu bieten.

Es gibt viele Allokations- und Scheduling-Methoden für Echtzeitsysteme und Systeme
mit gemischter Kritikalität. Diese Methoden beruhen auf impliziten Annahmen einer
konstanten Verfügbarkeit der einzelnen Ressourcen, insbesondere der CPU. Klassische
Scheduling-Algorithmen wie Round-Robin oder Earliest-Deadline-First (EDF) gehen von
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der Kontrolle über die gesamte CPU oder einen einzelnen Kern aus. Methoden wie der
XtratuM-Hypervisor [15] oder PikeOS [16] planen nach festen Anteilen und erlauben
hierarchisches Scheduling. Bei diesen bestehenden Ansätzen wird davon ausgegangen, dass
die Verfügbarkeit einer konstanten Verarbeitungsmenge den Fortschritt der Anwendungen
garantiert. Solche im Voraus geplanten Annahmen können auf einzelnen Knoten gemacht
werden; in verteilten Systemen mit mehreren Knoten, die jeweils über mehrere Ressourcen
verfügen, sind sie jedoch weniger sinnvoll. Wenn sich die Anwendungen, die Verfügbarkeit
von Ressourcen oder die Systemkonfigurationen ändern, wird es schwierig, Annahmen
über Ressourcen zu treffen. Es ist eine Herausforderung, Ende-zu-Ende-Einschränkungen
zu erfüllen, wenn jede Ressource oder jeder Knoten einzeln betrachtet wird. Ein System
mit sich dynamisch ändernder Verfügbarkeit und Anforderungen an Ressourcen erfordert
ein globales Ressourcenmanagement. Das globale Ressourcenmanagement ermöglicht eine
globale (systemweite) Sicht auf die Ressourcen und Anwendungen. Es koordiniert und
passt die systemweiten Ressourcenallokationen an. Darüber hinaus muss es Anwendungen
an die sich ändernde Ressourcenverfügbarkeit anpassen.

Die meisten bestehenden Ressourcenmanagement-Frameworks, wie z. B. [17, 18, 19, 20],
konzentrieren sich auf Nicht-Echtzeitsysteme. Einige Beispiele für bestehende Kon-
zepte für Ressourcenmanagement-Frameworks in Echtzeitsystemen sind das Matrix-
Framework [21], das ACTORS-Framework [22], das ACROSS-Framework [23] und RT-
ARM [24]. Mit dem Matrix-Ressourcenmanagement-Framework wurde eine Methode
zur Verwaltung nicht-kritischer Echtzeitsysteme mit Einzelkernprozessoren vorgestellt.
Das Ressourcenmanagement-Framework des ACTORS-Projekts ermöglichte die zeitliche
Isolierung von Echtzeitsystemen auf CPU-Ebene durch Ressourcenreservierung in einer
einzigen Multicore-Plattform. Im Projekt ACROSS, bot ein Trusted Resource Manager
die Möglichkeit, die Kommunikation auf NoC umzuplanen. RTARM ist ein adaptives
Ressourcenmanagement-Framework für Ende-zu-Ende-Ressourcenzuweisungen auf hete-
rogenen COTS-Knoten. Es bietet den Anwendungen garantierte QoS. Diese bestehenden
Arbeiten haben jedoch nicht eine Architektur berücksichtigt, die aus verteilten Syste-
men mit gemischter Kritikalität und Echtzeitsystemen besteht. Sie haben auch keine
heterogenen Knoten auf der Basiskomponente von Multicore-Prozessoren oder MPSoCs
berücksichtigt.

Ein einziger Fehler im globalen Ressourcenmanagement kann es unbrauchbar machen.
Im schlimmsten Fall kann es fehlerhafte Entscheidungen über die Ressourcenallokation
treffen, was zu einer Fristüberschreitung bei Echtzeitanwendungen führt. Daher ist es
wichtig, die Sicherheit des globalen Ressourcenmanagements durch die Bereitstellung
von Fehlertoleranz in seinen Komponenten zu gewährleisten. Mit dem Aufkommen von
Industrie 4.0, Cloud Computing und dem Internet der Dinge (IoT) ist es notwendig
geworden, strenge Echtzeitbeschränkungen und zuverlässigkeitsanforderungen mit dem
Erfordernis einer offenen Welt zu kombinieren. Die globale Ressourcenmanagement für
diese Systeme wird zu einem einladenden Ziel für passive und aktive Angreifer, da sie ak-
tiv über die Ressourcenmanagement des Systems entscheiden kann. Im schlimmsten Fall
kann es fehlerhafte Entscheidungen über die Ressourcenallokation treffen, was zu einer
Fristüberschreitung bei Echtzeitanwendungen führt. Daher ist es wichtig, die Sicherheit
des globalen Ressourcenmanagements durch die Bereitstellung von Fehlertoleranz in
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seinen Komponenten zu gewährleisten. Mit dem Aufkommen von Industrie 4.0, Cloud
Computing und dem Internet der Dinge (IoT) ist es notwendig geworden, strenge Echt-
zeitbeschränkungen und zuverlässigkeitsanforderungen mit dem Erfordernis einer offenen
Welt zu kombinieren. Die globale Ressourcenverwaltung für diese Systeme wird zu einem
einladenden Ziel für passive und aktive Angreifer, da sie aktiv die Ressourcenallokation
bestimmen kann. Die Angreifer können sich beispielsweise als Ressourcenmanagement-
komponente ausgeben und falsche Entscheidungen über die Ressourcenallokation treffen
oder sensible Systeminformationen aus der Kommunikation des Ressourcenmanagements
erhalten. Keines der vorhandenen Konzepte berücksichtigt sowohl Fehlertoleranz als auch
Sicherheit für das globale Ressourcenmanagement in Echtzeitsystemen oder Systemen
mit gemischter Kritikalität.

In dieser Dissertation wird ein domänenunabhängiges globales Ressourcenmanagement-
Framework für verteilte gemischt-kritische Systeme und Echtzeitsysteme vorgeschlagen.
Diese bestehen aus heterogenen Knoten, die sich aus Multicore-Prozessoren oder MPSoC
zusammensetzen. Das globale Ressourcenmanagement-Framework kann eine effiziente
Ressourcennutzung sicherstellen. Außerdem bietet es die erforderliche Ressourcenisolie-
rung und ein vorhersehbares Verhalten beim Ressourcenzugriff. Das Ziel des Frameworks
ist es, zu garantieren, dass alle Echtzeitanwendungen ihre Fristen einhalten (und sicher-
heitskritische Anwendungen ihre Sicherheitsstufen einhalten). Dieses Framework bietet
auch Fehlertoleranz oder Wiederherstellung für Echtzeitanwendungen bei Änderungen
der Betriebs- oder Umgebungsbedingungen. Gleichzeitig kann das Framework Ressourcen
zu nicht-kritischen/“best-effort“-Anwendungen allokieren, um die QoS zu verbessern. In
der Dissertation werden sowohl die Fehlertoleranz als auch die Sicherheit des Frameworks
berücksichtigt.
Um die Echtzeitindustrie in die Lage zu versetzen, Cloud Computing zu nutzen und

ein neues Marktsegment zu erschließen, z. B. den Bahnbetrieb als Cloud-basierten Dienst,
wird in dieser Dissertation das globale Ressourcenmanagement-Framework erweitert,
um eine Echtzeit-Cloud zu entwickeln. Diese kann Echtzeitsysteme und Systeme mit
gemischter Kritikalität hosten. Abschließend wird in der Dissertation ein Anwendungsfall
aus der Avionik vorgestellt, um ein globales Ressourcenmanagement-Framework für
gemischt-kritische Systeme zu deMONtrieren, sowie ein Anwendungsfall aus dem Eisen-
bahnbereich, um den Einsatz von Echtzeit-Clouds mit globalem Ressourcenmanagement
zu begründen.
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Kapitel I

Dieses Kapitel gibt einen allgemeinen Überblick über die Dissertation.

Kapitel II

In diesem Kapitel werden die in dieser Dissertation verwendeten Begriffe und Konzepte
eingeführt und die relevanten Arbeiten und EU-Projekte vorgestellt. Darüber hinaus gibt
es einen Überblick über bestehende Techniken zum Umgang mit Konflikten in gemein-
sam genutzten Ressourcen. In diesem Kapitel werden auch die aktuellen Rahmenwerke
zur Ressourcenverwaltung für Echtzeitsysteme und gemischt-kritische Systeme vorge-
stellt. Anschließend werden die in dieser Dissertation behandelten Problemstellungen
beschrieben.

Kapitel III

In diesem Kapitel wird unser Rahmenwerk für die Ressourcenverwaltung vorgestellt
und es werden verschiedene Anforderungen und Herausforderungen des Designs unseres
Rahmenwerks erläutert.
Das Kapitel erklärt, wie das Framework die Vorteile lokaler und globaler Ressour-

cenverwaltungsstrategien kombiniert und den Overhead niedrig hält, indem die globa-
le Ressourcenverwaltung von der lokalen Ressourcenverwaltung über einen globalen
Ressourcenmanager (GRM) und einer Reihe von lokalen Ressourcenmanagern (LRM)
entkoppelt wird. Darüber hinaus gibt das Kapitel einen Überblick darüber, wie das
Framework mehrere Überwachungs- und Scheduling-Techniken ermöglicht, ohne sie eng
mit der Framework-Implementierung zu koppeln (durch die Einführung von lokalen
Ressourcenmonitor- (MON) und lokalen Ressourcen-Scheduler (LRS) -Modulen).
Das Kapitel stellt zwei Architekturen zur Ressourcenverwaltung vor:

1. Eine flache Architektur, die den GRM an die Spitze der Hierarchie stellt und dieser
einen vollständigen Überblick über das gesamte System hat und alle LRM direkt
überwacht und kontrolliert.

2. Eine hierarchische Architektur, bei der der GRM an der Spitze der Hierarchie
steht, während die LRM auf verschiedenen Ebenen der Hierarchie vorhanden sind.
In diesem Kapitel werden auch die Vorteile einer hierarchischen Architektur für
die Entwicklung eines skalierbaren Rahmens für das Ressourcenmanagement zur
Verwaltung eines verteilten Systems erläutert, das aus heterogenen Knoten mit
unterschiedlichen Betriebsgeschwindigkeiten und Standorten in der Systemstruktur
besteht.

In diesem Kapitel wird auch das Konzept der Ressourcenmanagement-Domänen
auf der Grundlage der hierarchischen Ressourcenmanagement-Architektur vorgestellt.
Ressourcenmanagement-Domänen ermöglichen eine effektive Rekonfiguration auf ver-
schiedenen Ebenen im System.
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Für einen Systementwickler kann es, insbesondere in heterogenen verteilten Systemen,
fehleranfällig und mühsam sein, die Ressourcenverwaltung entsprechend der Low-Level-
Details der einzelnen Plattformen korrekt zu konfigurieren. In diesem Kapitel wird
erläutert, wie das Rahmenwerk für die Ressourcenverwaltung den Systementwicklern die
abstrakte Bereitstellung von Konfigurationsparametern für die Ressourcenverwaltung
und die Auswahl von MON und LRS für jede Plattform erleichtert, ohne dass sie die
detaillierten plattformspezifischen Konfigurationen kennen oder festlegen müssen.

Kapitel IV

In diesem Kapitel wird der LRM des Ressourcenmanagementrahmens erläutert. Es gibt
zwei Haupttypen von modularen LRM-Unterkomponenten:

1. Ressourcenmonitor-Module (MON): Jede Ressource oder Anwendung, die vom
LRM verwaltet wird, verfügt über einen oder mehrere MON, die jeweils unter-
schiedliche Überwachungsdienste bereitstellen, wie z.B. die Verfügbarkeits- oder
Zuverlässigkeitsüberwachung. In diesem Kapitel werden die folgenden neuen MON
vorgestellt, die wir entworfen und implementiert haben:

• MON, um mit den hardwarespezifischen Überwachungsfunktionen wie Per-
formance Counter, Intel Memory Bandwidth Monitoring (MBM) und Cache
Monitoring Technology (CMT) zu kommunizieren.

• MON1, um permanente Kernausfälle auf Multicore-Knoten zu erkennen.

• MON1 zur Erkennung einer potenziellen Fristüberschreitung durch eine kriti-
sche virtuelle Maschine (VM) in Gegenwart von Störungen durch gleichzeitig
ausgeführte nicht-kritische virtuelle Maschinen.

• MON1, das die XtratuM Health Monitoring (HM) API verwenden kann, um
den Partitionsstatus oder Fehler (nicht von XtratuM gehandhabt) in ein HM
Protokoll zu schreiben.

2. Lokale Ressourcen-Scheduler-Module (LRS): Jede vom Ressourcenmanagement-
Framework verwaltete Ressource ist mit einem LRS gekoppelt. Jeder LRS plant
die Nutzung der Ressource und steuert den Anwendungszugriff auf die Ressource.
In diesem Kapitel werden die folgenden neuen LRS vorgestellt, die wir entworfen
und implementiert haben:

• LRS1 zur Planung von Aufgaben einer kritischen Anwendung, die in einer
XtratuM-Hypervisor-Partition (VM) läuft.

• LRS1 zur Neukonfiguration der Scheduling-Pläne (Modi) des XtratuM-Hyper
visors.

• LRS zur Bereitstellung einer Schnittstelle für die Ressourcenverwaltung zur
Interaktion mit Intel Cache Allocation Technology (CAT) und Memory Band-
width Allocation (MBA) Hardwarefunktionen.

1 Entwickelt und implementiert in Zusammenarbeit mit ONERA und Thales R&T.



ZUSAMMENFASSUNG 293

• LRS zur Unterstützung der Planung von zeitgesteuerten Aufgaben oder VMs
in Linux oder Kernel Virtual Machine (KVM).

Darüber hinaus erläutert dieses Kapitel die verschiedenen von einem LRM bereitge-
stellten Dienste, wie z. B. das Lesen von Informationen von seinen MON, die Berechnung
des abstrakten Zustands von Ressourcen, das Senden/Empfangen von Aktualisierungen/-
Bestellungen an/von den/dem GRM oder einem LRM einer niedrigeren oder höheren
Domäne, das Treffen lokaler Rekonfigurationsentscheidungen, die Übersetzung globa-
ler Bestellungen und die Konfiguration des LRS. Schließlich werden in diesem Kapitel
LRM-Richtlinien1 vorgestellt, um die folgenden beiden Situationen zu bewältigen:

1. Permanenter Ausfall von CPU-Kernen auf einem Knoten.

2. Zeitliche Überlastungssituation auf Knotenebene (durch potenzielle Fristüberschrei-
tungsüberwachung).

Kapitel V

Dieses Kapitel stellt den GRM unserer Ressourcenverwaltungsarchitektur vor. Der
GRM bietet verschiedene Dienste an, wie z.B. das Sammeln von Aktualisierungen
von LRMs, das Treffen von globalen Rekonfigurationsentscheidungen, das Erhalten
oder Berechnen einer neuen globalen Konfiguration und das Senden/Empfangen von
Aufträgen/Aktualisierungen an/von die/den LRMs. Es verwaltet auch externe Eingaben.
Konzeptionell existiert nur ein GRM im System, obwohl eine Verteilung auf mehrere
GRM aus Gründen der Fehlertoleranz und Skalierbarkeit möglich ist. Daher kann der
GRM entweder durch einen einzelnen Knoten oder durch eine Gruppe von Knoten
realisiert werden.
Das Kapitel schlägt drei Kommunikationskanäle zwischen dem zentralen GRM und

den LRMs (und zwischen LRMs auf höheren und niedrigeren Domänen) zum Austausch
von Informationen vor: Aktualisierungs-, Bestell- und Mitgliedschaftskanäle. Darüber
hinaus bietet das Kapitel einen Überblick über die Verwendung von zwei gängigen
etablierten Protokollen (MQTT und OPCUA) für die Kommunikation des Ressour-
cenmanagements, wobei Anforderungen wie Mitgliedschaft, Sicherheit und zuverlässige
Nachrichtenübermittlung berücksichtigt werden.
Ungesichertes Ressourcenmanagement hat mehrere Schwachstellen, die ein Angreifer

ausnutzen kann. Daher werden in diesem Kapitel die Ressourcenmanagement-Kommuni
kation, LRM und GRM aus einer Sicherheitsperspektive analysiert. Das Kapitel schlägt
Sicherheitsdienste für die Kommunikation des Ressourcenmanagements vor, um verschie-
dene Sicherheitsangriffe zu verhindern. Darüber hinaus werden die drei verschiedenen
Sicherheitsstufen (Level 0, 1 und 2) für die Ressourcenmanagement-Kommunikation und
zwei Optionen zur Implementierung der Sicherheitsdienste erläutert - die Implementie-
rung als Support-Modul oder als Schicht zwischen den Ressourcenmanagern und dem
zugrunde liegenden Hypervisor oder Betriebssystem. Darüber hinaus werden in diesem
Kapitel zwei Optionen für Sicherheitsalgorithmen erörtert – ChaCha20-Poly1305 und
CLEFIA (in der Betriebsart Offset-Codebook).
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Anschließend werden in diesem Kapitel mehrere Einschränkungen eines einzigen zen-
tralen globalen Ressourcenmanagers erörtert. Das Kapitel schlägt eine verteilte globale
Entscheidungsfindung anstelle einer zentralen Entscheidungsfindung vor, um Fehlertole-
ranz für die globale Ressourcenverwaltung zu gewährleisten. Es beschreibt einen neuen
Komponententyp, den verteilten globalen Ressourcenmanager (VGRM), der den zentra-
len GRM ersetzen soll. Des Weiteren werden in diesem Kapitel die Herausforderungen
und Anforderungen an die Sicherheit der VGRM ausfindig gemacht. Das Kapitel erklärt,
wie eine private (genehmigte) Blockchain namens Hyperledger Sawtooth uns dabei helfen
kann, die Herausforderungen und Anforderungen, welche die Sicherheit betreffen, zu
erfüllen, und stellt einen Entwurf für eine neue Sawtooth-Transaktionsfamilie namens
Ressourcenmanager (RM) -Transaktionsfamilie zur Implementierung der VGRM und
LRM unseres Ressourcenverwaltungsrahmens vor.

Kapitel VI

In diesem Kapitel wird der Avionik-Anwendungsfall des EU-DREAMS-Projekts vorge-
stellt, der aus zwei Multicore-Prozessoren und einem über ein zeitgesteuertes Ethernet-
Netzwerk verbundenen MPSoC besteht. Das System hostet drei sicherheitskritische
Avionik-Anwendungen und mehrere Instanzen einer Best-Effort-Anwendung.

Das Kapitel stellt auch die Avionik-Anwendungsfall-spezifische Implementierung der
lokalen und globalen Ressourcenmanagement-Richtlinie für Kernausfälle vor. Sie basiert
auf Änderungen der Modi (von Hypervisor-Entwicklern auch als Konfigurationen oder
Pläne bezeichnet). Sie verwendet lokale und globale Rekonfigurationsgraphen, die offline
über die DREAMS-Toolchain (Xoncrete- und GREC-Tools) gewonnen wurden. Das
Kapitel gibt außerdem einen Überblick darüber, wie die Netzwerkrekonfiguration durch
einen „Super-Scheduler“-Ansatz erreicht werden kann.
Darüber hinaus wird in diesem Kapitel der vorgeschlagene Rahmen für das Ressour-

cenmanagement anhand des Anwendungsfalls Avionik in zwei Szenarien evaluiert:

1. Permanenter Kernausfall: Die Bewertung konzentriert sich auf die Fehlertoleranz-
kapazität des Ressourcenmanagements gegenüber Kernausfällen und die globale
Rekonfigurationsverzögerung für den Anwendungsfall Avionik.

2. Zeitweilige Überlastbedingungen: Die Bewertung konzentriert sich auf die Effi-
zienz der Anpassung des Ressourcenmanagements, um die Systemauslastung zu
verbessern und gleichzeitig sicherzustellen, dass die kritischen Anwendungen ihre
zeitlichen Anforderungen erfüllen.

Anschließend wird in diesem Kapitel eine experimentelle Evaluierung zur Bestimmung
des Overheads der sicheren Ressourcenmanagement-Kommunikation im Anwendungsfall
Avionik vorgestellt. Die Bewertung berücksichtigt alle drei Sicherheitsstufen und beide
Sicherheitsalgorithmen.

Kapitel VII

In diesem Kapitel wird ein bestehender sicherheitskritischer Echtzeit-Eisenbahn-Anwend
ungsfall aus dem EU-Projekt SECREDAS präsentiert. Es untersucht Virtualisierungs-
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technologien und Cloud Computing, um diesen Anwendungsfall von dedizierten Hardwa-
relösungen zu migrieren. Das Kapitel untersucht bestehende Virtualisierungstechnologien
(Hypervisoren) für den Einsatz einer (privaten) Cloud auf COTS-Serverhardware, um den
Anwendungsfall unter Einhaltung strenger Sicherheitsanforderungen auszuführen. Das
Kapitel präsentiert qualitative und quantitative Analysen relevanter Cloud-Hypervisoren
unter Berücksichtigung bahnspezifischer Anforderungen. Basierend auf den gewonnenen
Erkenntnissen gibt das Kapitel Vorschläge für die Verwendung eines bestehenden Hyper-
visors, KVM, mit einer neuen Komponente, um eine Echtzeit-Cloud zu bilden, welche
die Anwendungen des Anwendungsfalls Eisenbahn sicher ausführen kann. Bei der neuen
Komponente handelt es sich um eine Ressourcenverwaltungsschicht, die auf unserem Res-
sourcenverwaltungsrahmen basiert. Letztlich werden in diesem Kapitel eine Evaluierung
unseres zeitgesteuerten LRS, erste Experimente mit Intel MBA zur Speicherregulierung
und unseres Blockchain-basierten verteilten globalen Ressourcenmanagements vorgestellt.

Kapitel VIII

Dieses Kapitel enthält die Schlussfolgerungen. Es beschreibt auch die laufenden und
zukünftigen Arbeiten.
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