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Abstract 

We consider universal adaptive stabilization and tracking 

controllers for classes of linear systems. Under the technical 

assumption of linear scaling invariance necessary and sufficient 

conditions for adaptive stabilization are derived, For scalar 

systems sufficient conditions for adaptive tracking of finite 

dimensional reference signals are explored. 

1. INTRODUCTION 

In a systematic framework adaptive controllers which require no 

explicit identification and which stabilize linear systems under 

very weak assumptions on the system parameters have been 

developed by e.g. Morse (1983, 1985), Willems and Byrnes (1984), 

Martensson (1985), Owens, Ilchmann and Prtitzel-Wolters (1987), 

Helmke and Prgtzel-Wolters (1988). These controllers are called 

universal, since they achieve their control objective for a 

whole prescribed class of linear systems and all possible 

initial conditions. Previous work on universal adaptive 

controllers was mainly concerned with the adaptive stabilization 

problem. In Martensson (1986) and Byrnes, Helmke and Morse 

(1987) first theorems on necessary and sufficient conditions for 

universal adaptive stabilization were developed. 
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In this paper we introduce the concept of linear scaling 

invariance of classes of linear systems and show in section 2 

that under this additional assumption known sufficient condi- 

tions for adaptive stabilization become necessary too. Further- 

more in section 3 we consider universal adaptive tracking 

controllers for finite dimensional reference signals. By an 

augmentation argument it is shown how the tracking problem can 

be interpreted as a stabilization problem for the augmented 

systems in the scalar case. 

2. THE ADAPTIVE ST'ABILIZATION PROBLEM 

The purpose of this section is to give necess&ry and sufficient 

conditions for the adaptive stabilization problem. 

Let CE:C(n,m,p) denote a class of finite-dimensional linear time- 

invariant systems 

k;(t) = .4x(t) t Bu(t) ) y(t) = Cx(t) 

(2.1) 

. s(t) E IR", u ( t ) E IR"' , y(t) E RI 

where m, p are given and n is fixed but not necessarily known. 

A q-dimensional universal adaptive stabilizer (UAS) for 1 is a 

feedback control system 

u = f(Y,Z) 

(2.2) 

i = g(Y,z) 

where z t IR' and 

f: IRPtq - IRm 

g: IRPtq ---) IR' 
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c 

k(t) = Ax(t) + Bf(Cx(t),z(t)) 

(2.3) 

i?(t) = g(Cx(t,),z(t)) 

are smooth (C") funct.ions such that for any (A,B,C) E C and all 

initial conditions x(0) E IRn, z(0) E IRq the solution (x(.),z(.)) 

of the closed loop system 

exists for all t E IR t and satisfies: 

lim x(t) = 0 
t-+m 

lim z(t) = zW E IRq exists. 
t+m 

(2.3a) 

(2.3b) 

Necessary and sufficient conditions for the existence of such 

universal controllers were given by Artensson (1986) and 

Byrnes, Helmke and Morse (1986). They have shown the following 

results: 

Theorem 2.1 (,Mgrtensson (1986)) 

Suppose that for any (A,B,C) E c there exis ts a linear dynam i c 

feedback controller of order "q, which stabilizes (A,B,C). Then 

there exists a (qtl)-dimensional universal stabilizer (f,g) for 

c. 0 

Thus an upper bound on the orders of stabilizing linear 

controllers for (A,B,c) E C is sufficient a priori assumption 

for universal adaptive stabilization. This condition i s also 

almost necessary, as shown by the following theorem: 

Theorem 2.2 (Byrnes, Helmke, Morse (1986)) 

Suppose there exists a q-dimensional universal adaptive 

stabilizer (f,g) for 1. Then, for each (A,B,C) E C, there exists 

a linear dynamic feedback controller of order q such that the 
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resulting closed loop system has its poles in the closed left 

half plane &=={z E @lRe zL0). 

Remark 

We emphasize that Theorem 2.2 only says that the poles can he 

placed within the closed left half plane G-. This is not enough 

to conclude asymptotic stability and implies stability only if 

the geometric multiplicities of the eigenvalues on the imaginary 

axis are 1. Therefore the condition of Theorem 2.1 need not to 

be necessary and in fact is not known to be. This should be 

compared with the over-optimistic conclusion of MBrtensson 

(1986), Thm. 4.1. 

In order to obtain a single necessary and sufficient condition 

for universal adaptive stabilization we make a technical assump- 

tion. 

Definition 2.3 

c is called locally scaling invariant (LSI), if for every 
. 

(A,B,C) E 1 there exists ~10 such that 

t 
(A+aI,B,C) E 1 for all OLaLe . (2.4) 

Examples for (LSI)-sets 1 are: 

(1) Any open subset C c IRn(n+m+P) is locally scaling invariant. 

(2) The set of minimum phase systems (A,B,C) with 

sI-A B 
det I 1 a Hurwitz polynomial 

c 0 

is locally scaling invariant. 
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* 

a 

. 

(3) The set of observable and controllable minimum phase systems 

with a fixed bound on the relative degree is locally scaling 

invariant. 

(4) The class of systems (A,B,C) which can be (asymptotically) 

stabilized by linear compensators of order 'q is locally 

scaling invariant. 

Theorem 2.4 

Let C=C(n,m,p) be locally scaling invariant and let (f,g) be a 

q-dimensional universal stabilizer for C. Then there exists for 

each (A,B,C) E C a linear dynamic feedback controller of order q 

which stabilizes (A,R,C). 

Proof 

Let (s(.),z( .)) be- the solution of the nonlinear closed loop 

system 

;; = As t Bf(Cx,z) 

i = g(Cx,z) 

with 

lim x(t) = 0 
t.+m 

lim z(t) = zm E IRq . 
t+m 

Thus (O,z,) is an equilibrium point of (2.3) and the 

linearization of (2.3) around (0,~~) is given by 

6 
= J(A,B,C) . 

77 
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a 
where 

I A+B~(O,z~)C ; Bz(O,zo) 

J(A,B,C) = ----l--------+---------- (2.5) 

E(O,zJ +yLzmN ; I 

is the transition matrix for the closed 

with the linear compensator given by 

loop sys tern of (A,B,C) 

(2.6) 

Let ~10 such that (AtcI,B,C) E 1. By Byrnes, Helmke and Morse 

(1986) 

Spec J(AtzI,B,C) c (l:- 

for an appropriate choice of the initial condition (s(O),z(O)). 

Thus the linear controller 

i 

II 
= 

u 

with 

places the poles of 

and we are done. 

Ii t 

Z ii Y 

+f otz,p ‘( ; +yO,zJ -----------+-l------ $(O ,z,) 
1 Jf 
, g(O,zJ 

I, 

(A,B,C) within q = (z E 01 1 Re z L --c I = c- 

0 

As an immediate consequence of this theorem we obtain the 

following corollaries: 
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Corollary 2.5 

Suppose there exists a'0 such that (AtaI,B,C) E c for all 

(A,B,C) E 1. Let (f,g) be a q-dimensional adaptive stabilizer 

for c. Then there exists for each (A,B,C) E C a linear 

controller of order q which places the poles within 

Re z 6 -a . I 0 

Corollary 2.5a 

a) Let 1 be a class of scalar minimum phase systems. There 

exists a UAS for 1 if and only if there exists an upper bound 

r* for the relative degrees of all (A,b,c) E 1. 

b) Let C+(n,l,l) be t.he set of all scalar minimum phase systems. 

There exists a q-dimensional UAS for 1 + if and only if n&q-l. 

Corollary 2.6 

Let C be a locally scaling invariant class of systems. The 

necessary and sufficient a priori knowledge for universal 

adaptive stabilization is knowledge of an integer e such that 

for any (A,B,Cj E 1 there exists a fixed linear controller of 

order e which stabilizes (A,B,C). El 

See Martensson (1986) for the sufficiency part, 

Our next result shows that the class 1 of systems for which a 

universal adaptive stabilizer exists is necessarily output feed- 

back invariant. 
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Corollary 2.7 

Let C c (RH(~~tIlltp) b e the largest LSI class of systems for which 

a q-dimensional universal adaptive stabilizer exists. Then for 

each (A,B,C) E 1: 

(i) (AtBFC,BU-1,VC) E 1 v F E IRmxp, U E GL(m), V E GL(p) 

(ii) (SAS-l,SB,CS-1) E 1 V S E GL(n). 

Proof 

Let (A,B,c) E C. By Corollary 2.5, (A,B,C) can be stabilized by 

a linear controller of order q and thus also (A+BFC,BU-l,VC), 

(SAS-~,SB,CS-1). Let C* 3 C be the saturation of 1 with 

to (i), (ii). Since C is LSI, so is I*. By MH.rtensson's 

(1986) there exists a UAS for c*. Since x was maximal, 

and thus I*=1 is output feedback invariant. 

respect 

Theorem 

c* L c 

3. SUFFICIENT CONDITIONS FOR ADAPTIVE TRACKING (XALAR SYSTEMS) 

In this section we derive sufficient. conditions for universal 

adaptive tracking of finite dimensional reference signals. 

Let C(l,l) be a given class of scalar linear systems 

k(t) = Ax(t) t bu(t) 
(3.1) 

Y(t) q cx(t) 

and let 

Rp ‘t;(s) = setpl_ls e-1 t . . . + $0 E IR[sl 

denote the solution space of the differential equation 

+(g)r(*) p 0 . 
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For the tracking problem it is required to find an adaptive 

controller which forces the tracking error e(t) = y(t)-r(t) to 

go to zero as t+m: 

lim e(t) = 0 . 
t+m 

(3.3) 

The following lemma is well known: 

Lemma 3.1 

Let r: IR+ + IR be a solution of $(&)r(.) E 0 wit.h q(s) l IR[sl 

manic of degree 8. Then there exists an observable system 

(A,c) E IRexe x IRe such that 

r(t) = c%(t) (3.4a) 

k(t) = AR(t) (3.4b) 

for an appropriate initial state ~(0). Moreover, if (A,c) is any 

scalar observable pair such that 1c divides the characteristic 

polynomial of A, then (3.4) holds for an appropriate choice of 

the initial state X(O). 0 

Let now (Ar,cr) E IRex' x IRe be observable and satisfy (3.4) with 

initial state 8(O). Choose any b, E IRex' such that (A,,b,,c,) is 

controllable and observable and define 

g,(s) := I-c$sI-A$-Ib r ' (3.5) 

Given any (A,b,c) E C(n,l,l) with transfer function 

g(s) = &I-Al-lb 3.6) 

the state space equations for the augmented system g(s)g,(s) 

are: 

! .  A A  L 

x q Ax t bv 
I . 

y=cx 

(3.7a) 

(3.7b) 
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. 

. 
where 

. 

[‘: bb”], i = [; 1, 
1‘ r 

(3.8a) 

,. 
c = cc 01, (3.8b) 

Since also 
d 

X(dth( .I = 0 where x is the 

characteristic polynomial of A. Assuming observability of (A,:) 

Lemma 3.1 implies that r(s) can be generated by (A,;) through an 

appropriate initial state R(0): 

-k(t) = k(t) 

r(t) = GE(t) 

Let 

Thus 

(3.9a) 

(3.Yb) 

(3.10) 

Now let Zr(e,l,l) denote a set of order 8 reference models 

(Ar,br,cr,l) constructed for a class of reference signals R. Let 

1 be a given class of controllable and observable systems 

(A,b,c) and let (Cr(@,l,l),C) d enote the set of augmented 

systems (A,b,c) of the form (3.10). 

Theorem 3.2 

Suppose that (f,g) is a q-dimensional universal stabilizer for 

the class of observable augmented systems (Cr(e,l,l),C) of the 

z form (3.10). Let r(s) be a reference signal generated as the 

, 
output of some (Ar,br,cr,l) E Cr(e,l,l): 
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. 
r=cx 8 r-r r q ArRr 

Then the closed loop system 

,; = Ax + b$xrff(y-r,z)) 

i = g(s-r,z) 

def ines a (cl+@)-dimensional universal 

lim (x(t)-E(t)) = 0 
t,+m 

lim (cx(t)-r(t)) = 0 
t+m 

lim z(t) = zru esists. 
t+m 

tracking control 

(3.11) 

ler for C: 

Proof 

By assumption (f,g) stabilizes all systems (3.10), i.e. 

satisfies: 

# = At t t;f(&,z) 

i = gGC,z) 
(3.12) 

lim 6(t) = 0 
t.+m 

lim z(t) = zo, exists, 
t+- 

Rewriting (3.12) yields 

$$A) = i(S-3 t bf(y-r,z) 

& = g(y--r,z) 

and thus 

(3.13a) 

(3.13b) 

2 = Axtbcrxrtbf(y-r,z) 

2 = g(y-r,z) . 

But then (3.13) implies: 
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and 

lim (x(t)-K(t)) = 0 
t,+m 

lim (C c(t)) = lim e(t) = lim (y(t)-r(t)) = 0 . 
t+m t+m t+, 

The following corollary is an immediate consequence of Thm. 3.2. 

Corollary 3.3 

Let 1 be a class of scalar minimum phase systems and let r(.) be 

a reference signal generated as the output of some minimum phase 

system (Ar,br,cr,l) E Cr(e,l,l). Then there exists a (r*tr-l)- 

dimensional tracking controller for 1 if there exists an upper 

bound r* for the relative degrees of all (A,b,c) E 1. 

In Helmke, Pratzel-Wolters and Schmid (1989) explicit construc- 

tions of such tracking controllers are given for the case of 

relative de,gree one, minimum phase systems. 
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