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Abstract 

We present the concept of a universal adaptive tracking 

controller for classes of linear systems. For the class of 

scalar minimum phase systems of relative degree one, adaptive 

tracking is shown for arbitrary finite dimensional reference 

signals. The controller requires no identification of the system 

parameters. Robustness properties are explored. 

1. 1NTRODUCTION 

In general terms, the basic problem of parameter adaptive 

control may be described as follows: 

. 
"Suppose a black box is given whose internal dynamics is only 

roughly understood; for example one might know only certain 

I bounds on the (possibly time varying) system parameters but not 

the precise parameter values. Furthermore, some structural 

properties are supposed to be known, so that one can specify a 

model class the unknown system belongs t.o. One wants to control 

the system by an explicit controller which is capable of learn- 

ing enough through the observed output y(t) and input u(t), 

resp., of the system, to achieve its control purpose." (cf. for 

example 181 for a precise formalization of this heuristic 

definition.) 

i 
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Such a control objective might be for example that of model 

reference adaptive control (MRAC), where the output y( .) to be 

controlled is required to track the output r( . ) of a prescribed 

linear model for a certain class of admissible control functions 

and initial conditions. The traditional approach to this problem 

is based on system identification where parameter optimization 

techniques are used to obtain approximate vallles of t h e 

(unknown) system parameters, together with a conventional 

controller design scheme; see e.g. c51. However, these "mixed" 

MRAC-algorithms work only under rather strong a priori assump- 

tions on the systems to be controlled and due to the intrinsic 

computational complexity of the llsed identification scheme, 

these adaptive controllers are complicated both from a 

theoretical as well as computational point of view. 

Moreover, for biological systems it is sometimes more important 

to explain a cbrtain dynamical behavior rather than to construct 

a dynamical process a s in technological systems. For this 

purpose it is in general meaningless to include an "identifica- 

tion box" in an adaptive feedback loop. Instead, the feedback 

mechanisms are often just some nonlinear functions which change 

the open loop dynamics such that the observed behavior can be 

explained. 

It is therefore of considerable practical as well as theoretical 

importance to construct adaptive control schemes without 

explicit identification of the system parameters. Particular 

algorithms for such simplified controllers have been proposed 

in Cl1 and [al. In a more systematic framework adaptive 
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controllers which require no explicit identification and which 

stabilize linear systems under very weak assumptions on the 

system parameters have been developed in [41, CSI, c71, c91, 

Cl01 and [Ill. These adaptive controllers are called universal, 

since they achieve their control objective for a whole 

prescribed class of linear systems and all possible initial 

conditions. 

Previous work on universal adaptive controllers W.?1 S mainly 

concerned with the adaptive stabilization problem. The purpose 

of this paper is to extend these results to the adaptive 

tracking problem: 

"Derive for a given class of reference signals r(e) E R and a 

class 1 of linear systems an adaptive feedback controller such 

that for every system in 1 its out.put asymptotically tracks 

r(.)." 

To formalize this task let 1 = x(m,p) be a class of linear time- 

invariant systems 

k(t) = As(t)+Bu(t) , y(t) = Cx(t;) 

s ( t ) t IRn , u ( t 1 E IR'" , y ( t. ) E IR" 

with m, p given and n arbitrary. 

Let 

R =C pc,( CO, 0,) JR") 

be a prescribed class of possible (piecewise continuous) 

reference signals r(.) and let 

M‘C pc( CO, +RP) 
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be a prescribed measurement space. 

A universal adaptive tracking controller (UATC) for (C,Ft,N) 

consists 0‘ 

- a parameter space lRq for the feedback gains k(t). 

- a smooth control law 

u(t) = f(t,,k(t),y(t),r(t)) 

where f: IR l+q+2p + ,Rm co 
is C . 

- a parameter adaptation law 

k(.) = a(y(.),r(.)) , 

where 

lx: c pc,( CO,o,) ,IRPJ2 - C I?c, ( [O , ” ) , IRq 1 

is causal such that for any (A,B,C) E r, any initial 

data x(O), k(0) and any r( ) E H. a unique solution of the 

closed 1.00~ system 

(CL) 

k(t) = Ax(t)+Bf(t,k( 

y(t) = Cs(t) 

k(.) = a(y(.),r(.)) 

exists for all t&O and satisfies 

t),y(t),r(t)) 

l k( ' ) E L,( CO,~),IRq) 

l e( .I := y( ')-r( .) E M , 

In the sequel we ignore the question of uniqueness and existence 

of solutions of (CL), which would follow by a suitable regulari- 

ty assumption on cx. 

In this paper we assume that the system class is the set. C(l,l) 

of all scalar minimum phase systems (A,b,c) with relative degree 

t 
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one : 

l m=p=l 
0 

cb h 0 

det 
sI-A b 

c 0 1 a Hurwitz polynomial 

2. ROBUST ADAPTIVE TRACKING WITHOUT SWITCHING 

In this section we consider the subclass C, C C(l,l) of 

systems (A,b,c) with 

cb 1 0 (2.1) 

The following high gain theorem is we 11 known ; see t61, [lOI, 

c31: 

2.1 High Gain Theorem 

Let k( . ) E CLzc ( CO,m),IR) be monotonically increasing with 

k 0, = lim k(t) = tN 
t+cu and (A,b,c) t Ct. Then the closed loop 

I 
system 

k;;(t) = As(t) t bu(t) 

u(t) = -k(t) cx(t.) 

(2.2a) 

(2.2b) 

is exponentially stable. El 

Let 

II . II 
T : Cpc([O,TI,lRP) + 4R, T&O 

be a family of functionals satisfying for every 

f F Cpc(CO,+f?p) the truncation condition: 

(Al) S 1 T => II f II 
s 

h II f II 
T 

where 
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II f II 
S 

:= llf 1 CO,Sl “S - 

The choice of the measurement space N is open to the designer to 

produce the desirable responses. The only constraints which we 

impose (cf. [81) are: 

E( CO,m),IRP)m c M = C& [O,m),lR') 

where El LO, a) JR') E CpC([O,m) IRP) 9 

jM,aeIR ; "y(t)" 6 Me- 
at 

t 

Furthermore M has to satisfy the "completeness" condition: 

(A2) lim llfll L 0) 
T if and only if f t M 

TJm 

If we now provide t,he closed loop syst.em (2.2) with the gain 

adaptation law: 

lG(t.) = “y( .) ‘It, , t E IRt (2.3) 

then we obtain as an immediate consequence of the HGT the 

following 

2.2 High Gain Adaptive Stabilization Theorem 

Given Z,, Y and a family of f\lnctionals II . II 
T' T E IRt, 

satisfying (A), then for every (A,b,c) E 1, and initial data, 

the solutions y(.) of 

k(t) = (A-k(t)bc)x(t) 

(CLAS) Y( t.) = cc(t) 

satisfy: 
k ( t.) = lly( . ) II t 

YC.1 E M 

lim k(t) = km L a exists 
t+m 

(2.4a) 

(2.4b) 

0 
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2.3 Remarks 

a) In the above theorem it is implicitly presupposed that the 

family 11. IIT, T E IR+, is selected such that the solutions of 

(CLAS) exist. Examples for which this is the case are: 

t 
II f II 

t = Y t S If(s)lPds for pLm (2.5a) 
0 

II f II 
t = y t max If( (2.5b) 

O&s&t 

b) In C4,6,101 it is shown that in the case of L -adaptation 
P 

laws with p= 2q 

t 
k(t) = .I- ly(~)l~~ds t 7 

0 

the output y(t) of (CLAS) goes asymptotically t.0 zero 

lim y(t) = 0 . 
t+- 

c) Ry a theorem of Lebesgue, every monotone function k: IR + IR 
t 

is differentiable outside a subset of IRt of measure zero. 

Thus almost everywhere 

k(t) = F(t,y(.)) 

with 

E’(t.,Y(.)) = gyly(.)ll, , 
q 

The stabilization property of the above adaptive controller is 

robust against additive input or state disturbances d(t) which 

are related in the following way to the measurement spaces M: 

"Let D, be a linear subspace of Cpc([O,m) ,IRe) such that for any 

exponentially stable operator +(t,s) and d E D, 
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@:rd E M (2.6) 

where 

T 
(4':rd)(T) = .I- @(T,s)d(s)ds . 

0 

2.4 Robustness Theorem 

Let (M, ll'liT) be a given measurement space satisfying (a) and let 

Dn be a class of disturbances satisfying (2.6). Then for all 

(A,b,c) E I+, x(O) = so E IRn, d(.) E Dn the solutions of 

satisfy 

k(t) q (A-k(t)bc)x(t)t d(t) 

y(t) = cx(t) , k(t) q lly(+lt 

Y(.) E *!f (2.4a) 

lim k(t) = lcO, L 0) exists . (2.4b) 
t+- 

Proof: Ry (Al), k(t) is monotonically increasing. Suppose 

k(t)+m as t+a. Then by the HGT the system t(t)= (A-k(t)bc)[(t) 

is exponentially stable. Recause E c M and by (2.6) y = cx E M 

and therefore by (i2) k(.) E LO,(CO,a),IR), in contrad .iction to 

k(t) + co. Thus ;,,, k(t) L 0) exists and hence by (A2) Y(.) E M. 
m 

Cl 

Consider now the class 1, and let H 
P(S) ' 

p(s) = setpesls e-1 t . . * + P 
0 

E IRCsl, be the solution space of 

the differential equation 

p(&)r(.) = 0 . 

For the tracking problem it is now required that the tracking 

error e(t) = y(t)-r(t) tends to 0 if t+m: 

5 
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lim e(t) = 0 
t+m 

(2.7) 

In the nonadaptive case the tracking problem can be viewed as a 

stabilization problem by inserting the dynamics of the refer- 

ence signal into the dynamics of the given system. This is done 

by augmenting the system with a suitable prefilter of relative 

degree zero. We show that in the adaptive case this idea works 

too. 

Choose a manic Hurwitz polynomial q(s) of the same degree e as 

P(S)' Find a state space realization (Ar,br,cr,dr), d,=l, of the 

Y(S) transfer function p(s), u shall be the output of this system, 

the input is denoted by v. We obtain the following state space 

equation for the augmented system: 

St = il\i + bv (2.8a) 

y = es ) (2.8b) 

where i = Lo' ";;I, i = [i,]) c = [- 0-j) ,g = X 

[ I xr , and 

(A,b,c) E C, denotes the system undel- consideration. Since 

p(k)r( .I = 0, also x(&)r(.) = 0, where x' is the characteristic 

polynomial of A. If we assume that (A,&) is observable, then 

ceAit is a fundamental system for the differential equation 

d ,. 
x(z)r(.) = 0, and r(.) can therefore be generated by (A,&) 

through an appropriate initial state ~(0): 

k(t) = A%(t) 

r(t) = E%(t) . 

This yields (SLZ) = A(%-R)tbv 

with (A,b,e) E C,, too. 
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. Now choose: 

v(t) = -k(t) e(t) (2.9a) 

k(t) = lIe(.) (2.9b) 

as in theorem 2.2. This amounts to the following choice of f and 

& in the construction of an UATC for I+: 

- feedback gains z = z' I 1 E IR'+l 

- control law 

u(t) = f(t,k(t),y(t),r(t)) 

= c,s,(t) - k(t)(y(t)-r(t)) 

= cc r' -e(t)lz(t) 

- parameter adaptation law 

z(.) = a(y(.),r(.)) 

with 

(2.10a) 

' Art t 
e s,(O) - S e ‘4,( t-s) brl~e(*)lise(s)ds 

0 = 
II e ( . ) II 

t 

(2.10b) 

The resulting closed loop system is 

k(t) = Ax(t)+b(crxr(t) - Ile(.)Ilt.e(t)) (2.11a) 

k,,(t) = Arxr(t)-brie 

We have thus obtained the fol 

a corollary of Theorem 2.2. 

2.5 Corollary 

‘( . ) IIt .e(t) . (2.11.b) 

1' owing adaptive tracking result as 

Given 1 = I+, R = Rp(sj, with p(s) E IRCsl manic of degree 4 and 
,. A 

(M,II IIT) satisfying (A). Then (f,a) given by (2.10) is a (@+l)- 

parameter IJATC for (~+,Rp(sl,M). 
cl 
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2.6 Remarks 

a) If p=2q is even in the adaptation law (2.5a) then the error 

e(t) asymptotically tends to 0: 

L(t) = le(t)l" => lim e(t) = 0 
t-+m 

(2.12) 

b) We have proved Corollary 2.5 only in the case where p(s) and 

n(s), the numerator of g(s) = c(sI-A)-lb = 3, are 

coprime. But because n(s) is Hurwitz, common factors of p(s) 

and n(s) are itself stable and the corresponding modes of 

Wrd+cr, dr) are exponentially stable, hence the tracking 

result (ii) remains true in this case, 

c) Let Dn be a class of disturbances satisfying (2.6). Corollary 

(2.5) remains true if the original system (A,b,c) E 1, is 

perturbed by arbitrary disturbances d(.) E D n' In particular, 

with the gain function 

k(t) = Ile( ')llt, := 7 t max Ile(s)ll , 
O~S'IL. 

the closed loop system 

k(t) = Ax(t) t b(crsr(t)-Ite(.)lI + d(t) 

AI,(t) = Arrr(t) - brlle( .)u,e(t) 

satisfies 

b lc( .) E L,( [O,m).,IR) 

0 e(.) = Y(')-r(.) E L,([O,-),lR) . 

Hence the output tracking error remains bounded for arbitrary 

bounded disturbances. Similarly for L 
I' 

-disturbances (consequence 

of Thm. (2.4)). 

Finally as an application of the previous result we consider a 

series coupling of systems belonging to the class 1,. Let ri(.) 
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be the reference signal for the i-th system in the coupling with 

ii(s) E IRCsl arbitrary 
(2.13) 

i = l,...,N 

In order to construct an adaptive tracking controller for this 

series connection we define polynomials 

Pi(S) := P,(s) (2.15a) 

Pi+l(" := ecm(Pi(S),pi+I(s)) I  

(2.15b) 

i = l,...,N-I 

and select local controllers (fi,Gi), i=l,... ,N of the form 

(2.10) for the subsystems xi. Flare precisely, for the first 

system (AI, bl,cl) we choose (;,,&I) as in Corollary (2.5). The 

tracking error e,(.) then satisfies the prescribed tracking 

requirement el( .) E 1Y. Now for the system (itl), 

(A b itl' itl'citl ), there is an external "input" yi(.), the output 

of system i. Assume, tracking was performed successfully for 

system i, ei(.) = yi(.)-ri(.) E M. Let (Aftl,b~tl,c~tl,d~tl = 1) 

be constructed as for Corollary 2.4 with pitI defined by 

(2.15). Then we obtain 
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I 
. 
xitl 

.r 
X ii-l 

'A b r 
it1 itl'cit 

0 Aftl 

I 
bitl 

t v t 

.bf;,l, 
it1 

1 s it1 

I- x ) t it1 

= 

, 

b \ 
it1 

0 
(eitri) 

By observability of (ATt ,T 
it j and by (2.15b), ri(.) can be 

generated by 

r -r I-. = c 
1 i+l'sitl 

.r 
-Y it1 = A;tI.Xftl 

hence 

; 
s 1t 

=A 
L 

itl'itl t b itlvitl td i 

,. . 
Y. 1tl = citlxitl 

with 

A b 1 
it1 itl'citl 1 9 

0 AL1 

s it1 

r r 1 f t s Ait1 = 
s it1 it1 

itl= 

it1 = 

b it1 1 3 d = i 1 bitl 

0 
(j2 

it1 = [ 'it1 01 b e., 1 

and ei(.j E iYe 

c‘i itl"it1 ' ritl ^ ) (.) can be generated Assuming observability of 

. 
9 x it =A - 

itl"it1 ' 
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Thus we obtain 

. 
(2 - 

itlmsitl ) = Lii+l(sL+l-z it 

A 
"it1 = Citl(Sitl-Fitl) 

'it1 td i 

with di(*) t M. 
,. 

By Remark (Z.Gc), stabilization is achieved by choosing fitI 

and G. l-t1 as before. 

This gives rise to local adaptive controllers (f.,hi) that are 1 

constructed in the same manner as for a single system, except 

for the modification that instead of the polynomial pi(s) the 

polynomial pi(s)= ~cm(~i-I(s),~i(s)) is used. Thus we have 

proved the following 

2.7 Corollary 

The tracking errors ei(.) in the series connection (2.13) satis- 

fy: 

ei(.) E M for i=l,...,N (2.16) 

if the systems belong to C,, the reference signals ri(.) belong 

to R- 
Pits)’ 

W satisfies (A) and the local adaptive controllers 

. 
(f&) are of the form (2.10). If the gains ki( .) are adapted 

by (2.5a) with p even then 

lim ei(t) = 0 for i=l,...,N 
t-+m 0 

The following simulations show asymptotic tracking for a series 

coup1 ing of 8 systems with transfer functions: 
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I1 : g,(s) = s+l 

S 2-2s+l 

c, : g,(s) = 
s3+4s2+5s+2 

S4 -5s3+3s2+4s-1 

c, : g3w = L 
S-l 

1, : g4(s) = 
s2+2s+l 

s3+2s2+3s-2 

c, : 
s4+4s3+6s2+4s+l 

g5(s) = 5 4 3 2 
S --s -s ts -s 

c, : g,(s) = stl 
s2t2stl 

c, : &ys) = s2+4st4 

s3t3s2+2s-1 

In Fig. 1 the reference signals are 

i-l ri(t) = sin(t+-y), i=1,...,8 

where 

E Pi(S) = s2t1 anc.l cli(S) = (SW2 . 

I  In Fig. 2 for the four systems I,,.. .,C, the values of the 

constant reference signals are (rl,r 
2 ,r3,r4) = (5,-2,2,-5). For 

both simulations the gain adaption law is: ii(t) = e(t)2. 
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Fip. 1: Simulation of series coupling without switching 

functions: Periodic reference signals 
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Fig. 2: Series coupling: tracking of constant reference signals 
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3. ROBUST ADAPTIVE TRACKING WITH SWITCHING FUNCTIONS 

If UATC's are to be constructed for the class C(n,l,l), i.e. if 

sgn cb is not known, switching concepts become necessary. The 

following theorem shows that the Nussbaum type switching stabil- 

izers are robust against L2-disturbances. 

3.1 Theorem 

Let (A,b,c) E C(n,l,l) be scalar minimum phase of relative 

degree 1 and d(.) E L2([0,~),IRn). The solutions of the closed 

loop system 
l 

k(t) = Ax(t) t bu(t) t d(t) 

y(t) = cx(t) 

u(t) = N(k(t))y(t) 

kt) = Y2W 

where N(.) is a Nussbaum type switching function, i.e. 

sup ' ;! N(u)do = t- , l j! N(o)do = -co inf - 
71 Y. 0 ?’ 0 77’0 rl 0 

satisfy: 

(3.1) 

(3.2) 

Y( .) E L2( [O,m),IR) and lim y(t) = 0 (3.3a) 
t,-+m 

lim k(t) = 1~~ L o 
t+m 

(3.3b) 

Proof: By a suitable state space coordinate transformation we 

can obtain the following decomposition Clll: 

8 1 = Alxl + A2y + dl 

$ = (atBN(k))y t A3x1 t d2 

where A l is exponentially stable and dl(.) E L2, d2(.) E L2 and 

* 
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. 
. 

PAto. Defining 21 and dl by 

-4 . 
1 = AIXl + A2Y , gl(o) = x1(O) 

:. 

dl = Aldl t dl , dl(0) = 0 ) 

we have x 1 = 2 td 1 1 and dl(.) E L2. 

Multiplying the differential equation for y by G and integrating 

from T=O to T=t we get 

iy"(t) = Cl t 's (a+@N(k(T)))y2(T)dT t "s A$l(T)y(T)dT 
0 0 

t 5 (A3il(T)+d2(T) )y(‘-)dT 
0 

c 1 E IR a constant. 

Applying a result of ( C111) to the system 

. 
z 1 = Alit1 t A2y 

with output A3?L, we obtain 

t 
s IA3k1(~)+) Id-r 6 c2 + M "s y2(TjdT , c2 , M constants. 
0 0 

Thus, 

;Y2(t) 6 c 
t t 

2 + J- (~+M+BN(k)jy2(TjdT t s d3(T)y(TjdT 
0 0 

with 
c3 

G IR a constant and d3 = A3dl+d2 l L2. 

t t 

Using 1 d 3 (Tjy(T)dT 6 ; "s d3(T)2d- t ; s y(T)2dT and E 0 0 0 d3 L2 

we obtain 

;Y” ( t ) L C t 
t 
s 
0 

with c E IR a constant. 

Proceeding now as in the proof of Thm. 2 in Cl11 the assumption 

k(t) + tm as t+m leads to a contradiction and the result 

follows. 0 

t 
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The following corollary is an immediate consequence of the above 

theorem and the reasoning for the construction of an UATC in the 

non switching case (cf. Corollary 2.5). 

3.2 Corollary 

Let (A,b,c) t 1 be minimum phase with relative degree 1, 

r(. 1 E Rl'(s) and d(.) E L2([0,m),IRn). Let further q(s) be 

Hurwitz, deg q(s) = deg p(s) = e and (Ar,br,cr, 1) a minimal 

realization of 
i%k 

Then the solutions y(.), k(.) of the 

closed loop system: 

k(t) = Ax(t) t bu(t) t d(t) 

Y(t) = cx(t) 

u(t) = c,x,(t) t N(k(t))e(t) 

A,(t) = Arxr(t) t brN(k(t))e(t) 

l&t) = e(Q2 

where N( .) is a Nussbaum type switching function, sat.isfy: 

lim e(t) = lim (y(t)-r(t)) = 0 
t+m t+m 

km = lim k(t) L 0) exists. 
t+m 0 

Now consider the series connection (2.13), where the subsystems 

('i'bi' ci) are allowed to belong to the larger class C(ni,l,l) 

instead of Ct(ni,l,l). Change the local controllers (2.10), 

(2.14) by replacing (2.10a) by the control law 

u(t) = crxr(t) t N(k(t))e(t) 
IJ:,, (I. ii,t;!. , 

Kni!:~, ,, , ,yom (2.10'a) 

for the i-th subsystems. Using Theorem (3-l), the same arguments 

as for Corollary (2.7) show that the local tracking errors ei(t) 

and gains ki(t) for the closed loop system satisfy 
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lim -ei(t) 
t-+m 

lim ki(t) = k. E IR exists. 
t+m lYrn 

The following simulations clearly demonstrate this behavior. The 

8 systems are the same as in Fig. 1. The reference signals are 

ri(t) = sin(4t+$+ n) and the switching function is 

N(k) = k2cos k. 
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l Fig. 3: Series coupling: tracking of Periodic simials by 

switching controllers 
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