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QUALITY CONTROL OF ARTIFICIAL FABRICS 

Peter Hackh 

Abstract: Some new approaches to measure irregularities 
of artificial tissues are introduced. 

1 Introduction 

One problem which arises in different branches of 

industry is to find objective measures for the irregularities 
resp. defects of tissues like clouds, stripes etc. (see [21 and 
[3l). Often the valuation of the fabric is done in the following 
way: 
It is put in front of a black background and several persons 
judge upon their personal visual impression on it, that means: 
they tell how even it appears to them. 

Therefore: In order to find an objective procedure which is 
meant to substitute the above described subjective one, one is 
in this case not allowed to resort to measurements of the 
thickness of the fabric, but for instance to the transmission 
rates of a laser beam; however this is not the crucial point. 
One may assume that there are some tracks along the tissue, or 
there is some raster picture, - with for instance 512x512 
pixels. The idea is that the distribution which is given by such 
a record has to be compared with a "uniform distribution"; we 
wish to find a number which measures the deviation from the 
uniform distribution "given by" the mean transition rate. In 
this way we hope to find a measure for the "cloudiness" of the 
fabric (C31). 

As long as it concerns the problem of stripes resp. anisotropy, 
we have made a Bd-Wavelet-Analysis for some tissues, which 
allows to detect edges or to find directions for the fibres 
which are preferred in the fabric, but in this paper we wish to 
discuss only the first point. 
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2 The mathematical model(s) 

If one looks at a certain tissue the idea is not too far 
away from thinking of it being a cluster, a pattern or even a 

mathematical measure: The measure of a certain subset is given 
by the rate of light, which passes through this area. In order 
to be able to compare different fabrics which may have different 
thickness, we have to normalize our measurements: 
The measure of a certain area is now given by the ratio of the 
light which passes through this part and the light which passes 
through the whole tissue. Here one is not obliged to think of 
the raster picture but of the "one dimensional record" too: The 
light which passes through the whole fabric is in this case 
again the sum of all intensity values. 
But what is now about a natural concept for the distance of 
(such) measures, for we like to compare our measures/patterns 

with the uniform distribution (Figure 1 and 2)? 
I wish to present only two distance concepts, the Bounded 
Lipschitz Distance (BLD) and the Interval Discrepancy. 

2.1 BLD: 

If one has a metric space (X,d) (together with its 
o-Algebra of Bore1 sets on it) and two probability measures P 
and v on X, then the BLD of P and v, P(P,v), can be defined in 
the following way: 

(1) P(P, v) := sup I IS fd(lr-v)l: If(x)-f(y)1 4 d(x,y), f: X + IR 
bounded I 

If we reduce this now to the l-dimensional discrete case, we get 

(2) sup IC fi.mil:lf.-fi+ll 4 1) , 1 1 

- the mi are now the normalized measurements; this means: Each 
original value M i is divided by XMi and at least l/n - n the 
number of values - is subtracted. 
That is: The two measures we wish to compare are already in- 
volved. (It is easy to see that we can forget about the bounded- 
ness condition for f in equation (l)!) 

This problem is not so complicate, - it is a problem of linear 
programming, but if one regards about 5000 measurements for one 
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calculation - and we have to do so - the simplex algorithm lasts 
much too long. Rote ([4l) found a relativ fast algorithm for a 
more general class of BLD's in the discrete case, but it is 

still too slow to handle these high dimensional cases which we 
would like to look at, It is quite astonishing that there exists 
nevertheless a very simple formula resp. algorithm for our 

special BLD: We have 

(3) 
i 

I  

n 
sup C fi.mil : (fi-fi+I 4 1 = 

i=l 1 I 
F Ii m j l *  

izzl j=l 
Wick proved a proposition for which this equation is only the 

discrete special case (see CSI), - to appear in "Archiv der 
Mathematik": 

Given a Uniformity Class 

U := 1 Q E CCO,ll : 0 4 @ L 1, I@(x)-@(y)1 = Ix-y1 V x,y E IR I 

)J and v probability measures on CO,ll, then 

P(P,Y) = Dhd , 

where 

P(P,Y) := sup 1(/J--v)(a)1 and Dl(p,v) := : I(p-v)(CO,xl)ldx. 
@EU 0 

Proof: Only for (3), the discrete case, 

n 
1. C fi*mi = 

i=l 
i ( i m.)(fi-fi+l) , fn+l := 0 ; 

i=l j=l J 

therefore 

I 
n 
C fi*mil -L ; I 1 m.1 . 

i=l i=l j=l J 

2. F 1 i m j l  

i=l j=l again is an expression of the form 1 gi*mi 

i 
with lg i-gi+ll L 1, because I i mjl = Qi* C mj with 

j=l j=l 
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I 
i 

a i = sign C 
j=l mj ' 1 

This implies 

; 1 fi mjl = F ai i mj = F [ C ai]mj 
i=l j=l i=l j=l j=l ihj 

and with g. := C a. 
J 

one gets (g 
i&j 1 jVgj+l' = IaL A ' ' 

Therefore the right hand side of (3) is the maximum of the set 
which we are interested in. It is clear that 

(I 

n 
(4) sup C fi*mil : Ifi-fi+ll 4 l/n) = i . i 1 irn.1 . 

i=l i=l j=l J 

This equation now yields two ideas: 

a) We have a more precise idea of what our special BLD really is 
- it is the mean value of the absolute values of all partial 
sums of our normalized measurements, - therefore it is 

perhaps not an appropriate tool for our analysis. 

B) Nevertheless, if one really wishes to use it, you have a very 
quick algorithm at your disposal, which should be the optimal 
one too: 

lip := help := 0; 
for i=l,...,n: 

begin 
help = help t value[i];/*"value" is array of measure- 

ments!*/ 
if (help 1 0) 

lip q lip t help; 
else 

I 
lip = lip t sign(help)*help; 

lip = lip - help; 
end; 

lip = lip/n; /*the above mentioned second version of the 
discrete BLD - formula (4) */ 

2.2 Discrepancy 

D1 mentioned above is the so called L1-Discrepancy; there 

is a great class of other discrepancy concepts, - we only wish 
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to mention the Extreme Discrepancy supl(~-v)([O,xl)l and the 
X 

Interval Discrepancy SUP1 p-V)(CX,Yl)l, O'x,yA i 
- here only written 

down for the continuous Id-case, X=[O,ll, P and v our probabil- 

ity measures as above (see Cl]). 
We have applied the discrete version of the Interval Discrep- 
ancy to the ld- and Bd-case of pictures, for it seems to be a 
very natural concept: Applying it means: to look for biggest 
"holes" or "mountains" (connected areas with great deviations 
from the mean value of the intensity), - and many little holes 
are better than only a few big holes; see figure 1 and 2. 

2.2.1 Calculations of the Interval Discrepancy in the Id-case. 

If (mi)lLiLn is our "normalized" record, we are interested in 

(5) 
i 

max IF i-Fj' with F 
14i4j4n i := c my. 

v=l 

We can write this in a more symmetric way: max IF i-Fjl, - and 
l=i,jhn 

this is the simple difference max(Fi) - min(Fi); this equation 
involves a very trivial fast algorithm: 
One has to calculate the partial sums and to update maximum and 

minimum in each step. This is a "linear" algorithm and in this 
sense it is optimal; one has to "scan" each value for only one 
time. The idea to do it in this way goes back to Rote (c41) too. 

2.2.2 Interval Discrepancy in the Bd-case 

In this case it seems to be impossible to find a similar nice 
trick as in the Id-case, - the situation is quite different. 
One possibility would be: Reduce it in a certain way to the 
Id-case: 

a) Substitute each row of our, say 512x512-matrix by the 
sequence of its Partial sums. 

b) Calculate now sums of increasing numbers of neighboured rows. 

c) Determine the discrepancies of these vectors. 

d) The maximum of these discrepancies is the discrepancy of the 
))picture". 
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We have chosen another way: We determine the subarrays with the 
maximum (max) resp. minimum (min) sum of its elements; 
Max (max, -min) is the discrepancy which has to be determined. 
In what follows, we again assume, that the elements of our 

matrix are just the normalized measurement values (this means: 
the equidistribution is already involved in these numbers). 

Some remarks now w.r.t. the crucial part of the algorithm: 
Row by row (original picture matrix "pit"), 
for each "part" picCklCjl,...,picCklcj+i3 - k-th row! - 
we determine the sum of the elements of that subarray among all 
subarrays with this "part" as last row, 
which has the greatest/smallest sum. 
The algorithm works as follows: 
We use the two upper triangular matrices D = (dij), D = (dij), 
which have to be updated in each step (maxima are stored in D, 
minima in D): 
After step k (which "belongs to" the k-th row of the pit-matrix) 
element d.. resp. 

1J dijis the maximum resp. minimum of the set of 
the sums of all subarrays with the last row constituted by the 
elements picCklCj1 until picCkl[j+il; we allow height=0 for our 
rectangulars. 

Initialization: D (0' = D(O) = 0; max = min = 0; 
Recursion: for (k = l,...,n) 

begin 

d(k’ 
ij 

= max(O,d(k-l) t i picCklCv+jl); 
ij v= 1 

d(k) 
-ij = min(O,di:-') t i picCkl[~+jl); 

Y- -1 

if (d(k) (k) 
ij 1 max)max = d.. ; 

1J 

if (d(k' -ij 1 min)min = d(k); -ij 
end; 

discrepancy := MAX (max,-min); 

Question: What is the optimal algorithm? 
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3 Results 

3.1 Id-case: 
In some cases it is possible for instance to identify the 

cleaning periods for the air channels, but in the case of other 

tissues it seems to be quite impossible to detect such phases 
by means of discrepancy analysis: Maybe that the increasing 

pollution of the air channel appears here only as an increasing 
thickness of the fabric; perhaps discrepancy is not a sensitive 
enough "tool" for our task and we have to look for other mathe- 
matical models. Nevertheless: Discrepancy measures some feature 
of the fabric, although it does not always coincide with what 
the company calls "cloudiness". Here work is still on progress. 

3.2 Bd-case: 
We have calculated the 2d-interval-discrepancy for 

different tissues; the results coincide fairly well with the 
visual impression (great values - bad quality, less even / small 
values - good quality, more even), apart from lacking in some 
"selectivity": There are tissues which look very similar, and 
the difference of the values is of an order not very different 
from that of the discrepancies of two fabrics which look rather 
more unequal. 

Maybe that the procedure is still too coarse and one may be well 
advised by applying an "isotropic" discrepancy, an alternative 
concept in which intervals have to be substituted by "convex 
sets" or a more general discrepancy concept which deals with all 
"connected sets", But this is a question of time too: Such 
calculations would be much more elaborate and would last very 
long; this is again a problem of finding a fast algorithm. 
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