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Abstract

Risk management is an indispensable component of the financial system. In this context,
capital requirements are built by financial institutions to avoid future bankruptcy. Their
calculation is based on a specific kind of maps, so-called risk measures. There exist
several forms and definitions of them. Multi-asset risk measures are the starting point
of this dissertation. They determine the capital requirements as the minimal amount of
money invested into multiple eligible assets to secure future payoffs.

The dissertation consists of three main contributions: First, multi-asset risk measures
are used to calculate pricing bounds for European type options. Second, multi-asset risk
measures are combined with recently proposed intrinsic risk measures to obtain a new
kind of a risk measure which we call a multi-asset intrinsic (MAI) risk measure. Third,
the preferences of an agent are included in the calculation of the capital requirements.
This leads to another new risk measure which we call a scalarized utility-based multi-
asset (SUBMA) risk measure.

In the introductory chapter, we recall the definition and properties of multi-asset risk
measures. Then, each of the aforementioned contributions covers a separate chapter. In
the following, the content of these three chapters is explained in more detail:

Chapter 2: Good deal bounds under Value-at-Risk and Expected Shortfall constraints

Risk measures can be used to calculate pricing bounds for financial derivatives. In this
chapter, we deal with the pricing of European options in an incomplete financial market
model. We use the common risk measures Value-at-Risk and Expected Shortfall to define
good deals on a financial market with log-normally distributed rates of return. We show
that the pricing bounds obtained from Value-at-Risk may have a non-smooth behavior
under parameter changes. Additionally, we find situations in which the seller’s bound
for a call option is smaller than the buyer’s bound. We identify the missing convexity
of the Value-at-Risk as main reason for this behavior. Due to the strong connection
between the obtained pricing bounds and the theory of risk measures, we further obtain
new insights in the finiteness and the continuity of multi-asset risk measures.
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Chapter 3: Multi-asset intrinsic risk measures

In this chapter, we construct the MAI risk measure. Therefore, recall that a multi-
asset risk measure describes the minimal external capital that has to be raised into
multiple eligible assets to make a future financial position acceptable, i.e., that it passes
a capital adequacy test. Recently, the alternative methodology of intrinsic risk measures
was introduced in the literature. These ask for the minimal proportion of the financial
position that has to be reallocated to pass the capital adequacy test, i.e., only internal
capital is used. We combine these two concepts and call this new type of risk measure
an MAI risk measure. It allows to secure the financial position by external capital as
well as reallocating parts of the portfolio as an internal rebooking.

We investigate several properties to demonstrate similarities and differences to the two
aforementioned classical types of risk measures. We find out that diversification reduces
the capital requirement only in special situations depending on the financial positions.
With the help of Sion’s minimax theorem we also prove a dual representation for MAI
risk measures. Finally, we determine capital requirements in a model motivated by the
Solvency II methodology.

Chapter 4: Scalarized utility-based multi-asset risk measures

In this final chapter, we construct the SUBMA risk measure. In doing so, we consider
the situation in which a financial institution has to satisfy a capital adequacy test,
e.g., by the Basel Accords for banks or by Solvency II for insurers. If the financial
situation of this institution is tight, then it can happen that no reallocation of the initial
endowment would pass the capital adequacy test. The classical portfolio optimization
approach breaks down and a capital increase is needed. We introduce the SUBMA risk
measure which optimizes the hedging costs and the expected utility of the institution
simultaneously subject to the capital adequacy test.

We find out that the SUBMA risk measure is coherent if the utility function has con-
stant relative risk aversion and the capital adequacy test leads to a coherent acceptance
set. In a one-period financial market model we present a sufficient condition for the
SUBMA risk measure to be finite-valued and continuous. Under further assumptions on
the utility function we obtain existence and uniqueness results for the optimal hedging
strategies. Finally, we calculate the SUBMA risk measure in a continuous-time financial
market model for two benchmark capital adequacy tests.



Zusammenfassung

Risikomanagement ist ein unverzichtbarer Bestandteil des Finanzsystems. Hierbei wer-
den Kapitalrücklagen von Finanzinstitutionen gebildet, um eine künftige Insolvenz zu
vermeiden. Deren Berechnung basiert auf sogenannten Risikomaßen. Für diese existie-
ren verschiedene Definitionen. Der Ausgangspunkt dieser Dissertation sind Multi-Asset-
Risikomaße. Sie bestimmen die Kapitalrücklagen als den minimalen Geldbetrag, der in
zulässige Anlagen investiert werden muss, um künftige Auszahlungen abzusichern.

Die Dissertation besteht aus drei Beiträgen: Erstens werden Multi-Asset-Risikomaße
genutzt um Preisschranken für europäische Optionen zu berechnen. Zweitens werden
Multi-Asset-Risikomaße mit den kürzlich eingeführten intrinsischen Risikomaßen kom-
biniert. Dies führt zu dem neuen Multi-Asset-intrinsischen-Risikomaß (MAI-Risikomaß).
Drittens werden die Präferenzen des Marktteilnehmers in der Berechnung der Kapital-
rücklagen berücksichtigt. Dies führt zu einem weiteren neuen Risikomaß, dem soge-
nannten skalarisierten nutzenbasierten Multi-Asset-Risikomaß (SUBMA-Risikomaß).

In dem Einführungskapitel wiederholen wir die Definition und Eigenschaften von
Multi-Asset-Risikomaßen. Anschließend widmen wir jedem der genannten Beiträge ein
eigenständiges Kapitel. Im Folgenden gehen wir auf diese drei Kapitel im Detail ein:

Kapitel 2: Good deal bounds under Value-at-Risk and Expected Shortfall constraints

Risikomaße können genutzt werden, um Preisschranken für Finanzderivate zu berech-
nen. In diesem Kapitel behandeln wir die Preisgestaltung von europäischen Optionen
in einem unvollständigen Finanzmarktmodell. Wir nutzen die gängigen Risikomaße
Value-at-Risk und Expected Shortfall, um sogenannte gute Deals auf einem Finanz-
markt mit log-normalverteilten Renditen zu definieren. Wir zeigen, dass die Preis-
schranken, die wir aus dem Value-at-Risk erhalten, ein nicht glattes Verhalten bei Pa-
rameteränderungen aufweisen. Zusätzlich finden wir Situationen in denen die Schranke
des Verkäufers einer Call-Option kleiner ist als die Schranke des Käufers. Wir indenti-
fizieren die fehlende Konvexität des Value-at-Risk als Hauptgrund für dieses Verhalten.
Auf Grund der starken Verbindung zwischen den gefundenen Preisschranken und der
Theorie der Risikomaße, erhalten wir neue Erkenntnisse über die Endlichkeit und die
Stetigkeit von Multi-Asset-Risikomaßen.
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Kapitel 3: Multi-asset intrinsic risk measures

In diesem Kapitel konstruieren wir das MAI-Risikomaß. Dafür möchten wir daran
erinnern, dass Multi-Asset Risikomaße das minimale externe Kapital beschreiben, welches
in mehrere zulässige Anlagen investiert werden muss, so dass die künftige Finanzposi-
tion akzeptabel wird, d.h. dass sie die Kapitalanforderungen erfüllt. Kürzlich wurde
die alternative Methodik der intrinsischen Risikomaße entwickelt. Diese fragt nach dem
minimalen Anteil der Finanzposition, welche reallokiert werden muss, um die Kapital-
anforderungen zu erfüllen, d.h. nur internes Kapital wird verwendet. Wir kombinieren
diese beiden Konzepte und nennen das neue Risikomaß ein MAI-Risikomaß. Es erlaubt
uns, eine Finanzposition sowohl mit externem Kapital als auch durch Reallokieren des
Portfolios abzusichern.

Wir untersuchen verschiedene Eigenschaften, um Gemeinsamkeiten und Unterschiede
zu den zwei oben genannten klassischen Risikomaßen aufzuzeigen. Dabei reduziert Di-
versifikation die Kapitalrückstellungen nur in speziellen Situationen, welche von den
beteiligten Finanzpositionen abhängen. Mit der Hife von Sion’s Min-Max Theorem be-
weisen wir eine Dualdarstellung für MAI-Risikomaße. Abschließend bestimmen wir die
Kapitalrückstellungen in einem Modell, das durch Solvency II motiviert ist.

Kapitel 4: Scalarized utility-based multi-asset risk measures

Im letzten Kapitel konstruieren wir das SUBMA-Risikomaß. Dafür betrachten wir
eine Situation, in welcher eine Finanzinstitution bestimmte Kapitalanforderungen er-
füllen muss, bspw. die Basel Abkommen für Banken oder Solvency II für Versicherungen.
Wenn die finanzielle Situation der Institution angespannt ist, dann kann es passieren,
dass keine der möglichen Reallokationen die Kapitalanforderungen erfüllt. Der klassi-
sche Portfoliooptimierungsansatz ist nicht anwendbar und eine Kapitalerhöhung ist er-
forderlich. Dafür führen wir das SUBMA-Risikomaß ein, dass die Hedging Kosten und
den erwarteten Nutzen der Institution zeitgleich unter Berücksichtigung der Kapital-
anforderungen optimiert.

Wir zeigen, dass das SUBMA-Risikomaß kohärent ist, wenn die Nutzenfunktion kon-
stante relative Risikoaversion besitzt und die Kapitalanforderungen zu einer kohärenten
Akzeptanzmenge führen. In einem Ein-Perioden-Modell präsentieren wir eine hinrei-
chende Bedingung, so dass das SUBMA-Risikomaß reellwertig und stetig ist. Durch
weitere Annahmen an die Nutzenfunktion erhalten wir Existenz- und Eindeutigkeitsaus-
sagen für die optimalen Hedging-Strategien. Abschließend berechnen wir das SUBMA-
Risikomaß in einem zeitstetigen Finanzmarktmodell für zwei standardmäßige Kapital-
anforderungen.
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Chapter 1

Multi-asset risk measures

1.1 Introduction

This chapter is an introduction to the mathematical concepts used for risk assessment.
The main task in this field is the calculation of a capital requirement for a financial
position. Such a financial position could be the asset portfolio of an investor or the
equity capital of a financial institution. The characteristic of a financial position changes
when eligible assets are bought or sold. Certain functionals make use of this fact to
estimate the capital requirement. These functionals are risk measures using multiple
eligible assets. To introduce them is the main concern of this chapter. They are then
the starting point for the new contributions in the subsequent chapters.

1.1.1 Motivation

In order to prepare against unfavorable scenarios in the future, investors and companies
are willing to build capital reserves. Their calculation is often prescribed by legal re-
quirements. They should prevent investors and companies to become insolvent and thus
to stabilize the financial system. Summarizing, regulatory agencies require companies
to pass capital adequacy tests by building adequate capital reserves.

Capital requirements are calculated by so-called risk measures. The main idea behind
risk measures is summarized as follows: Risk measures ask for the minimal amount of
capital that has to be invested into eligible assets to pass the capital adequacy test.

For the sake of illustration, assume that a company faces a payoff X at some finite
future time T . Further, assume a single eligible asset with actual price S0 and future
price ST for which we write S = (S0, ST ). Future payoffs which would be accepted
by the regulator are modeled by a subset A, i.e., every element in A passes the capital
adequacy test. The risk measure is then given by the following functional:

ρA,S(X) = inf{λS0 |λ ∈ R, X + λST ∈ A}.

1



2 Multi-asset risk measures

If X /∈ A, then the risk measure suggests to invest an additional amount of money
into the eligible asset S to pass the capital adequacy test. It is a restriction to focus
on a single eligible asset S as a hedging instrument. For example, Baes, Koch-Medina,
and Munari (2020, page 129) point out that "[. . . ] limiting the investment choice to
a single eligible asset instead of allowing investments in portfolios of multiple eligible
assets is inefficient, in that, it generally leads to higher capital requirements". Hence,
we are interested in risk measures using multiple eligible assets. This is a by now well
established concept that we repeat in this chapter. We start by giving an overview of
the literature.

1.1.2 Bibliographic notes

The seminal paper of Artzner, Delbaen, Eber, and Heath (1999) introduces risk measures
using a single eligible asset. If it is possible to use the single eligible asset as a numéraire,
then one can focus on the simpler concept of so-called monetary risk measures, see
e.g., Föllmer and Schied (2016), Delbaen (2002), Cheridito and Li (2009). But not every
single eligible asset can be used as a numéraire. For instance, if the eligible asset can
default, then it is not possible to divide by its payoff. Hence, Farkas, Koch-Medina, and
Munari (2014), Munari (2015) analysis risk measures with respect to an eligible asset
under default risk.

It is also critical to limit the hedging actions to a single eligible asset. Normally,
there are various possible assets available, e.g., all stocks at a stock exchange. To this
end, Scandolo (2004) and Frittelli and Scandolo (2006) introduce risk measures using
multiple eligible assets. Artzner, Delbaen, and Koch-Medina (2009) further investigate
this concept. Farkas, Koch-Medina, and Munari (2015) name them multi-asset risk
measures and develop finiteness and continuity results as well as dual representations
for them. Results for the existence, uniqueness and stability of optimal payoffs with re-
spect to multi-asset risk measures can be found in Baes et al. (2020), Baes and Munari
(2020).

As mentioned above, in this chapter we repeat the definition and properties of multi-
asset risk measures. Hence, the concepts and results in this chapter are not ours. They
should serve as a preparation for the subsequent chapters. This chapter is mainly based
on the explanations and results in Farkas et al. (2014, 2015), Munari (2015).

1.1.3 Structure of this chapter

In Section 1.2, we introduce the model for the eligible assets, i.e., we introduce the model
for the financial market. In Section 1.3, we describe how to model capital adequacy tests.
This allows us to state the definition of multi-asset risk measures. Section 1.4 summarizes
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well-known results for multi-asset risk measures which we need in the upcoming chapters.
We start with the conditions on the capital adequacy test such that the multi-asset
risk measure is convex or satisfies even the desirable property of coherence. Then we
introduce different sufficient conditions such that the multi-asset risk measure is finite-
valued and continuous. A special focus is put on the Value-at-Risk and the Expected
Shortfall as prominent examples for capital adequacy tests.

For the sake of completeness, we first recall some terminology which is used throughout
the entire dissertation.

1.1.4 Standard notations and concepts

For two sets A,B the expression A ⊂ B means that A is a subset of B and A ⊊ B means
that A is a proper subset of B. The linear span of a set of vectors S ⊂ X is written as
spanS. For a topological space (X , τ) we denote the interior, respectively the closure,
of a subset A ⊂ X by intτ (A), respectively clτ (A). We omit the topology τ in these
notations if the context is clear.

The epigraph of a map f : X → [−∞,∞] is epi(f) := {(X,α) ∈ X × R | f(X) ≤ α}.
The kernel of a linear map f on a linear space X is ker(f) := {X ∈ X | f(X) = 0}.

To achieve a quite general definition of a risk measure, we use ordered topological
vector spaces, compare also Appendix A. An ordered topological vector space (X , τ,⪯),
or X for short, means that (X , τ) is a topological vector space and (X ,⪯) is an ordered
vector space and its positive cone X+ := {X ∈ X | 0 ⪯ X} is τ -closed.

Assume a probability space (Ω,F , P ). The linear space of equivalence classes of
random variables on it is denoted by L0(Ω,F , P ). For a number p ∈ (0,∞) the linear
space of equivalence classes of p-integrable random variables is denoted by Lp(Ω,F , P ),
or Lp for short. For p = ∞ we use the analogous symbols to denote the linear space
of equivalence classes of essentially bounded random variables. We always equip these
linear spaces with the usual Lp-norm and the P -almost sure order. The latter is denoted
by ≥. Note, every space Lp with p ∈ [1,∞] is a Banach lattice and therefore an ordered
topological vector space, see Aliprantis and Border (2006, Theorem 13.5).

The upper quantile function of a random variable X is denoted by q+
X .

1.2 Financial positions

Assume an agent who is interested in the risk of her daily business. Such an agent
could be a private investor or a financial institution, e.g., an insurance company or a
bank. This agent interacts with her environment. For instance, a private investor or
a financial institution can trade on a stock exchange. In this section, we introduce a
framework for such interactions.
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1.2.1 Model space

The agent deals with unforeseeable future developments. For instance, a private investor
does not know the future stock prices or an insurance company does not know the
number and severity of damages in an upcoming year, e.g., think of a private liability
insurance.

We describe these unforeseeable developments in a mathematical way, i.e., we describe
random outcomes in the future. To do so, we have to clarify the objects of interest. We
name the following two possibilities:

(i) Fix a future time and consider the value of positions at it, e.g., the value of a stock
in one month or the equity capital of a financial institution in one year. This is a
static point of view. The objects of interest are random variables.

(ii) We could also consider the development of a position over time, e.g., the wealth of
a portfolio over one month or the equity capital over one year. This is a dynamic
point of view. The objects of interest are stochastic processes.

Remark 1.2.1. Additionally, we could consider different fields of business simultane-
ously, e.g., the balance sheets of subsidiaries of a financial institution. We could either
use a static or a dynamic point of view. The objects of interest in the static case are
vectors of random variables and in the dynamic case are multi-dimensional stochastic
processes.

Baes et al. (2020, page 129) point out that one uses "[. . . ] typically a space of random
variables". Motivated by this quote, most of the time we focus on random variables.
This is reflected by the choice of our examples. Notwithstanding, especially the results
in Chapter 3 are stated in a general framework. Hence, we start by assuming an ordered
topological vector space (X , τ,⪯). For the sake of brevity, we call it a model space.
The elements of X are called financial positions or payoffs.

We give economic interpretations for the topological vector space X :

• The vector addition and the scalar multiplication of X allows us to sum up and
scale payoffs. For example, the agent can buy stocks which are not yet part of
her portfolio (summation) or she only holds shares of a single company and buys
more shares of this company (scaling).

• Among others, the topology τ is used to analyze if a small change in the financial
position leads to a small change in the capital requirement (continuity). Continuity
is a desirable property for risk assessment.

• The partial order ⪯ says if a payoff is strictly larger than another one. This should
be reflected by the capital requirements. Further, it allows us to introduce the set
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of positive, respectively strictly positive, elements X+, respectively X++. For the
formal definition of the latter set, see Appendix A.

1.2.2 Marketed space

A capital requirement is the minimal amount of money that needs to be invested in
eligible assets to pass the capital adequacy test. The term eligible assets covers every
asset that the agent can reallocate in a short time period. Typical examples of eligible
assets are a bank account, bonds or stocks. But not every payoff in X arises from
trading in eligible assets, e.g., the equity capital of a company. So, we have to specify
the payoffs that can be created by trading in eligible assets. To this end, we introduce
a linear subspace of X that represents all of these payoffs.

We denote this linear subspace by M. It contains every payoff that can be created by
trading in the eligible assets that represents M. For instance, if the agent solely buys
stocks, then the corresponding payoff is an element of M. We call M the marketed
space or for illustration sometimes a stock exchange. An element of it is a marketed
portfolio, marketed payoff or a portfolio for short.

A financial position in X \M can not be traded on the stock exchange M, e.g., think
of the damage to an insurance company from its operative business. But it can also be
a combination of different financial positions, e.g., an insurance company holds different
assets, e.g., stocks or real estates, but has also to pay for future insurance claims. Some
of these assets could be traded at a stock exchange, but for example, real estates as
illiquid assets are not traded.

To obtain desirable properties of risk measures, we state the following permanent
assumption:

Assumption 1.2.2. M contains a non-zero positive element.

Finally, in the following remark we discuss the condition that the marketed space is
a linear space in view of trading.

Remark 1.2.3. A discrete-time financial market model only allows for trading at finitely
many time points. In this case, the assumption of a linear subspace M is satisfied in
general. For continuous-time financial market models we have to be more careful in
defining the trading strategies that are admissible, because we have to exclude so-called
doubling strategies. By executing a doubling strategy, the agent creates “gain out of
nothing”. The usual trick to exclude doubling strategies is the restriction to trading
strategies such that the corresponding wealth process is uniformly bounded from below,
see e.g., Delbaen and Schachermayer (2006). But this leads not any longer to a linear
space M in general.
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1.2.3 Pricing functional

Recall that M consists of the payoffs with respect to trading eligible assets. These
assets are liquid and hence, the agent knows the actual price of the resulting payoffs.
We model these prices by a map π : M → R which we call a pricing functional. Note,
the pricing functional takes values on the real line, i.e., we work under the assumption
that prices are finite-valued.

Sometimes it is helpful to consider only the marketed payoffs at a certain price x ∈ R.
For this purpose, we write

Mx := {X ∈ M |π(Z) = x} .

Hence, for price zero it holds that M0 = ker(π).
We would like to work in an efficient market, i.e., it should not be possible to create

gain without any risk. To describe this situation for the marketed space M we introduce
the notion of an arbitrage opportunity.

Definition 1.2.4 (Arbitrage opportunity). A non-zero positive element M ∈ M with
π(M) ≤ 0 is called an arbitrage opportunity.

To work in an arbitrage-free market, we make the following standing assumption:

Assumption 1.2.5 (Free of arbitrage). The marketed space is free of arbitrage oppor-
tunities, i.e., the pricing functional is a strictly positive functional which means that for
all non-zero positive M ∈ M it holds that π(M) > 0.

Finally, we would like to work in a liquid market. This is described by the linearity
of the pricing functional, i.e., the price of sums of scaled portfolios is equal to the sums
of the scaled prices of the portfolios.

Assumption 1.2.6 (Liquidity). The pricing functional π is a linear functional, i.e., for
each α, β ∈ R and Z,U ∈ M it holds that π(αZ + βU) = απ(Z) + βπ(U).

1.3 Definition of multi-asset risk measures

In this section, we explain the calculation of capital requirements. We use the classical
motivation of a capital adequacy test imposed by some regulatory agency as it is done
in the seminal paper of Artzner et al. (1999). In a first step, we model the capital
adequacy test and present the most prominent examples based on the Value-at-Risk
and the Expected Shortfall. Then we define multi-asset risk measures.
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1.3.1 Acceptance sets

For the following motivation, we assume that the agent is a bank or an insurance com-
pany. Hence, the agent has to pass a capital adequacy test. In doing so, the agent is
restricted to payoffs that pass this test. We say that such payoffs are acceptable from
the regulator’s perspective.

The following concept describes the capital adequacy test stipulated by the regulator.
To introduce special kinds of such tests, we make use of two properties for sets. First,
note that a set C ⊂ X is convex, if for each α ∈ (0, 1) it holds that αC + (1 − α) C ⊂ C.
Second, C is a cone, if for each α ∈ [0,∞) it holds that αC ⊂ C.

Definition 1.3.1 (Acceptance sets). An acceptance set A is a subset A ⊂ X satisfying
the following properties:

(i) Non-triviality: A ≠ ∅, A ≠ X .

(ii) Monotonicity: For X ∈ X , Y ∈ A with Y ⪯ X it follows that X ∈ A.

If A is additionally convex, respectively a convex cone, then we call it a convex, respec-
tively coherent, acceptance set.

Non-triviality means on the one hand that there exist financial positions, that are
accepted by the regulator, and on the other hand that there exist financial positions,
that the regulator does not tolerate. Monotonicity states that financial positions, that
are better than already acceptable financial positions, are also acceptable.

Convexity says that mixtures between acceptable financial positions remain accept-
able. In Chapter 3 this will be important to guarantee that diversification between
financial positions is rewarded. This means that diversifying between two financial po-
sitions does not destroy acceptability and the capital reserve is reduced.

Conicity describes a kind of liquidity. If the agent is able to scale her acceptable
payoffs arbitrarily and they remain acceptable, then this scaling property carries over
to the multi-asset risk measures.

In Chapters 2 and 4 we need another property. It describes a link between the
marketed space, the pricing functional and an acceptance set. We state this link in the
following definition which goes back to Jaschke and Küchler (2001).

Definition 1.3.2 (Good deals of the first kind). Assume an acceptance set A. We call
a payoff X ∈ X a good deal of the first kind, if X ∈ (A∩ker(π))\{0}. The marketed
space M is free of good deals of the first kind, whenever the following condition is
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satisfied:

(A ∩ ker(π))\{0} = ∅.

Remark 1.3.3. A good deal is a marketed payoff that is too profitable for an agent.
As stated in Baes et al. (2020, page 138), "[. . . ] there is no reason to expect any con-
sistency between the financial market, where eligible assets are traded, and the capital
adequacy test", as it is supposed by the absence of good deals of the first kind condition.
Nevertheless, one could expect that the government strives for a capital adequacy test
that is consistent with the actual financial market. Hence, the government would like
to ensure that the market does not allow for good deals of the first kind.

1.3.2 Monetary risk measures

In this section, we introduce the most important acceptance sets in practice. Many of
them are given by an appropriate function f : X → R which leads to an acceptance set
of the following form:

A = {X ∈ X | f (X) ≤ 0}.

Functions f with desirable and economically meaningful properties are so-called mon-
etary risk measures. We define them as follows:

Definition 1.3.4 (Monetary risk measures). A function ρ : X → (−∞,∞] is called a
monetary risk measure, if for all X,Y ∈ X the following properties hold:

(i) Finiteness at 0: ρ(0) ∈ R.

(ii) Monotonicity: X ⪯ Y implies ρ(X) ≥ ρ(Y ).

(iii) Cash invariance: For all m ∈ R we have ρ(X +m) = ρ(X) −m.

A monetary risk measure is called convex, if for all X, Y ∈ X it holds:

(iv) Convexity: For α ∈ (0, 1) we have ρ(αX + (1 − α)Y ) ≤ αρ(X) + (1 − α)ρ(Y ).

A convex monetary risk measure is called coherent, if for all X ∈ X it holds:

(v) Positive homogeneity: For α ≥ 0 we have ρ(αX) = αρ(X).

Next, we formally introduce the idea of an acceptance set specified via a monetary
risk measure.
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Definition 1.3.5 (Acceptance sets based on monetary risk measures). The acceptance
set based on a monetary risk measure ρ is defined by

Aρ := {X ∈ X | ρ(X) ≤ 0}.

It is easy to verify that Aρ is indeed an acceptance set in the sense of Definition 1.3.1.
The following examples are prominent monetary risk measures which are often used in
practice.

Example 1.3.6 (Value-at-Risk and Expected Shortfall). Let (Ω,F , P ) be a probability
space and λ ∈ (0, 1).

(i) Assume X ⊂ L0(Ω,F , P ) and X ∈ X . The Value-at-Risk (VaR) at level λ of
X is VaRλ(X) := −q+

X(λ). Recall that q+
X(λ) denotes the upper quantile function

of X at level λ. VaR is a monetary risk measure in the sense of Definition 1.3.4.
The VaR acceptance set is AVaRλ

= {X ∈ X | VaRλ(X) ≤ 0}. It is a closed cone
which is not convex in general.

(ii) Assume X ⊂ L1(Ω,F , P ) and X ∈ X . The Expected Shortfall (ES) of X at

level λ is ESλ(X) := − 1
λ

λ∫
0
q+
X(u) du. ES is a coherent monetary risk measure in the

sense of Definition 1.3.4. The ES acceptance set AESλ
= {X ∈ X | ESλ(X) ≤ 0}

is also coherent.

Remark 1.3.7. VaR and ES are used in several regulatory frameworks, e.g., the Basel
Accords or Solvency II. There is an ongoing debate which of these monetary risk mea-
sures should be preferred. For instance, Wang and Zitikis (2020) introduce an intu-
itive set of four axioms to describe economic intentions in a risk assessment framework,
namely monotonicity, law-invariance, prudence and no reward for concentration (NRC).
The main intention of the regulator is reflected by the NRC axiom. It states the follow-
ing: If two payoffs realize large losses in the case of a specific stress scenario, then no
diversification effects occur and the capital requirement of the sum of the payoffs is equal
to the sum of the individual capital requirements, i.e., no capital reduction is possible.
A functional ρ : L1 → R satisfies the four axioms if and only if it is the ES at a specific
level, see e.g., Wang and Zitikis (2020, Theorem 1). Hence, the ES is the only monetary
risk measure satisfying these economic desirable axioms. This is one advantage of using
ES instead of VaR to define a capital adequacy test. For the model used in Sections 2.4
and 2.5 we obtain other desirable properties of ES when pricing financial derivatives.

But there are also disadvantages by using ES instead of VaR. A bunch of them are
given in Koch-Medina and Munari (2016). In particular, they argue that the use of ES
instead of VaR can lead to more extreme risk profiles.
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In Chapter 2 we apply monetary risk measures that are comonotonic. This property
is introduced in the following definition. For more information about comonotonic risk
measures we refer to Föllmer and Schied (2016, Section 4.7).

Definition 1.3.8 (Comonotonicity). Assume a probability space (Ω,F , P ). We say that
X,Y ∈ L0(Ω,F , P ) are comonotone if there exists a P ⊗P -null set N ⊂ F ⊗F such
that for all (ω, ω′) ∈ Ω × Ω\N it holds that

(
X(ω) −X(ω′)

) (
Y (ω) − Y (ω′)

)
≥ 0.

If X ⊂ L0(Ω,F , P ), then we call a monetary risk measure ρ : X → R comonotonic if

ρ(X + Y ) = ρ(X) + ρ(Y )

whenever X,Y ∈ X are comonotone.

1.3.3 Multi-asset risk measures

Now we incorporate the concepts introduced so far and calculate capital requirements.
The classical definition of a risk measure is based on a single eligible asset. But in this
dissertation we state new results for risk measures using multiple eligible assets.

Definition 1.3.9 (Multi-asset and single-asset risk measures). Assume an acceptance
set A. The multi-asset risk measure for X ∈ X is defined by

ρA,M,π(X) := inf{π(Z) |Z ∈ M, X + Z ∈ A}.

If Z ∈ X such that M = span{Z}, then we write ρA,Z,π := ρA,M,π for short and call it
a single-asset risk measure.

A multi-asset risk measure determines the capital requirement as the minimal costs
with respect to marketed payoffs such that the sum of the actual payoff and a marketed
payoff becomes acceptable.

Note that the multi-asset risk measure is not finite-valued in general, i.e., it can attain
−∞ or +∞. Hence, a common assumption is the one of a finite-valued multi-asset risk
measure. For example, Liebrich and Svindland (2017) assume that ρA,M,π(X) > −∞
for all X ∈ X . Such an assumption avoids economically implausible situations, as Farkas
et al. (2014, page 148) point out 1:

1Farkas et al. (2014) denote by ρA,S the single-asset risk measure with respect to an eligible asset
S = (S0, ST ) with actual price S0 and payoff ST at future time T .
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[. . . ] if ρA,S(X) = −∞, then we could extract arbitrary amounts of capital
without compromising the acceptability of X, which is financially implausible.

In the opposite case, i.e., the risk measure attains +∞, it is not possible to pass the
capital adequacy test, see Farkas et al. (2014, page 148):

[. . . ] if ρA,S(X) = +∞ [. . . ], then X cannot be made acceptable by raising
any amount of capital and investing it in the reference asset S.

Hence, sufficient and necessary conditions for risk measures to be finite-valued are
important. In addition, finiteness is often a prerequisite to prove continuity of a risk
measure. Continuity deserves a similar degree of attention as finiteness, as the following
quote by Farkas et al. (2014, page 148) tells us:

[. . . ] if ρA,S fails to be continuous at some position X, then a slight change or
misstatement of X might lead to a dramatically different capital requirement.

Continuity is also important to obtain so-called dual or robust representations of risk
measures. We also would like to motivate this property by a quote, see Farkas et al.
(2014, page 148):

[. . . ] continuity is also a useful property in the context of dual representa-
tions, which play an important role in optimization problems, for instance
arising in connection to portfolio selection.

The above discussion motivates us to develop new finiteness and continuity results
for risk measures. For the new risk measure in Chapter 3 we also develop a dual
representation which allows for an interesting economic interpretation.

In the upcoming section, we state well-known finiteness and continuity results for
multi-asset risk measures. We need them in the subsequent chapters.

1.4 Properties of multi-asset risk measures

In this section, we collect well-known results for multi-asset risk measures. We start
in Section 1.4.1 with direct consequences from Definition 1.3.1 of the acceptance set.
They allow for important economic interpretations pointing out their relevance in risk
assessment. In Section 1.4.2, we state sufficient conditions for a multi-asset risk measure
to be finite-valued and continuous. Finally, in Section 1.4.2, we give tailor-made results
for the special cases of VaR and ES acceptance sets.
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1.4.1 Convexity and coherence

In the theory of single-asset risk measures, the coherence property (compare Defini-
tion 1.3.4) is of major importance and is extensively studied. This property is introduced
and examined by Artzner et al. (1999). The authors argued that coherence is a desirable
property in the context of risk management. The next well-known result characterizes
the coherence of a multi-asset risk measure, see e.g., Farkas et al. (2015, Lemma 2).

Lemma 1.4.1. For an arbitrary acceptance set A ⊂ X the corresponding multi-asset
risk measure ρA,M,π satisfies the following properties:

(i) Monotonicity: ρA,M,π is decreasing.

(ii) M-invariance: For all X ∈ X , Z ∈ M the following translation property holds:

ρA,M,π(X + Z) = ρA,M,π(X) − π(Z).

(iii) Convexity: If A is convex, then the epigraph epi(ρA,M,π) is convex.

(iv) Positive homogeneity: If A is a cone, then the epigraph epi(ρA,M,π) is a cone.

Remark 1.4.2. For consistency note that the convexity, respectively positive homo-
geneity, in Definition 1.3.4 is equivalent to the convexity, respectively conicity, of the
epigraph epi(ρ) of the monetary risk measure ρ.

By monotonicity, a larger payoff leads to a smaller capital requirement. For the M-
invariance, remember that marketed portfolios are traded on the stock exchange M and
they are used to hedge the financial position. Hence, if the agent buys new shares of
assets on this stock exchange, then the value of the multi-asset risk measure can be
reduced by the costs of this portfolio. Convexity states that diversification, i.e., building
a mixture of different financial positions, should not increase the capital requirement.
Positive homogeneity says that risk scales with the size of the financial position. This
reflects that the market M is liquid. For large scaling factors this assumption is often
questionable.

Based on the properties in Lemma 1.4.1 we can introduce the coherence property for
multi-asset risk measures:

Definition 1.4.3 (Coherent multi-asset risk measures). For a coherent acceptance set
A we say that ρA,M,π is coherent.
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1.4.2 Finiteness and continuity

We recall important results from Farkas et al. (2015) describing the finitness and conti-
nuity of multi-asset risk measures. In the first result, a convex acceptance set is used.

Proposition 1.4.4 (Farkas et al. (2015, Proposition 2)). Let A be a convex acceptance
set with non-empty interior. Assume M contains a strictly positive element U . The
following statements hold:

(i) For all X ∈ X it holds that ρA,M,π(X) < ∞.

(ii) The following assertions are equivalent:

(a) For all X ∈ X it holds that ρA,M,π(X) > −∞.

(b) ρA,M,π(0) > −∞.

(c) For some x ∈ R we have int(A) ∩ Mx = ∅.

(d) A + ker(π) ̸= X .

In particular, ρA,M,π is finite-valued if and only if ρA,M,π(0) > −∞. In this case,
ρA,M,π is also continuous.

The next result states equivalent conditions for the semicontinuity of a multi-asset
risk measure.

Proposition 1.4.5 (Farkas et al. (2015, Proposition 4)). Let A be an acceptance set
and fix X ∈ X . Then the following statements hold:

(i) ρA,M,π is lower semicontinuous at X if and only if X + Z /∈ cl(A + ker(π)) for
any Z ∈ M with π(Z) < ρA,M,π(X).

(ii) ρA,M,π is upper semicontinuous at X if and only if X + Z ∈ int(A + ker(π)) for
any Z ∈ M with π(Z) > ρA,M,π(X).

In particular, if A+ker(π) is closed, respectively open, then ρA,M,π is lower, respectively
upper, semicontinuous on X .

The following result is helpful to apply Proposition 1.4.5.

Proposition 1.4.6 (Farkas et al. (2015, Proposition 5)). Let A be a closed accep-
tance set with 0 ∈ A. Assume that A is either a cone or convex and let M be finite-
dimensional. If A ∩ ker(π) = {0}, then A + ker(π) is closed.
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1.4.3 Value-at-Risk and Expected Shortfall

For the results in Chapter 2, we characterize the interior of the VaR and ES acceptance
sets. These results can be found in Farkas et al. (2014). They focus on a static point of
view (compare the discussion in Section 1.2.1). Hence, for the rest of this section we fix
a probability space (Ω,F , P ). We start with the VaR acceptance set.

Lemma 1.4.7 (Farkas et al. (2014, Lemma 4.1)). Let λ ∈ (0, 1) and p ∈ [0,∞). Assume
X = Lp(Ω,F , P ). The acceptance set AVaRλ

has non-empty interior in Lp. Moreover,

int(AVaRλ
) = {X ∈ Lp |P (X ≤ 0) < λ}.

In particular, for X ∈ Lp+, we have X ∈ int(AVaRλ
) if and only if P (X = 0) < λ.

Now we consider the ES acceptance set.

Lemma 1.4.8 (Farkas et al. (2014, Lemma 4.3)). Let λ ∈ (0, 1) and p ∈ [1,∞). Assume
X = Lp(Ω,F , P ). The following holds:

int(AESλ
) = {X ∈ Lp | ESλ(X) < 0} ⊂ {X ∈ Lp |P (X ≤ 0) < λ}.

For X ∈ Lp+, we have X ∈ int(AESλ
) if and only if P (X = 0) < λ.



Chapter 2

Good deal bounds under
Value-at-Risk and Expected
Shortfall constraints

2.1 Introduction

We apply multi-asset risk measures to calculate pricing bounds for European options in
a one-period financial market model. This leads to so-called good deal bounds. This
chapter is based on Desmettre, Laudagé, and Sass (2020).

2.1.1 Motivation

Pricing in incomplete financial markets is a demanding task for which various approaches
exist in the literature. On the one hand, no arbitrage pricing theory can lead to a wide
price range. On the other hand, equilibrium theory could give unique prices, but these
are not very robust with respect to changes of the model parameters. The theory of
good deal bounds is a compromise between these two concepts. Essentially, good deals
provide portfolios, which are acceptable in terms of the risk measure under consideration,
at zero price. Concluding, a good deal bound excludes prices that would lead to arbitrage
opportunities and in addition, it encourages a fair trade-off between supply and demand.

An important point is the way of quantifying a good deal. We give an overview of
established methods in the literature.

2.1.2 Bibliographic notes

The seminal paper by Cochrane and Saa-Requejo (2000) uses Sharpe ratios to define
good deals. This approach is extended in Černý (2003) and Björk and Slinko (2006).
Bernardo and Ledoit (2000) look at the gain-loss ratio. Test measures and floors are

15
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another approach, see e.g., Carr, Geman, and Madan (2001). This idea is extended
to a dynamic framework in Larsen, Pirvu, Shreve, and Tütüncü (2005). Černý and
Hodges (2002) bring together all these ideas and present a unifying theory for good deal
bounds. They also draw parallels to the classical arbitrage pricing theory. Arai (2011)
uses risk measures based on shortfall risk to determine good deal bounds. The strong
connection between good deal bounds and risk measures is presented for the first time
by Jaschke and Küchler (2001). The extension of their results to a non-coherent set of
good deals can be found in Staum (2004). Results for different representations of convex
risk measures in a pricing setup are given in Arai and Fukasawa (2014) and Farkas et al.
(2015).

2.1.3 Contributions of this chapter

To the best of our knowledge, there is no comprehensive analysis of good deal bounds
characterized by acceptance sets based on Value-at-Risk and Expected Shortfall. We
would like to fill this gap in an exemplary but standard market setting. To do so, we
use multi-asset risk measures.

Complete financial markets lead to unique prices for derivatives. The most prominent
example is the classical Black-Scholes model. We are interested in situations in which
prices are not unique. This is the case for incomplete financial markets. Note that for
discrete-time models the problem of pricing in an incomplete market is rather the rule
than the exception. So, we would like to analyze static trading strategies. Inspired
by Cochrane and Saa-Requejo (2000), our focus lies on the pricing of European type
options in a Black-Scholes market setup without intermediate trading. This one-period
model is a notable setup to test pricing rules for derivatives and at the same time it
allows to compare our results with the unique price of the Black-Scholes model based
on continuous-time trading. Moreover, it leads to formulas for the relevant multi-asset
risk measures with good tractability. An interesting future direction of research could
be the extension of our results to a setup with intermediate trading.

Our contributions are divided into three main parts, corresponding to Sections 2.3 up
to 2.5. In Section 2.3, we specify the marketed space for the multi-asset risk measure. We
find an equivalent condition to the so-called absence of acceptability arbitrage condition
in Artzner et al. (2009). If this condition is fulfilled, then the multi-asset risk measure
of a European option is finite. For its calculation we develop numerical approaches to
determine the value and the optimal solution of these risk measures. The benefits of fast
algorithms is pointed out in the literature, e.g., in Björk and Slinko (2006, page 253):

[. . . ] the problem of numerically determining good deal bounds is relatively
complex in terms of CPU time, so there is a very clear need to develop fast,
approximative good deal pricing algorithms.
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In Section 2.4, we find new relations between the absence of acceptability arbitrage
condition and the absence of good deals of the first kind in Jaschke and Küchler (2001).
Working under the latter condition, the consideration of the Value-at-Risk and the Ex-
pected Shortfall allows us to demonstrate the differences between non-convex and con-
vex pricing bounds. From this we obtain that the seller’s good deal bound based on the
Value-at-Risk does not behave smooth if we vary the strike of an option. This behavior
is triggered by jumps in the optimal solution of the underlying optimization problem.
Additionally, in the Value-at-Risk case the seller’s bound could become smaller than the
buyer’s bound even if there are no good deals of the first kind on the market. This is
not the case for the Expected Shortfall due to a separation argument, see Section 2.5.

Our results allow to conclude that pricing with respect to the non-convex bounds
is problematic, whereas the good deal bounds based on Expected Shortfall provide a
reasonable way for option pricing in incomplete markets.

2.1.4 Structure of this chapter

This chapter is organized as follows: In Section 2.2.1, we introduce the financial market
and repeat some well-known results within it. In Section 2.2.2, we specify the multi-
asset risk measures for this specific market model. Sections 2.3, 2.4 and 2.5 include our
findings for good deal bounds based on Value-at-Risk and Expected Shortfall as outlined
above.

2.1.5 Standard notations and concepts

In addition to Section 1.1.4, we use the following standard notations and concepts: The
complement of a set A is written as A∁. For n ∈ N the inner product of two points
x, y ∈ Rn is denoted by ⟨x, y⟩. The Euclidean norm of a vector x ∈ Rn is written as
∥x∥2. The unit sphere is defined by ∂ BRn := {x ∈ Rn | ∥x∥2 = 1}.

The distribution function of a random variable X is denoted by FX . We denote with
ϕ and Φ the density and the distribution function of a standard normal distributed
random variable.

2.2 One-period financial market model for multi-asset risk
measures

In this section, we introduce the financial market in which we calculate pricing bounds.
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2.2.1 Financial market model

We use a Black-Scholes market setup with one risk-free and one risky asset. For the
classical Black-Scholes model we refer to Black and Scholes (1973). We consider financial
positions up to a finite time T > 0. A filtered probability space

(
Ω,F , (Ft)t∈[0,T ] , P

)
with FT = F is used. The financial market consists of a bank account B and a stock
price process S. The bank account has initial price B0 > 0 and interest rate r ∈ R. The
stock price is modeled via a geometric Brownian motion with initial price S0 > 0, drift
b ∈ R, volatility σ > 0 and Brownian motion W . The values of the bank account and
the stock price at time t ∈ [0, T ] are

Bt = B0 exp(rt), St = S0 exp
((

b− 1
2σ

2
)
t+ σWt

)
.

Remark 2.2.1. The option pricing results in this chapter rely on the use of this financial
market model. Nevertheless, some of our results could be extended to a financial market
model with multiple stocks modeled as a multi-dimensional geometric Brownian motion.
When discussing these results in Remarks 2.3.3 and 2.4.2 we denote by Ŝ a d-dimensional
geometric Brownian motion with d ∈ N.

To describe the relevant spaces for our pricing problem, we make the following standing
assumption throughout this whole chapter:

Assumption 2.2.2. The model space is given by X = L1(Ω,F , P ). The marketed space
is given by M = span{BT , ST }. The pricing functional π : M → R is defined such that
for each φB, φS ∈ R it holds that π

(
φBBT + φSST

)
= φBB0 + φSS0.

Remark 2.2.3. Our results hold for every choice of an Lp-space with p ∈ [1,∞). For
the sake of simplicity, we use the concrete choice p = 1.

As mentioned before, we only allow for trading at time 0, i.e., no intermediate trading
is allowed. We call this the one-period Black-Scholes model (one-period BSM).
In a discrete-time setting, an incomplete market is the rule rather than the excep-
tion. Based on an additional homogeneity assumption the binomial model in Cox, Ross,
and Rubinstein (1979) is the only complete financial market model in discrete time, as
pointed out in Föllmer and Schied (2016, Section 5.5). We repeat the well-known finding
that the one-period BSM is incomplete, and hence the problem of pricing an option is
a demanding task.

Lemma 2.2.4. The one-period BSM is incomplete and a European call option with
strike K > 0 is not attainable.
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Proof: The probability space (Ω,F , P ) supports the random variable ST which has a
continuous distribution. By Föllmer and Schied (2016, Proposition A.31) the probability
space (Ω,F , P ) is atomless. By Föllmer and Schied (2016, Corollary 1.42) it follows
that the one-period BSM is incomplete.

The arbitrage-free price range of the European call option is given by the interval(
max

{
0, S0 − e−rTK

}
, S0

)
. The second result is then a consequence of Föllmer and

Schied (2016, Corollary 1.35).

2.2.2 Multi-asset risk measures

Throughout the whole chapter, we are interested in acceptance sets based on monetary
risk measures. For a monetary risk measure ρ, the agent in the one-period BSM would
search for a marketed portfolio Z ∈ M such that together with the financial position
X ∈ X it holds that

ρ(X + Z) ≤ 0.

Recall, the agent wants to achieve the acceptability constraint at minimal costs. This
leads to the capital requirement:

ρAρ ,M,π(X) = inf{π(Z) |Z ∈ M, X + Z ∈ Aρ}

= inf
{
φBB0 + φSS0

∣∣∣φB, φS ∈ R, ρ(X + φBBT + φSST ) ≤ 0
}
.

Hence, the agent deposits money in the bank account and buys stock shares. This
portfolio remains the same until the end of the trading period. The deterministic interest
rate then leads to an analytical tractable calculation of the capital requirement.

2.3 Hedging with multi-asset risk measures

We present several properties of the multi-asset risk measures in our concrete market
framework and provide explicit formulas for measuring the risk of European options.

2.3.1 Representation and acceptability arbitrage

We start by showing a new representation for multi-asset risk measures. This is used to
determine the risk measures in our examples.

Proposition 2.3.1 (Representation in terms of stock holdings). Assume a monetary
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risk measure ρ. For every X ∈ X we obtain:

ρAρ ,M,π(X) = inf
φ∈R

(
φS0 + ρ(φST +X)

BT
B0

)
. (2.1)

Proof: The claim follows from the cash invariance of the monetary risk measure and the
relation

ρAρ ,M,π(X) = inf
{
φBB0 + φSS0

∣∣∣φB, φS ∈ R, ρ(φSST +X) ≤ φBBT
}
.

Hence, the minimum for given φS = φ is attained for φB = ρ(φST +X)/BT .

Before we focus on acceptance sets based on VaR and ES, we examine an expression
that is helpful to determine finiteness and continuity properties of multi-asset risk mea-
sures. It is a characterization of the so-called absence of acceptability arbitrage condition
in Farkas et al. (2015, Section 3). If this condition is not satisfied, then it is possible
to construct acceptable positions with arbitrary negative costs, see Example 2.3.4. This
would destroy any reasonable pricing and lead to infinite capital requirements. In the
following, we discuss the important concept of the absence of acceptability arbitrage
opportunities, which is closely related to the absence of good deals of the first kind. The
latter was already introduced in Definition 1.3.2 above.

Theorem 2.3.2 (Absence of acceptability arbitrage). Assume a positive homogeneous
monetary risk measure ρ such that ρ(ST ) and ρ(−ST ) are finite. In the one-period BSM
it holds that

ρAρ ,M,π(0) =

0 , if BT
B0

∈
[

−ρ(ST )
S0

, ρ(−ST )
S0

]
,

−∞ , otherwise.
(2.2)

The condition (2.2) is equivalent to the existence of a value m ∈ R such that

Aρ ∩ {Z ∈ M |π(Z) ≤ m} = ∅

which is the classical definition for absence of acceptability arbitrage.

Proof: By positive homogeneity, we have

φS0 + ρ(φST )
BT

B0 =


φ
(
S0 + ρ(ST ) B0

BT

)
, φ > 0,

0 , φ = 0,

φ
(
S0 − ρ(−ST ) B0

BT

)
, φ < 0.
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This yields for

ρ∗,1 = inf
φ>0

(
φS0 + ρ(φST )

BT
B0

)
, ρ∗,2 = inf

φ<0

(
φS0 + ρ(φST )

BT
B0

)
,

that ρ∗,1 = −∞ if BT
B0

< −ρ(ST )
S0

and 0 otherwise, as well as, ρ∗,2 = −∞ if BT
B0

> ρ(−ST )
S0

and 0 otherwise. This yields the claim, because by Proposition 2.3.1 we get

ρAρ ,M,π(0) = min
{

0, ρ∗,1, ρ∗,2
}
.

The second part is a direct consequence of Farkas et al. (2015, Lemma 4).

Remark 2.3.3. (i) Consider a level λ ∈ (0, 0.5), initial prices S0 = B0 = 1, zero
interest rate and − ESλ(ST ) ≤ BT < − VaRλ(ST ). In such a model, VaR leads to
acceptability arbitrage opportunities while ES does not.

(ii) Assume that there are more risky assets Ŝ in the market. In an analogous manner
to the proof of Theorem 2.3.2, we could show that the multi-asset risk measure of
the zero payoff is zero if and only if for every point in the unit sphere φ ∈ ∂ BRd it
holds that

〈
BT
B0
Ŝ0, φ

〉
≤ ρ

(
−
〈
ŜT , φ

〉)
. Furthermore, we obtain a representation

result by taking the infimum over all elements in Rd and replacing products with
the scalar product in (2.1) if necessary.

Example 2.3.4 (Acceptability arbitrage opportunities). If acceptability arbitrage ex-
ists, i.e., for all m ∈ R, Aρ ∩ {Z ∈ M |π(Z) ≤ m} ≠ ∅ or equivalently

BT
B0

/∈
[−ρ(ST )

S0
,
ρ(−ST )
S0

]
by Theorem 2.3.2, then there exists a sequence of acceptable marketed portfolios which
falls below every negative bound of costs. For instance, if BT

B0
< −ρ(ST )

S0
, then we build

long positions in the stock and short positions in the bank account such that we obtain
the sequence of buy and hold trading strategies

(
φBn , φ

S
n

)
n∈N

=
( −nρ(ST )
B0ρ(ST ) + S0BT

,
−nBT

B0ρ(ST ) + S0BT

)
n∈N

.

By positive homogeneity these strategies lead to ρ
(
φBnBT + φSnST

)
= 0 with prices

π
(
φBnBT + φSnST

)
= −n.

The previous example shows that if there exists an acceptability arbitrage opportu-
nity, then one can construct portfolio payoffs that have an arbitrary low price but are
still acceptable. If there are no such opportunities one can hope for reasonable prices
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following the idea of acceptability. This is also strongly related with finiteness and
continuity of the associated multi-asset risk measures as we analyze in detail in the
following.

2.3.2 Finiteness and continuity for VaR and ES

In this subsection, we give basic finiteness and continuity properties for multi-asset risk
measures based on VaR and ES acceptance sets. The analysis in this section is inspired
by Farkas et al. (2015). Not all of their results are applicable in our concrete setting
in combination with VaR acceptance sets. Hence, Proposition 2.3.6 and Theorem 2.3.9
show that the risk measure based on the VaR acceptance set is finite and not globally
upper semicontinuous.

We start with the easier case of an ES acceptance set. The coherence of the acceptance
set allows us to apply some of the results in Sections 1.4.2 and 1.4.3 in order to show
that the multi-asset risk measure is finite and continuous.

Proposition 2.3.5 (Finiteness and continuity of ES). Assume a level λ ∈ (0, 0.5) and let
the absence of acceptability arbitrage condition be fulfilled, that is, ρAESλ

,M,π(0) > −∞.
Then ρAESλ

,M,π is finite and continuous.

Proof: Note that the strictly positive elements of L1 are all random variables that
are P -a.s. strictly positive. Hence, ST is a strictly positive element of M. Further,
by Lemma 1.4.8, we see that ST ∈ int(AESλ

), that is, int(AESλ
) ̸= ∅. Hence, all

conditions in Proposition 1.4.4 are satisfied. This leads to the claim.

In our setup, we can not employ the results of Farkas et al. (2015), to say something
about finiteness and continuity of the multi-asset risk measure with respect to VaR.
Due to the missing convexity, we could not apply Proposition 1.4.4 for convex or Farkas
et al. (2015, Proposition 3) for coherent acceptance sets. Moreover, since the space L1

does not admit any order unit, we are also not allowed to apply Farkas et al. (2015,
Proposition 1). Thus, we present new results for finiteness and continuity of VaR in our
concrete setting. For its proof remember that q+

X(λ) denotes the upper quantile of a
random variable X at level λ.

Proposition 2.3.6 (Finiteness and lower semicontinuity of VaR). Let λ ∈ (0, 0.5). If
BT
B0

∈
(

− VaRλ(ST )
S0

, VaRλ(−ST )
S0

)
, then the following two statements hold:

(i) ρAVaRλ
,M,π is finite.

(ii) ρAVaRλ
,M,π is lower semicontinuous.
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Proof: (i) As a direct consequence of Proposition 2.3.1 we have ρAVaRλ
,M,π < ∞. With-

out loss of generality, assume that S0 = B0 = 1. Let X ∈ L1 and ϵ > 0 such
that BT ∈

(
q+
ST

(λ) + ϵ, q+
ST

(1 − λ) − ϵ
)
. Choose an arbitrary sequence of real numbers

(φn)n∈N. For each n ∈ N we obtain:

P (X ≤ nST + φn(BT − ST )) ≥

P
(
{X ≤ nST } ∩

{
ST < q+

ST
(λ) + ϵ

})
, φn ≥ 0,

P
(
{X ≤ nST } ∩

{
ST > q+

ST
(1 − λ) − ϵ

})
, φn < 0.

This implies that there exists n∗ ∈ N such that for every sequence (φn)n∈N and every
n > n∗ we obtain P (X ≤ nST + φn (BT − ST )) > λ. This implies ρAVaRλ

,M,π > −∞.
(ii) It holds that AVaRλ

is closed (see Farkas et al. (2014, Section 4.1)), 0 ∈ AVaRλ
and

M is finite-dimensional. Further, from our assumption we obtain AVaRλ
∩ker(π) = {0}.

Hence, every condition in Proposition 1.4.6 is fulfilled. This implies that AVaRλ
+ker(π)

is a closed set. The lower semicontinuity then follows from Proposition 1.4.5.

Remark 2.3.7. The condition BT
B0

∈
(

− VaRλ(ST )
S0

, VaRλ(−ST )
S0

)
is further characterized

in Section 2.4.

To show that ρAVaRλ
,M,π is not upper semicontinuous, we start by identifying the

interior of the set AVaRλ
+ ker(π). In view of Farkas et al. (2014, Section 4.1), we see

that

AVaRλ
+ ker(π) =

{
X ∈ L1

∣∣∣∣ ∃φ ∈ R : P
(
X + φ

S0
B0
BT − φST < 0

)
≤ λ

}
.

The following result characterizes int(AVaRλ
+ker(π)), the interior of AVaRλ

+ker(π).
We omit the proof, because it is analogous to the one of Lemma 1.4.7 for which we refer
to Farkas et al. (2014, Lemma 4.1).

Lemma 2.3.8 (Interior of augmented acceptance set). For a level λ ∈ (0, 0.5) we obtain:

int(AVaRλ
+ ker(π)) =

{
X ∈ L1

∣∣∣∣ ∃φ ∈ R : P
(
X + φ

S0
B0
BT − φST ≤ 0

)
< λ

}
.

To complete the analysis, we show that VaR is not globally continuous in our setting.
To do so, we use Proposition 1.4.5 to create a counterexample for upper semicontinu-
ity, i.e., we try to find X ∈ X and Z ∈ M with X + Z /∈ int(AVaRλ

+ ker(π)) but
ρAVaRλ

,M,π(X) < π(Z).
The proof then demonstrates the difficulty in characterizing continuity properties, if

we use a non-convex acceptance set in combination with multiple eligible assets. The
reason for this is the complex structure of the augmented acceptance set AVaRλ

+ker(π)
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which makes it harder to characterize the points in it.

Theorem 2.3.9 (Absence of upper semicontinuity of VaR). Let λ ∈ (0, 0.5) and assume
that there are no acceptability arbitrage opportunities, i.e., BT

B0
∈
[

− VaRλ(ST )
S0

, VaRλ(−ST )
S0

]
.

This implies that ρAVaRλ
,M,π is not (globally) upper semicontinuous.

Proof: Without loss of generality, we assume S0 = B0 = 1. We use a constructive proof,
i.e., we construct X ∈ L1 and φS , φB ∈ R with φS + φB > 0 such that

X + φSST + φBBT /∈ int(AVaRλ
+ ker(π)).

In view of Lemma 2.3.8 this means that for every φ ∈ R we have that

P
(
X + φSST + φBBT + φ(BT − ST ) ≤ 0

)
≥ λ.

This is equivalent to the validity of the following three cases:

φ = φS : P
((
φB + φS

)
BT +X ≤ 0

)
≥ λ,

φ < φS : P

(
ST ≤ 1

φ− φS

((
φB + φ

)
BT +X

))
≥ λ,

φ > φS : P

(
ST ≥ 1

φ− φS

((
φB + φ

)
BT +X

))
≥ λ.

For the sake of brevity, we use the following function depending on a scenario ω ∈ Ω:

f(φ;ω) = 1
φ− φS

((
φB + φ

)
BT +X(ω)

)
.

Now we construct a concrete payoff and to do so, we set C =
{
ST < q+

ST
(λ)
}

and
D =

{
ST > q+

ST
(1 − λ)

}
. The payoff is defined in the following way:

X = −
(
φB + φS

)
(1C + 1D)BT .

For every ω ∈ C∪D it holds that
(
φB + φS

)
BT +X(ω) = 0, that is, φB+ X(ω)

BT
= −φS .

Hence, for each such ω we obtain

f(φ;ω) =

(
φB +X(ω)/BT

)
+ φ

φ− φS
BT = −φS + φ

φ− φS
BT = BT .

Together with the law of total probability this implies the following expressions for our
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three cases:

φ = φS : P
((
φB + φS

)
BT +X ≤ 0

)
= P (C ∪D) = 2λ ≥ λ,

φ < φS : P (ST ≤ f(φ; .)) ≥ P (C)P (ST ≤ BT |C) = λ,

φ > φS : P (ST ≥ f(φ; .)) ≥ P (D)P (ST ≥ BT |D) = λ.

This proves that X + φSST + φBBT /∈ int(AVaRλ
+ ker(π)). It remains to show that

ρAVaRλ
,M,π(X) < φS + φB. First, assume that BT ∈

[
q+
ST

(λ), q+
ST

(1 − λ)
)

and set
φ = −φB. Choose ϵ ∈

(
0, φS + φB

)
. With φ∗(ϵ) =

(
φS + φB

)
/
(
φS + φB − ϵ

)
> 1 we

get for P 1
ϵ = P

(
X + φBBT + φSST + φ(BT − ST ) − ϵST < 0

)
:

P 1
ϵ = P (ST < φ∗(ϵ)(1C + 1D)BT )

= P (C)P (ST < φ∗(ϵ)BT |C) + P (D)P (ST < φ∗(ϵ)BT |D)

+ P
(
C∁ ∩D∁

)
P
(
ST < 0

∣∣∣C∁ ∩D∁
)
.

The claim ρAVaRλ
,M,π(X) < φS + φB follows by the fact that we are able to find ϵ > 0

small enough such that P (ST < φ∗(ϵ)BT |D) = 0. This implies that the previous
probability is equal to λ.

Secondly, if BT = q+
ST

(1 − λ) choose ϵ ∈
(
0, φS + φB

)
and δ > 0 arbitrary. Set

φ = φS +δ. For the probability P 2
δ = P

(
X +

(
φB + φS + δ

)
BT − (δ + ϵ)ST < 0

)
, this

gives us

P 2
δ = P

(
ST >

φB + φS + δ

δ + ϵ
BT + 1

δ + ϵ
X

)

= P (C)P
(
ST >

δ

δ + ϵ
BT

∣∣∣∣C)+ P (D)P
(
ST >

δ

δ + ϵ
BT

∣∣∣∣D)
+ P

(
C∁ ∩D∁

)
P

(
ST >

φB + φS + δ

δ + ϵ
BT

∣∣∣∣∣C∁ ∩D∁

)
.

Due to the fact that q+
ST

(λ) < q+
ST

(1 − λ) = BT we are able to choose δ > 0 such that
q+
ST

(λ) < δ
δ+ϵBT . This implies that the first term is equal to zero. This completes the

proof.

2.3.3 European options

Now we introduce a new formulation to calculate multi-asset risk measures for European
call options. The result relies on the comonotone behavior between the payoffs of the
stock and a corresponding call option. To make use of this fact, an acceptance set based
on a comonotonic monetary risk measure is assumed. Remember that the concept of
a comonotonic monetary risk measure was introduced in Section 1.3.2, recall Defini-
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tion 1.3.8.

Theorem 2.3.10. Assume a monetary risk measure ρ that is finite-valued, positive
homogeneous and comonotonic. Let K > 0. In the one-period BSM the seller’s risk
measure for the payoff of a European call option X = (ST −K)+ can be represented by

ρAρ ,M,π(−X) =


inf

φ∈[0,1]

(
φS0 + ρ(φST −X)

BT
B0
)

, BT
B0

∈
[

−ρ(ST )
S0

, ρ(−ST )
S0

]
,

−∞ , otherwise.
(2.3)

The corresponding buyer’s risk measure can be represented by

ρAρ ,M,π(X) =


inf

φ∈[−1,0]

(
φS0 + ρ(φST +X)

BT
B0
)

, BT
B0

∈
[

−ρ(ST )
S0

, ρ(−ST )
S0

]
,

−∞ , otherwise.

Proof: The proof works in the same manner as the proof of Theorem 2.3.2. In the
seller’s case we use the representation in Proposition 2.3.1 and distinguish the cases
φ < 0, φ > 1 as well as φ ∈ [0, 1]. The risk measure admits the value −∞ if one of the
cases φ < 0 or φ > 1 becomes relevant. For the case φ < 0 we use the comonotonicity
between −X and φST . For the case φ > 1 the comonotonicity between X and φST −X

is applied. If there is no acceptability arbitrage in the market, then the expression
follows from the case φ ∈ [0, 1]. The case of the buyer is analogous to the case of the
seller, but now the cases φ < −1, φ > 0 and φ ∈ [−1, 0] have to be distinguished.

Remark 2.3.11. (i) The expression in the infimum in (2.3) admits a clear interpre-
tation. For a number φ of stocks, we end up with a new payoff which is influenced
by the risk of ST , more precisely this payoff is φST −X. The discounted monetary
risk measure of this payoff is the investment into the bank account.

(ii) The condition of comonotonicity is among others satisfied for VaR and ES risk
measures.

(iii) The risk measures for a European put option could be determined by using the
put-call parity and Theorem 2.3.10.

Finally, we would like to present our first numerical example comparing the multi-
asset risk measures based on VaR and ES acceptance sets. The calculation of these risk
measures is based on Proposition 2.3.1. The core of the calculation of the seller’s risk
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measure is the following distribution function for φ ∈ (0, 1):

P
(
φST − (ST −K)+ ≤ x

)
=


1 − FST

(
K−x
1−φ

)
, x < 0,

1 − FST

(
K−x
1−φ

)
+ FST

(
x
φ

)
, x ∈ [0, φK) ,

1 , x ≥ φK.

The VaR in the representation of Proposition 2.3.1 is calculated as quantile with
respect to this distribution function. If λ ∈

(
1 − FST

(
K

1−φ

)
, 1
)

we determine the inverse
function numerically using a bisection algorithm.

Example 2.3.12. Assume that the seller and the buyer of a call option agree on a
price p > 0. Assume that the buyer goes short and the seller goes long in the bank
account with respect to this value. Let the bank account have interest rate zero. The
initial endowments of both are zero. By M-additivity of the multi-asset risk measures
we obtain:

Seller: ρAρ ,M,π(−X + p1Ω) =ρAρ ,M,π(−X) − p,

Buyer: ρAρ ,M,π(X − p1Ω) =ρAρ ,M,π(X) + p.

We use the Black-Scholes formula to determine the call price and use the following
parameter specification:

T = 1, B0 = 1, S0 = 1, λ = 2.5%, b = 5%, σ = 20%, K = 1.05.

First, we compare the multi-asset risk measure with the single-asset risk measures based
on the bank account and the stock. We plot them for different levels in Figure 2.1. The
points correspond to the level λ = 2.5%. The plots for the VaR and the ES are quite
similar. For the seller, there are significant differences between the three risk measures,
i.e., the multi-asset risk measure leads to a significantly smaller value. In contrast, the
buyer’s multi-asset risk measure is in nearly every case equal to the single-asset risk
measure with respect to the bank account. This is due to the fact that the long call
position is already acceptable. If we would go short in the bank account, then the VaR
and ES of the final payoff would be positive and therefore not acceptable. This means,
the single-asset risk measure (dotted line) is equal to p.

For the multi-asset risk measure a short position in the stock is not meaningful,
because the option is out-of-the money, that is, it is more likely that the option is not
executed and the buyer relies on the loss of the short position. On the opposite, for lower
strike values, short positions in the stock are hedged by the executed option with higher
probability. This means, a short position in the stock would not necessarily lead to an
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unacceptable position and it is therefore also possible to reduce the capital requirement
under the value of the single-asset risk measure with respect to the bank account.

The single-asset risk measure with respect to the stock (dashed line) is significantly
larger than the other two risk measures. This is due to the fact that there is no kind of
translation invariance property for the short position of the value p, i.e., there is a high
effort to secure the negative amount −p.

Figure 2.1: Single-asset and multi-asset risk measures depending on the level λ. The
dotted (respectively dashed) line corresponds to the single-asset risk measure
for the bank account (respectively stock) as eligible asset. The solid line
corresponds to the multi-asset risk measure.

To get an intuition of the corresponding hedging strategies, we plot in Figure 2.2 the
objective function of the infimum in (2.1) in dependence on the number of stock shares,



2.3 Hedging with multi-asset risk measures 29

e.g., for the seller we plot the following function:

R → R, φ 7→ φS0 + ρ(φST −X)
BT

B0,

with ρ ∈ {VaRλ,ESλ} and level λ = 2.5%. The red point corresponds to the multi-asset
risk measure. We see that there exists a unique optimal solution. The blue and the
green points are the single-asset risk measures with respect to bank account and stock.

For the seller, hedging with the bank account is most expensive. Further, the multi-
asset risk measure attains the minimum in the interior of the interval [0, 1]. In contrast,
the buyer does not need the additional hedging opportunity given by the stock, that is,
the red point is overlapping the blue point.

Figure 2.2: Objective function of the infimum in (2.1) depending on the number of stock
shares.
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2.4 Pricing with multi-asset risk measures

We use the previous results for multi-asset risk measures to obtain pricing bounds for
European options. If a price is chosen within these bounds it is guaranteed that there are
no trading strategies at zero costs such that the resulting portfolio would be acceptable.

In a first step, we define good deals and illustrate pricing bounds based on VaR and
ES acceptance sets. In a second step, in Section 2.5, we show a duality relation. If this
relation holds, there is an option price such that there are no good deals on the extended
market. The latter is the market that allows for trading of the option.

2.4.1 Good deals of the first kind

Recall the concept of a good deal, see Definition 1.3.2. The following result presents
an equivalent condition for the absence of good deals of the first kind in the one-period
BSM.

Lemma 2.4.1. Let ρ be a positive homogeneous monetary risk measure. The absence
of good deals of the first kind with respect to the acceptance set Aρ is equivalent to the
condition that

BT
B0

∈
(−ρ(ST )

S0
,
ρ(−ST )
S0

)
. (2.4)

Proof: The absence of good deals of the first kind is equivalent to the condition that for
each φ ∈ R\{0} it holds that ρ(−φS0

B0
BT + φST ) > 0. By this statement we are able

to consider the cases of φ > 0 and φ < 0 such that we obtain the required equivalent
statement of BT

B0
∈
(

−ρ(ST )
S0

, ρ(−ST )
S0

)
.

Remark 2.4.2. (i) In a financial market model with multiple stocks Ŝ the absence of
good deals of the first kind is equivalent to the condition that for each φ ∈ ∂ BRd

it holds that
〈
BT
B0
Ŝ0, φ

〉
< ρ

(
−
〈
ŜT , φ

〉)
, see Proposition 4.5.2.

(ii) Lemma 2.4.1 shows that in our model the absence of good deals of the first kind im-
plies the absence of acceptability arbitrage, since (2.4) implies (2.2) which by The-
orem 2.3.2 is equivalent to the absence of acceptability arbitrage opportunities.
But this is not true in general, as the subsequent counterexample shows.

Example 2.4.3. We present a setup in which the following implication does not hold
in general:

(A ∩ ker(π))\{0} = ∅ ⇒ A ∩ Mx = ∅ for some x ∈ R.
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The only case in which this implication could fail is that A ∩ ker(π) = {0}. We use
a one-period BSM with marketed space M = span{1Ω}, the pricing functional given
by π(φ) = φ and the acceptance set A = ⋃

m∈R{X ∈ L1 |X ≥ m P -a.s.}. Then
ker(π) = {0} implies that there are no good deals of the first kind, because of

A ∩ ker(π) = A ∩ {0} = {0} .

But the absence of acceptability arbitrage condition is not fulfilled, because for every
x ∈ R we have

A ∩ Mx = A ∩ {x1Ω} = {x1Ω} ≠ ∅,

i.e., the pricing functional π is unbounded on A ∩ M.

2.4.2 Good deal bounds for option prices

In the following, we work under the assumption that the one-period BSM does not
admit good deals of the first kind. By Remark 2.4.2 (ii), then also the absence of
acceptability arbitrage condition is satisfied. Let ρ ∈ {VaRλ,ESλ} with level λ ∈ (0, 0.5).
As described in Jaschke and Küchler (2001), the good deal bounds for a call option are
then given by ρAρ ,M,π(−X) and −ρAρ ,M,π(X). From our previous results we obtain:

Seller: ρAρ ,M,π(−X) = inf
φ∈[0,1]

(
φS0 + ρ

(
φST − (ST −K)+

) B0
BT

)
,

Buyer: − ρAρ ,M,π(X) = − inf
φ∈[−1,0]

(
φS0 + ρ

(
φST + (ST −K)+

) B0
BT

)
.

Remark 2.4.4. Sub- and superhedging prices could be obtained by using the positive
cone L1

+ as acceptance set. It is possible to rewrite the buyer good deal bound to
emphasize the analogy to the subhedging price. For this note that for the VaR it holds
that VaRλ(X) = − VaR1−λ(−X). Then, we get the following expression for the buyer’s
good deal bound:

−ρAVaRλ
,M,π(X) = − inf

φ∈[−1,0]

(
φS0 + VaRλ

(
φST + (ST −K)+

) B0
BT

)
= − inf

φ∈[−1,0]

(
φS0 − VaR1−λ

(
−φST − (ST −K)+

) B0
BT

)
= sup

φ∈[0,1]

(
φS0 + VaR1−λ

(
φST − (ST −K)+

) B0
BT

)
.

In the following, we calculate good deal bounds for VaR and ES acceptance sets. For
the sake of illustration, we choose a large level λ. This leads to plots demonstrating the
advantage of the Expected Shortfall over the Value-at-Risk.



32 Good deal bounds under Value-at-Risk and Expected Shortfall constraints

Example 2.4.5. In Figure 2.3, we illustrate the good deal bounds for the following
parameters:

T = 1, B0 = 1, r = 0, λ = 25%, b = 5%, σ = 20%, K = 1.

The plots show the good deal bounds as a function of the initial price of the under-
lying stock. Additionally, the prices using the Black-Scholes formula for instantaneous
trading and the subhedging prices are given. Note that the no arbitrage price range
is (max {0, S0 −K} , S0). The plots are inspired by Cochrane and Saa-Requejo (2000,
Figure 1).

Figure 2.3: Good deal bounds depending on the stock price.

Compared with the Black-Scholes and subhedging price the good deal bounds with
respect to the ES do not admit an unexpected behavior. For the VaR the buyer good
deal bounds seem plausible. But it is not directly intuitive why the seller’s bound is
sometimes lower than the buyer’s bound. For instance, this is the case for stock prices
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in the interval [1.11, 1.15]. For a specific φ ∈ [0, 1] and any λ ∈ (0, 0.5) we obtain:

φS0 + VaR1−λ
(
φS1 − (S1 −K)+

)
≤ φS0 + VaRλ

(
φS1 − (S1 −K)+

)
.

Nevertheless, we are not able to conclude that the seller’s bound is always greater or
equal than the buyer’s bound as our counterexample shows. This undesirable behavior
occurs if there does not exist an equivalent martingale measure such that the extended
market is free of good deals. We will discuss this fact in detail in Section 2.5.2 below.

To provide more intuition on the shape of the seller’s good deal bound based on
VaR in Figure 2.3, in Figure 2.4 we plot the objective function from the optimization
problem of the seller using VaR as preference criterion, that is, we plot the function
φ 7→ φS0 + VaRλ

(
φS1 − (S1 −K)+

)
. Each plot corresponds to a specific stock price

S0. We see that the minimum for rising stock prices goes hand in hand with a rising
number of stock shares. For the stock prices of 0.9 and 0.95 there are one local and one
global minimum. For increasing stock prices in the interval (0.9, 0.95) the stock position
belonging to the global minimum changes in a discontinuous manner, because at some
stock price local and global minima change their roles. This is the reason for the kink
of the seller good deal bound in Figure 2.3.

Finally, we would like to elaborate on the level λ. To this end, we alter the previous
parameters in the following way:

T = 1, B0 = 1, S0 = 1.12, r = 0, b = 5%, σ = 20%, K = 1.

In Figure 2.5, we illustrate the good deal bounds depending on the level λ. For the
VaR acceptance set we see that only for high levels the seller’s price is lower than the
buyer’s price.

2.4.3 Limiting behavior

For increasing stock prices the seller’s good deal bound in Figure 2.3 tends to the sub-
hedging price. In this short subsection, we give the reason for this behavior in case of
the VaR. There is an intuitive explanation. If the stock price goes up, then the call
option is deeper in-the-money. This results in the following two effects:

• It becomes more likely that the option is exercised, resulting in a loss for the seller.

• Higher losses for the seller become more probable.

Hence, it is more expensive to hedge the short call position. As we have seen in Fig-
ure 2.4, the seller buys one stock share for high enough stock prices. Even if the seller
goes short in the bank account, the future loss is bounded from below. The resulting
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Figure 2.4: Seller’s objective function for different stock prices.
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Figure 2.5: Good deal bounds depending on the level λ.

seller good deal bound is

S0 + VaRλ

(
S1 − (S1 −K)+

)
.

If λ > FS1(K), then

S0 + VaRλ

(
S1 − (S1 −K)+

)
= S0 −K,

i.e., the seller’s bound is equal to the subhedging price. For large enough stock prices
the condition is fulfilled, because of

lim
S0→∞

FS1(K) = lim
S0→∞

Φ
(

ln(K/S0) − (b− σ2/2)
σ

)
= 0.

An analogous explanation holds for the case if the stock price tends to zero.

2.5 Extension of the basis market

In this section, we discuss in more detail the not intuitive behavior that the seller’s
good deal bound can become smaller than the buyer’s good deal bound when using a
VaR acceptance set. This is due to the failure of the so-called extension theorem for
VaR. Subsequently, we have to prove the validity of the extension theorem for an ES
acceptance set in our concrete setup, to show that the seller’s good deal bound is always
larger than the buyer’s good deal bound for ES.
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2.5.1 Duality relations

We develop a duality relation for the seller’s good deal bound with respect to an accep-
tance set based on a positive homogeneous monetary risk measure ρ. Let Pρ(C) be the
set of prices for a payoff C ∈ X such that there are no good deals of the first kind in
the extended market, i.e., for p ∈ Pρ(C) there do not exist φS , φC ∈ R excluding the
case φS = φC = 0 such that

ρ

(
φS
(
ST − S0

BT
B0

)
+ φC

(
C − p

BT
B0

))
≤ 0.

By positive homogeneity of ρ we obtain that L1
+ ⊂ A. This implies that every

arbitrage opportunity is also a good deal. Hence, the set Pρ(C) is a subset of the no
arbitrage price range of C. Therefore, the set of no good deal prices in the extended
market can be characterized as a subset of all equivalent martingale measures. This
subset of equivalent martingale measures is denoted by P∗

ρ (C).
In the following, we assume that there exists at least one price such that there are no

good deals in the extended market, i.e., we work under the assumption

P∗
ρ (C) ̸= ∅.

Remark 2.5.1. This condition implies that the basis market M satisfies the condition
of the absence of good deals of the first kind.

Now we are able to present the duality result. It is an analogous result as for the
superhedging price, see Föllmer and Schied (2016, Theorem 1.32).

Proposition 2.5.2. The seller’s good deal bound for a P -a.s. non-negative random
variable C in the one-period BSM is given by

ρAρ ,M,π(−C) = inf
φ∈R

(
φS0 + ρ(φST − C)

BT
B0

)
= sup

P ∗∈P∗
ρ (C)

EP ∗ [C].

Proof: From the previous discussion we obtain that

sup
P ∗∈P∗

ρ (C)
EP ∗ [C] = sup Pρ(C).

Now we assume that there exists φ ∈ R such that for a value m ∈ R the following
inequality holds:

ρ

(
m
BT
B0

+ φ

(
ST − S0

BT
B0

)
− C

)
≤ 0.
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From cash invariance we obtain B0
BT
ρ
(
φ
(
ST − S0

BT
B0

)
− C

)
≤ m. Hence, every p ≥ m

can not be a price in the extended market such that there does not exist a good deal.
This implies ρ(−C) ≥ sup Pρ(C).

It is left to show that for every m > sup Pρ(C) it holds that m ≥ ρ(−C). To do so,
assume m > sup Pρ(C). There are φS , φC ∈ R excluding the case φS = φC = 0 such
that

ρ

(
φS
(
ST − S0

BT
B0

)
+ φC

(
C −m

BT
B0

))
≤ 0.

The basis market does not admit good deals of the first kind. This implies φC ̸= 0. If
φC < 0, we obtain from the positive homogeneity of ρ that

ρ

(
m
BT
B0

− φS

φC

(
ST − S0

BT
B0

)
− C

)
≤ 0.

It remains to show that the case φC > 0 is not feasible. We know that there exists a
price p ∈ Pρ(C) for each x, y ∈ R excluding the case x = y = 0 and we have

ρ

(
x

(
ST − S0

BT
B0

)
+ y

(
C − p

BT
B0

))
> 0.

At the same time positive homogeneity of ρ implies

ρ

(
φS

φC

(
ST − S0

BT
B0

)
+ C −m

BT
B0

)
≤ 0.

These two statements together with monotonicity of ρ and m > p imply

0 ≥ ρ

(
φS

φC

(
ST − S0

BT
B0

)
+ C −m

BT
B0

)
> ρ

(
φS

φC

(
ST − S0

BT
B0

)
+ C − p

BT
B0

)
> 0

which is a contradiction.

Remark 2.5.3. A corresponding result holds for the buyer’s good deal bound:

ρAρ ,M,π(−C) = sup
P ∗∈P∗

ρ (C)
EP ∗ [C] ≥ inf

P ∗∈P∗
ρ (C)

EP ∗ [C] = −ρAρ ,M,π(C).

2.5.2 Failure of the extension theorem

If we go back to Figure 2.3, we are now able to answer the question why the seller’s bound
with respect to the VaR is lower than the buyer’s bound. If we recall Remark 2.5.3,
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then we know that this is only possible if

P∗
VaRλ

(
(ST −K)+

)
= ∅.

This means that there is no price such that the extended market is free of good deals
of the first kind. This must also hold if there are no good deals of the first kind on the
basis market M. From Lemma 2.4.1, we obtain that the absence of good deals on the
basis market is equivalent to

BT
B0

∈
(
q+
ST

(λ)
S0

,
q+
ST

(1 − λ)
S0

)
.

This condition is independent of the stock price and is fulfilled in particular in Exam-
ple 2.4.5. The situation that every possible option price leads to an extended market
that is not free of good deals means that for every price p ∈ R there exists θ ∈ R such
that

θS0 + VaRλ

(
θST + (ST −K)+

) BT
B0

≤ −p,

or

θS0 + VaR1−λ
(
θST + (ST −K)+

) BT
B0

≥ −p.

In contrast to the basis market the absence of good deals of the first kind depend
on the stock price. For θ = 1, the earlier argument that the seller’s good deal bound
converges to the subhedging price, could be used in an analogous way to show that for
high enough stock prices both VaR expressions in the previous inequalities are equal to
the subhedging price S0 − K. Hence, one of the above conditions is fulfilled for large
enough stock prices.

Remark 2.5.4. The extension theorem as described in Černý and Hodges (2002, Sec-
tion 2.1) states, that a basis market which is free of good deals could be extended such
that the extended market is free of good deals of the first kind. But this would be a
contradiction to our VaR example, i.e., a contradiction to P∗

VaRλ

(
(ST −K)+

)
= ∅.

Hence, a sufficient condition in the extension theorem is not satisfied. In fact, in our
setting the VaR acceptance set is not boundedly generated 1,2. This is intuitive, because
the proof of the extension theorem is based on a separation argument. Such a separation

1Let K be a convex set of claims disjoint from the origin. It is called boundedly generated if there
exists a closed bounded subset B ⊂ K such that any point in K can be regarded as a scalar multiple
of a point in B, see Černý and Hodges (2002, Definition 2.2).

2Nevertheless, the VaR acceptance set is closed in Lp, see Munari (2015, Proposition 2.4.5).
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is likely to fail if the acceptance set is not convex, like for the VaR.

The previous remark raises the question if the extension theorem holds for the ES
acceptance set. This is indeed the case. The reason is that the convexity of the accep-
tance set allows for a separation argument to extend the pricing functional to the whole
space of contingent claims. The arguments in the following proof are in line with the
ones in the proof of Theorem 2.3 in Černý and Hodges (2002). Nevertheless, our setup
differs slightly from the one in Černý and Hodges (2002), e.g., the intersection of ker(π)
and A could contain the zero vector which is not the case in Černý and Hodges (2002).
Furthermore, our proof does not explicitly use the condition of a boundedly generated
set and it is more in the style of a classical no arbitrage price proof, compare e.g., with
the proofs of Propositions 2.1 and 3.1 in Kreps (2019).

Theorem 2.5.5 (Expected Shortfall extension theorem). Assume the one-period BSM
model and good deals defined by the ES acceptance set with respect to a level λ ∈ (0, 0.5).
Assume that there are no good deals of the first kind on the basis market M. In this
setup, there exists an extension of the pricing functional π : M → R to the whole space
of financial payoffs X such that there are no good deals in the extended market.

Proof: From Lemma 1.4.8 we obtain

int(AESλ
) = {X ∈ X | ESλ(X) < 0} .

This shows that 0 /∈ int(AESλ
) which in turn implies that int(AESλ

\{0}) = int(AESλ
).

Again, from Lemma 1.4.8 we obtain ST ∈ int(AESλ
). A straightforward calculation

gives that AESλ
\{0} is convex. The assumption of no good deals of the first kind on the

basis market states that (AESλ
∩ ker(π))\{0} = ∅. Summarizing, AESλ

\{0} and ker(π)
are two non-empty, disjoint, convex sets for which AESλ

\{0} contains an interior point.
Hence, by the Interior Separating Hyperplane Theorem (see Theorem A.6) there exists
a non-zero continuous functional p which properly separates these two sets.

Since ker(π) is a subspace, we obtain for each Z ∈ ker(π) that p(Z) = 0 and addi-
tionally we could assume that for each X ∈ AESλ

\{0} it holds that p(X) ≥ 0. Since the
separation is proper, there exists Y ∈ AESλ

\{0} with p(Y ) > 0.
Note that every X ∈ AESλ

\{0} obtains a representation with α ∈ R, U ∈ [p = 0]
(for the definition of the latter set see Definition A.4) such that X = αY + U . This
implies p(X) = αp(Y ). The scalar α can not be zero (X /∈ ker(π)) and also not negative
(p(X) ≥ 0). Hence, it holds that p (X) > 0 and the usage of p as pricing functional
in the extended market would exclude good deals. It also would exclude arbitrage
opportunities, because of L1

+ ⊂ AESλ
. But, we are not allowed to use p directly as
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extended pricing functional. This is due to the fact that p could price the basis assets
in a different way than before, i.e., p

(
φBBT + φSST

)
̸= φBB0 + φSS0. We obtain

a suitable functional p̃ by rescaling p with p(BT )/B0, i.e., for each X ∈ L1 we set
p̃(X) = p(X)

p(BT )B0.



Chapter 3

Multi-asset intrinsic risk measures

3.1 Introduction

Multi-asset risk measures are used to calculate capital reserves to avoid future bank-
ruptcy. This is done by determining the minimal capital that has to be invested in eligible
assets such that a capital adequacy test is passed. Alternatively to using only external
capital to hedge a financial position, we combine this with internal restructuring. Pure
internal restructuring would lead to the recently proposed intrinsic risk measures. Both
approaches are based on management actions that could be taken by the company.
In this chapter, we combine external and internal management actions in the capital
calculation and derive properties of the resulting new risk measure. This chapter is
based on Laudagé, Sass, and Wenzel (2021).

3.1.1 Motivation

We repeat the idea behind single-asset risk measures to illustrate an external manage-
ment action. To do so, we use a random variable XT , modeling the value of a financial
position at a future time T . Then, the company invests an additional amount in a single
eligible asset with current value B0 > 0 and future value BT . The combined position
of XT and BT should pass a capital adequacy test, i.e., it should be an element of the
acceptance set A. The risk measure describes the minimal external amount invested in
the eligible asset such that the combined position is acceptable:

ρ(XT ) = inf
{
m ∈ R

∣∣∣∣XT + m

B0
BT ∈ A

}
. (3.1)

The idea behind this concept is illustrated in Figure 3.1. It shows the influence of an
external management action on the balance sheet of a company. The financial position
corresponds to the future equity capital. The external management action leads to a
capital increase and in order to offset the balance sheet, the additional capital is invested

41
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into traded assets on a financial market.

Before action

Assets

Equity
capital

Liabilities

After action

Assets

Equity
capital

Liabilities

Figure 3.1: Left-hand side: Simplified version of the balance sheet of a company. Right-
hand side: Changes in the balance sheet after performing an external man-
agement action, i.e., a capital increase.

Recently, the new concept of intrinsic risk measures was introduced in Farkas and
Smirnow (2018). Their motivation is the following quote in Artzner et al. (1999,
page 205):

For an unacceptable position [. . . ] one remedy may be to alter the position.

Farkas and Smirnow (2018) assume that the financial position is liquidly traded. The
risk is measured by the minimal proportion of the financial position that has to be sold
and reinvested in the eligible asset to reach acceptability, i.e., no external capital is
required. The operation corresponds to an internal rebooking. If X0 is today’s value of
the financial position, the intrinsic risk measure is defined as follows:

R(XT ) = inf
{
κ ∈ [0, 1]

∣∣∣∣ (1 − κ)XT + κ
X0
B0

BT ∈ A
}
.

If we consider again a balance sheet of a company, then an internal management action
is a rebooking of some liquid assets, i.e., it changes the proportions of these liquid assets
in the balance sheet. This is illustrated in Figure 3.2.

Our aim is to combine multi-asset risk measures with the intrinsic risk measures
in Farkas and Smirnow (2018). In doing so, the resulting new risk measure combines
external and internal management actions. For more details on the handling of these
actions in practice, we refer to Rockel, Helten, Ott, and Sauer (2012).

3.1.2 Bibliographic notes

For the new risk measure that we construct, we develop analytical results. In the fol-
lowing, we provide references for properties of multi-asset and intrinsic risk measures
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Figure 3.2: Left-hand side: Simplified version of the balance sheet of a company. Right-
hand side: Changes in the balance sheet after performing an internal man-
agement action, i.e., a reallocation of some liquid assets.

directly related to the findings in this chapter. Among others, we examine the mono-
tonicity, the additivity and the positive homogeneity of the new risk measure. Analog
properties for multi-asset risk measures can be found in Scandolo (2004), Frittelli and
Scandolo (2006) and Artzner et al. (2009). We also discuss the impact of diversifica-
tion on the capital requirement. For similar discussions with respect to multi-asset and
intrinsic risk measures we refer to Karoui and Ravanelli (2009), Cerreia-Vioglio, Mac-
cheroni, Marinacci, and Montrucchio (2011), Farkas et al. (2014), Farkas and Smirnow
(2018). We also develop a dual representation which can be compared to the one for
multi-asset risk measures in Farkas et al. (2015).

3.1.3 Path to a new risk measure

Now we illustrate how we combine multi-asset with intrinsic risk measures. The idea is
motivated by considering the equity capital of an institution as a financial position as it
is the case for common capital adequacy tests in practice, e.g., Solvency II or the Basel
Accords. Then we subdivide the assets of a company into two groups. The first group
consists of the assets, the company is willing to reallocate. Note that such a reallocation
is done immediately and therefore the chosen assets have to be liquid, e.g., cash in a bank
account, bonds, stocks or derivatives. The second group are the remaining assets. These
could be illiquid assets, e.g., real estates or liquid assets that can not be reallocated.
An example for the latter are stocks used to secure a loan and hence they can not be
sold. It could also be the case that the assets are liquid, but the firm is not willing to
reallocate them, e.g., if they are needed to hold a certain proportion of another firm.
Selling them would reduce the impact on this firm.

Now we are interested in the capital requirement if the risk is measured in terms of
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the external capital that has to be invested in the eligible assets such that the combined
position is acceptable taking into account reallocations of liquid assets. This concept is
illustrated in Figure 3.3. In this illustration, the proportions of the stock portfolios are
reduced and additionally the equity capital increases.

For instance, let XL
T be the liquid assets in the balance sheet that can be sold with

value XL
0 today, and XR

T the remaining part. The combined risk measure is given by

ϱ(XR
T , X

L
T ) = inf

{
m ∈ R

∣∣∣∣∣ ∃κ ∈ [0, 1] : (1 − κ)XL
T +XR

T + m+ κXL
0

B0
BT ∈ A

}
. (3.2)

We used a single eligible asset B to illustrate the idea behind our new concept. But
there is no reason in doing so. Hence, in the main part of this chapter we allow for
multiple eligible assets. To emphasize that the idea of our new risk measure is inspired
by Farkas et al. (2015) and Farkas and Smirnow (2018) we call it a multi-asset intrin-
sic (MAI) risk measure. This risk measure can additionally be seen as a multi-asset
risk measure under trading constraints, compare the discussion in Section 3.3.2.
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Figure 3.3: Left-hand side: Simplified version of the balance sheet of a company. Right-
hand side: Changes in the balance sheet after performing external and inter-
nal management actions, i.e., a capital increase and a reallocation of liquid
assets.

Finally, we discuss a connection of MAI and classical risk measures. To this end, note
that ϱ(XR

T , BT ) = ρ(XR
T ) −B0, i.e., if the financial position XL

T is given by the eligible
asset itself, then the capital requirement is given by the classical risk measure from
Equation (3.1) minus the actual price of XL

T . Hence, the more demanding situations are
the ones in which the portfolio XL

T consists of other financial positions than cash in the
bank account. In these situations, MAI and classical risk measures can differ, compare
the discussion in Section 3.3.2.
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3.1.4 Contributions of this chapter

MAI risk measures put the focus on the impact of two specific management actions
available in practice. This makes it indispensable to split the total payoff into the
objects XR

T and XL
T used in Equation (3.2). They are the input for the MAI risk

measure. This is a new feature, because multi-asset and intrinsic risk measures get a
single object, namely the total payoff, as input. Another innovative feature, similar to
intrinsic risk measures, but different to multi-asset risk measures, is that the MAI risk
measure depends on the actual price of XL

T . The new features make the analysis of
the MAI risk measure a sophisticated task from an economic as well as a mathematical
point of view. In the following, we summarize our key findings:

(i) Representation result: Theorem 3.3.2 enables an efficient computation of the
MAI risk measure by building an infimum over multi-asset risk measures. Further-
more, it allows to transfer the properties of additivity, monotonicity and positive
homogeneity of multi-asset risk measures to MAI risk measures.

(ii) Diversification: If we only diversify the assets available for reallocation and if
they have the same price, then the MAI risk measure rewards diversification. We
present two examples demonstrating that diversification is not rewarded in general.
We discuss the reasons for this behavior.

(iii) Dual representation: Using Sion’s minimax theorem and convex duality meth-
ods, we develop a robust representation for MAI risk measures. This gives new
insights into the structure of MAI risk measures, especially for the case of bounded
random variables, see Theorem 3.5.2 and Example 3.5.3.

(iv) Numerical examples: We apply MAI risk measures to extended models moti-
vated by the one in Floreani (2013). These models are used to discuss effects in
the Solvency II methodology. We find situations in which multi-asset and MAI
risk measures coincide. This demonstrates that the MAI risk measure could be
considered as a multi-asset risk measure under trading restrictions.

3.1.5 Structure of this chapter

In Section 3.2, we describe our model and give a formal definition of MAI risk mea-
sures. In Section 3.3, we represent MAI risk measures using multi-asset risk measures
and state conditions such that the MAI risk measure is additive, monotone and positive
homogeneous. In Section 3.4, we discuss whether and how diversification is rewarded.
In Section 3.5, we state a dual representation for MAI risk measures. Section 3.6 closes
with examples to demonstrate differences between multi-asset and MAI risk measures.
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3.1.6 Standard notations and concepts

In addition to Sections 1.1.4 and 2.1.5, we use the following standard notations and con-
cepts: Assume a non-empty set C and a map f : C → [−∞,∞]. If f is convex, respec-
tively concave, then the effective domain of f is given by dom(f) := {X ∈ C | f(X) < ∞},
respectively dom(f) := {X ∈ C | f(X) > −∞}.

Assume an ordered topological vector space (X , τ,⪯). The negative cone of X is
defined by X− := {X ∈ X |X ⪯ 0}. The topological dual is denoted by X ′ and the
positive cone X ′

+ consists of each ψ ∈ X ′ such that for every X ∈ X+ it holds that
ψ(X) ≥ 0, see also Appendix A.2. If necessary we equip a subset C ⊂ X with the
relative topology τ |C := {V ∩ C |V ∈ τ}. Cartesian products of topological spaces are
equipped with the product topology.

3.2 Introducing multi-asset intrinsic risk measures

In this section, we specify the model space, the marketed space and the pricing func-
tional. Further, we differ between external and internal management actions. These
model assumptions straightforwardly lead to the definition of MAI risk measures.

3.2.1 The financial market model

We do not have to restrict our attention to random variables. For example, we could
also consider the entire wealth process of a portfolio, instead of using its payoff at some
terminal time. Hence, as already stated in Section 1.2.1, we aim at a unifying approach
and follow Farkas et al. (2014) who use an ordered topological vector space (X , τ,⪯) as
model space. This choice is a common one in the theory of risk measures, see Farkas
et al. (2014), Liebrich and Svindland (2017), Baes et al. (2020). Remember, we call a
point in X a financial position or a payoff.

We assume that any investment for hedging purposes is listed in a financial market,
like e.g., a stock exchange, modeled by the marketed space M (a linear subspace of X ).
Remember, a point in M is called a marketed portfolio, a marketed payoff or a portfolio
and it could, e.g., be the payoff at the end of the trading period with respect to a stock
portfolio. A financial position in X \M is a position that is not traded in the financial
market M, e.g., it can be the equity capital of a company. The idea is that this company
tries to improve the structure of its balance sheet by investing on the stock exchange.

For every marketed portfolio we know the current value by the pricing functional
π : M → R which is a strictly positive linear functional, i.e., for each M ∈ (M∩X+)\{0}
it holds that π(M) > 0.

For the sake of brevity, we often omit the information on the ordered topological vector
space X and the corresponding marketed space M ⊂ X and take them for granted.
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3.2.2 External and internal management actions

In the following, we describe the hedging opportunities. In the previous chapters, the
agent has full market access. If this is the case and there are no restrictions by the reg-
ulator, all positions in the marketed space M could be traded. Otherwise, the available
positions build a proper subset of M.

Definition 3.2.1 (Security space). A security space is a linear subspace S ⊂ M with
(S ∩ X+)\{0} ≠ ∅.

For a security space S, a number κ ∈ [0, 1] and a portfolio M ∈ M we define the set
Sκ,M := {U ∈ S |π(U) = κπ(M)}.

Remark 3.2.2. The set Sκ,M is introduced for the sake of brevity. We use such sets
in Lemma 3.3.1.

To obtain a general formulation for MAI risk measures, we distinguish between in-
vestments with respect to different management actions. Hence, we use two security
spaces SE ,SI ⊂ M to model external and internal management actions, i.e., different
marketed portfolios could be allowed for different administrative actions. The indexes
for the security spaces stand for management actions financed by external (E) capi-
tal and reallocated internal (I) capital. The separate handling of management actions
could be used for an individually adjusted risk management. For instance, an institution
could reallocate its stock portfolio M only with other stocks and ask for the minimal
additional cash in a bank account to reach acceptability.

3.2.3 Multi-asset intrinsic risk measures

For the sake of brevity, we name the model components introduced so far.

Definition 3.2.3 (Intrinsic risk measurement regimes). For an acceptance set A, the
pricing functional π : M → R and two security spaces SE ,SI ⊂ M we call the tuple
R =

(
A,SE ,SI , π

)
an intrinsic risk measurement regime. If SE = SI , then we

write R =
(
A,SE , π

)
for short 1.

Now we are ready to give the desired definition of MAI risk measures.

Definition 3.2.4 (MAI risk measures). The multi-asset intrinsic (MAI) risk mea-

1In Liebrich and Svindland (2017, 2019) such a triple is called a risk measurement regime. For our
purposes it is more convenient to use it as a shorthand notation for an intrinsic risk measurement
regime.
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sure for an intrinsic risk measurement regime R =
(
A,SE ,SI , π

)
is given by

ϱR : X × M → [−∞,∞] ,

(X,M) 7→ inf{π(Z) |Z ∈ SE , κ ∈ [0, 1], U ∈ SI with π(U) = κπ(M) (3.3)

and X + (1 − κ)M + Z + U ∈ A}.

We further write ϱA,SE ,SI ,π := ϱR or in the case of SE = SI simply ϱA,SE ,π := ϱR.

Remark 3.2.5. For completeness, we recall the intuition behind Equation (3.3): The
Cartesian product X × M describes that the financial position consists of a part in X
which can not be reallocated and some liquid assets in M. In a first step, the agent sells
a proportion κ ∈ [0, 1] of the marketed portfolio M and reinvest it in another marketed
portfolio U ∈ SIκ,M . Second, the agent uses an additional amount of money to buy a
marketed portfolio Z ∈ SE such that the new position X + (1 − κ)M +Z +U becomes
acceptable. The agent chooses the acceptable payoff that can be generated at minimal
costs. Remember, having a Cartesian product as a domain for a risk measure is a new
feature. Further, the MAI risk measure also depends on the actual price of the marketed
portfolio M . We have no such dependence for multi-asset risk measures.

Finally, we repeat the definition of multi-asset risk measures based on a security space
as a proper subset of the marketed space. This definition is analogous to Definition 1.3.9.
We mentioned it here for the sake of completeness.

Definition 3.2.6 (Single-asset and multi-asset risk measures). For an acceptance set
A, the pricing functional π : M → R and a subset S ⊂ M we define the following map:

ρA,S,π : X → [−∞,∞], X 7→ inf{π(Z) |Z ∈ S, X + Z ∈ A}.

If S is a security space, we call the map ρA,S,π a multi-asset risk measure. If M ∈ M
such that S = span{M} we write ρA,M,π := ρA,S,π for short and call it a single-asset
risk measure.

3.3 MAI and multi-asset risk measures

In Section 3.3.1, we represent the MAI risk measure in terms of multi-asset risk measures.
In Section 3.3.2, we use this representation to prove economically desirable properties
motivated by the ones for multi-asset risk measures, namely S-additivity, monotonicity
and positive homogeneity.
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3.3.1 Representation by multi-asset risk measures

The following result is a representation of the MAI risk measure as an infimum with
respect to the map in Definition 1.3.9.

Lemma 3.3.1. Let R =
(
A,SE ,SI , π

)
be an intrinsic risk measurement regime. For

each X ∈ X and M ∈ M it holds that

ϱR(X,M) = inf
κ∈[0,1]

(
ρA,SE+SI

κ,M ,π(X + (1 − κ)M) − κπ(M)
)
. (3.4)

Proof: Since the extended real line [−∞,∞] is a complete lattice, for an arbitrary in-
dexed family C of sets contained in the extended real line we obtain

inf
⋃

C = inf{inf C |C ∈ C}.

Making use of this result we obtain that

ϱR(X,M) = inf
{
π(Z)

∣∣∣Z ∈ SE , κ ∈ [0, 1], U ∈ SIκ,M : X + (1 − κ)M + Z + U ∈ A
}

= inf
κ∈[0,1]

(
inf
{
π(Z∗) − κπ(M)

∣∣∣Z∗ ∈ SE + SIκ,M : X + (1 − κ)M + Z∗ ∈ A
})

= inf
κ∈[0,1]

(
ρA,SE+SI

κ,M ,π(X + (1 − κ)M) − κπ(M)
)
.

The Minkowski sum SE + SIκ,M in Equation (3.4) is not a linear subspace of the
marketed space M in general, i.e., we do not obtain an infimum with respect to a multi-
asset risk measure. As shown next, this undesirable effect disappears, if internal hedging
opportunities could also be used as external hedging opportunities, i.e., SI ⊂ SE . Even
in this case, the MAI risk measure is a strict extension of multi-asset risk measures.
In particular, even in the case of SI = SE , the MAI risk measure and the multi-asset
risk measure do not coincide in general, compare the results of the numerical examples
in Section 3.6.

Theorem 3.3.2 (MAI representation). Let R =
(
A,SE ,SI , π

)
be an intrinsic risk

measurement regime. If SI ⊂ SE, then we obtain

ϱR(X,M) = inf
κ∈[0,1]

(
ρA,SE ,π(X + (1 − κ)M) − κπ(M)

)
. (3.5)

In particular, ϱR(X, 0) = ρA,SE ,π(X).

Proof: We directly see that SIκ,M + SE ⊂ SE . For the inverse inclusion note that
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(
SI ∩ X+

)
\ {0} ̸= ∅. Together with the strict positivity of π this guarantees the

existence of an element U ∈ SIκ,M . So, for each Z ∈ SE we have (Z − U)+U ∈ SE+SIκ,M .
The result then follows by Lemma 3.3.1.

It is also worth noting that SI no longer appears in Equation (3.5) due to the following
economical reason: Selling a proportion κ of the liquid assets leads to the new portfolio
X + (1 − κ)M plus the additional amount κπ(M) invested into a payoff Z contained
in SI . Now every payoff in SI is also contained in SE and hence, it is possible to add
a short position of the same payoff, −Z, via an external management action. By this
cumbersome restructuring it is possible to invest the amount κπ(M) in every payoff in
SE at same costs, i.e., the intrinsic capital can be used for any external management
action. Motivated by the previous discussion we assume from now on SI = SE .

In this situation, the following result states lower and upper bounds for the capital
requirement.

Corollary 3.3.3. Let R = (A,S, π) be an intrinsic risk measurement regime. For every
M ∈ M ∩ X+ and X ∈ X we obtain

ρA,S,π(X +M) − π(M) ≤ ϱR(X,M) ≤ ρA,S,π(X) − π(M).

Proof: Follows from Theorem 3.3.2 and the monotonicity of A.

Remark 3.3.4. The condition M ∈ M∩X+ is, e.g., satisfied by a portfolio of only long
stock investments. An analogous result holds for each M ∈ M ∩ X−.

3.3.2 S-additivity, monotonicity and positive homogeneity

Now we use Theorem 3.3.2 to obtain desirable properties of the MAI risk measure from
an economic point of view. We start with the S-additivity of multi-asset risk measures,
see e.g., Farkas et al. (2015, Equation (8)). We omit the proof, because it is a direct
application of Theorem 3.3.2.

Corollary 3.3.5 (S-additivity). Let R = (A,S, π) be an intrinsic risk measurement
regime. For all (X,M) ∈ X × M and Z,U ∈ S we obtain that

ϱR(X + Z,M + U) = ϱR(X,M) − π(Z + U).

If the company has full market access, i.e., S = M, then Corollary 3.3.5 states that
for every (X,M) ∈ X × M we have

ϱR(X,M) = ϱR(X, 0) − π(M) = ρA,M,π(X) − π(M).
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Hence, the MAI risk measure simplifies to the calculation of a multi-asset risk measure
with respect to X, the price of the marketed portfolio M being deducted. The inter-
pretation of this result is as follows: First, the company sells the marketed portfolio M .
Second, the company buys new assets to secure the remaining assets and liabilities X.

This situation is due to full market access. In the case of S ⊊ M, the MAI risk measure
does not simplify to the calculation of a multi-asset risk measure. This situation can
occur if the company is not willing to trade arbitrary financial instruments. For instance,
the company could rate specific stocks as too risky. Another case is that the regulator
forbids the usage of specific assets to pass the capital adequacy test, e.g., highly risky
derivatives.

So, in the case of S ⊊ M not every asset in the marketed portfolio M is also available
as hedging instrument in general. Such assets in M lead to trading restrictions in the
sense that it is only possible to sell them, but not to buy new shares of them. Hence,
the MAI risk measure can be interpreted as a multi-asset risk measure under trading
constraints.

Now we state an analogous property to the monotonicity for multi-asset risk measures.

Proposition 3.3.6 (Monotonicity). Let R = (A,S, π) be an intrinsic risk measurement
regime and (X1,M1) , (X2,M2) ∈ X ×M such that one of the following conditions holds:

(i) X1 ⪯ X2 and M1 ⪯ M2.

(ii) For each κ1 ∈ [0, 1], U1 ∈ Sκ1,M1 there exists κ2 ∈ [0, 1], U2 ∈ Sκ2,M2 such that

X1 + (1 − κ1)M1 + U1 ⪯ X2 + (1 − κ2)M2 + U2.

Then it holds that ϱR(X1,M1) ≥ ϱR(X2,M2).

Proof: The result is a direct consequence of the definition of an MAI risk measure as
well as Theorem 3.3.2.

Remark 3.3.7. Condition (i) is the element-wise order of the financial positions as used
in Farkas and Smirnow (2018, Proposition 3.1) for intrinsic risk measures. Condition
(ii) states that every reallocation of the first portfolio is dominated by a reallocation of
the second portfolio.

The following result treats the case of a cone as acceptance set A, i.e., for every λ ≥ 0
it holds that λA ⊂ A. It shows that the MAI risk measure is positive homogeneous,
i.e., its epigraph is a cone.
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Proposition 3.3.8 (Positive homogeneity). Let R = (A,S, π) be an intrinsic risk mea-
surement regime such that A is a cone. Then for each M ∈ M we have that

ϱR(0,M) =

ρA,S,π(M), ρA,S,π(M) ≤ −π(M),

−π(M), otherwise.

Further, the epigraph of the MAI risk measure is a cone.

Proof: The first claim is a consequence of Theorem 3.3.2. For the second claim we prove
for each λ ≥ 0 that λ epi(ϱR) ⊂ epi(ϱR). Assume an arbitrary point (X,M) ∈ X × M
and a scalar α ∈ R such that ϱR(X,M) ≤ α. For λ = 0 we have ϱR(0, 0) ≤ ρA,S,π(0) ≤ 0.
For λ > 0 we obtain for each U,Z ∈ S with π(U) = κλπ(M) and

λX + (1 − κ)λM + Z + U ∈ A

that

λ

(
X + (1 − κ)M + 1

λ
Z + 1

λ
U

)
∈ A = λA.

Together with the definition of the MAI risk measure we obtain that

ϱR(λX, λM) = λϱR(X,M) ≤ λα

and hence, epi(ϱR) is a cone.

3.4 Diversification

In this section, we analyze if diversification between financial positions is rewarded by
the MAI risk measure, i.e., the MAI risk measure of a diversified portfolio is smaller
than the maximum of the MAI risk measures of the individual portfolios.

We clarify in Section 3.4.1 what we mean by diversification between financial posi-
tions. We present two different concepts: Diversification within the balance sheet and
diversification over business lines. We show in Section 3.4.2 that diversification within
the balance sheet is satisfied if we use marketed portfolios with equal prices. We identify
this as the most relevant situation for a company. Further, we present a counterexample
if the prices are different.

This example also implies that the MAI risk measure is not quasi-convex. Now,
diversification over business lines refers to the quasi-convexity of the MAI risk measure.
Hence, the MAI risk measure does not reward diversification over business lines. At the
first glance, this is counter-intuitive, because the intrinsic risk measure is quasi-convex
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(but not convex), see Farkas and Smirnow (2018, Section 3.1). Since quasi-convexity
reflects the diversification principle, the intrinsic risk measure rewards for diversification.

Finally, in Section 3.4.3 we present another example in which diversification over
business lines is not satisfied. The example is different to the one in Section 3.4.2,
because we use marketed portfolios with the same price.

3.4.1 Types of diversification

We start to recall the meaning of diversification for classical risk measures. In doing
so, assuming a functional ρ describing the risk of a financial position, the diversification
principle states the following: If for three payoffs X,Y, Z we have

max {ρ(X), ρ(Y )} ≤ ρ(Z),

then for any diversified position αX + (1 − α)Y with α ∈ (0, 1) it also holds that

ρ(αX + (1 − α)Y ) ≤ ρ(Z).

As pointed out in Karoui and Ravanelli (2009) and Cerreia-Vioglio et al. (2011), the
diversification principle is equivalent to quasi-convexity of the underlying risk measure
which is not equivalent to convexity in general.

Now an MAI risk measure depends on two random variables, one for the assets which
can be reallocated and one for the remaining assets and liabilities. This is different to
classical risk measures and hence, we have to clarify what diversification means in the
context of an MAI risk measure. We distinguish two kinds of diversification:

First, if we have two marketed portfolios M1,M2 ∈ M and remaining assets and
liabilities X ∈ X , then we are interested in the MAI risk measure for the tuple

(X,αM1 + (1 − α)M2)

with α ∈ (0, 1). This means, we diversify between the parts in the balance sheet that are
available for reallocation. This is a common situation, because the company has several
possibilities to adjust liquid capital in the asset portfolio. In doing so, it is desirable that
diversification between the resulting marketed portfolios reduces the capital requirement.
Concluding, we consider diversification with respect to some liquid parts in the asset
portfolio. This analysis answers the question whether diversification between marketed
portfolios leads to a lower capital requirement. We call this situation diversification
within the balance sheet.

For the second kind of diversification, we use the classical notion of convexity for
maps. In this case, we look at tuples (X,M1), (Y,M2) ∈ X × M and we are interested
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in the MAI risk measure for

α(X,M1) + (1 − α)(Y,M2).

If X = Y , then we have diversification within the balance sheet. Hence, the interesting
case is the one of X ̸= Y . In this case, we obtain a mixture of two balance sheets
which motivates the following question: Does a splitting of a company into two business
lines (e.g., subsidiaries) increase the capital requirement? We refer to this situation as
diversification over business lines.

3.4.2 Diversification within the balance sheet

We start by analyzing diversification within the balance sheet. To this end, the balance
sheet of a company is given by the tuple (X,M1) ∈ X ×M. Another marketed portfolio
would lead to the modified balance sheet (X,M2) ∈ X × M. Note that the relevant
situation is the one in which the company sells the marketed portfolio M1 and buys
the marketed portfolio M2. Hence, the prices of M1 and M2 are equal. The following
result states that the MAI risk measure in this case reduces the capital requirement if
the company diversifies between M1 and M2.

Theorem 3.4.1. Assume a convex acceptance set A and a security space S = span{U}
with U ∈ (M ∩ X+)\{0} and π(U) = 1. This gives the intrinsic risk measurement
regime R = (A,S, π). For marketed portfolios M1,M2 ∈ M with π(M1) = π(M2) ̸= 0
and α ∈ (0, 1) we obtain that

ϱR(X,αM1 + (1 − α)M2) ≤ max{ϱR(X,M1), ϱR(X,M2)}.

Proof: Without loss of generality, we assume that ϱR(X,M2) ≤ ϱR(X,M1). Further,
assume real numbers y ≤ x and κ1, κ2 ∈ [0, 1] with

X + xU + (1 − κ1)M1 + κ1π(M1)U ∈ A,

X + yU + (1 − κ2)M2 + κ2π(M2)U ∈ A.

By monotonicity of A we also have that

X + xU + (1 − κ2)M2 + κ2π(M2)U ∈ A.

By convexity of A and since π(M1) = π(M2) we know that for all β ∈ [0, 1] it holds that

X + xU + β(1 − κ1)M1 + (1 − β)(1 − κ2)M2 + (βκ1 + (1 − β)κ2)π(M1)U ∈ A.
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The claim follows, if there exist β ∈ [0, 1] and κ ∈ [0, 1] such that

X + xU + β(1 − κ1)M1 + (1 − β)(1 − κ2)M2 + (βκ1 + (1 − β)κ2)π(M1)U

= X + xU + (1 − κ)(αM1 + (1 − α)M2) + κπ(M1)U.

If κ1 = κ2, then the solution is β = α and κ = κ1. Hence, we can assume that κ1 ̸= κ2.
Then, by comparing the coefficients of M1, M2 and U we obtain the following system
of linear equations:

β(1 − κ1) = α(1 − κ),

(1 − β)(1 − κ2) = (1 − α)(1 − κ),

βκ1 + (1 − β)κ2 = κ.

This system admits the following unique solution:

κ∗ =
κ1 − κ2 + 1

α(1 − κ1)κ2

κ1 − κ2 + 1
α(1 − κ1)

, β∗ = 1 − κ2

κ1 − κ2 + 1
α(1 − κ1)

.

Note that the denominator can not be zero, since α ∈ (0, 1). Otherwise, we would obtain
α = 1−κ1

κ2−κ1
which gives us α < 0 if κ2 < κ1 and α > 1 if κ2 > κ1.

It remains to show that κ∗, β∗ ∈ [0, 1]. We only prove the case of β∗. The argument
for κ∗ works analogously. The numerator of β∗ is greater or equal zero, i.e., 1 − κ2 ≥ 0.
If κ2 < κ1, then by 1 − κ1 ≥ 0 we directly obtain a positive denominator, i.e.,

κ1 − κ2 + 1
α

(1 − κ1) > 0.

In the remaining case of κ2 > κ1, the conditions 0 < κ2 − κ1 ≤ 1 − κ1 and 1
α > 0 imply

that κ1 − κ2 + 1
α(1 − κ1) > 0. This give us that β∗ ≥ 0.

Now, we compare the numerator and the denominator:(
κ1 − κ2 + 1

α
(1 − κ1)

)
− (1 − κ2) =

( 1
α

− 1
)

(1 − κ1) ≥ 0.

Hence, β∗ ≤ 1.

The previous theorem works for marketed portfolios with the same price. The follow-
ing example states that diversification is not rewarded for different prices in general.

Example 3.4.2. We use a sample space Ω = {ω1, ω2, ω3}, i.e., the linear space of
financial positions X is 3-dimensional and can be identified with X = R3. This is for
example the situation in a one-period trinomial model in which the underlying asset can
have 3 potential values at a fixed future time. In our example, the market consists of a
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risk-free bank account and two defaultable bonds:

U =


1
1
1

 , S1 =


1
0
0

 , S2 =


0
1
0

 .
Hence, the marketed space is given as M = span{U, S1, S2} = R3 and we define the
pricing functional π : M → R by π(U) = 1 and π(S1) = π(S2) = 1

3 . The bank
account is used as the security asset, i.e., S = span{U}. The acceptance set A is
given by the positive cone R3

+. Hence, A is convex. The intrinsic risk measurement
regime is R = (A,S, π). We use the following liquid positions: M1 =

(
1
2 , 0,

1
2

)⊺
and

M2 =
(

5
6 ,

1
3 ,

1
3

)⊺
. M1 has price 1

3 and M2 has price 1
2 . Hence, the intrinsic management

actions allow to reallocate capital between M1 and 1
3U and between M2 and 1

2U . These
reallocations are illustrated by the dashed lines in Figures 3.4a and 3.4c. Further,
the remaining assets and liabilities are given by X =

(
2
15 ,

1
3 ,−

7
15

)⊺
. The shifted line

segments for the reallocations are illustrated by the solid lines in Figures 3.4a and 3.4c. In
both cases, it is possible to create a payoff contained in the acceptance set. This implies
that ϱR(X,M1) ≤ 0 and ϱR(X,M2) ≤ 0. But if we diversify the marketed portfolios with
a mixture weight α = 1

2 , then we obtain Figure 3.4b. Note, that α1
3U+(1−α)1

2U = 5
12U .

The solid line segment does not admit points contained in the acceptance set. Hence, the
company has to invest additional capital in the security asset U to reach acceptability.
This implies that ϱR(X,αM1 + (1 − α)M2) > 0. So, the MAI risk measure does not
reward diversification between (X,M1) and (X,M2).

(a) Hyperplane containing M1
and X +M1.

(b) Hyperplane containing the
diversified position.

(c) Hyperplane containing M2
and X +M2.

Figure 3.4: All figures show a hyperplane from the direction U = (1, 1, 1)⊺. All points
on such a hyperplane admit the same price. The gray area is the slice of
the acceptance set A = R3

+. We also demonstrate the line segments for
reallocations between the liquid portfolio and the bank account U .
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Remark 3.4.3. The previous example shows that the MAI risk measure is not quasi-
convex, if we fix the remaining assets and liabilities. This can be explained as follows:
By concentrating on the tuple (X,M2), we see that a huge amount of the marketed
portfolio M2 needs to be reallocated to reach acceptability. For the tuple (X,M1) we
have vice versa that only a small amount of the marketed portfolio M1 can be reallocated
to stay acceptable. Now, if we consider the mixture α(X,M1) + (1 − α)(X,M2), then
reallocation always leads to an unacceptable position, because it is only possible to apply
the same proportion for reallocating M1 and M2. As we already argued, this is not a
disadvantage of the MAI risk measure, because the situation in Theorem 3.4.1 is the
one of interest for a company.

3.4.3 Diversification over business lines

In the previous section, we showed that the MAI risk measure does not reward diver-
sification within the balance sheet if the prices of the marketed portfolios differ. This
implies in addition that the MAI risk measure is not quasi-convex. Hence, it also does
not reward diversification over business lines.

(a) Before translation. (b) After translation.

Figure 3.5: Both figures show the hyperplane {x ∈ R3 |x1 + x2 + x3 = 1} from the
direction given by U = (1, 1, 1)⊺. The gray area is the slice of the acceptance
set A = R3

+. All portfolios in this hyperplane have the price 1
3 . Left-hand

side: Line segments between the security asset 1
3U and the liquid portfolios

M1 and M2. Right-hand side: Line segments translated by the remaining
assets and liabilities X and Y . The dashed red line is the line segment
between the diversified portfolios αX+ (1 −α)Y + 1

3U and αX+ (1 −α)Y +
αM1 + (1 − α)M2.

But, we also know from Theorem 3.4.1 that the MAI risk measure rewards diversifica-
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tion within the balance sheet if the prices of the marketed portfolios are equal. Hence, the
main finding of this section is Example 3.4.4 which shows in particular that the MAI
risk measure does not reward diversification over business lines even if the marketed
portfolios have the same price. We discuss the reason for this behavior in Remark 3.4.5.

Example 3.4.4. We use the same setting as in Example 3.4.2, i.e., X = R3 and the
market consists of the same risk-free bank account and the same defaultable bonds as
before. The pricing functional is again defined by π(U) = 1 and π(S1) = π(S2) = 1

3 .
The security space is S = span{U}. The acceptance set A is given by the positive cone
R3

+ which leads to the intrinsic risk measurement regime R = (A,S, π). We modify
the marketed portfolios as follows: M1 =

(
2
3 ,

1
6 ,

1
6

)⊺
and M2 =

(
1
2 , 0,

1
2

)⊺
. They are

illustrated on the left-hand side in Figure 3.5. The corresponding remaining assets
and liabilities are given by: X = (0.05, 0.3,−0.25)⊺ and Y = (0.15, 0.4,−0.39)⊺. If
we diversify the two positions X + M1 and Y + M2 with respect to a weight α = 1

2 ,
the right-hand side in Figure 3.5 illustrates that ϱR(X,M1) ≤ 0 and ϱR(Y,M2) ≤ 0,
but ϱR(αX + (1 − α)Y, αM1 + (1 − α)M2) > 0. Hence, ϱR is not quasi-convex and it
especially does not reward diversification between (X,M1) and (Y,M2).

Remark 3.4.5. Concluding, the MAI risk measure does not reward diversification be-
tween business lines in general. The reason for this behavior is analogous to the one in
the previous section, compare Remark 3.4.3. It can be explained with the right-hand
side of Figure 3.5. For the tuple (X,M1), a huge amount of the marketed portfolio M1 is
reallocated to be acceptable. For the tuple (Y,M2), only a small amount of the marketed
portfolio M2 is reallocated to be acceptable. The mixture α(X,M1) + (1 − α)(Y,M2) is
unacceptable for every reallocation, because the MAI risk measure is not flexible enough
to apply two different proportions for reallocating the marketed portfolios. Hence, an
extension would be the usage of different intrinsic levels. But this requires a new con-
struction of a risk measure which is out of the scope of this dissertation.

3.5 Dual representations

In this section, we present a dual representation of MAI risk measures, showing that
an MAI risk measure is the maximum of two values, determined by extensions of the
restricted pricing functional π|S . Each of these extensions can be interpreted as a
possible probabilistic model. The agent does not know which of these models is correct.
As a result, the capital requirement is calculated in a robust way, i.e., as the maximum
capital requirement over all of these models, compare also Remark 3.5.4.
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3.5.1 Some preliminaries

To perform a conjugate approach we assume for the rest of this section that the ordered
topological vector space X is a locally convex space. Next, we recall terms and notations
from functional analysis. The (lower) support function of a non-empty subset C ⊂ X is
defined as the map

hC : X ′ → [−∞,∞) , ψ 7→ inf
C∈C

ψ(C).

The barrier cone of C is defined by B(C) := dom(−hC). For a pricing functional
π : M → R and a security space S ⊂ M we define the set of all positive, continuous
and linear extensions of the restricted pricing functional π|S as

Eπ(S) :=
{
ψ ∈ X ′

+

∣∣∣ψ|S = π|S
}
.

For the proof of our main result we need Sion’s minimax theorem which is a gen-
eralization of von Neumann’s minimax theorem, see Sion (1958, Corollary 3.3). For
completeness, we recall this result in the form given in Komiya (1988, Section 1).

Theorem 3.5.1 (Sion’s minimax theorem). Let X be a compact convex subset of a
linear topological space and Y a convex subset of a linear topological space. Let f be a
real-valued function on X × Y such that

(i) f (x, .) is upper semicontinuous and quasi-concave on Y for each x ∈ X,

(ii) f (., y) is lower semicontinuous and quasi-convex on X for each y ∈ Y .

Then

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

3.5.2 Duality of MAI risk measures

Now we are ready to present the main result of this section in which we require that
B(A) ∩ Eπ(S) ̸= ∅. For equivalent statements to this condition we refer to Theorem 2
and Corollary 1 in Farkas et al. (2015).

Theorem 3.5.2 (Dual representation). Let R = (A,S, π) be an intrinsic risk measure-
ment regime such that the acceptance set A is convex, the multi-asset risk measure ρA,S,π

is lower semicontinuous and B(A) ∩ Eπ(S) ̸= ∅. Then for each (X,M) ∈ X × M we
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obtain that

ϱR(X,M) = max
{

sup
ψ∈B(A)∩Eπ(S)
ψ(M)≥π(M)

(
hA(ψ) − ψ(X +M)

)
,

sup
ψ∈B(A)∩Eπ(S)
ψ(M)<π(M)

(
hA(ψ) − ψ(X) − π(M)

)}
.

Proof: From Theorem 3.3.2 and Farkas et al. (2015, Theorem 3) we get

ϱR(X,M) = inf
κ∈[0,1]

sup
ψ∈B(A)∩Eπ(S)

(
hA(ψ) − ψ(X +M) + κ

(
ψ(M) − π(M)

))
.

For the sake of brevity, we use the following map:

f : [0, 1] ×
(
B(A) ∩ Eπ(S)

)
→ R,

(κ, ψ) 7→ hA(ψ) − ψ(X +M) + κ
(
ψ(M) − π(M)

)
.

To interchange the infimum and supremum in the previous equation we prove the con-
ditions in Theorem 3.5.1:

• The unit interval [0, 1] is compact and convex. It is straightforward to see that
B(A) ∩ Eπ(S) is also convex.

• For each ψ ∈ B(A) ∩ Eπ(S) the function κ 7→ f (κ, ψ) is lower semicontinuous and
quasi-convex. This is a consequence of the linearity of this map.

• For each κ ∈ [0, 1] the function g (ψ) := f(κ, ψ) is quasi-concave. Indeed, with
hA(αψ1 + (1 − α)ψ2) ≥ αhA(ψ1) + (1 − α)hA(ψ2) we obtain that hA is concave.
This implies quasi-concavity of g. To prove the upper semicontinuity of g we equip
the set B(A) ∩ Eπ(S) with the relative weak∗-topology defined by

σ
(
X ′
,X
)

B(A)∩Eπ(S)
:=
{
V ∩ B(A) ∩ Eπ(S)

∣∣∣V ∈ σ
(
X ′
,X
)}

.

Let CA be the set of all σ
(
X ′
,X
)

B(A)∩Eπ(S)
-continuous functions of the form

B(A) ∩ Eπ(S) → R, ψ 7→ ψ(A) − ψ(X +M) + κ
(
ψ(M) − π(M)

)
with A ∈ A. So, g(ψ) = inf

l∈CA
l(ψ) as the pointwise infimum of σ

(
X ′
,X
)

B(A)∩Eπ(S)
-

continuous functions is σ
(
X ′
,X
)

B(A)∩Eπ(S)
-upper semicontinuous.

After interchanging the infimum and supremum the claim is a consequence of distin-
guishing the cases ψ(M) ≥ π(M) and ψ(M) < π(M).
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As an example, we investigate the special case of monetary risk measures on the
Banach space of essentially bounded random variables.

Example 3.5.3. Consider a probability space (Ω,F , P ). As an ordered topological
vector space use L∞(Ω,F , P ) together with the essential supremum norm and the P -
a.s. order. Assume a suitable marketed space M ⊂ L∞(P ) such that the security
space can be defined by S = span{1Ω}. For the pricing functional π : M → R it
holds that π(1Ω) = 1. Assume a convex monetary risk measure ρ : L∞(P ) → R which is
continuous from above, i.e., Xn ↓ X implies ρ(Xn) ↑ ρ(X). The acceptance set is defined
by A = {X ∈ L∞(P ) | ρ(X) ≤ 0}. Given the penalty function α(Q) := sup

A∈A
EQ[−A] and

denoting by M(P ) the set consisting of probability measures Q such that Q is absolutely
continuous with respect to P and α(Q) < ∞, we obtain for every X ∈ L∞(P ) and
M ∈ M that

ϱR(X,M) = max
{

sup
Q∈M(P )

EQ[M ]≥π(M)

(
EQ[−X −M ] − α(Q)

)
,

sup
Q∈M(P )

EQ[M ]<π(M)

(
EQ[−X − π(M)] − α(Q)

)}
.

(3.6)

Remark 3.5.4. (i) Continuity from above ensures that the restriction to countably
additive measures is sufficient, see e.g., Föllmer and Schied (2016, Theorem 4.33).

(ii) Equation (3.6) allows for the following interpretation: Each Q ∈ M(P ) corresponds
to a probabilistic model. Given such a model, the intrinsic action compares the
value EQ[M ] of maintaining the liquid part M with the amount π(M) by reallo-
cating the whole portfolio M into the bank account 1Ω. These two situations lead
to the objective values of EQ[−X−M ]−α(Q) and EQ[−X−π(M)]−α(Q). Hence,
the supremum over all costs with respect to the possible probabilistic models yields
the value of the MAI risk measure.

3.6 Numerical examples

In this section, we illustrate the behavior of the MAI risk measure with respect to
concrete balance sheet models. The original idea for the chosen models stems from Flo-
reani (2013). Their model is used to demonstrate effects in the Solvency II framework
and solely relies on normal distributed assumptions. We use different distributions by
applying a Black-Scholes model and common assumptions for insurance portfolios.
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3.6.1 Balance sheet model and acceptability criterion

We consider a simplified balance sheet model. We bundle assets and liabilities to describe
them by a low number of random variables. To do so, we have to assume a probability
space (Ω,F , P ). The corresponding ordered topological vector space is chosen to be
large enough to cover all relevant random variables, e.g., we could use X = L1(P )
together with the P -a.s. order and the usual L1-norm.

We consider a time interval from 0 up to a finite future time T > 0. Further, we use a
Black-Scholes model with two stocks. In doing so, we equip the probability space with
a filtration (Ft)t∈[0,T ]. The assets are then described as follows:

Black-Scholes model: The bank account with interest rate r ∈ R admits the starting
value B0 > 0 and thus has the future value BT := B0 exp(rT ). The two stocks are based
on a two-dimensional standard Brownian motion (W 1

t ,W
2
t )t∈[0,T ]. The stock (Sit)t∈[0,T ]

with i ∈ {1, 2} is based on the excess return λi ∈ R, the volatility σi > 0 and the initial
value Si0 > 0. Further, we assume a correlation ρ1,2 ∈ [−1, 1]. This leads to the following
stock values at T :

S1
T = S1

0e
(r+λ1− 1

2σ
2
1)T+σ1W 1

T , S2
T = S2

0e
(r+λ2− 1

2σ
2
2)T+σ2

(
ρ1,2W 1

T +
√

1−ρ2
1,2W

2
T

)
.

The pricing functional π is defined by π(xBT + yS1
T + zS2

T ) = xB0 + yS1
0 + zS2

0 for
all x, y, z ∈ R.

We restrict attention to one-period trading. The institution holds the number of
shares φB ≥ 0 in the bank account, φ1 ≥ 0 in stock 1 and φ2 ≥ 0 in stock 2. Conclud-
ing, the assets of the institution at T are given by φBBT + φ1S

1
T + φ2S

2
T .

Liabilities: It remains to model the liabilities. We apply a gamma distribution as a
typical example used for claim size modeling in insurance mathematics, see e.g., Ohlsson
and Johansson (2010). We denote the random variable of the liabilities at time T by LT
and we assume that it is gamma distributed with shape α > 0 and rate β > 0, i.e., the
probability density function for x > 0 is given by

f(x) = βα

Γ(α)x
α−1e−βx,

where Γ denotes the Gamma function. We assume that the liabilities are uncorrelated
to the two stocks. Finally, in our simplified model we determine the equity capital XT

at time T as assets minus liabilities,

XT = φBBT + φ1S
1
T + φ2S

2
T − LT .
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Reallocation: We assume that the investment in stock 1 can be reallocated, but the
investment in stock 2 is not available for reallocation. For the MAI risk measure, we use
the linear span of the bank account as security space, i.e., reallocating capital between
stock 1 and the bank account is allowed.

This situation can be interpreted as follows: To pass the capital adequacy test, the
institution would like to increase the amount in the bank account, as it is the case for
classical risk measures. On the one hand, the institution is not sure, if stock 1 is any
longer an attractive investment, e.g., due to a bad performance in the past. On the
other hand, the institution is confident in stock 2. Hence, the institution solely allows
for reallocating capital from stock 1 into the bank account.

Acceptability criterion: For a specific confidence level λ ∈ (0, 1), we employ the Ex-
pected Shortfall acceptance set AESλ

.

3.6.2 Risk measure calculations

In our study, we compare a single-asset, a multi asset and an MAI risk measure. The
formulas for the risk measures are as follows:

• Single-asset risk measure:

ρAESλ
,BT ,π(XT ) = B0

BT
ESλ

(
φ1S

1
T + φ2S

2
T − LT

)
− φBB0.

• MAI risk measure: Theorem 3.3.2 gives us the representation for the MAI risk
measure based on the intrinsic risk measurement regime R = (AESλ

, span{BT }, π):

ϱR
(
φBBT + φ2S

2
T − LT , φ1S

1
T

)
= inf

κ∈[0,1]

(
B0
BT

ESλ
(
φ1(1 − κ)S1

T + φ2S
2
T − LT

)
− κφ1S

1
0

)
− φBB0.

(3.7)

• Multi-asset risk measure: Similar to the MAI risk measure, we obtain the fol-
lowing representation for the multi-asset risk measure with respect to the security
space S = span{BT , S1

T }:

ρAESλ
,S,π(XT ) = inf

x∈R

(
B0
BT

ESλ
(
xS1

T + φ2S
2
T − LT

)
+ xS1

0

)
− φBB0 − φ1S

1
0 .

It is not possible to solve these risk measures analytically, because our distributional
assumptions prevent from an explicit calculation of the Expected Shortfall. Hence, we
calculate it by Monte-Carlo simulations based on 1 000 000 scenarios. In addition, for the
MAI risk measure and the multi-asset risk measure we perform a numerical optimization
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algorithm to determine the infimum.

3.6.3 Numerical results

We illustrate similarities and differences between the MAI risk measure and the single-
asset as well as the multi-asset risk measure by calculating the risk measures for three
different parameter settings, see Table 3.1.

Parameter Setting 1 Setting 2 Setting 3
λ 0.5% 0.5% 0.5%
r 0 0 0
T 1 1 1
φB 0.50 0.50 0.50
φ1 2.00 2.00 2.00
φ2 1.50 1.50 1.50
B0 = S1

0 = S2
0 1.00 1.00 1.00

λ1 0.02 0.04 0.06
λ2 0.08 0.08 0.08
σ1 0.20 0.20 0.20
σ2 0.40 0.40 0.40
ρ1,2 0.75 0.00 -0.75
α 35 35 35
β 10 10 10

Table 3.1: Parameter values for the generic analysis of the model.

The settings differ in the excess return of stock 1 and the correlation between the
stocks. The large positive correlation in setting 1 may make diversification between the
two stocks less attractive. In the other two settings, this behavior changes and stock 1
becomes more attractive.

In Figure 3.6, we show the histograms of the equity capital XT for the 1 000 000 Monte-
Carlo simulations. Further, it shows the objective functions in the infimum of (3.7),
i.e., the minimum of this objective function is the value of the MAI risk measure. In the
following, we interpret the histograms and the objective functions:

Histogram: The largest range of values occurs in the first setting. In contrast, in the
third setting, the distribution is more centered, because of the higher excess return of
stock 1 and the negative correlation between the stocks. Hence, a decrease in a stock is
compensated by an increase in the other stock.

Further, in the first setting the distribution is right-skewed and in the third setting
the distribution is more symmetric. The characteristics of the second setting are in
between. The minimum values and the means are almost the same in all settings. In
contrast, the maximum value is the highest in the first setting and the lowest in the
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(a) Setting 1: Histogram (b) Setting 2: Histogram (c) Setting 3: Histogram

(d) Setting 1: MAI objective (e) Setting 2: MAI objective (f) Setting 3: MAI objective

Figure 3.6: First row: Histograms of the equity capital XT . The minimum and the
maximum values (red dotted dashed) and the means (blue dashed) of the
simulated values are given. Second row: Objectives of the MAI risk measures
depending on the intrinsic level, see (3.7) (blue solid line). The single-asset
(red dotted) and the multi-asset (green dotted dashed) risk measures corre-
spond to the horizontal lines.
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third setting.

Objective function: The three settings demonstrate three possible behaviors of the
MAI risk measure in comparison to a single-asset and a multi-asset risk measure. In
the first setting, the value of the MAI risk measure is attained on the boundary of the
interval at 100%. Hence, all shares of stock 1 are sold and reinvested into the bank
account. This trading constraint leads to a higher capital requirement than for the
multi-asset risk measure.

If the trading constraint does not matter, then both risk measures are equal. This is
the case for the second setting. Then, stock 1 performs much better than in the first
setting and the institution keeps shares of this stock in order to benefit from its future
performance.

In the third setting, the stocks admit a high negative correlation and therefore, from
a risk management perspective it is desirable to keep all shares of stock 1 to benefit
from diversification effects between the stocks. In this case, the MAI risk measure and
the single-asset risk measure are identical.

The MAI risk measure is different from the multi-asset risk measure when the trans-
action constraint is active, i.e., the intrinsic level is attained on the boundary of the unit
interval. To illustrate their differences, we concentrate on the first setting and stress the
capital requirement by changing certain parameters, see Figure 3.7. We interpret the
plots in the following:

• Figure 3.9a (level λ): If the level increases, then the risk measures decrease. The
graphs are convex, i.e., the higher the confidence level, the smaller the decrease in
the risk measure.

• Figure 3.9b (excess return λ1): For a small excess return the MAI risk measure
leads to a sale of all shares of stock 1. Hence, the MAI risk measure is constant for
small excess returns. By increasing the excess return further, some shares of stock
1 are maintained in the portfolio. In this case, the MAI risk measure coincides
with the multi-asset risk measure. If the excess return is large, then no shares are
sold and the MAI risk measure coincides with the single-asset risk measure.

• Figure 3.9c (volatility σ1): If the volatility is low, then the probability of a
downfall of stock 1 is low and it becomes an alternative to the classical bank
account. Hence, no shares of stock 1 are sold and the MAI risk measure coincides
with the single-asset risk measure. We also see that the multi-asset risk measure is
lower than the MAI risk measure, because the capital requirement can be further
reduced by buying new shares of stock 1. This trading action is not allowed by
the MAI risk measure.
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If the volatility increases, then stock 1 becomes less attractive and all shares are
sold. Hence, the MAI risk measure is constant for large enough values of σ1.
We see that the multi-asset risk measure decreases, because it can create short
positions in stock 1. In contrast, the single-asset risk measure completely relies on
the original stock portfolio. Hence, a huge additional amount in the bank account
is required to pass the capital adequacy test.

• Figure 3.9d (correlation ρ1,2): If the correlation admits a large negative value,
then the MAI risk measure tries to benefit from diversification effects between the
stocks and no shares of stock 1 are sold. In this case, the MAI and the single-
asset risk measure are equal. If the correlation is around zero, then the MAI risk
measure suggests to sell a proportion between 0 and 1 of the stock 1 shares. In
this case, the MAI and the multi-asset risk measure coincide. If the correlation
admits a large positive value, then stock 1 is not an attractive investment and all
shares are sold. The MAI risk measure is constant and differs from the multi-asset
risk measure which creates short positions in stock 1.

• Figure 3.9e and 3.9f (excess return λ2 and volatility σ2): If the excess
return increases, then all three risk measures decrease almost linearly. The large
excess return makes stock 2 more attractive and its simulated values increase.
Hence, less capital requirement is needed. If the volatility increases, then all three
risk measures increase. The large volatility leads to more uncertainty in stock 2.
Hence, more capital is required to pass the capital adequacy test.

• Figure 3.9g (expiry T ): For higher T , the single-asset risk measure moves
further away from the others. All risk measures increase in T . This means, the
higher uncertainty in stock 1 is stronger than the opposite effect with respect to
the discount factor and the larger excess return.

• Figure 3.9h and 3.7i (shape α and rate β): If we increase the shape or
decrease the rate, then the risk measures increase. In both situations, the mean
and the variance of the liabilities increase. So, we obtain higher liabilities on
average and also the range of the values is larger. Furthermore, we see that the
changes in the shape α have a significant influence on the numerical stability of
our procedure.

3.6.4 Heavy-tailed distributed liabilities

We also tested the use of a generalized Pareto distribution (GPD) to model heavy-tailed
distributed liabilities. Of course, this is a more dangerous situation instead of using
a gamma distribution and consequently the capital requirements increase significantly.
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(a) Level λ (b) Excess return λ1 (c) Volatility σ1

(d) Correlation ρ1,2 (e) Excess return λ2 (f) Volatility σ2

(g) Expiry time T (h) Shape α (i) Rate β

Figure 3.7: Single-asset (red dotted), multi-asset (green dotted dashed) and MAI (blue
solid) risk measures under parameter changes.
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The probability density function of a GPD with shape ξ ∈ R and scale β > 0 is given
by

f(x) = 1
β

(
1 + ξ

x

β

)− 1
ξ+1

.

The rest of the model is analogous to the one in Section 3.6.1. For our first results,
we use the three parameter settings in Table 3.2. We use the same parameters as
in Table 3.1. Only the correlation ρ1,2 is the same for all settings to illustrate three
different behaviors of the MAI risk measure, see Figure 3.8. The forms of these curves
are analogous to the ones in Section 3.6.3.

Parameter Setting 1 Setting 2 Setting 3
λ 0.5% 0.5% 0.5%
r 0 0 0
T 1 1 1
φB 0.50 0.50 0.50
φ1 2.00 2.00 2.00
φ2 1.50 1.50 1.50
B0 = S1

0 = S2
0 1.00 1.00 1.00

λ1 0.02 0.04 0.06
λ2 0.08 0.08 0.08
σ1 0.20 0.20 0.20
σ2 0.40 0.40 0.40
ρ1,2 0.75 0.75 0.75
ξ 0.05 0.05 0.05
β 3.325 3.325 3.325

Table 3.2: Parameter values for the generic analysis of the model with liabilities following
a GPD.

Finally, the shape and the scale of the GPD are chosen such that the mean is equal
to the one for the gamma distribution, namely 3.5. The histograms in Figure 3.8 look
quite similar, because the distribution is now significantly influenced by the liabilities
and they follow the same distribution in all three examples. Further, the minimum
value of the simulated data is much lower than in the example based on the gamma
distribution. This explains why the values of the risk measures are now significantly
larger.

For the plots in Figure 3.9 we apply the first setting and change for each plot a single
parameter. We observe in most of the plots the same forms as for the plots in Figure 3.7.
Solely, for the expiry time T the curves are now decreasing instead of increasing. This is
explained as follows: By increasing the expiry we have two opposite effects. On the one
hand, the discount factor decreases and the excess returns of the stocks increase. On
the other hand, it increases the variance of the stock values. In the gamma distributed
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example, the second effect is stronger and hence, the capital requirement increases. In
the GPD example, the first effect is stronger and the capital requirement decreases.

(a) Setting 1: Histogram (b) Setting 2: Histogram (c) Setting 3: Histogram

(d) Setting 1: MAI objective (e) Setting 2: MAI objective (f) Setting 3: MAI objective

Figure 3.8: First row: Histograms of the equity capital. The red dotted dashed lines are
the minimum and maximum values and the blue dashed lines are the means
of the simulated values. Second row: Objectives of the MAI risk measure
depending on the intrinsic level (blue solid line). The single-asset (red dot-
ted) and the multi-asset (green dotted dashed) risk measures correspond to
the horizontal lines.
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(a) Level λ (b) Excess return λ1 (c) Volatility σ1

(d) Correlation ρ1,2 (e) Excess return λ2 (f) Volatility σ2

(g) Expiry time T (h) Shape ξ (i) Scale β

Figure 3.9: Single-asset (red dotted), multi-asset (green dotted dashed) and MAI (blue
solid) risk measures under parameter changes.





Chapter 4

Scalarized utility-based multi-asset
risk measures

4.1 Introduction

Banks and insurance companies have to satisfy ambitious legal requirements, like the
Basel Accords for banks or Solvency II for insurers. But at the same time their main
concern is to maximize their own benefits, i.e., they aim for maximizing their expected
utility. If the initial endowment of the company is not sufficient to pass the capital
adequacy test, classical portfolio optimization methods fail. As a consequence, an in-
crease of capital is necessary. In this chapter we develop a methodology that enables
banks and insurance companies to optimize their expected utility in accordance with
legal requirements, even if their financial circumstances are tight. This leads to a new
kind of a multi-asset risk measure. This chapter is based on Desmettre, Laudagé, and
Sass (2021).

4.1.1 Motivation

We start by presenting the classical portfolio optimization problem, where the legal
requirements appear as a constraint and show that this methodology is not an expedient
solution in a tight financial situation. Such kind of portfolio optimization problems
are, e.g., discussed in Basak and Shapiro (2001), Cuoco, He, and Isaenko (2008) and
regarding to a Solvency II framework in Nguyen and Stadje (2020, Section 4). Their
approaches rely on the initial endowment. In doing so, a constraint states that only
reallocation with respect to this initial endowment is allowed. This is meaningful if the
financial situation of the bank or insurance company is good enough. Otherwise, there
is no guarantee for the existence of a reallocation that satisfies the capital adequacy
test. This means, the initial endowment is insufficient to create a financial position that
satisfies the legal requirements and an increase of capital is indispensable. The latter is

73
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the situation we are interested in and what we called earlier a tight financial situation.
Before we go in this direction, we provide an example in which no reallocation of the
initial endowment satisfies a capital adequacy test.

Consider a balance sheet model as illustrated in Figure 4.1. Reallocation is only
possible for assets traded in a financial market, i.e., only for liquid assets. We assume
that E0 = 0.3 and F0 = 1, in particular that A0 − L0 = E0 − F0 = −0.7. The financial
position of interest is the random equity capital in one year. The liquid assets in one
year are given as a portfolio of a deterministic bank account B1 and a single stock S1,
both with actual price 1. The interest rate is zero, i.e., the bank account is constant
over time. Say, the illiquid assets minus liabilities A1 −L1 are normally distributed with
a mean of −0.7 (= A0 − L0) and a standard deviation of 0.11.

Balance sheet at time 0

Liquid
assets F0

Illiquid
assets A0

Equity
capital E0 =
F0 +A0 − L0

Liabilities L0

Future
portfolio F1 is
given by a one-
period financial
market model

Financial position
of interest:

E1 = F1 +A1 − L1

Figure 4.1: Simplified subdivision of a balance sheet.

As two possible legal requirements we consider the 0.5% Value-at-Risk as well as the
0.5% Expected Shortfall of the equity capital. The legal requirement says that the
corresponding risk measure should be less or equal zero, i.e., in the Value-at-Risk case
the insurance company becomes insolvent in at most 0.5% of the future scenarios. The
level of 0.5% corresponds to the Solvency II framework, see the “Directive 2009/138/EC
of the European Parliament and of the Council of 25 November 2009 on the taking-up
and pursuit of the business of Insurance and Reinsurance (Solvency II)” (2009). The
equity capital at time 0 is given as

F0 +A0 − L0 = 1 +A0 − L0 = (1 − φ)B0 + φS0 +A0 − L0,

where φ ∈ R represents the number of stock shares. We do not allow for intermediate
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trading between time 0 and 1. Hence, the future equity capital position is given as

F1 +A1 − L1 = (1 − φ)B1 + φS1 +A1 − L1 = 1 − φ+ φS1 +A1 − L1.

Let us consider the future equity capital as a function of the stock shares φ. If the Value-
at-Risk, respectively the Expected Shortfall, is strictly positive for all of these equity
capital positions, then it is not possible to satisfy the legal requirement by reallocating
actual positions and the classical portfolio optimization approach is not applicable. This
issue requires to model the stock reasonably. In Figure 4.2, we illustrate the Value-at-
Risk and also the Expected Shortfall at level 0.5% for two different stock models. On
the left-hand side we use a Bachelier model (Bachelier, 1900) and on the right-hand side
a Black-Scholes model (Black & Scholes, 1973).

The Bachelier model allows for an analytical calculation of the risk measures. In
contrast, the risk measures in the Black-Scholes model are calculated numerically, be-
cause we can not calculate the convolution of normal and log-normal distributed random
variables analytically. Hence, we use a Monte-Carlo simulation to determine the risk
measures.

(a) Bachelier model (b) Black-Scholes model

Figure 4.2: Risk measures for different allocations of the initial endowment.

We choose the parameters such that it is possible to satisfy the Value-at-Risk con-
straint. The more conservative requirement given by the Expected Shortfall can not
be satisfied by capital rearrangements and an additional increase of capital is needed.
We refer to this task as the risk assessment problem. In the following we discuss
classical risk measures to resolve this situation and point out their weaknesses.
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4.1.2 Bibliographic notes

Recall from Chapter 1 that multi-asset risk measures are based on the idea of an agent
investing money into some primary assets to make a payoff acceptable in the sense
that it passes the capital adequacy test. The objective is the cost function. Hence,
the institution can satisfy the legal requirements by a capital increase, even in a tight
financial situation. This solves the risk assessment problem.

The application of multi-asset risk measures is standard but they completely ignore
the actual intention of a bank or insurance company. As pointed out above, the main
purpose of these institutions is the creation of profits which increase their expected
utility. However, this expected utility is not considered in the objective function.

But this is done in the context of utility-based monetary risk measures: The op-
timized certainty equivalent (OCE) in Ben-Tal and Teboulle (1986) and Ben-Tal
and Teboulle (2007) measures the investment costs in a single eligible asset minus the
expected utility of the final position. Another idea is introduced in Krokhmal (2007)
and Vinel and Krokhmal (2017). In their setting it is possible to use the certainty equiv-
alent instead of the expected utility. This systematic is further analyzed in Geissel, Sass,
and Seifried (2018). They introduce the so-called optimal expected utility (OEU)
risk measure.

OEU risk measures are useful for real world problems. For instance, Fink, Geissel,
Sass, and Seifried (2019) rate retail structured products with the help of them. Another
field of application is proposed in Fink, Geissel, Herbinger, and Seifried (2019). They
use OEU risk measures as risk constraint in a return-risk portfolio optimization problem.
In particular, the portfolio selection is constrained to an initial endowment. As already
mentioned, in this chapter we do not rely on an initial endowment constraint.

4.1.3 Path to a new risk measure

OCE and OEU are not adequate for our intended application for several reasons. They
only allow for investments in a single eligible asset to secure a payoff. But this is a
restriction, compare the motivation in Section 1.1.1. Furthermore, OCE and OEU only
consider implicitly the positive cone of almost surely bounded random variables as an
acceptance set. Hence, it is not possible to consider common legal requirements such as
the Value-at-Risk or the Expected Shortfall. Due to the aforementioned limitations, we
aim for the following generalizations:

(1) We allow for investments into multiple eligible assets instead of a single risk-free
eligible asset. (2) We allow for arbitrary preference restrictions, like e.g., Value-at-Risk
or Expected Shortfall. (3) To include a wide range of financial market models and
especially to be able to handle unbounded future payoffs, we use model spaces that
are larger than the space of almost surely bounded random variables. (4) We punish
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the hedging costs via a penalization term. This term can be the expected utility or
the certainty equivalent, i.e., we treat OCE and OEU simultaneously. For the sake of
brevity, we call the resulting new risk measure a scalarized utility-based multi-asset
(SUBMA) risk measure.

4.1.4 Contributions of this chapter

Analyzing SUBMA risk measures leads to demanding tasks from a mathematical as
well as an application-oriented point of view. The main findings in this chapter are
summarized below:

(i) Construction: The definition of the SUBMA risk measure as an instrument in
tight financial situations is new, see Definition 4.3.1.

(ii) Coherence: OCE risk measures are only coherent for piecewise linear utility
functions with a kink at 0, see e.g., Geissel et al. (2018, Example 1.5). In particular,
they are not coherent for strictly concave utility functions. But OEU risk measures
are coherent for utility functions with constant relative risk aversion. We show
that the latter remains valid if we use multiple eligible assets and arbitrary risk
constraints, see Theorem 4.4.4.

(iii) Karush-Kuhn-Tucker (KKT) conditions: We solve SUBMA risk measures
with respect to one-period financial market models by applying the KKT condi-
tions, see Sections 4.5.3 and 4.5.4.

(iv) Finiteness, continuity and optimal payoffs: For a one-period financial market
model, Proposition 4.6.1 characterizes the cases in which the SUBMA risk measure
attains +∞. Proposition 4.6.4 and Theorem 4.6.6 give sufficient conditions such
that the SUBMA risk measure does not attain −∞. If the SUBMA risk measure
is real-valued, then it is also continuous, see Theorem 4.6.12. Theorem 4.6.17
describes the existence and uniqueness of optimal payoffs.

(v) Representation result: Theorem 4.7.5 states a representation result for SUBMA
risk measures based on continuous-time trading. It leads to a numerical procedure
to determine the SUBMA risk measure. We present two benchmark examples.

4.1.5 Structure of this chapter

In Section 4.2, we explain the notions of utility functions and payoffs. In Section 4.3,
we formally introduce the SUBMA risk measure and describe its connections to multi-
asset, OCE and OEU risk measures. In Section 4.4, we verify convexity and coherence
properties. The aim of Sections 4.5 and 4.6 is to state sufficient finiteness and continuity
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conditions and to prove the existence and the uniqueness of optimal payoffs. In Sec-
tion 4.7, we consider SUBMA risk measures in continuous-time financial market models.

4.1.6 Standard notations and concepts

In addition to Sections 1.1.4, 2.1.5 and 3.1.6, we use the following standard notations and
concepts: Assume a non-empty set C and a function f : C → [−∞,∞]. If f is convex,
then we say that it is proper if it does not attain −∞ and dom(f) ̸= ∅. If f is concave,
then we say that it is proper if it does not attain ∞ and dom(f) ̸= ∅. The hypograph
of a map f : X → [−∞,∞] is defined as hypo(f) := {(X,α) ∈ X × R | f(X) ≥ α}.

If X is a Banach space with norm ∥.∥ : X → R, then the interior of a set C ⊂ X is
denoted by int∥.∥(C) or int(C) if the context is clear.

We write X ∼ N(µ, σ) to refer to a normal distributed random variable X with mean
µ ∈ R and standard deviation σ > 0.

4.2 Utility functions and financial positions

In this section, we introduce additional concepts needed for the definition of the new
risk measure.

4.2.1 Utility functions

The utility functions in Geissel et al. (2018, Definition 1.7) are restricted to a positive
domain. Hence, their OEU risk measures implicitly consider a risk constraint, namely
the acceptance set given by the positive cone L∞

+ . We have to use utility functions with
a larger domain such that further risk constraints can become relevant.

Definition 4.2.1 (Utility functions). A concave, proper, increasing and upper semicon-
tinuous function U : R → [−∞,∞) is called a utility function.

Throughout the whole chapter we fix a utility function U . The lower bound of the
effective domain of U is denoted by

xU := inf(dom(U)).

We set U(+∞) := lim
x→+∞

U(x). The so-called bliss point is given as

xU := inf{x ∈ R |U(x) = U(+∞)}.

The only point of discontinuity of U is xU . By upper semicontinuity the utility
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function is right-continuous at xU . Further, xU ≤ xU with equality if and only if U
is constant on its effective domain. We exclude this case by the following standing
assumption which is inspired by Biagini and Černý (2020, Convention 1.1).

Assumption 4.2.2. xU ≤ 0 < xU and there exists a unique x ∈ [0,∞) with U(x) = 0.

We denote the root of U by x∗
U . Some of our results rely on specific utility functions:

Definition 4.2.3 (Risk aversion). If the utility function U is twice continuously dif-
ferentiable on int(dom(U)) and U ′(x) > 0, U ′′(x) < 0 for all x ∈ int(dom(U)), then
we define the absolute risk tolerance for all x ∈ int(dom(U)) by τU (x) := − U ′(x)

U ′′(x) . For
constant absolute risk aversion (CARA) the map x 7→ 1

τU (x) is relevant. So, if 1
τU

is con-
stant, then U is a CARA utility function. For constant relative risk aversion (CRRA)
the map x 7→ x

τU (x) is relevant. So, if x
τU

is constant, then U is a CRRA utility function.

The most important utility functions in practice are CARA or CRRA utility functions.

Example 4.2.4 (Utility functions). (i) Exponential utility: Let δ > 0. The expo-
nential utility function is defined by U : R → R, x 7→ 1 − e−δx. Up to affine
transformations this is the form of a CARA utility function with 1

τU
= δ for all x.

(ii) Logarithmic utility: For x > 0 given by U(x) = ln(x). For x ≤ 0 given by
U(x) = −∞. Up to affine transformations this is the form of a CRRA utility
function with x

τU
= 1.

(iii) Power utility: Let δ > 0 with δ ̸= 1. The effective domain of a power utility
function is [0,∞) for δ < 1 and (0,∞) for δ > 1. On their effective domain the
power utility is given by U(x) = 1

1−δ

(
x1−δ − 1

)
. Up to affine transformations this

is the form of a CRRA utility function with x
τU

= δ.

4.2.2 Orlicz spaces

To prepare the choice of the model space X in the next section, we introduce Orlicz
spaces. They allow for a natural connection between payoffs and utility functions. An
Orlicz space is defined via a Young function which we introduce first.

Definition 4.2.5 (Young function). A Young function f : [0,∞) → [0,∞] is a convex
and lower semicontinuous function with f(0) = 0, lim

x→∞
f(x) = ∞ and f < ∞ on an

open neighborhood of 0.

Definition 4.2.6 (Orlicz space and Luxemburg norm). Let (Ω,F , P ) be a probability
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space and f a Young function. The Orlicz space with respect to f is defined by

Lf (Ω,F , P ) :=
{
X ∈ L0(Ω,F , P )

∣∣∣E[f(λ|X|)] < +∞ for some λ > 0
}
.

We also write Lf for short. For each X ∈ Lf the Luxemburg norm with respect to f is
defined as

∥X∥f := inf
{
λ > 0

∣∣∣∣E [f ( |X|
λ

)]
≤ 1

}
.

Remark 4.2.7. The Luxemburg norm is a Riesz norm (Zaanen, 1983, Theorem 131.5).
We always equip an Orlicz space Lf with the Luxemburg norm and the P -a.s. order.
Then we obtain a Banach lattice (Zaanen, 1983, Theorem 131.6). It satisfies the fol-
lowing continuous embeddings (when applying the corresponding inclusion maps), see
e.g., Biagini and Frittelli (2008, Section 2.1):

L∞ ↪→ Lf ↪→ L1.

For further details on Young functions and Orlicz spaces we refer to Zaanen (1983,
Chapter 19) and Krasnosel’skii and Rutickii (1961). In the latter reference Young func-
tions are called N -functions.

4.2.3 Financial positions

We use a static point of view to specify the model space X , i.e., payoffs are random
variables. To do so, we fix throughout the whole chapter a probability space (Ω,F , P ).

The choice of the vector space X is crucial. It has to be small enough such that
the integrals describing expected utility exist. Jensen’s inequality states that for each
integrable random variable X ∈ L1 the expectation of U(X) exists and

E[U(X)] ≤ U(E[X]) < +∞,

see e.g., Perlman (1974, Proposition 1.1) for a precise statement and Ferguson (1967,
Lemma 2.8.1) for a detailed proof. Note that E[U(X)] = −∞ can occur. Nevertheless,
the expected utility is well-defined. Hence, Lp-spaces are a natural choice for X .

The earlier mentioned Orlicz spaces are another possible choice for which we introduce
the following map:

Definition 4.2.8. Let a ∈ int(dom(U)). The map Ûa is defined by

Ûa : [0,∞) → [0,∞] , x 7→ U(a) − U(a− x).
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If a = 0, then we write Û for short.

The next result states that Ûa is a Young function, i.e., every utility function can
be transformed into a Young function which leads to the Orlicz space LÛa , see Defini-
tion 4.2.6.

Lemma 4.2.9. Ûa is a Young function.

Proof: It is straightforward to check the conditions in Definition 4.2.5.

The map Ûa performs a translation of the utility function U . Hence, if the random
variable X ∈ L0 should describe the payoff we have to check if X − a1Ω ∈ LÛa . Note
that X ∈ LÛa if and only if X − a1Ω ∈ LÛa .

Summarizing, unless otherwise stated, we work in this chapter under the following
assumption:

Assumption 4.2.10. Let X be either Lp with p ∈ [1,∞) or LÛa with a ∈ int(dom(U)).

For the sake of brevity, we denote the norm on X by ∥.∥X , i.e., if X = Lp with
p ∈ [1,∞), then ∥.∥X = ∥.∥Lp and if X = LÛa , then ∥.∥X = ∥.∥Ûa

, where ∥.∥Ûa
denotes

the Luxemburg norm, recall Definition 4.2.6.
Finally, we introduce two maps that play a key role in the risk assessment problem.

Definition 4.2.11 (Integral functional and certainty equivalent). The generalized in-
verse of the utility function U is given by

U−1 : [−∞,∞) → [−∞,∞] , y 7→ inf{x ∈ R |U(x) ≥ y}.

We define the following functions with respect to U :

(i) Integral functional: IU : X → [−∞,∞) , X 7→ E[U(X)],

(ii) Certainty equivalent: CU : X → [−∞,∞) , X 7→ U−1(E[U(X)]).

Remark 4.2.12. Note that we have U−1(−∞) = −∞ and thus, E[U(X)] = −∞ implies
CU (X) = −∞. To see that CU < ∞ we distinguish two cases:

(i) U strictly increasing on dom(U): By Jensen’s inequality

E[U(X)] ≤ U(E[X]) < U(+∞)

and hence, CU (X) < ∞. For instance, U(x) = 1 − e−x or U(x) = ln(x).



82 Scalarized utility-based multi-asset risk measures

(ii) U not strictly increasing on dom(U): Then U(+∞) < ∞ and

E[U(X)] = U(+∞) < ∞

is possible and in this case CU (X) = xU < ∞. For instance,

U(x) = 1 − e−x1(−∞,1)(x) − e−11[1,∞)(x).

4.3 Scalarized utility-based multi-asset risk measures

Based on the preliminaries in the previous section, we define the desired new risk mea-
sure.

Definition 4.3.1 (SUBMA risk measures). Assume an acceptance set A ⊂ X . The
corresponding scalarized utility-based multi-asset (SUBMA) risk measure for
X ∈ X with respect to Ψ ∈ {IU , CU} and a weighting factor α > 0 is defined by

ρα,Ψ,A,M,π(X) := inf{π(Z) − αΨ(X + Z) |Z ∈ M, X + Z ∈ A}.

Remark 4.3.2. If Ψ = IU , then the objective of the SUBMA risk measure is the sum
of two amounts measured in different units, i.e., π(Z) is a monetary amount and the
expected utility E[U(X +Z)] is not. Further, if we scale the utility function by a factor
c > 0, then the optimal solution changes. By adjusting the weighting factor to α

c the
solution does not change. In contrast, the certainty equivalent is not affected by affine
transformations of the utility function. So, if Ψ = CU , then an additional adjustment
of the weighting factor is not necessary.

The SUBMA risk measure combines multi-asset risk measures with OCE and OEU
risk measures, so that we benefit from the advantages of both concepts. Clarifying the
link to these concepts is the purpose of the rest of this section. Hence, in Section 4.3.1 we
show that multi-asset risk measures differ from SUBMA risk measures by the expected
utility term in the objective. Then, in Section 4.3.2 we show that SUBMA risk measures
cover OCE and OEU risk measures.

There is also a strong connection of SUBMA risk measures to the field of multi-
criteria optimization. SUBMA risk measures are scalarized versions of multi-objective
optimization problems, as we present in Section 4.3.3. The term scalarized then explains
our naming convention.
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4.3.1 Link to multi-asset risk measures

We recall the definition of a multi-asset risk measure, see Definition 1.3.9. Assume an
acceptance set A. The multi-asset risk measure for a payoff X ∈ X is defined by

ρA,M,π(X) = inf{π(Z) |Z ∈ M, X + Z ∈ A}.

The multi-asset risk measure asks for the minimal costs to create a hedging position
such that the total payoff is acceptable. The motivation for the SUBMA risk measure is
the fact that the multi-asset risk measure ignores the intention of an agent to maximize
her expected utility. Hence, we add the penalty term −αΨ(X + Z) to the costs π(Z).
With the help of the penalty factor, the impact of the utility criterion can be controlled.
For lower values of α, minimizing costs is more important than the preferences of the
agent. Concluding, the agent is willing to create an expensive hedging position, if it
increases the expected utility significantly.

4.3.2 Link to OCE and OEU

The previous mentioned penalization of the hedging costs in the SUBMA risk measure
is inspired by OCE and OEU risk measures. In the following examples, we explain
similarities and differences between SUBMA, OCE and OEU risk measures.

For both examples, we use the same setting: For a finite time T > 0, we assume a bank
account with initial price B0 > 0 and deterministic future payoff BT > 0. Assume that
M = span{BT }. This implies ker(π) = {0}. Denote the discount factor by β := B0/BT .

Example 4.3.3 (OCE (Ben-Tal & Teboulle, 1986; Ben-Tal & Teboulle, 2007)). Assume
β = α = 1. For an arbitrary acceptance set A we obtain

ρα,IU ,A,M,π(X) = inf{η − IU (X + η) |X + η ∈ A}.

Beside the risk constraint given by the acceptance set (A ≠ X ) this is exactly the form
of the OCE risk measure in Ben-Tal and Teboulle (2007). If dom(U) = [0,∞], then the
constraint given by A = X+ is implicitly included in their formulation. Further, the
payoffs in Ben-Tal and Teboulle (2007) are essentially bounded random variables. So
our model space X is larger. Further, their utility function U satisfies U(0) = 0 and
1 ∈ ∂U(0). We use such utility functions in Theorem 4.6.6.

Example 4.3.4 (OEU (Geissel et al., 2018)). Let A = X+. For X ∈ X we then obtain

ρα,CU ,A,M,π(X) = inf
{
m− αCU

(
X + m

B0
BT

) ∣∣∣∣m ∈ R, X + m

B0
BT ∈ X+

}
.
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With the linear transformation η = m
B0
BT we get

ρα,CU ,A,M,π(X) = inf
η∈R

X+η∈X+

(
βη − αCU (X + η)

)
.

Further restrictions in the setting of Geissel et al. (2018) are the following: As for the
OCE risk measure, the payoffs are essentially bounded random variables. Further, U is
strictly increasing, strictly continuous and three times continuously differentiable on the
interior of its effective domain given by int(dom(U)) = (0,∞). Finally, τU is concave.

Geissel et al. (2018, page 77) note that the weighting factor α "[. . . ] captures the
investor’s subjective time preference [. . . ]" which also holds for the SUBMA risk measure.

Concluding, OCE and OEU risk measures are special cases of SUBMA risk measures
which differ in the choice of Ψ.

4.3.3 Link to multi-objective optimization

Let us now shortly sketch the derivation of the SUBMA risk measure by multi-objective
optimization techniques. Consider the two objectives of minimizing costs and maxi-
mizing expected utility separately. They work in the opposite directions. The optimal
solutions lead to a Pareto front. One possibility to calculate this front is the application
of a linear scalarization which is a multi-objective optimization approach. This is the
idea behind the SUBMA risk measure and it explains the term scalarized in SUBMA.

There is a bunch of literature focusing on multiple criteria for portfolio decisions.
For instance, Qi, Steuer, and Wimmer (2017) and Köksalan and Şakar (2016) select
portfolios based on three criteria. Dächert, Grindel, Leoff, Mahnkopp, Schirra, and
Wenzel (2021) use a multi-criteria approach to support portfolio decisions in practice.
All of these approaches rely on the reallocation of an initial endowment and they do not
cover the case of a capital increase as the SUBMA risk measure does.

4.4 Desirable properties: Convexity and coherence

In this section, we examine properties often used to define risk measures from an ax-
iomatic point of view. We are interested in monotonicity, invariance with respect to
marketed payoffs, convexity and positive homogeneity. These properties are suggested
by Artzner et al. (1999). Our main motivation is to generalize a result for OEU risk
measures, motivated by the following quote from Geissel et al. (2018, page 79):

To the best of our knowledge, OEU is the only non-trivial utility-based risk
measure that is coherent for power utility functions [. . . ]
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We achieve this goal in Theorem 4.4.4. It states that the SUBMA risk measure is
coherent, if Ψ = CU with a CRRA utility function U and a convex cone as acceptance
set. Throughout the whole section we fix an acceptance set A, Ψ ∈ {IU , CU} and α > 0.

4.4.1 Monotonicity, M-invariance and convexity

The following result describes the monotonicity, the invariance with respect to marketed
payoffs and the convexity of SUBMA risk measures.

Proposition 4.4.1. The following statements hold:

(i) Monotonicity: X ≥ Y P -a.s. implies ρα,Ψ,A,M,π(X) ≤ ρα,Ψ,A,M,π(Y ).

(ii) M-invariance: ρα,Ψ,A,M,π(X + Z) = ρα,Ψ,A,M,π(X) − π(Z) for every Z ∈ M.

(iii) Convexity for IU : Convex A implies ρα,IU ,A,M,π being convex.

(iv) Convexity for CU : Convex A and concave CU imply ρα,CU ,A,M,π being convex.

Proof: To prove (i) assume X,Y ∈ X , Z ∈ M with X ≥ Y P -a.s. and Y + Z ∈ A.
By monotonicity of A we obtain that X + Z ∈ A. By Lemma B.1 and Lemma B.4 the
map Ψ is increasing which implies that π(Z) − αΨ(Y + Z) ≥ π(Z) − αΨ(X + Z). This
proves monotonicity. Assertions (iii) and (iv) are consequences of the concavity of IU
(see Lemma B.1) as well as of CU and the convexity of A. Statement (ii) is elementary
and we omit the proof.

In general the certainty equivalent is not concave. Ben-Tal and Teboulle (2007, Corol-
lary 5.1) state conditions on the utility function such that it becomes concave. This
result holds for utility functions that do not attain −∞, i.e., U : R → R. Geissel et al.
(2018, Theorem 2.5) give a proof for utility functions with positive effective domain. We
introduce a tailor-made result for our needs.

Corollary 4.4.2 (Concavity of CU ). Assume that the restriction of U to int(dom(U))
is three times continuously differentiable, strictly increasing and strictly concave. If τU
is concave, then CU is concave.

Proof: The proof works analogously to the one of Geissel et al. (2018, Theorem 2.5).
Let (X,α) , (Y, β) ∈ hypo(CU ) and λ ∈ (0, 1). Hence,

P (X ∈ dom(U)) = P (Y ∈ dom(U)) = 1.
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The following map is convex:

g : dom(U) × dom(U) → R, (y, z) 7→ U(λU−1(y) + (1 − λ)U−1(z)).

By Jensen’s inequality it follows that

E[U(λX + (1 − λ)Y )] = E[g(U(X), U(Y ))] ≥ g(E[U(X)], E[U(Y )]).

Hence,

CU (λX + (1 − λ)Y ) ≥ λCU (X) + (1 − λ)CU (Y ) ≥ λα+ (1 − λ)β

and hypo(CU ) is concave, i.e., CU is concave.

In the next section, we analyze the positive homogeneity of the SUBMA risk measure.
Together with the convexity of the SUBMA risk measure in the situation of a convex
certainty equivalent, we obtain a coherence result by applying a CRRA utility function
and a convex cone as acceptance set.

4.4.2 Coherence

The OEU risk measure is positive homogeneous for CRRA utility functions (Geissel
et al., 2018, Theorem 2.7). We find out that this result also holds for SUBMA risk
measures by using a cone as acceptance set.

Lemma 4.4.3 (Positive homogeneity). Assume U is a CRRA utility function and there
exists M ∈ (M ∩ X+)\{0} with E[U(M)] > −∞. Further, let A be a cone. Then
ρα,CU ,A,M,π is positive homogeneous, i.e., epi(ρα,CU ,A,M,π) is a cone.

Proof: Assume that (X, γ) ∈ epi(ρα,CU ,A,M,π). Then, for λ ≥ 0 we have to prove that
λ(X, γ) ∈ epi(ρα,CU ,A,M,π). We first assume λ > 0. Up to affine transformations U
is a power or logarithmic utility function, because it is of CRRA type. So, we can
concentrate on the case of a power or logarithmic utility function. Then we see that
E[U(λX)] = −∞ if and only if E[U(X)] = −∞. Together with Pratt (1964, Theorem 6)
we have for all X ∈ X that 1

λCU (λX) = CU (X). Hence, we obtain

ρα,CU ,A,M,π(λX) = λ inf
{
π

(
Z

λ

)
− α

1
λ
CU (λX + Z)

∣∣∣∣Z ∈ M, λX + Z ∈ A
}

= λ inf
{
π(Z∗) − α

1
λ
CU (λ (X + Z∗))

∣∣∣∣Z∗ ∈ M, λ(X + Z∗) ∈ A = λA
}

= λ inf{π(Z∗) − αCU (X + Z∗) |Z∗ ∈ M, X + Z∗ ∈ A}

= λρα,CU ,A,M,π(X).
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This implies ρα,CU ,A,M,π(λX) ≤ λγ and λ(X, γ) ∈ epi(ρα,CU ,A,M,π). It remains the case
λ = 0. Note that it is enough to prove ρα,CU ,A,M,π(0) ∈ {−∞, 0}. By conicity of A
we have 0 ∈ A. By monotonicity we get M ∈ A. Hence, for each n ∈ N it holds that
1
nM ∈ M ∩ A. Further,

π

( 1
n
M

)
− αCU

( 1
n
M

)
= 1
n

(
π(M) − αCU (M)

)
→ 0

and hence,

ρα,CU ,A,M,π(0) ≤ π

( 1
n
M

)
− αCU

( 1
n
M

)
→ 0.

To conclude the proof we show that ρα,CU ,A,M,π(0) ∈ (−∞, 0) can not occur. The
latter is equivalent to the existence of Z∗ ∈ M ∩ X+ with π(Z∗) − αCU (Z∗) < 0
and the existence of a constant c ∈ (−∞, 0) such that for all Z ∈ M ∩ X+ we have
π(Z) − αCU (Z) ≥ c. Assume that there exist a constant m∗ > 0 and Z∗

0 ∈ ker(π)
such that m∗M + Z∗

0 ∈ X+\{0} and m∗π(M) − αCU (m∗M + Z∗
0 ) < 0. Without loss

of generality, we assume π(M) = 1. Let U be a logarithmic utility function U . The
following argumentation holds analogously for power utility functions. Then, by the
previous condition we obtain − ln(α) < E

[
ln
(
M + Z∗

0
m∗

)]
. To show that the objective

function is not bounded from below choose an arbitrary constant c < 0 such that

ln
(
m∗ − c

α

)
≥ E[ln(m∗M + Z∗

0 )] > −∞.

Note that for every n ∈ N it holds nZ∗
0 ∈ ker(π). Further, X+ is a cone. This implies

n(m∗M + Z∗
0 ) ∈ X+\{0}. We obtain

ln
(
nm∗ − c

α

)
− E[ln(nm∗M + nZ∗

0 )] = − ln(α) − E

[
ln
(
M + Z∗

0
m∗

)]
︸ ︷︷ ︸

<0

+ ln
(

1 − c

nm∗

)
︸ ︷︷ ︸

→0

.

Hence, for large enough n we have

ln
(
nm∗ − c

α

)
< E[ln(nm∗M + nZ∗

0 )]

which implies that ρα,CU ,A,M,π(0) = −∞ and (0, 0) ∈ epi(ρα,CU ,A,M,π).

Summarizing, we obtain that the SUBMA risk measure is coherent if we use a CRRA
utility function and a convex cone as acceptance set.

Theorem 4.4.4 (Coherence). In the same situation as in Lemma 4.4.3 by assuming
that A is also convex, the SUBMA risk measure ρα,CU ,A,M,π is coherent.
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Proof: This follows by combining Proposition 4.4.1, Corollary 4.4.2 and Lemma 4.4.3.

4.5 One-period trading: Model and absence of good deals

It is a common assumption for multi-asset risk measures that the marketed space M
is finite-dimensional, see e.g., Liebrich and Svindland (2017), Liebrich and Svindland
(2019) and Baes et al. (2020). In the simplest form this corresponds to a single trading
period. We have used such a situation already in the previous chapters. Now we assume
again a one-period financial market model which we introduce in Section 4.5.1. As a
preparation for the next section, we need the absence of good deals of the first kind
condition that we discuss in Section 4.5.2. Then in Sections 4.5.3 and 4.5.4 we show
how to solve the SUBMA risk measure via a Lagrange ansatz.

4.5.1 Standard one-period model

We assume the following one-period financial market model which we call a standard
one-period model:

We use a finite time horizon T > 0. Let the market consist of a risk-free asset with
price B0 > 0 and future deterministic value BT > 0. Further, there are d ∈ N risky
assets with price vector S0 =

(
S1

0 , . . . , S
d
0

)⊺
∈ Rd and payoffs ST =

(
S1
T , . . . , S

d
T

)⊺
, a

d-dimensional vector of random variables in X . This gives us the following marketed
space:

M = span{BT , S1
T , . . . , S

d
T }.

The pricing functional for shares φB ∈ R and φ ∈ Rd is defined by

π
(
φBBT + ⟨φ, ST ⟩

)
= φBB0 + ⟨φ, S0⟩.

Note that every Z ∈ ker(π) can be represented by a vector φ ∈ Rd in the form

Z =
〈
S0
B0
BT − ST , φ

〉
.

4.5.2 Absence of good deals

Recall the concept of good deals of the first kind, see Definition 1.3.2. We characterize
the absence of good deals of the first kind condition in the standard one-period model
using an acceptance set based on a monetary risk measure. In doing so, we make the
following standing assumption:
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Assumption 4.5.1. The risk measure ρ is a proper, lower semicontinuous and positive
homogeneous monetary risk measure.

Proposition 4.5.2 (Absence of good deals of the first kind with d risky assets). In the
standard one-period model the following conditions are equivalent:

(1) (Aρ ∩ ker(π))\{0} = ∅.

(2) For each x ∈ ∂ Bd it holds that BT
B0

⟨S0, x⟩ < ρ(−⟨ST , x⟩).

Proof: Condition (1) is equivalent to the following statement: For every φ ∈ Rd\{0} it
holds that BT

B0

〈
S0,

φ
∥φ∥2

〉
< ρ

(
−
〈
ST ,

φ
∥φ∥2

〉)
. But this is equivalent to (2).

In the standard one-period model the absence of good deals of the first kind is equiv-
alent to the absence of general good deals. This is shown in the next result.

Proposition 4.5.3. In the standard one-period model, the following statements are
equivalent:

(1) (Aρ ∩ ker(π))\{0} = ∅.

(2) For every pair (m,φ) ∈
(
R × Rd

)
\ {0} with π

(
BT
B0
m+

〈
BT
B0
S0 − ST , φ

〉)
≤ 0 it

holds that BT
B0
m+

〈
BT
B0
S0 − ST , φ

〉
/∈ Aρ.

Proof: The implication (2) ⇒ (1) is obvious. For the inverse implication note that for
all λ ∈ (0,∞) we have ρ(−λBT ) = λBT > 0. The claim follows by Baes et al. (2020,
Proposition 2.6).

Remark 4.5.4. The implication (1) ⇒ (2) does not hold in general situations, see Ex-
ample 2.4.3 and Baes et al. (2020, Example 2.9).

We conclude this section by illustrating the absence of good deals of the first kind
condition in two concrete financial market models. For the sake of simplicity, we start
with a Bachelier model. In the second example, we use a Black-Scholes model.

Example 4.5.5 (Bachelier model). We set d = 2. Let σ1, σ2 > 0 and assume that
W 1
T ,W

2
T are two uncorrelated normally distributed random variables with mean zero

and variance T . The interest rate of the risk-free asset is denoted by r < 0. For the
start prices of the stocks, we assume that S1

0 , S
2
0 > 0. The marketed values of the three

assets at T are given by

BT = B0e
rT , S1

T = S1
0 + σ1W

1
T , S

2
T = S2

0 + σ2W
2
T .
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Further, we use an acceptance set based on the Expected Shortfall with level λ ∈ (0, 0.5).
Now we show that the following parameter constellation leads to a market without good
deals of the first kind:

T = 1, λ = 2.5%, r = −1%, S1
0 = S2

0 = 1, σ1 = 20%, σ2 = 15%.

To see this, we plot on the left-hand side in Figure 4.3 the relation

∂ B2 → R, x 7→ ρ(−⟨ST , x⟩) − erT ⟨S0, x⟩.

Since every point is strictly positive, by Proposition 4.5.2 the market is free of good
deals of the first kind.

Figure 4.3: Relations ∂ B2 → R, x 7→ ρ(−⟨ST , x⟩) − erT ⟨S0, x⟩ to prove the absence of
good deals of the first kind condition in Examples 4.5.5 and 4.5.6.

Example 4.5.6 (Black-Scholes model). As in the previous example, we set d = 2 and
model the bank account as in there. The future stock prices are given by geometric
Brownian motions. The drift and volatility parameters are b1, b2 ∈ R and σ1, σ2 > 0.
The start prices of the stocks are S1

0 , S
2
0 > 0. Finally, let W 1

T ,W
2
T be two uncorrelated

normally distributed random variables with mean zero and variance T . The asset values
at time T are given by

BT = B0e
rT , S1

T = S1
0e

(b1− 1
2σ

2
1)T+σ1W 1

T , S2
T = S2

0e
(b2− 1

2σ
2
2)T+σ2W 2

T .

We use an acceptance set based on the Expected Shortfall with level λ = 2.5% and the
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following parameters:

T = 1, r = −1%, S1
0 = S2

0 = 1, b1 = 5%, b2 = 2%, σ1 = 20%, σ2 = 15%.

The Expected Shortfall of a sum of stocks is calculated via a Monte-Carlo Simulation
with 10 000 random variables per stock. On the right-hand side in Figure 4.3, we plot
the analog relation as before: ∂ B2 → R, x 7→ ρ(−⟨ST , x⟩) − erT ⟨S0, x⟩. Every point is
strictly positive and hence, the market is free of good deals of the first kind.

4.5.3 Karush-Kuhn-Tucker conditions

A Lagrange ansatz can lead to an optimal payoff. We use an acceptance set based on a
convex monetary risk measure ρ. Note that the underlying optimization problem of the
SUBMA risk measure satisfies the linear independence constraint qualification (LICQ),
because it admits only one inequality constraint. Hence, a local minimum satisfies the
Karush–Kuhn–Tucker (KKT) conditions. By introducing a slack variable s ≥ 0, we
obtain the following Lagrangian function:

L(m,φ, λ, s) :=m− αΨ
(
X + BT

B0
m+

〈
BT
B0

S0 − ST , φ

〉)
− λ

(
m− B0

BT
ρ(X − ⟨ST , φ⟩) + ⟨S0, φ⟩ − s2

)
.

The variable λ denotes the multiplier. Let us assume that for each (m,φ) ∈ R × Rd it
holds that

X + BT
B0

m+
〈
BT
B0

S0 − ST , φ

〉
∈ dom(Ψ).

To write down the KKT conditions, we assume that the following two functions are
continuously differentiable:

f : R × Rd → R, (m,φ) 7→ Ψ
(
X + BT

B0
m+

〈
BT
B0

S0 − ST , φ

〉)
,

g : R × Rd → R, (m,φ) → m− B0
BT

ρ(X − ⟨ST , φ⟩) + ⟨S0, φ⟩.

Then the KKT conditions are as follows:

(i) For all i ∈ {1, . . . , d} :
∂

∂φi
L(m,φ, λ, s) = −α ∂

∂φi

(
Ψ
(
X + BT

B0
m+

〈
BT
B0

S0 − ST , φ

〉))
+ λ

B0
BT

∂

∂φi

(
ρ(X − ⟨ST , φ⟩)

)
− λSi0 = 0,
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(ii) ∂

∂m
L(m,φ, λ, s) = 1 − α

∂

∂m

(
Ψ
(
X + BT

B0
m+

〈
BT
B0

S0 − ST , φ

〉))
− λ = 0,

(iii) ∂

∂λ
L(m,φ, λ, s) = m− B0

BT
ρ(X − ⟨ST , φ⟩) + ⟨S0, φ⟩ − s2 = 0,

(iv) λ ≥ 0, λs = 0.

If Ψ is concave and ρ is convex, then solving the KKT conditions gives us a minimizer.
Next, we state a concrete situation in which the KKT conditions lead to an optimal
portfolio, i.e., they are sufficient for a solution to be a minimizer.

4.5.4 Numerical example

Assume a standard one-period model based on two stocks with initial value one. The
total return in one year for stock i ∈ {1, 2} is normally distributed, i.e., Si1 ∼ N(µi, σi).
The correlation between the stock payoffs S1

1 and S2
1 is denoted by ρ1,2 ∈ [−1, 1]. We

assume that the second stock is traded on a stock exchange that is not available to the
investor, i.e., S2

1 /∈ M. Hence, the marketed space is assumed to be M = span{1Ω, S
1
1},

that is, buy-and-hold strategies with respect to a bank account and a stock. The pricing
functional π : M → R is defined by π(x1Ω + yS1

1) = x+ y for all x, y ∈ R. Further, we
assume an ES acceptance set AESλ

with level λ ∈ (0, 1). The preferences of the agent
are modeled by the exponential utility function U(x) = 1 − e−x.

For initial numbers of shares ωB, ω1, ω2 ∈ R we obtain for the SUBMA risk measure
with respect to Ψ ∈ {IU , CU} and α > 0 that

ρα,Ψ,AESλ
,M,π(ωB1Ω + ω1S

1
1 + ω2S

2
1) = ρα,Ψ,AESλ

,M,π(ω2S
2
1) − ωB − ω1.

Hence, we can focus on calculating ρα,Ψ,AESλ
,M,π(ω2S

2
1), i.e., ωB = ω1 = 0. Direct

calculations lead to the objective functions of the SUBMA risk measures depending
on the hedging costs and the negative number of stock shares which we denote by
m ∈ R and x ∈ R. For the sake of brevity, we set µ(m,x) := m + x − µ1x + ω2µ2

and σ(x) :=
√

(σ1x)2 − 2ρ1,2ω2σ1σ2x+ (ω2σ2)2. Then, for the certainty equivalent the
objective function of the SUBMA risk measure is

(m,x) 7→ m− αµ(m,x) + α
(σ(x))2

2 . (4.1)

The parameter µ2 is not relevant to find the optimal portfolio. If the stocks are uncorre-
lated, then all parameters of S2

1 only appear as constant shifts in the objective function.
This is not the case for the objective function using the expected utility:

(m,x) 7→ m− α+ α exp
(

−µ(m,x) + 1
2 (σ(x))2

)
. (4.2)
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Hence, all parameters of S2
1 are relevant for the portfolio selection. Especially, µ2 be-

comes relevant to find the optimal portfolio. The objective functions (4.1) and (4.2)
are continuously differentiable and convex. Both are illustrated in Figure 4.4 for the
following parameter constellation:

α = 0.6, µ1 = 1.075, σ1 = 0.1, µ2 = 1.2, σ2 = 0.3, ρ1,2 = −0.1, ω2 = 0.5.

(a) Certainty equivalent (b) Expected utility

Figure 4.4: Objective functions of SUBMA risk measures in dependence of hedging costs
m and shares x.

The objective function with respect to the certainty equivalent behaves more linearly
then the objective function with respect to the expected utility. The objective for the
expected utility admits an exponential growth for short positions (m < 0).

The Expected Shortfall leads to the following constraint for the optimization problem:

ESλ(ω2S
2
1 +m+ (1 − x)S1

1) = −µ(m,x) + ϕ(Φ−1(λ))
λ

σ(x) ≤ 0.

The left-hand side of this inequality is continuously differentiable for m and x. Further,
the Expected Shortfall is convex. Then solving the KKT conditions leads to an optimal
payoff.

The constraint and the contour lines of the objective functions for λ = 0.025 are
illustrated in Figure 4.5. The red points are the optimal solutions of the SUBMA risk
measures, calculated by solving the KKT conditions. The blue points correspond to
the optimal solution of the classical multi-asset risk measure. We see that all solutions
differ. The hedging costs of the solutions are nearly the same. But the allocation of the
hedging costs is significantly different. In comparison to the multi-asset risk measure,
the SUBMA risk measure leads to a higher stock position. Hence, the agent tries to
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benefit from the excess return of the stock position to increase her utility. This effect is
stronger when using the certainty equivalent instead of the expected utility.

(a) Certainty equivalent (b) Expected utility

Figure 4.5: Contour lines of the SUBMA risk measures in dependence of hedging costs
m and shares x for α = 0.6. The gray area corresponds to the allowed
portfolios out of the Expected Shortfall constraint. The red points are the
optimal solutions of the SUBMA risk measures. The blue points are the
optimal solution with respect to the multi-asset risk measure. The black
triangle is the optimal solution of the SUBMA risk measure with respect to
the scaled utility function U(x) = 0.5(1 − e−x).

The black triangle in the plot on the right-hand side is the optimal solution of the
SUBMA risk measure if we scale the utility function by the factor 0.5. Such a scaling
does not affect the optimal solution with respect to the certainty equivalent, compare Re-
mark 4.3.2.

4.6 One-period trading: Finiteness, continuity and optimal
payoffs

Now we examine the finiteness and the continuity of the SUBMA risk measure in the
standard one-period model. Further, we give sufficient conditions for the existence and
uniqueness of optimal payoffs. For this we fix a weighting factor α > 0.

4.6.1 Finiteness

For risk measures using a single eligible asset S it is important to validate if the value +∞
is attained, compare the discussion in Section 1.3.3. The following result characterizes
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the situations in which the SUBMA risk measure attains +∞.

Proposition 4.6.1 (ρα,Ψ,Aρ ,M,π = +∞). Let X ∈ X . Then
(
{X} + M

)
∩ Aρ ̸= ∅ and

the following statements are equivalent:

(1) ρα,Ψ,Aρ ,M,π(X) = +∞.

(2) Ψ(Y ) = −∞ for all Y ∈
(
{X} + M

)
∩ Aρ.

Proof: Assume that there exists X ∈ X such that
(
{X} + M

)
∩ Aρ = ∅. This implies

that for every λ ∈ R and every Z ∈ Aρ we have

ρ(Z) ≤ 0 < ρ(X) + λBT ,

i.e., the functional ρ is non-zero and strictly separates the points between the sets
{X} + M and Aρ . Since ρ is finite-valued the above inequality leads to a contradiction
and so we have

(
{X} + M

)
∩ Aρ ̸= ∅. The equivalence between (1) and (2) is then a

direct consequence of
(
{X} + M

)
∩ Aρ ̸= ∅.

Remark 4.6.2. In contrast to the classical risk measures, the SUBMA risk measure
can attain +∞ even if it is possible to pass the capital adequacy test. This is the worst
situation for the agent, because the legal requirements can not be satisfied by buying a
marketed portfolio such that the expected utility of the final payoff is finite. The agent
is not willing to buy such a marketed portfolio.

The following example shows that there are indeed situations such that the condition
in Proposition 4.6.1 is satisfied, i.e., the SUBMA risk measure becomes infinite.

Example 4.6.3. Let d = 1 and consider the exponential utility function U(x) = 1−e−x.
The market consists of a bank account that is constant over time BT = B0 = 1. The
stock ST is log-normally distributed and S0 = 1. The payoff is −X with X being log-
normally distributed and independent of ST . For an arbitrary monetary risk measure ρ
there exist m,φ ∈ R such that ρ(−X +m−φ+φST ) ≤ 0, because this is equivalent to
ρ(−X + φST ) + φ ≤ m. Hence, it is possible to hedge the financial position such that
it becomes acceptable. But for each combination of m and φ we obtain

E[U(−X +m− φ+ φST )] = 1 − e−m+φE
[
eX
]
E
[
e−φST

]
= −∞,

because E
[
eX
]

= ∞. Hence, the payoffs in M are not suitable to hedge X.

In the following, we develop sufficient conditions such that the SUBMA risk measure
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does not attain −∞. Note that it attains −∞ for a payoff X, if there exists a sequence
(Zn)n∈N ⊂ M such that (X + Zn)n∈N ⊂ A and π(Zn) − αΨ(X + Zn) → −∞. This
implies that either the hedging costs become arbitrarily small or the value of Ψ becomes
arbitrarily large.

If Ψ = IU and U is bounded from above, then Ψ can not become arbitrarily large.
The next result deals with such utility functions.

Proposition 4.6.4 (Utility functions bounded from above). Assume that the standard
one-period model is free of good deals of the first kind and U is bounded from above,
i.e., U(+∞) < ∞. Then ρα,IU ,Aρ ,M,π > −∞.

Proof: Let X ∈ X . For the sake of brevity, we set g(φ) = B0
BT
ρ(X − ⟨ST , φ⟩) − ⟨S0, φ⟩.

Then we obtain

ρα,IU ,Aρ ,M,π(X) ≥ inf
φ∈Rd

inf
m≥g(φ)

(
m− αU(+∞)

)
= −αU(+∞) + inf

φ∈Rd
g(φ). (4.3)

Lower semicontinuity of ρ implies lower semicontinuity of g. We show that g is coercive
(compare Definition A.10). For this, consider part (3) in Lemma A.13 and choose an
arbitrary sequence (φn)n∈N in Rd such that every φn ̸= 0, ∥φn∥2 → ∞ and

(
φn

∥φn∥2

)
n∈N

converges to a point contained in the unit sphere y ∈ ∂ Bd. By positive homogeneity of
ρ we get

lim
n→∞

g(φn) = lim
n→∞

∥φn∥2

(
B0
BT

ρ

(
X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉)
−
〈
S0,

φn
∥φn∥2

〉)
. (4.4)

By absolute homogeneity and subadditivity of the norm ∥.∥X we obtain∥∥∥∥∥ X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉
+ ⟨ST , y⟩

∥∥∥∥∥
X

≤
∥∥∥∥∥ X

∥φn∥2

∥∥∥∥∥
X

+
d∑
i=1

∥∥∥∥∥
(
yi − φin

∥φn∥2

)
SiT

∥∥∥∥∥
X

= 1
∥φn∥2︸ ︷︷ ︸

→0

∥X∥X︸ ︷︷ ︸
≥0

+
d∑
i=1

∣∣∣∣∣yi − φin
∥φn∥2

∣∣∣∣∣︸ ︷︷ ︸
→0

∥∥∥SiT ∥∥∥X︸ ︷︷ ︸
≥0

.

Hence, the sequence
(

X
∥φn∥2

−
〈
ST ,

φn

∥φn∥2

〉)
n∈N

converges to −⟨ST , y⟩ with respect to
the norm ∥.∥X . From lower semicontinuity of ρ we obtain

lim inf
n→∞

(
B0
BT

ρ

(
X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉)
−
〈
S0,

φn
∥φn∥2

〉)
≥ B0
BT

ρ(−⟨ST , y⟩) − ⟨S0, y⟩.

The right-hand side of this inequality is strictly positive by the absence of good deals
of the first kind. Together with (4.4), g is coercive. By Lemma A.11 and (4.3) we have
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that ρα,IU ,Aρ ,M,π > −∞.

The reason for the desirable behavior in the previous result is demonstrated in the
following example, using an exponential utility function and the zero payoff.

Example 4.6.5 (Exponential utility). Let U(x) = 1 − e−δx with δ > 0. Hence, U < ∞
and by this upper bound ρα,IU ,Aρ ,M,π(0) = −∞ is only possible if the price of the hedging
portfolio goes to −∞ and at the same time for all m < 0 it holds that Aρ ∩ Mm ̸= ∅.
The latter is not possible if the market is free of good deals of the first kind, because
of Proposition 4.5.3. Hence, we obtain ρα,IU ,Aρ ,M,π(0) > −∞.

Now we present a sufficient condition such that the SUBMA risk measure does not
attain −∞, even for utility functions that are unbounded from above. This condition
helps the regulator to design a capital adequacy test, see Remark 4.6.7.

To do so, let us denote the collection of all supergradients of a concave function
f : R → [−∞,∞] at a point x by ∂f(x). For more details on these terms we refer
to Aliprantis and Border (2006, Section 7.4) and Rockafellar (1970, Sections 23 and 24).

Theorem 4.6.6 (ρα,Ψ,Aρ ,M,π > −∞). Assume that the standard one-period model is free
of good deals of the first kind and let α ∈

(
0, B0

BT

)
. If Ψ = IU , then assume in addition

that 1 ∈ ∂U(x) for some x ∈ dom(U). If for every y ∈ ∂ Bd with BT
B0

⟨S0, y⟩ > ⟨E[ST ], y⟩
it holds that

α <

(
ρ(−⟨ST , y⟩) − BT

B0
⟨S0, y⟩

ρ(−⟨ST , y⟩) − ⟨E[ST ], y⟩

)
B0
BT

, (4.5)

then the SUBMA risk measure ρα,Ψ,Aρ ,M,π does not attain the value −∞.

Proof: Fix an arbitrary X ∈ X . We start with the case of Ψ = IU . Let x ∈ dom(U) such
that 1 ∈ ∂U(x), i.e., for all z ∈ R we have U(z) ≤ z+U(x)−x. Note that U(x)−x ∈ R.
For the sake of brevity, set Y = X + U(x) − x and g(φ) = B0

BT
ρ(X − ⟨ST , φ⟩) − ⟨S0, φ⟩.

Then we obtain the following inequality:

ρα,IU ,Aρ ,M,π(X) = inf
φ∈Rd

inf
m≥g(φ)

(
m− αE

[
U

(
X + BT

B0
m+

〈
BT
B0

S0 − ST , φ

〉)])
≥ inf

φ∈Rd
inf

m≥g(φ)

((
1 − α

BT
B0

)
m− αE[Y ] − α

BT
B0

⟨S0, φ⟩ + α⟨E[ST ], φ⟩
)

= −αE[Y ] + inf
φ∈Rd

((
1 − α

BT
B0

)
g(φ) − α

BT
B0

⟨S0, φ⟩ + α⟨E[ST ], φ⟩
)

= −αE[Y ] + inf
φ∈Rd

((
B0
BT

− α

)
ρ(X − ⟨ST , φ⟩) + ⟨αE[ST ] − S0, φ⟩

)
.
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For the case of Ψ = CU , we develop an analogous result. By applying Jensen’s inequality
we obtain

ρα,CU ,Aρ ,M,π(X) ≥ inf
m∈R,φ∈Rd

m≥g(φ)

(
− αE[X] +

(
1 − α

BT
B0

)
m− α

BT
B0

⟨S0, φ⟩ + α⟨E[ST ], φ⟩
)
.

This simplifies to

ρα,CU ,Aρ ,M,π(X) ≥ −αE[X] + inf
φ∈Rd

((
B0
BT

− α

)
ρ(X − ⟨ST , φ⟩) + ⟨αE[ST ] − S0, φ⟩

)
.

Comparing the inequalities for the cases of expected utility and certainty equivalent, we
see that the expressions in the infima correspond to the following function:

f : Rd → R, φ 7→
(
B0
BT

− α

)
ρ(X − ⟨ST , φ⟩) + ⟨αE[ST ] − S0, φ⟩.

By lower semicontinuity of ρ, we see that f is lower semicontinuous. Now we proceed
as in the proof of Proposition 4.6.4 and show that f is coercive. To this end, choose an
arbitrary sequence (φn)n∈N in Rd such that every φn ̸= 0, ∥φn∥2 → ∞ and

(
φn

∥φn∥2

)
n∈N

converges to a point y ∈ ∂ Bd. For the sake of brevity, we also set γ =
(
B0
BT

− α
)
> 0.

This implies that

lim
n→∞

f (φn) = lim
n→∞

∥φn∥2︸ ︷︷ ︸
→∞

γρ
(

X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉)
+
〈
αE[ST ] − S0,

φn
∥φn∥2

〉
︸ ︷︷ ︸

=:xn

 .

Further, with the same arguments as in the proof of Proposition 4.6.4 it holds that

lim inf
n→∞

ρ

(
X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉)
≥ ρ(−⟨ST , y⟩) ∈ R.

For the sequence (xn)n∈N we obtain

lim inf
n→∞

xn ≥ γρ(−⟨ST , y⟩) + ⟨αE[ST ] − S0, y⟩ =: x(α, y).

By a straightforward calculation we see that x(α, y) > 0 is equivalent to the following
condition: (

ρ(−⟨ST , y⟩) −
〈
BT
B0

S0, y

〉)
B0
BT

> α
(
ρ(−⟨ST , y⟩) − ⟨E[ST ], y⟩

)
.

The right-hand side is strictly larger than zero by the absence of good deals of the first
kind. The inequality is satisfied if and only if one of the following statements holds:
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(i) BT
B0

⟨S0, y⟩ ≤ ⟨E[ST ], y⟩,

(ii) BT
B0

⟨S0, y⟩ > ⟨E[ST ], y⟩ and α <

(
ρ(−⟨ST ,y⟩)− BT

B0
⟨S0,y⟩

ρ(−⟨ST ,y⟩)−⟨E[ST ],y⟩

)
B0
BT

.

Point (ii) is satisfied by assumption (4.5). So, f is lower semicontinuous and coercive.
By Lemma A.11 it admits at least one global minimizer. This proves the assertion.

Remark 4.6.7. (i) Theorem 4.6.6 gives a global finiteness condition, i.e., it is inde-
pendent of the payoff X. Further, it does not depend on the utility function.
Hence, the agent has neither to fear changes in the financial position nor in her
preferences. Moreover, if every agent acts under a small enough weighting factor,
then the government can choose the capital adequacy test ρ such that none of the
agents would increase the hedging costs arbitrarily.

(ii) The condition 1 ∈ ∂U(x) for some x ∈ dom(U) is a normalization for utility
functions, compare Ben-Tal and Teboulle (2007, Section 2.1). It is implied by the
mild economic condition that the utility function satisfies the Inada conditions. In
particular, it holds for the utility functions in Example 4.2.4.

In the simpler case of one risky asset, i.e., d = 1, the boundary of the unit sphere is
{−1, 1}. Hence, by Proposition 4.5.2 we see that the absence of good deals of the first
kind is equivalent to the following condition:

BT
B0

∈
(−ρ(ST )

S0
,
ρ(−ST )
S0

)
.

Furthermore, we obtain the following consequence from Theorem 4.6.6:

Corollary 4.6.8. Let d = 1 and α ∈
(
0, B0

BT

)
. Condition (4.5) states that

(
E[ST ]
S0

≤ BT
B0

)
and

(
α <

(
ρ(−ST ) − S0 (BT /B0)
ρ(−ST ) − E[ST ]

)
B0
BT

)
,

or (
E[ST ]
S0

≥ BT
B0

)
and

(
α <

(
ρ(ST ) + S0 (BT /B0)
ρ(ST ) + E[ST ]

)
B0
BT

)
.

If the remaining conditions in Theorem 4.6.6 are also satisfied, then ρα,Ψ,Aρ ,M,π > −∞.

We graphically illustrate the sufficient condition (4.5) for the Black-Scholes financial
market model from Example 4.5.6. We use the same setting and parameter values.
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Example 4.6.9 (Black-Scholes model). Figure 4.6 allows to verify the sufficient condi-
tion for the weighting factor α = 0.85. On the left-hand side we illustrate the points on
the unit sphere depending on the sufficient condition. The upper bounds from (4.5) are
not relevant for the black points of the graph. The inequality (4.5) is satisfied for the
green points, i.e., the upper bounds are strictly larger than the weighting factor. The
upper bounds generated by the red points are smaller than the weighting factor, i.e., the
sufficient condition is not satisfied.

On the right-hand side we plot the upper bounds for the weighting factor. The dashed
line corresponds to the chosen α. If we, e.g., alter the weighting factor to α < 0.8 then
the sufficient condition in Theorem 4.6.6 would be satisfied, i.e., in an analogous plot
to the one on the left-hand side no red points would occur. This means there is still
enough space to select a weighting factor such that the sufficient condition is satisfied.

Figure 4.6: Left-hand side: Points in the unit sphere characterized by the conditions
in Theorem 4.6.6. Right-hand side: Minimum upper bound for the weighting
factor α, cf. Example 4.6.9. The dashed line corresponds to the weighting
factor α = 0.85.

It remains the following question: Can the SUBMA risk measure attain −∞, if the
sufficient condition in Theorem 4.6.6 is violated? To answer this question let us assume
the sufficient condition is violated. Then we distinguish between the cases of α ≥ B0

BT

and α < B0
BT

. If α ≥ B0
BT

, then the OEU risk measure does attain −∞, see Geissel
et al. (2018, Remark 2.3). Since OEU is a special case of a SUBMA risk measure, the
counterexamples are also valid for our setting. In the remaining case of α < B0

BT
the

following example shows that the SUBMA risk measure can indeed attain −∞.

Example 4.6.10 (Sufficient condition is violated). Assume U(x) = x and α ∈
(
0, B0

BT

)
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such that there exists y ∈ ∂ Bd with

(
ρ(−⟨ST , y⟩) − ⟨E[ST ], y⟩

)
α >

B0
BT

ρ(−⟨ST , y⟩) − ⟨S0, y⟩.

For X ∈ X we obtain

ρα,IU ,Aρ ,M,π(X) = −αE[X] + inf
φ∈Rd

((
B0
BT

− α

)
ρ(X − ⟨ST , φ⟩) − ⟨αE[ST ] − S0, φ⟩

)
.

Now we choose a sequence (φn)n∈N ⊂ Rd such that every φn ̸= 0, ∥φn∥2 → ∞ and(
φn

∥φn∥2

)
n∈N

converges to y. Then

ρα,IU ,Aρ ,M,π(X) ≤ −αE[X] + lim inf
n→∞

∥φn∥2

((
B0
BT

− α

)
ρ

(
X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉)

+
〈
αE[ST ] − S0,

φn
∥φn∥2

〉)
.

Let ρ be continuous. Then we have

lim
n→∞

((
B0
BT

− α

)
ρ

(
X

∥φn∥2
−
〈
ST ,

φn
∥φn∥2

〉)
+
〈
αE[ST ] − S0,

φn
∥φn∥2

〉)

=
(
B0
BT

− α

)
ρ(−⟨ST , y⟩) + ⟨αE[ST ] − S0, y⟩ < 0,

and hence, ρα,IU ,Aρ ,M,π(X) = −∞, so −∞ can indeed be attained.

4.6.2 Continuity

We make use of the condition ρα,Ψ,Aρ ,M,π > −∞ to reach the result that the SUBMA
risk measure becomes continuous. For this purpose, we need the following auxiliary
result which follows immediately from the definition of a SUBMA risk measure and is
not restricted to the standard one-period model.

Lemma 4.6.11. Assume a marketed space M, a pricing functional π : M → R and an
acceptance set A. Let Ψ ∈ {IU , CU} and α > 0. Then we obtain

A ⊂ {X ∈ X | ρα,Ψ,A,M,π(X) ≤ −αΨ(X)}.

Now we are able to prove the main result in this section.

Theorem 4.6.12 (Continuity). Assume the standard one-period model. Further, let
Ψ ∈ {IU , CU}. We assume that Aρ is convex, Ψ is concave, ρα,Ψ,Aρ ,M,π > −∞ and
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there exists a subset B ⊂ Aρ such that

inf
X∈B

Ψ(X) > −∞ and int∥.∥X (B) ̸= ∅. (4.6)

Then ρα,Ψ,Aρ ,M,π is continuous on int∥.∥X (dom(ρα,Ψ,Aρ ,M,π)).
In particular, if ρα,Ψ,Aρ ,M,π is finite-valued, then it is continuous.

Proof: Due to Lemma 4.6.11, we have int∥.∥X (B) ⊂ int∥.∥X (dom(ρα,Ψ,Aρ ,M,π)) and hence,
int∥.∥X (dom(ρα,Ψ,Aρ ,M,π)) ̸= ∅. Further, int∥.∥X (dom(ρα,Ψ,Aρ ,M,π)) is convex. Since
the SUBMA risk measure ρα,Ψ,Aρ ,M,π is bounded from above on int∥.∥X (B) we can
apply Theorem A.7 which yields the claim.

Remark 4.6.13. The existence of a subset of Aρ with non-empty interior adapts the
assumption in Farkas et al. (2014, Theorem 3.10) and Proposition 1.4.4 of an acceptance
set with non-empty interior which is a commonly used assumption to ensure finiteness
of risk measures. The additional requirement of inf

X∈B
Ψ(X) > −∞ builds a connection

between acceptance set and utility function.

The next two examples differ in the choice of the model space X and for both examples
the condition (4.6) is satisfied.

Example 4.6.14 (Expected Shortfall and X = Lp). Let X = Lp with p ∈ [1,∞).
Assume the Expected Shortfall at level λ ∈ (0, 1). By Lemma 1.4.8 we obtain

int∥.∥Lp (AESλ
) = {X ∈ Lp | ESλ(X) < 0}

which shows that the interior of the acceptance set is non-empty, e.g., ESλ(1Ω) = −1 < 0.
Choose a constant c ∈ R such that there exists x0 ∈ R with U(x0) ≥ c. Further, assume
that (Ω,F , P ) is atomless. In this setup, Munari (2015, Proposition 2.4.27) shows that
the set {X ∈ L1 |E[U(X)] ≥ c} has non-empty interior if and only if U(x0) > c for some
x0 ∈ R and

lim
x→∞

xp

U(−x) < 0. (4.7)

If U satisfies these conditions, then B = AESλ
∩ {X ∈ Lp |E[U(X)] ≥ c} satisfies (4.6).

Remark 4.6.15. Condition (4.7) is crucial, because it excludes the most common utility
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functions, e.g., for U(x) = 1 − e−x we get

lim
x→∞

xp

U(−x) = lim
x→∞

xp

1 − ex
= 0.

The reason is the large model space X = Lp. Hence, in the next example we use
Orlicz spaces to achieve continuity with respect to a larger class of utility functions.

Example 4.6.16 (Expected Shortfall and X = LÛ ). Assume U(0) = 0 and xU < 0.
Then set X = LÛ . Again we use the Expected Shortfall at level λ ∈ (0, 1). With Farkas
et al. (2014, Proposition 4.4) we obtain that ESλ is finite. By direct calculations we see
that ESλ is convex and decreasing. Since LÛ is a Banach lattice, we obtain by Propo-
sition A.8 that ESλ is continuous on LÛ . This gives us that{

X ∈ LÛ
∣∣∣ESλ(X) < 0

}
⊂ int∥.∥Û

(AESλ
)

which implies m1Ω ∈ int∥.∥Û
(AESλ

) for all m > 0. Now assume that there exists a
constant c ∈ R and x0 > 0 with U(x0) > c. For (Ω,F , P ) being atomless, this is
equivalent to the fact that the set

{
X ∈ LÛ

∣∣∣E[U(X)] ≥ c
}

has non-empty interior,
see Munari (2015, Proposition 2.4.31). For instance, it is satisfied for U(x) = 1−e−x and
c = 0. Under this condition, the set B = AESλ

∩
{
X ∈ LÛ

∣∣∣E[U(X)] ≥ c
}

satisfies (4.6).

4.6.3 Optimal payoffs

For an investor it is important to know if there exists a marketed payoff for which the
value of the SUBMA risk measure is attained. Such a marketed payoff is called an
optimal payoff. This leads to the optimal payoff map of a SUBMA risk measure
ρα,Ψ,Aρ ,M,π which is for every X ∈ X with ρα,Ψ,Aρ ,M,π(X) < ∞ defined by

E(X) := {Z ∈ M |X + Z ∈ Aρ , ρα,Ψ,Aρ ,M,π(X) = π(Z) − αΨ(X + Z)}.

The following result characterizes optimal payoffs. We denote the cardinality of a set
A by |A|. For a set C we denote by δC the map with δC(x) = 0 if x ∈ C and δC(x) = ∞
otherwise.

Theorem 4.6.17 (Existence and uniqueness of optimal payoffs). Assume the standard
one-period model and let Ψ ∈ {IU , CU}. Choose X ∈ X with ρα,Ψ,Aρ ,M,π(X) ∈ R. Then
the following statements hold:

(i) E(X) ̸= ∅.

(ii) If ρ and −Ψ are convex and the restriction of Ψ to dom(Ψ) is strictly concave,
then |E(X)| = 1.



104 Scalarized utility-based multi-asset risk measures

Proof: We choose an arbitrary X ∈ X . By recalling the arguments in the proof of The-
orem 4.6.6 and setting g(φ) = B0

BT
ρ(X − ⟨ST , φ⟩) − ⟨S0, φ⟩ we see that the map

h : (m,φ) 7→ m− αΨ
(
X + BT

B0
m+

〈
BT
B0

S0 − ST , φ

〉)
+ δ[g(φ),∞)(m),

is an upper bound of the map

f̃ : (m,φ) 7→
(
B0
BT

− α

)
ρ(X − ⟨ST , φ⟩) + ⟨αE[ST ] − S0, φ⟩ + b+ δ[g(φ),∞)(m),

where b ∈ R is an appropriate constant. We also know that f̃ is coercive which in turn im-
plies that h is coercive. Further, h is lower semicontinuous and therefore, by Lemma A.11
we get that h attains a global minimum. This proves (i). To show (ii), consider the set

C =
{

(m,φ) ∈ R × Rd
∣∣∣∣m ≥ B0

BT
ρ(X − ⟨ST , φ⟩) − ⟨S0, φ⟩,

X + BT
B0

m+
〈
BT
B0

S0 − ST , φ

〉
∈ dom(Ψ)

}
.

The condition ρα,Ψ,Aρ ,M,π(X) < ∞ implies that C is non-empty. Further, from ρ being
convex and Ψ being concave we know that C is convex. Finally, C ⊂ dom(Ψ) gives
us that the restriction of h to C is strictly convex. Hence, if (m,φ), (n, κ) ∈ C with
(m,φ) ̸= (n, κ) are two minima of h (note, h(m,φ) = h(n, κ) < ∞), then for each
λ ∈ (0, 1) we get

h(λm+ (1 − λ)n, λφ+ (1 − λ)κ) < λh(m,φ) + (1 − λ)h(n, κ) = h(n, κ).

But this is a contradiction and hence, |E(X)| = 1.

Remark 4.6.18. A natural situation to satisfy the conditions in Theorem 4.6.17 (ii)
is the one in which the utility function U is strictly concave on dom(U). Then IU is
strictly concave on dom(IU ).

4.7 Continuous-time trading: Solution technique

We now consider a continuous-time financial market model. This leads to a set of
marketed payoffs which no longer form a linear space in general. Hence, we need to
adjust the concept of a SUBMA risk measure slightly. In Section 4.7.1, we introduce
the primal assets describing the financial market and introduce the admissible trading
strategies. In Section 4.7.2, we define the SUBMA risk measure for continuous-time
trading and state a representation result. Then in Sections 4.7.3 and 4.7.4, we apply
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this representation result to find solutions for a constant payoff with respect to CRRA
and CARA utility functions.

4.7.1 Primal assets and admissible trading strategies

We assume a financial market model with finite time horizon T > 0. Further, we equip
the probability space (Ω,F , P ) with a filtration (Ft)t∈[0,T ] such that FT = F . Then we
assume a market consisting of a single risk-free asset with constant value 1 and d ∈ N
stocks. Their prices are denoted by S and are assumed to be a Rd-valued (càdlàg)
semi-martingale.

We formulate the set of trading strategies similarly to Biagini and Černý (2020). It is
a unifying Orlicz space framework for portfolio optimization problems that allows a si-
multaneous description of the model components for CRRA and CARA utility functions.
Without loss of generality, we make the following standing assumption:

Assumption 4.7.1. For the lower bound of the effective domain of the utility function
U it holds that xU < 0. Further, assume that U(0) = 0, i.e., x∗

U = 0.

We define admissible trading strategies with the help of the Orlicz space LÛ . We
denote by L(S) the set of all predictable, S-integrable stochastic processes. The corre-
sponding stochastic integral for H ∈ L(S) at time t ∈ [0, T ] is written as (H · S)t.

Definition 4.7.2 (Admissible trading strategies). The set of admissible trading strate-
gies is

T :=
{
H ∈ L(S)

∣∣∣∣∣ inf
t∈[0,T ]

(H · S)t ∈ LÛ
}
.

The set of LÛ -tame trading strategies for an initial endowment B ∈ LÛ is given by

T (B) := {H ∈ T |E[U(B + (H · S)T )] exists}. (4.8)

The set of payoffs, respectively the set of payoffs for an initial endowment B ∈ LÛ , is
defined by K := {(H · S)T |H ∈ T }, respectively K(B) := {(H · S)T |H ∈ T (B)}.

We give two examples for LÛ -tame trading strategies.

Example 4.7.3. (i) Power or logarithmic utility: For a power or logarithmic utility
function U we obtain that LÛ = L∞ and LÛ -tame trading strategies are exactly
the stochastic processes in L(S) for which the wealth process is uniformly bounded
from below and the relevant expected utility exists, i.e., our framework reproduces
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the one in Kramkov and Schachermayer (1999).

(ii) Exponential utility: Assume T = 1, d = 1 and S is a Brownian motion. Further,
U is an exponential utility function with risk aversion parameter δ = 1. Then
the constant trading strategy by investing one unit in S is LÛ -tame for an initial
endowment B = 0, because of

E
[
e|inft∈[0,1] St|

]
= E

[
e|S1|

]
= 2E

[
eS11{S1≥0}

]
≤ 2e

1
2 < +∞.

Note that the classical approach of a uniform bound on the wealth process does
not allow for such a trading strategy.

4.7.2 SUBMA representation result

Assume an acceptance set A describing the preferences in L0, i.e., a proper, non-empty
and monotone subset of L0. Then we define the following SUBMA risk measure for
continuous-time trading as follows:

Definition 4.7.4 (SUBMA risk measure). Choose a weighting factor α > 0. For
Ψ ∈ {IU , CU} and a payoff X ∈ L0 we define the SUBMA risk measure for trading
in continuous time by

να,Ψ,A(X) := inf{x− αΨ(X + x+K) |x ∈ R,K ∈ K(X + x), X + x+K ∈ A}.

In contrast to Section 4.3, the continuous-time trading does not lead to a marketed
space in general, i.e., a linear space of payoffs. The set of hedging opportunities is given
by M(X) := ⋃

x∈R

(
{x} + K(X + x)

)
and hence it depends on the payoff X. We are

interested in calculating the optimal payoff for a fixed X.
To calculate the SUBMA risk measure we use the following representation result:

Theorem 4.7.5 (SUBMA representation). Let α > 0. For X ∈ L0 and Ψ ∈ {IU , CU}
it holds that

να,Ψ,A(X) := inf
x∈R

x− α sup
K∈K(X+x)
X+x+K∈A

Ψ(X + x+K)

 . (4.9)

Proof: First, let us introduce the following set for x ∈ R:

C(x) := {x− αΨ(X + x+K) |K ∈ K(X + x), X + x+K ∈ A}.
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Then it holds that

να,Ψ,A(X) = inf
⋃
x∈R

C(x) = inf{inf C(x) |x ∈ R}.

From this statement we obtain the claim:

να,Ψ,A(X) = inf
x∈R

inf
K∈K(X+x)
X+x+K∈A

(
x− αΨ(X + x+K)

)

= inf
x∈R

x− α sup
K∈K(X+x)
X+x+K∈A

Ψ(X + x+K)

 .

Remark 4.7.6. Theorem 4.7.5 shows that the calculation of the SUBMA risk measure
relies on various portfolio optimization tasks which differ in the initial endowment.

Theorem 4.7.5 suggests a two step procedure to calculate the SUBMA risk measure:

Step 1: Calculate the following portfolio optimization value in dependence of the
initial capital x ∈ R:

u(X + x) := sup
K∈K(X+x)
X+x+K∈A

Ψ(X + x+K). (4.10)

Step 2: Plug the result of (4.10) in (4.9) and calculate να,Ψ,A(X).

Remark 4.7.7. In the first step it is necessary to calculate Lagrange multipliers numer-
ically. Further, in the majority of our examples we also perform a numerical calculation
to find the minimum of the objective function in the second step.

Now we apply the suggested procedure. To make use of the classical portfolio opti-
mization results under risk constraints as, e.g., in Basak and Shapiro (2001), we consider
in the upcoming sections a constant payoff X. To calculate the SUBMA risk measure
for non-constant payoffs, one has to solve the portfolio optimization problem under risk
constraints for a random initial endowment. This interesting but demanding task is
beyond the scope of this dissertation, compare with the outlook in Chapter 5.

4.7.3 CRRA

We use two benchmark acceptance sets: The acceptance set of a portfolio insurer and the
acceptance set with respect to the actual expected loss, see Basak and Shapiro (2001).
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Setup: Let z ∈ R, ϵ ≥ 0, q > −1. The acceptance set of a portfolio insurer (PI) is

Az := {X ∈ X |X ≥ z P -a.s.}.

The acceptance set based on the limited expected loss (LEL) is

Aq,ϵ :=
{
X ∈ X

∣∣EQ[(X − q)−] ≤ ϵ
}
.

We use the logarithmic utility function U(x) = ln(x+ 1) and the power utility function
U(x) = 1

1−δ

(
(x+ 1)1−δ − 1

)
with δ ∈ (0,∞)\{1}. We assume a Black-Scholes market

model with one bank account and one stock. The unique equivalent martingale measure
is denoted by Q and the market price of risk is denoted by γ. The payoff is X = k with
constant k ∈ (−∞, 0].

Example 4.7.8 (CRRA utility function with Ψ = IU ). In this example, we define the
penalty term by the expected utility, i.e., Ψ = IU . Based on the logarithmic utility
function we would like to calculate the SUBMA risk measure:

να,IU ,A(k) = inf
m≥−k−1

m− α sup
H∈T (m+k)

k+m+(H·S)T ∈A

E[ln(k +m+ (H · S)T + 1)]

 .
For PI with z > −1 we perform a pointwise Lagrange approach as in the proof

of Teplá (2001, Proposition 1) such that we obtain the optimal payoff of the portfolio
optimization problem in the SUBMA formulation by

X∗
T =


1
λ

dP
dQ − 1 , dQ

dP ≤ 1
λ(z+1) ,

z , dQ
dP > 1

λ(z+1) ,
(4.11)

where the Lagrange multiplier λ > 0 satisfies the budget constraint

1
λ
P

(dQ
dP ≤ 1

λ(z + 1)

)
+ (z + 1)E

[dQ
dP 1{dQ

dP
> 1

λ(z+1)

}] = m+ k + 1. (4.12)

The latter is solved numerically. By knowing the optimal payoff we can calculate the
objective of the SUBMA risk measure and find the minimal hedging costs numerically.
For the sake of brevity, we define

c(x) := − 1
γ

√
T

ln
( 1
x(z + 1)

)
− 1

2γ
√
T ,

d(x) :=
(

− ln(x) + 1
2γ

2T

)(
1 − Φ(c(x))

)
+ ln(z + 1)Φ(c(x)) + γ

√
T

2πe
− 1

2 (c(x))2
.
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Then by (4.11) the solution of the corresponding portfolio optimization problem is

sup
H∈T (m+k)

k+m+(H·S)T ∈Az

E[ln(k +m+ (H · S)T + 1)] = d(λ).

For LEL we obtain from Gabih, Sass, and Wunderlich (2009, Theorem 5.1) the optimal
payoff. Then we are able to determine the SUBMA risk measure numerically.

In Figure 4.7, we illustrate the SUBMA risk measure and the corresponding hedging
costs for the following parameter values:

γ = 0.04, T = 10, k = −0.5, z = −0.1, q = −0.1, ϵ = 0.05. (4.13)

Additionally, the Merton case (z ≤ −1) is given, i.e., the risk constraint is redundant.
The PI (dotted red) and LEL (solid blue) SUBMA graphs show a linear behavior for

small values of α. The reason is that minimizing costs is more important for the agent
than maximizing the expected utility. Hence, she chooses the minimal hedging costs
and hence, the graphs on the right-hand side in Figure 4.7 are constant. Since the same
costs lead to the same optimal payoffs, the expected utility is the same for all α up to
approximately 0.75. For larger α the solution is close to the Merton solution (dashed
green). This can be explained as follows: For increasing α the portfolio optimization
criterion becomes more relevant than the cost criterion. The agent can increase her
expected utility by increasing her hedging costs m. For instance, in the PI case we see
from the budget constraint (4.12) that if m increases, then the Lagrange multiplier λ
decreases. Further, for γ > 0 we have lim

x↓0
c(x) = −∞ and hence

lim
m→∞

sup
H∈T (m+k)

k+m+(H·S)T ∈Az

E[ln(k +m+ (H · S)T + 1)] = ln(m+ k + 1) + 1
2γ

2T.

The right-hand side is the value function in the Merton case z ≤ −1, i.e., for large m
values the PI case is close to the Merton case.

Inspired by Basak and Shapiro (2001), we illustrate the optimal payoffs in dependence
of the pricing density dQ

dP for different values of α in Figure 4.8. The interpretation of
the three cases is as follows:

(i) α = 0.25 : As earlier mentioned, the PI and LEL payoffs correspond to the minimal
possible hedging costs. Hence, in the PI case, a constant amount is invested into
the bank account. In the LEL case, the payoff is less than the shortfall level
q = −0.1 for bad states (large values of dQ

dP ). Hence, the hedging costs in the LEL
case are less than in the PI case.

(ii) α = 0.75 : For small values of dQ
dP , the PI and LEL payoffs are larger than the value
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Figure 4.7: Value of SUBMA risk measure (left-hand side) and corresponding hedging
costs (right-hand side) for logarithmic utility in dependence of α. The dotted
dashed vertical lines correspond to values 0.25, 0.75 and 1.25 for α.

of z = q = −0.1. It is notable that the payoffs in these states are close together.
This is due to the feature of the SUBMA risk measure that leads to larger hedging
costs in the PI case.

(iii) α = 1.25 : Here the LEL payoff is equal to the Merton payoff. By slightly larger
hedging costs, the PI payoff is for good states close to the Merton payoff.

Figure 4.8: Optimal payoffs for different α values. The x-axis corresponds to values of
the pricing density dQ

dP . The y-axis is the value of the optimal payoff in the
corresponding state. We consider the LEL (solid blue), the PI (dotted red)
and the Merton (dashed green) case.

Finally, in Figure 4.9 we present the impact of changes in the risk aversion parameter
with respect to the LEL acceptance set. For δ ∈ (0,∞)\{1} we assume the power utility
function U(x) = 1

1−δ

(
(x+ 1)1−δ − 1

)
. For δ = 1 we use logarithmic utility.

For small α all three values of δ lead to the same hedging costs and hence, the optimal
payoffs are the same. Hence, the linear increase in the SUBMA risk measures is solely
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driven by increasing α. If α is close below 1, then δ = 1.5 leads to the highest hedging
costs. Indeed, for δ = 1.5 the agent is more risk averse as in the remaining cases. This
means that the agent with δ = 1.5 reacts first, if the expected utility criterion becomes
more relevant, i.e., if α increases. For α values larger than 1 the situation changes.
Note that for δ > 1 the power utility function is bounded from above. So there is a
natural limit for improving the SUBMA objective by increasing the hedging costs. But
for δ ≤ 1 the utility functions are unbounded from above. Hence, the hedging costs are
larger than for bounded utility functions.

(a) Utility functions (b) Hedging costs (c) SUBMA risk measure

Figure 4.9: Power utility functions, hedging costs and SUBMA risk measures for the
LEL acceptance set and the risk aversion parameters δ = 0.5 (dotted line),
δ = 1 (solid line) and δ = 1.5 (dashed line).

Now we discuss the results if we use the certainty equivalent, i.e., Ψ = CU .

Example 4.7.9 (CRRA utility function with Ψ = CU ). In contrast to the previous
example, it is remarkable that the SUBMA risk measure is infinite for large values of α
and hence, also the hedging costs are infinite. For the PI and the LEL acceptance sets
we plot the SUBMA risk measure and the corresponding hedging costs in Figure 4.10.
The underlying parameters are the same as in the previous example, see (4.13). If α
is small enough, then the curves for the SUBMA risk measures are similar to the case
Ψ = IU . But the hedging costs are different. If α ↑ e− 1

2γ
2T , then they do not converge

to the costs of the unrestricted Merton case (z < −1). But they converge to costs such
that the risk measures converge to the same value of −k − 1 + e− 1

2γ
2T .

Finally, in Figure 4.11 we plot the SUBMA risk measure for the LEL acceptance set
and different risk aversions δ. We use the same values for δ as in the previous example.
We see that the impact of changes in the risk aversion is less than before, i.e., the
SUBMA curves are nearly unchanged. If we increase the weighting factor, then the
agent with δ = 0.5 increases the hedging costs earlier than in the other cases. This
leads to a reduction in the SUBMA risk measure for δ = 0.5. So, in contrast to the
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Figure 4.10: Value of SUBMA risk measure (left-hand side) and corresponding hedging
costs (right-hand side) for logarithmic utility in dependence of α. The
dotted dashed vertical lines correspond to values 0.25, 0.75 and 1.25 for α.

previous example the certainty equivalent does not encourage the more risk averse agent
(δ = 1.5) to increase her hedging costs first.

(a) Utility functions (b) Hedging costs (c) SUBMA risk measure

Figure 4.11: Inverse of power utility functions, hedging costs and SUBMA risk measures
for the LEL acceptance set and the risk aversion parameters δ = 0.5 (dotted
line), δ = 1 (solid line) and δ = 1.5 (dashed line).

4.7.4 CARA

Now we use the exponential utility function U(x) = 1 − e−δx with δ > 0.

Example 4.7.10 (CARA utility function with Ψ = IU ). We give a short overview of
the techniques used to obtain the solutions:

For the PI (respectively LEL) case, we apply a pointwise Lagrange approach in the
style of Basak and Shapiro (2001) (respectively Gabih et al. (2009)) to find a candidate
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for an optimal payoff and then apply a convex duality approach to find the optimal
expected utility. This gives us the objective of the SUBMA risk measure which we then
minimize numerically. For the sake of brevity, we omit the formulas.

Figure 4.12: Value of SUBMA risk measure (left-hand side) and corresponding hedging
costs (right-hand side) for exponential utility in dependence of α. The
dotted dashed vertical lines correspond to values 0.25, 0.75 and 1.25 for α.

In Figure 4.12, we plot the SUBMA risk measure and the hedging costs in dependence
of α for the parameter values already given in (4.13) and δ = 1. At a first glance, the
plot seems similar to the one for logarithmic utility. But the hedging costs as the decisive
factor for the company behaves not linear for large values of α. The reason is that the
expected utility function (in contrast to logarithmic utility) is bounded from above. So,
the upper bound limits the benefit in terms of expected utility by increasing the hedging
costs.

(a) Utility functions (b) Hedging costs (c) SUBMA risk measure

Figure 4.13: Exponential utility functions, hedging costs and SUBMA risk measures for
the LEL acceptance set and the risk aversion parameters δ = 0.9 (dotted
line), δ = 1 (solid line) and δ = 1.1 (dashed line).

Finally, we take a look at different risk aversion parameters, see Figure 4.13. In
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contrast to power utility, the exponential utility functions admit a different order of
magnitude for negative and positive values. For small α the hedging costs for δ = 1.1
increase first, because for lower payoffs the agent with δ = 1.1 fears losses more than in
the remaining cases. So, if the expected utility criterion becomes more important, then
this agent has a higher incentive to improve its final payoff. Further, we see that in the
cases in which the hedging costs are equal, the linear slope in the SUBMA risk measure
is steeper for higher risk aversions.

Remark 4.7.11. We omit the results for the case Ψ = CU , because they are quite
similar to the ones in Example 4.7.9. It is only notable, that the SUBMA risk measure
for the PI acceptance set with z ≤ −1 (Merton) is for most values of α infinite.



Chapter 5

Conclusion and outlook

Multi-asset risk measures were the starting point of this dissertation. They determine
capital requirements by the minimal amount of money that has to be invested into
multiple eligible assets to pass a capital adequacy test. The dissertation contributes in
three different ways to the theory of multi-asset risk measures.

In Chapter 2, we used multi-asset risk measures to achieve pricing bounds for Eu-
ropean type options in a one-period financial market model by defining good deals via
Value-at-Risk and Expected Shortfall constraints. This analysis was motivated by the
one in Cochrane and Saa-Requejo (2000) who use the Sharpe ratio to define their pricing
bounds.

In Chapter 3 and Chapter 4 we constructed two new risk measures extending the
concept of multi-asset risk measures. The first is called an MAI risk measure and it
combines multi-asset risk measures with the intrinsic risk measures introduced in Farkas
and Smirnow (2018). The second is called a SUBMA risk measure and it includes the
preferences of an agent in the calculation of the capital requirement.

In the following, we summarize the content of each chapter in more detail and give
an outlook on future research.

Chapter 2: In this chapter, we studied good deal bounds based on Value-at-Risk and
Expected Shortfall acceptance sets. Based on a benchmark example, we demonstrated
that the Value-at-Risk good deal bounds for a European type call option behave non-
smooth under varying the underlying stock price. We showed that the reason for this
is a jump in the optimal hedging strategy. The application of the Expected Shortfall
does not admit this discontinuous behavior. Additionally, in the Value-at-Risk case,
the seller’s bound is sometimes smaller than the buyer’s bound. To explain this, we
showed that the extension theorem in Černý and Hodges (2002) is not applicable in the
non-convex Value-at-Risk case. In addition, we presented new finiteness and continuity
results for multi-asset risk measures in our concrete setup.

115
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These results depend on the one-period Black-Scholes market model. Consequently, a
future direction of research could be to incorporate a market with more than one risky
asset for which we gave a short outlook in the Remarks 2.3.3 and 2.4.2. Also allowing
for intermediate trading is a natural extension of our setup.

Chapter 3: In this chapter, we studied the impact of internal management actions on
capital reserves calculated via multiple eligible assets. In doing so, the financial position
is not considered in total. Instead, the company can specify liquid assets that can be
reallocated. Hence, in addition to the common management action of investing external
capital, this allows for the sale of these liquid positions in order to invest in other eligible
assets. The resulting new MAI risk measure describes the minimal additional amount
of money that has to be invested into eligible assets to satisfy a predefined acceptability
criterion, under consideration of the intrinsic management action.

We provided a representation result for this new kind of risk measure as an infimum
over classical risk measures. We showed that the MAI risk measure rewards diversi-
fication, if the involved marketed portfolios admit the same price. We identified this
as the most relevant situation for an institution. Further, we presented counterexam-
ples to show that diversification is not rewarded in general. We also derived a dual
representation from Sion’s minimax theorem.

As an example, we analyzed a model motivated by the Solvency II framework with
respect to acceptance sets based on the Expected Shortfall. The MAI risk measure
was compared to classical risk measures. There are situations in which the MAI risk
measure does not match any of the classical risk measures, but there are also situations
in which they coincide. In our examples, the MAI risk measure corresponds to trading
restrictions of a multi-asset risk measure.

The MAI risk measure combines different kinds of management actions in the risk
assessment process. It only considers two of them. But other actions could also be
of importance. For example, instead of selling liquid assets and invest the capital into
eligible assets, it could also be used to repay liabilities. It is also permissible to transfer
specific parts of the liabilities to increase the equity capital. Taking these management
actions into account is a challenging but important future task.

Chapter 4: In this chapter, we gave an example in which reallocating capital is not
enough to pass a capital adequacy test. This shows that the common approach of
maximizing expected utility under a risk constraint is not applicable in a tight financial
situation. Hence, we included the expected utility or rather the certainty equivalent
in the objective function of multi-asset risk measures. We called this new concept a
SUBMA risk measure.

We showed that the SUBMA risk measure with respect to the certainty equivalent is
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coherent, if the acceptance set is a convex cone and the utility function has constant
relative risk aversion. For a one-period financial market model, we developed a sufficient
condition such that the SUBMA risk measure is finite-valued. Under this condition, we
proved that the SUBMA risk measure satisfies desirable continuity properties. Further-
more, the existence and the uniqueness of optimal payoffs was characterized. Finally, we
used two benchmark examples from Basak and Shapiro (2001) to illustrate the behavior
of the SUBMA risk measure for continuous-time trading.

In Theorem 4.6.6, we derived a sufficient condition for the finiteness of the SUBMA
risk measure in the standard one-period model. Two extensions could be of further
interest: First, our proofs rely on the absence of good deals of the first kind. But
the situation in which a good deal exists is an open research problem. Second, in the
standard one-period model exists a deterministic bank account. Hence, an extension to
stochastic interest rate models could lead to new insights.

The calculation of the SUBMA risk measure with respect to continuous-time trading
leads to another open and challenging task. We solve the SUBMA risk measure for
a constant payoff. So, case studies for other types of payoffs could be of interest. To
apply Theorem 4.7.5 we have to solve portfolio optimization problems with one risk con-
straint and a random initial endowment. On the one hand, portfolio problems without
risk constraint and random initial endowment are solved in Cvitanić, Schachermayer,
and Wang (2001), Biagini, Frittelli, and Grasselli (2011) and Biagini and Černý (2020).
On the other hand, there is a bunch of literature following the seminal paper of Basak
and Shapiro (2001) to solve portfolio optimization problems with one risk constraint and
a constant initial endowment. Concluding, before we can solve the SUBMA risk measure
for arbitrary payoffs, we need to combine the different streams of literature and solve
portfolio optimization problems with a risk constraint and random initial endowment.
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Appendix

A Concepts and results from functional analysis

In this section, we provide some concepts and results from functional analysis. They
have been moved to the appendix, because they are quite technical and so they do
not jeopardize the readability of the main content. This section is orientated on the
appendix in Föllmer and Schied (2016). For a more comprehensive reference, the reader
is referred to Aliprantis and Border (2006). Some of our notations are motivated by the
ones in Farkas et al. (2014) and Farkas et al. (2015).

We state all results without proofs. They can be found in Aliprantis and Border
(2006) and Föllmer and Schied (2016).

A.1 Topological vector space

We start by using a vector space notion including a topology.

Definition A.1 (Topological vector spaces and locally convex spaces). Let τ be a topol-
ogy on a linear space X (over R) 1. It is called a linear topology if addition

X × X → R, (X,Y ) 7→ X + Y,

and scalar multiplication

R × X , (α,X) 7→ αX,

are continuous with respect to the corresponding product topologies. Then (X , τ) is called
a topological vector space. If τ has a base consisting of convex sets, then (X , τ) is a
locally convex space, i.e., there exists a subset κ ⊂ τ such that every member in κ is
convex and every U ∈ τ can be obtained as a union of members in κ.

Remark A.2. Every Banach space X with norm ∥.∥ : X → R is a locally convex space,

1We restrict our attention to vector spaces over a field R.
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because the set of all open balls, given by

{Y ∈ X | ∥Y −X∥ < r},

for X ∈ X and r > 0, is a base for the induced topology consisting of convex sets. In
this dissertation, we often work with locally convex spaces, because every Lp-space with
p ∈ [1,∞] equipped with the Lp-norm is a Banach space.

For our concerns in risk management it is important to equip a topological vector
space with a partial order. To do so, we define the positive cone of a partially ordered
set (X ,⪯) by X+ := {X ∈ X |X ⪯ 0}.

Definition A.3 (Ordered topological vector spaces). A triple (X , τ,⪯), or X for short,
is an ordered topological vector space, if (X , τ) is a topological vector space and
(X , τ) is an ordered vector space and its positive cone X+ is τ -closed.

A.2 Topological dual space

Often we are interested in continuous and linear functionals on a topological vector space
X . Recall that a linear functional f : Y → R maps points from a vector space Y into
the real line such that for each X,Y ∈ Y and α, β ∈ R it holds that

f(αX + βY ) = αf(X) + βf(Y ).

The set of all continuous and linear functionals is called the (topological) dual space
and we denote it by X ′ or (X , τ)′ . The latter emphasizes that the dual space depends
on the underlying topology τ .

The positive cone of X ′ is denoted by X ′
+. It consists of all ψ ∈ X ′ such that ψ(X) ≥ 0,

all X ∈ X+. This allows us to introduce the strictly positive elements in X . We denote
the corresponding set by X++ and it shall hold that X ∈ X++ if we have ψ(X) > 0 for
all ψ ∈ X ′

+.

A.3 Separation theorems

For some of our results we use some separation techniques. The following definitions
clarify what we mean by separating sets.

Definition A.4 (Hyperplanes and half spaces). Let X be a topological vector space,
f : X → R a non-zero linear functional and α ∈ R. Then we obtain the following sets:
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Hyperplane: [f = α] := {X ∈ X | f(X) = α},
Half spaces: [f < α] := {X ∈ X | f(X) < α} and

[f > α] := {X ∈ X | f(X) > α},
Weak half spaces: [f ≤ α] := {X ∈ X | f(X) ≤ α} and

[f ≥ α] := {X ∈ X | f(X) ≥ α}.

Definition A.5 (Kinds of separation). Let X be a topological vector space, f : X → R
a non-zero linear functional and α ∈ R. Assume two subsets A and B of X . Then we
say that the hyperplane [f = α] . . .

(i) . . . separates A and B, if either A ⊂ [f ≤ α] and B ⊂ [f ≥ α] or if B ⊂ [f ≤ α]
and A ⊂ [f ≥ α].

(ii) . . . properly separates A and B, if it separates them and A ∪ B is not included
in [f = α].

(iii) . . . strictly separates A and B, if it separates them and either A ⊂ [f > α] and
B ⊂ [f < α] or A ⊂ [f < α] and B ⊂ [f > α].

(iv) . . . strongly separates A and B, if there exists ϵ ∈ (0,∞) with either A ⊂ [f ≤ α]
and B ⊂ [f ≥ α+ ϵ] or B ⊂ [f ≤ α] and A ⊂ [f ≥ α+ ϵ].

We also say that f separates, properly separates, etc. the sets A and B if there exists a
hyperplane that separates, properly separates, etc. them.

Now we state the well-known Interior Separating Hyperplane Theorem, see e.g., Alipran-
tis and Border (2006, Theorem 5.67).

Theorem A.6 (Interior Separating Hyperplane Theorem). Assume a topological vector
space (X , τ). Let A be a convex subset with non-empty interior which is disjoint from
another non-empty convex subset B. Then there exists a non-zero continuous linear
functional properly separating the τ -closures of A and B.

A.4 Continuity and coerciveness

We repeat some well-known continuity results.

Theorem A.7 (Aliprantis and Border (2006, Theorem 5.43)). For a convex function
f : C → R on an open convex subset of a topological vector space, the following statements
are equivalent: (i) f is continuous on C. (ii) f is upper semicontinuous on C. (iii) f is
bounded above on a neighborhood of some point in C.
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For the next results we need specific kinds of topological vector spaces. For this recall
that an ordered vector space is a real vector space X equipped with a partial order
≤ which is compatible with the algebraic structure of X , i.e., it satisfies the following
two properties for all X,Y, Z ∈ X and α ≥ 0:

(i) X ≤ Y implies X + Z ≤ Y + Z,

(ii) X ≤ Y implies αX ≤ αY .

Further, a partially ordered set is a lattice if each pair of elements has a supremum
and an infimum. A Riesz space is then an ordered vector space which is also a lattice.
The absolute value of an element X in a Riesz space is given by the supremum between
X and −X. We denote it by |X|. If we equip a Riesz space (X ,≤) with a norm ∥.∥ such
that for all X,Y ∈ X with |X| ≤ |Y | we have ∥X∥ ≤ ∥Y ∥, then we call it a normed
Riesz space. A complete normed Riesz space is called a Banach lattice.

Proposition A.8 (Ruszczyński and Shapiro (2006, Proposition 3.1)). Suppose that X
is a Banach lattice and f : X → [−∞,∞] is a proper, increasing and convex function.
Then f is continuous on the interior of its effective domain.

Corollary A.9 (Rockafellar (1974, Corollary 8B)). Suppose that X is a Banach lattice
and f : X → [−∞,∞] is lower semicontinuous and convex, then f is continuous on the
interior of its effective domain.

Now we show a sufficient condition under which a real-valued function attains a global
minimum. To do so, we repeat the concept of a coercive function.

Definition A.10 (Coercive function). A map f : Rd → R is called coercive, if for every
sequence (xn)n∈N with ∥xn∥2 → ∞ it holds that f(xn) → ∞. In this situation, we also
write lim

∥φ∥2→∞
f(φ) = ∞.

Now we state the desired result. The proof uses analogous arguments as the proof
of Peressini, Sullivan, and Uhl (1988, Theorem 1.4.4) under consideration of Aliprantis
and Border (2006, Theorem 2.43).

Lemma A.11 (Existence of global minimum). Assume a lower semicontinuous and
coercive map f : Rd → R. Then f admits at least one global minimizer.

Remark A.12. The result remains valid if f can attain ∞. The reduced version is
given to stay in line with Peressini et al. (1988, Theorem 1.4.4).
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The following equivalent characterizations for coerciveness are essential for the finite-
ness results in Section 4.6.1.

Lemma A.13. Assume a map f : Rd → R. The following statements are equivalent:

(1) f is coercive, i.e., for each a > 0 there exists b > 0 such that for every φ ∈ Rd it
holds that ∥φ∥2 > b implies f(φ) > a.

(2) For every sequence (φn)n∈N in Rd it holds that ∥φn∥2 → ∞ implies f(φn) → ∞.

(3) For every sequence (φn)n∈N in Rd such that for all n ∈ N, φn ̸= 0 and the sequence(
φn

∥φn∥2

)
n∈N

converges, it holds that ∥φn∥2 → ∞ implies f(φn) → ∞.

Proof: The implications (1) ⇒ (2) and (2) ⇒ (3) are obvious. It remains to show that
(3) ⇒ (1). Assume that there exists a > 0 such that for every b > 0 there exists a
vector φb ∈ Rd with ∥φb∥2 > b, but f(φb) ≤ a. This gives us (φn)n∈N with ∥φn∥2 → ∞.
Note that for each n ∈ N it holds that φn ̸= 0, because of the positive definiteness of
the euclidean norm. Further, by the compactness of the unit sphere ∂ Bd it is possible
to find a subsequence (φnk

)k∈N with ∥φnk
∥2 → ∞ such that

(
φnk

∥φnk∥2

)
k∈N

converges.

Hence, by (3) we obtain f(φnk
) → ∞, i.e., there exists k∗,a ∈ N such that for every

k > k∗,a it holds that f(φnk
) > a. This is a contradiction to f(φb) ≤ a for all b > 0.

B Results from utility theory

We give auxiliary results for the functionals in Definition 4.2.11. Remember that the
utility function U : R → [−∞,∞] is a proper, increasing, upper semicontinuous and
concave function. Further, we assume X as in Assumption 4.2.10.

B.1 Integral functional

The following result states properties for the integral functional.

Lemma B.1 (Integral functional). The integral functional IU : X → [−∞,∞] satisfies
the following properties: (i) increasing, (ii) concave, (iii) proper, (iv) upper semicontin-
uous, (v) continuous on the interior of its effective domain.

Proof: (i) - (iii) are elementary. (v) follows from (ii), (iv) and Corollary A.9 (for X
being an Orlicz space see also Biagini and Černý (2020, Section 2)). It remains to prove
(iv). IU being upper semicontinuous means that for an arbitrary constant c ∈ R the
set C := {X ∈ X | IU (X) ≥ c} is norm closed. Equivalently, we show for any sequence
(Xn)n∈N ⊂ C with Xn

∥.∥X−−−→ X that X ∈ C. This is proved in several steps:
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Step 1: By Zaanen (1983, Theorem 100.6) we know that every norm-convergent
sequence in a Banach lattice admits an order-convergent subsequence. Further, X is a
Banach lattice. Hence, there exists a subsequence (Yn) ⊂ (Xn) such that Yn a.s.−−→ X,
i.e., there exists a P -null set N ∈ F such that for each ω ∈ Ω\N it holds Yn(ω) → X(ω).

Step 2: By upper semicontinuity of U we obtain lim sup
n→∞

U(Yn(ω)) ≤ U(X(ω)) for all
ω ∈ Ω\N , i.e.,

lim sup
n→∞

U(Yn) ≤ U(X) a.s. (B.1)

Step 3: By Assumption 4.2.2 there exists x∗ with U(x∗) = 0. Since X ∈ L1 we know
that E

[
X1{X>x∗}

]
∈ R. By Jensen’s inequality we obtain

E[max{0, U(X)}] = E
[
U
(
X1{X>x∗}

)]
≤ U

(
E
[
X1{X>x∗}

])
< ∞. (B.2)

Step 4: Define the non-negative random variable fn := (max{0, U(X)} − U(Yn)) 1Ω\N

for any n ∈ N. By Fatou’s lemma we have E
[
lim inf
n→∞

fn
]

≤ lim inf
n→∞

E[fn].
Step 5: By the linearity of the integral operator we obtain

E[max{0, U(X)}] − E

[
lim sup
n→∞

U(Yn)
]

≤ E[max{0, U(X)}] − lim sup
n→∞

E[U(Yn)]. (B.3)

Step 6: By (B.2) we know that E[max{0, U(X)}] ∈ [0,∞). Hence, the inequality
in (B.3) reduces to lim sup

n→∞
IU (Yn) ≤ E

[
lim sup
n→∞

U(Yn)
]
.

Step 7: From the previous step, Equation (B.1) and the monotonicity of U we get

c ≤ lim sup
n→∞

IU (Yn) ≤ IU (X),

i.e., X ∈ C. Hence, C is norm-closed and IU is an upper semicontinuous map.

B.2 Certainty equivalent

To obtain analogous results for the certainty equivalent, we first state properties for the
generalized inverse U−1 from Definition 4.2.11. We omit the proof.

Lemma B.2 (Inverse utility function). U−1 is (i) increasing, (ii) convex, (iii) lower
semicontinuous.

Remark B.3. U−1 is not proper, because of U−1(−∞) = −∞. Further, Assump-
tion 4.2.2 implies that U is not constant and we obtain that the restriction of U−1 to R
is proper.
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Lemma B.4 (Certainty equivalent). The certainty equivalent CU : X → [−∞,∞] is
increasing and proper 2. If xU > −∞ with U(xU ) > −∞ or xU = −∞, i.e., U > −∞,
then CU is upper semicontinuous.

Proof: By Lemma B.1 and Lemma B.2 we know that IU and U−1 are increasing. Hence,
we obtain that CU is increasing. The discussion in Remark 4.2.12 shows that CU < ∞.
By Assumption 4.2.2 there exists a unique point x∗

U ∈ R such that U(x∗
U ) = 0. This

implies CU (x∗
U1Ω) = U−1(0) = x∗

U > −∞ and hence, CU is proper.
Now we prove upper semicontinuity of CU . By Lemma B.1 we know that IU is upper

semicontinuous. If xU = ∞ let f be the restriction of U−1 to [−∞, U(+∞)) and other-
wise, i.e., xU < ∞, let f be the restriction of U−1 to [−∞, U(+∞)]. If U > −∞ then f
is continuous and increasing. The assertion follows by the fact that the composition of
an upper semicontinuous, increasing function and an upper semicontinuous function is
upper semicontinuous. If xU > −∞, then the only point of discontinuity of f is −∞. At
this point f is left-continuous. Let us assume a sequence (Xn)n∈N ⊂ X with Xn

X−→ X.
Then f

(
lim sup
n→∞

E[U(Xn)]
)

≤ f(E[U(X)]) and we have to show that

lim sup
n→∞

f(E[U(Xn)]) ≤ f

(
lim sup
n→∞

E[U(Xn)]
)
.

It is only possible that lim sup
n→∞

E[U(Xn)] = −∞ if E[U(Xn)] = −∞ for almost all n.
Hence, CU (Xn) = −∞ for almost all n which shows that lim sup

n→∞
CU (Xn) = −∞. Finally,

let lim sup
n→∞

E[U(Xn)] > −∞, i.e., lim sup
n→∞

E[U(Xn)] ≥ U(xU ). Note, f is increasing and
continuous for values strictly larger −∞. Further, f(y) = xU for all y ≤ U(xU ). By
these facts we get lim sup

n→∞
f(E[U(Xn)]) ≤ f

(
lim sup
n→∞

E[U(Xn)]
)

.

If xU > −∞ such that U(xU ) = −∞, then the certainty equivalent is not upper
semicontinuous in general, as the following example shows.

Example B.5. Let X = L1 and U(x) = ln(x) on (0,∞) and U(x) = −∞ otherwise.
The sequence

(
1
n1Ω

)
n∈N

converges to 0 with respect to the L1-norm. Then we obtain

lim sup
n→∞

U−1
(

ln
( 1
n

))
= lim

n→∞
1
n

= 0 > U−1
(

lim
n→∞

ln
( 1
n

))
= U−1(−∞) = −∞.

Hence, the certainty equivalent is not upper semicontinuous, i.e., we can not omit the
additional assumptions on U in Lemma B.4.

2Proper in the sense that CU < ∞ and there exists X ∈ X such that CU (X) > −∞.
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