
Integration Methods for Host Intrusion Detection
into Embedded Mixed-Criticality Systems

vom
Fachbereich Elektrotechnik und Informationstechnik

der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades eines

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von
Marine Kadar

geboren in Saint-Étienne, France

D 386

Eingereicht am: 23.02.2022
Tag der mündlichen Prüfung: 25.03.2022
Dekan des Fachbereichs: Prof. Dr. rer. nat Marco Rahm

Promotionskomission
Vorsitzender: Prof. Dr.-Ing. Wolfgang Kunz
Berichterstattende: Prof. Dipl.-Ing. Dr. Gerhard Fohler

Prof. Dr. Marcus Völp

Abstract

With the growing support for features such as hardware virtualization tied to the boost of
hardware capacity, embedded systems are now able to regroup many software components
on a same hardware platform to save costs. This evolution has raised system complexity,
motivating the introduction of Mixed-Criticality Systems (MCS) to consolidate appli-
cations from different criticality levels on a hardware target: in critical environments
such as an aircraft or a factory floor, high-critical functions are now regrouped with
other non-critical functions. A key requirement of such system is to guarantee that the
execution of a critical function cannot be compromised by other functions, especially by
ones with a lower-criticality level. In this context, runtime intrusion detection contributes
to secure system execution to avoid an intentional misbehavior in critical applications.

Host Intrusion Detection Systems (HIDS) has been an active field of research for
computer security for more than two decades. The goal of HIDS is to detect traces of
malicious activity in the execution of a monitored software at runtime. While this topic
has been extensively investigated for general-purpose computers, its application in the
specific context of embedded MCS is comparatively more recent.

We extend the domain of HIDS research towards HIDS deployment into industrial
embedded MCS. For this, we provide a review of state-of-the-art HIDS solutions and
evaluate the main problems towards a deployment into an industrial embedded MCS.

We present several HIDS approaches based on solutions for general-purpose computers,
which we apply to protect the execution of an application running into an embedded
MCS. We introduce two main HIDS methods to protect the execution of a given user-level
application. Because of possible criticality constraints of the monitored application, such
as industrial certification aspects, our solutions support transparent monitoring; i.e. they
do not require application instrumentation. On one hand, we propose a machine-learning
(ML) based framework to monitor low-level system events transparently. On the other
hand, we introduce a hardware-assisted control-flow monitoring framework to deploy
control-flow integrity monitoring without instrumentation of the monitored application.

We provide a methodology to integrate and evaluate HIDS mechanisms into an
embedded MCS. We evaluate and implement our monitoring solutions on a practical
industrial platform, using generic hardware system and SYSGO’s industrial real-time
hypervisor.

iii

To my parents and grandparents.

Acknowledgment

During these last four years, I have professionnally and personnally learned a lot. I have
been through a first industrial experience, doing PhD research; I moved to Germany and
discovered the subtility of German food and bureaucracy; like everyone else, I also had
to deal with the Covid-19 pandemie. I met many people on the way, who helped me –
directly or indirectly – to achieve this work.

I am deeply grateful to Prof. Gerhard Fohler, my PhD advisor at TU Kaiserslautern,
for his constant guidance and encouraging support all along this work. With him, I
learned a lot about real-time systems research, and more generally about academic
research. Working together helped me to sharpen my scientific perceptions with more
simplicity and accuracy. I sincerely thank Philipp Gorski, my PhD advisor at SYSGO
during the last two years, for his many helpful feedback, his positive and motivating
support despite the long distance between Mainz and Rostock. He provided me with
invaluable technical guidance and programming tips. His software code is a magical
source of inspiration for my everyday programming work. I also particularly thank
Sergey Tverdyshev, my former PhD advisor at SYSGO during the two first years, as he
trusted in me for this research opportunity. He provided me with precious guidance and
work methods, which guided this whole work. He also introduced me to SYSGO and
industrial research practises.

I am thankful to Prof. Marcus Völp for accepting to be on my PhD Defense Committee
and to Prof. Wolfgang Kunz for accepting to chair the Committee.

I want to thank the co-authors of my publications for their collaboration: Jan Ruh,
Patrick Denzler, and Cosmin Avasalcai. I am grateful to the anonymous reviewers of
my publications, who helped me to improve my work and to structure my knowledge on
intrusion detection for embedded mixed-criticality systems.

During my PhD time at SYSGO, I had the opportunity to grow personnally and
professionally in a friendly work environment. I am grateful to Don Kuzhiellil for the
constructive discussions and collaborations during this work. I want to thank Bertrand
Marquis, for his great support in the beginning of the PhD. Many thanks to Caspar
Gries, my tutor when I joined SYSGO, who has been a fantastic fellow office-mate for
two years. More largely, I am grateful to the overall R&T team – past and current –
members: Holger Blasum, Mario Brotz, Zeeshan Ansar, Enkhtuvshin Janchivnyambuu,
Axel von Blomberg, Stephan Wagner, Ingo Speer, and Torsten Voegler. Many thanks to
Etienne Butery for his trust and consideration in my work, as well as for his constant

vii

support. He gave me the opportunity to make connections and to improve visibility of
my work outside SYSGO, leading to enriching discussions with industrial experts on
embedded mixed-criticality systems, machine-learning, and security. Many thanks to
my former colleagues Andrea Bastoni and Alex Zuepke for their valuable feedback on
this work. Special thanks to the international lunch crew: Konstantin Tarandevich, Alex
Dehmel, Agostino Mascitti. Your everyday good mood and humor were of great help to
relax, even in stressful times. Many thanks to the pillars of SYSGO office, who nurture
an enjoyable and positive work environment: Nicole Hirschmann, Kerstin Henss, Pia
Marchlewitz, Britta Ehlenberger, Kai Sablotny, and Cristina Da Costa. Thank you for
your kindness and support with administrative issues. More broadly, I wish to thank
my fellow colleagues, Benjamin, Daniel, Jasmin, Jasmine, Frank, Armin, Tibor, Oliver,
Frank, Wolfgang Andreas, David, Patrick, Henrik, Rudolf, Franz, Matthias, José, Fanny,
Guillaume, Yannick, Jean-Jacques, Antonios, and Jérôme for their friendly support.

I warmly thank my colleagues at the Real-Time Systems Chair of TU Kaiserslautern.
Many thanks to Stephanie Jung and Markus Mueller for their support with the adminis-
trative and technical issues at the university. Special thanks to the former and current
PhD students of the Chair: Kristin Krüger, Gautam Gala, Florian Heilmann, Carlos
Rodriguez, Luiz Maia, Ibrahim Alkoudsi, Gabriele Monaco, Alexandre Venito, Ankit
Agrawal, Rodrigo Cohelo. Thank you for the many interesting discussions and for your
friendly support, especially during the mentally challenging long lockdown periods.

I had the opportunity to supervise master-level students for internship and theses,
which contributed to this research. Many thanks to Jordan Sautreau and Andrés
Simancas Mateus for the fun and fruitful collaborations.

Last but not least, I am deeply grateful to my family, especially my parents and
grand-parents who kept pushing me forward. Thank you for being there, always. My
special thanks go to my partner, Christian, who accompanied me in this journey, from
Grenoble to Mainz. Thank you for supporting me all the way, even in difficult times.
I am so lucky and happy to have you by my side.

Marine Kadar
Mainz, 02.02.2022

The research leading to these results has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No. 764785, FORA—Fog Computing for Robotics and Industrial
Automation [129].

viii

Publications

I have authored or co-authored the following publications:

Journal Paper
• M. Kadar, G. Fohler, P. Gorski, and D. Kuzhiyelil. A survey of host intrusion

detection for embedded mixed-criticality systems. submitted, 2021.

Peer-Reviewed Conference and Workshop Papers
• M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski. Safety-aware integration

of hardware-assisted program tracing in mixed-criticality systems for security
monitoring. In IEEE Real-Time and Embedded Technology and Applications
Symposium, 2021.

• M. Kadar, S. Tverdyshev, and G. Fohler. Towards host intrusion detection for
embedded industrial systems. In 50th Annual IEEE-IFIP International Conference
on Dependable Systems and Networks-Supplemental Volume (DSN-S), 2020.

• D. Kuzhiyelil, P. Zieris, M. Kadar, S. Tverdyshev, and G. Fohler. Towards
transparent control-flow integrity in safety-critical systems. In 23rd Information
Security Conference, 2020.

– My contributions consist of the implementation of forward-edge control-flow
integrity checking, the integration of control-flow integrity checks on the test
platform, the timing overhead analysis, as well as parts of the results analysis
and literature review.

• P. Denzler, J. Ruh, M. Kadar, C. Avasalcai, and W. Kastner. Towards consolidating
industrial use cases on a common fog computing platform. In 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
2020.

– My contribution corresponds to all security-related considerations of industrial
use-cases to build a common fog computing platform.

ix

• M. Kadar, S. Tverdyshev, and G. Fohler. System calls instrumentation for intrusion
detection in embedded mixed-criticality systems. In 4th International Workshop
on Security and Dependability of Critical Embedded Real-Time Systems, 2019.

x

Contents

Abstract iii

Acknowledgement vii

Publications ix

List of Figures xvii

List of Tables xix

I Introduction 1
I.1 Motivation . 1
I.2 Main Contributions . 3
I.3 Thesis Outline . 4

II Background 7
II.1 Basic Concepts . 7

II.1.1 Safety and Security . 7
II.1.2 Embedded Mixed-Criticality System 8
II.1.3 Runtime Security via Host Intrusion Detection System 10

II.2 Security Problem for Embedded Mixed-Criticality Systems 13
II.2.1 Industrial Embedded Mixed-Criticality Systems Requirements

for Deployment . 13
II.2.2 Threat Environment . 17
II.2.3 Problem Definition . 19

II.3 Thesis Goal . 21

III State of the Art on Host Intrusion Detection 23
III.1 Evaluation Scheme to Guide our Literature Review on Host Intrusion

Detection . 25
III.1.1 Host Intrusion Detection System Classification 25
III.1.2 Literature Review Focus . 28

III.2 Host Intrusion Detection in General-Purpose Computer Systems 30

xi

III.2.1 Control-Flow Integrity Monitoring 32
III.2.2 Data-Flow Monitoring . 36
III.2.3 Machine-Learning and Statistical Based Anomaly Detection . . . 37

III.3 Host Intrusion Detection in Embedded Mixed-Criticality Systems . . . 42
III.3.1 Applying Host Intrusion Detection in Embedded Mixed-Criticality

Systems . 42
III.3.2 Host Intrusion Detection Solutions Designed for Embedded Mixed-

Criticality Systems . 44
III.4 Conclusion . 47

IV A Methodology for Runtime Anomaly Detection in Embedded Mixed-Criticality Systems 49
IV.1 A General Approach for Safety-Aware Host Intrusion Detection in

Embedded Mixed-Criticality Systems 49
IV.1.1 Program Execution Tracing for Security 50
IV.1.2 Analysis Methods to Identify Intrusions 50
IV.1.3 Safety-Aware Runtime Monitoring in Embedded Mixed-Criticality

Systems . 51
IV.2 System Events Correlation with Runtime Malicious Execution in Em-

bedded Mixed-Criticality Systems . 51
IV.2.1 An Abstract Representation of Anomaly Detection 51
IV.2.2 System Events Selection for Intrusion Detection 54

IV.3 Two Safety-Aware Anomaly Detection Approaches for Embedded Mixed-
Criticality Systems . 55

IV.3.1 System Events Based Machine-Learning Assisted Anomaly De-
tection . 55

IV.3.2 Safety-Aware Hardware-Assisted Control-Flow Integrity Monitoring 56
IV.3.3 Comparison of the Two Monitoring Approaches 57

IV.4 Host Intrusion Detection Integration into an Embedded Mixed-Criticality
Environment . 58

IV.4.1 System Design . 58
IV.4.2 Safety-Aware Integration of the Host Intrusion Detection System 62
IV.4.3 System Recovery Strategies . 64

IV.5 Host Intrusion Detection Framework Evaluation 64
IV.5.1 Intrusion Detection Efficiency Evaluation 65
IV.5.2 Performance Impact Evaluation for Monitoring 67
IV.5.3 Safety Requirement Guarantee Evaluation 68

V Machine-Learning Based Anomaly Detection Solutions for Embedded Mixed-Criticality
Systems 71

V.1 System Calls Instrumentation for Anomaly Detection in Embedded
Mixed-Criticality Systems . 72

V.1.1 Methodology for System Call Monitoring in Mixed-Criticality
Systems . 73

xii

V.1.2 Tracing Time Overhead Estimation 74
V.1.3 Experiment . 75
V.1.4 Experiment Results . 78
V.1.5 Discussions . 80
V.1.6 Conclusion . 83

V.2 Offline Safety-Aware Hybrid Anomaly Detection Service for Embedded
Mixed-Criticality Systems . 83

V.2.1 Hardware and Software Based Monitoring Infrastructure 83
V.2.2 System Events Traces Analysis for Anomaly Detection 85
V.2.3 Experimental Setup . 87
V.2.4 Performance Evaluation of the Framework 89
V.2.5 Security Evaluation . 90
V.2.6 Conclusion . 92

V.3 Online Safety-Aware Hardware Performance Counters Based Anomaly
Detection System . 93

V.3.1 Online Host Intrusion Detection System Architecture 93
V.3.2 Machine-learning Based Trace Analyzer 95
V.3.3 Real-Time Analysis of the Monitoring Framework 99
V.3.4 Experiment . 103
V.3.5 Conclusion . 112

V.4 Conclusion on Machine-Learning Assisted Anomaly Detection for Em-
bedded Mixed-Criticality Systems . 113

VI A Safety-Aware Control-Flow Integrity Framework for Embedded Mixed-Criticality Systems 115
VI.1 Hardware-Assisted Control-Flow Monitoring Framework 116

VI.1.1 Control-Flow Monitoring Framework Overview 116
VI.1.2 Control-Flow Monitoring Mechanisms 117

VI.2 Model and Problem Statement . 123
VI.2.1 Threat Model . 123
VI.2.2 Task Model . 123
VI.2.3 System Model . 124
VI.2.4 Problem Statement . 125

VI.3 Safety-Aware Control-Flow Monitoring Solution Design 127
VI.3.1 Predictable Control-Flow Monitoring 127
VI.3.2 Application-Profiling Based Anomaly Detection 129
VI.3.3 Monitoring Framework Implementation 130

VI.4 Experimental Setup . 132
VI.4.1 Application Test Set . 132
VI.4.2 Hardware Environment . 133
VI.4.3 Embedded Trace Buffer Size Configuration 134

VI.5 Control-Flow Monitoring Performance Overhead 136
VI.5.1 Time Overhead of the Control-Flow Monitoring Framework . . . 137
VI.5.2 Additional Hardware Costs for Integrating the Framework 140

xiii

VI.6 Framework Security Evaluation . 140
VI.6.1 Objective . 140
VI.6.2 Evaluation Setup . 141
VI.6.3 Anomaly Detection Evaluation 141
VI.6.4 Results . 142

VI.7 Discussion . 144
VI.7.1 Lessons Learned . 144
VI.7.2 Framework Improvements Towards Industrial Deployment 145

VI.8 Related Work . 147
VI.8.1 Security Integration in Real-Time Systems 147
VI.8.2 Runtime Threat Detection for Mixed-Criticality Systems 148

VI.9 Conclusion . 149

VII An Adaptive Host Intrusion Detection System Approach for Embedded Mixed-Criticality
Systems 151

VII.1 A Multi-Mode Based Host Intrusion Detection System 151
VII.1.1 Motivations for combining intrusion detection approaches 152
VII.1.2 Overview of the Multi-Mode Host Intrusion Detection Solution . 153
VII.1.3 System Model with the Multi-Mode Intrusion Detection Solution 155

VII.2 Analytical Evaluation of the Multi-Mode Host Intrusion Detection Solution 157
VII.2.1 Security Evaluation . 157
VII.2.2 Performance Evaluation . 162
VII.2.3 System Schedulability Evaluation 163

VII.3 Concluding Remarks . 163
VII.3.1 Evaluation Criteria for Multi-Mode Based Intrusion Detection

System Deployment . 163
VII.3.2 Limitations for Using Several Security Modes 165
VII.3.3 Future Perspectives to Develop Multi-Security Modes 166

VIII Conclusion 167
VIII.1 Contributions to the State of the Art 167

VIII.1.1Research Gaps in Host Intrusion Detection Systems Literature . 167
VIII.1.2Contributions Towards Host Intrusion Detection into Embedded

Mixed-Criticality Systems . 168
VIII.2 Future Research Perspectives . 169

VIII.2.1Current Limitations for Intrusion Detection into Embedded Mixed-
Criticality Systems . 169

VIII.2.2Possible Improvements Towards Intrusion Detection in Certified
Industrial Systems . 170

VIII.2.3Open Questions . 171

A Hardware Performance Counters Selection 173
A.1 Offline Monitoring Framework . 173

xiv

A.2 Results Analysis . 173
A.3 Final Hardware Performance Counters Selection 176

Bibliography 177

Glossary 191

Summary
Integration Methods for Host Intrusion Detection into Embedded Mixed-Criticality Systems 193

Zusammenfassung
Integrationsmethoden für Host-Basierte Angriffserkennung in Eingebetteten Mixed-Criticality
Systemen 197

Curriculum Vitae 205

xv

List of Figures

II.1 Error propagation chain of dependability, introduced by Avizienis et
al. [21] . 8

II.2 Host intrusion detection system overview 12
II.3 Window of opportunity for an attack 13
II.4 A generic embedded mixed-criticality system architecture 14
II.5 An example of system under threat . 20

III.1 Overview of reviewed host intrusion detection approaches 28

IV.1 A program execution graph . 52
IV.2 Generic system architecture supporting host intrusion detection system 59
IV.3 Sequence diagram of the execution of an application under HIDS moni-

toring . 66
IV.4 Example of system schedules, with and without monitoring 68

V.1 System architecture with system call monitoring 76
V.2 System call and hardware counters based offline HIDS architecture . . . 84
V.3 Anomaly detection system engine . 86
V.4 Online hardware counters based host intrusion detection system archi-

tecture . 94
V.5 Example of monitoring execution with with CC = 1, TC = 6, CM =

5, TM = 6, and ΔOC,M = 5 . 102
V.6 Generic program representation . 104
V.7 Impact of the network topology on detection accuracy results 109
V.8 Execution time of the trace analyzer (cM) 110
V.9 Impact of d the depth of LSTM nodes on the execution time cM (added

execution time compared to dmin = 15) 111

VI.1 System overview . 116
VI.2 Control-flow integrity monitoring design 118
VI.3 Sequence diagram for monitoring request handling 121
VI.4 A system schedule example, with τA = (CA, TA), τM = (CM , TM), τS =

(CM , CM , �TA

Tw
� ∗ CM , TA), and defining CM = 2, TM = 3, CA = 12, TA =

20, Tw = 6 . 129

xvii

VI.5 Execution time for TACLeBench tested applications (no monitoring) . . 132
VI.6 Trace buffer usability for different buffer sizes 134
VI.7 Extra buffer size distribution for all applications (2KB buffer) 135
VI.8 Extra buffer size distribution for inffcall application 136
VI.9 Copy time measurements for different buffer sizes and all tested appli-

cations . 137
VI.10 Time overhead for tested applications, with trace copy 138
VI.11 Time overhead for tested applications, without trace copy 139
VI.12 Distribution of monitoring requests inter-arrival times for all applications

(without trace copy) . 141

VII.1 State machine representing the HIDS execution modes 152
VII.2 An example of execution paths classification for a generic application,

using the multi-mode host intrusion detection system 159
VII.3 An example of schedule for a malicious execution of the periodic task

τA = (CA = 13, TA = 15, PA) and a multi-mode intrusion detection
system composed of the periodic task τLS = (CLS = 2, TLS = 5, PLS)
and the sporadic task τHS = (CHS = 6, THS = 6, PHS). As explained
in Section VII.1.3 to model intrusive trace collection (i.e. the HIDS
must preempt τA for trace collection), we introduce the additional
sporadic task τT C = (CT C = 2, TT C = 6, PT C > PA) to preempt τA. The
platforms supports 4 CPU cores, where τLS runs on CPU core 1, τHS

runs on CPU core 2, τA and τT C run on CPU core 3. 161

A.1 Offline hardware performance counters monitoring framework 174
A.2 Box-plots of events counts for the set of monitored hardware performance

counters on the test set . 175

xviii

List of Tables

II.1 Confusion matrix . 13

III.1 Comparison of surveys on host intrusion detection systems in func-
tion of explicitely covered research areas. (✕, ●) symbols respectively
correspond to unsupported and supported fields. 24

III.2 Evaluation criteria base for our literature review 25
III.4 Comparison of intrusion detection solutions discussed in this study.

Symbols (–, ✕) for transparency and portability columns respectively
stand for not applicable and required fields. For security, certifyability,
and performance criteria, we define the following symbols (✕, ❍, ◗, ●)
respectively meaning no, basic, partial, and full support of the given
field. 31

III.3 Collectable traces in general-purpose computers to observe system exe-
cution . 32

III.5 Common control-flow transitions . 33
III.6 Comparison of hardware-assisted and hardware-based CFI monitoring

approaches . 34
III.7 Common hardware performance counter events 40
III.8 Hardware performance counters traced in literature 40
III.9 Comparison of intrusion detection solutions designed for embedded

mixed-criticality systems. Symbols (–, ✕, ●) respectively stand for not
applicable, missing, and applicable fields. In the security evaluation
(❍, ◗, ●) represent basic proof of concept, limited security metric
measurements, and exhaustive security checks in a real-life complex
environment levels. 45

IV.1 Comparison of intrusion detection solutions introduced in this thesis.
Symbols ✕and ●respectively designate unsupported and supported
fields. Symbol ◗refers to a field, which can be supported depending on
the deployment configuration. 57

V.1 List of Linux applications and their applied command lines 78
V.2 Results for the test application setups 79
V.3 Tracing overhead measurements for a selection of system calls 80

xix

V.4 Time overhead for tested applications 81
V.5 Influence of the context switch period on tracing overhead 82
V.6 Hardware performance counters selection 87
V.7 Hello application profiles . 88
V.8 Linpack application profiles . 88
V.9 Network file reader client profiles . 89
V.10 Maximum tracing time overhead with 99% confidence interval (1500

samples) . 90
V.11 Anomaly detection (%) for network file reader test 91
V.12 System task configurations . 101
V.13 Final monitoring task configurations . 103
V.14 Tested monitoree configurations . 105
V.15 Base monitoree loop configuration for all tested use-cases 106
V.16 Anomalous monitoree loop configurations compared to the reference l

(base)
A 106

V.17 Monitoree execution configurations with Tc = 10ms 107
V.18 Detection results summary . 108
V.19 Trace analyzer execution time in function of the LSTM network topology

(for 200 measurements) . 110

VI.1 Evaluation metrics for one period of execution of Task τA 125
VI.2 Matrix of monitoring coverage issues 126
VI.3 Security results with 10% performance overhead and buffer size = 2KB 143

VII.1 Impact of security monitoring configuration on evaluation criteria. The
symbols (–, ✕, ❍, ●) respectively correspond to (no, negative, miti-
gated, positive) impact of the configuration parameter on the evaluation
criteria. 165

A.1 Hardware performance counter events presenting similar results on the
test case . 174

A.2 Unsuitable hardware performance counter events for application profiling 176
A.3 Hardware performance counters selection 176

xx

I

Introduction

I.1 Motivation
Today, the industry of embedded systems tends to consolidating many software functions
on a same hardware platform to save costs like hardware physical space, computing
power, and cabling infrastructure. In particular in the domain of safety-critical applica-
tions, embedded Mixed-Criticality System (MCS) integrate several software components
corresponding to different criticality levels on a single hardware platform. The criticality
of a component depends on the type of safety-related constraints affecting its execution;
e.g. soft, firm, or hard Real-Time (RT) deadlines. The failure of a high-critical software
component can lead to catastrophic consequences.

In this context, safety and security pursue the same objective: the embedded MCS
system must ensure the correct behavior of software components, in the presence of
inner or outer effects that may lead to unintended execution paths altering the execution
of one or several components. Safety and security have common ground in certain
properties, such as the availability and the integrity of a system function. Goals of safety
properties include protecting the systems from random faults caused by the environment:
i.e. safety properties are not supposed to defend the system against attacks raised by a
smart adversarial individual, who constantly adapts the attack to bypass the protection.
Embedded MCS are subject to security threats because of low-critical applications.
Low-critical software represent indeed attractive entry points for an attack, considering
two main aspects:

• A low-critical software generally supports user interaction (i.e. through user
software interface, via physical hardware access, or remotely leveraging networking
capability).

• A low-critical software is more likely to contain software bugs compared to high-
critical software components, which are developed, tested, and verified following
rigorous certification processes.

Hence for a given software component, the probability of a successful attack decreases
when the component’s criticality level increases. Additionally, ScheduLeak threat [33]
has recently demonstrated how an adversary controlling a low-critical task can disturb

1

2 Chapter I. Introduction

the execution of a higher-critical task via a side-channel attack on the real-time schedule.
Thus, security is a major and realistic issue for systems with mixed-criticality require-
ments: embedded MCS must support security mechanisms, aside from safety
mechanisms, to prevent, detect, and mitigate the threats able to compromise
system safety-critical functions.

Host Intrusion Detection System (HIDS) represent a well-known domain of research
for runtime threat detection in the execution of a given program. The state-of-the-art
literature proposes diverse HIDS solutions, which vary with the analysis method (e.g.
specification based methods or Machine Learning (ML) assisted) and in function of the
type of monitored system events from hardware and software layers. The great majority
of these approaches apply to General-Purpose (GP) computers. However, the integration
of a solution into an embedded MCS requires additional effort for industrial deployment:

• The integration of a HIDS into an embedded MCS must cope with the hardware
limitation of the embedded platform, while meeting the safety-related requirements
of critical software components.

• As the development of embedded MCS follows a rigorous certification process for
industrial deployment, the impact of integrating a HIDS into the system on the
certification process must be evaluated beforehand.

Hence, we need a set of basic properties and criteria to evaluate the suit-
ability of a HIDS framework for deployment into industrial embedded MCS.

The concept of MCS was mentioned for the first time after the introduction of
partitioning in avionics system architecture with the concept of Integrated Modular
Avionics (IMA): e.g. In 1999, Dutertre and Staviridou [52] have defined a model of
safe integration of several independent software components having different criticality
levels on a single hardware platform. Yet, despite the early focus on the non-interference
requirement for integrating software into such systems [52, 69], the security focus – more
specifically the topic of runtime intrusion detection – has come into light much later. For
approximately a decade, several research works have introduced HIDS techniques for
systems with criticality constraints; e.g. Control-Flow Integrity (CFI) monitoring [156,
127, 1]. Though, none of the works we reviewed addresses the problem of industrial
deployment of intrusion detection in embedded MCS, i.e. especially involving certification
standards to develop high-critical safety functions. The productization process imposes
constraints on the HIDS approach to limit the monitoring impact on system properties at
runtime (e.g. the response time of the monitored software) on one hand, the additional
effort for certification when integrating HIDS mechanisms on the other hand. For example,
an approach requiring instrumentation to monitor a high-critical program induces a
significant impact on system certification: the certification process on the monitored
program must be reiterated for every update of instrumentation based mechanisms.
In addition, there is to our knowledge no prior research discussing how to integrate
state-of-the-art HIDS mechanisms into an embedded MCS, even though there is a wide
diversity of solutions, notably in function of types of traced system events and trace
analysis methods, as well as in terms of evaluation approaches and criteria.

3

Developing HIDS for embedded MCS represents a major challenge with the diversity
of these systems, in particular in terms of portability. Because of the wide variety of
hardware and Operating System (OS) for embedded MCS, there is today no industry-
standard platform. For example, ARM, PowerPC, and Intel are three common processor
architectures. While we intend to leverage low-level system events for intrusion detection
to limit monitoring impact on the monitored program, the tracing of these system events
heavily depends on characteristics of the deployment platform: this potentially poses
limits for HIDS portability. The diversity of platforms also induces the absence of widely
available test benches to evaluate a given HIDS; the evaluation of a solution depends on
the platform as well as on the monitored application use-case.

In addition, the porting of a HIDS framework built for GP computers to an industrial
embedded MCS is not straight-forward. While the characteristics of the deployment
platform are usually serious constraints for an embedded systems, system performances
represent comparatively secondary considerations for GP computers (e.g. dematerialized
execution of the HIDS in a Cloud infrastructure). A mixed-criticality execution environ-
ment brings safety critical constraints, like hard real-time deadlines, to be considered
for HIDS deployment. Especially in the context of industrial deployment, the lower the
intrusiveness level of HIDS mechanisms for monitoring, the lower the impact of the HIDS
on system certification effort.

I.2 Main Contributions
The work at hand contributes and extend the state-of-the-art HIDS research towards
HIDS deployment in industrial embedded MCS. For this, we introduce HIDS solutions,
which are able to run in environments with embedded and safety-critical constraints. A
key objective is to identify traceable system events at runtime and analysis methods,
which are relevant for intrusion detection in embedded MCS. We base our work on
monitoring methods used for GP computers, applying them in the context of secure
embedded MCS. We evaluate the impact of security solutions in a practical industrial
environment, using a standard hardware platform and RT hypervisor.

The main contributions are as follows:

• a comprehensive literature research for HIDS deployment into indus-
trial embedded MCS – In the survey [78], we identify suitable system events
and trace analysis approaches for intrusion detection in embedded MCS. As a
complementary focus, we describe security challenges for Industry 4.0 scenarios
in [48].

• a methodology to develop HIDS for embedded MCS – We introduce a
generic system architecture to integrate HIDS into an embedded MCS [81]. We
also propose several intrusion detection approaches, as well as a set of evaluation
methods, criteria, and metrics.

• anomaly-based HIDS using heuristics for industrial embedded MCS –
We develop several machine-learning based HIDS approaches, leveraging a safety-

4 Chapter I. Introduction

aware System Call (SC) instrumentation based framework in [80] and transparent
Hardware Performance Counters (HPC) monitoring. In the scope of this thesis, we
investigated how to use online machine learning (ML) to detect intrusions: this led
to a M.Sc. thesis publication [109].

• a hardware-assisted CFI monitoring prototype for embedded MCS – We
introduced a safety-aware framework for CFI monitoring [92]. In [79], we extend
this framework to configure the ratio between performance overhead and security;
we also propose a transparent online service to monitor Control-Flow (CF) related
traces.

• a multi-mode HIDS approach for embedded MCS – We discuss how to com-
bine different intrusion detection approaches to help the configuration of adaptive
HIDS; the main benefit being to adapt the trade-off between accurate intrusion
detection, security coverage, performance overhead, and system intrusiveness for
monitoring.

I.3 Thesis Outline
This thesis is organized as follows.

Chapter II We introduce basic concepts related to HIDS and embedded MCS. After
describing the security threat problem for these specific deployment platforms, we define
a set of criteria to compare state-of-the-art HIDS framework later discussed. The goal is
to define the ability of a given solution to protect a monitored application in an industrial
embedded MCS, more particularly in the context of certification.

Chapter III We split our literature review in two main parts: while we provide an overview
of HIDS in GP computers, we also discuss the state-of-the-art solutions applying to
embedded MCS.

Chapter IV We describe an approach for integrating HIDS into embedded MCS. We
also define a generic system architecture and identify a set of metrics to evaluate the
HIDS solution with respect to security, system schedulability, and performance overhead.
Based on this generic HIDS framework, we develop several detection approaches in the
following chapters.

Chapter V We present ML based methods to detect intrusions in the execution of a
monitored application. The goal is to limit intrusiveness in monitoring, by tracing
low-level system events with system calls at OS level and HPC at hardware level. While
the tracing of these events do not require instrumentation of the monitored program,
the implementation depends on the system platform (OS and hardware layers). Based
on this system call and HPC tracing infrastructure, we develop an open-source ML
framework to perform detection locally on the deployment platform.

5

Chapter VI We introduce a configurable and predictable CFI monitoring framework,
a specification based approach, which leverages hardware processor tracing to avoid
instrumentation of the monitored program. In this chapter, we also introduce a CF
events monitoring service using statistics to be combined with sporadic CFI checking, to
address the trade-off issue between performance overhead and coverage of the monitored
execution.

Chapter VII We present the approach to combine two monitoring solutions with an
analytical adaptive HIDS. We define a set of requirements and evaluation considerations
to guide future implementations. Our goal is to combine several detection approaches to
improve the detection of intrusions in the monitored application; i.e. possibly decreasing
the rate of detection errors, while reducing the heavy performance overhead induced by
some intrusion detection methods like our CFI monitoring approach.

Chapter VIII We summarize and conclude this thesis by comparing our contributions
to the state of the art. We discuss main limitations of our implementations and paths
for future HIDS development in the context of industrial embedded MCS. Finally, we
examine remaining open questions to address by future research.

II

Background

Our goal is to deploy Host Intrusion Detection Systems (HIDS) into industrial embedded
Mixed-Criticality Systems (MCS) to protect these systems against threats. It is essential
to clarify several basic concepts beforehand, in particular to understand the inherent
specificities and constraints of industrial embedded MCS. We explain the main concepts
involved in HIDS deployment for embedded MCS in Section II.1. In Section II.2, we
describe our work environment, related specific system constraints, and the scope of
threats to consider, to finally define the problem which we propose to address through
this work. After this contextualization, we specify the thesis goal in Section II.3.

II.1 Basic Concepts
This section clarifies the essential concepts involved in the domains of MCS and intrusion
detection based security. It compares the notions of safety and security (Section II.1.1),
defines the specifities of MCS platforms (Section II.1.2, and introduces HIDS (Sec-
tion II.1.3).

II.1.1 Safety and Security
Even though both, safety and security, address the problem of system failure, these two
approaches fundamentally differ in their context of deployment related to the nature of
the adversary they consider.

From Fault to System Failure

We define a computer system as a set of subcomponents executing programmed tasks.
Laprie clarifies the impairments to dependability [93] (Figure II.1). A fault is the
result of a misbehavior of a system component; i.e. a software or hardware element.
It can be provoked by a random event – physical phenomena such as short-circuits or
electromagnetic perturbations – or a human action; i.e. an inadvertent or deliberate
violation of operating or maintenance procedures [93]. An error is an activated fault
that compromises the state of the system. A failure is an error, which makes the system
behavior deviate from its expected normal execution and propagates to the system

7

8 Chapter II. Background

Figure II.1: Error propagation chain of dependability, introduced by Avizienis et al. [21]

interface. A fault, an error, or a failure possibly causes further faults propagation to
other system components.

Difference Between Safety and Security

Safety is a property applying to the whole system or a subset of system components.
Its objective is to assure that no failure in the set of components can cause catastrophic
consequences in the deployment environment; e.g. endangering, life of individuals,
material damages, economical issues, etc. More specifically in this study, we consider
Functional safety, a safety property which intends a system to operate predictably and
deterministically, under normal execution as well as in case of failure. In this context,
we perceive the physical environment as an adversary, which can induce system random
faults. For example in computer systems, a bit flip in RAM is a common hardware fault,
which arbitrarily sets the bit to an incorrect value at random times.

While the safety objective is to protect the system against the environment, a goal of
security (which Avizienis et al. define as a set of attributes including confidentiality,
integrity and availability [21]) is to protect the system against intrusions. We define an
intrusion as an intentional malicious fault initiated by a hostile individual. Depending
on the context, the intrusion can lead to further errors and failures in the system. While
in terms of safety the adversary does not behave intelligently (generating random faults),
from the security’s perspective the adversary is smart: the individual continuously adapts
its action to hijack existing protections. Hence, securing a system is a continuous iterative
process to counter evolving adapting threats. In that sense, the security goal differs from
the safety goal, which aims at minimizing the risk probability of random faults.

II.1.2 Embedded Mixed-Criticality System

In the last decade, MCS have come into light in the context of Real-Time Systems (RTS)
and have spread out in the industry of embedded systems. A MCS includes a set of
functions associated with various significance levels in case of failure, introducing several
criticality domains of execution. Embedded MCS combine the limitation of embedded
systems in terms of hardware resources with MCS specific constraints; in particular the
independence and freedom from interference between the distinct criticality domains.

9

Embedded Mixed-Criticality System Definition

Following the definition from Heath [68], we define an embedded system as a «micro-
processor based system that is built to control a function or a range of functions ».
Embedded systems are generally designed to fit a specific use-case: in opposition to per-
sonal computers or cloud servers, they have limited hardware resources (i.e. connectivity,
memory, I/O peripherals) and computing power. However, with the increase of hardware
capacity in the last decades, virtualization and multi-core CPU support have spread
among embedded platforms to save costs such as data storage, computing power, and
power consumption. Consequently, the complexity of embedded systems has globally
increased, as they aim at bringing different workloads on the same hardware platform.
In that respect, MCS address the problem of consolidating several system functions on a
same hardware platform

In their literature review [27], Burns and Davis provide a thorough state of the art
of MCS research. They designate criticality as the level (or domain) of assurance
against failure that is needed for a system component. In that respect, they define a
MCS as a system including components from two or more (up to 5) distinct criticality
levels. To meet the multiple safety and security requirements of the different criticality
domains, MCS must support proper separation of the domains. Hence, we define an
embedded MCS as an embedded system including components from two or
more distinct criticality levels.

Mixed-Criticality System Modeling

Basically, MCS modeling follows the general approach of RTS modeling; one difference
being the consideration of tasks’ criticality in the task and system models. In RTS
research, a simple representation of a periodic system task τi is: τi = (Ci, Di, Ti), with
Ci the worst-case execution time of the task (WCET), Di its deadline, and Ti its period.
For MCS modeling, we introduce a new parameter Li for the task τi, which represents
the criticality of the task; i.e. τi = (Ci, Di, Ti, Li).

To support MCS, the system design must integrate the new criticality parameter of
tasks. The criticality parameter may also indirectly influence other task parameters
(WCET, period, and deadline): e.g. the higher the criticality level, the more conservative
the WCET is computed. Additionally, context switch between distinct criticality levels
takes intuitively longer than switching between tasks of the same level as discussed by
Davis et al. [46]. In a MCS composed of tasks of different criticality levels, the authors
introduce processes to define distinct criticality domains, which correspond to a set of
resources – cache and memory address space – and tasks of the same criticality level.
The switch between two tasks of different processes (1) takes longer to execute than
the switch between two tasks of the same process (2). The two tasks require stronger
spatial isolation in Case (1) compared to Case (2); i.e. the switch between tasks must
update the cache and memory address space of the tasks. With this approach, Davis et
al. integrate the variation of context switch costs into schedulability analysis for several
scheduling schemes.

10 Chapter II. Background

Multiple Criticality Domains Separation Problem

A key requirement of MCS is to achieve strong separation of the multiple criticality
domains in the system: i.e. assuring that an application executing in a given criticality
domain cannot affect the execution of other applications in domains with higher criticality
levels. Because high-critical tasks share system resources with low-critical tasks, system
interferences could cause damages like catastrophic failure of a high-critical safety
function. The system should guarantee basic safety and liveness properties of safety-
critical systems, such as mutual exclusion on shared resources, the absence of deadlock
and the freedom from starvation [9, 122]. Such safety and liveness properties contribute
both to system safety and security, preventing the system to reach – via intentional or
hazardous transitions – a compromised state or failure.

In addition to these basic properties, a MCS specifically requires sufficient inde-
pendence and freedom from interference: it must assure strong spatial and timing
separation between components of distinct criticality levels. Blanquart et al. [25] define
freedom from interference as the absence of cascading failure from low to higher criticality
levels; i.e. a system component with a low criticality level cannot influence another
component from a higher criticality domain. They define sufficient independence as the
absence of common cause failures and cascading failures between components that could
lead to the violation of the initial safety requirement. As for basic safety and liveness
properties, these two additional properties enforce system safety and security, through
a strong separation of the criticality domains at design level. In addition, runtime
control mechanisms, such as as memory protection and admission control, can enhance
the domains separation [117].

II.1.3 Runtime Security via Host Intrusion Detection System

Information Technology (IT) security involves various defense bricks deployed at multiple
enterprise levels (e.g. network traffic monitoring, enterprise processes, computing sys-
tems). In particular, Host Intrusion Detection is an approach to runtime threat detection
in a computer system. Several criteria contribute to evaluate the quality of a HIDS
solution in terms of security: the detection rapidity through the maximum time window
of opportunity for an attack metric and the detection accuracy using false-positive and
false-negatives related metrics.

Host Intrusion Detection System Definition

A Host Intrusion Detection System (HIDS) is a runtime security monitoring service
to detect threats occurring at runtime in a system. It identifies threats in a system’s
execution as deviations from the expected behavior of this system. After the detection
of an intrusion, the HIDS possibly generates log traces or raises an alarm, so that
further protection measures can be activated. For example in complex organization
infrastructures, System Information and Event Management (SIEM) systems can use
HIDS of multiple single devices for security monitoring. For example, Splunk [144] is a
popular SIEM on the IT security market [83] SIEM systems watch the security of an

11

infrastructure by analyzing traces from multiple sources, such as HIDS alerts, network,
system, and application logs. They provide an interface for the human response team to
interpret the observations and correlations to take actions for solving upcoming security
threats; for instance, Cinque et al. [35] discuss the challenges for applying an open-source
SIEM (OSSEC [120]) to a real-life critical infrastructure, using an industrial Air-Traffic
Control platform. HIDS are to be distinguished from network intrusion detection systems
(NIDS), which exclusively monitor and focus on network communications. While NIDS
generally operate inside an internal network, a HIDS indeed remains at system level,
inside a single device.

Overview of Host Intrusion Detection Approaches

There is a wide diversity of HIDS, depending on traced system events and analysis
techniques. Section III.2 provides a focus on frameworks suitable for our specific context
of work – industrial embedded mixed-criticality systems. Host intrusion detection can
apply at different levels: to protect the execution of a single application, a software
component, or the full operating system. As later developed in Section II.2.2, we focus
on solutions monitoring a user-level application. We split the intrusion detection runtime
process into two main runtime phases (Figure II.2):

• trace collection: this stage corresponds to observing the monitored software
through its execution footprint on the system (i.e. hardware and software system
events). Table III.3 provides an overview of trace types which can be collected in
common computer systems.

• trace analysis: this stage infers the execution of a threat in the monitored
software through the identification of malicious traces. The HIDS performs the
identification using a policy that defines benign and malicious execution traces.
Example of policies are a statistical model of execution, set of authorized actions,
list of malicious trace patterns, etc.

We categorize three main data analysis approaches for intrusion detection [91, 76]. On
one hand, signature based analysis uses a database of signatures of known attacks to
detect these same attacks when they occur at system runtime. Such technique generally
comes with a good detection performance for the predefined attack scope. However,
they offer poor protection against zero-days attacks, which are attacks unknown at
the time of building the analysis model. On the other hand, specification based
and anomaly-detection based HIDS techniques define an intrusion as an anomaly
which leads to an intentional malicious fault in the system; n.b. an anomaly does not
systematically correspond to an intrusion (an abnormal system behavior that has no
impact on security). Such HIDS solutions set up a profile (also called model) of normal
software behavior; e.g. early intrusion detection expert system (IDES) [47] prototypes
leverage statistical profiles of system events. They monitor the execution by observing
system traces of software behavior and detect an intrusion when the runtime behavior
deviates from its corresponding profile. Hence, both approaches are suitable to detect
zero-day attacks.

12 Chapter II. Background

Figure II.2: Host intrusion detection system overview

Specification based solutions define a set of rules representing benign execution; i.e.
a set of authorized states and transitions. These approaches use knowledge of the
program to monitor (e.g. sets of legitimate memory access, authorized operations, system
interactions, etc.) to generate the model of benign execution. Hence, this analysis does
not generate any false-positive detection. Ideally a perfect representation of benign
execution infers a null rate of false-negatives (all actual threats are accurately detected).
In practice, depending on the precision of the model describing normal execution, some
attacks can bypass the detection. In contrast with specification based methods, anomaly-
detection based framework derive the model of benign execution from the observation of
the program running under normal and anomalous conditions, leveraging system events
such as system calls and logs. Such analysis can use machine-learning or statistical based
methods to generate the execution model. Security detection results (false-positive and
false-negative rates) depend on the model representation.

According to our later defined problem definition (Section II.2.2), we consider HIDS
which are able to detect zero-day attacks. Hence, we focus in this work specifically on
specification and anomaly based detection; signature based detectors represent additional
complementary security bricks to improve the overall system security.

Host Intrusion Detection System Evaluation

For many HIDS, Machine Learning based solutions among others, the profile of normal
software execution is determined offline prior to deployment, using a predefined set
of normal execution traces. We can then test the profile at runtime, for normal and
anomalous executions. The evaluation of a classification model in terms of detection
performance can involve several metrics. For example, Table II.1 shows the confusion
matrix, a basic metric corresponding to a table layout to visualize correct and incorrect
predictions made by the model. The confusion matrix leverages the following indicators:
false-positives (FP), false-negatives (FN), true-positives (TP) and true-negatives (TN).
The objective of a good detection solution is to minimize rF P the False-Positive Rate
(FPR) and rF N the False-Negative Rate (FNR) – corresponding respectively to the total

13

Figure II.3: Window of opportunity for an attack

of actual normal samples that the solution detects as anomalous and to the total of
actual anomalous samples that the solution detects as normal. In this work, we introduce
the detection precision P , recall R, and F1-score S metrics as follows:

rF P = F P
T P +F P

rF N = F N
T P +F N

P = T P
T P +F P

= 1 − rF P

R = T P
T P +F N

= 1 − rF N

S = 2 ∗ P ∗R
P +R

(II.1)

The rapidity of the detection represents another key aspect of runtime intrusion detection:
the shorter the detection latency, the less time an adversary has to perform an attack
before being detected. Hence, we introduce an additional evaluation metric, the window
of opportunity for an attack, as the time between the moment the anomaly starts
and until the HIDS has raised an alarm (Figure II.3).

Table II.1: Confusion matrix
Predicted

Positive Negative

Actual Positive TP FN
Negative FP TN

II.2 Security Problem for Embedded Mixed-Criticality Systems
In this section, we leverage the concepts previously introduced in Section II.1 to highlight
the specificities for deploying industrial embedded MCS (Section II.2.1) and characterize
the type of system intrusions threatening such systems (Section II.2.2).

II.2.1 Industrial Embedded Mixed-Criticality Systems Requirements for
Deployment

Our work targets runtime security deployment into industrial embedded MCS systems,
possibly involving high-critical safety constraints. On the one hand, such environment

14 Chapter II. Background

Figure II.4: A generic embedded mixed-criticality system architecture

can induce catastrophic consequences in case of system failure; taking the role of the
system integrator, we must assure that all criticality requirements are met. On the
other hand, this work environment brings additional constraints: e.g. reduced hardware
resources of embedded systems compared to generic computers and limited access to
application software.

Embedded Mixed-Criticality Systems

Figure II.4 shows the architecture of a generic embedded MCS. As for general-purpose
computers, we can split this architecture in 3 main system levels: system hardware level
with physical resources, operating system kernel level for privileged software operations,
and user-level for remaining software activity. Compared to GP computers, embedded
systems usually come with limited hardware resources because of the cost constraints:
reduced device weight, power consumption, memory capacity, computation power. This
problem is even more relevant for embedded systems which integrate safety-critical
functions. For example with avionics, the weight of devices integrated into an aircraft
is a determinant factor to reduce; e.g. by limiting hardware space and computation
power [41]. Embedded mixed-criticality systems leverage virtualization to cope with the
limitation of resources for improving resource usage via sharing. For instance in aircraft
systems, the integrated modular avionics (IMA) architecture has replaced the traditional
federated architectures [160].

The system must support software separation in user space to avoid illegitimate
interference between user-level components (e.g. cache based side-channels threats).
Thus, we introduce the concept of partitioning, defining a partition as a domain of
execution in user space to execute a given software component; this execution domain
assures that the software component executes without illegitimate interferences with

15

other partitions. Specifically, partitioning consists of explicitly defining the set of system
resources (e.g. memory, I/O peripherals, CPU cores, etc.) each partition can access, and
when (scheduling policy). As an example, Figure II.4 shows a generic MCS composed of
user-level partitions, each containing an application corresponding to a certain level of
criticality.

Hence, to assure a proper system operation complying with execution constraints such
as real-time deadlines, the system must guarantee the freedom from interference and
sufficient independence between system tasks. A partitioned architecture can assure the
separation of user-level software. The Multiple Independent Layers of Security (MILS)
architecture [10, 152, 55] is one direct application. It implements both hardware and
software separation mechanisms to isolate the defined criticality domains, as well as
secure communication channels to control the information flow transiting between the
different domains. It embeds the notion of Separation Kernel (SK) [137], an execution
domain composed of all system software running privilege operations.

Certification and Compliance for Industrial Deployment of Host Intrusion Detection Systems

An industrial embedded mixed-criticality system typically includes software components
from different criticality levels. A recent survey by Akesson et al. [8] about industrial
practice in real-time systems development and deployment analyzes the inputs from
120 practitioners, mainly from the Automotive and Avionics domains. It shows that
many industrial systems integrate distinct types of time constraints (i.e. hard, firm, and
soft). Therefore, considering that the level of task time constraints and criticality are
correlated, modern industrial systems include various criticality levels.

Common system architecture standards such as AUTomotive Open System ARchitec-
ture (AUTOSAR) [19] for the Automotive and Avionics Application Standard Software
Interface (ARINC 653) [12] for the Avionics provide mixed-criticality support. Criticality
is determined through diverse industrial standards depending on the deployment context:
e.g. Automotive Safety Integrity Levels (ASIL) risk classification scheme of ISO-26262
standard [75] for functional safety of automotive systems, Design Assurance Level (DAL)
given by DO-178C standard [135] to certify aircraft systems. The MCS must satisfy
constraints requirements and objectives imposed by the targeted standard, assigning a
dedicated assurance level for each of its system components. Four main factors determine
the criticality of a component:

• the consequence of a failure of the component

• the probability for a failure of the component to occur

• the exposure of the component to failure

• the mitigation means at hand to resolve a potential failure

Nowadays, very few platforms are entirely developed by a single company from the
hardware circuit to the high-level software functionalities: modern OS support standard
hardware platforms (i.e. standard CPU architecture like ARM, Intel, PowerPC), while

16 Chapter II. Background

various companies provide specific functionalities as hardware or software components of
the shelf (COTS): e.g. connectivity, custom hardware driver, legacy functionality, etc.
Hence, many actors participate to the product life-cycle. We simplify the main roles
involved in the system design as follows:

• The hardware provider supplies the hardware platform. A recent survey [8]
highlights the hardware complexity of industrial critical systems: i.e. multi-core
components, memory hierarchy including several cache levels, connectivity support.

• Various application providers provide user-level software, from the non-critical
infotainment application to the high-critical actuator control, typically compliant
to standardized architecture and application interfaces such as AUTOSAR for
automotive applications and ARINC 653 for avionics applications.

• The software platform provider develops software to allocate hardware re-
sources to user-level software (e.g. providing OS, runtime environment, and device
drivers).

• The system integrator is our main focus in this paper. The system integrator
gathers the hardware and software blocks provided by the previously described
agents. This person is responsible for complying with the system requirements
such as time deadlines. The survey [8] shows that timing predictability is one of
the major concerns, together with system safety, functional correctness, as well as
reliability and availability (which are two dependability properties).

The RTOS must support the key properties of systems with real-time constraints:
freedom from interferences and sufficient independence (Section II.1.2). Hence, a strict
separation of time and hardware resources is necessary in this context. Partitioning is a
way to assure the separation of user-level software in isolated partitions, by controlling the
access to shared resources and inter-partition communications. For example, SYSGO’s
industrial hypervisor PikeOS [128] implements time and hardware resource partitioning
so that it is able to integrate multiple partitions certified at different criticality levels on
one hardware platform.

Besides the certification requirements, the HIDS needs to comply with specific industry
standards for the application interface and architecture. The automotive industry
has been forefront in defining a specification for automotive IDS. AUTOSAR Release
R20-11 [18] defines the onboard architecture of a distributed HIDS, security events for
selected base software (BSW) modules, interfaces for reporting security events, and
communication between different modules in the distributed IDS. The standard allows
any ECU to act as security sensors and develop custom analysis methods, as long as
they comply with the standard.

Industrial Embedded Mixed-Criticality System Constraints

Performing host intrusion detection at runtime in an industrial embedded MCS poses
several constraints. At runtime, the monitoring solution must comply with the limited

17

hardware resources, while satisfying the real-time constraints of critical tasks. The
system should indeed assure strict separation of time and hardware resources. The
monitor software especially, must be isolated from the monitored software to prevent
attackers to access it and influence the detection.

As we adopt the role of the system integrator, transparency is a key aspect to consider
for designing HIDS. Ideally, the solution must be transparent for the monitored software;
HIDS mechanisms would observe the software from its interface to limit the intrusiveness.
Industrial safety-critical programs are carefully developed following certification standards
before being provided to the system integrator; notably for automotive certification,
ISO-26262 introduces a process to develop a safety-element out of context [164]. Thus,
the system integrator most probably cannot modify the programs without reiterating the
certification process. Furthermore, these third-part software can also be legacy programs:
in such case, the system integrator receives a black box (e.g. binary file); she has no
knowledge on the internal implementation of the software components and has most
probably no modification ability. Hence, the HIDS intrusiveness is a key criteria to
evaluate the suitability of a solution for deployment in embedded MCS. Therefore in
this context, we suggest to avoid monitoring approaches requiring instrumentation of the
monitored software. Additionally, before deploying a HIDS framework into an embedded
MCS, we must consider the related efforts required for full or partial re-certification of
the system.

In addition to its impact on the overall system certification, the HIDS is also subject
to certification. For example while monitoring a certified safety-critical program, the
detection of a threat could be used to further apply reactive measures modifying the
execution of the Monitored application (Monitoree). Hence depending on the config-
uration, we assign an assurance level to HIDS mechanisms, which must satisfy the
constraints, requirements, and objectives imposed by the targeted standard: HIDS design
and development must follow the standard’s processes (e.g. providing specification and
test documentation of HIDS functionality).

II.2.2 Threat Environment
We define the asset of this work as the integrity of the execution of a user-level program
to protect. Depending on the system’s exposure to threats (e.g. user access, networking
capability), different adversary profiles and attack scenarios are likely to attempt at
compromising the asset. We consider two main scenarios of intrusion initiated from
a user-level application: the malicious misuse of a benign program, which contains a
security vulnerability exploited by the adversary at runtime, and the execution of a
program dissimulating malware activity provided by a malicious supplier.

Adversary Profile

The profile of the adversary varies depending on the system environment. For business
applications (e.g. avionics or automotive domains), adversaries can be malicious software
providers; i.e. organizations potentially with high financial resources, equipment, and
skills. On the consumer market, a further adversary could be the customer (i.e. a system

18 Chapter II. Background

user) who has direct access to the physical system. Such adversary is distinct from the
system owner: e.g. a car user faking wrong system configuration (modifying mileage,
hiding warning signals, ...), opposed to the car vendor whose goal is to guarantee the
integrity of the configuration. In this context, the malicious user likely comes with
low or basic knowledge on the system, for example applying malware from the darknet.
With connectivity support, a system becomes more accessible from the outside world,
i.e. getting exposed to many agents through the network, including adversaries with
sophisticated equipment and advanced skills.

Attacks can result from various motivations. Hamad et al. [63] describe possible
motivations for the automotive domain. An adversary could target illegal profit by
selling the attack further to malicious agents or deploying ransomware threats; it could
also be a commercial competitor with the ambition to earn market shares. Alternative
motives include vandalism (e.g. produced by a former employee seeking revenge) and
research for test purpose. In this second case, the goal is to outpace potential attackers,
by identifying new threats and taking countermeasures before attackers can actually
exploit them.

A successful attack results in diverse effects in function of the context. A direct attack
stops after it has affected a direct target: it does not propagate further in the system.
Conversely, a multi-stage attack propagates after disturbing the first target to other
system components. For instance, ScheduLeak [33] threat can be the first stage of a multi-
stage attack in MCS. The attacker task first gets the exact time information of sensitive
tasks execution. In a second stage, it performs further intrusion to compromise the
sensitive tasks: e.g. by overriding system control signals (or applying cache side-channel
attacks) just before or just after the victim task has executed.

The access to the victim device conditions the practicability of vulnerability exploits.
With a direct access to the physical device, an adversary can achieves an intrusion
plugging in malicious portable devices like USB sticks [126]. Side-channel attacks like
electromagnetic emission based observation [130] require both physical access to the
device and software interaction to leak confidential data. Other threats do not require
physical manipulation of the system, occurring from software user interface through the
network: i.e. software bug exploits.

Threat Model

As explained in Section II.1.1, an attack is an attempt to compromise the asset valued
by the system owner. In this work, the asset corresponds to the integrity of the
execution of the user-level program to protect; we consider intrusions occurring
inside a user-level software, that alter runtime behavior of the victim program. Typical
threats are memory corruption exploits like return oriented programming (ROP) attacks,
processor vulnerability exploits such as Spectre [87], denial of service, etc.

Because of system connectivity, the network is a potential entry point for an intrusion.
An intrusion can also result from a physical attack such as malicious memory bit flips,
or software memory corruption. In such case, the threat infers a malicious deviation of
the runtime execution of the victim program to be protected.

Passive threats such as side-channels attacks, which do not interact with system

19

software are out of scope for this work. Network based intrusions (distributed denial of
service, spoofing, etc.) represent a specific area of research. Therefore, we do not consider
them directly; we instead focus on more generic attacks targeting system execution.

For this work, we make the following assumptions:

• In MCS, because we assume the OS to be certified at highest integrity levels
following rigorous development and validation standards, we consider the hardware
and OS layers as free from malware: i.e. no hardware IP nor OS routine are
running with malicious intentions during system execution.

• Hardware and OS layers may have unknown flaws to be exploited by an adversary,
like cache interference leveraged in side-channel based attacks to leak confidential
data. Because of system certification however, we deem this risk as highly unlikely.
Additionally, we assume that mechanisms are in place to perform software and
firmware updates when new flaws are discovered in these system layers. Thus,
hardware and OS layers are trusted: they indeed must be certified to the highest
assurance level which needs to be supported for the set of applications.

• Since user-level programs are provided by multiple external agents, with fluctuating
certification levels, we do not trust them. In particular, low and no critical programs
represent attractive targets for an adversary, since they probably contain more
hidden flaws – compared to high-critical tasks – to be exploited for achieving system
intrusions; they indeed follow less strict development process and traceability than
critical certified software.

Thus, we model the adversary as a non-trusted user-level program. We identify
two main attack scenarios:

• Program misuse: the user-level program has not been implemented to execute
malicious activity. Though, it may contain flaws to be exploited at runtime by
the attacker to perform malicious actions. For example, the adversary could send
malicious inputs from system interface (i.e. inter-partition communication or
network access) for the program to misbehave, provoking disastrous consequences;
e.g. denial of service attack resulting in missed hard deadline, ROP threat exploiting
a buffer overflow to perform privilege escalation.

• Compromised program binary execution: the user-level program binary
provided to system integration is malicious: the application provider has designed
it to execute – and possibly hide – malware activity at runtime. For example, such
program could be implemented so that upon specific interaction with the adversary
(e.g. via known program inputs) it triggers malware execution: hiding malicious
activity, leaking information, modifying system configuration, etc.

II.2.3 Problem Definition
Our security asset corresponds to the runtime integrity of the execution of a user-level
program running in an industrial embedded MCS. We intend to protect this program

20 Chapter II. Background

Trajectory

Calculator

Car Cockpit

Display

Android

Infotainment

Software

Update

MILS Separation Kernel

Hardware SoC

Core 0 Core 1

Core 2 Core 3

RAM

GPU

NIC

User

Space

Kernel

Space

Remote Adversary

Figure II.5: An example of system under threat

leveraging host intrusion detection based monitoring solution. On the one hand the
security module must be unreachable by the adversary. On the other hand, it must be
transparent to comply with the inherent industrial constraints of the system: limited
access to the program source code and restricted modification means of the program
binary.

System Model

For this study, we consider an industrial embedded MCS. Since we take the role of OS
provider and system integrator, we assume that the OS is trusted; it is an industrial –
potentially certified – RTOS which supports a separation kernel to isolate applications in
space and time. We expect the RTOS to assure strong separation of user-level software
components and isolation of the separation kernel from other untrusted components.

Figure II.5 provides an example of automotive system architecture. The hardware
is a generic embedded platform with limited resources and networking ability. In the
example, the system runs real-time critical user-level applications such as the car cockpit
display and GPS trajectory calculation software, as well as a security critical application
for software update from the network. It also includes a non-critical Android guest OS
for in-vehicle infotainment.

System Asset

We consider a system including several untrusted user-level applications provided by
external agents. We define the asset as the integrity of the execution of a user-level
program in the system at runtime. We call monitoree the user-level program to
protect. This program can be a complex workload such as guest OS, as well as real-time
critical software. It is a black box for the monitoring application: as system integrator,
we potentially have no access to the source code and no mean to modify it. Alternatively,
as described in the threat model, the monitoree could be a malicious binary; a malicious

21

operator replacing the binary before deployment or by compromising a software update
operation.

Monitoring Model

The monitoring functionality is a trusted component separated from the monitoree
using the SK mechanisms, so that it cannot be accessed by an adversary. Because of
the inherent constraints of MCS and black-box monitoree, the monitoring component
observes the system through the OS and hardware interfaces used by the monitoree: e.g.
hardware interface using hardware performance counters, OS services with system call
tracing.

II.3 Thesis Goal
For this thesis, our goal is to address the problem of deploying security monitoring into
industrial embedded MCS, protecting the execution of a user-level application (which we
call monitoree). We define a threat as a deviation of the monitoree’s execution from its
expected behavior. We consider two main attack scenarios: the misuse of the monitoree,
for example via wrong interface stimulation or memory corruption exploit, and the
execution of a malicious binary dissimulating malware activity.

This work focuses on HIDS for runtime detection of intrusions in the execution of a
monitored user-level application. We intend to provide a "security for safety" solution.
Because of the environment constraints, the HIDS must induce limited intrusiveness to
comply with certification processes for industrial deployments; i.e. no modification of
the monitored program and potentially limited access to information in the monitoree
binary.

III

State of the Art on Host Intrusion Detection

We are not aware of any extensive literature review, which compares state-of-the-art
solutions applying to embedded MCS. Even though, for the great majority of solutions,
the system certification aspects are out of scope, they are essential from an industrial
perspective to deploy the solution into production. Table III.1 compares this work with
other surveys covering HIDS research, with the following criteria:

• system: the types of systems considered for HIDS deployment covered by our
literature review.

– MCS (also called cyber-physical systems in literature): systems supporting
safety-critical tasks and real-time constraints; our MCS scope also covers
real-time systems.

– embedded systems: systems with limited resources such as hardware func-
tionality, computing power, memory, etc.

– GP computers: any other computer systems.

• methods: the types of HIDS methods covered by our literature review, with a
focus on specification and ML based approaches.

• data: the types of system events involved in HIDS monitoring, which are covered
by our literature review: we especially focus the comparison on hardware events
(such as hardware counters and processor tracing based data) and system call data
types.

• certifiability: our literature review evaluates the HIDS with regard to system
certification towards industrial deployment.

As described on Table III.1, several surveys provide an overview on state-of-the-art host
intrusion detection solutions: e.g. the survey by De Clercq and Verbauwhede about
hardware based CFI [36], surveys about ML based intrusion detection [32, 76, 20]. To
our knowledge, our literature review is the first to address the deployment of HIDS into
industrial embedded MCS.

In this chapter, we provide a holistic overview on the state-of-the-art approaches for
hardware, software, and hybrid based HIDS solutions towards deployment into industrial

23

24 Chapter III. State of the Art on Host Intrusion Detection

Table III.1: Comparison of surveys on host intrusion detection systems in function of explicitely
covered research areas. (✕, ●) symbols respectively correspond to unsupported and supported
fields.

Survey Systems Methods Data

G
P

co
m

pu
te

rs

M
C

S
Em

be
dd

ed
sy

st
em

s

Sp
ec

ifi
ca

tio
n

ba
se

d

M
L

ba
se

d

O
S

A
PI

(s
ys

te
m

ca
lls

)

H
ar

dw
ar

e
ev

en
ts

C
er

tifi
ab

ili
ty

Othman et al. [121] ● ✕ ✕ ✕ ● ● ✕ ✕

Bridges et al. [26] ● ✕ ✕ ✕ ● ● ✕ ✕

Sandhu et al. [139] ● ✕ ✕ ✕ ● ● ✕ ✕

Rudd et al. [136] ● ✕ ✕ ● ● ● ● ✕

Liu et al. [103] ● ✕ ● ✕ ● ● ✕ ✕

Zuech et al. [167] ● ✕ ✕ ✕ ● ✕ ✕ ✕

Khraisat et al. [84] ● ✕ ✕ ● ● ● ✕ ✕

Liao et al. [98] ● ✕ ● ● ● ● ● ✕

Axelsson et al. [22] ● ✕ ✕ ● ✕ ● ✕ ✕

De Clercq and Verbauwhede [36] ● ✕ ● ● ✕ ✕ ● ✕

Sayeed et al. [140] ● ✕ ✕ ● ✕ ✕ ● ✕

Elrawy et al. [54] ● ✕ ● ✕ ● ✕ ✕ ✕

Han et al. [64] ✕ ● ✕ ✕ ● ✕ ✕ ✕

Mitchell and Chen [113] ● ● ● ● ● ✕ ✕ ✕

This literature review [78] ● ● ● ● ● ● ● ●

embedded MCS. Our motivation is to bridge the gap between research and industry,
helping future HIDS development to address the intrusion detection problem in an
industrial context involving system certification. We describe relevant HIDS methods for
GP computers and discuss their applicability to protect embedded MCS in an industrial
context. We also compare HIDS solutions specifically designed for systems with real-time
constraints. After defining key concepts to guide our literature review, we introduce a
set of criteria and properties to compare and evaluate the cost for integrating the HIDS
solutions into industrial embedded MCS.

This chapter is organized as follows. Using the basic concepts described in Section II.1,
we describe our evaluation scheme to compare HIDS solutions in Section III.1. We
split our literature review in two main parts: while Section III.2 provides an overview
of HIDS in GP computers, Section III.3 focuses on state-of-the-art solutions applying
to embedded MCS. Finally, we conclude the chapter in Section III.4, describing the
contributions of this thesis.

25

III.1 Evaluation Scheme to Guide our Literature Review on Host
Intrusion Detection

We propose a classification to evaluate and compare the HIDS solutions discussed in
our literature review (Section III.1.1); we define a set of metrics to assist the review.
Section III.1.2 outlines the structure of our study and provides an overview of the
reviewed solutions.

III.1.1 Host Intrusion Detection System Classification

Table III.2: Evaluation criteria base for our literature review
Criteria Description Metrics Possible

Values
Transparency ability of the HIDS to trace

the monitored application
with limited intrusiveness

1. application instrumen-
tation

✕, –

2. OS kernel modifica-
tion

✕, –

Portability ability of the HIDS to be
deployed on different sys-
tem platforms

3. custom hardware ✕, –
4. other hardware depen-
dencies

✕, –

Security ability of the HIDS to de-
tect intrusions rapidly and
accurately

5. no false-positives ✕, ●

6. type of security evalu-
ation

✕, ❍, ◗, ●

7. intrusion detection la-
tency evaluation

✕, ●

Certifiability ability of the HIDS to run
into a certified environ-
ment

8. effort level for inte-
grating the solution into
a certified system

✕, ❍, ◗, ●

9. effort level to certify
the HIDS

✕, ❍, ◗, ●

Performance ability of the HIDS to pro-
vide an acceptable trade-off
between security impact in
terms of system overhead
and schedulability

10. evaluation of runtime
overhead caused by the
HIDS

✕, ●

On the grounds of the deployment requirements described previously in this section,
our goal is to determine whether a given HIDS solution:

26 Chapter III. State of the Art on Host Intrusion Detection

• is suitable to be deployed in an embedded mixed-criticality system: upper-bounding
the interference caused by the HIDS on the monitoree and coping with typical
embedded system constraints (i.e. limited hardware resources).

• requires limited effort for integration into a certified systems: it can be certified to
detect intrusions in a certified user-level application.

• can easily be ported on different embedded platforms: i.e. with limited performance
impact and hardware dependencies.

Therefore, we define in Table III.2 five main criteria to base our literature review:
transparency, portability, security, certifiability, and performance. The table provides a
description of the criteria and corresponding metrics for our evaluation. For transparency
and portability criteria, the metrics (1 to 4) correspond to the presence (✕) and absence
(–) of constraining requirements for the HIDS framework. For security, certifiability,
and performance evaluation criteria, each metric (5 to 10) defines whether a feature is
supported (●) or not (✕). More specifically for metrics (6, 8, 9), we define further levels
of support: none (✕), basic (❍), incomplete (◗), and full (●). We provide a definition of
the possible values below.

We compare the reviewed solutions in function of implementation constraints for
deployment in embedded mixed-criticality systems through transparency and portability
criteria.

• transparency: this depends mainly on the type of data to trace. For example,
system call instrumentation requires OS kernel modification, while CF tracing may
induce application instrumentation.

• portability: like for transparency criteria, the portability depends on the tracing
approach; i.e. hardware implementation (e.g. with CF tracing to limit tracing
intrusiveness) or hardware-assisted solution (e.g. processor tracing based monitor-
ing). These dependencies directly affect the portability of a HIDS framework for
deployment on other hardware platforms.

However, because of the great diversity of discussed frameworks (CFI monitoring, machine-
learning assisted detection, etc.), implementation, and evaluation approaches (simple
proof of concept, analytical security evaluation, test on diverse realistic complex threats,
WCET analysis, etc.), we cannot directly compare the evaluation results. For example,
standard false-positive and false-negative rates metrics used to evaluate a machine-
learning based solution are generally irrelevant in the context of CFI monitoring; such
metrics cannot be directly compared for different test configurations. Similarly, the
detection latency can be evaluated through average measurements on a given test set
or computing a worst-case analytical value. We instead propose a set of features to
be supported by HIDS in our deployment environment. To evaluate the relevance of a
framework for our deployment target, we follow 3 axes:

27

• HIDS security evaluation: we consider the presence of false-positive and detec-
tion latency evaluation as key metrics regarding security; in addition, we define 4
levels of security evaluation.

– ✕: no security evaluation
– ❍: basic evaluation with simple proof of concept
– ◗: limited security metric measurements
– ●: exhaustive security checks, through theoretical analysis or in a real-life

complex environment

• Performance impact for running the HIDS: the impact for running an HIDS
framework must be properly evaluated (e.g. time overhead, hardware cost) towards
industrial deployment, especially in the context of embedded systems.

• Certifiability of the solution: we distinguish two main aspects for integrating
a HIDS framework into a certified system. The corresponding metric values are
inferred from other binary metrics: instrumentation of the monitoree program
(PI), OS kernel modification (KM), solution designed for RTS (RT), and presence
of false-positive in the detection (FP).

– HIDS integration impact on system certification: we consider solutions
requiring program instrumentation difficult to certify, since the certification
process needs to apply to each targeted user-level application; as developed in
Section II.2.3, in our position of system integrator, we may have no access to
the application source code nor ability to modify the binary. Especially works
which do not cover deployment in safety-critical systems, do not evaluate
the impact of the HIDS on the time properties of the monitored application.
Required kernel modifications induce in comparison a single effort in system
certification, since they are independent from the monitored user-level program.
Hence, we provide 4 effort levels for system certification:

∗ impractical (✕): PI and RT

∗ heavy (❍): PI and RT and KM

∗ moderate (◗): PI and RT

∗ low (●): PI and (RT or KM)
– HIDS module certifiability: towards active monitoring – i.e. in opposition

to passive monitoring through system observation and logs stocking – the
HIDS detection information must be reliable enough to impact further critical
decisions such as stopping the monitored application after the detection of an
intrusion. Notably in such context, a suitable detection solution should come
with a guarantee to generate no false-positives.
Solutions raising false-positives, and more specifically ones leveraging machine
learning, cannot be certified at a current stateFrameworks requiring program
instrumentation are complicated to certify, for the same reason developed

28 Chapter III. State of the Art on Host Intrusion Detection

in HIDS integration impact on system certification. In addition, with HIDS
designed for generic computers, research works do not analyze the timing
impact of the HIDS activity on the monitoree program. Thus, we evaluate
the effort to certify the HIDS with 4 levels:

∗ not certifiable (✕): FP

∗ heavy (❍): FP and RT and PI

∗ moderate (◗): FP and ((RT and PI) or (RT and PI))
∗ low (●): FP and RT and PI

III.1.2 Literature Review Focus

Host Intrusion Detection Research

Misuse based
(with malware

signatures)

✘

Anomaly based
(with statics methods)

Application
and

system logs
monitoring

✘

System call
monitoring

[159, 38]
[39, 88]
[11, 62]
[5, 101]
[163, 85]
[162, 108]
[73, 148]

Hardware
monitoring

[4, 40]
[157, 158]
[23, 43]

[142, 165]
[79]

Specification based

Execution
flow

monitoring

CFI

[6, 70]
[118, 123]
[61, 95]
[65, 156]
[104, 44]
[92, 127]

[1]

DFI

[71, 34]

Time
analysis

[31, 161]
[166, 24]

Figure III.1: Overview of reviewed host intrusion detection approaches

We review a non-exhaustive list of frameworks (notably for the broad topic of system
call based monitoring): as we are not aware of comparative studies, we intend to provide
with this study a state of the art on HIDS research for deployment in an industrial
perspective involving system safety certification. More specifically, the aim is to evaluate

29

how the diverse approaches can address the problem of HIDS deployment in an embedded
MCS, referring to the criteria described in Table III.2.

Figure III.1 provides an overview of the HIDS approaches investigated in this literature
review. Our two main focuses correspond to AI assisted anomaly-based and specification
based analysis approaches (definitions in Section III.2). In the scope of our problem
definition (Section II.2.3), we do not consider misuse based solutions: our goal is to
detect any (i.e. possibly unknown) intrusion in the monitoree’s execution.

Following the context of deployment described earlier in this section, our target of
anomaly-based HIDS leverages low-level events tracing to limit intrusiveness towards
industrial system certification. Consequently HIDS frameworks leveraging other trace
types are out of scope for this literature review. Notably, we do not discuss solutions
tracing physical signals such as temperature and power consumption [110], since they
highly depend on the use-case and user-level application. We also do not cover HIDS
based on application and system logs, as these high level data depend on the monitored
application or require general-purpose computer infrastructures; i.e. with file-system,
network stack support, etc. For example, some detection solutions exist for Linux [120]
or Windows OS [115], which classify system logs leveraging specific OS counters referring
to processes, processor, memory, thread, IP network stack activities. Our main focus is
on basic OS level (system calls) and hardware based monitoring.

Specification based methods split between time analysis (i.e. watchdog systems, WCET
static analysis based monitoring), and execution flow monitoring. Because they come
with no false-positives, they are more suitable to be deployed into MCS than statistical
based methods. Because of the deployment constraints we mainly focus our review on
HIDS solutions, which use hardware assistance to limit the intrusiveness compared to
software based solutions.

Table III.4 provides an overview of the different HIDS approaches in regard to the
criteria defined in the previous section. In the panel of solutions with hardware de-
pendencies, we only introduce ones using event tracing features widespread among
hardware platforms and architectures (i.e. hardware performance counters and processor
tracing hardware). On one hand, we consider all anomaly-based detection methods
unsuitable for HIDS certification because of the uncertainty of the detection results
(i.e. no guarantee against false-positives). In particular, none of the hardware based
HIDS solutions which we surveyed comply to the AUTOSAR IDS specification; it is not
a surprise as the first version of IDS specification [18] was added to AUTOSAR only
in 2020. On the other hand, according to the table, such frameworks seem to induce
workable effort for integration into certified systems. In reason of their transparency
properties, system call and HPC tracing based solutions are likely to come with limited
certification impact. Hence, we deduce that such anomaly based HIDS are good candi-
dates for passive monitoring; i.e. detection data recording from the analysis of system
execution traces. However, we also note that many of the reviewed approaches were
tested offline [163, 159, 5, 11, 73, 148, 39, 101, 88, 108, 58]: i.e. they did not evaluate the
runtime overhead for deploying the solution into embedded systems. This is especially
the case of machine-learning based frameworks.For these solutions, the trade-off between
security impact in terms of runtime performance overhead and system schedulability is

30 Chapter III. State of the Art on Host Intrusion Detection

still to be determined.
Few specification-based approaches for general-purpose computers are likely to be

applied realistically into embedded MCS: several reviewed solutions [157, 158, 70, 44,
118, 6] indeed require program instrumentation, even though their implementation is
based on hardware tracing. In addition, we see that the security accuracy evaluation
seems comparatively easier for generic computers, as they can leverage more complex
test cases; e.g. datasets of real-life threats for machine-learning based solutions. Though,
while we consider that detection latency is a key metric to evaluate the security of a
framework in an embedded MCS, very few of generic computers based solutions provide
an evaluation; notably for works introducing offline HIDS, which only provide detection
accuracy metrics.

We structure our literature review as follows:

• Section III.2 gives an overview of HIDS for general-purpose computer systems (e.g.
PC, server). While they remained an active research topic over the years, HIDS
solutions are now productized in the industry, mainly for IT applications.

• Section III.3 focuses on HIDS solutions for embedded MCS. Few works apply to
these systems because of their specific constraints. On one hand, we can characterize
embedded systems with limited computing capacity and storage resources. On
the other hand, MCS may be constrained by safety requirements: a system failure
can lead to disastrous consequences. For industrial deployment, MCS may imply
a certification process: this limits the action for monitoring. Additionally, a
system integrator has no necessarily access to monitored software source code and
information (i.e. program instrumentation is not possible).

III.2 Host Intrusion Detection in General-Purpose Computer
Systems

This section covers HIDS solutions designed for general-purpose computers such as PC
and servers. These systems usually support a user-interface OS, like Linux OS.

The objective of the HIDS is to distinguish anomalous and benign executions of a
process to monitor. Table III.3 summarizes the set of collectable data on common
systems. We develop two main detection approaches:

• Section III.2.1 and Section III.2.2 respectively develop CFI and DFI monitoring, two
specification based intrusion detection solutions which analyze CF and Data-Flow
(DF) transitions in the execution of the monitored program.

• Section III.2.3 introduces statistical based anomaly detection approaches to corre-
late an anomalous sequence of events with a threat execution.

31

Table III.4: Comparison of intrusion detection solutions discussed in this study. Symbols (–,
✕) for transparency and portability columns respectively stand for not applicable and required
fields. For security, certifyability, and performance criteria, we define the following symbols
(✕, ❍, ◗, ●) respectively meaning no, basic, partial, and full support of the given field.

So
lu

tio
n

Tr
an

sp
ar

en
cy

Po
rt

ab
ili

ty

Se
cu

rit
y

C
er

tifi
ab

ili
ty

Pe
rfo

rm
an

ce

ap
pl

ic
at

io
n

in
st

ru
m

en
ta

tio
n

ke
rn

el
m

od
ifi

ca
tio

n

cu
st

om
ha

rd
wa

re

te
ch

no
lo

gy
de

pe
nd

en
ci

es

in
-d

ep
th

se
cu

rit
y

ev
al

ua
tio

n

no
fa

lse
-p

os
iti

ve
s

de
te

ct
io

n
la

te
nc

y
ev

al
ua

tio
n

ce
rt

ifi
ed

sy
st

em
s

in
te

gr
at

io
n

su
ita

bl
e

fo
r

H
ID

S
ce

rt
ifi

ca
tio

n

ru
nt

im
e

ov
er

he
ad

ev
al

ua
tio

n

G
en

er
al

-p
ur

po
se

co
m

pu
te

r
sy

st
em

s

Yoon et al. [163] – ✕ – – ❍ ✕ ✕ ❍ ✕ ✕

Warrender et al. [159] – ✕ – – ❍ ✕ ✕ ❍ ✕ ✕

Abed et al. [5] – ✕ – – ❍ ✕ ✕ ❍ ✕ ✕

Anandapriya et al. [11] – ✕ – – ● ✕ ✕ ❍ ✕ ✕

Hu et al. [73] – ✕ – – ● ✕ ✕ ❍ ✕ ✕

Subba et al. [148] – ✕ – – ● ✕ ✕ ❍ ✕ ✕

Creech et al. [39] – ✕ – – ● ✕ ✕ ❍ ✕ ✕

Liu et al. [101] – ✕ – – ❍ ✕ ✕ ❍ ✕ ✕

Koucham et al. [88] – ✕ – – ● ✕ ✕ ❍ ✕ ✕

Maske et al. [108] – ✕ – – ❍ ✕ ✕ ❍ ✕ ✕

Fiser and Sanchez [58] – – – ✕ ❍ ✕ ✕ ● ✕ ✕

Basu et al. [23] – – – ✕ ● ✕ ✕ ● ✕ ✕

Abbas et al. [4] – – – ✕ ◗ ✕ ✕ ● ✕ ✕

DCFI-Checker [142] – ✕ – ✕ ❍ ✕ ✕ ❍ ✕ ●

NumChecker [157] ✕ ✕ – ✕ ● ✕ ● ✕ ✕ ●

Wang et al. [158] ✕ – – ✕ ◗ ✕ ✕ ✕ ✕ ●

Krishnamurthy et al. [89] – – – ✕ ● ✕ ✕ ● ✕ ●

Cronin and Yang [40] – – – ✕ ● ✕ ✕ ● ✕ ●

PT-CFI [61] – ✕ – ✕ ◗ ● ● ❍ ◗ ●

FlowGuard [104] – ✕ – ✕ ● ● ● ❍ ◗ ●

µCFI [70] ✕ ✕ – ✕ ● ● ✕ ✕ ❍ ●

32 Chapter III. State of the Art on Host Intrusion Detection

Yongje et al. [95] – – – ✕ ❍ ● ✕ ● ◗ ●

HAFIX [44] ✕ – ✕ – ● ● ✕ ✕ ❍ ●

CaRE [118] ✕ – – ✕ ● ● ✕ ✕ ❍ ●

C-FLAT [6] ✕ – – ✕ ● ● ✕ ✕ ❍ ●

M
ix

ed
-c

rit
ic

al
ity

sy
st

em
s Hao et al. [65] ✕ ✕ – – ◗ ● ● ◗ ◗ ✕

RECFISH [156] ✕ ✕ – – ◗ ● ● ◗ ◗ ●

TrackOS [127] – ✕ – – ❍ ● ✕ ● ● ✕

OCFMM [1] – – ✕ – ❍ ● ✕ ● ● ✕

Bellec et al. [24] – – ✕ – ● ● ● ● ● ●

Zimmer et al. [166] ✕ ✕ – – ◗ ● ● ◗ ◗ ●

Wolf et al. [161] ✕ – ✕ – ◗ ● ✕ ◗ ◗ ●

Carreon et al. [31] – – ✕ – ● ● ● ● ● ✕

Kuzhiyelil et al. [92] – – – ✕ ◗ ● ● ● ● ●

Kadar et al. [79] – – – ✕ ◗ ✕ ● ● ✕ ●

Table III.3: Collectable traces in general-purpose computers to observe system execution
System level Trace type

Application

- application binaries
- library calls
- user configuration (network connections, user filesys-
tem, etc.)
- system log files

OS kernel

- system calls
- inter-process calls
- network packets
- system configuration (hardware resources, process
activity, etc.)

Hardware
- System on Chip (SoC) performance counters
- processor hardware performance counters
- other processor-level control-flow related traces (e.g.
using ARM CoreSight tracing)

III.2.1 Control-Flow Integrity Monitoring

Control-Flow Hijacking Based Attacks

A memory corruption like a buffer overflow is a common vulnerability in modern appli-
cations and systems (e.g. Linux OS, Internet browser). Return-Oriented Programming
(ROP) based attacks [131, 124, 134] exploit this type of flaws to hijack the control-flow
(i.e. sequence of instructions) executed by the victim program, by executing a malicious
combination of short instruction sequences called gadgets. In some cases, an adversary

33

Table III.5: Common control-flow transitions
Type Instruction Example on ARM64

architecture

Forward-Edge

Branch to direct address B addr (branch to address
addr)

Branch to indirect address BR RN (branch to register
RN)

Function call to direct address BL addr (branch and link
to address addr)

Function call to direct address BLR RN (branch and link
to register RN)

Generate exception SVC (supervisor call)

Backward-Edge Return from function RET (return to address
stored in the stack)

Return from exception ERET (exception return)

can eventually gain control over the whole system and cause disastrous damages: steal-
ing confidential data, altering the execution of system services, etc. Therefore, CFI
monitoring aims to protect a program against CF hijacking attempts.

Control-Flow Integrity Monitoring Approach

We decompose CFI monitoring into 2 steps. First, the method generates before de-
ployment a CFI policy to represent benign execution of the monitored program. This
policy for example corresponds to a list of all accepted CF transitions for the program.
We can generate the CFI policy with static or compile-time analysis; e.g. using LLVM
compiler [150]. Then, a monitoring service continuously observes the program CF at
runtime; it detects a security threat whenever an observation breaks the predefined CFI
policy. We can split this second step into two main operations: CF trace collection and
CFI checking. For trace collection, at any time or strategic points in the execution, the
monitoring service should be able to access the CF transitions executed by the monitored
program. Table III.5 lists common instruction types that can modify the CF (ARMv8-A
CPU architecture Manual [13]). During CFI checking, the monitoring service compares
collected runtime observations to the CFI policy.

Control-Flow Integrity Monitoring Implementations

Table III.6 provides an overview of state-of-the-art CFI monitoring frameworks. We
identify two main approaches for CFI monitoring: Forward-Edge CFI (FE-CFI)
monitoring [6, 118, 70, 104, 123, 92] covers branch and call instructions, while Backward-
Edge CFI (BE-CFI) monitoring [6, 118, 44, 61, 70, 95, 92] covers return instructions.

FE-CFI monitoring approach introduces Control-Flow Graphs (CFG) to analyze the

34 Chapter III. State of the Art on Host Intrusion Detection

Table III.6: Comparison of hardware-assisted and hardware-based CFI monitoring approaches
Solution FE-CFI BE-CFI Transparency

PT-CFI [61] – ● ●

FlowGuard [104] ● ● ●

µCFI [70] ● – –
Yongje et al. [95] – ● ●

HAFIX [44] – ● –
CaRE [118] ● ● –
C-FLAT [6] ● ● –
Kuzhiyelil et al. [92] ● ● ●

execution flow of the monitored program at runtime. A CFG lists all valid FE-CF
transitions (Table III.5), so that the monitoring service can detect any unauthorized
jump attempt. We can define CFG at different granularity levels, statically with program
offline analysis or dynamically at runtime. A static CFG can be generated at compilation
step or with binary analysis of the monitored program. Statically generated CFG are
often incomplete to cover complex monitored programs; for example when CF transitions
are determined dynamically by dependencies on program inputs. Such protection makes
the attack difficult but remains bypassable by a motivated and knowledgeable attacker.
For example, RAP framework [123] implements a light-weight type based CFG. With
this approach, for every indirect function call (e.g. via function pointer), the policy
allows CF transfers to functions that have the same signature than the reference defined
during static analysis. Alternatively, Kuzhiyelil et al. [92] also implement a type based
CFG for FE-CFI monitoring, leveraging ARM CoreSight hardware processor tracing
feature to transparently – i.e. without program instrumentation – generate CF traces
to analyze. However, a recent research proves that such CFI policy can be bypassed
by motivated attacker [112]. Intuitively in large programs, many functions have same
signatures; this lead to potential collisions and over-approximation. The authors exploit
this security breach to successfully hijack a vulnerable program protected by PaX’s
RAP monitor. Dynamic-CFG based FE-CF monitoring aims to improve the precision
of the CFG to track incoherent CF transitions in function of the execution context.
With µCFI, Hu et al. [70] enforce a precise FE-CFI policy based on Intel-PT processor
tracing technology and compile-time analysis. During compile-time, they recursively
identify constraining data (i.e., non-control data used in control-flow instructions) and
insert routines at locations where these data are written, in order to dynamically trace
their values at runtime. With this method, µCFI is able to enforce exactly one possible
target for every FE transition. However, achieving this precision requires an intrusive
modification of the monitored program. Liu et al. [104] also leverage Intel-PT to monitor
critical code areas. Their framework FlowGuard provides FE-CFI and BE-CFI coverage,
performing a dynamic analysis of the most recent execution traces stored at runtime.
The authors speed up CFI checking by learning legitimate CFG transitions from previous
observations.

BE-CFI goal is to protect return instructions against stack corruption: when a program

35

returns from a function, the next instruction address to jump to is stored on the top of
the stack. BE-CFI monitoring implementations maintain a second read-only call stack,
called shadow stack. The shadow stack maintenance can be implemented in hardware
[118, 61, 92] or in software [65]. The survey [36] considers hardware implementations
more secure than software ones: because of the inherent physical isolation in memory,
user access is generally not possible or more difficult. For example, Yongje et al. [95]
utilize the ARM CoreSight hardware extension on a FPGA-based SoC to transparently
enforce a precise BE-CFI policy. The authors build a dedicated FPGA soft core processor
that is capable of extracting control-flow information from CoreSight traces and using
that information to maintain and enforce a shadow stack. Similarly, Kuzhiyelil et al. [92]
use ARM CoreSight hardware to monitor CF backward-edges of a program without code
instrumentation. However, their solution differ since it implements the shadow stack
on the CPU instead of requiring FPGA support. Their solution differ as the shadow
stack maintenance runs on the CPU: it does not require FPGA support. CFI monitoring
runs on a dedicated set of CPU cores and user-level application to assure the separation
with the monitored program execution. Hence, both solutions are able to fully separate
the BE-CFI enforcement from the monitored program at runtime. Another hardware-
based solution for embedded systems, presented by Davi et al. [45, 44] as HAFIX,
implements a hardware function call stack to enforce an imprecise backward-edge CFI
policy The policy deployed by HAFIX forces function returns to target any call-preceded
instruction residing within any function currently recorded on the function call stack.
To implement the function call stack and CFI enforcement, Davi et al. develop new
processor instructions on the fully synthesizable Intel Siskiyou Peak and SPARC LEON3
microprocessors. Finally, PT-CFI solution [61] extracts BE-CF traces in hardware with
Intel-PT, to analyze them dynamically in a separate monitoring process.

Several solutions support both BE-CFI and FE-CFI monitoring. Nyman et al. [118]
introduce CaRE, a binary rewriting solution that deploys imprecise FE-CFI and BE-CFI
utilizing the ARM TrustZone hardware extension. In particular, CaRE secures indirect
function calls by restricting target addresses to a list of valid function entry points,
generated during a static pre-processing phase. To protect function returns, CaRE
maintains a shadow stack securely isolated in the ARM TrustZone. C-FLAT [6], another
solution utilizing the ARM TrustZone, defines a remote attestation protocol, in which
a (bare-metal) embedded system proves its correct execution to a remote verifier. A
cumulative hash chain is computed over the target addresses of indirect branches taken by
the embedded system. The hash chain is calculated and stored securely within the ARM
TrustZone. The final hash value is transmitted to the verifier and compared to a list of
valid hash values gathered during a dynamic pre-processing phase. When performing
continuous attestation, C-FLAT achieves complete conformance to the legitimate CFG.
However, C-FLAT requires a dynamic pre-processing phase, which has to identify every
benign path in the embedded software—a non-trivial task.

CFI is traditionally implemented in software. By the use of dedicated hardware
components for CFI monitoring, the objective is to reduce the performance overhead.
The survey [36] details the state of the art of hardware architectures that integrate CFI
solutions in the literature. The authors show that practical and fine-grained CFI remains

36 Chapter III. State of the Art on Host Intrusion Detection

unsolved. Most of the initiatives in the survey are still research projects: from 21 studied
CFI implementations, only two are based on commercial off-the-shelf hardware.

Performance Overhead

CFI monitoring aims at countering ROP-based attacks: as a specification based solution,
it is potentially able to detect any intrusion that modifies the CF, with no false alarms.
Though, the main issue is the performance overhead. In [42] for example, the authors
measure approximately 10% of performance overhead for traditional implementations of
shadow call stacks.

The performance of the CFI monitoring solution varies in function of the monitoring
granularity; e.g. full or partial CFG coverage, filtering of monitored CF transitions, etc.
In Table III.5 for example, jumps to direct addresses and supervisor call instructions do
not represent vulnerable entry points for an attack, since we assess that an adversary
has no mean to modify read-only memory of the monitored program at runtime. On
one hand, a fine-grained CFI based implementation is more efficient for security, even
though it brings a significant performance overhead. Thus, such precise monitoring is
more suitable for simple programs. On the other hand, coarse-grained CFI monitoring
offers a trade-off between performance and security.

To reduce the performance overhead, a first approach is to apply a partial CFG
coverage. Another strategy consists of privileging specific vulnerable regions in the
program source code to run CFI monitoring. For example, FlowGuard [104] and PT-
CFI [61] are light-weight solutions, since they perform CFI checks at predefined endpoints
(such as system calls) a fixed sequence of the most recently recorded traces.

III.2.2 Data-Flow Monitoring

Data-Flow Hijacking Based Attacks

CFI monitoring does not cover non-control data, which Chen et al. define as «data
that are loaded to processor program counter at some point in program execution » [34].
More specifically, CFI monitoring involves program instructions and data which are
directly used in a CF transition executed by the monitored program. Consequently, the
scope of CFI monitoring excludes other (non-control) execution context related data.
For example, a CFI monitoring solution can check the target address of a conditional
branch, but it does not consider the correctness of the condition value.

A set of program vulnerability exploits can bypass fine-grain CFI monitoring security
solutions: because CFI monitoring does not protect non-control data, an attacker can
modify them to influence the context of execution and finally hijack CFI defense. In 2005,
Chen et al. alerted against attacks targeting the data surface [34]. More recently, Hu et
al. [71] have illustrated the potential of such attacks called Data-Oriented Programming;
they prove their feasibility by performing privilege escalation and data leakage on
examples of real-life X86 programs.

37

Data-Flow Integrity Monitoring Approach

The goal of Data-Flow Integrity (DFI) monitoring is to detect data-flow hijacking
attempts by controlling the integrity of non-control data of the monitored program at
runtime. DFI monitoring follows a similar approach to CFI monitoring. During the
compilation of the monitored program, metadata are generated to point out critical
non-control data, and locations of legitimate memory writes. At runtime, the framework
transmits memory writes to such critical data to the monitor, which checks the legitimacy
of the operation with the reference policy.

Because of the amount of non-control data modifications (i.e. all write instructions in
the monitored program), the performance overhead can be significant. A first solution
to limit the impact on performance is to filter relevant non-control data to monitor, e.g.
by defining criticality levels: Work by Chen et al. [34] defines critical non-control data
as the data involved in configuration, decision-making, user input, and user identity
operations.

Combination with Control-Flow Integrity

On one hand, a framework combining CFI and DFI protection forms a complete runtime
detection of threats to protect the CF of a monitored program against sophisticated
attacks. Because it is a specification-based method, it does not bring false detection.
On the other hand, we can expect an important performance overhead to monitor the
data flow. Thus, the trade-off between security coverage and performance overhead
must be determined for the monitored software. The monitoring impact depends greatly
on the properties of the application (like the amount of computational operations and
memory accesses), since in principle, a CFI or a DFI policy is generated for a single
program. A limitation could also come from the necessary access to the monitored
program source-code – to build the CFG at compile-time or to insert instrumentation in
the binary for runtime monitoring.

III.2.3 Machine-Learning and Statistical Based Anomaly Detection

Overview

We divide the machine-learning based anomaly detection process in two main phases. The
trace collection phase provides a sequence of system signal observations representing the
monitored execution to the second trace analysis phase, which applies machine-learning
techniques to distinguish malicious from normal execution on collected traces.

The selection of relevant system signals plays a decisive role to distinguish normal and
malicious execution with machine-learning. It varies in function of the execution context
(i.e. system hardware and software architectures) and can target several system levels:
hardware activity through hardware performance counters (HPC), OS-level operations
with system calls (SC), or system log files. In this work, we focus on HPC and SC based
solutions.

Jose et al. [76] describe three types of anomaly-based data analysis techniques.

38 Chapter III. State of the Art on Host Intrusion Detection

• Statistical-based analyses apply statistical tools to produce a model of normal
execution represented by a set of observed variables, e.g. leveraging metrics such
as mean, variance, distributions thresholds. For example, Yoon et al. [163] propose
a light-weight system call based anomaly detection based on system call frequency
distributions analysis.

• Machine-learning based analyses follow a similar approach to statistical based
methods: they build a machine-learning model of normal execution, through a
training involving heavy data load.

• Knowledge-based analyses use knowledge about a set of known-attacks to detect any
attack or system vulnerability. Although it is supposed to reduce the false-positive
rate, we do not develop this topic further, because in the context of industrial
critical system, we do not have access to many attack types.

System Call Based Host Intrusion Detection

A system call is a specific assembly instruction which generates an exception trapped in
the OS kernel, so that a user-level program can call OS kernel services (like memory page
allocation, hardware I/O access). For example on ARMv8-A architecture, it corresponds
to the SuperVisor Call (SVC) [13]. The system calls set depends on the OS software
Application Programming Interface (API).

System call is a well-known data type to detect anomalies in a program’s execu-
tion. System call based HIDS has been indeed an active research topic since the late
nineties [159]. System call data are part of several popular datasets from the last decades
to support research on HIDS: with ADFA-LD [38, 72], KDD99 [154], DARPA [153].
Intuitively, this type of signals discloses information of the monitored user-level software
interface with lower more privileged system layers. Generally, an attack on a user-level
program aims at compromising shared resources or more privileged system layers. Hence,
it potentially involves system call instructions to access critical resources and operations.
Additionally, we can deploy system call tracing at kernel level; i.e. such solution is
non-intrusive for the monitored software, as we can observe it without instrumentation.

For the machine-learning analysis, a system call is an abstraction that can be repre-
sented by different sets of traces, as described by Wunderlich et al. [162]. Although the
great majority of solutions exclusively leverage the type of system call [5, 11, 62, 73, 148,
38, 39], some initiatives [101, 88] propose to enhance the analysis with contextual data
(i.e. system call arguments, return value, occurrences, handler execution time, etc.). The
survey by Wunderlich et al. [162] discusses different approaches to pre-process system
call data to then feed neural networks, which take numeric values as inputs. One-hot
encoding is a basic pre-processing method, which transforms a system call data to a
numeric vector with a dimension matching the count of different data in the system call
API. In this representation, every system call corresponds to a single vector dimension;
e.g. for PikeOS API, every system call corresponds to a vector of 122 dimensions.
More advanced pre-processing techniques based on classification for Natural Language
Processing (NLP) like word2vec [111] can be applied. Such approaches suppose that

39

some system calls are not totally independent. For example, file management related
system calls (open, close, read, write, etc) presume an implicit time relation: the file is
open prior to other operations, then read or write, and finally closed. The final dimension
of the vector depends on the set of system calls. In NLP, for an alphabet of millions of
words, a few hundred dimensions are generally sufficient to analyze a text. For instance
with word2vec algorithm [111], the input vocabulary corresponds to one million words,
while the output vector’s dimension remains below 600. Wunderlich et al. [162] compare
different pre-processing methods for system call type inputs, using ADFA-LD datasets
and the same detection algorithm, a Long Short Term Memory (LSTM) classifier. Their
results show in this context the best detection accuracy with one-hot encoding.

system call based HIDS generally come with good detection performance: generally,
the detection accuracy is above 90% and the false-positive rate (FPR) varies. Maske et al.
[108] compare two methods on ADFA-LD dataset, with less than 4% FPR and more than
80% accuracy. Subba et al. [148] analyze their solution with two others from literature,
in the majority of tested cases, the detection rate and the accuracy respectively are above
80% and 90%. Creech et al. [39] implement 100% detection rate for 0.6% FPR, while
Anandapriya et al. [11] apply an Extreme Learning machine model to detect intrusions
in ADFA-LD datasets, achieving 86% detection accuracy and 2.2% FPR. Despite the
quantity of solutions and performance numbers, security remains difficult to evaluate.
Even though open datasets allow to compare different frameworks with the same data
inputs, they lack representativeness of program execution: while DARPA and KDD99
datasets are over 20 years old. The most recent open dataset ADFA-LD [38] is from
2013. Besides, such datasets are highly system dependent. For example, ADFA-LD
corresponds to traces of processes executing on Ubuntu-11 server OS, which potentially
differ from traces observed on embedded or RTOS. Pendleton et al. [125] propose a
solution to generate more suitable system call datasets and highlight general limitation
of existing datasets: system call sequences are non deterministic and depend on the
monitored process’ complexity.

Research articles usually do not mention the time and memory overheads for their
system call based HIDS, probably because such technology target deployment in server
systems, in contrast with embedded systems having limited resources. Additionally, the
performance overhead depends greatly on the monitored application; i.e. how frequently
it executes system calls (the worst-case being for a program consisting of a sequence of
system calls only, while the best-case is a program executing no system call). A program
executing few system call comes with low performance overhead. However, the system
call based protection of the program execution could be more easily bypassable by a
knowledgeable adversary, especially if malicious execution does not generate further
system calls during runtime. The time window of opportunity for an attack also increases
in such configuration: the adversary has more time to make its attack successful before
being detected.

Hardware Performance Counters Based Host Intrusion Detection

Hardware Performance Counters (HPC) are CPU core-wise configurable counters. These
counters are available in modern widespread CPU architectures such as ARMv8-A and

40 Chapter III. State of the Art on Host Intrusion Detection

Table III.7: Common hardware performance counter events
Type Examples

Memory
virtual memory related events TLB flush, TTBR write
cache operations flush, invalidate
memory operations load, store instructions

CPU
pipeline stall instructions
speculative execution (mis)predicted branches
program execution exceptions, executed instructions

Time bus cycles, CPU cycles

Table III.8: Hardware performance counters traced in literature

Solution HPC Events
Instructions Branch Branch Predictor Cache

Basu et al. [23] all all - -
integer inst. taken br.

Krishnamurthy et al. [89] all all - -

Fauzi et al. [4] call inst. - br. miss I cache miss
D cache miss

Cronin and Yang [40]
cache access

all all br. miss cache miss
LLC access

Intel-64. Most of the hardware platforms supporting HPC trace the same set of common
events (see Table III.7). For an ARM Cortex-A53 processor [132], more than 50 events
can be configured: cache accesses, branch predictor performance, executed instructions,
etc.

Recent research has emphasized the applicability of Hardware Performance Counters
(HPC) tracing to detect malicious exploits: e.g. work by Fiser and Sanchez [58] shows
how to detect Spectre [87] intrusion by observing cache activity at runtime. Table III.8
shows a set of common HPC events used in recent literature. Basu et al. [23] demonstrate
the relevance of tracing CPU performance counters for detecting anomalies in a program
CF. The authors compute the probability for two CF executions to correspond to the
same HPC traces: they confirm the probability of matching to be very low, validating
their approach by using a selection of four common hardware events.

Abbas et al. [4] implement an offline anomaly detector, which traces four events
to profile a benchmark of applications. The initial benchmark defines the baseline,
while patched version and combination of these applications represent anomalies. The

41

detector nearly identifies all deviations. While this approach applies offline, after the
monitored program execution, Shi et al. [142] focus on online anomaly detection to
identify deviation in an application’s CF at runtime. They develop DCFI-checker, a CFI
monitor, which counts executed branches during each control transfer in the kernel for
detecting intrusions.

NumChecker [157] is a security framework based on system call profiling using per-
formance counters for detecting kernel rootkits in guest virtual machines (VMs). The
method consists of creating offline profiles for a set of system calls in a safe environment.
At runtime, a test application performs regularly system calls inside the guest VM. The
monitor reads the counter values during the test and compares the results to the baseline.
When read values exceed a certain threshold, an intrusion is detected. ConFirm [158] is a
malicious firmware detector for embedded systems. Before starting the firmware, the tool
inserts checkpoints in the executable. It reads CPU performance counters at each one of
these checkpoints and analyzes the measurements: it either compares counters’ traces
to a reference signature, or it uses a predefined machine learning model to determine
whether a potential threat is occurring. As both ConFirm and NumChecker frameworks
modify the monitored software, they induce indeterminism in time execution.

A novel IDS implementation for multi-threaded processes tested on PLC software
[89] considers each monitored process as a black-box. The method creates a baseline of
benign execution from the observation of the monitored process execution in a trusted
environment. The paper demonstrates very good precision of the anomaly detector; but
it does not disclose its impact on system performance. Work by Cronin and Yang [40]
discusses the performance impact for tracing HPC at system runtime. The authors
propose an online system malware detection solution with low frequency sampling period.
They reduced the memory bandwidth to 7KB/s, compared to the 3MB/s required
in previous work, confirming the validity of HPC tracing deployment for security in
embedded systems.

Even though many research works outlined the relevance of HPC for intrusion detection,
some limitations have emerged from recent publications [165, 43]. Zhou et al. [165] prove
that many solutions base their results on unrealistic setups and optimistic assumptions
(e.g. the programs in the training set appear in the test set). They believe there is
no causation between low-level architectural events and high-level software behaviors.
Sanjeev et al. review the different HPC types and recent analyses methods. The authors
define a set of recommendations to use HPC for anomaly detection. First, evaluation
results of different frameworks cannot be compared, because of the high variability of
observations across platforms and test setups. Second, to perform HPC-based application
profiling in a multi-applications execution on the same CPU core, the solution should
support routines to save and restore the counters values at context switch. Third, the
trace analysis should consider non-determinism of HPC measurements; an adversary
could attempt to influence the counters values to thwart the defense. Finally, a new
framework should be documented for reproducibility and consistency in literature.

42 Chapter III. State of the Art on Host Intrusion Detection

III.3 Host Intrusion Detection in Embedded Mixed-Criticality
Systems

III.3.1 Applying Host Intrusion Detection in Embedded Mixed-Criticality
Systems

Dedicated Solutions for Embedded Mixed-Criticality Systems

Industrial critical systems usually follow rigorous processes for the development, verifica-
tion, and validation. For example, PikeOS real-time hypervisor complies with several
industry standards reaching various assurance levels, involving the Automotive Safety
Integrity Level B, Design Assurance Level A for the avionics, etc. Hence, critical certified
software are unlikely to have software bugs, in contrast to non-certified software.As
described in Section II.1.2, a MCS is a system composed of diverse software applications
from different criticality levels. In MCS, low-critical tasks are more likely to have software
bugs compared to high-critical software; additionally, low-critical tasks are comparatively
more accessible, notably via connectivity features and user interface. Therefore, they are
more vulnerable to attacks.

With the openness and large attack surface commonly associated with non-critical
software such as infotainment, networking, and multimedia applications, and despite
their secure design, MCS become increasingly exposed to threats. Even though theses
systems support prevention mechanisms to preserve critical tasks from corruption (e.g.
multi-mode execution including a fail-safe state), an infected low-critical task can alter
the normal execution of a critical task: used by a high-critical task, a low-critical
service becoming unavailable or compromised potentially reduces the user-experience
and adds inconvenience. In worst-case, low-critical tasks can impact the execution time
of high-critical tasks beyond their real-time constraints. For example, Chen et al. [33]
have demonstrated the feasibility of side-channel attacks on industrial critical systems:
they implemented an attack against a custom rover, that alters the system behavior by
overwriting system control signals from a low-critical task. In work [106], the adversary
indirectly manipulates low-critical tasks to increase the jitter of a more critical task to
finally compromise temporal properties of the MCS. Thus, low-critical tasks represent
attractive entry points to compromise MCS.

Hence, as developed in Section II.2.1, the system must guarantee freedom from
interference and independence between system tasks, to assure a proper system operation
complying with execution constraints such as real-time deadlines. For example, PikeOS
hypervisor implements MILS architecture, leveraging resource and time partitioning
strategies; it achieves Evaluation Assurance Level 5+ for security [50].

In real-time systems, timing is a central variable, both for the attack and protection.
Iliya and Ivo Georgiev [60] discuss the vulnerability of real-time systems through a set of
timing parameters, which they classify in function of their potential critical impact level.
According to their classification, changing the main clock frequency corresponds to the
highest criticality level at system level. Several attacks [33, 106] exploit timing scheduling
properties to leak confidential information or compromise the execution of a real-time

43

system. Therefore in reaction, scheduling design defenses aim at limiting the attack
surface: Mohan et al.[114] propose security-aware fixed-priority real-time schedulers.
Other approaches prevent timing deviation side channels via obfuscation based methods,
like schedule randomization [90, 116]. Though, these design-based techniques cannot
mitigate the CF hijacking attempts, which run in compliance with the time execution
specification (e.g. WCET constraint).

Some basic security features are related to safety properties. For example, the resilience
to system errors protects a system against random faults (e.g. software bug); it also
contributes to increase the system robustness to handle errors resulting from an explicit
malicious intention. However, safety properties are not sufficient to guarantee system
security: an adversary, contrarily to a random fault, tries to dissimulate malicious
activity, and possibly bypasses the safety controls. The spread of MCS is recent, due to
the growth of hardware capacity; therefore, while MCS security has become a crucial
issue, the literature counts few HIDS solutions designed for this type of critical systems.
Section III.3.2 provides an overview of current HIDS solutions for MCS.

HIDS methods for generic computers introduced in Section III.2 cannot directly apply
to MCS. Since these solutions run concurrently to the monitored software, they possibly
modify temporal properties of systems like real-time constraints; therefore, we must
evaluate their intrusiveness before deployment. Our objective is to define monitoring
methods, which do not endanger the system constraints.

Methodology to Integrate Security Tasks in Embedded Mixed-Criticality Systems

Hasan et al. propose generic methods to integrate security tasks in a real-time systems,
which address the trade-off between security monitoring and system impact. The authors
first introduce an opportunistic solution [67], leveraging a server with low priority to
execute security tasks. Their approach supposes a deferrable execution of the security
tasks, so that security activity can execute when no task with higher priority is running.
The authors generalize their opportunistic server approach with Contego [66], an adaptive
framework where the server does not necessarily run with lowest priority. They introduce
a multi-mode model. The passive mode corresponds to the opportunistic server method
described above. In the second active mode, the server can execute with higher priority.
We leverage this abstract approach in our practical research scope in Chapter VII,
to propose a multi-mode HIDS; our solution involves non-intrusive heuristics based
monitoring in low security mode and intrusive specification-based method in high security
mode.

Hao et al. [65] address the problem of integrating instrumentation-based defenses
in real-time systems, proposing two schedulability algorithms to control the time over-
head induced by security checks in the monitored tasks. They define for every task
a security level and a time overhead for instrumentation to perform security checks.
Their schedulability algorithms decide whether a job can run security checks, in the
limit of time to guarantee system schedulability, prioritizing tasks with higher security
levels. The authors apply their approach on a auto-drive car prototype, implementing a
software-based backward-edge CFI monitoring (shadow stack).

Compared to these two principal integration approaches based at task level, we provide

44 Chapter III. State of the Art on Host Intrusion Detection

in Chapter IV, a practical methodology for a safety-aware integration of a HIDS into an
embedded MCS; we introduce a system architecture to integrate monitoring mechanisms,
as well as a set of criteria and metrics to evaluate the HIDS in terms of security, system
overhead, and impact on system schedulability.

III.3.2 Host Intrusion Detection Solutions Designed for Embedded
Mixed-Criticality Systems

Table III.9 provides an overview of research approaches discussed further in this section.
Most of the solutions are specification-based: CFI monitoring, watchdogs, and software
obfuscation. They follow diverse implementation strategies: at software level via program
instrumentation and RTOS kernel modification or on custom hardware. While the
evaluation process varies among the discussed frameworks, we consider three main
elements for comparison:

• the performance impact for deployment of the method (e.g. in terms of time
overhead and hardware cost).

• the security coverage offered by the solution (e.g. condition for threat detection,
time to detect, etc.).

• the impact of the security approach deployment on the system schedulability; i.e.
on real-time constraints of the system.

Some hardware-only based solutions [1, 24, 31] have no direct impact on the software
execution at runtime. Few papers [65, 156] address the trade-off between security and
system schedulability, while others [57, 166] only investigate the performance impact
through the time overhead for monitoring estimation. Several methods [161, 24, 1] based
on hardware implementations, evaluate the hardware cost; i.e. necessary additional
computing and memory overheads for monitoring. The set of compared frameworks shows
a significant heterogeneity in the security evaluations. Some works [127, 1, 161] provide
a proof of concept, Walls et al. [156] discuss the scope of their solution analytically,
and others [24, 31] propose to test the security on complex realistic use-cases. Though,
many approaches use the attack detection latency as the principal evaluation metric
[24, 166, 31, 65, 156].

Specification-Based Solutions

CFI Monitoring directly impacts time execution of the monitored applications, because
it requires instruction-level tracing. Such security solution seems unsuitable to secure
system with real-time constraints. TrackOS [127] is a RTOS designed to integrate CFI
monitoring. Before runtime, binary static analysis generates a call graph for each task
(application), to control every function call and return instructions of monitored tasks
at runtime. The CFI monitor occupies at runtime one privilege task; it can access all
tasks’s memory and checks their control stack with the call graphs generated in the
previous step. To comply with real-time constraints, the user can freely control the

45

Table III.9: Comparison of intrusion detection solutions designed for embedded mixed-
criticality systems. Symbols (–, ✕, ●) respectively stand for not applicable, missing, and
applicable fields. In the security evaluation (❍, ◗, ●) represent basic proof of concept, limited
security metric measurements, and exhaustive security checks in a real-life complex environment
levels.

Solution Im
pl

em
en

ta
ti

on

P
ro

gr
am

in
st

ru
m

en
ta

ti
on

R
T

O
S

ke
rn

el
m

od
ifi

ca
ti

on

P
ro

te
ct

io
n

ty
pe

Se
cu

ri
ty

/s
ch

ed
ul

ab
ili

ty
tr

ad
e-

off
Se

cu
ri

ty
ev

al
ua

ti
on

P
er

fo
rm

an
ce

ev
al

ua
ti

on

Hao et al. [65] software ● ● CFI ● ◗ ✕

RECFISH [156] software ● ● CFI ● ◗ ●

TrackOS [127] software – ● CFI ✕ ❍ ✕

OCFMM [1] hardware – – CFI – ❍ ●

Bellec et al. [24] hardware – – WCET monitoring – ● ●

Zimmer et al. [166] software ● ● WCET monitoring ✕ ◗ ✕

Wolf et al. [161] hybrid ● – watchdog ✕ ◗ ●

Fellmuth et al. [57] software ● – obfuscation ✕ ✕ ●

Carreon et al. [31] hardware – – timing statistical analysis – ● ✕

Kuzhiyelil et al. [92] hybrid – – CFI ✕ ❍ ●

Kadar et al. [79] hybrid – – CF based monitoring ● ◗ ●

overhead of the monitor task with the RTOS scheduler. This solution allows a partial
CF-coverage: it only considers function signatures, it does not control other branches such
as conditional statements. RECFISH [156] is another CFI monitoring solution based on
FreeRTOS open-source real-time system. Because it requires program instrumentation,
this approach is less suitable for deployment in certified legacy systems. With OCFMM
framework [1], Abad et al. propose an on-chip CFI monitoring solution, which is adapted
to protect systems with strict real-time constraints. The authors define the framework
time overhead in function of the monitored program source code. This overhead must be
considered by the system designer to assure the schedulability of the whole system at
runtime. Though, the authors provide a definition of the time overhead, they do not
disclose techniques for practical measurement. They implement this technique as an
extension of LEON3 processor.

46 Chapter III. State of the Art on Host Intrusion Detection

As discussed in Section III.2.1, many frameworks involve processor-tracing hardware on
common platforms for CFI monitoring [61, 59, 104, 70, 95, 96]. However to our knowledge,
we are the first ones to design such a solution for deployment into critical systems with
timing constraints [92]. In a second phase, we extend our initial monitoring framework
to propose a configurable and deterministic monitoring solution, which addresses the
trade-off for CF tracing between time overhead CF coverage [79]. We describe this
safety-aware CF monitoring framework in Chapter VI.

Alternatively, Fellmuth et al. [57] deploys a WCET-aware artificial diversification
mechanism to protect real-time systems against code-reuse based attacks. The artificial
software diversity is an obfuscation approach consisting of running multiple randomly
modified semantically equivalent variants of a program, making potential attacks more
complicated and less reliable. To adapt the artifact software diversity for real-time
systems, the authors base the diversification process on static timing analysis of the
monitored real-time task to secure. Their solution require source code access and
instrumentation at compile-time.

Survey [107] summarizes watchdog methods for error detection. Watchdog techniques
investigated to protect systems against errors, randomly generated or caused by an
attack on the monitored component. They involve a coprocessor to perform online sanity
checks at runtime, by observing system-level behavior. The observation can focus on
the control-flow execution, memory accesses, or timing properties. In the great majority
of implementations, when the monitored hardware does not support transparent (i.e.
non-intrusive) online trace collection, program instrumentation is necessary to provide
the coprocessor with the data to check at runtime. For example, Work [161] proposes a
watchdog based intrusion detection to monitor programs, based on the comparison of the
execution time of protected program blocks with their WCET metric. While leveraging
program instrumentation, the solution aims to assure the correct timing behavior of the
monitored program.

Temporal-Based Statistical Analysis Solutions

Bellec et al. implement a hardware framework [24] for embedded real-time systems, to
detect CF hijacking threat such as ROP attacks. Their solution monitors the execution
time of pre-defined code regions of the program to protect: when a monitored code
region’s execution exceeds its WCET, the framework detects a threat. However, the
inherent pessimism of the WCET metric could be exploited by a knowledgeable adversary
to hide additional malicious execution time.

Similarly, Zimmer et al. [166] leverage timing information to detect attacks such as
buffer overflow attacks. Contrarily to the previous solution [24], this approach requires
program instrumentation to insert checkpoints for execution time measurement controls.
When integrating the solution to a real-time system, the predictability of the solution
cannot be guaranteed: the monitored program now contains additional system calls at
checkpoints for monitoring.

Carreon et al. [31] implement an anomaly-based malware detection solution using a
window-based statistical analysis of timing measurements on individual system subcom-
ponents. They leverage cumulative distribution functions to model the timing normal

47

execution of protected subcomponents. After a first training phase to create the timing
model, a hardware malware detector is deployed on the monitored critical system, to
compare the model to runtime traces collected via the processor trace port.

In Chapter V, we study the practical use of ML to monitor system events like HPC
and system calls, for intrusion detection in an embedded MCS. We present a safety-aware
system call instrumentation solution [80], introduce a safe and secure system monitoring
architecture [81], and discuss the impact of the ML engine configuration on system
performance [109].

III.4 Conclusion
This literature review provides a holistic overview on state-of-the-art approaches for
deploying intrusion detection into industrial embedded MCS. We covered HIDS research
in GP computers and discussed the applicability of existing solutions to run into an
embedded MCS. We also compared intrusion detection frameworks designed to run in
such constrained environment. In this evaluation, we defined a set of key criteria and
properties to support further HIDS development in the context of industrial embedded
MCS.

Considering this overview of HIDS research, we extend state-of-the-art HIDS research
in this thesis through the following contributions:

• This chapter – a literature review of HIDS for embedded MCS. We
submitted a survey to ACM Computing Surveys journal [78].

• Chapter IV – a methodology for a safety-aware deployment of HIDS
into embedded MCS. This work includes a paper published in the 50th Annual
IEEE-IFIP International Conference on Dependable Systems and Networks [81]
(2020). Additionally, in the joint paper submitted to the 25th IEEE International
Conference on Emerging Technologies and Factory Automation [48] (2020), we con-
tributed to the security aspects of industrial use-cases of a common fog computing
platform.

• Chapter V – a study of ML based HIDS, leveraging low-level system
events (i.e. HPC and system calls). We presented a system call instrumen-
tation framework for safety-critical systems to the 4th International Workshop on
Security and Dependability of Critical Embedded Real-Time Systems [80] (2019).
We also supervised the M.Sc. Thesis of Andres S. Mateus [109], to build a HPC
based HIDS using a ML framework.

• Chapter VI – a safety-aware hardware-assisted CF monitoring frame-
work. In the joint paper submitted to the 23rd Information Security Confer-
ence [92], we presented a hardware-assisted CFI framework (2020). Our contribu-
tions consist of the implementation of forward-edge CFI checking, the integration
of CFI checks on the test platform, the timing overhead analysis, as well as parts of

48 Chapter III. State of the Art on Host Intrusion Detection

the results analysis and literature review. We then extended this framework in [79],
for a practical and safety-aware deployment in an industrial embedded MCS.

• Chapter VII – an analytic multi-mode HIDS composed of heuristics and
specification based monitoring methods.

IV

A Methodology for Runtime Anomaly
Detection in Embedded Mixed-Criticality
Systems

Referring to the terminology of anomaly based intrusion detection introduced in Chap-
ter II.1.3, we define for a program’s execution an anomaly as an abnormal system
behavior that can lead to an intentional malicious fault. Section IV.1 describes the basic
idea to develop a safety-aware runtime HIDS for embedded MCS, which addresses the
specific constraints of these systems.

A first key issue for developing such framework is to select suitable system events to
trace and analyze for intrusion detection. Section IV.2.1 proposes a method to identify
anomalies observing system traces, by selecting appropriate trace sources.

A second problem for anomaly based intrusion detection lies in the fact that an
anomaly can correspond to an intrusion as well as a abnormal benign system behavior.
Therefore, to be relevant, the solution must find an acceptable trade-off between correct
detection of intrusions and false alerts. In this perspective, Section IV.3 introduces the
two main approaches we develop in this thesis (Chapters V and VI). In Section IV.4,
we then propose a method and an architecture to integrate the HIDS monitor into the
local embedded MCS platform, which are compatible with safety criticality constraints
of such system.

Finally, considering the system architecture and the type of proposed solutions, we pro-
pose an approach to evaluate the HIDS, in function of three criteria: detection efficiency,
compliance with system safety requirements, and impact on system performance.

IV.1 A General Approach for Safety-Aware Host Intrusion
Detection in Embedded Mixed-Criticality Systems

In this section, we discuss three main problems to address for developing a safety-aware
HIDS in embedded MCS:

49

50
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

• selecting suitable system events to trace for runtime intrusion detection.

• selecting analysis methods to distinguish anomalous from normal execution in
system traces.

• guaranteeing safety-related system constraints when deploying runtime mon-
itoring.

We propose several approaches addressing these challenges in Section IV.3.

IV.1.1 Program Execution Tracing for Security
According to Section III.2 with Table III.3, many system events can be traced at different
levels from hardware level to application level. Our literature review shows that several
research works already highlighted the relevance of specific system events like system
calls and HPC.

Formatting collected system traces represents a key stage in the intrusion detection
process, to extract meaningful and interpretable information from system events. For
example, an AI assisted solution analyzing human readable system log messages needs
to convert traces to a machine-readable format. Alternatively, statistical based methods
based on numeric continuous signals (e.g. HPC values) may require data normalization
prior to computation.

Due to the inherent constraints of RTOS and system certification, embedded MCS
offer limited data sources compared to general-purpose computers; e.g. no filesystem,
restricted access to the monitored program’s execution, difficult – in terms of certification
– modification of the OS kernel, diversity of OS and hardware platforms, etc.

Hence, we propose to consider basic system events for intrusion detection; these must
be accessible on standard hardware and software platforms. In particular, we focus our
work on system calls, HPC, and common hardware tracing features.

IV.1.2 Analysis Methods to Identify Intrusions
Our literature review (Chapter III) focuses on two HIDS analysis approaches: specification
based and anomaly-detection based methods. On one hand, specification based solutions
such as CFI monitoring (Section III.2.1) come with no false-positives, as they define
rules describing normal execution of the monitored program – considering that no
over-approximation rule induces wrong detections. In particular, specification based
methods leveraging instruction-level analysis can support fine-grained detection. However,
these solutions often bring challenging implementation constraints such as program
instrumentation of the monitoree’ source code.

On the other hand, anomaly-detection based methods based on statistical and AI
analyses (Section III.2.3) can cover the execution at different program granularity levels,
depending on the sampling rate for trace collection. These approaches can exploit various
data sources, including hardware counters of the monitored processor. The relevance for
threat detection of such HIDS relies on the exhaustiveness of the dataset used to build the

51

monitoree profile of normal execution: i.e. we must collect enough data measurements
to represent the monitoree running under all possible runtime configurations.

We propose to investigate how both specification based and anomaly-detection based
solutions can be coupled to address the system safety-critical constraints, security
efficiency, while limiting the impact on the system.

IV.1.3 Safety-Aware Runtime Monitoring in Embedded Mixed-Criticality
Systems

Due to the inherent constraints of our deployment environment (Section II.2.1), the HIDS
solution must be transparent: the system architecture and scheduling policy must enforce
strong freedom from interference and independence between user-level applications.

Hence, in our role of system integrator and RTOS provider, we must evaluate the
certifiability of the HIDS solution. Notably, as system call data are well used and known
in literature for intrusion detection in generic computers (Section III.2.3), we must
consider the certification cost to integrate such HIDS framework into our embedded MCS;
especially as system call types depend on the OS API, and tracing requires kernel-level
modification of system call handlers.

IV.2 System Events Correlation with Runtime Malicious Execution
in Embedded Mixed-Criticality Systems

IV.2.1 An Abstract Representation of Anomaly Detection
In our context of work, an anomaly is an abnormal system behavior that can lead to an
intentional malicious fault. The goal of HIDS is to detect anomalies by observing the
behavior of the monitored software execution. Since an anomaly does not necessarily
correspond to an intrusion, the HIDS must be able to distinguish anomalous execution
with no malicious faults from real threats in order to avoid detection errors.

The selection of trace sources to feed the HIDS directly influences the ability of the
solution to correctly monitor the execution. The sources of observation vary among HIDS
solutions and deployment environment related constraints, as discussed in literature
review (Chapter III). A relevant set of trace sources must allow an acceptable trade-off
between false-positives and false-negatives in the detection.

System Asset Formal Definition

As introduced in the problem definition (Section II.2.3), our goal is to protect a user-level
application against intrusions altering its runtime behavior; we define our asset as the
integrity of this user-level application’s runtime execution (Section II.2.2). The integrity
of the execution for a program depends on its control-flow and data-flow at runtime:

52
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

• control-flow: the sequence of instructions (exceptions, memory operations, func-
tion calls, etc.) executed by the program.

• data-flow: the data states which are read and written by the program (e.g. I/O,
internal CPU registers, main memory).

Both data and CF depend on:

• the static program binary: executable code and static data.

• dynamic system configuration: hardware state, runtime input/output data,
scheduling policy, etc.

Hence, our asset must cover both statically and dynamically determined aspects of
runtime execution, so that the HIDS is able to detect intrusions, which correspond to
our two threat scenarios (Section II.2.2): i.e. alternation of the static program binary
and dynamical misuse of the expected program binary through its interface.

Figure IV.1: A program execution graph

We introduce an abstract representation of the execution of an application. Let p
be a program, we define its execution graph G(p) = (S(p), B(p)), where G(p) models the
execution path of p by a sequence of intermediate abstract states given in S(p). B(p)

defines all possible transitions between two states in the graph. Figure IV.1 shows an
example of graph, where threats are unauthorized transitions represented by bold red
arrows. Let G(p) a graph with N states and M branches. We can define S(p) and B(p) as:

�
S(p) = {si}i=1..N

B(p) = {bk}k=1..M , ∀k ∈ [1, M].∃i, j ∈ [1, N].bk = (si, sj)
(IV.1)

We introduce the notion of time with the sequence of state transitions executed by the
program p at runtime; we note t ∈ N∗ a variable time and T ∈ N∗ the time when the
program p returns (i.e. the last branch in the execution of p). We define e(p)(t) the

53

execution path of the program p, from time T1 = 1 (when the first branch is executed by
p) until time t, as the sequence of branches executed by p in [1, t] (IV.2,IV.3). Hence,
∀t ∈ N∗.e(p)(t) ⊆ B(p).

p executing in [1, T] ⇔ ∀t ∈ [1, T].e(p)(t) = {bi}i=1..t, ∀i ∈ [1, t].bi ∈ B(p) (IV.2)

p executing exclusively in [1, T] ⇒ ∀t > T.e(p)(t) = e(p)(T) (IV.3)

For a given program p, we introduce the golden model GM (p) to describe all trustworthy
branches in B(p) (i.e. GM (p) ⊆ B(p)). The execution path integrity is guaranteed if
and only if ∀t ∈ N∗.e(p)(t) ⊆ GM (p). We can then summarize our asset as the following
invariant on the program execution at time t ∈ N∗: e(p)(t) ⊆ GM (p).

Threat Formal Definition

We define a threat – or intrusion – as an anomaly in the program’s execution, which
compromises our security asset (i.e. the integrity of the execution for the program to
protect). Our goal is to detect anomalies in the program’s execution to prevent intrusions
to occur.

Thus, for a given program p executing exclusively in the interval [1, T], a time t ∈ N∗,
and the execution path e(p)(t), an anomaly corresponds to a broken execution integrity
invariant, as shown with (IV.4).

e(p)(t) = {bi}i=1..min(T,t), ∃k ∈ [1, min(T, t)].bk /∈ GM (p) (IV.4)

Host Intrusion Detection Formal Goal

Our goal is to protect the system asset with runtime intrusion detection; the role of
the HIDS is then to control that the program’s execution path remains within the
corresponding golden model. In this respect, the HIDS defines for a given program
a model of execution, which must be as close as possible to the golden model of the
program, to accurately identify unauthorized transitions between two execution states at
runtime.

Let p be a program corresponding to the execution graph G(p) = (S(p), B(p)), we
introduce M (p) the model of the HIDS solution, so that M (p) ⊆ B(p). To monitor the
program’s execution, the HIDS must be able to observe the program execution states
at runtime. To this end, it can leverage one or several system signals – as discussed in
Chapter III – to detect corruption attempts on our security asset. The HIDS can control
the asset recursively at runtime following Definition (IV.5) and Induction (IV.6): each
transition between two states is compared to the golden model, while the preceding path
has already been checked.

�
e(p)(0) = ∅
e(p)(t) = {bi}i=1..t = e(p)(t − 1) ∩ {bt}, ∀t ∈ [1, T] (IV.5)

∀t ∈ [1, T].e(p)(t) ⊆ GM (p) ⇒ e(p)(t − 1) ⊆ GM (p) ∧ bt ∈ GM (p) (IV.6)

54
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

Program Execution Graph Coverage

Ideally for a given program to protect, the HIDS model of execution covers the exact
golden model of this program: i.e. the HIDS identifies all transitions located inside
the golden model as correct, all others are potential threats. Let p be a program
corresponding to the execution graph G(p) = (S(p), B(p)), M (p) the model of our HIDS
solution: our target is to achieve M (p) = GM (p).

However in practical implementations, a HIDS solution usually introduces errors of
detection. In such case, the HIDS model was not correctly defined prior to deployment.
On one hand, a HIDS solution possibly induces false-positives in the detection: i.e. the
HIDS detects – with respect to its model of program execution – an anomaly which
does not maliciously alter the program’s execution path. In such configuration, the
HIDS model does not fully include the program’s golden model: i.e. GM (p) � M (p).
On the other hand, the HIDS may also miss the detection of actual intrusions: i.e.
M (p) � GM (p).

IV.2.2 System Events Selection for Intrusion Detection
From Abstract States to Observable Traces

We represent the abstract states of the monitoree’s execution with relevant observable
system signals at runtime, as developed in literature review (Chapter III). In our view
of system integrator, the monitoree is a black-box: we have limited knowledge on the
program (e.g. no access to the source code) and restricted instrumentation capability,
especially in the context of certified critical applications.

Thus on one hand, we decide to privilege system events which we can monitor with low
intrusiveness on the monitoree’s interface and system software lower layers. In particular,
we target hardware events located on the processor where the monitoree is executing:
i.e. HPC and processor tracing features. On the other hand, we prioritize solutions
which can run from user-space for certification reasons: a modification in the OS kernel
would require to reiterate the certification process on the whole kernel, to assure that
the add-ons do not disturb other system critical functionalities.

Correlation between Intrusions and System Signals

The two threat scenarios (execution of a statically modified binary and dynamic misuse
of the program), which we consider in Section II.2.2, imply an alteration of the CF of
the application at runtime. In this context, the system signals related to the instructions
executed by the monitoree represent a relevant source of information to observe the
program’s runtime CF: e.g. sequence of instructions, time per instruction, type of
instructions, etc. For example, CFI checking solutions monitor CF transitions to protect
a program’s execution against code-reuse attack (Section III.2.1).

A wide variety of intrusions exploits hardware vulnerabilities related to hardware
optimizations, like cache memory and processor extensions. HIDS can leverage such
characteristics to identify real threats: for example side-channel attacks are likely to
generate heavy flows of specific instructions (e.g. cache flush, branches, ...). Therefore,

55

we propose to use HPC for intrusion detection. We introduce the following considerations
to select appropriate HPC events for threat detection:

• the diversity of events across the scope of hardware platforms; even though HPC are
available on the majority of common processor architectures (i.e. Intel, PowerPC,
ARM), the set of available HPC event types differs among hardware platforms.

• the direct dependencies between some HPC events: e.g. the count of executed
instructions includes the count of executed load instructions.

• the relevance of a given counter for threat detection can fluctuate among different
monitored programs.

Hence, the selection of relevant HPC events for threat identification, which do not degrade
the detection by adding noise, represents a key issue for building HPC based HIDS.
According to literature (Chapter III), system calls represent an alternative valuable
information source for intrusion detection. The trace configuration depends on the
analysis approach and the RTOS API.

IV.3 Two Safety-Aware Anomaly Detection Approaches for
Embedded Mixed-Criticality Systems

We propose a generic approach for anomaly based intrusion detection, decomposing the
monitoring solution into two phases:

• trace collection: can run at several system levels; from user-space or kernel-space,
with hardware assistance.

• trace analysis: runs inside a dedicated partition in user-space.

We describe our HIDS architecture and its integration into an embedded mixed-criticality
environment in Section IV.4. The rest of this section outlines the two approaches we
develop in this thesis.

IV.3.1 System Events Based Machine-Learning Assisted Anomaly Detection

We study anomaly based HIDS, which use ML trace analysis in Chapter V. For this, we
leverage known system trace sources, following the solutions described in Section III.2.
On one hand, the goal is to limit the intrusiveness for tracing the monitoree execution.
On the other hand, we aim at evaluating the impact of such approaches on the system
real-time performance and detection efficiency.

We develop two anomaly detection based approaches, which leverage ML methods to
detect anomalous monitoree executions:

56
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

• Offline ML assisted ADS based on system calls and HPC: This is to
our knowledge, the first framework to combine RTOS level and hardware level
trace types to monitor the execution. We develop a safety-aware system call
instrumentation framework and evaluate the corresponding performance overhead.
We also evaluate how adding HPC values impacts the detection accuracy of the
solution. Our contribution on safety-aware system call instrumentation led to a
publication [80], while we introduced the concept of system call and HPC based
monitoring in another paper [81].

• Online ML assisted ADS based on HPC: We provide a safety-aware HPC
based ADS framework; we propose a method to integrate a ML framework for
online detection and implement a proof of concept for evaluating the performance
of the solution. This work was conduced in the context of a master thesis [109].

These anomaly based solutions are suitable for light-weight passive monitoring into an
embedded MCS. However, because there is no guarantee for the detectors to be free
from false-positives, the detection of an anomaly cannot be directly involved in chains of
critical decisions in MCS. Specification solutions such as CFI monitoring, as described in
the next section, are comparatively more suitable for deployment in critical environments.
Though, we could combine both types of HIDS methods, to improve the security of the
monitoree: for example, upon detection of an anomaly by the ADS, the system could
enable further security checks processed by specification based methods.

IV.3.2 Safety-Aware Hardware-Assisted Control-Flow Integrity Monitoring
We explore a specification-based runtime threat detection method with CFI monitoring.
Our literature review has shown that few works [156, 127] already implement CFI
monitoring for systems with real-time constraints (Section III.3). These solutions require
software instrumentation, which limits their applicability to an industrial use-case
involving system certification; i.e. instrumentation of the monitored program’ source
code or of kernel functions.

Recent research has introduced the use of hardware-assisted CF tracing for CFI mon-
itoring into industrial real-time systems, since such implementation does not require
instrumentation of the monitored program. However, CF tracing brings a high perfor-
mance overhead for monitoring, which depends on the monitored program execution path
(the more executed CF transitions, the higher the overhead). On one hand to integrate
the security service in a MCS, we must consider the worst-case monitoring overhead. On
the other hand, this assumption is highly pessimistic for a practical deployment.

Hence, we propose a first safety-aware method to integrate hardware-assisted CF
based security monitoring with ARM CoreSight into a MCS, and metrics to evaluate the
trade-off between performance impact and security monitoring coverage. Our security
framework combines a predictable CF transition level monitoring with trace collection
that can be used for CFI checking, together with an anomaly detection service to monitor
the full program execution. We validate our approach on an industrial MCS platform
with ARM CoreSight support, using a set of programs from TACLeBench benchmark.

57

We detail the solution further In Chapter VI we detail further the solution, which led
to two publications: in the first we introduce the hardware-assisted CFI monitoring
framework [92], while in the second we propose a practical safety-aware method to
integrate the solution into a MCS [79].

IV.3.3 Comparison of the Two Monitoring Approaches
Table IV.1 compares the ML based anomaly detection approach with the CFI monitoring
technique for a deployment into embedded MCS. Our evaluation considers three main
criteria: detection type, portability, and transparency.

Table IV.1: Comparison of intrusion detection solutions introduced in this thesis. Symbols
✕and ●respectively designate unsupported and supported fields. Symbol ◗refers to a field, which
can be supported depending on the deployment configuration.

Solution No FP Portability Transparency
no runtime no source no kernel

intrusiveness code access modification
ML Chap. V ✕ ● ◗ ● ◗

CFI Chap. VI ● ✕ ✕ ✕ ●

First, the detection scope differs for both approaches. On one hand, CFI monitoring
is a specification based method; thus, every detected intrusion corresponds to an actual
security threat (i.e. no false-positives). On the other hand, machine-learning assisted
solutions can induce false-positives.

Second, as we leverage hardware assistance to limit intrusiveness in the execution of the
monitoree, the portability of the solution particularly depends on the necessary hardware
requirements. Our hardware-assisted CFI monitoring is based on ARM CoreSight
technology to transparently trace specific instructions executed by the monitoree. Even
though similar technologies are available on other processor architectures (e.g. Intel
Processor Tracing [74] for Intel architecture), we expect that the porting of our solution
to another processor architecture is not straightforward. Alternatively, we monitor
low-level system events – i.e. HPC and system calls – for ML assisted monitoring. On
one hand, our system call monitoring framework cannot directly be deployed into another
OS (e.g. Linux), as we run our experiments using SYSGO’s PikeOS hypervisor. On the
other hand, we can comparatively more easily adapt our mechanisms to monitor HPC in
systems based on different processor architectures:

• We consider generic HPC events, which are traced on various processor architectures
like ARM, PowerPC, and Intel.

• The tracing of HPC counters is relatively simple; it corresponds to reading and
writing to predefined CPU registers.

Finally, we evaluate the transparency of our solutions following 3 criteria:

58
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

• no runtime intrusiveness: The monitoring framework induces no runtime in-
trusiveness for the monitoree’s execution. The monitoree cannot be preempted by
monitoring tasks.
Our CFI monitoring framework must be able to pause the monitoree to monitor
all generated CF traces. The system call monitoring solution induces indirect
delays in the monitoree’s execution, corresponding to instrumentation time for
each monitored system call of the monitoree. On the contrary, the HPC based
solution comes with no runtime intrusiveness after initialization; the solution can
run concurrently with the monitoree.

• no source code access: The monitoring framework does not require access to
application source code to generate metadata used at runtime to detect intrusions.
Our CFI monitoring framework requires source code access to check destination
addresses of executed branches; it leverages compile-time metadata of the monitoree
program.

• no kernel modification: The solution can fully run from the user space; the
implementation does not induce any modification of the time characteristics of
kernel routines.
The CFI monitoring solution can be fully implemented at user-level. For the ML-
assisted solutions which we introduce, HPC monitoring can run fully at user-level
but requires initialization at kernel level for security reason; obviously, system
call monitoring requires a kernel driver to instrument system call entry and exit
routines.

IV.4 Host Intrusion Detection Integration into an Embedded
Mixed-Criticality Environment

We present a general approach to integrate our HIDS solutions into an embedded
mixed-criticality system. Section IV.4.1 describes the main components of our system
architecture and clarifies how they address the specific environment constraints; in
particular with the local deployment of the HIDS on the monitored platform, the system
architecture must ensure the trustability of the HIDS. In Section IV.4.2, we discuss
how the integration of the HIDS impacts safety-criticality and certification constraints.
Finally, even though the problem of system recovery upon a detected intrusion is beyond
our scope of work, we provide a list of strategies which can be applied depending on the
context of execution in Section IV.4.3.

IV.4.1 System Design
Figure IV.2 provides an overview of the generic system architecture we propose to
integrate the HIDS. We simplify the figure to only represent the software components
involved in the monitoring process.

59

Figure IV.2: Generic system architecture supporting host intrusion detection system

Implementation Constraints

Our goal is to monitor the execution of the monitoree at system runtime: the HIDS
monitor must be deployed locally, on the system running the monitoree program. Conse-
quently, the system architecture must ensure that potential adversaries, – especially ones
controlling the monitored program – are not able to manipulate monitoring functions. To
this end, our approach leverages resources separation to assure freedom from interference
and independence between the HIDS monitor and other user-level tasks, which may be
exposed to attacks.

Regarding the monitoree, since we have as system integrator limited access to the
source code and limited rights to modify the binary, our HIDS must cope with limited
instrumentation capability. We privilege running HIDS monitoring from user-level to
avoid modifications in the OS kernel, which would require to reiterate the certification
process of the kernel (details in Section IV.4.2). Due to the embedded characteristics of
the deployment environment, we target a light-weight HIDS implementation to fit the
limited performance capability. We intend to use generic software and hardware features
to facilitate the portability of our solution.

Monitoree

As introduced in our system asset definition (Section II.2.3), the monitoree is a business
logic program running in user-space, potentially provided by an external agent. As
system integrator, we receive the monitoree as a black-box program. In that respect, the

60
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

HIDS trace collection must be transparent, so that it does not require modification of
the monitored program. Our approach is to observe the monitoree’s execution through
its system interface (e.g. hardware usage, type of executed instructions) at runtime to
detect malicious execution behaviors.

An exhaustive HIDS model to characterize the monitoree’s execution is crucial to
build an accurate intrusion detection system; in theory (Section IV.2.1), the closer the
HIDS model is to the monitoree’s golden model, the better the intrusion detection
quality becomes. The precision of the HIDS model depends on the type of data to be
traced for monitoring and the type of analysis to distinguish normal from anomalous
execution paths. On one hand for statistical and AI based analyses, the HIDS requires a
representative set of traces to build the monitoree’s model of execution under normal
conditions. On the other hand, for specification-based analyses – in particular with static
analysis – we need information on the program characteristics: e.g. set of authorized CF
transitions for CFI monitoring. In such case, as we have limited access to the monitoree
software, we could provide the application provider with the static analysis program, so
that s.he returns the corresponding output metadata necessary for our HIDS analysis.

With specification-based analyses, it can be possible to evaluate the coverage of the
HIDS model analytically. Though in many cases, especially for statistical and AI based
methods, the evaluation of the HIDS model requires traces of the monitoree’s execution
under threat. As it is not trivial to implement representative program intrusions,
the Common Vulnerability and Exposure database [37] maintained by the MITRE
organization can help as a reference baseline.

Separation Kernel

MILS [152] architecture protects the interfaces between the different system layers:
user-level programs, kernel services, and hardware components. The MILS Separation
Kernel (SK) ensures the strong separation of the user-level software in confined enclaves
and provides secure communication channels. It contains RTOS services and drivers at
kernel level. As system integrator and OS provider, we assume that the SK domain is
trustworthy; i.e. kernel level services run as expected.

The SK includes the HIDS monitor running in user-space. Because we deploy the
intrusion detection solution locally on the monitored target, the HIDS monitor could
be vulnerable to adversaries with access to the platform (e.g. physical hardware, some
user-level applications): for the intrusion detection to be trustworthy, the attacker should
not be able to access the HIDS. In this architecture, the HIDS monitor’s execution
properties – i.e. such as confidentiality, integrity, and availability – are protected by
MILS architecture. Hence, we safely and securely integrate the HIDS monitor locally on
the monitored system using MILS architecture and SK inherent properties, to guarantee
freedom from interference and independence between user-level components.

Host Intrusion Detection System

In the first building phase, the HIDS defines a reference model of legitimate execution for
the monitoree, which depends on the analysis type: e.g. static code analysis, statistical

61

based approach. In the second runtime phase, it continuously compares upcoming
traces of the monitoree’s execution with the reference to identify benign from malicious
execution paths. Hence, we decompose the HIDS monitor as detailed on Figure IV.2,
between:

• Trace collection: a user-level application, possibly coupled with a kernel driver
for kernel-restricted operations.

• Trace analysis: a user-level application.

Both services run privilege operations: adversarial manipulations, like trace falsification
and reference model alteration, on one of these HIDS functions must be prohibited by
our system architecture. Thus, we integrate the HIDS to MILS SK.

As system integrator, we base our trace collection function on standard hardware
features available on common COTS platforms. Recent research has demonstrated the
practicability of hardware vulnerabilities like Spectre [87] and Meltdown [100] as well as
cache based side-channels. Therefore, we intend to separate the monitor and monitoree
enclaves on the hardware. On one hand, the analysis only runs on a separate set of CPU
cores; on the other hand, some tracing strategies require to run on the same core like for
system call tracing.

We split trace collection in 3 steps:

1 generating traces: the HIDS generates the traces from the different selected
sources.

2 storing traces: the HIDS stores generated traces in a dedicated memory area.

3 providing traces: the HIDS provides stored traces to the analysis application
upon request.

For HIDS security, the trace collector must have the exclusive access to the tracing
hardware, so that no adversary controlling the monitoree can manipulate its execution.
For example, HPC must be unwritable from user-space to prevent corruption attempts
initiated by an attacker running in user space; HPC configuration should be allowed
from kernel-space (in a specific HIDS driver).

The trace analyzer takes the traces from the trace collector and analyzes them using
the reference model defined in a building phase prior to the actual deployment. The
analyzer can apply recovering strategies, depending on the context of execution, for
instance restarting the monitoree application. First, we can decorrelate this data analysis
task from tracing time, using trace collector’s internal storage. Second, depending on
the implementation complexity, it can require the use of a dedicated AI framework. For
these two reasons and to prevent any safety impact, the trace analyzer runs in user space
inside an isolated partition.

Thus, the interaction between the HIDS monitor and the monitoree is unidirectional,
from the HIDS to the monitoree application through the kernel which is secure by
design. An attacker controlling the monitoree has no direct access to the HIDS. Finally
to limit interferences, the trace analyzer runs on reserved hardware (i.e. dedicated

62
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

memory region and set of CPU cores). Similarly, we implement the trace collector on
separate hardware when this is possible. This architecture also limits the impact on the
monitoree’s execution – i.e. with a low effect on the scheduling scheme determining the
monitoree’s execution – as long as the system resources are not needed by the original
schedule.

IV.4.2 Safety-Aware Integration of the Host Intrusion Detection System

Impact on System Certification for Integrating the Host Intrusion Detection System

Because of its transparency (i.e. it does not instrument the monitored program), our
HIDS does not directly affect the certification process of the monitored program. Though,
we must reevaluate our system certification when we integrate new kernel add-ons. This
induces the following system certification actions:

• re-iterate kernel time analysis: This corresponds to two steps which we typi-
cally must perform manually:

1 kernel worst-case path analysis: Because of the new-delays introduced
by the kernel modifications, we must analyze the impact on the maximum
time spent in the kernel.

2 estimation of the new WCET in the kernel: This corresponds to com-
puting all WCET, for kernel functions and the worst-case path in the kernel.
If the new WCET is too large for the given deployment use-case, we may
have to adapt the monitoring add-on implementation to reduce its impact on
system time properties.

• update system tests: The kernel source code must be fully covered by the
test suite. Hence, we must introduce additional unitary and integration tests to
cover kernel-level HIDS software. We then must run all tests; this second step
can be automated, while the tests generally require – at least partial – manual
implementation.

• update traceability process: The whole source code must be covered by the
specification. Thus, we need to create formal requirements and link them with the
source code and additional tests; this can be automated.

In addition, if the intrusion detection information is involved in further runtime
processes which require certification, the HIDS component itself must be certified, so that
it is able to detect threats consistently. For example, the HIDS provides the detection
result within a maximum time limit and the result is justified from the monitored traces
and associated with a defined accuracy level. The certification process of a system
component follows the V cycle scheme, which describes the development lifecycle. For
example, the avionics standard DO178-C [135] introduces the different aspects involved,
which can be used in other safety-related standards:

63

• specification: The specification defines the functional requirements to then de-
scribes the component’s design. We can perform this stage with semi or fully
formal methods.

• requirements-based testing: The unitary and integration tests must cover the
requirements of the component. It is a manual process.

• coverage analysis: This is the evaluation of the structural coverage of system
requirements by the component based on the tests; every line of source code must
be covered by the tests. This process can be automated.

• timing analysis: Using supporting tools, this stage corresponds to WCET analysis
of the different component’s functions, including stack analysis based on WC call
tree evaluation.

• partition analysis: The partition covers an application and its corresponding
system resources. Partition analysis is a manual process, which represents an
inherent part of the MCS design. It assures the independence between applications;
i.e. the absence of interference in the system is required to guarantee the coexistence
of multiple independent criticality levels at runtime.

• documentation: The documentation of all the processes above to support the
traceability of the component’s development, from the specification to the deploy-
ment.

Schedulability Analysis Integrating Host Intrusion Detection System

We need to update the schedulability analysis of the system to include HIDS monitoring.
For tracing as well as for analyzing the monitoree at runtime, the implementation
constraints vary across the range of possible approaches, inducing context-dependent
impact on system schedulability. For example, the HIDS can require the ability to stop
the monitoree to analyze on the fly heavy flow of generated traces, which implies an
impact on the timing properties of the system.

Generally, if the HIDS monitor executes on the same CPU core than the monitoree, the
system integrator must reiterate the schedulability analysis for the system including HIDS
tasks involved. In this case, monitoring tasks’ priority must be higher than the monitoree
task’s priority, but lower than other tasks with higher priority compared to the monitoree.
When this is possible, we tend to separate the execution of monitoring and monitored
applications, executing them on dedicated CPU cores. In such configuration, aside from
the trace collection overhead induced in the monitoree, no further overhead is induced
on the application cores: schedulability properties are preserved. In Sections IV.5.2 and
IV.5.3, we discuss how to evaluate the HIDS integration impact on system performance
and safety properties.

64
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

IV.4.3 System Recovery Strategies
As previously explained, we do not address extensively the reaction of the system upon
detection of an anomaly in the monitoree’s execution; the decision is indeed highly
context-dependent and use-case driven. It depends on two main aspects:

• the criticality level of the monitored application, and more broadly of the criticality
level of system.

• the reliability of the detection: from null to high false-positive rate.

In our context of work, we consider the following recovery strategies to apply for attack
mitigation:

• Signal/log: whenever there is high uncertainty or the risk is too important, the
HIDS notifies the system administrator of a potential threat.

• Suspend/kill/reboot: the HIDS interrupt the application running the intrusion.

• Isolate: the HIDS limits the interactions with other system components to avoid
any attack propagation.

• Migrate: this is usually not possible in a critical environment, where every
user-level application is configured statically.

Several industrial standards specify the measures to apply in the context of critical
applications, notably by introducing a health-monitoring component:

• ARINC-653 (Avionics Application Standard Software Interface) soft-
ware specification: "In general, Health Monitor (HM) functions are responsible
for responding to and reporting hardware, application, and O/S software errors
and failures. [...] The HM helps to isolate errors and to prevent failures from
propagating." [138].
configuratiocalculation,service call

• AUTOSAR (AUTomotive Open System ARchitecture) specification:
"The Health Monitoring is intended to supervise the execution of supervised
entities with respect to timing constraints (alive and deadline supervision) and
with respect to the required sequence of execution (logical supervision) and with
respect to their health (health supervision)" [17]. It involves among others support
for hardware watchdogs and error handling mechanisms.

IV.5 Host Intrusion Detection Framework Evaluation
We propose 3 main directions with a set of corresponding metrics to evaluate our HIDS
framework for deployment in embedded MCS:

65

• intrusion detection efficiency: the ability for the solution to early and accu-
rately detect intrusions.

• safety requirements guarantee: the conditions for the solution to guarantee
system safety requirements at runtime.

• performance impact: the set of resources (hardware devices, memory storage,
computing power, ...) required to run the intrusion detection solution, as well as
the impact of monitoring on the execution of the monitored software’s runtime
execution.

IV.5.1 Intrusion Detection Efficiency Evaluation
Intrusion Detection Efficiency

An efficient HIDS solution is able to detect runtime intrusions rapidly and accurately.
First, to be relevant, an HIDS must be reliable enough; this means it should minimize
false alerts, while maximizing the detection of actual threats. We propose to evaluate the
solution using the confusion matrix (Table II.1) introduced in Section II.1.3, to analyze
detection errors (false-positives and false-negatives).

Ability to Detect Zero-Day Attacks

Our approach focuses on anomaly-based HIDS solutions in opposition to signature-based
approaches (Chapter III): we intend to detect any anomalous execution of the monitored
program at runtime, i.e. including unknown attacks. Our goal is then to build for the
monitoree a model of normal execution to detect anomalous paths of execution.

We need suitable metrics to define the granularity of the solution for threat detection.
We base the evaluation on relevant anomalous scenarios of execution representing actual
intrusions. On one hand, we propose to simulate real threat scenarios, to evaluate
how efficiently the HIDS detects them. On the other hand, we use anomalous program
executions, derived from the normal program execution, to assess the HIDS detection
granularity.

Security Monitoring Coverage

The quality of the HIDS framework depends also on its coverage of the monitoree’s CF
execution at runtime. We define two main criteria to characterize the coverage of the
solution:

• the monitoring scope: the range of operations covered by the solution; i.e. all
CF transitions or only a subset of operations, which are possibly more sensitive to
threats (e.g. system calls, return instructions).

• the monitoring continuity: A full protection covers the whole execution of
the monitored program, while a discontinuous solution selects a partial set of
system events to monitor. A discontinuous HIDS service could handle intermittent

66
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

monitoring checks, periodically or at strategic times in the execution when attacks
are more likely to occur.

We illustrate in Figure IV.3 the main metrics we introduce to evaluate HIDS coverage
in respect of time windows of opportunity for an attack:

• Maximum detection time (wdetect): the maximum duration from the moment
the attack starts, until it is detected by the HIDS, which generates an alert. We
calculate it with the sampling period for the HIDS to generate and collect the
traces and the time for the HIDS to process the set of traces:

• Maximum uncovered execution time (wuncov): the maximum time duration
when HIDS monitoring is inactive while the monitoree is executing. A successful
intrusion on the monitoree fitting this time window cannot be detected by the
HIDS.

• Total uncovered execution time of the monitoree task τA (C
(uncov)
A): the

total time of execution of the monitoree when HIDS monitoring is inactive. This
indicator corresponds to the maximum time a knowledgeable adversary can exploit
to dissimulate an attack in discontinuous time windows when the HIDS is inactive
during the execution of the monitored application.

Figure IV.3: Sequence diagram of the execution of an application under HIDS monitoring

67

IV.5.2 Performance Impact Evaluation for Monitoring
Impact on System Requirements

As discussed in Section IV.4.1, we isolate the HIDS monitor from the monitoree on the
platform to limit possible interference between both programs, which could be exploited
by an adversary. At software level, this system configuration requires a dedicated
user-level partition for the HIDS monitor. At hardware level, this separation induces
additional infrastructure costs:

• a dedicated set of CPU cores for monitoring to facilitate HIDS integration, notably
for reducing the impact on system schedulability.

• a dedicated memory region for the new HIDS monitor user-level partition.

• optionally, an exclusive access to the hardware possibly needed for trace collection
or trace analysis.

Finally, we can expect an overhead in the system binary size for monitoring, which
corresponds to:

• the trace collection executable (HIDS trace collector partition)

• the trace analysis executable (HIDS trace analyzer partition)

• the static reference model used by the HIDS analyzer

Performance Overheads for Monitoring

Our main metric to evaluate the performance overhead is the runtime slowdown of the
monitoree’s execution under monitoring. This slowdown does not include the trace
analysis execution, since the HIDS trace analyzer and the monitoree can run in parallel
(i.e. they do not share CPU resources and have no direct dependencies). Hence, the
slowdown is null if trace collection can run without interrupting the monitored program,
which can be possible for hardware-based tracing solutions.

Let define an application A with the WCET CA and C
(monitoring)
A the WCET when

monitoring is enabled and running. We define the application slowdown as the ratio
r

(monitoring)
A :

r
(monitoring)
A = C

(monitoring)
A

CA

− 1 (IV.7)

If the HIDS solution requires kernel extensions for trace collection, it can induce
additional slowdowns affecting some kernel functionalities; these need to be evaluated, to
understand the impact for other user-level applications running aside from the monitoree
and the HIDS monitor in user-space.

We also evaluate our HIDS framework in respect of memory costs for runtime trace
storage. The trace analyzer must consume traces at least as fast as the trace collector
produces them. We must assure the synchronization between both producer and con-
sumers to avoid loosing traces. However, if the trace analyzer consumes the traces too

68
Chapter IV. A Methodology for Runtime Anomaly Detection in Embedded

Mixed-Criticality Systems

slowly compared to the trace generation rate, we can apply different strategies depending
on the context:

• stopping the monitored program to pause trace collection, while the trace analyzer
is processing generated traces. In this case, the monitored program slowdown must
include this additional parameter in the computation.

• configuring sufficient adequate storage for storing all traces at runtime (i.e. the
HIDS does not interrupt the monitoree).

• deciding to drop some of the traces to allow a partial coverage of the monitored
execution.

IV.5.3 Safety Requirement Guarantee Evaluation

(a) System schedule without monitoring, with τ1 = (C1 = 1, T1 = 3, P1), τ2 = (C2 = 2, T2 = 4, P2 < P1)

(b) System schedule with monitoring, with τ1 = (C1 = 1, T1 = 3, P1), τ2 = (C2 = 3, T2 = 5, P2 < P1)

Figure IV.4: Example of system schedules, with and without monitoring

To perform HIDS monitoring into an embedded MCS, we must guarantee that real-time
constraints are maintained while we integrate the solution in the system. Hence, we
propose to follow an analytical approach to demonstrate system schedulability.

To limit the impact of the execution of the HIDS on the monitoree, we try to run
the HIDS from user-space when no inherent constraint opposes such approach: the
certification of the OS kernel – corresponding to the highest certification level in the
system – requires the WCET computations to include any add-on in the kernel. For the
same reason, we intend to isolate the HIDS on the hardware platform; in particular to
avoid adding new monitoring tasks in the system schedule involving the monitoree.

However, the solution may have a timing impact on the monitoree. Figures IV.4
show an example of such issue using two tasks with implicit deadlines running with a
preemptive and fixed-priority scheduler policy. Figure IV.4a corresponds to the system
without monitoring, while Figure IV.4b shows the system when the task τ2 runs under

69

monitoring. In the second monitoring case, the execution time of the monitored task
increases due to the time overhead for monitoring: r

(monitoring)
2 = 1.5. With the initial

period T2 = 4, the task τ2 would miss the first deadline at time t = 4. Therefore in such
case, we must adapt the schedule to assure system schedulability; e.g. we increase the
period T2 in Figure IV.4b to maintain system schedulability with monitoring.

V

Machine-Learning Based Anomaly Detection
Solutions for Embedded Mixed-Criticality
Systems

This chapter introduces anomaly based HIDS methods for embedded MCS, using system
events which are common trace sources for intrusion detection in GPC (as discussed in
Section III.2). Specifically, we aim at evaluating the use of ML for the trace analysis in
our constrained environment. Our literature research highlighted that the majority of ML
based HIDS solutions do not provide an evaluation of the impact on system performance
for deployment of the framework. For these solutions, deployment constraints represent
a secondary concern, compared to the accuracy of the ML engine to perform its assigned
function (e.g. detection).

However, integrating a ML engine into an embedded MCS becomes challenging, when
considering the deployment impact. On one hand, the more complex the ML model –
i.e. increasing the amount of necessary computations – the better the precision of the
model; i.e. the better the detection accuracy for an HIDS model. On the other hand,
the more complex the ML model, the higher the deployment impact of the ML engine:
first due to the limited hardware resources of the deployment platform, second because
the latency to execute the ML engine has a direct impact on intrusion detection latency.

Even though several proprietary or open-source solutions, such as Tensorflow-Lite [119]
in the past decade, provide a ML framework for embedded systems, we are not aware of
any previous work, which studies the use of such adapted frameworks for deploying ML
based intrusion detection into embedded MCS. Hence, in this chapter, we propose to
address the trade-off between ML model complexity and deployment impact. For this,
we introduce two safety-aware anomaly-based HIDS prototypes using ML to monitor an
application running in an embedded MCS:

• A HIDS based on system call and HPC tracing. This is a novel hybrid
approach based on HPC monitoring to contextualize system call trace collection.
The framework is composed of two stages:

– online system call instrumentation and HPC tracing.
– offline trace analysis of the HIDS with ML.

71

72
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

The solution leverages safety-aware system call instrumentation for trace collection
developed in Section V.1. We describe the framework in Section V.2 and evaluate
the detection accuracy of the offline ML based trace analysis, using a set of test
applications.

• A transparent online HIDS based on HPC tracing. This framework ana-
lyzes HPC traces periodically at runtime (Section V.3). We evaluate the impact
for running ML based trace analysis on the embedded MCS platform. We trace
HPC with no monitoree intrusiveness (i.e. on a different set of CPU cores than
the monitoree). Contrary to the system call based approach, which only covers
monitoree programs executing system calls, this solution addresses any user-level
application, including system calls or not.

Section V.4 summarizes the benefits and pitfalls for the two HIDS approaches. In
particular, both monitoring solutions consider the monitoree as a black-box: they do not
require program instrumentation.

V.1 System Calls Instrumentation for Anomaly Detection in
Embedded Mixed-Criticality Systems

System call relative information such as occurrences, type, parameters, and return
values are well established metrics to reveal intrusions in a system software. According
to Section III.2.3, this type of defense offers good detection precision for both known
and zero-day attacks; recent research focuses on HIDS deployment into GPC. Yet, the
integration of such runtime monitoring solution in embedded MCS has not been discussed.
Because of the cohabitation of potentially vulnerable non-critical software with critical
software, securing such systems is a non trivial but essential issue. Adapting HIDS in
this context is very challenging. One one hand, because it is deployed at system level,
HIDS can potentially compromise system execution; e.g. a real-time application missing
its deadline. On the other hand, HIDS can degrade time performance of non critical
applications. Thus, we need to ensure that the add-on does not alter system execution
and constraints.

To implement system call monitoring, we have to integrate system call tracing in the
mixed-criticality OS kernel. The new feature must be fast and predictable; its impact on
real-time system execution needs to be determined. In this section, we provide a study
of predictable system call instrumentation framework to be applied for system call and
HPC based anomaly detection using ML in Section V.2. We propose an evaluation of the
feasibility of system call instrumentation for deployment in a MCS. After introducing our
approach to evaluate the impact, we apply it in a concrete example, using the real-time
hypervisor PikeOS [128].

Section V.1.1 introduces the methodology. Section V.1.3 describes the experiment,
while Section V.1.4 presents the results. We discuss in Section V.1.5 the security impact
of intrusion detection as well as further implementation of the detection, We also mention

73

other interesting data to detect intrusions as well as their potential impact on system’s
real-time constraints. Finally, Section V.1.6 summarizes our findings.

V.1.1 Methodology for System Call Monitoring in Mixed-Criticality Systems
We propose a methodology to evaluate the impact of intrusion detection based on system
call monitoring in a MCS with real-time constraints. System call monitoring causes an
additional delay in the kernel at system call handling, which induces two consequences:
an impact on the monitored application’s performance as well as an impact on system
security.

Impact on Performance

The trace analysis runs remotely on a separate hardware; we describe the implementation
in Section V.2). Consequently for this work, the performance impact corresponds to the
time overhead for trace collection.

Let τA be the monitored application, with the corresponding execution times CA and
C

(monitoring)
A respectively without and with monitoring. Following Equation (IV.7), we

define the time overhead as: r
(monitoring)
A = C

(monitoring)
A

CA
− 1.

A MCS is composed of several software corresponding to diverse criticality levels.
Depending on the characteristics of the monitored application, the approach to evaluate
the overhead r

(monitoring)
A (i.e. to compute the execution time of τA) varies; we distinguish

two main types of applications:

• critical application (software executing under deterministic constraints, e.g.
Avionics application): to use system call tracing in a critical application, the
additional overhead must be added to the WCET of this application. We can
calculate the maximal time overhead for monitoring in system call tracing with
WCET analysis; the precise tracing overhead can be estimated for each system call
in the kernel. Thus, we can compute the worst case overhead, corresponding to
the worst system calls combination for the analyzed software.

• non-critical application (software with no deadlines, e.g. Linux OS): WCET
analysis does not make much sense for non-critical application such as Linux OS:
it would either be too pessimistic or non doable. We instead aim to analyze an
average time overhead. However, because of the large diversity of software, it is
not possible to get a representative single average value.

As other infrastructure costs, the system call instrumentation framework requires an
additional user-level software partition to collect generated traces. Hence, following
the measures described in methodology (Section IV.5.2), we assign a dedicated CPU
core and reserved memory area for this additional partition to perform monitoring. We
also consider a binary size overhead to contain trace collection software (i.e. kernel
modification in system call handlers and additional user-level partition). As we only
consider OS-level software events, we do not need further specific hardware features for
tracing.

74
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Impact on System Security and Schedulability

In addition to the performance impact, the system call tracing time overhead located
in the kernel can potentially compromise the entire system, by breaking time isolation
between applications. An application raising a huge amount of system calls induces
indeed a non-negligible delay in the kernel. Depending on the kernel implementation, we
consider two scenarios:

1 - system call handling can be preempted by context switch.

2 - system call handling can not be preempted by context switch.

In the first case, even though the application induces a huge delay due to system call
tracing, it is stopped by the ticker interrupt, responsible for context switching; the system
call is possibly aborted. Thus, time isolation is respected.

In the second case, the monitored software can extend slightly its time window of
execution, at the expense of other applications: time isolation is not respected anymore.
An example of such issue consists in two applications running on the same single CPU core.
The first is a non-critical application, while the second is a hard real-time application
with firm deadlines. If the non-critical application issues huge amount of system calls,
there are high chances that system context switch ticker interrupt is raised during
system call handling. The kernel waits for the system call to return to the application
before switching context to the next application. Thus, we can assess the maximal time
overhead per context-switch to be the length of system call handling, including system
call tracing. As the system is designed for guaranteeing time isolation without tracing,
the time window of the non-critical application can be extended to a maximum value,
which we introduce as T

(max)
OH ∈ N∗. After a certain amount of context switches, the

critical application possibly misses its deadline. Thus, we need to define the overall time
overhead induced by system call instrumentation for typical applications, to be able to
evaluate how it could compromise the system schedulability.

V.1.2 Tracing Time Overhead Estimation
We propose to compute an average time overhead at runtime for a set of representative
non-critical applications, with the following approach. We define the total time overhead
c

(OH)
A ∈ N∗ of the application τA, so that c

(OH)
A = C

(monitoring)
A − CA. Considering

that τA executes a sequence of N system calls (N ∈ N∗), we deduce (V.1), where
{t

(OH)
i }i=1..N ∈ NN corresponds to the sequential execution time overheads for tracing

each of the N executed system calls.

c
(OH)
A =

N�

i=1
t
(OH)
i (V.1)

The quantity c
(OH)
A depends on the number of system calls and on their type. Thus,

we apply the following process to estimate the average time overhead for the set of tested
applications (represented by τA):

75

1 - For every tested application, we count the amount of system call traces (N).
Depending on the context of execution, the quantity N can vary for two different
executions.

2 - For a set of common system calls, we compute the time overhead caused by
tracing. We can expect a small variation of tracing time between different system
calls. The difference is caused by variations in the quantity of traced data caused by
the number of parameters and return value. We finally define (t(OH)

min , t(OH)
max) ∈ N2,

respectively the minimum and maximum time overhead values for tracing a single
system call.

3 - Following Definition V.1, we can estimate the total tracing time overhead c
(OH)
A ,

simplifying it as a function of the time overhead for tracing one system call
(V.2). In particular, ∀t ∈ N ∩ [t(OH)

min , t(OH)
max], C

(minOH)
A ≤ c

(OH)
A ≤ C

(maxOH)
A with

C
(minOH)
A = N ∗ t

(OH)
min and C

(maxOH)
A = N ∗ t(OH)

max .

4 - We can not precisely measure CA (the execution time of τA without tracing): the
program execution varies, depending on the context of execution and regardless
of system call tracing feature. Instead of CA, we can measure C

(monitoring)
A and

estimate minimum, average, and maximum values of c
(OH)
A .

Hence, we redefine the ratio r
(monitoring)
A (V.3); in the experiment (Section V.1.4),

we later evaluate r
(monitoring)
A (N, t, C

(monitoring)
A) (V.4) in function of:

– N : the count of traced system calls
– t: the estimate of the time overhead for tracing one system call
– C

(monitoring)
A : the total execution time of the monitored application.

We measure both N and C
(monitoring)
A for every monitored execution of the monitoree.

We compute minimum, average, and maximum values of t to infer r
(monitoring)
A .

∀t ∈ N ∩ [t(OH)
min , t(OH)

max], c
(OH)
A (t) = N ∗ t (V.2)

r
(monitoring)
A = C

(monitoring)
A − CA

CA

= C
(OH)
A

C
(monitoring)
A − C

(OH)
A

(V.3)

∀t ∈ N ∩ [t(OH)
min , t(OH)

max], r
(monitoring)
A (t) = N ∗ t

C
(monitoring)
A − N ∗ t

(V.4)

V.1.3 Experiment
System Design Overview

Figure V.1 details the system architecture, which is based on the generic solution
introduced in Section IV.4. We run the experiment on PikeOS [128] OS. The experimental
setup is composed as follows:

76
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Figure V.1: System architecture with system call monitoring

• system call trace store: For each system call raised, the system call tracing
driver stores in a per CPU core trace buffer, the two traces corresponding to the
entry and exit hooks inserted in every system call handler:

1 - system call entry hook: Once a system call is received, the entry hook
extracts the system call type and its parameters and writes the first trace
into the corresponding trace buffer.

2 - system call exit hook: Before returning from the handler, the exit hook
gets the return value and stores the second trace into the trace buffer.

• system call trace restore: The system call tracing driver provides the system
call traces stored in the buffer upon request.

At user-level, monitored programs (i.e. Monitoree application) are defined in the test
setup subsection below. In addition to the tracing kernel driver, the HIDS monitor is
composed of two main user applications:

77

• trace analyzer: it contains the analytical model to identify a trace as footprint
of an intrusion or as normal activity. We develop this part in later sections of this
chapter.

• trace collector: it collects traces by communicating with the system call tracing
driver. It formats and stores the traces in a protected memory area.

System Call Tracing within PikeOS

The system call tracing process goes through the following steps (see Figure V.1):

1 - The monitoree raises a system call.

2 - The OS kernel handles the system call. From events raised by hooks in the
handler, system call information are stored in the trace buffer of the initiating
CPU core.

3 - At some point, the trace collector requests traces to the system call tracing driver.
The driver reads the trace buffer and returns traces to the trace collector. Traces
are then formatted and stored waiting for request from the trace analyzer.

4 - The trace analyzer requests a trace to the trace collector.

5 - The trace is analyzed with the reference model (i.e. using a predefined ML
engine).

6 - In the case where an intrusion is detected by the engine, an alarm signal is raised
(e.g. an alarm message is printed on the console).

Groups of operations (1,2), (3), (4,5,6) can run in parallel. Operations inside the groups
are sequential.

The tracing feature induces an additional delay for system call handling in the kernel.
It corresponds to the entry and exit hooks inserted in system call handlers. The hook
consists mainly of a memory copy operation into the CPU trace buffer.

For the sake of clarity, we isolate the monitoree on a single dedicated CPU core (core
0). The trace collector runs on a distinct core (core 1).

Limitations of the Implementation

At this stage, the solution does not monitor hardware virtualized guest OS. Such appli-
cation indeed directly handles system calls, without any intervention of the hypervisor.
Critical instructions raise hypervisor calls and are trapped in the kernel. Our solution
could be adapted to support hardware-virtualized applications, by tracing these calls in
the hypervisor kernel.

78
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Test Setup

The experiment is conduced on NXP board QorIQ LS1043A. Time is measured with the
CNTVCT_EL0 CPU core counter. It corresponds to the virtual count for execution
level 0 (user mode) of the running core and is accessible from user applications. The
resolution of this counter is 40 ns. A timestamp is defined in the kernel for every trace
before it is stored in the trace buffer. In our tests, we measure the time for running an
application, by printing the counter value just before and after its execution. We get the
unitary time for system call tracing in the kernel using the same method.

To represent τA the monitoree, we selected diverse applications from native and POSIX
applications, as well as paravirtualized Linux. Native and POSIX servers are stimulated
with a Linux client running ping process. For every test, we run measurements only once
the system has booted. Native applications are C program binaries executing directly
on PikeOS, using specific libraries. Ping server is a ICMP echo server which returns
echo replies upon request. Shared memory client/server application corresponds to two
applications, depending on runtime mode. Both applications share a memory buffer
to exchange 32 text messages that are emitted by the server and read by the client,
using synchronization mechanisms. The POSIX application inetd is a server daemon,
which relies on a widely used TCP/IP stack called Lightweight-IP. The Linux software
corresponds to a paravirtualized commercial embedded Linux for PikeOS, called ElinOS
[53]. Our selection gathers well used processes and common performance benchmarks.
Table V.1 lists command lines for all Linux applications.

Table V.1: List of Linux applications and their applied command lines
Application Command line
unixbench unixbench
dd dd if=/dev/zero of=FILE count=CNT bs=BS
ps ps -ef
find find / > /dev/null 2&>1
netserver netserver -4 -L ADDRESS -D -d
netperf netperf -H NETSERVER
Pacman pacman
gzip gzip FILE
iperf iperf -s
ping ping ADDRESS -c 20

V.1.4 Experiment Results

Reliability of Measurements

Every test is reproduced five times. Average values of time and amount of collected
system calls traces are represented in Table V.2. To evaluate the variability of results,

79

the standard deviation is calculated and compared to the average value. Variability of
system call count measurements is high in two situations:

• for applications which raise few system calls; e.g. native ping server and empty
Linux OS.

• for short execution time; e.g. ps and dd Linux processes.

In this second category, time measurements are also less precise (approximately 7% of
fluctuation).

System Calls in Application Selection (τA)

Table V.2 shows that the amount of system calls varies from 23 system calls to more
than 200,000 for one second of application execution, excluding tracing time. The results
illustrate that native applications, even with networking, raise very few system calls,
compared to POSIX inetd daemon and Linux software.

Table V.2: Results for the test application setups
Application (τA) C

(monitoring)
A (s) N (calls/s) var (%)

Native
ping server 60.45 23.2 41.16
ping server (busy) 63.98 552.0 9.60
sh.mem. (client) 31.47 410.0 0.00

POSIX inetd (no requests) 30.08 10,508.0 2.75
inetd (ping requests) 30.06 11,598.2 0.39

Linux

empty 60.34 26.7 8.80
dd (64 MiB) 0.11 34,000.0 9.57
dd (128 MiB) 0.22 19,398.1 7.52
ps -ef 0.01 225,876.8 12.10
find / 0.31 115,113.0 5.86
gzip (128 MiB) 3.48 382.0 2.70
ping (20 packets) 19.03 375.5 5.58
netserver 10.01 6,120.9 0.74
netperf 10.02 6,289.6 0.94
iperf (server) 10.02 6,196.5 0.87
iperf (client) 10.04 6,170.6 1.11
pacman 20.00 4,129.5 2.95
pacman 30.00 4,687.3 0.87
unixbench 1,677.24 4,799.5 0.14

80
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Unitary System Call Tracing Overhead

Our goal is to define the interval [t(OH)
min , t(OH)

max], the interval of possible values for the
unitary tracing time overhead t. The granularity of the hardware counter does not allow
high precision; with the 40 ns threshold, we count less than 20 ticks per unitary tracing
time overhead. Nevertheless, because of the high variability in collected values (around
20%), we can still define a range of the time overhead for a set of common system calls.
We measure tracing overhead for the system calls described in Table V.3. They indeed
appear as good candidates for intrusion detection as they have a direct impact on system
execution; i.e. scheduling of applications, memory access, inter-thread communication.

• Memory mapping (MMAP): maps a number of pages from one application’s address
space to another.

• Inter-process communication (IPC): sends a message to a thread and receives an
IPC message from another.

• Thread Yield: forces the running thread to yield the CPU.

• Thread Scheduling: exchanges thread priority and execution time window.

• Sleep: suspends the calling thread for an amount of time.

For every system call, we run 1000 measurements. For a single system call, tracing
time can take a wide range of values between 240 ns and 760 ns: minimal, average, and
maximal values are respectively: t

(OH)
min = 240 ns, t(OH)

av = 376 ns, and t(OH)
max = 760 ns.

Table V.3: Tracing overhead measurements for a selection of system calls
System call t

(OH)
min (ns) t(OH)

av (ns) t(OH)
max (ns) var (%)

MMAP 240 391 760 20
IPC 240 399 760 19
Thread Yield 240 343 720 24
Thread Sched. 240 362 640 19
Sleep 240 382 760 23

V.1.5 Discussions
Interpretation of Results

Following the approach described in Section V.1.2, we estimate the tracing time overhead
in Table V.4, which shows the minimal, average, and maximal computed values of
r

(monitoring)
A .
r

(monitoring)
A values can vary significantly in function of the application from 10−4% to

17%. Thus, we can not easily define a factor to predict time overhead in function of

81

Table V.4: Time overhead for tested applications

Application (τA) r
(monitoring)
A (%)

min average max

Native ping server (busy) 0.01 0.02 0.04
sh.mem. (client) 0.01 0.02 0.03

POSIX inetd (ping requests) 0.28 0.44 0.88

Linux

empty < 0.01 < 0.01 < 0.01
dd (128 MiB) 0.47 0.73 1.47
ps -ef 5.42 8.49 17.20
find / 0.36 0.57 1.15
gzip (128 MiB) < 0.01 0.01 0.29
ping (20 packets) < 0.01 0.01 0.29
netperf 0.15 0.24 0.48
iperf (server) 0.15 0.23 0.47
pacman 0.11 0.18 0.36
unixbench 0.12 0.18 0.37

simple parameters such as time of execution and amount of static code instructions. The
time overhead depends on the type of system calls and context of execution (especially
for Linux virtual machines).

Because the amount of system calls for native applications is very low, the time
overhead is negligible. More complex applications, e.g. Linux and POSIX programs,
present much higher time overhead. ps Linux process spends particularly the longest
time for tracing system calls (5% ≤ C

(monitoring)
A ≤ 17%). The majority of the selected

applications correspond to a ratio r
(monitoring)
A in the order of 10−3, which represents a

tracing time overhead of 60 ms for one minute of program execution time. The overhead
affects application time performance, but remains reasonable in the majority of cases.

Comparison of Tracing Impact with Previous Work

Some previous work [94] implements a HIDS for monitoring a Linux virtual machine
running on a type II hypervisor called User-Mode Linux (UML) Monitor. The authors
compute the total time overhead of system call monitoring for three well used Linux
processes: ps, find, and ls. The overhead corresponds to the whole implementation,
system call tracing and detection. Their results point already a wide diversity of
time overhead, from 3% with ps -ef to 77% for find / > /dev/null 2&>1. Our
implementation introduce a comparatively low overhead: average values are
8% in the first case and less than 1% for the second operation.

Another approach [105] analyzes the occurrences of system calls in applications. From
the high throughput of system calls processed by their solution, the authors deduce
a visible but negligible impact at runtime: they argue that their HIDS can process

82
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Table V.5: Influence of the context switch period on tracing overhead
Context Switch Rate Call/period (s−1) C

(OH)
A (for C

(monitoring)
A = 1s)

100 µs 2.26E-04 172 ms
100 ns 2.26E-00 8 µs

from 12000 to 22000 system calls per seconds when common operating system’s services
usually run around 2000 system calls per second (six to ten times lower). This argument
seems questionable for modern virtual machines, in light of our results; in our test, many
of the applications raise more than 4000 system calls per second (Pacman, dd, netserver,
etc.).

Security Impact

As highlighted in Section V.1.1, in the case where the kernel implementation can not
preempt system call handling, time isolation is compromised in the system. In the
worst-case situation, the system call handling starts just before context switch: i.e. the
context switch can be delayed by a maximum duration corresponding to the execution of
the longest system call handling. Thus, according to our measurements, an application
can extend its time window to maximum T

(max)
OH = t(OH)

max = 760 ns between two context
switches.

The risk of system call tracing impact on system security increases by reducing the
context switch period. The shorter the time period for an application running system calls
is, the more probable a context switch to be delayed by system call tracing is. Table V.5
shows an example of worst case execution, where every context switch is delayed by a
system call. The system runs two applications, one with real-time constraints and a
non-critical program raising continuously system calls. This second software corresponds
to a Linux thread repeating the command ps -ef in an infinite loop. In function of
the context switch rate, the table shows average amount of system calls raised by the
monitored application between two context switches and the final tracing delay for
1 s of non-critical application cumulated execution time. This vulnerability could be
exploited by an attacker running exclusively system calls from a non-critical program to
compromise the availability of a critical program.

PikeOS kernel is non-preemptive. Thus, context switch can not directly preempt
system call handling in the kernel. Nevertheless, to control time spent in the kernel, it
includes preemption points, notably for long operations and before returning to user-
space. Some long system call handlers, such as creating or destroying a task (above 10 µs
in average), can include preemption points; though most of them do not, because of their
speed (generally less than 1 µs). Hence, the tracing impact described in Section V.1.5
also applies to PikeOS real-time hypervisor.

83

Considerations for the Detection Engine Implementation

Intrusions in MCS most likely target non-critical programs: unlike closed critical appli-
cations, they usually contain vulnerabilities. The attacker aims either to steal data from
the system or to disturb its execution. In both cases, she eventually has to interact with
the system (OS kernel, other applications) from the non-critical software.

Thus, our strategy consists in monitoring all applications using a single detector.
The detector would analyze system call generic information (parameters, type, etc.),
correlated to the thread ’s criticality level and its execution context: e.g. the running
CPU core, and interactions with other applications.

V.1.6 Conclusion
We evaluated the impact of system call instrumentation for deploying intrusion detection
in embedded MCS, through a concrete implementation based on PikeOS hypervisor.
The implementation shows a reasonable time overhead for the majority of applications.
However, because of new delays induced for tracing in the OS kernel, time isolation
between applications is not guaranteed anymore.

V.2 Offline Safety-Aware Hybrid Anomaly Detection Service for
Embedded Mixed-Criticality Systems

In this section, we introduce an offline anomaly-based HIDS – or anomaly detection
system (ADS) – which is based on the safety-aware system call tracing infrastructure
developed in Section V.1. The goal is for the ADS to cover both hardware level and
OS level footprints of the monitoree’s execution: to our knowledge, this is the first
framework to contextualize the system call representation with HPC values.
We analyze the performance impact for adding HPC data to system call traces and
evaluate the anomaly detection accuracy on 3 use-cases in different trace configurations
(with and without HPC values).

Section V.2.1 describes the monitoring infrastructure, while Section V.2.2 introduces
the trace analyzer solution. Section V.2.3 defines the experimental setup, for us to
perform the evaluation of the system in regards to performance impact in Section V.2.4
and in respect of security efficiency in Section V.2.5.

V.2.1 Hardware and Software Based Monitoring Infrastructure
As developed in Chapter IV, our goal is to represent the abstract states of the execution
of the monitoree by actual traces of system events at runtime. Referring to the literature
review in Chapter III, system call and HPC are two well-known alternative sources of
system events for intrusion detection. Yet to our knowledge, no previous work proposed
to couple both sources of information; the advantage of monitoring these two types of
events is to extend the coverage of the execution monitored by the HIDS: i.e. on system
hardware (cache activity, type of executed instructions, etc.), as well as at RTOS software

84
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Figure V.2: System call and hardware counters based offline HIDS architecture

level with privilege operations requests. Hence, we build a hybrid HIDS, monitoring
both the OS interface through system calls and the hardware usage with HPC.

We propose to trace a program execution at each system call: a state in the execu-
tion graph corresponds to a trace composed of the system call sctype and (c1, ..., cn, t),
respectively the n traced HPC and time values counted since previous system call. We
assimilate traces as vectors of shape (sctype, c1, c2..., cn, t).

System Architecture with the Monitoring Infrastructure

Figure V.2 provides an overview of our system architecture, which follows the main
principles developed in Section IV.4. More specifically, we base the HPC and system call
monitoring framework on the system call instrumentation based HIDS described with
Figure V.1 (Section V.1.3). In addition, we integrate to this initial framework a new
feature to read and store HPC values from the system call tracing kernel driver on the
monitored core, when a system call is trapped in the kernel. For this study, the detector
application runs offline, on a remote machine.

85

Hardware Performance Counters Selection

To model normal and anomalous execution, we need to select relevant HPC events, which
provide valuable information regarding security. We apply an application profiling based
approach to identify anomalies in the execution of the monitored application. For this,
our objective is to select the best counter events presenting a low variability for different
executions of the same application and high variability between executions of different
applications.

We apply the following filtering process, later detailed in Section A, to select relevant
HPC candidates:

1 - We implement a normal test application and a set of programs deviating from
this application. We collect traces offline for each test case and for every traceable
HPC event on the target platform. This operation is repeated to estimate standard
deviation and mean values of the events.

2 - We calculate the standard deviation of the mean values over all test cases for
each HPC event. These information allow an initial filtering of irrelevant events,
which show very close patterns for both normal and anomalous programs, or are
too unstable. We also remove events that provide redundant information.

3 - From the remaining selection, depending on hardware constraints for tracing, we
manually choose the HPC events to provide the most meaningful information on
the hardware state.

V.2.2 System Events Traces Analysis for Anomaly Detection

Anomaly Detection Framework Overview

The trace analyzer, or Anomaly Detection System (ADS), compares a reference model
of normal execution with the actual execution of the program at runtime. It defines a
representative white list of benign execution paths for a traced program, in order to
detect anomalous deviations from the baseline. From a monitored program execution
trace sequence given as input, it returns a Boolean identifying the sequence either as
benign or anomalous. Figure V.3 describes the ADS architecture. It is composed of
three main blocks:

• Trace formatter: System call IDs are translated to an understandable represen-
tation for the machine.

• Trace predictor: System call IDS, together with time and HPC values, feed the
trace predictor to compute the prediction of the next trace.

• Trace comparator: The comparator evaluates predicted and actual trace se-
quences to finally identify the presence of anomalies in the monitored execution.

86
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Figure V.3: Anomaly detection system engine

Trace Formatter

System call type sctype variable can take a limited set of V values. At runtime when a
trace contains a system call unknown from the reference model, the ADS can already
raise an anomaly without further analysis. In the case of identified system call, the
formatter uses one-hot encoding method to convert the one-dimension variable into a
vector of dimension vecsc in {(1, 0...0), (0, 1, 0...0), ..., (0...0, 1)}.

We count HPC events between two consecutive system calls. In the next step, the
predictor manipulates values in the interval [0, 1]; the formatter normalizes HPC and
time values in function of maximum and minimum values of each variable in the reference
model trace. Writing xnorm the normalization operation, the transformed trace finally
fits the following format: (vecsc, cnorm

1 , cnorm
2 , ..., cnorm

n , tnorm).

Trace Predictor

We assimilate the traces as words in a language, where sentences are sequences of a
program execution. The execution time and execution order properties in the trace
sequences motivate the use of Natural Language Processing (NLP) techniques for pre-
dicting a future trace from a preceding sequence: on Figure V.3, the predictor needs p
traces to predict the next trace. Thus, we apply a subclass of recurrent neural networks
called Long Short Term Memory (LSTM), to predict next traces. For example, Kim et
al. apply this method on system call streams for anomaly detection [85]. Our model is
a neural network, which arranges LSTM nodes of depth p in L layers of distinct sizes
{n1, n2, ..., nL}; Section V.2.3 details the selected parameters. The predictor models
benign execution; training must be substantial in order to maximize the execution graph
coverage: the training set is composed of benign traces to describe normal execution.

Trace Comparator

To identify a trace sequence as anomalous, the trace comparator computes for each trace
element the normalized deviation e, between the actual and predicted values. When e
exceeds a predefined deviation threshold e(ref), we identify an anomaly. If the total of
detected anomalies nanomalies is higher than a predefined threshold n

(ref)
anomalies, the trace

87

comparator considers the trace sequence as anomalous. Reference threshold values are
defined empirically in Section V.2.5.

V.2.3 Experimental Setup

Platform Setup

We develop the security framework on PikeOS real-time hypervisor [128], which supports
a total of 122 system calls. We base our implementation on Cortex-A53 processor
[132], which is derived from ARMv8-A processor architecture, because it is well used
for embedded system deployments. This processor has a large amount of HPC events
to trace; the selection process is detailed in Section A. Table V.6 shows the final set of
traced counters.

Table V.6: Hardware performance counters selection
Type HPC Description

Data-Flow L1 Data Cache accesses memory accesses (load/store)
L2 Data Cache accesses and missed accesses

Control-Flow

Instructions amount of instructions
Exceptions privileged operation requests
Mispredicted branches branch predictor traceIndirect branches spec. executed

Test Set

We test the ADS through three use-cases: they correspond to periodic applications
running a limited set of system calls. For each configuration, we define a normal program
execution and deviations to identify as anomalies. Every case (normal execution and
deviations) is traced for a certain amount of time, to be then analyzed by the ADS
engine.

Hello: the monitoree is a simple hello world, with one system call type for printing
a message on the console (Table V.7). Implemented anomalies modify the program
execution flow to mimic code injection or return oriented programming (ROP) based
intrusions. Since we built the counters selection on this test set (Section A), our objective
is to assess the relevance of our model compared to HPC monitoring alone.

Linpack: this use-case, based on Linpack benchmark [51], extends the previous set:
it is another example of ROP or code injection execution footprint, which raises only
one type of system calls for sleeping between two Linpack task iterations. Table V.8
describes task profiles. We expect the time to be a reliable source of information to
detect anomalies. Though, this indicator is easier to manipulate than hardware events
such as processor’s caches or branch predictor related events. Therefore, we implement

88
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Table V.7: Hello application profiles
Type Test Description
Normal print_loop in a loop of N = 100 iterations, print a message with the

iteration index i

Add
add_qp open and close a queuing port after the loop
add_iter run 2 ∗ N loop iterations
add_tab write into an integer table of size N at each loop iteration:

tab[i] += i

Remove rm_iter run N/5 loop iterations
rm_print remove i parameter in the print call

Replace rp_qp initialize, write, read, and close a queuing port
rp_sleep sleep for 5 second

anomalies whose execution time is equivalent to the normal reference. This test aims at
verifying that HPC remain suitable features to detect these anomalies.

Table V.8: Linpack application profiles
Test Description

Normal run Linpack for different combinations of inputs:
arsize = 10 and nreps = 2 ∗ k, for k ∈ [1, 8]

Wrong Inputs run normal test with arsize = 11

Fake Linpack instead of Linpack, write a value into a table of 2, 1KB
the time execution approximates the normal configuration

Network File Reader: for this use-case, the monitoree is a UDP server application
receiving a file through the network. The monitored program remains unchanged,
contrary to both previous use-cases. With this test set, we consider anomalies based
on the misuse of its interface; i.e. we apply different client profiles (Table V.9). The
monitoree is more complex than in previous use-cases; it raises 7 types of system calls.

Anomaly Detection System Engine Configuration

We implement the detector in Python language using TensorFlow 1.11.0 framework [2]
with the module nn.rnn_cell.LSTMCell. After testing different parameters, we empiri-
cally select a depth p = 150 for each LSTM cell. The neural network is composed of
L = 3 layers of n1 = 300, n2 = 200, and n3 = 30 LSTM cells. For faster convergence,
the training minimizes the cross-entropy between the prediction and the actual trace.

The predictor is trained with a dataset composed of 70, 000 traces of normal execution.
200 training iterations are necessary to approximate the lowest prediction error.

89

Table V.9: Network file reader client profiles
Test Description

Normal send 1MB file in an infinite loop,
using sync messages before and after the tranfer.

Wrong Sync (WS) continuously send wrong sync message
Fast Send (FS) faster time synchronization between messages
Bigger File (BF) send 20MB file
Bad Packets (BP) send normal file twice, using bigger UDP packet size

V.2.4 Performance Evaluation of the Framework

Time Overhead

The framework impacts the time execution of the monitoree. The overhead is the time for
writing the trace to the collector driver. For a given application τA, with the execution
time CA without monitoring, we define C

(monitoring)
A the execution time of τA under

monitoring (i.e. active trace collection), so that:

C
(monitoring)
A = CA +

NC
A�

i=1
ti ⇒ r

(monitoring)
A = 1

CA

∗
NC

A�

i=1
ti (V.5)

where NC
A and ti respectively represent, during the execution time of τA, the total amount

of generated trace collection events and the time for generating the ith trace in the system
call handler. We define the upper boundary for the time overhead r

(monitoring)
A as RA, so

that:

∀i ∈ N∗, 1 ≤ i ≤ NA
C , ti ≤ TC

RA = NC
A ∗ TC

CA

≥ r
(monitoring)
A

(V.6)

with TC the maximum time for generating a trace in our configuration.
Table V.10 shows that adding HPC monitoring requires approximately 32% of the

initial time for tracing a system call. This previous work highlighted also the volatility of
the system call rate for different applications, from less than 30 to 225, 000 system calls
per second (Section V.1.4). In the experiment, we observe system call rates of 1, 090/s
for network file reader, 646/s for Hello test, and 104/s for Linpack test. From these
measurements and our system time overhead, we finally compute a total time overhead
lower than 0.2% of monitoree’s execution time (i.e. r

(monitoring)
A < 0.2%).

The collector stores the traces in a specific memory location. The user-level trace
collector is lock-less, since reading the traces does not directly affect the monitoree:
because the monitoree and user-level trace collector run on different CPU cores, both

90
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Table V.10: Maximum tracing time overhead with 99% confidence interval (1500 samples)

Tracing TC(µs) RA (%)
Network File reader Hello Linpack

SC only 0.76 0.08 0.05 < 0.01
SC and HPC 1.00 0.11 0.06 0.01

tasks can run in parallel.

Runtime Memory Overhead

According to the infrastructure costs for system call monitoring described in Section V.1.1,
the framework induces a runtime memory overhead caused by the additional user-level
trace collection partition to collect generated traces in a protected memory area before
they are analyzed; in our case, we need to store all generated traces, since we perform
offline analysis on a remote system.

One trace element size is 48B: it stores the system call type, hardware performance
counter values, and time since last system call. For our experiment, we infer an average
rate of 52kB/s for network file reader test, 31kB/s for Hello test, and 5kB/s for
Linpack test. Our system should either be able to process the data-flow with this rate,
or it should have sufficient storage capacity.

An application which generates a high rate of system calls can represent an issue for
runtime deployment of the framework, notably in term of trace storage. This problem
is particularly relevant for embedded MCS with limited hardware resources. As a
workaround, we can add selection mechanisms in the framework, to only analyze a set of
traced events: for example applying tracing on certain sensitive regions of the monitored
program or restricting the set of sensitive system call types to monitor. Alternatively, we
could also monitor the system call rate information itself: upon a predefined threshold
of system call rate (i.e. count of system call events executed withing a given time
period), we detect an anomaly. We do not develop these solutions further in this section:
the aspect of runtime trace analysis is addressed in Section V.3, where we present an
approach to port the analyzer locally, on the target.

V.2.5 Security Evaluation
Security Evaluation Approach

In the experiment, we test and compare different trace configuration combinations with
system call, HPC, and time. For each configuration, we compose the test set of one
normal execution and several deviations from this baseline. We run 10 iterations for
every test case, extracting 1, 000 execution traces each.

We note from early experiment that the detection varies much depending on the trace
deviation threshold e(ref) defined for the trace comparator (Section V.2.2). Therefore, we
assimilate the final set of anomalous detected dataset as the union of detected datasets

91

Table V.11: Anomaly detection (%) for network file reader test
Trace Type WS FS BF BP R (%)
SC only 10/10 10/10 0/10 0/10 50.0
SC + HPC 10/10 9/10 9/10 9/10 92.5
SC + Time 10/10 8/10 2/10 4/10 60.0
SC + HPC + Time 10/10 9/10 9/10 8/10 90.0

for several values of e(ref), which we define empirically as the median, 3rd quartile, and
maximum values of e(normal) on the normal test dataset. By using the normal test instead
of training dataset, our objective is to show what anomalies can be distinguished from
normal execution, without false-positives.

Anomaly Detection Results

Since Hello and Linpack monitoree references include one type of system call, their
model contains HPC and time features only. Applications raising other system call types
are considered as anomalous: i.e. rpsleep, addqp, and rpqp tests are automatically
detected for Hello test. In the context of Hello simple use-case, all anomalies are
detected, for all configurations: HPC alone, time alone, and both HPC and time together.
As expected in Linpack test, time alone configuration does not detect any anomaly.
However, models including HPC (with and without time) detect all anomalies. Table V.11
shows the detection results for the network file reader test: we provide R = T P

T P +F N

the recall, as defined in Equation (II.1). In this case, the combination of system call
and HPC provides the best detection score, while adding the time to the model slightly
degrades the detection for one test. We observe that system call only configuration shows
better detection score for Fast Send test (FS).

Experimental results confirm the validity of our model’s features combination: tracing
HPC between successive system calls succeeds to precise system call based detection of
anomalies for our use-cases. Though, depending on the application profile, the ability of
features (system call type, HPC, time) to reveal anomalies fluctuates. Hence, we could
refine the features selection in function of monitoree’s properties. Alternatively, we could
run models with different features sets in parallel, merging their results to optimize the
detection.

Security Monitoring Coverage

Following the evaluation methodology from Section IV.5.1, we distinguish three criteria:

• monitoring scope: we check the execution state at system call instructions.
This means that out monitoring scope starts from the beginning of the monitored
application’s execution until the last system call is called. Hence, a major limitation
of our solution is that a monitored application executing no system call instruction
cannot be covered by our detection method; more generally, when no system call

92
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

is executed in the end of the monitored application’s execution, a possibly large
portion of the execution path cannot be protected, offering an attractive window
of opportunity for an attack. In such case, we can define wuncov dynamically for a
given application τA as the time period between the moment the last system call
is called until the application returns. wuncov is the unique time window in the
monitored execution when monitoring cannot apply: i.e. wuncov = C

(uncov)
A .

• monitoring continuity: in our current setup with offline analysis, we collect all
generated traces: monitoring is continuous. This may change when trace analysis
runs locally on the system; i.e. in case of performance limitation (for example due
to too many traces to analyze), we may apply discontinuous monitoring to reduce
the performance impact of our solution.

• maximum detection time: this indicates the maximum window of opportunity
for an attack, which is the time for the attack to execute and reach its goal
before being detected by the ADS framework. The current solution performs trace
checking on a remote system. Hence, we define wdetect as the maximum time from
the start of the attack until the corresponding trace is ready for the analysis; i.e.
the trace has been stored by the trace collection application in the predefined
protected storage.

For our solution, wdetect corresponds to the time to reach the next executed system
call instruction after the attack has been initiated – i.e. the worst-case time is the
maximum time between the execution of two successive system call instructions –
added to the time for generating and collecting the trace. we can determine wdetect

dynamically, since execution states (or checkpoints) are system call instructions
in the runtime execution path. Consequently, the more frequently the monitored
application executes system calls, the more detection checkpoints, the faster the
detection; but also the higher the performance overhead (for generating and storing
traces).

V.2.6 Conclusion

This study highlights the relevance to combine HPC and system call traces for anomaly
detection in the execution of a given program. We introduced a novel HIDS, based on
the safety-aware kernel level tracing approach developed in Section V.1. The solution
comes with a low performance overhead for trace collection, which highly depends on
the monitored application; i.e. the amount of system calls at runtime.

However, as we perform the trace analysis offline on a remote system, we cannot
determine the performance impact and detection latency metrics for monitoring. Another
limitation is the limited scope of the evaluation. The monitored program must execute
system calls to be monitored: this constrains possible tested applications and we are not
aware of any open test benchmarks or datasets for the RTOS used in this experiment.

Hence, in Section V.3, we propose an alternative ML assisted HIDS solution based
on HPC to widen the scope of tested programs. For the first time, we also evaluate

93

the ported online ML based trace analysis on an embedded MCS to detect threats at
runtime.

V.3 Online Safety-Aware Hardware Performance Counters Based
Anomaly Detection System

The HIDS introduced in the previous section comes with several pitfalls. In particular,
it does not support online detection, which represents a key issue – especially when
heavy computations are involved – for integrating the solution into a system with real-
time constraints and limited hardware resources. In addition, the previous framework
relies on the execution of system calls by the monitored program. Because of the
specific deployment environment, we intend to base our implementation on an industrial
proprietary RTOS; this makes the solution difficult to evaluate, since we cannot easily
use existing open-source test sets and datasets, we instead need to create relevant test
applications.

Hence, we introduce an alternative online HIDS framework implementing ML-assisted
detection. This approach leverages HPC tracing to limit the intrusiveness with the
monitored program. We propose an evaluation of the cost and impact on system’ safety,
for porting the ML model into the monitored system.

The remainder of this section is organized as follows: Section V.3.1 introduces the
online HIDS framework, which is based on the architecture introduced in methodology
(Section IV.4). Section V.3.2 details the LSTM based ML model used to identify
anomalies in the monitored program’s execution. Section V.3.4 describes our evaluation
of the solution in terms of security efficiency and performance impact, following the
method discussed in Sections IV.5 and IV.5.2. In Section V.3.3, we provide a time
analysis to integrate the framework into an embedded MCS. Finally, we summarize our
findings in Section V.3.5.

V.3.1 Online Host Intrusion Detection System Architecture
Figure V.4 provides an overview of the HIDS framework. Like the other approaches
discussed in this chapter, the system architecture is based on the generic solution
described in Section IV.4. In contrast to system call tracing based HIDS, this approach
implements a fully transparent monitoring of the monitoree’s execution: all monitoring
components run into an isolated user-level partition, which is part of the MILS separation
kernel. The monitoree is a user-level program executing alone on a single core. The
system HIDS monitor is composed of two main applications running on a distinct set of
CPU cores:

• trace collector: reads periodically the HPC values of the monitoree CPU core,
at a predefined sampling rate. It then writes the data into the trace storage.

• trace analyzer: reads periodically the traces from the trace storage, to analyze
them on the fly, using the ML based reference model generated offline and configured

94
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

before the final deployment.

Figure V.4: Online hardware counters based host intrusion detection system architecture

The trace collector corresponds to a periodic tasks, which reads the HPC counter
values and stores these data into the trace storage. In line with the previous HPC and
system call based ADS framework, we select the set of HPC events to trace as described
in Section V.2.1. We determine the HPC tracing period configuration experimentally
(Section V.3.4) using the system timing analysis developed in Section V.3.3.

We initialize the HPC counters at boot time from the kernel; i.e. no user-level
application is able to modify the HPC events selection nor to overwrite the counters
values. Unlike the previous ADS approach which requires execution from kernel space,
this monitoring solution runs – after initialization – exclusively from user-space, since
HPC traces are readable from user-space. This transparent tracing method leverages a
SoC based monitoring unit (Performance Monitoring Unit on ARM architecture), which
is able to map the individual HPC counters of each CPU core. Hence, we provide the
trace collector application with exclusive access to the SoC monitoring unit, so that it
can map HPC counters of the monitored CPU core from the distinct set of monitor cores.
Consequently, this approach does not require to interrupt or disturb the monitoree’s
execution to generate and store traces. We must qualify the transparency of the tracing
solution with the security exposure: as HPC values are readable from user-space, an
adversary attempting to run malicious activity in the monitoree could leverage these
information to adapt and hide the intrusion from the HIDS monitor.

95

The trace analyzer runs from a Linux guest OS, using TensorFlow Lite [119], an
open-source ML framework. The reference model is trained offline, so that only the final
inference model is configured on the embedded MCS for online detection.

V.3.2 Machine-learning Based Trace Analyzer

Similarly to the previous solution (Section V.2.2), the ML based trace analyzer leverages
a LSTM reference model; it also relies on a sliding window to analyze every successive
traces, using a set of preceding traces. It is composed of three main modules, as described
on Figure V.3:

• trace formatter: it formats the traces so that they can be used by the trace
predictor. With the same approach developed in Section V.2.2, we decompose this
stage into two successive operations applied to each traced HPC:

– computing the difference value between the preceding and current HPC reads.

– normalizing this difference value, which is converted from an integer into a
float in the interval [0, 1].

• trace predictor: from a sequence of consecutive traces, it returns a prediction of
the next trace. Following the previously described offline ADS framework, we use
a LSTM model to predict time series data.

• trace comparator: taking the prediction from the trace predictor and the corre-
sponding following observed trace, it computes the prediction error; it indicates an
anomaly when this error exceeds a predefined error threshold.

In the ADS engine, we define the reference model as the combination of the LSTM
model of the trace predictor and other configuration data (i.e. normalization data
from the trace formatter as well as the error threshold of the trace comparator); these
are computed in a learning phase (i.e. LSTM model training and validation) prior to
deployment, in order to minimize the false-positive and false-negative rates on the given
dataset. We perform this learning phase offline, because of the related heavy costs (time
and hardware resources). Our goal is then to deploy the generated reference model into
the embedded MCS platform, to support real-time threat detection during the execution
of the monitoree. In the rest of this subsection, we describe the configuration and the
steps to build the ADS engine.

Trace Formatter

We count HPC events within fixed time windows. The predictor manipulates values in
the interval [0, 1]; thus, the formatter normalizes HPC and time values in function of
maximum and minimum values of each variable in the reference model trace.

96
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Algorithm 1: Pseudocode to return the lower bound for the time-steps of a
RNN-LSTM.
Input : Full Monitoree’s execution trace sequence s = {c1, c2, ..., cS} ∈ (N∗)N∗S

Output : Minimum LSTM node depth dmin ∈ N, so that 1 < dmin < S. 0 is an
erroneous value.

1 d ← 0;
2 while d < S do
3 d ← d + 1;
4 for i ∈ [1, S − d] do
5 past_instance ← SliceSequence(s, d, i);
6 value_to_predict ← ci+d;
7 found_ambiguity ← false;
8 for j ∈ [i + 1, S − d] do
9 other_past_instance ← SliceSequence(s, d, j);

10 other_value_to_predict ← cj+d;
11 if past_instance ≈ other_past_instance then
12 if value_to_predict �= other_value_to_predict then
13 found_ambiguity ← true;
14 break;

15 if found_ambiguity then
16 break;

17 if not found_ambiguity then
18 break;

19 dmin ← d;
20 return dmin;

Trace Predictor

The trace predictor corresponds to a LSTM model. On one hand, many standard
parameters are involved to build ML models, such as learning rate, learning bias, and
batch size; for these, we use default values (respectively 0.001, 0, and 32). On the other
hand, LSTM models come with specific configuration parameters:

• LSTM model topology: the count of layers (nlayers ∈ N∗) and the count of nodes
per layer (nnodes ∈ N∗).

• LSTM node depth: the count of necessary consecutive traces to return a trace
prediction (d ∈ N∗).

The configuration of the LSTM model depends on the use-case: hardware platform, type
of monitored application, amount of data to build the model.

97

When building the LSTM model topology, our goal is to avoid the two following
configurations:

• overfitting: the model is too sensitive (i.e. it contains too many layers or nodes
per layer). It fits the training set of traces so precisely, that the model cannot
accurately predict the tested traces

• underfitting: the model is too simple (i.e. it contains too few layers or nodes per
layer) to accurately predict system trace events.

For a given topology (i.e. nlayers, nnodes ∈ (N∗)2), we can estimate the formal overhead
to perform a prediction in function of the computing complexity of the ML model;
typically, the more complex the topology, the longer the prediction, i.e. the longer the
detection delay. In practice, the overhead depends on the implementation: i.e. type of
hardware platform and AI framework, bare-metal or virtualized implementation. Thus,
we experimentally measure the time overhead in Section V.3.4.

For simplification reasons, we define the same depth d ∈ N∗ for all the nodes of the
LSTM model. The trace predictor receives a sequence of d consecutive traces to compute
a trace prediction. We build the model using training samples corresponding to sequences
of d + 1 traces: d input traces to make the prediction in addition to the trace to predict.
For low d values, ambiguous samples are more likely to be found in the training set: i.e.
two samples with the same input sequence but different output traces to predict. We
suppose that a high amount of ambiguities in the training set is likely to deteriorate
the prediction accuracy; logically, increasing d would improve the ability of the trace
predictor to capture pattern sequences in the training set.

Concurrent to the topology complexity increase, the higher d, the more computations
the prediction involves, i.e. the higher the prediction overhead and the detection latency.
The trace predictor induces an initial delay from the time when the monitored application
starts, when the HIDS cannot perform trace prediction as it waits for the first set of
d consecutive traces to be collected. We define this initial delay T d

uncov ∈ N, so that
T d

uncov = d ∗ ts, with ts the sampling rate for HPC trace collection. During the delay
T d

uncov, the HIDS monitor is unable to detect threats, letting the opportunity for an
adversary to hijack the application before monitoring starts. Hence, the higher d, the
longer T d

uncov.
Hence, to reduce the detection latency and the initial uncovered execution T d

uncov,
while avoiding ambiguities in the training set, we provide an approach to compute the
minimum depth dmin ∈ N∗ for a given training set with Algorithm 1. We compute the
minimum depth dmin as follows. Let define the given execution sequence of collected
counter values s = {c1, c2,, cS}, so that S ∈ N, S ≥ 2 and ∀i ∈ N, 1 ≤ i ≤ S, ci ∈ NN ,
with N ∈ N∗ the amount of HPC counters for each trace. We start setting the initial
minimum depth d = 1 (Lines 1-3); n.b. such LSTM model corresponds to a standard
forward neural network as the LSTM nodes have no internal state. We then increment d
(Line 3) until there is no ambiguity in the dataset or until we have reached the maximum
size d = N − 1. To evaluate the ambiguities in the dataset, we split the sequence s
of S traces into S − d slices {s1, s2, ..., sS−d} of d consecutive traces to train the trace

98
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

predictor; the function SliceSequence(s, d, i) (Line 10) computes the sequence si

for a given depth d and sequence s, as follows:

∀d ∈ N, 1 ≤ d < S, ∀i ∈ N, 1 ≤ i ≤ S − d, si = {ci, ci+1, ..., ci+d−1} (V.7)

Trace Comparator

For each monitored time window, the trace comparator compares the trace prediction
made by the LSTM model with the actual formatted trace; upon an empirically defined
threshold, the ADS engine determines whether the actual trace corresponds to normal or
anomalous execution. Considering, S the full sequence of traces for the entire execution of
the monitoree, the threshold Emax corresponds to the vector: Emax = (E1, E2, ...E|S|) ∈
(R+)|S|.

Given a time window w ∈ N∗ so that w ≤ |S|, we represent the corresponding
prediction and the actual trace respectively by two vectors v(w)

p ∈ (R+)N , v(w)
a ∈ (R+)N ,

where N is the amount of traced HPC events. Let i ∈ N, 1 ≤ i ≤ N and v(w) ∈ (R+)N ,
where v(w)(i) designates the ith element of the vector v in the time window w. We define
e(w) the error between the actual and predicted traces, so that e(w) = RMSE(v(w)

p , v(w)
a),

with RMSE the root mean-squared error function defined in (V.8).

∀w ∈ [1, |S|].RMSE(v(w)
p , v(w)

a) =

���� 1
N

∗
N�

i=1
(v(w)

p (i) − v
(w)
a (i))2 (V.8)

We set Emax in the offline building phase, computing for each window w ∈ [1, |S|] the
error’s average and standard deviation values on a given training dataset. Considering
a dataset of B monitoree execution sequences for building the ADS engine, we set
(e(w)

i)w=1..|S|,i=1..B ∈ (R+)|S|∗B the set of error vectors for the given dataset.
Let x = {x1, x2, x3, ..., xN}, where ∀i ∈ N, 1 ≤ i ≤ N, xi ∈ R+. We define µi=1..N(xi)

and σi=1..N(xi), respectively as the arithmetic mean and the standard deviation of the
vector x. Hence, we define the threshold Emax in (V.9) with the coefficient A ∈ N∗, to
empirically set in the building phase for reducing the false-positive and false-negative
rates in the detection.

Emax = (Ew)i=1..|S| ∈ (R+)|S|, ∀w ∈ [1, |S|].Ew = µi=1..B(e(w)
i) + A ∗ σi=1..B(e(w)

i) (V.9)

Anomaly Detection Engine Building Steps

We build the ADS engine offline on a general-purpose computers, prior to deployment
of the monitor into the target hardware. We decompose the building stages into three

99

main phases and consider an additional phase for testing the detection accuracy of the
solution:

• initialization: we define the parameters of the ADS engine:
– trace collector: sampling rate of HPC trace collection
– trace formatter: normalization data.
– trace predictor: configuration of LSTM model hyperparameters (i.e. LSTM

model topology, LSTM node depth).

• training: we generate the LSTM model with a training dataset containing normal
data only (i.e. no anomalies). The goal is to minimize prediction error to maximize
accuracy of the prediction on the given dataset. We then infer the value of Emax

on the training set.

• validation: we evaluate the trace predictor error on the validation dataset, which
contains normal and anomalous traces of execution. We infer the values of Emax

with the coefficient A, so that the ADS engine is able to distinguish normal and
anomalous traces accurately. If the detection results are ineffective, we return
to the initialization step, changing the ADS engine configuration to improve the
detection.

• test: we test the ADS engine ability to accurately detect anomalies on a test
dataset.

The training, validation, and test datasets are distinct. We apply the ratio: 70% for
training, 20% for validation, and 10% for test.

V.3.3 Real-Time Analysis of the Monitoring Framework
In this section, we formalize the system as a real-time system to describe how to integrate
the monitoring framework into a mixed-criticality system. We evaluate the impact of
the framework on system real-time properties and define a set of requirements to deploy
the solution.

System and Task Model

We define a task as a stream of jobs: τi = {Ji,1, Ji,2, ..., Ji,j, ...}. We represent the
real-time task τi with implicit deadlines as τi = (Ci, Ti, Pi), where Pi, Ci respectively
represent the priority and the worst-case execution time (WCET) for a job Ji,j, and Ti

the minimum inter-arrival time between successive jobs Ji,j, Ji,j+1 of the task τi. We
note ai,j, si,j, and di,j, respectively the arrival, start, and deadline times of the job Ji,j.

More specifically, using the previous task definition, we define the periodic task τi as
τi = (Ci, Ti, Oi, Pi). We introduce the additional parameter Oi as the offset of the initial
job Ji,1 relative to the start time of the system: i.e. ∀j ∈ N, ai,j = Oi + j ∗ Ti.

For this analysis, we simplify the framework described in Section V.3.1, considering a
system with two CPU cores executing the following set of tasks:

100
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

• Application CPU core (A): τA = (CA, TA, OA, PA) the monitoree task. For this
study, we consider the monitoree as a critical periodic real-time task.

No other tasks run on this CPU core, since these would impact the HPC values,
which are continuously traced on the core. Such interfering activity would possibly
degrade the application profiling with the trace prediction. To apply HPC tracing
on a single task running with other tasks on a single CPU core, we would need
to modify our solution design to support task-related HPC context save and
restore operation in the RTOS scheduler. Such solution comes with more system
intrusiveness, because of the kernel modification requirement.

• Monitor CPU core (M): the HIDS monitor, corresponding to τC = (CC , TC , OC , PC)
the trace collector and τM = (CM , TM , OM , PM) the trace analyzer periodic tasks,
in addition to a set Γ of N unrelated aperiodic tasks: Γ = {τi}i=1..N . Both τC and
τM are periodic tasks, because the security monitoring is based on a periodic check
of HPC traces.

All system tasks execute using fixed priority based preemptive scheduling. In the rest of
the analysis, we consider the Rate Monotonic [102] scheduling policy as an example.

As mentioned in Section V.3.1, our HIDS monitor framework induces no timing effect
on the monitoree’s execution: the response time of the monitored application and the
system schedulability remain unchanged on the CPU core A. Additionally, even though
monitoring activity could theoretically interfere with the CPU core A (e.g. via cache
side-channels), we do not consider hardware interference for simplification reasons: we
expect the RTOS and MILS separation kernel architecture to provide a proper isolation
between system tasks.

Consequently, we have two tasks system: ΓA = {τA} and ΓM = {τC , τM} � Γ. Hence,
with RM scheduling policy, the system is schedulable when the following sufficient
condition is respected [102]:

CA

TA
≤ 1 and CC

TC
+ CM

TM
+

N�
i=1

Ci

Ti
≤ (N + 2) ∗ (2

1
N+2 − 1) (V.10)

Table V.12 provides an overview of the tasks parameters to determine before system
deployment. The monitoree configuration depends on the use-case: as system integrator,
we possibly receive CA, TA, OA from an external application provider, as described in our
work environment (Section II.2.1). Additionally, since τA runs alone on core A, we set its
priority PA to an arbitrary value. The monitoring tasks τC and τM are constrained by
the HIDS framework design: CC and CM values depend on the software implementation
(user-level HIDS partition), the RTOS, and system hardware. We experimentally evaluate
these metrics in Section V.3.4, which condition the practicability of the detection solution.
In the following subsections, we develop our analytical approach to configure the rest of
the variables.

101

Table V.12: System task configurations
Task WCET Period Offset Priority

τA CA, TA, OA: given by the use-case (Section V.3.4)

τC
CC , CM : constrained

by
the implementation

(Section V.3.4)

TC : constrained
by the trace analyzer

(this section)
PA, PC , PM , OC , OM , TM :

determined via
time analysis (this section)

τM

Trace Collection Period Configuration

On one hand, the shorter TC (the period for reading HPC counters), the shorter the
detection latency. On the other hand, the detection accuracy constrains the minimum
value of TC . The trace analyzer evaluates the HPC incremented values in execution time
windows of period Tc. Because of hardware complexity, we expect that the shorter Tc is,
the more hazardous at a given time the execution and corresponding HPC observations
are, and so the more difficult the trace sequence becomes to analyze. Additionally, we
suggest to limit the lower bound of TC to avoid stationary window sequences, i.e. when
in an observation window, no HPC counter is incremented.

For the monitoring solution to cover the full execution of the monitoree, the trace
collector must start simultaneously with the monitoree jobs (V.11). The goal is to
maintain consistency in the reference model, avoiding to add complexity by shifting the
monitoring windows among successive monitoree jobs.

OC = OA and ∃k ∈ N∗, TA = k ∗ TC (V.11)

Trace Analyzer Period Configuration

The deployability of the online monitoring solution is a first criteria to constrain the
trace analyzer period TM . On one hand, TM must be set in line with the period TC of
the trace collector task: the trace analyzer must analyze collected traces at least as fast
as they are generated in the trace storage (V.12). This corresponds to the basic producer
and consumer problem, where the trace collector writes data into the trace storage and
the trace analyzer consumes them.

TC ≥ TM (V.12)

On the other hand, the trace collection must not be delayed while reading HPC
counters at fixed execution times, so that HPC traces remain consistent among execution
samples, i.e. ∀j ∈ N∗, sC,j = aC,j. Hence, τC has the highest priority on the CPU core
M; furthermore, we give the priority to τM over the set of other tasks Γ (V.13). We
define P (max) the maximum task priority in the system. Thus, we set PC = P (max) and
PM = P (max) − 1.

102
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Figure V.5: Example of monitoring execution with with CC = 1, TC = 6, CM = 5, TM = 6,
and ΔOC,M = 5

PC > PM > Pi, ∀i ∈ N, 1 ≤ i ≤ N (V.13)

With RM scheduling policy, PC > PM ⇒ TC ≤ TM ; thus, with (V.13) and (V.12, we
deduce that TM = TC . Both trace collector and trace analysis tasks execute within the
same period, if we set the same value to each task’s offset, i.e. OC = OM . This means
that the multi-mode HIDS determines the presence of an intrusion in high security mode
(using τM), before the next trace can be collected by the task τC .

Hence, we can deduce the minimum values T
(min)
M , T

(min)
C : T

(min)
M = T

(min)
C = CC + CM .

We can then describe the condition on TC for the deployability of the solution with
(V.14). When TC = TM = T

(min)
M , the CPU core M is fully utilized (U = CM

TM
+ CC

TC
=

CM +CC

T
(min)
M

= 1); i.e. we cannot add other tasks on the CPU core M, while guaranteeing
system schedulability. This implies Γ = ∅.

TC ≥ T
(min)
C ≥ CC + CM (V.14)

Detection Latency Analysis

We introduce wdetect the worst-case detection latency for the monitoring framework
composed of tasks τC and τM . We note ΔOC,M the offset difference between τC and
τM : ΔOC,M = |OC − OM |. For simplification reasons, we set 0 ≤ ΔOC,M < TM , so that
∀k ∈ N∗, ak

C ≤ ak
M < ak+1

C = ak
C + TC ; i.e. the trace analyzer directly handles the HPC

trace after it has been stored in the trace storage by the trace collector.
Let k ∈ N∗, we note wk

detect the detection latency for the kth HPC trace received by
the HIDS monitor. Figure V.5 illustrates the detection latency measurement with an

103

example. We formalize the definition of wk
detect (V.15), and deduce the equivalence (V.16).

∀k ∈ N, wk
detect =

max(CC , rk
M − rk

C) + CM + CC , if rk
M + CM > r

(k+1)
C = rk

C + TC

max(CC , rk
M − rk

C) + CM , else
(V.15)

⇐⇒ wdetect =

max(CC , ΔOC,M) + CM + CC , if Δ0C,M > TC − CM

max(CC , ΔOC,M) + CM , else
(V.16)

We note that increasing ΔOC,M value induces the detection latency wdetect to increase.
Thus, to reduce wdetect, we define the following arrival times condition:

0 ≤ ΔOC,M < CC (V.17)

Consequently, we set ΔOC,M = 0; i.e. with (V.11), OM = OC = OA, and wdetect =
CC + CM .

Finally, Table V.13 summarizes the configuration of our monitoring tasks. In the next
section, we evaluate the variables CC , CM , TC in respect to a practical deployment of the
solution.

Table V.13: Final monitoring task configurations
Task WCET Period Offset Priority

τC CC TC OA P (max)

τM CM TC OA P (max) − 1

V.3.4 Experiment
The goal of our experiment is to evaluate the HIDS monitoring for online detection
of anomalies in an embedded MCS. We focus our analysis on the trace analyzer, to
determine its impact on the system security and performance. More specifically, we
evaluate how the ML based trace predictor configuration influences the detection latency
and accuracy.

Let x be a measurable variable and N ∈ N∗, we note µN(x) the average value of
x for a set of N measurements and X the WCET computed value of x variable; we
compute the WCET value X as the worst-case measured value of x at runtime. Following
the real-time analysis of the framework (Section V.3.3), we study the trace predictor
configuration variables:

• cM , CM : respectively a time measurement and the WCET values to make a
prediction

• CC : the WCET for a trace collection iteration

• TC : the period to collect the HPC traces.

104
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

On one hand, cM , CM , CC , TC depend on the execution environment (hardware platform,
RTOS and software implementation). On the other hand, CA, TA, OA depend on the
tested use-case and system tasks configuration. Hence, for simplification we do not
consider TA and OA in the analysis (e.g. setting OA = 0 and TA to a suitable value to
synchronize the HIDS monitor with the monitoree execution)

Platform Setup

Our goal is to implement the HIDS monitor framework described in Section V.3.2 on a
typical industrial embedded MCS. Thus, we use the same platform as in previous work
(Section V.2.3): i.e. with SYSGO’s PikeOS RTOS and Xilinx Zynq Ultrascale+ SoC.
The hardware platform includes an ARM Cortex-A53 processor (4 CPU cores), on which
we implement the system. This processor provides 6 configurable counters per core,
which we set using events of Table V.6. In addition, the SoC supports a performance
monitoring unit (PMU), that we use to develop our transparent trace collector task.

Tested Monitoree Programs

Figure V.6: Generic program representation

As previously mentioned, we consider τA as a periodic task defined as τA = (CA, TA, PA, OA);
for simplification, we perform the evaluation for a job execution of τA, so we do not
consider TA, PA, OA in the analysis.

We intend to evaluate the HIDS monitor with a monitoree periodic critical task
τA, which is representative of embedded MCS applications. We represent the generic
monitoree program which implements τA jobs by a sequence of three phases (Figure V.6):

1 In: acquiring input data.

2 Process: processing input data.

3 Out: returning output data.

We define EA as the set of tested execution configurations for the task τA. Let e ∈ EA be
a program execution configuration; we simplify the representation of e, so that e = {p, l},
with:

105

• p ∈ N a program type: a unique variable designating a combination of In,
Process, and Out phases. We implement In and Out phases with a static data
structure (e.g. table), to read from and write to. The Process phase corresponds
to a complex sequence of computing operations.
For our evaluation, we consider three program configurations pmatmul, pbsearch, psort ∈
N3; these correspond to applications of TACLeBench [56] benchmark, as described
on Table V.14. Hence, we define PA = {pmatmul, pbsearch, psort} ∈ N3 as the set of
tested programs.

• l ∈ (N∗)4 a combination of loop iterations: l = (nin, nprocess, nout, nall) ∈ (N∗)4,
with nin, nprocess, nout the count of loop iterations respectively for In, Process, Out
phases, and nall the amount of times the full sequence is executed by e.

Table V.14: Tested monitoree configurations
p Application name Description
psort SORT-256 A descending sort over a buffer of length 256
pmatmul MATMUL-32X32 A multiplication between 2 matrices of size

32 ∗ 32
pbsearch BSEARCH-8192X2048 A sequence of 2048 binary searches over a

set of length 8192

We divide EA the set of tested configurations into two distinct sets of normal (base)
and anomalous tested execution configurations, respectively E (base)

A and E (anom)
A , so that

EA = E (base)
A ∪ E (anom)

A and E (base)
A ∩ E (anom)

A = ∅. For this evaluation, we use l to simulate
normal and anomalous execution configurations of a given program. Hence, we define
the configuration sets in (V.18), with:

• l
(base)
A ∈ (N∗)4: a single configuration to represent normal execution. As described

on Table V.15, l
(base)
A = (n(base)

in , n(base)
process, n

(base)
out , n

(base)
all) ∈ (N∗)4.

We select this configuration to study the detection on a relatively long execution time
of the monitored program (i.e. multiple time windows): for each tested program,
the WCET CA ≈ 1s. For the experiment, we set 3 execution configuration of
balanced In, Process, and Out phases.

• L(anom)
A ∈ (N∗)4∗n: the set of N ∈ N∗ tested anomalous loop configurations

L(anom)
A = {l1, l2, ..., lN} ∈ (N∗)4∗N .

E (base)
A = {{p, l

(base)
A }, ∀p ∈ PA}

E (anom)
A = {{p, l(anom)}, ∀p ∈ PA, ∀l(anom) ∈ L(anom)

A } (V.18)

106
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Table V.15: Base monitoree loop configuration for all tested use-cases
n

(base)
in n(base)

process n
(base)
out n

(base)
all

l(base)
A 232 200 232 4

Table V.16: Anomalous monitoree loop configurations compared to the reference l
(base)
A

li Anomaly name Δnin Δnprocess Δnout Δnall

l1 Δnin + 1 +1 +0 +0 +0
l2 Δnin + 2 +2 +0 +0 +0
l3 Δnin + 3 +3 +0 +0 +0
l4 Δnout + 1 +0 +0 +1 +0
l5 Δnout + 2 +0 +0 +2 +0
l6 Δnout + 3 +0 +0 +3 +0

We define the anomalous program execution e
(anom)
A = {p, l(anom)} ∈ E (anom)

A , with
p ∈ PA and l(anom) ∈ L(anom)

A , as a deviation of the reference monitoree execution
e

(base)
A = {p, l

(base)
A } ∈ E (base)

A . Such anomaly could correspond to an attack, which
corrupts the CF to modify data manipulated by the monitoree: e.g. sensor data provided
as input of the monitoree, or decision making data returned by the monitoree. Typically,
we model anomalous execution by incrementing loop iterations of the different execution
phases; this approach induces a modification in the execution time of the executing
program. Thus, we introduce c

(base)
A , c

(anom)
A ∈ N∗ ∗ N∗, respectively the execution time

for the programs e
(base)
A and e

(anom)
A . Our motivation is to evaluate the granularity of our

framework to detect anomalies. As an anomaly level criteria, we compute δ
(anom)
A ∈ R+

the ratio of additional time spent in the anomalous program compared to the normal
execution, for a set of 200 measurements:

δ
(anom)
A = |µ200(c(anom)

A) − µ200(c(base)
A)| (V.19)

Table V.16 provides an overview of loop iteration combinations for anomalous executions;
considering 6 anomalous configurations {l1, l2, l3, l4, l5, l6}, we represent the difference of
added iterations compared to the base: ∀j ∈ N∗, j ≤ 6, ∀i ∈ {in, process, out, all}, Δnj

i =
nj

i − n
(base)
i . For our set of tested programs, the Process phase takes a very long time to

execute compared to In and Out phases; hence, we only modify nin and nout variables.
Table V.17 shows the anomalous level criteria values (δ(anom)

A) for the set of tested
programs. The panel of tested configuration corresponds to variations of the execution
time from 3ms to 409ms.

HIDS Monitor Configuration

Measuring 200 samples, we compute 2.3µs and 2.7µs, respectively the average and
maximum execution times for the trace collector to generate and store the HPC traces

107

Table V.17: Monitoree execution configurations with Tc = 10ms

p µ200(c(base)
A) (ms) nw d

(min)
A Anomaly name δ

(anom)
A (ms)

psort 979 98 7

Δnin + 1 3
Δnin + 2 7
Δnin + 3 10
Δnout + 1 6
Δnout + 2 12
Δnout + 3 19

pmatmul 1,074 108 15

Δnin + 1 8
Δnin + 2 19
Δnin + 3 26
Δnout + 1 12
Δnout + 2 19
Δnout + 3 26

pbsearch 1,081 109 13

Δnin + 1 139
Δnin + 2 272
Δnin + 3 409
Δnout + 1 14
Δnout + 2 28
Δnout + 3 41

into the trace storage. Hence, we set CC = 3µs the WCET for trace collection.
For the trace collector, we empirically set the sampling rate to the value TC = 10ms,

since this configuration complies with the following requirements based on the approach
described in Section V.3.3:

• TC ≥ CM + CC : we determine TC experimentally to test this inequality in different
monitoring configurations.

• At least one counter is incremented for each monitored time window.

• TC = 10ms represents a realistic value compared to the execution time of the
base monitored application reference: i.e. TC complies with the constraint (V.11)
(TC << cA ≤ CA). We count indeed nw ∈ N∗ the amount of observation windows
TC covering the execution of the program p

(base)
A : nw ∗ TC � cA, nw > 100.

To implement the trace analyzer, and more particularly the trace predictor, we use
TensorFlow-Lite software [119, 2], which runs inside a Linux guest OS user-level partition.
It is a light-weight open source framework designed to perform inference on embedded
systems.

With the method described in Section V.3.2 (Algorithm 1), we compute for each
program execution configuration eA ∈ EA, d

(min)
A ∈ N∗ the minimum depth of the LSTM

model. We generalize dmin the minimum depth used for all our use-cases, so that it
corresponds to the maximum value computed for the tested use-cases:

108
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

Table V.18: Detection results summary
Configuration Detection Results

nlayers nnodes p A FPR (%) WC FNR (%) F1 (%) F global
1 (%)

1

30
psort 7 2.5 Δnin + 1 2.5 97.5

86.6pmatmul 6 3.5 Δnout + 1 1.0 97.8
pbsearch 5 6.5 Δnout + 1 58.0 56.6

50
psort 6 5.5 - 0.0 97.3

93.0pmatmul 5 10.0 - 0.0 95.2
pbsearch 4 22.5 Δnout + 1 6.0 86.8

100
psort 6 5.5 Δnin + 1 4.0 95.3

90.1pmatmul 6 4.0 - 0.0 98.0
pbsearch 5 10.0 Δnout + 1 34.0 75.0

150
psort 6 03.0 Δnin + 1 5.5 95.7

90.3pmatmul 8 3.5 Δnin + 1 1.5 97.5
pbsearch 5 6.0 Δnin + 1 36.0 75.3

2

80
psort 8 3.5 - 0.0 98.3

98.5pmatmul 9 4.0 - 0.0 98.0
pbsearch 6 1.5 - 0.0 99.3

160
psort 10 3.0 - 0.0 98.5

89.3pmatmul 7 11.5 Δnout + 1 3.5 92.8
pbsearch 5 1.5 Δnout + 1 41.5 73.1

dmin = min
∀pA∈PA

(d(min)
A) = 15 (V.20)

Let define nlayers ∈ N∗ the count of layers and nnodes ∈ N∗ the count of nodes per
layers. We experimentally constrain the set of tested topologies for the LSTM based
trace predictor:

• nlayers ≤ 2: ML network topologies with more layers usually require big training
data; thus they are more suitable for deep-neural network use-cases, which are out
of scope for this work.

• nnodes ≤ 200: we make the count of nodes per layer nnodes vary between 30 and
160, to limit the trace prediction time impact on detection latency (i.e. limiting
the value of CM).

Impact of the Model Topology on the Detection Accuracy

Table V.18 summarizes the detection accuracy results for all tested programs in function
of the LSTM model topology. A ∈ N corresponds to the coefficient value in the range
[1, 5], which induces the best detection results for a given use-case (i.e. program and
trace predictor topology). We note F1 the F1-score (Section II.1.3) computed for a
single configuration, evaluating a single trace analyzer model built for a given monitoree

109

NET_1_30 NET_1_50 NET_1_100 NET_1_150 NET_2_80 NET_2_160

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

pmatmul

pbsearch

psort

Figure V.7: Impact of the network topology on detection accuracy results

program and network topology. We introduce the derived F1-score metric F global
1 ,

which involves the detection measurements of all tested models for a given network
topology configuration. On Table V.18 as well as on Figure V.7, we only show the
results corresponding to the worst anomaly use-case (WC). We note that the worst-
case systematically correspond to the anomalous program with lowest execution time
variations: with Δnin = 1 or Δnout = 1.

Figure V.7 shows the detection accuracy for the tested use-case configurations. We
cannot highlight a direct and systematic relation between the network topology and the
detection results, such as the greater nlayers, the more accurate the results. Nevertheless,
we note that the configuration with i(nlayers = 2, nnodes = 80 offers the best results,
considering the three tested programs (accuracy above 95% for all). We instead show
that the detection accuracy varies depending on the monitored program: while pmatmul

and psort show accuracy above 90% in all configurations, the accuracy varies between less
than 70% and more than 85% for pbsearch. From Table V.18, we notably show that for
pmatmul and psort, the false-positive and false-negative rates are low (respectively between
[2%, 11%], [0%, 5%]).

Impact of the Model Topology on the Detection Latency

The topology of the LSTM model has a direct impact on the detection latency: the more
complex the topology, the more important the impact (i.e. CM increases). Table V.19
shows the worst-case and average measured execution times to make a prediction, for
a selection of network topologies. We found that the WCET for trace collection is
negligible compared to the time for trace analysis: i.e. CC = 3µs << 1ms ≤ CM . To
simplify, we approximate CC + CM ≈ CM . Figure V.8 shows the distribution for 200
measurements. We observe that for all tested topologies but one, the condition (V.14) is
respected. Hence, for our use-case, we do not consider the case (nlayers = 2, nnodes = 160)
for deployment: this is fine, since we generally observed better detection accuracy results
in other topology configurations.

110
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

NET_1_30 NET_1_50 NET_1_100 NET_1_150 NET_2_80 NET_2_160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

c M
(µ

s)

Figure V.8: Execution time of the trace analyzer (cM)

In particular, increasing the depth d of LSTM nodes increases the count of operations
for a prediction. Figure V.9 represents the evolution of the execution time of the trace
analyzer in function of the depth d. We note cd

M the observed execution time for a
network with LSTM nodes of depth d. Compared to the maximum value C15

M observed
for the reference dmin = 15, the figure shows the added execution time Δcd

M = cd
M − c15

M

with d ∈ N∗, dmin = 15 < d ≤ 20. For the range of tested d values, we observe a linear
increasing impact on the execution time. Logically, we note that the coefficient of the
linear relation increases, when the network contains more LSTM nodes (i.e. 100 to 150
nodes).

Table V.19: Trace analyzer execution time in function of the LSTM network topology (for
200 measurements)

Network Topology Time measurements (ms)
nlayers nnodes CM µ200(cM)

1 30 1.3 1.2
1 50 1.6 1.4
1 100 2.8 2.5
1 150 4.7 4.1
2 80 4.8 4.4
2 160 14.1 13.3

111

15 16 17 18 19 20

200

400

600

800

1,000

1,200

1,400

d

Δ
cd M

(µ
s)

nlayers = 1, nnodes = 100
nlayers = 1, nnodes = 150

Figure V.9: Impact of d the depth of LSTM nodes on the execution time cM (added execution
time compared to dmin = 15)

Discussion on the Deployability of the Intrusion Detection Solution

Referring to the real-time analysis of the HIDS solution, our experiment shows that the
HIDS framework complies with the deployability condition (V.14), considering the trace
collection period TC = 10ms, for five of the six tested LSTM network topologies of the
trace analyzer. This means that we should either consider network topologies with less
nodes than the configuration (nlayers = 2, nnodes = 160), or increase the period TC . On
one hand, increasing TC mechanically causes a longer detection latency wdetect (V.16).
On the other hand, we expect that increasing TC to increase the complexity of the LSTM
network topology is not a good strategy to improve the detection accuracy of the HIDS:

• in our experiment scope, we cannot analytically determine how incrementing TC

would affect – positively or negatively – the detection accuracy.

• we note from our results that increasing the complexity of the LSTM network
topology does not systematically improve the detection accuracy, for a given
monitored application.

From our experiment, because of the poor detection accuracy in two of three monitored
applications using the most complex tested topology, we suggest to configure network
topologies consisting of comparatively lower amounts of nodes.

For the deployable network configurations, we observe an important time margin
between CM and TC = 10ms. The HIDS would still respect the deployability condition

112
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

when decreasing TC to 5ms, as CM + CC < 5ms for the five relevant network topologies.
Nevertheless, we would need to evaluate the impact of this new trace collection period
on the detection accuracy of the solution.

To reduce the detection latency, we could decrease the depth of LSTM nodes (d = 15 in
our experiment). However, such modification might cause a degradation of the detection
accuracy because of the possible ambiguities in the training dataset (as explained in
Section V.3.2). Alternatively, we may improve the detection accuracy by increasing the
value of d > 15; the trace predictor would potentially be able to capture longer temporal
patterns of execution. However, we have shown the significant impact of incrementing d
on the WCET CM , which mechanically increases with the amount of LSTM nodes of
the network (Figure V.9). For network topologies requiring d > 15, We would probably
have to increase TC to comply with the deployability condition (V.14); i.e. as discussed
above, the modification of TC may have a negative impact on detection accuracy.

We tested relatively simple LSTM network topologies (less that 160 nodes in total).
As future improvement, we could adapt the trace predictor configuration further, i.e.
combining several layers containing various amount of nodes. We would need to evaluate
the impact on HIDS deployability, as well as on detection latency and accuracy. Another
strategy is to adapt the implementation of the trace predictor to reduce the detection
latency: because of the simplicity of the LSTM network, we could directly implement
the LSTM network in bare-metal software (i.e. not using API provided by standard
libraries) to reduce CM . Our solution could also involve hardware acceleration, e.g. with
GPU or FPGA support.

V.3.5 Conclusion

To our knowledge, this is the first work to explicitly evaluate the cost for
online ML assisted HIDS monitoring towards the deployment into certified
embedded MCS. The solution is transparent, as it runs concurrently to the monitoree
on a different set of CPU cores, and because it does not require program instrumentation.
The HIDS observes the monitoree application using hardware events traced via hardware
internal counters of the processor. We formalized the representation of our solution with
a time analysis of the system, and defined a set of parameters for the system integrator to
tune the HIDS, in function of runtime cost and security (i.e. anomaly detection accuracy
and latency) requirements.

Our experimental results first demonstrate the practicability of our HIDS framework
on a use-case application. Second, they highlight the impact of the HIDS configuration –
in particular of the trace collection period and the trace analysis execution time – on the
performance of the solution:

• the hardware cost (i.e. CPU utilization for monitoring) increases with increasing
trace analysis execution time and decreasing trace collection period.

• the detection efficiency (i.e. anomaly detection accuracy and latency) improves
with increasing trace analysis execution time and increasing trace collection period.

113

However, our solution comes with several limitations related to its implementation. By
design for running HPC tracing from user-space, the framework requires the monitoree
application to run alone on a single CPU core. We set the monitoring tasks to the
highest priorities to run on the monitoring CPU core, to assure consistent HPC tracing
and upper bounded detection latency. Nevertheless, the system integrator can still use
remaining CPU time to perform background activity; i.e. adding tasks with low priority.
We also consider that the readability of HPC traces from the monitoree represents a
further security exposure: an adversary controlling the monitoree could attempt to
hide malicious activity by checking the corresponding footprint on HPC traces to avoid
detection.

V.4 Conclusion on Machine-Learning Assisted Anomaly Detection
for Embedded Mixed-Criticality Systems

Through this chapter, we addressed statistical and ML assisted methods to deploy HIDS
into industrial embedded MCS. We developed two main HIDS approaches:

• An offline HIDS based on system call and HPC tracing. We introduced
a safety-aware framework to monitor system calls into a RTOS. In addition, to
enhance the anomaly detection, we integrated contextual hardware data in system
call traces using HPC counters. We experimentally confirmed the relevance of this
approach for detecting more anomalous executions, compared to solutions based
on system call related traces only.
Despite the good detection results, the framework still induces the limitation that
it only covers monitoree programs, which execute system calls. Consequently,
it reduces considerably the scope of use-case programs for a valid evaluation;
producing a substantial set of applications representing realistic – potentially
complex – use-cases is difficult, especially as we work with a proprietary RTOS.

• A transparent online HIDS based on HPC tracing. We proposed an eval-
uation of a HIDS framework supporting online ML-assisted detection. For the
first time to our knowledge, we introduced a HIDS solution explicitly designed
for embedded MCS, which is based on HPC tracing and online ML assisted de-
tection. We provided an analytical and experimental evaluation of the solution’s
performance, in regards to its detection efficiency and hardware cost, towards the
deployment on an industrial platform.

Our experiments show that the complexity of the implementation of the ML model
directly affects its applicability: the more complex the ML model, the higher the time
overhead for analyzing a set of traces. As a workaround, the efficient usage of hardware
accelerated ML frameworks or optimized low-level routines and libraries could improve
the performance of a given ML model, by reducing the analysis time overhead.

We run our experiments on a simplified setup, monitoring a unique single-threaded
application. In future work, we could develop support multi-threaded and multi-core

114
Chapter V. Machine-Learning Based Anomaly Detection Solutions for

Embedded Mixed-Criticality Systems

applications. We could also adapt the monitoring solutions to monitor several applications
simultaneously.

We can use the ML-based HIDS for passive monitoring on a given task in an
embedded MCS: i.e. observing and logging the detection of anomalies without making
adjustments on the monitoree’s execution. For example, we could store detection related
data into a protected log storage, for a later analysis of the logs by a human or a qualified
software entity which can legitimately apply corrective measures. However, for now, ML
based monitoring approaches cannot be used for active monitoring; we define active
monitoring as an intrusive method to modify the execution of a system component (e.g.
applying recovery actions as described in Section IV.4.3), upon detection of an anomaly
in the execution of the monitoree. The use of ML components in a safety-critical system
is indeed a current research topic [149, 86, 146, 7]: because an anomaly can corresponds
to a false-positive, it is difficult to reliably justify and validate the information of a
detected anomaly to base future high-critical decisions. Hence, ML based monitoring
features cannot directly be integrated into system operation with control abilities on the
execution of the monitored component.

Finally, as ML based HIDS solutions are limited to passive monitoring, we could
combine such approach with additional active monitoring methods, to build multi-
security modes of executions. Notably, as the ML assisted solutions described in this
chapter introduce limited intrusiveness and low performance impact in the system,
they could be used as background security tasks to raise early security alerts; when
they detect an anomaly, the system would switch to a suspicious execution (i.e. active
monitoring) mode to apply more intrusive security checks, in order to confirm or infirm
the identification of a threat in the system. Specification-based anomaly detection
methods are typically suitable to perform active monitoring. We develop such approach
with a CF based detection framework in Chapter VI.

VI

A Safety-Aware Control-Flow Integrity
Framework for Embedded Mixed-Criticality
Systems

In this chapter, we introduce a CF monitoring framework which leverages hardware-level
processor tracing to transparently monitor the execution of a given monitoree application;
it uses ARM CoreSight, a common hardware tracing feature in ARM-based SoC. With
this solution, we develop the following contributions:

• We implement CFI checking through state-of-the-art methods described in the
literature survey (Section III.2.1).

• We propose a predictable periodic-server based solution to safely integrate the
hardware-assisted framework into a MCS. Our approach mitigates the potential
performance overhead for CF tracing, by controlling a partial CF monitoring
coverage at runtime.

• We introduce an anomaly detection service to monitor the full scope of the task’s
execution, identifying anomalies from the observation of inter-arrival times of CF
monitoring instances.

We validate our monitoring framework on an industrial MCS platform using a set of
applications from TACLeBench benchmark. Defining metrics to assess the trade-off
between security and time overhead, we evaluate the performance impact and validate
the anomaly detection system for the set of tested applications.

The remainder of this chapter is organized as follows. Section VI.1 introduces our
CF monitoring system architecture. Section VI.2 defines task and system model as well
as problem statement. Section VI.3 presents our predictable CF monitoring solution.
After describing our experimental setup in Section VI.4, we evaluate the performance
overhead of our framework for full runtime CF coverage on a set of representative and
pessimistic applications (Section VI.5). Section VI.6 focusses on the security evaluation.
Section VI.7 discusses lessons learned and alternative security deployment strategies using
our framework. Section VI.8 gives an overview of related work. Finally, Section VI.9
summarizes this work.

115

116
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

Figure VI.1: System overview

VI.1 Hardware-Assisted Control-Flow Monitoring Framework

VI.1.1 Control-Flow Monitoring Framework Overview
Mixed-Criticality System Software

We implement our system using the PikeOS [128] real-time hypervisor together with the
framework described on Figure VI.1. The framework combines a partitioned architecture
with a separation kernel [137] to assure freedom from interference and independence
between system tasks: a task can only access system resources after explicit allocation
at system design. Such architecture, in which the CFI monitoring is separated from
the monitored application, is well suited for a MCS because of two reasons—(i) the
adversary is not able to interfere with the CFI monitoring due to the separation, and
(ii) at runtime, CFI monitoring tasks and other safety-critical tasks are restricted to
their allocated resources, thereby preserving their independence. The PikeOS kernel
implements a preemptive fixed-priority thread-level scheduling with static bounds for
the range of thread priorities. The system integrator assigns ranges of priority values
for user-level components at system design; at runtime, a user-level component can
modify the priority of one of its thread, or a thread belonging to another task within its
pre-defined range of values.

ARM CoreSight Hardware Feature

ARM CoreSight [16] is a common hardware feature supported on many modern ARM-
based SoCs (e.g. Xilinx Ultrascale+, NXP i.MX8) for tracing the execution of a program
at instruction level in real-time. Each core on the SoC is attached to an embedded
trace macrocell (ETM) responsible for trace collection. The traces from multiple ETM
are merged and stored in an embedded trace buffer (ETB). When the queue reaches a
configurable threshold, the ETB can raise a signal directed to a core as an interrupt or to
an external debugger. The software or external debugger can use this trigger to copy/flush
the traces from the ETB queue to system memory or to external pins. ARM CoreSight

117

collects traces in form of packets, either containing branch decisions for direct control-flow
transfers (i.e., branch taken or not taken) or the target address for indirect transfers.
Packets additionally include per-thread UID that enable precise execution tracking of
different (potentially multi-threaded) applications. Based on the packets provided by
CoreSight and with additional binary information about the executed application, it is
possible to reconstruct the entire execution control-flow including the exact sequence
of branches taken. For our work, we use CoreSight to monitor the control-flow of the
program at runtime.

System Applications

The monitored application is a single-threaded periodic application running with fixed-
priority, on the CPU core 0 where we enable CoreSight tracing. It executes the same
routine program periodically.

The monitor is composed of three main threads of execution:

• Server (CPU core 1) – It decides whether an upcoming monitoring request is to
be handled or rejected.

• Trace collector (CPU core 1) – this thread copies the traces from CoreSight local
buffer to a predefined storage area in main memory.

• Spinner (CPU core 0) – It preempts and stops the execution of the monitored
application during trace collection.

• Trace analyzer (CPU core 2) – This application reads traces from the trace
storage in main memory to reconstruct the corresponding CFG path and perform
CFI checking.

We allocate the same fixed priority for all threads running on CPU core 1, while
spinner’s priority can take several values at runtime. The trace analyzer runs in parallel
of other monitored and monitoring threads on a dedicated CPU core 2 with a fixed
priority.

VI.1.2 Control-Flow Monitoring Mechanisms
Monitoring Framework Overview

The architecture of our CFI monitoring solution is shown in Figure VI.2. During runtime
monitoring, after a stream of traces has been collected by the monitor, the current CFG
path of the monitored application thread is reconstructed by decoding the trace packets
into the sequence of executed basic blocks. Using the reconstructed path and the trace’s
per-thread identifier, the monitor maintains per-thread shadow stacks for backward-edge
CFI enforcement. For the protection of forward edges, the monitor validates that the
source and destination addresses of transitions between basic blocks belong to the same
pre-computed equivalence class. We compute the per-application equivalence classes

118
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

app.cfg app.elf

Metadata
Generation

Equivalence
Class Generation

app1.cpp, app2.cpp

app.res

(a) Static pre-processing

Hardware

Separation Kernel

Monitored
Application
(app.elf)

C
FI

M
on

ito
r

Trace Collection

CFG Path Reconstruction

CFI Checking

app.cfg app.elf

Traces

Reporting

(b) Runtime monitoring

Figure VI.2: Control-flow integrity monitoring design

according to a type-based approximation of the CFG during a dedicated static pre-
processing phase and load them into our CFI monitor as metadata before starting the
monitored application.

For our work, we assume the SK does not randomize the memory layout of monitored
applications and statically inferred addresses are still valid during runtime1. To ensure
the security provided by our solution, we implement the forward-edge and backward-edge
CFI policies according to [151] and [3], respectively. Both policies are well-established
and known to thwart code-reuse attacks effectively [28, 29].

Static Pre-processing and Framework Initialization

The pre-processing phase statically computes a type-based approximation of the CFG
based on the concept of equivalence classes. We generate equivalence classes only for
indirect jumps and calls, but handle calls to ordinary functions, calls to virtual methods
(C++ only), and intra-function jumps differently.

For ordinary functions, we define equivalence as the signature of a call site matching
the signature of the called function, where the signatures are defined as a combination
of the function’s return type and parameter types. Hence, two functions int add(int
a, int b) and int sub(int a, int b) are considered equivalent by our CFI monitor
and may be called from any indirect call site having the same signature. For virtual
methods, we define equivalence analogously with the addition of taking class hierarchies
into account. Two functions int Math.add(int a, int b) and int Math.sub(int a,
int b) are considered equivalent if and only if they belong to the same class Math or
any derived or base class of Math. Lastly, for simple jumps, we define equivalence based
on code locality, i.e., restricting jumps to the switch statement or function body they
belong to.

1This is not a limitation of our CFI monitoring solution, as providing randomization details to the
monitor would suffice to support memory layout randomization.

119

In our final metadata, we store the equivalence classes as a simple lookup table indexed
by the addresses of branch targets. For every branch target within the table, we store the
list of call site addresses allowed to branch to the that target—effectively representing
the equivalence class the target belongs to. Hence, for the two functions add() and
sub(), the table contains two identical entries specifying all call sites allowed to branch
to add() and sub().

We generate the metadata in a two-step process during the compilation of the ap-
plication. We adopt this process, as computing equivalence classes at compile-time is
more precise than a binary-only computation [155]. Figure VI.2a depicts the compilation
and generation of the binary app.elf and the metadata app.cfg for an application
consisting of two source code files app1.cpp and app2.cpp.

Step 1: Equivalence Class Generation. The first step is built upon the LLVM compiler
infrastructure and computes the equivalence classes for indirect calls to ordinary functions
and virtual methods. During this step, we essentially generate a version of our metadata
containing descriptive identifiers instead of actual address locations. Branch targets (i.e.,
functions and virtual methods) are represented as string literals by their names and call
sites by the offset into their parent functions. Indirect jumps do not require compile-time
information and are only processed during the second step.

For the generation of equivalence classes, we utilize the type metadata mechanism
already present in LLVM [150]. The mechanism computes the equivalence classes
according to [151] and as required by our definitions above. Because the type metadata
is only available in LLVM’s intermediate representation we deploy a custom LLVM pass
that passively collects and stores the equivalence classes to a temporary file app.res.
To resolve the equivalence on an application-wide level, this step must be performed on
a combined version of the application’s intermediate representation (i.e., in our example,
simultaneously for app1.cpp and app2.cpp) or during link-time optimization. The data
extracted by our LLVM pass is already represented in the form of our metadata, i.e.,
for every branch target, we have a list of possible call sites. Because the extracted data
still contains equivalence classes represented as string literals, we translate the data into
actual address locations in the following, second pre-processing step.

Step 2: Metadata Generation. The second step generates the final metadata file app.cfg
based on a binary analysis of the compiled application app.elf and the extracted
equivalence classes app.res. We use Capstone [30] to inspect the application binary
and translate the string-based equivalence classes to address-based equivalence classes.
The extracted data represents equivalence classes in form of a lookup table indexed by
function and virtual method names, i.e., the targets of indirect call sites. Each entry in
the table contains a list of call sites allowed to branch to that function or virtual method.
The call sites are identified by the name of their parent function and their offset within
the function. Looking up the function names and virtual methods in the disassembled
application binary, we are able to translate the entire lookup table into actual address
locations.

As the first pre-processing step only generates equivalence classes for ordinary functions

120
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

and virtual methods, we still have to generate legitimate branch targets for indirect jumps.
For this, we use the binary inspection to identify the type of indirect jumps (e.g., a switch
statement) and then extract all addresses of legitimate jump targets within the scope
of the identified type. Like this, a switch statement is only allowed to perform jumps
within the switch body. Unfortunately, for some indirect branches, the target addresses
cannot be identified statically, because, for example, they are inferred from program
input during runtime. In such cases, like for other state-of-the-art forward-edge CFI
solutions, we refrain from generating metadata, leaving those branches unchecked during
runtime. Note that indirect jumps to functions, as generated by tail call optimizations,
are handled the same way indirect calls are handled.

Step 3: Framework initialization. After the pre-processing phase, the application is ready
to be executed normally with our CFI monitor passively verifying its indirect CF transfers.
To start monitoring the application, the generated CFG metadata file together with the
application binary are loaded into the monitor. The monitor itself first initializes the
CoreSight subsystem by configuring the ETM to generate traces whenever threads of the
monitored application are schedule on the corresponding cores (CoreSight does not trace
applications by default). Next, the monitor invokes the application, which then gets
initialized and scheduled by the SK as usual. At this point, our monitor moves into a
waiting state until the first traces are ready to be processed. As shown in Figure VI.2b,
processing traces is done in two main steps, the trace collection and trace analysis with
CFI checking.

Trace Generation

We leverage ARM CoreSight to trace the runtime CF of the monitored program, i.e.
sequences of basic-blocks, which we define as blocks of linear instructions ending by a
CF transition such as exception, branch, or return instruction. At runtime the hardware
generates CF traces in the Embedded Trace Buffer (ETB). We define a threshold lower
than the maximum buffer size in the ETB: when the ETB write pointer reaches the
threshold, CoreSight subsystem raises an ETB full hardware interrupt (monitoring
request) for the buffer to be read and emptied. Traces are generated even when the ETB
is full; in this case, we either loose them or they overwrite the old traces in the buffer.

Trace Collection

Figures VI.1 and VI.3 describe the following steps applied by the system when a
monitoring request is raised by CoreSight hardware interrupt:

0 The monitored application executes alone on CPU core 0, because its priority is
higher than spinner thread’s one.

1 CoreSight framework generates a hardware interrupt, routed to the server applica-
tion running on CPU core 1. The server thread decides whether the monitoring
request is ignored or handled. Section VI.3.1 describes the decision process.

121

Figure VI.3: Sequence diagram for monitoring request handling

2 The monitoring request has been accepted. First, the server indirectly stops the
monitored application by setting spinner thread’s priority to a higher value than
the one of the monitored application; i.e. spinner thread preempts the monitored
application. Second, it disables CoreSight tracing. If we first disable CoreSight
tracing and then pause the monitored application execution, the application may
execute CF transitions that would not be traced after tracing has been disabled
and until the application is paused. The server then calls the trace collector, and
waits for it to return.

3 The spinner thread executes alone on CPU core 0. It indefinitely suspends the
core by executing a WFI (wait for interrupt) instruction in a loop. At the same
time, the trace collector reads traces from ETB CoreSight local storage and copies
them to the trace storage in main memory. Thus, a monitoring request cannot be
triggered during the trace collector execution, since the monitored program has
been stopped.

4 After the trace collector has returned, the server stops spinner thread by resetting
its priority to its initial value.

5 The trace analyzer is triggered by a statically defined periodic timer. If the trace
storage in main memory contains data, it analyzes them, performing CFG path
reconstruction and CFI checking (more details in the following section).

In the time to handle an ETB full interrupt (i.e. when the interrupt is triggered until
the server stops the monitored program), the monitored application could run CF
instructions to be stored in the ETB. CoreSight subsystem would generate further traces
to be stored into the ETB, until the buffer is full. Once the ETB is full, upcoming traces
are lost. Thus, the ETB threshold configuration should allow a sufficient remaining
buffer capacity to contain the maximum amount of traces that can be generated during

122
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

the time to handle an interrupt (this configuration step is detailed in Section VI.4). An
ETB threshold misconfiguration is a resource allocation issue: PikeOS system raises
a health-monitoring event to take further action, for example stopping the monitored
program and the monitoring framework.

Trace Analysis with CFI Checking

The purpose of the trace analysis is to determine whether the observed CF traces
correspond to a normal or a malicious execution of the monitored program. This
operation can split into 2 main steps: runtime CFG path reconstruction from CoreSight
traces and CFI checking with the reference defined in the pre-processing stage.

CFG Path Reconstruction. The traces generated by the ETM and received by our monitor
include common data such as the application thread’s UID and the virtual address of the
recorded instruction. Additionally, traces of indirect branches include the destination
address, while direct branches omit the address and only include the branch decision,
i.e., whether the branch was taken or not. Other data in the traces is not relevant to our
CFI monitor.

We use the data provided in the traces to reconstruct the path taken by the application
through the CFG. For this, our monitor utilizes the OpenCSD library [99] that takes the
application’s binary as input and generates a sequence of basic blocks resembling the
application’s execution path. A basic block is identified by its start and end address, as
taken from the application’s binary. The end address of a basic block always points to
a set of control-flow instructions such as direct or indirect branch (including function
returns). The reconstruction also preserves the UID and attaches them to basic blocks
so that our monitor is able to enforce CFI on a per-thread granularity. Finally, the
reconstruction sequentially emits the basic blocks to the CFI checking, where CFG
conformity is validated.

CFI Checking. With the sequence of executed basic blocks, our monitor is able to perform
per-application forward-edge and per-thread backward-edge CFI checking. For forward-
edge CFI, the monitor consults the CFG metadata provided through the pre-processing
phase. For every basic block terminating in a direct or indirect function call, the monitor
looks up the next basic block’s start address in the metadata. This lookup yields a list
of call site addresses that are allowed to branch to the next basic block. To validate
CFG conformity, the monitor verifies that the current basic block’s end address (i.e., the
call site address) is present in the list. If the address is not found, a CFI violation has
been detected.

For backward-edge CFI, the monitor does not rely on static metadata, but maintains a
per-thread shadow stack. The monitor first evaluates the UID attached to a basic block
and then looks up the shadow stack corresponding to the identifier (i.e., the thread).
Next, for every basic block terminating in a direct or indirect function call, the call’s
return address is pushed onto the shadow stack. For every basic block terminating
in a function return, the following basic block’s start address is compared against the

123

top-most address stored on the stack. If the addresses are not equal, a CFI violation has
been detected. Otherwise the return is valid and the top-most address is removed from
the stack. To cope with tail call optimization or otherwise shortened return sequences
(e.g., longjmp), where the top-most address on the shadow stack is not equal to the next
basic block’s start address, the monitor pops addresses from the stack until a match is
found or the bottom of the stack is reached. Like this, the monitor is able to ignore all
return addresses skipped by the longjmp.

CFI Violation Reporting. Finally, if our monitor detects a CFI violation, it notifies the
SK, which then is able to react accordingly, as described in Section IV.4.3.

VI.2 Model and Problem Statement

The objective is to formalize the problem of integrating the security monitoring framework
in a mixed-criticality system with hard timing constraints.

VI.2.1 Threat Model

We consider any threat targeting the monitored application’s CF at runtime. A clas-
sical example is a memory corruption exploit such as Return-Oriented Programming
(ROP)[131]. Because memory errors are unlikely to hide in certified software, non-critical
open software (e.g. multimedia, networking) are easier targets in mixed-criticality sys-
tems. We also scope intrusions bypassing standard CF defenses, such as Data-Oriented
Programming [71]. Similarly to ROP based threats, the attack exploits a memory
corruption to finally perform privilege escalation; it can bypass CF defenses, since it
hijacks indirectly the CF through the modification of non-control data like function
arguments or internal parameters such as loop conditions. Hence, we identify a threat as
a misuse of a program at runtime, so that it deviates from its intended execution.

Any task in the MCS can be exposed to attacks and our framework must be able
to monitor any task in the system. Though, we prioritize threat scenarios where the
attack is initiated from low-criticality software, because in a MCS, these software are
generally more accessible to an adversary (e.g. networking, user interfaces...) than
high-critical software. Additionally, since high-critical software follow rigorous processes
for the development and verification/validation, they are less likely to have software bugs
compared to non-critical software.

VI.2.2 Task Model

Task Definition

We define a task as a stream of jobs: τi = {Ji,1, Ji,2, ..., Ji,j, ...}. We represent the
real-time task τi with implicit deadlines as τi = (Ci, Ti, Pi), where Pi, Ci respectively
represent the priority and the worst-case execution time (WCET) for a job Ji,j, and Ti

124
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

the minimum inter-arrival time between successive jobs Ji,j, Ji,j+1 of the task τi. We
note ai,j, si,j, and di,j, respectively the arrival, start, and deadline times of the job Ji,j.

Monitored Application

We model the monitored application with a periodic task τA, so that τA = (CA, TA, PA).
For this task, a job missing its deadline potentially leads to reduced availability and
poor user experience: e.g. delayed frames in a rear-view camera, discontinuous video
playback.

Secure Monitor Application

The system executes the secure monitor after trapping a hardware interrupt, which notifies
that CoreSight Trace buffer is full (Section VI.1.1). Thus, we represent the secure monitor
with an event-triggered task τM , so that τM = (CM , TM , PM). The secure monitor’s
execution is intrinsically linked to the monitored application’s execution, since the amount
of triggered monitoring requests depends on the amount of branch instructions (e.g.
function call, direct branch, return) executed by the monitored application at runtime.
Hence, once the monitored application has finished its execution and until its next release
time, no more monitoring requests will be generated: τA idle ⇒ τM idle (Property VI.1).

The inter-arrival time of monitoring requests depends on the rate of generated ARM
CoreSight interrupts (i.e. full trace buffer events), which depends on the execution path
of the monitored program. Since the minimum buffer filling rate corresponds to the
minimum inter-arrival time, τM is a sporadic task.

The secure monitor τM is a soft task: a job of τM missing its deadline does not provoke
serious consequences, though it affects security monitoring coverage. A monitoring request
should either be immediately served or ignored. It cannot be delayed: if τA continues
to execute after the trace buffer is full (i.e. after a monitoring request arrives), old
monitoring traces in the buffer will be overwritten by newly generated traces. Therefore,
τM should be able to preempt and cause temporal interference on the monitored task
τA. Since we have to contain the interference so that τA can meet its deadlines, even
under the worst-case monitoring (minimum inter-arrival rate), we propose to host τM in
a periodic server (description in Section VI.3.1).

VI.2.3 System Model

For our analysis, we simplify the framework described in section VI.1 by considering only
one processor core, running τA the monitored task and τM the monitor. As described in
Section VI.1.1 with Figure VI.3, the spinner is the actual thread running on the same
CPU core as the monitored application to prevent it from running while trace collection
is executing on an other core. The spinner thread’s execution depends on the trace
collector thread: the server enables the spinner at the same time as the trace collector
and deactivates it when the trace collector returns. Thus, to simplify the representation,
we identify the monitor task as the trace collector.

125

Table VI.1: Evaluation metrics for one period of execution of Task τA

Metric Definition

Performance rA
M = BA

M

CA
τA’s response time slowdown

Security

rA
cov = nA

mon

nA
mon+nA

ignored

runtime monitoring coverage
with nA

ignored, nA
mon

respectively the count of
ignored and accepted
monitoring requests

wuncov
maximum time window
without monitoring

wdetect
maximum time window
from the time the attack
starts until it is detected

In this system at any time of execution, only one of τA and τM tasks is executing at
the most. Both tasks execute using fixed priority based preemptive scheduling (e.g. Rate
Monotonic).

VI.2.4 Problem Statement

Objective

Our objective is to propose a sporadic task guarantee test to decide whether an upcoming
job request of τM can be taken or ignored, in function of pre-identified monitoring
coverage issues (Section VI.2.4), without compromising the timing constraints of task τA.
In summary, we target the following objectives:

• Limit and predict the monitoring overhead to guarantee task τA’s timing constraints.

• Minimize the attack surface on the execution of τA.

Table VI.1 introduces performance and security metrics to evaluate our monitoring
framework.

Monitoring Time Overhead

We define a bounded execution time for τM , during the execution of a job of τA (i.e. during
the period TA). Therefore, we assign the budget BA

M to the monitoring task τM : BA
M =

NA
M ∗ CM , where NA

M ∈ N∗ is the maximum amount of jobs of τM , that can be scheduled
during the execution of one job of τA. Hence, we could represent both monitoring and
monitored applications by a single periodic task τ

(monitoring)
A = (C(monitoring)

A , TA, PA),
with C

(monitoring)
A = CA + BA

M . Consequently, using the time overhead definition from
methodology (Section IV.5.2) we derive:

126
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

rA(monitoring) = C
(monitoring)
A

CA

− 1 = BA
M

CA

(VI.2)

For the rest of the chapter, we use the notation rA
M = r

(monitoring)
A to designate the time

overhead for monitoring.

Control-Flow Monitoring Coverage

Table VI.2: Matrix of monitoring coverage issues
n

(j)
ignored b

(j)
M Coverage issue(s)

0 0 none0 > 0
> 0 0 minimize wuncov

> 0 > 0 minimize wuncov, maximize rA
cov

For a given time budget BA
M , different monitoring strategies can apply, depending on

the characteristics of the monitored task τA:

• Maximizing runtime monitoring coverage (rA
cov) for a period of execution

TA, the objective is to avoid ignoring τM ’s job requests, while the budget BA
M has

not been completely used after τA’s job has terminated.

• Minimizing the maximum time window when monitoring is disabled
(wuncov) for a period TA. We consider it easier for an attacker to perform a malicious
operation in larger unprotected time windows. Hiding an intrusion becomes more
complicated when the security protection is non-contiguous: malicious activity
should be synchronized to run benign execution in the non-contiguous time slots
when monitoring is running.
To illustrate the point above, let’s take the example of a configuration where all
monitoring requests are accepted until the budget BA

M is exhausted. An attacker
could typically attempt a Denial of Service attack against the monitoring task τM ,
so that τM is highly involved in a short period after the release time of τA’s job
and quickly becomes idle. The runtime coverage of the monitored job’s CF can be
disabled for a maximum time wuncov = max(0, TA − NA

M ∗ TM).
To adapt the monitoring strategy for the monitored task, we observe two metrics
(VI.3) at deadline time of the job JA,j , which we use for evaluating coverage issues
described in Table VI.2.

n
(j)
ignored: the amount of ignored jobs of τM

b
(j)
M : the remaining budget for τM

(VI.3)

127

Threat Detection Time

As defined in Table VI.1, wdetect is the time for the framework to detect an attack from
the moment it was initiated. To be able to set an upper bound for wdetect, we should
set a time constraint on τM , so that if no monitoring request has been received during
a specified time window, we generate an additional monitoring request. Since we do
not introduce such mechanism in this work, we can only provide the lower bound for
detecting a threat as the minimum time for accessing CF traces: wdetect ≥ TM + CM .

VI.3 Safety-Aware Control-Flow Monitoring Solution Design

VI.3.1 Predictable Control-Flow Monitoring
Solution Overview

Similarly to Hasan et al. [67], we propose to use a server for executing security tasks:
we limit the CF monitoring execution time with a periodic server for handling sporadic
monitoring job requests of the task τM . The server has a predefined time budget to
serve monitoring requests, which is consumed when monitoring jobs execute. When the
budget is lower than the WCET of monitoring jobs (CM), the server rejects monitoring
requests. As described in Section VI.2.4, our goals are, given a static monitoring time
budget, firstly to minimize the maximum time window when monitoring is disabled
wuncov, secondly to maximize CF coverage rA

cov.
We introduce the following approach to limit the maximum time with disabled

CF monitoring wuncov. With a fixed time budget Bw so that CM ≤ Bw < TA, the
system can accept a maximum of Nw monitoring requests, with Nw = � Bw

CM
�. We

define the monitoring time window Tw = TA

Nw
. Hence, without prior knowledge of the

monitored execution, if we allocate a budget Bw for monitoring jobs during a period
TA of the monitored task, the lower bound of the maximum uncovered time window
is: min(wuncov) = Tw − CM . This means that for each monitoring time window Tw, we
can accept at least one of the received monitoring requests; We split TA in Nw periods
{Tw,1, Tw,2, ..., Tw,Nw} of time Tw, which we call monitoring windows, and guarantee
a minimum budget to handle one request in each. To improve CF coverage (rA

cov),
the solution can accept more than one monitoring request in a monitoring window:
∀i ∈ N∗ and i < Nw, ∀j ∈ N and i < j ≤ Nw, if no request is received during a
monitoring window Tw,i, the budget Bw,i can be used in future monitoring windows Tw,j

included in the period TA of the job being currently monitored. We allocate the budget
Bw,1 = CM to the first monitoring window Tw,1; then, ∀i ∈ N∗ and i < Nw, if the budget
Bw,i is not consumed in the ith period Tw,i, it is passed to the next period Tw,i+1, so that
Bw,i+1 = CM + Bw,i.

We then adapt our solution to increase CF coverage rA
cov: we set an additional

time budget Br for handling irregular monitoring requests. Our objective is to avoid
the situation when monitoring requests are rejected in the beginning of the period TA,
while the server has not entirely consumed its time budget at the end of TA (Table VI.2).
Thus, we propose to accept the Nr first monitoring requests in the period TA of the

128
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

monitored task (with Nr = � Br

CM
�), For a predefined time budget BA

M = Br + Bw the
ratio between Br and Bw must be adapted in function of the monitored task execution.

System Model

We substitute the sporadic monitoring task τM by server tasks, which accept or reject
monitoring requests following the approach given in the previous section. Our system is
now composed of the following set of periodic tasks {τA, τS1, τS2, ..., τSNA

M
}, where τA is

the monitored task, and {τS1, τS2, ..., τSNA
M

} the set of server tasks, with BA
M the total

monitoring time budget for one period TA so that BA
M = NA

M ∗ CM . All server tasks
have same parameters: ∀i ∈ N∗ and i ≤ NA

M , τSi = (CSi, TSi, PSi), so that CSi = CM ,
TSi = TS and PSi = PS. Each server runs with the same period as the monitored task
(TS = TA), can handle on monitoring request (CS = CM), and is able to preempt τA,
(PS > PA).

We divide the set of server tasks in two subsets: {τS1, ..., τSNr} the set of tasks for
improving rA

cov and {τSNr+1, ..., τSNr+Nw} the set of tasks for reducing wuncov, as described
in Definition (VI.4).

∀i ∈ N∗, ∀j ∈ N :

1 ≤ i ≤ Nr ⇒

aSi,j = aA,j

dSi,j = dA,j = aA,j + TA

1 ≤ i − Nr ≤ Nw ⇒

aSi,j = aA,j + (i − Nr − 1) ∗ Tw

dSi,j = dA,j − CM ∗ (Nw − (i − Nr))

(VI.4)

Server Implementation

By construction, it is not possible to receive a monitoring request while an other request
is currently handled: at any time t, only one server task τSi can be active. Thus,
we define the periodic server τS = (CS, Qr, Qw, TS), as the set of monitoring periodic
tasks τSi, ∀i ∈ N∗ and i ≤ NA

M , where Qr = Nr ∗ CS, Qw = Nw ∗ CS, BA
M = Qr + Qw.

Figure VI.4 provides a schedule example involving a periodic task monitored by such
server: the 5th monitoring request is ignored to allow the monitored task to meet its
deadline, traces generated between t = 16 and t = 17 are lost.

We introduce br(t) and bw(t) the budget values at time t of execution for the task τS.
At each new release time t of τS, we reinitialize budget values. br(t) = Qr, and bw(t) = CS.
Then, for each monitoring window Tw = TS

Nw
in the monitoring period TS, the budget

Bw is incremented by CS, The budget bw(t) is cumulated during a job’s execution: if no
monitoring request is received, it can reach the maximum value in the last monitoring
window: ∀t, max(bw(t)) = Nw ∗ CS = Qw. While the replenishment strategy of br(t)
corresponds to the Deferrable server algorithm [147, 97] (with τDS = (QDS = Qr, TDS =
TS)), the one of bw(t) budget follows the priority exchange server approach [145] (with
τP E = (QP E = CS, TP E = Tw)). Even though our method behaves like a PE server
during a monitoring period TS, time budget cannot be cumulated through consecutive
periods TS (i.e. bw(t) is periodically reinitialized).

129

Figure VI.4: A system schedule example, with τA = (CA, TA), τM = (CM , TM), τS =
(CM , CM , �TA

Tw
� ∗ CM , TA), and defining CM = 2, TM = 3, CA = 12, TA = 20, Tw = 6

System Schedulability

We first consider the system composed of the periodic server τS and monitored τA tasks.
Since monitoring jobs run only by preempting the monitored task τA (Property VI.1),
we can represent the server execution time as an extension of the monitored task’s
execution time: we define the periodic task under monitoring as τ �

A = (C �
A, T �

A, P �
A), with

C �
A = CA + BA

M , P �
A = PA, and T �

A = TA. In this context, the system can be modeled as
a unique periodic task: the system is schedulable if C�

A

T �
A

= CA+BA
M

TA
≤ 1.

We then generalize the system, adding a set of N periodic non-monitored tasks.
The task set can now be modeled as {τ �

A, τ1, τ2, ..., τN}. The criticality level of the
N non-monitored tasks is independent of the criticality of the monitored task; i.e.
∀i ∈ N, 1 ≤ i ≤ N , the priority Pi can be higher or smaller than PA. As an example,
applying RM scheduling policy induces that the system is schedulable if [102]:

CA + BA
M

TA

+
N�

k=1

Ck

Tk

≤ Ulub = (N + 1) ∗ (2
1

N+1 − 1) (VI.5)

As PS > PA, to avoid breaking timing constraints of tasks with higher priority compared
to τA, PS must be configured so that: ∀τ = (C, T, P), τ /∈ {τA, τS}, PA < P ⇒ PA <
PS < P . Hence, we can apply CF monitoring on a low-critical task without compromising
the schedulability of the system.

VI.3.2 Application-Profiling Based Anomaly Detection
Motivation

We intend to use the framework to limit the performance impact for monitoring, without
considering the worst-case monitoring overhead in the system design. For such use-case,
we cannot guarantee a full coverage of the monitored CF at runtime. Even though we
cannot collect all CF traces, we are still able to monitor the behavior of the CF through
the observation of inter-arrival times of monitoring (trace collection) requests. With this
metric, we can observe how many basic-blocks the monitored application executes for a

130
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

fixed time period. Therefore, our framework combines two levels of observation of the
monitored CF: at basic-block level with CF trace collection and at higher level observing
the rate of monitoring request inter-arrival times. While trace collection is discontinuous,
high-level CF observation applies on the full execution of the monitored task.

Anomalous Trace Generation

CF and Data-Flow based attacks involve the use of gadgets chains, which are sequences
of short basic-blocks. Because it is likely to execute shorter basic-blocks compared
to a benign program, the execution of such malicious program should cause a higher
amount of monitoring traces over a given time period; i.e. a shorter inter-arrival times of
monitoring requests. Therefore, we expect to detect malicious activity at runtime from
the observation of anomalous inter-arrival times of monitoring jobs.

Application Profile Generation

We propose to build an application-profiling based ADS, which counts the number of
monitoring requests received during a fixed period of time. We select an ADS observation
window corresponding to the monitoring window Tw, although other values could apply,
because our goal is to detect attacks attempting to hide malicious activity in unmonitored
time windows wuncov. For each time monitoring window Tw of the server within the period
of a monitored job (τA), we monitor n

(Tw)
ignored, n(Tw)

r , and n(Tw)
w the counts of monitoring

requests respectively rejected, accepted by the server using Qr budget, accepted with the
budget Qw. For each monitoring requests count signal, we define a range of authorized
values (from the minimum to the maximum), after the observation of the monitored task
execution under normal conditions. The set of window data defines the application profile
to be used. After each monitoring window of execution, we compare signal values with
the application profile: whenever one value is out of the predefined range of authorized
values, the ADS identifies the monitored application as anomalous.

VI.3.3 Monitoring Framework Implementation
Predictable Monitoring Server Integration

We integrate the periodic server solution to the hardware-assisted tracing framework
described in Section VI.1 (Figure VI.3), by introducing two additional routines in the
monitor application: the synchronizer and the ADS service. The synchronizer thread
updates br(t) and bw(t) budget values in function of the time of execution in the system
(Section VI.3.1). The ADS service specified in Section VI.3.2 runs sequentially after the
synchronizer (i.e. after monitoring windows Tw) on the monitoring CPU core 1, so that
it does not cause temporal interference with the monitored task.

The server accepts a monitoring request for trace collection at time t, if at least one
of the remaining budget times bw(t), br(t) is higher than CM . It then increments the
corresponding counter of requests in the current anomaly detection window Tw (either
n

(Tw)
ignored, n(Tw)

r , and n(Tw)
w). After measuring the time spent in the trace collector thread,

131

the server subtracts it from remaining budgets bw(t), br(t). If the trace collector has not
returned before a new job activation of τA, only the time consumed after the new job
activation is considered for updating server’s budget.

Server Configuration Process

CM , TA, and BA
M server parameters must be known before starting the configuration

process. The objective is first to define the ratio rwr = Qw

BA
M

to assure a workable trade-off
between monitoring coverage and detection time and accuracy, second to define the
application profile for the ADS. We divide the configuration process in 2 phases: training
and validation. We start the training, by determining the ratio rwr, so that the maximum
budget BA

M is consumed for CF monitoring. We initialize the server with rwr = 100%
(corresponding to the shortest monitoring window for fine-grained monitoring). We
run a set of executions of τA monitored with this server setup. After each execution,
if the coverage ratio rA

cov does not reach its maximum value (i.e. the budget time is
not totally used) and if the monitoring window does not reach the maximum value
Tw = TA, we update monitoring budgets of the server as follows: Qr = Q(old)

r + CM and
Qw = Q(old)

w − CM . Once the ratio rwr is known, we generate the application profile
for the ADS as explained in Section VI.3.2, using a set of system execution samples.
In the validation phase, we test the application profile on additional normal traces of
execution: if the ADS detects anomalies (i.e. false-positives), we go back to the training
step, setting the ratio rwr manually; our approach consists of decreasing the ratio rwr,
because we expect the observation of monitoring requests to be more stable for longer
monitoring time windows.

System Deployment Process

We propose the following method to deploy our monitoring framework.

1 We derive WCET values CA and CM at design time from a predefined amount of
repeated measurements.

2 We define a maximum time overhead ratio rA
M for monitoring, so that rA

M = BA
M

CA
.

rA
M value depends on the trade-off between the performance impact limitation and

the CF monitoring coverage at runtime.

3 Knowing rA
M and CA the worst-case execution time of the monitored application,

we can derive the period TA as TA = CA ∗ (1 + rA
M) = CA + BA

M .

4 We build the application profile for the ADS, as described in Section VI.3.3, using
a set of execution samples. After determining the ratio between Qr and Qw so that
BA

M = Qw + Qr, we configure the final server as τS = (CM , Qr, Qw, TA).

5 We finally deploy the framework with the server configuration and application
profile defined in previous step.

The security evaluation in Section VI.6 provides an example of system deployment.

132
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

��� ��� ��� ���

����������������������������

����
����
����
����
���

���
�������������

���������
�����

�������
�������
�������

���������
���������

�����
�����������

�������
���������
�������

��
���

��������
�����

�
�
�
��
�
�
��
�
�
�

Figure VI.5: Execution time for TACLeBench tested applications (no monitoring)

Evaluation Outline

After defining our evaluation setup in Section VI.4, we study the performance overhead
for full runtime CF coverage with trace collection in Section VI.5. In Section VI.6, we
constrain our framework to a maximum rA

M = 10% of time overhead for trace collection,
to then evaluate our ADS service leveraging security metrics from Table VI.1.

VI.4 Experimental Setup

VI.4.1 Application Test Set
We define a set of test programs to represent jobs executed by the monitored task τA. For
our analysis, we consider that τA periodically runs the same application. We reproduce
every measurement 100 times to perform static analysis. We evaluate our framework on
a panel of single-threaded 23 applications from TACLeBench benchmark [56]. We select
these applications since they are self contained (no library or system calls) and they
represent typical multimedia applications focusing on computational operations: e.g.
audio beam former (audiobeam), md5 hash function, MPEG2 motion estimation, and
simulations of real embedded embedded controller applications (lift and powerwindow).
The execution time varies in the set of tested applications from 40µs for duff to 200ms
with mpeg2 (see Figure VI.5).

In addition to testing representative programs, our goal is to determine the worst-case
monitoring situation; i.e. the worst-case monitored application. In the context of CF
monitoring, a worst-case program is a program that generates the highest amount of
traces. Because the execution time of a monitoring job (trace collection) is constant

133

Algorithm 2: Pseudocode for infbr, inffcall, and infrec programs
1 Function infbr()
2 while true do
3 /* nothing: infinitie looping */
4 return;

5 Function f()
6 return 1;

7 Function infcall()
8 while true do
9 f();

10 return;

11 Function rec(int i)
12 if i ≤ 0 then
13 return 0;
14 return rec(i − 1);

15 Function infcall()
16 while true do
17 rec(1000);
18 return;

for a given buffer size, the worst-case corresponds to the minimum inter-arrival time
of CoreSight hardware interrupts (monitoring requests).It is difficult to provide such
a worst-case because of non-trivial factors in CoreSight trace formatting process [14].
In work [92], we introduced infbr as the worst-case program. However, we observe
a higher overhead for some of TACLeBench applications (performance evaluation in
Section VI.5.1). Hence, our evaluation considers three pessimistic applications for CF
monitoring: infbr, inffcall, and infrec, described in Algorithm 2. These programs
generate high amounts of branches (function call, return, direct branch, and conditional
branch) inside non-ending loops. The worst-case monitored program for this work
corresponds to inffcall (Section VI.5.1).

VI.4.2 Hardware Environment

We use the ARM Juno development platform [77] to implement and test our framework
on the cluster of 4 Cortex-A53 CPU cores. According to ARM CoreSight documentation
[15], the size of CoreSight trace buffer can be configured from 4B to 64KB. The time
for collecting the traces depends on the size of the buffer: the bigger the buffer, the more
traces to copy to main memory. Hence, the WCET of the monitor task CM depends on
the buffer size.

134
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

VI.4.3 Embedded Trace Buffer Size Configuration
To detect security threats at runtime, one key factor is responsiveness: the faster the
threat is detected, the quicker the system can initiate defense actions (e.g. application
abort). In the context of security monitoring based on ARM CoreSight tracing, the
responsiveness depends on the time for the data to be accessed by the security monitoring
service. Traces can be accessed, after the hardware interrupt is raised when the ETB
buffer is full. The shorter the ETB buffer, the faster it is filled. Hence, the shorter the
buffer, the better the monitoring responsiveness.

To achieve fine-grained monitoring, we determine in the remainder of this section a
suitable buffer size configuration to run the evaluation of the framework (Sections VI.5
and VI.6). Because CoreSight hardware enables trace compression in our setup, we
investigate the impact of the size on the ratio between synchronization data and usable
CF traces, to then show that even though the trace collection only depends on the buffer
size, it is indirectly affected by the monitored program.

��� ��� ���

���������������

�

�

�

�

�

��

�
�
��
�
��
�
�
�
��
��

��
�
�
�
��

�
��

�

Figure VI.6: Trace buffer usability for different buffer sizes

Trace Buffer Usability

To reduce memory storage, CoreSight hardware enables trace compression. The trace
buffer contains actual traces of the monitored core execution, as well as synchronization
data. Usable traces include basic-blocks executed by the program as well as trapped
exceptions on the monitored core. The scheduler timer is the only exception type trapped
in our setup.

135

Figure VI.6 shows the ratio of basic-blocks per byte of buffer storage, monitoring
powerwindow program. We observe a decreasing average value and higher variations in
measurements when the configured buffer size decreases. We also note a higher amount
of null samples for buffer sizes below 1KB. Hence, we propose to set the buffer
size to 2KB for our framework.

��� ���

��������������������������

���������
�������

���������
�������������

�������
����

�����
�����

�������
��������

����
���

�������
�����

��������
������

����
���

�����
����
��

�����������
���������
�������
���������

���

�
�
�
��
�
�
��
�
�
�

Figure VI.7: Extra buffer size distribution for all applications (2KB buffer)

Extra-Buffer Size

After the monitoring request (i.e. CoreSight hardware interrupt) is generated and until
it is handled by the monitor for copying the traces back to memory, the monitored
program continues to execute (Figure VI.3); during that time, CoreSight hardware
possibly stores additional traces in the buffer. The quantity of additional traces depends
on the monitored application execution (Figure VI.7): For a buffer of 2KB size, our
measurements are between 64B and 1936B, and they remain in the great majority below
300B. We also observe that the buffer size configuration does not significantly impact
this quantity as illustrated with inffcall program on Figure VI.8.

Final Buffer Configuration

The trace collection designates the time phase, when the monitored application is
preempted by the secure monitor for serving an arriving monitoring request. This
operation consists of copying the traces stored in the ETB buffer into main memory. We
designate tcopy the time for trace collection. The maximum time tcopy corresponds to CM

the WCET time for executing trace collection.

136
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

���� ���� ���� ���� ����� ����� ����� �����

��������������������������

�

���

���

���

����

����

����

����

����
�
�
�
��
��
�
�
��
�
�
��
�
��
�
��
�
��
�
�

Figure VI.8: Extra buffer size distribution for inffcall application

The time for collecting traces depends on the quantity of data to copy: tcopy depends
on the buffer size. By construction, since monitoring jobs are triggered when the ETB
buffer is full, tcopy value is constant for a fixed buffer size. Figure VI.9 shows indeed
a linear relation between the buffer size and the trace collection time for all tested
programs and buffer size configurations: tcopy = αcopy ∗ s, with s the actual buffer size
and αcopy a constant. With buffer sizes between 1KB and 63KB, αcopy is comprised
between 38ns/B and 39ns/B for 75% of measurements. More specifically with a buffer
size configuration of 2KB, we note a maximum ratio of αcopy = 44ns/B.

Excepting pessimistic programs which we consider as anomalies, we measure extra-
buffer sizes below 700B. We can then determine the WCET value CM for trace collection
with our configuration, using the worst-case actual buffer size (2748B) and worst-case
coefficient (αcopy = 44ns/B): CM = 44 ∗ (2048 + 700) = 121µs.

VI.5 Control-Flow Monitoring Performance Overhead
The objective in this section is to evaluate the performance overhead for our monitoring
framework, following the approach described in Section IV.5.2:

• We evaluate the maximum time overhead rA
M for the framework, on a set of

representative and pessimistic applications. We suppose that the time budget BA
M

is long enough, for the server task τS to accept all arriving monitoring requests.

• We also analyze additional infrastructure costs for integrating the monitoring
module: i.e. specific hardware requirements and memory overhead.

138
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

� �� �� �� �� ��� ��� ���

�����������������������������������

���������
�������

���������
�������������

�������
����

�����
�����

�������
��������

����
���

�������
����

���
�����
����
��

�����������
���������
�������
���������

���
�
�
�
��
�
�
��
�
�
�

Figure VI.10: Time overhead for tested applications, with trace copy

21µs (with 1µs standard deviation). Since the program is composed of a very short
routine in an infinite loop, we consider constant trace collection copy time (CM = 121µs)
and inter-arrival time (TM = 21µs). BA

M = NA
M ∗ CM = CA

TM
∗ CM . Hence, rA

M = CM

TM
.

From our measurements, the worst-case corresponds to rA
M = 605% in average, with 53%

of standard deviation. Similarly, we compute 128% and 367% average overhead ratios
respectively for infbr and infrec programs (with standard deviations below 18%).

CoreSight Internal Time Overhead

The second overhead Toverhead_internal corresponds to the execution time overhead of the
monitored job, when the server rejects all monitoring requests (without trace collec-
tion). Toverhead_internal originates from CoreSight hardware implementation: τA is never
preempted by τS, and there is no kernel overhead on the monitored core for handling
CoreSight interrupts, since these are routed by the hardware interrupt controller to a
different CPU core (core 1 running the server thread on Figure VI.3).

We systematically observe a slightly longer execution time for the application when the
tracing framework is up. The overhead is among all tested applications and buffer sizes
between 500ns and 4µs. Probably because of the high variability in time measurements,
the results do not reveal a correlation between Toverhead_internal and the total execution
time of the monitored application (Figure VI.11).

Time Overhead for CFG Path Reconstruction and CFI Checking

As mentioned in the beginning of this section, we consider an additional task for analyzing
the collected traces. The trace analysis can be decoupled from trace collection and

139

execute in parallel to the monitored application. We define the corresponding time
overhead for analyzing a full buffer of traces Tanalysis. We decompose the trace analysis
into two subtasks, following the description in Section VI.1.2: for reconstructing the CFG
path of the traced application and CFI checking. We define Tcfg and Tcfi as the execution
time respectively to perform CFG path reconstruction and CFI checking. Hence, since
CFI checking can only apply on reconstructed CFG path, both tasks are sequential; i.e.
Tanalysis = Tcfg + Tcfi.

After the monitor copies the batch of traces from the ETB to system memory, these two
task are invoked by the SK. In the initial paper [92], we measured the time taken by the
tasks to process 64 KiB of trace data to be approx. Tanalysis = 1s (between [0.92s, 1.10s]
with 99% confidence). In our observations, 95% of the overhead is contributed by the
CFG path reconstruction (Tcfg), while the CFI checking only requires 5% (Tcfi). CFI
checking takes approx. between [1.3ms, 1.5ms] for forward edges and [51.7ms, 61.6ms]
for backward edges, both with a 99% confidence. This huge overhead for the CFG path
reconstruction directly stems from the use of non-optimized libraries and the overhead in
the Linux VM that hosts these two tasks. In Section VI.7.2, we describe design strategies
to reduce this overhead for a real-world deployment.

��� ��� ��� ���

���

����

����

����

����

����

����

����

�
�
��
��
��
�
�
��
�
�
��
�
�
�
��
�
��
�
�
�
�
�
��
�
�
��
�
�
�
��
�
�
�
��
�
��
�
�
��
�
�
�

�����

����

���������

����

���

����

���������

�������

�������

�������

�����

���������

���

��

�������

����

��������

���������

�����������

�����

���

�������

�������������

Figure VI.11: Time overhead for tested applications, without trace copy

140
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

VI.5.2 Additional Hardware Costs for Integrating the Framework

Our framework requires additional hardware to perform monitoring. Of course, ARM
CoreSight – or an equivalent processor tracing feature for CPU architectures other
than ARM – is a prerequisite for the hardware platform to support hardware-assisted
control-flow monitoring deployment. As disclosed in Section VI.1.1 with the system
architecture, the trace collection and trace analysis applications require a dedicated
set of CPU cores to limit potential interference with the monitored application; in our
experiment, we use one CPU core for each application (i.e. two additional cores for
monitoring).

In addition to the time overhead, the framework comes with a memory overhead:

• static memory overhead: in the system program binary, corresponding to the two
partitions used for trace collection and trace analysis.

• dynamic memory overhead: at runtime with a shared buffer in RAM, to store
generated control-flow traces before they are consumed by the trace analyzer.

VI.6 Framework Security Evaluation

VI.6.1 Objective

From Figure VI.10, we observe that the time overhead is generally greater than 40% for
a buffer of 2KB. Therefore, in the following, we propose to limit the time overhead to
rA

M = BA
M

CA
= 10%. We then set the following objectives, following the intrusion detection

efficiency evaluation described in methodology (Section IV.5):

• achieve a workable trade-off between CF coverage and detection time. For this,
we evaluate the monitoring scope and the monitoring continuity using the metrics
described in Table VI.1:

– rA
cov: the coverage of the monitored CF.

– wuncov: the maximum time when CF trace collection is disabled.

– wdetect: the maximum time for the ADS to detect an anomalous CF execution.

• evaluate the detection accuracy of the ADS service for application profiling, as well
as its ability to detect unknown anomalies (i.e. potential zero-day attacks).

Figure VI.12 shows the distribution of inter-arrival times of monitoring requests for
the complete test set. Almost all distributions include common outliers corresponding
to 700µs, 70ms, 300ms: these values correspond to initialization and termination of
programs, when messages are printed on the console. However, since distribution
characteristics vary much across programs, we can expect monitoring inter-arrival time
signal to be a relevant input for application profiling.

141

��� ��� ��� ��� ���

���

���������
�������

���������
�������������

�������
����

�����
�����

�������
��������

����
���

�������
�����

��������
������

����
���

�����
����
��

�����������
���������
�������
���������

���

�
�
�
��
�
�
��
�
�
�

Figure VI.12: Distribution of monitoring requests inter-arrival times for all applications
(without trace copy)

VI.6.2 Evaluation Setup
We base our security evaluation on the setup described in Section VI.4. For anomaly
detection, we need to define an application profile, so that the ADS can identify anomalies
as deviations from the profile reference during runtime. To build a profile in our evaluation
context, we do not consider applications which generate no monitoring requests (i.e.
0% overhead on Figure VI.11). In our test set, 9 applications correspond to the same
‘Null’ profile: any monitoring request received by the server is an anomaly, resulting
in detecting all applications with a different profile. Programs whose execution time
is shorter than CM are also out of scope, since handling one monitoring request could
break the 10% time overhead limit. We also do not consider profiles for the 3 pessimistic
programs. Because these are rather simple (low variation in short monitoring inter-arrival
times), their profile should be easy to monitor: under an appropriate threshold of received
monitoring requests count, the execution is anomalous. In total, we run the evaluation on
a profile set of 11 applications. For testing the profiles, we consider our 26 applications
(Section VI.4.1), but we use only one of the programs corresponding to the ‘Null’ profile,
as they are all equivalent: hence, our test set is composed of 18 (1 normal, 17 anomalous)
different applications.

VI.6.3 Anomaly Detection Evaluation
Overview

We evaluate the ADS service following three steps for each application in the profile
set: training and validation (detailed in Section VI.3.3), and test. We first build the

142
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

application profile of the monitored task τA, using 70 samples of execution. We then
validate the model on 20 samples. No anomalous sample is used during these two first
steps. Finally, we evaluate the model on 10 samples of each application from the test
set; i.e. 1 normal and 17 anomalous applications. Training, validation, and test sets are
composed of unique samples (i.e they do not overlap).

Training and Validation

We follow the steps described in Section VI.3.3, to configure the system before runtime:

1 We set the WCET for trace collection CM = 121µs (Section VI.4.3). We then select
the program to build the reference profile. We measure its maximum execution
time cmax under monitoring (i.e. cmax includes Toverhead_internal) across all training
samples. We set CA = α ∗ cmax, with the coefficient α = 1.1 determined empirically,
so that test execution times remain lower than CA.

2-3 According to the defined objective in Section VI.6.1, we set rA
M = 10% and compute

TA = CA ∗ (1 + rA
M) = 1.1 ∗ CA.

4 With BA
M = rA

M ∗ CA = 0.1 ∗ CA, we train the server as explained in Section VI.3.3
to build the application profile and the server configuration. After the profile
is generated, we assign corresponding Qw and Qr to the server, so that τS =
(CM , Qr, Qw, TA).

5 The framework is ready for the test phase.

Test

We run each application in the test set with the framework defined in the two previous
steps. During runtime, after each monitoring window Tw, the ADS compares monitoring
requests characteristics from the past window with the application profile. If one of the
signals is out of the reference range of values, the ADS detects an anomalous execution.

VI.6.4 Results
Detection Accuracy

Table VI.3 shows test results. For each application profile, we observe an accurate
detection of execution samples. Our ADS is able to detect anomalous executions; it is
potentially able to detect zero-day attacks. We use standard metrics to evaluate the
detection accuracy, both in regard of false-positive rate and false-negatives: with FP the
count of false-positives, FN false-negatives, and TP true-positives, we define precision
as P = T P

T P +F P
, recall as R = T P

T P +F N
, and F1-score as P ∗R

P +R
.

The detection accuracy is maximum for the great majority of tested cases. We
observe false-negative samples only when the ADS monitors the gsm_enc program with
audiobeam profile. The distribution of inter-arrival times for audiobeam is broader
compared to other applications in the profile set, in particular gsm_enc (Figure VI.12):

143

Table VI.3: Security results with 10% performance overhead and buffer size = 2KB

Application TA (ms) rwr(%) Nw wuncov (ms) rA
cov (%) wdetect(ms) Detection Accuracy (%)

mean stdev precision recall F1-score
sha 1.543 100.0 1 1.422 12.5 1.543 0.000 100.0 100.0 100.0

audiobeam 4.110 100.0 4 0.907 62.0 2.539 1.458 97.1 100.0 98.5
cubic 4.765 100.0 4 1.070 21.1 2.515 1.184 100.0 100.0 100.0

powerwindow 5.058 80.0 4 1.143 9.3 2.669 1.257 100.0 100.0 100.0
anagram 5.586 100.0 5 0.996 8.8 2.483 1.266 100.0 100.0 100.0
quicksort 6.300 83.3 5 1.139 9.4 2.660 1.252 100.0 100.0 100.0
gsm_enc 9.326 88.9 8 1.045 26.6 2.461 1.159 100.0 100.0 100.0

pm 12.028 91.7 11 0.972 10.7 1.762 2.502 100.0 100.0 100.0
md5 13.947 92.9 13 0.952 11.3 1.132 0.246 100.0 100.0 100.0

djikstra 78.750 96.2 76 0.915 9.1 2.590 1.476 100.0 100.0 100.0
mpeg2 250.039 2.4 6 41.552 22.6 41.673 0.000 100.0 100.0 100.0

the non-detection of gsm_enc is caused by the larger range of authorized values in
monitoring windows for audiobeam profile. With shorter monitoring windows (i.e. more
monitoring budget), we could apply more-fine analysis to improve the detection of
dissimilarities between both programs.

Control-Flow Monitoring Coverage

For the 10% boundary of time overhead, the coverage rA
cov varies among monitored

applications, depending on the rate of monitoring request inter-arrival times and the
ratio rwr = Qw

BA
M

. Table VI.3 shows rwr average values, since the standard deviation is
for all configurations below 0.2% except for audiobeam with 6.5%. For most of the
applications, we assign more than 80% of BA

M budget to Qw. mpeg2 represents the only
exception with only 2.4%: because the amount of monitoring requests generated per time
window Tw varies much across this application’s execution samples, shorter Tw values
come with an important degradation of the precision at validation step.

Anomaly Detection Time

As stated in the previous section, mpeg2 comes with a lower limit to set Tw value. Except
for this use-case, the sum of windows Nw increases with the period TA. The ADS detects
in average the anomaly after the second monitoring window. The more monitoring
windows, the faster the detection: Table VI.3 shows an average detection time close to
2, 5ms for 7 of the 11 application profiles, which have different execution periods TA.

144
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

VI.7 Discussion

VI.7.1 Lessons Learned
Control-Flow Monitoring Performance Impact

We observed a high performance impact for trace collection based monitoring on the set
of tested applications: for more than the half of TACLeBench tested applications, the
overhead is above 40% and can reach up to 140%. We assume that this high overhead
results from the characteristics of tested programs: TACLeBench applications focus on
computational operations, causing a high rate of monitoring requests. In contrast, the
framework developed by Kuzhiyelil et al. [92] was tested on a network stack application,
with a low performance overhead (< 1%). For that reason, we suggest to combine
this test set with related programs for data access and control (e.g. reading sensors
and writing to actuators and/or peripherals) to reflect a more holistic picture of the
practical applicability of the solution proposed in the work at hand. Instead of monitoring
low-critical programs, we could indeed apply the framework on high-critical software
which control sensors and actuators and would potentially generate a comparatively
reduced performance overhead.

In our evaluation, we computed a maximum time overhead rA
M corresponding to more

than 600% slow-down of the monitored task. This scenario being highly pessimistic (less
than 150% across TACLeBench tested applications), it is very unlikely to be observed in
realistic deployment. Our framework brings flexibility to control the performance impact,
assuring predictability without necessary consideration of the worst-case monitoring
overhead. The system integrator can indeed adapt the monitoring coverage, in function of
the deployment use-case (i.e monitored task, system timing constraints). More specifically
for a given monitored task τA, since coverage and performance overhead are correlated
so that rA

cov cannot increase when the performance overhead rA
M decreases, the system

integrator can adapt the security coverage by limiting the performance overhead.

Anomaly Detection Based on Control-Flow Monitoring

Our monitoring solution, except if it is configured to support the worst-case overhead,
cannot guarantee a full coverage of CF transitions executed by the monitored task
during runtime. The security evaluation in Section VI.6 validates the relevance of the
ADS periodic service to detect anomalous behaviors. The observation of monitoring
inter-arrival times provides indications to build profiles of applications with few detection
errors. Even though our goal for fast detection is to configure short observation time
windows, we noticed in some case a size configuration threshold, below which the precision
of the detection falls.

Framework Practicability for Industrial Mixed-Criticality Systems

Our monitoring framework can be deployed in mixed-criticality systems with constraints
such as hard real-time deadlines. First to assure the isolation of system tasks, we
leverage a partitioned architecture with a separation kernel (Section VI.1.1). Second,

145

Section VI.3.1 provides the schedulability guarantee to integrate the solution into a
multi-tasks MCS with one monitored task. The system maximum time overhead of the
framework is configurable before deployment by the system integrator (Section VI.3.3).

The overall time overhead considerably depends on the monitored program (Fig-
ure VI.10). We propose a trade-off between time overhead and security monitoring
coverage. On one hand, our framework limits and makes the worst-case overhead pre-
dictable, leveraging a partial CF-traces coverage. The system integrator can configure
the worst-case overhead, adjusting the monitored task’s characteristics and monitoring
constraints, as described in Section VI.3.3. On the other hand, we built an ADS service
to detect threats in the whole execution (Section VI.3.2).

Our CFI solution is transparent to the monitored application, since it does not require
source code or binary instrumentation. For monitoring an application, in addition
to the application binary, we only require CFI metadata that is generated during an
offline pre-processing phase by the application developer and stored separately from
the application. This makes our solution suitable for use in a multi-supplier product
development, as practiced in the automotive, railway, and avionics domains.

For the certification of complex safety and security critical systems built with compo-
nents from multiple suppliers, a compositional certification methodology [141] is typically
used, in which the lower-level component developers (e.g., application developers) perform
evaluation for their components and provide the evidences to the higher level developers
(e.g., system integrator, operators), who then reuse those artifacts to certify the system
as a whole. The practice of reuse of low-level evaluation evidence is also reflected in
standards such as Common Criteria [143], ISO 26262 [82], and IEC 62443[133]. As our
monitoring solution does not require modification at the source code or binary level,
when the system integrator wants to enable monitoring of a component, there is no need
to regenerate the evaluation evidences for that component, which eases the reuse.

VI.7.2 Framework Improvements Towards Industrial Deployment

Implementation Alternatives

Our evaluation results show a significant performance overhead for trace collection on one
hand, a good detection accuracy for the ADS service on the other hand. Hence, we could
consider monitoring runtime CF only with the ADS, without CF trace collection (i.e.
without CFI checking). Alternatively, we propose to build in future work a monitoring
framework derived from our solution (i.e. based on anomaly detection and CFI checking),
applying the method introduced by Hasan et al. with Contego framework [66]. With
this approach, we define two modes of executions for the system:

• passive mode: the ADS runs and controls CF monitoring requests, which are
all rejected by the server; i.e. the CFI monitor and more specifically the trace
collector are inactive.

This execution mode applies by default in the system, since it does not delay the
monitored task.

146
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

• active mode: the CFI monitor collects CF traces and performs CFI checking, while
the ADS keeps executing: depending on the availability of hardware resources, the
ADS can run in background on the same set of CPU cores than the CFI monitoring
tasks, but with a comparatively lower priority, or concurrently on a separate set of
CPU cores.
This mode is triggered by the system, once the ADS detects an anomaly. as it
induces a slowdown of the monitored application, it applies for a limited time
period to perform additional security checks: the server accepts full or partial
monitoring requests (trace collection) for CFI checking.

We develop this approach further in Chapter VII with the introduction of an analytical
multi-mode HIDS.

In our current implementation, we define the time overhead as the slowdown of the mon-
itored application, which corresponds mainly to the trace collection time (Section VI.5.1);
i.e. the times when the monitored task is stopped for collecting the traces from the
CoreSight local buffer into main memory. CoreSight hardware tracing framework al-
lows concurrent read and write operations to the trace buffer: the application could
execute, while the trace collector stores buffer traces to main memory. In such setup,
the monitored application’s slowdown is limited to the internal overhead, which is much
lower than trace collection overhead. However, such configuration could degrade security
monitoring properties. We observed in the most pessimistic scenario (inffcall with
2KB buffer configuration) that the time for collecting one buffer of traces corresponds to
more than 6 inter-arrival times of monitoring requests: with concurrent trace collection,
the buffer content can, in an extreme case, be overwritten 6 times. Therefore, such
monitoring framework would still occasionally require the ability to stop the monitored
application to perform security monitoring via trace collection.

Alternative ARM CoreSight Trace Buffer Configurations

The ETB size threshold configuration impacts the monitoring request rate TM and the
trace collection time CM : the smaller the threshold value, the shorter TM and CM times
(i.e. the configured buffer is smaller). Thus, for a fixed monitoring budget BA

M , we can
observe more monitoring events with smaller threshold values (BA

M = CM ∗ NA
M). With

such configurations, we could refine the granularity of the ADS service; i.e. reducing
the observation time window Tw to build a more precise application profile. This could
contribute to reduce the false-negatives rate (i.e. decreasing the probability for two
applications to have the same profile) and speed up the detection. Though, an observation
of shorter time windows Tw probably has a higher variability because of the execution
context (delayed memory access, speculative execution, etc.), which could affect the
detection accuracy.

Framework Deployment in Complex Mixed-Criticality Platforms

Our framework is for now able to monitor a single-threaded task. To extend the
monitoring to multiple applications, it is possible to include the application UID in

147

addition to the thread UID in the context of CoreSight traces: i.e. using these identifiers,
our solution would be able to distinguish several threads of distinct applications.

With our current architecture, the monitored core is unused while the monitored task
is stopped for trace collection; i.e. dummy operations executed by the spinner thread
of the monitor (Section VI.1.1). This unused time should be allocated to other tasks
running actual work.

Strategies for Decoupling Trace Collection from Trace Analysis

If the execution time Tanalysis for analyzing a buffer of trace is shorter than the nominal
inter-arrival time TM of the trace collection task τM , we can run both trace collection
and trace analysis in parallel to the monitored applications, using an intermediate buffer
to store the collected traces (with a size equal to the size of buffer). However, when
Tanalysis > TM – such as in our case – the trace collector would accumulate more traces
than the maximum amount of traces to be analyzed in the available period of time:
checking all the traces for an unlimited time would require an unlimited intermediate
buffer. To avoid such unrealistic resource requirements, we can apply the following
strategies:

• Accelerating CFI Path Reconstruction and CFI Checking so that Tanalysis =
Tcfg + Tcfi ≤ TM . This can be achieved by (i) optimizing the implementation, (ii)
offloading the tasks to an accelerator such as a FPGA, or (iii) dedicating multiple
cores for these tasks.

• Dropping traces with limiting the monitoring coverage. This corresponds to
the approach described in this chapter, even though we focused our analysis and
experiment on trace collection phase only without trace analysis. To consider CFG
path reconstruction and CFI checking in our approach, we can refine the monitor
task definition in our task model (Section VI.2.2), so that the WCET CM for
monitoring also integrates the time overhead of the monitored application for trace
analysis Tanalysis; i.e. for a given buffer of traces, if trace analysis runs sequentially
after trace collection, CM = tcopy + Tanalysis. The buffer design depends on the
strategy for prioritizing traces to analyze: i.e., recent traces first with FIFO or
synchronous analysis via a ring buffer. However, every time traces are dropped, the
monitor must reinitialize the current backward-edge and forward-edge CFI status.

VI.8 Related Work

VI.8.1 Security Integration in Real-Time Systems
Hasan et al. propose generic methods to integrate security tasks in a real-time systems,
which address the trade-off between security monitoring and system impact. The authors
first introduce an opportunistic server solution [67], which is later generalized with the
adaptive framework Contego [66]. However, this framework cannot apply to our practical
use-case context: while their opportunistic approach supposes a deferrable execution of

148
Chapter VI. A Safety-Aware Control-Flow Integrity Framework for

Embedded Mixed-Criticality Systems

the security tasks, our use-case requires the server ability to preempt the monitored task
(as explained in Section VI.2.2).

VI.8.2 Runtime Threat Detection for Mixed-Criticality Systems

Timing Deviation Based Threat Detection

Bellec et al. implement a hardware framework [24] for embedded real-time systems, to
detect CF hijacking threat such as ROP attacks. Their solution monitors the execution
time of pre-defined code regions of the program to protect: when a monitored code
region’s execution exceeds its WCET, the framework detects a threat. However, the
inherent pessimism of the WCET metric could be exploited by a knowledgeable adversary
to hide additional malicious execution time. Alternatively, our ADS monitoring approach
differs by observing the CF at a higher level, on fixed time windows of execution.

Control-Flow Integrity for Mixed-Criticality Systems

CFI Monitoring solutions generally affect the execution of the monitored task, especially
software implementations. TrackOS [127] is a RTOS designed to integrate CFI moni-
toring. Before runtime, binary static analysis generates a call graph for each monitored
application, to control every function call and return instructions of monitored tasks
at runtime. This solution does not allow full CF coverage: it only considers functions,
while our framework also monitors additional branch instructions (e.g. loop, conditional
statements). RECFISH [156] is another CFI monitoring solution based on FreeRTOS
open-source real-time system. Because it requires program instrumentation, this ap-
proach is less suitable for deployment in certified legacy systems, in comparison our
modular framework.

CFI monitoring is traditionally implemented in software. Hardware implementations
usually come with a reduced performance overhead and less interferences in monitored
software execution (limited instrumentation). The survey [36] provides a state of the art
of hardware based CFI monitoring solutions. Most of the initiatives in the survey are
still research projects: from 21 studied CFI implementations, only two run on common
available hardware. Several frameworks involve processor-tracing features on common
hardware platforms for CFI monitoring: mainly Intel Processor-Tracing [61, 59, 104]
and ARM CoreSight [92, 96]. To our knowledge, the framework used for our work [92] is
the only hardware-assisted solution targeting the deployment in critical systems with
timing constraints. From the observation of a significant performance overhead for a
pessimistic monitoring use-case, the authors identify the problem addressed in our work:
i.e. assuring a predictable monitoring solution, which achieves a practical trade-off
between security monitoring coverage and performance impact. We also extend their
analysis based on two use-cases, by monitoring a set of representative and pessimistic
applications.

149

VI.9 Conclusion
We described and evaluated a first safety-aware method to integrate hardware-assisted
CF based security monitoring into a MCS. Our approach leverages a periodic server
to predictably collect CF traces for CFI checking, while an ADS service monitors the
security of the complete execution of the monitored application. We evaluated the
framework on PikeOS industrial real-time OS with ARM CoreSight support, using a
set of programs from TACLeBench benchmark. While limiting the time performance
overhead to 10% slowdown of the monitored task, our ADS correctly identified almost
all samples, with no false-positives and rare false-negatives.

VII

An Adaptive Host Intrusion Detection System
Approach for Embedded Mixed-Criticality
Systems

In Chapters V and VI, we investigated several intrusion detection solutions, associated
with various intrusiveness levels: using heuristics and specification based methods,
monitoring different events such as HPC, system calls, and CF traces. In particular in
Chapter VI, we implemented two parallel security modes: a partial hardware tracing
based CFI monitoring and CF events based detection. In this chapter, we propose to
develop this approach towards adaptive security analysis: i.e. reducing the performance
overhead for monitoring, while triggering intrusiveness to apply in-depth security analysis
when we suspect the occurrence of a threat.

We consider the following requirements, to discuss the development of an adaptive
HIDS:

• The integration of the solution should not compromise the predictability of the
system.

• The solution must be able to detect intrusions for different monitored application
use-cases. Hence, this chapter introduces a generic multi-mode approach for
intrusion detection.

We develop our motivations in Section VII.1.1 and describe the multi-mode based
HIDS solution in Section VII.1. In Section VII.2, we propose an evaluation of the
approach according to criteria introduced in Section IV.5. Section VII.3 presents our
concluding remarks and suggest future work to investigate.

VII.1 A Multi-Mode Based Host Intrusion Detection System
In this section, we describe the multi-mode based HIDS solution. First, we define our
motivations for deploying such method in an industrial embedded MCS (Section VII.1.1),
addressing the trade-off between reduced intrusiveness (and time overhead) to limit
the impact on system schedulability, performance, and detection coverage. Second,

151

152
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

in Section VII.1.2, we present an overview of the multi-mode based solution and we
detail the different security modes. Then, we model the system under monitoring in
Section VII.1.3.

VII.1.1 Motivations for combining intrusion detection approaches

Our goal is to develop an adaptive HIDS solution, which combines several levels of
security – i.e. security modes of execution – adapting the degree of runtime intrusiveness
(and so the performance impact) depending on the likelihood of threat occurence. Hence,
we propose to apply light-weight background monitoring: in our case, this corresponds to
HPC monitoring (Section V.3) or ARM CoreSight full buffer events (Section VI.3.1). Such
heuristics based detection are likely to come with false-positives; thus, upon detection in
this default execution mode, we enter the second monitoring mode, a specification based
detection to confirm the occurence of a threat.

The main benefit of a multi-mode solution is to apply specfication based monitoring,
limiting the significant performance overhead and runtime intrusiveness generally associ-
ated with such method (e.g. CFI checking). Of course, this approach makes sense if the
two detection modes are able to detect the same types of threats. Possibly, the default
monitoring level induces false-positives. We develop the dependencies on the monitoring
methods further in Section VII.2.1 for the overall detection accuracy.

Figure VII.1: State machine representing the HIDS execution modes

153

VII.1.2 Overview of the Multi-Mode Host Intrusion Detection Solution

We introduce a multi-mode HIDS solution to combine several intrusion detection mecha-
nisms with the following goals:

• Low security checks – apply continuous light-weight and transparent security
checks, which may induce low detection accuracy and false-positives.

• High security checks – apply sporadic security checks, which come with high
detection accuracy and no false-positives, but at the cost of a heavy impact on
system performance.

We build our multi-mode HIDS using the following attributes:

• We define three modes of execution:

– Low security mode – execute continuous transparent security checks.

– High security mode – perform sporadic intrusive security checks.

– Fail-secure security mode – apply protective measures once an intrusion
has been detected by the multi-mode HIDS.

• For the predictability of the monitoree’s execution, we set a maximum time budget
to execute intrusive security mechanisms of the high security execution mode.
Basing our approach on the problem model defined in Section VI.2 with the server
based method to trigger CF trace collection, we introduce BA

HS ∈ N the time
budget to execute monitoring routines in the high security execution mode; this
budget corresponds to the maximum time for monitoring, within one period of
execution of the monitoree task τA.

Figure VII.1 shows a state machine representing transitions between different execution
modes of the multi-mode HIDS. We describe the monitoring mechanisms of our solution
in the subsections below.

Initialization of the Multi-Mode Host Intrusion Detection System

When the monitoree starts to execute, it enters the low security mode, which continuously
apply during runtime. The system initializes b the time budget to execute intrusive
intrusion detection mechanisms in high security mode: i.e. b = BA

HS.
We consider two Boolean signals – i.e. positive or negative intrusion detection – for

intrusion detection in the low and high security execution modes. We designate the
signals for intrusion detection in low and high security modes respectively by the variables
aLS ∈ {False, True} and aHS ∈ {False, True}, which we both initialize to the value
False (i.e. no intrusion is detected).

154
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

Low Security Mode

In this mode, we perform light-weight monitoring. With the investigated solutions of
previous chapters, we propose to monitor HPC and ARM CoreSight events periodically,
using a fixed time window. By default in fully passive mode, we do not apply CF trace
collection; i.e. all CF tracing requests are rejected. However, integrating CF trace
collection following the server solution in Section VI.3 could improve the monitoring
coverage in high security mode; we develop this approach further in the next subsection.

Depending on the implementation configuration, low security monitoring can con-
tinuously run; i.e. also in high security mode in parallel of the additional security
checks.

High Security Mode

The goal of this execution mode is to apply on demand in-depth security checks, which
require more system resources and intrusiveness compared to routines of the low security
mode. Hence, we enter the high security mode occasionally when an intrusion suspicion
has been raised by the low security mode; i.e. aLS = True.

When the monitoring budget b has been fully exhausted, even though we cannot apply
further high security checks, we can assess that the high amount of alarms triggered in the
low security mode corresponds to an intrusion. Depending on the solution certifiability
constraints, we could, instead of switching to the fail-secure mode as illustrated on
Figure VII.1, generate a passive alarm to be processed offline.

Considering the solutions developed in previous chapters, CFI checking represents a
suitable specification based approach to deploy in this mode. We can adapt the server
based CF trace collection solution (Section VI.3) to implement the dual security modes
approach. On one hand, we can perform CF trace collection in low security mode using
the predictable server method introduced in Section VI.3, using stored CF traces only in
high security mode when aLS alarm has been raised by low security mode routines. The
benefit is to run the CFI analysis on traces generated in the suspicious window, which
may be overridden at the time when the HIDS monitor triggers the security mode: with
this implementation, we could detect attacks, which would stop before the CF buffer
is filled by new benign traces and the window is detected suspicious in low security
mode. In this case, we distinguish BA

M the time budget for collecting CF traces in low
security mode from BA

HS the time budget for CFI checking in high security mode. On
the other hand, we can trace CF data in high security mode to implement a fully passive
low security mode (i.e. without impact on the monitoree’s execution time). In this
configuration, the budget for trace collection BA

M must be included in the security mode’s
time budget BA

HS.
In addition to the trace collection method, we also need to define how to distribute

BA
HS budget during TA the period of the monitoree task. We list the following strategies:

• apply high security mode until the budget BA
HS gets exhausted.

• apply high security mode during a limited time period; returning to the low security
mode at the end of the period or when the budget BA

HS is exhausted.

155

• apply the high security mode on a limited set of traced events (e.g. hardware
event). For example, checking CFI of the current CF trace buffer only:

– we systematically analyze the current buffer, even though it is not full.

– we check the CF trace buffer when it becomes full (ARM CoreSight hardware
event).

Alternatively, we could also run high security monitoring mode on certain statically
selected critical code regions of the monitored program.

Fail-Secure Security Mode

The execution of the monitoree enters the fail-secure security mode when the multi-
mode HIDS has detected an intrusion; the detection corresponds to one of the following
scenarios:

• An intrusion has been detected in the high security mode.

• An intrusion has been detected in the low security mode, and the budget BA
HS of

the high security mode has been completely exhausted.

In this protective execution mode, we can deploy security measures to avoid the
adversary to successfully complete the attack. Section IV.4.3, provides insights on
recovery strategies.

VII.1.3 System Model with the Multi-Mode Intrusion Detection Solution

For our analysis, we consider the following configuration. The monitoree starts executing
entering the low security mode. In the low security mode, the intrusion detection
mechanisms of the low security mode apply continuously (i.e. the system allows concurrent
execution of low security and high security tasks. The intrusion detection mechanisms
are fully transparent. They can execute without impacting the monitoree’s execution,
as, according to our methodology (Section IV.4), the HIDS monitor runs on a dedicated
hardware as long as the deployed security methods do not require instrumentation of
the monitoree.

Upon detection of an intrusion in low security mode, if the high security monitoring
time budget is long enough, we enter the high security mode. In this mode, we apply
intrusive monitoring with CF trace collection. If the high security mode does not detect
an intrusion, we return to low security mode of execution. Upon detection of an intrusion
in high security mode, an intrusion is detected by the multi-mode HIDS: we enter in the
fail-secure security mode. Once we have reached the fail-secure mode, we remain in this
mode until the end of the execution of the monitoree. Finally, if we detect an intrusion
in low security mode and the budget is too short to execute high security monitoring
routines, the multi-mode detects an intrusion and enters the fail-secure execution mode.

156
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

Real-Time Task Model with Security Monitoring

We use the same task model as in the previous chapters (Section V.3.3 and Section VI.2.2).
We consider 3 main tasks in the systems:

τA = (CA, TA, PA)
τHS = (CHS, THS, PHS)
τLS = (CLS, TLS, PHS)

(VII.1)

which respectively correspond to the monitored task, the high security mode task, and
the low security mode task. For simplification, we assume that τA is a periodic task, as
for HPC monitoring in Section V.3.3 and for ARM CoreSight hardware events based
monitoring in Section VI.2.2. In the low security mode, we use time window based
monitoring methods (with HPC, ARM CoreSight hardware events). Hence, we define
τLS as a periodic task. τHS is a sporadic task, since it is triggered after an alarm as been
raised by τLS task.

We consider the same offset for all tasks (O = 0). CA, TA, CLS, CHS values depend on
the use-case, implementation and deployment platform. We define task priorities and
THS period analytically, while we set TLS according to previous work (CF trace collection
rate, HPC monitoring time window), depending on the use-case and security criteria.

TLS configuration depend on TA value. As we apply low security monitoring on each
monitoree job of τA: ∃k ∈ N∗, k ∗ TLS = TA. As τA and τLS have the same offset, we can
consistently perform time window based monitoring across different job executions of
τA. This synchronization is a necessary requirement for CF based ADS developed in
Section VI.3, as we measure minimum and maximum values of system events for each
window. This is not specifically required for HPC monitoring solution using a ML model
to predict traces; though, such setup may complicate the learning phase of the ML model
as the training set must include sequences of all possible runtime configurations.

System Processor Configuration

We define P the set of CPU cores of the system. We can simplify the system with 3 sets:
PLS ⊆ P, PHS ⊆ P, PA ⊆ P, which respectively are the set of CPU cores assigned to the
low security, high security modes, and the monitoree task. PHIDS = PLS ∪PHS, PHIDS ⊆
P is the set of CPU cores assigned to the HIDS monitor.

Because the HIDS monitor runs on dedicated hardware, we set, when possible: PHIDS ∩
PA = ∅. When this is not achievable – i.e. the high security mode requires intrusive
monitoring – we can introduce the additional task τT C = (CT C , TT C , PT C > PA) for trace
collection, when tracing requires to stop the monitored task τA. We can then assign PA

to τT C so that τT C is able to preempt τA. Since the low and high security modes can run
concurrently:

PLS ∩ PHS = ∅ (VII.2)

157

High Security Mode Configuration

We can define the minimum period of τHS as, with C
(BC)
LS the best-case execution time

for the low security task τLS. It corresponds to the maximum between the WCET for
running the high security routine and the minimum inter-arrival time of high security
task τHS:

THS = max (CHS, TLS + CLS − C
(BC)
LS) (VII.3)

As we perform trace collection and security analysis in high security mode, we decom-
pose the WCET of τHS as:

CHS = N
(max)
T C ∗ (CT C + CT A) (VII.4)

with CT C the WCET spent to collect one full trace buffer, CT A the WCET for analyzing
the collected traces – e.g. with CFI checking on one full buffer of traces – and N

(max)
T C ∈ N∗

the maximum amount of trace collection events, that τHS is able to serve in one window
of the high security mode. N

(max)
T C value varies in function of the high security mode

configuration. We also set BA
HS the overall budget to execute τHS within a period of the

monitored task τA:
BA

HS = NA
HS ∗ CHS (VII.5)

with NA
HS ∈ N∗ the maximum amount of high security windows of execution.

VII.2 Analytical Evaluation of the Multi-Mode Host Intrusion
Detection Solution

In this section, we evaluate the multi-mode host intrusion detection solution analytically,
following 3 directions: security (Section VII.2.1), system performance (Section VII.2.2),
and system schedulability (Section VII.2.3). For this analysis, we consider the multi-mode
HIDS framework configuration and system model described in Section VII.1.3; we use
the evaluation approach described in Section IV.5.

VII.2.1 Security Evaluation

Through this thesis, we investigated HIDS solutions, which are able to detect unknown
threats. By extension, a multi-mode HIDS combining several of these detection methods
is also able to detect the same type of threats.

In our security evaluation, we determine the intrusion detection efficiency of our
multi-mode HIDS solution, notably through detection accuracy and latency metrics. We
then define the coverage of the monitoring solution.

Detection Accuracy Scope

As defined in Section IV.2.1, we introduce for the program of a given monitored task
τA, G(A), B(A), respectively the execution graph and the set of all transitions in the

158
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

execution graph. We consider an abstract representation of G(A) and B(A), because in
this chapter the HIDS monitor involves several representations of the monitored program
(i.e. counting events in fixed time windows, controlling branches executed at instruction
level).

Using a given intrusion detection model M (A) ⊆ B(A), we can determine for any
execution path e(A)(t) ⊆ B(A), t ∈ N∗, whether it corresponds to an intrusion or benign
execution; i.e. e(A)(t) ⊆ M (A). Hence, with E(A) the set of all execution paths of the
monitored program, we can split it in 2 distinct sets (VII.6):

E(A) = E
(A)
malicious ∪ E

(A)
benign, E

(A)
malicious ∩ E

(A)
benign = ∅ (VII.6)

so that E
(A)
malicious, E

(A)
benign respectively represent the set of malicious and benign executions.

The intrusion detection model M (A) splits the set of all execution paths of τA in
detected intrusions and undetected executions (VII.7):

e /∈ M (A) ⇔ e is a detected intrusion (VII.7)

Our configuration involves two intrusion detection methods for high and low security
modes. Therefore, we introduce M

(A)
HS , M

(A)
LS , M

(A)
HIDS the HIDS models, respectively

corresponding to the high, low security modes, and the global HIDS monitor for a given
high security monitoring budget BA

HS. Detections based on M
(A)
HS and M

(A)
LS models

cover executions detected respectively in high and low security checks, which trigger
the fail-secure mode; n.b. in the low security mode when BA

HS has been fully exhausted.
We define the HIDS model M

(A)
HIDS with (VII.8), so that it detects an intrusion upon

detection in the low security mode when the budget has been exhausted (M
(A)
LS) or in

the high security mode (M (A)
LS). We illustrate the application of a given HIDS solution

to monitor a generic application on Figure VII.2, dividing the execution paths between
actual malicious and benign executions sets and between detected malicious and benign
sets.

M
(A)
HIDS = M

(A)
HS ∩ M

(A)
LS (VII.8)

Our objective towards HIDS certification is to reduce the false-positive rate of the
HIDS. Consequently, we propose to leverage specification based intrusion detection in
high security mode so that it is free from false-detection (VII.9).

E
(A)
benign ⊆ M

(A)
HS (VII.9)

Any threat detected by the HIDS monitor must be detected by the low security mode:
it is either confirmed in the high security mode or, if BA

HS has been fully exhausted, we
can configure the system to automatically detect a threat. We define E

(A)
missed the set of

malicious executions that cannot be detected in the low security mode, even though they
are detectable by the high security mode (VII.10). Our goal is to combine high security

159

Figure VII.2: An example of execution paths classification for a generic application, using
the multi-mode host intrusion detection system

and low security monitoring models to reduce the amount of elements in the set E
(A)
missed.

E
(A)
missed = M

(A)
LS ∩ E

(A)
malicious \ M

(A)
HS (VII.10)

E
(A)
delayed represents the set of executions which cannot be detected in the high security

mode, even though they are detectable in the low security mode (VII.11). In this case,
the HIDS can still detect the threat, when too many anomalies are detected in low
security mode, so that BA

HS budget is exhausted.

E
(A)
delayed = M

(A)
HS ∩ E

(A)
malicious \ M

(A)
LS , (VII.11)

For the HIDS approach to be relevant, we assume that it must require a reduced set
E

(A)
missed. We consider our case – i.e. using CFI checking and CF related hardware events

based heuristics – practicable, since the type of monitored events are directly related
to the instructions executed by the monitored program: a threat modifying the CF
execution is likely to induce anomalies, both when analyzing traces with heuristics and
using CFI checking.

Finally, to improve detection accuracy, we set the following goals:

• increase the detection coverage (i.e. reduce false-negatives) of the high security
mode, to reduce the amount of elements of the set E

(A)
malicious ∩ M

(A)
HS .

• increase the detection coverage of the low security mode, to reduce E
(A)
missed.

• reduce or increase the budget BA
HS in function of the system performance overhead

constraints and more specifically depending on the false-positive rate in low security
mode; i.e. the set of delayed detectable threats E

(A)
delayed.

160
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

Detection Latency Scope

Let τA be a task to monitor by a multi-mode HIDS monitor; we define E(A) the set of all
possible executions paths of τA and M

(A)
LS , M

(A)
HS the low and high security models used

by the HIDS monitor.
To simplify the analysis, we refine our attack scope to malicious executions, which

are continuously detectable by the specified detection path (i.e. in low or high security
level). Let consider a malicious execution e ∈ E

(A)
malicious. The attack starts at a given

time of execution, when the remaining budget for the high security mode is b ∈ N∗, so
that CHS ≤ b ≤ BA

HS.
Figure VII.3 provides an example of schedule for a given execution e of the application

τA. The HIDS monitor systematically performs periodic checks in the low security mode.
Hence, the maximum time from the attack start until the first low security level check
returns is: Wwait = TLS + CLS. The detection latency varies depending on the two
possible detection paths:

• W
(HS)
detect: the maximum latency to detect the attack using the high security mode;

i.e. e ∈ E
(A)
malicious \ M

(A)
HS and b ≥ CHS. It corresponds to the sum of Wwait and

CHS, the WCET to execute the high security level check (VII.12).

• W
(LS)
detect: the maximum latency to detect the attack using the low security mode,

when the budget is full (b = BA
HS). In this case, M

(A)
HS cannot be used to detect

the attack (i.e. e ∈ E
(A)
delayed) or the time to execute high security level check is

longer (C(HS) ≤ BA
HS); the example on Figure VII.3 corresponds to the second

scenario. W
(LS)
detect latency corresponds to the sum of Wwait and NA

HS ∗ TLS, where
NA

HS = �BA
HS

CHS
� is the maximum amount of executed checks in high security mode

(VII.13).

With (VII.13), we derive the general function w
(LS)
detect to describe the maximum

latency in function of the budget b at a given time of the execution with (VII.14).

W
(HS)
detect = TLS + CLS + CHS (VII.12)

W
(LS)
detect = Wwait + NA

HS ∗ TLS = (1 + �BA
HS

CHS

�) ∗ TLS + CLS (VII.13)

∀b ∈ N, b ≤ BA
HS, w

(LS)
detect(b) = (1 + � b

CHS

�) ∗ TLS + CLS (VII.14)

If we consider that the malicious execution e is detectable by both high security and
low security models (e ∈ E \ (M (A)

LS ∪ M
(A)
HS)), we can derive the global detection latency

of the HIDS monitor ∀b ∈ N, b ≤ BA
HS, w

(HIDS)
detect (b) in function of W

(HS)
detect and w

(LS)
detect(b)

with (VII.15). We note an evolution of the rapidity of the security modes to detect an
intrusion during the execution time: while the detection latency W

(HS)
detect remains fixed,

161

Figure VII.3: An example of schedule for a malicious execution of the periodic task τA =
(CA = 13, TA = 15, PA) and a multi-mode intrusion detection system composed of the periodic
task τLS = (CLS = 2, TLS = 5, PLS) and the sporadic task τHS = (CHS = 6, THS = 6, PHS). As
explained in Section VII.1.3 to model intrusive trace collection (i.e. the HIDS must preempt
τA for trace collection), we introduce the additional sporadic task τT C = (CT C = 2, TT C =
6, PT C > PA) to preempt τA. The platforms supports 4 CPU cores, where τLS runs on CPU
core 1, τHS runs on CPU core 2, τA and τT C run on CPU core 3.

the detection latency w
(LS)
detect(b) decreases because the budget b decreases as time goes

forward.

∀b ∈ N, b ≤ BA
HS, w

(HIDS)
detect (b) = min (w(LS)

detect(b), W
(HS)
detect)

= TLS + CLS + min (� b
CHS

�, CHS) (VII.15)

For a given implementation of the HIDS monitor, we cannot reduce the WCET of
monitoring tasks: CT C , CCF I , CLS. Nevertheless, we could perform the trace collection in
low security mode, to reduce the detection latency in the high security mode, by reducing
CHS value (VII.4). According to this definition, an alternative would be to reduce the
set of analyzed traces (N (max)

T C). TLS represents a crucial parameter to configure TLS

to reduce the latency of the HIDS monitor. Though, it is constrained by CLS and its
configuration also has a major impact on the detection accuracy: too short periods of
observation are likely to come with a higher false-positive rate, since at a given time of
execution the observations of system events may vary in function of the context (e.g.
cache access time, processor pipeline state).

Security Monitoring Coverage

We propose to evaluate the security monitoring coverage of a given HIDS using two
metrics for each security mode:

162
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

• Low security mode: w(LS)
uncov ∈ N, r(LS

cov ∈ R, 0 ≤ r(LS)
cov ≤ 1 respectively represent

the maximum uncovered window and the overall ratio of covered execution in low
security monitoring mode.

• High security mode: w(LS)
uncov ∈ N, r(HS

cov ∈ R, 0 ≤ r(HS)
cov ≤ 1 respectively represent

the maximum uncovered window and the overall ratio of covered execution in high
security monitoring mode.

On one hand, since we assume that low security mode executes continuously, possibly
in parallel of the high security mode, this mode fully monitors the execution time of
the monitoree. It analyzes the execution at periodic endpoints, between current and
previous endpoints. Consequently, the low security mode covers the whole execution of
the monitored program:

w(LS)
uncov = 0, r(LS)

cov = 1 (VII.16)

On the other hand, the high security mode applies discontinuously on a potentially
partial set of the execution. r(HS)

cov and w(HS)
uncov must be determined by the system

integrator, depending on the use-case: i.e. monitored program, deployment platform.
We can determine the relative continuity configuration ratio rHS,A

cont ∈ R, 0 ≤ rHS,A
cont ≤ 1

for a given budget BA
HS, so that:

rHS,A
cont = N

(max)
T C

NA
HS

(VII.17)

VII.2.2 Performance Evaluation
As previously discussed, we reserve dedicated hardware for monitoring tasks that can
execute concurrently to the monitored task; though, high security checks may require
intrusive trace collection. Hence, the performance overhead to deploy the HIDS monitor
depends on the implementation.

Time Overhead

In low security mode, program monitoring runs passively: it does not interfere with the
monitoree’s execution. Consequently, the time overhead of the HIDS monitor corresponds
to the high security mode; we identify two criteria impacting this overhead:

• BA
HS: the budget for running the high security mode to control and configure the

maximum time overhead of the HIDS monitor on the monitored task.

• cA
switch ∈ N: the time to switch between the low and high security modes during a

period of execution of the monitored task τA. This depends on the budget BA
HS,

and more precisely NA
HS, and TLS: considering the same time c ∈ N for switching

from the low to the high security modes and from the high to the low security
modes, we derive cA

switch = 2 ∗ c ∗ � TA

TLS
�. We consider cA

switch negligible compared to
W A

HIDS ; hence, we do not use it in the detection latency definition (VII.15).

163

Hardware Cost

The hardware cost for integrating the HIDS monitor depends on the platform of de-
ployment and implementation. In our case, to reduce the detection latency, we run the
analysis programs of both low and high security modes on dedicate hardware on the
platform (i.e. reserved memory area and set of CPU cores). Thus, we propose to have
parallel execution environments for the two monitoring modes, including different CPU
cores as described in Section VII.1.3.

VII.2.3 System Schedulability Evaluation
The impact for integrating HIDS on system schedulability depends on the high security
mode, when the low security mode runs without interfering with the execution of τA.
Thus, let consider the execution in high security mode. In this mode, we may need to
stop the monitored program to perform trace collection.

For this, we introduce an additional sporadic task for trace collection τT C = (CT C , TT C , PT C)
executing on the same set of CPU cores of τA:

• τT C must be able to preempt τA: PT C > PA.

• The minimum period TT C corresponds to the minimum period of τHS : TT C = THS .

• CT C represents the WCET for trace collection in high security mode. We define BA
T C

the overall budget for intrusive trace collection during one execution of τA, so that
BA

T C = NA
T C ∗ CT C , with NA

T C = � TA

TLS
�.

For the schedulability analysis, we derive from τA and τT C the new periodic task
τ

(monitoring)
A , representing the monitored task under intrusive monitoring (VII.18). We

can then reiterate the system schedulability analysis replacing the monitored task τA by
τ

(monitoring)
A .

τ
(monitoring)
A = (C(monitoring)

A , T
(monitoring)
A , PA), where

�
C

(monitoring)
A = CA + BA

T C

T
(monitoring)
A = TA + BA

T C

(VII.18)

VII.3 Concluding Remarks
To conclude our analytical approach for multi-mode HIDS in embedded MCS, we propose
a set of evaluation criteria to assist future development in Section VII.3.1. We discuss
limitations and further topics to investigate in Section VII.3.2 and Section VII.3.3.

VII.3.1 Evaluation Criteria for Multi-Mode Based Intrusion Detection System
Deployment

We consider several aspects for evaluating a multi-mode HIDS approach. Table VII.1
summarizes the impact of these configurations on the characteristics of the system under

164
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

monitoring. First, we identify two main criteria, which depend on the HIDS use-case,
especially on the HIDS monitor implementation and on the technologies involved in low
and high security modes:

• Intrusiveness level – the trade-off between:
– detection efficiency as described in Section VII.2.1, through security monitoring

coverage and detection latency.
– time overhead and the impact of the solution on system schedulability (Sec-

tion VII.2.2 and Section VII.2.3).
This criteria directly depends on the trace collection implementation: periodically
in low security mode or punctually in high security mode. Analyzing the traces
corresponding to execution within the anomalous detected window (i.e. in low-
security mode), potentially reduces the detection latency by reducing the WCET in
high security mode CHS = CT A. This configuration may also improve monitoring
coverage for threats with short execution time, which end before the next periodic
low security check.

• Security coverage level: the trade-off between HIDS hardware cost and security
efficiency (via detection latency and monitoring coverage). This depends on the
separation or the joining of τLS and τHS tasks on the set of CPU cores; i.e. allowing
or disallowing background low security checks in parallel of high security check
execution. The parallel execution of low and high security tasks assures a better
detection latency. In addition, it can improve the monitoring coverage and detection
accuracy in low security mode by measuring the traces at exact period time; i.e.
without delay caused by high security checks with higher priority.

Additionally, the set of parameters to configure the HIDS monitor, represent key
aspects to influence the characteristics of a given solution:

• TLS – the frequency of periodic checks in low security mode conditions the frequency
of high security checks THS (VII.3): it has a direct impact on the detection latency
of the HIDS (VII.15). On one hand, incrementing TLS increases the detection
latency. On the other hand, it reduces the system overhead for low security
monitoring on the corresponding set of CPU cores PLS, to execute other tasks with
lower priority.
The configuration of TLS potentially influences the detection accuracy in low
security mode (i.e. modifying M

(A)
LS). In particular, we empirically observe for

HPC monitoring, that while the false-positive rate increases with shorter periodic
time window, the false-negative rate increases for longer time windows. We note in
this second case (i.e. when increasing TLS), that the detection accuracy in high
security mode could also be affected, especially when trace collection runs in high
security mode. As the delay between two low security checks increases, the attack
is more likely to end before malicious traces are collected and analyzed in high
security mode, because trace collection is triggered after that low security routines
have detected an intrusion.

165

Table VII.1: Impact of security monitoring configuration on evaluation criteria. The symbols
(–, ✕, ❍, ●) respectively correspond to (no, negative, mitigated, positive) impact of the
configuration parameter on the evaluation criteria.

Evaluation criteria P
ar

al
le

le
xe

c.
of

LS
/H

S
m

od
es

H
S

tr
ac

e
co

lle
ct

io
n

in
LS

m
od

e
In

cr
ea

si
ng

T
L

S

In
cr

ea
si

ng
N

A H
S

In
cr

ea
si

ng
r(A

,H
S

)
co

n
t

System
integration

System overhead ✕ – ● ✕ –
System schedulability – ✕ – ✕ –

Detection
efficiency

Latency ● ● ✕ – ✕

Accuracy ● ● ❍ ● ●

Monitoring
coverage

LS mode ● – – ❍ ❍

HS mode (global) – – – ● –
HS mode (upon detection) – ● ✕ – ●

• NA
HS, N

(max)
T C – the distribution of the execution time budget of the high security

mode BA
HS affects the detection latency and the monitoring coverage of the HIDS.

These parameters impact system performance overhead and schedulability, as well
as security efficiency. More specifically, we identify the following relations:

– N
(max)
T C influences the high security check WCET CHS (VII.4) and so the

detection latency of the HIDS (VII.15). It also conditions the monitoring cov-
erage: for a given budget with NA

HS , the greater N
(max)
T C , the more continuous

the set of covered traces (VII.17).
– NA

HS influences the overall monitoring coverage of the solution during a period
of execution of τA (i.e. M

(A)
HS). Increasing its value improves the coverage:

this can also improve the detection accuracy of the HIDS, reducing the false-
positives rate due to the false alarms raised in low security mode. Nevertheless,
increasing NA

HS (i.e. increasing the budget BA
HS) also induces increased level

of intrusiveness and time overhead.

VII.3.2 Limitations for Using Several Security Modes
One main pitfall of the multi-mode HIDS approach lays first in the detection evaluation
for the different modes, i.e. defining M

(A)
HS and M

(A)
LS to reduce E

(A)
delayed and E

(A)
missed. A

second challenge is to adapt the configuration to the deployment use-case (type of system,

166
Chapter VII. An Adaptive Host Intrusion Detection System Approach for

Embedded Mixed-Criticality Systems

monitored application, and HIDS monitor implementation). For this, we propose to
consider the different criteria discussed in Section VII.3.1 and summarized in Table VII.1.

VII.3.3 Future Perspectives to Develop Multi-Security Modes
We simplified the multi-mode HIDS analysis in this chapter, with the two low and
high security modes of execution corresponding to the intrusion detection approaches
developed in Chapter V and Chapter VI. In future work, we could extend this analysis by
inserting additional security modes of execution (i.e. adding intrusion detection layers).

Alternatively, future development could focus on improving detection efficiency, es-
pecially detection accuracy, by combining different modes of execution. Notably, we
could use parallel models of execution running concurrently to cover the monitored task’s
execution. We identify two intrusion detection strategies:

1 - all models detect an intrusion for a given execution path (i.e. a set of traces or time
window of observation). This configuration potentially induces low false-positives,
but comparatively more false-negatives and long detection accuracy.

2 - any model detects an intrusion. In opposition to the first option, this approach is
likely to come with more false-positives, less false-negatives, and shorter detection
latency.

Another approach to investigate is to build a single model of execution M
(A)
HIDS

using several data sources, typically analyzing traces with ML. Though, because of the
complexity and potential indeterminism in the observed system events (e.g. with HPC
traces in time windows), such application would require heavy datasets for training the
model of execution.

VIII

Conclusion

In this chapter, we conclude this thesis following two directions. In Section VIII.1.2, we
describe the previous gaps and our contributions in HIDS research for embedded MCS.
In Section VIII.2, we discuss the limitations of our HIDS solutions and examine further
research perspectives and open questions for HIDS development.

VIII.1 Contributions to the State of the Art
Security has become an essential need for productizing embedded MCS: the growing
openness of these platforms to the outside world, notably due the inclusion of connectivity
and user interface features for system low-critical functions, represents an increasing
attack surface for adversaries. Securing embedded MCS is challenging because of the
potentially strict constraints related to the high-critical functions supported by the
platform. The integration of security features must comply with system properties. In
particular, security add-ons must induce limited intrusiveness to match the constraints for
system certification and acceptable trade-off between security and performance overhead.

In this thesis, we focus our work on the detection of threats in embedded MCS,
using HIDS. We highlight the limitations of HIDS related research in Section VIII.1.1:
many of the reviewed solutions have limited evaluation, considering system schedula-
bility, performance overhead, and security. We then summarize our contributions in
Section VIII.1.2.

VIII.1.1 Research Gaps in Host Intrusion Detection Systems Literature
In literature, the focus of HIDS research is to improve intrusion detection accuracy.
Various solutions are designed to execute in GP computers; in comparison, only few works
consider deployment in systems with criticality constraints and embedded constraints.
In our literature review, the great majority of papers presents a limited evaluation
scope. Notably, for offline HIDS (i.e. the trace analysis runs after the execution of
the monitored program) the evaluation does not include detection latency and runtime
overhead estimates. None of the reviewed solutions explicitly addresses the problem
of compliance with system certification towards industrial deployment: they do not
evaluate the impact for collecting traces at system runtime, i.e. analyzing the level

167

168 Chapter VIII. Conclusion

of intrusiveness (or transparency) induced by the HIDS. Even though many solutions
induce false-positives in the detection, they do not discuss the effects for deployment into
an industrial embedded MCS, in terms of certifiability of the HIDS and suitability to
protect the execution of high-critical applications. The portability of a HIDS framework
among different platforms represents an additional challenge, because of the diversity
of embedded MCS; many of the reviewed solutions either require custom-hardware
implementation or instrumentation of the monitored software.

We note significant disparities across the range of reviewed papers for the security
evaluation of HIDS. For GP computers, many solutions propose an exhaustive evaluation
of the detection accuracy, testing the HIDS on a set of representative threat implementa-
tions. Other works provide a simple proof of concept of their HIDS, with few simplified
attack to demonstrate the soundness of the approach. Alternatively, some papers propose
an analytical evaluation without experiment on intrusion implementations.

VIII.1.2 Contributions Towards Host Intrusion Detection into Embedded
Mixed-Criticality Systems

The contribution of this thesis led to several publications [80, 81, 92, 79, 48, 78]. We
proposed a survey of HIDS, with a focus on embedded MCS towards industrial deploy-
ment [78]. For this, we defined a set of criteria to compare the solutions in terms of
system security, certifiability, and performance overhead. To our knowledge, it is the
first literature review to present the state of the art of HIDS applying these comparison
criteria. We notably discussed main security challenges within the scope of Industry
4.0 use-cases [48]. we identified the gap in HIDS research towards development in
industrial embedded MCS as the necessity for the solution to detect threats at system
level, leveraging limited intrusiveness and performance overhead. This is the specific
problem, which we addressed in this thesis.

We presented a methodology to develop HIDS for embedded MCS. We proposed
a generic system architecture based on a mixed-criticality OS to securely and safely
integrate HIDS mechanisms into an embedded MCS [81], with a set of methods, criteria,
and metrics to evaluate the solution in respect of system schedulability, security, and
performance overhead.

We investigated two main intrusion detection approaches:

• heuristics based HIDS, using ML: for this, we leveraged low-level system events
with system calls [80] and HPC [109] to perform transparent monitoring without
instrumentation of the monitored program.

• specification based HIDS, with hardware-assisted CFI monitoring: we developed
a safety-aware (i.e. predictable and configurable) hardware-assisted CFI monitoring
approach [92, 79] for embedded MCS.

We implemented and tested the solutions on an actual industrial embedded MCS
platform (with SYSGO’s PikeOS hypervisor) [79, 92, 80]. While in literature, evaluation
approaches and system architectures vary, we based the HIDS frameworks on our generic

169

system architecture and applied the set of evaluation metrics consistently for the different
approaches. Because of the diversity of embedded MCS platforms, there is to our
knowledge no widely available threat benchmark for these systems. Therefore, we
performed partial analytical security analysis and experimental measurements of the
evaluation metrics on a small set of monitored programs. We validated the detection
accuracy on several anomalous execution scenarios of the monitored program. This is a
limitation compared to related work, particularly in regards to system call based HIDS
using heuristics.

Finally, we introduced a multi-mode solution combining several HIDS approaches. The
goal is to improve the detection accuracy (reducing the false-positives rate of heuristics
based HIDS) while limiting the performance overhead for heavy – in terms of computation
load – and intrusive HIDS.

VIII.2 Future Research Perspectives

We developed several methods for intrusion detection, including ML based monitoring
of HPC counters, CFI checking. We proposed a global system architecture and an
evaluation approach to integrate such solutions into embedded MCS. We describe the
main limitations and possible improvement strategies to deploy our solutions into an
industrial context in Section VIII.2.1 and Section VIII.2.2. We finally describe remaining
open questions in Section VIII.2.3.

VIII.2.1 Current Limitations for Intrusion Detection into Embedded
Mixed-Criticality Systems

The current HIDS solutions come with several limitations. As mentioned in the previous
section, implementing an exhaustive set of actual realistic threats remains an open issue
for the security evaluation of embedded MCS, because of our deployment constraints.
Building convincing intrusion scenarios is particularly complicated in our context of work
as we use SYSGO’s PikeOS as RT hypervisor, which is certified to the security evaluation
assurance level 3+ [50]; i.e. we assume that system interfaces, such as inter-partition
communication, system calls, and OS drivers, are trusted. Consequently, we implemented
attack scenarios within the scope of the monitored application. For this, we identified
two main options for experimental intrusion detection evaluation:

• developing a generic monitoree program and a set of associated threat scenarios,
which are representative of industrial use-cases. This corresponds to building a
monitoring testbench, with configurable system interactions and characteristics of
the monitored program.

• using a comprehensive set of representative industrial use-cases and threat scenarios.
For example, such experimental setup could be a testbench provided by industrials
for a given platform.

170 Chapter VIII. Conclusion

In this thesis, we implemented simple programs or used benchmarks of computational
operations focused programs. We considered a stand-alone monitored application: the
experimental setup only involves software bricks, which are involved in HIDS monitoring
or required by the monitored program. We excluded complex setups, e.g. which leverage
inter-partition communication. We implemented intrusions as deviations of the monitored
program’s execution. We noted that it is particularly difficult to build attack scenarios
to evaluate HIDS based on system call monitoring: this restricts the set of meaningful
applications to monitor and the set of attack scenarios. The applications must indeed
execute distinct sequences of system calls while the set of system calls depend on the
API of the OS.

Because of the lack of representative security threats and the diversity of possible
deployment platforms, we provided a set of metrics to evaluate a given HIDS framework,
including coverage of the monitored program, slowdown of the monitored execution,
detection latency. Though, as we do not know the characteristics of a typical threat – i.e.
attack duration, entry points (like cache management, memory usage, network related
operations), execution discontinuity – the evaluation needs a comparison of our metrics
against the characteristics of representative attacks.

In the context of our heuristics based HIDS approaches, our evaluation highlighted
variations in detection accuracy results (false-positives and false-negatives rates), de-
pending on the tested monitored program. Though, we did not investigate further the
correlation between the detection accuracy and the characteristics of the program to
monitor. For evaluating the correlation, we could identify program characteristics to
then develop a generic program with configurable characteristics. A major issue for
such HIDS approaches is to collect sufficient trace use-cases to build the reference of
execution. Especially for ML based methods, the building phase requires a huge amount
of execution samples; Because of embedded MCS constraints, we are not aware of any
datasets to assist the generation of the ML model.

VIII.2.2 Possible Improvements Towards Intrusion Detection in Certified
Industrial Systems

We consider four main strategies to pursue our research, for the practical deployment of
HIDS into industrial embedded MCS.

Upgrade our HIDS frameworks An option is to focus future work on improving security
metrics, while reducing the performance overhead for monitoring. Particularly in the
context of ML based intrusion detection, we could adapt the building phase of the ML
model to reduce detection latency and errors. For the hardware-assisted CFI monitoring
framework, we could adapt the implementation, for example using multi-threading or
low-level programming language instead of object-level programming language; such
enhanced implementation could also involve accelerators like GPU or FPGA to speed-up
the detection. Another option to comprehend the scope of detected threats and potential
false alerts is to extend the security evaluation with more representative use-cases, threat
scenarios, and deployment platforms.

171

Extend the multi-mode HIDS approach An improvement is to extend the generic multi-
mode HIDS approach, combining heuristics and specification based intrusion detection
methods. On one hand, we can already use the methods developed in this work to
implement the multi-mode HIDS; e.g. with HPC based monitoring and CFI checking.
On the other hand, we could compare the characteristics of the solutions for a given
execution environment, to evaluate the potential performance of a multi-mode HIDS
combining the different approaches. In particular, we could evaluate how the HIDS
perform, in function of the type of monitored data: CF events, HPC measurements, or
executed system calls.

Improve the HIDS’ adaptability We could work on the adaptability of the HIDS solution
in function of the deployment use-case. For this, we would extend our evaluation scope
with representative industrial monitored programs and threat scenarios. An beneficial
outcome of such evaluation could be, for a given use-case, to highlight a correlation
between appropriate system events to monitor and the characteristics of the platform and
monitored program. With sufficient information on the deployment use-case, we would
be able to assist HIDS setup, by providing a configurable trade-off between security
coverage and performance overhead. More particularly with ML based HIDS, we could
investigate further how to tune the parameters of the ML model in function of the
characteristics of the monitored program.

Integrate the HIDS to a complex security infrastructure For deploying HIDS into a software
product, the integration of a HIDS module must comply with the software requirements
defined in the product development and release lifecycle. In practice, DevSecOps [49]
introduces a set of processes to automate the integration of security mechanisms at every
phase of the software development lifecycle.

A HIDS represents one element of the security infrastructure, which possibly also
includes NIDS, SIEM modules. We could investigate how to connect our HIDS approaches
with other security modules of the security infrastructure. For example in the Automotive
domain, considering a fleet of embedded MCS such as ECU networks or car systems, HIDS
outputs (information on threat detections) could be used by a SIEM system to correlate
threat suspicions at different infrastructure levels. We can expect various challenges,
depending on the attributes of such global infrastructure. For example, a solution where
HIDS outputs are handled by a SIEM running from a Cloud infrastructure, requires
appropriate network bandwidth, availability, response time, etc. An alternative option
could be to perform runtime adaptive monitoring leveraging the dynamic modification
of the HIDS reference model; e.g. by using federated learning and over-the-air update of
the HIDS reference model.

VIII.2.3 Open Questions

In this section, we outline several problems to address by future research for HIDS
integration into industrial embedded MCS.

172

Runtime adaptive HIDS reference Following the multi-mode HIDS approach, we could
combine different detection solutions in function of the characteristics of the monitored
execution and runtime constraints to enhance the properties of the HIDS; i.e. faster
detection, less errors, lower performance overhead, etc. Instead of chaining different
detection methods, as for the multi-mode HIDS, we could apply several methods (e.g.
CF related events monitoring with heuristics) concurrently. As a benefit, we expect that
attesting the detection of an intrusion using vote mechanisms would help to improve
detection accuracy.

About the use of ML for HIDS into industrial embedded MCS A key issue for future work to
focus on is to assess the benefit of ML based technologies to detect intrusions, compared
to standard heuristics based methods such as sets of rules based on statistical observations
of the monitored execution. In our experiments, we used TensorFlow-Lite open-source
framework to perform online ML based trace analysis. Even though the framework is
adapted to execute in embedded systems (i.e. with limited hardware resources), we
could weight the advantages of such implementation, – notably portability, maintenance,
and extensive API – compared to custom-hardware based solutions, which we could
optimize to reduce implementation costs, e.g. using FPGA or GPU assistance. ML based
detection is generally not comprehensive by a human, due to the inherent complexity of
the ML model; identifying the cause of a detected intrusion represents a difficult challenge.
This diagnostic is even more complicated as the detection accuracy can vary greatly
for a given model configuration (i.e. network topology), depending on the monitored
program. Therefore, we can question the suitability of ML approaches to detect threats
into embedded MCS, especially in the context of deployment into an industrial certified
system: notably the use of a ML engine to handle critical tasks represents today an
active research problem [86, 146, 7].

HIDS integration into product development and release lifecycle The use of DevSecOps [49]
processes and best practices to automate HIDS development and integration into a
software product remains an open problem, especially in the context of industrial MCS
platforms which require safety certification. In the scope of productization, we must
consider a global security approach covering the overall security project: through product
requirements, platform architecture, implementation, test, and maintenance aspects.
Thus, we could investigate in future work how to integrate HIDS mechanisms development
in software development lifecycle, using standard processes such as DevSecOps practices.
For this, we would introduce a set of generic templates for an easy, ideally automated,
plugin of HIDS mechanisms into the MCS product lifecycle. In this case, we must
evaluate the integration effort.

Appendix A

Hardware Performance Counters Selection

A.1 Offline Monitoring Framework
The test system is detailed on Figure A.1. It is composed of two partitions running on
top of PikeOS real-time OS:

• The HPC monitor first initializes the counters with the combination of events to
be traced. It then notifies the monitored partition to run the test and waits for its
notification. It finally reads the counters and prints measurements.

• The monitored application starts the test upon request of the monitor and sends
back a notification once the test has ended.

The test iteration is repeated a certain amount of times so that we can analyze results
with statistics. As there are only 6 counters on the platform, and 59 distinct events to
trace, we run the test for 10 combinations of counters: [1, ... 6], [7, ... 12], [55, ... 59].

The initialization phase of the monitored application is not traced: this part of
execution is not relevant for application profiling, it depends mainly on the system
software which we suppose secure in this work. We instead trace a specific code region
encapsulated in a function.

Both monitored partition and HPC monitor run on the same single CPU. This induces
some interferences on the counters. These are negligible as the monitor is blocked during
the execution of the monitored partition; however synchronization and context switch
operations are counted in the HPC.

For this trace collection case, HPC configuration is enabled from user space, to avoid
switching to kernel mode before configuring counters.

A.2 Results Analysis
Figures A.2 show box plots of the measurements distribution, for each HPC event. Many
HPC events (25 over 59) present a similar execution pattern for the test set, as seen on
Figure A.2b; table A.1 summarizes corresponding main event types. Generally, it is trivial
to distinguish tests which modify the application and tests which change significantly
the amount of executed loop iterations. Remaining tests (addqp, addtab, and rmprint)

173

174

PikeOS kernel

Monitored

Application

HPC

Monitor

Hardware CPU 0

User

space

Kernel

space

sync

Figure A.1: Offline hardware performance counters monitoring framework

are more similar to the normal application. Some events allow further separation of this
deviation subset. First, exception related events (on Cortex-A53 processor, 7 events)
spot more precisely the deviations inducing system calls. Figure A.2c highlights the
differentiation between normal and addqp deviation. Refill and write back operations on
L1 Data cache distinguish well modifications on the data-flow (Figure A.2d); in total 3
events show different distributions for these cases.

Table A.1: Hardware performance counter events presenting similar results on the test case

Access
L1 Instruction, L1 Data caches
Memory
Bus requests (load/store)

Program

Load, Store instructions
All instructions
Branches (conditional, immediat,
speculatively executed, etc.)

CPU state Pipeline interlocks
Writes to program counter

Time Bus cycles, CPU cycles

Figure A.2a provides an example of unsuitable event to trace; L1 Instruction TLB
refill events are indeed rare and their occurrence varies significantly on a simple test set.
[4] already spotted TLB events fluctuation, and thus they are not adapted for application
profiling. On the test case, the lower (below 100 occurrences) the counter value is, the
higher variability is. Hence, we do not trace these events, since their value is close to 0.
Some events’s values depend on each other. For example, counting memory accesses is
possible on the cortex-A53 processor with event MEM_ACCESS; we can alternatively

175

additer addqp addtab normal rm rmprint rpqp rpqpfail rpsleep

0
2

4
6

8
1
0

1
2

application

c
o
u
n
t

(a) L1I TLB Refill counts

additer addqp addtab normal rm rmprint rpqp rpqpfail rpsleep

0
.0

e
+

0
0

5
.0

e
+

0
6

1
.0

e
+

0
7

1
.5

e
+

0
7

2
.0

e
+

0
7

2
.5

e
+

0
7

application

c
o
u
n
t

(b) Load instruction counts

additer addqp addtab normal rm rmprint rpqp rpqpfail rpsleep

5
0

1
0
0

1
5
0

2
0
0

application

c
o
u
n
t

(c) Exception taken counts

additer addqp addtab normal rm rmprint rpqp rpqpfail rpsleep

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

application

c
o
u
n
t

(d) L1D Cache Refill counts

Figure A.2: Box-plots of events counts for the set of monitored hardware performance counters
on the test set

176

trace all memory read and write operations and add them. The table A.2 lists all events
to remove from the tracing selection.

Table A.2: Unsuitable hardware performance counter events for application profiling
Reason Total Filtered HPC events

unstable
TLB refill, L2D cache write back/refill,

12 cache maintenance management,
interrupts

null
error events, other specific events

11 non-executed in the hello test set
(e.g. floating point operations)

Software defined 2 HPC overflow, software defined event

redundant 3 memory access, bus accesses,
exception return

A.3 Final Hardware Performance Counters Selection
From the results we filtered 28events. As the hardware allows at most 6 events to be
simultaneously monitored, we then need to select 6 events from the subset defined in
section A.2. We choose the counters manually, to maximize the information level on
the system hardware state coverage. From state of the art solutions (table III.8) and
according to our measurements, the final combination is given in table A.3. Hence,
we first select two cache related events to represent system data-flow with accesses to
the memory, including missed accesses. Then, we count instructions and the amount
of raised exceptions to estimate how much OS services are solicited. Finally, we add
information on the CPU branch predictor, to monitor potential misuse of this hardware,
and detect suspicious execution flow patterns. We additionally trace CPU cycles for
normalizing measurement per time unit.

Table A.3: Hardware performance counters selection
Type HPC Description

Data-Flow L1 Data Cache accesses memory accesses (load/store)
L2 Data Cache accesses and missed accesses

Control-Flow Instructions amount of instructions
Exceptions privileged operation requests
Mispredicted branches branch predictor trace
Indirect branches spec. executed branch predictor trace

Bibliography

[1] F. A. T. Abad, J. V. D. Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso,
and S. Mohan. On-chip control flow integrity check for real time embedded systems.
In 2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks,
and Applications (CPSNA), pages 26–31, 2013.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/, 2015.
Software available from tensorflow.org.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity:
Principles, implementations, and applications. In CCS. ACM, 2005.

[4] M. F. B. Abbas, S. P. Kadiyala, A. Prakash, T. Srikanthan, and Y. L. Aung.
Hardware performance counters based runtime anomaly detection using SVM. In
2017 TRON Symposium, 2017.

[5] A. S. Abed, T. C. Clancy, and D. S. Levy. Applying bag of system calls for
anomalous behavior detection of applications in linux containers. In 2015 IEEE
Globecom Workshops, 2015.

[6] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi,
and G. Tsudik. C-FLAT: Control-flow attestation for embedded systems software.
In CCS. ACM, 2016.

[7] K. Agrawal, S. Baruah, and A. Burns. The safe and effective use of learning-enabled
components in safety-critical systems. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[8] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. An empirical
survey-based study into industry practice in real-time systems. In 2020 IEEE
Real-Time Systems Symposium (RTSS), pages 3–11, 2020.

177

178 BIBLIOGRAPHY

[9] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

[10] J. Alves-Foss, W. S. Harrison, P. Oman, and C. Taylor. The MILS architecture for
high-assurance embedded systems. In International Journal of Embedded Systems,
2005.

[11] M. Anandapriya and B. Lakshmanan. Anomaly based host intrusion detection
system using semantic based system call patterns. In 2015 IEEE 9th International
Conference on Intelligent Systems and Control, 2015.

[12] ARINC Specification 653P1-2, Avionics Application Software Standard Interface
Part 1 -Required Services. http://www.arinc.com, 2005.

[13] ARM. ARMv8-A Architecture Reference Manual. https://static.docs.arm.com/
ddi0487/a/DDI0487A_j_armv8_arm.pdf, 2017.

[14] Arm Holdings. Coresight program flow trace architecture specification. https:
//developer.arm.com/documentation/ihi0035/b/.

[15] Arm Holdings. Coresight trace memory controller technical reference manual.
https://developer.arm.com/documentation/ddi0461/.

[16] Arm Holdings. ARM CoreSight SoC-400 Technical Reference Manual, June 2016.

[17] AUTOSAR. Requirements on health monitoring. https://www.autosar.org/fi
leadmin/user_upload/standards/foundation/1-3/AUTOSAR_RS_HealthMonitoring.
pdf.

[18] AUTOSAR. Specification of intrusion detection system protocol. https://www.au
tosar.org/fileadmin/user_upload/standards/foundation/20-11/AUTOSAR_PRS_I
ntrusionDetectionSystem.pdf, 2020.

[19] AUTOSAR: Automotive open system architecture. https://www.autosar.org/,
2021.

[20] I. Avdagic and K. Hajdarevic. Survey on machine learning algorithms as cloud
service for cidps. In 2017 25th Telecommunication Forum (TELFOR), pages 1–4,
2017.

[21] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. In IEEE Transactions on Dependable
and Secure Computing, pages 11–33, 2004.

[22] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical
report, Department of Computer Engineering Chalmers University of Technology
Göteborg, Sweden, 2000.

BIBLIOGRAPHY 179

[23] K. Basu, P. Krishnamurthy, F. Khorrami, and R. Karri. A theoretical study of
hardware performance counters-based malware detection. In IEEE Transactions
on Information Forensics and Security, 2020.

[24] N. Bellec, S. Rokicki, and I. Puaut. Attack detection through monitoring of timing
deviations in embedded real-time systems. In 32nd Euromicro Conference on
Real-Time Systems, 2020.

[25] J.-P. Blanquart, J.-M. Astruc, P. Baufreton, J.-L. Boulanger, H. Delseny, J. Gassino,
G. Ladier, E. Ledinot, M. Leeman, J. Machrouh, et al. Criticality categories across
safety standards in different domains. Embedded Real Time Software and Systems,
2012.

[26] R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, and Q. G.
Chen. A survey of intrusion detection systems leveraging host data. In ACM
Computing Surveys. ACM, 2020.

[27] A. Burns and R. I. Davis. Mixed Criticality Systems - A Review. In ACM
Transactions on Embedded Computing Systems, volume 50, page 81, 2017.

[28] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer.
Control-flow integrity: Precision, security, and performance. ACM Computing
Surveys (CSUR), 50(1), 2017.

[29] N. Burow, X. Zhang, and M. Payer. SoK: Shining light on shadow stacks. In S&P.
IEEE, 2019.

[30] Capstone. Capstone webpage. https://www.capstone-engine.org/, 2021.

[31] N. Carreon, A. Gilbreath, and R. Lysecky. Window-Based Statistical Analysis
Of Timing Subcomponents For Efficient Detection Of Malware In Life-Critical
Systems. In 2019 Spring Simulation Conference (SpringSim), pages 1–12, 2019.

[32] R. Chalapathy and S. Chawla. Deep learning for anomaly detection: A survey.
ArXiv, abs/1901.03407, 2019.

[33] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash. A novel
side-channel in real-time schedulers. In IEEE Real-Time and Embedded Technology
and Applications Symposium, 2019.

[34] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks
are realistic threats. In 14th conference on USENIX Security Symposium, 2005.

[35] M. Cinque, D. Cotroneo, and A. Pecchia. Challenges and directions in security
information and event management (siem). In 2018 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), pages 95–99, 2018.

[36] R. D. Clercq and I. Verbauwhede. A survey of hardware-based control flow integrity
(cfi). unpublished, 2017.

180 BIBLIOGRAPHY

[37] Common vulnerabilities and exposures. https://cve.mitre.org/index.html.

[38] G. Creech and J. Hu. Generation of a new IDS test dataset: Time to retire the
KDD collection. In IEEE Wireless Communications and Networking Conference,
2013.

[39] G. Creech and J. Hu. A semantic approach to host-based intrusion detection systems
using contiguous and discontiguous system call patterns. In IEEE Transactions on
Computers, 2014.

[40] P. Cronin and C. Yang. Lowering the barrier to online malware detection through
low frequency sampling of HPCs. In 2018 IEEE International Symposium on
Hardware Oriented Security and Trust, 2018.

[41] A. Damien. Sécurité par analyse comportementale de fonctions embarquées sur
plateformes avioniques modulaires intégrées. PhD thesis, INSA Toulouse, 2020.

[42] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow stacks
and stack canaries. In ASIACCS 2015 - Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, pages 555–566, 2015.

[43] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose. Sok: The
challenges, pitfalls, and perils of using hardware performance counters for security.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 20–38, 2019.

[44] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan, O. Arias,
and Y. Jin. HAFIX: Hardware-assisted flow integrity extension. In DAC. ACM,
2015.

[45] L. Davi, P. Koeberl, and A.-R. Sadeghi. Hardware-assisted fine-grained control-
flow integrity: Towards efficient protection of embedded systems against software
exploitation. In DAC. ACM, 2014.

[46] R. Davis, S. Altmeyer, and A. Burns. Mixed criticality systems with varying
context switch costs. In 24th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2018.

[47] D. E. Denning. An intrusion-detection model. IEEE Transactions on Software
Engineering, SE-13(2):222–232, 1987.

[48] P. Denzler, J. Ruh, M. Kadar, C. Avasalcai, and W. Kastner. Towards consolidating
industrial use cases on a common fog computing platform. In 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
2020.

[49] Development, security, and operations (devsecops) webpage. https://www.devsec
ops.org/, 2021.

BIBLIOGRAPHY 181

[50] S. Dominic Eschweiler. Security Target PikeOS Separation Kernel v4.2.2. https:
//www.atsec.de/wp-content/uploads/2019/01/1041b_pdf.pdf, 2018.

[51] J. J. Dongarra. The linpack benchmark: An explanation. In Supercomputing.
Springer Berlin Heidelberg, 1988.

[52] B. Dutertre and V. Stavridou. A model of noninterference for integrating mixed-
criticality software components. In Dependable Computing for Critical Applications
7, pages 301–316, 1999.

[53] Elinos embedded linux webpage. https://www.sysgo.com/products/pikeos-hype
rvisor/.

[54] M. Elrawy, A. Faisal, I. Awad, and H. F. A. Hamed. Intrusion detection systems
for iot-based smart environments: A survey. In Journal of Cloud Computing, 2018.

[55] Euro-MILS Project. Whitepaper: Mils architecture. http://euromils.eu/downlo
ads/2014-EURO-MILS-MILS-Architecture-white-paper.pdf, 2014.

[56] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoe-
berl, R. B. Sørensen, P. Wägemann, and S. Wegener. TACLeBench: A benchmark
collection to support worst-case execution time research. In M. Schoeberl, editor,
16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016), OpenAccess Series in Informatics (OASIcs), 2016.

[57] J. Fellmuth, P. Herber, T. F. Pfeffer, and S. Glesner. Securing Real-
Time Cyber-Physical Systems Using WCET-Aware Artificial Diversity. In
2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Comput-
ing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf
on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pages 454–461, 2017.

[58] D. Fiser and W. G. Sanchez. "Detecting attacks that exploit Meltdown and Spectre
with performance counters". https://blog.trendmicro.com/trendlabs-security
-intelligence/detecting-attacks-that-exploit-meltdown-and-spectre-with-p
erformance-counters/, 2018.

[59] X. Ge, W. Cui, and T. Jaeger. GRIFFIN: Guarding control flows using Intel
processor trace. In 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2017.

[60] I. Georgiev and I. Georgiev. Some Analysis of the Timing Parameters in Real-time
Embedded Systems. In 2020 International Conference on Information Technologies
(InfoTech), pages 1–4, 2020.

[61] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent backward-edge
control flow violation detection using Intel processor trace. In CODASPY. ACM,
2017.

182 BIBLIOGRAPHY

[62] W. Haider, J. Hu, and M. Xie. Towards reliable data feature retrieval and decision
engine in host-based anomaly detection systems. In 2015 IEEE 10th Conference
on Industrial Electronics and Applications, 2015.

[63] M. Hamad, M. Nolte, and V. Prevelakis. Towards comprehensive threat modeling
for vehicles. In 1st Workshop on Security and Dependability of Critical Embedded
Real-Time Systems, page 6, 2016.

[64] S. Han, M. Xie, H.-H. Chen, and Y. Ling. Intrusion detection in cyber-physical
systems: Techniques and challenges. In Systems journal. IEEE, 2014.

[65] X. Hao, M. Lv, J. Zheng, Z. Zhang, and W. Yi. Integrating Cyber-Attack De-
fense Techniques into Real-Time Cyber-Physical Systems. In 2019 IEEE 37th
International Conference on Computer Design (ICCD), pages 237–245, 2019.

[66] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni. Exploring opportunistic
execution for integrating security into legacy hard real-time systems. In IEEE
Real-Time Systems Symposium, 2016.

[67] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba. Contego: An adaptive
framework for integrating security tasks in real-time systems. In 29th Euromicro
Conference on Real-Time Systems, 2017.

[68] S. Heath. Embedded systems design. Newnes, 2002.

[69] M. Hill and T. Lake. Non-interference analysis for mixed criticality code in avionics
systems. In Proceedings ASE 2000. Fifteenth IEEE International Conference on
Automated Software Engineering, pages 257–260, 2000.

[70] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and W. Lee.
Enforcing unique code target property for control-flow integrity. In CCS. ACM,
2018.

[71] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-oriented
programming: On the expressiveness of non-control data attacks. In 2016 IEEE
Symposium on Security and Privacy, 2016.

[72] J. Hu. Afda-ld dataset webpage. https://www.unsw.adfa.edu.au/unsw-canberra
-cyber/cybersecurity/ADFA-IDS-Datasets/, 2013.

[73] J. Hu, X. Yu, D. Qiu, and H. Chen. A simple and efficient hidden Markov model
scheme for host-based anomaly intrusion detection. IEEE Network, 2009.

[74] Intel processor tracing webpage. https://software.intel.com/content/www/us/
en/develop/blogs/processor-tracing.html.

[75] ISO. ISO 26262 Standard: Road Vehicles - Functional Safety. https://www.iso.
org/standards.html, 2021.

BIBLIOGRAPHY 183

[76] S. Jose, D. Malathi, B. Reddy, and D. Jayaseeli. A survey on anomaly based host
intrusion detection system. In Journal of Physics: Conference Series, 2018.

[77] Juno arm development platform webpage. https://developer.arm.com/tools-an
d-software/development-boards/juno-development-board.

[78] M. Kadar, G. Fohler, P. Gorski, and D. Kuzhiyelil. A survey of host intrusion
detection for embedded mixed-criticality systems. submitted, 2021.

[79] M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski. Safety-aware integration of
hardware-assisted program tracing in mixed-criticality systemsfor security monitor-
ing. In IEEE Real-Time and Embedded Technology and Applications Symposium,
2021.

[80] M. Kadar, S. Tverdyshev, and G. Fohler. System calls instrumentation for intrusion
detection in embedded mixed-criticality systems. In 4th International Workshop
on Security and Dependability of Critical Embedded Real-Time Systems, 2019.

[81] M. Kadar, S. Tverdyshev, and G. Fohler. Towards host intrusion detection for
embedded industrial systems. In 50th Annual IEEE-IFIP International Conference
on Dependable Systems and Networks-Supplemental Volume (DSN-S), 2020.

[82] O. Kath, R. Schreiner, and J. Favaro. Safety, security, and software reuse: A
model-based approach. In RESAFE. Springer, 2009.

[83] K. Kavanagh, T. Bussa, and J. Collins. Gartner, Magic Quadrant for Security
Information and Event Management, 2021.

[84] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. Survey of intrusion
detection systems: Techniques, datasets and challenges. In Cybersecurity, 2019.

[85] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon. LSTM-based system-call language
modeling and robust ensemble method for designing host-based intrusion detection
systems. arXiv:1611.01726 [cs], 2016.

[86] S. Kim and K.-J. Park. A survey on machine-learning based security design for
cyber-physical systems. Applied Sciences, 11(12), 2021.

[87] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. In 40th IEEE Symposium on Security and Privacy, 2019.

[88] Koucham, T. Rachidi, and N. Assem. Host intrusion detection using system call
argument-based clustering combined with bayesian classification. In 2015 SAI
Intelligent Systems Conference (IntelliSys), pages 1010–1016, 2015.

[89] P. Krishnamurthy, R. Karri, and F. Khorrami. Anomaly detection in real-time multi-
threaded processes using hardware performance counters. In IEEE Transactions
on Information Forensics and Security, 2020.

184 BIBLIOGRAPHY

[90] K. Krüger, M. Völp, and G. Fohler. Vulnerability analysis and mitigation of directed
timing inference based attacks on time-triggered systems. In 30th Euromicro
Conference on Real-Time Systems, 2018.

[91] S. Kumar. Classification and Detection of Computer Intrusions. PhD thesis
dissertation, Department of Computer Sciences, Purdue University, 1995.

[92] D. Kuzhiyelil, P. Zieris, M. Kadar, S. Tverdyshev, and G. Fohler. Towards
transparent control-flow integrity in safety-critical systems. In 23rd Information
Security Conference, 2020.

[93] J. C. Laprie. Dependable computing and fault tolerance: Concepts and terminology.
In 15th International Symposium on Fault-Tolerant Computing (FTSC-15), pages
2–11, 1985.

[94] M. Laureano, C. Maziero, and E. Jamhour. Intrusion detection in virtual machine
environments. In 30th Euromicro Conference, pages 520–525, 2004.

[95] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek. Towards a practical solution to
detect code reuse attacks on ARM mobile devices. In HASP. ACM, 2015.

[96] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek. Using CoreSight PTM to integrate
CRA monitoring IPs in an ARM-based SoC. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 22(3), 2017.

[97] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness in
hard real-time environments. In Unknown Host Publication Title, pages 261–270.
IEEE, 1987.

[98] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection system:
A comprehensive review. In Journal of Network and Computer Applications, 2013.

[99] Linaro. OpenCSD - An open source CoreSight(tm) Trace Decode library. https:
//github.com/Linaro/OpenCSD, 2021.

[100] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium, 2018.

[101] A. Liu, X. Jiang, J. Jin, F. Mao, and J. X. Chen. Enhancing system-called-based
intrusion detection with protocol context. In Fifth International Conference on
Emerging Security Information, Systems and Technologies, 2011.

[102] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[103] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen. Host-based intrusion detection
system with system calls: Review and future trends. In ACM Computing Surveys.
ACM, 2019.

BIBLIOGRAPHY 185

[104] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan. Transparent and efficient
CFI enforcement with Intel processor trace. In HPCA. IEEE, 2017.

[105] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call
sequence and argument analysis. In IEEE Transactions on Dependable and Secure
Computing, pages 381–395, 2010.

[106] R. Mahfouzi, A. Aminifar, S. Samii, M. Payer, P. Eles, and Z. Peng. Butterfly
attack: Adversarial manipulation of temporal properties of cyber-physical systems.
In IEEE Real-Time Systems Symposium, 2019.

[107] A. Mahmood and E. J. McCluskey. Concurrent error detection using watchdog
processors-a survey. IEEE Transactions on Computers, 37(2):160–174, 1988.

[108] S. A. Maske and T. J. Parvat. Advanced anomaly intrusion detection technique for
host based system using system call patterns. In 2016 International Conference
on Inventive Computation Technologies (ICICT), 2016.

[109] A. S. Mateus. Machine learning based anomaly detection for mixed criticality
systems. Master’s thesis, Chair of Real-Time Systems, TU Kaiserslautern, 2021.

[110] T. Mehmood and H. B. M. Rais. Machine learning algorithms in context of
intrusion detection. In 3rd International Conference on Computer and Information
Sciences, 2016.

[111] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In International Conference on Learning Representations
ser. ICLR ’13, 2013.

[112] R. Mirzazade Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda, and
H. Okhravi. On the effectiveness of type-based control flow integrity. In An-
nual Computer Security Applications Conference, 2018.

[113] R. Mitchell and I.-R. Chen. A survey of intrusion detection techniques for cyber-
physical systems. In ACM Computing Surveys. ACM, 2014.

[114] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba. Integrating security
constraints into fixed priority real-time schedulers. Real-Time Systems, 52(5):644–
674, 2016.

[115] R. Moskovitch, S. Pluderman, I. Gus, D. Stopel, C. Feher, Y. Parmet, Y. Shahar,
and Y. Elovici. Host based intrusion detection using machine learning. In IEEE
Intelligence and Security Informatics, 2007.

[116] M. Nasri, T. Chantem, G. Bloom, and R. M. Gerdes. On the pitfalls and vul-
nerabilities of schedule randomization against schedule-based attacks. In IEEE
Real-Time and Embedded Technology and Applications Symposium, 2019.

186 BIBLIOGRAPHY

[117] M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst. Contract-based
dynamic task management for mixed-criticality systems. In IEEE International
Symposium on Industrial Embedded Systems, 2011.

[118] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan. CFI CaRE: Hardware-supported
call and return enforcement for commercial microcontrollers. In RAID. Springer,
2017.

[119] Opensource Python Machine-Learning. Tensorflow lite framework. https://www.
tensorflow.org/lite.

[120] Open source hids security (ossec) host intrusion detection system. https://www.os
sec.net/, 2021.

[121] S. M. Othman, N. T. Alsohybe, F. M. Ba-Alwi, and A. T. Zahary. Survey on
intrusion detection system types. In International Journal of Cyber-Security and
Digital Forensics, 2018.

[122] S. Owicki and L. Lamport. Proving Liveness Properties of Concurrent Programs.
ACM Transactions on Programming Languages and Systems, 4(3):455–495, 1982.

[123] PaX Team. RIP ROP. https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP
-RIP-ROP.pdf, 2015.

[124] P. Chen et al. What you see is not what you get! thwarting just-in-time rop with
chameleon. In 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2017.

[125] M. Pendleton and S. Xu. A dataset generator for next generation system call host
intrusion detection systems. In MILCOM 2017 - 2017 IEEE Military Communica-
tions Conference (MILCOM), 2017.

[126] D. V. Pham, A. Syed, A. Mohammad, and M. N. Halgamuge. Threat analysis of
portable hack tools from usb storage devices and protection solutions. In 2010
International Conference on Information and Emerging Technologies, pages 1–5,
2010.

[127] L. Pike, P. Hickey, T. Elliott, E. Mertens, and A. Tomb. Trackos: A security-aware
real-time operating system. In International Conference on Runtime Verification,
2017.

[128] Pikeos hypervisor webpage. https://www.sysgo.com/products/pikeos-hypervis
or/, 2021.

[129] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and W. Steiner.
The fora fog computing platform for industrial iot. https://www.sciencedirect.
com/science/article/pii/S0306437921000053, 2021.

BIBLIOGRAPHY 187

[130] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In I. Attali and T. Jensen, editors, Smart
Card Programming and Security, pages 200–210, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[131] A. V. Raja, J. Lee, and D. Gao. On return oriented programming threats in
android runtime. In Conference on Privacy, Security and Trust, 2017.

[132] ARM Cortex-A53 MPCore Processor Technical Reference Manual. https://deve
loper.arm.com/docs/ddi0500/g, 2018.

[133] J. E. Rico, M. Bañón, A. Ortega, R. Hametner, H. Blasum, and M. Hager.
Compositional security certification methodology. Zenodo, 2018.

[134] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented program-
ming: Systems, languages, and applications. In CM Transactions on Information
and System Security - TISSEC, volume 15, pages 1–34, 2012.

[135] I. RTCA. Software considerations in airborne systems and equipment certification.
www.rtca.org, 2011.

[136] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult. A survey of stealth malware
attacks, mitigation measures, and steps toward autonomous open world solutions.
In IEEE Communications Surveys Tutorials. IEEE, 2017.

[137] J. Rushby. The design and verification of secure systems. In Eighth ACM Symposium
on Operating System Principles, 1981.

[138] S. I. T. C. (SAE-ITC). Arinc specification 653p1-4 avionics application software
standard interface part 1 -required services. http://www.arinc.com, 2015.

[139] U. A. Sandhu, S. Haider, S. Naseer, and O. U. Ateeb. A survey of intrusion
detection & prevention techniques. In International Conference on Information
Communication and Management, 2011.

[140] S. Sarwar, H. Marco-Gisbert, I. Ripoll, and M. Birch. Control-flow integrity:
Attacks and protections. In Applied Sciences, 2019.

[141] T. Schulz, C. Gries, F. Golatowski, and D. Timmermann. Strategy for security
certification of high assurance industrial automation and control systems. In 2018
IEEE 13th International Symposium on Industrial Embedded Systems (SIES), pages
1–4, 2018.

[142] W. Shi, H. Zhou, J. Yuan, and B. Liang. DCFI-Checker: Checking kernel dynamic
control flow integrity with performance monitoring counter. China Communications,
2014.

188 BIBLIOGRAPHY

[143] A. Sinnhofer, W. Raschke, C. Steger, and C. Kreiner. Evaluation paradigm selection
according to common criteria for an incremental product development. In MILS
Workshop 2015, pages 1–5, 2015.

[144] Spunk Advanced Security analytics at scale. https://www.splunk.com/en_us/cybe
r-security/siem.html, 2021.

[145] B. Sprunt, J. P. Lehoczky, and L. Sha. Exploiting unused periodic time for aperiodic
service using the extended priority exchange algorithm. In Real-Time Systems
Symposium, 1988.

[146] D. Stojcsics, D. Boursinos, N. Mahadevan, X. Koutsoukos, and G. Karsai. Fault-
adaptive autonomy in systems with learning-enabled components. Sensors,
21(18):6089, 2021.

[147] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm
for enhanced aperiodic responsiveness in hard real-time environments. In IEEE
Transactions on Computers, 1995.

[148] B. Subba, S. Biswas, and S. Karmakar. Host based intrusion detection system
using frequency analysis of n-gram terms. In 2017 IEEE Region 10 Conference,
2017.

[149] X. Sun, H. Khedr, and Y. Shoukry. Formal verification of neural network controlled
autonomous systems. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, page 147–156, New York, NY, USA,
2019. Association for Computing Machinery.

[150] The LLVM Foundation. The LLVM compiler infrastructure. llvm.org, 2021.

[151] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano,
and G. Pike. Enforcing forward-edge control-flow integrity in GCC & LLVM. In
USENIX Security. USENIX Association, 2014.

[152] S. Tverdyshev, H. Blasum, B. Langenstein, J. Maebe, B. De Sutter, B. Leconte,
B. Triquet, K. Müller, M. Paulitsch, A. Söding-Freiherr von Blomberg, and et al.
MILS Architecture. Zenodo, 2013.

[153] University of California. 1999 darpa intrusion detection evaluation dataset webpage.
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evalu
ation-dataset, 1999.

[154] University of California. KDD Cup 1999 Data Webpage. https://kdd.ics.uci.ed
u/databases/kddcup99/kddcup99.html, 1999.

[155] V. van der Veen, E. Göktaş, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos,
T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In S&P. IEEE, 2016.

BIBLIOGRAPHY 189

[156] R. J. Walls, N. F. Brown, T. L. Baron, C. A. Shue, H. Okhravi, and B. C. Ward.
Control-flow integrity for real-time embedded systems. In Euromicro Conference
on Real-Time Systems, 2019.

[157] X. Wang and R. Karri. Numchecker: Detecting kernel control-flow modifying
rootkits by using hardware performance counters. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference, 2013.

[158] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison, P. Stergiou,
and S. Kim. Malicious firmware detection with hardware performance counters.
IEEE Transactions on Multi-Scale Computing Systems, 2016.

[159] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system
calls: alternative data models. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, 1999.

[160] C. B. Watkins and R. Walter. Transitioning from federated avionics architectures
to integrated modular avionics. In 2007 IEEE/AIAA 26th Digital Avionics Systems
Conference, pages 2.A.1–1–2.A.1–10, 2007.

[161] J. Wolf, B. Fechner, S. Uhrig, and T. Ungerer. Fine-grained timing and control
flow error checking for hard real-time task execution. In 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12), pages 257–266, 2012. ISSN:
2150-3117.

[162] S. Wunderlich, M. Ring, D. Landes, and A. Hotho. Comparison of system call
representations for intrusion detection. In Martínez Álvarez F., Troncoso Lora A.,
Sáez Muñoz J., Quintián H., Corchado E. (eds) International Joint Conference:
12th International Conference on Computational Intelligence in Security for Infor-
mation Systems and 10th International Conference on EUropean Transnational
Education, 2019.

[163] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha. Learning Exe-
cution Contexts from System Call Distribution for Anomaly Detection in Smart
Embedded System. In International Conference on Internet-of-Things Design and
Implementation, pages 191–196. ACM, 2017.

[164] A. Young. Developing a Safety Element out of Context according to ISO 26262.
https://lorit-consultancy.com/en/2017/11/developing-a-safety-element-out
-of-context-according-to-iso-26262/, 2021.

[165] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi. Hardware performance
counters can detect malware: Myth or fact? In Asia Conference on Computer and
Communications Security, 2018.

[166] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan. Time-based intrusion detection
in cyber-physical systems. In Proceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, page 109. ACM Press, 2010.

190 BIBLIOGRAPHY

[167] R. Zuech, T. M. Khoshgoftaar, and R. Wald. Intrusion detection and big heteroge-
neous data: A survey. In Journal of Big Data, 2015.

Acronyms

API Application Programming Interface.
ARINC 653 Avionics Application Standard Software Interface.
AUTOSAR AUTomotive Open System ARchitecture.

CF Control-Flow.
CFI Control-Flow Integrity.

DF Data-Flow.
DFI Data-Flow Integrity.

FNR False-Negative Rate.
FPR False-Positive Rate.

GP General-Purpose.

HIDS Host Intrusion Detection System.
HPC Hardware Performance Counters.

IT Information Technology.

LSTM Long Short Term Memory.

MCS Mixed-Criticality System.
MILS Multiple Independent Layers of Security.
ML Machine Learning.
Monitoree Monitored application.

NLP Natural Language Processing.

OS Operating System.

RT Real-Time.
RTS Real-Time Systems.

SC System Call.
SK Separation Kernel.
SoC System on Chip.

191

Summary
Integration Methods for Host Intrusion
Detection into Embedded Mixed-Criticality
Systems

In Mixed-Criticality System (MCS), low-critical applications have a larger attack surface
compared to high-critical applications. Even though MCS isolate criticality domains of
execution by design, a threat affecting a low-critical service can alter the execution of
a high-critical task: e.g by degrading the system availability or user-experience. Such
attack on low-critical tasks can even introduce an entry point for propagating the attack
further to high-critical tasks. In this context, detecting such threats in applications
during runtime is a major issue for MCS security. This thesis tackles the problem of
Host Intrusion Detection System (HIDS) deployment into embedded MCS.

Chapter I – Introduction

In this chapter, we outline our motivation to address the problem of integrating intrusion
detection into embedded MCS. We identify the gaps in state-of-the-art intrusion detection
solutions and present the contributions of this work. We conclude by a description of
the chapters composing this dissertation.

Embedded MCS can support multiple applications corresponding to different criticality
levels on a single hardware platform. On one hand, low-critical applications represent
attractive and likely entry points for intrusion in the system. On the other hand, the
failure of a high-critical software can lead to disastrous consequences. Hence, the early
detection of threats in the execution of a monitored application contributes to improve
the overall security of the system. Nevertheless, the deployment of intrusion detection
into embedded MCS must comply with system criticality constraints. For this reason,
the great majority of intrusion detection solutions, which are developed in the context
of General-Purpose (GP) computers, cannot directly be ported to embedded MCS
platforms.

In this dissertation, we propose a methodology to deploy HIDS into embedded MCS
and introduce two main HIDS approaches:

193

194 SUMMARY
INTEGRATION METHODS FOR HOST INTRUSION DETECTION INTO EMBEDDED
MIXED-CRITICALITY SYSTEMS

• a heuristics based solution, deploying machine-learning based analysis for anomaly
detection.

• a specification based solution, with hardware-assisted CFI monitoring.

Chapter II – Background

This chapter introduces basic concepts related to HIDS deployment into embedded MCS.
It also defines our context of work, the problem statement, and our goals for this thesis.

For this work, we consider industrial embedded MCS, which induce several constraints
for the integration of HIDS mechanisms in the system. Industrial embedded MCS, and
more particularly the monitored application, are subject to certification. This means
that HIDS software must comply with the certification process. In addition, the HIDS
mechanisms must be transparent for the monitored program’s execution.

The integrity of the execution of a given user-level application to monitor is our security
asset, which we propose to protect with the deployment of HIDS. We aim at introducing
methods to integrate HIDS mechanisms into an industrial embedded MCS and evaluate
the ability of a given solution to protect a monitored application in such system, more
particularly in the context of certification.

Chapter III – State of the Art on Host Intrusion Detection

This chapter provides an overview of state-of-the-art HIDS solutions. It covers HIDS
research in GP computers and we discuss the applicability of existing approaches to run
into an embedded MCS. We are not aware of any previous extensive literature review,
which addresses the problem of HIDS integration into embedded MCS, with a focus on
deployment into industrial systems.

We introduce a set of key criteria related to deployment constraints and system
performance in terms of system overhead, security, and safety; we leverage these criteria
to evaluate and classify the HIDS frameworks discussed in this chapter. The results
show a great diversity in intrusion detection approaches and evaluation methods; though,
the set of solutions suitable to run into embedded MCS is much smaller than the set of
solutions for GP computers.

Chapter IV – A Methodology for Runtime Anomaly Detection in Embedded Mixed-Criticality
Systems

In this chapter, we describe an approach for integrating HIDS into embedded MCS and
define a generic system architecture to integrate HIDS mechanisms in an embedded
MCS. The system design is based on a MILS [10] architecture; the intrusion detection
mechanisms execute in a secure execution environment isolated from the monitored
application and all other user-level applications, which we consider by default as non-
trusted. We also introduce a set of metrics to evaluate the HIDS solution with respect
to security, system schedulability, and performance overhead.

SUMMARY
INTEGRATION METHODS FOR HOST INTRUSION DETECTION INTO EMBEDDED

MIXED-CRITICALITY SYSTEMS 195

The HIDS approaches presented in the following chapters are based on the generic
HIDS framework proposed in this chapter. In addition, we evaluate these approaches
using the set of introduced criteria.

Chapter V – Machine-Learning Based Anomaly Detection Solutions for Embedded
Mixed-Criticality Systems

In this chapter, we present Machine Learning (ML) based methods to detect intrusions in
the execution of a monitored application. The goal is to limit intrusiveness in monitoring,
by tracing low-level system events with system calls at OS level and Hardware Performance
Counters (HPC) at hardware level.

We present a HIDS composed of:
• an online safety-aware system call and HPC tracing infrastructure.

• an offline ML engine to detect anomalies in the traces of execution of the monitored
application.

Our experimental results show a good detection accuracy on the set of tested use-cases.
Alternatively, we propose a transparent online HIDS based on HPC tracing. We

evaluate the feasibility of online ML based detection, leveraging an open-source ML
framework, to perform detection locally on the deployment platform. For the first time to
our knowledge, we presented an online ML based HIDS integrated to an embedded MCS.
On one hand, as for the previous system call and HPC based solution, our experimental
results show a good detection accuracy to detect anomalous executions for our set
of tested use-cases. On the other hand, our analytical and experimental evaluation
highlights the main constraints and pitfalls for the deployment of ML-assisted HIDS
into such platforms. We showed that for one ML engine configuration, the detection
accuracy varies depending on the monitored application. Additionally, according to our
experiments, we cannot derive a correlation between ML model complexity and detection
accuracy.

Chapter VI – A Safety-Aware Control-Flow Integrity Framework for Embedded Mixed-Criticality
Systems

In this chapter, we describe a safety-aware method to integrate hardware-assisted
CF monitoring into a MCS. We introduce a configurable and predictable control-flow
integrity (CFI) monitoring framework. This specification based approach leverages a
hardware feature of the processor to transparently trace the monitored application.We
also introduce a CF events monitoring service using statistics to be combined with
sporadic CFI checking, to address the trade-off issue between performance overhead and
security coverage of the monitored application’s execution.

For our experiment, we implement the CF based framework on PikeOS industrial
real-time OS with ARM CoreSight support. We use a set of programs from TACLeBench
benchmark. While limiting the time performance overhead to 10% slowdown of the
monitored task, our ADS correctly identified almost all samples, with no false-positives
and rare false-negatives.

196 SUMMARY
INTEGRATION METHODS FOR HOST INTRUSION DETECTION INTO EMBEDDED
MIXED-CRITICALITY SYSTEMS

Chapter VII – An Adaptive Host Intrusion Detection System Approach for Embedded
Mixed-Criticality Systems

In this chapter, we propose an analytical adaptive HIDS approach to combine several
monitoring solutions. We define a set of requirements and evaluation considerations to
guide future implementations.

On one hand, the goal is to improve the detection of intrusions in the monitored
application, combining various ways of detection through diverse system signals to reduce
the rate of detection errors. On the other hand, such adaptive HIDS approach can support
a configurable trade-off between security and performance impact; i.e. reducing the heavy
performance overhead induced by some intrusion detection methods like our safety-aware
hardware-assisted CFI monitoring approach. We introduce HIDS parameters to configure
the solution and analyze the impact of these parameters on a set of security evaluation
criteria.

Chapter VIII – Conclusion

The chapter concludes this dissertation by comparing our contributions to the state of the
art. We introduce several safety-aware HIDS approaches to be deployed in embedded MCS.
We base our intrusion detection approaches on heuristics and specification techniques.
Both types of approach come with limited intrusiveness on the monitored application to
facilitate the integration of HIDS mechanisms into industrial embedded MCS, which can
be subject to certification.

We discuss main limitations of our implementations and paths for future HIDS
development in the context of industrial embedded MCS. The ability of heuristics
based HIDS to detect anomalous application executions varies with the characteristics
of the monitored application. Future work could notably focus on the evaluation of
representative industrial use-cases and threat scenarios; e.g. monitoring a generic
representative application or an exhaustive set of applications. Also, it would be valuable
to provide a comprehensive approach to configure a heuristics based detection method
in function of application characteristics, to improve detection accuracy of the HIDS
solution.

Appendix A

The appendix describes our process to select HPC for intrusion detection, monitoring a
given application. It presents our practical evaluation framework and the experiment re-
sults. From these experiment results, we identify suitable hardware events for application
profiling and select a set of six HPC events to trace for the experiments in Chapter V.

Zusammenfassung
Integrationsmethoden für Host-Basierte
Angriffserkennung in Eingebetteten
Mixed-Criticality Systemen

Ein Mixed-Criticality System (MCS) integriert und isoliert Anwendungen unterschiedli-
cher Kritikalitäten hinsichtlich ihrer Anforderungen im Bezug auf die funktionale sowie
informationstechnische Sicherheit. Hierbei weisen Anwendungen mit niedriger Kritikalität
eine größere Angriffsfläche als jene mit hoher Kritikalität auf. Im Rahmen der Integration
von MCS für eingebettete Systeme und Anwendungen ist dies durch die starken sicher-
heitstechnischen Rahmenbedingungen sowie die intensivere Nutzung geteilter Ressourcen
besonders herausfordernd.

Auch wenn das MCS die Kritikalitätsdomänen der Anwendungen bereits im Entwurf
isolieren, kann eine Bedrohung, die einen Dienst mit niedriger Kritikalität betrifft, die
Ausführung einer hochkritischen Anwendungen über potentielle Seitenkanäle oder erlaub-
te Mechanismen verändern: z. B. durch Verschlechterung der Systemverfügbarkeit oder
der Benutzbarkeit. Ein Angriff über Anwendungen niedriger Kritikalität kann sogar einen
Einstiegspunkt für die Ausbreitung des Angriffs auf hochkritische Anwendungen darstel-
len. In diesem Zusammenhang ist die Erkennung solcher Bedrohungen und potentieller
Angriffe in Anwendungen zur Laufzeit ein essentielles Thema für die MCS-Sicherheit.
Die vorliegende Arbeit befasst sich mit Lösungen für die Bereitstellung sowie Integration
von Host Intrusion Detection System (HIDS) zur Angriffserkennung in eingebetteten
MCS.

Kapitel I – Einleitung

Dieses Kapitel skizziert die Motivation um die Problematik der Integration von Mecha-
nismen zur Angriffserkennung (Intrusion Detection) in eingebetteten MCS zu adressieren.
Es werden die Lücken moderner Lösungen zur Angriffserkennung identifiziert und zudem
ein Überblick über die Beiträge dieser Arbeit sowie der einzelnen Kapitel dargestellt.

Ein eingebettetes MCS kann mehrere Anwendungen integrieren und somit unterschied-
liche Kritikalitätsstufen auf einer einzigen Hardwareplattform zusammenführen. Hierbei

197

198 ZUSAMMENFASSUNG
INTEGRATIONSMETHODEN FÜR HOST-BASIERTE ANGRIFFSERKENNUNG IN
EINGEBETTETEN MIXED-CRITICALITY SYSTEMEN

stellen Anwendungen mit niedriger Kritikalität attraktive und wahrscheinliche Einstiegs-
punkte für das ungewollte Eindringen in das System dar. Sollte darüber hinaus der Ausfall
einer hochkritischen Software herbeigeführt werden können, kann das katastrophale Fol-
gen haben. Daher trägt die frühzeitige Erkennung von Bedrohungen und Angriffen bei
der Ausführung einer überwachten Anwendung zur Verbesserung der Gesamtsicherheit
des Systems bei. Aufgrund der anspruchsvollen sicherheitstechnischen Anforderungen ist
der Einsatz von Intrusion Detection in eingebettetem MCS anderen Rahmenbedingungen
sowie Abhängigkeiten unterworfen als sie die meisten allgemeinen Lösungen zur Intrusion
Detection, welche im Kontext von General-Purpose (GP) Computern entwickelt werden,
erfüllen können und daher ist die direkte Portierungen der allgemeinen Lösungen oft
nicht möglich. In der vorliegenden Arbeit schlägt die Autorin eine Methodik zum Einsatz
von HIDS in eingebetteten MCS und stellt zwei Hauptansätze zur Integration des HIDS
vor:

• Eine heuristikbasierte Lösung, die auf maschinellem Lernen basierende Analysen
zur Anomalieerkennung ansetzt.

• Eine spezifikationsbasierte Lösung mit hardwareunterstützter Überwachung des
Kontrollflusses.

Diese Lösungen werden dann auch im Kontext der Zertifizierbarkeit hinsichtlich der
sicherheitstechnischen Anforderungen für den Einsatz industriellen eingebettetem MCS
diskutiert.

Kapitel II – Hintergrund

In diesem Kapitel werden grundlegende Konzepte und Anforderungen im Zusammenhang
mit der Bereitstellung von HIDS Lösungen in eingebettetem MCS eingeführt. Es definiert
damit den Arbeitskontext, die Problemstellung, und die Ziele für die vorliegende Arbeit.

Im Speziellen werden industrielle eingebettete MCS betrachtet, welche mehrere Anfor-
derungen sowie Einschränkungen für die Integration von HIDS-Lösungen in das System
mit sich bringen. Industrielle Embedded MCS und insbesondere die überwachte Anwen-
dung sind zertifizierungspflichtig. Das bedeutet, dass HIDS-Lösungen den Anforderungen
und Rahmenbedingungen im Zertifizierungsprozess entsprechen müssen. Außerdem müs-
sen die HIDS-Lösungen für die Ausführung des überwachten Programms transparent sein.
Die Integrität der Ausführung einer zu überwachenden Anwendung auf Benutzerebene
repräsentiert das Gut (Asset), das durch die Bereitstellung und Operationen der HIDS
Lösung geschützt werden soll. Das Ziel ist die Einführung von Methoden zur Integration
von HIDS Mechanismen in ein industriell eingebettetes MCS und die Bewertung der
Fähigkeit einer gegebenen Lösung, eine überwachte Anwendung in einem solchen System
zu schützen und dabei den Rahmen der Zertifizierbarkeit des Systems zu wahren.

Kapitel III – Stand der Technik zu host-basierten Intrusion Detection Systemen

Dieses Kapitel bietet einen Überblick über den aktuellen Stand der Technik im Bereich der
HIDS Lösungen. Es behandelt die Forschungsergebnisse im Kontext der allgemeinen HIDS

ZUSAMMENFASSUNG
INTEGRATIONSMETHODEN FÜR HOST-BASIERTE ANGRIFFSERKENNUNG IN

EINGEBETTETEN MIXED-CRITICALITY SYSTEMEN 199

Lösungen für General-Purpose Computer und deren Anwendbarkeit bzw. Übertragbarkeit
für die Zieldomäne der eingebetteten industriellen MCS.

Dazu werden zuerst eine Reihe von Schlüsselkriterien in Bezug auf Bereitstellung,
Integration und Nutzbarkeit, Leistungseffizienz und -verbrauch, sowie Sicherheitsmerk-
male eingeführt. Diese Kriterien werden anschließend genutzt, um die in diesem Kapitel
besprochenen HIDS-Frameworks zu bewerten und zu klassifizieren. Die Ergebnisse zei-
gen eine große Vielfalt an Intrusion Detection Lösungen und Integrationsmethoden.
Allerdings zeigen sie ebenfalls, dass die Menge an Lösungen, die für die Ausführung in
eingebettetem MCS geeignet sind, viel kleiner ist als die Menge an allgemeinen Lösungen
für General-Purpose Computer.

Kapitel IV – Eine Methode zur Erkennung von Laufzeitanomalien in eingebetteten
Mixed-Criticality Systemen

In diesem Kapitel werden ein Ansatz zur Integration von HIDS in ein eingebettetes
MCS sowie die dazugehörige generische Systemarchitektur zur Integration von HIDS-
Mechanismen in ein eingebettetes MCS beschrieben. Das Systemdesign basiert dabei
auf einer MILS [10] Architektur. Hierbei arbeiten die Intrusion Detection Mechanismen
in einer sicheren Ausführungsumgebung, die sowohl von der überwachten als auch allen
anderen Anwendungen auf Benutzerebene isoliert ist, damit die Überwachung von den
Komponenten getrennt wird, die standardmäßig als nicht vertrauenswürdig betrachtet
werden müssen.

Zudem werden Metriken und Kriterien eingeführt, um die HIDS-Lösung in Bezug
auf Sicherheit, Planbarkeit des Systems und Leistungseffizienz zu bewerten. Die in den
nachfolgenden Kapiteln vorgestellten HIDS-Ansätze basieren auf dem in diesem Kapitel
vorgeschlagenen generischen HIDS-Rahmen. Darüber hinaus bewerten wir diese Ansätze
anhand der vorgestellten Kriterien.

Kapitel V – Machine-Learning-basierte Anomalieerkennung für eingebettete Mixed-Criticality
Systeme

Dieses Kapitel stellt die auf maschinellem Lernen (ML) basierenden heuristischen In-
trusion Detection Lösungen vor, um so Angriffe auf die Ausführung einer überwachten
Anwendung zu erkennen. Dabei besteht das Ziel darin, den Einfluss der Überwachung
selbst auf das Anwendungsverhalten zu minimieren, indem lediglich ausgewählte Syste-
mereignisse (abgebildet durch die verfügbaren Hardware Performance Counter) sowie
Aufrufe des Betriebssystems in Verbindung mit der überwachten Anwendung erfasst
werden (Tracing).

Die erste Lösung resultierend aus diesem Ansatz besteht aus:

• einer Infrastruktur zur laufzeitbasierten Erfassung von Systemereignissen und
Betriebssystemaufrufen, welche sich kompatibel zu den Anforderungen an die
funktionale Sicherheit integrieren lässt.

• eine Offline-ML-Engine, um Anomalien des Verhaltens in den erfassten Laufzeiter-
eignissen der überwachten Anwendung zu erkennen.

200 ZUSAMMENFASSUNG
INTEGRATIONSMETHODEN FÜR HOST-BASIERTE ANGRIFFSERKENNUNG IN
EINGEBETTETEN MIXED-CRITICALITY SYSTEMEN

Die hierzu vorgestellten experimentellen Ergebnisse zeigen hierbei eine gute Erken-
nungsgenauigkeit bei den getesteten Anwendungsfällen.

Darüber hinaus wird eine transparente Online-HIDS Lösung, basierend auf der Reduk-
tion der Anwendungsüberwachung mittels des Performance-Counter-Tracing, vorgestellt
und die Machbarkeit einer Online-ML-basierten Laufzeiterkennung von Anomalien unter
Nutzung eines Open-Source ML-Frameworks evaluiert. Die Anomalieerkennung erfolgt
somit lokal auf dem MCS wo auch die Anwendung integriert ist. Damit wird zum
ersten Mal ein Online-ML-basiertes HIDS vorgestellt, das in ein eingebettetes MCS
integriert ist. Die hierzu vorgestellten experimentellen Ergebnisse zeigen, wie bei der
ersten Lösung, eine gute Erkennungsgenauigkeit für anomale Ausführungen im Rahmen
der getesteten Anwendungsfälle. Zudem diskutiert die analytische und experimentelle
Bewertung die wichtigsten Einschränkungen und Fallstricke für den Einsatz von ML-
unterstütztem HIDS auf eingebetteten MCS Plattformen auf. Es wird gezeigt, dass bei
einer ML-Engine-Konfiguration die Erkennungsgenauigkeit je nach überwachter Anwen-
dung variiert. Darüber hinaus konnte gemäß der durchgeführten Experimenten keine
Korrelation zwischen der Komplexität des ML-Modells und der Erkennungsgenauigkeit
hergeleitet werden.

Kapitel VI – Lösungen zur sicheren Überwachung der Kontrollflussintegrität für eingebettete
Mixed-Criticality Systeme

Dieses Kapitel beschreibt eine Methode zur Integration einer hardwareunterstützten
Überwachung, auf der Basis von Hardware Performance Countern, der Kontrollflussin-
tegrität (Control-Flow Integrity - CFI) in ein MCS, wobei die Integration transparent
und kompatibel zu den einzuhaltenden Rahmenbedingungen der funktionalen Sicherheit
bleibt.

Als Resultat ergibt sich ein konfigurierbares Framework zur Überwachung der Kon-
trollflussintegrität (CFI). Dieser spezifikationsbasierte Ansatz nutzt über die Hardware
Performance Counter entsprechende Hardwaremerkmale des Prozessors, um die überwach-
te Anwendung transparent zu überwachen und diese Informationen unter voraussagbarem
Aufwand zur Verfügung zu stellen. Die Überprüfung auf Anomalien im Verhalten der
überwachten Anwendung erfolgt auf der Basis der gemessenen Systemereignisse über
einen konfigurierbaren Zeitraum in Kombination mit der Auswertung durch statistische
Modelle des erwarteten Verhaltens. Damit bietet die vorliegende Lösung zudem einen
Ansatz die nötige Feinabstimmungen im Kompromiss zwischen Leistungseinbußen und
Sicherheitsabdeckung der überwachten Anwendung zu adressieren.

Für die experimentelle Evaluierung wurde das Framework auf dem industriellen
Echtzeit-Betriebssystem PikeOS in Kombination ARM-basierter Hardware inklusive
CoreSight-Unterstützung umgesetzt. Die überwachten Anwendungen sind eine Aus-
wahl von Programmen aus der TACLeBench-Benchmark um einen repräsentativen
Querschnitt typischer industrieller Anwendungen bewerten zu können. Während die
gemessenen Leistungseinbußen bei der Berechnungszeit unter Einsatz der vorgestellten
Lösung zur Überwachung der Kontrollflussintegrität auf 10identifizierte die Lösung fast
alle fehlerhaften Ereignisse im Kontrollfluss korrekt (ohne False-Positives und nur seltene
False-Negatives).

ZUSAMMENFASSUNG
INTEGRATIONSMETHODEN FÜR HOST-BASIERTE ANGRIFFSERKENNUNG IN

EINGEBETTETEN MIXED-CRITICALITY SYSTEMEN 201

Kapitel VII – Ein adaptiver Ansatz für host-basierte Intrusion Detection in eingebetteten
Mixed-Criticality Systemen

In diesem Kapitel wird ein Ansatz zur adaptiven host-basierten Intrusion Detection
vorgestellt und ausgearbeitet. Übergeordnetes Ziel ist die Kombination mehrerer Über-
wachungslösungen um die Vorteile der verschiedenen Lösungen aus der vorliegenden
Arbeit effizient nutzen zu können. Hierzu werden eine Reihe von Anforderungen und
Bewertungsüberlegungen definiert, um zukünftige Implementierungen zu leiten.

Ziel ist es die Erkennung von Angriffen und Anomalien in der überwachten Anwendung
adaptiv zu gestalten, indem verschiedene Erkennungsansätze kombiniert werden und
wechselseitig aktiv werden können. Die beschriebene Fähigkeit zur Adaption erlaubt
es die resultierende Fehlerrate bei der Erkennung sowie den zusätzlichen Aufwand
bzw. Verbrauch an Systemressourcen als konfigurierbaren Kompromiss zu gestalten
und dabei die Kompatibilität zu den Rahmenbedingungen der funktionalen Sicherheit
im MCS zu bewahren. Um die Lösung konfigurierbar zu machen werden verschiedene
HIDS Parameter eingeführt und die Auswirkungen dieser hinsichtlich einer Reihe von
Sicherheitsbewertungskriterien zu analysiert.

Kapitel VIII – Fazit

Dieses Kapitel schließt vorliegende Arbeit durch einen Vergleich der vorgestellten Ansätze
und Lösungen zum Stand der Technik ab. Die beiden vorgestellten Ansätze (heuristisch
und spezifikationsbasiert) sind mit begrenztem Eingriff in die überwachte Anwendung
verbunden, um die Integration von HIDS-Mechanismen in industrielle eingebettete MCS
zu ermöglichen. Diese industriellen eingebetteten MCS unterliegen üblicherweise einer
Zertifizierung und haben damit eine Vielzahl von Rahmenbedingungen hinsichtlich der
funktionalen Sicherheit im operativen Einsatz nachweislich zu erfüllen.

Zudem werden die wichtigsten Randbedingungen der Implementierungen und Wege
für die zukünftige HIDS-Entwicklung im Kontext von industriellen eingebetteten MCS
diskutiert. Die Fähigkeit von heuristikbasierten HIDS anomale Anwendungsausführungen
zu erkennen, hängt stark von den Eigenschaften der überwachten Anwendung ab. Zukünf-
tige Arbeiten sollten sich insbesondere auf die Bewertung repräsentativer industrieller
Anwendungsfälle und Bedrohungsszenarien konzentrieren. Außerdem wäre es wertvoll,
einen umfassenden Ansatz bereitzustellen, um ein auf Heuristiken basierendes Erken-
nungsverfahren in Abhängigkeit von Anwendungseigenschaften zu konfigurieren, damit
die Erkennungsgenauigkeit der HIDS-Lösung spezifisch im Kontext der überwachten
Anwendung durch entsprechende Feinabstimmung verbessert werden kann.

Anhang A

Anhang A beschreibt den Prozess zur Auswahl von verfügbaren Hardware Performance
Countern bzw. deren zugrunde liegende Systemereignisse für die Intrusion Detection und
Überwachung einer bestimmten Anwendung. Es werden der praktische Bewertungsrahmen
und die Versuchsergebnisse vorgestellt. Aus diesen experimentellen Ergebnissen werden
dann geeignete Systemereignisse für die Anwendungsprofilerstellung identifiziert und

202 ZUSAMMENFASSUNG
INTEGRATIONSMETHODEN FÜR HOST-BASIERTE ANGRIFFSERKENNUNG IN
EINGEBETTETEN MIXED-CRITICALITY SYSTEMEN

einen Satz von sechs zugehörigen Hardware Performance Countern ausgewählt, die für
die Experimente in Kapitel V verfolgt werden.

MARINE KADAR

Safety & Security – Embedded – Real-Time – Intrusion detection

WORK EXPERIENCE

SINCE NOVEMBER 2021
SYSGO SAS – Klein-Winternheim, Germany
EMBEDDED SOFTWARE ENGINEER

Management and technical execution of an in-
dustrial research project to deploy intrusion
detection into an avionics system.

Project management, application of research work
to an industrial use case

2017 - 2021 (4 YEARS)
SYSGO GMBH – Klein-Winternheim, Germany
DOCTORATE RESEARCHER IN EMBED-
DED SECURITY

- Develop an anomaly detection framework: ma-
chine learning, hardware performance coun-
ters.
- Develop a hardware-assisted control-flow in-
tegrity infrastructure: ARM CoreSight, LLVM
compiler.
- Publish scientific papers and present research
work to academic conferences and industrial
events.
- Supervision of internships and Masters the-
sis.

Expertise in cybersecurity for embedded mixed-
criticality systems, academic research,

2017 (6 MOIS)
THALES SERVICES – Grenoble, France
EMBEDDED SECURITY INTERNSHIP

- Implementation of hardware-based security mech-
anisms using ARM TrustZone technology: se-
cure boot, secure storage, and isolation of trusted
critical applications.
- Deploymeny and test of use-case scenario on
an embedded platform.

Embedded software development

EDUCATION

2017 – 2021 (4 YEARS)
EXTERNAL PHD STUDENT –
REAL-TIME SYSTEMS CHAIR OF
TU KAISERSLAUTERN (GERMANY)
In the scope of the European project FORA -
Fog Computing for Robotics and Industrial Au-
tomation (European Training Network).

2017
DIPLÔME D’INGÉNIEUR ENSIMAG,
WITH HONOURS (FRANCE)
Equivalent to a Master’s degree in engineering
Course : Embedded systems

COMPUTER SKILLS

PROGRAMMING LANGUAGES❥① C, C++, Python, Bash❥� Assembly, TensorFlow, Matlab, Scilab,
R, VHDL

SOFTWARE

OS Linux, PikeOS, FreeRTOS

COMPILER GCC, LLVM

HARDWARE ARCHITECTURES❥① ARMv8/v7-A – CoreSight, TrustZone,
hardware performance counters❥� Intel (X86), PowerPC

LANGUAGES❥① French, English❥� German

REFERENCES

Available upon request.

