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THE LIMITED ANGLE PROBLEM IN 
COMPUTERIZED TOMOGRAPHY 

A. K. Louis, Kaiserslautern 

Abstract. Fast reconstruction formulae in x-ray comput- 
erized tomography demand the directions, in which the measure- 
ments are taken, to be equally distributed over the whole circle. 
In many applications data can only be provided in a restricted 
range. Here the intrinsic difficulties are studied by giving a 
singular value decomposition of the Radon transform in arestrie 
ted range. Practical limitations are deduced. 

1 Introduction 

The aim of computerized tomography (CT) is to provide 
information about the internal structure of the human body for 
medical diagnosis. This information is presented in form of 
pictures from slices through the body and it is dependent on 
the physical system taking the measurements. In x-ray CT the 
x-ray attenuation coefficient of the scanned tissue is shown, in 
nuclear magnetic resonance (NMR) CT it is for example the dis- 
tribution of hydrogen nuclei in the considered region. In the 
following we want to concentrate on x-ray CT, the mathematical 
problems in NMR are quite similar. 

In x-ray CT x rays are transmitted through the body. 
The denser the tissue the more photons are attenuated. Finally 
the photons arriving on the opposite side are counted in a 
detector. This is repeated for many orientations of the rays. 
The data measured in this-way are to a good approximation pro- 
portional to an integral transform of the searched-for density 
distribution. In x-ray CT and in NMR this integral transform is . . 
the Radon transform of the distribu-<ion,: in x-ray CT in two . , 
dimensions, in NMR in two or thi$e dimensions. 

1 . _ 
In order to provide the '?pictu&i on which the medical 

diagnosis is based the Radon transform has to be inverted. This 
is possible if an infinite number of projections are available, 
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see e.g. Smith-Solmon-Wagner [18]. In practice this can never 
be achieved which means that parts of the spectrum of the 
searched-for distribution are disturbed, see e.g. Louis [IO]. As 
a consequence only details larger than a threshold, depending 
on the number of data, can reliably be reconstructed. 

For the reconstruction discretizations of the inversion 
formula (2.4) are implemented. Fast algorithms usually demand 
the rays to be equally distributed. This request can not always 
be fulfilled in practice. In the following we study the problems 
arising from distributing the rays only in a restricted range. 
Although in this case the searched-for density distribution is 
uniquely determined a singular value decomposition of the inte- 
gral operator exhibits that some components of the picture can 
practically not be recovered. 

2 The Radon Transform 

* 
”  , 

Let f : IR2 +IR be a real-valued function, representing 
the x-ray attenuation coefficients in the scanned tissue. The 
measured data lead to the integrals of f along the paths of the 
x rays. Let 

. (2.1) I.0 = w ((0) = (cos q,sin qJT, 

then 

(2.2) Rf(s,w) = / f(sw+tw*)dt 
n? 

where o J. = 0 (cp + ;) . Denoting with S' the boundary of the unit 
ball in lR2 , then 

is the Radon transform of f. In the applications, that we have 
in mind, the function f is always compactly supported, hence we 
assume that, after a possible scaling, 

(2.3) supp fen := V(O,l) 

where V(a,r) denotes the ball with center a and radius r. 

The problem of retrieval of f from its transform was 
first solved by Radon [151 in 1917. This inversion can easily 
be described with the help of the Fourier transform. Let 
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. qJ : Et” 3 IR , I1 t 1, then its Fourier transform is given as 

G(5) = (2.n)-n'2 j $(x)eWixsdx. 
lRn 

The inverse Radon transform takes on the following form 

(2.4) R--l = (2-ir) -‘RAI1 

where I 1 denotes the Riesz potential acting on the first varia- 
ble of the function g on IRxS', 

. 
(2.5) (I'g)"(a,w) = lol~(o,o). 

Here the one-dimensional Fourier transform has to be taken with 
respect to the first variable. The operator R* is the so-called 
backprojection, it is the adjoint of R in L 2 and is defined as 

(2.6) RCCq (xl = 7 q(x*w,w)dq. 
0 

Fast numerical implementations are 
e.g. Herman [4]. In (2.5) the data 
the inverse transform which is not 

based on these formulae, see 
are filtered to stabilize 
bounded in L2, see Natterer 

[13l. The high f requencies are eliminated by a low-pass filter: 
they are corrupted with noise and also contain non-neglectable 

contributions of the ghosts: i.e., the functions in the null 
space of the transform for finitely many directions, see Louis 

[lOI. 

The backprojection in (2.6) is approximated by numerical 
integration. For periodic functions the trapezoidal rule with 
equally distributed integration points is highly accurate but 
this demands the measured directions also to be equally distrib- 
uted. 

In many applications the directions are distributed only 
in a restricted range, then (2.4) is no longer applicable. Quite 
a number of methods have been proposed to overcome this diffi- 
culty. Gordon-Herman [3], Lewitt [6l used ART; i.e., point 
collocation in a suitable subspace. Tuy [20], Lent-Tuy [S], 
Tam-Perez Mendez-McDonalds [19] gave iterative methods in 
Fourier space. Rockmore-Macovski [161 used estimation theory. 
Davison-Grtinbaum [2] constructed filters for (2.5) dependent on 
the direction. In Louis [7,81 and Perez 1141 extrapolations of 
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. 

the data in the missing range are computed based on character- 
izations of the range of the Radon transform. This provides a 
fast and accurate method to tackle the problem, but the numeri- 
cal implementations have to be done very carefully as the two 
different conclusions in these papers show. 

3 The Singular Value Decomposition of the Limited Angle 
Radon Transform 

In the following we study the intrinsic difficulties and 
limitations of the restricted range problem. To this end we 
start off with idealized assumptions, to wit we assume that 
complete projections are given in a subset of S' with W(Q) where 

In this way we avoid any influence of discretization errors and 
can study the problem purely stemming from distributing the 
directions in this restricted range. 

For constructing the singular value decomposition we 
need some special functions. Let P (a,B) 

n be the Jacobi polynomial 
of degree m, they are orthogonal on L-1,11 with respect to the 
weight 

(3.2) wag(s) = w-s)a(l+s) t 

The special case where CX= 8=;, but with a different normaliza- 
tion, are the Chebyshev polynomials of the second kind 

U,(s) = sin((n+l)arccos s) / sin(arccos s). 

Thus they are orthogonal on [-l,l] with respect to the weight 

(3.3) 2 l/2 w(s) = (1-s ) . 

For constructing the singular value decomposition of R we first 
give a complete orthogonal set over the unit ball in IR2 and 
then compute its Radon transform. 

Lemma 3.1 

Let x=r*w(O). Then the functions 

(3.4) VmL (xl = Q,, (s)eiecp 
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with 

(3.5) QmQ(s) = s"4~~;;,2(2S2-1) 

where m,k E N 
0’ 

O$Q6m with m+Q even, form a complete set of 
orthogonal functions in L2(R). 

Proof 

This is a special case of Theorem 3.1 in 191. 

Lemma 3.2 

Let VmQ be as in (3.4). Then its Radon transform is 

(3.6) 

Proof 

RVmQ (s,w) = (2nP2 -& w(s)Um(s)eiQ'. 

This is the well-known result of Cormack 111, for diffe- 
rent proofs see Marr [121, Louis 191. 

It is also shown in [9] that the functions in (3.6) 
form, for m,Q ENO, 0s Q srn, m+Q even, a complete orthogonal set 
in the range of the Radon transform in L2([-1,ll x S',w-' ), thus 

.giving a constructive proof of the Helgason-Ludwig consistency 
conditions. This is now used for the singular value decomposi- 
tion for the Radon transform in restricted range. 
Let A(m,@) be the (m+l) x (m+l) -matrix with entries 

j*k 
(3.7) ajk = 20 

-ii-- j=k. 

This Toeplitz matrix was studied by Slepian [I71 and denoted 
there by p(m+l,@/r). He shows that the eigenvalues of this 
matrix fulfil for O< @ cL the relation 

2 

O<Xo(m,@) <X,(m,@) <... <A,(m,@) cl. 

With 

d,,(m,@) = (d,(m,@)o,...,d,(m,@)m)T6 IRrn+' 
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we denote the corresponding normalized eigenvectors. 

. 

(3.8) R: L2(R) --) L*(Z @ ,w -3 

Finally we consider the Radon transform as mapping 

where 

i.e., the directions are given in S@. The adjoint operator of R 

is then 

(3.9) R*g(x> = 1 w-'(x*o)g(x*w,w)dq. 
% 

Theorem 3.3 

Let h 
P' dV be the eigenvalues and eigenvectors of 

A(m,O) and 

(3.10) frnV (r-0)) = E d h,o)QQm, ,2a-m, bd(2a-m)e, 
R=O lJ 

(3.11) gm,,(S,w) = w(s)U~(S) : d (m,@)eei(2n-m)', 
R=O lJ 

(3.12) ~~~(0) = 2(&(l-All(m,m))1'2. 

Then (fm,,rgm~:~m~)rmr~ ENO, OS v 6m, for a complete singular 
system of the Radon transform R : L*(Q) * L*(z@,w-l). 

Proof 

Because of the linear independence of the dp(m,@) the 
functions fmp, introduced in (3.10), form a complete orthogonal 
set in L*(R). Hence we expand R*Rf 

n-w 
EL*(G) in terms of these 

functions. The expansion coefficients are then 

C nv =<R*Rf mprf > nv L2(.Q) ' <fnv'fnv'L 
2 

(a)' 

Using the adjoint operator and (3.6) we get 
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<R*Rf mdf ' nv L2W 

2 =- 
n(m+l) (n+l) 

m 
c 

&=O k=O ' 

=<Rf mu , Rfnv> 
L2(Z@,W -5 

I  wwJmbqp)ds l 

-1 

According to the orthogonality of the Chebyshev polynomials the 
integral with respect to s has the value ;6m. It remains to 
compute the integral with respect to the directions. Using m=n 
we get 

le 2i(k-ahdQ= 2 
I e2i(e-k)vdQ 

=2( je n'2 2i(k-a)cpdq e2i (k-al 'Ddcp) 
-IT/2 -@ 

=27T(6ke - ake) 

with aka. given in (3.7). With matrix notation the above scalar 
product can be written as 

<R*Rf rnptf ' 
2 

nv L2(R) = (m+,)26mn u d (m,@)T(I-A(m,O))dv(m,@) 

2 E 
(m+l) 

2(1-~p(m,@))~m~pv. 

With 
cf rnpFf ' 

1 
mu L2(Q) = 2(m+l) 

finally follows 

R*RfmP = c rnpfrnP = u 2f mu mu' 

Remark 

In the case of the full range problem we have 0 =0 and 
thus I-A(m,O) =I. This gives the singular values 

(7 mu = 2(-&)"2, Osusm. 



-8- 

4 Practical Consequences 

As a measure for the ill-posedness of a problem usually 
the ratio between largest and smallest singular value is consid- 
ered. Clearly this ratio is infinite for the Radon transform as 
mapping between L 2 -spaces. But this only means that this compact 
operator has an unbounded inverse in an L 2 setting, see also 
Natterer [13]. Instead we consider the ratio of the largest and 
smallest of the singular values u mU(~) for msp-1, and denote 

it by KP(0). 
This corresponds to a stabilization by cutting off 

the Smallest Singular Values. If we compare K p(O) for the full 
range case with K~( r/6), where one third of the range is missing, 

This may lead to the conclusion that it is hopeless to recon- 
struct from data in a limited range. 

But on the other hand the above considerations are very 
pessimistic as they are based only on the worst case. The 
asymptotic estimates given in Slepian [17] indicate a special 
behaviour of the singular values. If we consider the eigenvalues 
of I-A(m,O) then we realize that the spectrum splits into two 
parts: some eigenvalues are close to 1 and the rest are close 
to 0, see Figure 4.1. More precisely we can state the following. 

Theorem 4.1 

For large m the number of singular values u ma (0) I 
O$FcSrn, close to the singular values in the full range case, 
(5 mu (0) I is equal to the integral part of 

(4.1) (m+l) (1 -$I, 

the rest are close to 0. 

This means that it is well possible to reconstruct parts 
of the picture, namely those singular functions belonging to 
large singular values. The smaller the missing range, the larger 
is this information, compare (4.1). Figures 4.2 show the singu- 
lar functions f20 20, f20 16, f20 ,o, f20 o for @=n/4; i.e., I r I I 
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. half of the range is missing. Here the x rays parallel to the 
ripples in Figure 4.2 a), showing f20 20, and in directions up 
to *$ are given. Contributions belonking to f20 U, p 2 11, can 
be reconstructed. The singular function f20 1O bdlongs to a 

I 
mid-sized singular value and is somewhat critical. But it is 
definitely impossible to reconstruct parts stemming from the 
singular function f20 0 where the ripples are opaque to the 

I 
x rays. 

r 

Finally Figure 4.3 shows reconstructions of the head 
phantom given in Herman [4], see Figure 4.3 a). In Figure 4.3 
b)-d) reconstruc-tions are shown from 144 directions and 165 rays 
per direction with noisy data according to the photon statistic 
described in 141. In Figure 4.3 b) the directions are equally 
distributed over the full range; i.e., @=O. In Figure 4.3 c), 
d) they are distributed only over $ of the circle; i.e., 4=z 

6’ 
In 4.3 c) we simply reconstructed with zeros in the missing 
range, see also Tuy [291 and in Figure 4.3 d) we used the extra- 
polation procedure given in Louis 181. The streak artifact be- 
tween the triangular parts of the bones is obviously stemming 
from singular functions belonging to small singular values and 
thus intrinsic to reconstructions from limited angular data. 
But the effect seems to be larger than it is in reality. The 
values of the phantom range from 0 to 0.416 whereas the window 

, in the display covers only 2% of this region: values smaller 
than 0.1945 are represented as black, values larger than 0.22 
as white. 
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m z.20 

m = 40 

m = 50 

Figure 4.1: Eigenvalues of I-A(m,Q), see (3.121, for 
m=10,20,30,40 and Cp =O,~$,i,f,$,%. 

Figure 4.2: Singular functions f20 2. (a), f20 16 (b), 
I 

f20,10 Cc) I f20 " I 
(d) for 0=$. ' 
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Figure 4.3 a): Test phantom for slice through the human head as 
described in Herman [41, p. 60. 
b)-d): Reconstructions from noisy data simulating the effects of 
photon statistics, see [41. Here 144 directions and 165 rays per 
direction are used in 
b) the full range: i.e., @ =0 

c),d) the restricted range with @=i with 
c) zeros in the missing range, 
d) data extrapolation according to the algorithm given in [8L 
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