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Abstract

Highly assisted driving and autonomous vehicles require a detailed and accurate
perception of the environment. This includes the perception of the 3D geometry
of the scene and the 3D motion of other road users. The estimation of both based
on images is known as the scene flow problem in computer vision. This thesis
deals with a solution to the scene flow problem that is suitable for application in
autonomous vehicles. This application imposes strict requirements on accuracy,
robustness, and speed. Previous work was lagging behind in at least one of
these metrics.

To work towards the fulfillment of those requirements, the sparse-to-dense
concept for scene flow estimation is introduced in this thesis. The idea can
be summarized as follows: First, scene flow is estimated for some points
of the scene for which this can be done comparatively easily and reliably.
Then, an interpolation is performed to obtain a dense estimate for the entire
scene. Because of the separation into two steps, each part can be optimized
individually. In a series of experiments, it is shown that the proposed methods
achieve competitive results and are preferable to previous techniques in some
aspects.

As a second contribution, individual components in the sparse-to-dense
pipeline are replaced by deep learning modules. These are a highly localized
and highly accurate feature descriptor to represent pixels for dense matching,
and a network for robust and generic sparse-to-dense interpolation. Compared
to end-to-end architectures, the advantage of deep modules is that they can be
trained more efficiently with data from different domains.

The recombination approach applies a similar concept as the sparse-to-dense
approach by solving and combining less difficult, auxiliary sub-problems. 3D
geometry and 2D motion are estimated separately, the individual results are
combined, and then also interpolated into a dense scene flow.

As a final contribution, the thesis proposes a set of monolithic end-to-end
networks for scene flow estimation.
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Kurzfassung

Hochassistiertes Fahren und autonome Fahrzeuge erfordern eine detaillierte und
genaue Wahrnehmung der Umgebung. Dazu gehort auch die Wahrnehmung der
3D-Geometrie der Szene und der 3D-Bewegung anderer Verkehrsteilnehmer.
Die Schétzung von beidem auf der Basis eines optischen Sensors ist in der
Computer Vision als Szenenflussproblem bekannt. Diese Arbeit befasst sich
mit einer Losung des Szenenflussproblems, die fiir den Einsatz in autonomen
Fahrzeugen geeignet ist. Diese Anwendung stellt hohe Anforderungen an die
Genauigkeit, Robustheit und Geschwindigkeit. Bisherige Arbeiten hinken in
mindestens einem dieser Punkte hinterher.

Um auf die Erfiilllung dieser Anforderungen hinzuarbeiten, wird in dieser
Arbeit das ,,Sparse-to-Dense“-Konzept fiir die Schitzung des Szenenflusses
eingefiihrt. Die Idee lasst sich wie folgt zusammenfassen: Zunéchst wird der
Szenenfluss fiir einige Punkte der Szene geschétzt, fiir die dies vergleichsweise
einfach und zuverléssig moglich ist. Dann wird eine Interpolation durchgefiihrt,
um eine dichte Schatzung fiir die gesamte Szene zu erhalten. Durch die Auf-
teilung in zwei Schritte kann jeder Teil einzeln optimiert werden. In einer
Reihe von Experimenten wird gezeigt, dass die vorgeschlagenen Methoden
konkurrenzfihige Ergebnisse erzielen und gegeniiber bisherigen Techniken in
einigen Aspekten vorzuziehen sind.

Als zweiter Beitrag werden einzelne Komponenten in der ,,Sparse-to-Dense “-
Pipeline durch Deep Learning Module ersetzt. Dabei handelt es sich um
einen hoch lokalisierten und hochprazisen Deskriptor zur Représentation von
Pixeln, und um ein Netzwerk fiir eine robuste und generische , Sparse-to-
Dense“-Interpolation. Im Vergleich zu End-to-End-Architekturen haben einzel-
ne Lern-Module den Vorteil, dass sie auf eine breitere Menge an Trainingsdaten
zuriickgreifen konnen.

Der Rekombinationsansatz wendet ein dhnliches Konzept wie der ,,Sparse-
to-Dense “-Ansatz an, indem weniger schwierige Teilprobleme geltst und kom-
biniert werden. 3D-Geometrie und 2D-Bewegung werden separat geschétzt, die
einzelnen Ergebnisse werden kombiniert, und dann ebenfalls zu einem dichten
Szenenfluss interpoliert.

Als letzter Beitrag wird in dieser Arbeit eine Reihe von monolithischen
End-to-End Netzwerken fiir die Schatzung des Szenenflusses vorgeschlagen.
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Chapter

Introduction

“’Begin at the beginning’, the King said, very
gravely, ‘and go on till you come to the end:
then stop.’”

— Lewis Carroll, Alice in Wonderland

What will define the future of transportation? While no one is able to answer
this question with absolute certainty, a majority of people would think of
autonomous driving, intelligent vehicles, or artificial intelligence. It is indeed
striking, that the number of Advanced Driver Assistance Systems (ADASSs)
in series is growing. Simultaneously, the user acceptance for assisting and
autonomous systems is reaching a higher level. The advantages of such tech-
nologies are manifold: More fluent traffic and more efficient load on traffic
infrastructure, accelerated transition from private vehicles to shared or public
transportation systems, increased comfort for drivers or passengers to reduce
stress and contribute to a healthy mental state, and most importantly safety
aspects for passengers and other traffic participants, including the most vulner-
able road users — pedestrians and cyclists. Worldwide, over 1.3 million people
die due to fatal traffic accidents per year [WHO18]. Experts predict that fully
automated vehicles could reduce the total number of accidents and especially
those with injury to persons drastically [NHTSA17]. Therefore, the devel-
opment towards higher assistance and automation levels for more intelligent
vehicles becomes a valuable goal for society, governments, and researchers.
Typical high-level tasks in this field comprise navigation, longitudinal and
lateral control of the vehicle, and more, which all rely on an accurate perception
and understanding of the environment. A system’s perception is enabled by
a variety of sensors. In computer vision, the most relevant optical sensor in
automotive applications are cameras. Next to semantic scene understanding,
localization, and others, two core components of the perception are a detailed
reconstruction of the 3D geometry of the surroundings as well as a precise
estimation of the motion of other traffic participants. Both can be estimated
based on image information from cameras, which in computer vision is known
as the scene flow problem. Scene flow describes the perceived 3D motion field
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for all visible points of the scene. As such it is a dense (with respect to the
camera resolution) and detailed representation of the real world.

Challenges

Chapter 2 describes how scene flow estimation in computer vision narrows
down to finding corresponding pixels within multiple images. However, solving
such dense correspondence problems is non-trivial for two main reasons:

1. Representation: The appearance of the same world point within an image
differs for different viewpoints.

2. Occlusion: Not all points visible in one image, are visible in the other
images.

These two points are repeatedly addressed in this thesis.

In the context of automotive applications, both challenges are inherently
amplified. Changing weather, seasonal, and daytime conditions increase the
variation in image data, environmental influences can induce abrupt changes
in lighting, the distances of visible content cover a long range, scenes can
be cluttered and very dynamic with possibly many fast moving objects and
high ego-velocities. On top, independent of the issues above, an exhaustive
comparison of image points is prohibitive even for medium image resolutions.

Furthermore, since the possible applications in intelligent vehicles are poten-
tially safety-critical and require real-time performance, strict requirements on
run time, accuracy, reliability, and robustness are induced.

Motivation for the Sparse-to-Dense Concept

With respect to the aforementioned requirements and challenges, the sparse-to-
dense concept promises positive impact. It allows to simplify the correspondence
search (matching) because challenging regions do not require special mech-
anisms in the first place. Instead, these regions can be matched purposely
wrong in order to be removed later. In a second step, the non-dense, reliable
information is used to interpolate the missing information. The simplification
enables more efficient optimization during matching, introducing a potential
boost in run time. Within the interpolation, common assumptions, which
are used in previous work for expensive regularization, can be modeled in a
more principled way. These properties of the sparse-to-dense concept have
been validated for the estimation of optical flow. Due to the similarity of the
two problems, the concept is a qualified option to be used for the estimation
of scene flow as well. The restrictions of previous work, compared to the
sparse-to-dense concept, are discussed in Chapter 3.

Deep Vision: Computer Vision in the Deep Learning Age

Besides, deep learning is overwhelming every field of technology including
computer vision. Neural networks have matured to a point where design
and training become such efficient that their predictions outperform those of
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many previous, heuristic techniques. In computer vision, deep convolutional
neural networks even surpass the performance of humans considering certain
basic tasks. All this provided, sufficient and suitable data for training is
available. The inherent complexity of the scene flow problem makes it difficult
to measure reference labels or to annotate scene flow data with ground truth
labels. Therefore only a very limited amount of data exists that can be used
to train scene flow estimators in a supervised fashion. Likewise, deep neural
networks for scene flow estimation have evolved only recently during the course
of this thesis.

1.1. Research Statement and Contributions

Hence, there are two central questions this thesis tries to answer:

1. To which extent and how can the established sparse-to-dense concept for
optical flow be transferred to the scene flow problem?

2. What are suitable methods to transfer the success of data-driven deep
neural networks to the scene flow problem, despite the lack of rich
annotated data?

The first question is addressed in Chapters 4 to 6, the second is dealt with in
Chapters 5 to 7. The following summary shows how each chapter contributes
to the thesis and which publications back the respective content.

Chapter 4

The sparse-to-dense concept for scene flow estimation is introduced. Best
practices from matching in optical flow are transferred to multiple images
to obtain sparse correspondences. Different models for the sparse-to-dense
interpolation are presented. Multi-frame matching is proposed. At WACV
2018, the sparse-to-dense concept achieved the third best results on KITTI
and the best on Sintel among competing dual-frame approaches.

René Schuster, Oliver Wasenmiiller, Georg Kuschk, Christian Bailer, and Didier Stricker.
“SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences.” In: Winter
Conference on Applications of Computer Vision (WACV). 2018.

René Schuster, Oliver Wasenmiiller, Christian Unger, Georg Kuschk, and Didier Stricker.
“SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation
for Scene Flow Estimation.” In: International Journal on Computer Vision (IJCV) (2020).

Chapter 5

Two components of the sparse-to-dense pipeline are replaced by deep mod-
ules. A universal dense feature descriptor for pixel matching is proposed. A
dedicated, very robust network is used for sparse-to-dense interpolation. The
proposed descriptor improves stereo, optical flow, and scene flow matching for
five algorithms on six diverse data sets. The interpolation network is signifi-
cantly more robust in terms of sparse and noisy input, compared to previous
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interpolation techniques for optical flow, scene flow, and depth completion.

René Schuster, Oliver Wasenmiiller, Christian Unger, and Didier Stricker. “SDC — Stacked
Dilated Convolution: A Unified Descriptor Network for Dense Matching Tasks.” In: Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2019. Oral.

René Schuster, Oliver Wasenmiiller, Christian Unger, and Didier Stricker. “An Empirical
Evaluation Study on the Training of SDC Features for Dense Pixel Matching.” In: Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW). 2019.

René Schuster, Oliver Wasenmiiller, Christian Unger, and Didier Stricker. “SSGP: Sparse
Spatial Guided Propagation for Robust and Generic Interpolation.” In: Winter Conference
on Applications of Computer Vision (WACV). 2021.

Chapter 6

By applying the sparse-to-dense concept, a dense scene flow estimation is
enabled by combining results of stereo and optical flow estimation. This
principle is also transferred and evaluated in a monocular camera setup. On
KITTI, the monocular, sparse-to-dense, combination approach obtains the
highest accuracy for dynamic objects and the overall best results among
methods with sub-second run time.

René Schuster, Christian Bailer, Oliver Wasenmiiller, and Didier Stricker. “Combining
Stereo Disparity and Optical Flow for Basic Scene Flow.” In: Commercial Vehicle Technology
Symposium (CVT). 2018.

René Schuster, Oliver Wasenmiiller, and Didier Stricker. “Dense Scene Flow from Stereo
Disparity and Optical Flow.” Extended Abstract for the Computer Science in Cars Symposium
(CSCS). 2018.

René Schuster, Christian Unger, and Didier Stricker. “MonoComb: A Sparse-to-Dense
Combination Approach for Monocular Scene Flow.” In: Computer Science in Cars Symposium
(CSCS). 2020.

Chapter 7

For comparison, one of the first end-to-end trainable deep neural networks for
scene flow estimation is presented. A second contribution focuses on improved
localization for feature extractors in end-to-end trainable dense matching
networks. Finally, (end-to-end) deep learning is applied to frame existing
dual-frame methods in a multi-frame setting to further reduce the impact
of occlusions. Until this time, there is no faster approach listed on KITTTI,
that performs better than the proposed end-to-end network. The generic
multi-frame extension achieves a close second place among this category of
algorithms and is ~400 times faster than the first place.

Rohan Saxena, René Schuster, Oliver Wasenmiiller, and Didier Stricker. “PWOC-3D: Deep
Occlusion-Aware End-to-End Scene Flow Estimation.” In: Intelligent Vehicles Symposium
(IV). 2019. Oral.

Rishav*, René Schuster*, Ramy Battrawy, Oliver Wasenmiiller, and Didier Stricker.
“ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for

Accurate Dense Pixel Matching.” In: International Conference on Pattern Recognition
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(ICPR). 2021. *Equal contribution. Oral.

René Schuster, Christian Unger, and Didier Stricker. “A Deep Temporal Fusion Framework
for Scene Flow Using a Learnable Motion Model and Occlusions.” In: Winter Conference on
Applications of Computer Vision (WACV). 2021.
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Preliminaries

“Get the fundamentals down and the level of
everything you do will rise.”

— Michael Jordan, I Can’t Accept Not Trying
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2.1. Mathematical Notation

To ease the understanding of mathematical formulations, a common notation
is defined within this section. Images are denoted by I with superscript for the
viewpoint and the subscript as time step unless unambiguous. A set of images
is given by I = {Iy,...,I}.}. The reference time is ¢ = 0 unless stated otherwise.
The image domain is §2, i.e. the range of discrete pixel positions inside the image.
Pixels (positions) are two-dimensional vectors p = (z,y)” € Q and represent
the projected position of three-dimensional world points P = (X,Y, Z)7. Small
and capitalized letters do not refer to vectors or matrices, but rather relate
the image and world domain, however not exclusively. Depth maps versus
disparity maps are denoted by D and d, for instance. Normal and bold letters
refer to scalars or scalar fields and vectors or vector fields, respectively. To
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resolve ambiguities, when a value for a scalar or vector field is denoted by the
same symbol as the value for single pixels, the multi-dimensional value is given
in normal font not in italic, e.g. di(p) = dy. Here, d; is a disparity map and d;
is the disparity value at pixel p. Where necessary, further ambiguity can be
resolved by indexing with a certain pixel position, e.g. I(p) = (r,g,b)" is the
RGB value of a single pixel.

2.2. Fundamentals of Computer Vision

A profound understanding of computer vision is assumed in this thesis. However
for completeness, two fundamental concepts are outlined in the following. The
first is a formulation which models how images (and their representation as an
array of pixels) are related to the real world. The second describes how depth
can be inferred from two stereo images.

2.2.1. The Pinhole Camera Model

Modern real cameras are a complicated composition of sensors, optics, and
other components. A pragmatic simplification of this interplay is the pinhole
camera model, that describes how the 3D world is projected onto an image
plane assuming an ideal pinhole camera. The name derives from a small hole
(the aperture) through which the reflected (or emitted) light of objects hits
the image plane (cf. Figure 2.1).

P=(XY.2)

Focal axis -~
Image origin ’
(0,0)

‘ p=(xy)

e
Principle point, -*
(coy)

&
Camera origin /
aperture

Z
I

Figure 2.1.: A sketch of the pinhole camera model

Focal length f
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Assume a camera located in the 3D world with an associated coordinate
system of which the orientation aligns with a default image coordinate system
plus an additional depth dimension in the direction of viewing. The camera
position is located at the origin of this camera coordinate system. Light that
passes through the aperture is projected onto the image plane. In actual
pinhole cameras, the imaged scene is rotated. In practice, one would manually
rotate a photograph, or read out a digital image in such a way that it becomes
rotated by 180°. In order to practically implement this fact in the mathematical
formulation, a virtual image plane in front of the aperture is assumed. This is
achieved by inverting the focal distance f from the camera center (aperture)
to the image plane, resulting in the desired outcome. Finally, since images in
computer science have their origin pixel at the top left corner, the image needs
to be shifted by the offset of the principle point p. = (¢z, cy)T, i.e. where the
focal axis intersects the image plane.

Given this setting, the intersect theorem leads to the following equations
that relate a world point P = (X,Y, Z)T to a pixel p = (z,)7:

x = %X +Cy (2.1)
Y= §Y+cy (2.2)

In matrix notation with homogeneous coordinates:

x f 0 ¢ O ‘;,(
yl=10 f ¢ O} 7 (2.3)
1 0 0 1 0 1

The process of estimating these internal camera parameters (also known as
camera intrinsics) is called camera calibration.

A more generic model considers an arbitrarily positioned and oriented
camera and extends Equation 2.3 by a rotation and translation from the world
coordinate system to the camera coordinate system. Since for this work this
step is not of importance, it is omitted. A camera at a reference time step
is always aligned with a hypothetical world coordinate system as depicted in
Figure 2.1. However, it is noted that automotive applications typically use a
standard car coordinate system which is different from the one above, but can
easily be converted by rotation.

Further, an ideal pinhole camera does not model all physical effects, like e.g.
lens distortions. However in high quality cameras, these effects can be corrected
or become negligibly small, making the pinhole camera model sufficiently
accurate for computer vision.

However, given the image alone, the 3D position of an imaged point can
not be inferred due to the depth ambiguity. L.e. all points on the ray from
camera origin through a pixel are projected to this pixel. Without knowing
the associated depth of this point, the pinhole projection can not be inverted.
This leads to the next section.
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2.2.2. Epipolar Geometry for Rectified Stereo Image Pairs

A stereo camera mimics the binocular human visual system. It captures two
images simultaneously from two viewpoints with similar cameras, which ideally
only differ by a horizontal displacement. This way, the 3D position of two
projections of the same world point can be reconstructed by triangulation
[HZ03]. The challenge here lies in finding the corresponding points. Thanks to
the epipolar geometry of stereo image pairs, the corresponding pixel location of
a pixel in one view, lies on the respective epipolar line which always intersects
the epipole, i.e. the intersection of the image plane and a line between both
camera origins. This restricts the search space for pixel correspondences.

A further simplification of the problem can be achieved by using rectified
images. Two rectified images are co-planar, letting the epipoles approach
infinity, and rendering the epipolar lines to be all parallel to the line connecting
the camera origins. Additionally, the rectification ensures that corresponding
points have the same vertical image coordinate.

Consequentially, rectification enforces that the relative position of the two
camera origins O; and Oj are described by a horizontal translation only, i.e.
in homogeneous coordinates

0. (2.4)

R t
02=[0 1]O1=

o= O O

B
0
0
1

oS O O
O O = O

This displacement is called the baseline B of the stereo camera.

Undistorted, rectified stereo image pairs from calibrated cameras are a
well-founded basis for the reconstruction of depth in computer vision.

Stereo reconstruction is a well-known approach in computer vision to estimate
the depth of a scene. Depth estimation wants to recover the shortest distance
between the observed scene and the (infinite) image plane for each pixel. The
geometric constraints for rectified stereo image pairs as described before provide
the following formulation of depth, given a known pixel correspondence between
pixel p in the left view and pixel p’ in the right view (cf. Figure 2.2):

_fB
d

Z (2.5)
Here, B is the baseline between the stereo cameras and f the focal length.
d = x—x' is the disparity, i.e. the displacement of the horizontal pixel coordinate
between the left and right view of corresponding points as illustrated in
Figure 2.2. Note that disparity values are positive by convention, though the
pixel in the right view is always located further to the left within the image
domain.

A stereo algorithm tries to find the best correspondences for all pixels of one
image so that a consistent depth map is created. By doing that, the result of a
stereo algorithm is a disparity map which assigns a positive disparity value to
every pixel of the image.

10
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P=(XY.2)

Depth Z

Image —r > i

planes
Focal length

f
Left Baseline B Right
camera camera

Figure 2.2.: A flat illustration of the 3D reconstruction in rectified stereo images.

2.2.3. Optical Flow

Optical flow is the estimation of a 2D displacement field u between two images.
These displacements describe the apparent transition u(p) = (u,v)? of one
pixel to another position in image space over time. As such, optical flow
describes all visible changes, i.e. the superposition of ego-motion of the camera
and motion of individual objects. The main purpose of optical flow is to provide
a proxy for motion in a dynamic scene, especially in the context of automotive
vehicles. Again, the problem is to find matches across two images. But for
optical flow the search space is much bigger, as the epipolar geometry does
not restrict it considering dynamic environments. Even more than for stereo
images, the representation of image points (descriptors) is crucial for successful
matching, since corresponding points may appear considerably different in the
two views due to the temporal offset. This property, which is especially violated
in the automotive scenario, builds the theoretical foundation for optical flow
estimation and is called the Brightness Constancy Assumption (BCA) [HS81;
LK81].

It(:E?y) = It+At(x+u)y+v) (26)

However in general, this equation holds for At — 0 only.

11
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Next Frame

I\
\J

Reference Frame

Left Camera Right Camera

Figure 2.3.: Corresponding points in two calibrated and rectified sterco frame pairs
define a 3D scene flow vector.

2.3. Scene Flow

Scene flow describes the apparent motion of points in 3D world space. It is
often considered as the extension of optical flow into 3D space using stereo
images, or the temporal extension of stereo depth estimation and its change
over time. In this respect it is very related to the two previously mentioned
problems in computer vision. In fact, in large parts it can be modeled as the
joint solution of stereo and optical flow estimation.

For scene flow algorithms in this thesis, it is assumed to have the typical
stereo image information provided, i.e. two rectified stereo image pairs (I =
{I5, 1L, I, 1Y) at times t and ¢; along with the camera intrinsics. It is further
assumed that the baseline B is known and constant. Using the fundamentals
in Section 2.2, full 6D scene flow in world space (3D position + 3D motion)
can be derived if corresponding pixels across all four images can be found.

As a result, the scene flow of a single pixel is represented as a 4D vector
s(p) = (u,v,doy,dy)T consisting of the two optical flow components u, v and
the disparity values dy, di for both time steps. This formulation relates pixels
in the four images according to Equation 2.7 as follows:

Ij(z.y)
w1 (2 = do, y) 2.7)
wIl (@ +u,y +0) '
sl (z+u—dy,y+v).

The formulation is comparable to the one in [HD07] and further explained
by the illustration in Figure 2.3. Note that d; does not provide the disparity
values between I! and I7, since it describes the future disparity for the visible
pixels in image Ié.

2.3.1. Data Sets

Data sets serve two main purposes. They allow evaluation and comparison
of algorithms in a specific scenario, and they provide the basis for data-

12
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(b) Sintel [BWSB12]. (c) FT3D [MIHF+16].

Figure 2.4.: Examples of images from different data sets.

driven (supervised) learning approaches. In both cases, the data set has to be
annotated with ground truth labels of the respective task.

Since it is hard to capture or manually label ground truth scene flow, there
exist only very few data sets to evaluate scene flow algorithms on. Most of
them use virtually rendered scenes to obtain the ground truth data [BWSB12;
CMH20; MIHF+16]. To the best of the author’s knowledge the only realistic
data set providing a benchmark for scene flow is the KITTI Vision Benchmark
[GLU12], which combines various tasks for automotive vision. Its introduction
has played an important role in the development of stereo and optical flow
algorithms, and the extension by [MG15] has also driven progress in scene flow
estimation.

The KITTI data set was captured with a stereo camera mounted on a
vehicle. The data set consists of highway, rural, and urban traffic scenes. 200
sequences (image quadruples) have been annotated with reference labels for
scene flow. This was achieved by using a GPS, IMU and a LiDAR scanner
as a reference sensor for precise localization and depth measurement. The
motion of dynamic vehicles has been reconstructed by manually fitting CAD
car models to the images and point clouds and computing rigid transformations.
All other dynamic objects have been excluded from this data set. As a result,
the reference labels are non-dense and the static background is furthermore
covered sparsely (with the resolution of the LIDAR scanner).

Another densely annotated, yet synthetic, data set for scene flow is the
FlyingThings3D (FT3D) subset along with the Monkaa and Driving subsets
presented in [MIHF+16]. Especially when it comes to data-driven learning
approaches, this data set provides a vital source for supervision. It consists of
rendered scenes where random 3D objects fly in front of a random background
image.

Lastly, the MPI Sintel data set [BWSB12] is mentioned here. It does not
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provide full scene flow labels, but is very popular in the field of optical flow
due to its challenging scenes. Beyond that, it offers stereo images and depth
labels, which can be used for a partial evaluation of scene flow.

Figure 2.4 presents examples of images for these data sets. An overview of
these and more related data sets for other dense correspondence problems is
given in Section 5.1.5.

Only recently, the Virtual KITTI 2 data set [CMH20] has been released,
which provides full scene flow labels in traffic scenarios. However, the scenes
look very similar to the KITTI data set but less realistic, since they are
synthetically rendered. It is not used in this thesis and only mentioned for
completeness.

2.3.2. Evaluation Metrics

Since KITTTI is the most relevant and main data set used in this thesis, the
evaluation is oriented towards what is used in the KITTI online benchmark.
There, the evaluation criteria is the KITTI outlier error rate (KOE). The KOE
gives the percentage of pixels that exceed an error of 3 px and deviate more
than 5 % from the ground truth. It is computed separately for optical flow
and the disparity values. The errors are computed as Euclidean difference in
2D and 1D, respectively. An outlier for scene flow is defined if either one of
the estimated disparity maps or the optical flow contains an outlier.

Further in this thesis, the end-point error (EPE) in image space is computed.
For scalar disparity maps, the EPE is the pixel-wise average absolute difference
between the estimate and the ground truth. For two-dimensional optical flow,
the EPE is the average Euclidean distance. The EPE for scene flow is defined
as the sum of the EPEs for optical flow and the two disparity maps. In some
explicitly mentioned cases, the EPE for scene flow is computed as average
Euclidean distance of the four-dimensional scene flow representation in image
space (cf. Section 2.3).

A final remark is given with respect to the indexing of time on the KITTI
benchmark [GLU12; MG15]. While throughout this thesis, the reference time
is t = 0 and thus the initial disparity in the scene flow representation is dg,
KITTI starts indexing at 1. Therefore, evaluations with respect to the KITTI
online benchmark denote the KOE for the initial and future disparity as D1
and D2, respectively.

2.3.3. Visualization

In conformity with the evaluation metrics, the visualization of scene flow is
also split into the optical flow field and the initial and future disparity maps.
Optical flow is visualized according to the Middlebury optical flow color wheel
[BSLR+11], which encodes the 2D direction of the flow by the hue of the color
and its magnitude by the saturation (cf. Figure 2.5), i.e. no apparent motion is
encoded in white. Disparity — and likewise depth — is visualized using the jet
color map from red (close by) to blue (far away). In some cases, disparity (or
depth) is used to re-project points as a 3D point cloud which is then observed
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Figure 2.5.: The Middlebury color wheel for the visualization of optical flow.

Figure 2.6.: Visualization of the color-coded sparse ground truth for optical flow
and disparity of a sample from the KITTI data set.

and visualized from a different viewpoint (other than the original camera).
This way, an easy-to-perceive qualitative impression of the reconstruction of the
geometry is conveyed. These two colorization schemes are shown in Figure 2.6
for the ground truth of a sample from the KITTI data set.

For the visualization of errors (i.e. the difference between predicted and
actual scene flow), a binary outlier map is used that indicates inliers in green
and outliers in blue to magenta, according to the definition in Section 2.3.2.

For the visual comparison of methods that have been submitted to the KITTI
online benchmark [GLU12; MG15], the original colorization of the benchmark
for results and error maps are used. Error maps on the benchmark show the
EPE on a piece-wise quadratic color map (blue to white for inliers, orange to
dark red for outliers, cf. e.g. Figure 4.14).
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This chapter discusses previous and related work in the field of scene flow
estimation. At first, different sensors which allow for an estimation of scene
flow are presented (see Figure 3.1 and Table 3.1). Within this part, the focus
of this thesis on cameras — and in particular stereo cameras — is motivated.
In a second step, common and popular models for the estimation of scene
flow are described, along with algorithmic concepts (cf. Table 3.2). The choice
of sensor(s), model, and algorithm is often tightly coupled. Lastly, the most
related approaches in the literature are listed in Table 3.3, and categorized
according to the previously introduced properties. Most of these methods
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Figure 3.1.: An ontology of visual sensor modalities for scene flow estimation.

frequently represent state-of-the-art competing to the approaches presented in
this thesis.

3.1. Sensor Modalities

3.1.1. Cameras

The method that coined the term scene flow was presented in [VBRC+99].
This method posed scene flow estimation in a multi-view setting captured with
a monocular camera. To introduce a more principled way for 3D reconstruction,
several scene flow algorithms followed, which used stereo cameras as sensor
device. Until this point, stereo cameras are the most widespread sensor for
scene flow estimation and can be considered the default. Only recently, a trend
towards using less sensors has emerged again, introducing another series of
monocular approaches [BAM19; HR20; YR20]. Here, depth is recovered from
a single image using deep learning to estimate monocular scene flow. However,
even though deep neural networks are able to solve this task to some extend,
the overall performance lags behind stereo methods. On the upside, a single
camera, is cheaper and does not require calibration or rectification. Note that a
camera does not necessarily has to capture RGB data. A monochrome camera
can be used as well.

3.1.2. Depth Cameras

Direct measurement of depth simplifies the problem of scene flow estimation
greatly, because the geometry of the scene does not need to be reconstructed
from image information. On the other hand, active sensing of depth introduces
other limitations. Depending on the sensor type (e.g. structured light), ambient
effects may deteriorate the quality of the depth measurements. In all cases, the
range of depth cameras is limited, and the resolution is often lower compared
to a plain camera. These properties make depth cameras unsuitable for
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Table 3.1.: Comparison of visual sensors for scene flow estimation.

Sensor Advantages Disadvantages
Minimalistic setup,
o Monocular Camera no calibration, Weak depth cues
‘% cheap
a, . Depth resolution,
t P led . . . .
Stereo Camera riciple calibration, rectification
RGB-D Camera Direct depth ‘ ‘LOW range,
o measurement sensitive to environment
= Low density,
® LiDAR High precision mostly geometric sensing,
expensive

automotive applications, which require depth sensing up to 100 meters in
outdoor environments with strong and diverse light sources. However, for
indoor environments this sensor setup is used. A list of notable methods
includes [HFR14; HRF13; JSGC15; QBDC14]. The terms depth camera and

RGB-D camera are used interchangeably in this thesis.

3.1.3. LiDAR Scanners

Similarly to depth cameras, laser scanners (or Light Detection and Ranging
(LiDAR) scanners) provide a way to measure distances directly. In comparison,
LiDAR scanners are less sensitive to environmental lighting and even more
precise, covering also a much longer range. Yet, LiDAR devices still suffer
from limitations, like e.g. (semi) transparent surfaces. The most important
drawback of a laser scanner is its density along with the price. Especially high-
resolution scanners are too expensive for series production in vehicles and they
still capture only a fraction of the density of cameras. In the context of scene
flow estimation, LIDAR sensors are used in two ways. Firstly they are used
for the fusion with a camera, either to support the stereo setup [BSWR+19],
or to replace it and instead use a monocular camera and obtain reliable 3D
reconstruction from the (densified) LIDAR [RBSW+20]. Secondly, a use as the
only sensor to estimate scene flow from consecutively captured point clouds is
possible. This approach has again emerged recently and is strongly powered by
deep neural networks [BPDG19; GWWL+19; LQG19; MOH20; WWLL+20].

3.2. Models and Algorithmic Categories

3.2.1. Variational Optimization

Vedula et al. [VBRC+99] were among the first to compute 3D scene flow.
Afterwards, many variational approaches for scene flow estimation followed.
A similar variational approach using multiple images from a stereo camera
was presented in [PKF05; PKF07]. These approaches were inspired by similar
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concepts for optical flow estimation [HS81]. First, pure color images [BMK13;
FRRR+14; HD07; POJT+12; VBZW+10; WRVB+08] and later RGB-D im-
ages [HFR14; HRF13; JSGC15; QBDC14; ZCYZ12] were used as input. While
a variational formulation is typically complex, Jaimez et al. [JSGC15] achieved
real-time performance with a primal-dual framework. Yet, all these approaches
are sensitive to initialization and can not cope with large displacements, which
is why they use a coarse-to-fine scheme. This in turn tends to miss finer
details. Nowadays, variational methods are outperformed in terms of speed
and accuracy by other approaches and are only used as a refinement step.

3.2.2. Rigid Planes

Due to the advent of a piece-wise rigid plane model [VSR13], scene flow has
recently achieved a boost in performance. The majority of top performing
methods at the KITTI benchmark employ this model to enforce strong regu-
larization [BJMA+17; LBAL+16; LML21; MG15; MWHX+19; NS17; VSR15].
Vogel et al. [VRS14; VSR15] encode this model by an alternating assignment
of each pixel to a plane segment and each segment to a rigid motion, based on
a discrete set of planes and motions in view-consistent manner over multiple
frames. The complexity of the model is further lowered by the assumption that
a scene consists of very few independently moving, rigid objects in [BJMA+17;
MG15; NSl?]. Thus, each plane segment only needs to be assigned to one
object. All segments assigned to the same object share the same motion.
By propagation of objects over multiple frames, temporal consistency for the
model of [MG15] is achieved by [NS17]. In [BJMA+17], deep learning is used
to obtain semantic object information a-priori. The pixel-to-plane assign-
ment and the plane-to-motion assignment is solved in a continuous domain
in [LBAL+16]. Auxiliary Deep Neural Networks (DNNs) are employed in
[BIMA+17; MWHX+19] to obtain an accurate initialization for the rigid,
planar model before it is further optimized. Despite the remarkable accuracy
on KITTI, many of these methods are not applicable to domains with different
characteristics. The rigid motion assumption is strongly violated by articulated
gestures and other non-rigid motions that often occur in the Sintel data set
[BWSB12]. The assumption made by [BJMA+17; MG15; NS17], that there
are only a few independent dynamic objects in a scene, is inappropriate for
highly dynamic scenarios. Further, methods falling into this category typically
have very long run times of several minutes up to almost one hour per frame.

3.2.3. Divide and Conquer

Static-Dynamic Decomposition. Yet another promising strategy builds on
the decomposition of a scene into static and moving parts [T'SS17]. While the
motion of dynamic objects is estimated by solving a discrete labeling problem
(as in [CK16]) using the Semi-Global Matching (SGM) algorithm [Hir08], the
perceived motion of all static parts is directly obtained from the 3D geometry
of the scene and the ego-motion of the camera. This approach is especially
convenient for scenes, where only a small proportion consists of moving objects,
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like it is usually the case in traffic scenarios. However, any a-priori assumption
limits the versatility of a method. A rigid plane model performs poorly when
applied to deformable objects, and ego-motion estimation for highly dynamic
scenes is difficult.

Combination Approach. Because the scene flow problem is highly related
to the auxiliary tasks of optical flow and stereo disparity estimation, it is
possible to estimate scene flow by combining separate results for optical flow
and stereo disparity [MIHF+16]. Though the separation brings advantages
for the complexity of the problem and thus the run time, it is believed that
a single formulation of the problem yields more consistent scene flow results.
Also due to occlusions, such a separation is known to yield non-dense result. A
solution to this issue is the sparse-to-dense concept. Therefore, this combination
approach is investigated in Chapter 6 of this thesis.

Sensor Conversion. The transformation of the input into a different, virtual
one, is another special case of the separation of scene flow estimation into
smaller, related sub-problems. Stereo images e.g. can be used to estimate dense
depth in a first step, followed by applying a RGB-D method. This was done on
the KITTI data set by combining SGM [Hir08] with SphereFlow [HFR14]. A
stereo result can also be used to create a high density point cloud to run scene
flow estimators that usually work with input from a LiDAR scanner (if these
methods were capable of processing the resolution of a camera). However, it is
likely that the virtual input is more noisy compared to an actual measurement.

3.2.4. Deep Learning

Deep Neural Networks. Shortly after the success of the first end-to-end
networks for optical flow estimation [DFIH+15; IMSK+17], deep learning
approaches also started to take over scene flow estimation. This development
happened in large part in parallel to the research of this thesis. Therefore, one
of the very first DNNs for scene flow estimation is presented within the thesis
in Chapter 7. In the meantime, other approaches followed [APTM20; ISKB18;
MIHF+16; MWHX+19]. The massive parallelization on Graphics Processing
Units (GPUs) introduces a remarkable speed-up in scene flow estimation.

Semantic Segmentation. Other scene flow algorithms use deep learning to
incorporate semantic information into the motion estimation problem [RSKS17].
Yet, in terms of robustness, deep learning approaches typically lag behind
because they generalize insufficiently to unseen data and even less to data from
different domains [WD18]. This is especially true for semantic segmentation,
where the domain gap is amplified by the mismatch of semantic classes between
domains [LLYL+18]. Semantic segmentation (and instance segmentation)
in the field of scene flow estimation is used in different ways: As strong
segmentation for a static-dynamic decomposition [RSKS17], together with the
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piece-wise rigid planes model [BJMA+17; LML21; MWHX+19], or in a joint
multi-task formulation of the problem [JSJL+19].

3.2.5. Multi-frame Stereo Approaches

Finally, one has to differentiate between dual-frame [LBAL+16; MG15; VSR15]
and multi-frame [NS17; TSS17; VSR15] approaches. Especially in the context
of automotive applications, several characteristics make matching between
two frame pairs much more challenging than in a multi-frame setting. These
characteristics are: 1.) Considerably large stereo and flow displacements. 2.)
Difficult lighting conditions and many reflective and (semi-)transparent surfaces
of cars. 3.) Fast ego-motions sometimes combined with low to medium frame
rates, which causes large regions to move out of the field of view. Therefore,
pairs of dual-frame and multi-frame methods exist. The transitions from OSF
[MG15] to OSF+TC [NS17] and from PRSF [VSR13] to PRSM [VRS14; VSR15]
have brought essential improvements by using the additional information from
multiple stereo frames. However, this additional information comes at a cost.
The relationship between multiple temporal steps needs to be modeled to make
use of the additional images. A typical model is to assume smooth, constant
motion between neighboring time steps [NSl?; VSR15].

3.2.6. Sparse-to-Dense

The sparse-to-dense approach for scene flow estimation is introduced in this
thesis (see Chapter 4). Consequentially, previous work in the field of scene flow
estimation does not exist. Instead, this section discusses the concept for optical
flow estimation to highlight the properties, challenges, and advantages of this
approach. For optical flow, the sparse-to-dense concept was successfully realized
by EPICFlow [RWHS15] with competitive accuracy. Recall that the main idea
is to separate the estimation of dense flow into two steps: 1.) Obtaining sparse
correspondences across images and 2.) Interpolating the sparse result into a
dense one. The biggest advantage during the first step is that matching can
focus on easy image areas to obtain most reliable and accurate results in an
efficient manner. One challenge in this step is, that it is unclear in the first place,
which areas or pixels are easy to match and important during interpolation.
Another advantage of the second step is, that the interpolation can tackle
typical challenges in flow estimation with effective models (e.g. occlusions,
homogeneous areas, etc.). To obtain a similar effect in previous approaches,
complex regularization by assuming local smoothness is necessary. Since this
assumption is modeled globally (e.g. in variational optimization), such methods
tend to blur discontinuities and raise the run time. Many works have improved
the concept since its first successes. The matching used in EPICFlow was
later refined by FlowFields [BTS15] and its many derivatives [BTS19; BVS17;
WKR17] or by competitors like CPM [HSL16]. The interpolation itself was also
developed further by RICFlow [HLS17], SemFlow [WZLY+19], or InterpoNet
[ZW17], in case of the latter two with the aid of deep neural networks. Some
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Table 3.2.: Overview of different algorithmic categories of scene flow algorithms.

Category Advantages Disadvantages
] -
Variational Slow, 1r%accurate,
only indoors
Static—Dyn'amic Potentially fast Ego—m‘otion ('iependency,
Decomposition mconsistent
Pice-wise Rigid Strong Slow
Planes Model regularization
. P
Deep Learning Fast O.O ' .
generalization
Comparatively fast Sensitive to
Sparse-to-Dense P Y ash, distribution
good generalization
of matches

work even improved the post-processing steps in a sparse to dense pipeline
[MSB17].

The lasting interest of researchers in this category of algorithms indicates its
importance. However, there is a sensitive interplay between the two steps. If
matching yields too few correspondences, gaps for interpolation grow inappro-
priately big. If too many matches are returned, run time scales unfavorably,
or even worse, the accuracy of the sparse results deteriorate. Consequently,
sparse-to-dense approaches require a careful tuning to find a sweet spot where
both parts perform adequately.

3.3. Chronicle of Most Relevant Scene Flow Methods

Table 3.3 lists relevant methods in chronological order. Methods presented in
this thesis are not included. In general, but especially in the field of automotive
driving, a majority of approaches utilizes stereo cameras as a sensor, with a
very recent rise of pure LiDAR approaches. Since 2019, there has been a clear
trend towards the utilization of DNNs, and away from heuristic methods, in
particular away from variational techniques since 2015. Apart from the early
beginning, multi-frame methods have only been actively investigated between
2015 and 2017. To reactivate research in this direction, two novel multi-frame
approaches are presented in this thesis (cf. Sections 4.2 and 7.3). A similar
pattern can be observed for monocular approaches. After the method of Vedula
et al. [VBRC+99], monocular methods have only been proposed since the rise
of DNNs, as well as in Section 6.2 of this work.
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Table 3.3.: A non-exhaustive, chronological list of scene flow methods. The list does
not cover the oftspring of this thesis.

Year Reference | Sensor Frames Category
1999  [VBRC+99] | Mono Multi Variational
2005 [PKF05] Stereo Multi Variational
2007 [HDO7] Stereo Dual Variational
2008 [WRVB+08] | RGB-D  Dual Variational
2013 [HRF13] RGB-D Dual Variational
2013 [VSR13] Stereo Dual Rigid Planes
2014 [QBDC14] | RGB-D  Dual Variational
2014 [HFR14] RGB-D  Dual Variational
2015 [VSR15] Stereo  Multi Rigid Planes
2015 [JSGC15] RGB-D  Dual Variational
2015 [MG15] Stereo Dual Rigid Objects
2016  [LBAL+16] | Stereo Dual Rigid Planes
2017 [TSS17] Stereo Multi Decomposition
2017 [RSKS17] Stereo Dual Rigid Objects
2017  [BJMA+17] | Stereo Dual Rigid Instances
2019  [JSJL+19] Stereo Dual DNN
2019  [LQG19] | LIDAR  Dual DNN
2019 [MWHX+19] | Stereo Dual DNN+PRSM
2019  [BPDG19] | LiDAR  Dual DNN
2019 [BAM19] Mono Dual ~ DNN+PRSM+CRF
2020  [APTM20] Stereo Dual DNN
2020 [HR20] Mono Dual DNN
2020 [YR20] Stereo Dual DNN
2020 [YR20] Mono Dual DNN
2020 [WWLL+20] | LiDAR Dual DNN
2021 [LML21] Stereo Dual DNN+CRF
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The various advantages of sparse-to-dense estimation for dense displacement
fields, as described in Section 3.2, motivate to transfer the concept to the
estimation of scene flow. This chapter outlines the general idea and presents a
realization of the same based on well-established best practices in optical flow
estimation.

There are different techniques to handle the non-matchable parts of a scene,
i.e. cases where it is difficult or even impossible to find correspondences in
the relevant images. Typically, some kind of regularization is applied, like in
form of a smoothness assumption which encodes that neighboring pixels should
represent a similar motion so that local visual evidence can support the motion
estimation in the difficult areas. In methods that employ the piece-wise rigid
plane model [BJMA+17; LBAL+16; MG15; NS17; VSR13; VSR15] this kind
of regularization is for two reasons considerably strong. Firstly, each local
patch describing a slanted plane undergoes the same transformation by design.
Secondly, inter-plane smoothness is further enforced by dedicated terms in the
energy formulation. However, regularization terms increase the computational
effort significantly (cf. Table 4.5), and would prohibit the use of the efficient
optimization strategy of Section 4.1.1. An alternate concept to handle non-
matchable regions is sparse-to-dense interpolation. This idea is rather young
and was first successfully realized by EPICFlow [RWHS15] for the optical
flow problem. The idea is to remove regions of low confidence (i.e. regions
where regularization would be required to match them accurately) and to use
interpolation to fill the gaps based on reliable matches. SceneFlowFields (SFF)
is to the best of the author’s knowledge the first method of sparse-to-dense
interpolation for scene flow correspondences and the extension in Section 4.2 is
transferring this concept to a multi-frame setup for the first time.

Discrimination from State-of-the-Art. Related work can be clustered into
certain categories (cf. Table 3.2). Because the proposed scene flow methods
follow the newly introduced sparse-to-dense approach, it differs from any of the
related approaches. First, sparse scene flow matches are found which are then
interpolated to a dense scene flow field, recovering the geometry of the scene and
the 3D motion. These methods have to be distinguished from purely variational
approaches. Although variational optimization is used, it can be considered
as a post-processing step for refinement. Similar, the cameras ego-motion is
only used to refine the results for static image regions. During interpolation,
the geometry of a scene is modeled by very small planar segments, but there
is no initial coarse segmentation presumed. In fact, the very small size of the
plane segments leads to smoothly curved shapes and sharp boundaries. The
same holds for the piece-wise motion model that is used to interpolate the 3D
motion. Methods which are guided by semantic segmentation from deep neural
networks generalize badly to other domains, unless they are fine-tuned for the
new task. Same is assumed for upcoming purely learning based approaches
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(d) Sparse ground truth.

Figure 4.1.: Based on stereo image pairs and corresponding boundaries, SFF esti-
mates a dense 3D motion field. The color of the point clouds encodes
the optical flow.
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Figure 4.2.: Overview of the pipeline of SFF. Blue color indicates the optional
ego-motion extension.

[APTM20; JSJL+19; MWHX+19] which are potentially even faster than the
sparse-to-dense approach. SceneFlowFields++ (SFF++) focuses especially on
robustness across domains and applications.

The different algorithmic categories are contrasted and compared in Table 3.2.
The piece-wise rigid planes model is particularly accurate due to its strong
regularization (as long as the assumptions are not violated), but is also complex
and computationally expensive. The decomposition (separation) approach that
splits the scene flow problem into less difficult sub-problems is especially fast
and benefits from advances in the auxiliary tasks. Yet, separate computation
leads to overall less consistent scene flow. Deep learning is potentially fast
due to the inherent parallelization on GPUs, but sensitive to the distribution
of available training data and not interpretable in case of failure. The novel
scene flow concept of sparse-to-dense interpolation allows to separate matching
from regularization. With the use of appropriate interpolation models and
interpolation regions, the negative impact of violated assumptions can be
diminished. However, the separation of matching and regularization makes the
sparse-to-sense approach sensitive to the quality of the sparse matching results.
To overcome this issue, a multi-frame extension is proposed within this thesis.

4.1. Dense Interpolation of Sparse Scene Flow
Correspondences

In the concrete implementation sparse matches are obtained by performing
dense coarse-to-fine matching and filtering with a forward-backward consistency
check. Given the formulation of Section 2.3, dense (noisy) scene flow is
estimated as follows: For k subscales the coarsest scale is initialized by finding
the best correspondences from kD-trees built with feature vectors using the
Walsh-Hadamard-Transform (WHT) [HHO5]. For all k+1 scales (the k subscales
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plus full resolution) scene flow vectors are iteratively propagated and adjusted
by random search. Afterwards, the dense scene flow map on full resolution is
filtered using an inverse scene flow field and a region filter. The filtered scene
flow map is further thinned out by only taking the best match in each non-
overlapping 3 x 3 block. Scene flow boundaries are detected using a structured
random forest. Geometry and 3D motion are separately interpolated based on a
boundary-aware neighborhood. Finally, the 3D motion is refined by variational
optimization and optionally by estimating the ego-motion of the vehicle. An
overview of SFF is outlined in Figure 4.2.

4.1.1. Sparse Correspondences

Matching Cost. An important aspect in sparse-to-dense matching is that
the matching cost depends on a data term solely. No additional smoothness
assumptions are made like e.g. in [HD07; HRF13; LBAL+16; MG15; VSR13;
VSR15]. In this case given a scene flow vector, its matching cost is defined by
the sum of Euclidean distances between SIFTFlow features [LYT11] over small
image patches [BTS15]. The matching error for two corresponding pixels p
and p’ in images I and I’ is defined by the following cost

C(I,p.I''p')= Y |¢(L,p)-0(I' P +P-P)
peW (p)

, (4.1)

whereas W (p) is a 7 x 7 patch window centered at pixel p and ¢ (I,p) is a
function that returns the first three principal components of a SIFT feature
vector (SIFTFlow) for pixel p in image I. The principal axes are computed for
the combined SIFT features [Low99] of all four images. At image boundaries,
the boundary pixel is replicated to pad the images. The cost for three image
correspondences are evaluated. These correspondences are the stereo image
pair at time ¢, the temporal image pair for the left viewpoint (standard optical
flow correspondence) and a cross correspondence between the reference frame
and the right frame at the next time step (cf. Figure 4.2). This leads to the
following overall cost C' for a scene flow vector s = (u, v, dy, dl)T at pixel p:

C(p.s) = C (I, p, 1f,p+ (u,0)")
+C([éap7lg7p+ (_d070)T) (42)
+C (I(l)apalfyp + (U - dl,U)T) .

Thereby, a dense scene flow field s can be obtained by optimizing the following
energy minimization problem

E(Ls)=) C(p,s(p)), (4.3)

pe?
§=argmin E(I,s). (4.4)
S

Though this optimization includes a lot of variables, the fact that s =
(u,v,dp, dl)T can be optimized for each pixel individually is exploitable. This
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is possible since the formulation includes no inter-pixel dependencies, e.g. no
explicit regularization. Therefore, an efficient, greedy, stochastic optimization
approach of propagation and random search can be used. While additional
terms for correspondences between the remaining images are possible (e.g.
optical flow for the right camera), this would lead to two implications. Firstly,
more correspondences are less computationally efficient. Secondly, the addi-
tional cost would enforce higher precision where all views are non-occluded,
but would introduce higher errors if the 3D point was occluded in a single
viewpoint. This in turn would lead to less dense matches after the consistency
check. The matching cost in Equation 4.2, using three image correspondences,
realizes a tradeoff between precision and density.

Initialization. [Initialization is based on kD-trees similar to [HS12], but with
three trees, using WHT features as in [BTS15; WKR17]. For each frame other
than the reference frame, one feature vector per pixel is computed and stored
in a tree. To initialize a pixel of the reference image, the feature vector of
that pixel is compared to the pre-computed kD-trees. Scene flow matches
are then obtained by comparing all combinations of the leafs for each queried
node according to the matching data term introduced before (Equation 4.1).
Since the stereo image pairs are rectified, kD-trees which regard the epipolar
constraint are created for the images observed from the right camera view, i.e.
queries for such a tree only return elements which lie on the same image row as
the query pixel. This way, the number of leaves per node for the epipolar trees
are lowered efficiently, which speeds up the initialization process without loss
of accuracy. For further acceleration, this initialization is used on the coarsest
resolution only, and the gaps when evolving to the next higher scale are filled
up by the propagation.

Multi-Scale Propagation. The initial matches are spread by propagation and
steadily refined by random search. This is done over multiple scales which
helps to distribute rare correct initial matches over the whole image. For each
scale, several iterations of propagation are performed in one out of the four
image quadrants so that each direction is used equally. During propagation, a
scene flow vector is replaced if the propagated vector has a smaller matching
cost. If this is not the case, the propagation along this path continues with the
existing scene flow vector. After each iteration a random search is done. That
means that for all pixels a uniformly distributed random offset in the interval
]-1,1[ in pixel units of the current scale is added to each of the four scene flow
components to check whether the matching cost decreases. Both propagation
and random search help to obtain a smoothly varying vector field and to find
correct matches even if the initialization is slightly flawed. For the different
scale spaces, the scaling is simulated by smoothing the images and taking only
every n-th pixel for a sub-sampling factor of n = 2¥ so that the patches consist
of the same number of pixels for all scales. This way, (up-)sampling errors
are prevented because all operations are performed on exact pixel locations
on the full image resolution. Smoothing is done by area-based down-sampling
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followed by up-sampling using Lanczos interpolation. Note that this matching
method has already been used in [BTS15; BT'S19], but while it was for optical
flow in this work, here it is applied to twice as many dimensions in the search
space.

Consistency Check. The matching procedure yields a dense map of scene
flow correspondences across all images. However, many of the correspondences
are wrong because of occlusions, out-of-bounds motion or simply because of
mismatching due to challenging image conditions. To remove these outliers,
a two-step consistency check is performed. Firstly, an inverse scene flow field
is computed for which Ij ; is the reference image. Temporal order as well
as points of view are swapped. Everything else remains as explained above.
During the consistency check, optical flow and both disparity maps for each
pixel are compared to the corresponding values of the inverse scene flow field.
If either difference exceeds a consistency threshold 7. in image space, the scene
flow vector is removed. Secondly, small regions of the remaining pixels are
formed as in [BTS15], where a pixel is added to a region if it has approximately
the same scene flow vector. Afterwards, it is checked if one of the already
removed outliers in the neighborhood could be added according to the same
rule. If this is possible and the region is smaller than s. pixels, the whole
region is removed. This way, the filtered final scene flow correspondences of
high accuracy and very few outliers are obtained (cf. Table 4.3). Because the
joint filtering of the matches removes more disparity values than necessary,
gaps in the disparity maps are filled up with additional values. These values
are the result of a separate consistency check for the disparity matches only.
For the separate check a second disparity map with Semi-Global Matching
(SGM) [Hir08] is computed and compared with the same threshold 7. as before.
The additional disparity values that are retrieved this way are as accurate as
the one from the standard consistency check but much denser, which is shown
in Figure 4.3 and Table 4.3.

4.1.2. Dense Interpolation

Sparsification. Before interpolating the filtered scene flow field in order to
recover full density, an additional sparsification step is performed. This helps
to extend the spatial support of the neighborhoods during the interpolation
and speeds up the whole process [BTS15]. For non-overlapping 3 x 3 blocks,
only the match with the lowest consistency error during filtering is selected.
The remaining matches are called seeds with respect to the interpolation.

Interpolation Boundaries. A crucial part of the interpolation is the estimation
of scene flow boundaries. While [BTS15; RWHS15] approximate motion
boundaries for optical flow with a texture-agnostic edge detector [DZ13], the
edge detector used here is trained on semantic boundaries. It is argued that this
models geometric boundaries as well as motion boundaries much better than
image edges and is much more robust to lighting, shadows, and coarse textures.
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Figure 4.3.: Sparse correspondences (left) and dense interpolation (right). Optical
flow (a) and disparities at ty (b) and t1 (c).

To do so, about 400 images of the KITTI data set from [HF16; RRGB+15;
XDBZ+16] have been gathered which have been labeled with semantic class
information. Within these images, semantic classes that in general neither align
with geometric nor motion discontinuities have been merged, e.g. lane markings
and road, or pole and panel. The boundaries between the remaining semantic
labels are used as binary edge maps to train the edge detector. Similar to the
approach in [RWHS15], the framework of Structured Edge Detection (SED)
[DZ13] is used to train a random forest with the same parameters as in their
paper, except for the number of training patches. For SFF, twice as many
positive and negative patches are sampled during the training because the data
set is bigger and contains images of higher resolution. The impact of the novel
boundary detector is evaluated in Section 4.3.

Interpolation Models. For the interpolation of geometry and motion, two
different models are tested. Both parts are interpolated separately which leads
to a more accurate reconstruction of the scene. This is due to the fact that
the separate consistency check for disparity leaves more geometric matches
where motion would leave image boundaries. Suppose a local, boundary-aware
neighborhood of seeds is given for each unknown scene flow vector § at pixel p
for geometric and motion seeds respectively, Ny, and Npotion. The depth of
pixel p is reconstructed by fitting a plane E(P) : a1z + agy + a3 = dy through
all seeds of the neighborhood Nye,. This is done by solving a linear system of
equations for all neighboring seed points pg for which the disparity values are
known, using weighted least squares. The weights for each seed are obtained
from a Gaussian kernel g(D) = exp (—aD) on the distance D(p, pg) between
target pixel and seed. The missing disparity value of p is obtained by plugging
the coordinates of P into the estimated plane equation. In a similar fashion,
but using a neighborhood of motion seeds Nyotion, the missing 3D motion is
obtained by fitting an affine 3D transformation P; = APg + t using weighted
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Figure 4.4.: Whereas SED [DZ13] (c) detects all image boundaries similar to the
image gradient (b), the improved boundary detector (d) suppresses
lane markings and shadows.

least squares on all motion seeds pym. Where Py = (X;,Y;, Z;)T are the 3D
world coordinates of motion seed py, at time to and t;, and [Aft] e R>** is the
affine 3D transformation of twelve unknowns. The weights are computed by the
same Gaussian kernel as for geometric interpolation, but using the distances
D(P,pm) between the target pixel and the motion seeds. To summarize, for
the full reconstruction of scene flow & = (u,v,do,d;)” at pixel P, dy is computed
by using the plane model E(p), re-projecting the point into 3D world space,
transforming it according to its associated affine transformation [A[t], and
projecting it back to image space to obtain u, v and d;.

Edge-Aware Neighborhood. To find the local neighborhoods, the idea of
Revaud et al. [RWHS15] is applied using both their approximations. That
is firstly, the n closest seeds to a pixel p are the n — 1 closest seeds to the
closest seed of p, thus all pixels with the same closest seed share the same
local neighborhood. And secondly, the distance between p and its closest seed
is a constant offset for all neighboring seeds, which can be neglected. It is
therefore sufficient to find a labeling that assigns each pixel to its closest seed
and to find the local neighborhood for each seed. The graph-based method of
[RWHS15] is used for this, where the distances between seeds are the geodesic
distances that are directly based on the edge maps from the boundary detector
(cf. Figure 4.4).

Since this first interpolation mechanism for scene flow is greatly inspired by
the algorithm in EPICFlow [RWHS15], the adapted higher dimensional version
is called EPICSD.

4.1.3. Variational Optimization

To further refine the 3D motion after interpolation, variational energy mini-
mization is used to optimize the objective

E(u,v,d') = EL0 + EGée® + 0+ Bgmooth: (4.5)

Motion is represented in image space by optical flow and the change in disparity
d' = ds,1 —d;. The energy consists of three parts. Two data terms, one temporal
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correspondence and one cross correspondence, and an adaptively weighted
smoothness term for regularization. The data terms use the gradient constancy
assumption. Experiments have shown, that an additional term for the color
constancy assumption can be neglected.

B0 pow) = [ B(p.w) ¥ (770 (p+w) - vIE))dp  (4.6)

l *
onlca(z:f = Edata (I(l)a I{a P, (U, U)T) (47)
E&:Z(t);s = Eéata (I(ZJ:II’pv (u_dO_dIvU)T) (48)

The data terms do not contribute to the energy if the function

1, if(p+w) e

] (4.9)
0, otherwise

B(p,W) :{

indicates that the scene flow is leaving the image domain. The smoothness
term

Esmooth = /{; v (IVUI2 + Vol + X \Vd’|2) dp (4.10)
penalizes changes in the motion field and is weighted by
p(p) = e P (4.11)

where B(p) is the edge value of the boundary detector at pixel p. All parts
use the Charbonnier penalty ¥ (x) = Va2 + €2 to achieve robustness. Since the
smoothness term rather enforces constancy than smoothness if 5 for both data
terms is zero, the scene flow is not optimized at pixels where the interpolated
scene flow field leaves Q. This energy formulation is inspired by [BBPW04;
HDO7; WRVB+08]. Linear approximations of the Euler-Lagrange equations for
the objective are used within the framework of Brox et al. [BBPWO04] without
the coarse-to-fine steps to find a solution by Successive Over-Relaxation (SOR).

4.1.4. Ego-Motion Model

In Section 4.3 it is shown that the approach as described so far achieves results
comparable to state-of-the-art. For the special challenges of the KITTI data set,
an additional, optional assumption is made to further improve the performance
of SFF. Following [T'SS17], it is argued that most parts of a scene are static
and thus the 3D motion for these areas is fully determined by the ego-motion of
the observer. Given the ego-motion and a motion segmentation into static and
dynamic areas, the inverse ego-motion can be applied to all static points in the
scene to obtain the apparent scene flow. Using the matching and interpolation
scheme above, both required components can be estimated easily with almost
no additional effort.
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o Gy - = 0y

Figure 4.5.: Example of the motion segmentation. Sparse motion indicators as
obtained during ego-motion computation (b), dense segmentation by
interpolation (d) and moving ground truth objects as provided by
KITTI [MG15] (c).

Ego-Motion Estimation. The filtered scene flow field before interpolation
provides very accurate matches across all images. 3D-2D correspondences
between the reference frame and the temporally subsequent frame are com-
puted by triangulation using the stereo matches. For this, the depth of these
correspondences is limited to 35 meters because the resolution of disparity for
farther distances is less. This leads to a Perspective-n-Point (PnP) problem,
which is solved iteratively using Levenberg-Marquardt and RANSAC to find
the relative pose between the left cameras at time tg and ¢; by minimizing the
re-projection error of all correspondences. For RANSAC, a correspondence
is considered as outlier if the re-projection error is above 1 pixel. After a
first estimation, the set of inliers is recomputed with a relaxed threshold of
3 pixels and the pose P = [R|t] e R¥* is re-estimated. The two-stage process
helps to avoid local optima and to find a trade-off between diverse and robust
correspondences.

Motion Segmentation. An initial sparse motion segmentation can directly
be obtained as a side product of the ego-motion estimation. Outliers in the
correspondences are considered in motion, while points in conformity with
the estimated ego-motion are marked as static, i.e. m(p) € {0,1}. Within
the boundary-aware interpolation, a dense segmentation is computed (cf. Fig-
ure 4.5). Pixels labeled as moving are spread up to the boundaries of the object
within they are located. Because the segmentation is only a binary labeling,
no complex interpolation model is needed.

m(p) _ Zp’€Nmotion D (pap ) m(p )

(4.12)
ZpleNmotion D (p’ p,)

An unknown pixel is assigned with the weighted mean of its local neighborhood.
The weights are again based on the geodesic distances D between matches.
This interpolation method is similar to the Nadaraya-Watson estimator in
[RWHS15]. The interpolated motion field is then thresholded to obtain a dense,
binary motion segmentation. The quality of this segmentation is evaluated in
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Table 4.1.: A comparison between the dual- and multi-frame pipeline. The individ-
ual steps of both pipelines are contrasted. The differences are visualized
in Figure 4.6.

SFF SFF4+4
dual-frame multi-frame
Initialization kD-Trees Previous result
. . Three time steps
Bileieing Two time steps and visibility reasoning
Consistency . .
Check Fully inverse Left-right

Edge-preserving

Int lati Edge- i

nterpolation ge-preserving and tobust
Variational
Refinement ana 1ona. Not needed
and ego-motion

Section 4.3. Finally, the inverse estimated ego-motion is applied to all points
that are labeled as static to perform ego-motion refinement. Because pixels
that move out of view are mostly static, this approach is very effective.

4.2. Multi-frame Setup and Robust Interpolation

The experiments in Section 4.3 show that SFF, presented in the previous
section, yields competitive scene flow results, especially when the ego-motion
model is applied. However, there are two main problems with the presented
pipeline: 1.) Pixel-wise matching without regularization is error-prone under
some circumstances (saturation, lighting variations, homogeneous or repetitive
textures, etc.) and even impossible in occluded and other invisible image
regions (e.g. out-of-bounds motions, cf. Figure 4.8a). 2.) The accuracy of the
interpolation suffers from increasing gap sizes in the filtered scene flow field
and from remaining outliers after the consistency check. The ego-motion model
can compensate inaccurate interpolation to some extend, but not sufficiently.
The robust extension to multiple frame pairs in this section, addresses both
major issues.

The concept of choice to handle non-matchable regions is sparse-to-dense
interpolation. However, even though the consistency check removes outliers
reliably, the gaps can not be refilled correctly by the interpolation in some
scenarios. Therefore, the problem is tackled before it occurs by using image
information from multiple frames to avoid mismatches and resolve ambiguity
in non-matchable regions. This results in more accurate and better distributed
matches of higher density as shown in Section 4.3.1. Further, the concepts for
interpolation from RICFlow [HSL16] are transferred to the scene flow domain
to improve robustness during interpolation.

When using more than two stereo image pairs, a constant motion is assumed.
That means, the observed motion at both time steps (from ¢ -1 to ¢ and from
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kD-Tree Initialization Stereo Image Sequence
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Figure 4.6.: Overview of the dual- and multi-frame approach. A sequence of stereo
image pairs is the input to both methods. SFF (left) uses two frame
pairs, initializes on a sub-scale and applies multi-scale propagation
and random search for matching. The matched result is filtered in a
consistency check, interpolated and refined by variational optimization
and the optional ego-motion model. The final result is used to initialize
the multi-frame process SFF++ (right) which uses three frame pairs.
Matching is done with explicit visibility reasoning over all images.
The consistency check is adjusted to the multi-frame setup, and the
interpolation uses new concepts for increased robustness. Note that
there is no refinement necessary in the improved robust multi-frame
pipeline. Each step is illustrated by the corresponding optical flow and
one disparity map at the reference time of the respective scene flow
field. Table 4.1 summarizes the differences between the dual-frame
and multi-frame approach.
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Figure 4.7.: Previous scene flow result (a), temporally warped scene flow (b), and
the multi-frame initialization (c¢) (on full resolution for visualization
purposes).

t to t+1) is assumed to be the same. The error made by this assumption
converges towards zero for continuous motions with increasing frame rates.
The multi-frame approach is additionally designed to process video streams
in an online manner. That means that the first two frame pairs of a sequence
are processed with the dual-frame approach from Section 4.1. All subsequent
frames are then added in an incremental way and processed within a sliding
temporal window of three frame pairs. The additional information of the extra
images are exploited during matching in three ways. Firstly, the previous
results are used during initialization. Secondly, the previous scene flow is used
to predict the visibility of the scene. Lastly, the constant motion assumption
together with the visibility prediction are used to match scene flow across all
six relevant images.

The overall structure of the multi-frame approach remains the same as in
the dual-frame method but with two more images. Using a set of six input
images I = {I[l), Iy, I {, IT, 1 4 1, 1”1}, accurate matches are found, possible outliers
are removed, and the filtered scene flow is interpolated back to a dense scene
flow field. The overview of the multi-frame pipeline is shown in Figure 4.6. A
comparison between SFF and SFF++ is given in Table 4.1.

4.2.1. Multi-frame Matching

Initialization. Improved initialization is the first extension of the multi-frame
approach. The previous scene flow result and the assumption of constant
motion are used to propagate each 3D point according to its 3D motion to get
an initial prediction of the scene flow at the current time step [RGSY+19]. This
temporally propagated scene flow prediction is used as an additional choice
during the initialization process as described in Section 4.1.1. The process is
visualized in Figure 4.7. By not relying on the previous result alone, error
propagation is successfully avoided (cf. Figure 4.7).
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Matching Cost. As before, the matching process is based on the visual
similarity of corresponding pixels (cf. Equation 4.1). The correspondences
between the reference view and the additional images are added to the scene
flow matching cost from Equation 4.2 to obtain

Cruiti (P, 8) = C(I(l),p,I{,p + (u,v)T)

+C (16, p, 15, p + (~do,0)")

+C(Ihp, [P+ (u=di,v)") (4.13)
+C(I6,p I, p+ (ug,00)")

+C (I(l)v p, I, p+ (uy—dy, Ufl)T) .

All pixels of the image domain  are matched to all five other viewpoints to
derive corresponding pixel locations in the scene flow representation in 2D
(cf. Equation 4.13). For matching with the previous frame pair, inverse scene
flow (in image space) u_1, v_1, d_1 is computed by projecting the flow to 3D,
inverting it, and projecting it back to 2D, according to the constant motion
assumption. Note that u_; = —u if and only if dg = d;. The 2D optical flow is
not just inverted directly. The (pixel-wise) constant motion assumption allows
to match across multiple time steps without increasing the search space or
complexity of the scene flow domain.

Visibility Prediction. One additional major extension is the explicit visibility
reasoning. Since the energy is based on visual data only, it is impossible to
match regions, that are not visible in one of the images. Depending on the
magnitude of camera movement, the baseline, and other circumstances, these
non-matchable areas can become considerably large. Figure 4.8a shows an
invisibility mask for pixels whose imaged 3D point is not visible in at least
one of the views of Ij, I {, or I7. This gives an impression of the limitations
of dual-frame matching methods. However, Figure 4.8a also visualizes the
remaining invisibility when considering one additional time step. More than
two frame pairs can compensate for missing visual evidence when a pixel
correspondence that is invisible in one image can be observed in another.
Assuming to know which pixels are occluded or out-of-bounds of the image
domain in each view, the matching cost for a single image correspondence
(Equation 4.1) in Equation 4.13 can be replaced by

Oocc: if occ’ (p)
Boobs if oob’ "¢ Q

Clis (I, p,I',p’,occ, oob') = b 1 00 , (p) A p,¢ (4.14)
epenaltyv if oob (p) #p € Q

C(I,p,I',p'), else,

with occ’ and oob’ being binary occlusion and out-of-bounds masks that indicate
for each pixel p whether the corresponding point in view I’ is visible. For the
full multi-frame matching cost in Equation 4.13, two invisibility masks are
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(a) Invisibility Example. Reference image (left), invisibility mask in the dual-frame scenario
where no visibility handling is applied (middle), and remaining non-matchable areas

due to occlusions in the multi-frame scenario where visibility handling is applied
(right).

Left View

- Ri_ght Vie 7

t+1

(b) Visibility Prediction

Figure 4.8.: In the dual-frame case, occlusions can obscure large parts of the
image which remain mostly visible when using multiple frames (a).
The explicit visibility handling of the multi-frame matching strategy
predicts occluded and out-of-bounds regions (red) for all five images
that are matched to the reference frame I} (b).
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needed for each of the five corresponding images. The adjusted cost term uses
a constant invisibility cost 0, in case of occlusions to avoid trivial solutions
where all points would be occluded. Same holds for out-of-bounds motions,
with the additional option to assign a very large penalty cost Openairy if motion
under test is inconsistent with the out-of-bounds mask oob’. Otherwise, the
normal matching cost of Equation 4.1 is used. In practice, Oy = 0pop = 10000
is chosen based on empirical studies of the matching cost of ground truth scene
flow vectors and Openairy = 10° forces out-of-bounds motion to be consistent
with the prediction.

Because the algorithm is designed to process sequences sequentially, the
estimated scene flow of the previous time step can be used to predict the
visibility for all six images. To this end, temporally propagated scene flow
prediction is used to check which parts of the scene leave the image domain
Q) for a specific view. These areas are marked as invisible in the associated
out-of-bounds mask. It also allows to reason about occlusions by z-buffering,
since full 3D information including depth is available. If multiple motions
have the same target pixel in the target view, all but the closest are occluded.
Examples of the visibility prediction are given in Figure 4.8b. For each of the
five relevant frames, pixels of the reference frame that can not be observed
from the respective view are masked. All pixels of the reference frame are
visible by definition.

The impact of the multi-frame strategy combined with the explicit visibility
reasoning is shown in Section 4.3.1 by comparing to the basic dual-frame SFF
from Section 4.1 [SWKB+18].

Consistency Check. The next step of the pipeline is the consistency check to
remove possible outliers. As before, a consistency scene flow field is computed
and compared to the corresponding scene flow vectors. Due to the changed
setup to multiple frames from a stereo sequence, the way the consistency
field is computed needs to be changed. The temporal order of the images (cf.
Section 4.1.1) is not inverted anymore, only the stereo viewpoint is changed.
This leads to a left-right consistency check. Although a left-right check alone
is less reliable than the previous consistency check, this has an important
advantage. With inverted temporal order, scene flow correspondences according
to the optical flow can not be established where the motion leaves the image
boundaries. Thus, out-of-bounds regions are always filtered. This was no
issue in the dual-frame approach, but using multiple frames, matching in these
regions is actually possible. With the left-right consistency check, it is possible
to maintain the correct correspondences in out-of-bounds regions. Matching
for the consistency scene flow field is done exactly as before, using multiple
scales, visibility reasoning, etc. Afterwards, each scene flow estimate of the
reference frame is compared to its corresponding vector of the consistency
field component-wise. If any error exceeds 7. = 1 pixel, the whole scene flow
vector is removed. SFF did benefit from an additional consistency check for the
disparity only to obtain more matches for the interpolation of geometry. This
idea is reused to filter the dense multi-frame matches in a second independent
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consistency check with a disparity map computed with the algorithm from
[YMU14]. Afterwards, the additional matches and the results of the first full
consistency check are merged. The auxiliary stereo algorithm is changed from
SGM [Hir08] to SPS [YMU14] because it is faster, more accurate, and also able
to match occluded and other invisible regions. The merged correspondences are
very accurate and serve as input for the robust interpolation (cf. Figures 4.6
and 4.12).

4.2.2. Robust Interpolation

As in SFF, sparsification is applied because sparse-to-dense interpolation works
best if the input matches are not too dense already [BTS15; HSL16; SWKB+18].
The sparsification works as an additional outlier filter and increases the spatial
support for the same number of neighbors during interpolation.

The improved interpolation is robust against possible remaining outliers and
edge-preserving to create sharp motion boundaries at object edges. As in the
less robust approach, interpolation is separated for the 3D geometry and the
3D motion. Because of this separation, different sets of input seeds can be used
for each. Other than SFF in Section 4.1 [SWKB+18] where the interpolation
algorithm of [RWHS15] was transferred to the higher dimensional scene flow
problem, the extension adopts the robust concepts of RICFlow [HLS17] for the
scene flow problem. It is therefore coined as RIC3D.

In short, the reference frame is segmented into superpixels of size 25. Each
superpixel is associated with a local neighborhood of the 200 closest input
matches as shown in Figure 4.9. The distance is computed as a geodesic
distance based on an edge map. Additionally, each superpixel is initialized with
two scene flow models, one for the 3D geometry and one for the 3D motion.
Afterwards, the models for each superpixel are adjusted by propagation and
random search. Based on the final models, dense scene flow can be computed
for each pixel.

Interpolation Models. The geometric model is a slanted plane for each su-
perpixel. It is initialized with a constant depth, i.e. parallel to the image plane.
The motion model is a rigid transformation of 3D rotation and 3D translation
for each superpixel. This rigid model is less universal, but more robust com-
pared to the affine model in Section 4.1.2. Rigid motions are not presumed,
though. The approach is not limited to rigid motions. Due to the small size of
the superpixel segmentation, non-rigid motions can be approximated closely.
Same holds for the planarity. Arbitrarily curved surfaces are approximated by
very small plane segments. The superpixel motion is initialized with translation
only. For initialization, three different strategies have been tried: 1.) The basic
approach of [HLS17] in which the initial values are obtained from the closest
input seed. 2.) One using the local weighted medoid. 3.) One estimating
the weighted geometric median. Though the multivariate estimators are much
more accurate than the nearest neighbor method, the robust propagation with
random search can compensate for less accurate initialization. Independent of
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Figure 4.9.: Sparsified input matches for interpolation (a) and the edge-aware
neighborhood of seeds for the superpixel in white (b). Note that this
is the actual size of segments to which the interpolation models are
applied. The supporting seeds are colored according to their distance
to the superpixel.

the superpixel initialization, the final interpolation result is almost the same in
all cases. In practice, the robust geometric median is used, since it provides a
reasonable tradeoff between accuracy and run time.

Robust Model Estimation. To optimize the models for interpolation (plane
+ rigid transformation), a robust, stochastic approach in a RANSAC-like
fashion is applied. For each superpixel, random seeds from a local edge-aware
neighborhood are sampled and used to predict the models. Apart from random
sampling, propagation tests the estimated models at neighboring superpixels.
To determine the fitness of a model, a truncated error for all supporting input
seeds p of the local neighborhood N are summed

c(n=3 min(T,exp(-l-Dsp(p))-e(p)). (4.15)
peN o

In this formula, M is the respective model under test, 7 is the truncation error
threshold of 4 pixels, and € (p) is the re-projection error when applying model M
to input seed p which is weighted by a geodesic distance D, between the seed
p and the position of the respective superpixel with weight coefficient o = 0.6.
By minimizing the cost of all models for all superpixels using propagation
and random model generation, robust interpolation models for geometry and
motion are obtained. As before with the multi-frame matching, the novel
robust interpolation is compared directly to the previous interpolation method
for scene flow matches of Section 4.1.2 in Section 4.3.1.
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Figure 4.10.: Examples of boundaries from BSDS [MFTMO01] (a), KITTI [GLU12]
(b), and Sintel [BWSBI12] (c) used to train the universal edge detec-
tor.

Universal Boundary Detector. It is shown in Section 4.3.1 that the boundary
detector from Section 4.1.2, trained on semantic boundaries of KITTI, performs
much better than the original detector [DZ13] on that particular domain.
However, improved robustness requires reliability across multiple domains.
Thus, a third variant with the goal to perform equally well on several different
data sets is trained. Towards this end, a joint set of training images from the
200 images of the original BSDS data set [MFTMO1], semantic boundaries for
424 images of KITTI and for 100 images of Sintel are used. The semantics
for KITTI are the same as before. For Sintel, the sequences cave_2 and
sleeping_1 of the clean rendering pass are used, which are excluded during
evaluation. Semantics are created by merging the provided mesh and material
segmentation, e.g. all segments belonging to the dragon are labeled with the
same ID. Examples of ground truth boundaries for each of the data sets are
given in Figure 4.10. By combining these three sets, a total of 724 images for
training are obtained. The combined edge model is much more versatile and
applicable to different data sets. Examples of the detected edges are visualized
in Figures 4.9, 4.11 and 4.15. Textures and shadows are suppressed, while at
the same time, object boundaries are detected accurately.

For optional refinement of the dense 3D motion field, variational optimization
of Section 4.1.3 and the ego-motion model of Section 4.1.4 are considered.
However, the improvements in matching and interpolation make both refinement
steps obsolete as as it is shown in Section 4.3.1.
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(d) Results from the unified boundary detector (mized).

Figure 4.11.: Whereas SED [DZ13] (b) detects all image gradients, the KITTI
boundary detector (c) suppresses lane markings and shadows. The
unified detector of Section 4.2.2 (d), achieves a good tradeoff between
the advantages of (c¢) and generalization abilities across different

domains.
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4.3. Evaluation and Results

The dual-frame approach (Section 4.1) and the multi-frame method (Section 4.2)
are both evaluated and compared to previous work in this section. The detailed
analysis consists of various experiments. First, individual components are
evaluated in an extensive ablation study. Second, the approaches are compared
to (former) state-of-the-art on two diverse data sets. Finally, limitations of the
sparse-to-dense methods are disclosed which further motivate the next chapters
of this thesis.

Evaluation Setup. For all experiments, the explicit values of the previous
sections and the following parameters are used, even across different data sets.
For k = 3 subscales and full resolution, 12 iterations of propagation and random
search are traversed. The consistency threshold 7. is set to 1 and a minimal
region size of s, = 150 for the region filter is used. During interpolation, the
geometry and motion neighborhoods consist of 160 and 80 seeds respectively
and the Gaussian kernel uses o = 2.2 to weight the geodesic distances. For
the variational energy minimization, the parameters are set to k =5, v =0.77,
A =10 and € = 0.001. The optimization framework runs through two outer and
one inner iteration with 30 iterations for the SOR solver using a relaxation
factor of w =1.9. The binary motion segmentation is obtained by thresholding
the interpolated motion field with 7,, = 0.4 when applying the ego-motion
model. All these parameters are found by performing a grid search.

4.3.1. Ablation Studies

The component-wise evaluation includes experiments on the following compo-

nents:

e The individual steps of the sparse-to-dense pipeline, i.e. matching, filtering,
and interpolation.

» The two kinds of proposed boundary detectors, i.e. trained on the semantics
of KITTT and a unified model trained on a mixture of data sets.

» The (optional) post-processing steps, i.e. variational optimization, the ego-
motion model, and the quality of the motion segmentation.

Sparse-to-Dense Pipeline. The modularity allows to replace or leave out
various parts of the pipeline. This way, it is easy to evaluate the effect of each
component separately. This is done in Table 4.2 by evaluating the results of
all 200 training images of the KITTI data set [MG15] for several variants of
the method. In particular, the number of frames for the matching are varied
between dual and multi. The interpolation mechanism is also altered from the
original one presented in Section 4.1.2 (epic3d) to the robust version presented
within Section 4.2.2 (ric3d). Further, the impact of the training data for
the boundary detector is evaluated. The original version is trained on BSDS
[MFTMO1] (bsds). In Section 4.1.2, a specialized version optimized for the
KITTI data set is presented (kitti). Also, results for the universal boundary
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Figure 4.12.: Visual Comparison of SFF and the improved SFF++. Optical flow,
disparity at t + 1 and scene flow error maps are shown for matching,
filtering, and dense interpolation.

detector (cf. Section 4.2.2) trained on a mix of data from BSDS, KITTI, and
Sintel [BWSB12] are given (mized). Finally, the variational refinement (var)
and the ego-motion optimization (ego) are successively added for different
combinations of the previous components.

The dedicated KITTI boundary detector outperforms the original version
that was trained on BSDS only. The universal boundary detector that was
trained on mixed data performs almost equally well on KITTI and much better
on other data sets like Sintel (cf. Section 4.3.3. Further, the novel, more robust
interpolation improves the accuracy of the scene flow result greatly, making
the ego-motion model and even the variational refinement in almost all cases
obsolete. Multi-frame matching improves the results even more. Next, the
impact of the multi-frame setup is analyzed in more detail.

For a visual comparison of the robust multi-frame approach SFF-++
[SWUK+20] (Section 4.2) to SFF [SWKB+18] (Section 4.1), optical flow and
disparity at the next time step are visualized in Figure 4.12 along with a scene
flow error map for full matching, filtered matches, and dense interpolation.
The error maps give correct estimates in green and outliers in blue to red
according to the KITTI metric. The multi-frame approach with explicit
visibility reasoning is able to match occluded areas (e.g. next to the tree and
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Table 4.2.: Results of the scene flow estimation pipeline for different combinations
of matching and interpolation settings, before and after variational opti-
mization and ego-motion refinement. The focus here is on the comparison
between dual- and multi-frame matching and on the improvement by
robust interpolation.

Match Interp. Edges Var Ego || SF-bg | SF-fg | SF-all

dual  epic3d  bsds 26.93 | 32.16 | 27.73
dual  epic3d  bsds 26.14 | 30.71 | 26.84
dual  epic3d  bsds 13.39 | 30.92 | 16.07

dual  epic3d  kitti 25.60 | 28.99 | 26.12
dual  epic3d  kitti 24.78 | 27.37 | 25.18
(SFF) dual  epic3d  kitti 12.04 | 28.31 | 14.53

dual ric3d kitti 12.10 | 22.86 13.74
dual ric3d kitti 12.11 22.96 13.77
dual ric3d kitti 11.57 | 23.46 13.40

multi  ric3d kitti 10.75 19.37 | 12.07
multi  ric3d kitti 11.26 19.60 12.54
multi  ric3d kitti 11.27 | 20.11 12.62

(SFF++) multi ric3d  mixed 10.93 | 19.67 | 12.27
multi ric3dd  mixed 11.42 20.12 12.75
multi ric3d  mixed 11.29 20.62 12.72

NS X S X NSNS X (NSNS X (NN X%
WX X N X XN X XN X XN X X

traffic signs) and out-of-bounds regions (e.g. the front of the car) that are both
not visible in some of the relevant frames (cf. Figure 4.8b). In addition, the
robust interpolation can handle regions with almost no input seeds reliably
(e.g. the lower left part of the image). Table 4.4 compares the same in terms of
average end-point error and average outliers on all KITTT training sequences
for all ground truth pixels (KITTI occ data) and occluded regions only (occ
without noc). The novel method is already very accurate during matching
with a much smaller average end-point error compared to SFF. Unlike SFF,
the multi-frame approach is able to match almost 40 % of the invisible areas.
Though overall filtered results after the consistency check appear to be worse,
the multi-frame approach SFF++ is able to retain 9.8 % of the matches in
occluded areas where SFF filters almost everything. That makes the spatial
distribution of the multi-frame matches preferable over that of the dual-frame
approach (cf. Figure 4.12). Because of this and due to the robust interpolation,
final results are much better with only about one third of the scene flow
outliers in occluded areas and less than half the percentage of overall outliers.

The direct comparison in these experiments shows that the multi-frame
matching strategy with explicit visibility reasoning and robust interpolation is
superior to the previous variant of SFF [SWKB+18] (Section 4.1). Even with
the significant boost of the optional ego-motion model of SFF (Section 4.1.4),
the method without this model outperforms the dual-frame version on both
evaluated data sets (see Sections 4.3.2 and 4.3.3).

Additionally, the accuracy and densities for the two-stage consistency check
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of SFF with respect to the KITTI ground truth are presented in the last
two rows of Table 4.3 for the sparse scene flow matches (matches) and the
separately filtered sparse stereo correspondences (disparity). This validates the
much higher density when filtering disparity separately while maintaining the
accuracy.

Boundary Detection. The impact of the two proposed boundary detectors
are evaluated by running SFF and SFF+4+ twice using different boundary
models. First, SFF is evaluated using the standard edge detection as in [DZ13]
(bsds) and using the structured random forest trained on semantic edges of the
KITTI data set (kitti). All variants using improved edge detection outperform
their according variant using basic image edges. The major improvements are
visualized in Figure 4.4. High image gradients at lane markings or shadows
(especially shadows of vehicles) are effectively suppressed when using the
semantic boundary detector, while at the same time it accurately detects all
kinds of objects. This helps greatly to smoothly recover the street surface during
interpolation, to sharpen discontinuities in depth and motion in general, and it
allows for accurate boundaries when interpolating the motion segmentation.
Second, results for SFF++ are presented using the kitti model and the unified
boundary detector which is trained on a mixture of data (mized). A minor
degradation of the results can be observed when switching from the kitti
model to the universal detector (mized). However, the mized model performs
equally well on diverse data sets (cf. Figure 4.11d). All results are presented in
Tables 4.2 and 4.3.

Post-Processing. A similar study for dense refinement strategies is evaluated
in Tables 4.2 and 4.3. In Table 4.3, SFF is evaluated without the variational
optimization (no var), the full dual-frame approach (full) and with the optional
ego-motion extension (full+ego). The variational optimization is primarily
useful for optical flow and foreground regions. Table 4.2 validates that both
types of post-processing are not needed within the multi-frame setup of SFF++
anymore. In fact, the results are slightly worse.

Motion Segmentation. Finally, the provided object maps of KITTI are used
to test the performance of the motion segmentation (cf. Figure 4.5). To this
end, precision and recall for the binary segmentation are computed. Precision
is defined as the percentage of estimated pixels that are correctly labeled as
moving. The recall is the relative amount of ground truth pixels that are
labeled as moving and covered by the estimation. Over all frames, a precision
of about 28 % and a recall of about 83 % are achieved. Most of the missed
ground truth foreground pixels belong to objects which are far away and moving
parallel to the direction of viewing. Therefore, the re-projection error of the
3D-2D correspondences during ego-motion estimation drops easily below the
threshold. Two remarks have to be considered regarding the precision. Firstly,
KITTI only annotates cars that are mostly visible, i.e. pedestrians, cyclists,
other vehicles, or partly occluded cars are not included in the ground truth, but
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Table 4.3.: Evaluation after different steps of the post-processing of SFF on KITTI [MG15] training data. The new edge detector outperforms
SED [DZ13]. The ego-motion model helps greatly to improve overall results. The bottom two rows show the amount of outliers
in the sparse correspondences after the consistency check and before the interpolation. The density is computed with respect to

available ground truth pixels in KITTI

Variant | D1-bg | D1-fg | D1-all | D2-bg | D2-fg | D2-all | Fl-bg | Fl-fg | Fl-all | SF-bg | SF-fg | SF-all | Density | Edges
full+-ego | 5.36 | 10.85 | 6.20 7.94 18.23 9.51 | 10.36 | 22.85 | 12.28 | 12.04 | 28.31 | 14.53 | 100.00 % -
full 5.36 | 10.85 | 6.20 15.91 | 18.03 | 16.23 | 22.33 | 21.69 | 22.23 | 24.78 | 27.37 | 25.18 | 100.00 % E
no var 5.36 | 10.85 | 6.20 15.77 | 18.81 16.24 | 23.75 | 23.72 | 23.75 | 25.60 | 28.99 | 26.12 | 100.00 %
full+ego 5.48 11.99 6.47 9.07 19.98 | 10.74 | 11.63 | 25.47 | 13.75 | 13.39 | 30.92 | 16.07 | 100.00 % -
full 5.48 11.99 6.47 16.90 | 20.80 | 17.50 | 23.57 | 25.22 | 23.82 | 26.14 | 30.71 | 26.84 | 100.00 % E
no var 5.48 11.99 6.47 16.73 | 21.38 | 17.44 | 25.00 | 27.04 | 25.32 | 26.93 | 32.16 | 27.73 | 100.00 %
matches 1.91 3.74 2.18 2.48 4.08 2.7 2.10 2.78 2.20 3.87 6.24 4.21 38.82 % -
disparity | 1.42 4.06 1.82 - - - - - - - - - 57.81 % -

Table 4.4.: Comparison of intermediate results for SFF and the robust multi-frame extension SFF++ on the KITTI training data.

All pizels H Occluded pizels only
EPE [px] Outliers [%)] Density [%] Outliers [%)] EPE [px]

D1| D2 | Fl || D1 | D2 | F1 | SF SF D1 | D2 | FI | SF | D1 | D2 | FI

Matelin SFF 7.2 1 11.3 389 | 12.6 | 29.2 | 32.8 | 39.8 || 100.0 || 100.0 || 22.1 | 92.1 | 95.5 | 99.5 || 34.3 | 50.1 | 195.7
avchne  qppy 4 |27 4.3 | 9.2 || 11.4 | 20.9 | 23.7 | 31.8 || 100.0 || 100.0 || 14.9 | 39.8 | 55.3 | 62.1 || 5.3 | 7.5 | 25.9
Piltered SFF 0809|111 22| 27 | 22|42 | 388 03 [ 195]| 70| 752|790 46 |13.3]| 79.9
Here SFF++ | 09| 11| 16 || 26 | 47 | 53 | 80 | 41.6 || 9.8 || 2.5 | 12.9|23.0[26.2| 1.1 | 2.4 | 9.3
tternolated SFF 1.2 37 [ 161 ]| 62 | 162 | 238 | 26.1 || 100.0 || 100.0 || 9.9 | 43.6 | 62.4 | 642 || 2.0 | 11.4 | 86.1
nerp SFF++ 1.2 | 1.9 | 47 || 5.2 | 88 | 9.7 | 12.7 | 100.0 || 100.0 | 7.1 | 16.0 | 22.7 | 24.8 || 1.7 | 3.3 | 15.3
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are marked as moving by SFF if they are in motion. Secondly, since areas that
are wrongly classified as dynamic are filled with the basic scene flow estimate,
which is still of high quality, the overall approach is tuned in favor of a high
recall.

4.3.2. KITTI Scene Flow Benchmark

The famous KITTI data set [MG15] is used for the first part of the comparison
to state-of-the-art in the actual application scenario. This benchmark does
not provide reference motions for vulnerable road users like pedestrians or
cyclists. The only dynamic objects are rigidly moving vehicles. Results of public
submissions to the the KITTI scene flow benchmark [MG15] are presented
in Table 4.5 and compared to state-of-the-art. The benchmark evaluates the
average amount of outliers for disparity at both time steps (D1, D2), optical
flow (FI), and scene flow (SF) as explained in Section 2.3.2. Each category is
further divided into regions of background (bg, static areas), foreground (fg,
moving objects), and both (all, all available ground truth).

At the time of publication, SFF was ranked 6" and achieved the 3™ best
result out of all dual-frame methods while at the same time being considerably
faster than the top performing methods (cf. Table 4.5). Section 4.3.3 validates
that SFF generalizes better to other data sets, where it often outperforms
the former best dual-frame method Object Scene Flow (OSF) [MG15]. In
Figure 4.13, a visual example of the results are given and compared to two better
performing methods from the dual-frame [MG15] and multi-frame [VSR15]
categories. It can be seen that the interpolation produces very sharp edges. This
in combination with the matching method helps to obtain accurate scene flow,
especially for (moving) objects. Methods with comparable overall performance
on KITTI [LBAL+16; TSS17], perform worse on moving foreground objects
than SFF.

As assumed, the robust multi-frame extension scores better than the dual-
frame version. Especially for the important foreground regions, the results
are even comparable to the deep learning approach of [RSKS17] which uses
semantic segmentation and to that of [MG15] which explicitly estimates a
single rigid motion for independent objects. In addition, the sparse-to-dense
concept is at least three times faster than the better performing algorithms.

While investigating the discrepancy between the results on the validation
data (Table 4.4) and on the test data (Table 4.5), it has been discovered that
the multi-frame approach has difficulties when the constant motion assumption
is harshly violated (cf. Section 4.4.1). This can happen in KITTI due to the
low frame rate of 10 frames per second and because of strong sudden pitch or
roll rotations on bumpy streets, e.g. the last example in Figure 4.14. However,
in most cases the assumption holds and produces robust and accurate results.

Another visual impression is given in Figure 4.14 by the error maps for
different examples of the KITTT test data for PRSM, OSF+TC, FSF+MS, SFF,
and the extension SFF++. Even for the partly occluded, poorly illuminated
vehicle in the second example, scene flow can be estimated reliably by SFF++.
In this example also, scene flow at the occluded areas around the left traffic light
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PRSM [VSR15] — OSF [MG15] - SFF [SWKB+18] —
multl frame dual frame dual frame

Figure 4.13.: Exemplary visual comparison on KITTI scene flow benchmark
[MG15]. Disparity (a) and optical flow (c) results along with the
corresponding error maps (b) and (d) are shown for PRSM [VSR15],
OSF [MG15] and SceneFlowFields (SFF). Moving objects are reliably
detected and sharp boundaries are reconstructed precisely. More
examples are visualized on the public homepage of KITTI.
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(f) SFF++
EPE |EEENGEsE0Ea) 038-0.75 075-1.50 150-3.00 3.00-6.00 6.00-12.00 [12:00-24.00 ZA00RAG00SRInE

Figure 4.14.: Comparison of the scene flow error on the public KITTI scene
flow benchmark [MG15] for Piece-wise Rigid Scene Model (PRSM)
[VSR15], OSF+TC [MHG18], FSF+MS [TSS17], and the methods
presented in this chapter, SFF [SWKB+18] and SEF++ [SWUK+20].
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Table 4.5.: Results on the KITTI scene flow benchmark [MG15]. The column multi indicates whether only two frame pairs are used by this
method. Run times in parentheses are obtained on a GPU. SFF achieved the third best result among all dual-frame methods at time
of publication and yields especially good results at foreground regions (SF-fg).

D1 D2 F1 SF
Method Year | multi || bg fg all bg fg all bg fg all bg fg all Run time
ISF [BIMA+17] 2017 412 | 6.17 | 4.46 || 4.88 | 11.34 | 5.95 | 5.40 | 10.29 | 6.22 || 6.58 | 15.63 | 8.08 600 s
PRSM [VSR15] 2015 yes 3.02 | 10.52 | 4.27 || 5.13 | 15.11 | 6.79 5.33 | 13.40 | 6.68 6.61 | 20.79 | 8.97 300 s
OSF+TC [NS17] 2017 yes 411 | 9.64 | 5.03 || 5.18 | 15.12 | 6.84 5.76 | 13.31 | 7.02 7.08 | 20.03 | 9.23 3000 s
OSF18 [MHG18] 2018 4.11 | 11.12 | 5.28 || 5.01 | 17.28 | 7.06 5.38 | 17.61 | 7.41 6.68 | 24.59 | 9.66 390 s
SSF [RSKS17] 2017 3.55 | 875 | 442 || 494 | 17.48 | 7.02 5.63 | 14.71 | 7.14 || 7.18 | 24.58 | 10.07 300 s
OSF [MG15] 2015 4.54 | 12.03 | 5.79 || 545 | 1941 | 7.77 || 5.62 | 18.92 | 7.83 7.01 | 26.34 | 10.23 3000 s
SFF++ [SWUK+20] 2020 yes 4.27 | 12.38 5.62 || 7.31 | 18.12 | 9.11 || 10.63 | 17.48 | 11.77 || 12.44 25.33 14.59 78 s
FSF+MS [TSS17] 2017 yes 5.72 | 11.84 | 6.74 7.57 | 21.28 | 9.85 8.48 | 25.43 | 11.30 || 11.17 | 33.91 | 14.96 2.7 s
CSF [LBAL+16] 2016 4.57 | 13.04 | 598 || 7.92 | 20.76 | 10.06 || 10.40 | 25.78 | 12.96 || 12.21 | 33.21 | 15.71 80 s
SFF [SWKB+18] 2018 5.12 | 13.83 6.57 || 8.47 | 21.83 | 10.69 || 10.58 | 24.41 | 12.88 || 12.48 32.28 15.78 65 s
PRSF [VSR13] 2013 4.74 | 13.74 | 6.24 || 11.14 | 20.47 | 12.69 || 11.73 | 24.33 | 13.83 || 13.49 | 31.22 | 16.44 150 s
SGM+SF [HFR14; Hir08] - 5.15 | 15.29 | 6.84 | 14.10 | 23.13 | 15.60 || 20.91 | 25.50 | 21.67 || 23.09 | 34.46 | 24.98 2700 s
PCOF-LDOF [DPSL16] | 2016 6.31 | 19.24 | 8.46 || 19.09 | 30.54 | 20.99 || 14.34 | 38.32 | 18.33 || 25.26 | 49.39 | 29.27 50 s
PCOF+ACTF [DPSL16] | 2016 6.31 | 19.24 | 8.46 || 19.15 | 36.27 | 22.00 || 14.89 | 60.15 | 22.43 || 25.77 | 67.75 | 32.76 (0.08 s)
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is predicted correctly with sharp boundaries around the traffic sign. Within
the third example, larger parts of the background exceed the error threshold
slightly due to the violated constant motion assumption. However, dynamic
objects are still detected more reliably than in most other approaches.

4.3.3. MPI Sintel

One claim in this thesis is that the sparse-to-dense concept is very versatile and
not restricted to a specific setup. Therefore, SFF and SFF++ are additionally
evaluated on MPT Sintel [BWSB12]. Sintel has a lot of contrary properties to
KITTI. Most prominently, MPI Sintel consists of non-realistic, synthetically
rendered images. Further, images are captured from a totally different domain
and have therefore different characteristics. Sintel contains small as well as
very large motion displacements of deformable, articulated characters. Thus,
many of the included motions are non-rigid and the geometries are less often
planar, compared to KITTT. It is important to understand, that the parameters
for the experiments on Sintel are the same as for KITTI, the edge detector
for SFF being the only exception. On Sintel, for the dual-frame method SFF,
the original bsds detector [DZ13] is used. For SFF++, the set of parameters
is identical on both data sets. Both, the basic approach and the ego-motion
extension (+ego), are tested for SFF. For all but two training sequences, every
frame with a subsequent frame is processed. The final rendering pass for all
images is used. Outlier rates as defined by the KITTI metric for disparity
D1-all and optical flow Fl-all are measured. The change in disparity, i.e. the
disparity at the future time step, is not available in the Sintel data set and is
therefore not evaluated. The sequences cave_2 and sleeping_1 are left out in
all experiments because they have not been evaluated in FSF [TSS17] due to
varying camera parameters. The relative amount of outliers over all evaluated
sequences is given in Table 4.6 and is compared to [MG15; TSS17; VSR15]
using the results published by [T'SS17].

The sparse-to-dense concept can keep up with state-of-the-art scene flow
methods, although parameters have not been tuned for MPI Sintel. For
sequences with close-up, non-rigid motion, e.g. ambush_7 or bandage_1, the
estimated depth even beats the multi-frame scene flow method that is ranked
first on KITTI (PRSM). The contradicting properties of Sintel and KITTI are
also reflected in the results for some approaches. OSF [MG15], that is strongly
relying on the piece-wise rigid plane model, performs considerably worse than
on KITTI. Same is assumed for methods that rely on specialized deep neural
networks, e.g. [BJMA+17; RSKS17].

SFF++ outperforms the less robust dual-frame version SFF, again high-
lighting the improvements. It even achieves the best accuracy for disparity by
quite a margin to the next best method FSF [TSS17] and the best performing
method on KITTI, PRSM [VSR15]. By that, the sparse-to-dense concept joins
the few approaches with top performance on both data sets next to PRSM
[VSR15], and FSF [TSS17].

Figure 4.15 shows exemplary results of SFF++ for one frame of the sequences
alley_2 and ambush_5. The latter can be considered particularly challenging
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Table 4.6.: Results on MPI Sintel [BWSB12]. Average outliers for disparity and
optical flow on each sequence separately and averaged over all sequences
are given. The first row indicates whether a specialized set of parameters
is used in the evaluation.

Disparity Optical Flow
Sequence | PRSM | OSF FSF SFF | SFF++ || PRSM | OSF FSF SFF —&S-ng;J SFF++
Tuned yes yes yes (ves) no yes yes yes yes (yves) no
Average 15.99 | 19.84 | 15.35 | 18.15 13.60 13.70 | 28.16 | 18.32 | 29.24 22.20 18.47
alley 1 7.43 5.28 5.92 8.81 3.98 1.58 7.33 2.11 5.94 3.95 2.11
alley_2 0.79 1.31 2.08 1.73 1.27 1.08 1.44 1.20 2.85 0.87 1.01

ambush_2 41.77 | 55.13 | 36.93 | 51.72 | 31.56 51.33 | 87.37 | 72.68 | 90.92 | 83.84 76.00
ambush_4 24.09 | 24.05 | 23.30 | 37.78 | 22.25 41.99 | 49.16 | 45.23 | 60.03 | 42.65 61.88
ambush_5 1772 | 19.54 | 18.54 | 25.52 | 13.48 25.23 | 44.70 | 24.82 | 46.92 | 29.86 32.96
ambush_6 29.41 | 26.18 | 30.33 | 37.13 | 23.17 41.98 | 54.75 | 44.05 | 57.06 | 47.65 59.26

ambush_7 35.07 | 71.58 | 23.47 | 16.34 | 24.62 3.35 | 22.47 | 27.87 | 13.66 7.35 9.99
bamboo_1 7.34 9.71 9.67 | 14.53 10.80 2.41 4.04 4.11 6.11 4.15 3.44
bamboo_2 17.06 | 18.08 | 19.27 | 19.89 18.90 3.58 4.86 3.65 5.84 3.97 3.57
bandage_1 21.22 | 19.37 | 20.93 | 16.42 17.46 3.30 | 18.40 | 4.00 3.82 4.03 4.10
bandage_2 22.44 | 23.53 | 22.69 | 21.77 | 16.80 4.06 | 13.12 | 4.76 | 10.72 9.06 4.56

cave_4 4.27 5.86 6.22 6.20 4.93 16.32 | 33.94 | 14.62 | 15.63 | 12.95 18.16
market_2 5.27 6.61 6.81 6.71 6.26 4.77 | 10.08 | 5.17 7.11 6.09 5.51

market_5 15.38 | 13.67 | 13.25 | 26.66 14.13 28.38 | 29.58 | 26.31 | 40.77 | 28.87 32.56
market_6 8.99 | 10.29 | 10.63 | 14.53 10.18 10.72 | 16.39 | 13.13 | 28.92 | 16.69 13.91
mountain_1 0.42 0.78 0.23 0.15 0.02 3.71 | 88.60 | 17.05 | 90.60 | 89.57 10.84
shaman_2 25.49 | 28.27 | 24.77 | 21.13 | 23.94 0.46 1.67 0.56 8.85 4.31 1.80
shaman_3 33.92 | 52.22 | 27.09 | 35.37 29.02 1.75 | 1145 | 1.31 | 1591 8.51 5.53
sleeping_2 1.74 2.97 3.52 3.07 2.24 0.00 0.01 0.02 0.61 0.03 0.00
temple_2 4.92 5.54 5.96 6.98 4.95 9.51 | 10.52 | 9.66 | 29.58 | 12.57 12.05
temple_3 11.04 | 16.62 | 10.65 | 8.61 5.76 32.10 | 81.39 | 62.34 | 72.28 | 49.18 28.64
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Figure 4.15.: Exemplary results of SFF++ on the Sintel data set [BWSBI12].
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(cf. Table 4.6). Figure 4.15 also demonstrates that a bit of accuracy is traded
in for increased robustness. Small details, e.g. the arm of the girl, are lost
during interpolation.

4.4. Summary

Within this chapter, the sparse-to-dense concept is successfully applied for the
problem of scene flow estimation in automotive driving scenarios. Dense match-
ing across multiple images followed by a consistency check for filtering is used to
obtain highly accurate, sparse matches. Different models for interpolation are
tested, the more continuous variant (EPIC3D) and the more robust, patch-wise
interpolation (RIC3D). Both follow the same principle to split the densification
into interpolation of geometry, followed by interpolation of 3D motion. An
important aspect during interpolation is the preservation of discontinuities,
which is obtained by adhering to (partially semantic) image boundaries that
serve as a reliable proxy for geometric and motion boundaries. The initially
required refinement steps (optimization and ego-motion estimation) become
unnecessary when the more robust interpolation and multi-frame matching
with visibility reasoning is applied. In all cases, competitive accuracy with
increased run time and better generalization is achieved.

4.4.1. Limitations

Despite all efforts, it is not possible to avoid any assumption during estimation
of scene flow due to the ill-posedness of the problem. However, the sparse-to-
dense approaches are designed with as little restrictions as possible. The initial
matching is purely data-based and requires no assumptions on smoothness at
all. The later imposed regularization during interpolation makes use of the
piece-wise rigid plane model but applies it to an extreme over-segmentation
of the scene into tiny superpixels of 25 pixels to reduce the negative effects
greatly. Further, to make use of additional image information from multiple
time steps, SFF++ assumes a constant motion within a temporal window of
three stereo frames. Hence, SFF++ is subject to a set of mostly theoretical
limitations that are described here.

As discussed several times, SFF++ remains unaffected by the drawbacks
of a piece-wise rigid, planar motion assumption even though this model is
used during interpolation. The reason is the size of the superpixel segments.
An impression of the size of the superpixels is give in Figure 4.9. During all
experiments, it was never observed that the superpixels are the limiting factor
in the estimation of non-planar surfaces or non-rigid motions. However in
theory, the small superpixels still introduce a small error.

Another hypothetical failure case arises from the complete separation of
matching and regularization. If unregularized matching leads to the removal
of entire image regions during the consistency check, the later imposed regular-
ization of the interpolation can not recover the content of these regions. This
phenomenon was regularly observed for the dual-frame approach, e.g. when
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highly dynamic objects leave the image domain. At the same time, these cases
were one of the motivations for the shift to multiple frames. In the multi-frame
scenario, it is much less likely that matching fails consistently for entire regions.
This is also supported by the study of visible areas in Figure 4.8a.

Lastly, the constant motion assumption is the only assumption-based limi-
tation that causes practical impact on the performance of SFF++. For the
KITTI data, some degradation of the estimated scene flow is noticed due to
the violation of this assumption. One of these examples is shown in the right
column of Figure 4.14. Anyway, this problem was encountered rarely, mostly
in the presence of potholes or crossing rails that lead to an unexpectedly high
rotational acceleration which is amplified by the limited frame rate of KITTI.

4.4.2. Next Steps

For immediate improvement of the sparse-to-dense concept, the recent advances
in deep learning motivate to replace parts of the pipeline by dedicated neural
networks. Therefore, the next chapter follows this direction for two specific
parts.
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René Schuster, Oliver Wasenmiiller, Christian Unger, and Didier Stricker. “SSGP: Sparse
Spatial Guided Propagation for Robust and Generic Interpolation.” In: Winter Conference
on Applications of Computer Vision (WACYV). 2021.

The modularity of the sparse-to-dense concept allows to replace parts of the
pipeline individually. This has been done in the previous experiments, e.g. by
replacing the matching cost, or by interchanging the interpolation algorithm.
In continuation of this, more components are replaced to further improve the
method and to eliminate remaining limitations. In more detail, advances in
deep machine learning are employed to learn a better feature representation of
pixels from data, and to unify the problem of sparse-to-dense interpolation.

One very important aspect here is that imagery with scene flow annotations
is very scarce. Apart from the data sets discussed in Section 2.3.1, no labeled
data exists. Furthermore, FlyingThings3D (FT3D) is a non-realistic, synthetic
data set from a domain which differs a lot from the target application. This
leaves a total amount of 200 realistic sequences with annotations for scene
flow. Therefore, training a network to directly solve the scene flow problem
for the application domain is infeasible. Instead, encapsulated components
are replaced by data-driven modules which allows to train these dedicated
networks with more and more diverse data. Apart from solving the issue of
lacking data, another major advantage is that the generalization is improved
by using multi-domain data, working towards the goal of robustness.

5.1. Deep Pixel Representations for Dense Matching

Scene flow estimation is ultimately a dense matching problem. Robust dense
matching of pixel positions under unconstrained conditions typically is a very
challenging task for several reasons. Perspective deformations, changing lighting
conditions, sensor noise, occlusions, and other effects can change the appearance
of corresponding image points drastically. Thus, heuristic descriptors (e.g.
SIFT [Low99] or CENSUS [ZW94]) can produce very dissimilar descriptors for
corresponding image points. A key factor to overcome these issues is the size
of context information that is considered by a descriptor. However, increasing
the patch size introduces spatial invariance for state-of-the-art descriptors,
which results in less accurate matching. Recently, deep neural networks have
been shown to produce more robust and expressive features [BVS17; TFW+17;
ZL15]. These networks rely on best practice design decisions from other
domains, which results in the use of pooling or other striding layers. Such
architectures typically achieve a medium sized receptive field only and reduce
the spatial resolution of the resulting feature descriptor. Both properties lower
the accuracy for the matching task.

To overcome all these limitations, a deep neural network with a large receptive
field is proposed that utilizes a novel architecture block to compute highly
robust, accurate, dense, and discriminative descriptors for images. Towards this
end, dilated convolutions are stacked in parallel. The design follows two key
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observations. Firstly, image patches with low entropy lead to poor descriptors
and thus to incorrect matching. This fact strengthens the common belief that
a robust descriptor should have a large receptive field to incorporate context
knowledge for pixels under difficult visual conditions. Secondly, accurate
matching requires a high spatial precision which is lost when striding layers,
producing coarse, high-level features for deeper layers of the feature network,
are applied. The proposed architecture block provides a large receptive field
with only few trainable parameters while maintaining full spatial resolution.
This leads to the following overall contributions:

« Stacking multiple, parallel dilated convolutions (SDC) to create a novel
neural network block, which is beneficial for any dense, pixel-wise prediction
task that requires high spatial accuracy.

e Combining these blocks into a fully convolutional architecture with a large
receptive field that can be used for feature description.

* Vast sets of experiments to justify the design decisions, to compare to
other descriptors, and to demonstrate the accuracy and robustness for scene
flow, optical flow, and stereo matching on the well known public data sets
KITTI [MG15], MPI Sintel [BWSB12], Middlebury [BSLR+11; SS02], HD1K
[KNHK+16], and ETH3D [SSGS+17] with the unified network.

5.1.1. Feature Description in the Literature

A feature descriptor is a vector that represents the characteristics of the
associated object in a compact, distinctive manner. It is not to be confused
with an interest point (or key point, sometimes feature point) which identifies
locations where a feature descriptor would be rather unique. In the context of
dense matching, feature descriptors on pixel-level are required. Since single
pixels carry only very little information, usually a region around each pixel is
considered for the description.

Conventional descriptors are often based on image gradients to make them
invariant to changes in lighting. A very common descriptor — SIFT [Low99]
— computes histograms of gradients in regular grids around the center pixel.
Using a multi-scale search and the major orientation of the gradients makes
SIFT robust to changes in scale and rotation. However, SIFT is not designed to
describe all pixels of an image in a dense manner. The full description is rather
slow and sensitive to deformations, occlusions, and motions. Robustness is also
a problem for faster hand-crafted feature extractors like SURF [BTV06] and
DAISY [TLF10]. Binary descriptors (e.g. BRIEF [CLSF10], ORB [RRKB11],
or CENSUS [ZW94]) are even faster since they are more compact. At the same
time, they are less expressive and less distinctive.

To improve robustness, many approaches apply deep learning for feature
extraction on patch-level. In [HLJS+15; ZK15], features are learned jointly with
a decision metric to distinguish corresponding and non-matching image patches
with a siamese architecture [CHLO5]. For the same reason as L2Net [TFW+17],
the proposed architecture does not include a decision network because the
features are supposed to be used within any pipeline. The architecture of
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Figure 5.1.: The architecture of a single SDC layer. The contribution is the com-
bination of parallel convolutions with different dilation rates. The
outputs are stacked along the feature dimension to produce a multi-
scale response.

L2Net [TEFW+17] avoids pooling layers but requires strided convolution to
achieve a medium sized receptive field of 32 pixels. Additionally, it has been
experimented with a two-stream design where the input of the second branch
is the up-scaled central part of the original patch similar as in [ZK15]. In
contrast, the Stacked Dilated Convolution (SDC) architecture exploits multi-
scale information inherently as described in Section 5.1.2.

Deep features for the optical flow task are proposed by [BVS17; GW16].
PatchBatch [GW16] introduces batch normalization for patch description for
the first time, and FlowFieldsCNN[BVS17] utilizes a new thresholded hinge
loss. Both architectures consist of several convolutions and pooling layers to
obtain considerably large receptive fields. As motivated earlier, the SDC design
can easily increase the size of the receptive field without losing the spatial
accuracy as it happens during pooling.

For stereo matching, existing work uses very light-weight architectures with
small receptive fields in favor of speed [LSU16; ZL15]. For the limited search
in stereo matching, the expressiveness of these networks might be sufficient.
In contrast, a universal descriptor network for different tasks and domains is
supposed to use more context information.

5.1.2. SDC Feature Network

Historically, a large receptive field in convolutional neural networks (CNNs) is
primarily obtained by using striding layers. These are typically pooling layers
and more recently, pooling has been replaced by strided convolution [SDBR15].
Striding layers also improve run time by reducing the size of intermediate
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representations and introduce some translational invariance. For tasks like
image classification, these benefits come at no cost since only a single prediction
per image is required. For tasks which require a dense per-pixel prediction,
strided layers have the disadvantage of reducing the spatial resolution. This
makes pixel-wise prediction overly smooth and less accurate.

The obvious way to obtain a large receptive field without striding is to use
larger kernels. The drawbacks of this approach are a drastic increase in run
time and number of parameters which makes such networks slow and prone to
overfitting. This problem can be surpassed by dilated convolution because even
though the kernels are large, they are sparse (in a regular way). Yet, a sequence
of dilated convolutions can introduce gridding effects (different output nodes
use disjoint subsets of input nodes) if dilation rates are not selected properly
[WCYL+18]. As a consequence, SDC is proposed, which applies multiple
dilated convolution in parallel and concatenates the outputs. This way, each
subsequent layer has full access to previous features of different dilation rates.

SDC Layer. As in previous works [CPKM+18; LZC18], is is argued that
convolution with dilation rate r and stride r is equal to convolution with
dilation rate 1 (no dilation) of sub-sampled input by factor r (no smoothing).
Dilated convolution without striding thus produces a sub-scale response at
full spatial resolution. This key observation is exploited by the SDC design in
which the output of convolutions with different dilation rates are stacked to
produce a multi-scale response (see Figure 5.1). Whereas others apply pooling
over multiple scales, in SDC the entire multi-scale information is passed to the
next layers.

It is noted that convolution with parallel dilated kernels is similar to convolu-
tion with a single larger, sparse kernel (merging the dilated kernels). However,
expressiveness is lost where the different dilated kernels overlap (see Figure 5.6).
Further, only very few deep learning frameworks support sparse convolution
in an efficient way. Nonetheless, an experimental comparison between both
designs is provided in the experiments.

Feature Network. Following the interpretation of dilated convolution, several
SDC layers are sequentially stacked to compute, aggregate, and pass information
for multiple scales from end to end. This naturally results in an exponentially
growing receptive field, but avoids gridding effects because every convolution
is fed with the results of every previous convolution of all dilation rates. Five
such SDC layers are used. Each SDC layer applies four parallel convolutions
with 5 x 5 kernels, the same number of output dimensions, and dilation rates of
1,2,3,and 4. Exponential Linear Unit (ELU) [CUH16] is used for all activations.
Batch normalization is not applied, because the network is trained with a small
batch size (cf. Section 5.1.3). The SDC layers have 64,64,128,256,and 128
output channels, respectively. The final feature vector of the last layer is
normalized to unit range, i.e. values in [-1,1]. The experiments in Section 5.1.4
justify the decision for this design. The overall setup yields a receptive field of
81 pixels, which surpasses competitive work.
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Because striding is not applied, dense image features can be computed
in a single forward pass without patch extraction. This makes the design
much faster than previous deep descriptors [BVS17; GW16; TFW+17] during
inference.

The design provides another advantage that can be used within SDC layers:
The same kernels are useful for different scales (especially low level vision
filters in the first layers). Thus, it is reasonable to share weights between the
parallel convolutions within one SDC block. The only requirement is that the
parallel convolutions are of the same shape. By sharing weights, the amount of
parameters is divided by the number of parallel convolutions (factor 4 in the
above case). This allows to construct very light-weight feature networks with
a comparatively large receptive field. To demonstrate that, the network size is
driven to an extreme. In the experiments in Section 5.1.4, a second network
with only about 5 % of the parameters of the original design is trained and
dubbed as Tiny. The Tiny network has only four SDC blocks, each with only
three parallel dilated convolutions of 3 x 3 kernels and dilation rates 1,2, and 3
which share their weights, yielding a receptive field of 25 pixels.

5.1.3. Training

One goal is to train a universal feature descriptor. Thus, a unified feature
network is trained on multi-domain data. Training splits of the following
data sets are used: Scene flow quadtuplets of KITTI 2015 [MG15], optical
flow and stereo pairs from MPI Sintel [BWSB12], Middlebury stereo data
version 3 [SS02], Middlebury Optical Flow data [BSLR+11], HD1K Benchmark
Suite for optical flow [KNHK-+16], and the two-view stereo data from ETH3D
[SSGS+17]. This is the union of data sets which are used in the Robust Vision
Challenge 2018 for optical flow and stereo.

Since image sizes, sequence count, and sequence lengths vary strongly between
data sets, image pairs are sampled non-uniformly. Considering the different
characteristics (cf. Section 5.1.5) of each data set, to avoid imbalance and
over-representations, the following probabilities are used to sample from each
data set:

KITTI [MG15]: 0.5
Sintel [BWSB12]: 0.175
Middlebury Optical Flow [BSLR+11]: 0.025
]
]
]

Middlebury Stereo [SS02]:  0.05
HD1K [KNHK+16]: 0.175
ETH3D [SSGS+17]:  0.075

Images are not sampled twice until all images of the respective data set are
selected, i.e. within each data set, all images are used equally often. For each
image in each epoch, 100 randomly sampled reference patches are selected.
If a data set provides ground truth for multiple tasks (e.g. KITTI [MG15]),
one of the tasks from stereo, optical flow, or scene flow is selected randomly.

'yww . robustvision.net/rvc2018. php
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Figure 5.2.: Probability distribution of the random offset used to generate the
negative patch correspondence.

The reference patches are sampled from pixel positions where ground truth
exists and where the ground truth displacement points to a visible position
in the corresponding view, i.e. occlusions and out-of-bound displacements
are excluded wherever possible. For each of the 100 reference patches, the
corresponding match is extracted according to the ground truth. Images are
padded with reflection at image boundaries and bilinear interpolation is used
at sub-pixel positions. The negative patch is extracted by altering the ground
truth displacement with a random offset. This random offset is at least 2 pixels
and at most 100 pixels large in magnitude. For stereo correspondences, the
displacement and the random offset are 1-dimensional along the horizontal
direction according to the epipolar constraint. Other correspondences have 2-
dimensional displacement, i.e. circular around the ground truth correspondence.
Since close-by correspondences are harder to distinguish, the random offset is
also sampled non-uniformly. In detail, the random offset is split into two ranges,
a close one ([2,10] pixels) and a distant range (]10,100] pixels). The close
range is selected three times more often than the far range and within each
range, it is sampled uniformly. This leads to the overall probability distribution
for the magnitude of the negative offset shown in Figure 5.2.

Each image is processed completely (all 100 patch triplets) before selecting
the next image pair from one of the data sets to reduce IO operations in
the training data pipeline. Then, chunks of 3200 triplets are shuffled to
reintroduce randomness across data sets and images. Smaller displacements
(less than 2 pixels) are not considered for several reasons. Minimal changes in
appearance might confuse the network, rounding and interpolation introduce
small inaccuracies, and most applications tolerate a matching accuracy less
than 2 pixels end-point error. Visual examples of some training triplets are
given in Figure 5.3.
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Pos Ref Neg.

Figure 5.3.: Randomly sampled training triplets. For each reference patch, a
positive and negative match are selected according to the ground truth
and by adding a random offset to the ground truth.

The 200 training images from KITTI [MG15], are randomly split into a
subset for actual training (70 %), one for validation (20 %), and one for testing
in the experiments in Section 5.1.4 (10 %). This is the exact list of sequences
for each subset:

e Training: 0, 1, 3, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 24, 25,
27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 49, 50, 51, 54,
55, 56, 58, 59, 62, 63, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87,
88, 89, 90, 93, 95, 96, 97, 99, 101, 102, 103, 104, 105, 107, 109, 111, 113, 114,
116, 117, 118, 120, 123, 125, 128, 129, 130, 132, 134, 135, 137, 138, 139, 140,
141, 143, 144, 145, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 160, 161,
162, 163, 164, 165, 167, 168, 169, 170, 171, 172, 175, 177, 178, 179, 180, 182,
183, 185, 187, 188, 189, 191, 194, 195, 197, 198, 199

 Validation: 2, 16, 17, 23, 26, 32, 36, 48, 52, 53, 57, 60, 61, 64, 69, 72, 73, 77,
80, 81, 84, 91, 100, 108, 110, 112, 122, 126, 127, 131, 133, 136, 142, 153, 158,
159, 166, 176, 192, 196

o Testing: 4, 42, 46, 65, 92, 94, 98, 106, 115, 119, 121, 124, 146, 173, 174, 181,
184, 186, 190, 193
A triplet training approach [HA15] is used in which the reference patch, the

matching patch and the non-matching patch are fed to three SDC networks with

shared weights. For training stability, the input is normalized by subtracting
the mean and dividing by the standard deviation of all training images. The
mean pixel is [0.3534, 0.3448, 0.3295] and the mean standard deviation is

[0.2492, 0.2465, 0.2446] for the red, green, and blue color channels, respectively.

As objective function, the thresholded hinge embedding loss of [BVS17] is used

and defined in Equation 5.1.

L(r,p,n) =maz (0,|f (r) - f (p)|3-7)

5.1
+maaz(0,m+7'—||f(1")—f(n)||§), o)

68



5.1. Deep Pixel Representations for Dense Matching

Positive ¥
Match > SDC Network
5 f —
I shared P.Obltlve
Pl v Distance
Reference we SDC Network
Patch !

Negative

Distance
A 4 J

SDC Network

| shared

Negative "
Match

Figure 5.4.: Visualization of the triplet training. For each patch triplet, the loss is
computed based on the distance of the feature descriptors for corre-
sponding and non-corresponding patches.

where {r,p,n} is the patch triplet, f is the feature transformation of the
network, 7 is the threshold, and m is the margin between matching and non-
matching features. The experiments compare this loss to the SoftMax-Triplet
loss [HA15] and the SoftPN loss [BJTM16]. Both show a similar performance
while being less stable during training. An overview of the training strategy is
given in Figure 5.4.

Adam [KB15] is the optimizer of choice. The network is trained with a
batch size of 32 and with an initial learning rate of 0.01 that is exponentially
decreased by a power of 0.7 every 100k iterations, continuously. Training is
performed for one million iterations after which the convergence saturates, or
until the point of overfitting, which is rarely observed in any of the experiments.
Overfitting is avoided by the random sampling strategy of image pairs and
patch triplets, which provides many diverse combinations. Photometric data
augmentation can not further improve the training process. Instead, a small
decrease in performance is noted. To speed up training, the input patches and
intermediate feature representations are cropped to the maximum required size
for the respective dilation rate. The complete training of the SDC network
takes about three days on a single GeForce GTX 1080 Ti.

5.1.4. Experiments and Results

A series of diverse experiments is conducted to validate the design decision,
the superior performance of the proposed approach compared to other feature
descriptors, and to test SDC features with different algorithms for different
matching tasks on a large number of diverse data sets. For all experiments, a
single unified descriptor network with a unique set of trained weights is used.
Unlike other networks [BVS17; SYLK18], SDC is not re-trained or fine-tuned
on each individual data set.
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Figure 5.5.: Validation of design decisions for the SDC network by comparing the
relative robustness of different configurations.
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Table 5.1.: Comparison of the accuracy for representative state-of-the-art descriptors
and the SDC design. For learning approaches, further information about
receptive field size (RF) in pixels, number of parameters (Size), and
accumulated sub-sampling factor due to striding are provided.

Network Accuracy || RF Size Factor
SDC 97.2 % 81 | 1.95 M 1
Fake-big 97.0 % 81 6.3 M 1
LargeNet 96.8 % 81 | 225 M 1
L2Net [TFW+17] 96.7 % 32 | 1.34 M 4
Tiny 96.0 % 25 | 0.12 M 1
Fake-small 96.0 % 81 04 M 1
PatchBatch [GW16] 95.7 % 51 | 0.92 M 8
DilNet 95.5 % 96 | 543 M 1
2Stream [ZK15] 92.3 % 64 | 241 M 2
FFCNN [BVS17] 90.6 % 56 | 4.89 M 4
BRIEF [CLSF10] 93.7 % - - -
DAISY [TLF10] 92.1 % - - -
SIFT [Low99] 89.0 % - - -

Design Decisions

Variation of depth and width of the SDC network structure is covered by
the Tiny version. In the following, batch size, activation functions, and loss
functions are varied. One parameter is altered at a time and compared to the
original design. For better comparison, relative robustness is introduced which
is the robustness ratio of a model and a reference model. A relative robustness
greater than 1 means that the model is better than the reference model. The
original SDC network is used as the reference which will result in a baseline of
100 % of relative robustness for this model.

Results for different batch sizes are given in Figure 5.5a. The impact of the
batch size is minor. Even for very small mini batches, the relative robustness
drops by less than 2 percentage points. Increasing the batch size is not
improving the performance either.

For alternative activation functions, Rectified Linear Unit (ReLU) [NH10]
instead of Euclidean Linear Unit (ELU) [CUH16] is considered. Since the
final feature vectors are normalized to unit range, the rectification of ReLU
restricts the feature space to the non-negative orthant of the 128-dimensional
hypercube which is only 27128 of the full volume. Therefore, a network with
ReLU and linear activation in the last layer is also trained and compared. The
comparison is shown in Figure 5.5b.

As mentioned earlier, instead of triplet training with a thresholded hinge
embedding loss [BVS17], the softmax loss [HA15] and the PN loss [BJTM16]
are also tested (see Figure 5.5¢). Both alternative losses perform better for
some displacements, and worse for others. However, the difference in robustness
is small and training with these real triplet losses is less stable enforcing a
lower learning rate and thus an increased overall training time.
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SDC Design Single Sparse Kernel

Figure 5.6.: Two variants of sparse 17x 17 kernels: Four parallel dilated 5 x5 kernels
(left), and a single kernel (right).

Accuracy, Robustness, ROC

In this section, the SDC descriptor network is compared to other descriptors.

Representative classical, heuristic descriptors are the Scale-Invariant Feature

Transform (SIFT) [Low99], DAISY [TLF10], and Binary Robust Indepen-

dent Elementary Features (BRIEF) [CLSF10]. Furthermore, the following

architectures of previous work that contain striding layers are trained:

e 2Stream: The central-surround network from [ZK15].

 PatchBatch: The architecture of [GW16], which utilizes batch normalization.

* L2Net: The basic variant of [TFW+17] with only a single stream and without
batch normalization, which is found to perform the best among all variants
of this network.

* FFCNN: The FlowFieldsCNN architecture [BVS17], which showed great
improvements over classical descriptors for optical flow estimation.

In addition, two alternative architectures that avoid striding layers are designed

and evaluated.

 DilNet: An example of dilated convolution in a sequence: Conv(7,64,1,1)
— Conv(7,64,1,2) — Conv(7,128,1,3) — Conv(7,128,1,4) — Conv(7,128,1,3) —
Conv(7,256,1,2) — Conv(7,128,1,1).

e LargeNet: An example for single, large convolutions without dilation:
Conv(17,64,1,1) — Conv(17,64,1,1) — Conv(17,128,1,1) — Conv(17,256,1,1) —
Conv(17,128,1,1).

The four numbers of each convolution layer Conv(k,n,s,d) describe square

kernel size k, number of kernels n, stride s, and dilation rate d. Note that

DilNet and LargeNet try to mimic the shape of the SDC network. More details

about each network are given in Table 5.1.

Large Sparse Convolution. Multiple dilated convolutions in parallel are sim-
ilar to a single larger convolution with a sparse kernel (see Figure 5.6). The
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difference is that pixels where the parallel kernels overlap are only considered
once in a single kernel (for 3 x 3 kernels this is the center pixel only) and that
a single kernel merges all information into a single output. With parallel con-
volutions, it is possible to add them, stack them, or combine them as needed.
For comparison of both approaches, two alternative variants are designed,
which use single, larger convolutions with the exact same receptive field as
the SDC network. The first one produces the same output dimensions at
each layer, i.e. 64, 64,128,256, and 128 feature channels. This results in a four
times larger network compared to the SDC design approximately (disregarding
overlapping pixel positions). The second variant is designed to have the same
network size as SDC, which results in 4 times less output channels per layer,
i.e. 16,16,32,64,and 32. These networks are called Fake-big and Fake-small
respectively, because these networks try to imitate the original SDC design.
The complete architectures look like this:

 Fake-big: SparseConv(17,64,1,1) — SparseConv(17,64,1,1) — SparseConv (17,

128,1,1) — SparseConv(17,256,1,1) — SparseConv(17,128,1,1)
 Fake-small: SparseConv(17,16,1,1) — SparseConv(17,16,1,1) — SparseC-

onv(17,32,1,1) — SparseConv(17,64,1,1) — SparseConv(17,32,1,1)
Sparsity is enforced according to the pattern shown in Figure 5.6.

First, the accuracy of all descriptors is evaluated. Accuracy is defined as the
percentage of correctly distinguished patch triplets, i.e. the positive feature
distance is smaller than the negative one. Towards that end, 2000 patch triplets
are sampled from the test images (cf. Section 5.1.3). The results are given in
Table 5.1. SDC outperforms all other feature descriptors in terms of accuracy.
The receptive field (RF) is comparatively large, while the network size is
comparatively small and also sub-sampling is avoided. The Tiny version is
extremely compact without much loss of accuracy. The surprisingly good result
of L2Net [TFW+17] is worth mentioning, indicating that strided convolution
should be preferred over pooling. Also, some of the learning approaches perform
worse than the classical descriptors. The SDC network outperforms the Fake
networks as well. Considering that Fake-big is a much bigger network, this
is even more evidence that the design is very powerful. The concatenation of
multi-scale features and the mixture of multi-scale information at every level
is beneficial for image description.

The Receiver-Operating-Characteristics (ROC) is also compared for all
descriptors based on the same test triplets. Each triplet is split into two pairs,
a positive and a negative one. True-Positive-Rates over False-Postive-Rates for
varying classification thresholds are given in Figure 5.7a. Again, SDC features
achieve top performance with a large margin over heuristic descriptors and
most neural networks.

However, matching is not really a classification task. The distance of cor-
responding descriptors does not matter, as long as it is smaller than these
of non-matching descriptors. To take this into account, a final experiment is
set up to show the matching robustness of the descriptors as introduced by
[BVS17]. Each positive corresponding patch pair of the test data is tested
against all other correspondences within a certain distance to the correct
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Figure 5.7.: In the comparison of ROC and robustness curves, the SDC design
outperforms state-of-the-art feature networks and heuristic descriptors.
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ELAS [GRU10]

CPM [HSL16]

SFF [SWKB-+18]

Original Results Improved with SDC

Figure 5.8.: The new SDC feature descriptor improves pixel-wise matching in terms
of accuracy and density in state-of-the-art algorithms. From top to
bottom: Disparity map for ELAS [GRU10] on ETH3D [SSGS+17],
optical flow for CPM [HSL16] on Sintel [BWSB12], and scene flow (dis-
parity and optical low components) for SFF [SWKB+18] (Section 4.1)
on KITTI [MG15].

match. The results are shown in Figure 5.7b. Naturally, the robustness is
higher for larger distances to the correct patch. This experiment validates the
effectiveness of the design once again. SDC achieves the highest robustness
throughout the whole range of displacements. The top performance of SDC
is then followed by a dense cluster of other deep descriptors including the
Tiny variant. Noteworthy is the strong performance of all networks which are
explicitly designed to avoid sub-sampling (no strides greater than 1), especially
for small offsets.

Cross-Task and Cross-Domain Matching

For the third part of the experiments, the SDC feature descriptor is applied
in actual matching tasks. In total, five algorithms for three dense match-
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ing tasks with overall six data sets are tested. For stereo matching, ELAS
[GRU10] and SGM [Hir08] are evaluated on KITTI [MG15], Middlebury [SS02],
and ETH3D [SSGS+17]. CPM [HSL16] and FlowFields++ [SBWS18b] are
selected to represent optical flow matching algorithms and are evaluated on
KITTI [MG15], Middlebury [BSLR+11], HD1K [KNHK+16], and MPI Sintel
[BWSBI12]. Finally, SceneFlowFields (SFF) [SWKB+18] (Section 4.1) is tested
on KITTI [MG15]. Where possible, the non-occluded areas (noc) and the full
image (all) are evaluated separately, because visual matching is only possible in
visible regions. On KITTI, these regions are further split into static background
(bg) and dynamic foreground (fg). For the Middlebury stereo data, all levels
of resolution are evaluated: Full (F'), half (H), and quarter resolution ().
For Sintel, the more realistic final rendering pass is considered only. Baseline
results for the common error metrics are computed for all data sets. Then, the
feature descriptor of every algorithm is changed to SDC and the experiment is
repeated. It is important to note that nothing but the descriptor is changed.
For the sake of comparability, no algorithm is fine-tuned, though fine-tuning is
expected to improve the results in general.

Stereo Matching. ELAS [GRUI10] uses first order image gradients for feature
description. The default parameter set called MIDDLEBURY, which includes
interpolation after the consistency check, is used for the experiments. In
addition, an open source implementation of SGM? is obtained which uses the
symmetric CENSUS transform [SLR13] of 9 x 7 image patches as a descriptor.

Results for both algorithms on all stereo data sets are given in Table 5.2.
Green color indicates where the proposed features outperform the baseline; a
decrease in accuracy is marked in red. In case of ELAS [GRU10], the impact
of SDC features is advantageous in all cases, and even significant most of the
time. SGM [Hir08] shows a couple of negative test cases. These are first of all,
the full resolution (F') images of Middlebury [SS02] which produce bad results
for both descriptors on both data sets, since the default parameters of ELAS
[GRU10] and SGM [Hir08] are not adjusted to the maximum possible disparity
of that resolution. This might also apply to the half-resolution images (H)
to some extend. As a consequence, this data should not be considered in the
comparison. Then there are the foreground regions of KITTI [MG15], where
the deep SDC features perform slightly worse than CENSUS. This might be,
because foreground regions are underrepresented in the training data, and thus
in the randomly sampled training patches. Lastly, the non-occluded areas of
ETH3D [SSGS+17] show minimally higher errors for SDC features. However,
the large receptive field of SDC features can compensate for that in occluded
regions to improve the overall results. In summary, SDC features improve
dense stereo matching for both algorithms on all data sets in most categories.

Optical Flow Correspondences. CPM [HSL16] computes sparse matches in
non-overlapping 3 x 3 blocks that can be used for interpolation with EPICFlow
[RWHS15] or RICFlow [HLS17]. The original feature descriptor is SIFT

2yww.github.com/gishi523/semi-global-matching
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Table 5.2.: Evaluation of stereo matching algorithms. ELAS [GRU10] and SGM
[Hir08] with the default descriptors are compared to SDC' features on
KITTI [MG15], Middlebury [SS02], and ETH3D [SSGS+17].

SGM [Hir08]
Original SDC
>3px EPE | >3px EPE

4.32  1.02
6.46 1.15
436 1.04

1.75

ELAS [GRU10]
Data set Original
>3px EPE | >3px
bg || 6.56  1.30
S fg | 1221 188
= all || 739  1.38
2 by 722 L3
T fo || 1434 202
all || 829 1.45
F || 26.33 20.42 | 22.24 20.08
£ § H | 1685 444
2 Q || 11.62 2.03
< F || 29.87 2247 | 26.22 22.16
= T H | 2102 6.03
Q || 1591 291 | 1519 2.86
% noc 6.03 0.98
E occ 17.68 2.14
B all 6.50 1.02

53.50
8.26

Table 5.3.: Evaluation of optical flow matching with CPM [HSL16]. The SIFT
descriptor [Low99] is compared to SDC features on KITTI [MG15],
Sintel [BWSB12], Middlebury [BSLR+11], and HD1K [KNHK+16].

Data sot SIFT [Low99] SDC
>3px EPE Density | >3px EPE  Density
bg || 10.69 2.17 - 2.30
S fg | 1267 240 -
E all || 11.26  2.21 7.88 %
2 bg || 11.71 3.28 -
S fg || 1267 240 -
all || 11.87 3.13  6.79 %
= noc 4.33 1.06 -
= occ 45.03 10.49 -
x all 530 128 8.93%
Middlebury || 4.11  0.79 10.10 %
HD1K 585  1.29  9.80 %
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Table 5.4.: Optical flow evalation with FlowFields++ [SBWS18b]. The SIF'T descriptor [Low99] is compared to SDC features on KITTI [MG15],
Sintel [BWSB12], Middlebury [BSLR+11], and HDIK [KNHK+16]. Results for dense matching, after consistency check, and after
interpolation are shown.

Matching
Data set SIFT [Low99]
>3px EPE | >3px
bg || 23.22 12.07
S fg || 2161 1447
E all || 23.98 12.48
2 bg || 35.96 53.20
S fg || 2917 21.81
all || 34.93 48.45
= noc 16.21  9.31
= occ 83.18 120.78
s all 21.88 18.75
Middlebury || 5.47 1.21
HD1K 15.52 12.99

SDC

EPE

Filtered Interpolated
SIFT [Low99] SDC SIFT [Low99] SDC

>3px EPE Density | >3px EPE Density | >3px EPE | >3px EPE
8.04 1.89 - 2.00 9.56  3.08 2.97
1031 2.11 - 2.01 6.13 197

839 192 T733% 2.00 8.97 289 | 8.60 290
9.02  3.09 - 19.13  9.45 9.13
1032 2.11 — 6.46  2.14

922 294 633 % 1721 8.34 8.16
415  1.00 - 0.96 6.35 234 | 6.10 218
4259 1010 - 43.81 1071 - 45.04 22.26 | 46.80 21.33
515 1.23  75.7% | 482 1.25 [BAAY 9.62 4.03 | 955 3.80
224 051 931% | 226 049 96.9% | 1.69 0.28 | 1.79  0.30
5.64 116 82.6 % 134 096 | 462 [N

aurradi osus(T-03-as1edg o1y I0f syuoureoe[doy] paseq-SurLIesT ¢ Iojdey))



6.

Image

Original

with SDC

“

o . =R
HD1K [KNHK+16]

KITTI [MG15] Sintel [BWSB12]

7 Middlél;ury
[BSLR+11]

Figure 5.9.: Exemplary visual comparison of filtered optical flow from FF++ [SBWS18b] on four different data sets. The second row shows
results for the original method, while the bottom row shows results after changing the feature descriptor to SDC. Note that all
parameters are the same for both experiments. Quantitative evaluation on full data sets is provided in Table 5.4.
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[Low99]. The generated matches of this algorithm are evaluated in Table 5.3.
FlowFields++ (FF++) [SBWS18b] performs dense matching, followed by a
consistency check and interpolation with RICFlow [HLS17]. The comparison
between the originally used SIFT features [Low99] and the SDC features after
each of these three steps are shown in Table 5.4. For the filtered results after
the consistency check, the density is also given as percentage of covered ground
truth pixels. Visual examples are presented in Figure 5.9.

In some cases, both algorithms show a slight increase in end-point error
for the complete KITTI data (all) when used with the SDC features. This
is most likely due to the fact, that the KITTI noc data excludes the out-of-
bounds motions only, not the real occlusions. A higher end-point error in
the occluded areas is actually an advantage, because it makes outlier filtering
during the consistency check easier. In fact, EPE and outliers are better for
KITTI-all-fg for FF++ after filtering (see Table 5.4). Also, it is important
to note that the filtered matches with SDC are denser for both algorithms
(cf. Figure 5.9). Dense, well distributed matches make interpolation easier.
This way, the feature descriptor supports the whole pipeline. Again, nothing
but the descriptor is changed, not even the distance function that is used to
compare the feature descriptors. CPM [HSL16] for example uses the sum of
absolute difference as feature distance, while the SDC network was trained
using the L2 distance. Overall, SDC features reduce the outliers during optical
flow matching by up to 50 %.

Matching-based Scene Flow Algorithms. SFF [SWKB-+18] is presented in
Section 4.1, and can be considered the stereo extension of FlowFields [BTS15]
to estimate 3D motion. The pipeline is comparable to FF++ except for the
additional egomotion refinement step that is used in SFF. All intermediate
results are evaluated and presented in Table 5.5.

Similar to the experiments on stereo and optical flow, the SDC features
improve scene flow matching significantly, which results in almost half the
percentage of outliers and end-point errors. This effect can be maintained
throughout the whole pipeline for almost all image regions. As before, outlier
filtering at the foreground regions (fg) of KITTI seems to be more difficult with
SDC features, which potentially can be solved by adjusting the consistency
threshold. The minor decrease in correctness of the filtered matches might
again be acceptable when considering that SDC features increase the filtered
density from 43.6 % to 67.0 % and from 36.4 % to 56.0 % in non-occluded
(noc) and all image regions (cf. Figure 5.8). The SDC features improve scene
flow matching over all image regions (including non-matchable, occluded areas)
by more than 10 percentage points which corresponds to 25 % less outliers
after matching.

5.1.5. Empirical Evaluation Study on Training of SDC

Though a principled way for learnable representations, classifiers, and regressors
is endorsed, the current understanding of deep neural networks lags behind.
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Table 5.5.: Results for scene flow estimation. SFF [SWKB+18] with SIFTFlow [LYT11] features and SDC features are compared on the KITTI
scene flow benchmark [MG15]. The densities after filtering increase from 43.6 % to 67.0 % in noc and from 36.4 % to 56.0 % in all
regions when using SDC features.

Matching Filtered Interpolated Ego-motion Refinement
Data SIFTFlow SIFTFlow SDC SIFTFlow SIFTFlow SDC
>3px EPE | >3px >3px EPE | >3px EPE | >3px EPE | >3px EPE | >3px EPE | >3px EPE
bg || 9.84  2.00
S fg| 1623 264
— all || 1091 211
- by || 1162 4.93
=S fg || 2064 15.64
all || 12.99  6.55
by || 17.49  2.82
S fg | 1665 288
o all || 17.35 2.83
- by || 31.38 847 8.74
= fg9 | 2080 5.20 10.82 1.57
all || 29.61 7.97 9.05 [T607
bg || 22.95 9.07
pe}
S fg || 2540 7.06
= all || 23.36 8.74
bg || 36.68 45.26
=S fg || 29.70 17.64
all || 35.47 41.08
by || 29.99  —
S fg | 3497 -
= all || 30.82
« by || 4268
S fg || 40.04 -~
all || 4228 -
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Networks are often handled as black boxes due to the stochastic and iterative
nature of back-propagation, the uninterpretable interior of deep and wide
architectures, and the increasing number of hyper-parameters.

These facts lead to a conflict for complex, yet safety-critical applications
like autonomous driving. On the one hand, most recent achievements for core
components of self-driving cars, like perception or action planning, are enabled
by deep learning, including e.g. the feature representation for dense matching
in this section. On the other hand, the robustness and reliability of these
components remain unexplored, which introduces high risk since neither the
probability nor the possible maximum harm of wrong decisions is known.

As a result, networks are required that are more interpretable, more robust,
and less self-confident (i.e. providing a measure of certainty).

Moreover, part of the success of deep learning is driven by the availability of
data. Astonishing results are often obtained only by increasing the amount
of training data, using deeper architectures, and thus requiring even more
data. Along with this, the computational effort for training increases likewise,
introducing another limiting factor. While, in principle, there is nothing wrong
with using more data, it has to be kept in mind that data (labeled or unlabeled)
is differently scarce for different domains and applications. Thus, a working
model for one domain might not be transferable to another. Further, an
advanced usage of only very few data is essential to limit the expensive efforts
for annotation. As a conclusion, the available data should be used as efficiently
as possible to train more accurate and robust models in less time.

In this study, the focus is not on the selection of the architecture, but instead
on the effects of training procedures and data in the hope to derive some
heuristics that can guide others when training deep neural networks.

Similar Studies for Learning of Optical Flow. The importance of training
data and schedules for end-to-end optical flow estimation is investigated in
[MIFH+18; SYLK19]. In [MIFH+18], it is dealt with the usability of synthetic
data for transfer learning (in the form of pre-training + fine-tuning). The
authors conduct a series of experiments about lighting, data augmentation,
displacement statistics, simulation of realistic noise when generating synthetic
images, hyperparameter tuning, and the importance of the order when training
with multiple data sets. The model under review is FlowNet [DFTH+15;
IMSK+17]. Advanced training strategies for PWC-Net [SYLK18] are presented
in [SYLK19]. Here, the focus is to adjust the training process to improve
generalization of the network for the Robust Vision Challenge®.

Overview of the Matching Tasks. Depending on the matching problems,
the viewpoints between image pairs vary. For optical flow (of), images, taken
with the same camera, are matched in the temporal domain. For stereo
matching (st), two distinct rectified cameras capture images simultaneously. A
combination of both (miz) is possible if a data set provides ground truth for

S4www.robustvision.net/rvc2018.php
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optical flow and stereo disparity. If the annotations further provide a measure
for the change of depth, image correspondences between stereo cameras over
time (cross, (cr)) can be established. A data set that contains labels for st, of,
and cr is capable of training full scene flow (sf) matching. These matching
tasks have quite different characteristics.

Data Sets. As explained in Chapter 2, data is of utmost importance for
training. Increasing effort is spent on capturing, labeling, or the generation of
large data sets for different domains to enable a training of deeper and larger
models. The generalization to unseen samples — and even more to unseen
domains — remains a challenging problem for neural networks. Yet, a tendency
to overcome this issue by the extensive use of more and diverse data is evident
in recent publications [BVS17; SYLK18].

For many applications it is hard or tedious to collect labeled training data,
sometimes even impossible despite applying manual annotation. Therefore,
synthetic data sets are often used for the training followed by fine-tuning on
the target domain to transfer what has been learned before. Advantages of the
generation of synthetic data include the possible, large scale, and dense, exact
ground truth annotations. However, image appearance (even if photo-realistic)
might not fit the realistic data, thus increasing the problems of generalization,
overfitting, and domain adaption.

One large, synthetic data set that is relevant for this work is FlyingThings3D
(FT3D) [MIHF+16] since it is, besides KITTI [GLU12; MG15], the only other
data set providing full scene flow labels. Especially the Driving subset of FT3D
is relevant, because it simulates a traffic scenario. MPI Sintel [BWSB12] is
also considerably large and provides optical flow and stereo labels, making it a
possible option for deep training.

Among realistic data sets, KITTI [MG15] is the natural choice since it
provides scene flow ground truth (though sparse) in an automotive context. The
data of HD1K [KNHK+16] is also captured from a stereo camera mounted on a
driving vehicle, but it provides only annotations for optical flow correspondences.
The original SDC network is additionally trained on the other data sets
which are part of the Robust Vision Challenge® for stereo and optical flow,
(Middlebury (MB) [BSLR+11; SS02] and ETH3D [SSGS+17]). However, the
latter three are not suitable for training because they are very limited in size.
An overview of all these data sets is given in Table 5.6.

SDC Feature Analysis. The original training strategy as described in Sec-
tion 5.1.3 is used for a deeper analysis of the features. First, the learned kernels
of the first SDC layer are visualized (see Figure 5.10). The first learned filters
with a dilation rate of 1 show a high similarity to two-dimensional second order
Gaussian kernels. For higher dilation rates, the kernels become less intuitive.
There are also some filters that respond to a certain color.

Next, some of the normalized filter responses of the last SDC layer, i.e.
the final feature representation, are presented for an exemplary image in

“www.robustvision.net/rvc2018.php
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Figure 5.10.: Convolution kernels for the first SDC layer of the SDC feature network
[SWUS19]. The color gives the respective sensitivity to the RGB
color channels of the input images.
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(a) Input Image

(b) Channel 26

(C) Channel 53

(d) Channel 66

(e) Channel 103

Figure 5.11.: Some SDC feature channels for the given input image.
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Figure 5.11. Different channels for coarse and fine structures can be identified
clearly. One special observation is, that one feature channel dominates the
representation (not shown in the figure), i.e. all values are 1, the maximum.
Further experiments show that this dimension is the same for all investigated
images on all data sets. Also interesting is the fact that more than one third
of all dimensions does not contribute to the description significantly, i.e. the
features for these channels are all very close to zero for all data sets. The
amount of “dead” channels decreases for increasing dilation rates (conv5-1: 18,
convb-2: 16, conv5-3: 12, conv5-4: 7). However, the remaining channels (not
0 and not 1) are all equally important for the description according to their
variance.

Failure Cases. SDC is evaluated on a test set of patch triplets. A triplet is
considered as misclassified, if the feature distance of the corresponding image
patches is smaller than the feature distance of non-corresponding patches (cf.
Section 5.1.5). Some representative, misclassified triplets from the KITTI test
set are depicted in Figure 5.12. The failure cases can be clustered into the
following categories where one triplet can belong to multiple classes: Vege-
tation (34 %), dynamic objects (29 %), occlusions (18 %), boundary regions
(16 %), homogeneous patches (14 %). While homogeneous, untextured, and
occluded regions can only be matched with a wider receptive field (i.e. changing
the architecture to consider more context knowledge), the issues of dynamic
foreground objects and vegetation can be tackled by changing the training
schedule as it is done in the next sections. The only reliable way to handle
image boundaries is to ignore them during feature computation and matching.

Improved SDC Training

The experiments within this section are split into two groups. First, it is
investigated how training can be improved in general. The second part focuses
on data and topics related to training on multiple domains. Unless stated
otherwise in the experiments, a model for a single data set is always trained
on all available image pairs (e.g. KITTI uses the three image pairs of scene
flow). The major evaluation criterion is the triplet accuracy (cf. Section 5.1.4).

Hard Mining. Hard mining is a well documented technique to speed up the
training and increase the accuracy especially for difficult samples [SKP15]. It
is also helpful when training with imbalanced data [DGZ17]. The idea is to
ignore samples with a sufficiently accurate prediction during the training and
focus more on samples with less accurate or wrong predictions. In this case,
offline hard mining is implemented by ignoring triplets with zero loss, i.e. the
positive distance is below the threshold and the negative distance is higher
than the margin (cf. Equation 5.1). The expected behavior of training with
hard mining is threefold. First of all, higher (average) losses are expected since
zero losses are neglected. Secondly, training should be speeded up because
higher losses lead to higher gradients in more relevant directions. Lastly, the
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Figure 5.12.: Misclassified triplets from the KITTI test split for the original SDC
network.
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predictions for difficult samples should be more accurate. Figure 5.13a shows
the validation accuracy during the training with and without hard mining. Not
only is the training much faster, it also reaches a higher final accuracy.

Region Sampling. Foreground objects on KITTT are one of the identified
failure categories. Previously it is argued that this is due to the under-
representation of dynamic foreground in the KITTI data set (only about 15 %
of the available ground truth). Apart from hard mining, this issue is tackled by
manually balancing different image regions during patch sampling. Since ground
truth object segmentation is available for KITTT training images, reference
patches for training can be sampled equally often from foreground objects
and static background regions. A comparison between balanced sampling
and uniform random sampling is presented in Figure 5.13b by plotting the
validation accuracy during training on KITTI optical flow data for different
image regions (foreground (fg) / background (bg) / all). It is evident in this
diagram that balanced sampling leads to very early over-fitting in foreground
regions, thus hindering the convergence of the model. As a result, not even
the foreground regions are similarly well described compared to using uniform
random sampling.

Initialization. The high-dimensional, highly non-linear and non-convex func-
tional together with a stochastic iterative optimization technique makes neural
networks sensitive to initialization. Depending on the activation function, the
works in [GB10; HZRS15] propose random initialization that considers the
scale of the previous layer. Orthogonal initialization [SMG14] is proposed
for the use in linear fully-connected layers. The authors also demonstrate
positive effects with networks that use non-linear activation and convolutional
layers. A state-of-the-art variance scaling initializer [GB10] is compared with
orthogonal initialization [SMG14] for the SDC network in Figure 5.13c. Even
for the shallow, fully-convolutional SDC Network with ELU activation [CUH16],
orthogonal initialization speeds up the training by about a factor of 2. The
final accuracy is also slightly higher.

Learning Rate Disruption. Initialization is important for stochastic processes
and so is the learning rate for the optimizer. Progressively (either in steps or
continuous) decreasing learning rates are a best practice to enable convergence
to local optima. However, with monotonically decreasing learning rates, the
optimizer can not escape local optima. A measure to encounter this is learning
rate disruption, as used e.g. in [SYLK19]. The idea is to disrupt the learning
rate schedule by increasing the learning rate significantly (e.g. to the initial
value) and then continue with the progressive learning rate decay. This way,
the optimizer can escape from a local optimum (though not necessarily in
favor of a better optimum). This concept is tested for the training of the
SDC network. Figure 5.14 shows three alternate learning rate schedules: The
original monotonic decay as used before and two variants of learning rate
disruption with different periods for recovery. Some signs of over-fitting could
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be observed right after the disruption. However, the network did recover
quickly but without any significant sign of changing the local optima (neither
in a positive nor negative way).

Multi Domain Training

Domain Similarity. As an approximation of the similarity of domains, mono-
domain networks are trained on a single data set and cross-evaluated on all
data sets. Table 5.7 shows the evaluation matrix for all trained models on all
data sets. No model is trained on the Middlebury (MB) data sets [BSLR+11;
SS02] or ETH3D [SSGS+17] because of their small size. For all other data
sets, it is trained with the union of all available image correspondences (the
three scene flow image pairs for KITTI, FT3D, and Driving, and optical flow
and stereo correspondences for Sintel). Training all combinations of data sets
and tasks would be infeasible.

It can be observed that domain differences are not necessarily symmetric.
Moreover, the matching task (i.e. the type of image correspondences) has
influence on the matching performance. Matching on the Driving data set is
particularly difficult. On HD1K [KNHK+16], matching is extremely simple,
probably because the ground truth does not contain any dynamic objects.
The performance of all models is similarly high for the Middlebury Flow data
[BSLR+11]. This is most likely due to the very small displacements. The
model trained on Sintel [BWSB12] shows high compatibility with many diverse
data sets.

The overall observation is that domain similarity for matching is mostly
defined by the displacement characteristics and camera hardware, and less
by the scenario or realism of the data. The Driving data set, for example,
shows a big discrepancy to KITTI in the cross-evaluation, though both contain
traffic scenarios. Reversely, Sintel shares neither the realism nor the automotive
setting with KITTI, but still demonstrates high compatibility. This observation
is in accordance with the results in [MIFH+18] on displacement statistics for
optical flow. This can be further confirmed by an additional experiment: The
Driving data set is generated for two virtual cameras with different focal lengths
(15 and 35 mm). The two versions do not differ in anything else. Performing a
cross-evaluation with models trained on KITTI and both versions of Driving,
there is a significant loss in domain similarity when switching to the 35 mm
focal length, which is also further away from the KITTI camera parameters.
Moreover, the transfer between Driving with different focal length does also
not work very well.

Color. Two questions of interest regarding color spaces are 1.) Which color
space provides good generalization properties? and 2.) Does color influence
domain adaption? The first question is investigated by training models on one
data set with two different color spaces (RGB and YUV) and evaluating them
on the other data sets (each in the respective color space). In the experiments,
there is no clear sign that one of the two color spaces should be preferred over
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Table 5.6.: Characteristics of different data sets.

Number of Frames per Image Color Synthetic Automotive
Data Set Task Sequences  Sequence  Size [MP] Space Real Context

KITTI [MG15] sf 200 1 046  RGB R yes
FlyingThings3D [MIHF+16] | sf 9239 10 0.52 RGB S no
Driving [MIHF+-16] st 1 800 0.52 RGB S yes
Sintel [BWSB12] mix 23 46 0.45 RGB S no
HDI1K [KNHK+16] of 35 30 2.8 Gray R yes
Middlebury Flow [BSLR+11] of 8 1 0.25 RGB both no
Middlebury Stereo [SS02] st 15 1 1.1-174 RGB R 1no
ETH3D [SSGS+17] st 16 1 0.31 /046 Gray R no

Table 5.7.: Cross evaluation for different domains represented by different data sets. For each evaluation set, the best model trained with a
different data set is given in bold.

Eval
Train sf
KITTI [MG15] 97.2
FT3D [MIHF+16] | 73.9
Driving [MIHF+16] | 89.3
Sintel [BWSB12] 93.5
HD1K [KNHK+16] | 91.0

mix
97.7
76.5
90.8
94.6
92.0

KITTI

Ccr

97.8
74.6
86.7
92.3
90.6

97.9
76.9
89.6
95.2
92.8

st
96.2
73.3
90.6
92.9
90.8

FT3D Driving Sintel HDI1K MB ETH3D
sf mix cr fl st sf mix cr fl st mix fl st ‘ fl ‘ fl st ‘ st
914 91.5 90.1 935 90.1 | 68.6 70.7 64.5 66.7 75.7| 90.0 89.3 90.7 98.5 98.8 90.3 95.5
95.1 955 93.7 96.7 944 | 574 60.8 51.7 51.8 71.5 |95.3 92.7 953 | 97.5 | 96.8 822 96.7
89.9 90.0 89.1 920 885 | 752 758 742 746 T76.7| 88.7 89.0 88.7 | 97.0 | 99.2 859 92.7
92.7 92.8 91.6 94.2 91.8 | 59.8 62.7 55.2 55.6 70.8 92.3 92.7 93.0 97.2 99.5 914 94.2
91.6 91.7 90.7 937 903 | 66.2 68.2 640 67.0 69.7 | 88.7 88.0 88.0 99.5 | 99.0 89.3 95.9
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5.1. Deep Pixel Representations for Dense Matching

the other in terms of generalization. Both models perform similarly on all test
data sets. There is also no sign that YUV or RGB color promote the training
process. To answer the second question, two models are trained on KITTTI,
one with the original RGB color and one with gray scale converted images to
match the color space of HD1K. Intuitively, is is assumed that the gray scale
model performs better when evaluated on a gray scale data set like HD1K.
Contrary, the result of the experiment shows that the color model achieves a
higher accuracy on HD1K data compared to the gray scale model. However,
when swapping training and evaluation data, the model trained on HD1K
performs better on KITTTI if the test images are converted to gray scale.

Scale. In a similar fashion, the influence of scale spaces is studied. HD1K
images have a much higher resolution compared to KITTI (cf. Table 5.6), thus
the receptive field of the SDC network (81 x 81 pixels) covers a much smaller
part of the visible scene; even more so because the field of view (FOV) of
the camera device is smaller (69 ° instead of 90 °). Again, the assumption is
that shifting the scale for the training domain towards the scale of the target
domain, improves the transfer. Once more, in contrast to the expectation, a
model trained on down-scaled HD1K data does not perform better on KITTI
compared to a model trained on full resolution images. Here, the inverse
experiment (KITTI model evaluated on full resolution and down scaled HD1K
data) indicates also that images should not be scaled to achieve better domain
transfer. This might be due to artifacts introduced by the scaling.

Nonetheless, scale is important for detection and matching. The SDC
network is specifically designed to deal with varying scales by the use of parallel
convolutions with different dilation rates [SWUS19]. Table 5.8 shows some
baseline descriptors, the original SDC network, and SDC trained on image
patches extracted at multiple scales (multi-scale), all evaluated on multiple
scales of the KITTI data. The heuristic descriptors (SIFT [Low99], DAISY
[TLF10], BRIEF [CLSF10]) show an almost quadratic loss in performance
when the image size decreases, even if they are supposed to be scale-invariant.
For increased image scale, they perform better. It is presumed that this is
because smaller patches show fewer deformations, or other variations between
viewpoints. The implicit multi-scale design of SDC performs extremely well on
different scales, with only a small drop in accuracy. For SDC, the performance
drops also when the input is up-sampled. This is not surprising since the
dilation rates can only simulate smaller scales. A model explicitly trained on
multi-scale data amplifies the scale invariance even more, showing almost no
degradation of the accuracy when the scale changes.

Normalization. Standardization of the input is useful to remove any bias from
the data and to scale features into equal range, making them equally important
for training. A common practice is to remove the mean pixel value and to scale
them so that all channels have unit variance. Surprisingly, standardization is
not crucial to train the SDC network. A model trained on normalized images
performs as well as a model trained on the original image data.
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Table 5.8.: Multi-scale behavior for different descriptors.

Descriptor ‘ x2 Original  x0.5  x0.25

Multi-scale 96.60 97.30 96.85 96.60
SDC [SWUS19] | 94.55 97.25 96.70  93.90

BRIEF [CLSF10] | 95.00 94.00 90.50 82.15
DAISY [TLF10] | 92.80 91.25 88.15  80.80
SIFT [Low99] 93.90 89.90 81.95 73.65

Anyway, normalization might also be useful to boost transfer learning by
adjusting the pixel distribution to better fit the target domain. This, of
course, is only possible if imagery for the target is available at the time of
training. When training on a single domain, experiments showed that neither
normalization nor a distribution shift help to better generalize to unseen
domains. Yet, when training with a mixture of data (as done in the original
SDC network), standardization for each training data set separately improves
the performance on unseen domains if the test data is also standardized
according to its own statistics. For training on multiple domains, a unified
normalization based on the pixel distribution of the entire data works also very
well and is favorable if a single, unified model for different domains is required.

5.1.6. Conclusion

Based on the observation that dilated convolution is related to sub-scale filtering,
a novel neural network layer is designed by stacking multiple parallel dilated
convolutions (SDC). These SDC layers are combined to a new architecture
that can be used for image feature description. For all experiments, a single
unified network for all data sets and algorithms is used. The SDC features
outperform heuristic image descriptors like SIFT and other descriptor networks
from previous works in terms of accuracy and robustness. In a second set of
experiments, the SDC feature network is applied in different matching tasks
on many diverse data sets and it is shown that the deep descriptor improves
matching for stereo, optical flow, and scene flow drastically yielding a better
final result in the majority of cases.

The analysis of the network and its feature representation brings insights
into the weaknesses of SDC features, which motivate some adjustments of the
training schedule. Proper weight initialization and hard mining during the
computation of the loss improve the accuracy and speed up training by a factor
of about 4. More balanced region sampling during the generation of training
data or learning rate disruption do not improve the network’s performance.
The evaluation of similarity of different domains gives useful directions to
improve the process of domain adaption and the training on multiple data
sets. Also, the influence of color, scale, and normalization is investigated. The
excellent scale invariance of SDC is boosted even more by dedicated multi-scale
training.
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For future work, it will be interesting to improve the feature description
to make use of all feature dimensions and to explicitly model a measure of
uncertainty or matching likelihood of image points.

5.2. Deep Scene Flow Interpolation

The problems of interpolation and extrapolation have a long history in mathe-
matics and computer science. In this thesis, interpolation finds its application
in 3D motion estimation [SWKB+18; SWUK+20].

As described in Chapter 4, in high-level computer vision there are also other
problems that benefit from a formulation as a sparse-to-dense problem, e.g.
optical flow estimation [BTS15; BTS19; GS03; HLS17; HSL16; LWAS+12;
NMO03; ORBH18; RWHS15; WZLY+19; ZW17]. Other tasks embody this
characteristic naturally, e.g. depth completion where it is the goal to densify
sparse LiDAR measurements with respect to a reference image [CWY18;
JDWP+18; MCK19; TTFL+20; USSF+17].

The strategies of previous work are quite distinct for motion field interpo-
lation and depth completion. While the first focuses on hand-crafted models
and piece-wise patches extracted from edge information (cf. Chapter 4), the
latter fully relies on deep neural networks often neglecting the information of
the corresponding image, or not using its full potential. With the learning
capabilities and inherent parallelism of the data-driven approach, this section is
supposed to push the limits of motion field estimation towards higher accuracy
and speed. At the same time, previous ideas from depth completion shall be ex-
tended and combined into a model that works equally well on different domains
and applications. This exposes novel challenges like effective mechanisms for
handling sparse data with different patterns or densities, efficient strategies for
guidance from dense image information, or suitable fusion of heterogeneous
data (e.g. image and depth feature representations).

To solve the aforementioned challenges, Sparse Spatial Guided Propagation
(SSGP) [SWUS21] is proposed, which is the combination of efficient, spatially
invariant, image-dependent convolutional propagation and sparsity-aware con-
volution. This key concept is used in a generic sparse-to-dense encoder-decoder
with full image guidance at every stage. The overall contribution consists of
the following;:

* A unified architecture which performs sparse-to-dense interpolation in differ-
ent domains, e.g. interpolation of optical flow, scene flow, or depth.

e A proper architectural design that leads to excellent robustness against noisy
input or changes in the input density.

e Appropriate image guidance to resolve the dependency of previous flow
interpolators on edge maps.

* A modification of existing spatial propagation that saves a vast amount of
trainable parameters and improves generalization.

» Exhaustive experiments to validate all the above claims and to compare to
state-of-the-art where in several cases SSGP produces top results.
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5.2.1. Sparse-to-Dense Interpolation in the Literature

Sparse-to-Dense Motion Estimation. The interpolation of sparse points to
a dense motion field dates back to at least [GS03; NMO03]. A practical approach
for large displacement optical flow is introduced by EPICFlow [RWHS15].
The authors make use of image edges computed with SED [ZL15] to find
local edge-aware neighborhoods of previously computed, sparse flow values.
Based on these neighborhoods, an affine 2D transformation is estimated to
interpolate the gaps. Later, this concept is improved by RICFlow [HLS17] to be
more robust by using small superpixels and RANSAC in the estimation of the
transformation. In Chapter 4, both interpolators for optical flow are transferred
to the higher dimensional scene flow setup. These are the interpolation modules
of SFF [SWKB+18] and SceneFlowFields++ (SFF++) [SWUK+20], which
are refered to as EPIC3D and RIC3D respectively. SemFlow [WZLY+19]
extends the above concepts for interpolation of optical flow by the use of
deeply regressed semantic segmentation maps. These maps replace the edge
information used in EPIC or RIC to improve the measure of similarity within
connected neighborhoods of input matches. However, this approach is heavily
dependent on semantic segmentation algorithms and thus not suitable for all
domains and data sets. Lastly, InterpoNet [ZW17] is another recent approach
that considers deep neural networks for the actual interpolation task. Yet,
InterpoNet still requires an explicit edge map as input.

In contrast to all interpolation modules mentioned, SSGP performs dense
interpolation at full resolution for a multitude of problems (i.e. it is not
restricted to optical flow or scene flow) and utilizes a trainable deep model
(i.e. it is not subjected to hand-crafted rules or assumptions and provides
significantly better run times). Additionally, the existing approaches highly
depend on an intermediate representation of the image (edges, semantics).
SSGP operates on the input image directly and resolves this dependency.

Depth Completion. Most recent related work (especially in the area of deep
learning) is concerned with depth completion. In this field, literature differen-
tiates between unguided and guided depth completion. The latter utilizes the
reference image for guidance. In the setup of guided depth completion, novel
questions arise which are also highly relevant for this work, e.g. how to deal
with sparse information in neural networks or how to combine heterogeneous
feature domains. SparseConvNet [USSF+17] introduces sparsity-invariant
CNNs by normalizing regular convolutions according to a sparsity mask. This
work also introduces the Depth Completion Benchmark to the KITTI Vision
Benchmark Suite [GLU12]. Later, confidence convolution [EFK19] is presented,
another strategy for the handling of sparsity. In this case, the authors replace
the binary sparsity mask with a continuous confidence volume that is used to
normalize features after convolution.

Another promising strategy is the use of spatially variant and content
dependent kernels in convolutional networks [LHAY16; WZZH18]. This idea is
successfully used by [LDGZ+17] for semantic segmentation and later by CSPN
[CWY18] for the refinement of already densified depth maps. Most recently,
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GuideNet [TTFL+20] has applied the same idea for the densification of sparse
depth maps itself. In all cases, the idea is to predict per-pixel propagation
kernels based on the image (or a feature map) directly instead of learning a
spatially invariant set of kernels that is likewise applied to every pixel of the
input.

The proposed approach makes use of the two latterly presented concepts,
namely awareness and explicit handling of sparsity as well as learning of
spatially variant and image-dependent convolutions. Both ideas are combined
in the novel, sparsity-aware, image-guided interpolation network that uses a
new Sparse Spatial Guided Propagation module.

Other Interpolation Tasks. Lastly, there are more computer vision problems
that are remotely related, e.g. image inpainting which is also a problem of
interpolation. However, for image inpainting the challenge usually lies within
the reconstruction of the texture. For the interpolation of geometry or motion,
the expected result is piece-wise smooth and thus the problem is rather to
find semantically coherent regions. Still, related ideas can also be found in
the field of image inpainting, where e.g. in [LRSW+18] partial convolutions
are used, which is the same idea for the handling of sparsity as in [USSF+17].
Similarly, the task of super-resolution can also be posed as an interpolation
problem with a regular pattern of sparse input. Though theoretically, SSGP is
directly applicable to this family of problems, super-resolution goes beyond the
scope of this thesis and might be easier to be solved with other approaches.

5.2.2. Interpolation Network

As motivated earlier, a deep neural network is used for the task of sparse-to-
dense interpolation. The network has to be equipped with an appropriate
mechanism to handle sparsity, otherwise the considerably large gaps in the used
sparse-to-dense motion estimation pipelines can lead to significantly deterio-
rated feature representation in these regions. For the same reason of large gaps
in motion fields (contrary to e.g. depth completion where LiDAR measurements
follow a predictable pattern of rotated scan lines), the network architecture
has U-Net [RFB15] structure. This way, even large gaps are effectively closed
after a few layers of the encoder, leading to a dense representation at the
bottleneck. Additionally, to inject a maximal amount of guidance through the
entire sparse-to-dense codec, image information is used to compute spatially
variant propagation kernels that are applied for densification by convolutional
propagation in the sparse encoder, and for guided up-sampling in the dense
decoder. These guidance kernels are computed from the RGB image within a
feature pyramid network with skip connections, for high expressiveness and
accurate localization.

In summary, the interpolation network consists of four components. Firstly,
the RGB codec for computation of image-dependent and spatially variant prop-
agation kernels. Secondly, a sparse, spatial propagation module that is likewise
used within the encoder and decoder of the sparse-to-dense codec. Thirdly,
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the u-shaped sparse-to-dense network that applies the propagation module for
guidance and considers sparsity throughout. Lastly, a dense refinement module
to further improve the dense result. The combination of all elements — the
sparse-to-dense interpolation network — is visualized in Figure 5.15.

RGB Codec

The purpose of the RGB codec is to provide a well-shaped feature representation
of the image that fits the according level of the sparse codec. Therefore it
mimics the shape of the sparse codec and has the same number of levels [ in
the encoder and decoder as the interpolator. The image are pre-processed by
a regular 1 x 1 convolution and is then passed through ! down-sampling blocks.
Each consists of four 3 x 3 convolutions where the third convolution applies a
stride of 2 to sub-sample the representation. After one additional convolution at
the bottleneck, the representation of the lowest resolution is passed through [ up-
sampling blocks. Again, each of these blocks consists of four 3 x 3 convolutions,
but this time the second one is a transposed convolution with a stride of 2 for
up-sampling. After up-sampling, the intermediate feature representation gets
concatenated with the next higher resolved level of the encoder, i.e. regular
skip connections to reintroduce localization into the feature maps. In this
architecture, the number of output channels is gradually increased as the spatial
resolution is reduced, which is a common practice for low resolution feature
embeddings. The setup uses [ = 6 pyramid levels with fully symmetric feature
depth of 32, 32, 48, 64, 80, 96, and 128. An overview of the RGB codec is
shown in Figure 5.15a.

Finally, two affinity blocks are branched from each level of the decoder to
predict the spatially variant, content-dependent kernels for each scale. One
affinity block consists of two convolutional layers. One layer is used for
pre-transformation, and one to predict a single K x K kernel per pixel for
propagation in the sparse-to-dense codec. Please note that different sets of
propagation kernels are predicted for the encoder and the decoder of the sparse
codec, i.e. weights are not shared for the two affinity blocks at each level of
the RGB decoder. For reasons of memory consumption and computational
efficiency, the propagation kernels have a size of K = 3. Contrary to existing
work [CWY18], SSGP uses a single, flat affinity map independent of the number
of feature channels to propagate. This reduces the total number of parameters
significantly and effectively diminishes over-fitting during fine-tuning on small
data sets.

Sparse Spatial Propagation

The previously computed multi-scale feature maps, affinity maps, and prop-
agation kernels are now used within the sparse spatial propagation module.
Consider an arbitrarily shaped H x W x C' feature representation S of the
sparse input along with a binary sparsity mask M of shape H x W x 1 and a
feature representation F of the guidance image of the same spatial size (and
potentially a different number of feature channels). The affinity block of the
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previous section transforms the image features F into a set of propagation
kernels /C of the shape H x W x 1 x K2, For the sake of affinity and propagation,
the center pixel of the propagation kernels is fixed to 1, i.e. isolated sparse
points are not altered. These kernels are then applied in a channel-wise K x K
convolution with the sparse representation S to spread the information into the
neighborhood according to the image features. In GuideNet [TTFL+20] one
set of kernels is predicted for each feature channel of the sparse input, which
leads to the necessity of depth-wise separable convolutions [Chol7]. Other than
that, here a single affinity map is predicted, which results in the natural use
of depth-wise convolution for practicability and efficiency. After channel-wise
spatial propagation, a 1 x 1 convolution is performed to mix the propagated
input dimension and expand (or compress) the representation to a new feature
depth. Further and in contrast to existing methods using convolutional spa-
tial propagation, sparsity-awareness is explicitly modeled in the propagation
module. Towards this end, the idea of sparse convolution from [USSF+17]
is adopted and the sparsity mask M is utilized to normalize the propagated
features. By that, only valid information is spread according to the guidance
image to fill in the gaps. Formally, the output of the sparse spatial convolution
of § with K for a single pixel and a single channel c is

< ZijewSeijKij
Sc = 5
i jew Mi

(5.2)

whereas W is the k x k window around the pixel under consideration. The
normalization and the propagation kernel are independent of the feature channel,
i.e. there is only a single 1-channel mask M and a single set of kernels K for
the entire feature volume. This relationship is also visualized in Figure 5.15d.
The entire concept expands directly to arbitrary batch sizes.

Image-guided Sparse-to-Dense Codec

The RGB codec and the sparse spatial propagation module enable an efficient
way to introduce image guidance to the interpolation network. All convolutions
of the sparse-to-dense codec make use of the sparse convolution as presented
by [USSF+17]. Sparsity masks are used throughout the entire sparse codec
which makes it easy to verify that full density is reached by the end of the
decoder by the latest (usually already at the bottleneck), i.e. all pixels are
filled with information from the initially valid points. As with the RGB codec,
the sparse input is pre-processed with a sparse 1 x 1 convolution. Then, [
sparse down-sampling blocks are applied. These blocks consist of the sparse
spatial propagation module that applies the spatial guidance kernels from the
RGB decoder, followed by a 1 x 1 convolution to complete the depth-wise
separation of the spatially variant guidance. The last step within this block is
a sparse average pooling layer with a kernel size of 3 x 3 and a stride of 2 to
perform the sparse sub-sampling. Again, a single 3 x 3 convolution is applied
at the bottleneck. Starting at lowest resolution from the bottleneck, ! guided
up-sampling blocks are passed through. As with the down-sampling, the first
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part of these blocks is the depth-wise separated sparse spatial propagation.
Then, the feature representation along with its validity mask are up-sampled
using nearest-neighbor interpolation to avoid mixture with invalid pixels in
case some are still remaining. Lastly, skip connections are established from the
next higher resolution of the sparse encoder. The skipped encoder features are
summed up with the decoder features to avoid reintroduction of sparsity into
the feature representation and merged in another 3 x 3 convolution.

At full input resolution of the decoder pyramid, one additional sparse spatial
guided propagation is performed, followed by three more convolutions for final
decoding. The first two of these are of size 3 x 3, the other’s size is 1 x 1. The
last two have linear activation to allow a final prediction of negative motions.
Theoretically, the two linear activated convolutions could be folded into a single
one. However, the explicit separation leads to a faster convergence initially,
probably due to better initialization by separation. Another advantage of
using sparse convolution is that (especially during the decoding) no negative
boundary effects are introduced, because the sparsity mechanism can treat
padded areas as invalid.

Dense Refinement

At the end of the sparse-to-dense codec, a dense result in the respective target
domain is already obtained. However, following the idea of CSPN [CWY 18],
the result is further refined using spatial propagation for filtering. Since the
RGB codec already provides a strong feature representation, these features
can be transformed into affinity maps for each output channel using a single
3 x 3 convolution. The kernels extracted from the affinity maps are further
transformed to introduce stability as in CSPN [CWY18]. The dense results
are then refined during 10 iterations of spatial propagation.

5.2.3. Data, Training, and Implementation Details

Data Sets. The KITTI data set [MG15] only provides 200 annotated images
for scene flow and optical flow. To overcome this issue, synthetically generated
data is used, i.e. the FT3D data set [MIHF+16]. This data is shown to be
irreplaceable for pre-training [IMSK+17; MIHF+16; SSWS19; SYLK18]. Next
to KITTI and FT3D, Sintel [BWSB12] provides a trade-off between realism
and size, though only for optical flow. Additionally, HD1K [KNHK+16] is
used for extended experiments with interpolation of optical flow. For depth
completion, the KITTI Benchmark Suite [GLU12; USSF+17] offers a larger
and yet more realistic data set that provides labels for about 45000 stereo
image pairs.

For all results in Section 5.2.4, the experiments are performed on a randomly
selected validation split which is not used for training. In particular, these
sets are the 20 sequences 4, 42, 46, 65, 92, 94, 98, 106, 115, 119, 121, 124, 146,
173, 174, 181, 184, 186, 190, 193 on KITTI, the original val_selection_cropped
split from the KITTI depth completion data, the sequences alley_2, ambush_4,
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Figure 5.16.: Different patterns for random sparsification. Yellow indicates selected
pixel, remove pixels are purple.

bamboo_2, cave_4, market_5 for Sintel that sum up to 223 frames, and the
sequences 0, 5, 15, 16, 18, 19, 27, 31 for HD1K.

Automatic Sparsification. For large size data sets like FT3D, it is infeasible
to compute the actual sparse input of existing sparse-to-dense pipelines, due
to the high run times of several seconds up to one minute per frame. Instead
and because FT3D is only used for pre-training, a randomized sparsification
process is introduced to simulate the sparse or non-dense input for interpolation.
Various strategies are implemented to remove parts of the dense ground truth,
of which one is randomly selected during training as part of the augmentation.

* Removing a uniformly random sampled ratio between 50 an 99 % of the
dense input. This simulates a sparse pattern (isolated points) at different
levels of sparsity.

* Removing a boundary frame at the edges of the ground truth with a random
thickness of 10 to 25 % of the smaller spatial dimension. This simulates
the common pattern of out-of-bounds motion that originates from fast ego-
motions.

* Removing randomly oriented stripes with randomized thickness.

* Removing randomly sized circles at random (possibly overlapping) positions
until 5 to 50 % are left. Both previous strategies provide a trade-off between
large gaps and large valid information that do not align with the image
content.

» Sampling sparse points in a quadratic grid with a random number of 4 to 64
horizontal lines and points per line. This roughly mimics the pattern of a
very sparse LiDAR sensor.

* Removing randomly dilated regions around the motion discontinuities as
provided by FT3D. This forces the network explicitly to learn interpolation
boundaries based on the image information.

* Removing object regions from a randomly sampled sequence and frame of
FT3D, to have irregular shaped large gaps.

Some examples of the automatic sparsification are given in Figure 5.16.
Additionally, random Gaussian noise (o = 2 px) is added to all remaining valid
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pixels to simulate inaccuracies of a real matching process. For the experiments
on optical flow and scene flow interpolation, SSGP is first trained on FT3D
[MIHF+16]. The KITTI depth completion data set is sufficiently large to
train on it directly. Pre-training is performed for one million iterations which
corresponds to approximately 64 epochs. Afterwards, training is continued
on the respective target domain and task with the pre-trained weights for
initialization. For pre-training, photometric image augmentation is applied as
in [DFIH+15].

Loss Function. The objective for training depends on the specific interpo-
lation problem at hand. For motion fields, the average Euclidean distance
between predicted § and ground truth s motion vectors is minimized.

1 A
£flow = % Z HS - 8” (53>
Nar séar

This loss function is equally used for optical flow @1 and scene flow §. For single
valued depth, the mean squared error between ground truth D and prediction
D is optimized.

1 .

2
Ldepth = D - D) (54)

Ner DeGT

More Details. Except for the two final linearly activated layers, ReLU ac-
tivation [GBB11] is used for all convolutional layers. Adam [KB15] with an
initial learning rate of 107 is used. The learning rate is continuously reduced
with an exponential decay rate of 0.8 after every 10 % of the total number of
steps. Due to hardware constraints, the training is limited to a batch size of
1 for all experiments. For training stability and improved generalization, all
input of the network is normalized according to the statistics of the respective
image and sparse data to zero mean and unit variance.

5.2.4. Experiments and Results

Three sets of experiments are presented. The first one is an ablation study
on the different components of the architecture to clarify the contributions
and validate the impact. Then, the robustness of SSGP is demonstrated in
terms of noisy input, wrong input, changes of density of the input, and padding
artifacts. Lastly, SSGP is compared to state-of-the-art on various data sets
and interpolation tasks.

For flow interpolation, the metrics under considerations are the ones described
in Section 2.3.2. For depth completion, the default mean absolute error (MAE)
and the root mean squared error (RMSE) are measured.

To obtain the sparse input for the experiments with optical flow, the promi-
nent FlowFields (FF) [BTS15] or its extension FlowFields+ (FF+) [BTS19] are
used along with their competitor CPM [HSL16]. There is also a longer history
of sparse matching techniques in optical flow [HS12; WRHS13]|. However latest
interpolation approaches [HLS17; RWHS15] show that these are superseded by
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Table 5.9.: Ablation study. Different concepts for sparse-to-dense interpolation of
LiDAR measurements are compared on the validation split of KITTI.
Mean absolute error (MAE) [mm], root mean squared error (RMSE)
[mm], number of parameters (Params, x10°) and floating point opera-
tions (FLOPs, x10°) are presented.

Guide Sparse Flat Refine | MAE RMSE Params FLOPs

none yes yes no 356 1171 0.93 41.2
enc yes yes no 312 1013 4.32 148.5
dec yes yes no 289 953 4.47 149.5
full yes yes no 288 957 4.61 156.9

enc no no no 280 929 6.49 250.1

full yes no no 276 915 10.14 382.4
full no no no 270 910 10.14 381.3
full yes yes no 288 957 4.61 156.9
full no yes no 267 908 4.61 155.8

full yes no yes 260 892 10.15 384.7
full no no yes 251 881 10.15 383.6
full yes yes yes 260 910 4.61 159.2
full no yes yes 248 877 4.61 158.1

the FlowFields family or CPM. The similar matching concepts for scene flow
correspondences of Chapter 4 are used as input for the experiments on scene
flow. To the best of the author’s knowledge, these are the only approaches
which have tested the sparse-to-dense approach for scene flow. For the problem
of depth completion, the sparse input is obtained directly from a LiDAR sensor.

Ablation Study

Part of the contributions is the combination of sparsity-awareness and efficient
spatial propagation for full guidance into an end-to-end interpolation network.
Therefore in this section, SSGP is compared to equivalent networks that differ
only conceptually from its design. All the results of the ablation study are
reported in Table 5.9. As a first step, it is validated that the fusion of image
data into the sparse target domain (image guidance) is beneficial, especially
when image data is available anyways. Towards this goal, an unguided version
of the sparse-to-dense codec is evaluated, i.e. the input image is not used
at all and the RGB branch is removed. Whenever the ablation removes the
Sparse Spatial Guided Propagation, it is replaced by a spatially invariant 3 x 3
convolution. Different variants of guidance are tested as well. Guidance is
removed from either the encoder or decoder of the sparse-to-dense codec and the
results are compared to the fully guided approach. It is obvious that guidance
improves the results significantly. Furthermore, guidance in the encoder alone
(enc) performs not as good as in later stages of the network (dec), or during all
stages (full). The latter two variants perform on a par, but it is observed that
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full guidance improves the results in difficult scenarios without much additional
computational effort.

Besides networks which use regular convolution wherever SSGP uses sparse
convolution (sparse), also networks which compute either a full affinity volume
for guidance or a single affinity map (flat), are compared. Because LiDAR
measurements have a quite regular pattern across all samples, the network
variants without sparse convolution perform slightly better in general than the
versions with sparse convolution. Anyways, in the next section it is shown
that sparse convolution introduces higher robustness in case this property is
not fulfilled. The flat versions reduce the network size and computational
complexity by more than 50 % without much loss of accuracy. In fact, the
version with flat guidance and regular convolutions performs the best. In later
experiments with smaller data sets, the impact of flat guidance is found to be
even more effective in reducing over-fitting. Lastly, dense refinement improves
the results for all variants with very little increase in the number of parameters
or Floating Point Operations (FLOPs).

The fifth row in Table 5.9 represents a setup which is conceptually comparable
to GuideNet [TTFL+-20], i.e. guidance is only used in the encoder, the network
is not sparsity-aware, and guided propagation uses the full affinity volume.
This setup is called GuideNet-like in the comparisons.

Robustness

In this section, the robustness of SSGP is demonstrated. SSGP is evaluated
when the input is deteriorated with random noise, and when the density is
reduced by random sampling. Both results are presented in Figure 5.17. For
the experiment with noisy input, random Gaussian or Laplacian noise with
zero mean and different values of standard deviation o or exponential decay A,
are added to all valid points of the sparse input. Then, the relative increase of
outliers for different levels of noise and different interpolation approaches with
respect to the unaltered input of the interpolated scene flow are compared.
Figure 5.17a clearly shows, that SSGP is extremely robust even to very noisy
input. The outlier rate is maintained almost constant, while the competing
methods perform considerably worse even for small amounts of additive noise.

In a second experiment, it is validated that the contribution of sparse
convolution during guided propagation and the rest of the sparse-to-dense
codec introduces higher invariance to the level of sparsity. Towards this end,
depth completion and scene flow interpolation are performed with randomly
sparsified input. Results are presented in Figure 5.17b. The increase of errors
for the sparsity-aware model is about 50 % less when considering very sparse
depth measurements. For SSGP on scene flow data (SF'), the impact of the
sparisfication is neglectable until exceeding less than 5 % of the original density.
Note that all models are trained on the full input density. This improved
robustness also applies to changes in the pattern of the input, e.g. when the
LiDAR measurements are sparsified non-uniformly by one of the patterns in
Figure 5.16.

An additional indicator for the robustness of SSGP is the outlier rejection

105



Chapter 5: Learning-based Replacements for the Sparse-to-Dense Pipeline

- - T T T O
= = Laplacian

- Gaussian

= EPIC3D [SWKB+18]
RIC3D [SWUK+20]

n SSGP

2.5 -

T

Relative SF KOE
o

0 1 2 3 4 5
Noise level (o/\) [px]

(a) Results for scene flow interpolation when the input is superposed with different
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Figure 5.17.: Experiments on the robustness of SSGP. The input is altered with
additive Gaussian and Laplacian noise (a) or random sparsification for
depth completion and interpolation of scene flow (b). The proposed
architecture is most robust to any type or level of degradation.
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Table 5.10.: Evaluation of scene flow interpolation on the validation split of the
KITTI scene flow data set. KITTI outliers (KOE) [%], end-point error
(EPE) [px], and run time [s] are reported.

DO D1 OF SF Run
Input Method KOE EPE | KOE EPE | KOE EPE | KOE XEPE | time

EPIC3D [SWKB+18] || 12.83 1.88 | 17.80 11.49 | 29.62 112.1 | 31.72 1254 1.0

é RIC3D [SWUK+20] 9.88 192 | 13.94 2.79 |15.44 842 |17.45 13.10 | 3.8
SSGP 9.06 1.33 |13.93 1.83 | 20.67 5.04 | 25.19 8.20 | 0.19
EPIC3D [SWKB+18] || 6.74 1.30 | 10.83 1.96 | 15.65 6.23 | 17.91 9.49 1.0
RIC3D [SWUK+20] 591 129 | 7.24 153 | 9.80 3.33 |11.50 6.15 3.8
SSGP 5.71 1.04 | 989 1.45 | 12.39 3.00 | 16.61 5.50 | 0.19

SEF+-+
+ SDC

rate (ORR), i.e. the percentage of input that is classified as scene flow outlier
before interpolation, but is corrected during interpolation. Considering input
from SFF and SFF++, EPIC3D achieves ORRs of 51.2 % and 40.3 %, RIC3D
achieves 64.2 % and 55.7 %, and SSGP yields ORRs of 67.6 % and 56.7 %.

To show the robustness of sparse convolution to padding, the errors at
boundary regions of the image are investigated. While the GuideNet-like
variant obtains an MAE and RMSE of 186 and 505 mm in regions which are
less than 10 px away from the image boundary, the full setup of SSGP achieves
140 and 448 mm.

Interpolation

Scene Flow. As first application to the interpolation network, the sparse
matches from Chapter 4 of SFF and SFF++ (together with the SDC feature
descriptor from Section 5.1) are used for the interpolation into dense scene flow.
The results are computed on the KITTI data set [MG15] and are compared
to EPIC3D [SWKB+18] and RIC3D [SWUK+20] which are the heuristic
two-stage interpolators of SFF and SFF++4, respectively. Both use additional
edge information of the scene. Results are given in Table 5.10.

SSGP achieves competitive performance to previous methods, though being
significantly faster. In the interpolation of initial disparity (D0), SSGP outper-
forms the baselines. Further, SSGP performs comparatively well in the EPE
metric, which was also the objective function during training.

Optical Flow. For the experiments related to optical flow, multiple data
sets are used for the evaluation, namely KITTI [MG15], HD1K [KNHK+16],
and Sintel [BWSB12]. The method and state-of-the-art are evaluated for two
kinds of input matches generated from FF+ [BTS19] and CPM [HSL16]. The
proposed approach is compared to EPICFlow [RWHS15], RICFlow [HLS17],
and InterpoNet [ZW17]. Note, that all three methods use additional explicit
boundary information, while SSGP operates on the raw image. A visual
comparison for a cropped frame of KITTI is presented in Figure 5.18. In this
example, SSGP presents a globally consistent result, even in the static part
of the scene, where small deviations have most impact in the visualization.
SSGP shows the most accurate and sharp object contours, even though it is not
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Figure 5.18.: Visual comparison of interpolated optical flow on the KITTI data
set.
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Table 5.11.: Evaluation of interpolated optical flow. Tests are on the validation
splits of the KITTI, HDIK, and Sintel data sets. Outlier rates (KOE)
[%], end-point error (EPE) [px], and run time [s] are reported.

Sintel

KITTI HD1K clean final Run

Input Method KOE EPE | KOE EPE | KOE EPE KOE EPE | time
= EPICFlow [RWHS15] 24.39 10.04 | 5.43 1.11 9.98 3.84 1394 5.76 0.4

= = RICFlow [HLS17] 21.98 9.91 | 5.02 1.09 | 9.17 4.05 13.60 5.88 2.8
(Q_')' % InterpoNet [ZWl?] 40.38 12.81 | 12.3 2.36 | 1494 4.75 18.09 6.24 0.3
_ SSGP 20.26 5.02 | 4.32 0.83 | 1497 5.63 20.33 7.27 | 0.16
= EPICFlow [RWHS15] 23.97 11.34 | 5.55 1.21 11.25 5.05 15.99 7.26 0.4

+ RICFlow [HLS17] 20.46 10.17 | 4.88 1.07 | 10.59 5.59 15.82 8.19 2.8
E E InterpoNet [ZW17] 37.08 11.34 | 13.1 235 | 16.49 5.7 20.51 7.64 0.3

SSGP 20.34 5.21 | 4.54 0.85 | 16.53 6.55 2220 8.43 | 0.16

provided with pre-computed edge information. This highlights the capabilities
of the full guidance strategy. In fact, SSGP is even able to reject wrong matches
in shadows of the vehicles during interpolation.

Table 5.11 compares quantitative results for the entire validation sets. It is
to highlight that SSGP cuts the end-point error on KITTI by about half in
the comparison. On KITTTI also, the outlier rates of SSGP beat all previous
work. For completeness and fairness, it needs to be mentioned that InterpoNet
[ZW17] is evaluated using the publicly available pre-trained weights that have
been fine-tuned on Sintel with input from DF [MHG15] and on KITTI with
matches from FlowFields [BTS15]. However, this indicates that InterpoNet
is not very robust to changes of the input. On Sintel, SSGP is on par with
InterpoNet, but lags behind the other methods. This is likely due to the
limited variance between scenes which makes it hard to train a deep model
for a complex task on Sintel and the more complex motions included in these
scenes. Yet on HD1K, SSGP outperforms state-of-the-art in all metrics while
also being faster.

Depth Completion. SSGP can also be used for the completion of sparse
LiDAR measurements. The entire architecture is trained from scratch on the
KITTTI depth completion data set [USSF+17] and the results are compared to
state-of-the-art in Table 5.12. The network again achieves a competitive result
on yet another challenge, indicating its broad applicability. A visual example
of an interpolated depth map is given in Figure 5.19. It is further noticed that
RIC3D [SWUK+20] (Section 4.2.2), a top-performing method for interpolation
of scene flow, performs considerably worse than any other approach. This
shows, that even though RIC3D is not a learning-based method, it has a strong
dependency on properly selected hyper-parameters.

5.2.5. Conclusion

SSGP successfully combines sparsity-aware convolution and an efficient version
of spatially variant propagation for fully image-guided interpolation. The
network design is applicable to diverse sparse-to-dense problems and achieves

109



Chapter 5: Learning-based Replacements for the Sparse-to-Dense Pipeline

Table 5.12.: Comparison of methods for depth completion on the KITTI benchmark
[USSF+17]. The mean average error (MAE [mm]), root mean squared
error (RMSE [mm]), and run time [ms] are reported for the best
performing, published methods using image guidance out of more than
90 total submissions. Values in gray are computed on the validation

split.

Method MAE RMSE Run time
GuideNet [TTFL-+20] 219 736 140
CSPN++ [CWGY20] 209 744 200

FuseNet [CYLU19] 221 753 90
DeepLiDAR [QCZZ+19] | 227 758 70
MSG-CHN [LYLC+20] 220 762 10

Guide&Certainty [VNDV19] | 215 773 20
PwP [XZSZ+19] 235 77 100
CrossGuidance [LLKK20] 254 807 200
Sparse-to-Dense [MCK19] 250 815 80
NConv-CNN [EFK19] 233 830 20
DDP [YWS19] 204 833 80

SSGP [SWUS21] 245 838 140

Spade [JDWP-+18] 235 018 70
DFineNet [ZNMC+19] 304 945 20

CSPN [CWY18] 279 1020 1000
RIC3D [SWUK+20] 088 2477 1400
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(¢) Ground truth (visually enhanced)

o
R ]
b 3 - ‘
(d) Densified depth with SSGP

Figure 5.19.: An example of depth completion on KITTI [GLU12] data with SSGP.
Even very small details are well preserved.
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competitive performance throughout most experiments, beating state-of-the-art
in interpolation of optical flow in two out of the three data sets and in terms
of EPE for scene flow interpolation. A flat affinity map can be used for spatial
guidance equally well as a full affinity volume, drastically reducing the overall
network size. This strategy for guidance resolves the dependency on explicitly
pre-computed edge information resulting in even more accurate interpolation
boundaries with a globally consistent output that preserves fine details. SSGP
is especially robust against variations of the level of sparsity and sparsity
pattern, or noise in the input.

5.3. Summary

This chapter has introduced two deep modules which are applied in the sparse-
to-dense pipeline. The first module tackles the problem of feature representation
of corresponding image points under prevalent changes of appearance. The
second module deals with the problem of occlusion in conformity with the
sparse-to-dense principle. Both solve the problem of data scarcity by relating
the respective problem to other domains and similar tasks. By that, a broader
range of data from diverse data sets can be used during training. As a result,
higher robustness is achieved, which is further amplified by a task-specific
architectural design. Furthermore, the parallelization of deep neural networks
boost the run time of the replaced modules.
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Chapter 6: Sparse-to-Dense Combination Approach

(a) Reference image at time (b) Estimated disparity at (C) Edges used for interpola-
t. time t+ 1. tion.

(d) Sparse disparity at time (e) Warped, sparse disparity (f) Sparse optical flow from
of (b). ttot+1.

EEE—

(g) Interpolated disparity at (h) Interpolated disparity of (1) Interpolated optical flow.
time t. (e).

Figure 6.1.: Optical flow and stereo disparity are combined to sparse scene flow by

warping. Edge-aware interpolation is used to reconstruct a dense scene
flow field.

The sparse-to-dense concept separates scene flow estimation into independent
steps to allow for easier individual solutions. Analogously, the combination
approach splits the difficult problem of scene flow estimation into several
smaller auxiliary tasks. This way, well-studied existing solutions can be reused
in a modular fashion to obtain scene flow. This strategy is presented and
investigated in this chapter. It is important to note that the sparse-to-dense
concept of this thesis enables a dense estimation of scene flow together with
the combination approach. In general, this was not possible before. Also,
one claim is that the interpolation unifies the auxiliary results to overcome
inconsistencies. Section 6.2 exploits the separation further to reduce the sensor
suite from a stereo camera to a monocular setting.

6.1. Scene Flow from Stereo Disparity and Optical Flow

Because of the complexity of the scene flow problem there exists no applicable
variant for real-time scene flow estimation in an automotive context that is
sufficiently robust and accurate. The combination of top-performing state-of-
the-art optical flow and stereo disparity algorithms is used to achieve a basic,
non-dense scene flow. The sub-tasks can be considered computationally less
expensive and the combination itself is negligible in terms of overhead. In
a first step, a non-dense scene flow result is obtained by a combination of
disparity and optical flow. Its reasonable accuracy and computational efficiency
is demonstrated on the KITTI scene flow benchmark [MG15], where many
previous, dedicated scene flow algorithms are outperformed. Together with a
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6.1. Scene Flow from Stereo Disparity and Optical Flow

considerably fast and accurate interpolation it is possible to reconstruct dense
scene flow.

6.1.1. Similar Approaches and Auxiliary Estimators

In the literature, there are attempts to compute scene flow from a combination
of stereo depth and 2D optical flow, but back then optical flow estimation
was not as advanced as it is now. The pre-computation of depth to generate
input for methods that require RGB-D images for scene flow estimation can
be considered an alternate form of the proposed combination approach, e.g. as
in [HFR14; JSGC15].

Auxiliary Disparity Estimation. Two very popular stereo algorithms are Semi-
Global Matching (SGM) [Hir08] and Slanted Plane Stereo (SPS) [YMU14]
because they achieve reasonable accuracy and speed at the same time. That is
why they are often used as standalone algorithms or for initialization purposes.
Stereo matching in SGM is not using a local nor global neighborhood for
regularization. Instead a semi-global energy formulation which uses eight
different paths radiating from each target pixel location is used, enabling
sharp boundaries, accurate depth estimation and good run time. Because of
occlusions by the camera frustum, it is hard to recover depth for all image
points. Yet, it is possible to detect potentially wrong estimates through
consistency checks. SGM uses a left-right consistency check for two computed
depth maps to localize and remove wrongly estimated values. Thus, SGM
yields a non-dense disparity map. SPS applies the slanted plane model of
[VSR13] to estimate piece-wise planar surfaces of the scene. Given the strong
regularization of planar patches, the method is able to handle occlusions to
some extend, yielding a dense result.

Auxiliary Optical Flow. FlowFields [BTS15] tackles the problem of optical
flow estimation without any regularization, which makes it versatile. It is
tailored to find pixel correspondences for optical flow estimation by propa-
gation and random search with multiple stages of outlier filtering followed
by interpolation with EpicFlow [RWHS15] to reconstruct an accurate, dense
optical flow field. FlowFields+ [BTS19] is the extension of FlowFields that
uses an enhanced matching term. Similar to the stereo algorithms, the full
resolution matching result is filtered to remove outliers. EpicFlow [RWHS15]
is used to fill up the gaps. The latest improvement of FlowFields+ combines it
with the robust interpolation of RICFlow [SBWS18b]. Another version uses
deep learning to match correspondences across the images [BVS17]. These
methods are noteworthy because they were among the first to achieve top
performance across different data sets, which makes them very versatile.

6.1.2. Combination Approach

The standard dual-frame stereo camera setup is used for the recombination,
i.e. two rectified, temporally adjacent frame pairs (see Figure 6.2). These four
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Chapter 6: Sparse-to-Dense Combination Approach

Figure 6.2.: Relation of two stereo image pairs. Superscripts denote the viewpoint
(left/right) and subscripts the time step. The left image at time t = 0
is considered the reference frame. FEach stereo image pair is related
by the according disparity map, while the temporal image pairs are
related by 2D optical flow.

images provide sufficient information to estimate 3D scene flow.

To avoid greater overhead in computation and still estimate a full scene flow
representation in 3D, depth information and 2D flow are combined. Depth is
estimated by stereo disparity using only a single image pair at a time. Motion
information is estimated by optical flow using only consecutive images from
the left camera over time. Both complement each other regarding scene flow.
Optical flow is lacking depth information, and stereo depth can be generalized
to change over time.

Sparse Combination by Warping. Given the camera intrinsics and extrinsics,
full scene flow can be described in image space by optical flow, disparity, and
change of disparity. Consequently, direct computation of optical flow and
disparity solves two sub-tasks of scene flow estimation. What is missing is
the change of disparity Ad;_¢41 that together with the disparity d; yields the
disparity at the next time step d; + Adi_¢+1 for each pixel of the reference
time step. However, a disparity map dyy; with reference to the next time
step can be computed directly and together with the optical flow, that relates
corresponding pixels between both time steps. This disparity map can be
warped back to the reference frame.

diw(z,y) = dipr (x +u,y +0). (6.1)

u(p) = (u,v) are the optical flow components at pixel p = (z,y)?. Bi-linear
interpolation is used to warp disparity values from sub-pixel positions:

dew(z,y) = dea ([2'], [y ]) - (1= {2"}) - (1= {y'})
e (2" + 1,1y ) - {2} (1= {y'}) 6.2)
+de ([2'], [y +1) - (1= {="}) - {9}
+dp (2 + 1, [y ]+ 1) - {2"} - {y'}

whereas p’ = (2/,9')7 with p’ = p + u is the target position of pixel p, and
{z} = — | x| denotes the fractional part of number .
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6.1. Scene Flow from Stereo Disparity and Optical Flow

Thus, (non-dense) scene flow can be reconstructed from optical flow and two
disparity maps. Formally, the reconstruction can be described as

(u(p)”, di(p),drw(p))”, if p+u(p) e and
s(p) = de(p), dt,w(p) valid (6.3)
undefined, otherwise

The remaining problem is that the reconstruction fails if the optical flow
leaves the image boundaries, or where the depth information contains gaps. As
a result, the reconstruction approach produces a non-dense scene flow field (cf.
Figures 6.1d to 6.1f). This is also reflected in the results shown in Table 6.2
where the evaluation results for the originally estimated sparse scene flow ([Est)
and for a dense version (All) that was interpolated by KITTI during evaluation
are presented.

Occlusion Estimation. Furthermore, the warping introduces errors where the
scene is occluded. To overcome this, occluded regions need to be masked. Since
the disparity maps provide depth information, occlusions can be estimated
explicitly. This is done, by comparing depth values of pixels that have the
same target position according to the optical flow, and masking all but the
closest point. It is formalized in Equation 6.4 by

oce(p) = [di(p) < de(p")VD' € Q| p’ +u(p’) » p +u(p)] (6.4)

to obtain a binary occlusion mask occ for each pixel in the image domain €2,
where [e] denotes the Iverson bracket, and sub-pixel optical flow is handled by
rounding. After initial occlusion mask estimation, discretization and rounding
errors are corrected by applying two iterations of morphological closing and
opening. Exemplary results of a warped disparity map are shown in Figures 6.1e
and 6.4.

Interpolation. To fill in all these gaps, the interpolation method of Scene-

FlowFields (SFF) [SWKB+18] (Section 4.1) can be used. Depending on the

auxiliary methods that are used for optical flow and disparity estimation, the

results for these tasks are already dense. Only the warped disparity map d; .,

is non-dense. This leaves several options for the interpolation which are all

compared in Table 6.1:

» Using the default interpolation algorithm of the KITTI submission system
(kitti).

« Interpolating all sub-tasks where d;,, has gaps (full).

¢ Interpolating the 3D motion only (flow + disparity change) according to
local affine 3D transformation models (motion).

* Interpolating the warped disparity only, using the affine 3D transformations
(disp-affine).

* Interpolating the warped disparity map only, using a local plane model
(disp-plane).
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Chapter 6: Sparse-to-Dense Combination Approach

6.1.3. Experiments and Results

Two combinations of auxiliary methods are evaluated. The first is SGM+FF+,
the second is SPS+FF++. For both combinations the non-dense and the
interpolated results are computed and presented in Tables 6.1 and 6.2. Visual
examples of the results compared to other methods are given in Appendix A in
Figures A.1 and A.2. These figures show the color encoded disparity maps and
the optical flow along with the respective error maps. Figure A.2 illustrates
that most errors in the proposed approach are introduced in areas where the
sparse recombination method can not reconstruct scene flow, because motion
leaves the image boundaries (shaded regions in the error maps).

Two major characteristics of the approach are discussed in more detail.
Firstly, as explained before, there is a trade-off between density and accuracy.
Secondly, the combination of stereo disparity and optical flow is fast compared
to previous scene flow algorithms.

Accuracy and Density. Sparsity of course is not a desired result, yet the
non-dense nature of the method leads to accurate results. This can be seen
in Table 6.2 where the sparse results (Est) outperform other methods which
combine stereo and optical flow as well as many of the dedicated scene flow
algorithms. The interpolated results (All) are still better in comparison to
SGM+C+NL [Hir08; SRB14] and SGM+LDOF [BM11; Hir08], two methods
that also combine depth and optical flow to obtain scene flow in a similar way.
This is an expected result because the used optical flow algorithm is ranked
higher in the respective KITTI benchmark [GLU12]. However, interpolation of
sparse scene flow as it is done by KITTI decreases the accuracy significantly.
Other interpolation methods lead to a higher accuracy for dense results as
shown in Table 6.1. Nevertheless, many of the dedicated scene flow algorithms
like e.g. the variational approach of [HD07] are outperformed. In the end, the
achieved density of about 81 % (cf. Table 6.2) is rather high considering that
KITTTI’s data is recorded with a frame rate of 10 which means that large parts
of the visible scene leave the image boundaries at the next time step, even
for slow ego-velocities. In KITTI, density is given by the amount of available
ground truth pixels that are covered by the results. For the non-occluded
areas, 1.e. areas that are also visible in the next frame, a density of 92.42 % is
achieved. Of course there exist methods that are ranked higher in the KITTI
scene flow benchmark. Most of these methods make further assumptions on the
observed scene, which makes them less versatile. Furthermore, these methods
solve scene flow estimation as a single task where geometry and 3D motion are
estimated jointly. This allows for strong regularization mechanisms, e.g. the
piece-wise rigid scene model that is used by [BJMA+17; LBAL+16; MG15;
VSR13]. But typically, the problem formulation in these methods results in a
complex energy term that requires a lot of computational effort to minimize.
This is reflected by the considerably long run times of the top performing
methods on KITTI.
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6.1. Scene Flow from Stereo Disparity and Optical Flow

Table 6.1.: Comparison of different interpolation schemes. Percentage of outliers
on KITTI training data. The sparse result is obtained by combining

SPS+FF++.
Interpolation | D1 D2 Fl SF  Density
sparse 44 83 9.0 127 8423 %
kitti 11.0 175 19.9 23.8 100.0%
full 6.5 12.6 163 19.6 100.0 %

motion 4.9 132 16.7 204 100.0 %
disp-affine | 4.9 132 15.5 20.8 100.0 %
disp-plane 4.9 135 15.5 21.2 100.0%

Dense Results. The different options for interpolation are evaluated in Ta-
ble 6.1. Remarkable about the different concepts is that the joint interpolation
(an exemplary result of this variant is given in Figures 6.1g to 6.1i) produces
the overall best scene flow estimate, though the different sub-results are less
accurate than for some other interpolation strategies (see Table 6.1). This
supports the general paradigm that scene flow should be estimated jointly.
Further, it is to highlight that the sparse combination results are already very
accurate. With the steady improvement of methods for the auxiliary tasks,
scene flow estimation by recombination enhances also. Here, SPS [YMU14] is
used for disparity estimation and FlowFields++ [SBWS18b] for the optical
flow tasks. Both are ranked higher than the respective auxiliary methods
(SGM [Hir08] and FF+ [BTS19]) that are used in [SBWS18a]. Due to this and
because the interpolation algorithm of Section 4.1 is more sophisticated than
the automatic interpolation of the benchmark, the dense scene flow estimate
from stereo disparity and optical flow is also ranked higher (see Table 6.2).

Run time. The second important aspect of the combination approach is the
fast run time. It can be concluded that the overall run time of any recombination
method for scene flow is determined by the time for the computation of depth
and optical flow. In the first case, the 29 seconds originate from 28 seconds
computation time for FlowFields+ and 1 second for disparity computation
for both time steps using SGM. The time of combination can be neglected.
This means that sparse scene flow can be computed in real-time if real-time
algorithms for the stereo and optical flow tasks are used. Even though the two
subsidiary methods are not the fastest in their respective field, the computation
of scene flow from stereo and optical flow is at least two times faster than most
methods and about one order of magnitude faster than the top performing
method (cf. Table 6.2). The run time of the approach using sparse-to-dense
interpolation consists of 29 seconds for FlowFields++ [SBWS18b], 2 seconds
for each disparity map computed with SPS [YMU14], and 3 seconds for dense
interpolation with EPIC3D [SWKB+18].
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Chapter 6: Sparse-to-Dense Combination Approach

Table 6.2.: Results of the public KITTI scene flow benchmark [MG15]. Dual frame
methods, i.e. methods that use only two consecutive frame pairs for
computation are compared. Results are given as the average percentage
of outliers according to the KITTI metric. Results of the non-dense com-
bination approach are displayed for the originally submitted scene flow
(Est) and for the automatic dense interpolation (All) of the submission

system.
Method D1 D2 Fl1 SF Density Run time
ISF [BIMA+17] 4.5 6.0 6.2 8.1 100.00% 600 s
OSF18 [MHG18] 5.3 71 74 9.7 100.00 % 390 s
SSF [RSKS17] 4.4 70 7.1 10.1  100.00 % 300 s
OSF [MG15] 5.8 7.8 7.8 10.2 100.00 % 3000 s
CSF [LBAL+16] 6.0 101 13.0 15.7 100.00 % 80 s
SFF [SWKB+18] 6.6 10.7 129 15.8 100.00 % 65 s
PRSF [VSR13] 6.2 127 138 16.4 100.00 % 150 s
SGM + FF+ (Est) 4.7 106 11.8 19.8 81.24 % 29 s
SPS + FF++ (+EPIC3D) | 6.6 144 16.6 20.7 100.00 % 36 s
SGM + SF [HFR14; Hir08] 6.8 156 21.7 25.0 100.00 % 2700 s
PCOF + LDOF [DPSL16] 85 21.0 183 29.3 100.00 % 50 s
SGM + FF+ (All) 13.4 278 22.8 33.6 100.00 % 29 s
SGM + C+NL [Hir08; SRB14] | 6.8 28.25 35.6 40.3 100.00 % 270 s
SGM + LDOF [BM11; Hir08] 6.8 28.6 39.3 43.7 100.00 % 86 s

6.2. Dense Monocular Scene Flow from Single Image
Depth and Optical Flow

One current trend regarding many applications in assisted or autonomous
driving is the utilization and fusion of as many sensors as available. As a
result, certain approaches have increasing requirements on the hardware in a
product. A different strategy is to solve the same problems based on input
from less sensors, which allows to have the same functionality at lower cost.
This becomes possible by adding constraints or assumptions to the formulation
of the problem, by technical progress, or by relying on more or other visual
cues.

Following the strategy to reduce the sensors, a method to estimate scene
flow in the purely monocular case is proposed. While a single RGB camera
does not provide a geometric cue as in stereo cameras and is also unable
to measure depth directly as a LIDAR or RGB-D camera, this setup poses
scene flow estimation to be a much more difficult problem. To the rescue,
latest developments in single image depth estimation prove that absolute depth
can be reconstructed from a single viewpoint [FGWB+18; GMB17; GMFB19;
LHKS19; OKM19]. This is possible by relying on depth cues like the monocular
motion parallax, defocus blur by the field of depth, perspective transformation
of parallel lines, texture gradients, or the relative size of known objects.

The progress in the field of single image depth estimation is exploited within
the previously introduced combination approach to estimate scene flow in
a monocular setting. Towards that end, 1.) depth is estimated from two
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Figure 6.3.: Overview of the pipeline for monocular dense scene flow estimation.
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single images, 2.) optical flow between these two images is estimated, 3.)
corresponding 3D points are correlated to estimate 3D scene flow, and 4.) gaps
due to occlusions are interpolated to obtain a dense result. The overview of
these steps is given in Figure 6.3. Since the combination approach operates
in a monocular camera setting, the proposed method is termed MonoComb
[SUS20].

6.2.1. Monocular Scene Flow in the Literature

In the early beginning of scene flow estimation the problem has already been
formulated for a monocular camera [VRCKO5], however with a strong depen-
dency on multiple views. There are a few more recent approaches considering
the same setup. In Mono-SF [BAM19], pixel-wise depth distributions are
estimated for both images and then used in a probabilistic optimization frame-
work to estimate rigidly moving, planar segments for the scene. Though the
superpixel segmentation provides a strong regularization and high accuracy,
the assumptions of rigidity and planarity introduce errors depending on the
granularity of the segmentation. Also, the optimization is computationally
heavy. Self-Mono-SF [HR20] uses an adaptation of PWC-Net [SYLK18] that
is trained in a self-supervised manner to jointly estimate 3D position and 3D
flow at a quarter resolution. This method is able to achieve competitive results
after supervised fine-tuning, but the purely unsupervised version lags behind.
Lastly, Optical Expansion (OE) [YR20] exploits the assumption that most of
the change of the projected size of objects is due to the change in distance to
the observer. Therefore the authors argue that the relative motion-in-depth
can be estimated directly together with optical flow. In conjunction with an
estimate for the depth in one frame, the depth at the second frame can be
reconstructed to obtain full scene flow.

Since most of the previous work in monocular scene flow estimation — as well
as the proposed approach — rely on single image depth estimation, this area is
discussed as well. LRC [GMB17] is a self-supervised approach that uses an
encoder-decoder network architecture and trains with a photometric loss and
consistency between the left and right view of a stereo camera. The approach
is refined in MonoDepth2 [GMFB19]. DORN [FGWB+18] proposes to use a
ordinal regression loss instead of a regular regression loss to train a network for
single image depth estimation. This formulation is closer to monocular depth
cues, where it is often easier to order the depth of regions instead of regressing
the absolute depth of each point. BTS [LHKS19] represents state-of-the-art
across different data sets. The idea of BTS is to fuse depth estimates from
multiple scales at full resolution using local planar guidance for up-sampling.

6.2.2. Monocular Combination Approach

The following method is proposed to obtain dense scene flow from a single
monocular image pair I; and Iz, at time steps ¢t and t+1. First, an off-the-shelf
single image depth estimator is used to predict a dense depth map for each
of the images, Dy and Dy, ;. Also, dense optical flow u = (u,v)T from the first
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to the second image is predicted with an auxiliary optical flow estimator. As
before, the optical flow result is directly used within the combined scene flow,
and further to estimate the (non-dense) change in depth, by warping Dy,
towards the reference frame at time ¢t. At this point, a non-dense scene flow is
obtained. Lastly, the gaps which originate during warping are interpolated to
reconstruct the dense scene flow.

Auxiliary Depth and Optical Flow Estimation. In principle, any methods
for depth and optical flow estimation can be used. The performance of the
auxiliary methods directly influence the quality of the final scene flow result.
Therefore in the experiments, state-of-the-art approaches are used. For optical
flow this is VCN [YR19] and HD3 [YDY19], and BTS [LHKS19] for single
image depth estimation.

While for optical flow the publicly available pre-trained weights are used, BTS
is re-trained on the complete KITTI depth data set [GLU12; USSF+17] with a
depth cap of 100 meters. Since the KITTI scene flow data set [GLU12; MG15]
provides scene flow labels for the stereo setup in image space, i.e. disparity
and optical flow displacements, all estimated depth values for a pixel p are
further transformed into (virtual) disparity displacements using the available
focal length f and baseline B of the stereo camera according to Equation 6.5.

di(p) = % (6.5)

Assuming calibrated cameras, both domains are interchangeable since both
provide the necessary geometric 3D information.

Warping and Occlusion Estimation. The auxiliary estimators provide the
basis for the combination approach. However, warping is the actual core and
biggest challenge for the combination method. It is needed to correlate the 3D
information of different pixels to find the shift over time. According to the
previous section, warping is defined as in Equation 6.1.

During warping, target pixels outside of the image domain are ignored
(cf. Equation 6.3) and bilinear interpolation is used to account for sub-pixel
displacements in the estimated optical flow (cf. Equation 6.2). These out-of-
bound regions lead to a non-dense warped disparity. Additionally, some points
move in front or behind others so that not all points visible at time ¢ are also
visible at time ¢+ 1. These occlusions need to be filtered, because they produce
ghosting effects, i.e. duplicated objects, after warping. This is again done by
applying Equation 6.4 with the same post-processing as in Section 6.1.2. An
exemplary result of a warped disparity map and the corresponding occlusion
mask is given in Figure 6.4.

By combining the initially estimated optical flow u, the geometric information
of d;, and the warped disparity d; ., a non-dense scene flow can be obtained.
This intermediate result is analyzed in Section 6.2.3.
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Figure 6.4.: Illustration of the warping process with occlusion handling. The top
images visualizes the geometry (virtual disparity) at time t + 1 after
warping towards the reference frame at time t. The bottom image
shows the two types of obstruction, geometric occlusion (magenta) and
out-of-view motion (cyan), which can be considered as occlusion by
the camera frustum.

Interpolation and Refinement. To recover full density, the gaps of the warped
disparity d;,, have to be filled. The method of choice in the monocular case
is Sparse Spatial Guided Propagation (SSGP) [SWUS21] from Section 5.2.
It can be applied for the interpolation of optical flow, scene flow, or depth
maps and is used to interpolate the gaps in the warped virtual disparity map.
The interpolated output is named d; ;. Because of the inverse target domain
(disparity instead of depth), SSGP is re-trained on the KITTI depth data in
the disparity space. This is achieved by the conversion of all predicted values
and ground truth depth labels with Equation 6.5 during loss computation. An
example for warped, sparse geometry and the interpolated result is given in
Figure 6.5. Note how in this example even the fully occluded bush on the right
side is reconstructed reliably by the image guidance of SSGP.

In the experiments in Section 6.2.3, it is shown that the interpolation is
able to reconstruct full density (with respect to the image resolution) and
additionally to improve the predicted geometric information compared to
the warped, sparse result. This is mostly attributed to a correction of the
absolute scale of depth (virtual disparity) and is similar to the two-stage depth
estimation in Mono-SF [BAM19] where a dedicated network for re-calibration
refines the initial depth estimates.

However, the observation that SSGP improves the results beyond interpola-
tion suggests that this step might also improve already dense input, i.e. the
(virtual) disparity estimate at time ¢. For this reason, the full model processes
the dense estimate d; with SSGP before combining it into dense scene flow (cf.
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Figure 6.5.: Visualization of a depth (virtual disparity) estimate of the validation
split before and after interpolation with SSGP [SWUS21] (Section 5.2).
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Figure 6.3). The refined disparity map is termed d,..
Lastly, all separate results (u,d;,,d;) are combined to form dense scene
flow (in image space).

6.2.3. Experiments and Results

In the experiments, the monocular combination approach is evaluated step-
by-step — starting from the initial estimates until dense scene flow — and then
compared to state-of-the-art on the KITTI scene flow benchmark [GLU12;
MG15]. The auxiliary model for monocular depth estimation is trained with
the KITTI depth data set, which is much larger. These two data sets are
related by an intersection of 142 sequences of the labeled training sets. The
remaining 58 sequences are defined as the validation split for the experiments.
The full list of these sequences is available in the official development kit of
the KITTI scene flow data set.

Ablation Study

In the ablation study, separate parts and intermediate results of the approach
are evaluated individually. The results are presented in Table 6.3. In detail,
the re-trained BTS [LHKS19] with disparity transformation is tested on the
validation set and a small improvement over the officially provided pre-trained
weights can be noticed. Further, the two considered estimators for optical flow,
HD3 [YDY19] and VCN [YR19], are evaluated. It is important to note, that
these networks are not re-trained and thus the validation split is entirely used
during the training of both, HD3 and VCN. This is indicated by parentheses in
Table 6.3. That said, the generalization of the models to unseen data is proper
as it is shown by the results on the KITTI benchmark (cf. Table 6.4).

The important next step of the pipeline is the warping. The warped (virtual)
disparities are also evaluated together with the sparse scene flow that is created
by warping. Similar performance for both optical flow estimators can be
observed, reaching densities of 81.9 % and 81.7 %. It is further evident that
the warping introduces some artifacts which reduce the accuracy compared to
the disparity maps being directly estimated in the respective reference frame.
At the same time, the masking of occlusions and out-of-bounds motions also
removes some outliers in the disparity at time ¢ and the optical flow. This
reveals that HD3 has more difficulties handling occlusions compared to VCN.
Overall, as seen in Section 6.1, the sparse scene flow obtained by warping is
comparatively accurate, yet non-dense.

To recover full density, d;, is interpolated with SSGP. Interestingly, the
interpolation does not only fill in the gaps, but further improves the dense
result over the sparse one. For that reason, dense refinement is finally applied
to dy using SSGP. This results in a significant reduction of errors for D1 and an
even bigger improvement for the overall scene flow estimates. At the same time,
the qualitative impressions in Figures 6.5 and A.3e reveal that the interpolation
and the dense refinement with SSGP introduce artifacts in the sky regions
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Table 6.3.: Evaluation of different components and steps of MonoComb on the validation split of the KITTI scene flow training data. End-point
error (EPE, [px]) and KITTI outlier error (KOE, [%]) are given. Numbers in parentheses indicate that the respective model is

(partially) trained on the validation data.

Method D1 b2 OF SE Densit

eLho EPE KOE | EPE KOE | EPE KOE | SEPE KOE v

BTS [LHKS19] (original) 3.60 24.51 - - - - - - 100 %
BTS (re-trained) 3.19 23.86 - - - - - - 100 %

HD3 [YDY19) (L74)  (5.13) 100 %

VCN [YR19] - - - — | (141) (5.00) | - ~ | 100%

BTS + HD3 299 20.18 | 3.42 2628 | (0.95) (2.39) | 7.35 20.04 | 81.89 %

BTS + VCON 298 20.15| 3.36 2544 | (0.76) (2.70) | 7.10  28.07 | 81.70 %

BTS + HD3 + SSGP [SWUS21] (D2) | 3.19 23.86 | 321  24.01 | (1.74) (5.13) | 8.14 3508 | 100 %
BTS + VCN + SSGP (D2) 319 23.86 | 3.24 2446 | (1.41) (5.00) | 7.84 3522 | 100 %
BTS + HD3 + SSGP (D14D2) 276 2030 | 3.21  24.01 | (1.74) (5.13) | 7.70 2950 | 100 %
BTS + VCON + SSGP (D1+D2) 276 20.30 | 3.24  24.46 | (1.41) (5.00) | 7.41 2934 | 100 %
BTS + SSGP (D1) + OE [YR20] | 2.76 20.30 | (3.36) (23.63) | (2.02) (7.01) | 814 2653 | 100 %
BTS + OF 319 23.86 | (3.90) (27.87) | (2.02) (7.01)| 9.10 30.60 | 100 %
MonoDepth2 [GMFB19] + OE 2.95 2537 | (3.54) (28.47) | (2.02) (7.01) | 850 30.90 | 100 %

Table 6.4.: Evaluation results from the KITTI benchmark for all submitted monocular scene flow approaches. It is distinguished between
supervised and purely unsupervised methods. Best (lowest) numbers in bold.

D1 [%)] D2 [%] OF [%] SF [%] Run

Method bg fg all bg all | bg fg all | bg all | time
Mono-SF [BAM19] | 14.21 26.94 16.32 | 16.89 33.07 19.59 | 11.40 19.64 12.77 | 19.79 39.57 23.08 | 4ls
MonoComb 17.80 21.16 1844 | 2234 25.85 2293 | 584 867 6.31 | 27.06 33.55 28.14 | 0.58s
MonoExpansion [YR20] | 24.85 27.90 25.36 | 27.69 31.59 28.34 | 5.83 8.66 6.30 | 20.82 36.67 30.96 | 0.25s
Self-Mono-SF-ft [HR20] | 20.72 29.41 22.16 | 23.83 3229 25.24 | 1551 17.96 15.91 | 31.51 4577 33.88 | 0.09 s
Selt-Mono-SF [HR20] | 31.22 48.04 34.02 | 34.80 4359 36.34 | 23.26 24.93 23.54 | 46.68 63.82 49.54 | 0.09 s
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(upper third of the image) where no supervision signal is available in the data
set.

Lastly, numbers for the competing method OE [YR20] are presented. This
method uses every fifth frame (starting with sequence 0) for validation and
the rest for training. As a consequence, part of the validation set is used to
train OE. The reference depth estimate for OE is computed with MonoDepth2
[GMFB19]. Numbers when OE is used in conjunction with BTS and the refined
disparity estimate d;, are also reported. This comparison is made to validate
that the proposed monocular approach does not perform better only because
of the better depth estimator (BTS over MonoDepth2), but because of the
way corresponding depth values are correlated over time. This is validated by
the relatively little improvement of scene flow outliers (SF' KOFE) compared
to the outliers of DI in the last two rows of Table 6.3. The third last row
validates that the contribution of dense refinement is also beneficial for other
approaches.

Comparison to State-of-the-Art

In this experiment, the dense monocular scene flow approach is compared
to state-of-the-art in this field. This is done by submitting to the online
KITTI scene flow benchmark. For this step, SSGP for interpolation and dense
refinement is re-trained on all 200 sequences of the KITTI training split. This
turned out especially useful since the validation split is comparatively large
(> 25%). Results for all published monocular approaches and the proposed
method are shown in Table 6.4. The results of the ablation study (Table 6.3)
are transferred within reasonable deviation and some further improvements
due to the additional training data.

The monocular combination approach (MonoComb) pushes state-of-art in
various ways. It achieves the second best result overall and the best result
among all methods with sub-second run time. Further, it achieves the lowest
error rate for the important foreground regions (fg) of dynamic objects with a
margin of more than 3 percentage points.

A qualitative comparison is provided in Figure A.3 in Appendix A where the
result of the first test frame for all monocular methods is visualized along with
the corresponding error maps. This particular sample reveals the major issues
of each approach. For Mono-SF [BAM19] the biggest challenge is the correct
estimation of dynamic objects. This is also reflected by the quantitative results
in Table 6.4. The monocular version of OE [YR20] (MonoExpansion), depends
a lot on the estimate of the initial depth/disparity. Further, since the relative
change in depth is tightly coupled and estimated together with optical flow,
the estimated second disparity suffers from the same limitations as optical flow,
i.e. occlusions, visual perturbation by large geometric deformations over time,
etc. The (fine-tuned) self-supervised approach [HR20] is mainly restricted by
the lower level of details due to the reduced output resolution. The proposed
approach predicts scene flow at full resolution, handles occlusion explicitly and
solves this issue by interpolation, and provides top performance for dynamic
objects. However, the error maps in Figure A.3e indicate that the absolute
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scale of depth is not recovered sufficiently well. Further, the major limitation
of MonoComb is the inconsistency of the prediction due to the separation. This
results in a small overlap of correct and erroneous regions across the separate
tasks, and ultimately in a high outlier rate in the scene flow metric. In fact in
Table 6.4, MonoComb has a much larger margin between the highest outlier
rate of D1, D2, or OF and SF, compared to e.g. OE [YR20].

Run Time

One advantage of the combination approach is the modularity. As part of
that, the overall run time is defined by the sum of the auxiliary run times as
given by Table 6.5. In the given case this leads to an approximate average
run time per frame of 0.58 seconds. This sums up over two runs of the single
image depth estimator, one forward pass of the optical flow estimator, and
two runs of SSGP for refinement and interpolation. The time for warping and
combination of the separate results is neglectable small.

Table 6.5.: Breakdown of the run time for MonoComb and its modules.

Module Calls | Run time

HD3 [YDY19] / VCN [YR19] 1 0.1 /0.18s
BTS [LHKS19] 2 0.06 s
SSGP [SWUS21] 2 0.14 s

Total — 0.5/ 0.58s

6.3. Summary

In summary, a straightforward approach to compute scene flow from auxiliary
results is presented. Accuracy and run time only depend on the algorithms that
are used to compute depth and optical flow and for the interpolation. Thus,
scene flow estimation in real time is possible in theory. It is demonstrated that
even the basic combination of optical flow and disparity leads to competitive
results. The sparse and accurate results can be interpolated to a dense scene
flow field with competitive performance. Improvements in stereo algorithms,
optical flow estimation, and scene flow interpolation improve the combination
approach as presented, immediately.

The sparse-to-dense recombination approach for scene flow estimation is
further successfully transferred to the monocular camera setup. This is achieved
by the latest success in single image depth estimation and robust sparse-to-
dense interpolation. Together with state-of-the-art auxiliary estimators, the
proposed concept achieves competitive results at reasonable speed. The biggest
limitation of MonoComb (Section 6.2) is the inconsistency of the separate
results. A proposition to overcome this in the future is to perform interpolation
and dense refinement jointly, which might also introduce mutual advantages for
both tasks. Additionally, the monocular camera setup for scene flow estimation
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does not restrict the depth estimation to use a single image. It should be
investigated whether the joint estimation of depth over time (e.g. two-view
depth estimation) can improve the results further. In this relatively new
discipline of monocular scene flow estimation, the monocular combination
approach can be seen as a strong baseline for future developments.
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Chapter

End-to-End Scene Flow Estimation
with Deep Neural Networks

“Now these points of data make a beautiful line.”
— Jonathan Coulton, Still Alive
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In the last few years, Deep Neural Networks (DNNs) have demonstrated
increasing success at learning many computer vision tasks including dense
matching problems such as optical flow and stereo matching. The inherent,
massive parallelization on Graphics Processing Units (GPUs) yields run times
close to real time in many cases. The first end-to-end dense matching network
for optical flow has been introduced by FlowNet [DFTH+15]. At this time, the
feasibility was proven, but the overall accuracy was lagging behind conventional
approaches. With the introduction of FlowNet2 [IMSK+17], deep neural
networks started to take over the field of optical flow estimation. This motivates
to also investigate deep neural networks for scene flow estimation in more detail
in this chapter. At the same time, an evaluation of DNNs against state-of-the-
art is necessary to validate how limiting the lack of annotated data is and what
can be done to overcome this issue.

Apart from presenting one of the first end-to-end trainable deep neural
networks for scene flow estimation (Section 7.1), this chapter deals with the
frequent motives of occlusion and feature representation. Section 7.2 introduces
a universal improvement on previous feature extracting blocks for end-to-end
networks that operate on multiple scales, comparable to the standalone feature
representation of SDC in Section 5.1. As the final contribution of this thesis, a
deep framework for generic multi-frame extension is presented in Section 7.3
that implicitly models the issue of occlusion.

7.1. Pyramids, Warping, Occlusion Estimation, and
Cost Volume Correlation in 3D Scene Flow
Estimation

The work presented here overcomes some drawbacks in terms of speed and
accuracy by proposing Pyramid, Warping, Occlusions, and Cost Correlation
for 3D Scene Flow (PWOC-3D) [SSWS19], a compact Convolutional Neural
Network (CNN) architecture to predict scene flow from stereo image sequences
in an end-to-end supervised setting. Further, large motion and occlusions are
well-known problems in scene flow estimation. PWOC-3D employs specialized
design decisions to explicitly model these challenges. In this regard, a novel
self-supervised strategy to predict occlusions from images (learned without
any labeled occlusion data) is proposed. Leveraging several such constructs,
the network achieves competitive results on the KITTI benchmark and the
challenging FlyingThings3D (FT3D) data set.

Solving the problem of scene flow estimation with a deep neural network
also offers the advantages of omitting prior assumptions and speed over earlier
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.

(a) Reference input image. (b) First disparity prediction dy.
= =
(C) Optical flow prediction 1. (d) Soft occlusion mask o' of the optical

flow image pair.

Figure 7.1.: Example predictions of the PWOC-3D network on the KITTI bench-
mark. PWOC-3D uses CNNs to predict scene flow in an efficient
end-to-end fashion. The soft occlusion map (d) is predicted by the
novel self-supervised occlusion reasoning mechanism, which is leveraged
to improve scene flow estimates.

approaches, both of which are critical for deployment in intelligent vehicles.
Autonomous driving systems and embedded devices require real-time estimation
of scene flow. Traditional approaches like the ones presented in Chapter 4 are
iterative and can take between 1 to 50 minutes to process a set of images. In
comparison, PWOC-3D can perform the same task with a single forward pass
of the network in less than 0.2 seconds.

PWOC-3D also contains specialized constructs to handle specific challenges
in a typical scene flow pipeline. Firstly, inspired by the work of PWC-Net
[SYLK18] for optical flow, a coarse-to-fine estimation scheme is employed by
using a spatial pyramid and warping image features at each pyramid level
using the intermediate flow estimate from the previous level to handle large
motion. Secondly, a novel self-supervised strategy to predict dense occlusion
maps from images is proposed and used to improve scene flow estimates (cf.
Figure 7.1). To the best of the author’s knowledge, this is the first method to
reason about occlusion using a single flow prediction and without any occlusion
ground truth. Some previous methods [HR17; MHR18; WYYZ+18] require at
least bidirectional flow (forward and backward preditions) to model occlusion,
thus the network reduces the effort by half compared to these methods.

The PWOC-3D design demonstrates that embedding vision techniques, which
leverage the underlying domain-knowledge of the problem and geometry of the
scene, within differentiable CNNs produce better results than either approach
is able to single-handedly achieve. The code base associated with PWOC-3D
is publicly available’.

“https://github.com/dfki-av/pwoc-3d
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7.1.1. End-to-End Networks for Dense Matching

End-to-end CNNs for Optical Flow. The incorporation of a spatial pyramid
and warping at different pyramid levels in an end-to-end CNN for optical flow
estimation is first introduced in SPyNet [RB17]. PWC-Net [SYLK18] builds
upon SPyNet’s pipeline by replacing the latter’s image pyramid with a feature
pyramid. A cost volume is used to predict optical flow instead of plain features,
and an additional network is used to refine predictions from the last pyramid
level. PWOC-3D uses the PWC-Net architecture as a skeleton, but differs
from it in several ways. Firstly, PWOC-3D reasons about the full 3D motion
of objects rather than just 2D optical flow. This is made possible by several
key design decisions: Four image pyramids (one for each image in the stereo
sequence) are constructed, 1D (for disparity) and 2D (for optical flow) versions
of the warping and cost volume operations are defined in the network. The 1D
operations leverage the epipolar constraint for rectified stereo images to limit
computation. Secondly, a Feature Pyramid Network (FPN) [LDGH+17] is
employed to construct the feature pyramids instead of PWC-Net’s generic CNN
feature extractor (as illustrated in Figure 7.2), with significant improvement
in results. Thirdly, PWOC-3D explicitly reasons about occlusion via a novel
self-supervised method of predicting occlusion directly from images (without
any occlusion ground truth), and exploits this understanding to improve scene
flow predictions. The entire PWOC-3D pipeline is described in detail in
Section 7.1.2.

End-to-End CNNs for Scene Flow. At the time of publication, there have
been only a couple of other end-to-end CNN architectures published for scene
flow. The first has been proposed alongside the FT3D data set [MIHF+16]
primarily as a proof-of-concept of the utility of the data set. This network
contains roughly three times the number of trainable parameters of FlowNet
[DFTH+15]. In contrast, PWOC-3D outperforms it while being smaller than a
single FlowNet model. The second end-to-end CNN is presented in [ISKB18].
This network uses three separate processing pipelines to predict optical flow,
initial and final disparities, respectively. It is able to demonstrate competitive
performance on the KITTI benchmark, though with the number of parameters
of ten FlowNet models. PWOC-3D is a fast and compact network with 48
times fewer parameters and follows closely in terms of accuracy.

7.1.2. Network Architecture

The pipeline of PWOC-3D involves extracting a feature pyramid for each of
the four images I}, I}, Il,, Ir,,. The features of I/, I',,, I, at a particular
pyramid level (except the top, i.e. lowest resolution) are warped towards the
features of Ié using the flow estimates from the upper pyramid level. Based
on the warped features, occlusion maps are predicted for I, I!, |, I7,;. A cost
volume is then constructed using the features of I! and each of the warped
features of I7, I!,,, I7,; considering the predicted occlusions. Afterwards, a
scene flow estimator is used to predict scene flow using these cost volumes.
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Y

Figure 7.2.: Visualization of the flow of information across pyramid levels in the
entire PWOC-3D pipeline. PWC-Net [SYLK18] uses only the lev-
els b,c,d, e, f as a feature pyramid, while PWOC-3D uses the levels
2,3,4,5,6. The orange boxes (WOC) represent warping, occlusion
estimation, cost volume correlation, and scene flow prediction for one
level of the pyramid and is detailed in Figure 7.3.

Finally, a context network with dilated convolutions is used to refine the scene
flow estimates. The complete overview of the end-to-end architecture is given
in Figure 7.2. Figure 7.3 shows a detailed view of a particular pyramid level [.

Feature Pyramids. In PWC-Net [SYLK18|, a simple feedforward strided
CNN is used to construct feature pyramids for the input images. However,
using the different feature maps of a generic CNN in this manner is not
an optimal strategy. This is because the high-resolution feature maps from
the first few layers of the network contain well-localized, but semantically
weak features; while low-resolution maps from deeper layers contain processed
and semantically strong features which are not well-localized with respect to
the original image due to strided sub-sampling of the convolution operation
[SWUS19].

FPN [LDGH+17] proposes to overcome this problem by incorporating ad-
ditional connections in the network as shown in Figure 7.2. In addition to
the backbone bottom-up pathway (which computes a feature hierarchy as in
a standard CNN), top-down pathways and lateral residual connections are
introduced. The top-down pathway produces higher resolved, semantically
stronger feature maps, while the lateral skip connections (from lower layers
in the pipeline) reinforce the localization of features with respect to the input
images. Combined, this mechanism leads to the feature map at each pyramid
level being well-localized and semantically strong.

Since the architecture uses a coarse-to-fine estimation approach, especially
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with predictions from further up in the pyramid being used in lower levels, the
consistency of semantic strength and the spatial localization of the features
across levels becomes particularly important. Thus, this work explores the role
of FPN-like connections in the PWOC-3D pipeline.

For each of the four input images I\, I}, I',,, IT,,, the same network (see
Figure 7.2) is used to construct four six-layered feature pyramids (denoted
as cl, cf, cl, |, cr., respectively), with each subsequent pyramid level having
half the resolution (in each spatial dimension) of its predecessor, so that the
sub-sampling factor at layer [ is 2! for each dimension. The processing is
started from the topmost level and continued in a coarse-to-fine estimation
scheme until pyramid level 2. Consequently, PWOC-3D produces final scene
flow estimates at 1/4th of the input resolution in each dimension. The final
prediction is up-sampled using bilinear interpolation to obtain full-scale scene
flow.

Warping. At every pyramid level [, the feature maps of I}, I, |, IT,; (denoted
as jck, icb, |, 1cr, | respectively) are warped towards the reference image I'.
Let the scene flow estimate for pixel p = (:U,y)T at level [ be denoted as
18(p) = (1, 0y do.. cil)T, the images are warped as follows:

* ;c; is warped towards Lf using the disparity ;.1dp, a 1D warping:
A T
wi(p) = ¢} (2= upz (111do) (), )" (7.1)

whereas ups (741 czo) denotes the predicted disparity map from level [ +1 which
is up-sampled by a factor of 2 using bilinear interpolation.
. lcéﬂ is warped towards I! using optical flow ;10 = (;110,41%)7, a 2D
warping:
lWi+1(P) =11 (P+upy (1n1) (P)) - (7.2)

* ;C},, is warped towards Itl using optical flow ;.10 = (74117,41 fl)T and disparity
1+1d1, a modified 2D warping:

Wi (P) =
i€ro1 ((z = upy (1+1d1) (P) +upy (111d) (P), (7.3)
y+upy (1419) (p))7).

Occlusion Handling. Occlusions are omnipresent in realistic, dynamic scenes
and play an important role in the estimation of scene flow. Firstly, it leads
to incorrect matching costs being computed since the object of interest is
occluded from view. Secondly, the lack of information about the occluded area
can throw off a naive method because tracking the occluded pixels directly is
impossible, and it must leverage other information to estimate this occluded
motion. Thirdly, a considerable area of the reference image is occluded from
view when it moves out of the camera’s field of view due to motion of the camera
itself. This ego-motion is an inherent characteristic of autonomous driving
systems. Thus, failing to account for occlusion has significant drawbacks.
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(C) Predicted optical flow from I} to IL,,. (d) 1., warped towards I} using the pre-
dicted optical flow.

Figure 7.4.: The adverse effect of occlusion on the warping operation. In (d), there
are two cars visible: The car on the right is the true car. The part of
the road which is visible in I} and occluded by the car in I, is static,
due to which the occluding area of the car is reproduced incorrectly
from I!. In other words, multiple flow vectors in (c) are pointing to
the same target position in I', .

Occlusion also has an adverse effect on the (1D and 2D) warping operation, as
illustrated in Figure 7.4.

MirrorFlow [HR17] predicts bidirectional flow using variational methods
and uses it to warp both images towards each other. A forward-backward
consistency check is imposed on these warps. Areas which do not pass this
check are considered occluded. This leads to consistent occlusion maps in
both directions. UnFlow [MHRI18] uses a very similar formulation of the
problem: Bidirectional flow estimation, forward-backward consistency check,
occlusion estimation. The difference here is that FlowNet [DFIH+15] is used
to predict flow instead of variational methods, and occluded areas are masked
from contributing to the loss function. The authors of [WYYZ+18| use the
same basic pipeline as UnFlow. They propose a different method of predicting
occlusion maps based on warping a constant grid using the predicted flow. All
previous methods predicted occlusion using bidirectional flow. In contrast,
PWOC-3D estimates occlusions in three images I}, I.,, I},; without any
labeled occlusion data while computing only the forward direction flow.

PWOC-3D employs a novel strategy to handle occlusion by learning an
occlusion model conditioned on the input images. The occlusion mechanism is
explained using Ij, but also applies in an analogous manner to the images Itl ‘1
and I, ;. Specifically, occlusion in the image I] with respect to the reference
image I! is modeled at each pyramid level [ as an occlusion map ;0] (p) where
107 1192~ [0,1] and ;2 denotes the image plane at scale . Here 0 corresponds
to occluded pixels while 1 corresponds to visible pixels. Since each pixel value
is continuous, this is a soft occlusion map from which a hard occlusion map
can be obtained by thresholding it appropriately to have binary values of 0
and 1.
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This soft occlusion map is incorporated into PWOC-3D by multiplying it
pixel-wise (by broadcasting along the channel dimension) with the correspond-
ing warped features to result in masked features ;f}:

ifi (p) =1t (p) 10 (P)- (7.4)

This has the effect of masking out occluded pixels from ;wy, leaving only the
non-occluded areas. These masked, warped features are then used to construct
the cost volume. Having the occluded pixels masked to zero, results in the
correlation of the cost volume for these pixels to also be zero. In the cost
volume correlation, a higher value means a higher degree of matching between
two pixels. Thus, a cost of zero as computed for the occluded areas reflects no
matching at all, which is semantically correct, since a pixel occluded in one
image must not match with any other pixel in another image.

Due to the coarse-to-fine estimation approach adopted by PWOC-3D, the
occlusion model is also a multi-scale mechanism. A separate occlusion map is
predicted at each pyramid level [ for each of the warped image features (;wy,
iwh, ., w'.,), which masks occluded areas before computing the respective
cost volume at this level.

Learning Occlusions. For predicting occlusion, a separate sub-network ;O at
each scale [ is established, which maps the depth-wise stacked feature maps lc,lf
and ;w; to the soft occlusion map ;0;. These stacked feature maps are used
as input to the network because they provide sufficient information to predict
occlusion: Regions without occlusion have similar features in the feature map
lci and the warped features lwﬁ; whereas pixels which are visible in lci but
occluded in ;cj have dissimilarities in the features in ;wj}, which can enable the
network to predict such pixels as occluded.

The design of the ;O network consists of six layers of convolution, all of
which employ a kernel of size 3 x 3, a stride of 1, and a padding of 1. The
channel dimensions of the occlusion estimator network in each layer are 128,
96, 64, 32, 16 and 1 respectively. The last layer uses sigmoid as an activation
function to ensure that the occlusion predictions are in the range [0,1]. All
other layers use the LeakyReLU activation function [MHN13].

This sub-network is inserted in the PWOC-3D pipeline after the warping
operation and before the cost volume construction stage at each pyramid level.
After warping the three feature maps towards the reference view, the reference
features are stacked with each of the warped feature maps as [;ck, ;w?t], [ict,
iwh], ek, ;w?,,] and sequentially fed as input to the occlusion estimator
network ;O of this corresponding pyramid level to obtain the occlusion maps
10}, 10}, 1, 105, respectively. Since the estimation of occlusion for each of the
three images requires to learn the same underlying task (learning to match
features in the stacked feature maps), a single occlusion estimator network ;O
is used at each pyramid level to predict occlusions for each of the three images
separately.

To maintain consistency of occlusion predictions across scales, every occlu-
sion network ;O (except the network at the highest pyramid level) receives
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an additional input from the network ;.10 of the next upper pyramid level.
This additional input are the output features ;,1g of the penultimate convolu-
tional layer of ;,1O and the corresponding predicted occlusion map j;10, i.e.
(14187, 14107), (141841, 1410%41) and (11871, 1+10},,) for the prediction of ;of,
l01lt+1 and ;0,4

The occlusion estimator networks can learn to predict the occlusion weights
based on the degree of similarity between the reference image features and
the warped features. These weights are used to mask the incorrect matching
costs in the cost volume, which results in more robust scene flow estimates.
Thus, the network supervises itself while learning to estimate occlusions, with
the goal of improving scene flow estimates (minimizing the error on scene flow
predictions) without any labeled occlusion data. Note that the training of
PWOC-3D requires ground truth scene flow data; only the estimation of the
occlusion maps is self-supervised.

Cost Volume. Three cost volumes are computed using the reference image
features c. and the masked warped features ;f}, lfi 41 and ;f},;. In contrast,
PWC-Net computed a cost volume using simply the warped features lwft s
which made its predictions susceptible to problems caused by occlusions.

Only a partial cost volume is constructed by limiting the search range to
a maximum displacement of d,.x pixels around each pixel. For the 1D cost
volume operation (between (;c}, ;f/)), matches are searched for only in the
horizontal dimension along the epipolar line, while for the 2D cost volume
(between (;ct, if,,) and (;c!, ;£7,,)) the search is performed in 2D space. Then,
the resulting cost volumes are organized as 3D arrays of dimension H x W x C'
and H x W x C? for the 1D and 2D cost volumes, with H and W being the
height and width of the feature maps, and C' = 2dyax + 1.

The matching cost in the cost volume is computed as the correlation between
the feature vectors of two pixels. Consider lci, iff 11— IR®, where  is the
image domain of the respective scale and ¢ is the number of channels of the
feature maps. Then the correlation between two patches centered at pixels
p and p’ is computed as a vector of dimensionality C? where each individual
pixel cost is given by:

(el () (p' +q)

whereas q € {(Az, Ay)" : Az, Ay € [~dmax, dmax] }-

1Ci(p;p'la) = (7.5)

Scene Flow Prediction. At every pyramid level [, a CNN ;S is trained to
estimate scene flow using the masked cost volume described above. The
primary input to this network consists of the three warped and masked cost
volumes corresponding to ;f}, ;f;,; and ;f,; stacked one over the other along
the correlation dimension. The architecture of this network is similar to the
occlusion estimator network: It consists of six layers of convolution filters with
a kernel size of 3 x 3, a stride of 1, and a padding of 1. The channel dimensions
of each layer are 128, 128, 96, 64, 32 and 4 respectively. Each layer again
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employs the LeakyReLU activation, except the last layer which does not use
any activation function to facilitate the prediction of continuous and negative
scene flow values.

Similar to the occlusion estimator network, additional input is passed to ;S
(at each pyramid level [ except the top), the features ;,1h of the penultimate
convolutional layer of the network ;,1S (of the upper pyramid level) as well as
its corresponding scene flow prediction ;,18. This maintains consistency across
the pyramid levels and allows the entire framework to perform multi-scale
reasoning.

Context Network. As in PWC-Net [SYLK18], PWOC-3D employs a CNN
with dilated convolutional layers to refine the prediction of the final pyramid
level. The input to this network comprises the flow estimate 9§ and the last
feature map oh of the scene flow estimator oS of the lowest pyramid level. This
context network consists of seven convolutional layers with 3 x 3 kernels and a
stride and padding of 1. The number of the filters at each layer are 128, 128,
128, 96, 64, 32, and 4. The dilation parameters used at each layer are 1, 2, 4,
8, 16, 1, and 1 respectively. All layers use the LeakyReLU activation, except
the last layer which does not employ any activation.

This network outputs a residual flow 2 AS which is added to the scene flow
prediction 9§ to obtain the final prediction §(p) = 28(p) + 2As(p).

Loss Function. To start the coarse-to-fine estimation scheme of PWOC-3D,
the prediction is initialized with zeros at a hypothetical level 7 78. This has
the effect that the features at the topmost level (I = 6) of the pyramid are not
warped at all. Thus, the cost volume and occlusions are computed directly
using the original feature maps. The rest of the pipeline progresses as described
in the previous sections.

A multi-scale weighted loss function with intermediate supervision is em-
ployed, which penalizes errors at each level of the pyramid. Let © denote the
set of all trainable parameters in the entire network and let ;s be the ground
truth scene flow field sub-sampled to the resolution of pyramid level [, leading
to the loss function

6
L£(©) = 3061 Y. i3(p) -is(p)l2

l= paifar

~

pyramid levels except the last (76)

+az Y [3(p) - 28(p)le;

pe2QdgT

bottom pyramid level 2

in which ||, denotes the L2-norm of a vector.

This enables the entire PWOC-3D model: The feature pyramid network,
the occlusion mechanism with its occlusion estimator networks at different
pyramid levels, the scene flow estimator networks at each pyramid level, and
the context network to be trained in an end-to-end manner.
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7.1.3. Experiments and Results

Training Details. The primary focus of this work is to estimate scene flow
for automotive applications, therefore the KITTI data set [MG15] is a natural
choice. However, KITTI provides only 200 training sequences (with sparse
ground truth only), which is not sufficient to train a deep neural network on
such a complex task. To overcome this problem, PWOC-3D is first trained on
the synthetic (but large) FT3D data set [MIHF+16], and then fine-tuned on
KITTI. This transfer learning approach helps avoiding the network from being
overfit on KITTI. PWOC-3D is trained for 760 epochs on FT3D and for 125
epochs on KITTI. The photometric data augmentation strategy of FlowNet
[DFIH+15] is used, combined with random vertical flipping (the latter only for
FT3D, and not for KITTI). Since FT3D also provides bidirectional scene flow
annotations, these are utilized by random temporal flipping of the training
sample from (I}, I}, Il |, IT,) to (I',,, IV, I}, IT). Geometric transformations
such as rotation, translation, etc. are not used, since they harm the epipolar
constraint for disparity estimation across the rectified stereo pairs.

The hyperparameter dp,.x in the cost volume layer is set to 4. The weights
used in the loss function as,as,...,ag are 0.32, 0.08, 0.02, 0.01 and 0.005
respectively as in [SYLK18]. Further, the ground truth scene flow is down-scaled
by factor 20 as in [DFIH+15], and is down-sampled to different resolutions
to compute the training signal at different scales. During inference, all scene
flow predictions are made at the full input resolution by up-sampling §. The
Adam optimizer [KB15] is used to train PWOC-3D with the default setting
of hyperparameters as recommended. A constant learning rate of A = 107 is
used.

Quantitative Analysis. As evident from Table 7.1, the PWOC-3D model
with the occlusion mechanism and the improved feature pyramid is the best
performing network among all the variants. This is due to its well-localized and
semantically strong features, and its ability to mask the incorrect matching
costs from the cost volume, thus preventing them from having adverse effects
on the reasoning of the network. Table 7.1 also shows the comparison to two
other end-to-end scene flow networks. PWOC-3D outperforms [MIHF+16] on
FT3D in terms of end-point error and is 48 times smaller than the network
from [ISKB18] (PWOC-3D has only ~8 million trainable weights).

As depicted in Figure 7.5, the occlusion maps contain clear signs of the
masking effect. Specifically, the occlusion map for dy shown in Figure 7.5d
contains areas occluded only along the horizontal epipolar line, while the
maps for optical flow and d; respectively model the occlusion caused by the
ego-motion of the camera in addition to the occlusion arising because of
motion. This demonstrates the significant impact of the occlusion mechanism
in autonomous driving scenarios.

The network with the FPN shows improvement in performance over the
network without. The end-point error of all the networks on the test split
of FT3D [MIHF+16] is higher than that on the validation split as visible in
Table 7.1. This is because in the test set, FT3D contains a set of objects and
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(a) The four input images I, I}, It,1, I}.

B e — e —

(b) Scene flow prediction § visualized by optical flow 11, disparity do, and disparity dy.

(C) Sparse scene flow ground truth s.

e

(d) Occlusion masks for optical flow ol,,, first disparity o}, and second disparity o,.

(e) Binary error maps for optical flow and the two disparity estimates.

Figure 7.5.: Visualization of predictions of PWOC-3D with occlusion masks and
ground truth on a validation sample from KITTI. In the error maps (e),
pixels which contribute to the KITTI outlier error (KOE) are colored
magenta, while those that do not are colored green.
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Table 7.1.: Experimental results of PWOC-3D. End-point error (EPE [px]) and KITTTI outlier error (KOE [%]) are shown on training, validation,
and test set for KITTI and FlyingThings3D. Different components of the contribution are evaluated and compared to end-to-end
scene flow networks from previous work.

FlyingThings3D KITTI

Training Validation Testing Training Validation Testing
Architecture EPE KOE EPE KOE EPE KOE EPE KOE EPE KOE EPE KOE
PWOC-3D (basic) 8.25 2515 979 25.01 23.38 26.01 1.97 6.09 3.71 136 - -
PWOC-3D + FPN 6.17 19.89 840 20.35 21.86 21.22 1.76 5.32 3.39 1397 - -
PWOC-3D + FPN + Occ 5.86 18.30 8.06 18.93 22.01 19.90 1.85 5.69 3.22 12.55 - 15.69
SceneFlowNet [MIHEF+16] - - 11.24 - - - - - - - - -
Occ-SceneFlow [ISKB18] - - - - - - - - - - - 11.34

Table 7.2.: A snapshot of the KITTI scene flow benchmark’s leaderboard at the time of publication. PWOC-3D is the most efficient in terms of

run time.
Method Dl-bg Dil-fg Dl-all | D2-bg D2-fg D2-all | Fl-bg Fl-fg Fl-all | SF-bg SF-fg SF-all | Run time

ISF [BIMA+17] 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08 600 s
PRSM [VSR15] 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97 300 s
OSF+TC [NSl?] 4.11 9.64 5.03 5.18 15.12 6.84 5.76 13.31 7.02 7.08 20.03 9.23 3000 s
OSF 2018 [MHG18] 4.11 11.12 5.28 5.01 17.28 7.06 5.38 17.61 7.41 6.68 24.59 9.66 390 s
SSF [RSKS17] 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07 300 s
OSF [MG15] 4.54 12.03 5.79 5.45 19.41 7.7 5.62 18.92 7.83 7.01 26.34 10.23 3000 s
FSF+MS [TSSI?] 5.72 11.84 6.74 7.57 21.28 9.85 8.48 25.43 11.30 11.17 33.91 14.96 2.7 s
PWOC-3D 4.19 9.82 5.13 7.21 14.73 8.46 1240 15.78 12.96 14.30 22.66 15.69 0.13 s
CSF [LBAL+16] 4.57 13.04 5.98 7.92 20.76 10.06 1040 25.78 12.96 12.21 33.21 15.71 80 s
SFF [SVVKB—HS} 5.12 13.83 6.57 8.47 21.83 10.69 10.58  24.41 12.88 12.48 32.28 15.78 65 s
PR-Sceneflow [VSR13] 4.74 13.74 6.24 11.14 20.47 12.69 11.73 24.33 13.83 13.49 31.22 16.44 150 s
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7.2. Residual Skip Connections in Multi-Resolution Feature Pyramid
Networks for Accurate Dense Pixel Matching

backgrounds which are disjoint from the training set. Thus, the samples are
considerably different from those that the networks are trained on.

Another interesting result is that among all variants in Table 7.1, the
difference between the validation and training errors is the lowest for PWOC-3D
with the feature pyramid connections and the occlusion mechanism, particularly
on KITTT where the training data is very limited. Thus, the occlusion reasoning
scheme also helps to reduce overfitting.

Table 7.2 shows the ranking of the proposed method among the top ten
published methods on the KITTI scene flow benchmark’s leaderboard at the
time of publication. As visible, PWOC-3D has a significantly lower run time
(0.13 s per frame on a GeForce GTX 1080 Ti) than all other methods, thus
making it suitable for real-time applications. Among the listed methods,
PWOC-3D is the only approach with this property. Further, the approach is
especially accurate in the important foreground regions of moving objects. In
summary, PWOC-3D has a unique mixture of characteristics with competitive
accuracy, small network size, and low run time.

7.2. Residual Skip Connections in Multi-Resolution
Feature Pyramid Networks for Accurate Dense
Pixel Matching

Dense pixel matching is the underlying problem of scene flow estimation. In
recent years, especially CNN-based approaches, which are trained end-to-end,
have achieved remarkable results for dense pixel matching [CC18; HTC18;
SSWS19; SYLK18]. Within this category of algorithms, the feature repre-
sentation turns out to be an essential factor for accurate matching [BVS17].
Section 5.1 demonstrates that CNNs are capable of learning a suitable repre-
sentation of pixels for dense matching tasks. The previous Section 7.1 further
shows, that FPNs are also a suitable feature extractor for dense matching on
multiple scales. The representation must be as characteristic as possible in
order to be distinguishable. In addition, it must be as localizable as possible
to allow for accurate matching and avoid small displacement mismatches. In
state-of-the-art, FPNs [LDGH+17] seem to fulfill these properties best. FPNs
are originally proposed in the field of object detection, for which the localization
is completely sufficient. FPN generates well-localized and semantically strong
features at multiple scales. However, the generic FPN does not utilize its
full potential, due to its reasonable but limited localization accuracy. That
is why Residual Feature Pyramid Network (ResFPN) [RSBW+21] presents
a multi-resolution feature pyramid network with multiple residual skip con-
nections, where at any scale, the information from higher resolution maps
are leveraged for stronger and better localized features. This is supposed to
reintroduce details for better localization in the final feature representation.
Further, the residual skip connections can reduce the length of gradient paths
during back-propagation to improve convergence [ZDMD+18]. ResFPN is
reviewed in a comprehensive ablation study by validating each individual de-
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sign decision in detail. In addition, ResFPN is put into application for the
dense pixel matching tasks of optical flow, scene flow and disparity estimation.
For these experiments, state-of-the-art algorithms are utilized and nothing
but the feature description is changed. The superior accuracy of ResFPN is
confirmed across different matching algorithms as well as data sets, such as
KITTI [MG15], Sintel [BWSB12] and FT3D [MIHF+16].

7.2.1. Related Concepts in the Literature

Representations and Image Pyramids. Feature maps (i.e. dense descriptors)
are the basic cues for many computer vision tasks. A large number of methods
show that a proper design of feature maps improves the results especially for
dense pixel-wise matching in terms of geometric reconstruction and motion
estimation. Many approaches employ handcrafted designs like SIFT [Low99],
HOG [DTO05] or DAISY [TLF09] features using image pyramid structure for
seeking dense motion matches [BTS15; HSL16; XJM11] or for scene flow
estimation [SWKB+18]. Pyramid feature representations use information from
multiple scales for more improvement in terms of estimating correspondences.
However, the advances of CNNs improve the robustness of feature maps
against ill-conditioned environments, light or geometric changes compared
to conventional solutions. In this context, many approaches aim to learn
features [CGSC16; SWUS19] for dense matching. These methods replace the
conventional descriptors, but they are not proven in end-to-end networks for
dense matching. In contrast, ResFPN is a flexible, modular network that can
be plugged in as feature backbone for end-to-end matching networks.

End-to-End Solutions using Feature Pyramids. Early end-to-end learning
solutions yield impressive results based on encoder-decoder architectures,
e.g. FlowNet [DFIH+15; IMSK+17] for optical flow estimation. DispNet
[MIHF+16] extends the idea of FlowNet to disparity and scene flow estimation.
The main idea of the encoder-decoder network is to aggregate the information
from coarse-to-fine predictions, which is useful for large displacement predic-
tions. However, it is a memory consuming approach and its computation is
inefficient. SPyNet [RB17] is a lightweight model that aggregates information
with a spatial pyramid network. Large motions can be handled with this
approach. Compared to FlowNet, it is faster and yields better accuracy. PWC-
Net [SYLK18] and LiteFlowNet [HTC18] add warping and cost volume layers
to the pyramid feature extractor, which improves dense optical flow accuracy.
PSMNet [CC18] uses a spatial pyramid pooling module to enlarge the receptive
field of feature maps for stereo matching. Instead of using a generic CNN as
feature extractor in PWC-Net [SYLK18], the previously presented PWOC-
3D [SSWS19] (Section 7.1) employs the FPN architecture [LDGH+17] and
utilizes these features for scene flow estimation with stereo images. ResFPN
contributes to many kinds of deep end-to-end networks — including PWOC-3D
— by improving the feature representation on multiple scales.
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Outliers: 1.:

EPE: 1.1 px

Figure 7.6.:

(d) Ground truth disparity.

ResFPN is a deep architecture to compute feature representations
for dense matching. ResFPN applied together with state-of-the-art
matching networks like PSMNet [CC18] preserves details better and is
more robust under challenging conditions.
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Connecting Layers in Deep Neural Networks. Traditional CNN archi-
tectures establish strictly sequential connections between layers [KSH12;
LBBH+98; SZ15]. Recently, more involved connections have been proposed.
DenseNet [HLVW17] uses connections in a feedforward fashion so that for each
layer the feature maps of all preceding layers are used as input to strengthen the
feature propagation. ResNet [HZRS16] and InceptionNet [SIVA17; SLJS+15]
aim to improve deep networks through parallel shortcut connections.

Among modern architectures, FPN [LDGH+17] leverages the concept of lat-
eral connections for multi-level predictions based on features of multiple scales.
Similar to the U-Net architecture [RFB15], it fuses feature maps between the
same levels of top-down and bottom-up paths using element-wise addition.
Moreover, TDM [SSMG16] changes the lateral connections to convolutional
layers and channel-wise concatenation, which makes it computationally inef-
ficient. Reverse Densely Connected Feature Pyramid Network [XWLZ+18]
proposes to add reverse dense connections for the top-down module (decoder).
Similarly, (A)RDFPN [ZLZC+19; ZLZZ+19] add dilated residual connections
to the top-down stream of FPNs. The previous feature modules are presented
in the context of object detection. Recently, HRNet [SXLW19] has used multi-
resolution feature maps to improve localization in the estimation of human
poses.

Apart from the aforementioned applications, ResFPN uses the advantages
of pyramidal networks to extract dense feature maps for dense matching tasks
in terms of stereo matching, optical flow, and scene flow estimation. Not
only connections between similar levels of feature maps across bottom-up and
top-down parts are utilized like in FPN, but the spatial accuracy is further
enhanced by adding new connections across high resolution feature maps of the
bottom-up part and feature maps in the top-down part as shown in Figure 7.7d.

7.2.2. Multiple Residual Skip Connections from Higher Resolutions

ResFPN is a generic concept that can be applied in many different applications
for different tasks. The general idea is to increase the number of lateral skip
connections between encoder and decoder in feature pyramid networks in
order to improve the spatial accuracy while maintaining high-level feature
representations.

The work continues with the logical extension of regular lateral skip connec-
tions to further improve localization and feature abstraction in feature pyramid
networks [LDGH+17]. The reasoning is that additional connections from
higher resolved levels of the encoder can benefit the final feature description (cf.
Figure 7.7). Further, more densely connected networks are assumed to have a
better flow of gradients during training [HLVW17; HZRS16] which improves
convergence properties. Most recently, pyramidal feature extractors have also
been shown to be more robust to adversarial attacks [RJGB19]. Moreover, the
idea of ResFPN is independent of hyper-parameters of the pyramid like the
number of levels, or the scale factor. It is applicable together with any build-
ing blocks for down-/up-sampling, like Residual [HZRS16], Dense [HLVW17],
or Inception [SIVA17; SLJS+15] units. The idea of additional residual skip
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(C) Feature Pyramid Network [LDGH+17]. (d) Exemplary structure of ResFPN.

Figure 7.7.: Feature computation with different types of pyramids. (a) A simple
image pyramid is used together with heuristic descriptors for multi-scale
predictions. (b) Feature pyramids successively compress and encode the
input image for multi-scale predictions. (c¢) Feature Pyramid Networks
traverse the entire encoder and decode the representation until the
required scale is reached. (d) Additional feature encodings of higher
resolutions are combined during up-sampling in ResFPN. Here, only
a single additional connection per layer is visualized. Details about
up-sampling and merging of ResFPN can be found in Figure 7.8.

connections between encoder and decoder can be applied in all cases.

The theoretical idea of ResFPN can include any additional connection of
layers in pyramid networks that goes beyond regular lateral skip connections,
e.g. dense connections. However, for dense matching it is argued that the set of
possible connections can be restricted. More precisely, additional connections
from lower resolved feature maps towards higher resolutions [XWLZ+18] are
assumed to improve semantics only and do not contribute to the goal of better
localization (they might even accomplish the opposite). As a result, the focus
is on (multiple) connections from higher resolution feature maps of the encoder
to feature maps of the decoder (see Figure 7.7d).

Along with these additional connections, novel questions arise. Higher
resolution feature maps need to be adjusted to fit the spatial dimensions of
the connected layer of the decoding branch. This can be done with any size-
changing layer, e.g. strided convolution or pooling. Joining multiple feature
maps into a single one requires a suitable strategy for merging. Commonly,
either element-wise addition or concatenation is used. While the latter allows
to maintain the separation of features, it can also lead to heavy computational
loads for large and deep feature maps. Finally, it can be asked which layers
should be additionally connected. In theory, the more higher levels are used,
the more the focus is shifted towards localization. On the other hand, a dense
connection of every higher resolution to every lower one might be impractical.
Answers to these questions are given in the ablation study in Section 7.2.3.
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Transp.
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Figure 7.8.: A single up-sampling block in the decoder of ResFPN combines four

different resolutions. The previous lower resolved representation of
the decoder is up-sampled with a transposed convolution, the equally
resolved feature map from the encoder is connected through a classical
skip connection, and two higher resolution feature encodings are ad-
ditionally connected after down-sampling. For down-sampling, 1 x 1
convolution and max-pooling are applied. Merging is performed by
element-wise addition followed by convolution.
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A final remark of the theoretical discussion of ResFPN is related to the
spectrum of applications. It is argued that ResFPN is especially powerful
when used for deeper pyramids that realize a (coarse-to-fine, incremental)
multi-level prediction at multiple scales. However, the application of ResFPN
is not limited to this use case. It is also possible to use only a certain level
of the decoder for a single final prediction. The experiments (Section 7.2.3)
cover a broad range of end-to-end differentiable, dense matching networks to
demonstrate the flexibility of ResFPN.

Feature Extraction Network. A general ResFPN consists of [; arbitrary
down-sampling blocks with a sub-sampling factor s (usually s = 2), a bottleneck
at a sub-sampled factor of s', and I < I, up-sampling blocks using the same
factor s. In regular FPNs [LDGH+17], the up-sampling block merges the
corresponding feature encoding of the target resolution with the up-sampled
result to produce a refined feature map. In this extension of ResFPN, h
additional feature encodings of the next higher resolutions are also used during
merging. The feature encodings of higher resolutions need to be reshaped to fit
the spatial dimensions (and possibly the feature depth) of the target feature
map. In theory, any resizing operation could be used for this task, e.g. strided
convolution. Different strategies for reshaping and merging are compared in
Section 7.2.3. Each (or one) of the feature maps of the decoder can then be
used as features for the prediction.

One possible way to implement a ResFPN is described here. The architecture
is based on the FPN of PWOC-3D which is an extension of the feature pyramid
of PWC-Net [SYLK18]. In detail, I; = 6 down-sampling blocks with a sub-
sampling factor of s =2 are used to compute 6 feature maps, where the first
one has 1/2 of the input resolution and the deepest encoding has 1/64 of the
input resolution. This is followed by [, = 4 up-sampling blocks to reconstruct a
feature map of 1/4 of the original image resolution. Higher resolutions are not
required for most of the prediction heads in the experiments [CC18; SSWS19;
SYLK18], but are possible. The down-sampling is performed by two 3 x 3
convolutions, where the first one applies a stride of 2. For up-sampling, a 4 x 4
transposed convolution with stride 2 is applied, the up-sampled features are
merged with a regular skip connection and h = 2 additional lateral connections
through element-wise addition, and the fused features are then refined with a
3 x 3 convolution. To align spatial size and feature depth for the merging of
higher resolution feature encodings, a 1x 1 convolution followed by max-pooling
with a kernel size and stride of s- Al is proposed. Reshaping, merging, and
refinement during up-sampling is illustrated in Figure 7.8. In the experience,
the combination of 1 x 1 convolution and max-pooling is in the sweet spot
of preserving spatial accuracy and computational efficiency, especially when
feature depth is increased during the convolution (which is usually the case
from higher to lower resolutions) (cf. Section 7.2.3). LeakyReLU activation
[MHN13] is used for all convolutions to introduce non-linearity into the model.
The entire architecture of ResFPN with all details is given in Table 7.3.
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Table 7.3.: The detailed architecture of ResFPN. (Up)Conv(c,k,s,d) and
MaxPool(k, s) describe (transposed) convolution and max-pooling with
¢ kernels, square kernel size k, stride s, and dilation rate d.

Name Input Layer Output Shape
mput - - HxWx3
enc-1-1 input Conv(16,3,2,1) %H x %VV x 16
enc-1-2 enc-1-1 Conv(16,3,1,1) ?H x ?VV x 16
enc-2-1 enc-1-2 Conv(32,3,2,1) %H x ?V x 32
enc-2-2 enc-2-1 Conv(32,3,1,1) %H x 2 W x 32
enc-3-1 enc-2-2 Conv(64,3,2,1) 5 W x64
enc-3-2 enc-3-1 Conv(64,3,1,1) sH x gW x 64
enc-4-1 enc-3-2 Conv(96,3,2,1) LH x =W % 96
enc-4-2 enc-4-1 Conv(96,3,1,1) %H x Y W *x 96
enc-5-1 enc-4-2 Conv(128,3,2,1) ?H x W x 128
enc-9-2 enc-9-1 Conv(128,3,1,1) ?H x 55 W x 128
enc-6-1 enc-5-2 Conv(196,3,2,1) sl x gzW = 196
enc-6-2 enc-6-1 Conv(196,3,1,1) 6174H x iy W = 196
bottleneck | enc-6-2 Conv(196,1,1,1) éH x 7W x 196
) . Conv(196,1,1,1) 1 1
skip-5-6 enc-5-2 MaxPool(2,2) 51t x gzW = 196
) Conv(196,1,1,1) 1 1
skip-4-6 enc-4-2 MaxPool(4,4) a1 H x 5zW = 196
bottleneck
dec-6-2 +skip-5-6 | Conv(196,3,1,1) A H x W x 196
+skip-4-6
dec-5-1 dec-6-2 UpConv(128,4,2,1) %H X #W x 128
. Conv(128,1,1,1) 1
skip-4-5 enc-4-2 MaxPool(2,2) 55 H % W x 128
"y Conv(128,1,1,1) L L
skip-3-5 | enc-3-2 MaxPool(4,4) 55l x 55 W x 128
dec-5-1
; +enc-5-2 1 1
dec-5-2 skip-4-5 Conv(128,3,1,1) 55 x 55 W x 128
+skip-3-5
dec-4-1 dec-5-2 UpConv(96,4,2,1) 116H x .W x 96
. Conv(96,1,1,1) 1 1
skip-3-4 enc-3-2 MaxPool(2,2) 16 x 1gW x 96
. Conv(96,1,1,1) 1
skip-2-/4 enc-2-2 MaxPool(4,4) 16 H x .lV x 96
dec-4-1
+enc-4-2 1 1
dec-4-2 +skip-3-4 Conv(96,3,1,1) igH x 36W x 96
+skip-2-4
dec-3-1 dec-4-2 UpCo(nv(64,4,)2,1) LH x W x 64
. Conv(64,1,1,1 1 1
skip-2-3 enc-2-2 MaxPool(2,2) SH x gW x 64
. Conv(64,1,1,1) 1 1
skip-1-3 enc-1-2 MaxPool(4,4) SH x gW x 64
dec-3-1
Y +enc-3-2 1 1
dec-3-2 +okip-2-9 Conv(64,3,1,1) sH x gW x 64
+skip-1-3
dec-2-1 dec-3-2 | UpConv(32,4,2,1) | $H x 1W x 32
P . Conv(32,1,1,1) 1 1
skip-1-2 enc-1-2 MaxPool(2,2) H x $W x 32
. . Conv(32,1,1,1) 1 1
skip-0-2 input MaxPool(4,4) H x 3 W x 32
dec-2-1
dec-22 | TUORE L Gonu(32,3,,1) | LH x 1w x 32
e +skip-1-2 oS24 4 4
+skip-0-2
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7.2.3. Experiments and Results

ResFPN is designed to extract features for dense matching such as stereo
disparity, optical flow, or scene flow estimation. The experiments cover end-
to-end networks for all these matching tasks (cf. Section 7.2.1). In particular,
PWOC-3D [SSWS19] (Section 7.1) is used for scene flow estimation, PWC-Net
[SYLK18] and LiteFlowNet [HTC18] represent optical flow estimators, and
PSMNet [CC18] is the network used for disparity estimation.

The experiments consider three well established data sets. FT3D [MIHF+16]
is used in all cases for pre-training and evaluation. It provides dense scene
flow ground truth and is thus also applicable for the training of optical flow or
disparity networks. Further, the networks are fine-tuned on KITTI [GLU12;
MG15] and Sintel [BWSB12]. The KITTI 2015 scene flow data set also provides
(sparse) labels for scene flow and can therefore be used for all evaluations.
Sintel is a data set for optical flow and is thus used for experiments related to
optical flow only. For validation and evaluation, the random split of [SSWS19]
(Section 7.1) is used for KITTI, and 5 out of the 23 sequences are randomly
sampled for Sintel. These sequences are alley_2, ambush_4, bamboo_2, cave_4,
and market_5. For augmentation, photometric transformations as in [DFIH+15;
SSWS19] and temporal flipping for pre-training on FT3D are applied. Unless
mentioned otherwise, pre-training and fine-tuning are done with a batch
size of 2 and 1, respectively. The metrics being considered are the ones
presented in Section 2.3.2. For all, lower is better. Using these setups, two
sets of experiments are performed. Firstly, the design choices are evaluated in
Section 7.2.3 and different ways to implement ResFPN are compared. Secondly,
the features of ResFPN are applied together with different end-to-end matching
networks in Section 7.2.3.

Design Decisions

There are multiple ways to implement the idea of ResFPN. In this section,
different entities of ResFPN are compared by varying the number of additional
skip connections h, the merging operation, and the method to adjust size
and depth of the skip features. For these experiments, the up- and down-
sampling blocks presented in Section 7.2.2 and Table 7.3 are used with the
prediction head of PWOC-3D [SSWS19] for scene flow. The different variants
are compared in Table 7.4.

The number of skip connections is varied from 1 (h =0, the original FPN)
to 3 (h =2). More than three lateral connections are not realizable with the
given hardware, yet it can be noticed clearly that an increase of connections
improves the final results. Furthermore, concatenation versus addition is tested.
Since the concatenation is independent of the feature depths of the merging
input, it is not necessary to reshape the depth of the additional skip features.
However, when this step is omitted, the performance decreases. If this step
is included, it is not obvious what the output depth of the 1 x 1 convolution
should be. For the numbers reported in Table 7.4, the output depth of the
up-sampled target feature map is used, i.e. the same number of output channels
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Table 7.4.: Ablation study on the validation split of KITTI data for different numbers and kinds of residual connections with different strategies
for merging. A simple FPN establishes only a single skip connection between layers of the same resolution. ResF'PN adds two
residual connections of higher resolutions (cf. Figure 7.8). Scene flow predictions of PWOC-3D [SSWS19] (Section 7.1) validate
that the setup of ResFPN yields the best results while at the same time increases the computational effort and network size only

marginally.

h Re-shaping Merging FT3D [MIHF+16] | KITTI [MG15] Parameters FLOPs

KOE EPE KOE EPE x 106 x1012

FPN [SSWS19] 0 - addition 21.49 9.15 12.55  3.22 8.05 6.07

1 1x1, max-pool addition 20.95 8.28 11.37  3.09 8.09 6.50

2 max-pool concatenation || 19.90 7.91 11.21 3.04 8.67 8.94

2 1x1, max-pool concatenation || 21.16 8.34 11.83  3.02 9.03 12.09

2 3 x 3, stride addition 21.65 8.42 13.67 3.50 8.74 7.43

2 1x1, bilinear addition 20.89 8.09 11.55  3.21 8.12 7.26

2  max-pool, 1 x1 addition 20.28 7.67 12.24  3.06 8.12 6.24

ResFPN 2 1x1, max-pool addition 18.91 7.19 10.63 2.98 8.12 7.30

Table 7.5.: Comparison of feature extractors. For different prediction networks on different data sets, two version are compared, the original
network and a version where nothing but the feature module is changed to the improved ResFPN. To validate if the additional
lateral connections in ResFPN are the reason for the improvement, a simple FPN [LDGH+17] is also included in the comparison.

FT3D [MIHF-+16] KITTI [MG15] Sintel [BWSB12]
Original FPN ResFPN || Original FPN ResFPN | Original FPN ResFPN
Prediction Head | KOE EPE | KOE EPE | KOE EPE | KOE EPE | KOE EPE | KOE EPE | KOE EPE | KOE EPE | KOE EPE
PWOC3D [ssws19] ||~ [215 92 | 189 ‘w2 | | 126 32 106 30 - | |
PWC-Net [SYLKIS] | 199 85 | 194 84 | 187 8.2 | 156 37 | 146 33 139 82| 202 60 | 196 57 | 185 5.7
LiteFlowNet [HTC18] | 231 98 | 228 99 | 209 9.0 | 180 37 | 180 36 164 3.5 | 207 57 | 196 57 | 183 5.6

PSMNet [CC18] || 160 53 | 10.9 52 |10 49 || 30 1.0 | 26 1.0 [ 22 1.0

Sy10M3oN TeInaN dod(T [IIM UOTIRWIISH MO[ dUdS PU-03-pus] :J Iordery)
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Networks for Accurate Dense Pixel Matching

that is required for merging by element-wise addition. As a consequence,
the computational effort increases. Lastly, the re-shaping strategy to align
spatial shapes is changed, and in case of addition the depth of the skip feature
maps. The approach of 1 x 1 convolution followed by max-pooling is opposed
to strided convolution, convolution followed by bilinear down-sampling, and
max-pooling followed by convolution to show the importance of the order.
Out of all strategies, the reshaping approach with element-wise addition and
1+ h =3 skip connections (visualized in Figure 7.8) performs the best while, at
the same time, is computationally affordable. The overhead of the additional
residual connections in terms of numbers of parameters and floating point
operations is negligibly small, but the outlier rate (KOE) and end-point error
(EPE) drop by 7 to 22 %. Note that the feature computation with either FPN
or ResFPN requires less than 10 % of the entire floating point operations for
the prediction of the scene flow with PWOC-3D [SSWS19]. In detail, feature
computation with ResFPN on a GeForce GTX 1080 Ti for a single image (~ 0.5
MP) takes about 5 ms.

Dense Matching with ResFPN

Four different end-to-end networks for scene flow, optical flow, and disparity
estimation are used for dense matching. For the experiments, nothing but
the feature computation module is replaced with ResFPN (and a simple FPN
[LDGH+17] for comparison). The predictions for the three different feature
extractors are then compared. The evaluation is conducted on all mentioned
data sets if ground truth for the respective task is available. The training
schedules are as close as possible to the original, including multi-stage training
if relevant, learning rate schedules, and more. Deviations from the original
training schedule are explicitly mentioned. The results for all networks on all
data sets are presented in Table 7.5.

Stereo Disparity. PSMNet [CC18] is used to compute stereo disparity. This
network predicts single scale dense stereo displacements at 1/4 resolution,
i.e. only the output of dec-2-2 (see Table 7.3) from ResFPN is used for the
prediction. For the comparison between baseline and ResFPN, the CNN
module for feature extraction (see Table 1 in [CC18]) is replaced with ResFPN.
To smooth the interface between ResFPN and the SPP module of PSMNet, the
used feature representation is passed through a 1x1 convolution with 128 output
channels to unify the feature shapes. For any training of PSMNet, a batch-size
of 3 is used for pre-training. For the training of PSMNet together with ResFPN,
the entire learning rate schedule is reduced by factor 10, because the additional
skip connections affect the flow of gradients and thus can influence the stability.

The results show a significant reduction of outliers (KOE) for both stereo

data sets when using ResFPN. End-point errors on FT3D are also reduced.
ResFPN also outperforms the simple FPN with a single lateral skip connection.
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Improved Results with
ResFPN
and Error Maps

Results of PWC-Net
Reference Images [SYLK18]
and Ground Truth
and Error Maps

0:9 ;5!: KOE! 64% EP.E

Results of LiteFlowNet  Improved Results with

Reference Images
HTC18
and Ground Truth [ ]
and Error Maps

ResFPN
and Error Maps

EPE: 2.0 px

% EPE: 2.7 px

KOE: 11.2 %

KOE: 49.8 %~ EP'E 33.1 px KO%

Figure 7.9.: Some examples of how ResFPN improves optical flow prediction on
KITTI [GLU12; MG15] and Sintel [BWSB12]. Please note the subtle

differences around objects, e.g. vehicles.

' i
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Optical Flow. PWC-Net [SYLK18| and LiteFlowNet [HTC18] are used for
the estimation of optical flow. For the experiments with PWC-Net, the exact
ResFPN as described in Section 7.2.2 and Table 7.3 is used. For LiteFlowNet,
the flexibility of ResFPN is demonstrated by testing a version that is closer
to the original feature computation module of LiteFlowNet. The concept of
multiple residual skip connections in a pyramidal encoder-decoder network
with the up-sampling block shown in Figure 7.8 is still applied, but the hyper-
parameters are changed to fit the settings of the encoder of LiteFlowNet
[HTC18]. In detail, the feature encoder is formed by the input image, a first
feature representation at full resolution, and the five additional, down-sampled
feature maps. This setup reaches a minimal resolution of 1/32 with feature
depths of 3,32,32,64, 96,128,192 for the seven parts of the encoder (including
the image itself). For the prediction, multiple scales are used iteratively until
1/2 of the input resolution is reached. This is different from all other networks,
which use a final resolution for prediction of 1/4.

For both optical flow networks, the results improve on all data sets when
features from ResFPN are used. This holds for both metrics, outlier rate and
average end-point error. ResFPN also outperforms a simple FPN [LDGH+17]
in all experiments on optical flow. A visual comparison of the results of the
baselines and ResFPN is given in Figure 7.9 for exemplary images from KITTI
and Sintel. It is evident that not only the localization of features is improved to
capture more details during matching. Moreover, ResFPN shows an increased
robustness compared with its competitors in general. In the first sample from
Sintel, the relatively small, insufficiently illuminated character is outlined much
better when ResFPN features are used for the matching, even if the overall
results for this frame are slightly worse. On a global scale, especially for large
displacements or occluded areas, ResFPN outperforms the baseline (e.g. in the
last example of Figure 7.9).

Scene Flow. For estimation of scene flow with PWOC-3D [SSWS19] (Sec-
tion 7.1), the original design of ResFPN is applied again. The major differences
here are that four instead of two images are processed for matching with
ResFPN and that the baseline is already using a FPN with lateral skip con-
nections [LDGH+17; SSWS19]. Therefore, this experiment has the strongest
baseline. Still, ResFPN achieves a considerable reduction of outliers of about
15 % and cuts the end-point errors by ~6 % and ~22 % for KITTI and FT3D,
respectively.

In summary, using ResFPN for feature computation in end-to-end matching
networks reduces outlier rates and end-point errors (or maintains them) in all
experiments. The better localized features preserve details during matching and
produce more consistent and smooth results in comparison to a simple Feature
Pyramid (FP) and a basic FPN. ResFPN achieves this for networks with
very different characteristics, e.g. single and multi-scale estimation, different
encoding (down-sampling) blocks, and different final resolutions.
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Table 7.6.: Evaluation in boundary regions of objects on KITTI [MG15]. d,, defines
the average end-point error for areas around object boundaries of n
pixels width.

Original with ResFPN
Predictor ds ds dio dao ds ds d1o dao
PWOC [SSWS19] | 10.75 10.23 8.24 6.54 | 10.18 9.87 830 6.80

PWC [SYLK18] | 10.34 9.79 8.25 6.94| 9.46 9.06 791 6.84
LFN [HTC18] 13.72 1257 10.13 874 | 1236 11.43 9.15 7.72

PSM [CC18] 2.07 231 212 170 | 2.97 246 ~ 1.79 1.35

Improved Localization. The previous section confirms that matching with
ResFPN yields an overall better result on various domains with all kinds of
networks. However, one of the major claims is improved localization by the
utilization of multiple feature maps of higher resolution. Therefore, a final
experiment is conducted to validate this claim. Towards this end, the object
masks provided by the KITTI data set [MG15] are used to repeat the previous
experiment on the regions around objects. The average end-point error for
different maximum distances to object boundaries is evaluated and reported in
Table 7.6.

The numbers indicate that results obtained from the proposed feature module
are better at discontinuities around objects in most cases. Except for very
narrow evaluation regions for predictions with PSMNet [CC18] and wide
boundaries for scene flow prediction with PWOC-3D [SSWS19], ResFPN
reduces the error in these difficult image regions.

7.3. Deep Temporal Fusion of Motion Between
Multiple Time Steps

For all presented and existing dual-frame approaches, occlusions and out-of-view
motions are a limiting factor. In the context of environmental perception for
vehicles this issue is especially serious due to the large (ego-) motion of objects.
This part of the dissertation proposes a novel data-driven approach for Deep
Temporal Fusion (DTF) [SUS21] of scene flow estimates in a multi-frame setup
to overcome the issue of occlusion. In contrast to most previous multi-frame
methods, this approach does not rely on a constant motion model, but instead
learns a generic temporal relation of motion from data. In a second step, a
neural network combines bidirectional scene flow estimates from a common
reference frame, yielding a refined estimate and a natural byproduct of occlusion
masks. This way, the framework provides a fast multi-frame extension for a
variety of scene flow estimators, which outperforms the underlying dual-frame
approaches (see Figure 7.10).

Most recently, data-driven deep learning approaches have pushed the limits of
scene flow estimation even further [APTM20; JSJL+19; MWHX+19; SSWS19;
YR20]. These approaches achieve state-of-the-art results at run times close
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T o e

(a) Reference image.

SF outliers:

(c)

SF outliers:

Figure 7.10.:

(b) Soft occlusion weights for fusion.

16.62 % (occ: 66.46 %)

Dual-frame result from PWOC-3D [SSWS19] (Section 7.1).

8.97 % (occ: 8.75 %)

(d) Result of the proposed fusion framework.

Deep Temporal Fusion refines an initial dual-frame estimate by com-
bination with an inverted backward scene flow. The fusion is realized
as a pixel-wise weighted averaging and thus yields (soft) occlusion
maps (b). This way, the initial results are significantly outperformed,
especially in the difficult occluded areas.
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to real time. Yet, none of these deep learning methods utilizes a multi-frame
setup which has been shown to improve over a conceptually similar dual-frame
approach for heuristic algorithms [NS17; SWUK+20; TSS17; VSR15] (cf.
Section 4.2). Many of these traditional, heuristic approaches use the additional
information from multiple views to regularize the matching, making them more
complex and reliable on specific, simplified motion models (e.g. a constant
motion assumption). At the same time, all previous approaches (even multi-
frame based) perform considerably worse in occluded areas (cf. Table 7.8),
which suggests that there is a lot of unused potential in multi-frame scene flow
estimation.

More generic concepts for learning-based multi-frame settings are proposed
in the context of optical flow [LLKX19; MB18; NSM18; RGSY+19]. But these
methods do not model the underlying issue of occlusions at all, or tackle the
estimation of occlusions by bidirectional flow estimation (twice as much effort).
The framework can be used together with any auxiliary scene flow estimator.

7.3.1. Related Networks in the Literature

Deep End-to-End Scene Flow Estimation. A boost in run time has been
achieved with the introduction of the first deep learning algorithms due to
the massive parallelization on GPUs. At the same time, many of the newly
proposed deep neural networks have reached state-of-the-art results despite
the lack of realistic, labeled training data [APTM20; JSJL+19; MWHX+19;
SSWS19; YR20]. Yet, no existing deep learning architecture for scene flow
estimation makes use of the multi-frame nature of image sequences, which
naturally exists in realistic applications. DTF fills this gap with a trainable,
generic multi-frame solution for scene flow estimation.

Deep Multi-Frame Models for Optical Flow. For optical flow there exists
some previous work on deep multi-frame neural networks. MFF [RGSY+19]
computes forward flow for two consecutive time steps together with a backward
flow for the central frame. The backward flow is used to warp the previous
forward motion towards the reference frame realizing a constant motion as-
sumption. A fusion network then combines the initial forward prediction and
the warped one. This fusion effectively relaxes the constant motion constraint.
Occlusions are not modeled explicitly here. ContinualFlow [NSM18] uses previ-
ous flow estimates as additional input during the estimation of the current time
step. Here, occlusions are learned as attention maps in a self-supervised manner
similar to MaskFlownet [ZSDC+20] or PWOC-3D [SSWS19] (Section 7.1), but
based on a cost volume instead of image features. ProFlow [MB18] proposes an
online inverter for motion that is trained for every frame on the fly. In DTF,
this idea is adopted to avoid warping, but only a single inverter is trained once
to further avoid the re-training on every sample and the explicit estimation
of occlusions at an early stage. In SelFlow [LLKX19] as in ProFlow also,
occlusions are detected by a forward-backward consistency check. SelFlow
uses the additional multi-frame information by constructing cost volumes for
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forward and backward direction which are then used for the flow estimation.
DTF eradicates any consistency checks, avoids warping in order to shift the
handling of occlusions to a later stage, and learns a dedicated universal model
for the inversion of motion. Contrary to all mentioned cases for optical flow
estimation, the proposed deep multi-frame model solves the more complex
problem of scene flow estimation.

7.3.2. Deep Multi-Frame Scene Flow

Consider a stream of stereo image pairs I} and I} for the left and right camera
at a given time ¢t. While dual-frame solutions only consider the four images at
the two time steps ¢ and ¢ + 1, a multi-frame method incorporates information
from at least one additional time (usually ¢ -1 to avoid delay in the prediction
and account for the symmetry in motion). The DTF framework builds on this
exact setup using three stereo pairs at time t—1, ¢, and t+1. The idea is outlined
in Figure 7.11 and can be summarized as follows. An arbitrary auxiliary model
is used for scene flow estimation to predict forward (¢t - ¢ + 1) and backward
(t > t—1) scene flow with respect to the reference view. By using a shared
reference view for the fusion, warping can be avoided, and thus the problem to
handle occlusions is postponed. Then, a learned motion model transforms the
backward estimate into a forward motion. Finally, a temporal fusion module
combines the forward and inverted estimate to obtain a refined result. For the
fusion, a strategy of weighted averages is applied. This implicitly yields soft
occlusion maps for the two motion directions without explicit supervision on
occlusions. The underlying dual-frame model that is used mainly is PWOC-3D
[SSWS19] of Section 7.1 due to its simple training schedule compared to other
approaches. However, in the experiments (Section 7.3.3) it is shown that the
framework is not limited to this model. The novel sub-networks for motion
inversion and fusion are presented in more detail in the next sections.

Temporal Scene Flow Inversion. Instead of a constant motion assumption,
which is often applied in previous work, a compact neural network is trained
that utilizes a learned motion model to temporally invert scene flow. The
architecture is inspired by the inversion module of [MB18] but it is deeper since
the framework requires a generic model that can invert motion for arbitrary
sequences without the need of re-training on every frame. In detail, the
inversion sub-network consists of four convolutional layers with a kernel size
3 x 3 and a fifth one with a 7 x 7 kernel and output feature dimensions of
16,16,16, 16,4 respectively. The last layer is activated linearly. Similarly to
ProFlow [MB18], the inverter is equipped with a mechanism for spatial variance
by concatenating the input scene flow with normalized ([-1,1]) spatial image
coordinates of the x- and y-direction. This way and together with the depth
information from the backward scene flow, the inversion network is able to
operate fully in (hypothetical) 3D space. For a qualitative impression of the
inverter, Figure 7.12 visualizes the results for a validation sample from FT3D.
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Figure 7.11.: Overview of the proposed framework for Deep Temporal Fusion (DTF)
with a trainable motion model.
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Deep Forward-Backward Fusion. After the prediction of scene flow in the
forward and backward direction (using the same reference frame) and inverting
the backward estimate, the forward and inverted backward predictions can be
merged. The refined results can potentially overcome errors in difficult regions
of occlusion or out-of-view motion, because occlusions occur rarely across
multiple views [SWUK+20] (cf. Section 4.2.1). The fusion strategy follows a
weighted average approach, where a fusion module predicts pixel-wise weights
(that sum up to one) for the combination of the original forward estimate and
the inverted backward scene flow. Interestingly, these weights correspond to
(soft) occlusion masks, revealing the main reason why the inverted backward
motion should be preferred over a forward dual-frame estimate (cf. Figures 7.10
and 7.11). While the direct prediction of a refined (or residual) scene flow
during fusion is also possible, this would neither model the underlying issue
nor produce occlusion masks.

For the fusion module, the architecture of the context network of PWC-Net
[SYLK18] and PWOC-3D [SSWS19] (cf. Section 7.1.2) is adopted. It consists
of seven convolutional layers with a kernel size of 3 x 3, an output depths of
32,64,128,128,64, 32,2, and dilation rates of 1,2,4,8,16,1,1 respectively. The
last layer predicts pseudo probabilities in a one-hot encoding for the forward
and inverted backward scene flow which are used for weighted averaging after
a softmax activation. As input for this module, the forward and inverted
backward estimates are concatenated.

The above described model is a simple baseline for temporal fusion of scene
flow (basic). Within the experiments in Section 7.3.3 different variants of
the fusion module are compared. Though the network can detect occlusion
based on the depth (disparity) and motion of neighboring pixels, it can not
estimate out-of-view motion without knowing where the field of view ends.
This information could be guessed from padding artifacts during convolution,
however for more explicit modeling, additional spatial information is fed to
the module, analogous to the inverter. This variant is denoted as spatial.
Another variant is again motivated by the issue of occlusion. Since in multiple
views different parts of the reference image are occluded, it is argued that
the predicted occlusion masks (fusion weights) should differ for the different
components of the scene flow, e.g. between the left and right view of a stereo
camera, there are no occlusions due to motion. Therefore this variant predicts
a separate occlusion map for each channel of the scene flow representation
(in image space) and is depicted as 4ch since it predicts fusion weights for
four scene flow channels (two for optical flow and two for initial and future
disparities). Lastly, both strategies are combined and the combination is named
spatial-4ch. In Figures 7.10 and 7.11, the occlusion maps (fusion weights) for
the basic variant are shown for the sake of clarity and space.

7.3.3. Experiments and Results

The experiments and results are split into three sets with the following main
intentions. First of all, it is validate that the overall framework improves
over the initial dual-frame estimates of different auxiliary scene flow models.
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i

(C) Forward scene flow visualized by optical flow and future disparity at time t + 1.

Figure 7.12.: An example of the learned inversion of motion on data of Flying-
Things3D [MIHF+16]. The left and right columns show the optical
flow and disparity at t+1 components of the scene flow. The first and
last row give the ground truth in backward and forward direction,
respectively. The center row presents the results of the generic motion

inverter.
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Secondly, DTF is compared to existing multi-frame scene flow algorithms using
the official public KITTI benchmark [GLU12; MG15]. Lastly, the goal is
to validate each step of the framework separately by means of an extensive
ablation study. As usual, the metrics in use are these of Section 2.3.2.

Training and Implementation Details. As before, the limited size of the
KITTI data set [GLU12; MG15] requires alternative training strategies. De-
spite the success on unsupervised scene flow estimation [HR20] or knowledge
distillation from teacher networks [APTM20; JSJL+19], transfer learning by
pre-training and fine-tuning is the most common strategy to overcome this
issue [MIFH+18; SSWS19; SYLK18; SYLK19]. This strategy is applied in
Sections 7.1 and 7.2 and is also used here. The one large-scale data set which
provides sufficient labeled data for scene flow is FT3D [MIHF+16].

The validation set on KITTT is the one consistently used in Chapter 7. For
FT3D, the validation set consists of the last 50 sequences from each subset A,
B, and C of the train split.

If required, the auxiliary scene flow estimators are initialized with the
published pre-trained weights. The rich ground truth of FT3D [MIHF+16]
is used to separately pre-train the inverter on forward and backward ground
truth motion with a L2-loss for 40 epochs, a batch size of 4, and an initial
learning rate of 1 x 107 that is decreased to 5 x 107 and 1 x 1075 after 20 and
30 epochs, respectively. The rest of the pipeline is initialized from scratch.

Afterwards, the fusion pipeline is fine-tuned on KITTI [MG15] for 100 epochs.
The learning rate for fine-tuning starts at 5 x 10~ and is again reduced to
1 x 107 after 75 epochs. Due to memory limitations, a batch size of 1 is used
whenever the entire pipeline is used for training.

Unless mentioned otherwise, LeakyReLU [MHN13] with a leak factor of 0.1
is used after each convolution. For all training stages, the Adam optimizer
[KB15] is utilized with its default parameters.

The used robust loss function for the 4-dimensional scene flow in image space
is similar to the one in [SSWS19; SYLK18] and defined by

1 o 0.4
L=—" S§—8l1+e¢ . 7.7
N 2 (5 shi+o (7.7)

Here § and s are the estimated and corresponding ground truth scene flow
vectors, |-|p is the Li-norm, € = 0.01 is a small constant for numerical stability,
and the power of 0.4 gives less weight to strong outliers.

For the entire pipeline, this loss is imposed on the forward estimate, the
inverted backward scene flow, and the final fusion:

Liotal = Ef’w + Liny + ﬁf’used (78)
This multi-stage loss avoids that during training the fusion flips to one side

and does not recover because the other side would not receive any updates
anymore.
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Visualization of the backward optical flow for different scene flow
estimators. Most auxiliary estimators used in the experiments have
difficulties with backward motion because they do not perform actual
matching, but rather rely on the image information of the reference
frame alone, especially for street surfaces. Significant improvements
are noticeable once the backward branch is trained end-to-end within
the DTF' framework (h), even though backward ground truth is not
available.
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Table 7.7.: Comparison of the multi-frame fusion approach to the dual-frame results of the underlying auxiliary scene flow estimator for the
entire image (all) and occluded areas only (occ € all ~ noc) on the KITTI validation split. The last column gives the maximum
relative improvement of DTF over the respective dual-frame baseline.

Scene Flow Set all oce max. rel.
Estimator "l p D2 OF SF | DI D2 OF SF | Improv.

Dual || 0.97 222 3.00 4.04 |2.08 823 719 11.84
DTF || 097 166 3.01 @ 3.52 | 205 481 7.21 @ 8.57 41.6 %

Dual || 1.11 258 556  6.61 | 253 7.34 15.06 17.73
DTF || 1.12 246 546 6.39 | 254 6.97 14.57 16.86 5.0 %

Dual || 2.35 349 7.07 816 | 394 759 1770 19.63
DTF || 1.17 2,63 5.64 6.75 | 2.82 7.54 1490 17.82 50.2 %

Dual || 4.65 6.72 11.50 13.64 | 8.02 15.20 29.17 32.15
DTF | 3.34 485 822 9.70 | 5.63 10.10 18.68 21.24 36.0 %

Dual || 6.61 10.28 12.39 15.76 | 9.94 19.57 26.08 30.74
DTF || 6.04 9.03 11.43 14.30 | 8.77 1591 22.85 26.25 18.7 %

SENSE [JSJL+19]

OE [YR20]

DWARF [APTM20]

PWOC-3D [SSWS19]

SFF [SWKB+18]
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Comparison to the Auxiliary Estimators. In Table 7.7 it is validated that
the deep temporal fusion framework surpasses a diverse set of underlying
dual-frame estimators in terms of scene flow outliers. Especially in the difficult
areas of occlusion, the approach achieves significantly better results, reducing
the scene flow outlier rate by up to ~ 30 %. The fusion improves the scene flow
estimates for non-occluded areas also, resulting in an overall improvement over
all image areas. For OE [YR20], the relative improvement is less compared
to other auxiliary estimators. This has two reasons. First of all, some scene
flow algorithms are heavily biased towards forward motions (cf. Figure 7.13)
and therefore provide much less reliable information for fusion in the backward
branch. Secondly, the estimate of motion-in-depth from OE depends a lot on
the optical flow estimate, which amplifies the previous limitation and expands
it to the complete scene flow estimation in backward direction. The first reason
additionally motivates an end-to-end training of the fusion framework together
with the auxiliary estimator. This is performed for PWOC-3D [SSWS19] (Sec-
tion 7.1) because it is easiest to train. The other auxiliary estimators are used
as off-the-shelf replacements with the officially provided pre-trained weights.
DTF is even able to improve non-learning-based results of SceneFlowFields
(SFF) [SWKB+18] (Section 4.1), with a noticeable margin of more than 10 %
in occluded areas. Here, the smaller relative improvements are accounted to the
ego-motion model applied in SFF which is able to estimate out-of-view motions
in forward direction for the background more reliably. A visual comparison
between PWOC-3D and the multi-frame extension of the DTF framework is
conducted in Figure 7.14.

Comparison to State-of-the-Art. To check the generalization of the model
on more unseen data, results obtained with the deep multi-frame model are
submitted to the KITTI online benchmark. The results of all multi-frame
methods and related dual-frame baselines are presented in Table 7.8. Due to
the limited number of training samples on KITTI, some over-fitting can be
observed when comparing the numbers to the results on the validation split.
However, improvements over the underlying dual-frame models (SENSE and
PWOC-3D) are still evident, again with margins of ~15 - 20 % in occluded
areas. Since KITTT evaluates the submitted results only for non-occluded (noc)
and all valid pixels, the results for occluded areas (occ) are reconstructed from
the available data. To this end, the ratio of non-occluded image areas on the
KITTI training set are computed (84.3 %), and this distribution is used to
estimate the results in occluded areas only on the KITTI testing set based on
the benchmark results of non-occluded (noc) and all areas according to the

following formula:
i, - -0.843
oce, = 40 Z oty (7.9)
0.157

for the regions r € {bg, fg,all}. This strategy reveals that even for the top
performing multi-frame methods, moving vehicles which leave the field of
view are the most challenging cases. In these regions (occ-fg), the fusion
approach achieves top performance. In foreground regions it furthermore
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SF outliers: 15.40 % (occ: 35.30 %) SF outliers: 6.69 % (occ: 8.56 %)

Reference Image and Ground Truth (enhanced) Dual-Frame Results Results with DTF

SF outliers: 11.59 % (occ: 19.88 %) SF outliers: 5.68 % (occ: 7.96 %)

e ——

Figure 7.14.:

Visual comparison of the deep multi-frame fusion framework to the
auxiliary dual-frame model PWOC-3D [SSWS19] of Section 7.1. Scene
flow results are shown by optical flow and disparity at time t + 1.
The error maps indicate scene flow outliers in magenta and inliers in
green. Notice the improvements in occluded areas (e.g. in front of
and around vehicles) or the out-of-view occlusions due to ego-motion
(e.g. the close-by part of the guardrail in the first example and the
lower image corners).
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performs significantly better (all-fg) than other multi-frame methods. Lastly,
it is highlighted that since this is the first deep method for multi-frame scene
flow estimation, the run time is close to real time and thus 2 to 5 orders of
magnitude faster than the run time of most other multi-frame methods. The
inversion and fusion without auxiliary scene flow estimation takes 0.12 seconds.
A GeForce RTX 2080 Ti is used for inference in these experiments.

Ablation Study. For completeness, each part of the DTF framework is evalu-
ated separately in Table 7.9. The first two rows show the results of the forward
prediction and the inverted backward scene flow after end-to-end training. It
can be seen that within multi-frame training, the plain forward prediction
improves over the dual-frame baseline (cf. Table 7.7). Further, the results
of the backward branch after inversion indicate that the motion inversion of
optical flow is a bottleneck. Yet, for occluded areas the inversion outperforms
the forward prediction already in terms of change of disparity, validating its
importance. Both of these observations are confirmed by an evaluation of
the inverter only on data of FT3D [MIHF+16] as shown in the fourth row
of Table 7.9 (cf. Figure 7.12) compared to a naive constant linear motion
assumption in 2D. This is, optical flow and change of disparity are multiplied
by —1. The learned motion model outperforms the constant motion model in
terms of optical flow. Though, one might doubt whether the quality of the
inversion is good enough to improve the forward prediction. Therefore, an
oracle fusion is computed using the ground truth to select the better estimate
from the forward and inverted backward branch. This experiment produces a
theoretical bound for the fusion module and makes apparent that the inverted
backward scene flow contains a lot of valuable information. Within the last
four rows of Table 7.9 the different variants of the fusion module as described
in Section 7.3.2 are compared. Results in occluded areas reveal that all variants
including the basic one effectively tackle the problem of occlusion. Among all,
the spatial version performs the worst unless combined with the j/ch variant.
However, stronger over-fitting is observed for this model with most representa-
tion power (and highest number of parameters). As a result, over the entire
image area, the fusion module using four weight channels performs the best.
Worth highlighting is that the fusion results in occluded areas reach the level
of the oracle prediction almost.

7.4. Summary

PWOC-3D is a novel end-to-end CNN pipeline to predict scene flow (optical
flow, stereo disparity, and disparity change jointly) directly from stereo image
sequences. The approach is significantly more efficient than earlier classical
approaches due to the massive parallelization of CNNs on GPUs, and much
more accurate than variational methods. Moreover, unlike most previous
techniques, PWOC-3D does not make any assumptions about the consistency
or smoothness of motion, or the rigidity of objects. This makes the method
more general and applicable to realistic scenarios in which such assumptions
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Table 7.8.:

Results of the KITTI scene flow benchmark for all multi-frame approaches. Results of the auxiliary scene flow methods used in the
pipeline and conceptual dual-frame counterparts for other multi-frame methods are also presented, if existent. Scene flow outlier
rates (SF) are presented for foreground (fg), background (bg), and all regions, as well as for non-occluded areas (noc), occluded areas

only (occ, details in the text), and the union (all).

SF Outliers [%)] Run
Method occ noc all Time
bg fg all bg fg all bg fg all [s]
PRSM [VSR15] 12.36 37.65 15.74 | 5.54 17.65 7.71 | 6.61 20.79 8.97 300
qé DTF+SENSE 16.37 37.49 19.65 | 6.69 9.72 7.23 | 821 14.08 9.18 0.76
S| OSF+TC [NS17] 1546 4398 1949 | 5.52 1557 7.32 | 7.08 20.03 923 | 3000
g SFF++ [SWUK+20] 26.40 48.36 30.91 9.84 21.04 11.55 | 12.44 25.33 14.59 78
g DTF+PWOC-3D 31.91 51.14 3429 | 879 21.01 10.98 | 12.42 25.74 14.64 0.38
FSF+MS [TSS17] 21.59 6548 27.63 | 9.23 28.03 12.60 | 11.17 33.91 14.96 2.7
o | SENSE [JSJL+19] 1722 4486 21.63 | 6.71 10.02 7.30 | 836 1549 9.55 0.32
C% OSF [MG15] 15.01 47.98 19.41 5.92 2231 8.52 7.01 26.34 10.23 3000
£ | PWOC-3D [SSWS19] || 41.20 47.52 41.62 | 9.29 18.03 10.86 | 14.30 22.66 15.69 0.13
Tg SFF [SWKB+18] 25.58 63.26 30.76 | 10.04 26.51 12.99 | 12.48 32.28 15.78 65
© PRSF [VSR13] 41.09 58.82 4280 | 835 26.08 11.53 | 13.49 31.22 16.44 150

Arewwung )
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Table 7.9.: Evaluation of intermediate results in the multi-frame fusion pipeline on the KITTI validation split. For this experiment, PWOC-3D
[SSWS19] (Section 7.1) is the auxiliary estimator and is trained end-to-end. The inversion module is separately evaluated on FT3D.

Outout all occe

e DI D2 OF SF | DI D2 OF SF
forward (fw) 3.47 5.83 8.95 10.76 | 5.89 14.39 23.17 26.93
inverted backward (bw-inv) 4.15 6.00 20.34 22.14 | 6.64 992 31.74 33.81
constant linear inversion (FT3D) - 1.27 4716 4718 - - — —
proposed inverter (FT3D) 219 325 41.98 42.34 | -~ - - -
fw + bw-inv + oracle 2.63 391 6.25 7.51 | 453 840 16.39 18.43
fw + bw-inv + fusion-basic 3.22 490 9.01 1048 | 488 10.23 19.27 21.66
fw 4 bw-inv + fusion-spatial 3.48 5.51 8.8 10.55 | 6.13 13.66 22.23 25.40
fw 4+ bw-inv + fusion-4ch 3.34 4.85 8.22 9.70 | 5.63 10.10 18.68 21.24
fw + bw-inv 4 fusion-spatial-4ch || 3.43 4.84 8.67 10.19 | 5.45 9.25 18.46 20.82
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7.4. Summary

do not hold, e.g. highly dynamic road scenes.

However, as shown in Section 7.3.3 and Figure 7.13, a limitation of PWOC-3D
and other end-to-end networks for scene flow estimation is the low generalization
to unseen domains. These domain changes can be as simple as an inverted
temporal order of the images.

Moreover, PWOC-3D employs special constructs such as pyramid processing,
warping and occlusion reasoning to tackle common challenges in scene flow like
large motion and occlusions. In this regard, a novel self-supervised scheme is
proposed to estimate occlusion from images without any labeled occlusion data.
PWOC-3D demonstrates competitive results on the KITTI benchmark and the
FT3D data set. Notably, the method has significantly fewer parameters than
contemporary methods and achieves second place on KITTI among end-to-end
deep learning methods with 48 times fewer parameters than the top-performing
method at the time of publication.

ResFPN — a multi-resolution feature pyramid network with residual skip
connections provides a general concept to improve end-to-end networks for
dense matching, e.g. scene flow estimation. With this novel design it is possible
to significantly improve the representativity and localization of features for
end-to-end learned dense pixel matching tasks. The design is validated in
a comprehensive ablation study. In various experiments, ResFPN achieves
significant improvements in application for optical flow, scene flow and disparity
estimation. These improvements have been confirmed for a wide range of state-
of-the-art methods over a large number of renowned data sets.

As future work, it is planned to explicitly consider further input modalities
like LiDAR [BSWR+19] or radar [MK19] in the design of ResFPN. The
additional 3D information plays an essential role for various applications.
Furthermore, ResFPN can be analyzed with respect to its robustness against
adversarial attacks [RJGB19].

DTF is a straight-forward integration of multiple frames to improve scene flow
estimates for a wide range of dual-frame algorithms. Significant improvements
could be achieved by inverting the backward motion of the reference view and
fusing it with an initial forward estimate. Moreover, the fusion strategy of
weighted averaging yields additional estimates of (soft) occlusion maps without
the need for bidirectional consistency checks.

The experiments reveal that the inversion of optical flow is a limiting factor
of the proposed approach, thus for future work it is suggested to equip the
motion inverter with more domain knowledge to overcome this limitation and
further to apply end-to-end training with other, more complicated auxiliary
estimators.
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Chapter

Conclusions and Future Directions

“Nothing clears up a case so much as stating it
to another person.”

— Sir Arthur Conan Doyle, Silver Blaze

This thesis contributes to several aspects of scene flow estimation. First of all
and most importantly, it has been shown that the sparse-to-dense concept works
and is, with respect to previous techniques, favorable in terms of complexity and
generalization. The accuracy is competitive. After a first attempt for sparse-
to-dense scene flow estimation, the biggest challenges of sparse distribution
and size of interpolation gaps are successfully tackled by framing the problem
in a multi-frame setting.

By the modularity of the approach, it is possible to replace individual
parts with faster and more robust deep modules. The dense, learned feature
representation (SDC) brings great improvement not just for scene flow, but
also for other dense matching tasks on a broad range of data sets and domains.
While the computation on full resolution is necessary to obtain well-localized
dense features, it limits the run time. Yet, compared to a dense heuristic
description, it is still faster. The insights of the extensive evaluation study
for the training of SDC push the overall performance of the descriptor even
further and increase the invariance (especially to changes in the spatial scale
space). The deep module for sparse-to-dense interpolation erases a number of
previously necessary preconditions. Other than the raw image for guidance, no
derived information needs to be pre-computed (e.g. edges, boundaries, semantic
regions), and local assumptions on planarity or rigidity are removed. However,
the accuracy of state-of-the-art is not reached in all cases. Instead, the deep
interpolation module has great properties in terms of robustness. It shows an
extreme invariance to noise and the distribution or density of the sparse input.
The architecture is therefore useful in a wide range of applications, including
the (guided) densification of less accurate, low-resolution LiDAR sensors. For
both modules, the success on scene flow data — despite the limited availability
of the same — is achieved by considering additional data of related problems
during the design and training.
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The sparse-to-dense concept is further applied together with the combination
approach to obtain dense scene flow from auxiliary results. The two strategies
together yield a very flexible and modular pipeline, that can be easily tuned in
favor of any primary target, e.g. real-time performance. Most interestingly, the
proposed pipeline is used for a similarly easy computation of dense scene flow
with a monocular camera. To this end, depth estimation from single images is
exploited, which is at the same time the limiting factor of the accuracy. Still,
for sub-second run times this strategy sets the new state-of-the-art.

The rise of large synthetic training data for a multitude of computer vision
problems has enabled a strategy to learn the estimation of dense scene flow
from data in end-to-end networks. For the actual application scenario, these
networks are adjusted by transfer learning and fine-tuning from the synthetic
pre-trained domain to the realistic domain. The proposed PWOC-3D follows
this strategy as one of the first networks for scene flow estimation. Two other
end-to-end trainable models have been proposed for the frequently occurring
issues of feature extraction and occlusions. The refined feature extraction of
ResFPN introduces a more localized, dense multi-scale representation of images
that improves diverse dense matching networks without much computational
overhead. The deep multi-frame framework models occlusions as the main
source of errors and thereby improves any dual-frame results, especially in
occluded areas. The overall contribution answers the initially posed questions:

1. The sparse-to-dense concept can be successfully applied to the problem
of scene flow estimation and is with this regard advantageous in terms of
model complexity and generalization. However, the run times of classical
matching algorithms are not yet fast enough for real-time applications,
and the overall accuracy is limited by the ratio of sparse and missing
information. Also, to obtain non-dense matches a consistency check
is necessary. This doubles the matching effort and imposes only weak
guarantees on the reliability of the sparse matches.

2. For data-driven approaches, it can be clearly stated that the relation
of the scene flow problem to other tasks in computer vision allows to
exploit multiple sources of data to model sub-solutions that contribute
to the overall problem. It is also possible to model and train scene flow
networks end-to-end on the limited amount of annotated data, however
in the general case without further assumptions, the accuracy does not
surpass traditional approaches. Run times of highly parallelized models
on Graphics Processing Units (GPUs) are superior, though.

Possible Next Steps

To immediately continue the work on the ideas of this thesis, overcome the
identified limitations, and improve the results, the following propositions are
made. Feature extraction and matching could be extended by a mechanism for
uncertainty estimation that indicates the reliability of the matching result in
order to replace the consistency check. While the matching score is a proxy
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of this, it alone is insufficient for accurate filtering. Like feature extraction
and interpolation, more parts of the pipeline could be replaced by dedicated
deep modules, e.g. for (semantic/motion) boundary detection, or ego-motion
estimation. The interpolation network could be split into a two-stage model
(geometry and motion) that fully operates in 3D space, similar to the heuristic
interpolation models (EPIC3D and RIC3D). For the monocular setting, depth
estimation is not limited to the use of single images. Instead, two- or multi-view
depth reconstruction should be used and further developed. More suggestions
have been made during the discussion of the results in each chapter.

Long Term Directions

Considering a longer time frame, based on the results and observations in
this thesis, the development of novel scene flow methods should consider the
following. While a dense (in terms of image resolution) representation and
perception of the environment is rich, powerful, and certainly favorably for
the geometry, semantics, and more, it is questionable whether this is also
required for motion. Even for highly dynamic environments, (large) parts of
the scene are static and the relevant motion is limited to dynamic behavior of
objects. It should therefore be considered whether motion estimation (in 3D)
could be reformulated together with the detection/segmentation of relevant
objects. Even if a clustering of objects is not desired, the question arises
whether (scene) flow should be estimated for non-occluded parts of the scene
only. This suggestion gains importance when frame rates should increase and
occluded areas start to vanish in the visual measurement.

Independent of that, the availability of more and more diverse sensors in the
automotive context motivates to use and fuse more of them for the estimation
of scene flow. E.g. the fusion of LiIDAR and camera could erase the mutual
disadvantages (accuracy versus density). In terms of input sensors, it would
be also interesting to investigate the other extreme and try to solve single
image scene flow estimation. While single image depth cues have already
been exploited by deep neural networks, information about motion can also be
encoded in a single image, e.g. by motion blur. Such an approach would not
be affected by occlusions.

With respect to the training of deep neural networks, the lack of large
amounts of labels can be compensated by self- and semi-supervised training
strategies. This has to be used a lot more in the future and mixed with
supervised training (i.e. to build semi-supervised strategies). Also important
are recent techniques for domain adaptation to obtain domain invariance,
especially for end-to-end trainable networks. This is an emerging research field
which upon reaching maturity should find its way into the field of scene flow
estimation.
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Acronyms

ADAS Advanced Driver Assistance System

BCA Brightness Constancy Assumption

BRIEF Binary Robust Independent Elementary Features

CNN Convolutional Neural Network

CRF Conditional Random Field

DNN Deep Neural Network

DTF Deep Temporal Fusion

ELU Euclidean Linear Unit

FLOPs Floating Point Operations

FPN Feature Pyramid Network

FT3D FlyingThings3D

GPU Graphics Processing Unit

LiDAR Light Detection and Ranging

OE Optical Expansion

ORB Oriented FAST and Rotated BRIEF

OSF Object Scene Flow

PnP Perspective-n-Point

PRSF Piece-wise Rigid Scene Flow

PRSM Piece-wise Rigid Scene Model

PWOC-3D Pyramid, Warping, Occlusions, and Cost Correlation for 3D
Scene Flow

ReLU Rectified Linear Unit

ResFPN Residual Feature Pyramid Network

SDC Stacked Dilated Convolution

SED Structured Edge Detection

SFF SceneFlowFields

SFF++ SceneFlowFields+-+

SGM Semi-Global Matching
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Acronyms

SIFT
SOR
SPS
SSGP
SURF
WHT

Scale-Invariant Feature Transform
Successive Over-Relaxation
Slanted Plane Stereo

Sparse Spatial Guided Propagation
Speeded-Up Robust Features
Walsh-Hadamard-Transform
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Appendix A: Additional Visualizations

Estimates Error Maps

SFF [SWKB+18]

SGM+C+NL [Hir08; SRB14]

SGM+4FF+

Flow
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Figure A.l.: Visual comparison of the results on KITTI test image 8 for Scene-
FlowFields (SFF) [SWKB+18] (Section 4.1), SGM+C+NL [Hir08;
SRB14], and the proposed combination approach of Section 6.1.
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Appendix A: Additional Visualizations

SFF [SWKB+18]

SGM-+C+NL [Hir08; SRB14]

SGM+4FF+
D2

Flow
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Figure A.2.: Visual comparison of the results on KITTI test image 13 for SFF
[SWKB+18] (Section 4.1), SGM+C+NL [Hir08; SRB14], and the
proposed combination approach of Section 6.1.
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Additional Visualizations
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(¢) Result of MonoExpansion [YR20]

Figure A.3.: Continued on the next page.
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Appendix A: Additional Visualizations

Error Map
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(d) Result of Self-Mono-SF (fine-tuned) [HR20]
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(e) Result of the monocular combination approach MonoComb.

Figure A.3.: Visualization and error maps from the KITTI online benchmark for
the first test frame. Mono-SF [BAM19] (b), MonoExpansion [YR20]
(¢), Self-Mono-SF' [HR20] (d), and the proposed MonoComb approach
of Section 6.2 (e) are compared.
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Table B.1.: This table shows a snapshot of the KITTI scene flow leader board with all published, peer-reviewed methods at the time of writing
(April 25, 2021).

D1 D2 OF SF Run

Method Reference | Year | Setting | bg fg all bg fg all bg fg all bg fg all | time [s]
DRISF [MWHX+19] | 2019 2.16 | 449 | 255 | 2.90 | 9.73 | 4.04 | 3.59 | 1040 | 4.73 | 4.39 | 15.94 | 6.31 0.75
ACOSF [LML21] 2021 2.79 | 7.56 | 3.58 | 3.82 | 12.74 | 5.31 | 4.56 | 12.00 | 5.79 | 5.61 | 19.38 | 7.90 300
ISF [BIMA+17] | 2017 4.12 | 6.17 | 4.46 | 4.88 | 11.34 | 595 | 540 | 10.29 | 6.22 | 6.58 | 15.63 | 8.08 600
OpticalExpansion [YR20] 2020 148 | 3.46 | 1.81 | 3.39 | 854 | 4.25 | 5.83 | 866 | 6.30 | 7.06 | 13.44 | 8.12 2
PRSM [VSR15] 2015 multi 3.02 | 10.52 | 4.27 | 5.13 | 15.11 | 6.79 | 5.33 | 13.40 | 6.68 | 6.61 | 20.79 | 8.97 300
DTF_SENSE [SUS21] 2021 multi 2.08 | 3.13 | 2.25 | 482 | 9.02 | 5.52 | 7.31 9.48 | 7.67 | 821 14.08 | 9.18 0.76
OSF+TC [NS17] 2017 411 | 9.64 | 5.03 | 5.18 | 15.12 | 6.84 | 576 | 13.31 | 7.02 | 7.08 | 20.03 | 9.23 3000
SENSE [JSJL+19] 2019 2.07 | 3.01 | 2.22 | 490 | 10.83 | 5.89 | 7.30 | 9.33 | 7.64 | 836 | 15.49 | 9.55 0.32
OSF 2018 [MHG18] 2018 411 | 11.12 | 528 | 5.01 | 17.28 | 7.06 | 5.38 | 17.61 | 7.41 | 6.68 | 24.59 | 9.66 390
SSF [RSKS17] 2017 3.55 | 875 | 442 | 494 | 1748 | 7.02 | 563 | 14.71 | 7.14 | 7.18 | 24.58 | 10.07 300
OSF MG15] 2015 4.54 | 12.03 | 5.79 | 545 | 1941 | 7.77 | 5.62 | 1892 | 7.83 | 7.01 | 26.34 | 10.23 3000
DWARF [APTM20] 2020 320 | 394 | 333 | 6.21 | 9.38 | 6.73 | 9.80 | 13.37 | 10.39 | 11.72 | 18.06 | 12.78 0.14
SFF++ [SWUK+20] | 2020 multi 4.27 | 1238 | 5.62 | 7.31 | 18.12 | 9.11 | 10.63 17.48 | 11.77 | 12.44 25.33 | 14.59 78
DTF_PWOC [SUS21] 2021 multi 391 | 857 | 468 | 6.25 | 14.03 | 7.55 | 10.78 19.99 | 12.31 | 12.42 25.74 | 14.64 0.38
FSF+MS [TSS17] 2017 multi ‘ 5.72 | 11.84 | 6.74 | 7.57 | 21.28 | 9.85 | 8.48 ‘ 25.43 | 11.30 | 11.17 ‘ 33.91 | 14.96 2.7
PWOC-3D [SSWS19] 2019 419 | 9.82 | 513 | 7.21 | 14.73 | 8.46 | 12.40 15.78 | 12.96 | 14.30 22.66 | 15.69 0.13
CSF [LBAL+16] | 2016 ‘ 4.57 | 13.04 | 598 | 7.92 | 20.76 | 10.06 | 10.40 ‘ 25.78 | 12.96 | 12.21 ‘ 33.21 | 15.71 80
SFF [SWKB+18] | 2018 5.12 | 13.83 | 6.57 | 8.47 | 21.83 | 10.69 | 10.58 24.41 | 12.88 | 12.48 32.28 | 15.78 65
PRSF [VSR13] 2013 ‘ 4.74 | 13.74 | 6.24 | 11.14 | 20.47 | 12.69 | 11.73 ‘ 24.33 | 13.83 | 13.49 ‘ 31.22 | 16.44 150
SPS+FF++ [SWS18] 2018 5.47 | 12.19 | 6.59 | 13.06 | 20.83 | 14.35 | 15.91 20.27 | 16.64 | 18.98 29.51 | 20.73 36
Mono-SF [BAM19] 2019 mono | 14.21 | 26.94 | 16.32 | 16.89 | 33.07 | 19.59 | 11.40 | 19.64 | 12.77 | 19.79 | 39.57 | 23.08 41
SGM+SF [HFR14] 2014 ‘ 5.15 | 15.29 | 6.84 | 14.10 | 23.13 | 15.60 | 20.91 ‘ 25.50 | 21.67 | 23.09 ‘ 34.46 | 24.98 2700
MonoComb [SUS20] 2020 mono  17.89 | 21.16 | 18.44 | 22.34 | 25.85 | 22.93 | 5.84 8.67 | 6.31 | 27.06 33.55 | 28.14 0.58
PCOF-LDOF [DPSL16] 2016 6.31 | 19.24 | 8.46 | 19.09 | 30.54 | 20.99 | 14.34 | 38.32 | 18.33 | 25.26 | 49.39 | 29.27 50
PCOF + ACTF [DPSL16] 2016 ‘ 6.31 | 19.24 | 8.46 | 19.15 | 36.27 | 22.00 | 14.89 ‘ 60.15 | 22.43 | 25.77 ‘ 67.75 | 32.76 0.08
SGM+FF+ [SBWS18a] | 2018 11.93 | 20.57 | 13.37 | 27.02 | 31.71 | 27.80 | 22.83 22.75 | 22.82 | 32.26 40.12 | 33.57 29
Self-Mono-SF-ft [HR20] 2020 mono | 20.72 | 29.41 | 22.16 | 23.83 | 32.29 | 25.24 | 15.51 | 17.96 | 15.91 | 31.51 | 45.77 | 33.88 0.09
SGM+C+NL [SRB14] 2014 5.15 | 15.29 | 6.84 | 28.77 | 25.65 | 28.25 | 34.24 | 42.46 | 35.61 | 38.21 | 50.95 | 40.33 270
SGM-+LDOF [BM11] 2011 5.15 | 15.29 | 6.84 | 29.58 | 23.48 | 28.56 | 40.81 | 31.92 | 39.33 | 43.99 | 42.09 | 43.67 86
DWBSF [RKVT16] 2016 19.61 | 22.69 | 20.12 | 35.72 | 28.15 | 34.46 | 40.74 | 31.16 | 39.14 | 46.42 | 40.76 | 45.48 420
Self-Mono-SF [HR20] 2020 mono | 31.22 | 48.04 | 34.02 | 34.89 | 43.59 | 36.34 | 23.26 | 24.93 | 23.54 | 46.68 | 63.82 | 49.54 0.09
GCSF [CSH11] 2011 11.64 | 27.11 | 14.21 | 32.94 | 35.77 | 33.41 | 47.38 | 41.50 | 46.40 | 52.92 | 56.68 | 53.54 2.4
VSF [HDO7] 2007 27.31 | 21.72 | 26.38 | 59.51 | 44.93 | 57.08 | 50.06 | 45.40 | 49.28 | 67.69 | 62.93 | 66.90 7500
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