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1. INTRODUCTION 

The efficient numerical treatment of the Boltzmann equation 
is a very important task in many fields of application (cf., 
e.g., [Cercignani-19881, [Proceedings-19891, [Gropengiesser et 
al. -19901). Most of the practically relevant numerical schemes 
are based on the simulation ,of large particle systems that 
approximate the evolution of the distribution function 

described by the Boltzmann equation. In particular, stochastic 
particle systems play an important role in the construction of 
various numerical algorithms (cf. [Belotserkovskij/Yanitskij 
-19751, [Nanbu-19831, [Ermakov et al.-19841, [Babovsky-19861, 
[Illner/Neunzert-19871, [Ivanov/Rogazinskij-19881). 

The basic approach to the derivation of the Boltzmann 
equation from a stochastic model is due to M.Kac (cf. 
[Kac-1956,1959], [McKean-1966,1975]), who considered the 
spatially homogeneous case. In recent years, there has been a 
growing interest in the study of more general stochastic models 
including the spatially inhomogeneous case (cf. [Skorokhod- 
19831, [Kondyurin-19861, [Khisamutdinov-19861, [Arsen'ev-19871, 
[Lukshin-19891, [Smirnov-19891, [Ivanov/Rogazinskij-19891). 
Ivanov and Rogazinskij reported that a stochastic model for the 
spatially inhomogeneous Boltzmann equation has already been 
considered in the paper [Leontovich-19351. 

The purpose of this paper is to contribute to this field of 
research. A stochastic particle system is presented that 
reproduces the Boltzmann equation in the limit as the number of 
particles goes to infinity. The spatially inhomogeneous 
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Boltzmann equation with an external force and rather general 
boundary conditions is considered. The stochastic model 

contains parameters allowing to perform asymmetric as well as 
fictitious collisions between the particles. Thus, some details 

of the relation between the particle system and the Boltzmann 
equation become more transparent. 

Restricting assumptions have been avoided in this paper 

whenever it seemed to be possible, Thus, the construction of 
the stochastic model as well as the transition to the limiting 
equation contain some heuristic steps. This is the price to be 

paid for the generality which has been achieved. A review with 
a comprehensive bibliography concerning rigorous results on the 
convergence of stochastic particle systems to the Boltzmann 
equation and a unified derivation of various stochastic 

particle methods for the numerical treatment of the Boltzmann 
equation will be provided in separate publications. 

This paper is organized as follows. Section 2 contains some 
general facts concerning Markov processes with jumps. 

In Section 3, the basic Markov process describing the 
behavior of a large particle system is introduced. This process 

is constructed on the basis of the free flow process, that 
defines the motion of a single particle between the collisions, 

and the collision process, that governs the mechanism of 

collisions between different particles. 
In Section 4, a limiting equation for the empirical measure 

of the particle system is derived in a heuristic way. The 
relation of this equation to the Boltzmann equation is studied 
in Section 5. 

The following notations are used in this paper: 

Rd - the d-dimensional Euclidean space; 
< >- *?* the scalar product in Rd; 

II . . . II - the norm in Rd; 

I...1 - the absolute value of a real number; 
d-l s - the unit sphere in Rd; 

aG - the boundary of a domain G in Rd; 
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n(x) - the inner normal at the point xc6G; 
6 - the 'measure concentrated in the point zeRd; 
a= - Dirac's delta-function; 

5 - the indicator function of a set I; 
V 

Z 
- the vector of the partial derivatives (2 

1 

2. SomE REMARKs CONCERNING MARKOV PROCESSES WITH JUMps 

In the first part of this section, we consider a Markov 

process Z(t), =t, , with an infinitesimal generator of the 

form _ 

tfPrnP’(~)(z) = s [‘P(Y)-P(=)~ q(=,dy) 9 (2.1) 

Rd 

where Cp is an arbitrary continuous bounded function on Rd. The 

family of measures q is supposed to be such that 

X(z) := q(z,Rd) S 1 < CQ , v zmd , 
max 

(2.2) 

The pathwise behavior of this process is the following (cf. 
[Ventsel'-1975, p.1981 or [Feller-1966, p.3891). The process 
waits at the state Z(t,)=z a random time Z, which is 

exponentially distributed with the parameter X(z), 

Prob{ z 2 s } = exd -h(z)s ) , s;co. (2.3) 

At the time t=to+r, the process jumps to a state yERd, which is 

distributed according to the probability measure 

x(=)-l q(=,dy) . (2.4) 

Then, the evolution goes on analogously. 
In general, the parameter A(z) of the waiting distribution 

(2.3) as well as the jump distribution (2.4) depend on the 
current state z. 

The measures q appearing in (2.1) are not unique in the 
sense that the integral does not change if one adds measures of 
the form Y(z)GZ(dy), ~20. Thus, under the,assumption (2.2), the 
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infinitesimal generator (2.1) can be represented in the form 
(cf. [Ethier/Kurtz-1986, p.1631) 

d(Jump)((p) (z) = s [(P(Y)-P(z) 1 { omax -Uz))~z(dy) + q(z,dy)l 9 
Rd 

which suggests the following equivalent description of the 
pathwise behav,ior of the process. As before, the process waits 
an exponentially distributed time Z, but the parameter is now 
x max and does not depend on z, The jump distribution is 

w-wN~,,, ) aZ(dy) + (UZ)/~~~,) Vz)-l q(z,dy) (2.5) 

and depends on z. The distribution (2.5) can be interpreted in 
such a way that, with the probability X(z)/XmaX , the jump has 
the distribution (2.4), and, with the probability l-k(z)/XIBX , 
the jump is fictitious. 

For our purposes, it is convenient to consider the class of 
jump processes with 

q(z,dy) = 6z+T(z e+dy)gb,e)P(de) , s , 8 (2.6) 

where Cc is a measure on a parameter set 8, Q is a real-valued 
function on Rd@, and T is a transformation from Rd@ into Rd. 

For this special class of processes, fictitious jumps can be 
introduced in another way, Suppose 

Q(z,e) s Q m,,he) (2.7) 
and 

x maj(z) := s Qmdj (z,e)p(de) s const < 00 , v zE:Rd . (2.8) 

8 
Then, the infinitesimal generator (2.1) can be transformed in 
the following way, 

uPrnP)((p) (z) = s [~(z+T(z,e))-~(z)lQ(z-,e)~(de) 
9 
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1 
= 

JJ [o(z+T(z,e)a,(z,e,a))-~(z)lQ~~,(z’8)d~ cl(de) 9 (2.9) 
8 0 

where I :={bbedI): tl < QwWQnaj(z,~H~ 

Consequently, the pathwise behavior of the corresponding 
process can be described as follows. The parameter of the 
waiting time distribution (2.3) is 1 ma,(~) defined in (2.8). 
The jump distribution is 

1 
x maj’z)-l J J 'ztT(z,B)q 

9 0 
I z,m ( (dy) Qmaj (z,e) drl Cc(de) . 

Thus, the jump parameters 8 and t7 are to be generated according 
to the probability measure 

The new state is calculated as a deterministic transformation 
of the old state and the jump parameters, . 

This can be interpreted according to the definition of the 
set I in such a way, that, with the probability 
Q(z9e)/Qmaj (z,e), the new state is 

Y = Z + T(z,e) , 

and, with the probability l-Q(z,8)/Qma,(z,8), the jump is 
fictitious. 

Note that in the case 

Q ,,jhe) = Qmaxw (2.10) 

neither the parameter of the waiting distribution nor the 
distribution of the jump parameters depend on the current 
state z. 

It should be mentioned that the introduction of fictitious 
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jumps does jnot change the process itself, since the 

infinitesimals generator remains the same. It provides just 

another way of modeling the process. 

I 
In the second part of this section, we consider various 

superpositions of other Markovian evolutions with the jump 

mechanism described in the first part. More precisely, we are 
interested in 
of the form 

eo 

defined on ar 
operator 4 (0) 

describes the 
generated by t 

Diffusion E 
[Gikhman/Skorc 
$+O’ in (2.1 

I Ylarkov processes with an infinitesimal generator 

differential c 

hl (z)vz,vz>(q4(z) + <b(z),VzXv)(z) 9 (2.12) 

where the fu 
function Q arl 
consists of al 

The appror 
behavior of t 
then 

where 

Az1 is the 

= do) t d(Jump) 
9 (2.11) 

appropriate set of functions B(a). The first 
s supposed to be an infinitesimal generator that 

behavior of the process between the jumps 
le second operator d (jump) given in (2.1). 

'ocesses with jumps have been considered in 
:hod-1973, ch.1, 911. In this case, the operator 

) has the form of a second order partial 

Berator 

ction b is Wd-valued and the values of the 
positively definite d@d-matrices. The set b(d) 

. sufficiently smooth bounded functions (P on Rd. 

.mate (up to higher orders of At) pathwise 
e process is described as follows. Let Z(t,)=z, 

z(t,tAt) = Azl t Az2 t Az3 , 

deterministic term b(z)At, 

AZ2 is normally distributed with zero mean and the 
I 

correlation matrix a(z) 

and AZ3 is a jump term with the distribution 

(1-a(z)At)Sz(.) t X(z)At X(z)-lq(z,.). 

Some additi~onal assumptions allow to describe even the exact 



pathwise behavior of the process. 
Consider ~a stochastic differential equation with a jump 

component (cf.~ [Gikhman/Skorokhod-1982, ch.6, §ll, or [Ikeda/ 
Watanabe-1981 ,~ch,4, 591) 

dZ(t) = Wtt)h + utZtt))dWtt) + J-f(Z(t-),~)P(d~,dt). (2.13) 

s 

The function ! in (2.13) is supposed to be d@d-matrix-valued 
1* and such that ~~=--(TcT , where B* 2 denotes the transposed matrix. 

Furthermore, W denotes the Wiener process in the lRd and P a 

random Poisson measure with an intensity measure n(dS)dt, where 
n is a finite~ measure on the parameter set E. 

Ed 

Finally, the 

function f on W @E is Wd-valued. 
The solution process Z of (2.13) has an infinitesimal 

generator of the form 

a’“‘(cpHz) ~+ J [v(z+f(z,E)) - cp(z)l R(dE) , (2.14) 

(O) 
~ E 

where 68 is given in (2.12). 
Consequently, if the jump generator (2.1) has the special 

form (2.6) and the assumptions (2.7), (2.8), (2.10) are 

satisfied, then the corresponding diffusion process with jumps 
can be described via a stochastic differential equation of the 
form (2.13). The parameters are to be chosen in such a way that 
the second term in (2.14) coincides with (2.9), i.e. 

E = @@to,11 , ~e=tm , 
I 

RtdS) = QmaxUMW ~Io,ll(W~ 9 

f (z,S) = T(z,e)~BI(z,8,~) , I = {(ZaJ): rl < Q(s,e)/Q,,,~X(e))* 

Now, the exact pathwise behavior of the process follows from 
the stochastic differential equation (2.13). Starting at 

Zb,)=z, the p~rocess behaves like a diffusion during a random 
time Z. This waiting time is exponentially distributed with the 
parameter I 

R(E) = .I- Qm,,te)Ptde) 

and independent of the trajectory. At the time t=tO+Z, the jump 
parameter E is generated according to the probability measure 
x(E)-lR(dE), and the new state is calculated as 



~ z(t) = z(t-) + f(z(t-),5) . 

The interpreta~tion of the fictitious jumps remains the previous 
one. 

Piecewise d~eterministic processes have been investigated in 

[Davis-19841. ~ In this case, the operator JO' in (2.11) 

describes a deterministic process, including the pure drift 

case ((2.12) with c=O) but also processes in bounded domains. 
The followings pathwise, behavior of such processes has been 
established. Starting at Z(t,)=z, the deterministic evolution 

goes on during a random waiting time Z, which has the 

distribution ~ 
s 

Prob{ r f s ) = exp( - s A(Z(to+u))du ) 9 sro , 

0 
where ')I is defined in (2.2). At the time t=tOtZ, the process 

jumps to a st~ate yERd, which is distributed according to the 

probability me~asure 

I X(z(t-H-l q(Z(t-),dy) . 

Then, the evolution goes on analogously. 

Suppose then jump generator (2.1) has the special form (2.6) 
and the assumptions (2.7), (2.8) are satisfied. In accordance 
with the two examples described above, the following conjecture 
concerning the pathwise behavior of a Markov process given by 
an infinitesimal generator of the form (2.11) seems to be 
reasonable. I 

Starting at Z(t,)=z, the process behaves according to the 
infinitesimal ~ generator JO' during a random time Z. This 
waiting time h~as the distribution 

I S 

Prob{ r 2 s } i exp( - s X,a,(Z(totu))du ) , sro * (2.15) 
I 0 

At the time t=t,tz, the jump parameter 8 is generated 
according to the probability measure 
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x maj,(z(t-))-l Qma,(z(t-),e)P(de) l (2.16) 

The generation of the parameter n according to the uniform 

distribution on the unit interval corresponds to the decision 
I 

whether a jump will take place or not. If 

Q(Z(t-),e)/Qm,,(Z(t-),e) s 

then the new state is calculated as 

z(t) = Z(t-) + T(Z(t-),6) . 

(2.17) 

(2.18) 

Otherwise, z(t) = Z(t-) , i.e. the jump is fictitious. 

Then, the evolution goes on analogously. 

3. THE BASIC MARKOV PROCESS 

In this se~ction, we define a special Markov process Z(t), 

tat, , with an! infinitesimal generator of the form 

I 
ai/ = d(o) 

t 
d( jump) (3.1) 

The state space of the process is (G@lR3)", where n is a natural 
number. We su~ppose the boundary aG of the domain GcW3 to be 
sufficiently regular. Furthermore, we denote z=(zi), 3 n zE(G@w ) , 

I 
and zi=(x.,vi)~, i=l,...n. 

1 
This Markok process can be interpreted as a stochastic 

particle system 

1 I (Xi(t),Vi(t)), i=l,...,n, 

where Xi(t) and Vi(t) denote the position and the velocity of 
the i-th particle at the time t. 

First we define the operator d(O), which describes the 
behavior of the process between the jumps (free flow of the 
particles). ) 

The indepen!dence of different particles during the free flow 
corresponds tom an operator of the form 
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ad’ 

where @ is al 
is the infini 

particle duri 
flow process. 

acting with r 
In the int 

(X(t),V(t)) i 
equations 

dX (t) = v( )dt , dV(t) = F(X(t),V(t))dt 9 (3.3) 

where F denot 

It remains 
boundary aG. 

boundary at s 
the velocity 

s an external force acting on the particle. 
to define the behavior of the particle at the 
Suppose that the particle collides with the 

me time t. In this case, the position X(t-)=x and 
(t-)=v of the particle satisfy the condition 

During the cc .lision, the velocity of the particle changes in 

such a way th t the new velocity V(t)=w satisfies the condition 

We assume th t w is distributed according to a probability 
measure r(x,v dw) such that 

Then, the mot on continues according to (3.3). 

In order 
free flow pi 

function (p on 
Obviously, 

if xEG\aG or 

n 
(O)(z) = c syee)(~)(z) , 

i=l i 
(3.2) 

appropriate test function. The operator 
d(free) 

esimal generator governing the motion of a single 
g the free flow. We call this process the free - 

The sign d(free) z denotes the operator ed 
(free) 

: 
I 

spect to the components zi. 
!rior of the domain G, the motion of a particle 

described by the system of ordinary differential 

x E aG 9 <v,n(x)> s 0 . 

<w&x)> > 0 . 

r(x,v,(w:<w,n(x)>>O)) = 1. (3.4) 

o calculate the infinitesimal generator of the 
)cess, we consider a sufficiently smooth test 
G@R3. *a 

= <v,Vx>(cp) ( x,v)+<F(x,v) ,v,>(~)(x,v), (3.5) 

if xE3G and <v,n(x)>>O, since the process is a 
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pure drift pr 
Suppose x6 

aP==)(qq (x,v 

where the s 
condition tha 

tP==)((p) (x,v 

= s r(x,v,dw)d 
R3 

according to 

subject to th 

P(X,V) = s r(. 
lR3 

This conditic 
(3.5) charact 

Now we def 
mechanism (~0 

We conside 
(2.6). Let th 

and the meas 
respect to (i 
distribution 

n 

q(z,dy) = c 
i,j= 

In order t 

and 

:ess in these cases. 
1 and <v,n(x)>sO. Then 

= lim scl[E 
s+o 

(x,v)P(x(s) ,v(s) 1 - (P(x,v) 

fn E( x,v) 
denotes the expectation 

X(0)=x and V(O)=v. One obtains 

J 9 

under the 

= lim s -1 r(x,v,dw)E 
s+o 

(x w)~(x(s),v(s))-p(x,v) 
9 1 

ree)w ( x,w) + lim s -1 r(x,v,dw)~(x,w)-~(x,v) 
s+o 1 

3.4) and (3.5). Consequently, the function Cp is 

condition 

v,dwM(x,w) , xE:aG , <v,n(x)>sO . (3.6) 

: and the smoothness assumptions necessary in 
Fize the set !?J(d(free)). 

ne the operator aB (jump) , which describes the jump 
Lisions between particles). 

an infinitesimal generator of the form (2.1), 
parameter set be of the form 

8 = {(i,j): i,j=l,...,n}@S2 

e CC be the product of the counting measure with 
j) and a measure m on SL, Consequently, the jump 
Z.6) is modified in the following way, 

s 
6 z+T(z,i,j,e) (dy)Q(z,i,j,e)m(de) . (3.7) 

s2 

introduce fictitious jumps, we assume that 
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n 
x maj ( 2) : = 1 

The infinites 

i, j=: 

d’JUrnP’(aq (z) 

I := {(z,i,j, 

for continuo1 
process the c 

The motiva 
is to introd\ 
namely collis 

In this co 

Q(z,i 

T(z,i 

for i=l,...,n 

Q(z,i,j,e)=K( 

T(z,i,j,eJk = 

for i#j, wher 

For severa 
the functions 

where U.J is t1 

s Q mal (z,i,j,e)m(de) S const < 0~ , Vz . 
s2 

nal generator takes the form (cf. (2.9)) 

f 1 i ~(z+T(z,i,j,e)r,(e,i,j,e,~)) 
i,j=l S2 0 

- Q(z) 1 dq Qmaj (z,i,j,e) m(de) , 

,r7): 17 < Q(z,i,j,e)/Qmaj(z,i,j,e)3 p 

bounded functions 4'. We call the corresponding 

llision process. 

ion for the special choice of the jump parameters 
e a specific interaction in the particle system, 
3ns between two particles. 
nection, it is natural to suppose 

i,e) = 0 , Q mad (z,i,i,e) = 0 , (3.9) 

i,e) = 0 , (3.10) 

and 

,Z ij ,d, Qmaj(z,i,j,e)=Kmaj(zi,z.,e), J 
(3.11) 

0 , k#i,j 

Vl(ZitZj,e) 9 k=i 
V,(Zi,Zjwe) 9 k=j 

, (3.12) 

K9 Kmaj’ V1 and V2 are appropriate functions. 

considerations, it will be convenient to specify 

V1 and V2 via the relations 

l(z1,z2,e), v2(zl,z2,e)=&2V(z2,Zl,e), (3.13) 

usual collision transformation of the particles 
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defined as 

vux,, 

The introc 

the values 0 
(E1=C2=1) as 

also should 
i#j (insteac 
assumptions c 

Under the a dditional assumption 

the collisic 
differential 

dZ(t) = T(; s 
E 

where I := 

X(dS) := 

The assumpti' 
as some elemt 
to write dow 
the following 

dZi(t)= c 
j:j#i 

+ c 
j:j#i 

where 

Vi ,) ,(x,,v,),e) = (0,e<e,v2-vl>) l (3.14) 

ction of the parameters EI and E2, which may take 
lr 1 only, allows to consider the usual symmetric 
well as asymmetric (El=l, E2=0) collisions, It 

t mentioned that we consider pairs of parameters 
of i<j only) in order to avoid symmetry 

ncerning the functions K, WY1 and P2. 

K maj (z ,z 1 2 ,e) = Kmax(e) 9 

process can be expressed via the stochastic 
quation (cf. (2.13)) 

t-),i,j,e)m,(Z(t-),i,j,e,~) P(dS,dt) 9 (3.15) 

(z,i,j,e,q): rl < K(zi,zj,e)/Knax(e)I 9 

(i,j,e,q): i,j=l,...n, eES2, rlE[O,ll) , and 

,,,(e)m(de) qfO,ll(Q)dq . 

L (3.12) concerning the transformation T as well 
tary properties of random Poisson measures allow 

the stochastic differential equation (3.15) in 
component-wise form, 

s 
2@uL11 

fl(zi(t-),zj(t-),e,~) p(i’j)(de,dq,dt) 

s 
2@ro,ll 

f2(Zj(t-),Zi(t-),e’~) p(jvi)(de,dq,dt) 9 

‘7) = vk(z1’z2’ e)'{?VK(z,,z2,e)/K,aX(e)](zl'z2'e) ' 
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for k=1,2, E Id p&j) 9 i,j=l ,...,n, are independent random 
Poisson measu es with the intensity measure 

Now we COI 
infinitesimal 
stated at tl 
behavior of t 

Starting a 
infinitesimal 
particles per 
the infinites 

The waitin 

Prob{ 

where 

a 

according to 3.8), (3.9), and (3.11). 
At the t me t=tO+q the jump parameter e=(i,j,e) is 

generated act brding to the probability measure (cf. (2.16), 

(3.9), and (3 11)) 

a mad 

Consequently, first the numbers i and j are calculated (choice 
of the collis on partners) with respect to the probabilities 

Given i and j , 
probability mc dc 

K max(e)m(de) ~IO,ll(~)d~ dt l 

sider the combined process corresponding to the 
generator (3.1). According to the conjecture 

9 end of the previous section, the pathwise 
is process is the following. 

' Z(t,)=z, the process behaves according to the 
generator (3.2) during a random time Z. Thus, the 
'arm independent motions in correspondence with 
ma1 generator B (free) of the free flow process. 

time Z has the distribution (cf. (2.15)) 

S 
c2s) = exp( - s ama, (Z(t,+uHdu 1 9 

0 

a,(z) = c f 2 K (Zi’Z maJ j,e)m(de) 9 
i#j S 

Z(t-))-' K ,,,(Zi(t-),Zj(t-),e)m(de) l 

(t-))-’ _Kmaj(Zi(t-),Zj(t-),e)m(de) s . 
s” 

the parameter e 
ssure 

is generated with respect to the 
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The parameter rl is independent of the other parameters and 
I 

has the uniform distribution on the interval [O,l]. The 

calculation of q corresponds to the decision whether the 

collision is ideclared fictitious or not (cf. (2.17), (2.18), 
(3.11) and (3112)). If 

i.e. with the~probability 

1 - K(Zi(t-),Zj(t-),e)/Km~j(Zi(t-),Zj(t-),e) , 

the new state~is Z(t) = Z(t-), i.e. no collision takes place or 

the collision is fictitious. Otherwise, i.e. with the 

probability i 

the new state his calculated as 

Zk(t) 

0 , kfi,j 

VJl(Zi(t-),Zj(t-),e) 9 k=i 
Vz(Zi(t-),Zj(t-),e) 9 k=j 

. 

Thus, the combonents with the indices i and j are replaced by 
the corresponding "post-collision" values. 

4. b4 THE A! YMPTOTIC BEHAVIOR OF THE EMPIRICAL MEASURES 

In this s( 
Markov process 

The operator 
has the form 

ction, we study some properties of the basic 

z(t) , tat, , with the infinitesimal generator 

(8 = @+O' + d(.iump) . (4.1) 
f(O) is defined in (3.2) and the jump generator 
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d'J""p'(Q)(z)= 1 1 [Q(z+T(x,i,j,e))-Q(z)lK(zi,zj,e)m(de) , 
i,~j=l 5;' 

QE!B( (8) , zE(G@R3)" , (4.2) 

according to (2.1), (3.7), (3.9)-(3.11). The transformation T 
is given in (3.12). 

We are interested in the asymptotic behavior for large 
I 

particle numbers n of the empirical measure u(t) associated 
with the process Z(t). This measure is defined via the relation 

((p,u( t,):= i 

n 

s P(x,v)V(t,dx,dv):= n-l c (P(zi(t)) ) (4.3) 
G&R3 i=l 

for bounded mc 
The follow 

processes (cf, 

Q(z(t)) = Q( 

where M(t) is 
We want to 

This function 
bounded funct. 

It follows 

According to I 

do' (Q 

1. 
11 

Z 

surable functions cp on G@R3. 

ng representation is valid for general Markov 
[Skorokhod-1983, p.31, or [Davis-1984, p.261) 

t 

(to)) + 1 d(Q)(Z(s))ds + M(t) , (4.4) 

tO 

, martingale and &a(B). 

,pply (4.4) to the function 
n 

Q(z) = n-l c cP(‘i) l (4.5) 
i=l 

belongs to g(d) if cp is a sufficiently smooth 
>n satisfying condition (3.6). Notice that 

Q(z(t)) = (cp,w>) l (4.6) 

'ram (3.2) that 
n 

to'(Q)(z) -' =n c adfree) . 
i=l 

:.3), one obtains 

(Z(s)) = (dfree)(q),u(s)) I (4.7) 

16 



Using (4.2 

I 
&PrnP)(@) (z) : 

n 

n-1 c s c 
i#j S2 k= 

n-l c s [cp 
i#j S 

2 

Consequently, 

+ 6(Z2W2(Z1’ 

- s s [cp(z+ GM3 s2 
(P(z+ 

According 

(we>) = (9 

t t s 6 %I 
( 

where e8 (jump) W 

Notice that 
on n (cf. (4.3 
on n. 

Suppose tha 

, (3.10) and (3,12), we calculate 

[9(zktT(z,i,j,e)k)-9(zk)l K(Z.,zj,e) m(de) = 1 

zi+lyl(zi,z jfe))-V(Zi) + 

~(zj+'2(zi,zj ,e)I-P(zj)I K(Zi,Zj,e) m(de) l 

according to (4.3), one obtains 

1) = n 

l( z,z,e))-9(z) + 
(4.8) 

2( z,z,e))-~(z)lK(z,z,e)m(de)u(s,dz) . 

o (4.6) and (4.7), Eq.(4.4) takes the form 

t 

,(t,)) t s (d(free)(W+))ds t 

%I (4.9) 

""mp'(@)(Z(s))ds t M(t) , 

(Z(s)) is given in (4.8). 

the measure I-J as well as the martingale M depend 
,, (4.4)). Furthermore, let the function K depend 

G the following relations are fulfilled as n+@, 

17 



0 (n)~(t) - p(t) 9 v et, , (4.10) 

MCn)+) + 0 9 v ta, , (4.11) 

and 

n K 
(n) 

(zl,z2,e)! +H(zl,z2,e) , V zl'z2'e 9 (4.12) 

where P and ~ H are appropriate functions. Under certain 

assumptions concerning the convergence in (4.10)-(4.12), one 

can conclude from Eq.(4.9) that the limit P(t) satisfies the 
equation, I 

I t 
(W(t)) = (d'(t,)) + j- (a+free'(p),P(s))ds + 

+ 5 / 1 ~"~~(zlt~l(zl,z2,e))-~(zl) + 
to &R3 G@R3 .t? 

I 
+ 9(z2W2(zl,z2,e )h’(zZ)]H(zl,z2 ,e)m(de)P(s,dzl)P(s,dz2)ds. 

The equivalents differential form with respect to t is 

-$ ((p,p(t)) ~ = (~"'""(V),W)) + 
(4.13) 

+ v(z2+IZ(Zi1,Z2,e ) )-P(zZ)]H(el’Z29 e)m(de)P(t,dzl)P(t,dz2) 9 

with the initi~al condition 

, Ph,) = lim V(")(to) , 
I n* 

(4.14) 

The function 4 in (4.13) is an arbitrary sufficiently smooth 
bounded test function that obeys condition (3.6). 

The variou~s components that determine the basic Markov 

process (cf. ~(4.1), (4.2)) are present in Eq.(4.13), (4.14). 
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The operator ~Icfree) as well as the functions Oland 92 appear 
explicitly, while the initial state Z(t,) defines the empirical 
measure V cn)(t,) appearing in (4.14) and the function K defines 
the function k via the relation (4.12). 

According Lo (3.13), the second term on the right-hand side 
of Eq.(4.13) can be transformed in the following way, 

~ 
-(Ph2) H(zp2, 

I 1 e)m(de)P(t,dz,)P(t,dz2) = 

1 J 1 [E1P(z1+0(21,~2,~~~-E1Po+E29(.2+0(zZ’~l~~~~- 
G@R3 @BR3 s2 ~ 

-E2(P(z2) H(zl,z2,e 1 )m(de)P(t,dzl)P(t,dz2) = 

J J J [p(z,+ul(z,,z2,e))-p(zl)l* 
G@R3 G@R3 s2 ~ 

*{E1H(zl,z2,e)+E2H(z2,zl ,e))m(de)P(t,dzl)P(t,dz2) I 

Consequently ,~under the assumption (3.13), Eq.(4.13) takes the 
form 

2 (p,p(t)) ; (81'free'(V),P(t)) t 

1 J ~J [~(zl+~(zl,z2,e))-s(zl)l* 
G8R3 G@R3~S2 

*H (sym) 
(zl,z2,e)m(de)P(t,dz1)P(t,dz2) . 

The function ~ 

H (sym) 
(z19z29el = i E1H(zl,z2,e)+&2H(z2,zl,e) (4.16) 

(4.15) 

is the symmetrization with respect to z 
1 and z 

2 
of the function 

H in the case of symmetric collisions (E1=E2 =l) and is 
identical with H in the case of asymmetric collisions $=l, 
E2=O). I 
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5. RELATION ~ TO THE BOLTZMANN EQUATION 

In this section, the relation of Eq.(4.15) to the Boltzmann 
equation will Abe examined. 

We suppose $hat the measures P(t) are absolutely continuous 
with respect to the Lebesgue measure. Let p(t,x,v) denote the 

corresponding ~ densities. In the following, we transform 

Eq.(4.15) in ~such a way that the test functions 9 may be 

excluded. ~ 

It follows ~from (3.5) that 

((a (Eree)((p) ,P&)) = 
I (5.1) 

<v,vx>(cp~)(x,v)+<F(x,v),Vv>(cp)(x,v) p(t,x,v)dvdx . 

Applying the gtokes 'formula 

f c a ak Vi(x) dx = - . s c Ui(x)ni(X) s(dX) 9 
G i=l ~' aG i=l 

where U is a sufficiently smooth vector function and B denotes 
the standard surface measure, we obtain the equality 

s 

I 
<v,V,>(s)(x,~v)p(t,x,v) dx = 

G 

= - Nx,v)<v,;Vx>p(t,x,v)dx s - s p(x,v)p(t,x,v)<v,n(x)>s(dx) . 
G I aG 

Furthermore, ~ 

s 
R3 

<F(x,v),+(s)(x,v)p(t,x,v)dv=-J v(x,v)<F(x,v) tVv>dt,x,v)dv 
I R3 

so that one obtains from (5.1) the relation 
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ss 
G R3 + ss aG 1R3 

In order t 
Eq.(4.15), we 

where V is dc 

is linear in 
that S-l=S. 

The substi 

y1 

allows to con 

s s p(zli 
G8R3 G@R3 

s s p(zl 
G@R3 G@R3 

Consequently, 
Eq.(4.15) tak 

s 
G@R3 

gfzl) s 
GM3 

-H (sym) 
(z vz, 1, 

'x>p(t,x,v)+<F(x,v),Vv>p(t,x,v) dvdx 
1 

x,v)p(t,x,v)<v,n(x)>s(dx)dv . 

(5.2) 

handle the second term on the right-hand side of 
ntroduce a transformation S by the formulas 

) := z1+wz1,z2, e) , 
(5.3) 

1 := z2+Nz2'zl,e) , 

ined in (3.14). Obviously, the transformation S 
I,z2). Furthermore, elementary calculations show 

tion of the variables 

S1(z1,z2,e) , y2 = S2(z19z2,e) , 

ude that 

zl,z2,e))H(Sym)(Z1,z2 ce)p(t,zl)P(t,z2)dzldz2 = 

P(t,S1(z1,z2,e))P(t,S2(zl,z2,e))dzldz2 . 

the second term on the right-hand side of 
; the form 

1 H 
2 

(sym)(Sl(zl,z2,e),S2(~l,~2~~~~~~* 

(5.4) 

e)p(t,zl)P(t,z2) m(de)dz2dzI . 
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Thus, accbrding to (5.2) and (5.4), Eq.(4.15) can be 
transformed into the equation 

cp(x,v) p(t,x,v)dvdx 

+ 
ss 

~ p(x,v)p(t,x,v)<v,n(x)>dvs(dx) = 
aG "" 

/ s G@R3 gtzl) s 
G@R3 

-H (eym) 
(2 ,z 1 

where cp is 
function sati 

We notice 

sufficiently 

If a function 
on the left-k 
class of fun 
order to COI 

satisfies the 

[ -g*<v, ox>+ 

ss s{ Ht8 
G R3 S2 

_ H(sym) (x,v, X 

(5.5) 

1 t H 
2 

(8Ym~(S1(z1,22,e),S2(zl,z2,e),e)* 
i 

,e)p(t,zl)P(t,z2) m(‘de)dz2dzl , 

m arbitrary sufficiently smooth bounded test 
fying condition (3.6). 

hat Eq.(5.5) is fulfilled, in particular, for all 
mooth bounded functions cp such that 

(P(X,v)=O , if xEaG . (5.6) 

P satisfies condition (5.6), then the second term 

nd side of Eq.(5.5) disappears. Furthermore, the 
tions satisfying (5.6) is sufficiently wide in 

:lude from Eq.(5.5) that the density p(t,x,v) 
equation 

Nx,v),Vv> p(t,x,v) = 1 
m) (x,v+e<e,v -v>,x 1 1 ,vl+e<e,v-vl>,e)* 

*P (t,x,vte<e,vl-v>)p(t,Xl,vl+e<e,v-vl>) 

vvl ) ,e P (t*x,v)P(t,x YV1) > 
m(de)dvldxl , 

(5.7) 
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for all xEG\aG~, vcl?, and t>t,. 

As a consequence of Eq.(5.7), a second equation with respect 

to the densities p(t,x,v) can be derived from Eq,(5.5). Namely, 
according to $5,7), Eq.(5,5) reduces to the equation 

ss 
P(x,v)p(t,x,v)<v,n(x)>dv e(dx) = 0 , 

aG a3 

(5.8) 

which is fulfilled for arbitrary sufficiently smooth bounded 
test functions cp satisfying condition (3.6). 

For any fixed xEaG, we introduce the half-spaces 

RQW 
~ 3 

:= {v”” : <v,n(x)>>O} and R!(x) := {vcR3: <v,n(x)>sO}. 

We suppose the measure r to be absolutely continuous with 

respect to the Lebesgue measure and denote the corresponding 
density by R so that the condition (3.6) takes the form 

(P(x,v) = s 
~ 

R(x,v,w)P(x,w)dw , xEaG , <v,n(x)>sO . (5.9) 
R3 ~ 

Remember that{ according to the assumption (3.4), the measure r 
is concentrated on the half-space R:(x). 

Using (5.9), one obtains the equality 

s 
P(x,v)p(t,x,~v)<v,n(x))dv = s '#(x,v)p(t,x,v)<v,n(x)>dv t 

R3 I ~ Rpd 

R(x,v,w)p(x,w)dw p(t,x,v)<v,n(x)>dv = 1 

= 
s 

dv cp(x,~v) 
~ 1 

p(t,x,v)<v,n(x)>. + 

Rytx) 

s R(x,w,v)ptt,x,w)<w,n(x)>dw , 

R:bd 
> 

for any fixed~xEaG. Consequently, it follows from Eq.(5.8) that 
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j- s(dx) f dv~ cp(x,v) dt,x,vW,n(xD + 
3G q(x) ~ 

f 
R(x,w,v)p(t,x,w)<w,n(x)>dw = 0. 

qx) 
> 

The class of test functions cp is sufficiently wide in order to 
conclude thatthe function p satisfies the equation 

p(t,x,v)<v,n(x)> t s R( x,w,v)p(t,x,w)<w,n(x)>dw = 0, (5.10) 

R$d 

for any xE6G and v~Rz(x). 

Thus, then function p(t,x,v) satisfies Eq.(5.7) in the 

interior of the domain G, and Eq.(5.10) on the boundary 6G. In 
fact, these two equations are equivalent to Eq.(4.15). The 

initial condition (4.14) is to be modified appropriately. 

The function HCsym) that appears in Eq.(5.7) is determined 

by means of ~the parameter K(n) of the stochastic particle 
system (cf. (4.2), (4,12), and (4.16)). 

Let the parameter K (n) be of the special form 

I 

K (n) 
(x19v19+v2,4 = n 

-lg(n) 
(x 1' 2 x )Qvl,v2,4 s (5.11) 

where 4& (n) 
and~h are appropriate functions, and suppose that 

a(n) ~ 

(XlVX2) s 9(x1-x2) l (5.12) 

Then, one obtains the relations 

H(x ~1 ,v1,x2,v2d = Wc1-x2)Q(v19v2d s 

and 

= ~(x1-x2)B(vl~v2d 9 

where 

B(v19v2,,e ~ ) = Elb(vl,v2,e)t&28(v2,vl,e) . (5.13) 
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Suppose, f 
condition 

Li: 

where v 
* 

=v+e<c 

Under the 
reduces to the 

g p(t,x,v) + 

s dvl l m(de) w3 s2 

rthermore, that the function B satisfies the 

B(v*,vT,e) = B(v,vl,e) . (5.14) 

* 
vl-v> and vl=vlte<e,v-v '1>' 

ssumptions (5.11), (5.12) and (5.14), Eq.(5.7) 
Boltzmann equation 

v,vX>p(t,x,V) + <F(x,v),Vv>p(t,x,v) = 

( v,v ,o=) p(t,x,v*)p(t,x,v:)-p(t,x,v)po 
1 1 

. 

Formula (5.13) establishes the relation between the 
parameter 8 of~the stochastic particle system and the collision 
kernel B of the limiting Boltzmann equation. 

If the colhisions in the stochastic particle system are 
symmetric (E: 1+2=1 ) , then the kernel B is automatically a 
symmetric function with respect to v 1 and v 2' Consequently, one 
can choose the~symmetric parameter 

~ ~(v1,v2,e) = B(vl,v2,e)/2 . 

In this case,~ it is also possible to reduce the possible 
collision part~ners in the stochastic model to ordered pairs 
(i<j) and to choose &=B. 

If the collisions in the stochastic particle system are 
asymmetric (El $1, E2=W 9 then the kernel B and the parameter 4 
are identical.1 

It is simple to establish that 

IIV 
* *~ 

-VII = Ilv-vlll and 
* * 

<v -v l,e> = Xv-vl,e> . 

Consequently, condition (5.14) is fulfilled if B depends on v 
and v 1 via the terms llv-vIll and (<v-vI,e>l only. This is 
fulfilled for many concrete collision kernels B. Obviously, the 
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function B is ymmetric in this case. 

Condition ( i.10) is one of the common boundary conditions 
associated wit I. the Boltzmann equation (cf. [Cercignani-1975, 

Ch.3, 311. If he kernel R has the form 

R(X,W,V) 
where f is 

aWLIL" one t 
case of pure s 
to the conditi 

Finally, it should be mentioned that, if one replaces the 
condition (5.1 ) by the following, 

where h is ar appropriate symmetric function, then Eq,(5.7) 
reduces to th ! so-called mollified Boltzmann equation (cf. 
[Lebowitz/Mont 011-1983, p.341). 
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