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1. INTRODUCTION

The efficient numerical treatment of the Boltzmann equation
is a very important task in many fields of application (cf.,
e.g., [Cercignani-1988], [Proceedings-1989], [Gropengiesser et
al.~-1990]). Most of the practically relevant numerical schemes
are based on the simulation of large particle systems that
approximate the evolution of the distribution function
described by the Boltzmann equation. In particular, stochastic
particle systems play an important role in the construction of
various numerical algorithms (cf. [Belotserkovskij/Yanitskij
-1975], [Nanbu-1983], [Ermakov et‘al.-1984], {Babovsky-1986],
[Illner/Neunzert-1987], [Ivanov/Rogazinskij-19881]).

The basic approach to the derivation of the Boltzmann
equation from a stochastic model is due to M.Kac (cf.
[Kac-1956,1959], [McKean-1966,19751]), who considered the
spatially homogeneous case. In recent years, there has been a
growing interest in the study of more general stochastic models
including the spatially inhomogeneous case (cf. [Skorokhod-
1983], [Kondyurin-1986], [Khisamutdinov-1986], [Arsen’ev-1987],
[Lukshin-19891], [Smirnov-1989], [Ivanov/Rogazinski j-1989]).
Ivanov and Rogazinskij reported that a stochastic model for the
spatially inhomogeneous Boltzmann equation has already been

considered in the paper [Leontovich-1935].

The pufpose of this paper is to contribute to this field of
research, A stochastic particle system is presented that
reproduces the Boltzmann equation in the limit as the number of

particles goes to infinity. The spatially inhomogeneous



Boltzmann equation with an external force and rather general
boundary conditions is considered. The stochastic model
contains parameters allowing to perform asymmetric as well as
fictitious coliisions between the particles. Thus, some details
of the relation between the particle system and the Boltzmann
equation become more transparent.

Restricting assumptions have been avoided in this paper
whenever it seemed to be possible. Thus, the construction of
the stochastic model as well as the transition to the limiting
equation contain some heuristic steps. This is the price to be
paid for the generality which has been achieved. A review with
a comprehensive bibliography concerning rigorous results on the
convergence of stochastic particle systems to the Boltzmann
equation and a unified derivation of various stochastic
particle methods for the numerical treatment of the Boltzmann

equation will be provided in separate publications.

This paper is organized as follows. Section 2 contains some
general facts concerning Markov processes with jumps.

In Section 3, the basic Markov process " describing the
behavior of a large particle system is introduced. This process
is constructed on the basis of the free flow process, that
defines the motion of a single particle between the collisions,
and the collision process, that governs the mechanism of
collisions between different particles.

In Section 4, a limiting equation for the empirical measure
of the particle system is derived in a heuristic way. The
relation of this equation to the Boltzmann equation is studied

in Section 5.

The following notations are used in this paper:

d
R - the d-dimensional Euclidean space;

<.,.> - the scalar product in Rd;

...l - the norm in Rd;

|...| - the absolute value of a real number;
S ~ the unit sphere in Rd;

oG - the boundary of a domain G in Rd;



n(x) - the inner normal at the point x€0G;

6z - the measure concentrated in the point ZERd;

¥ - Dirac’s delta-function;

II - the indicator function of a set I; 5 5

Vz - the vector of the partial derivatives (5;1,...,5;d);

2. SOME REMARKS CONCERNING MARKOV PROCESSES WITH JUMPS

In the first part of this section, we consider a Markov

process Z(t), tZt0 , with an infinitesimal generator of the

form .

a1 () (z) = [ [0(v)-0(2)1 a(z,dy) (2.1)
R |

. d
where ¢ is an arbitrary continuous bounded function on R, The

family of measures gq is supposed to be such that
' d d -
AMz) := q(z,R7) <A <o,V zeR (2.2)

The pathwise behavior of this process is the following (cf.
[Ventsel’-1975, p.198] or ([Feller-1966, p.389]). The process
waits at the state Z(t0)=z a random time T, which is

exponentially distributed with the parameter A(z),
Prob{ T 2 s } = exp( -A(z)s ) , 820 . (2.3)

. . d . .
At the time t=t0+t; the process jumps to a state y€R , which is

distributed according to the probability measure
rMz) ! oa(z,dy) . (2.4)

Then, the evolution goes on analogously.
In general, the parameter A(z) of the waiting distribution
(2.3) as well as the jump distribution (2.4) depend on the

current state z.

The measures q appearing in (2.1) are not unique in the
sense that the integral does not change if one adds measures of

the form Y(z)5z(dy), ¥20. Thus, under the assumption (2.2), the



infinitesimal generator (2.1) can be represented in the form
(cf. [Ethier/Kurtz-1986, p.163])

( )
@9 () (2) = [ [e(y)-e(2)] {(A, -M2))8,(dy) + alz,dy)} ,
RY
which suggests the following equivalent description of the
pathwise behavior of the process. As before, the process waits
an exponentially distributed time T, but the parameter is now

lmax and does not depend on z. The jump distribution is

"1 a(z,dy) (2.5)

(1-M(z)/A,_ ) 8_(dy) + (Mz)/A, ) Mz)
and depends on z. The distribution (2.5) can be interpreted in
such a way that, with the probability X(z)/kmax , the Jjump has
the distribution (2.4), and, with the probability 1—1(2)/lmax,
the jump is fictitious.

For our purposes, it is convenient to consider the class of

jump processes with

a(z,dy) f 8,41(z,0)(d¥)Q(2,0)u(d0) (2.6)

where U is a measure on a parameter set 8, Q is a real-valued
. d . . d . d
function on R'®, and T is a transformation from R'® into R .

For this special class of processes, fictitious jumps can be

introduced in another way. Suppose
Q(Zse) < Qmaj(z’e) (2.7)

and

Aoay(2) 0% ijéj(z,e)u(de) s const < ® , V zeR® . (2.8)
3 e

Then, the infinitesimal generator (2.1) can be transformed in

the following way,

49 (9)(z) = [ [0(24T(2,0))-0(z)]1a(z,0)n(d6)
8



[¢(Z+T(z,9))-¢(Z)]1I(z,e,n)Qmaj(z,9)dn p(doe)

1
D —
e N

[0(Z+T(Z,9)1I(Z,9,n))-0(2)]Qmaj(zye)dn u(de) ’ (2.9)

1]
D
O = =

where I:={(z,0,n): n < Q(2,0)/q_ ,(2,8)}.

Consequently, the pathwise ‘behavior of the corresponding
process can be described as follows. The parameter of the
waiting time distribution (2.3) is lhaj(z) defined in (2.8).

The jump distribution is

1
-1
lmaj(z) f f SZ+T(Z,9)1I(Z,9,U)(dY) Qmaj(z’e) dn u(d9)~ *
: 8 0

Thus, the jump parameters 6 and N are to be generated according

to the probability measure

A (z)_1

maj

Qe (2,0)u(d0) 1,5 1 y(M)dn .

The new state is calculated as a deterministic transformation

of the old state and theijump parameters,

y = 2z + T(z,0) 1I(z,e,n) .

This can be interpreted according to the definition of the
set 1 in such a way, that, with the probability
Q(Z,e)/Qmaj(z,G), the new state is

y = =z + T(z,0) y

and, with the probability l—Q(z,G)/QmaJ(z,G), the Jjump 1is
fictitious.

Note that in the case

Qua;(2:0) = Q. (6) (2.10)

max
neither the parameter of the waiting distribution nor the
distribution of the Jjump parameters depend on the current
state z.

It should be mentioned that the introduction of fictitious



jumps does }not change the ©process itself, since the
|
infinitesimal| generator remains the same. It provides just

another way of modeling the process.
1

In the second part of this section, we consider various

superpositioné of other Markovian evolutions with the jump
mechanism deséribed in the first part. More precisely, we are
interested iniMarkov processes with an infinitesimal generator
of the form

- d(O) 804(jump)

al = N , (2.11)

defined on aﬁ appropriate set of functions 2(#). The first

. (0) |, . .. .
operator # )ils supposed to be an infinitesimal generator that

describes the behavior of the process between the jumps

generated by éhe second operator g dump) given in (2.1).

Diffusion processes with jumps have been considered in

[Gikhman/Skorékhod-1973, ch.1, 81]. In this case, the operator
(0)
d

differential dperator

(2.1@) has the form of a second order partial

42 (0)(2) = <a(2)7,,7 >(p)(2) + <b(2),9,>(0)(z) (2.12)
where the function b is Rd—valued and the values of the
function a are positively definite d®d-matrices. The set D(A)
consists of all sufficiently smooth bounded functions @ on Rd.
The approximate (up to higher orders of At) pathwise
‘behavior of the process is described as follows. Let Z(t0)=z,
then

Z(tO+At) = AZ1 + Az2 + AZ3 ,

where

AZ. is the deterministic term b(z)At,

AZ2 is norhally distributed with zero mean and the
|
! correlation matrix a(z)At,
1
and AZ3 is a jpmp term with the distribution

(1-A(2)8t)8_(.) + A(z)At rz) Lq(z,.).

Some additional assumptions allow to describe even the exact




behavior

pathwise of the process.
Consider %a stochastic differential equation with a jump
component (cff [Gikhman/Skorokhod- 1982, ch.6, 81], or [Ikeda/

Watanabe-1981,

ch.4, §91)

|
az(t) = b(Z(t):)dt + 0(Z(t))dw(t) + ff(z(t ),E)P(dE,dt).  (2.13)
\ E
The function & in (2.13) is supposed to be d®d-matrix-valued
and such that a=%00*, where 0* denotes the transposed matrix.

W

random Poisson

Furthermore,

nt is a finite

‘ d
denotes the Wiener process in the R and p a

. d . . d
function f on R @ is R -valued.

The

generator of the form

‘°’(¢)(

measure with an intensity measure ®(d€)dt, where

measure on the parameter set &, Finally, the

solutién process Z of (2.13) has an infinitesimal
|

+ | o(z+1(2,8)) - 0(2)1 n(aE) (2.14)

o
&

where #'® is glven in (2.12).

yConsequently, if the jump generator (2 1) has the special
form (2.6) and the assumptions (2.7), (2.8), (2.10) are
satisfied, theh the corresponding diffusioh process with Jjumps

can be descfib?d via a stochastic differential equation of the

form (2.13).

the second term in (2.14) coincides with (2.9),

E = 68[0,1]

1]

f(z,€) = T(2z,0)

Now,
the
Z(t0)=z,

time T.

the p

parameter |
|
i

|
and independent of the trajectory. At the time t=t0+t,

parameter £ is

n(Z) 'm(dE), anc

|
stochasti#

The parameters are to be chosen in such a way that

i.e.

E=(6,n) , w(dE) ’

Q,,,(0)U(d0) T | (n)dn

1.(2,6,n) = {(z,0,n): n < Q(z,0)/qQ__ (0)}.

the exact pathwise behavior of the process follows from

differential

rocess behaves like a diffusion during a random

equation (2.13). Starting at

This wéiting time is exponentially distributed with the

[
-
—

n(

J Q,,,(8)u(de)

the Jjump
generated according to the probability measure

1 the new state is calculated as




Z(t) = z(t-) + T(Z(t-),E) .

The interpretation of the fictitious jumps remains the previous

one.

Piecewise deterministic processes have been investigated in

[Davis-1984]. | In this case, the operator «'® in (2.11)

describes a deterministic process, including the pure drift
case ((2.12) %ith a=0) but also processes in bounded domains.
The following} pathwise behavior of such processes has been
established. étarting at Z(t0)=z, the deterministic evolution
goes on during a random waiting time T, which has the

distribution

Prob{ T :

1w

s
s } = exp( - I l(Z(t0+u))du )y , s 20 |,

0 .
where * is defined in (2.2). At the time t=t0+T, the process

|
jumps to a st@te yGRd, which is distributed according to the
probability measure

1

MZ(t-)) © a(z(t-),dy) .

Then, the evolution goes on analogously.

Suppose the jump generator (2.1) has the special form (2.6)
and the assumptions (2.7), (2.8) are satisfied. In accordance

with the two examples described above, the following conjecture

concerning the pathwise behavior of a Markov proéess given by
an infinitesimal generator of the form (2.11) seems to be
reasonable.

Starting at Z(t0)=z, the process behaves according to the
infinitesimal | generator d(O) during a random time T. This

waiting time hgs the distribution

s
Prob{ T 2 s } = exp( -] Moay (Z(tg#u))du ) , s 20 . (2.15)
0

At the time t=to+t, the jump parameter € is generated

according to the probability measure




A

ma j

(z(t-))"

1 (2.16)

Q. (Z(t-),0)u(d6)

The generation of the parameter 71 according to the uniform

distribution on the unit interval corresponds to the decision

\
whether a jump

|
|
|

then the new é

n

4
z
Then, the e

|
|

Otherwise,

3.

In this se
tZtO , with an

The state spac

number. We su

sufficiently r

and zi=(xi,vi)
This

particle syste

Marko

ction,

4

will take place or not. If

< Q(z(t-),8)/Q . (2(t-),0) (2.17)
tate is calculated as

(t) = Z(t-) + T(zZ(t-),0) . (2.18)
t) = Z(t-) , i.e. the jump is fictitious.

volution goes on analogously.

THE BASIC MARKOV PROCESS

we define a special Markov process Z(t),

infinitesimal generator of the form

sl(O) + al(_1ump)

(3.1)

e of the process is (G®R3)n, where n is a natural

bpose the boundary 90G of the domain GeR® to be

egular. Furthermore, we denote z=(zi), z€(G®R3)n,

] i=1,...n.
v process can be interpreted as a stochastic
m

(Xi(t),Vi(t)), i=1,...,n,

where Xi(t) and Vi(t) denote the position and the velocity of

the i~th parti

First we
behavior of ¢t

particles).

The indepen

corresponds to

define

cle at the time t.

which describes the
(free flow of the

0)
the operator ﬂ( ,

he process between the jumps

dence of different particles during the free flow

an operator of the form




| n

4% (0)(z) = za;““’(m(z) , (3.2)
i=1 !

where ® is an appropriate test function. The operator alfres)

is the infiniqesimal generator governing the motion of a single

particle duriﬂg the free flow. We call this process the free

. (r ) (r )
flow process.  The sign dz ree denotes the operator « ree

| i

acting with réspect to the components Z,

In the int%rior of the domain G, the motion of a particle

(X(t),V(t)) is described by the system of ordinary differential

equations
dX(t) = v(t)dt s dv(t) = F(X(t),V(t))dt ’ (3.3)

where F denotes an external force acting on the particle.

It remains to define the behavior of the particle at the
boundary 9G. Suppose that the particle collides with the
boundary at some time t. In this case, the position X(t-)=x and

the velocity V(t-)=v of the particle satisfy the condition
X € 9G R Lv,n(x)> £ 0 .

During the collision, the velocity of the particlé changes in

such a wayvth&t the new velocity V(t)=w satisfies the condition

<w,n{x)> > 0 .
\

We assume that w is distributed according to a probability
i
measure r(x,v,dw) such that

r(x,v,{w:<w,n(x)>>0}) = 1, | (3.4)

Then, the motion continues according to (3.3).

In order to calculate the infinitesimal generator of the

free flow prbcess, we consider a sufficiently smooth test

function ¢ on G@Ra. -
Obviously,
(free) .
o (p)(x,v) = <V,Vx>(¢)(x,v)+<F(x,v),Vv>(¢)(x’v)’ (3.5)

if x€GN\IG or |if x€8G and <v,n(x)>>0, since the process is a

10




!
\

pure drift process in these cases.

Suppose xea

G and <v,n(x)><0. Then

47 (p) (x,v) = lim 87 [E(, \0(X(5),V(s)) - 9(x,v)] ,
f s-0 ’

where the sign E(x v) denotes the expectation under the
| ’

condition thaf X(0)=x and V(0)=v. One obtains

|

d(free)(w)(x,vj

(

J r(x,v,dw)d
R3

according to

r(x,v,dW)E(x,w)w(X(s),V(S))—¢(x,V)J

I[I

lim s~
s-0

il

R3

free) (o) (x,w) + lim s~ r(X.v,dW)w(X.W)-w(x,V)J

s—=0 3

(3.4) and (3.5). Consequently, the function ¢ is

subject to the condition

p(x,v) = I r(x,v,dw)e(x,w) , x€3G , <v,n(x)><0 . (3.6)
RS
This condition and the smoothness assumptions necessary in

\

(3.5) characterize the set 3(#

Now we def3

mechanism (col

ine the operator «

(free)

).

(Jjump)

, which describes the jump

lisions between particles).

We considef an infinitesimal generator of the form (2.1),

(2.6). Let thé

and the measu]

respect to

parameter set be of the form
.. .. 2
® = {(i,j): i,j=1,...,n}e8
re U be the product of the counting measure with
(i,

distribution (

j) and a measure m on s2, Consequently, the jump

2.6) is modified in the following way,

n S
alz,dy) = ) [ 8, 00 o (@v)a(z,i,5,0)n(de) . (3.7)
i,j=1 §°

In order to

and

introduce fictitious Jjumps, we assume that

Q(z,i,j,e) < Qmaj(z’i"j’e)

11




-
lmaj(z)== z Iszaj(z,i,j,e)m(de) £ const < ® , Vz . (3.8)
i,j=1 8

The infinites%mal generator takes the form (cf. (2.9))

2

.
290y (z) = Y
i S

1
f [¢(z+T(z,i,j,e)ﬂl(z,i.o',e,n))
i,j=1 0

- o(z)] an @, (z,1,3,e) m(de)

I:= {(z,i,j,e,n): n < Q(Z9iyj:e)/QmaJ(zvinjse)} ’
for cOntinuoué bounded functions ®. We call the corresponding
process the collision process.

The motivaéion for the special choice of the jump parameters
is to introduée a specific interaction in the particle system,
namely collisions between two particles. .

In this connection, it is natural to suppose

Q(z,i,i,e) = 0 , Qmaj(zyi)ise) =0, (3.9)
T(z,i,i,e) = 0 , (3.10)
for i=1,...,n, and
Q(Ziivjye)=K(%i)Zj’e)) Qmaj(z’i’J’e)=Kmaj(Zi’zj’e)’ (3.11)
|
| 0 , k#i,j
T(Z,i,j,e)k = wl(zi’zj,e) , k=i ’ (3'12)

wz(zi’zj'e) 9 k=\j

for i#j, where K, Km
|

For severa# considerations, it will be convenient to specify

s Wl and-wz are appropriate functions.

the functionsiw1 and wz via the relations
|
|
wl(zl'ZZ’e)=CIW(Zl’ZZ’e), Wz(zl,zz,e)=€2w(zz,zl,e), (3-13)

where ¢ is the usual collision transformation of the particles

12




defined as

‘P((XlsV

\
The introdq

(3.14)

1),(x2,v2),e) = (0.e<e,v2-v1>)

ction of the parameters 61 and 82, which may take

|
the values 0 or 1 only, allows to consider the usual symmetric

(61=€2

=1) as %well as asymmetric (€1=1, €2=0) collisions. It

also should bé mentioned that we consider pairs of parameters

i#j (instead

assumptions co

Under the a

the collision

differential e

dzZ(t) = I T(Z(

I {

where
o

n(dE€)

K
m

of i<j only) in order to avoid symmetry
ncerning the functions K, W1 and wz.
dditional assumption

Kmaj(zl.zz,e) = K _(e)

process can be expressed via the stochastic
quation (cf. (2.13))
t‘),i,J,e)1I(Z(t-),i{J’e,n) p(dE,dt) ’ (3.15)
(z,i,j,e,n): N < K(zi,zj,e)/Kmax(e)} ’

. . .. 2
(i, jseyn): 1,j=1,...n, e€S", ne(0,11}) , and

axteimlde) ¥4 (M)dn

The assumptioq (3.12) concerning the transformation T as well

as some elemer
to write down

the following

az, (t)= 2
J:j#1i S

)

2tary properties of random Poisson measures allow

the stochastic differential equation (3.15) in

component-wise form,

J

28[0,1]

J

P02, (6=),2;(t=),e,m) p{ 19 (de,am,at)

To(2;(t-),2; (=) e,m) p'97 ) (de,an,at)

jij*i §%e10,1]

where

fk(Zl,Zz,eyﬂ

) = Velzyh20,0) 0 k(s

(z,,2,,e) ,
| 1,zz,e)/Kmax(e)} 1’72

13




for k=1,2, @nd P(l’J), i,j=1,...,n, are independent random

Poisson measures with the intensity measure
|

)dn dt .

K, (€)m(de) 1o 11(n

Now we coﬂsider the combined process corresponding to the

infinitesimali generator (3.1). According to the conjecture
stated at the end of the previous section, the pathwise
behavior of tﬁis process is the following.

Starting a# Z(t0)=z, the process behaves according to the
infinitesimal%generator (3.2) during a random time T. Thus, the
particles per&orm independent motions in correspondence with

(free) of the free flow process.

the infinitesimal generator #
The waiting time T has the distribution (cf. (2.15))
| s
Prob{}r 2s} = exp( - I lmaj(z(to+u))du ) )
‘ 0 ‘

where

A (z) = z IZKmaJ(zi,zj,e)m(de) )
i#j S
according to g3.8), (3.9), and (3.11).
At the time t=t0+t, the jump parameter 6=(i,j,e) is
generated according to the probability measure (cf. (2.16),
(3.9), and (3./11))

A (z(t-))"1

ma j

Kmaj(Zi(t—),Zj(t-),e)m(de) .

Consequently, | first the numbers i and j are calculated (choice

of the collis%on partners) with respect to the probabilities

|

| -1

haay (2(E2D) iszaJ(zi(t_)’zj(t_)’e)m(de) :
!

Given i and jﬁ the parameter e is generated with respect to the

probability méasure

14




Kﬁaj(zi(t—),Zj(t—),e)m(de)/iszaj(Zi(t—),Zj(t—),e)m(de) :

The parameter 1 is independent of the other parameters and
has the uniform distribution on the interval 1[0,1]. The
calculation &f N corresponds to the decision whether the
collision is?declared fictitious or not (cf. (2.17), (2.18),
(3.11) and (3,12)). It

N2 K(Z,(t-),Z,(6-),e) /K, (Z;(t-),Z(t-),e)

\
i.e. with theiprobability
i
1 - Ki(zi(t—)’Z‘j(t_)’e)/Kmaj(zi(t_)’Z‘j(t—)’e) »

the new stateiis Z(t) = Z(t-), i.e. no collision takes place or
the collisiob is fictitious. Otherwise, i.e. with the
probability

K(Zi(t—),Zj(t-),e)/Kmaj(Zi(t-),Zj(t-)’e) P
the new state |is calculated as

_ 0 y k#i,J
| .

Zk(t) = Zk(t-) + wl(zi(t-),zj(t—)’e) b} k-l i

’ W2(Zi(t—)izj(t-)9e) ’ k=j

Thus, the comﬁonents with the indices i and j are replaced by

|
the corresponding "post-collision" values.
!

|
|
i

|
4. ON THE ASYMPTOTIC BEHAVIOR OF THE EMPIRICAL MEASURES

|

In this séction, we study some properties of the basic

Markov procesé Z{t) , tzt with the infinitesimal generator

0’
Ca = ', gl (4.1)
i
The operator ﬂ(O) is defined in (3.2) and the jump generator

|
has the form |

15




d(jump)((p)(z)=

i,

according to

| 18(2+1(z,5,5,0))-0(2) 1K (=2 e)mlde)
SZ

1

beB(d) , ze(GOR’)" (4.2)

(2.1), (3.7), (3.9)-(3.11). The transformation T

is given in (@.12).

We are interested in the asymptotic behavior for large

particle numbérs n of the empirical measure V(t) associated

with the procéss Z(t). This measure is defined via the relation

(po(t)):= [ o
GeR>

! n
kX.V)v(t,dX.dV):= n~1 z O(Zi(t)) ’ (4.3)

i=1

for bounded mqasurablé functibns ¢ on G®R3.

The follow

processes (cf.

¢(Z(t)) ®(

where M(t) is

We want to

This function

bounded functi

It follows

According to (

(0)

4%’ (0)(z(s))

ing representation is valid for general Markov
[Skorokhod-1983, p.3], or [Davis-1984, p.261])

-t
Z(ty)) + [ d(®)(z(s))ds + M(t) (4.4)
i t 0
a martingale and ¢€d(«).
‘apply (4.4) to the function
®(z) = (4.5)

n
n_1 z w(zi) .
i=1

' belongs to P(A) if ¢ is a sufficiently smooth

on satisfying condition (3.6). Notice that

®(z(t)) = (o,0(t)) . (4.6)
from (3.2) that
n
d(O)(@)(z) - n—l 2 d(free)(‘p)(zi) )
i=1
4.3), one obtains
= (47 (p),0(s)) . (4.7)
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Using (4.2), (3.10) and (3.12), we calculate

43" (9) (5) <
n

n- ! Z Iz Z[¢(zk+T(z,i,j,e)k)-¢(zk)] K(zi’zj’e) m(de) =
izj S° k=1
|

n~! z I [w(zi+w1(zi.zj,e))—¢(zi) +
i#zj S
w(zj+w2(zi,zj,e))-¢(zj)] K(zi,zj.e) m(de)

Consequently, according to (4.3), one obtains

a" ey z(2)) = n [ [ [ 1e(z4e;(a,2500))-002))
GoR> GeR®> g2

+ w(zz+w2(zl,§2,e))-w(zz)]K(zl;zz,e)m(de)v(s,dzl)V(s,dzz)

- [ [ tetztu (z,2,0))-0(2) + (4.8)
G®R3 SZ |

¢(Z+J2(z,z,e))-v(Z)]K(Z.z,e)m(de)V(s,dZ)

According ﬁo (4.6) and (4.7), Eq.(4.4) takes the form

t

(0,0()) = (p,0(t)) + [ (#77°°(p),v(s))ds +

to

(4.9)

a1 () (7(s))ds + M(t) ,

+
o Sy o+

0

where 49""")(9)(z(s)) is given in (4.8).
Notice that the measure V as well as the martingale M depend

onn (cf. (4.3), (4.4)). Furthermore, let the function K depend
on n.

Suppose that the following relations are fulfilled as n-®,

17




A S t2t, (4.10)
M (£) — 0 , o YotEt, (4.11)
and
n K“”(zl,zz,e) — H(zl,zz,e) , V Z13%91€ (4.12)
where P and H are appropriate functions. Under certain

assumptions cqncerning the convergence

in (4.10)-(4.12), one

can conclude from Eq.(4.9) that the limit P(t) satisfies the

equation, i
|
| t
(0,2(£)) = (p,P(t)) + [ (#77°°"(0),B(s))ds +
| t,
t
] j [ P(z,+9, (2),2,,e))-0(2)) +
t

0

+ o(z2+w2(z
The equivalent

d
5 (@.P(t))

+ ]

GeR>

+ w(zz+w2(z

with the initi

ceR> GgeR® &%

lDzz’e))-w(zz)]H(zl)Zzge)m(de)P(S,dzl)P(S,dzz)dSo

differential form with respect to t is
1

(d(free)

J

S

(p),P(t)) +

(4.13)

z[¢(zl+w1(zl’22’e))_w(zl) +

1szzae))’¢(Zz)]H(Zl’Zz,e)m(de)P(t,dzl)P(t,dzz) ’

al condition

l)(n)

lim
n—»o

P(t,) (tg) (4.14)

The function @ in (4.13) is an arbitrary sufficiently smooth

~ bounded test f
The variou

‘process (cf.

unction that obeys condition (3.6).
components the
(4.1), (4.2)) are present in Eq.(4.13),

Markov
(4.14).

s that determine basic

18




The operatorid(ﬁee) as well as the functions wland wz appear

expllcltly, whlle the initial state Z(t ) defines the empirical
measure b (t ) appearing in (4.14) and the function K defines
the function ﬂ via the relation (4.12).

|

|

According %o (3.13), the second term on the right-hand side
of Eq.(4.13) can be transformed in the following way,

J j I [ (Z1+€1W(211229e))_¢(21)+¢(Z2+€2‘p(22921’e))_
GoR’> geR® §° '
—w(zz)]H(zl,zz,e)m(de)P(F,dzl)P(t,dzz) =

j I Jz[elw(z1+w(z1,zz,e))—elw(z1)+€2¢(z2+w(z2.z1,e))-

—€2¢(zz)]H(zl,zz,e)m(de)P(t,dzl)P(t,dzz) =

I I J [o(z,+¥(2,,2,,e))- -p(z,) 1%
G@R G@R g2

*{e)H(z),2,,e)+€,H(z,,2,,e)}m(de)P(t,dz  )P(t,dz,) .

Consequently, under the assumption (3.13), Eq.(4.13) takes the
form

T2 (e,p(t)) = (77" (9),B(t)) +

(4.15)
[ ] tetagswiag zp.e0)-0z)1%
GOR™ GeR™ S
( )
*q °Y" (zl.zz,e)m(de)P(t,dzl)P(t,dzz) .
The function

gleym |
Yz 1,zz,e) = €1H(zl,zz,e)+€2H(z2,zl,e) (4.16)

is the symmetﬁization with respect to z1 and Z, of the function
|
H in the case of symmetric collisions (8 =€ -1) and is

identical w1th H in the case of asymmetric COlllSlonS (€1=1,
e-
2=0)-

\
|
1
i
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5. RELATION

In this sec
equation will
We suppose
with respect t
corresponding
Eq.(4.15)

excluded.

in

It follows

(d(free)(‘p)’P(

e

TO THE BOLTZMANN EQUATION

*tion, the relation of Eq.(4.15) to the Boltzmann

be examined. |
‘that the measures P(t) are absolutely continuous
Let p(t,x,v) denote the

following,

to the Lebesgue measure.
In the

such a way thét the test functions ¢ may be

densities., we transform

from (3.5) that
t)) =

(5.1)

)(x,v)+<F(x,v),Vv>(¢)(x,v))p(t,x,v)dvdx .

Applying the Stokes'formula

1

i

2
ox .
i

3

_ I z U, (x)n, (x) s(dx) ,
G i=1

Ui(x) dx

where U is a sufficiently smooth vector function and $ denotes
|

the standard surface measure, we obtain the equality

j <v,9. > (9) (x,
G

= -Iw(x,v)<v,
G

Furthermore,

<F(x, ),V D
e

v)p(t,x,v) dx
v .op(t,x,v)dx - fw(x,V)p(t.x,V)<v,n(X)>S(dx) .

G

(0)(x,V)p(t,x.V)dv=—f ?(x,v)<F(x,v),9 >p(t,x,v)dv
R3

so that one obtains from (5.1) the relation

20




_ (d(free)(w)AP(t)) =

(5.2)
I J o(x, v)((v,V >p(t,x,v)+<F(x,v) v >p(t,x v))dvdx

¢ R?

I I w(X’V)P(t X,v)<v,n(x)>s(dx)dv .
aG Rr3
1

|
In order to handle the second term on the right-hand side of

Eq.(4.15), we introduce a transformation S by the formulas

Sl(zl,zz?e) zl+w(zl,zz,e) ,

(5.3)

vsz(zl,zzie) zz+W(z2,z1,e) ;

where ¥ is deflned in (3.14). Obviously, the transformation S

is linear in Q 1,zz). Furthermore, elementary calculations show
-1

that S =S.

The substltutlon of the wvariables

Yy Sl(zl,zz,e) ' v, = Sz(zl,zz,e) )

allows to conclude that

[ ] s +w<z1,z2,e)m‘°‘"‘"(

3 ZI’ZZ’e)p(t’zl)p(t’zz)dzldzz =
\

‘ sym
I I w(Z )H( y)(Sl(zlvzz)e)!Sz(ZIQZzie)’e)*

P(txsl(zlyzzye))P(t,sz(zl,zz,e))dzldzz

Consequently, | the second term on the right-hand side of
Eq.(4.15) takes the form

f w(z ) I f { (SYM)(Sl(zl,zz,e),Sz(zl,zzye),e)*
G®R G®R S

(5.4)
fp(t,Sl(zl,zz,e))p(t,Sz(zl»zz,e))

(sym)

- H (zl,zz,e)p(t,zl)p(t,zz)} m(de)dzzdz1 .
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Thus, acc&rding to (5.2) and (5.4), Ea.(4.15)

can be
transformed iﬁto the equation
[] !p(x,v)[ £-+<v,vx>+<F(x,v),vv>]p(t,x,v)dvdx
3 1 .
G R |
+ I ﬁ p(x,v)p(t,x,v)<v,n(x)>dvs(dx) =
aG R®
(sym) '
J 3w(zl) I \ Iz { H (Sl(zl.zz,e).Sz(zl,zz,e),e)*
GOR GeR™ 'S
| *p(t,Sl(zl.zz,e))p(t,Sz(zl,zz,e))
( ) ‘
o (zl,zz,e)p(t,zlm(t,zz)} m(de)dz,dz, ,
where ¢@ 1is an arbitrary sufficiently smooth bounded test
 function satisfying condition (3.6).

We notice fhat Eq.(5.5) is fulfilled, in particular, for all

sufficiently smooth bounded functions ¢ such that

If a function

o(x,v)=0 , if x€o6G . (6.6)

¢ satisfies condition (5.6), then the second term

on the left-hand side of Eq.(5.5) disappears. Furthermore, the
class of funqtions satisfying (5.6) is sufficiently wide in
order to conclude from Eq.(5.5) that the density p(t,x,v)

satisfies the

el
[ 5€+<V,Vx>+<

(1, L

_ H(sym)

(x,v,§
|

equation

{F(x,v)," >]p(tsx,V)
v (5.7)

)
ym (x,v+e<e,v1—v>,x1,v1+e<e,v—v1>,e)*
*p(t,x,v+e<e,v1—v>)p(t,x1,v1+e<e,v-v1>)

l.vl.e)p(t,x,V)p(t,xl,vl)} m(de)dvldxl ,
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for all x€G\6d, v€R3, and t>t .

As a consequence of Eq.(5.7), a second equation with respect
to the densities p(t,x,v) can be derived from Eq.(5.5). Namely,
according to d5.7), Eq.(5.5) reduces to the equation

|
I J ¢(x,V)£(t,x,v)<v,n(x)>dv s(dx) = O ) (5.8)
ac R? B

1 .
which 1is fulﬁilled for arbitrary sufficiently smooth bounded
test functioné ® satisfying condition (3.6).

For any fixed x€0G, we introduce the half-spaces

1
Rf(x) 1= {véRaz Lv,n(x)>>0} and R?(x) 1= {V€R3: <v,n(x)>s0}.

We suppose the measure r to be absolutely continuous with
respect to tﬂe Lebesgue measure and denote the corresponding
density by R éo that the condition (3.6) takes the form

o(x,v) = I R(%,V.W)w(x,w)dw , x€3G , <v,n(x)><0 . (5.9)
R

Remember that) according to the assumption (3.4), the measure r
is concentrated on the half-space Rf(x).

Using (5.9), one obtains the equality

f o(x,v)p(t,x,v)<v,n(x)>dv = I P(x,v)p(t,x,v)<v,n(x)>dv +
R’ R

, (%)
+ I [ f R(x,v,w)w(x,w)dw]p(t,x,v)(v,n(x)>dv =

R (x) R (x)

= I dv ¢(x,v) { p(t,x,v)<v,n(x)> +

R (x) |
I R(x,w,v)p(t,x,w)(w,n(x)>dw} )
R?(X)

for any fixed x€8G. Consequently, it follows from Eq.(5.8) that
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I s(dx) I dv ¢(x,v) { pl(t,x,v)<v,n(x)> +
aG Rf(x) | :

| I R(x,w,v)p(t,x,w)(w,n(x)>dw} = 0.
R (x) »

The class of test functions ¢ is sufficiently wide in order to

conclude that the function p satisfies the equation

p(t,x,V)<v,n(#)> + f R(x,w,v)p(t,x,w)<w,n(x)>dw = 0, (5.10)
i R(x)

|
for any x€3G and veRf(x).

Thus, the function p(t,x,v) satisfies Eq.(5.7) in the

interior of tﬂe domain G, and Eq.(5.10) on the boundary 9G. In
fact, these %wo equations are equivalent to Eq.(4.15). The
initial condiéion (4.14) is to be modified appropriately.
The function H(8YM)
by means of the parameter K(n) of the stochastic particle
system (cf._(@.Z), (4.12), and (4.16)).

Let the pafameter K“” be of the special form

that appears in Eq.(5.7) is determined

-lk(n)

(n)
K" (xl,vl,xb,vz,e) = n (xl,xz)ﬁ(vl,vz,e) , (5.11)

(n) . .
where € " and & are appropriate functions, and suppose that

(n)% . v
£ fxl,xz) oo 3(x1-x2) . (5.12)
|
i
Then, one obtgins the relations
i

H(%l,vl,xz,vz,e) = $(xy-x,)b(vy,v,,e)
and §
|
( )
H sym(xl,vl,xz,vz,e) = a(xl-xz)B(vlivz’e) ’
1
where
B(vl,v2+e) = 615(y1,vz,e)+€25(v2,v1,e) . (6.13)
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Suppose, furthermore, that the function B satisfies the

condition
X *
B(v ,vl,e) = B(v,vl,e) . (6.14)

*
where v =v+e<e,v1—v> and v: 1
Under the assumptions (5.11), (5.12) and (5.14), Eq.(5.7)

reduces to theiBoltzmann equation

=v +e<e,v-v1>.

—% p(t,x,v) + <v,V P(t,x,v) + <F(x,v),¥ Ptx,v) =

|
I m(de) B(v,vl,e){p(t,x,v )p(t,x,v )-p(t,x,v)p(t,x,v )} .
|

Q

5"—ﬂ

Formula (é.13) establishes the relation between the
parameter & ofithe stochastic particle system and the collision
kernel B of thé limiting Boltzmann equation.

If the colhisions in the stochastic particle system are
symmetric (61%€2=1), then the kernel B is automatically a
symmetric func?ion with respect to V4 and Vo Consequently, one

can choose theﬁsymmetric parameter
b(v ,v,,e) = B(v,,v,y,e)/2 .

In this case, it 1is also possible to reduce the possible

collision parpners in the stochastic model to ordered pairs
(i<j) and to cﬁoose 6=B.

If the coliisions in the stochastic particle system are
asymmetric (81%1, €2=0), then the kernel B and the parameter &
are identical. |

It is simplé to establish that
x X% *
v —vlﬂ = "v—vlﬂ and <v*—v1,e> = —<v-v1,e> .

Consequently, éondltlon (5.14) is fulfilled if B depends on v
and v, via the terms llv- -vy I and |<v- vl,e>| only. This is

fulfilled for many concrete collls1on kernels B. Obviously, the
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function B is symmetric in this case.

Condition d5.10) is one of the common boundary conditions

associated widh,the Boltzmann equation (cf. [Cercignani-1975,
ch.3, 81]. If the kernel R has the form

R(x,w,v) | = (1-0)d(w-ve2n(x)<n(x),v>) + afy(x,v)

where fo is én appropriate density with respect to v and
1 .

a€[0,1], one obtains the Maxwell boundary condition. In the

case of pure s#ecular reflection (a#O), equation (5.10) reduces

to the conditibn
p(t,x,v) = p(t,x,v-2n(x)<n(x),v>) .
|
Finally, itgshould be mentioned that, if one replaces'the
condition (5.1?).by the following,

—  h(x

(n)
& (xl’xz) n—® l’xz) ]

where h is an appropriate symmetric function, then Eq.(5.7)
reduces to the so-called mollified Boltzmann equation (cf.
[Lebowitz/Mont#oll—1983, p.341).

|
|
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