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1. Introduction 

? The problem of stabilizing a linear plant 

1 y(t) = ay(t) + bu(t), x(t) E R, u(t) E R 

with a and b unknown numbers, b # 0, by a smooth controller of the form 

0) = dY@>> k(W (1.2) 

w = f(YWW) (1.3) 

. 

has been considered in a series of papers (Morse 1983, Nussbaum 1983, Willems and 
Byrnes 1984, Heymann et al. 1985). A variety of stabilizing control rules (1.2), (1.3) is 
known also for controllable and observable scalar systems (A,b,c) of higher order n 
which have (n-l) stable zeros and multivariable system (A,B,C) which are controllable, 
observable, minimum phase and satisfy det CB # 0 (cf. Byrnes and Willems 1984, 

Martensson 1986). All these controllers are combinations of a high gain adaptation law k 
= f(y,k) with some switching devices inherent in u = g(y,k,t). 
More general the concept (1.2), (1.3) f o universal adaptive stabilizers (UAS) has become 
a major research topic in adaptive control, and there are a number of results available 
for finite-dimensional linear systems (Byrnes and Willems (1984), Mirtensson (1986), 
Helmke and Pratzel-Wolters (1988), Owens et al (1989)), infinitedimensional linear 
systems (Logemann and Zwart (1990), Logemann and Mirtensson (1990)), nonlinear 
systems (Byrnes and Isidori (1988), Mirtensson (1990), Ryan (1991), Nikitin and 
Schmid (1990)) and for the tracking problem (Helmke et al (l990)). The above list of 



2 

references is certainly not complete. 

In most of these publications the proposed controllers are one parameter adaptive high 
gain feedback controllers. Very little work has been done on multiparameter-feedback 
laws in the context of UAS’s (c.f. Schmid (1991) for a multiparameter version of the 
unbounded gain variation theorem). 
In this paper we turn back to the initiating problem of Morse (1983): 

- Do there exist smooth, rational or polynomial functions f and g in (1.2), (1.3) 
stabilizing all linear plants of the form (1. l)? 

8 

While Morse proved for scalar gains k(t) nonexistence of rational or polynomial UAS’s 
for (l.l), Nussbaum (1983) gave the following example of an analytic UAS (f,g): 

u = (k2+1) cos$ek 
2 

. y 0.3) 

i = y(k+l) (1.4) 

To the best of our knowledge it has never been investigated, if there exists a polynomial 
UAS (f,g) for (l.l), if we allow for multiple gains k = (kl,...,kp) E lRp. In this paper we 

will show that indeed for even p = 21,1 E lN, there exist such time-invariant polynomial 
pairs (f:lR x lRp + iRp, g:lR x Wp -) lR) stabilizing all controllable systems of the form (1.1). 
Furthermore this result extends to scalar, higher order, minimum-phase, relative degree 
one systems. Usually the switching mechanism is in corporated in the feedback-function 
g, hence seperated from the gain adaptation. For our controller we combine gain 
adaptation and switching in one function f. 

2. First order systems 

In this section we analyse a certain family of multigain polynomial universal adaptive 
stabilizers for the class of first order linear systems: 

L(1) : y = ay + bu, (a,b) E [R x [R \ (0). (2.1) 

We need the following preparatory 



1 2.1 Lemma: 
Let p(s) = s2n + pp2n-1+...+P2n-ls+P2n E W[s] be an unstable polynomial with real 

coefficients pj E R, j=1,...,2n and complex zeroes 

s.= -yj+iw. with 
3 J 

yj > 0, wj # 0 for j=1,...,2n 

then 

(4 Any nontrivial solution z( .) f 0 of the differential equation: 

p(D) Z = 0 

has infinitely many zeros. 

(ii) For every q(t) E R[t], h E N and any solution z(.) of (2.3) 

7h-1 L(t) := x i’ . . j 
0 

z(‘,) drn drnml.... 

has infinitely many zeros and 

drl + 

liminfz(t) =--m and lim sup z(t) = + m 

cl(t) 

(2.2) 

(2.3) 

(24 
t+m t-+m 

4 

Y 
Proof: 

6) Every solution of (2.3) is of the form 

M y.t 
‘tt> =jI,” J trjtt) cos wjt + mj(t) sin wjt) 

- 

k 

where M denotes the number of different roots of p(s) and rj(s), mj(s) are 

polynomials of degree vj, where vj denotes the multiplicity of sj, j=1,...,2n. 

Let 7max := max{yl,...,TP}. Then: 



z(t) = eYmax Yr max(t) cos w maxt + mmax(t) sin Wmaxt + f(t)) 

where 

M 
limf(t) =lim E e 

4 Ymax-7’) t 
J 

t-rm t+m j#max 
(rj(t) cos wjt + mj(t) sin wjt) = 0 

Furthermore, since 

rmax(t) cos wmaxt + m,,(t) . sin wmaxt 

= (JImax(t)2+mmax(t)2) ’ ‘OS CWmaxt + tCt>) 

where lim t(t) = a < m exists, for t + m the zeroes of z(t) converge to the zeros of 
t+m 

cm (Wmax t+ a). 

(ii) An easy calculation shows that for t + m, z(t) converges to: 

e Tmaxt J-qqq, * cos (wmaxt + PW (2.5) 

where gl( -) and g2( -) are two real polynomials and lim p(t) = ,B < m exists. 
t-Jm ,. 

Hence z(t) has infinitely many zeros too. 
Furthermore because r,,, > 0 and gl(t), g2(t) are non trivial polynomials the 

formulas in (2.4) are immediate consequences of (2.5). 
q 

2.2 Proposition: 

The controller: 

(2.6a) 



(2.6b) 
where 

qt) k#) 
k(t) = i = y(t)2 - A : 

4,(t) 

, k(to) # 6 

k& 

(i) (X,A) E lR2n x R2n ’ 2n is observable 
(ii) u (A) n (c - UR) = 8 

is a UAS for L( 1). 

5 
Proof: The closed loop-system 

y(t) = (a+b < X, k(t)>) y(t) 

k(t) = y(t)2-A k(t) 

(2.6~) 

is transformed by z := y2/2 and the resealing of time r := ) z(a) da into the linear 
0 

system: 

i(7) = g = a+b < X, k( 7) > (2.7a) 

k(7) = g = Ak(r) (2.7b) 

From (2.7) we obtain by sucessive derivation: 

a Z(~)(T) = b < X, A k(r) > 

z(‘(~+‘))(T) = b < X, A2n+1k(,) > 

Cayley-Hamilton implies that there exist ~~,...,p~~ E R such that 

< X,A2n k>=-p1<X,A2n*1k>-...-p2n-l<X,Ak>-p2n<~,k> 

Thus 

z(2n+2) + p 1 z(2n+1) +...+ p2nZ(2) - 0 - . 
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Moreover observability of (A,A) together with the assumption k(to) # 0 implies 

< X, Ak(t) > f 0 and by lemma 2.1. z c2)(r) h as infinitely many zeros. Finally from part 

(ii) of lemma 2.1 we conclude that 

z(r) = ; ,tz(2J 
00 

(0) da d7 + qlT + q2 

has infinitely many zeros too. But z(7) = Y2W, 2 and therefore r = b z(a) da remains 

I bounded. This implies y(t) E L2 [O,m) and lim k(t) = lim e * 
t+w t+ol 

k(0) = km < a. 

Finally because y(a) is L2 and k( a) is bounded, y( *) is L2 too and thus 1 i m y(t) = 0. 
t-tm 

L 
cl 

2.3 Remarks: 

(9 

(ii) 

u 

5 

Proposition 2.2 shows that, contrary to the one parameter case, there exist 
2n-parameter, n = 1,2..., universal adaptive stabilizes with polvnomial control 
and adaptation laws. 

Fig. 1 illustrates the behaviour of y( .) and k( .) for the system 

y = 4.9y-O,5u, y(0) = 1, k(O)= [ ; 1. 

u = [0 l] ky, k = y2 . [ 1 ;-;” k 

a(A) = (1 * 5i) 
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il 3. Relative degree one minimum phase systems 

In this section L denotes the set of all scalar, controllable and observable linear systems 
(A,b,c) satisfying:, 

det cb # 0 (3.la) 

(3.lb) 

i.e. the systems (A,b,c) E L are minimum phase and relative degree one systems. We 
show that the UAS’s described in section 2 stabilize L too. 

Q 

For T finite instead of T = q the following lemma is frequently applied in adaptive 
control texts. The essential point here is, that the constant C in formula (3.3) can be 
selected ‘I’-independent. 

3.1. Lemma: Let the scalar system 

k(t) = Ax(t) + bu(t) 
y(t) = c x(t), x(0) = x0 

(3.2) 

be asymptotically stable with decay rate (L < 0 , i.e. lieAtl[ 5 Me&. Then for every 
u( -) E L2(R+) we have: 

1; u(a) y(o) da/ 5 Co “i u(o)” da 
0 0 

(3.3) 

Proof: The solution y( .) of (3.2) is given by: 

y(t) = c eAtx + c 4 eA(+-) 
O 0 

bu(r) dr, 

hence 

1; y(d $4 dr I 5 kl ; W2 dr 

m err +k2.Je 
0 

lu(r)l ie-o’ lbu(8)IdBdr 

Consider the bounded linear operator 

(3.4) 
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with H(u)(t) := i U(T) d7 where L2 --cy (O,+CII) denotes the space of all continuous 
, 

functions u(s) for which Ilul[t := % eB20’ 2 u (r) dr is finite. It is easily verfied that: 

tn+l 
II = n+l and 

llH(tn~ll~ = m2 CY n 

From this we conclude that for any p(t) E lR [t] : 

IIH(P)II; < 1 

II P lla2 - a2 

However lR[t] is dense in L ,,&d, thus IPlla = ; and the second summand on the 

right hand side of (3.4) is bounded by kg 7 u(r)2d 
0 

r where kg is a suitable constant. 

3.2 Theorem: 
The controller (2.6) is a UAS for L. 

Proof: Let E = (A,b,c) E L(n) and select a basis in Rn such that X admits the following 
decomposition: 

fl = A1 xl + A2y (3.5a) 

y = ay + bu + A4x1 (3.5b) 

where (a,b) E R x R\(O) and g(A1) c C- ( consequence of (3.1)). Applying (2.6), 

multiplying (3.5b) by y and integration gives: 
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$(t)2 -&o)~ = d (a+b < V4a) >> ~(4~ da 
(3.6) 

+ A4 i x (4 ~(4 da 
0 l 

and by lemma 3.1 applied to-(3.6) we obtain: 

;y(t)2 -;Y(o)~ I 1 ;~(a)~ da + b < A, i k(g) Ye da > 

= a: b y(a)2da + b < X, A-I [k(t) -k(O)] > (3-V 

I) 
t 

(s 
Substituting r := 1 ~(a)~ da and inserting k(t) = eAr k(0) the right hand side of (3.7) is 

0 
transformed into: 

I  

a7 + b <X, e A’(A-lk(0))> + b X A-‘k(0) (3.8) 

Now z(r) := b <X, eA’(A-‘k(O))> $ 0 and satisfies: 

p(D) Z( .) E 0 where p(s) = det [sI-A]. 

Hence if 7 + m then by lemma 2.1 (iii) the right hand side of (3.7) admits arbitrary large 
negative values, contradicting the inequalitiy (3.7). Therefore r E Lm, y E L2, jr E L2 and 

lim y(t) = 0, lim k(t) = eATmk(0) 
t-+m t-+m 

where 

3.3 Remarks: 

(4 It is easily proved that theorem 3.2 remains true if the system states in 3.2 are 
disturbed by L2-functions d(a). 
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(ii) The multi-gain adaptation laws (2.6) give rise to further investigations of 
combined gain-adapt ations and swit things in higher dimensional parameter 
spaces which may stabilize a wider of class of linear systems than L. At least the 
UAS’s of the form 

1; = y2, u = N(k)y 

with N(k) a switching function are restrictive in the following sense: 

- If N(k) is assumed to be a Nussbaum function, i.e. 

limsup~~N(a)da=-a, kim o 
k+m 

lim$N(o)dg=-m 

(3.9) 

(3.10) 

then controllers of the form (3.9) cannot universally stabilize systems of 
relative degree higher than 2, because for n+m any polynomial of the form 

zn + ansl z 
n-l +...+alz+ao with a0 --+ f m has unstable roots. 

- In Schmid (1991) it is shown that in any adaptive controller of the form 
(3.9), which universally stabilizes a system class E with L(1) c E 
necessarily the switching function N(k) satisfies the Nussbaum-conditions 
(3.10). 

Fig. 2 illustrates the behaviour of y( .) and k(m) for the minimum phase relative degree 
one system: 

x = [ ; ;] x + [ ;I u ) x(o) = [ :I 

y= [ 121 x; 

controlled by the same controller as applied to the first order system (c. Fig. 1). 
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