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Abstract

Iterative methods to solve linear equation systems are widely used in computational physics, engineering and many areas
of applied mathematics. In recent works, performance improvements have been achieved based on modifications of several
classes of iterative algorithms by various research communities driven by different perspectives and applications. This
note presents a brief analysis of conventional and unifying perspectives by highlighting relations between several well-
known iterative methods to solve linear equation systems and explicit Euler approximations of the associated parabolic
regularized equations. Special cases of equivalence and general relations between different iterative methods such as
Jacobi iterations, Richardson iterations, Steepest Descent and Quasi-Newton methods are shown and discussed. The
results and discussion extend the conventional perspectives on these iterative methods and give way to intuitive physical
interpretations and analogies. The accessibly presented relations give complementary educational insights and aim to
inspire transdisciplinary developments of new iterative methods, solvers and preconditioners.

Keywords: Iterative methods, Sparse Linear Equations, Preconditioners, Parabolic Regularization

1. Introduction and motivation

Efficient iterative solvers for linear equation systems are
important in many areas of computing. This led to re-
search and progress and algorithm performance improve-
ments from various research communities with hetero-
geneous perspectives. In recent years several modifica-
tions of classical iterative methods such as Jacobi itera-
tions, Richardson iterations, Steepest Descent and Quasi-
Newton methods have been presented in various contexts.

The Jacobi method [1, 2] is a well known iterative proce-
dure for the solution of linear equation systems. Although
other iterative methods, such as the Krylov subspace-
based Conjugate Gradient (CG) method are often pre-
ferred due to better convergence rates, Jacobi iterations
and recently developed Jacobi-like iterations are still com-
monly used as preconditioners or smoothers as part of
other iterative approaches such as multigrid methods [3].
Jacobi-like iterations are well suited for parallelization
[4, 5, 6, 7, 8] and are therefore still a topic of active re-
search and development [9, 10, 11, 12]. Investigations on a
class of recently developed Jacobi-like methods (Anderson-
Richardson methods) indicated that for particular prob-
lem types, these methods can show superior scaling per-
formance compared to established Krylov subspace-based
methods such as CG [4, 7]. Some of the relations between
the Scheduled Relaxation Jacobi method and Richardson’s
non-stationary method were discussed in [10].
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Other recent advances in gradient-based methods for lin-
ear equation systems showed advantages over Krylov sub-
space methods in particular situations [13]. In other con-
texts novel gradient descent-based approaches for linear
equations in the setting for missing data [14], distributed
linear regression [15] and quantum computing [16] were
presented. Recently also quasi-Newton based approaches
were developed and used in the context of linear equa-
tion systems and preconditioning [17, 18]. Besides non-
stationary preconditioning, also preconditioner ”switch-
ing” showed promising results for linear systems arising
from interior point methods for linear programming prob-
lems [19].

The explicit Euler method [20, 21] is an iterative numer-
ical method to approximate solutions of differential equa-
tions. In this context the method is well known due to its
simplicity and educational value, but because of its rather
limited stability and accuracy properties, other methods
with higher-order accuracy are often more efficient. Be-
cause the previously mentioned classes of iterative meth-
ods for linear equations are generally targeted at different
problem types they seem rather unrelated to the Explicit
Euler method. This note, however, considers interesting
relations between all of the previously mentioned classes
of iterative methods for the solution of equation systems,
and the use of the explicit Euler method for the solution of
the associated parabolic regularization of the elliptic equa-
tions. Parabolic regularization techniques have been used
in the context of element-by-element based solution ap-
proaches for discretized elliptic problems [22, 23], for which

Preprint submitted to Results in Applied Mathematics January 26, 2022

The final version of this article is published under a CC-BY-NC-ND license as:
Sala, R., Schlüter, A., Sator, C., & Müller, R. (2022). Unifying relations between iterative linear equation solvers and explicit
Euler approximations for associated parabolic regularized equations. Results in Applied Mathematics, 13, 100227.
https://doi.org/10.1016/j.rinam.2021.100227



physically meaningful associated parabolic problems exist.
These regularization concepts described in [22, 23, 24], can
be considered as a generalization of the Dynamic Relax-
ation approach [25], which was developed in the scope of
quasi-static problems in structural mechanics.

There exist only few works (e.g., [26] and [27]) in the lit-
erature that address the relations between the concept of
parabolic regularization of elliptic problems combined with
(pseudo) time integration, and other iterative equation so-
lution techniques such as the Jacobi method, Richardson
iterations and Quasi Newton methods. For the restricted
setting of cellular neural network simulation, a relation
between Jacobi iterations and Euler iterations for a par-
ticular choice of parameters was shown in an earlier work
[27]. Some aspects related to the interpretation of time
discretized differential equations as dynamical systems as
a means to solve linear systems of equations were discussed
in [26].

This communication highlights more general relations
and similarities between several widely used numerical
methods of which some are usually considered rather sep-
arately, and thereby complements the conventional per-
spectives on relations between iterative methods for linear
equations [28, 29]. The resulting perspective provides ad-
ditional insight and gives way to intuitive physical analo-
gies, and aims to be of educational value as well as to
inspire the development of new and alternative iterative
methods of use in numerical computation. Although most
of the iterative methods discussed are relatively straight
forward and well-known, they are presented comprehen-
sively in the Appendix to emphasize the spirit of the origi-
nal references with the intention to illustrate how a variety
of famous iterative methods developed from different views
are deeply related in the view of a unifying perspective.

2. Parabolic regularization

In various settings of computational physics and engi-
neering discrete elliptic problems of the following type oc-
cur:

Ku = b (1)

where K is a real square positive definite matrix2, b rep-
resents the vector of the discretized source term and u is
a vector of unknown variables. The concept of Parabolic
Regularization (PR) is to replace the discrete elliptic prob-
lem, by an associated parabolic problem with a transient
vector of variables v for which the asymptotic solution co-
incides with the solution of the original problem [23]. For
the stationary discrete elliptic problem (1) an associated
non-stationary semi-discrete parabolic problem is:

C
dv

dτ
+Kv(τ) = H(τ)b (2)

2 In this context a real matrix K is said to be positive definite
(K � 0) if ∀u ∈ Rn, u 6= 0 =⇒ uTKu > 0.

with Heaviside step function

H(τ) =

{
0 τ ≤ 0
1 τ > 0,

pseudo time τ , and initial conditions v(0) = ~0. If C is
chosen as a positive-definite matrix (C � 0), the asymp-
totic solution of equation (2) approximates the solution of
equation (1)

lim
τ→∞

v(τ) = u.

3. The explicit Euler method

In 1768 Euler described a method to approximate the
solutions of ordinary differential equations with given ini-
tial values ([20, 21] part 1, section 2, ch. 7). The method
is applicable to problems of the form:

dw

ds
= f(s, w), with w(s0) = w0.

The key idea was to iteratively attribute new values for
wk+1 based on small changes of s by using the following
approximation:

wk+1 − wk
∆s

≈ f(sk, wk), k = 0, 1, 2, ..., n.

Where ∆s is a small positive perturbation or explicit step
to the next iteration sk + ∆s = sk+1.

4. The explicit Euler method for parabolically reg-
ularized elliptic equations

If for a discrete stationary elliptic problem as given in
equation (1), the explicit Euler method is applied to ap-
proximate an associated parabolic regularization as given
in equation (2), one obtains:

C
vk+1 − vk

∆τ
= (b−Kvk), with v0 = ~0.

This can be rewritten as the following iterative scheme,
with w.r.t pseudo time steps ∆τ :

vk+1 = vk −∆τC−1(Kvk − b). (3)

5. Relations between several iterative schemes and
physical analogies

In Table 1 the iterative scheme of the explicit Euler
method for parabolically regularized equations is com-
pared with various well known iterative schemes for linear
equation systems, such as the Jacobi method, Richard-
son iterations and some of their variants which are often
used as preconditioners or smoothing iterations as part
of other iterative solution approaches. Although less con-
ventional, also Gradient Descent and Quasi-Newton based
methods have been developed in the context of iterative
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linear equation solvers [15, 14, 17, 18] and are included
in the overview. In order to highlight the similarities
among the various methods, some iterative schemes are
slightly rearranged, w.r.t. the common formulations. For
details and derivations of the formulations for the itera-
tive schemes, we refer to the previous sections and to the
extensive Appendix. While in the previous sections we
considered an equation system where the involved matrix
(K) is positive definite, this is in the following sections
considered as a special case of the more general equation
system Av = b with the less restrictive condition that ma-
trix A must be non-singular. All of the iterative schemes
in Table 1, can be considered special cases of the following
(non-stationary) standard iteration scheme:

vk+1 = vk − P−1k (Avk − b), (4)

to solve the general equation Av = b, where vk and b
are arbitrary vectors, and where the Matrices A and Pk
must be non-singular. In practice, knowledge of P−1k is
not necessarily required, but instead the equation system

Pk∆vk+1 = rk (5)

can be solved for ∆vk+1, where rk = Avk − b. With
vk+1 = vk + ∆vk+1, and error ek = v − vk, the resulting
error from an iteration according to eq. 4 can be written
as:

ek+1 = (I − P−1k A)ek. (6)

Therefore, if the following restriction on the spectral radius

ρ(I − P−1k A) < 1 (7)

holds, a decrease of the norm of the error (‖ek+1‖ < ‖ek‖)
will be achieved in iteration k. To have benefit from the
above iterative schemes, P−1k or Pk should be chosen in
such a way that the operations for iterations of equation
(4) or (5) require significantly less computational resources
than the solution of the original equation system: Av = b.
This could be achieved by choosing Pk for example: diago-
nal, tridiagonal, lower triangular , or by directly estimating
a P−1k such that (7) is satisfied, with a preferably small
spectral radius.

By comparing the iterative schemes in the Table 1, a re-
lation between the Jacobi method (see also equation (A.1)
in the Appendix) and that of the explicit Euler method ap-
plied to the parabolically regularized equation in (3) can
be identified. For the special but common case that in
the initial equation system Āv = b, the matrix is positive
definite (Ā � 0), it follows that its diagonal matrix is also
positive definite (diag(Ā) � 0). If parabolic regulariza-
tion is applied combined with the explicit Euler method,
and if the regularization matrix C and the step size ∆τ
are chosen such that ∆τC−1 = D−1 = diag(Ā)−1, an
iteration scheme equivalent to that of the Jacobi method
can be obtained. The similarity or equivalence between
the methods, thus depends on the parameterization of the
parabolic regularization matrix C, and the step size ∆τ .

The ’weighted’ Jacobi method also includes a scaling factor
ω for the diagonal matrix D−1. It should be noted how-
ever that in the respective conventional settings the step
size for the explicit Euler method is selected as a com-
promise between computational cost and accuracy, since
the full transient solution is often of interest. While for a
’weighted’ Jacobi method the weighing factor for the di-
agonal is typically chosen to increase convergence speed,
since only the final (or ’steady-state’) solution is of inter-
est.

In a straight forward way, the explicit Euler step size and
the parabolic regularization matrix C can also be chosen
such that the iterative scheme in equation (3) is equivalent
to Richardson iterations, or Gradient Descent iterations.
The combination of parabolic regularization with the ex-
plicit Euler method contains many of the so-called ’stan-
dard’ iteration methods [29] for linear equation systems,
as particular cases. Likewise, for non-stationary choices
of the explicit Euler step size ∆τk also schemes equiva-
lent to non-stationary Richardson Iterations, or Scheduled
Relaxation Jacobi (SRJ) iterations can be obtained. Also
quasi-Newton methods with updating schemes that pre-
serve positive definiteness of the inverse Hessian estimate
B−1k , correspond to a subset of non-stationary choices for
the PR matrix C.

For the particular case when matrix A is positive def-
inite, interesting physical interpretations for a Jacobi-like
iterations can be obtained. One example is the analogy
of a Jacobi iteration with an Euler time step for a linear
heat conduction problem, with a constant source term3. In
the analogy, the heat conduction problem is described by
equation (2), where C represents a diagonal positive defi-
nite capacity matrix, K represents a conductivity matrix,
v represents a vector with the temperature distribution,
and b represents the distribution of constant heat sources.
If the capacity matrix C is chosen as the diagonal of the
conductivity matrix K, each explicit Euler time integra-
tion step to estimate the propagation of the spatial tem-
perature distribution in a small time interval, corresponds
to a Jacobi iteration and vice versa. When Jacobi iter-
ations are used as ’smoothers’ in multigrid methods, this
analogy offers a physical interpretation behind the smooth-
ing mechanism and the propagation of information during
the iterations. Also for the other iterative schemes in Ta-
ble 1 similar physical analogies can be found if P−1k and
A are positive definite, such that they can be interpreted
as ”generalized” capacity and conductivity matrix respec-
tively.

3 Suitably this particular analogy is in content and spirit related
to the work of Fourier who stated when speaking about mathematical
analysis: ”Its chief attribute is clearness ; it has no marks to express
confused notations. It brings together phenomena the most diverse,
and discovers the hidden analogies which unite them.” [30] (p. 7,8).
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Table 1: Overview of the iteration schemes

Method name Iteration scheme Parameter conditions
PR & explicit Euler vk+1 = vk −∆τC−1(Kvk − b) C � 0, ∆τ > 0
Jacobi vk+1 = vk −D−1(Avk − b)
weighted Jacobi vk+1 = vk − ωD−1(Avk − b) ω > 0
SRJ vk+1 = vk − ωkD−1(Avk − b) ωk > ωk+1 > 0
Richardson iterations vk+1 = vk − ω̄(Avk − b) ω̄ > 0
Gradient Descent vk+1 = vk − γk(Avk − b) γk > 0
Quasi-Newton vk+1 = vk − γB−1k (Avk − b) γ > 0

6. Discussion and outlook

While many of the previously mentioned iterative meth-
ods are well known, the relation between the iterative
Jacobi-like methods and the concept of parabolic regu-
larization combined with the explicit Euler method was
previously not or rarely addressed in the literature. The
application of the PR concept combined with (pseudo)
time integration can be extended to error decreasing itera-
tions in the solution of equation systems regardless of their
physical origin, as long as A and Pk are positive-definite
and equation (7) holds for each iteration. Compared to
the conventional standard iterative methods, the precon-
ditioner matrix P , is composed of the PR matrix C � 0,
and a step length or scaling factor ∆τ > 0. From this
perspective the scaling factor ∆τk and the PR matrix Ck
can also be chosen non-stationary.

The challenge of finding effective matrices Pk can also
be related to the various strategies to update the Hessian
approximations in Quasi-Newton methods. Instead of the
explicit Euler method, other higher order explicit (pseudo)
time integration methods (e.g. Runge-Kutta methods)
could be combined with parabolic regularized equations to
achieve improved performance of iterative equation solvers
by reusing information of previous iteration steps. In addi-
tion to the choice of the integration scheme parameters and
the regularization matrixC, also alternative (higher order)
parabolic regularization formulations could be explored,
to formulate alternative iterative methods. As an outlook
or example, the concept of dynamic relaxation could be
applied to the solution of general equation systems with
positive definite matrices, by the construction of second-
order parabolic regularizations with parameters that result
in near critical damping of the unknown variables vk w.r.t
pseudo time τ .

7. Concluding remarks

This brief note highlighted that the concept of parabolic
regularization of elliptic problems combined with explicit
Euler (pseudo) time integration, has strong relations to
many of the well known iterative methods to solve linear
equation systems. It was shown that for particular choices
of the parabolic regularization parameters and step size
of the explicit Euler method, iterative schemes can be ob-
tained which are equivalent to various types of Jacobi-like

iterations. Previously these topics were regarded in rather
disjoint contexts, perspectives and communities, and their
relations were only scarcely scattered in the literature. The
presented work aimed to give an accessible overview of
conventional perspectives on iterative methods for linear
equations in their original historical context and comple-
mented these with unifying relations. This gave way to
intuitive physical interpretations for some of these itera-
tive methods. Besides the educational value, the presented
perspectives, references and relations between these algo-
rithms, could be of interest to cross inspire the develop-
ment of novel efficient iterative schemes, solvers and pre-
conditioners of use in Computational Rational Engineer-
ing [31], computational physics and in the general scope
of applied mathematics.
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Appendix A. Appendix

Appendix A.1. The Jacobi method for systems of linear
equations

In 1845, Jacobi proposed an iterative method for the so-
lution of linear equation systems occurring in the method
of least squares in [1] (an English translation is available
in [2]). In [1] it was also recognized that the method is
suitable to obtain solutions for the more general class of
equation systems with diagonally dominant matrices. The
method is now commonly known as the Jacobi method for
systems of linear equations.

The iterative solution scheme described in [1] can be
summarized as follows: For a system of equations Av = b,
with a full rank matrix A with nonzero diagonal elements
and a known vector b, a first estimate v1 for the unknown
solution v is given by

v1 = D−1b

where D is a diagonal matrix with the diagonal compo-
nents ofA. The non-zero off-diagonal terms cause an error
for which the first correction δ1 is given by

δ1 = −D−1(A−D)v1.

Note that D−1 is constant throughout the iterations, and
easy to compute because D is diagonal. A sequence of
decreasing corrections is given by

δi+1 = −D−1(A−D)δi.

The estimate for v after k corrections is given by the first
estimate and the sum of the available corrections:

vk+1 = v1 +

k∑
i=1

δi.

Alternatively, using initial values v0 = ~0, this iterative
scheme can be written as:

vk+1 = vk −D−1(Avk − b), k = 0, 1, 2, ..., n. (A.1)
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The iterations for the modified or weighted Jacobi method
are given by:

vk+1 = vk − ωD−1(Avk − b). (A.2)

where ω is a non negative scaling factor ω ∈ (0, 1]. A
sufficient condition for convergence is strict diagonal dom-
inance of matrix A. A relatively recent extension of the
Jacobi method; The Scheduled Relaxation Jacobi (SRJ)
method [9] can be expressed as:

vk+1 = vk − ωkD−1(Avk − b), (A.3)

where ωk are different relaxation factors ordered such that
ωk > ωk+1. For the details regarding the choices for ωk,
convergence and further information on this method we
refer to [9] and [10].

Appendix A.2. Richardson iterations

In 1911, Richardson proposed an iteration scheme for
the solution of linear equation systems [32]. The Richard-
son iteration scheme for a equation systemAv = b is given
by:

vk+1 = vk − ω̄(Avk − b). (A.4)

where ω̄ is a positive scalar. The method converges when
the spectral radius satisfies:

ρ(I − ω̄A) < 1.

For a positive definite matrix A the optimal choice for a
fixed ω̄ is

ω̄∗ =
2

λmin + λmax

where λmin and λmax are the smallest and largest eigen-
value of A respectively. These conditioning eigenvalues
are however often not known, and their estimation requires
considerable effort. Instead of fixed values of ω̄, also non-
stationary values for ω̄ can be used. For details about the
relation between non-stationary Richardson iterations and
the Scheduled Relaxation Jacobi method is referred to [10]
and [9]. Stationary Richardson iterations are also known
to be equivalent with Gradient Descent iterations with a
constant step size (see Appendix A.3).

Appendix A.3. Gradient descent

The gradient descent or steepest descent algorithm by
Cauchy [33] is widely known due to its intuitive nature and
educative value. During an iterative solution procedure,
the equation Avk = b is generally not satisfied, and a
residual rk for each iteration k can be defined as:

rk = Avk − b

For a positive definite matrix A the solution of the equa-
tion Av−b = ~0 is equivalent to finding the solution to the
optimization problem:

minimize
v

f(v) with f(v) :=
1

2
vTAv − bTv (A.5)

The gradient of f(v) for a given vk is equal to the residual
of the equation system

∇f(vk) = Avk − b.

For an initial guess v0 and fixed step size γ in the negative
gradient direction rk, a gradient Descent iteration can be
written as:

vk+1 = vk − γ(Avk − b). (A.6)

If instead of an fixed step size γ an exact line search is
performed, γk can be determined for iteration k by:

γk =
rTk rk
rTkArk

An overview of alternative choices for the step size, in other
settings can be found in [34] and [13].

Appendix A.4. Newton and Quasi-Newton methods

The analysis in [35] indicated that, what is commonly
called Newton’s method for equation systems, developed
to its current form by contributions of many among which
al-Khayyam, Vieta, Newton, Raphson and Simpson. The
resulting procedure to solve a general nonlinear system of
equations f(v) = ~0 can be stated as follows:

vk+1 = vk − [Jf ]−1f(vk) (A.7)

where Jf is the left inverse of the Jacobian matrix with
first order derivatives. In the context of unconstrained
minimization problems

minimize
v

f(v)

the application of the iterative method (A.7) to find sta-
tionary points ∇f(v) = ~0 results in:

vk+1 = vk − [∇2f(vk)]−1∇f(vk)

where ∇2f(vk) is the Hessian matrix H(vk) with second
order derivatives evaluated at vk. For functions f(v) as
defined in (A.5), it follows:

vk+1 = vk −H−1(Avk − b)

For this special case H(vk) = A, and if H−1 = A−1 was
available the solution could be obtained in a single step. In
the context of iterative methods for linear equationsA−1 is
generally not directly available. In quasi-Newton methods
the Hessian matrix or more often its inverse is iteratively
approximated using information from previous iterations
[36]. Often also not full Newton steps are performed, but
the step size is relaxed. The iterative scheme can then be
written as:

vk+1 = vk − γB−1k (Avk − b)

where B−1k is an approximation of the inverse of the Hes-
sian or A−1 at iteration k, and with step size γ ∈ (0, 1].
An overview of conventional estimation schemes for B−1k
is given in [36]. For recent developments regarding Quasi-
Newton methods in the scope of preconditioning for linear
systems we refer to [17] and [18].
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