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Kurzfassung

Diese Dissertation wurde im Kontext des von BMBF und EU / ECSEL gefördertem
Projektes GENIAL! und Arrowhead Tools entwickelt. In diesen Projekten untersucht der
Lehrstuhl Methoden zur Spezifikationen und Kooperation in der Automotive Wertschöp-
fungskette, von OEM zu Tier1 und Tier2. Ziel der Arbeit ist es die Kommunikation
und gemeinsame Planung, speziell in den frühen Entwicklungsphasen zu verbessern.
Neben SysML ist die Benutzung von vereinbarten Vokabularen und Ontologien in der
Modellierung von Requirements, des Gesamtkontextes, Varianten und vielen anderen
Elementen angezielt. Ontologien sind dabei eine Möglichkeit, um das Vermeiden von
Missverständnissen und Fehlplanungen zu unterstützen. Dieser Ansatz schlägt eine Web-
datenbank vor, wobei Ontologien das Teilen von Wissen und das logische Schlussfolgern
von implizitem Wissen und Regeln unterstützen.
Diese Arbeit beschreibt Ontologien für die Domäne des Engineering 4.0, oder spezifischer,
für die Domäne, die für das deutsche Projekt GENIAL! benötigt wurde. Dies betrifft
Domänen, wie Hardware und Software, Roadmapping, Kontext, Innovation, IoT und
andere. Neue Ontologien wurden entworfen, wie beispielsweise die Hardware-Software
Allokations-Ontologie und eine domänen-spezifische "eFuse Ontologie". Das Ergebnis war
eine modulare Ontologie-Bibliothek mit der GENIAL! Basic Ontology, die es erlaubt, au-
tomotive und mikroelektronische Komponenten, Funktionen, Eigenschaften und deren
Abhängigkeiten basierend auf dem ISO26262 Standard zu entwerfen. Des weiteren ist
Kontextwissen, welches Entwurfsentscheidungen beinflusst, inkludiert. Diese Wissens-
basen sind in einem neuartigen Tool integriert, dass es ermöglicht, Roadmapwissen und
Anforderungen durch die Automobil- Wertschöpfungskette hinweg auszutauschen. On-
tologien zu entwerfen und zu wissen, wie man diese benutzt, war dabei keine triviale
Aufgabe und benötigte viel Hintergrund- und Kontextwissen. Ausgewählte Grundlagen
hierfür sind Richtlinien, wie man Ontologien entwirft, Ontologiekategorien, sowie das
Spektrum an Sprachen und Formen von Wissensrepresentationen. Des weiteren sind fort-
geschrittene Methoden erläutert, z.B wie man mit Ontologien Schlußfolgerungen trifft.
Am Schluss wird das Overall Framework demonstriert, und die Ontologie mit Reason-
ing, Datenbank und APPEL/SysMD (AGILA ProPErty and Dependency Description
Language / System MarkDown) und Constraints der Hardware / Software Wissensbasis
gezeigt. Dabei werden exemplarisch Roadmap Constraints mit dem Automodell verbun-
den und durch den Constraint Solver gelöst und exploriert.
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Abstract

This dissertation was developed in the context of the BMBF and EU/ECSEL funded
projects GENIAL! and Arrowhead Tools. In these projects the chair examines methods
of specifications and cooperations in the automotive value chain from OEM-Tier1-Tier2.
Goal of the projects is to improve communication and collaborative planning, especially
in early development stages. Besides SysML, the use of agreed vocabularies and on-
tologies for modeling requirements, overall context, variants, and many other items, is
targeted. This thesis proposes a web database, where data from the collaborative re-
quirements elicitation is combined with an ontology-based approach that uses reasoning
capabilities.
For this purpose, state-of-the-art ontologies have been investigated and integrated that
entail domains like hardware/software, roadmapping, IoT, context, innovation and oth-
ers. New ontologies have been designed like a HW / SW allocation ontology and a
domain-specific "eFuse ontology" as well as some prototypes. The result is a modular
ontology suite and the GENIAL! Basic Ontology that allows us to model automotive
and microelectronic functions, components, properties and dependencies based on the
ISO26262 standard among these elements. Furthermore, context knowledge that influ-
ences design decisions such as future trends in legislation, society, environment, etc. is
included. These knowledge bases are integrated in a novel tool that allows for collabo-
rative innovation planning and requirements communication along the automotive value
chain. To start off the work of the project, an architecture and prototype tool was de-
veloped. Designing ontologies and knowing how to use them proved to be a non-trivial
task, requiring a lot of context and background knowledge. Some of this background
knowledge has been selected for presentation and was utilized either in designing models
or for later immersion. Examples are basic foundations like design guidelines for ontolo-
gies, ontology categories and a continuum of expressiveness of languages and advanced
content like multi-level theory, foundational ontologies and reasoning.
Finally, at the end, we demonstrate the overall framework, and show the ontology with
reasoning, database and APPEL/SysMD (AGILA ProPErty and Dependency Descrip-
tion Language / System MarkDown) and constraints of the hardware / software knowl-
edge base. There, by example, we explore and solve roadmap constraints that are coupled
with a car model through a constraint solver.
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Chapter 1

Introduction

1.1 Motivation
To a computer, the Web is a flat, boring world, devoid of meaning. This is
a pity, as in fact documents on the Web describe real objects and imaginary
concepts, and give particular relationships between them. For example, a
document might describe a person. The title document to a house describes
a house and also the ownership relation with a person. Adding semantics to
the Web involves two things: allowing documents which have information in
machine-readable forms, and allowing links to be created with relationship
values. Only when we have this extra level of semantics will we be able to
use computer power to help us exploit the information to a greater extent
than our own reading.

- Tim Berners-Lee "W3 future directions" keynote, 1st World Wide Web Conference
Geneva, May 1994

Ontology engineering is an emerging field with increasing number of publications. While
not so well understood in the past in general, this field is now considered ’ready’ or
’ripe’ to find many applications in the industry and beyond. As the author was working
in the fields of systems engineering, simulation of cyber-physical systems and artificial
intelligence, he became intrigued with what might be achieved using ontologies.
Recent developments in projects showed increasing collaborations across various domains
from devices, tools, tool- and value chains and humans and a need to ’unify’ and make
them inter-operate. We are entering a global information space that needs to be under-
standable and actionable by artificial agents, tools and devices. Ontologies are the prime
way to do that and to open up data from their respective silos. Giving intelligence and
meaning to new ways of applications.

1



1. Introduction 2

1.2 Goals and Scope of the Work

1.2.1 Problems

Semantic Web applications are still not very wide spread and often confined to the IoT to
achieve interoperability between devices. The use of ontologies in supply chains is new.
Today, semiconductor supply chain collaboration face the challenges of more dynamic
changing conditions and complex interactions. Semantic web application to it were for
example investigated by [REM22]. In order for a computerised support for the value
chain, tools and different participants need to have a common ground on which they are
able to operate.
Current ontologies (like e.g. SSN, SAREF) are not able to handle a sufficient covering
of the microelectronics domain in a wider sense and in general and the supply chain in
particular (P1 ). They do cover for example only sensors, but not processors, integrated
circuits, MOSFETs and other hardware or software. Or they do not cover functions,
which are important to the exchange in value chains. SAREF has devices, functions and
capabilities but does not express the parts of systems consistently, nor contains software,
nor is able to relate the software to the processor on which it runs.
The adoption/breakthrough of semantic web technologies itself faces several challenges.
Many of which are out of scope for this thesis, but some are brought to attention in
for example [WL21]. Two are, that some ontologies are itself not interoperable and the
quality is not sufficient (they need to be correct) (both combined in P2 ). Which renders
them useless in a sense or at least to a certain degree.
Current knowledge-based approaches for configuration (e.g. ENGCON 1) may calculate
contraints and contain classes of parts with IsA and hasPart hierarchies, but lack the
overall framework of the established semantic web in order to be more useful. Those cur-
rent approaches may be more correctly classified as linked data. This concretely means
that the modelled "knowledge" may likely be quite useless after all in an integrated con-
text, and needs to be flexible and extendable (P3 ). Complicated axioms, classifications,
conclusions and rules simply cannot be consistently derived.

1.2.2 Goals

Adressing problem (P1 ), I decided the ontology needs to be based on the well estab-
lished standard in electronic safety ISO26262 (G1 ). This for one, makes sure that the
terms are already widely adopted and known to its users. Two, that they had an on-
tological foundation of its definitions. And third, that the ontology would be able to
cover the field of microelectronics and systems engineering as a whole, also regarding
the requirements for the supply chain and safety. The ISO 26262 standard has so far not
been implemented to make it usable for the computer.
Adressing (P2 ) requires examination and application of top-level ontologies (G2 ) and
methodologies for best practices of ontology engineering (G3 ). The quality of the on-
tology needed to be good and it needed to be extensible for the future and in itself

1https://sys.cs.uos.de/woru/pub/diplom/html/node25.html



1. Introduction 3

interoperable.
A further step is then also to build a domain ontology as well as a respective knowledge
base with instances and triples in order to evaluate and formally proof the value of the
designed ontology (G4 ). Additionally, it is also necessary to acquire data in order to
evaluate constraints and their interaction with the knowledge base (G5 ), which finally
demonstrates the new overall approach.
Last but not least, related ontologies and reuse of existing ontologies needs to be inves-
tigated in order to not reinvent the wheel (G6 ).
Goal (G6 ) in combination with (G2 ) and (G3 ) helped alleviating or minimizing prob-
lem (P3 ) by yielding the necessary understanding.

1.3 New Results
The main outcomes or results of this thesis are:

1. The GENIAL! Basic Ontology (GBO)
• which fulfills the goals G1-G3 and G6

2. The GENIAL! Modular Ontology Suite
• which fulfills the goals G4, G5 and G6

and which contains
• Hardware / Software Domain
• Hardware / Software Knowledge Base
• EFuse, Car Model, Innovation, Roadmap and Context Ontologies,

Prototypes and more
3. An integrated framework for constraint-based knowledge evaluation

• which fulfills the goals G4 and G5
and which consists of

• A Knowledge Base in ArangoDB intertwined with an OWL Ontol-
ogy and a Digital Twin with Frontend and Backend

1.3.1 Contribution

This dissertation contributes in four main ways:
1. It presents research and representation of a multitude of ontologies/knowledge

across a variety of information systems domains and applications in Chapter 2.
These domains comprise for example: hardware/software, simulation, automotive,
IoT, context, roadmapping, requirements and innovation. The differences of the
domains teach how to represent and model knowledge more effectively.
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2. It presents expert knowledge of ontology research developments and trends in
Chapter 3. Chapters 2 and 3 shall serve as a reference for people working in this
field.

3. It applies ontology to the specific field of automotive planning and requirement
communication with the development of a prototype tool in Chapters 4 and 5.
This is the main contribution and most extensive; ontologies have been modeled
and applied to use cases. The tool uses a knowledge base and calculates constraints
across the automotive value chain.

4. It is an effort to better understand ontologies and their applications/potential,
which can be found throughout the work.

Although many ontology domains are considered, the scope of the dissertation was
not to research all information systems domains or one of the mentioned domains exten-
sively. But those related to the engineering 4.0 domain and related domains. A prototype
tool was developed, but the focus was on the representation of semantics that the tool
uses and to enable modelling with an ontology suite. A more detailed description of the
purpose of the project GENIAL! which supported this work is found in Chapters 4 and 5.
For reasons of scope and extent (who wants to read a too lengthy dissertation?), some
parts were reduced or left out and the author refers to his publications for further de-
tails 2 or the repository of the ontologies 3. For example, the digital twin [SGW21], the
syntax and motivation of APPEL [Gri+21] or a detailed description of the neural net
accelerator hardware use case with its constraints [Gri+21] were just outlined. Also, the
reasoning evaluation of the GBO ontology was left out [WL21]. Instead, earlier work and
beginnings were also selected [WG18][Waw+15] to create a balance. The development
of SysMD (interactive notebook) was kept short because it was a recent development.

1.3.2 Progress beyond State-of-the-Art

This dissertation took a research intensive approach to ontology engineering as a whole.
Thus, quite some time was spent on vision, state of the art ontologies and application.
Compared with state-of-the-art work, this approach and implementation does yield a
consistent description for the field of microelectronics and system engineering in gen-
eral. Its main result, the GENIAL! Basic Ontology (in short GBO), was carefully built
with two features in mind. On the one hand, it is based on an upper ontology, which
supports modular extension, a hub and spokes approach and a more clear view on how
to conceptualize classes. On the other, the axioms are high in expressivity, in order for
a most clear usage of the terms and a support of reasoning classification of domains (in
this case a hardware knowledge base).

Compared to a SysML-based framework, my approach
• allows for a global data aggregation of all microelectronic components, with a clear

enough usage of the terms meaning and classification, to apply rules and exchange
2https://cps.cs.uni-kl.de/mitarbeiter/frank-wawrzik-msc/seite
3https://github.com/wawrzik/GENIALOntologies
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data with others.
• facilitates the use and cooperation with other data communities and integrates in

the backbone of the IoT and web.
• is computer understandable rather than just executable.
• is able to harmonize or match different expressions or interpretation of words of

different participants.
In comparison to related work, this thesis advances state-of-the-art in several ways:

• It has more expressiveness (Description Logic SHOIQ(D) Expressivity of GBO and
HW / SW Domain) than for example Digital Reference (DR) [Ehm+19]. And even
many biomedical ontologies, which means, that a word (or a vocabulary) is not just
a word as a class in the ontology, but is distinguished in their meaning from other
words in a formal way. It contains definitions, metadata, examples, a taxonomy
(similar to [CFM19]), and most other ontology axioms.

• It is created in a minimal fashion and contains few object properties as to enhance
reuse and facilitate simplicity, unlike [Ehm+19].

• It applies active reasoning for the correct conceptualization of the domain, in com-
parison to the Semantic Sensor Network Ontology (SSNO) [Com+12], the VICIN-
ITY Core Ontology 4, the Ontology for Innovation 5, the Function Ontology 6 and
others (e.g. [FM11]). Commonly, most ontologies are connected domain models
and still built in this way.

• It is conceptualized more thoroughly with a high quality of the data in mind.
It avoids many mistakes of ontologies, that are not built with an intensive back-
ground, like the E-Mobility Innovation Ontology [DCV21], which has SubclassOf
and InstanceOf errors or suffers from the confusion of instance vs. class etc. Many
also confuse domain/range axioms with existential restrictions.

• Combines the roadmap domain with the systems engineering domain in the form
of a knowledge base, which hasn’t been done before.

• Is integrated into a framework, which combines the concepts of a digital twin
[SGW21], a knowledge base (using ArangoDB database), constraints (the ontology
served as reference to build a constraint language [Gri+21]) and an interactive
notebook. No such solution exists. In few numbers, we find some approaches that
successfully combine ontology, knowledge bases and a server client architecture.
[Cue+18] is one such example, and also has a more expressive ontology (DABGEO)
and an extensive suite for the energy domain similar to this work. However, my
work is able to calculate complex dependencies, is interactive and embedded in
natural language text documents.

• The approach in this thesis helped advancing reasoners by its specific classification
challenges and its unique arrangement of axioms [WL21].

4http://vicinity.iot.linkeddata.es/vicinity/
5http://purl.org/innovation/ns#
6https://fno.io/spec/
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1.4 Clarification of Terms

1.4.1 What is Engineering 4.0?

Engineering 4.0 is an emerging term that is - to this date - not yet well defined, and just
very recently came into existence.
It is leaned on the term Industry 4.0, which started to take off in 2014 when it became
popular and was seen as the overall new direction that the industry should be going
toward. Technologies around Industry 4.0 started to develop already about 10 years
ago, but were mainly part of conceptional explorations and early trial developments and
mostly restrained to the German Research Institute of Artificial Intelligence with its
Smart Factory, situated here in Kaiserslautern, Germany. Industry 4.0 is changing the
way how we produce and constitutes a new way of industrial revolution, that incor-
porates a significantly enhanced and interdisciplinary process and workflow and works
throughout the production, maintenance, operation and recycling cycle.
Engineering 4.0 is the process and methodology that comes from the new technologies
and tools that are used in and stem from the paradigm of the Internet of Things and
Industry 4.0. Though it is an emerging term, what to this day can probably already be
said is that it will be based on a common shared international vocabulary in the form of
ontologies. Which purpose is to expose the data from different tools, models and data si-
los and to enrich its meaning, in the way that it does not only become machine readable,
but also machine understandable. In that way it becomes possible to utilize data across
company boundaries and beyond specific disciplines. Furthermore Engineering 4.0 will
stand for a more agile, collaborative approach with increased communication between
various parties and a focus on product-service systems.
The term will be based on more classical disciplines in the beginning. Figure 3.15 gives
an overview. Systems engineering (i.e. connectedness of engineering processes and sys-

Figure 1.1: Engineering 4.0 Overview ([Mat16], modified)
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tem integrator), digital (i.e. digitizing documents, creating online tools), virtual (e.g.
simulation of hard-, software and mechanical parts) and smart engineering (e.g. net-
worked embedded systems that are part of processes) are all part of this development.
Furthermore here is a summary of aspects that are important to Engineering 4.0, that
are also part of the project ’GENIAL’ and the tool ’AgilA’ worked out in this thesis:

• High level of abstraction needed
• Hiding certain knowledge from competitors (to compete as well as cooperate):

Black and white boxing of knowledge in iterations and in dialogue with ontologies
as interfaces

• Gathering of relationships and relational knowledge and alternatives that constrain
the solution space of particular constructions

• Detailing knowledge (refining it) within a company with certain user rights
• Tracking knowledge needed, which enables to relate decisions made on require-

ments (and see what options where chosen why and which ones have been dis-
carded)

• Disambiguating interpretation of terms
• Interfacing with tools (e.g. Polarion/Doors)

1.4.2 What are OWL Ontologies?

Figure 1.2: Ontology Example ([Hor11], modified)

An ontology is a specification of a conceptualization, a formal, explicit specification of
a shared conceptualization [Gru95] or a formal specification of a domain of discourse.
In other words an ontology allows to represent and model certain kinds of data by
using words (semantics) which indicate their meaning and their relationships. They
are captured in the Ontology Web Language (OWL). In contrast to writing code, the
semantics of ontologies are usually directed to using natural language expressions in
order to achieve a higher reusability of their vocabulary. The modeling constructs of
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ontologies are classes, individuals, data properties and object properties, which have some
relation to general programming languages (classes, objects/instances, integers/strings,
properties).
Figure 1.2 gives an example. Here it can be seen that there are different kinds of persons
(instances (individuals) of the class person), which stand in direct relationship (object
properties) to other individuals. As can be seen the vocabulary is chosen in a consistent
way so that the knowledge would be easily extensible and put in relation to other objects
and reused. By modeling data in this way it becomes possible to ask questions about that
data. For example now it could be asked which persons live in the country Germany? And
with a corresponding SPARQL query the answer would be that the person ’Thiyag’ lives
there. Otherwise another question could be formulated to ’which persons have colleagues
and at the same time own a pet called Fluffy’. In this way it becomes possible to give
more meaning to data, and not just leave it as raw data which might only be processed
by specific tailored computer programs.

1.4.3 What is SysML?

SysML [Sta15] (the System Modeling Lan-
guage) arose as a need from more connected
engineering processes and an increased col-
laboration between peers. Furthermore it
was supposed to bring together and manage
everything for a project engineer or system
integrator. It is a graphical modeling lan-
guage to represent hard-/software, mechan-
ical and business artifacts also covering re-
quirements and was sought to address the
three following issues:

Figure 1.3: SysML Motivation
[San09]

• Documentation
• Heterogenity
• Modeling

It was supposed to digitize data from systems engineering tools and processes, illustrate
them in one language or framework and even use them for simulation and verification.
SysML has an emphasis on representing the relationships of various views and design
methods. Figure 1.3 shows which kind of parties are supposed to be covered and inte-
grated within the language.
SysML takes some of its components from UML (Unified Modeling Language), modi-
fies some of it and provides some of its own constructs. Figure 1.4 gives an overview
of the language. It consists of a requirements diagram which allows for text based doc-
umentation of informal requirements and their relationships. It has a block definition
and internal block diagram which allows to display the structure of components and
their connections and parameters (hard-/software, mechanical). The activity diagram
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specifies a controlled sequence of action with routing flows and decision, join and merge
nodes. The sequence diagram represents message based behaviour, the flow of control
and interaction of parts. The state machine diagram consists of nodes, states and condi-
tions under which states are invoked. The package diagram makes it possible to sum up
diagrams in packages and give a namespace. The use case diagram involves people and
allows to allocate who is working on or responsible for which use case.

Figure 1.4: SysML Overview [San09]

1.5 Vision
Finally the vision of future developments shall be mentioned as some parts of this thesis
work is already touching upon some subjects that are only to be addressed adequately
in the future. For example, let’s look at the IoT pyramid, which has some similarity
with the Maslow’s hierarchy of needs. And indeed, as we will see some areas of research
blurring and intersecting, we will see many areas converging. Here a few developments
shall be put into context and let’s look at figure 1.5.
For example we haven’t really even closely arrived at the big data level, which is at the

bottom of the chart and the basis for further developments in the hierarchy. Before we
can put meaning to data, we will need a vast amount of data in the first place. ’There
are many sources that predict exponential data growth toward 2020 and beyond. Yet
they are all in broad agreement that the size of the digital universe will double every two
years at least, a 50-fold growth from 2010 to 2020.’7 ’YouTube receives roughly 300,000
individual video uploads each day, amounting to 80k hours of video and 24TB of data
(one billion users and one billion hours of video watched daily.’8 ’Every 60 seconds on

7https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/
8https://www.youtube.com/about/press/
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Figure 1.5: IoT Direction [Søn16]

Facebook: 510,000 comments are posted, 293,000 statuses are updated, and 136,000 pho-
tos are uploaded.’9 The IoT with its sensors will be significantly contributing to the data
growth. After the level is enriched with meaning we will then be able to talk about and
work more with putting things in the correct context (knowledge level), and context
knowledge in general. Autonomous agents are also part of this level.
Personal software agents will be enabled through semantic technologies and organize
personal calendars, coordinate activities with family, friends and acquaintances and an-
swer simple requests from sources outside the owner. For example a personal agent will
be given a task to buy a suitable car. He knows the preferences of the owner and selects
a preliminary choice. The agent contacts various other agents of different services and
finally selects a few services that are nearby. They communicate prices, product details
and delivery conditions and negotiate autonomously. By doing that the agent considers
reputation of providers with the help of independent sources. If an offer is found the agent
accesses the personal calendar and finds a date for a test drive and plans it. Finally the
agent informs the owner through a personal device he has at hand (paraphrased from
[Woo02]).
Though self-driving cars are currently being developed and have achieved some success
and functionality10, it will take some more time until they become semantic agents, and
can react smartly under certain circumstances. Only if the previous stages are set, we
are able to address what it might look like for an agent or system to behave wisely.

9https://zephoria.com/top-15-valuable-facebook-statistics/
10https://www.wired.com/story/when-will-self-driving-cars-ready/
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1.5.1 Semantic Web Stack

The semantic web community seems to be the most advanced when it comes to modeling
knowledge and its semantic web stack with its ontologies was thus chosen as the focus of
knowledge representation of this thesis. The semantic web stack is illustrated in figure
1.611.

Figure 1.6: Semantic Web Stack Overview [Wik18]

At the bottom of the figure we have unique resource identifiers (URIs) which give
each modeling construct an address to refer to. This makes each concept identifiable and
referable which supports a global use of these constructs. Of course the stack is based
on Unicode which is a set of characters to express everything in words and numbers
in different languages. RDF, the resource description framework is a first way to define
relationships and links between a subject and object, also known as triples. In comparison
to ontologies it uses resources, URIs and literals and can be more classified as linked data
than the well defined meaning of ontologies. RDFS, RDF Schema, yields a vocabulary
to describe RDF and thus closes the gap towards OWL. SPARQL is the query language
for OWL. The user interface is on top of the stack and is typically a Java program. It
makes use of the knowledge and visualizes it.
The semantic web stack is put into vision as especially the upper parts of the stack
have not yet been fully realized. Even to the unifying logic layer there is little to no

11https://en.wikipedia.org/wiki/Semantic_Web
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information to what it actually is or supposed to be. It may only be known that this layer
may have some correlations with the goal of a strong A.I. There are some preliminary
implementations of the proof and trust layer, which are presented in [Sta07] [Hen08].
In addition the development of these technologies is also a social process. For example
in earlier development stages of the semantic web there was not so much of a willingness
to share one’s own data in an open way which is still an issue and comes down to the
readiness of companies to cooperate instead of compete. So there are actual barriers of
ones own evolution preventing the breakthrough of these technologies. In discussion with
peers at conferences, it came out that this today is still quite an important issue to be
overcome for a further progression of the semantic web.

1.5.2 Web of Thought

Figure 1.7: Web of Thought Vision [TL16]

The web of thought is an advanced vision, which is already worked on intensively. Figure
1.7 shows some of its developments. As can be seen the figure contains many converging,
exponential technologies from disciplines like biology, artificial intelligence, virtual reality
and esoteric concepts (like digital aura). One prominent example may be Elon Musk’s
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Neuralink, which works on a direct brain link. But also the artificial brain, or hive mind
are significant developments. There are also examples that disabled people are able to
steer simple computer games or devices via brain wave control. All these are very potent
technologies and ontologies will play a role in realizing and supporting them.

1.6 Overview
Chapter 2 gives an overview of state of the art of knowledge representation in various
areas. It addresses ontologies in the domain of simulation, hard- and software design,
context, innovation, IoT, requirements and others. Chapter 2 also addresses SysML in
the modeling of hard- and software with an emphasis on co-design. To show the present
state-of-the-art a comparison of SysML and OWL is given.
Chapter 3 gives a summary of the authors research about ontologies in a general way.
First the basics are introduced to give an understanding of the technology. This comprises
different ways to represent knowledge on a continuum of technologies and languages, the
various ontology types, and guidelines in designing ontologies. Second, advanced founda-
tions are presented. They encompass reasoning, multi-level theory (as an example to go
beyond current language standards), patterns and anti-patterns to make an ontological
analysis, an overview of foundational ontologies and recent lesser-known developments.
In chapter 4 the work of the author starts. It describes the work about the tool AgilA,
a new methodology to design automobiles with just their semantic features and calcula-
tion functions by restricting constraints during the construction. An expert system was
integrated into the knowledge base.
While in Chapter 4 the tool is described in its first prototype and the emphasis is placed
on how the knowledge utilized by AgilA is used, Chapter 5 focuses on the representation
of the semantics that the tool uses. A modular ontology suite and GBO with its classes,
properties and definitions is introduced and applied to an eFuse and HW / SW use case
with additional other prototypes and examples. Finally in this chapter roadmap knowl-
edge has been modeled to examine applications of the tool and possible interactions with
the design.
In the appendix, first the resulting ontology is outlined in more detail. Definitions
and classes, properties and instances are provided as well as an overview. Next the
SICYPHOS framework of the chair ’Design of Cyber-Physical Systems’ is introduced
which was enhanced with a semantic SysML cross-domain design approach.



Chapter 2

State of the Art

In the following, the chapter of state of the art is intentionally stated broadly, as to
indicate the authors alignment and span the space in which the author can move and
intensify research if the project requires or as to be able to find new solutions to ex-
isting approaches from different disciplines. As stated previously the area of ontologies
was given more attention over SysML as they seem more complex and significant as
technology advances.

2.1 Ontology Models State-of-the-Art

2.1.1 Relevant Ontologies

From the author’s paper about roadmapping that analyzed a variety of ontology mod-
els [Waw+]:"There seemed to be either relatively few, or none, ontologies out there that
described roadmap information or general domains of interest like artificial intelligence,
e-mobility, demographic development or legal boundary conditions. It would seem re-
warding if this kind of knowledge would also be formalized, not only maintained by the
GENIAL! roadmap manager, but by the research institutes that are working in those
fields and updated in a distributed way so that parts of it could be reused by the AgilA
tool.
There were few ontologies that you find in the automotive [FM11] and none in microelec-
tronic or semiconductor domain. That is in stark contrast to the vast ontologies already
developed in the internet of things domain. E.g. LOV4IoT1 lists, at the time of writing,
a catalog of 548 ontology-based research projects for IoT and its application domains,
like health, environment, transport and other topics. It is comprehensive and well doc-
umented, also listing corresponding papers, the OWL files, their status, and additional
information.
In the automotive sector, there’s the W3C Automotive Ontology Working Group2, which
is a rather informal group that intends to create shared OWL vocabularies for the automo-

1http://lov4iot.appspot.com/?p=ontologies#transport
2http://www.automotive-ontology.org
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tive industry and extend schema.org for search engines. Most of its work thus far seems
to be planned, and its activity seems rather stagnating. There was the CRYSTAL project
which researched existing automotive ontologies3. It coped with the questions of how an
automotive ontology should be represented, what should be the scope and on what sources
it should be based. The results in the above mentioned link are scarce. Auto-schema.org4

lists basic classes and properties of cars. It is affiliated with the W3C Automotive Ontol-
ogy Working Group. The autoschema vocabulary seems to serve as RDFa to be embedded
in websites, to use it for e.g. rich snippets, rather than as OWL vocabularies. Addi-
tionally, there is the vehicle signal and attribute ontology [Klo+18], which contains a
multitude of different signals that are usually contained in different formats and belong
to various architectures. It aims to provide interoperability by being implementation in-
dependent. A SAREF extension for automotive5 is a recent development which treats
automobiles as an extension of the IoT.

Currently there are several, but few upper/foundational/top-level ontologies that serve
different purposes and take a considerable amount of time to understand as they introduce
quite some complexity. Research shows that there are benefits in using top-level ontologies
[Sch18] and that they outweigh the disadvantage of complexity [Kee11]. Some benefits that
seem to justify the usage of an upper level ontology for GENIAL! are:

• Interoperability
• Facilitates best practices
• More classes less object properties

As more ontologies become available, we move up in the hierarchy and context becomes
the determining factor. Context ontologies are in their early stages and constitute yet
very basic concepts. [Wan+04] proposes CONON (CONtext ONtology), a first context
ontology, which models basic concepts like person, location, activity, and computational
entity to specify context. It furthermore consists of specific domain ontologies like smart
home and smart office that become integrated in that ontology. CONON can be seen as
a top level ontology (TLO), which is one way to model context knowledge because they
usually use a very broad terminology. CONON uses user- and ontology defined reasoning
capabilities to deduce implicit context. CaCOnt [Xu+13] is a more recent context ontology
which builds on CONON. It has a more refined user model, device model, service model,
space model, and environment model. It also has similar reasoning capabilities. [CFM19]
is a more elaborate and comprehensive work, which takes the concept further. It presents
3LConOnt, a three-level ontology for context modelling in context aware computing. It
is structured in top-level, middle-level and lower-level and reuses a manifold of ontolo-
gies, ranging from regulations, environmental conditions to roles, objects, activities and
resources. 13 context-aware scenarios are described which could be instantiated with this

3http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/
CRYSTAL_D_308_010_v1.2.pdf

4https://auto.schema.org
5https://www.etsi.org/deliver/etsi_ts/103400_103499/10341007/01.01.01_60/

ts_10341007v010101p.pdf
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ontology. It does not reuse BFO6 (Basic Formal Ontology, introduced later) and varies
from it in the upper level by its conceptualization of separating context information from
entity, which is also adapted in this work. Though it has some relevant classes, BFO
seemed more suitable.

The source in7 describes the ontology for innovation developed by Volkswagen AG.
It is valuable for the project in the sense that it one allows to describe needs, problems,
development stages, disruption and usage of innovations. It is general enough to describe
all kinds of innovations and its content may influence solution spaces. E.g. different in-
novations may solve the same problem in different ways. The GenID Ontology [BAS17]
is a generic modular ontology, which is supposed to solve the issue of interoperability in
the innovation domain. One of its modules is also conceptualizing a domain of context.
[Rie+09] presents an ontology of ideas which is closely related to the open innovation
domain.
[Fah+18] shows an ontology that is able to allocate hardware resources to computationally
intensive BioProblems which are implemented by certain computer science algorithms.
As related work OntoCape8 [MYM07] from university RWTH Aachen needs to be ref-
erenced. It is a comprehensive work for computer aided process engineering. Though it
describes chemical processes, it also has firm models rooted in system theory that sup-
port integration and reasoning, mathematical models, upper level, supporting and meta
concepts."

2.1.2 Ontologies in Simulation and System Design

The field of applying ontology modeling in simulation is still in its infancy [Gro+12]. The
goal is to facilitate reuse of existing models, compare them, make them queryable and
making inferences. [Gro+12] implements an ontology in the simulation domain where the
simulation models are instances of the ontology. It consists of a layered architecture with
an upper ontology for terms that are common among simulators, a simulators’ ontology
layer that has an ontology specific to the corresponding simulator and a ontology based
simulation models layer. Represented are the simulation models hierarchies and connec-
tions between modules. They use SPARQL and SQWRL to query their models and their
approach has several advantages as they are using existing domain models to generate
their ontology. This approach is exemplified in figure 2.1. As can be seen a transformation
engine reads the ontology as well as the simulation models by creating the corresponding
instances in the ontology; at the end the updated ontology is written to the .owl file and
gives the semantic representation of the simulation models. The integration is realized
via OWL API and the simulation environment is built upon MATLAB Simulink. It is no-
table that SQWRL was more suited to perfom the required queries since it is an ontology
query language it was able to make inferences and find results attributed to superclasses.

6http://purl.obolibrary.org/obo/bfo/2.0/
7http://www.lexicater.co.uk/vocabularies/innovation/ns.html
8https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Software/˜ipts/OntoCape/lidx/1/
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Figure 2.1: Ontology Integration with Simulation Models [Gro+12]

In the following there is a strongly comprised summary of approaches in simulation
of hardware design and synthesis from the paper "A Concept for Design of Embedded
Systems at Semantic Level" by the author for reference [WMG14]:"In particular in the
synthesis of analog circuits, knowledge-based systems are used for configuration of analog
circuits (e.g. OASYS [HRC87], KANDIS [OGW95]). In these tools, the knowledge-based
design approach targets structural refinement of analog circuits, but not modeling of
HW/SW interfaces. IP-based design aims at supporting re-use considering parameteri-
zation changes [JWS01], IP enhancement and database management [SSS05] and simple
ontologies to structure libraries [ZT13]. In particular IP-XACT [Her+12] allows describ-
ing register maps. While IP based re-use increases productivity, it has not been used for
abstracting communication and generating new models. Knowledge-based approaches and
ontologies for modeling/simulation are a quite new topic [Gro+12]. Eriksson [Eri+18]
proposes an approach for simulation of infectious diseases with ontologies, separating
modeling from code and execution. Communication abstraction and synthesis have not
yet tackled the idea presented in this paper. [Pen+06] [Car+12] infer various layer block
components like buses and protocols; generate C code and abstract communication to
the service level. However, [Pen+06] [Car+12] generate general communication func-
tionality, but not register maps of peripherals and the referring software. Compared with
previous work, this work allows modeling in an interactive way comparable with Mat-
lab/Simulink, while being able to immediately start HW and SW development.’

2.1.3 Knowledge Representation in Requirements Engineering

Requirements are usually captured informally in tools like Doors or Polarion. Or to
give some more structure to it they are captured in SysML with explicitly stating some
dependency relations, where they can also be linked to specific building blocks in the
implementation. It is relevant to formalize requirements in order to make them usable
for machines that are then able to configure a product or system on the fly depending
on the changing requirement. Ontologies are being introduced more and more to capture
requirements and their dependencies. There are several issues that have to be addressed
in requirements engineering that are simultaneously a strong point for using ontologies.
An older paper states the issues that are still relevant today [LFB96]:
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"There is a need for a representation of requirements for engineering design that:
• Provides unambiguous and precise terminology such that each engineer can jointly

understand and use in describing requirements.
• Allows traceability of the requirements, with dependencies and relationships among

the requirements captured and stored.
• Support the detection of redundant or conflicting requirements.
• Is generic, reusable and easy to extend
• Integrates requirements with parts, features, parameters and constraints.
• Facilitates document creation conforming to customer/company/government rules

and regulations.
• Facilitates the change management process"
Many papers address the basics of evaluating the usefulness of ontologies in require-

ments engineering, their benefits and opportunities [Cas+10] [Sie+11]. [LFB96] intro-
duces a product, feature and parameter ontology and basic axioms for reasoning (e.g.
that a part cannot be a component of itself, or that a part cannot have a component
which has as a component the first part, or that a subfeature of a feature of a part is
also a feature of that part). Furthermore, the paper describes formalizations of derived,
explicit and sourced requirements with some classifications.
[Cas+10] gives a general review of ontologies in requirements engineering and shows
some benefits. It lists ontologies for describing requirements specification documents,
ontologies for formally representing requirements and application domains.
[Sie+11] examines with a framework if goal oriented requirement models are consistent
and complete when they are communicated from stakeholders. It introduces rules for
completeness and consistency checking.

Figure 2.2: The Extended Requirements Ontology [Li+15]

[Li+15] goes into much more detail of ontological distinctions of requirements and
enables translating informal requirements to formal ones with the help of an ontology
and an intermediary requirements specification language. This work showed that it was
possible to even model, analyze and consistently represent highly informal knowledge. It
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also addresses non-functional requirements, seldom addressed in other works. The main
contribution is probably the ontological classification of requirements and the resulting
requirements ontology shown in figure 2.2.
The classifications of functional, usability, operational, security, performance, availabil-
ity, look and feel, maintainability, scalability, portability, fault intolerance could all be
represented using this ontology. Key concepts here are the functional goal, quality goal,
function, function constraint, content goal and state constraint. A functional goal for
example is a requirement that is fulfilled through a function. Further specifications for
the functional goal are the situation, event, effect and subject of the functional goal.
The function constraint constrains the situation of the functional goal. A functional and
quality goal for example is ’the system shall collect real-time information’.

2.1.4 Context Modeling

Context is defined by [Be18] as: ’in general, a context is defined to be the circumstances
that form the setting for an event, statement, process, or idea, and in terms of which
the event, statement, process or idea can be better understood and assessed.’ Something
can be true in one context and utterly fallacious in another context. There are multi-
ple factors contributing to context, e.g. events, intentions, processes, history, location,
circumstances, background knowledge, state of affairs, state of a person or device, in-
teractions and many more. The notion of context is gaining more importance in the
semantic web community and was the topic of the 2018 Ontology Summit.Modeling
context is a challenge because:

• The number of causes of any event is infinite
• There are multi-million of factors contributing to context
• Context is often implicit and enfolded (aka David Bohm’s enfolded universe and

implicate order [Boh02])
• Intentions of subjects are subjective and hidden

Figure 2.3: CONON Context Ontology
[Wan+04]

From one of the author’s papers that in-
cluded context modelling: "[Wan+04] pro-
poses CONON (CONtext ONtology), a
first context ontology, which models basic
units like person, location, activity, and
computational entity to specify context. It
furthermore consists of specific domain on-
tologies like smart home and smart office
that become integrated in that ontology.
CONON can be seen as a top level ontology
(TLO) which is one way to model context
knowledge because they usually use a very
broad terminology.
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CONON uses user-defined and ontology defined reasoning capabilities to deduce implicit
context." [Waw+] E.g. defining a transitive property ’located in’ for a home containing
a bedroom and a bedroom containing a person and an inverse property ’contains’ to
deduce the implicit context that the home also contains the person. Which is knowl-
edge that was not stated explicitly, but is deduced from rules. Other defined rules state
properties about the person, e.g. that they are sleeping when they are located in the
bedroom, the light level is low and the drapes are closed.

Figure 2.4: 3LConOnt Context Ontology [CFM19]

"CaCOnt [Xu+13] is a more recent context ontology which builds on CONON. It
has a more refined User Model, Device Model, Service Model, Space Model and Envi-
ronment Model and has similar reasoning capabilities." [Waw+] Defining context also
plays a crucial role in data integration, interoperability, natural language, big knowledge
and has domain specific drivers. "[CFM19] is a more elaborate and comprehensive work,
which takes the concept further. It presents 3LConOnt, a three-level ontology for con-
text modelling in context aware computing. It is structured in top-level, middle-level and
lower-level and reuses a manifold of ontologies, ranging from regulations, environmen-
tal conditions to roles, objects, activities and resources. 13 context-aware scenarios are
described which could be instantiated with this ontology." [Waw+] Figure 2.4 shows the
structure and hierarchy of the ontology. The authors considered 64 relevant ontologies
for reuse and analyzed them. Some of them were CONON [Wan+04], SOUPA [Che+04],
SUMO [NP01], OpenCyc [CCB06], FOAF9, CPP10, OWL-Time11 and OWL-S12. Most

9http://xmlns.com/foaf/spec
10http://www.w3.org/TR/CCPP-struct-vocab2/
11http://www.w3.org/TR/owl-time.
12http://www.w3.org/Submission/OWL-S.
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of the rest of the paper then shows the instantiations and applications of their models.

2.1.5 IoT Ontologies

This section gives a short overview of IoT ontologies for those not familar with the de-
velopments for the purpose of reference.

1) W3C Semantic Sensor Network (SSN) Ontology

Figure 2.5: Stimulus-Sensor-Observation Pattern [Com+12]

As stated in the paper of the author about digital twins: "Semantification of sensor
data reaches back to the first milestone achieved around 2012, namely the Semantic Sen-
sor Network (SSN) ontology13 [Hal+18], created by the W3C Semantic Sensor Network
Incubator group [Com+12]. SSN described for the first time systematically concepts like
sensor, actuator, sample, device, feature of interest, properties and observation and its
relationships. Particularly it connects the domains of system, deployment, system ca-
pabilities, properties and procedures into one ontology to describe the domain of sensor
networks. It is a successful example for the utilization of ontologies, and it was already
suggested by the ontologist Barry Smith14 that it could benefit from the utilization of
top-level ontologies and their philosophical distinctions." [SGW21]
Figure 2.5 shows an excerpt that relates Sensor, Stimulus, Observation, Property, Sens-
ing and other concepts.

2) ETSI Smart Applications REFerence (SAREF) ontology
As stated in the paper of the author about digital twins again: "SAREF (Smart Appli-
cations REFerence ontology) [Pov18] is another ontology standard in the IoT ecosystem.
It contributes concepts like function, service, command, state, power, energy and task to
efficiently deal with IoT devices and their capabilities. It was supposed to enable inte-
grating the domains of healthcare, energy, agriculture, transport, environment, building

13http://purl.oclc.org/NET/ssnx/ssn
14http://ontology.buffalo.edu/smith/
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and other domains to the IoT." [SGW21]

3) VICINITY core ontology

Figure 2.6: VICINITY Core Ontology

VICINITY15 was one of the Horizon2020 EU funded projects for the interoperabil-
ity of the internet of things16. It is an open virtual neighbourhood network to connect
IoT infrastructures and smart objects. In deliverable 2.2 the semantic model was devel-
oped under lead of UPM17. It resuses standards such as the SSN, SAREF, W3C Web
of Things18, oneM2M Base ontology19, FOAF, the organization ontology20, SKOS21,
Basic Geo Vocabulary22 and others. With a comprehensive methodology requirements
were elucidated and the ontology developed. The result was a network of ontologies23,
containing the VICINITY core model as seen in figure 2.6 next to other models.

15https://www.vicinity2020.eu/vicinity/
16https://ec.europa.eu/digital-single-market/en/research-innovation-iot
17http://www.upm.es/internacional
18https://www.w3.org/WoT/
19https://www.onem2m.org/technical/onem2m-ontologies
20https://www.w3.org/TR/vocab-org/
21https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
22https://www.w3.org/2003/01/geo/
23http://vicinity.iot.linkeddata.es/vicinity/
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2.2 GENIAL! related Work

2.2.1 SysML in Systems Engineering and SystemC

From the paper "Modeling and Simulation of Cyber-Physical Systems with SICYPHOS"
by the author [Waw+15]: "Complexity of Cyber-Physical System development is ad-
dressed by Model-Based Design. In Model-Based Design, virtual prototypes enable the
evaluation of the system even if a physical implementation is not available. A valid vir-
tual prototype (resp. model) reduces considerably the risks and pitfalls in system design.
Models can also be reused and refined over time, improving their reliability. These char-
acteristics become essential in Cyber-Physical System development, where a large number
of devices and complex scenarios have to be validated.
However, modeling of Cyber-Physical Systems is a challenge [DLV12]. Their heterogene-
ity requires the use of different, domain-specific languages that must interact concurrently
in order to accurately reproduce the system behavior. However there is a lack of languages
that are well-suited to model systems across fundamentally different domains.
Modeling and simulation. SysML provides a language to create high-level system
models that may cover different domains. However, although it provides a set of dia-
grams and stereotypes to create highlevel models, there is a lack of semantics on how to
use those stereotypes, which usually results in ambiguity when translating those models
into domain-specific and executable models.
Co-simulation of different domain-specific tools is possible using tools such as Ptolemy
II [BLT10]. However, the acceptance of languages and tools has been very variable de-
pending on the modeling domain, and there are many different languages that are settled
de facto standards. The adoption of new tools and languages is not always feasible. Fur-
thermore, industry usually has comprehensive libraries of pre-existing models that have
already been tested and are available for reuse. This is the motivation for new standards
to reuse models regardless of their modeling language or simulation core, such as the
Functional Mock-up Interface (FMI) Standard [Blo+11], which provides interfaces for
model reuse and co-simulation.
The SICYPHOS framework presented in this paper proposes a SysML based top-level
Cyber-Physical System modeling approach. This model is translated to domainspecific
modeling languages: SystemC for hardware/software simulation, SystemC (Wireless)
TLM extensions to model network and propagation, and SystemC AMS or Modelica
to model analog and physical processes [Mol+14].
Code-generation. A basic work towards generating SystemC models from SysML mod-
els is presented in [Bra11]. In that paper, Blocks, Flow Ports, and Operations from
SysML are translated into SystemC Modules, Ports and Processes. After the model is set
up, it is exported as an XMI file. A translation tool extracts the relevant data from the
MOF meta-model and stores this information in C# classes. Operations are associated
with state machines or existing code and after two intermediary steps (XML+XSLT)
SystemC Code is generated.
A profile for detailed modeling of SystemC TLM with stereotypes is presented in [JKR11].
Stereotypes exist for each TLM modeling construct as well as for SystemC modules and



2. State of the Art 24

methods. The motivation of the work is to provide early consistency checking while mod-
eling but not in the simulation. It shall reduce the overall debugging time and effort by
using TLM 2.0 rules that can be statically checked as constraints. An example for an
informal rule that is realized is ’Initiator cannot realize b_transport method’. Rules are
formalized with OCL [Sta14] and are constructed from the SysML meta-model. OCL is
a language that enables expressing additional constraints that are difficult to express in
UML. In combination with stereotypes (e.g. «tlm_target_socket») the constraints are ex-
pressed. After the profile is applied to a specific implementation, a SysML tool validates
the model, saves it, and transforms it to SystemC Code via XSL Stylesheets. Supported
are structural and behavioral diagrams.
An approach to model SystemC-AMS with concrete semantics is described in [Caf+13].
In SystemC-AMS there are several Models of Computation (MoC), which can be coupled
and used to create co-simulations of different domains and applications. In this paper
each block or diagram can be assigned with a specific constraint that denotes its MoC or
behavior (semantics in brackets): continuous time (‘use CT’), discrete time (‘use DE’)
and state machines (‘use FSM’). Furthermore, annotations of adaptor-syntax in the form
of comments are assigned to ports in order to achieve a precise simulation. To achieve
the efforts, a two-phase approach is applied. First the SysML meta-model is transformed
into a SystemC-AMS meta-model with the Atlas Transformation Language. In a second
step, the actual code is generated from the SystemC-AMS model with the Acceleo code
generator.
The existing approaches introduced modeling with SysML and code generations to Sys-
temC/TLM/AMS. With SICYPHOS we combine and extend the different approaches for
generating domain-specific code from [JKR11] [Bra11] [Caf+13] and focus on generating
the interfaces between different domain-specific languages, and on integrating pre-existing
components."

2.2.2 SysML vs. OWL

From the whitepaper "Semantic Technologies - A Comparison" by the author:"Some work
has already been done and proposed in this area. There are some approaches that focus on
code generations, but also these approaches usually point out some similarities between
those languages and how some constructs are directly generated from one language to
another whereas others are not. Other approaches merely compare the languages, down
to their meta level. Feldmann et. al. in [FKV14] present an approach to measure change
influences with compatibility rules. They combine SysML and OWL in a manufacturing
use case using plant models. They utilize SPARQL queries to analyze the model for com-
patibility of ports, data types and function and if corresponding modules are able to work
with each other. They accomplish this utilizing the OWL models.
A. Language Comparison
Graves gives a simple comparison of SysML and OWL in his paper [Gra09]. He de-

scribes abstract as well as concrete block diagram semantics and how they relate to each
other. He states how a simple block diagram can be represented in OWL and translated
into its SysML constructs. A more detailed comparison of UML and OWL was done by
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Figure 2.7: Comparison between UML and OWL [KA08b]

Kiko and Atkinson in [KA08b], which is the most significant work in this area and closely
related to this work. Kiko and Atkinson provide a detailed comparison and also state a
lot of differences between UML and OWL though they agree that both languages are es-
sentially the same. That they are essentially the same is disputed by this work, however
there are similarities this works focus in section III is clearly to highlight their differ-
ences. Also, their comparison is between UML and OWL whereas this works comparison
is between SysML and OWL. Main interpretations and properties that they compare are
summarized in figure 2.7. The table already shows that there are more subtle and gross
differences between both languages though there are similarities. In addition, they explain
and compare all the elements of UML with the metamodel of OWL in detail and are thus
more comprehensive than this work. However, in this work, aspects are addressed that
are missing in their work.
B. Code-generation
Olszewska [Isa15] generates OWL ontologies form UML activity diagrams with dynamic
processes and validated her approach in a case study of a publication repository domain.
She presented a simple User Login into a System which activities get translated into OWL
data and object properties. NASA’s Jet Propulsion Laboratory and Systems and Software
Division department generates its ontologies from SysML diagrams. In this paper [Jen12]
they describe that embedding classes is straightforward whereas embedding object prop-
erties is more complex and describe some transformations and what they transformed.
They also state that they test for consistency, well-formedness and satisfiability. For their
transformation into OWL, they use an operational Query/View/Transform transforma-
tion."

Some research was done in this area in order to help facilitating the understanding
of both technologies for people struggling with the intricacies of semantic technologies.
Though SysML uses semantics there are considerable differences between both technolo-
gies which have ripple effects on paradigm, focus, data format, how things are modeled
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and so on. To state it clearly ontologies and SysML are not nearly the same. Ontologies
originate from the field of artificial intelligence and SysML from systems modeling. In
the following there is a summary of some, but not all of their differences (from the au-
thors whitepaper "Semantic Technologies - A Comparison" [Waw17]):
"1) Resource Identifier (Unique Resource Identifier vs. regular id)
In OWL we see the Unique Resource Identifier that is an http Website link which con-
nects all items in the ontology and makes them not only unique but available to find on
the internet. This is in contrast to SysML where there’s merely a simple id with usually
just some anonymous number combination. This makes it unique, but is rather not handy
when trying to reuse it or find it or grasp the meaning of the modeled entity.
2) Paradigm (IoT vs. Systems Engineering)
In systems engineering we still see a System Integrator and project leader who manages
the system overall, integrates new parts and ideas, has system management tasks as well
as overview of the system. In the IoT paradigm this system integrator is nonexistent
since input comes from a variety of contributors, parties and vendors. Ontologies can
clearly be placed in the more encompassing IoT paradigm since it is possible to represent
most things semantically. Everything that can be put into words directly has a meaning
and all of systems engineering is subsiding into the IoT paradigm by virtue of being
a subclass of it. System Engineering entails organizational structures, processes, work-
flows, business models, requirements engineering, simulation models and more. And even
those systems are now being enhanced into social-cultural systems by the INCOSE group.
So the boundaries between systems engineering and IoT are also blurring like in many
other disciplines. Additional note: Ontologies are not restricted to the IoT, but originate
from the semantic web.
3) Focus (Interoperability vs. Modeling)
With ontologies the focus is on interoperability, which means providing the semantics to
enable two technical systems to understand each other and exchange information based
on a semantic standard. In SysML this is not even slightly the case, there is no emphasis
on interoperability at all since the models are used in quite different ways. Or at least
names are chosen in a way that they remain in the same data silo they are supposed
to serve – a technical specification within a systems engineering project. In SysML, a
modeler usually designs one single overall system which entails all the components of
the system and which is not used by another system or which information is not used
by another system. Ontologies map the information of each system in a way that it is
accessible from and can also be written to - all other parties. In SysML this is not wanted
since the specification is usually preferred to come from the system integrator and is fixed
through some forms of the requirements. In other words instances cannot be populated
by third parties, but only by the designer within the SysML tool.
4) Data (querieable structure vs. non-querieable data format)
Ontologies come from a language that can in some aspects be compared to a database. In
fact OWL is already quite close to what is known today as relational databases. One such
characteristic is that an OWL file can be queried via an SPARQL endpoint. This leads to
autonomous agents who independently read data from ontologies to perform their duties
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and tasks and then write back to them. Examples are automobiles, drones and so on that
read semantic information from independent sources in navigation units or other areas
of application. In SysML such a query is absent. The model has a certain structure that
can be read, but which is rather fixed, not extensible, and not modifiable, except from the
modeler. It can be used to generate code in different languages.
5) Exchange (global sharing approach vs. limited exchange format)
Ontologies, also based on their paradigm, which was mentioned above, are based on a fun-
damentally different approach to exchange their data than in SysML. It already starts
with how the vocabulary is built and used. In ontologies great care is put into naming and
a lot of characteristics and properties have to be applied to naming. One is generality
for example, which is often used in upper ontologies that many categories fit into such
an ontology. The naming must be general as to be compatible with many approaches and
understood by many parties and vendors. Again, in SysML files and models of a project
are usually just used within the project and do not require proper general naming as
with ontologies as the exchange is limited by its use. Ontologies are based on the Open
Linked Data paradigm and the data is exposed. In the future we will see more general
approaches also containing general function on top of that vocabulary. These are impor-
tant that smart systems and autonomous agents are able to make use of the data and
use it in a variety of contexts.
6) Knowledge vs. System Information (Modeling of meaning and complete information
vs. modeling of system properties and parameters)
Ontologies allow for the modeling of true knowledge, which means that also a classifica-
tion and reuse of concepts and ideas can be made. To stay with a simple example from
the well-known pizza finder tutorial24 it is possible to model the concepts hot topping or
cheesy topping on top of the classical pizza type and categories. This makes it possible
to search for all pizzas that are hot or are cheesy simply by modeling the categorization
on top of the concepts. In SysML such a modeling approach is not feasible. First of all
the modeling modalities are missing. In SysML it is possible to create stereotypes with
similar characteristics, however at least reuse is not ensured like when using ontologies.
A SysML block has operations and properties, however in ontologies an arbitrary chain
of relations can be created and linked to various classes.
7) Modular (exchangable and extensible vs. rather rigid for one system)
Ontologies are modular, they can be imported into each other and easily linked which
is their purpose to be extensible, distributed and combined. SysML is quite rigid in this
regard.
8) Make-up (non-graphical vs. graphical)
Another more fine grained difference is that SysML is a graphical language for docu-
mentation where the system is visualized depending on the tool used. Ontologies are also
visualized for viewing within tools like Protegé for example, but also offer to be visualized
on demand with other visualization ontologies for example. In this regard an ontology is
more flexible.
9) Ontologies are tool independent, SysML is not

24http://owl.cs.manchester.ac.uk/research/co-ode/pizza-finder/
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As mentioned above SysML is visualized depending on a tool. And tool and language
are usually deeply intertwined. So much so, that the model cannot be used without the
tool and some efforts have been made to solve this issue (e.g. Modelbus). Ontologies are
usually being manipulated via the OWL API and are thus being able to be used within
any java program. However other implementations like the C++ API seem rather basic
and unusable.
10) Smart knowledge base vs. unintelligent rigid models)
In ontologies we have something called Inference, which allows for smarter knowledge
organization. For example we can create equivalent classes, which are classes with cer-
tain properties and conditions. When other classes meet these conditions the equivalent
class gets inferred to be a subclass of the other class, which has these conditions. In this
way it is for example (to stay with the pizza examples) possible to categorize pizzas with
special toppings or characteristics as part of the class InterestingPizza, a feature, which
cannot be modeled in SysML.
Additional note: Furthermore in ontologies it is possible to organize the knowledge with
transitive and inverse object properties to make implicit knowledge explicit
11) SysML is more dynamic
SysML is more dynamic in respect to its activity and state diagrams as well as operations
which are not – or not yet well represented in OWL."
Note: It should be possible to convert such diagram fully into OWL.

2.2.3 Constrained-based Configuration in Expert Systems

From the paper "A Knowledge-based Approach for Engineering 4.0" by the author
[WG18]: "Danninger [Dan15] states that most complex software systems are still gen-
erally configured by hand and by human experts. This process is error-prone and tedious
and it is hard to consider all applicable constraints and interdependencies. He states that
constraint programming with constraint solvers is supposed to be a promising field of
research and are able to handle the complexity. He gives an introduction of constraint
programming and a simple example with an overview of some current implementations.
For him the challenge is not in the solving process itself, but in providing users with ap-
propriate and intuitive ways to specify constraints, which is also part of this work in IV
with the creation of a graphical, easy to use user interface. He mentions ConfSolve, an
object-oriented configuration language that generates its final configuration in the form
of an object tree. And other approaches that contain self-healing modalities, which re-
configure the system when the configuration changes. Furthermore, he mentions Fresh
[WS08], a model driven engineering tool that transforms feature models into constraint
satisfaction problems. Fresh supports constraints between features, which also constrain
the number of components. The feature models are then reduced to constraint satisfaction
problems (CSPs) and solved. Though Danninger thinks of this research as promising, he
still criticizes that there are few cited industrial applications, that most still require a lot
of manual configuration and that capturing complex domain constraints and translating
them to declarative models is difficult, which was also discovered in this work.
Another constraint configuration tool is KONWERK, mentioned in [Bir96]. It is supposed
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to support configuration and design tasks in technical domains. KONWERK consists of
four modules that cover the tasks of representation of domain objects, representation and
processing of relations, constraints and heuristics, formulation of the configuration task
and control of the configuration process. KONWERK is explained in [Bir96] according
to the Nitra River Case Example: A river with its tributaries along with monitoring,
emission and other kind of nodes and points. At the emission points certain treatments
are implemented in order to reduce the pollution of the system. There are six total ob-
jectives like minimizing cost or maximizing the concentration of e.g. oxygen, which are
complementary or in opposition with each other. KONWERK is not only restricted to
technical domains, but was also applied to layout design or environmental projects. A
Basic Optimization module translates the knowledge base into constraints so it can be
used and solved by a constraint solver. The knowledge base of KONWERK defines the
knowledge in a declarative way and has the types hierarchy of concepts, compositional hi-
erarchies, conceptual constraints, conceptual objectives, optimization tasks and strategies.
The tool presented in this paper is similar to KONWERK in its description of domains
and constraints, however more advanced in respect to its graphical user interface and its
consideration of time constraints and predictive possibilities.
Waldschmidt et. al in [Pet96] describe a system-level construction methodology which is
used for the synthesis of analog and digital systems. They describe how expert systems
can be used to define the task of a partitioning problem through conception hierarchies
and support the distribution of limited design resources through constraint nets. They
use it to make important design decisions at system level like for example the setting of
bit widths. Their construction process consists of the following four constructions steps:
splitting objects and integrating objects via has-parts relationships, specialize objects via
is-a relationships and parameterize objects. It is a construction process which is followed
by the tool KANDIS and also show similarities to KONWERK. KANDIS takes as input
a VHDL hybrid description translates it into a graph-based intermediate format, which is
then again translated into instances and concept hierarchies on the knowledge-base level.
KANDIS is unique in the way that it works on construction at system level. As part of the
partitioning process the tool automatically generates a corresponding converter. During
the design and construction process, the different blocks require different resources, which
continually reduce the ranges of their design parameters and are handled by constraint
nets. Examples of these parameters are: power consumption, delays, data rates, sampling
frequencies and others.
In [GCS90] Günter et. al. present a way to separate control knowledge from structural
knowledge in order to circumvent the disadvantages of those expert systems, namely
knowledge acquisition, consistency maintenance and modification of the knowledge base.
Here rules are taken out of the knowledge base, though the structural knowledge is de-
signed in a way that it supports a control mechanism. In [GCS90] the construction process
consists of an agenda, the selecting from the agenda, value determination methods, con-
trolling constraint propagation, conflict resolution knowledge, phases and strategies and
control rules. The agenda are the executable construction steps from the partial solution,
the comparison of concepts and their instances, namely specialization, decomposition,
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aggregation and parameterization. Selecting from the agenda is done by agenda selection
criteria, which yield preferences of criteria to select. If the selection is ambiguous, value
determination methods help in the selection of criteria e.g. by asking the user or eval-
uating a function. What is done in this paper by the constraint solver Z3, is integrated
here: controlling the constraint propagation process. Furthermore, rules are implemented
that are used to navigate in case of a conflict. Strategies are packed up control knowl-
edge, which consists of a combination of aforementioned tasks and steps. Control rules
are rules that determine how to select and terminate construction phases; it helps se-
lect a strategy.
ENGCON described in [Run06] is a constrained- and structure-based configuration tool,
which uses functional and predicate constraints to describe dependencies between con-
cepts of the knowledge base. An external constraint solver solves the constraints.
Kühn in his paper [Küh01] compares different approaches of configuring with knowledge-
based systems. He differentiates between rule-based, structure-based, constraint-based,
resource-based and case-based systems, which apply best depending on the kind of knowl-
edge used and the configuration task. He especially describes how to integrate behavior-
based knowledge with aforementioned systems to aid with problem solving. To enhance
constraint-based systems with behavior, state transitions, the exiting of a state and the
entrance of a state can be added with constraints for requiring or forbidding that state.
The passive role of the constraints is to check consistency and the active role to con-
strain the potential behavior of one or more parts of configuration. He concludes that
behavioral knowledge is best combined with structure-based and constraint-based systems.
In this paper the structure-based as well as constraint-based system are proposed and
implemented."

2.2.4 Self-Aware Cyber-Physical Systems

The term self-aware cyber-physical systems (CPS) has some close relationship to the
IoT and to autonomous agents, though it has also its own focus. According to [JDR17]
there is a hierarchy of self-* properties comprising self-awareness, context awareness,
self-configuration, self-healing, self-optimization, self-protecting and self-adaptiveness. In
[Gur+13] there are even more properties mentioned like self-organization, self-discovery,
self-description and self-energy-supplying. This field combines findings from software
engineering, biology, artificial intelligence, control theory and embedded systems. It is
estimated that self-awareness properties will be part of any software module in the future
and have some form of embedded intelligence. These features will have to be considered
in the early development stages of CPS.
Considering System-on-Chip technologies there is also an increasing demand for self-
awareness coupled with hardware attributes like performance, robustness, energy and
resiliency [DJS15]. State of the art in this research area is the exploration of what self-
awareness is and how to employ the self-* properties and even let them work together
to achieve higher-level goals.
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Figure 2.8: MAPE-K Architecture [Gur+13]

These self-* properties are realized via the MAPE-K architecture, which stands for
Monitor, Analyze, Plan, Execute and Knowledge, shown in figure 2.8. The monitor
phase basically records sensor information from a variety of sensors like light, tempera-
ture, pressure, weight, gyro sensors, input pins, cameras and so on. The analyze phase
processes and analyzes this information and the execute phase puts actions on physical
entities by actuators (e.g. activating roller shutter etc.) The planning phase decides on
which actions to take and is realized via event condition rules, objective functions and
prediction models (bayesian networks, decision trees [WR14], fuzzy logic). These features
bring in new challenges like prediction models at run-time, real-time conflict manage-
ment between rules, and learning from experience with case-based reasoning [Gur+13].
This work is significant in the context of knowledge representation as these systems will
all work based on a knowledge base and process and query semantic information, which
will be the basis for understanding information and making meaningful decisions.

Figure 2.925 shows the development from a regular and basic cyber-physical system
(simple reflex agent) to an advanced learning agent (general learning agent). In the basic
system, there is a simple control loop from measuring the environment through sensors
to taking actions on the perceived values through conditional if-then statements and
then actuating on the environment.
Then, step by step, more complexity is added. The goal-based agent already has aware-
ness about its state, it’s goals and how to achieve these goals by knowing what his
actions do.
The general learning agent is beyond the scope of this work, but is mentioned for com-
pleteness as it also interacts with a knowledge base in combination with machine learning
techniques. Types of machine learning covered by this agent are:

25https://en.wikipedia.org/wiki/Intelligent_agent
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Figure 2.9: Autonomous Agents Development [Wik19]

• Supervised learning (e.g. function approximation, prediction, pattern classifica-
tion, natural language processing, image classification and segmentation, object
detection and localization)

• Unsupervised learning
• Reinforcement learning (e.g. game theory)

Figure 2.10: Autonomous Agents Vision ([Ver+09], modified)

The general learning agent has a critic, which helps to evaluate the agent’s behaviour
based on an external behavioural measure. The problem generator suggests exploratory
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actions that lead the agent to new experiences. The learning agent carries out improve-
ments by utilizing knowledge and feedback. The performance element processes sensor
information and acts on it. It corresponds to the simple reflex agent from basic cyber-
physical systems.
In figure 2.10 it can be seen that technical systems are not just a collection of functions
and activities, but there are actual levels to representation and awareness, which become
more powerful as their degree of freedom advances. The most adept autonomous agents
are those that collaborate in workflows together and are aware of the whole process that
is gong on. As their power increases usually their level of interaction does as well. This
corresponds with a powerful vision of these systems, as by being highly aware they will
be able to achieve tasks that were originally reserved to humans.



Chapter 3

Foundations for Knowledge
Representation

The information found in this chapter is not the authors original work, but refers to
other works, mostly from Prof. Giancarlo Guizzardi, Dr. Nicola Guarino (who I both
met at conferences), Prof. Maria C. Keet, Prof. Barry Smith and work from UPM.

3.1 Basic Foundations for Knowledge Representation

3.1.1 From Thesauri to Common Logic

Figure 3.1: Continuum of Expressiveness and Formality [UG04]

When it comes to expressiveness and formality, we can speak of a continuum. On the
left side of the continuum are terms and sentences in prose or a plain text document.
Though very expressive, this is basically not understandable to a computer, except par-

34
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tially by using e.g. statistics or string manipulations. Figure 3.1 shows an outline, which
is explained in the following with some additions made.
Terms - a word or phrase used to describe a thing or to express a concept, especially in
a particular kind of language or branch of study.1
Ordinary Glossary - is a list of words with their meaning. Often in alphabetical order
about a specific text or subject.
Ad-Hoc Hierarchies - "Ad hoc hierarchies such as Yahoo! are sets of terms with a
relationship between terms, but where no formal semantics for that relationship is de-
fined." [And07].
Data Dictionary (EDI) - "are more formal models of information, often of relational
databases, where each term and relation has an associated natural language definition
(EDI stands for standardized Electronic Data Interchange)."[And07]
Thesaurus - "is a word list that is not ordered alphabetically but according to concep-
tual relations." [And07].
Structured Glossary - "may include additional relationships among the terms in
the glossary." [And07].
XML DTD’s - "are Document Type Definitions in eXtensible Markup Language, used
for communication among software systems. XML supports nested, or hierarchical infor-
mation structures, but is a language for defining syntax that has no associated constraints
on semantics." [And07].
Informal Hierarchies (Folksonomies) - Also known as collaborative tagging or so-
cial tagging. Are basically tags done by end users. They have the advantage that they
are flexible and based on the vocabulary of the users. They are not a shared common
vocabulary, though they may be shared between different participants. They are not a
taxonomy, as they do not have a hierarchy, and they are not well-defined classes. Though
not formal, they may have informal relationships.
DB Schema - There are SQL, NoSQL, relational, graph databases and more. "DB
Schemas are Data Base structures that have more formal definitions of the meaning
of terms and relations, usually by employing statements in a database constraint lan-
guage." [And07].
XML Schema - XML is structured data. It does not yield any understandings, in con-
trast to ontologies. However, XML is the basis of OWL and can be used for machine
readability and to send simple commands, properties, terms or text between devices.
JSON - JavaScript Object Notation is slowly substituting XML because it is more
lightweight and usable for data-interchange.
Data Models (UML, STEP) - "couple taxonomies and defined relationships with a
semantics for representing process and action. UML, the Unified Modeling Language
for specifying the design of object-oriented systems [...] exemplify this kind of informa-
tion model." [And07]
Formal Taxonomies - basically, taxonomies consist of formal subClassOf / superClas-
sOf hierarchies. Additionally, there are sometimes a few basic relationships present, like
’narrowerThan’ or ’widerThan’ or ’similarTo’. Usually ontologies on the other hand have

1https://www.lexico.com/en/definition/term
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more rich object properties and data properties and have restrictions. A special form of
the taxonomy is the partonomy, which enhances the taxonomy with the hasParts /
partOf relationship.
Frames - "include a range of standard AI languages that have terms, relations, and in-
heritance of properties. Examples are the Open Knowledge Base Connectivity (OKBC)
protocol and the onotlogy editor and knowledge acquisition system Protégé." [And07]
Logic Programming - Similar to programming languages logic programming expresses
logic in the form of facts and rules.
Object Constraint Language (OCL) - allows constraining UML models. E.g. values
of properties or cardinality of relationships.
Topic Maps - Topic Maps are similar to RDF. They are serialized in XML and are
an ISO standard. They have topics, association and occurrences as elements, which ba-
sically form a graph with edges and nodes. They do not have restrictions as ontologies
have. Concept Maps are similar but not an ISO standard and more of a diagram.
Description Logic - Description logic is the basis of OWL. It works so well, because it
is a decidable language, that yields results with reasoning. It consists of classes, instances
and properties and logic constructs. It is partitioned in TBox, which states general state-
ments about the world with its terminologies and the ABox, which makes assertions with
concrete instances and their relationships.
First Order Logic, Higher Order Logic and Modal Logic - FOL allows express-
ing logical sentences with a variable and quantifiers. It has syntax, semantics and rules.
In comparison to propositional logic, FOL allows predicates. Higher order logic is more
expressive than FOL but less well behaved. Modal logic allows to qualify statements,
e.g., ’usually’, ’necessarily’, ’possibly’.
Common Logic - CL is a first order logic family language, which is most expressive
and thus all the semantic web languages can map into that language. Thus it is also
not made for computation, is not decidable and useful when it comes to reasoning and
inference. It can be represented in the Common Logic Interchange Format (CLIF). Its
goals are according to [Kee18]: "1) Common interlingua for a variety of KR notations; 2)
Syntactically as unconstrained as possible; 3) Semantically as simple and conventional
as possible; 4) Full first-order logic with equality; at least; 5) web-savvy, up-to-date; 6)
Historical origins in Knowledge Interchange Format (KIF)."

3.1.2 From Reality to Ontology

An ontology never captures reality itself, but rather a conceptualization of it that was
first filtered through our perception. When we select a language, e.g. English, each
term/expression (e.g. the word ’Person’ or the word ’implements’ as used as an object
property for example) of that language L commits to a certain conceptualization through
an ontological commitment K. That language is itself subject to various interpretations
I that yield different models for everybody. The sum of those models is Md (L). A good
ontology captures the intended scope of those models and maybe a bit more of them



3. Foundations for Knowledge Representation 37

(slightly over-constrained). A bad ontology does not capture some part of the intended
models and may even capture some part of other models. Usually if we define two
object properties, they are unconstrained and could be used in different ways. Therefore,
according to [GOS09] we then need to make sure that we admit only those models to
which our conceptualization commits. Formally making a conceptualization explicit can
me made in an extensional or intensional way. An extensional way would be to list
possible variations of that conceptualization, give examples and state them explicitly.
An intensional way would be defining specific axioms of e.g. OWL2 like transitivity,
inverse, symmetry, irreflexive etc.

Figure 3.2: Reality and Ontology [GOS09]

3.1.3 Categories of Ontologies and their Meanings

In source2 it gives a good definition and explanation of types and is referenced here.
Just some additions were made. The source was not referencing task and middle level
ontologies. Sometimes other ontology types (data ontology, interface ontology, product
and process ontology) are referred, but they can be classified under existing types of on-
tologies.

• Classification according to Purpose
– Application Ontology: Used during run time of a specific application im-

plementing an ontology putting constraints on the axiomatization for the
2http://km.aifb.kit.edu/sites/cos/
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Figure 3.3: Types and Categories of Ontologies

terminological service, i.e., the reasoner. The typical trade-off between ex-
pressiveness and decidability requires a limited representation formalism. In
a description logics based application this would coincide with the TBox.
Application ontologies may also describe specific worlds (semantic descrip-
tions, knowledge base, metadata, semantic metadata or simply instances) In
a description logics based application this would coincide with the ABox.

– Reference Ontology: Used during development time of applications for mutual
understanding and explanation between (human or artificial) agents belong-
ing to different communities, for establishing consensus in a community that
needs to adopt a new term or simply for explaining the meaning of a term
to somebody new to the community. Although parts of the reference ontol-
ogy can be formalized in a TBox as well, description logics are usually not
expressive enough for reference purposes.

– Task Ontology: Task ontologies usually play together with domain, applica-
tion and upper ontologies. They often state a problem context and how to
solve those problems in combination with domain knowledge. They can also
be very abstract.

• Classification according to Expressiveness
– Heavyweight Ontology: Heavyweight ontologies are extensively axiomatized

and thus represent ontological commitment explicitly. The purpose of the ax-
iomatization is to exclude terminological and conceptual ambiguities, due to
unintended interpretations. Every heavyweight ontology can have a lightweight
version. Many domain ontologies are heavyweight because they should sup-
port heavy reasoning (e.g., for integrating database schemata, or to drive
complex corporate applications). As with all dimensions, the borderline be-
tween light and heavy weight is not clearly delimited.

– Lightweight Ontology: Lightweight ontologies are simple taxonomic structures
of primitive or composite terms together with associated definitions. They are
hardly axiomatized as the intended meaning of the terms used by the commu-
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nity is more or less known in advance by all members, and the ontology can
be limited to those structural relationships among terms that are considered
as relevant.

• Classification according to Specificity
– Generic Ontology: The concepts defined by this layer are considered to be

generic across many fields. Typically, generic ontologies (synonyms are "upper
level" or "top-level" ontology) define concepts such as state, event, process,
action, component etc.

– Core Ontology: Core ontologies define concepts which are generic across a
set of domains. Therefore, they are situated in between the two extremes
of generic and domain ontologies. The borderline between generic and core
ontologies is not clearly defined because there is no exhaustive enumeration
of fields and their conceptualizations. However, the distinction is intuitively
meaningful and useful for building libraries.

– Middle Level Ontology: Middle level ontologies are an intermediary, which
mitigate the abstraction levels given by an upper ontology towards domain
ontologies. They provide levels/a taxonomy of refinements/specializations and
advantages when it comes to extending knowledge domains and for knowledge
management. They may be very similar on the level of abstraction, but not
equal to core ontologies.

– Domain Ontology: Domain ontologies express conceptualizations that are spe-
cific for a specific universe of discourse. The concepts in domain ontologies are
often defined as specializations of concepts in the generic and core ontologies.
The borderline between core and domain ontologies is not clearly defined be-
cause core ontologies intend to be generic within a domain. Thus, it is usually
hard to make a clear cut between generic and core as well as between core and
domain ontologies. A concept such as software component would be placed
in a core ontology for application servers for reuse in every possible domain
ontology we can think of.

3.1.4 Design Guidelines and Methodologies for Ontologies

This section is research done in combination with a master thesis entitled "Towards a
true microelectronic and automotive digital roadmap" [Sun20].

Ontology Methodologies

Uschold and King’s method recommends the following four steps to develop an ontol-
ogy. [CFG03] The steps are

1. Identify the purpose
2. Building Ontology
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• Ontology capture - Understanding primary concepts and their relationship in
the domain

• Ontology coding - Representing the concepts in the formal language
• Integrating existing Ontology

3. Evaluation
4. Documentation

There are approaches to identify the primary concepts to develop an ontology. The ap-
proaches are top-down, bottom-up, and middle-out. Top-down - starts generalization of
the concepts and specializing the same concepts in a more specific way. The bottom-up
approach is the exact opposite of the top-down approach. This approach starts with a
specific concept and expanding and generalizing the concepts. Middle-out approach fo-
cuses on the key concepts for the ontology and later specialize and generalize into other
concepts.
METHONTOLOGY is a framework, which supports developing new ontology or reuse the
existing ontology. [CFG03] There are three main processes. Each of these processes have
specific activities. The processes are management process, development process, and sup-
port process. The activities available for each of these processes are management process
is divided into the following activities scheduling, control, and quality assurance. The de-
velopment process consists of specification, conceptualization, formalization, implemen-
tation, and maintenance. The support process carries knowledge acquisition, evaluation,
documentation, configuration management, and integration. [PSM08]

Problems and Best practices

The advantages of ontology are designing, sharing, analyzing, reusing the domain knowl-
edge among different people and software tools. There are several interoperability issues
in interchanging data among the systems and reusing available information. The classi-
fications of interoperability are:

1. Technical Interoperability
2. Syntactical Interoperability
3. Semantic Interoperability
4. Organization Interoperability

In the following section, Semantic Interoperability and their best practices is discussed in
detail. Semantic Interoperability mainly deals with the different structure of the ontolo-
gies, terms (vocabulary) used and their meaning. Understanding these primary problems
encourage us to design and build less problematic ontologies in the future. Implementa-
tion of these recommendations will improve the easy reusability of the ontology as well.
There are five different areas which provide best practices for semantic interoperabil-
ity. [GSA15; KP11]

1. Ontology format - using a consolidated format to describe the ontology. Wrappers
and translators are in the place of a different system. Terms used in the ontology.
Testing the semantic document should help the interoperability of the ontology.
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2. Metadata - minimizing the usage of labels and comments, version date, author
information in the ontology.

3. Quality of the ontology - dereferenceable of the ontology will help to automate.
Verifying the rudimentary issues of the ontology can be done with tools

4. Reuse the ontology - reusability of the ontology helps in developing the vocabulary of
the domain. Proper documentation of the ontology should help to reuse the ontology
available.

5. Managing Namespace - tools are available to select good namespace for the ontology
and namespace helps to automate necessary tasks.

Using vocabulary is crucial for any domain ontology design. From the most reliable Gene
Ontology, there are a few tips and techniques to define vocabulary in a better way. They
are, to utilize the relevant terms that are used by prominent researchers and group. De-
signing ontology involves various sources. To avoid inappropriate usage of the term,
the designer should utilize specific terms used by the domain experts. It is also crucial to
understand the usage of the terms involved in the design with the help of the experts. Rec-
ognize the terms which are overlapping or incompatible with the domain. It is important
to crosscheck the terms with the domain and create a list of terms which are problem-
atic for future reference. There are few terms which have different meanings depending
on their usage. Relating specific term with the alphanumeric identifier will mitigate this
problem. The identifier helps in reusing the existing terms and benefits in updating the
ontology with a new version when there are no changes with the terms associated. The
term used in the ontology should have unique meaning.
The usage of the good namespace in the ontology will improve a better understanding of
the ontology and also improves the readability and reusability. The naming convention of
the ontology depends on the software tool used to design the ontology. For instance, case
sensitive or not, delimiters that can be used and etc. A few proven recommendations for
the namespace is in the following paragraph.
Firstly, the name of the classes and properties should have consistent rules throughout
the ontology. The class name should use either uppercase or lowercase. If the name of the
class has more than one word, using appropriate delimiters and formats such as camel-
case, uppercase for each single word in the same. For instance, the class name is “Living
being”. This name can be represented as follows “Living_Being” or “Living-Being” or
“Living_being”. Italics format can be used to represent the class name. Secondly, the
class name can use either a singular or plural form. There are different takes on us-
ing the singular or plural form of the noun. Since the class expresses the collection of
objects, the class name can naturally take the plural form. For example, Attacks is the
class name, which represents different security attacks in the system. On the other side,
the singular form can be used to define the term. The class does not always represent
a group of objects. If the ontology designer uses the plural form, the class name should
take plural form consistently throughout the design.
Relation expressions establish the connection between the class and the slots and help
to differentiate. The expression should be unambiguous and consistent throughout the
ontology. One of the common practices is adding “has - or - of “ expression to the slot
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name. It is not recommended to use abbreviations or acronyms in the ontology. Ontology
users can misinterpret the used abbreviations or acronyms. Avoid adding strings such as
“Class_, slot_” to the terms. [NM19]

Basic Rules for Designing an Ontology [ASS15]

In this section, we will discuss rudimentary rules and understanding towards designing
ontology in a more beneficial way. [Hor11] We have already presented information about
the consistent designing and development of an ontology. Realism - Any ontology should
represent the reality of the considered domain (with the features and relationship) ir-
respective of the developers’ perception. Perspectivalism - An ontology should not only
help to reach limited goals but also it should support to create theories that are rational,
descriptive. Expressing reality with all the features in a single ontology is an intricate
task to achieve. The developers can adopt the modular approach to develop ontologies to
reduce the information crowding. Fallibilism - The design that expresses the reality can
be proved to be false. The features, in reality, are subjected to improvements or changes.
In any evolving domain, the improvements or changes to the features are constant. To re-
flect reality in the ontology, parts of the design should go through the corrections required.
Take away for designing ontology is

• Maintain version for each ontology. It helps to keep track of the changed and in
correcting the ontology with the required information.

Adequatism - Ontology should be designed and developed with fine details which can help
to associate with other domain and reuse the existing design and features. Adequatism
increases the interoperability of the ontology as well.
There are other few additional rules to be considered for designing ontology. We have
discussed earlier the reusability of the ontology. Reusability enables the ontology devel-
oper(user) to rectify the existing problems with the domain and improve the quality and
accuracy of the features presented. Though manifesting the reality of the domain is the
essential part of ontology design. The ontology should also address the usage of the con-
fined domain. There should be the right amount of balance between reality and real-time
usage of the ontology. The development of ontology is a continuous process so the design
should help to manage, update, correct, and extend the domain with relevant features.
It is possible to expand the ontology with the nearby domain. The starting point of the
design of domain ontology should express the features which are vivid and simple to un-
derstand the domain. This is known as "the principle of Low-hanging fruit".
The common pitfalls should be considered carefully in OWL. [Rec+06] They are

1. Usage of the disjoint class
2. Identifying and applying apt restrictions (Existential restrictions).
3. Adapting Open World Assumption
4. Understanding the difference between domain and range.

All the individuals should at least have one relationship with the property. Some restric-
tions or existential restrictions is the default restrictions in OWL. Open World Assump-
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tion (OWA) helps to maintain the correctness and add missing or new information to
the ontology.
As mentioned above, the best practices and basic rules which provides complete guidelines
to design and develop the ontology in an efficient way.
In the following section, we are going to examine how to develop ontology. There are sev-
eral methods possible to build or develop ontology. Based on the best practices, we should
support the concept of reusing the existing ontologies and sustain consistency through-
out the development process of any ontology. Domain Knowledge Acquisition Process
(DKAP) methodology assists with the above-mentioned issues. The steps carried out
through this methodology is unlike other ontology developing methodologies. The struc-
ture of the DKAP methodology as shown in Fig. 3.4 There are nine steps involved in
developing ontology. [SF07]

1. Defining domain and scope of the ontology - The crucial initial step provides sup-
port to understand the purpose (domain) and context (relationship) of the ontology.
Establishing the limit to explore the domain and their associated relationships.

2. Reusing the existing ontology if available - This step shows the major difference
from the existing methodologies.

3. Planning the activities for developing the ontology.
4. Acquisition of the data and interpret the gathered data for the chosen domain.
5. With the help of the interpreted data, develop a rough version of the ontology.
6. Test and perform cleanup for the existing data in the rough version of the ontology.
7. On the completion of the ontology development, check the Coherence and correct-

ness of the ontology.
8. If any issues observed previously, this step paves the way to fix them by adding

appropriate data to the ontology. During this step, data will be gathered and inter-
preted again.

9. The final step of the methodology is promulgating the ontology and sharing the
experience in developing ontology.
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Figure 3.4: DKAP Methodology Structure [SF07]
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3.2 Advanced Foundations for Knowledge Representation

3.2.1 Patterns and Anti-Patterns

When we create ontology models for information systems, we often assume we know
what models we create and how to use them. However upon inspection we may notice
that we make many implicit assumptions that are not represented in the model and
might create many misunderstandings, communication problems or simply false data.
This issue falls into the category of ontology and has to be addressed in order to make
accurate models. Prof. Guizzardi3 states the problem definition in his paper as follows:
"[...] information systems engineering, in particular, and rational governance, in general,
cannot succeed without the support of a particular type of discipline. A discipline devoted
to establish well-founded theories, principles, as well as methodological and computa-
tional tools for supporting us in the tasks of understanding, elaborating and precisely
representing the nature of conceptualizations of reality, as well as in tasks of negotiating
and safely establishing the correct relations between different conceptualizations of re-
ality. On one hand, this discipline should help us in producing representations of these
conceptualizations that are ontologically consistent, i.e., that represent a worldview that
aggregates a number of abstractions that are consistent with each other. On the other
hand, it should help to make explicit our ontological commitments, i.e., to make explicit
what exactly is the worldview to which we are committing. In summary, this discipline
should help to produce concrete representation artifacts (models) of conceptualizations
of reality that achieve the goals of intra-worldview consistency and inter-worldview in-
teroperability." [Gui14]
This section gives an outline of the work on patterns and anti-patterns to evaluate on-
tological commitments.

3http://www.inf.ufes.br/∼gguizzardi/Education.htm
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Figure 3.5: Patterns for Identifying the Scope of Transitivity of Part-Whole Relations
[Gui14]

Figure 3.5 shows 5 structural patterns. They are context dependent (by giving a
structure) and at the same time content-independent (by allowing them to be filled by
any class) patterns. As can be seen in figure 3.5.a-c transitivity is allowed and can be
deduced out of the given structure, whereas in 3.5.d+e transitivity would lead to false
conclusions.

Figure 3.6: Examples of Valid but Unintended Instances of the Organ Transplant Model
[Gui14]

Figure 3.6 shows this with an example: Although a human heart is part of a person,
and a musician is a subclass of a person (a role to be exact) and a musician is part of
an orchestra, it cannot be deduced that a human heart is part of an orchestra (following
figure 3.5.d). Part-whole relations have some significance in problem solving tasks and
that is why they are frequently addressed in various works. Such patterns can guarantee
that certain conclusions aren’t made. However it is not possible to prevent that instances
of these models will be intended ones. That’s where antipatterns are introduced. We can
consider another domain with the classes surgeon, transplant, donor and donee, where
various relationships can hold between these like hasDonor, hasDonee, hasSurgeon. If
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we give those elements a pattern, still many variations can occur. This is exemplified in
figure 3.7. In a. you can see that a person can donate a transplant to himself and be the
surgeon of the operation of that very same transplantation! In b. the donor is a different
person, but the surgeon and the donee is still the same. So as can be seen many ’worlds’
can exist for the same structural model. In this case, both are inadmissible following
social rules rather than ontological distinctions. With the OntoUML editor4 and prede-
fined structural rules and algorithms these ’worlds’ can be made explicit and simulated
visually. The user can then clear up inconsistencies and correct underconstraining or
overconstraining the model.

Figure 3.7: Example (A) and Counterexample (B) of Warranted Inference of Part-Whole
Relation [Gui14]

3.2.2 Multi-Level Theory

The OWL standard is continuously revised and enhanced and there are different fami-
lies of languages. One issue that is not yet addressed in OWL that is being addressed
in MLT (Multi-Level Theory) is that various classes can be instances at the same time.
Those instances/classes can themselves have instances and classes at multiple stratified
meta-levels. This also entails assigning values and properties at those levels.

Figure 3.8: A Four-Level Instantiation Chain in a Biological Domain. [Fon+18]

An example is given in figure 3.8. It would not be correct to state that species is a
subclass of taxonomic rank or lion is a type of species or cecil is a type of lion. Rather

4https://ontouml.org
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species and lion are instances as well as classes and cecil is just an instance. It would
also not be possible to query what species there are if dog and lion would not also be
instances. MLT* is the theory that describes rules and structure of the multi-level theory
which is then implemented in ML2, the multi-level modeling language (based on XText
framework). This well formed theory allows to deal with ordered as well as orderless
types simultaneously. These types are different in their in/transitive, ir/reflexive and
anti/symmetric properties. Ordered types are schemes to allow for stratification whereas
this is absent in orderless types.

Figure 3.9: MLT* Basic Scheme Extended by a Domain Example [Fon+18]

Figure 3.9 shows this formalized theory with an example. The upper fragments are
incorporated in the upper ontology UFO (Unified Foundational Ontology) and the lower
fragments are the example. A BusinessAsset of some company for example is an order-
less type, because it has instances of various ordered types. AppleParkMainBuilding for
example is an individual (an instance of Building) whereas iPhone5 (also an instance
of BusinessAsset) is a 1st Order Type (because individual IPhone5’s are instances of
IPhone5 which in itself is an instance of CellphoneModel). Ordered types are instances-
classes at their respective level of stratification. This model is further supported by the
powertype pattern [Car88]. Accounting for an upper level abstract syntax and expressive
stratifications, MLT* improves on existing approaches.
As discussed in [Joã+18] there are various workarounds for languages that do not sup-
port multiple levels that have disadvantages. This paper analyzed wikidata in terms of
incorrect conclusion based on insufficient study of MLT. Figure 3.10 shows an example.
If Tim Berners Lee is a computer scientist, the subgrouping of the model would suggest
that Tim Berners Lee is a profession. Here the error was the subclassing of creator and
profession. The multi-level approach would classify profession as second order type and
its instances as first-order types. A further paper [Joã+19] discusses the transformation
into a common two-level language of the approach.
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Figure 3.10: The Structure and Occurrences of AP1 in Wikidata (Excerpt) [Joã+18]

3.2.3 Reasoning with Ontologies

Although reasoning is one of the capabilities for introducing and using ontologies, many
ontology models do not make use of reasoning. It can be argued that to achieve inter-
operability, it is not needed. And even in this project usage of reasoning was still to be
explored and referenced where seen as appropriate. This section gives an introduction
and a few examples of what can be deduced using reasoning. Basically reasoning can be
classified into two categories:

1. ontology-based reasoning
2. rule-based reasoning

Whereas rule-based reasoning is addressed elsewhere, here ontology-based reasoning is
addressed.

Figure 3.11: Reasoning Constructs Part 1

Figure 3.11 and 3.12 give an overview about basic constructs and come from here.5 In
figure 3.11 we can see the constructor which is basically how you will find this keyword
written in the .owl document. Then there’s the description logic syntax, an example,
and the first order logic syntax. Intersection, unionOf etc. are known basic constructs in
logic. Only if an individual is male and human at the same time (with the intersection)

5https://www.kde.cs.uni-kassel.de/wp-content/uploads/conf/iccs05/horrocks_iccs05.pdf
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will the SPARQL query find this individual over the superclass (e.g. ’Man’). SomeVal-
uesFrom restrictions exhibit existential dependence and the reasoner would complain if
an individual under such a class would not have such a relationship (e.g does not have
a Doctor as child), but only if this is explicitly stated! An allValuesFrom restriction
may e.g. either lead to one of those two inferences. With an example: Take a mother,
brother and sister, and you have a specific mother, brother, sister etc of each class. If we
have ’mother’ ’hasDaughter’ ’only’ ’daughter’ relationship, and there is a ’hasDaughter’
connection from the mother to the brother, the ontology will infere that the brother is
also a daughter. Secondly, only if you make the class ’daughter’ and ’brother’ disjoint,
the ontology reasoner throws an error. This might not be considered by beginners. Car-
dinality restrictions restrict the number or relationships to a given class. It has to be
considered that all of those individuals have to be made explicitly different in order that
the restriction can serve its purpose.

Figure 3.12: Reasoning Constructs Part 2

Figure 3.12 shows further constructs in OWL syntax (same as above constructor).
In OWL, a rich subClassOf hierarchy (which can be nested) yields the meaning and
understanding for the individuals. It is an essential part of the reasoning process. They
describe as subsumptions which concept is more general than the other. SubpropertyOf
works similar to "subclassOf" but with object properties. An equivalent class or defined
class, allows to infer class hierarchies and if individuals are implicitly part of a class. E.g.
an equivalent class ’mother’ ’hasDaughter’ ’some’ ’daughter’ makes as subclass all classes
that have an ’hasDaughter’ ’some’ ’daughter’ restriction. Furthermore, individuals that
have a daughter will be inferred to be mothers. Related to that is the equivalentProperty
which makes two classes equal. In addition, transitive properties allow for chain inference
in a bottom-up or top-down manner. E.g., that when an engine is part of a powertrain
and a powertrain is part of a car, it is inferred that that engine is also part of the
car. Which is not stated explicitly! Additionally, there is also the inverse property e.g.
something which has a part is in turn the part of something.

3.2.4 Getting an Overview of Foundational Ontologies

Foundational (or upper or top-level) ontologies are ontologies that consist of very general
terms, such as object, property or relation. They are used to help making ontologies inter-
operable. They are a rather recent development in ontology engineering. Some academic
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sources seem to be discordant about their usefulness on the one hand. But some leading
professors in ontology engineering are convinced about their usefulness. The trend seems
to favor using top-level ontologies. One recent assessment was made by Maria C. Keet
in [Kee11], [Kee18]: "A controlled experiment has been carried out with 52 novice ontol-
ogy developers, which showed that, on average, using foundational ontology resulted in
an ontology with more new classes and class axioms, and significantly less new ad hoc
object properties than those who did not, there was no part-of vs. is-a mistakes, and,
overall ’the cost’ incurred spending time getting acquainted with a foundational ontology
compared to starting from scratch was more than made up for in size, understandability,
and interoperability already within the limited time frame of the experiment." Some of
their advantages are listed in above section, which lead to a decision to utilize top-level
ontologies in the project. This author thinks it is a wise and farsighted decision to make
use of them. Some of the better-known top-level ontologies are:

• UFO (Unified Foundational Ontology) [Gui05]
• BFO (Basic Formal Ontology) [ASS15]
• GFO (General Formal Ontology) [HH06]
• DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering)
• BORO (Business Objects Reference Ontology)
• SUMO (Suggested Upper Merged Ontology)
• YAMATO (Yet Another More Advanced Top-level Ontology)
• GIST (Minimalist upper ontology) [McC10]
• GUM (Generalized Upper Model) 2.0 [BHR95]
This is not a complete list, but a comprehensive list would also not list more than

around 20 top level ontologies. Although being domain neutral top-level ontologies suffer
themselves from the problem that they are accounting for different nuances and are
themselves not interoperable. One study showed that it was possible to align 30% of two
top-level ontologies, but most parts were not compatible. There are efforts to unify these
top-level ontologies, but there does not seem to be a consensus if this is even possible.
At this time, efforts are being made to unify a core of these ontologies.

3.2.5 BFO Structure and Explanations

BFO is a so called realist ontology and contains a minimum of upper level classes. Part
of it are also ’definition’ and ’example of usage’ properties that help in building the
ontology. Figure 3.13 gives an overview of its classes. Displayed here is the continuant
part: entities that continue/persist to exist through time completely. The occurent part
is not contained in the figure: it describes entities that occur/happen in time like events
and processes. Independent continuant is a continuant that is the bearer of some role,
quality, disposition etc. and exists independently of those qualities. The dependent entity
is secondary in dependence. Generically dependent continuant is a continuant that
is dependent on more than one independent continuants (that can serve as its bearer, or
more precisely that are able to migrate from more than one independent continuants).
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Figure 3.13: Basic Formal Ontology Continuant Part [ASS15]

Example is a pdf file on serveral storage discs. Specifically dependent continuant is
a continuant entity that depends on one independent continuant for its existence. They
exhibit existential dependence, e.g color of this tomato, the pain in your left elbow, mass
of this cloud. Material entity is an independent continuant that has some portion
of matter as parts. An object is spatially extended in 3 dimensions, causally unified
and maximally self connected. E.g. a person with a hat is not an object, but a person
and a hat are objects. Fiat object part is a material entity that is a proper part of
some object, but is not demarcated from the remainder of this object. E.g. upper torso
or western hemisphere. Object aggregate is a material entity that is a collection of
objects. E.g. a company or organisation. An immaterial entity contains no material
entities as parts. A site is an immaterial entity in which objects can be contained, defined
relatively to some material entity like a wall or floor, which builds the containment, e.g.
a cave. Continuant fiat boundary is an immaterial entity that is of zero, one or
two dimensions and does not include a spatial region as part. E.g. objects boundary
(surface) where it meets its surroundings. Spatial region is an immaterial entity which
is part of space. Quality is e.g. color of this portion of blood, shape of this hand,
mass of this kidney. Relational quality have a plurality of independent continuants
as their bearers. E.g. marriage bond, instance of love, being a parent of. A realizable
Entity is a specifically dependent continuant that inheres in one or more independent
continuants (as qualities), in contrast to qualities, realizable entities are exhibited only
through certain characteristic processes of realization (manifested, actualized, executed),
e.g. role of being a doctor, the functions of the reproductive organs, the disposition
of a portion of blood to coagulate, the disposition of a portion of metal to conduct
electricity. A role is an externally grounded realizable entity, which is possessed by its
bearer because of some external circumstance. A role is assigned by some other person to
execute some form of authority, e.g. role of being a doctor. A disposition is a realizable
entity in virtue of which a process of a certain kind occurs. The trigger might consist
of being placed in a certain environment, internal event within the object or external
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influence, e.g. the disposition of a magnet to attract iron fillings, A function is a special
kind of disposition, a realizable entity whose realization is an end directed activity. It
is something the bearer possesses because of how it came into existence (naturally or
through design). Or came into being in order to perform activities of a certain sort, e.g.
a function of a hammer to drive in nails, a function of a pen to write.
These upper level structures contain disjoint hierarchies and thus support basic reasoning
processes when subclassing other classes under these top classes. E.g. the ontology does
not allow for instantiating both a hardware part and a function as superclass of the
same instance, because independent continuant and specifically dependent continuant
are disjoint.

3.2.6 Part-of Relationship considered more closely

In the GENIAL! basic vocabulary we defined the basic transitive relationship has-part
with its inverse part-of and the non-transitive relationship part-of-directly. Part-of-
directly is used here to define the relationship between two classes that is a direct (one
level hierarchy) relationship between components. That was necessary in order to con-
form to the requirements of description logic.
This was expected to suffice for the use cases we face in the project. However, the has-part
relationship is much richer and between different kinds of classes different relationships
hold that may not easily be combined. Here some examples are given.

Figure 3.14: Part-Whole Relationships Taxonomy [Kee17]

In [KA08a] Maria C. Keet describes ontological distinctions of the part-of relation-
ship. Some part-of relationships (if the ontology just contains part-of) may simply be
false. Also, she makes much use of domain and range axioms to specify the use of each
ontological distinction. Figure 3.14 shows a taxonomy of part-whole distinctions. These
distinctions and the domain and range axioms are based on the foundational ontology
DOLCE. The involved-in object property holds between perdurants (both as range and
domain). Perdurants are similar to the occurents described in BFO. As an example
’chewing’ is involved-in (part-of) the greater process of eating (which as processes are
both occurents/perdurants). In this way, ’chewing’ for example could not be involved
in a physical object. Keet describes these relationships in detail with their respective
formalizations.
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3.2.7 Other Developments

Distributed Ontology, Model, and Specification Language (DOL)

DOL is a metalanguage that is unified in order to allow to integrate and reason over
a variety of languages of logic. This reasoning may not always be successful, but DOL
allows to express some axioms that are not part of OWL in another language and then
link them together. The semantic web community has different requirements/statement
of affairs on language that go beyond OWL, but can be expressed through a combination
of logics.

Figure 3.15: Family of Languages/Logic supported by DOL with its Translations (Ar-
rows) [Mos+14]

Fuzzy and Rough Ontologies

Fuzzy and rough ontologies deal with uncertainty and vagueness. When something is
uncertain, we lack knowledge about it and may only be able to ascribe a possibili-
ty/probability to a true-false statement. For example, a low blood pressure, a green-ish
car or an event that occurs often. When something is vague, the concept in itself is not
well defined, may be categorised differently by different people, and may yield different
results in different contexts. Vague terms are for example ’young’, ’cold’ or ’tall’. The
reason this is important becomes obvious if we for example want to retrieve a query
like: ’What cheap hotels are close to the train station?’. This also fits in nicely with
the notion of context. If you just bought a car or are broke, or are at the location by
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foot instead of by bike, these concepts may take on a different meaning and shift to its
opposite (e.g. something is ’expensive’ rather than ’cheap’ or ’far’ instead of ’close’). The
fuzzy concepts of fuzzy ontologies have an interpretation function that varies between
[0,1] that is usually a continuous function indicating the degree to which a concept is
true or satisfied. There are reasoners like fuzzyDL reasoner who can reason with this
information, which is often annotated. Rough ontologies account for that we may not
know if something is an instance of a class. The properties of this class can then be
specified more completely to increase precision.

Time and Ontology

How to model aspects of time, how to reason with it and temporal description logic
are subject-matter of research. The time ontology6 is a way to describe time in a way
that it can be utilized consistently across different domains and applications. It describes
classes like Interval, TemporalEntity or Instant and object properties like before, after or
duration. It also supports basic reasoning tasks. An issue that multi-level theory solves,
that is present in this ontology: You may have a class DayOfWeek and an instance Friday.
But you are not able to instantiate specific Fridays, e.g. Friday the 6th. This is because
Friday is not a first-order type. To exemplify why the encoding of temporal information
is important and what they can enable is shown with the two queries [Kee18]:’Who was
the South African president after Nelson Mandela? and Which library books have not
been borrowed in the past five years?’

SHACL - SHapes Constraint Language

Whereas OWL is designed for inference, SHACL7 is based on RDF and is for validation
purposes. To use validation, one has to move from an open world to a closed world
assumption. The difference can be most easily explained by: in OWL if something has
certain properties it belongs to a class, whereas in SHACL it is if something belongs to
a class it has to have certain properties. It is kind of the opposite logic. SHACL can
tell you if a property is missing or has a wrong value or has a wrong format. The basic
construct is a shape which can be either classes, nodes, the object of a property or the
subject of a property. When the shape is the object of a property, we can for example
define that as soon as someones ’works for’ something, he has to have a name, e.g. a
string. It uses Paths the define the route of constraints which can be predicates sequences
or inversed paths. There are filters who further constrain a shape to narrow it. SHACL
allows multiple people to use their own views as ’shapes’ and thus use the same ontology
to satisfy their needs: one ontology - multiple shapes. In companies different people
have different understanding and meaning for different terms. Shapes allow that such
understandings can be met and work together. So that these different people can validate
according to what is important to them. These shapes can be reused and deactivated.

6https://www.w3.org/TR/owl-time/
7https://www.w3.org/TR/shacl/



Chapter 4

Tools and Methods for Knowledge
Management with AgilA

4.1 AgilA Introduction
The tool is best introduced from an excerpt of the introduction of the first paper of
the author about the tool [WG18]: "Digitalization, especially under the umbrella of ’In-
dustry 4.0’ has become very popular and quite a buzzword. In particular this regards to
production, logistics and maintenance. The deep networking and application of intelli-
gent methods yields opportunities to reduce costs and shape more flexible productions.
The life cycle of complex products like in automotive industries, especially comprises
product development. For product development the focus of research has been model-
based development; virtual prototypes allow for rapid evaluation of designs and corporate
and shared development of hardware, software and mechanical parts.
A big issue of model-based development is that the design and development of such mod-
els is time consuming and costly, because it is aimed for modeling the dynamic behavior
as meaningful as possible. This often requires knowledge of the whole context of a system
and is non-trivial. Often models are missing completely, for example from mechanical
parts and their tolerances. Here, networking of development with production, product life
cycle management, logistics and other stakeholders yield new opportunities.
In the scope of this publication a methodology and a prototype knowledge-based tool is
introduced, that depicts ways to address aforementioned problems through missing mod-
els. The tool will be demonstrated according to an example from the automotive domain.
By means of the example, it will be demonstrated how models with dynamic behavior in
development processes are substituted through properties, uncertainties and a constraint
net of a knowledge-based system.
AgilA (Agil Automotive) is based on a knowledge base in form of ontologies and saved
in the Ontology Web Language (OWL). The knowledge base consists of the knowledge
about the structure of considered parts. Furthermore, it consists of calculation functions,
which describe a relationship between properties of parts of the system and system prop-
erties and functions. Calculation functions are often known to engineers as approximate
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estimation functions. Additionally, there are more uncertainties and tolerances quantifi-
able especially from production and product life cycle management. The tool gathers this
knowledge in a web-based database and allows for the rough, but holistic optimization of
a system.

Figure 4.1: Scope of Tool AgilA [WG18]

Figure 4.1 gives an overall overview of the scope of the tool. As can be seen its appli-
cation is to be positioned in early stages of the development process. It is used to define
and refine the requirements and make early estimations of the system architecture and
the design. By using just semantics to specify the system it is supposed to be used in the
development and operation cycle as well, where we directly deploy new attributes and
definitions and immediately run them on our system. The motivation and usefulness of
the approach have been validated and tested and have been elaborated extensively else-
where [GW18].’

4.2 Preparatory Work
To kickstart the work, we began implementing two versions of a graphical user interface
that allows for some basic setting up and configuration of an automobile with its features
and variables. The first was implemented by the author and the second one by students.
The author’s version as seen in figure 4.3 relies on selecting systems and system parts
from listview panes which get instantiated as individuals in the ontology by selecting
them (e.g. in the picture a BMW as designed systems is selected was well as a chassis
configuration). In the lower part of the picture, it can be seen that the chassis is refined
to a sport chassis and the system speed is calculated depending on the components.
In the graphical user interface of the students in figure 4.2 , it can be seen that all
properties from the ontology for every individual on the right side is displayed and that
they can be tweaked and edited in the other ’add to ontology’ tab. On the left the class
hierarchy is displayed with all classes in the ontology. On the bottom we can see that
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object properties can be selected and added to the properties of the cars.
Both implementations use a different ontology and have a slightly different setup.

Figure 4.2: Graphical User Interface of Students [WG18]

4.2.1 Initial Architecture

Figure 4.4: Initial Architecture of AgilA

The initial architecture just consists of a local AgilA Configurator, a software program
running on a desktop machine. Which in itself consists of a graphical user interface as
illustrated previously, the OWL API to control the ontology saved in the Ontology Web
Language (OWL) and the conventional constraint solver Z3. The conceptual knowledge
of the system and its parts were stored in OWL, whereas the constraints, their formulas
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Figure 4.3: Graphical User Interface of Author

and semantics were stored initially in XML. This was to be able to parse the formulas and
translate them to Z3 in a machine-readable fashion. The control knowledge is in brackets
because it is required by the expert system, but was only partially implemented in the
initial version. The architecture is illustrated in figure 4.4

4.2.2 Ontology

From the paper "A Knowledge-based Approach for Engineering 4.0" from the author
[WG18]: "The structure of cars as well as their components are constituted by is-A and
hasParts relationships and allows for a specialization ("Top-Down") as well as integra-
tion (Bottom-Up) of the system and their components.
Figure 4.5 shows an excerpt from the conceptional structural hierarchy of the engine.
Here within the graphical overview the relations "is-A" (yellow) and "hasParts" (orange)
are illustrated as edges and the classes as nodes of a graph. Within the graphical view
other relationships and classes are hidden that are in relationship with these classes. This
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is indicated by the plus symbol on the corresponding class. This hides the complexity and
allows for just showing classes and relationships of interest.
Figure 4.6 shows an additional overview of how the class car is structured with its com-
ponents chassis, powertrain and body and again how a powertrain consists of tires, gear,
coupler and engine. The engine in itself can again be specialized into an electrical or
combustion engine (see Figure 4.5). The concepts System as well as SystemPart are uti-
lized by the userinterface to display the system and components in lists. The class engine
can be further stripped down even to control units."

Figure 4.5: Structural Hierarchy of the Engine via is-A and hasParts Relationships
[WG18]

Figure 4.6: Overview of the Components of the Ontology [WG18]

4.2.3 Constraint Net

To demonstrate and test the methodology, at least in the way to show its functionality, a
hypothetical constraint net was set up. From the paper "A Knowledge-based Approach
for Engineering 4.0" by the author [WG18]:"To configure a car there are a variety of
dependencies, constraints and features. A first, preliminary overview gives Table 4.1.



4. Tools and Methods for Knowledge Management with AgilA 61

Table 4.1: Constraint Net of Use Case [WG18]

Pin Value C0 C1 C2 C3 C4 C5 C6
Car Price [15.000-70.000 e] x
Speed [190-240 km/h] x x x
Power [150-220 PS] x x x
Fuel Usage [3-8 l/100km] x x
Engine Price [500-1000 e] x x
Car Body Price [1000-2000 e] x
Tires Price [50-200 e] x
Car Type [Type A] x
Engine Type [Type A] x
Mass [1.200 - 2.200 kg] x x
Driving Resis-
tance

[0-2500 N] x

Frontal Area [1-4 m2] x x

Furthermore in the following there will be an explanation of all dependencies via for-
mulas, which are listed in the table with Constraint (C) 0-6. The constraints get then
translated into the knowledge base and are solved with the external constraint solver Z3
and with Affine Arithmetic, which is both work in progress.

𝐶𝑎𝑟.𝑃𝑟𝑖𝑐𝑒 = 𝐸𝑛𝑔𝑖𝑛𝑒.𝑃𝑟𝑖𝑐𝑒 + 𝐵𝑜𝑑𝑦.𝑃𝑟𝑖𝑐𝑒 + 𝑇𝑖𝑟𝑒𝑠.𝑃𝑟𝑖𝑐𝑒 (4.1)

Contraint C0: All round price. For reasons of simplicity only three components are
considered.

𝑣 = 3

√︃
2𝑃

𝜌𝐴𝐶𝑤
(4.2)

Contraint C1: Dependency of speed and power. v: speed, P: power, A: frontal area of
the car, Cw: air drag coefficient, rho density of medium air.

𝑦 = 𝑎(𝑥 − 40)2 + 𝑏 (4.3)

Constraint C2: Dependency of speed and fuel usage. y: fuel usage, b: fuel usage at 40
km/h and according to type of car, a: factor depending on gear, x: speed.

Car type Fuel consumption in liter/100km at 90 km/h at 120 km/h
Tesla - -
BMW 5,7 7,5
Mercedes 11,6 12,5

Table 4.2: Fuel Consumption of Cars [WG18]
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Table 4.2 illustrates the fuel consumption in liter/100km according to the speed. This
is a sample which allows to calculate the variables a and b; for example the result for
the BMW is a=0,0005 and b=4,5463.
Constraint C3: is a simple dependency of types. There are certain engine types that suit
certain cars.

𝑃 = 𝑎𝑥 (4.4)

Constraint C4: Dependency between power and price. P: power, a: proportional con-
stant, x: price. Here the result was linearized for simplicity, but it can also be taken from
a relational table.

𝑦𝑎𝑑𝑑 = 𝑚𝑐𝑎𝑟 + 𝑚𝑎𝑑𝑑𝑘 (4.5)

Constraint C5: Dependency of mass and fuel usage. yadd: additional fuel consumption,
mcar: mass of car, madd: additional mass in 100kg, k: proportional factor, i.e. 0.5 liters
in 100km.

𝑃 = 𝐶𝑟𝑚𝑔𝑣 + 𝐴

2 𝐶𝑤𝐷𝑣3 (4.6)

Constraint C6: Dependency of power in relationship with speed and driving resistance.
P: power, m: mass, v: speed, g: weight force, Cr: rolling resistance coefficient, A: frontal
area, Cw air drag coefficient, D: density of medium air (1, 29𝑘𝑔/𝑚3)."

4.2.4 Expert System Implementation

In this section we see a further development of the graphical user interface from a pure
manipulation and tweaking of the ontology to the construction of a technical system
with concrete construction steps. From the paper "A Knowledge-based Approach for
Engineering 4.0" by the author [WG18]: "This section describes the construction process
inherent in AgilA. It is quite similar to that of known expert systems. The construction
is realized by instantiating concepts, which yield a partial or complete solution depending
on the conceptual hierarchy. The process is similar to the one in [GCS90] and has been
adapted to our use case and constraint net and is illustrated with some basic examples.
It is to be noted that it is possible to engage interactively on all the following criteria by
the user via the user-interface and set up new attributes, selection criteria, phases etc.

Agenda
Here the current (partial) solution is being analyzed in regard to which construction steps
to take. The agenda lists all executable construction steps possible to take in the current
situation. In the case of our use case a possible agenda looks as follows tailored to the
engine:

As can be seen from the example, the agenda offers ways to specialize an object,
decompose an object via a top-down approach, aggreagate an object via a bottom-up
approach and parameterize objects, especially their attributes like for example here the
horsepower of the engine (here german for PS) which is either defined or restricted.



4. Tools and Methods for Knowledge Management with AgilA 63

specialize Engine
decompose Engine, hasParts
aggregate Engine, partOf
parameterize Engine, PS

Figure 4.7: Agenda for current Engine Instance [WG18]

Here the conceptual hierarchy describes the set of all admissible constructions, as to help
specify and define the agenda.

Selecting from the Agenda
Whereas the agenda lists all possible construction steps, the next step is to select one of
these steps from the agenda by agenda selection criteria as seen in Figure 4.8. These
preferences may depend on the collaborator using the tool and the actual stage he is
working on. Steps can be selected by pattern or rating, and what might also play a role
in this step are elements from recommender systems. When there are equally rated steps
further criteria are used to determine which step to prefer first.

Prefer specialization steps
Prefer decomposition steps
Prefer steps concerning the Engine
Prefer slot PS of Engine

Figure 4.8: Some Agenda Selection Criteria, also concerning the Engine [WG18]

Value Determination Methods
Value determination methods are important when it is not possible to make a fixed de-
cision on a construction process, and there are several conflicting options. To help with
decision making in this process a value determination method is used, which can be one
of the following things: interactively asking the user to make a decision, propagate the
decision from the constraint net, evaluating a function, using a default value, querying
an external source, or others.

Conflict Resolution Knowledge
In the current implementation conflict resolution knowledge is determined by the con-
straint solver, when a value or its propagation is out of bounce. In this step it can be
determined which steps to take to resolve that conflict and its cause is analyzed. It is
currently implemented as rules and shown in Figure 4.9 as a possible conflict of the fuel
usage attribute. It is possible to determine domain dependent rules for specific purposes.

Phases and Strategies
It is useful to pack up control rules in phases, because each phase has special steps to
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If Fuel Usage of Engine too high
Cause 1: Speed Attribute
Cause 2: Power Attribute
Cause 3: Mass Attribute
Proposed Solution: reduce value

Figure 4.9: Example of Conflict Resolution Rule [WG18]

take and a construction process consists of several phases. In this step we sum up various
criteria mentioned above like selection criteria, the focus of the construction, how to
determine certain values (e.g. by asking the user or through constraint propagation), the
construction context and conflict rules.

Control Rules
To switch between phases with smart knowledge, control knowledge is needed. In this way
it is possible to select and terminate a phase. These rules are listed in control knowledge
and an example is given in Figure 4.10."

If all components of Car are specified
And
Powertrain is incompletely specified
Do
Strategy Powertrain Phase

Figure 4.10: Example of Control Rule [WG18]
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4.3 Distributed GUI

4.3.1 Refined Architecture

Figure 4.11: Refined Distributed Architecture [WG18]

Figure 4.11 shows the refined architecture, which caters to the need of a collaborative
workflow between peers. It is a distributed architecture that consists of a client side,
which can be accessed through various devices and a server side which runs the program.
On the client side we have a website, which displays the constructs of the ontology and
can make adjustments to the system similar the one introduced in the initial architecture.
It gets its data send via JSON format from the server. On the server runs the AgilA
configurator which is now refined from the local GUI. It runs a web service, which
communicates with the client and hands over the data from the ontology which he gets
via the OWL API. Additionally, now the SWRL API reads the constraints from the
ontology, which are stored as rules and forwards them to the web service. Besides the
formal specification of the system, we store informal data and requirements in a NoSQL
database as well and translate SysML models to OWL1. The user login was specifically
designed from students and the expert system was done by researchers.

4.3.2 Modeling Constraints as Rules

It was considered how to best implement the constraints. One of the arguments was,
that it would be practical to have a common data format for all the knowledge and
not just have data distributed, partly in XML. Another argument was that the semantic
meaning gets lost in XML, and it would thus be more practical to have it in the ontology
as well. One way of achieving that was by utilizing the semantic web rule language and
to employ the constraints as rules in the ontology. OWL lacks the expressiveness to store

1https://github.com/brunopessanha/OWLRevelio
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Figure 4.12: SWRL Constraints

mathematical constraints, which is yielded by SWRL. In the ontology itself it would just
be possible to express that a certain variable is part of a formula and that formulas can
be queried according to a variable like comprehensive approaches to establish a semantic
mathematical library like the one in [Nev+13].
It was chosen to model constraints in the ontology as two separate datatypes with lower
and upper bound respectively. Figure 4.12 shows two example constraints modeled in the
semantic web rule language. The first is a power constraint to calculate the power of a
car in different units and secondly a maximum velocity constraint which is an output of
the power of the car, the drag coefficient, the frontal area and the density of the medium
air. In the upper half of the illustration on the right side there are the individuals with
the individual ’MyCar’ to which the constraints apply and on the left side are the data
type properties with the concrete values of the variables. With yellow background are the
data types which are inferred from the reasoner with the applied rules. The constraints
are directly calculated by the ontology/reasoner. This might be redundant since the
constraint solver does the same thing, yet it cannot calculate uncertain boundaries when
the variables are not all specified. However the constraint knowledge is still present and
can be read. The other task is reserved for the constraint solver. The SWRL rules applied
here use the mathematical built-ins swrlb:multiply, swrlb:divide and swrlb:pow which
are self-explanatory and similar to the math functions in java.



Chapter 5

Knowledge Representation and
Models in GENIAL!

Most content in this chapter served as a journal submission and is contained there in an
identical, corrected, similar or enhanced version [Waw+].

5.1 Roadmapping Introduction
Automotive development, planning and innovation has many influencing factors and re-
quires increasing collaboration along the value chain. Shortened development cycles and
disruptive technologies yield difficult to predict circumstances. One essential factor that
is driving the automotive industry in Germany is to understand what shapes micro-
electronic development within the next 20 years. To tackle this roadmaps are created
by leading experts in the field that define the goals and strategies necessary to secure
the economic leadership of the industrial sector in the country. In the case of micro-
electronics disparate factors influence developments. Roadmaps have so far thus been
informal documents, which are updated in periods of several years to live up to most
major changes. The project GENIAL! contributes here by providing a digital, ’living’
roadmap which is integrated in the PLM (product lifecycle management) and estimates
alternative implementations by considering context and dependencies in the form of
constraints, among other criteria. This entails estimating which technology is suitable
in certain circumstances, as well as exchanging and collaboratively refining innovations
and their implementations. This resulting tool is designed to help developers and man-
agers when dependencies are too complex to overlook. Thus one part of the solution is
sought in calculating mathematical dependencies via constraint solvers that enable one
to solve and optimise constraint nets via specific ranges and properties. Set languages
that support reaching the overall goal are the system modeling language (SysML), the
ontology web language (OWL), and eventually newly developed languages. Here, the fo-
cus on the role and use of ontologies in the project. Fig 5.1 depicts how the tool is used by
end users, developers, designers and experts. The knowledge base contains architectures,
variants, simulation models, rules, properties and functions, the output consists of feasi-
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Figure 5.1: Different Parties using GENIAL! Tool

ble architectures, solution spaces, properties and performances. The figure further shows
the partitioning into workpackages (WP). GENIAL! stands for Common Electronics
Roadmap for Innovations in the Automotive Value Chain. It considers changing value
chain structures as well as cartel and competition law. [GWZ19] and [GW18] further
explains basic ideas, concept and preliminary implementations.

5.1.1 Role of Ontologies in GENIAL!

The basic principle for our decision to utilize ontologies in GENIAL! was that they
transcend the purpose of a single project. They should be developed and maintained
independently, merged with other knowledge, and yield additional value via their mod-
ularity and extendability. Their integration to PLM, DevOps (Development Operation
Cycle), expert systems with their rules, and self-aware cyber-physical systems and inter-
operability in general. They are able to define the meaning of the data, can be interacted
with in natural language and serve as a single source of truth and unified data model.
They are able to capture (most) pieces of information and make the computer under-
stand and process it. It was desirable to have a library of components that denoted
ideally the same thing and standard used across companies, domains and disciplines.
Initially there were discussions on whether to use OWL or SysML or it focused on what
way they could complement each other. The authors found that there is still confusion
about the purpose and functionality of both languages to engineers. Table 5.1 gives a
compiled comparison that can serve as a guideline. Other works that did a more com-
prehensive analysis are [Gra09], [ZL12] and [KA08b]. Various diagram types have been
translated between both languages ([Gra09], [Isa15],[BBM14]) and there are similarities.
E.g. the information of block diagrams and internal block diagrams can be translated
sufficiently similar.



5. Knowledge Representation and Models in GENIAL! 69

SysML OWL
Machine readable / executable Machine understandable
No reasoning capabilities Reasoning and inference
Focus on modeling Focus on semantics and knowledge
Graphical Non-graphical
Closed world assumption Open world assumption
Not queryable Dedicated query language and API
System, its components, connections and
requirements

Things and their relationship

Dedicated to represent social and techni-
cal systems

Dedicated to represent all information

Good for documentation / interfaces /
simulation

Good to represent context and serve as
standard, interoperability

More concrete less considerate More abstract and ontologically correct
Collaboratively work on Share, exchange and extend
Used by humans Used by autonomous agents, devices and

computers
Designed by humans Designed by humans
More informal More formal
Origin in systems engineering Origin in artificial intelligence

Table 5.1: Comparison between the System Modeling Language and the Ontology Web
Language

5.1.2 Key Factors for Shaping Microelectronic and Automotive Devel-
opment

The most significant part of a digital roadmap is the key contributing factors that shape
microelectronic and automotive development. As a first step, the ZVEI technology-
roadmap1 ’Next Generation - electrical components and systems’ (translated from ger-
man) is utilised as input. Relevant future input is further expected from the "Arbeitskreis
Automotive"2, which serves as the Advisory Board of the project. The ZVEI study iden-
tified trends and mega trends, which are trends who have a great and epoch making
character, can be observed over a period of decades, and can create fundamental and
deep change. They transform whole societies. Trends (with mega trends in bold) iden-
tified are (1) globalisation, (2) mobility, (3) demographic development (including
(4) aging of society, (5) growth of world population), (6) health, (7) urbanisation, (8)
sustainability (including (9) resource efficiency, (10) protection of the environment,
(11) social standards), (12) digitalisation, (13) miniaturisation, (14) new technologies,
(15) internet of things, big data, (16) cooperation across industry sectors. Changing of

1https://www.zvei.org/presse-medien/publikationen/technologie-roadmap-next-generation/
2https://www.edacentrum.de/arbeitskreis-automotive
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legal boundary conditions will be considered. For the GENIAL! project, a team lead by
Unity consulting3, researched key influencing factors, projected them into the future as
scenarios, combined those scenarios to create new use cases and future scenarios and
back projected them again to make graspable a farsighted and more complete picture of
developments.

5.2 Ontology GENIAL! Modular Structure
This section explains the GENIAL! modular ontology suite in detail. It represents the
status at the beginning of the project with its basic components that will eventually
grow in sophistication. It was chosen to create a modular structure as the knowledge
base of the project is expected to grow to considerable amounts. Some modules depend
on others as well as some modules are relevant for some parts and use cases and not
others. It may only be intended to share some modules with specific cooperating appli-
cations in order to provide input for the AgilA tool. The current basic components of
the suite are described in the following and an overview is given in figure 5.2.
The overall ontology is structured in three main hierarchies. As top-level ontology BFO
is used. On the second level is the GENIAL! Basic Ontology (GBO) with its fundamen-
tal classes, object properties and data properties. On the third level we have the two
packages consisting of the context and roadmap information on the one hand and the
complete car model on the other hand. As indicated in yellow we currently reuse BFO,
the ontology of units and measure (OM) 2.0, ontology for innovation, the European
materials modeling ontology, DABGEO external factors ontology, DABGEO populated
places ontology, DABGEO weather ontology and the time ontology on various levels. We
are developing the effect chain ontology, hw-sw allocation ontology, hardware software
knowledge base with constraints, mission profiles ontology and e-Fuse ontology. The AI
model, information security ontology and other roadmap ontologies are representative
of the work in progress. Some of which are described in more detail in the next sections.
The roadmap knowledge are for the key indicators and knowledge outlined in 5.1.2. The
ontology documentation can be found online at4 and the OWL file at5. Additionally an
github repository can be found at6. Several TelCos confirmed the potential applicability
from experts. Below are the namespaces of mentioned components of the suite.

1http://purl.obolibrary.org/obo/bfo/2.0/
2http://www.ontology-of-units-of-measure.org/resource/om-2/
3http://www.purl.org/dabgeo/common-domain/environmentalfactors
4http://www.purl.org/dabgeo/domain-task/smart_grid_scenario/
building_district_city/populatedplaces

3www.unityconsulting.com
4http://w3id.org/gbo
5https://github.com/wawrzik/GENIALOntologies/blob/master/OntologyModuleSuite/

GENIAL!BasicOntology/GENIALOntBFO.owl
6https://github.com/wawrzik/GENIALOntologies/tree/master/OntologyModuleSuite
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5http://www.purl.org/dabgeo/common-domain/weather
6https://www.w3.org/2006/time
7http://purl.org/innovation/ns#
8http://emmc.info/emmo

Figure 5.2: GENIAL! Modular Ontology Suite

5.2.1 Basic Formal Ontology (BFO)

Basic Formal Ontology [ASS15] has been introduced and sourced in the biomedical
domain, originating one of the most successful ontologies, namely the gene ontology.
The gene ontology was so successful because it was able to describe genes consistently
across wide domains of living organisms. It enabled interoperability between areas of
interest developed independently. This success is now being transferred to the systems
engineering and industrial domain by the IOF foundry [Kul+18]. Other benefits include:

• Common upper level for all needed classes, even those that will be added in the
future

• The basic structure already had classes like bfo:quality, bfo:function, bfo:object and
bfo:role that are fundamental to GBO and other classes

• Philosophical distinctions that help with dynamically changing, additional infor-
mation
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5.2.2 GENIAL! Basic Ontology (GBO)

The GENIAL! Basic Ontology (GBO) is designed to structure car components in a
has_part hierarchy, attribute functions (e.g. the function to brake which can be exe-
cuted partially by the motor or brakes), and properties to each component. Furthermore,
properties can be modeled with dependencies. Dependencies are boolean or arithmetic
expressions, which will in the end span the constraint net. Those dependencies are parsed
and used to build a dependency tree in java as well as additionally in OWL. Basic con-
cepts of the OM 2.0 ontology enhance the properties with their respective units. The
context class is an additional class which is the superclass for context and roadmap in-
formation of the car model. This adapts the conceptualization of [CFM19] with BFO,
as context is not seen as part of BFO, but a separate branch. In respect to BFO, Aris-
totelian definitions where used. Table 5.2 shows the basic vocabulary and its definitions
in detail.

Compliance with ISO26262

"The ISO 26262 series of standards is the adaptation of IEC 61508 series of standards
to address the sector specific needs of electrical and/or electronic (E/E) systems within
road vehicles. This adaptation applies to all activities during the safety lifecycle of safety-
related systems comprised of electrical, electronic and software components."7 This pur-
pose and scope makes ISO26262 a good candidate to serve as a reference, definition and
formalization for basic concepts of our ontology. We thus integrated the concept of com-
ponent, hardware part and software unit into our ontology with its related concepts and
aligned them with BFO. Figure 5.3 shows the formalization of component. To complete
this definition we added ’element’, ’non-system level element’, ’system level element’ and
’system’.
The definition of component according to ISO26262 is: non-system level element
(3.41) that is logically or technically separable and is comprised of more than one hard-
ware part (3.71) or one or more software units (3.159).

7https://www.iso.org/obp/ui/#iso:std:iso:26262:-2:ed-2:v1:en
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GBO Classes Definition
element Continuant that is (according to ISO 26262) a sys-

tem (3.163), components (3.21) (hardware or software),
hardware parts (3.71), or software units (3.159)

system Engineered object and system level element that is a
(according to ISO 26262) set of components (3.21) or
subsystems that relates at least a sensor, a controller
and an actuator with one another

component (According to ISO26262) (According to ISO26262) non-
system level element (3.41) that is logically or techni-
cally separable and is comprised of more than one hard-
ware part (3.71) or one or more software units (3.159).
A component is a part of a system (3.163).

hardware part a piece of hardware that is (according to ISO 26262) a
portion of a hardware component (3.21) at the first level
of hierarchical decomposition

software unit a piece of software that is (according to ISO26262) an
atomic level software component (3.157) of the software
architecture (3.1) that can be subjected to stand-alone
testing (3.169)

property A quality or characteristic of a hardware part, software
unit or function. A property has a boolean, integer, or
real variable through the measure class.

function A bfo:function that a component, hardware part or soft-
ware unit implements

dependency A gbo:property that is a boolean or arithmetic function
/ equation on properties. Used to be calculated with GE-
NIAL constraint propagation. As string in LaTex syntax

context The circumstances that form the setting for an event,
statement or idea and in terms of which it can be fully
understood, e.g. Market, legal boundary conditions

unit A bfo:quality that is any standard used for comparison
in measurements

measure A bfo:quality that are amounts of quantities
quantity A gbo:property that is a representation of a quantifiable

(standardised) aspect (such as length, mass, and time)
of a phenomenon (e.g., a star, a molecule, or a food prod-
uct). Quantities are classified according to similarity in
their (implicit) metrological aspect, e.g. the length of
my table and the length of my chair are both classified
as length.

Table 5.2: Basic Vocabulary - Part 1
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GBO Object Properties Definition
has_part, part_of Models hierarchical de-composition/integration, transi-

tive
has_part_directly Models hierarchical de-composition/integration of direct

parts, intransitive
implements,
is_implemented_by

Links elements to their functions and vice versa

executes, is_executed_by Links processing units to the software on which they run
and vice versa

depends_on Links properties with dependencies
has_property, property
_of

Links elements to their properties

has_value Links properties or quantities to their measure (concrete
value)

has_unit Links measure with their unit
GBO Data Properties
hasNumericalValue Concrete value or digit of a measure

Table 5.3: Basic Vocabulary - Part 2

Figure 5.3: Formalization of Component Definition

Aligning GBO with BFO

ISO 26262 could be made compatible with BFO by defining ’element’ as an ’continuant’,
’software unit’ as ’generically dependent continuant’ and ’hardware part’ and ’system’
as subclass of ’engineered object’ which is a subclass of ’object’ by using multiple inher-
itance. It is thus defined in a way that supports the automatic classification of the ele-
ments of our design into components if boundary conditions are met. To complete the def-
inition of ’component’, ’comprised_of’ was defined as equivalent to ’has_part_directly’
and ’non-system level element disjoint to ’system level element’.
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Ontology of Units

gbo:property ns:car

om-2:quantity

om-2:unit

om-2:

hasNumericalValue

om-2:measure

<<rdf:type>>

ns:power

ns:power11

<<rdf:type>>

ns:car1

om-2:has

Value

"310"^^xsd:double om-2:has

NumericalValue

ns:measure1

<<rdf:type>>

gbo:has_

property ns:horsepower1

om-2:hasUnit

ns:horsepower

<<rdf:type>>

Figure 5.4: Instantiation of a Property and its
Unit

Figure 5.4 shows an instanti-
ation of how a property is re-
lated with its units. This is in
accordance with the OM-2 on-
tology. Instead of a data prop-
erty directly linked on the
property, an additional inter-
section allows to connect the
measure with the unit. In-
stead of hasPhenomenon we
use the more user friendly
hasProperty. The power of car
one is thus 310 horsepowers in
the figure.

Instantiation of ontology for innovation

Figure 5.5 shows an excerpt of the ontology for innovation with an instantiation of
the eFuse (for an explanation of the notation see the appendix). In this case the in-
novation ’eFuse’ hasImprovement ’FailureDiagnosis’, fulfils Need ’SwitchIntelligently’,
causesDisruption Disruption ’LimitedMemory’, hasBenefit Benefit ’AutonomousDriv-
ing’, hasEmbodiment Embodiment ’SmartEmbodiment’ and hasDevelopmentStage De-
velopmentStage ’d2-designing-the-solution’, among a few others.

Effect Chain Formalization

AgilA is supposed to be used in very early design stages, when many things are yet
unknown and to be treated as abstract solution spaces or black boxes. These are to be
refined throughout the development process and decided upon by constraints and con-
text. Some automotive companies use for such early stages so called effect chain analysis.
Those are Visio diagrams that constitute components, unknown components, the influ-
ences between them and influences from context and environmental factors. It is used
as a creative process and serves as a first draft for concretizing the architecture which
is followed by creating a first functional model. Things in this model are usually rather
informal and are used to be exchanged via documents between peers. For GENIAL! this
stage already contains useful knowledge for its solutions space explorations and depen-
dency analysis. Therefore we formalized a conceptualization of this model, to make it
queryable and analyzable. It contains a has_part hierarchy as already described above
with automotive and its microelectronic components, but additionally introduces the ef-
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ofi:DevelopmentStage

<<rdf:type>>

ns:d2-designing-
the-solution

ns:failure
diagnosis

<<rdf:type>>

owl: http://www.w3.org/
2002/07/owl#

ofi: http://cpsagila.cs.unikl.de/
Roadmap/OntologyForInnovation#

dc:creator: Frank Wawrzik
dc:contributor: Vishnu Sundarrajan

owl:versionInfo: 0.1.3
dc:title: Ontology for Innovation

ofi:Need
ofi:Improvement

ofi:Embodimentofi:Innovator

ofi:Problem

ofi:Benefit ofi:Symptom

ofi:Usage

ns:switch
intelligently

ns:climate change

ns:carbon diaxide
waste

ns:efuse

ns:carns:smart
embodiment

ofi:Innovation

<<rdf:type>>

ns:autonomous
driving

<<rdf:type>><<rdf:type>>

<<rdf:type>><<rdf:type>>
<<rdf:type>>

<<rdf:type>>

ofi:Disruption

ns:limited memory

<<rdf:type>>

ofi:emodied

by


ofi:has

Usage

ofi:has

Improvement


ofi:has

Development


Stage

ofi:causes

Disruption


ofi:solves

ofi:manifestedby


ofi:hashasSymptom


ofi:has

Benefit


(some) ofi:hasDeveloped

Figure 5.5: Instantiation of Ontology for Innovation for EFuse

fect chains.
As described earlier the effect chains are usually more informal, formalizing the

knowledge of this stage is arduous work as the model is rather complex. Some trade-offs
will have to be achieved or annotations may be used, because not always a formalization
may be needed. Figure 5.6 shows the effect chain ontology with the central term ’in-
terconnection’. Further some instance illustrate the example and instances of the effect
chain are made disjoint with ’owl:AllDifferent’ axiom. It is not part of the basic vocabu-
lary but an enhanced vocabulary. Various effect kinds with its type can be modeled and
related to properties and parts. Defining ports was omitted as in effect chains there are
no real signals and some declarations might be considered as input/output or not.

5.2.3 EFuse Context Model with Solution Spaces

EFuse introduction

An electronic semiconductor fuse or eFuse is a fuse used in automobiles that addition-
ally to a security function has the function of a relais. It switches more intelligently, yet
yields other trade-offs. Various trade offs have to be considered when using and design-
ing an efuse, especially assembly space, power dissipation and currents (among other
constraints). Additionally to the constraints, context defines other solutions spaces and
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gbo:hardware part

om-2:quantity

ec:interconnection

ec:effect kind ec:effect type

ec:electrical /
electronic

ec:acoustic /
sound

ns:cable tree

ec:desired effect
ns:power supply

voltage1

ns:efuse1

ns:interconnection1

<<rdf:type>>

<<rdf:type>>

<<rdf:type>>

(some)

ec:has_


effect_kind

owl: http://www.w3.org/2002/07/owl#
gbo: http://w3id.org/gbo#


om-2: http://www.ontology-of-units-of-
measure.org/resource/om-2/

ec: http://cpsagila.cs.uni-

kl.de/CarModel/EffectChain#

dc:creator: Frank Wawrzik
dc:contributor: Maik Hofmann

(Audi)
dc:contributor: Peter Neumann

(edaCentrum GmbH)

owl:versionInfo: 0.1.1

dc:title: Effect Chain Ontology

(some)

ec:is_connected_to

(some)

ec:has_


effect type

ec:hv / power ec:mechanical ec:softwareec:thermic /
optical

ec:undesired
effect

ec:misuse (user)

ec:stuff / material

<<rdf:type>>

<<owl:AllDifferent>>

<<owl:AllDifferent>>

gbo:element

gbo:hardware

gbo:non system
level element

ns:power supply
voltage

ns:efuse

<<rdf:type>>

Figure 5.6: Effect Chain Ontology in GENIAL

affects constraints.

EFuse Context Knowledge

Relevant contexts (which are partly mixed with constraints) among others are:
• If a function is realized in hardware (and which hardware) or software
• Which materials are used, and what are their context trade-offs (e.g. drivers)
• Dimensioning of inrush currents
• Some transistors can measure current and thus diagnose
• There are many fuses in the car. Groupings into current amounts yields benefits
• Always-on/always-off technologies and secure vs. initial state (depends on appli-

cation scenario)
• Which Tier 1 comes to which solutions
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Solution Spaces

Figure 5.7: Class Hierarchy of the Solu-
tion Space of Hardware and Software So-
lutions

When going from an initial idea to an actual
top-level requirement, decomposed requirements
have to be applied to solution spaces to explore
alternatives and their impacts. In this case each
function/task has a solution space which get suc-
cessively refined:

• Class hierarchy spans solution tree (Figure
5.7 shows an excerpt of the tree)

• Restrictions restrict solution tree for every
function (Figure 5.8 shows refined space for
functionB)

• Reasoner checks for consistency if restric-
tions are adhered to

• Keyword ’only’ restricts solution spaces,
keyword ’some’ selects solution spaces

There seem to be several advantages to occupying the ontology with the solution
space rather than having (just) plain java trees:

• Every solution space or part of
a solution space exists indepen-
dently

• Semantics are preserved which
means reusability

• Additional rules can be defined
over every solution space (in-
ferred by defined classes)

• Reasoning
• Every solution space can inherit

additional things/properties Figure 5.8: Restrictions on Solution
Space of FunctionB

• Other parts of the ontology can be combined with the solution spaces (indeed they
are solution spaces as well)

Excerpt from EFuse Model

Exchanging requirements along the value chain is a dynamic process, not only requir-
ing ontologies and system models, but also a front end to make inputs and analysis.
Figure 5.9 shows most information of a collection of eFuse related classes, restrictions
and instances that were created while analyzing this processs. It shows an incorpora-
tion of some parts and properties within GBO as shown in the top middle and right.
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It also shows the instances containing also units, properties and measures as seen on
the left bottom. The top left displays one possible solution for a smart power switch,
here anonymously called solution4. Here we see the ’has_property’ and ’implements’ re-
lation as restrictions on the class sol4_smart_power_switch. Notable is the cardinality
restriction ’implements exactly 0 temperature gradient sensing’, which negates that such
a function exists. Also notable is the use of ’hasValue’-restrictions, which serve as a filler.
They add relationships of specific instances to all instances of the class. This solution is
how it is displayed in the frontend for users to edit.

Figure 5.9: EFuse Prototype Showing Classes, Instances and Restrictions
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SWRL Deductions

Figure 5.10: SWRL
Rule Chain to induce
new Casings

Next to properties of single components, the ascertain-
ment of relationships is of importance. On the basis of
these relations it will later be possible to determine the
influences of local changes. As an example of refining a
functionality (new algorithm), reduced processor instruc-
tions could follow. Which in turn could be used to lower
the processor frequency, which reduces the power supply.
This in turn enables a passive processor cooling, which
influences the casing. Solving these deductions requires a
combination of OWL and e.g. SWRL. Only through these
formalisations of product and system properties a tool
supported validation is possible. This allows to determine
if a description is consistent or if a redesigned descrip-
tion actually is a refinement of a requirement. Figure 5.10
shows this rule chain and table 5.4 shows corresponding
exemplary SWRL rules.

Rule Description SWRL rule
An algorithm with speed
’average’ has an amount of
150 instructions

Algorithm(?a) ˆ hasSpeed(?a, average) → hasAmount
Instructions (AmountInstructionsOldAlgorithm, 150)

An algorithm with the
speed ’fast’ has 30 instruc-
tions less

Algorithm(?a) ˆ hasSpeed(?a, fast) ˆ hasAmountIn-
structions (AmountInstructionsOldAlgorithm, ?y) ˆ
swrlb:subtract (?z, 150, 30) → hasAmountInstructions
(AmountInstructionsNewAlgorithm, ?z)

If the amount of instruc-
tions is less than 125 the
processor frequency can
be reduced to 1.25 GHz

AmountInstructions(?x) ˆ hasAmountInstructions(?x,
?y) ˆ swrlb:lessThan (?y, 125) ˆ ProcessorFrequency
(?k) ˆ swrlb:multiply (?z, ?y, 10) → ProcessorFre-
quency(processorX) ˆ hasProcessorFrequency (proces-
sorXNew, ?z)

A processor frequency of
less than 1.3 GHz leads to
less power consumption

ProcessorFrequency(?x) ˆ hasProcessorFrequency (?x,
y?) ˆ swrlb:lessThan (?y, 1300) ˆ PowerConsump-
tion(?k) → Processor (processorX) ˆ hasPowerCon-
sumption (processorX, low)

If a processor has less
power consumption a new
casing is the recommended
action

processor (?x) ˆ hasPowerConsumption(?x, low) ˆ New-
Casing(?y) → RecommendedAction(?y)

Table 5.4: SWRL Rules to Deduce New Casing from Faster Algorithm
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Though the example is only illustrative, it shows untapped potential and new uses
of ontologies and SWRL and combines qualitative and quantitative rule chains.

5.2.4 Modeling Hardware / Software Allocation for Processors (Pro-
totype)

Figure 5.11: HW / SW Allocation Ontology Prototype

In GENIAL! we are considering possible not yet implemented parts and their solu-
tion spaces. We for example do not know if something is implemented in hardware or in
software. Hardware-software allocation determines performance, memory size, memory
access times and interfaces. It is thus part of the considerations of planning automotive
components and part of the constraint net. We think a software unit or software function
cannot exist without an underlying virtual hardware (processor, memory, etc.). And thus
usually the mapping is not 1 to 1, but many software functions may be scheduled on one
or more processors. The virtual hardware is then realized in concrete physical hardware
parts. This conceptualization seems to address the hw-sw allocation problem and seems
to fit with the idea of existential restrictions. With existential restrictions, we demand
that there must be such a relationship between software and virtual hardware in order
for a thing to be described completely and that it is conceptualized incorrectly if no such
relationship exists. This prototype will be refined further to meet the use case in future
works in cooperation with domain experts. The preliminary ontology can be found in
figure 5.11.
The virtual hardware is in the center and is distributed to min 1 real hardware (gbo:hardware
part). Further it has the requirements interface (gbo:hardware part), memory access time
(gbo:property), memory (gbo:hardware part) and performance (gbo:property). The soft-
ware function is a function (gbo:function) which runs on exactly 1 virtual hardware.
In a next complex step the virtual hardware gets scheduled on a real hardware, which
requires a selection of variants.

5.3 Formalizing Roadmap Knowledge

5.3.1 Starting with some Initial Models

This subsection refers to work done in collaboration with a master thesis entitled ’To-
wards a true microelectronic and automotive digital roadmap’ [Sun20]. Aim of the thesis
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was to explore how roadmap knowledge as described above can be modeled and create
first models of such domains.

eFuse Roadmap, AI and InfoSec Ontology

The properties and structure of an efuse are highly influenced by roadmap decisions.
The student traversed basically an UML model into OWL with some changes. This
model contains influence chains linking a concrete model and hardware parts to abstract
influences like climate change. And through the formalization of this knowledge we can
then estimate e.g. if a law changes (or we find out the cause of climate changes is initiated
by solar magnetic surface cycles of the sun rather than CO2 emissions) that there is an
actual influence of properties directly in the model (or at least that future versions have
to be modelled according to new roadmap information).

Figure 5.12: Electric Fuse Ontology Model [Sun20]

The student describes figure 5.12 as follows: [Sun20] ’In the cable model diagram,
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the diagram mainly focuses on climate change, autonomous driving, and e-mobility. In
climate change, the cable model deals with carbon dioxide reduction and legislation
aspects. Using the cable model in the transportation domain, how can we impact the
reduction of carbon dioxide. The cable model provides us with more information on
how the reduction of carbon dioxide can be achieved. In the automobile, vehicles used
by both public and private transportation can help us achieve the mitigation of carbon
dioxide. Also, reducing weight leads to the reduction of carbon dioxide. The weight
reduction is supported by reducing cross-section wiring. The reduction in cross-section
wiring directs to the space accessibility. The solution for all the problems from weight
reduction, reduction of cross-section wiring, and ultimately reducing carbon dioxide in
the automobile is using efuse. An electric fuse can recognize the fault and provides a
quicker response to the fault and recover from it. Also, the electric fuse has abilities such
as protecting the system from surge and have maximum fault current. The location of
the electric fuse does not have any restrictions like the thermal fuse, whereas thermal
fuse is located in a fuse box. This is one of the reasons that help to reduce the weight in
the automobile. The reduction weight indirectly reduces the cost implied as well. Let us
see further how to reduce losses in the automobile. Power distribution is challenging in
the automobile, using relays and fuse is one of the solutions, which can reduce the losses
in the automobile. Going from mechanical to semiconductor relays reduces weight and
cost. [Dup17; JB17]

The autonomous driving is another focus area of the cable diagram. In autonomous
driving, the operation in case of failure is considered and how the operation failure
issues is addressed with the help of the cable diagram. The solution to the problem in
autonomous driving is the electric fuse and cable model. The shortlisted reasons for the
operation in case of failure are redundant power supply, discharge onboard system, and
recognizing the fault in the onboard system. These shortlisted reasons need a diagnosis
and control for the onboard system and onboard system management. There are few
actions required for diagnosing the fault in the onboard system, controlling the fault in
the onboard system, managing the onboard system as well. The actions are suppressing
the defective paths, intelligent power supply, power down, and switching off the path
loads.’
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Figure 5.13: Summary of InfoSec (left) and Artificial Intelligence (right) Ontology
[Sun20]

Figure 5.13 shows the result and an excerpt of both the information security and
artificial intelligence ontologies. For more information see [Sun20].

5.3.2 Further Models

Figure 5.14: Individuals of the Roadmap Ontology
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This section builds on the previous one in that it further describes such knowledge
in areas such as legislation/laws, demographic development, innovations, e-mobility, au-
tonomous driving, but also gbo:hardware parts and gbo:properties and some rules. Figure
5.14 shows the individuals in the complete roadmap ontology.

Demographic Development

The question may arise if an ontology is the ’right place’ for information like demograph-
ics. However as can be seen in the following, it is often the case that some information
needs semantics whereas other information might rely on mathematics, which can then
be both combined. Figure 5.15 shows existential restrictions on the class demographic
development and the triples of a specific demographic_development1 instance. Some
classes define context like for example country. Each demographic allows then to be
loaded contextually from where you log in. The dependency class links the demographic
to its mathematical curve or table. Furthermore each demographic is linked to its prog-
nosis which contains a future estimated model of the demographic development. Each
demographic is also linked to a target audience (which is a semantified specific age range)
and an age range, which allows to e.g. select relevant parts of the population.

Figure 5.15: Demographic Development Ontology Model

Legislation and Laws

Exemplified are two laws:
1. law for allowing autonomous driving
2. law for banning internal combustion engines

Though a law for allowing autonomous driving seemed to be a complicated issue, soon
solutions appeared (e.g. driver has to touch the wheel at certain times) in the U.S. in
the advent of Tesla. Yet a law can be seen as something disruptive which can easily and
quickly prevent a technology. It is thus part of a roadmap and complicated intersec-
tions. The law for banning internal combustion engines can be viewed critical in that it
intervenes in the freedom of the people and superimposes certain values. It is assumed
now that the electrical car is superior with at the same time competitive price and may
naturally replace it.
A legislation/law is conceptualised as something which has a ’consequence’, which can
either be an ’admittance’ or a ’denial’ of something, e.g. an innovation. A ’consequence’
in turn has a point in time in which it occurs.
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Innovation, Improvement, Disruption and Barriers

The Ontology of Innovation as introduced earlier contains the classes ’innovation’, ’dis-
ruption’ and ’improvement’. Three classes which have been reused here. As Tesla is
currently leading the market and is highly innovating in several areas in a disruptive
way, some of their products have been modeled here. The disruptive character of those
innovations make other innovations obsolete or improves them in specific ways. One ex-
ample is the ’Tesla semi truck’ which has the improvements of ’co2 savings’, ’interior of
cockpit’, ’maintenance savings’, ’fuel savings’, ’acceleration’, ’total operation cost’ and
’window’. Other examples might be a flying car company that now solved the problem
addressed by Elon Musk about flying cars. Namely, that the the issue of ’very noisy’
has been solved to the degree of motorcycle level noise. Or the big falcon rocket, which
’deprecates’ the conventional airplane and ’liberates’ ’travel time for long distances’. The
words in apostrophe (’) are elements of the ontology (classes, instances, object proper-
ties). Furthermore there are ’barrier’s like ’e-mobility barriers’ or ’flying car barriers’ or
’tunnel barriers’ (Elon Musk builds tunnels for autonomous vehicles to avoid traffic and
go with faster speed). E-mobility barriers are currently ’cost concerns’ as the EV’s are
still very expensive (this is supposed to be solved with scaling production and improved
technology in a few years). Others are ’charging time’, ’ev range anxiety’ and ’charge
infrastructure’.

Properties, Explanation, Recommended Action and Rules

Example of properties in the roadmap are ’times’ like ’time to market’ or ’roadmap
time’. ’carbon footprint’, ’battery energy density’, ’filling station density’ (rather than
e.g. gas station, because it could be anything like electricity or hydrogen). ’autonomy’,
’affordability’ or ’age range’.
It might be useful that the ontology yields ’explanations’ for what is going on. E.g. as
part of shifting the roadmap time, barriers might be fulfilled (’barriers fulfilled’). But a
law might not yet admit it (’law does not yet admit’).
Furthermore we have the ’recommended action’ e.g. ’don’t do this / not recommended’
or ’execute this action’.’ Figure 5.5 shows a few first rules.
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Rule Description SWRL rule
1.If the battery energy
density gets over 400, then
the electric airplane be-
comes feasible

uo:battery_energy_density(?bed) ˆ uo:has_numerical
_value(?bed, ?bednm) ˆ swrlb:greaterThan(?bednm,
400) → uo:feasible_innovation(uo:electric_airplane)

2.If roadmap time greater
ttm for e-mobility bar-
riers, then emobility be-
comes a feasible innova-
tion

uo:roadmap_time(?rt) ˆ uo:has_numerical_value(?rt,
?dprt) ˆ uo:e-mobility_barriers(?barr) ˆ uo:has_ttm
(?barr, ?barrttm) ˆ swrlb:greaterThanOrEqual(?dprt,
?barrttm) → uo:feasible_innovation(uo:emobility)

3.If airplane is a de-
sign and has ttm greater
than ttm BFR (Big Falcon
Rocket) AND has purpose
long time travel, then dont
do it (the design)

uo:design(uo:airplane) ˆ uo:Disruption(?disr) ˆ uo: dep-
recates(?disr, uo:airplane) ˆ uo:time_to_market(?ttm)
ˆ uo:has_numerical_value(?ttm, 2028) ˆ uo:has_prop-
erty(?inno, ?ttm) ˆ uo:Innovation(?inno) ˆ has_purpose
(?inno, long_time_travel) → uo:dont_do_it(uo:air-
plane)

4.If a barrier is solved by
an innovation at roadmap
time it becomes a solved
barrier

uo:Innovation(?inno) ˆ uo:solving(?solv) ˆ uo:solves
(?inno, ?solv) ˆ uo:has_time(?solv, ?solv-
time) ˆ uo:has_numerical_value(?solvtime, ?slv-
time) ˆ uo:barriers(?barr) ˆ uo:solves(?inno, ?barr)
ˆ uo:has_numerical_value(uo:roadmap_time, ?rmpt)
ˆ swrlb:greaterThan(?rmpt, ?slvtime) →uo:solved
_barriers(?barr)

Table 5.5: SWRL Rules for Roadmapping

As can be seen, rule number 2 could be improved. I.e. it is not that as soon as one
of the e-mobility barriers is fulfilled, that e-mobility will be a feasible innovation. But
rather that if ALL the barriers are fulfilled, it is feasible. A feature which is lacking in
SWRL, but can be integrated.
Rule number 3 describes a direct use case when writing a roadmap or instantiating a
design (which might acquire the information from context). The roadmap is integrated in
the tool and is intertwined. A notification can pop up, indicating that the very innovation
may be disrupted and maybe yielding what has to be improved to be competitive.
Note that this is just an example as well, exploring in what a a digital roadmap yields
advantages over formal ones.
In rule 4 a method is applied that is known from upper ontologies. ’solving’ is a class
that would usually have been an object property. This way it becomes possible to add a
time of happening to a verb. Which is needed in this case.
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5.4 Hardware Domain
As a proof-of-concept in the following a hardware domain is modelled. It shows a uti-
lization of the GENIAL! Basic Ontology and an application of the concept. First, we
fill the knowledge base with some basic hardware concepts and instances that are part
of the simulation models of University of Tübingen. They build hardware and software
models of controller architectures with a hardware/software mapping in order to make
performance estimates and reduce energy. These are also crucial in the deployment of
automotive hardware and software.
In the following example a "wake up" function is deployed in a car that uses a neural
net for speech recognition. The architecture for computation consists of a general pur-
pose processor and dedicated hardware. The following two pages give an overview of the
hardware architecture.

5.4.1 Evaluation

Figure 5.17 and figure 5.16 show an excerpt of the ontology and knowledge base. In
general most of the modelling was straightforward and some modelling did take more
consideration. The ISO2626 was sufficient to express the model. The result was a five
level hierarchical decomposition ranging from the system to the components (hardware
or software) to the hardware parts/software units and two levels of the hardware sub-
parts. The hardware elementary subparts were too detailed for the simulation level. The
definitions held in the ontology assured correctness of the hierarchy and its levels of both
the ABox and TBox. The has parts hierarchy was more strictly modelled with the uni-
versal restrictions in order to ensure the hierarchies correctness. The result also showed
what might be a part of the ontology and the knowledge base and what might better
be kept in UML or both. The classification of processors e.g. as ’general purpose unit’
or ’custom purpose unit’ and memory types like ’internal memory’, ’volatile memory’,
’RAM’, ’SRAM’, etc. are good candidates es for the ontology. As well as the classification
in the basic ontology from ISO like hardware part.

Figure 5.16: Instance Hierarchy of Hardware and Software Elements

The actual model can be part of both languages, i.e. performance relevant properties
in the ontology and the UML model. The parts can be part of both SysML/UML and
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OWL as well in case they have proper semantics. Figure 5.16 gives a short overview of
the first three hierarchies of the instance model. The reasoner computes transitivity in
the has-parts hierarchy and supports navigating through the hierarchy. Creating logical
definitions can support consistency but also hinder possibilities. E.g. a system bus which
is a bus cannot consist of other buses like a address bus, a data bus or a address bus.
This would be in conflict with the ISO definition that the next hierarchical level of a
bus (because it is a hardware part) must be an hardware subpart (and not a bus again
in itself).

Figure 5.17: Taxonomy of Hardware Elements



mainMemory: HardwarePart

TÜRI5XProcessorCore: HardwarePart CNNAccelerator: HardwarePart

memoryBank0: Stat icLatencyMemory

size =  8192
dataWidth =  4
readLatency =  4
writeLatency =  4

memoryBank1: Stat icLatencyMemory

size =  4096
dataWidth =  4
readLatency =  2
writeLatency =  8

logarithmicMemoryInterconnect: LogarithmicMemoryInterconnect

latency =  1
readPorts =  6
writePorts =  3

memoryMap: MemoryMap

numMemoryBanks =  3
memoryBanks =  [memoryBank0, memoryBank1, controlRegister]
startAddresses =  [0, 8192, 12288]

fetchStage: FetchStage

latency =  1
issueWidth =  1

instruct ionBuffer: FifoBuffer

size =  12

jumpFU: JumpUnit

toProcess =  [jump]
latencies =  [1]

decodeStage: ExecuteStage

latency =  1

executeStage0: ExecuteStage

latency =  1

addSubLogicFU: Funct ionalUnit

toProcess =  [add, sub, logic]
latencies =  [1, 1, 1]

branchFU: BranchFunct ionalUnit

toProcess =  [branch]
latencies =  [1]

mulFU: Funct ionalUnit

toProcess =  [mul]
latencies =  [4]

divFU: Funct ionalUnit

toProcess =  [div, rem]
latencies =  [34]

executeStage1: ExecuteStage

latency =  1

loadUnit : MemoryAccessUnit

toProcess =  [load]
latencies =  [1]

storeUnit : MemoryAccessUnit

toProcess =  [store]
latencies =  [1]

registerFile: RegisterFile

numRegisters =  32
dataWidth =  4

l1ICache: LRUCache

size =  64
dataWidth =  4
readLatency =  1
writeLatency =  2

l1DCache: LRUCache

size =  64
dataWidth =  4
readLatency =  1
writeLatency =  2

l2Cache: RRCache

size =  128
dataWidth =  4
readLatency =  2
writeLatency =  3

controlRegister: Stat icLatencyMemory

size =  32
dataWidth =  1
readLatency =  1
writeLatency =  1

CNNAcceleratorController: PipelineStage

latency =  2

GEMMUnit : Funct ionalUnit

toProcess =  [gemm]
latencies =  [10]

weightLoadUnit : MemoryAccessUnit

toProcess =  [load_weights]
latencies =  [1]

featureLoadUnit : MemoryAccessUnit

toProcess =  [load_features]
latencies =  [1]

featureStoreUnit : MemoryAccessUnit

toProcess =  [store_features]
latencies =  [1]

acceleratorLocalMemoryBank: Stat icLatencymemory

size =  128
dataWidth =  4
readLatency =  1
writeLatency =  1

read()/ write():dataread()/ write():data

setProgramCounter():address

forward():inst. forward():inst. forward():inst.

read():data read():datawrite():dataread():datawrite():dataread():datawrite():data read():address write():dataread():data/ address

read():datawrite():dataread():data

read():data

read():datawrite():data

read():datawrite():data

read():inst.

write():data write():data read():dataread()/ write():data

write():data

read():data read():data write():data



HardwarePart

Memory

size: integer
dataWidth: integer
readLatency: *
writeLatency: *

MemoryMap

numMemoryBanks: integer
memoryBanks: Memory[]
startAddresses: integer[]

MemoryInterconnect

latency: *

PipelineStage

latency: *

forward(funct ion: PipelineStage.receive, inst.:inst.)
receive(inst: inst.)

ExecuteStage: PipelineStage

process(inst.: inst.)

Funct ionalUnit

toProcess: inst.[]
latencies: *[]

MemoryAccessUnit

latency: *

read(funct ion: MemoryInterface.read, address: integer)
write(funct ion: MemoryInterface.write, address: integer, data: data)

Buffer

size: integer

RegisterFile

numRegisters: integer
dataWidth: integer

Cache

size: integer
dataWidth: integer
readLatency: integer
writeLatency: integer
replacementPolicy: *

Stat icLatencyMemory

latency: integer

LogarithmicMemoryInterconnect

latency: integer
readPorts: integer
writePorts: integer

RRCache

replacementPolicy: random replacement

LRUCache

replacementPolicy: least recent ly used

FetchStage

issueWidth: integer

setProgramCounter(address: integer)

FifoBuffer

BranchFunct ionalUnit

setProgramCounter(funct ion: FetchStage.setProgramCounter, address: integer)

MemoryInterface

read(address: integer): data
write(address: integer, data: data)

CacheInterface

readFromNextLevel(funct ion: MemoryInterconnect.read, address: integer): data
writeToNextLevel(funct ion: MemoryInterconnect.write, address: integer, data: data)

1
1

forward():inst.

0..*

0..*

1..*

0..*

write():data

0..*

0..1

read():data

0..*

0..1

1

0..*

0..*
0..1

write():data

0..*

0..1

read():data

0..*

0..1

read():data

setProgramCounter():address

1

1



5. Knowledge Representation and Models in GENIAL! 92

Constraints The following shows a summary of the taken constraints and formulas
that are used to predict a cycle accurate runtime of a neural net. The constraints are
taken and explained in [Ber+20]. Explanations are omitted for compactness, but basi-
cally parameters like the input channel width, input channel number, output channel
number, filter width and stride determine performance.
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5.4.2 Application

We started building our hardware / software library with an ontology of a digital twin
of a water level monitor [SGW21], added simulation models of cyber-physical systems
[Waw+15] and the neural net accelerator of an UltraTrail processor. For the neural
net use case, we used both, a self-developed language for properties and dependencies,
called APPEL [Gri+21] and a knowledge base in OWL and ArangoDB. Whereas APPEL
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targets more the acquisition of components, functions, properties and dependencies for
non-domain experts, the knowledge base and ontology refine the acquired knowledge,
which is then further classified and structured. Both are interoperable.
This use case exemplifies the building of a components library and its interaction with
roadmap constraints. For that a neural net constraints model is coupled with a car
model and its roadmap constraints. For the car model we have a simple model that con-
tains electric cars and combustion engine cars with its mass structure and various other
properties, I call "values", which can represent any kind of property or an immaterial,
exemplary value. The model is structure-aware and propagates its constraints through
its parts, here implemented as SUM function. Below is the APPEL model with parts
and constraints of the electric car:

ElectricCar isA Car
it hasA wheel : Int (4..4) Wheel
it hasA body1 : Int (1..1) Body
it hasA chassisp1 : Int (1..1) Chassis
it hasA chassisp2 : Int (1..1) Chassis
it hasA battery : Int (1..1) Battery
it hasA evpowertrain1 : Int (1..1) EVPowertrain
it hasProperty ElectricalCarMass : Real =
SUM(mass)

In the following Moore’s Law and others are formulated as constraints. A prediction
of the evolving of battery prices after a McKinsey study and inflation are combined. This
yields predicted prices at time1 in tinyears. Note how dependent properties are imported
with the depends_on relation.

MooresLaw isA Context
it dependsOn Library.UltraTrail
it dependsOn Library.time1
it dependsOn Library.DeepNeuralNetworkLayer
it hasProperty runtimein : Real = t_l
it hasProperty runtimeout : Real =
runtimein/power2(0.5*tinyears)

Battery isA MechanicalObject
it dependsOn Library.time1
it dependsOn Library.Inflation
it hasProperty startvalue : Real
(14000.0..14000.0)
it hasProperty price : Real =
startprice*(powerb(0.94408, tinyears))

These kind of formulations now enable us to explore relationships and correlations
that are not obvious and yield new viewpoints and enable new technologies. For example
we can see that in 5 years the battery values, like battery density or other "values" will
drop in a way that BEV’s will be more lucrative than ICE cars. We can then explore
for example that the new runtime of our neural net on a similar processor can allow
us to increase the filter width or number of input channels in a way that increases the
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accuracy of our neural net or yields a new application. Furthermore all parameters are
in ranges and its dependencies stored via AADD. This enables analyzing the amount of
total uncertainties and its factors and where they contribute the most to the parameter
range.

Figure 5.18: Interaction of Constraints and Knowledge Base

Figure 5.18 shows the overall implementation and interaction of constraints, ontology
and database.

We distinguish
• the ontology part, which yields the reference model with its definitions. It also

checks for consitency of the APPEL model via reasoning
• the database part, which holds the triple load, the relationships and the constraints
• the APPEL model, which holds the constraints in a user friendly way and the parts

and elements needed for calculating the constraints and then calls the constraint
solver to update the variables

• a design, which is a solution space over a knowledge base that fulfills the constraints
of the design

5.4.3 Further Development of APPEL

In a second version, APPEL was advanced into the Markdown language and renamed
as SysMD. This enables embedding of constraints and triple expressions, next to actual
natural language expressions and using constraints, models and text together. This syn-
tax slightly evolved and semantics, meta model and commands were combined. This is
now a true ’living document’ and executable with code. Figure 5.19 gives an impression
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of some dependencies. There are packages, with a root and a global package. ’Defines’
defines a class in a package and we introduced a more general ’hasA’ object property.
Further, we see 4 variables with ranges, that are calculated with a constraint in ’a’ and
display those with the ’Display’ command. Units are adapted and internally calculated.
Note the above text before the actual code or knowledge base, which is like a normal
web page or Word document.

Figure 5.19: SysMD Dependencies Example in Tutorial



Chapter 6

Conclusion and Outlook

Developing ontologies is an intricate task and the future will bring much innovation to
this field. This work has presented ontologies and showed some applications related to
the engineering 4.0 domain.
It started by both utilizing SysML and OWL as prior work (as shown in the appendix).
With SysML a design methodology was introduced that allowed to simulate models with
power and uncertainty properties across different domains. A comparison of both lan-
guages gave context to the work that followed.
From that point it was decided to deepen/branch to ontological engineering rather than
systems engineering as a matter of interest. Foundations have been researched and pre-
sented to get an accurate understanding of the technology. This entailed reasoning, lan-
guage foundations, categories of ontologies, state-of-the-art ontologies and design princi-
ples and best practices for ontology design. Further advanced concepts were introduced
like patterns and antipatterns, multi-level theory or foundational ontologies from other
research.
A prototype tool with a graphical user interface was built that allowed for accessing the
knowledge base, writing to it and calculating constraints with its observed limitations.
A preliminary expert system was built and integrated with the ontology. This helped
kickstarting the project and served as a starting point for further developments. For
building ontology models the GENIAL! ontology modular suite was created. It contains
a basic vocabulary that defines the meaning of the defined classes. For car models this
entails classes like element, component, system, hardware part, software unit, depen-
dency, property and others. The vocabulary is consistent with ISO26262 and BFO. A
hardware software domain ontology and knowledge base was designed, as well as eFuse,
roadmap, effect chain, context and innovation ontology prototypes and other models.
Further it was explored how workpackage 1 could be integrated with workpackage 3
by creating models of roadmap information domains. And finally the whole approach
was demonstrated with an application framework based on Spring, REST, ArangoDB,
OWL, OWL Reasoners and symbolic constraints and demonstrated with an example of
roadmap and hardware / software constraints. GBO was well axiomatized to support
active reasoning and a precise computerized definition.

96
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The project is now in year two and requirements have finally been elicited. The designed
ontology suite can now be applied and new modules can be created as well as the library
can be built and filled with information. This entails the sensor domain in general, mis-
sion profiles, hardware processors, further roadmaps and much more. The ground work
has been necessary to develop good models and know how and when to use them. The
approach allows a coupling with existing IoT infrastructures.

6.1 Outlook
This section describes some follow-up research directions that seem rewarding.
Context and Ontology Assume that an A.I reads a text and concludes that Person
X is a virtuous individual. And only virtuous individuals may have access to certain
things. How are these conclusions drawn? How are they subject to change? Should this
be done? What is the context for a certain action to take place? What is the context
that legal systems or legal laws change or operate? This may include building stratified
levels of context. Using various context classes and merging them together depending
on context. And linking triples to context instances. It is evident that context will play
a major role in the internet of things and knowledge-based system.
Security and Ontology In the area of ontology, security takes on again a different
significance. It is one thing when your data is stolen, quite another when the meaning
of your data is stolen with it.
Language Foundations There are a variety of different ontology languages (e.g. F-
Logic, SROIQ, CL, OBO) and there is different expressiveness of OWL. Understanding
how a language comes about and how it enables achieving its means is an essential part
of further developing concepts that help in achieving a unified logical and contextual
layer.
Machine Learning and Ontology (Semantic Machine Learning) Is an emerging
field, which has become a hot topic. [LS19] discusses some drawbacks of dNN’s (deep
neural networks) for AI in general and how semantics can provide complementation. As
machine learning has become part of many applications, semantics is needed to effec-
tively share, represent and access the generated results.
Web of Things Stack to support the internet of things. Rewarding area for ontology
builders and most thriving field in ontology development at this time.
Foundational Ontologies FO’s have shown to be useful in many ways to approach
thinking about ontological issues and support better solutions. Beginning with the the-
ories of Aristotle they provide a sound basis for forming ontological models.
Web of Thought An example could be capturing intentions (e.g. through brain waves)
and then actuating on them when evaluated as firm. E.g. the intention to go somewhere
and then in addition actuating/opening the doors that are in ones way when those doors
are in proximity. Very sensitive area that requires careful proceeding.
Higher Levels of the Semantic Web Stack How can we trust certain information
and what is the proof for this trust? How can we build ethical A.I. systems? The author
did find very little information on how to achieve a unifying logic. How can we prevent
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trust being misused?
Unification (Global vs specific knowledge space) There are many heterogeneous
models even with ontologies, which are actually supposed to solve the interoperability
problem, rather than contribute to it. Unification is an open issue that needs to be ad-
dressed. Global information and local information play together, are shared on different
levels, involve different levels of abstraction and need to be connected.
Reasoning and Ontology By doing research, it was peculiar that few reasoning was
used in the applications (mostly used for interoperability). It may be rewarding to make
use of it more and find its benefits and limitations.
New Applications and Ontology Heavy use in the internet of things, less in other
areas. Finding new use cases and applying it in different ways offers much potential to
be harnessed. As it is supposed to be the backbone of the internet, much awaits.

Figure 6.1: Research Directions Outlook



Chapter A

Appendix

A.1 More Complete Reference of Ontologies
This section gives a more detailed overview. Axioms between the classes are shown and a
more unified view of how the different parts are connected. Due to its size, only the most
important parts of the suite are outline: BFO, GBO and HW / SW Domain. Finally,
the complete APPEL model of the application use case is attached and the content of
the database, which includes the HW /SW knowledge base is visualized.

A.1.1 Abstract and Overview

Prefix Namespace
bfo http://purl.obolibrary.org/obo/
gbo http://w3id.org/gbo#
sosa http://www.w3.org/ns/sosa/
om-2 http://www.ontology-of-units-of-measure.org/

resource/om-2/
hardware http://cpsagila.cs.uni-kl.de/GENIALOnt/hardware/
hardwareKB http://cpsagila.cs.uni-kl.de/GENIALOnt/

hardwareKB/
dc http://purl.org/dc/elements/1.1/
dcterms http://purl.org/dc/terms/
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#

Table A.1: Prefixes and Namespaces used within my Neural Net Accelerator Knowledge
Base
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Ontologies and knowledge base are implemented using OWL-DL 2. According to 3.1.3
GBO can be classified as a middle-level core ontology.
To show the (potential) application of GBO, a reasoning use case for classification is
shown. Further an instantiation example is given. GBO as well as the component of the
module suite are supposed to be constantly evolving. Thus, after wide spread application
in automotive, even substantial revisions of GBO are possible and likely.
The namespaces with its prefixes that are referred to in this appendix are seen in table
A.1.

A.1.2 Basic Formal Ontology

BFO as top-level describes the overall structure on how to classify and partition the
classes. It is a realist ontology and designed for practicality. Some of its parts were out-
lined in section 3. Figure A.1 shows all classes, also of the occurents.

Figure A.1: BFO 2.0 All Classes [Abh16]

A.1.3 GENIAL! Basic Ontology

GBO is designed to facilitate the exchange of microelectronic components along the
automotive value chain. It is intended to be imported by any OEM, Tier1, Tier2, semi-
conductor manufacturer or suppliers. And its purpose can also be beyond that and be
used to describe microelectronic technology in general. In order to do that,

1. It is based on Basic Formal Ontology (https://basic-formal-ontology.org/)
2. It is based on ISO 26262 standard and definitions (https://www.iso.org/obp/ui/

#iso:std:iso:26262:-1:ed-2:v1:en)
3. Integrated into AGILA / SysMD framework with client-server architecture

https://basic-formal-ontology.org/
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
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It can describe the context of a component and its influential factors as well as the
hardware, software or other mechanical parts of the cars and its properties.
To model hardware and systems it contains classes like:

• hardware, element, system, item, hardware part, hardware subpart etc.
To describe software it contains classes like:

• software, software element, software component, software unit
To describe related properties or functions it contains classes like:

• function, property, dependency, quantity, unit, measure, etc.

For modelling relationships it currently contains 14 object properties:
• comprised_of, has_part_directly, has_part
• depends_on
• executes, is_executed_by
• has_unit
• has_value
• has_property, property_of
• implements, is_implemented_by
• part_of_directly, part_of

And one datatype properties:
• hasNumericalValue

For reasoning purposes GBO supports classification with:
• existential restrictions
• universal restrictions
• cardinality restrictions
• domain / range
• covering axioms
• transitive object properties with sub-properties
• inverse and symmetric properties
• disjoint and equivalent classes

In the following figures (A.2-A.4) a unified view connecting BFO, GBO, SOSA, OM-2
is shown with a follow up of all definitions in GBO.



A. Appendix 102

owl: http://www.w3.org/2002/07/owl#
bfo: http://purl.obolibrary.org/obo/


gbo: http://w3id.org/gbo#

sosa: http://www.w3.org/ns/sosa/


dc:creator: Frank Wawrzik
dc:contributor: Christoph Grimm

dc:contributor: Peter Neumann


owl:versionInfo: 0.2.3
dc:title: GENIAL! Basic Ontology

dc:license: CC BY 4.0

owl:Thing

⊥

gbo:hardware
subpart

gbo:hardware part

gbo:hardware
component

gbo:hardware
elementary subpart

gbo:context

gbo:legal boundary
conditiongbo:market

bfo:entity

bfo:continuant bfo:occurent

bfo:independent
continuant

bfo:specifically
dependent
continuant

bfo:generically
dependent
continuant

⊥

⊥⊥

gbo:system level
element

gbo:non system level
element

gbo:item

gbo:engineered object

gbo:system

bfo:material entity

bfo:object

gbo:element

gbo:componentgbo:hardware gbo:software

gbo:software
unit

gbo:software
component

gbo:processing
unit

gbo:sensor gbo:actuator

⊥

gbo:controller

(some) gbo:has_part_directly

(some) gbo:has_part_directly

(some) gbo:has_part_directly

gbo:executes

(some) gbo:is_executed_by

<<owl:inverseOf>>sosa:sensor sosa:actuator

sosa:system

(all) gbo:part_of_directly

(all) gbo:part_of_directly

(all) gbo:has
_part_directly

(all) gbo:has
_part_directly

bfo:quality

bfo:relational quality

Figure A.2: GBO Core Part 1 Overview - Parts
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owl: http://www.w3.org/2002/07/owl#
gbo: http://w3id.org/gbo#

om-2: http://www.ontology-of-units-of-
measure.org/resource/om-2


dc:creator: Frank Wawrzik
dc:contributor: Christoph Grimm

dc:contributor: Peter Neumann


owl:versionInfo: 0.2.3
dc:title: GENIAL! Basic Ontology

dc:license: CC BY 4.0

gbo:hardware
subpart

gbo:hardware part

gbo:hardware
component

gbo:hardware
elementary subpart

gbo:componentgbo:hardware gbo:software

gbo:software
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⨅
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 (2..N)

⨆

⨅

(some) gbo:has
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_part_directly 

(1..N)

gbo:non system level
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gbo:operating time

om-2:quantity
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(some) gbo:has
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⨅
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⊥
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Figure A.3: More Detailed View on GBO Parts and Components
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owl: http://www.w3.org/2002/07/owl#
bfo: http://purl.obolibrary.org/obo/


gbo: http://w3id.org/gbo

om-2: http://www.ontology-of-units-of-

measure.org/resource/om-2


dc:creator: Frank Wawrzik
dc:contributor: Christoph Grimm

dc:contributor: Peter Neumann


owl:versionInfo: 0.2.3
dc:title: GENIAL! Basic Ontology

gbo:hardware
component

gbo:system level
element

gbo:non system level
element

gbo:hardware

gbo:sensor
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⊥
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gbo:functional
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gbo:non functional
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Figure A.4: GBO Core Part 2 Overview - Properties and Functions
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Class Definition
context The circumstances that form the setting for an event,

statement or idea and in terms of which it can be fully
understood, e.g. Market, legal frame conditions

legal boundary condition No definition in GBO 0.2.3
market No definition in GBO 0.2.3
social object An object or object aggregate that stands in a social

role.
material object No definition in GBO 0.2.3
engineered object An object created, designed or engineered by humans.
mechanical object An engineered object that has mechanical characteris-

tics. They can be either dominant mechanical charac-
teristics like in a vehicle or wheel or less dominant like
in a battery.

element Continuant that is (according to ISO 26262) a sys-
tem (3.163), components (3.21) (hardware or software),
hardware parts (3.71), or software units (3.159)

non system level element An element that is not on the system-level
system level element An element that is on the system level
item System level element that is (according to ISO26262)

system (3.163) or combination of systems (3.163), to
which ISO 26262 is applied, that implements a function
or part of a function at the vehicle level.
Note 1 to entry: See vehicle function (3.178).

system System level element that is according to ISO 26262: set
of components (3.21) or subsystems that relates at least
a sensor, a controller and an actuator with one another.
Note 1 to entry: The related sensor or actuator can be
included in the system, or can be external to the system.

electronic control unit /
ECU

No definition in GBO 0.2.3

component According to ISO26262: non-system level element (3.41)
that is logically or technically separable and is comprised
of more than one hardware part (3.71) or one or more
software units (3.159).
A component is a part of a system (3.163).

hardware component No ISO definition. Formal Definition derived from other
definitions.

software component one or more softwareunits (3.159)
actuator An actuator is a hardware component that implements

some actuating function and is responsible for moving
or controlling a mechanism or system.
Not defined in ISO26262.

Table A.2: Classes and its Definitions in GBO V0.2.3 - Part 1
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Class Definition
sensor Hardware component that implements some sensing

function.
Not defined in ISO26262.

controller No definition in GBO 0.2.3
hardware subpart portion of a hardware part (3.71) that can be logically

divided and represents second or greater level of hierar-
chical decomposition

hardware elementary sub-
part

smallest portion of a hardware subpart (3.73) considered
in safety (3.132) analysis

processing element / pro-
cessing unit / processor

(according to ISO26262) hardware part (3.71) providing
a set of functions for data processing, normally consist-
ing of a register set, an execution unit, and a control
unit

hardware part a piece of hardware that is (according to ISO 26262) a
portion of a hardware component (3.21) at the first level
of hierarchical decomposition

hardware / hardware ele-
ment

From definition of element: Note 1 to entry: When
“software element” or “hardware element” is used, this
phrase denotes an element of software only or an element
of hardware only, respectively.

software / software ele-
ment

From definition of element: Note 1 to entry: When
“software element” or “hardware element” is used, this
phrase denotes an element of software only or an element
of hardware only, respectively.

embedded software a software that is (according to ISO 26262) fully-
integrated software to be executed on a processing el-
ement (3.113)

software unit a piece of software that is (according to ISO26262) an
atomic level software component (3.157) of the software
architecture (3.1) that can be subjected to stand-alone
testing (3.169)

measure A bfo:quality that are amounts of quantities.
property A quality or characteristic of an element, hardware,

software or function. A property has a boolean, inte-
ger, or real variable through the measure class. Specifi-
cally properties can be unquantified and quantified. But
quantified properties are quantities.

Table A.3: Classes and its Definitions in GBO V0.2.3 - Part 2
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Class Definition
dependency A gbo:property that is a boolean or arithmetic function

/ equation on properties. Used to be calculated with GE-
NIAL constraint propagation. As string in LaTex syn-
tax.

performance a gbo:property on how well a person, machine, etc. does
a piece of work or an activity

quantity A quantity is a (property that is quanitifiable and a) rep-
resentation of a quantifiable (standardised) aspect (such
as length, mass, and time) of a phenomenon (e.g., a star,
a molecule, or a food product). Quantities are classified
according to similarity in their (implicit) metrological
aspect, e.g. the length of my table and the length of my
chair are both classified as length.

operating time A quantity that is (according to ISO 26262) a cumula-
tive time that an item (3.84) or element (3.41) is func-
tioning, including degraded modes.

requirement A property that is wanted or needed.
functional requirement A requirement that specifies something the system

should do.
non functional require-
ment

A requirement that describes how the system works.

unit A quality that is any standard used for comparison in
measurements.

function A bfo:function that an element (e.g. system, component,
hardware or software) implements.

actuating A gbo:function to change or control an object
processing A gbo:function to calculate a set of instructions or soft-

ware
sensing A gbo:function to perceive an object
vehicle function A gbo:function that is (according to ISO26262) be-

haviour of the vehicle, intended by the implementation
of one or more items (3.84), that is observable by the
customer.

automatic cruise control An “automatic cruise control” is a vehicle function that
can be implemented, using different ECUs and a variety
of sensor technology (e.g. Radar, Lidar, Camera).

Table A.4: Classes and its Definitions in GBO V0.2.3 - Part 3
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A.1.4 Hardware / Software Domain Excerpts

The purpose is just to show a few components and application examples. The basis of
the domain (classes) were a neural net accelerator use case, wikipedia and a simulation
library of cyber physical systems. The knowledge base consists of the instantiation of
the domain with concrete parts and values of the properties, which already contain a lot
of data.

HW / SW Domain with Reasoning Application Example

owl: http://www.w3.org/2002/07/owl#
gbo: http://w3id.org/gbo


hwsw: http://cpsagila.cs.uni-kl.de/GENIALOnt/hardware/

dc:creator: Frank Wawrzik
dc:contributor: Christoph Grimm

dc:contributor: Konstantin Lübeck

dc:contributor: Alexander Jung


owl:versionInfo: 0.1.1
dc:title: Hardware / Software Domain Ontology

gbo:component
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hwsw:digital filter
system
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function

hwsw:digital
software filter

hwsw:program
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subpart

gbo:hardware part

gbo:hardware
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gbo:hardware
elementary subpart

(all) gbo:part_of_directly

(all) gbo:part_of_directly

(all) gbo:has
_part_directly

gbo:software

gbo:software
unit

gbo:software
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(all) gbo:has
_part_directly
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gbo:processing
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⨅
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_part_directly
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Figure A.5: TBox Reasoning of Digital Filter System
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The example shown in figure A.5 demonstrates TBox classification of the domain with
GBO. Strict universal restriction require hierarchical conformance as can be seen with
the axioms of component. To be a component two hardware parts and software is needed.
A link to a different hierarchical class yields an error. Only in this way consistency with
the standard is ensured. Which was one of the purposes. The filter class has the functions
signal processing and transfer function, which are inherited by all filters and also by the
digital filter system. The digital filter system passes the reasoner test. The axioms and
related other parts help determining its position in the ontology and is a basis for further
classifications. As can be seen a "system" is in this case a component, which is not a
contradiction as we work with namespaces in the semantic web.

Sensor Types Taxonomy

Figure A.6 is classified according to domain experts of the creators of the ZVEI roadmap
(https://www.zvei.org/presse-medien/publikationen/technologie-roadmap-next-generation/).

owl: http://www.w3.org/2002/07/owl#
gbo: http://w3id.org/gbo

sto: http://cpsagila.cs.uni-

kl.de/GENIALOnt/sensortypesontology/

dc:creator: Frank Wawrzik
owl:versionInfo: 0.1.0

dc:title: Sensor Types Ontology
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Figure A.6: Basic Sensor Types Taxonomy

https://www.zvei.org/presse-medien/publikationen/technologie-roadmap-next-generation/
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Class Definition
integrated circuit An integrated circuit or monolithic integrated circuit

(also referred to as an IC, a chip, or a microchip) is
a set of electronic circuits on one small flat piece (or
"chip") of semiconductor material, usually silicon.

flash array Flash storage is a data storage technology based on high-
speed, electrically programmable memory. The speed of
flash storage is how got its name: It writes data and
performs random I/O operations in a flash.

all flash array / afa An all-flash array (AFA) is a storage infrastructure that
contains only flash memory drives instead of spinning-
disk drives. All-flash storage is also referred to as a Solid-
State Array (SSA). AFAs and SSAs offer speed, perfor-
mance and agility for your business applications.

dynamic random access
memory

(pronounced DEE-RAM), is widely used as a computer’s
main memory. Each DRAM memory cell is made up of
a transistor and a capacitor within an integrated cir-
cuit, and a data bit is stored in the capacitor. Since
transistors always leak a small amount, the capacitors
will slowly discharge, causing information stored in it to
drain; hence, DRAM has to be refreshed (given a new
electronic charge) every few milliseconds to retain data.

instruction set The complete set of all the instructions in machine code
that can be recognized and executed by a central pro-
cessing unit. ‘A Script is an instruction set used to exe-
cute operations on a controller device.’

mfcc computation MFCC (Mel Frequency Cepstral Co-efficients) is a kind
of feature in audio processing. They are used as an input
for a CNN for wakeword/keyword detection. The coef-
ficients aim to represent the phonemes the human voice
and language use.

temperature The degree or intensity of heat present in a substance or
object, especially as expressed according to a compara-
tive scale and shown by a thermometer or perceived by
touch.

voltage Voltage is the pressure from an electrical circuit’s power
source that pushes charged electrons (current) through
a conducting loop, enabling them to do work such as
illuminating a light.

execute code Function which executes some piece of code or software.

Table A.5: A Selection of Classes and its Definitions in HW / SW Domain Ontology
V0.1.1
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A.1.5 Complete APPEL Model for Constraint Exploration
Appel(agilaModel){

+"Package FrankSimple"
+" // Car Model ****************************************"
+" Note: the property value can stand for any kind "
+" of property, material or immaterial and is exemplary"
+" Context isA Any"
+" Time isA Context"
+" time1 isInstanceOf Time"
+" it hasProperty tinminutes : Real (0.0..520000.0)"
+" it hasProperty tinyears: Real (5.0..5.0)"
+" Wheel isA Element"
+" it hasProperty value : Real (60.0..60.0)"
+" Body isA Element"
+" it hasProperty value : Real (2000.0..2000.0)"
+" ChassisPart1 isA Element"
+" it hasProperty value : Real (1500.0..1500.0)"
+" ChassisPart2 isA Element"
+" it hasProperty value : Real (1500.0..1500.0)"
+" Chassis isA Element"
+" it hasA chassispartp1 : Int (1..1) ChassisPart1"
+" it hasA chassispartp2 : Int (1..1) ChassisPart2"
+" it hasProperty value : Real = SUM(value)"
+" Powertrain isA Element"
+" Engine isA Element"
+" ElectricEngine isA Engine"
+" it hasProperty value : Real (4000.0..4000.0)"
+" CombustionEngine isA Engine"
+" Battery isA Element"
+" it dependsOn FrankSimple.time1"
+" it dependsOn FrankSimple.Inflation"
+" it hasProperty startvalue : Real (14000.0..14000.0) "
+" it hasProperty value : Real = startvalue*(powerb(0.94408, tinyears))"
stmt = " it hasProperty batteryvaluepredictionout : Real = value"
println("batteryvaluepredictionout = " + getVar("batteryvaluepredictionout").

aadd().getRange() + " ")
+" it hasProperty batteryvaluepredictionwithinflation : Real = value"

+" EVPowertrain isA Powertrain"
+" it hasA electricengine1 : Int (1..1) ElectricEngine"
+" it hasA battery1 : Int (1..1) Battery"
+" it hasProperty value : Real = SUM(value)"
+" ICEPowertrain isA Powertrain"
+" it hasProperty value : Real (4000.0..4000.0)"

//+" city1 isInstanceOf City"
//+" Property population : Real (40000.0..40000.0)"
+" Car isA Element"
+" ElectricCar isA Car"
//+" it hasA wheel : Int (4..4) Wheel"
+" it hasA body1 : Int (1..1) Body"
+" it hasA chassisp1 : Int (1..1) Chassis"
+" it hasA chassisp2 : Int (1..1) Chassis"
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//+" it hasA battery : Int (1..1) Battery"
+" it hasA evpowertrain1 : Int (1..1) EVPowertrain"
+" it hasProperty ElectricalCarvalue : Real = SUM(value)"
stmt = " it hasProperty ElectricalCarvalueout : Real = ElectricalCarvalue"
println("ElectricalCarvalueout = " + getVar("ElectricalCarvalueout").

aadd().getRange() + " ")

+" PassengerCar isA Car"
+" it hasProperty PassengerCarvalue : Real (22000.0..22000.0)"
stmt = " it hasProperty PassengerCarvalueout : Real = PassengerCarvalue"
println("PassengerCarvalueout = " + getVar("PassengerCarvalueout").

aadd().getRange() + " ")
+" Car isA Element"
+" PassengerCar isA Car"
+" it hasA wheel : Int (1..1) Wheel"
+" it hasA body : Int (1..1) Body"
+" it hasA chassis : Int (1..1) Chassis"
+" it hasProperty Carvalue : Real = SUM(value)"
stmt = " it hasProperty Carvalueout : Real = Carvalue"
println("Carvalueout = " + getVar("Carvalueout").aadd().getRange() + " ")

+" // Some Tests ****************************************"
//+" Wheel hasA Car : Cartest"
//+" Car hasElement Body"
//+" Car hasElement Chassis"
//+" Inflation isA Context"
//+" it dependsOn FrankSimple.Wheel"
//+" it dependsOn FrankSimple.Body"
//+" it dependsOn FrankSimple.Chassis"
//+" it dependsOn FrankSimple.time1"
//+" //Property inflinyears : Real = Body.value*(1.0-0.02*tinyears)"
//+" Property Carvalue : Real = SUM(Car.parts.value)"
//+" //Property infl : Real = value*(1.0-0.02*tinminutes/(60.0*24.0*360.0))"
//stmt = " Property D : Real = Carvalue"
//println("D = " + getVar("D").aadd().getRange() + " ")
//+" C isA Component"
//+" it dependsOn FrankSimple.city1"
//+" it hasProperty K : Real = population"
//stmt = " Property J : Real = K"
//println("J = " + getVar("J").aadd().getRange() + " ")
//+" Property D : Real (3.0..5.0)"
//+" Property F : Real (10.0..20.0)"
//+" Property Z : Real"
//+" Flying isA Element"
//+" it dependsOn Test"
//+" it dependsOn Wheel"
//+" Flying dependsOn Processor.K"
//+" Flying dependsOn Wheel.wheelspeed"
//stmt = " Property J : Real = K * wheelspeed"
//println("J = " + getVar("J").aadd().getRange() + " ")
//stmt = " Property Z : Int = K * J + 2*F + X"
//stmt = " Property X : Int = F * Z"
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+"//Ultratrail Constraints **********************************"
+"DeepNeuralNetworkLayer isA Software"
+"it hasProperty C: Real (32.0..32.0)//num. input channel"
+"it hasProperty C_w: Real (25.0 .. 65.0) //width of input channel"
+"it hasProperty K: Real (48.0 .. 48.0) // num. of output channels"
+"it hasProperty F: Real (27.0 .. 27.0) // filter width"
+"it hasProperty ns: Real (2.0 .. 2.0) // stride"
//+"Property p: Bool //padding"

+"UltraTrail isA Processor"
+" it executes DeepNeuralNetworkLayer"
+" it dependsOn FrankSimple.DeepNeuralNetworkLayer"
+" it dependsOn FrankSimple.MooresLaw"
defVar("i", scalar(0.0))
defVar("p", True)
//defVar("C", range(32.0 .. 34.0))
+"it hasProperty C: Real (32.0..32.0)//num. input channel"
+" it hasProperty fclk: Real (0..1e9) [Hz]"
stmt = "it hasProperty s: Real = ns"
println("s = [" + getVar("s").aadd().getRange().min + ", " +

getVar("s").aadd().getRange().max + "]")

//+" Property s: Real = power2(executes.DeepNeuralNetworkLayer.ns)"
//stmt = " Property sout : Real = s"
//println("sout = [" + getVar("sout").aadd().getRange().min + ", " +

getVar("sout").aadd().getRange().max + "]")
//+" Property C_w_hat: Real = ITE(p, C_w + F, C_w)"
//+" Property C_w_hat: Real = ITE(p, C_w + F, C_w)"
//stmt = "Property C_w_hatout: Real = C_w_hat"
stmt = "it hasProperty C_w_hat: Real = ITE(p, C_w + F, C_w)" // eq. 8
println("C_w_hat = [" + getVar("C_w_hat").aadd().getRange().min + ", " +

getVar("C_w_hat").aadd().getRange().max + "]")
//+" Property C_w_hat: Real = ITE(p, C_w + F, C_w)"
//+" Property C_wb: Real = F / 2.0"
stmt = "it hasProperty a_w: Real = ((C_w_hat - F) / s + 1.0)" // eq. 9
println("a_w = [" + getVar("a_w").aadd().getRange().min + ", " +

getVar("a_w").aadd().getRange().max + "]")

stmt = "it hasProperty C_wb: Real = F / 2.0" // eq. 10
println("C_wb = [" + getVar("C_wb").aadd().getRange().min + ", " +

getVar("C_wb").aadd().getRange().max + "]")
//assertEquals(4.5, getVar("C_wb").aadd().getRange().min, 0.00001)
//assertEquals(4.5, getVar("C_wb").aadd().getRange().max, 0.00001)

stmt = "it hasProperty a_pb: Real = ITE(p, (C_wb - 1.0) / s + 1.0, 0.0)"
// eq. 11
println("a_pb = [" + getVar("a_pb").aadd().getRange().min + ", " +

getVar("a_pb").aadd().getRange().max + "]")
//assertEquals(2.75, getVar("a_pb").aadd().getRange().min, 0.00001)
//assertEquals(2.75, getVar("a_pb").aadd().getRange().max, 0.00001)
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// Sum 0 ... 2.65-1 over 7.5 - 4i (0, 1, 2, 3?) = 7.5*3-4-8 (-12?)
stmt = "it hasProperty MAC_notb: Real = sum_i(0.0, a_pb - 1.0, F / 2.0 - s * i )"
// eq. 12
println("MAC_notb = [" + getVar("MAC_notb").aadd().getRange().min + ", " +

getVar("MAC_notb").aadd().getRange().max + "]")
//assertEquals(7.0, getVar("MAC_notb").aadd().getRange().min, 0.00001)
//assertEquals(7.0, getVar("MAC_notb").aadd().getRange().max, 0.00001)

//stmt = "Property Fw: Real = a_w * s + F - s" //eq. 13
stmt = "it hasProperty Fw: Real = a_w * s + F - s" //eq. 13
println("Fw = [" + getVar("Fw").aadd().getRange().min + ", " +

getVar("Fw").aadd().getRange().max + "]")
//assertEquals(34.0, getVar("Fw").aadd().getRange().min, 0.00001)
//assertEquals(34.0, getVar("Fw").aadd().getRange().max, 0.00001)

stmt = "it hasProperty C_we: Real = Fw - C_w - C_wb" // eq. 14
println("C_we = [" + getVar("C_we").aadd().getRange().min + ", " +

getVar("C_we").aadd().getRange().max + "]")
//assertEquals(4.5, getVar("C_we").aadd().getRange().min, 0.00001)
//assertEquals(4.5, getVar("C_we").aadd().getRange().max, 0.00001)

stmt = "it hasProperty a_pe: Real = ITE(p, (C_we - 1.0) / s + 1.0, 0.0)"
// eq. 15
println("a_pe = [" + getVar("a_pe").aadd().getRange().min + ", " +

getVar("a_pe").aadd().getRange().max + "]")
//assertEquals(2.75, getVar("a_pe").aadd().getRange().min, 0.00001)
//assertEquals(2.75, getVar("a_pe").aadd().getRange().max, 0.00001)

stmt = "it hasProperty MAC_note: Real = sum_i(0.0, a_pe - 1.0, F / 2.0
- s * i - (C_wb - C_we))" // eq. 16

println("MAC_note = [" + getVar("MAC_note").aadd().getRange().min + ", " +
getVar("MAC_note").aadd().getRange().max + "]")

//assertEquals(7.0, getVar("MAC_note").aadd().getRange().min, 0.00001)
//assertEquals(7.0, getVar("MAC_note").aadd().getRange().max, 0.00001)

stmt = "it hasProperty t_l: Real = 1.0 + C / 8.0 K / 8.0
(a_w * F - MAC_notb - MAC_note)" // eq. 17
println("t_l = [" + getVar("Fw").aadd().getRange().min + ", " +

getVar("t_l").aadd().getRange().max + "] clock cycles")

CspSolver(agilaModel).solve("t_l", 1)
var result : AADD = CspSolver(agilaModel).

calcPropValfromSerializedChangesofIndependentVars(this.symbolTable.builder,
symbolTable.getVar("t_l"), symbolTable.getVar("C"), symbolTable.builder
.range(33.0, 33.0, "C")

) as AADD
//println("C = [" + getVar("C").aadd().getRange().min + ", " +

getVar("C").aadd().getRange().max + "]")
println("t_l = [" + getVar("t_l").aadd().getRange().min + ", " +

getVar("t_l").aadd().getRange().max + "] clock cycles")
//assertEquals(2581.0, getVar("t_l").aadd().getRange().min, 0.00001)
//assertEquals(2581.0, getVar("t_l").aadd().getRange().max, 0.00001)
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//assert(getVar("t_l").aadd().getRange().contains(2521.0))
println("result = [" + result.getRange().min + ", " + result.getRange().max + "]")
//println("t_l = [" + getVar("t_l").aadd().getRange().min + ", " +

getVar("t_l").aadd().getRange().max + "] clock cycles")
//println("C = [" + getVar("C").aadd().getRange().min + ", " +

getVar("C").aadd().getRange().max + "]")

+"//Roadmap Model **********************************"
+" Inflation isA Context"
+" it dependsOn FrankSimple.ElectricCar"
+" it dependsOn FrankSimple.time1"
+" it dependsOn FrankSimple.UltraTrail"
+" it dependsOn FrankSimple.Battery"

//Inflation in 2020 is 2%
//else{
+" //inflation for battery value prediction"
+" it hasProperty inflationbatteryvalueprediction: Real =

value*powerb(0.98,tinyears)"
stmt = " it hasProperty inflationbatteryvaluepredictionout : Real =

inflationbatteryvalueprediction"
println(

"inflationbatteryvaluepredictionout = " +
getVar("inflationbatteryvaluepredictionout").aadd().getRange() + " "

)

//+" Property inflation: Real = Carvalue-(Carvalue*0.02*tinyears)"
//+" it hasProperty inflationbattery: Real =

ElectricalCarvalue*power2(0.02*tinyears)"
+" it hasProperty inflation: Real = ElectricalCarvalue*powerb(0.98,tinyears)"
stmt = " it hasProperty inflationout : Real = inflation"
println("inflationout = " + getVar("inflationout").aadd().getRange() + " ")
//}

+" MooresLaw isA Context"
+" it dependsOn FrankSimple.UltraTrail"
+" it dependsOn FrankSimple.time1"
+" it dependsOn FrankSimple.DeepNeuralNetworkLayer"
//+" it dependsOn FrankSimple.Processor"
//+" Property X : Real = ns"
+" it hasProperty runtimein : Real = t_l"
//works only for t>1
//+" it hasProperty runtimeout : Real = runtimein/power2(0.5*tinyears)"
+" it hasProperty runtimeout : Real = runtimein/power2(0.5*tinyears)"
stmt = " it hasProperty runtimeout2 : Real = runtimeout"
println("runtimeeout2 = " + getVar("runtimeout2").aadd().getRange() + " ")
//println("C_w = [" + getVar("DeepNeuralNetworkLayer.C_w").
aadd().getRange().min + ", " + getVar("DeepNeuralNetworkLayer.C_w").
aadd().getRange().max + "]")

}
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Note: Some terms here are not yet completely aligned with the ontology and for
that purpose might be readjusted in the future. This was because the metamodel in the
backend was also frequently changing.
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A.1.6 AGILA ArangoDB Knowledge Base

This subsection gives a short overview of the database content. Reasons for choosing a
database were speed, volume and data access among others. Figure A.7 shows a pulpis-
simo controller instance of component and figure A.8 some more details with software.

Figure A.7: An Instance of a Pulpissimo Controller as GBO Component

Figure A.8: Some Software of the Pulpissimo Controller



A. Appendix 118

Figure A.9 shows the cnn accelerator of the controller with parts, properties and
functions as a bended graph. Figure A.10 also shows more parts and properties.

Figure A.9: Bended Graph with Inverse Relations

Figure A.10: Graph with More Nodes
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Figure A.11 shows more parts, classes and instances. The full graph is not readable
anymore in a picture. Although the visualization contains some features, the viewability
and navigability is of a much better experience using Protégé.

Figure A.11: More Parts and Hardware Subparts

Code Snippet OWL -> ArangoDB Translation

ArangoDB holds the data in JSON format. The translation from OWL to Arango/JSON
was overall straight forward, but although a graph database, it is still conceptually much
different from an OWL ontology. You cannot reason with the database and it does not
allow for complex logical constructs. Thus I only translated TBox assertions, classes,
instances, subclass of, instance of, object properties and datatype properties and their
assertions. The rest stays in the ontology. For purposes of reasoning some content might
need to be translated back. Figure A.12 shows that all three ontology modules are loaded
separately and are then put together and introduces the code. Figure A.13 shows how
triple are written to the database using a service. First the individuals are written into
a collection, then the objects of the triples are written second. Finally the executes
property is written with its specific service function. The translation is written using
OWL-API version 5.1.17 and the built in OWL reasoner.
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// OntologyService.java
package com.github.tukcps.agila.backend.ontology;

import com.github.tukcps.agila.backend.entityRequestModel.
ElementDetailsRequestModel;

import com.github.tukcps.agila.backend.entityRequestModel.
InstanceDetailsRequestModel;

import com.github.tukcps.agila.backend.repository.ElementRepository;
[...]

/**
* @author Frank Wawrzik
* @date June 2021
* This class translates basic constructs of OWL into the ArangoDB database

as a REST-Service
*/

@Service
public class OntologyService {

@Autowired
private ElementService elementService;
@Autowired
private ElementRepository elementRepository;
[...]

public OntologyService() {}
public void OWLTranslation() throws CloneNotSupportedException {
[...]
try {
ontologyFile = new File("/Users/Frank/local/git/GENIALOntologies/
OntologyModuleSuite/GENIAL!BasicOntology/GENIALOntBFO.owl");
ontologyFiledomainhardware = new File("/Users/Frank/local/git/
GENIALOntologies/OntologyModuleSuite/CarModelOntologies/domainhardware.owl");
ontologyFiledomainhardwareKB = new File("/Users/Frank/local/git/
GENIALOntologies/OntologyModuleSuite/CarModelOntologies/domainhardwareKB.owl");
owlOntology = owlOntologyManager.loadOntologyFromOntologyDocument

(ontologyFile);
owlOntologydomainhardware = owlOntologyManager.
loadOntologyFromOntologyDocument(ontologyFiledomainhardware);
[...]

//Initialize reasoner
OWLDataFactory df = OWLManager.getOWLDataFactory();
StructuralReasonerFactory srf = new StructuralReasonerFactory();
OWLReasoner reasoner = srf.createReasoner(owlOntology1);
ElementDetailsRequestModel elementDetailsRequestModel = new

ElementDetailsRequestModel();

//Get all classes from the ontology
Set<OWLClass> myClasses = owlOntology1.getClassesInSignature(true);
[...]
}

Figure A.12: Ontology Service Loading Ontologies and Initializing Reasoner
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[...]
// Write the triples
Set<OWLNamedIndividual> myIndividuals =

owlOntology1.getIndividualsInSignature();

for (OWLNamedIndividual myIndividual: myIndividuals){
System.out.println("Individuals in the ontology: " +
myIndividual.getIRI().getShortForm());
//write each individual in a collection
Optional<Element> instanceElement =
elementRepository.findElementById("agila" + "." +
myIndividual.getIRI().getShortForm());
if (instanceElement.isEmpty()) {

elementDetailsRequestModel.setName(myIndividual.getIRI().
getShortForm());
Element element = new Element("agila" + "."
+ elementDetailsRequestModel.getName());
element.isInstance = true;
Element returnedElement = elementService.createElement(element);

}

Set<OWLObjectPropertyAssertionAxiom> myOWLPropertyAssertionAxioms =
owlOntology1.getObjectPropertyAssertionAxioms(myIndividual);

for (OWLObjectPropertyAssertionAxiom myOWLPropertyAssertionAxiom:
myOWLPropertyAssertionAxioms){
[...]

//write object of the triple first
Optional<Element> objectElement =
elementRepository.findElementById("agila" + "." +
myOWLPropertyAssertionAxiom.getObject().asOWLNamedIndividual().
getIRI().getShortForm());
if (objectElement.isEmpty()) {

elementDetailsRequestModel.setName(myOWLPropertyAssertionAxiom.
getObject().asOWLNamedIndividual().getIRI().getShortForm());
Element element = new Element("agila" + "." +
elementDetailsRequestModel.getName());
element.isInstance = true;
Element returnedElement = elementService.createElement(element);

}
//write "executes" object property
if (myOWLPropertyAssertionAxiom.getProperty().
asOWLObjectProperty().getIRI().getShortForm().equals("executes")){

elementService.setExecutes("agila."+myIndividual.getIRI().
getShortForm(), "agila."+ myOWLPropertyAssertionAxiom.getObject().
asOWLNamedIndividual().getIRI().getShortForm());

}
[...]
}

Figure A.13: Ontology Service Writing ABox Triples to Database (Excerpt)
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A.2 Ontology Notation and Legend
The ontology overview in this appendix are created with diagrams.net and the cholk
notation 1. In order to independently understand the diagrams, all needed visual OWL
constructs are listed in the following for reference.

A.2.1 Basic Elements

1https://chowlk.linkeddata.es/notation.html
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A.2.2 Classes

Class Definition

Definition of a named class.

Definition of an unnamed class to represent logical combinations between other classes,
such as AND or OR operators.

Sub-Class

Graphical representations to indicate that ns:Class2 concept is sub-class of ns:Class1.

Disjoint Classes

Graphical representations to indicate that ns:Class2 and ns:Class1 are disjoint concepts
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Intersection of Classes

Union of Classes

A.2.3 Object Properties

Domain and Range

Object properties without domain and range.
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Object properties with domain and range.

Universal Restrictions

Universal restriction between 2 concepts. Concept ns:Class1 is sub-class of an anonymous
concept which has an object property ns:objectProperty, where all the individuals for
this property should be of type ns:Class2.

Existential Restrictions

Universal restriction between 2 concepts. Concept ns:Class1 is sub-class of an anonymous
concept which has an object property ns:objectProperty, where all the individuals for
this property should be of type ns:Class2.
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Cardinality Restrictions

Cardinality restriction of a concept on an object property. The ns:Class1 class is subclass
of an anonymus concept which has an object property ns:objectProperty, and should have
at least N1 and at most N2 individuals from class ns:Class2. If the N2 element is equal
to the letter N, it means owl:maxQualifiedCardinality does not exist.

A.2.4 Datatype Properties

Domain and Range

Datatype properties with domain and without range.
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A.3 The SICYPHOS Framework and a SysML Design Method-
ology

From the paper "Modeling and Simulation with SICYPHOS" by the author [Waw+15]:
"The development of Cyber-Physical Systems is a challenge that involves a number
of stakeholders from different disciplines that must co-operate and communicate. Cus-
tomers, managers and developers and testers with expertise in different fields, such as
mechanical, electrical or software systems are all involved in the development process.
To increase accuracy of communication between stakeholders, informal text-based docu-
ments are being more and more replaced with models. However, different levels require
different modeling languages. Figure A.14 gives an overview of the development process.
At the system level, lightweight languages like SysML [Sta15] have become popular to
describe the overall system requirements and structure. After specification and systems
engineering, the components in different domains are developed using Domain-Specific
Languages (DSL) such as C++ for software development, SystemC/SystemC-AMS for
electronic systems, and Modelica for mechanical systems. To facilitate the seamless tran-
sition from SysML to DSL, tools such as Enterprise Architect provide code generation
functionality. However, this functionality is oriented to single-domain code generation,

Figure A.14: SysML and domain-specific languages in the V diagram [Waw+15]

and it is insufficient to generate multi-domain models. Furthermore, it cannot benefit
from reusability of preexisting Intellectual Property (IP) block implementations. Both
different interacting domains and large IP components are essential in Cyber-Physical
Systems development, and therefore, they require new approaches from research. In this
paper, we give an overview of SICYPHOS (SImulation of CYber PHysical Systems).
SICYPHOS is a simulation framework that integrates SysML, Modelica, SystemC, and
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C/C++ in a seamless way.
Here, we give an overview of the SICYPHOS framework and its underlying concepts
and objectives. We in particular describe concepts to achieve the intended capability of
SICYPHOS to generate not only DSL, but also interfaces between different domains.
These interfaces enable multidomain model generation, as well as interfaces between IP
blocks and software components to be developed.
SICYPHOS. SICYPHOS is a SystemC-based framework for Simulation of Cyber-
Physical Systems. The SICYPHOS Framework aims to assist at demonstrating a novel
design methodology for Cyber-Physical Systems. Figure A.15 gives an overview of the
overall framework and its design methodology. Objective is to make the transition from
system-level design in Figure A.14 towards the DSL, and the validation versus the re-
quirements seamless. To achieve this objective, the overall SICYPHOS framework, in
addition to the SysML code transformations that are the focus of this work, provide the
following modeling libraries and tools:

• Virtual Prototyping Library (VPLib),which provides building blocks for com-
munication (ComLib) and automotive (AutoLib) domains in the modeling language
SystemC.

• Wireless TLM provides a wireless propagation and communication model based
on SystemC TLM extensions.

• UncertaintyCoverage is a tool for symbolic propagation of uncertainties (e.g.
aging, tolerances) in CPS.

• PowerCoverage is a SystemC based framework to estimate power consumption
and to create meaningful highlevel profiles for cross-layer energy optimization of
distributed embedded systems.

Figure A.15: SICYPHOS Framework [Waw+15]

Design Methodology. We assume that the overall system development starts with a
cross-domain system specification using SysML. The code generators presented here then
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generate the modules and interfaces for all subsystems in different domains. The output
is a template of a virtual prototype of the HW/SW system (C++, SystemC), including
templates for the network (SystemC Wireless TLM) and propagation modeling, and tem-
plates for modeling the physical environment in SystemC AMS or Modelica.
The generation of code templates for the code to be developed in e.g. C++, but as well of
models of the environment allows developers to validate designs and– code immediately
against the needs of the overall system. In addition, the PowerCoverage and Uncertain-
tyCoverage tools allow estimation of power and accuracy/robustness.
The vision is to provide a significant, yet very flexible abstraction of Cyber-Physical Sys-
tems. This abstraction shall provide the necessary means to quickly and completely set up
a simulation with alternating test cases. By having a formal specification of the system,
it can be set up and designed with consistent semantics.
Furthermore, developers shall be enabled to integrate preexisting models or components
without detailed knowledge. Of course functional methods and the IP have to be writ-
ten by experts, but with pre-existing implementations and the appropriate ontologies, a
‘non-expert’ shall become capable of doing initial explorations of the architecture to get
some early valuable feedback (power consumption, performance) of system behavior. If
a simulation is executable in that way, the purpose is to use this information for wiser
and effective design decisions in the early design phases.
Implementation. To achieve the objective, we intend to leverage a variety of method-
ologies in model-based and knowledge-based engineering. This paper focuses on the inte-
gration with SysML. To bridge the gap between the formal and graphical design entry and
the domain specific languages we used the Acceleo code generator. SICYPHOS modeling
with SysML contributes in six key aspects. This work presents the demonstration of the
first two, while the other outlined aspects are work in progress.
1) IP block generation (ComLib)
For the generation of our modules, we followed a similar approach to the code generation
in [Caf+13]. We generate basic functionalities from SysML models with the Acceleo code
generator. However, we did not include a model-to-model transformation and we will
examine if it is beneficial for our application. Acceleo was chosen because of its pragma-
tism, auto completion, and because the generation was more flexible compared to code
generation within Enterprise Architect. Furthermore the integration with other modeling
tools and Eclipse C++ yields a complete development experience. The ComLib library is
implemented in SystemC-AMS and we thus generate code for this language. The elements
translations are represented in Table 1. Table1 Additionally, we added our IP to the code
generation. So far this is done sporadically from the template itself that also contains
SystemC-AMS functions and code. Round-trip facilities are planned so that attributes
and variable declarations can be brought back into the SysML model. Synchronization
will then prevent that either model or code run out-of-date.
2) Wireless TLM
Wireless TLM is a framework to model wireless communication and radio propagation.
For that purpose, it offers a set of SystemC modules and TLM interfaces:

• node_base: is the top-level API. Every top-level component with wireless connec-
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tivity must be an extension of this class.
• wtlm_module: is the base class for the physical layer implementation. It provides

the wireless interface itself. All node_base elements must have a wtlm_module
that has to be extended by the user to include application-specific aspects, such as
transceiver characteristics and the modulation and bitrate defined by the protocol
used.

• network_protocol: is the base class for any network protocol between the physical
wireless interface (wtlm_module) and the top-level application (node_base).

Therefore a SysML package has been defined that includes these three basic components,
as shown in Figure A.16.
Work in Progress. 1) Cross-domain modeling with Modelica

Figure A.16: Wireless Communication SysML Package [Waw+15]

In the simulation of Cyber-Physical Systems we deal with a variety of systems, domains,
models of computation and environments. One language is often not sufficient to cover
the heterogeneity of a system. Here we decided to integrate Modelica with SystemC /
SystemC AMS respectively to provide a simulation of both, the nodes, sensors as well
as mechanical structures, chemical processes and environmental influences. The coupling
interface development is currently being finished and will be presented in other works.
It is to be generated out of connected SysML Blocks. Necessary design decisions are ab-
stracted.
2) Converter adaptation
When we consider the semantic adaptations in [Caf+13], they really represent just the
most basic. Coupling modules just within SystemC/AMS/TLM can be complex and re-
quire additional context as to what and how it is coupled. The mathematics and func-
tionality of MoC’s has to be considered. Especially, work that is done in [Dam15] may
be integrated. Amongst a variety of converters it presents a coupling of TLM with TDF
by conversion.
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3) Assertions
As already introduced, we use a language to specify assertions about system behavior.
For instance, considering the use case with the control loop above. A simple assertion
would be to check if the rising time to the reference value suffices, while, simultaneously,
the settling error also stays within a certain boundary at a certain time. With Affine
Arithmetic, ranges are calculated and propagated to estimate the fulfillment of the asser-
tions. While this work is complete in itself, experience shows that developers are hesitant
to work with such rather complex expressions. We intend to abstract these assertions to
provide easy to handle semantics that can be integrated in a SysMLbased drag and drop
design experience.
4) Power State Machines
SICYPHOS provides the infrastructure to estimate and track power consumption and
create energy profiles that provide valuable and meaningful information across different
domains. System-level power consumption estimator is implemented using finite state
machines. Those state machines are the input for the power and energy profiler. State
machines can therefore be specified using SysML and be used by the energy profilers to
provide complex and abstract energy consumption estimations of software, communica-
tion, and even distributed tasks. Furthermore, state machines can also be used to assess
the consistency of power consumption and to identify possible risks, such as brownout or
crosstalk.
Use Cases. A. PWM Control Loop
As a demonstration for the modules in our ‘comlib’ library, we chose to model a simple
control loop with SysML in Papyrus. The loop consists of a pwm, a PI controller, a dif-
ference module and a load. It regulates to a reference current source. The Block definition
diagram of this example is shown in Figure A.17.
The block ‘T_PWMControlLoop’ is in this case the system and testbench, which con-

Figure A.17: Block Definition Diagram of Control Loop [Waw+15]
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tains the control loop as subblocks. Parameters to be defined at this level are the ‘Time_
Resolution’, which determines the step width and thus accuracy of the simulation. ‘Run-
time’ defines the total runtime of the simulation. The framework will also offer a va-
riety of modeling facilities. The tracing of signals is a simple example that is used by
SystemC-AMS itself and which we implemented as a constraint on the testbench with
‘TRACE_ALL_SIGNALS’. It ensures tracing of all signals in the testbench as well as
storing trace data to an appropriate log file. Ports are defined as type real with their
corresponding direction.
Through the reference source block, the simulation timestep ‘t_step’ and the actual refer-
ence current value ‘ref_value’ are adjusted. For the PWM just the high and low plateau
values of the modulation are shown. It also offers the changing of periodic time / fre-
quency and ramp time slope values. The load ‘drv_motor’ represents the degree of an
opening of a throttle valve and is modeled via a resistance and inductance.
The implementation of the use case is shown in Figure A.18 within an internal block
diagram. Parts are instances of their definition from the ‘blocks’ of the block definition
diagram. Their ports are connected via SysML Connectors. In this example single signals
can also be traced with the ‘TRACE_SIGNAL’ constraint. The constraint is allocated to
a signal with a constraint link.
To bridge the gap between the formal definition in SysML and an executable simulation

Figure A.18: Internal Block Diagram of Control Loop [Waw+15]

we used the Acceleo code generator as mentioned above. It is easily integrated into the
design flow as a java project, but can also be a stand-alone application. Acceleo provides
a mapping language that enables accessing the SysML and UML meta-models with their
respective properties as well as OCL elements and constraints. A simple programming
syntax yields the most important functionality. In case it is required, queries or Java
Services can be written additionally. The mapping has been implemented for this test
case.
Figure A.19 shows the mapping of the parts in the test case of Figure A.18 without the

connections. Basically it is iterated through the packages, classes and properties in the
UML model file and corresponding variables are accessed. OCL is used to filter the prop-
erties. Afterwards we run the simulation and obtain a characteristic PI control behavior.
Figure A.20 shows this with traces of the reference value, the control error, as well as
the measured current.
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Figure A.19: Acceleo Mapping for Module Instantiations [Waw+15]

Figure A.20: Simulation Output [Waw+15]

B. Wireless Scenario
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Figure A.21: SysML Package of the Test Scenario [Waw+15]

To setup a wireless scenario, the user must extend the Wireless TLM base classes
with application specific methods and parameters. Figure A.21 shows a SysML package
that contains specializations of the SysML blocks provided in the Wireless Communica-
tion package presented in Section III.B.2).

Figure A.22: Internal Block Diagram of a ZigBee node [Waw+15]
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This way, the user can define the specific physical layer with the specific parameters
and methods of the transceiver and protocol being used. The user can also define the
network protocols.
Finally with the node_base specialization the user can implement the application and
define the communication stack architecture. However, in order to define the communi-
cation stack, a SysML Internal Block Diagram (IBD) must be used, where all protocols
are defined as parts of the top-level node block and the flow-ports are connected in the
appropriate order. Figure 9 shows the IBD of a ZigBee node implementation. This way,
the internal blocks of the node can be instantiated and the TLM sockets can be bound
based on the SysML flow-port connectors."
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