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1. Introduction 

The problem of synchronizing the outputs of N originally not 

coupled dynamical systems by means of interconnecting feedback 

paths has a variety of applications: 

. 

- In some industrial applications, e.g. steel rolling mills, 

paper plants, hydraulic press systems (cf. CD'AZZO and Houpis 

(1966)l) a number of identical machines are employed with 

identical inputs, and identical outputs are expected, at least 

asymptotically. The same problem occurs for components of 

machines (motors, oscillators, generators) and in particular 

for measuring instruments (output equalization). 

- The problem of output equalization is also relevant if the 

individual systems are not at all identical. For example due 

to different loading conditions some parameters in principally 

identical machines may vary (segmented conveyer belts with 

different loads CPratzel-Wolters and Schmid (199O)l). 

Sometimes among a number of nonidentical plants there is one 

llmaster plant", and during a transient time the outputs of the 

other 'slave" plants should become identical to the output of 

the master plant (cf. [Vakilzadeh and Mansour (1990a)l). 

- Synchronization of different signals is a problem frequently 

encountered in electrical engineering and in the field of 

communication. For example elimination of phase differences @i 

between N sinusoidal signals by phase-locked loops (cf. 

CUnbehauen and Vakilzadeh (1988d)l). 

- In neural networks "identical neurons" are interconnected by 

weight matrices to robustly generate a desired input-output 

behaviour (tracking problems). 

The main reasons why synchroniza 

although it is desired are: 

tion (outpu t equalization) fails 

4 

- differences in the output initial conditions, 

- disturbances in the system signals, 

- non-identical, time varying system paramters due to ageing and 

different operating conditions. 
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In a series of papers Unbehauen, Vakilzadeh and Mansour 

considered the problem of output equalization for systems with 
k k scalar transfer functions of the form ;, 

ki 
2' s(sta) 

and ki 
S(Stai)' 

Their strategy consists in the formation of possible error- 

signals eij = (Yi-Yj) 9 the design of controllers H(s) according 

to the specified input signal class, and loop closing by fully 

interconnecting the single subsystems (cf. Fig. l.l), 

Fig. 1.1: N=3 

In Fig. 1.1 the design af H(s) depends on the considered type of 

polynomial input. (The order of H(s) equals the degree of the 

rational Laplace transform of the input signal.) 

In our paper we pick up the idea of "feed interconnectivity". 

However, our approach differs in several aspects from the 

mentioned papers: 

(1) We allow for arbitrary input signals ri(*) satisfying 

differential equations of the form: pi(D)ri(*) = 0, where 

Pi(s) are arbitrary real polynomials. The associated 

controllers H(s) in the interconnection loops are generally 

designed according to the pi(S), hence it is not necessary 

to analyse the closed loop system once again when the input 

class is changed, for example from constant to ramp inputs. 
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(2) We apply adaptive controllers which can cope not only with 

different initial conditions and disturbances but also with 

unknown (time varying) system parameters. However, we 

restrict the analysis in this paper to minimum phase 

relative degree one systems with positive high frequency 

gain. Here it should be mentioned that in CUnbehauen and 

Vakilzadeh (1988 b),c),d))l s.imple systems of higher 

relative degree are considered, involving however, in parts 

controllers with nonproper transfer functions. 

In Section 2 we summarize results which we need in the following 

analysis of signal synchronization (Section 3) and output 

equalization (Section 4). Section 2 and 3 are based on [Schmid 

(1991)l and Section 4 simplifies and improves results contained 

in this work. 

2. Preliminaries on high gain exponential output stabilization 

In Section 4 we will construct controllers who eliminate output 

differences of a number of "similar systems" that are being fed 

by signals with specified dynamics. The systems belong to the 

class C+(m) of systems (A,B,C) with arbitrary state dimension n 

and equal number m of inputs and outputs that satisfy the 

condition:' 

o(CB) = a+ (2-l) 

and the minimum phase condition 

c 

-B det['EeA (,I * 0 vs E 5+ . (2.2) 

Those systems are high gain stable in the following sense (cf. 

[Schmid (1991)1, [Ilchmann et al. (1987)1, [Mgrtensson (1986)l). 

Theorem 2.1: 

Let (A,B,C) E C+(m). Then the time varying linear system 

k(t) = (A-k(t)BC)x(t) (2.3) 

is exponentially stable for every 

k( * ) 6 SJIR+, IR) = (k(e) E L:°C(lR+,R); lim k(t) = -) . 
t+m 

- 3 - 



If exponential output stability suffices (y(t) = Cx(t) 'jrn) 0 

exponentially) the conditions on (A,B,C) can be relaxed. The 

system may have unstable zeros, which must be, however, unob- 

servable. To be precise, if s E q is a zero of (A,B,C), i.e. of 

sI-A -B 
I 0 ' of multiplicity P, we require 

s1 - A 
rank [ 1 6 n-P , (2.4) 

C 

where n is the state dimension of the system. The class of 
systems (A,B,C) that have this property and satisfy o(CB) c @+ 

we denote by C+(m). Clearly C+(m) c i+(m). 

We note the following 

‘ Corollary 2.2: 

If (A,B,C) E C+(m) and k(*) E Soo, the solutions of 

k;(t) = (A-k(t)BC)x(t) 

satisfy: 

IICx(t)ll tends to zero exponentially. 

Proof: 

Let sl,...,s 
k c 6+ be the distinct unstable zeros of 

(A,B,C) E "C+(m) with multiplicities P 1 ,...,P respectively. 
There exist pi k' (i) linearly independent solutions xl (i) of ,...,xP 

4 
I  

c 

siI - A [ 1 x-o, iEk. 
> c 

These solutions are eigenvectors of A and since the si are 
distinct, t 

,(i) 
j 

lj E fi, i E k I is linearly independent. We find 

additional vectors x (0) (0) 
1 ). . * ,x 

PO 
such that 

S := [x(O) 1 . . .x 
(“)xll) . . .x 
PO 

K.xy)...x;f’l 
Pl 

. k 
is invertible, where P := n - 1 P.. 

0 
i=l 1 

* 
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S obviously transforms 

S-l AS = 

A,B,C to 

(2.5a) 

cs = cc 1 01 9 (2.5b) 

(2.5c) 

where Al is of size PoxP o and the eigenvalues of A4 are the un- 

stable zeros s 1 ,...,s k with corresponding multiplicities 

+““+ respectively. Since CIBl = CB and 

detr'r -I] = det(sI-A4)det ['aT*' 

(A,B,C) E i+(m) implies (Al,B1,Cl) l C+(m). Denot 

we obtain from (2.3) 

-Bl 
0 1 

ing x = S 
x1 [ 1 x2 

-2 1 = (Al-k(t)BICl)xl (2.6) 

which is exponentially stable by Theorem 2.1. But C,Ixl = Cx, and 

the result follows. 0 

Let us also note a second corollary needed in Section 4: 

Corollary 2.3: 

Let (A,B,C) E C+(m) such that the unstable zeros of (A,B,C) are 

purely imaginary and simple. For any initial values 

x(0) = x0, k(0) = ko, the system 

k;(t) = (A-k(t)BC)x(t) 

B(t) = llCx( t) e2+~Icx( t) II 

has a unique solution on IR+ and satisfies 

(2.7a) 

(2.7b) 

XC') E Lo, ) (2.8a) 

limllCx(t)ll = 0 , 
t+m 

(2.8b) 
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ts and is finite. lim k(t) exis 
t+m 

Proof: 

(2.8~) 

A solution exists on some time interval [O,T),OLT'm. By 

Corollary 2.2 the assumption k(e) { Lm(CO,T)) implies 

Cx(*) E L1 h L2 leads to a contradiction by (2.7b). Thus 

k(e) E Lru([O,T)), and we can assume T=m. As before, (2.7a) can 

be decomposed into 

x,(t) = (AI-k(t)BIC1)xl(t) 

A,(t) = (A3-k(t)B2C,)x,(t)+A,x2(t) . 

BY k(o) E Lm we have C1xl(*) = Cx(*) E L1, and since 

(+J+C1) E Ct(po) this implies xl(*) E L1. By the assumption 

on the unstable zeros of (A,B,C), for some Ml0 we have 

He Aq(t-r) II LM for all tkr&O . 

Hence, by variations-of-constants, 

t 
"x2(t) 11 6 Mllx2(0)II t S MllA3-k(r)B2Cll~ lixl(r)fldr 

0 

L Mllx2(0)ll + ML 
0 

Ilxl(r)lldr 

for some LIO, and xl(*) E L1 implies x2(*) l La. 

0 

3. Signal synchronization 

Assume that N given signals ri(t), i E N*' _ , satisfy differential 

equations: 

'i(dt b)ri(t) = 0 

for some polynomials 

(3.1) 

“) N denotes the set {l,...,NI. 
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n. 
Pi(s) = ' l+,(i) 

n.-1 
sni-l + ,,, + pii)s,p(i) , 

0 
1 

The problem is to design a common controller (Ar,br,cr): 

2 r = Arxr+bru 

(3.2) 
yr = c x rr 

such that for the fully interconnected system in Fig. 1.1 the 

output-signals yi(t) (modified ri(t)-signals) get synchronized 

in the sense that 

? lim(yi(t)-r(t)) = 0 for i E & 
t+m 

where 

N 
r(t) := $ 1 

j=l 
rj(t) - 

t 

(3.3a) 

(3.3b) 

Let x.. 
iJ 

denote the state of the controller operating on the 

interconnec ted error signal eij(*) := yCj(*)-yi(*). Then the 

system is described by 

k 
i %j 

= A x.. 
r 1-J + br'ij(Yj-Yi) 

Xij(0) = Xji(0) , i,j c N , i&j 

N 

'i =r.+ 16 1 ijcrxij ) ieN 
j=l 
j&i 

where 

I t1 if i'j 
6 

ij 
= 

-1 if i'j , 

In the subsequent analysis we only assume 

(3.4a) 

6 ij E (+1,-l) and dij = -dji for i,j E N, i&j (3.4d) 

(3.4b) 

(3.452) 

, 
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t 

(3.4d) implies for the solution xij(e) of (3.4a), (3.4b): 

Xii(') = xji (a) for all pairs (i,j), i&j. 
c 

3.1 Theorem: 

For every family (rl(t),..., r,(t)) of reference signals satisfy- 

ing (3.1) the outputs yi(t)of the interconnection scheme (3.4) 

satisfy: 

(3.5) 

provided: i) (cr,Ar) E lRIXnxlRnXn, where n=deg lcm pi(s)li 1 E N I 
P is observable, 

i . i) det(sI-Ar) = lcm pi ( (s)li E N , I 

iii) (A,-Nbrcr) is asymptotically stable. 

Proof: 

If (cr, Ar) is observable then cre Art is a fundamental system of 

solutions of the differential equation p($-)r(t) = 0, where 

p(s) = det(sI-Ar); hence we can write ri(*) = crxii(*) for some 

function xii(*) satisfying kii = Arxii. Defining dii=l, i E I& 

(3.4) can be written: 

2 ij = Ax.. + b 6 
I- 1J r ij(Yj-Yi) ) 

Xij(0) = xji(0) , i,j t &J 

N 
yi = c fi..cx.. 

j=l 13 r 1J 

and 

N 
e ij := y 

j-'i = cr c (6jeXje-dieXiL) . 
E=l 

A simple calculation yields: 

6 ij = (A,-Nbrcr)eij , v(i,j) E NxN . 
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But (A,-Nbrcr) is assumed to be stable and we obtain: 

lim eij(t) ='lim(yj(t)-yi(t)J = 0 v(i,j) t NxN . 
t+m 

Moreover, by (3.4d): 

N 
~ iE, Yi(t) = ~ ~ 

i=l 
r(t) =: r(t) 

hence 

lim (yi(t)-r(t)) = 0 VieN. 
t+- 

t 3.2 Remarks: 

l 

(i) The resulting "steady state" signal r(t) equals the 

average of the input signals ri(t). In particular, it also 

satisfies the differential equation p(dt d)r(*) = 0. 

(ii) To eliminate the differences between signals with 

specified dynamics was the concern of the above concept. 

The resulting steady state signal could be predicted; it 

incorporated the dynamics of the original signals. If the 

desired steady state signal F(m) is given a priori and the 

signals Yi(' ) are required to approximate F(*) 

asymptotically we have to extend (3.4) into a tracking 

scheme (cf. [Helmke et al. (199O)l) where the controllers 

(Ar,br, cr) require the signal F(a) as an additional input. 

3.3 Construction of (A,.,brrcr) and examples: 

The design conditions i)-ii) in Theorem 3.1 can always be 

satisfied by choice of a suitable (Ar,br,cr), because no 

information concerning the concrete signals ri(t) beside 

knowledge of the polynomials pi(s), i E IV, is required. To be 

more specific, given: 

p(s) = lcm pi(s),i t t N I = sntp n-l 
n-l S t . . . +pls+po 

we can always select (c,, Ar) in observable canonical form: 

. 
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and 

b = r C$ 0 . . . GnBIIT 

such that the polynomial 

det(s1 n - CAr-Nbrcrl) 

(3.6a) 

(3.6b) 

= sn+(pn-1+N6n-1)S 
n-l + . . . + (plfN61)s+po+N6 0 

is a Hurwitz polynomial. 

Assume for example: 

ri(t) = Aisin(wt+Oi), i E 8 , 

i.e. the N signals ri(*) are sinusoidal signals with same 

frequency but different amplitudes and phases, then all signals 

satisfy the same differential equation: 

((k)2tu2)ri(.) q 0 

hence Pi(S) = p(s) = s2tu2 for i E N. 

According to (3.6) we select: 

Ar = [ 1 SUl] , cr = CO 11 and br = C$, G1lT 

such that 

detCs12-(A,-Nbrcr)l = s2 t Ncls t NGo t CJ 2 

has stable zeros. 

The resulting steady state signal is: 

L 

- 10 - 



N 
r(t) = i 1 Ai 

j=l 
sin(wt+ei) 

= B sin(wt+e) 

where 

B=;[(; Ai 2 N 
co+) + ( c 

i=l i=l 
AisinQ.)2]1'2 1 

and 

N 
1 Aisinai 

a = tan -1 i=l 
N . 

1 Aicosai 
i=l 

(3.7) 

Equation (3.7) can be written in the form: 

B=;[; A;+2 
N-l N 

i=l 
c (Ai 1 

i=l j=i+l 
Ajcos(ai -"j')y2 

which shows that the amplitude B of the steady state sinusoidal 

outputs does not depend on the phase angles @i themselves, but 

only on the, differences between them. The frequency remains 

unchanged. 

4. System output esualization 

We extend now the concept of Section 3 to eliminate differences 

between outputs of a number of "similar" systems that are being 

fed by signals with specified dynamics. The resulting steady 

state output is sought to be somehow related to the open loop 

outputs of the systems. In this sense the control objective is 

. 

I 

twofold. 

A problem of this type is addressed in CUnbehauen, Vakilzadeh 

(1989)1, generalizing results of CUnbehauen, Vakilzadeh 

(1988a)l. The authors consider simple-integral systems, i.e. 

systems with transfer function K/s, and assume identical input 

signals, constant and ramp functions. In industrial applications 

it is often very desirable that different samples of an 

industrial product have identical outputs when the inputs are 

identical. The context of this paper asks for more general 

- 11 - 



results. To capture a broad variety of .aspects of synchroniza- 

tion we drop the condition of .identical inputs and allow in 

particular for sinusoidal signals. Furthermore, we don't want to 

assume knowledge of the system parameters. However, fulfilment 

of the second control objective, maintaining the open loop 

characteristics, requires that the systems have certain 

properties in common. Thus one cannot expect results of the 

generality we obtained in the previous section. As before, we 

assume the input signals ri('), i E N satisfy differential 

equations 

P L I i &y ri(t) t 0 (4.1) 

f 
for some manic polynomials pi(s), i E N. 

We further assume here that the input signals are bounded. Then 

the polynomials pi(s) can be chosen such that they have no zeros 

in the right-half complex plane and only simple zeros on the 

imaginary axis. 

We construct (Ar,br,cr,dr), dr=l, as a minimal state space 

realization of the transfer function #j where 

P(S) = lcm(pi(s)li E N) and q(s) is any stable, manic polynimial 

of the same degree. 

This means 

(c r,Ar) is observable, 

P(S) = det(sI-Ar) = lcm pi(s)li e N 1 I , 

q(s) = det(sI-Ar+brcr) 5 0 for all s l Q+ . 

The controllers (Ar,br,cr,dr), dr=l, are now implemented in the 

same interconnection architecture as before. The only difference 

is that the input-signals ri(*) pass the given system (Ai,bi,ci) 

before they are interconnected through these controllers. 

This is shown in the following figure: 

T 
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Fig. 4.1 

The systems (Ai,bi,ci), i E N, are scalar, minimum phase, rela- 

tive degree one, systems with positive high frequency gain 

cibi'0, i E N_. The controllers are single-gain adaptive output 

feedback controllers, 

Theorem 4.1: 

f 

Consider N controllable and observable systems (Ai,bi,Ci)EC+(l) 

with identical pole polynomials a(s) = det[sI-Ail, i E N. 

Then for any initial values xq,xo. = xo 
iJ 

.,kp,i,j E N there exists 
Ji 

a unique solution of the interconnected closed loop system 

N 
SC i = Aixitbi(ri(t) t 1 6 

j=l 
ij(CrXij + k(t)aij(Yj-Yi))J (4.2a) 

;;r. . =Ax 
13 

..+brk(t)aij(yj-yi), iij 
r 13 

N 
1; = ' ((Yi-*j)2 + 'yi-yj') 

i,j=l 

t 
Yi = C.X. 

1 1 

(4.2b) 

(4.2~) 

(4.2d) 
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on IR+. The solution is bounded and satisfies 

limlyi(t) - yj(t)I = 0 for all i,j E N . (4.3) 
t+@J 

Moreover, there exist transformations T ji such that the state 

average tj(t) := i i& Tjixi(t) satisfies 

(4.4) 

Proof: 

By the given assumptions we can assume that the systems 

(Ai'bi' ci) are given in observability-canonical form (3.6), in 

particularAi=A.=:A and c.=c.=:c 
3 1 J 

for all i,j E N. 

Also, the indices can be rearranged, such that 

cb 1 6 cb i for all i t N . 

Furthermore as in Section 3 there exist suitable initial condi- 

tions such that 

ri(t) = crxii(t) for all t t IR+ 

where 

&(t) = Arxii(t) , xii(O) = xpi . 

Thus with dii := 1 (4.2a,b) reads 

N 
.;; i = Axi t b.c c fi 

IL r j=l ijxij t k(t)bic ; (xj-xi) (4.5a) 
j=l 

( dijkij ) = Ar(Cjxij) t k(t)brc(xj-xi) , i,j E N . (4.5b) 

In order to get a more compact representation of (4.5) we intro- 

duce the overall state 

:= T . 

- 14 - 



Note that x contains only the components S..x.. with iLj, 1J 1J 
because of the identity 6..x 1J ij(t) = -Sjixji(t) 

dim z(t) = Nn t [iN*(N-l)tNln_ . 

We can write (4.5) in the form: 

g = (A-k(t)EC)x(t) (4.6) 

where 

A= 

1 

with 

(4.7) 

A11 = diag[A,...,AINnxNn 

(N-l)nr (N--2)nr n r 
I 1 I f r- 

1 - blcr . . . . . . . blcr , 0 . . . . ..L 0 1 1 0 
I 1 . --__--__---_---__-- ------------------- 

-b2cr 
I 
, b2cr . . . . . . . b2cr ; 

1 . 
1 . 

0 I_-____---------_---I . . . 1 
. 

f -b3cr 
I I O -----es 

0 * . 0 1 1 b 
. 1 0 l I  

I N-lCr 

-bNcr 1 -bNcr 1 I-b c 
I. Nr 

=* . A(l) 
-12 

(2) 
Al2 

I 1 (N-l) 
I l * l IAl? I (4.8) 
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B= 

t 

P 

N*n 

(N-l)nr 

(N-2)n, 

--------_____ 
I 

B21 ’ B22 
-;---- I------ 

. 
. 
. ’ : 

------I---___ 

BN+ll ' BN+12 

n r 

N-n, 

:= 

(N-l)bl 1 -bl 
I 

. . . -bl 

-b2 
' (N-l)b2 . . . -b2 
I 

. . 

. I . 

. 
-bN ; -bN . . . . . (NLl)bN 

---0-------------------------s-m 
b ' -b r ' r 0 . I . . ' 0 '. 
b' I -b r I r 

--------------------m---------s- 
0 

I I 
I br I -b- I  

. ’ . . . ’ : 
I 

.  0 

0 ’ . 
-b r 

0 ' b 
I r I -------_------------------------ 
I I 
I : I 
I ’ I -----------_-------------------- 

0 
I 
I ;.Ob -b r r 

~----___-_------~~-~----~------- 

0 

(4.9) 

C I 

. 
. IO . . . 0 . 

c ’ 1 =: CC,l 0 . . . 01 (4.10) 

-v- 
N blocks 

A22’ A33 are block diagonal matrices diag(Ar,...,Ar) with 

with :(N-~)N and N blocks, respectively. 
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A 13 = 

blcr 0 l .  .  0 

0 b2cr . . . 0 
. . . 0 . . 
0 . . . ' * bNCr-N*n x N n . 

r 

The transformation 

N blocks (~(N-I)N+N) blocks 

In 0 ' 

S = diag 1 0 l , 9 I , ' ' . , . . n In 
In o...o I r r 

n/ 

transforms x to 

T 
d23x23 '** 

T 
'N-lNxN-1N 

T T 
lx11 "' XNN-I 

.  .  l T I 
'lNXIN 

(4.11) 

(4.12) 

(4.13) 

Partitioning the system matrices correspondingly (All splits 

into A 00 and All), we have 

S-lAS = 

where A := A 00 

A11 := diag(A,...,A) (N-l)nx(N-1)n 

A22 := A22, A33 := A33 

(4. 14) 
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Al2 := 

-blcr-b2cr -blcr . . . I 
-blcr , 

-blcr -blcr-b3cr . . . -blcr 
' (2) (N-1) 

. . 
;Al2 v-9A12 

.  I  

-blcr . . . . . . . ..a 
I 

-blC,-bNC, I 

(4.15) 

A(‘) (N-1) 
9Al2 are obtained from A (2) (N-1) 

12 '..' -12 '. “‘Al2 by deleting 

the first row in each. 

Al3 := 

I 

blCr 0 . . . . . 0 - 

-blcr b2Cr 0 . . . 0 

-blcr 0 l (4.16) 
. * 0 . . . . . . . 

-blcr 0 . . . 0 
bNCr- 

In S -lIJ the matrix block [Bll : B12 1 splits into 4 subblocks 
. 

The other blocks of B remain invariant: 

S-l B= 

and 

I cs = 

l 

1 

(N-lb1 I 
-bl -bl . . . -b 

I ------i----------------------------------------- 

-b2-(N-l)bl ; (N-i)b2+bl -b2+bl . . . -b2+bl 

-bg-(N-l)bl ] -b3tbl (N-l)b3tbl . . . -b3+bl 

. 1 . . . 
1 : 

. . . 

-bN-(N-l)bl ; -bNtbl . . . . . . . . . (N-l)bNtbl 
------------I----------------------------------- 

B21 
I 
I B22 

--e-w------- ----4----------------L--------- 
l 

. I . 

I . 
--------me-- ---__---__------c---~---~~~~~-~~~~~ 1 

I 

BNtl 1 I B N+l 2 

c 1 0 ,., 0 I -c IO 
---I ---_--___I ---A---- 

c 1 c 0 
c I 

..I 0 =* . . . 1 *. ; . , 

. I - . I . 1 cl 
C c 1 I A LC 1 
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3 

b 

Next we select the new system state 

X := ((x2-xl)T...(xN-x1)T(~12x~2.'.dN~lNx~~l NIx;l... XENJT 

(4.18) 

This is due to the fact that we want to show i$mlyi(t)-yj(t)I as co 
a consequence of asymptotic stability of the state space system 

(A,R,C) associated to the state (4.18). 

By (4.6) x(t) solves 

2(t) = (A - k(t)B?)x(t) , (4.19) 

where 

)3w 
12 

------ 

B22 , 
. . . 

BN+12 - 

c = cc 1 0 . . . 1 01 

For system (4.19) we verify the assumptions of Corollary 2.2. TO 

- - - 

check the condition on the zeros of (A,D,C) we first determine 

i 

I We have 

D(s) = det[sI-~ldet[~[sI-~l-l~~ 

= det~sI-Allldet[sI-A221det[sI-A331 
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B1 
-se 

Now let g = B2 be the decomposition of fi corresponding to 
--- 

the decomposition of i, where B1 is the submatrix of B formed by 

the first (N-1)-n rows, B2 the submatrix formed by the next 

[(N-l)+(N-2)t . . . tll*n, rows and B3 the matrix formed by the 

last N-n r rows of B. An easy calculation shows that 

C,[SI-A~~I-~B~ = 
I 

(N-16, -B2 . . . -B2 

(N-1)B3 . . . -B, 
* . . 
. . . 
. . . 

-B, . . ..I........ W1)BN 

where 

Bi := cCsI-Al -lb 
, 

i, i=l,...,N 

and 

~,~s~-Al,l-1A12[sI-A22]-1B2 = 

+ 

Bl . . . Pl 
.  L 

.  .  

.  .  

i$ l .  .  Bl 

(N-1)~2ds) 4$2(s) . . . -B2g(s) 

-B3$W OJ-l)~3$(s) . . . -i3ds) . . . . . . . . . GNdS) -iNg(s) . . . (N-l)iNg(s) 

with 

g(s) := cr[sI-Arl r . -lb 

Hence, noting that B3=0, we obtain: 
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D(s) 

where 

L(s) 

and 

With the 

= det(sI-A)N-l det[sI-Arl 
+(N+l) 

* det[sI-Al -(N-I) det(L(s))(l+g(s))N-l (4.19) 

:= 

(N-1)B2+B1 

-8,+8, (N-l)BgtBl . . . -P3tBl 

-PN+Pl -BNtP1 . . . (N-l)BN+Bl 

'i = c adj [SI-A] b., 1 i=l,...,N . 

notations in (4.1) we obtain from (4.19): 

D(s) = p(s) 
;N(Ntl)-(N-1) 

q(s) N-l*det L(s) (4.20) 

By the Appendix-lemma: 

N N 
det L(s) = NNM2 1 n pj 

i=l j=l 
j&i 

This result is obtained by setting: 
3 

a. := 
1 -BpB1 , iEIJ 

i 1 p, := jj ; 

for iA2 the Bi 's in the Lemma coincide with the pi's in L(s). 

As all summands .t. 'j 
above are by assumption stable polyno- 

J 1 
mials of the same degree with positive leading coefficients, 

this implies that det L(s) itself is' stable. 

To apply Corollary 2.2 we verify that (A,B,C) E c'(M), 

x M := (N-1)n t $N(Ntl)n : 
- - - 

BY (4.20), an unstable zero s of (A,B,C) is a (simple) zero of 

I P(S), and is therefore of multiplicity ;N(N+l)-(N-1). 
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rank 

‘sI-All -A12 -A13 

0 0 I sI-A cl 1 = rank 0 sI-A~~ 0 sI-A~~ 

- Cl 0 0 

6 (M+N-l)-[;(N-l)N+NI 

= M-[;N(N+l)-(N-l)] . 

So it remains to show that ~(66) C c+: 

If A is an eigenvalue of 

‘(N-l)cb2+cbl -cb2tcb 1 
. . . -cb tcb 2 1 

-cb3tcb 1 (N-l)cb3tcbl -b3tbl 

& = . . . . . . 
. . . 

-cbNtcbl . I . . . . . . . (N-l)cbNtcbl 

then by Gershgorin's Theorem we have for some j E N, j&2: 

(N-l)cbj+cbl-Rex L I(N-l)cbjtcbl-xl 6 (N-2)(cbj-cbl)I (4.21) 

since cb -cb 
j 1 

1 0 was assumed. 

(4.21) implies Rex 1 0, and Corollary 2.2 can be applied. 

By virtue of this corollary, since 

; 

cx = . 

the assumption k(e) i L,([O,T)) implies lyi(*)-yj(*)( E L1 n L2 

for all i,j E IJ, and (4.2~) gives a contradiction. 

Thus, k(*) E L,([O,T)) and the solution of 

k(t) = (A-k(t)BC)x(t) 

N 
k(t) = ' ((Yi(t)-Yj(t))2+'yi(t)-yjoI) 

i,j=l 
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with arbitrary initial value (xo,ko) extends to IR+ and is 

unique. By solving (4.2a) for i=l provides us with a unique 

closed loop solution. Boundedness of the solution and (4.3) 

follows as in the proof of Corollary 2.3. 

Finally, let Si transform (Ai, bi,ci) to controllability 

canonical form: 

S;lAiSi = AC 

S-lb = b ii C 

From (4.2a) we have 

N 
(Silxi) = Ac(Silxi)+bcri(t)+bc c (crdijxij+k(t)(y.i-yi)) . 

j=l 
j&i 

Since 6..x.. = -6 
1J 1J jixji for i&j this implies 

I i 
N N 

; S;'x,] = A& 1 S;'xi] + b 1 
i=l i=l ' i=l 

ri(t) 9 

i ; SjS;'x ] = Aj[; 
N N 

i=l i 1 S.ST'x.) + bjif C ri(t)] . 
i=lJ' 1 i=l 0 

hence 
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Appendix 

The following technical lemma is needed in section 4. 

Lemma: 

Let ai,Bi E 

D := det 

IR[sl, i E N, N E N. Then: 

a +NBl 1 al OL1 ‘.’ al 

a2 'X2+NB2 (x2 "' .Q2 

a3 a3 a +NB 3 3 l " a3 
. . . . . . . . . . . . . . . 

aN aN aN+NBN 
. I  

N 
=NN II 

N N 

j=l 
Bj t NNB1 C a. n . B. 

i=l l j=ll J 
j&i 

Proof: 

Subtract column 1 from the columns 2,. 
l ’ ,  N of the above matrix 

and calculate the determinant with respect to the first column: 

r a +NBl 1 -NB, -NBl . . . -NB1 

(x2 NB2 O 0 

D = det M3 
. . . 

- aN 

0 NP3 
. . . . . 

0 ' NBN 

N-l ~ N 
= (al+NBl)N 

j&l 
pj + NN-' C a. 

i=2 ' jAi J 

= NN 
N 
n Bj t NNml y a. fl 8. 

j=l i=l ' j&i ' 

L 
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