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1. INTRODUCTION 

. 
In this paper we consider simple adaptive controllers (SAC) for 

a heat treatment system of lacquered wires. Heat treatment is 

the last procedure of a process of enamelling copper wires. Such 

a production process is for example installed in several 

furnaces in the factory "China Electra Plant" in Shanghai. The 

plant model considered here is the result of identification ex- 

periments applied to one of the furnaces in this factory (cf. 

Pratzel-Wolters and Shuzhong Chen (1991)). Our controller is 

called simple because there are few control parameters to be 

adapted and no permanent identification of the process model is 

made. The controller is principally high gain based and can be 

viewed as a modified discrete version of the continuous time 

high gain adaptive stabilizers considered in Ilchman et al. 

(198'7'). However, the basic system model is non minimum phase. 

For the treatment of unstable zeros we apply an augmentation 

procedure proposed in Bar-Kana (1989), which transforms the 

process into a discrete almost strict positive real system. To 

avoid gain divergence caused by disturbances in the adaptive 

high gain controller applied to the augmented system the 

adaptation law for the real gain matrix K is modified by a 

stabilizing pole. This idea is also realized in Bar-Kana and 

Kaufman (1985) and was first proposed by Ioannou et al. (1982). 

In section 2 a short description of the heat treatment system 

and the basic plant-model for the (SAC) is given. Section 3 

contains the general description of our adaptive controller and 

five different closed-loop configurations for the heat treatment 

system - centralized and decentralized versions of the complete 

resp. a simplified process model. Finally in section 4 the 

behaviour of the different controller versions is compared by a 

variety of simulation studies including output disturbances of 

the process. 

2. LINEARIZED MODELS OF A HEAT TREATMENT SYSTEM 

. 

Heat treatment is the last procedure of a process of enamelling 

wires, The main parts of the heat treatment plant consists of a 

furnace, several containers with lacquer, a ventilation instal- 

lation, a servo mechanism and a preheating device. 
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Fig. 1 The heat treatment furnace 

. 

The furnace is divided into 7 layers. Each layer is separated 

from the others by a steel plate (10 mm thick). The sizes of the 

furnace are slightly different. A typical example is as follow- 

ing: 6 m long, 1.5 m wide, 1.3 m high. There are 3 separated 

heating coils and 3 temperature measuring sensors in each layer. 

The electric current resp. voltage of the heating coils are 

considered as inputs of the system and the' temperatures at the 

positions of the sensors as system outputs. There are 21 inputs 

and 21 outputs. The desired values at the temperature measure- 

ment points are 375OC at the layer entrances and 385OC at the 

layer exits. 32-40 untreated copper wires are fed through a 

preheating device before the central heating process. Via this 

preheating the adherence properties of the lacquer are improved. 

On every furnace layer the preheated copper wires pass through 

containers with lacquer into the heating zone with the 3 

separated heating coils. In this way the lacquered wires are 

moved with a certain speed by a servo mechanism through the 

furnace from the lowest to the highest layer. This process of 

enameling and heat treatment is repeated 3 times. A ventilation 
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installation is placed on the top of the furnace. The main 

parameters of the ventilation system are fixed during the system 

is operating. Some parameters, for example the amount of passing 

air, are properly adjusted by workers on duty based on their 

experience according to the different temperatures around the 

furnace. The ventilation system makes the temperature inside the 

furnace more uniform and at the same .time displaces the polluted 

air inside. Furthermore there is a special flux mixed with the 

lacquer. When it is heated, the flux will vaporize and release 

heat. This process helps uniforming the temperature inside of 

the furnace. 

The speed of the copper wires is fixed during the heating 

process however it varies with different wire diameters (0.2 mm 

to 0.25 mm). In our modelling and controller design the speed is 

not used as a control variable although it influences the heat 

treatment process. Due to technical restrictions the inputs are 

of the type switch on or switch off, i.e. there are only two 

possible input values, u(t) E (0,2201. 

Our model of the furnace is based on closed loop identification 

experiments (cf. Pratzel-Wolters and Shuzhong (1991)) around the 

operating point of the system. As a result of these experiments 

the following two assumptions were applied: 

(i) System output i, i=2,3,4,5,6,9,10,11,12,13 depends only on 

system input i and system outputs i-l and i+l. System outputs 

i=1,7,8, resp. 14 depend only on system input i and system 

outputs 2, 6,9, resp.13. The influence of the other outputs can 

be neglected. 

(ii) The furnace is symmetric with respect to the vertical axis 

through the heating coils 15-2I, hence instead of a 14x14 model 

it suffices to consider a 7x7 input-output-model. 

(iii) The process is modeled as a discrete-time, time-invariant 

linear model where one time-step corresponds to 5 minutes in 

real time. 

According to these assumptions we obtain a mathematical model of 

the following type: 

A(q-')y(t) = B(q-I)u(t) (2.2) 

where: 
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A(& = 
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a21 (222 023 0 0 0 0 

0 a32 a33 a34 0 0 0 

0 0 043 a44 a45 0 0 

0 0 0 a54 a65 at3 0 

0 0 0 0 a65 ws -7 

0 0 0 0 0 -7 wr 

(Z.Za) 

B(q-1) = diog ( b 11 622 633 h4 ki b66 b77 ) 
(2.2b) 

Here aij(q-I), i,j=1,...,7 and bii(qml), i=1,...,7 are polynomi- 

als in the operator q %W) := v(t-1). 

(2.2) is designed as a linear model for the heat treatment 

process around an operating point. Thus yi(t) denotes the error 

signal: 

yi(t):= yqeas(t) - y tef(t), i=1,...,7 . (2.3) 

Furthermore ui(t) denotes a normalised input signal, 

u 
-1 6 c(t) = 

yeas(t)-23 
6 

2.5 
1, i=1,...,7 (2.4) 

where u yeas(t) is the connecting time of the i-th control device 

between the time samplings t-l and t (5 minutes). 

In order to reduce the complexity of the model the following 

structure of (2.2) (system of second order difference equations) 

was presupposed: 

17y(tt2) + Aly(t+l) + A2y(t) = B&t+l) + B2u(t) (2.5) 

respectively 

A(q-') = 17+Alq-1+A2q-2, B(q-') = B1q-1+B2q-2 

when A l,A2,Bl,B2 E lR7x7 

(2.5a) 

Y = (yl,...,y7JT E lR7, u=(u~,...,u~)~ E IR7 . 

The Al, A2,Bl,B2 were determined by identification experiments: 
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Al = 

. 

. A2 = 
. 

.1.5008 0.2150 0 0 0 0 0 

-0.1337 -0.6690 -0.0996 0 0 0 0 

0 -0.2550 -0.9810 -0.2377 0 0 0 

0 0 -0.0443 -1.1829 -0.4383 0 0 

0 0 0 -0.1764 -0.9711 -0.2157 0 

0 0 0 0 -0.0069 -1.5224 -0.1780 

0 0 0 0 0 -0.2249 -0.9125 

0.5059 -0.2172 0 0 0 0 0 

0.0223 0.0921 -0.0401 0 0 0 0 

0 0.1955 0.2410 0.0485 0 0 0 

0 0 -0.0565 0.5121 0.2103 0 0 

0 0 0 0.1089 0.1207 0.0609 0 

0 0 0 0 -0.0053 0.5484 0.1664 

0 0 0 0 0 0.1918 0.0461 

B1 = diag(1.6991,0.7845,1.1435,0.5389,-0.0689,1.2515,0.4866) 

82 = diag(1.7732,-0.4100,2.9399,3.3687,1.8529,-0.7570,1.9747) 

(2.5b) 

(2.5c) 

(2.5d) 

3. A SIMPLE ADAPTIVE CONTROL CONFIGURATION 

The identified system (2.5) is stable, however, some of the 

poles are close to the unit circle (cf. table 3.1) and generate 

an unsatisfactory transient behaviour - some components of yi,(t) 

tend to zero very slowly, oscillating with slowly decreasing 

amplitudes. To improve the performance a feedback controller is 

desired which should be adaptive for the following reasons: 

- The obtained model is a linearization of the nonlinear real 

process around an operating point. 

- The parameters of the true systems depend on the wire speed, 

furnace outside temperature, ventilation speed, etc. 

- There are unknown disturbances originating from the voltage 

supply, measurement sensor noise and sensor failures. 
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The demands for the controller are: 

- Asymptotically stable closed loop systems, 

- Low values for f 
t=o 

lyi(t)I resp. tzo Y;(t) 3 i=1,...,7, for 

regulation of y(*) around the operating point, 

- Bounded outputs within prescribed tolerance bounds for L, 

input and output disturbances. 

The SAC described in this section satisfies these requirements 

and works without identification of the plant parameters. Those 

controllers obviously require certain structural properties of 

the process to be controlled. For example the adaptive high gain 

control law: 

u(t) = k(t)y(t) , k(tt1) = k(t)' (3.1) 

cannot be applied because the model (2.5) has unstable zeros and 

hence is not minimum phase. 

However, it is easily verified that there exist constant 

invertible feedback matrices K E IR7x7 such that the closed loop 

transfer function 

GC(z) = [17+G(z)K1-IG(z) (3.2) 

is asymptotically stable. 

It is shown in Bar-Kana (1986) that the augmented system 

G,(z) = G(z) t K-l (3.3) 

then is discrete almost strict positive real (DASPR). A proper 

rational transfer function G(z) is DASPR if there exists a 

constant matrix F such that H(s) = [ItG(z)Fl-IG(z) is discrete 

strict Positive real (DSPR), i.e. there exists a P, 0~p~1, such 

that H(pz) is discrete positive real (DPR). A transfer function 

H(z) is called (DPR), if it satisfies the conditions: 

(DPRI) The entries hij(s) of H(s) are 

analytic in (z E @.I Izla1). 

(DPRII) G(z)tG(z)T is positive 

semidefinite hermitian. 
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In our context it is important that DASPR implies high gain 

stability. Therefore after a suitable augmentation we can apply 

an adaptive high gain feedback concept. The following simple 

adaptive controller (SAC) is a special version of a discrete 

adaptive model reference co'ntroller developed by Bar-Kana and 

Kaufman (1983) and Bar-Kana (1989). 

Consider a linear discrete time-invariant process S(A,B,C,D): 

x(ttl) = Ax(t)tB(u(t)td:(t)), x(0) = x0 
I 

y(t) = Cx(t)tDu(t)tdo(t) 

x(t) E IRn, u( 

di(t),do(t) E 

and let: 

t) E IRP, y(t), 

IRP disturbances 

t E No 

G(z) = &I-A+ BtD E IRONS (3.5) 

the transfer function of the undisturbed system. 

For the controller let 

u(t) = K(ttl)y(t) . 

The adaptation law for K(t) consists of an integral 

proportional part: 

K(t) = KI(t)tKp(t) 

Kp(ttl) = .v(t)yT(tb 

K++l) = KI(t)ty(t)yT(t)WKI(ttl) 

e symmetric positive semidefinite 

I- symmetric positive definite 

WEIR, p&O. 

(3.6a) is equivalent to 

(3.4) 

(3.6) 

and a 

(3.6a) 

(3.6b) 

(3.6~) 

(3.6d) 

(3.6e) 

(3.6f) 

K(tt1) q YWYTW 0 t KIO(ltP)+ •t irl(lt~)-(t-Ttl)y(riyT(r)r 

(3.7) 
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3.1 Theorem 

(I) Under the assumptions: 

(i) G(z) is DASPR 

(ii) rklRcz) (G(d+G(zJT) = p 

(iii) di,do t Lm(No,lRP) 

The closed loop system (3.4), (3.6) satisfies for all initial 

values KIO, x(0) = x0: 

~(-),~(a) E Lm(NO,(RP), K(*) l LJNo,(RPxp) (3.8) 

t (II) If di~do~O and p=O, then additionally: 

lim y(t) = 0 
a t+m 

(3.9) 

for all initial values KIO, x(O) = x . 
0 

Proof: 

(cf. Bar-Kana (1983), Bar-Kana and Kaufman (1983), Bar-Kana 

(1989), Pratzel-Wolters and Reinke (1991).) 

3.2 Remark: 

If input and output disturbances di(*) resp, do(*) enter the 

system perfect tracking to 0 is not possible. To consider (3.6~) 

instead of the simpler adaptation law KI(tt1) = KI(t)ty(t)y(t)Tr 

is a strategy for avoiding divergence of integral gains. Without 

this term the integral gains of (3.6~) would steadily diverge to 

infinity, although the closed loop system remains stable. 

However, diverging gains are unacceptable for a 'realistictl 

controller. 

Theorem 3.1 (I) guarantees globally bounded outputs in the 

presence of bounded disturbances, however, perfect stabilization 

(y(t) tjm) 0) is not possible in noisy environment, although the 

finite tracking errors y(m) may be very small. 
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TO apply now the (SAC) to our heat treatment system the 
I/O-model (2.5) is transformed into state-space form. Further- 
more the input restrictions have to be considered. Our implemen- 
tation works with a(t) instead of u(t), where: 

i 

1 if u(t) 1 1 
Ii(t) = u(t) if /u(t)1 L 1 (3.10) 

-1 if u(t) L- -1 

We distinguish between the complete model (CM) and a simplified 
decentralized model (SM), where only the diagonals of Al and 42 

are considered: 

Al = diag(-1.5008,-0.6690,-0.9810,-1.1829,-0.9711,-1.5224,-0.9125) 

A2 = diag(0.5059,0.0921,0.2410,0.5121,0.1207,0.54~,0.0461) 

. BI = diag(1.6991,0.7845,1.1435,0.5389,-0.0689,1.2515,0.4866) 

B2 = diag(1.7732,-0.4100,2.9399,3.3687,1.8529,-0.7570,1.9747) 

(SM) 

(SM) is a direct sum of seven independent subsystems. 

For the complete model (CM) Bl and BZ coincide with Bl and B3 in 
(SM) and Al and A2 are of the form: 

r 
Al = 

A2 = 

-1.5008 0.2150 0 0 0 0 0 
-0.1337 -0.6690 -0.0996 0 0 0 0 

0 -0.2550 -0.9810 -0.2377 0 0 0 
0 0 -0.0443 -1.1829 -0.4388 0 0 
0 0 0 -0.1764 -0.9711 -0.2157 0 

0 0 0 0 -0.0069 -1.5224 -0.1780 
0 0 0 0 0 -0.2249 -0.9125 

0.5059 -0.2172 0 0 0 0 0 

0.0223 0.0921 -0.0401 0 0 0 0 

0 0.1955 0.2410 0.0485 0 0 0 

0 0 -0.0565 0.5121 0.2103 0 0 

0 0 0 0.1089 0.1207 0.0609 0 

0 0 0 0 -0.0053 0.5484 0.1664 

0 0 0 0 0 0.1918 0.0461 

( CM 1 
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* 

The following table contains the poles and zeros of (SM) and 

(CM): 

subsystem poles (SM) zeros (SM) and (CM) 

1 0.9896 0.5112 -1.0436 

2 0.4752 0.1938 0.5226 

3 0.4905 f 0.0202i -2.5710 

4 0.5915 f 0.4028i -6.2511 

5 0.8248 0.1463 26.8926 

6 0.9373 0.5851 0.6049 

7 0.8588 0.0537 -4.0582 

poles (CM) 

-0.0123 0.0951 

0.1996 f 0.19261 

0.5455 f 0.37621 

0.5638f 0.093Oi 

0.9918 0.9976 

0.6809 f 0.0278i 

0.8301 0.8577 

Table 3.1 Poles and Zeros of (SM) and (CM) 

The subsystems of (SM) are all of relative degree 1. Both 

systems (SM) and (CM) are asymptotically stable, however with 

unstable zeros, hence neither (SM) nor (CM) is DASPR. For, both 

systems an augmentation matrix D has to be determined such that 

the augmented system is DASPR. 

To select D two conflicting strategies have to be taken into 

account: 

, - To keep the stationary error small lIDI should be as small as 

possible, 

- Stable zeros close to the unit circle have to be avoided, 

because the simple adaptive control algorithm places the 

closed loop poles for high gain k(t)+m onto' the zeros. Hence 

lIDI should be taken not too small. 

There does not exist a systematic algorithm for an optimal 

choice of lIDI (together with r, e and p) (optimal for examples 

in the sense of minimizing tc 'yi(t)' or t y;(t)). For our 

system, which is already asymptotically stable, the design 

objective y(t)+0 can be achieved with u(t)+O, i.e. it is not 

necessary to keep lIDI as small as possible. 

c 

For the implementation of our controllers the selection of D, r, 

8 and P is based on a "trial-and-error-strategy". We distinguish 

between four controllers: 
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(Cl) centralized control of (SM) 

m!) decentralized control of (SM) 

(C3) centralized control of (CM) 

(C4JW decentralized control of (CM) 

(Cl) and (CP) 

The following table 3.2 contains the maximal gains ki for which 

the seven subsystems remain stable and the associated lower 

bounds dii- 1 -k.-l for the entries of the augmentation matrix. 

subsystem i maximum gain Ic; d;; = k;’ 

1 0.2786 3.5888 

2 1.4743 0.6783 

3 0.2582 3.8734 

4 0.1448 6.9045 

5 0.4746 2.1072 

6 1.5289 0.6541 

7 0.4831 2.0701 

Table 3.2 Maximal admissible gains for Ii, i=1,...,7 

As already mentioned small values of dii generate oscillating 

behaviour of Y(t) and Y,(t) with high, slowly decreasing 

amplitudes, The following choice of the dii, i=1,...,7, turned 

out to be satisfactory: 

subsystem i dii 
1 13 

2 0.92 

3 14 

4 150 

5 5.1 

6 0.78 

7 4.5 

zeros maximum modulus of zeros 

0.6850 f 0.41593 0.8014 

0.5098 -0.6835 0.6935 

0.4497 f 0.4988i 0.6716 

0.5897f 0.4323i 0.7311 

0.4923 f 0.4916i 0.6957 

0.6100 -0.6920 0.6920 

0.4220 f 0.5685i 0.6964 

Table 3.3 Zeros of augmented system 
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For (Cl) the model (SM) is considered as one system of 

state-space dimension 14. The parameters for the centralized 

controller are: 

(Cl) I- = @ = 10017 , p=o 

For (C2) every subsystem Ii, i=1,...,7, of (SM) is separately 

controlled with the followirig parameters: 

subsystem i 

Table.3.4 SAC-parameters 

4; r 
13 lo5 

0.92 1 

14 10 

150 100 

5.1 100 

0.78 10-l 

4.5 1O-2 

0 

lo5 

1 

10 

100 

100 

10-l 

1o-2 

(cq)-(CF() 

(C3) denotes the implementation of the (centralized) simple 

adaptive control algorithm for the complete model (CM) with the 

parameters: 

, CC,) D = diag(12,0.82,8,24,9.3,0.78,4.9) 

r = e = lOOI ) p=o 

(C4) and (Cg) are two different decentralized implementations of 

(2.5). It is assumed that the inputs and outputs of the seven 

subsystems Iii, i=l,. ..,7, are available for the controller. 

Only these diagonal subsystems are controlled, while the cou- 

pling off diagonal subsystems remain uncontrolled. (C4) denotes 

the controller where Iii, i=1,...,7, are regulated by one 

central controller (like (Cl)) and for (Cg) every subsystem Cii 

is controlled separately (like (C2)). The parameters are: 

(C4) D = diag(12,0.82,8,24,9.3,9.78,4.9) 

r = I3 = 10-21 
7' p=o 

(qi) parameters of (C2) (cf. Table 3.4) 
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4. SIMULATION RESULTS 
60 60 

Table 4.1 contains C lyi(t)I and C y:(t) for (Cl)-(Cg). 
i=l i=l 

Fig. 4.1 shows graphically the output behaviour y(t) for 

(cl)-wj)* 

. 

L 

- 

i 

i- 

2 

3 
4 
5 
6 
7 - 

i 

r 
2 

3 

4 
5 

6 
7 - 

i=l i=l 

50.9201 353.1498 
16.0645 82.7291 

35.1142 282.4773 
50.5792 448.0869 

41.7933 340.8888 

28.4028 167.4685 
28.1340 179.7831 

Q 

i$ IYiCt>l 5 Y?(t) 
i=l 

153.5876 603.4181 

64.1383 176.5999 

78.2839 388.8098 
99.4210 659.5906 

99.3031 551.2757 

63.1809 194.8087 
45.3374 197.1827 

c2 

i$i IYitt>l 5 Y?(t) 
i=l 

50.9183 352.8524 

16.1386 82.7330 

34.9264 283.7231 
50.5805 448.1640 

39.3582 304.3078 
28.3359 167.4654 
25.7507 180.2368 

CS CS 
it IYiP>l i$t Y;2Ct) it IYiP>l i$t Y;2Ct) 
159.4276 621.8611 159.4276 621.8611 
61.8414 191.8380 
112.1965 566.1891 

139.4614 959.3393 

133.5706 630.2551 
81.7881 224.3501 
45.5985 191.3886 

c3 

iE IYiCt>l if! YfG> 
i=l 

45.2739 332.5530 

28.6038 140.0530 
40.4575 297.4632 

69.2261 612.6908 
58.0921 484.4143 

27.3261 164.8746 
30.2750 183.1465 

Table 4.1 Performance numbers for (Cl)-(C5) 

For the simplified model (SM) the behaviour of (Cl) and (C2) is 

nearly identically (with small advantages for (C2) - for y5 and 

Y7). For the complete model (CM) the centralized controller (C3) 

shows similar results to (Cl) and (C2). The regulation behaviour 

of (Cl) and (C2) is slightly better than that of (C3). All three 

controllers are very satisfactory, contrary to the decentralized 

controller (C4) and (C5) for (CM). For (C4) and (C5) the initial 

errors don't vanish fast enough for t+m (for t'30 we have u(t)"0 

and the closed loop behaviour is dominated by the poles close to 

the unit circle). This non acceptable behaviour is a consequence 

of the fact that the off diagonal terms in (2.5) are not 

considered in u(t). 
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Disturbances 

Two kinds of output disturbances are considered: 

j1)7x1 : t = 40k 

(i) dol(t) := , k E No 

(O)7,1 : t 3 40k 

(ii) d 02 (t) is a stochastic ARMA-process of the form: 

17d02(t+2) + Aldo2(t+l) + A2d02(t) 

= 17w(tt2) + C1w(ttl) •t C2w(t) 

w(t) = 0.5T w(t) 

where w(t) is white noise with Ew(t) = 0 and E{&(t)wT(t)r = 17, 

Al and A2 are as in (CM), 

C1 = diag(-0.6,-0.5,-0.6,-l,-1.2,-0.31,-1.3) 

C2 = diag(0.05,0.06,0.5,0.25,0.5,0,0.42) 

T= 

. 

1.1650 1.7971 0.5774 -0.7989 0.4005 -0.3229 -0.9235 

0.6268 0.2641 -0.3600 -0.7652 -1.3414 0.3180 -0.0705 

0.0751 0.8717 -0.1356 -0.8617 0.3750 -0.5112 0.1479 

0.3516 -1.4462 -1.3493 -0.0562 1.1252 -0.0020 -0.5571 

-0.6965 -0.7012 -1.2704 0.5135 0.7286 1.6065 -0.3367 

1.6961 1.2460 0.9846 0.3967 -2.3775 0.8476 0.4152 

0.0591 -0.6390 -0.0449 -0.7562 -0.2738 0.2681 1.5578 

The parameters for (Cl), (C2) and (C3) are identical to those in 

the disturbance free simulations (but p=O.Ol is selected instead 

of p=O). 

Fig. 4.2 shows the seven components of d,2, Fig. 4.3 and Fig. 

4.4 show the behaviour of Yi(t), i=1,...,7, if d,l(t) resp. 

d,2(t) is applied. 
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16c0 160 
Table 4.2 contains lYiW' and 

i=l 
Jl y:(t) for (Cl), (C2) 

and (C3) and doI resp. do2(t)* 

Cl c2 c3 

disturbance d,l disturbance do1 disturbance do1 

i :I$ IYiCt>l r! Y?Ct) :$Y IYiCt)l :fYf(t) !f.T IYi(t)l ‘5 Y?Ct> 
t-l i=l 

1 142.7370 862.6601 142.8902 862.5816 134.5089 842.3290 
2 63.6579 486.2835 63.iOOl 486.2696 82.7288 550.4965 
3 100.3076 i26.1270 99.4714 725.7056 117.9883 785.0111 
4 93.9706 848.7431 93.9498 848.8152 161.8776 1115.801 
5 99.5881 i63.7535 88.6642 712.0772 131.2883 934.9157 
6 73.2656 3i2.2366 72.8516 572.2151 74.3432 570.4993 
7 88.5619 608.4826 84.3373 609.6167 92.0852 616.5935 

Cl CZ c3 

disturbance do2 disturbance do2 disturbance do2 
160 

i iF IYiCt>l #fyi(t) :f IYi(t>l ry.2Ct) :I I?h(t>l :fY Yi2@> - 
1 282.6125 996.7547 281.6264 992.6683 kg.0638 ;;7.7774 
2 307.4604 1047.957 307.1939 1047.389 153.4852 343.4632 
3 442.0752 2091.824 443.7912 2106.561 170.6492 557.7613 
4 1057.056 11467.45 1057.089 11468.25 285.1048 1060.096 
5 529.7932 3260.612 676.6102 5418.604 262.1168 867.1789 
6 306.9017 952.2822 307.2699 955.6666 332.2325 1075.433 
7 184.3424 128.0020 188.1831 434.4412 171.6152 400.9852 

Table 4.2 Performance numbers for the disturbed system 

‘ For doi (Cl) and (C2) show nearly identical control behaviour. 

The complete model (CM) is stronger affected by doi than the 

simplified model (SM). For do2 we have opposite results. (C3) is 

a lot better than (Cl) resp. (Cz) * For ~2, y4 and y5 the control 

error is approximately identical to the disturbance if (Cl) and 

(C2) are considered, for y3 it is relatively high. The 

disturbance d,2(t) is not really rejected for y2-y5, For y2 and 

y5 the reason is the input restriction (3.10), for y3 and y4 the 

relatively high values d33=14 and d44=150 are responsible. 
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