
Towards Distributed Task-based Visualization and

Data Analysis

Vom Fachbereich Informatik der Technischen Universität Kaiserslautern zur
Verleihung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Kilian Werner

Datum der wissenschaftlichen Aussprache: May 19, 2022
Dekan: Prof. Dr. Jens Schmitt
Berichterstatter: Prof. Dr. Christoph Garth
Berichterstatter: Dr. Julien Tierny

DE-386

Kilian Werner

Towards Distributed Task-based Visualization and Data Analysis

Dissertation, May 19, 2022

Reviewers: Prof. Dr. Christoph Garth and Dr. Julien Tierny

Supervisors: Prof. Christoph Garth TU Kaiserslautern

Scientific Visualization Lab

Computer Science Department

Gottlieb-Daimler-Straße 47

67663 Kaiserslautern

Abstract

To support scientific work with large and complex data the field of scientific visual-
ization emerged in computer science and produces images through computational
analysis of the data. Frameworks for combination of different analysis and visualiza-
tion modules allow the user to create flexible pipelines for this purpose and set the
standard for interactive scientific visualization used by domain scientists.

Existing frameworks employ a thread-parallel message-passing approach to par-
allel and distributed scalability, leaving the field of scientific visualization in high
performance computing to specialized ad-hoc implementations. The task-parallel
programming paradigm proves promising to improve scalability and portability in
high performance computing implementations and thus, this thesis aims towards
the creation of a framework for distributed, task-based visualization modules and
pipelines.

The major contribution of the thesis is the establishment of modules for Merge Tree
construction and (based on the former) topological simplification. Such modules
already form a necessary first step for most visualization pipelines and can be
expected to increase in importance for larger and more complex data produced
and/or analysed by high performance computing.

To create a task-parallel, distributed Merge Tree construction module the construc-
tion process has to be completely revised. We derive a novel property of Merge Tree
saddles and introduce a novel task-parallel, distributed Merge Tree construction
method that has both good performance and scalability. This forms the basis for a
module for topological simplification which we extend by introducing novel alterna-
tive simplification parameters that aim to reduce the importance of prior domain
knowledge to increase flexibility in typical high performance computing scenarios.

Both modules lay the groundwork for continuative analysis and visualization steps
and form a fundamental step towards an extensive task-parallel visualization pipeline
framework for high performance computing.

iii

Zusammenfassung
Wissenschaftliche Visualisierung ist eine Disziplin der Informatik, die durch com-
putergestützte Analyse Bilder aus Datensätzen erzeugt, um das wissenschaftliche
Arbeiten mit großen und komplexen Daten zu unterstützen. Softwaresysteme, die
dem Anwender die Kombination verschiedener Analyse- und Visualisierungsmod-
ule zu einer flexiblen Pipeline erlauben, stellen den Standard für interaktive wis-
senschaftliche Visualisierung.

Die hierfür bereits existierenden Systeme setzen auf Thread-Parallelisierung mit
expliziter Kommunikation, sodass das Feld der wissenschaftlichen Visualisierung auf
Hochleistungsrechnern meist spezialisierten Direktlösungen überlassen wird. An
dieser Stelle scheint Task-Parallelisierung vielversprechend, um Skalierbarkeit und
Übertragbarkeit von Lösungen für Hochleistungsrechner zu verbessern. Daher zielt
die vorliegende Arbeit auf die Umsetzung eines Softwaresystems für verteilte und
task-parallele Visualisierungsmodule und -pipelines ab.

Der zentrale Beitrag den die vorliegende Arbeit leistet ist die Einführung zweier
Module für Merge Tree Konstruktion und topologische Datenbereinigung. Solche
Module stellen bereits einen notwendigen ersten Schritt für die meisten Visual-
isierungspipelines dar und werden für größere und komplexere Datensätze, die
im Hochleistungsrechnen erzeugt beziehungsweise analysiert werden, erwartungs-
gemäß noch wichtiger.

Um eine Task-parallele, verteilbare Konstruktionsmethode für Merge Trees zu en-
twickeln musste der etablierte Algorithmus grundlegend überarbeitet werden. In
dieser Arbeit leiten wir eine neue Eigenschaft für Merge Tree Knoten her und en-
twickeln einen neuartigen Konstruktionsalgorithmus, der gute Performance und
Skalierbarkeit aufweist. Darauf aufbauend entwickeln wir ein Modul für topologis-
che Datenbereinigung, welche wir durch neue, alternative Bereinigungsparameter
erweitern, um die Flexibilität im Einstaz auf Hochleistungsrechnern zu erhöhen.

Beide Module ermöglichen weiterführende Analyse und Visualisierung und set-
zen einen Grundstein für die Entwicklung eines umfassenden Task-parallelen Soft-
waresystems für Visualisierungspipelines auf Hochleistungsrechnern.

iv

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Thesis Structure . 3

2 Parallel Programming with HPX 5
2.1 The Parallel Setting . 5
2.2 Task-Parallel Paradigm . 6
2.3 Distributed Systems . 8
2.4 Task-Parallel Programming with HPX 9
2.5 Hybrid Programming with HPX . 13

3 An Introduction to Data Analysis and Simplification with the Contour
Tree 15
3.1 Domain and Scope . 15
3.2 Contour Trees as Quotient Spaces . 17
3.3 PL Morse Theory and Contour Trees as Graphs 18
3.4 Applications of the Contour Tree in Visual Analysis 22
3.5 Topological Simplification and the Contour Tree 23

4 Contour Tree Construction 31
4.1 Saddle Identification with Monotone Paths 33
4.2 Related Work Survey . 36

4.2.1 Totally Ordered Construction 36
4.2.2 Divide & Conquer . 39
4.2.3 Domain Restriction . 40
4.2.4 Minimum Lists . 41
4.2.5 Local-Global Merge Trees . 42
4.2.6 Pruned Divide & Conquer . 44
4.2.7 Unordered Construction . 45
4.2.8 Distributed Domain-Restriction 46
4.2.9 Contour Forests . 47
4.2.10 Massively Parallel Peak Pruning 48
4.2.11 Locally ordered Task-Parallelism 50
4.2.12 Other works . 52

v

4.2.13 Conclusion and Comparison 53

5 Unordered Task-Parallel Distributed Augmented Merge Tree Construc-
tion 55
5.1 Algorithmic Structure . 57

5.1.1 Minimum Search . 58
5.1.2 Region Growth . 59
5.1.3 Saddle Contraction . 62
5.1.4 Trunk Skipping . 65

5.2 Hybrid Distribution . 66
5.2.1 Minimum Search . 67
5.2.2 Region Growth . 67
5.2.3 Saddle Contraction . 73
5.2.4 Tree Collection and Trunk Skipping 75

6 On-The-Fly Simplification 77
6.1 Alternative Parameters for Persistence Based Simplification 78
6.2 Constrained Branch Count N . 80
6.3 Percentile Size Reduction to p . 81

6.3.1 Quantile Summary . 81
6.3.2 Statistical Estimation . 82

7 Conclusion 85
7.1 Results . 85
7.2 Summary, Future and Ongoing Work 97
7.3 Acknowledgements . 98

Bibliography 99

List of Figures 105

List of Tables 109

vi

Introduction 1
„[A poet would be] overcome by sleep and hunger

before [being able to] describe with words what
a painter is able to [depict] in an instant.

— Leonardo da Vinci

1.1 Motivation and Problem Statement

Simulation has established itself as a third pillar of science besides theory and
experiment. Both simulation and experimental measurements of contemporary
scientific work produce digital data of increasing size and complexity. Understanding
and working with this data is becoming an ever larger challenge for domain scientists,
and partially automated computational analysis has become essential in this process.
This PhD thesis aims to support scientific work with large and complex data.

More specifically, we want to support scientific work with Scientific Visualization,
which has formed a discipline of computer science and is a form of data analysis
that produces visual images. Exploration and understanding of data features and
deductions by humans is greatly improved by this. However, with increasing data
size both scientific importance and computational difficulty of scientific visualization
grow.

The use of high performance computing (HPC) in simulations produces data that is
typically too large to analyse and visualize without also employing HPC systems.
For example HPC computing clusters allow simulations to produce data so large,
that it becomes uneconomic to store its entirety. Instead, data analysis and scientific
visualization are performed in-situ -that is while the simulation data is still in
memory- and only the (significantly smaller) analysis data (e.g. images) is stored.
Here, the quality of the automated visualization is fundamental, as the largest
portion of simulation data has to be discarded without human interaction. At the
same time, such scenarios present the analysis with unprecedented input data sizes

1

breaking the feasible performance limits of conventional algorithms that are often
designed for sequential or shared memory systems.

Adapting implementations to HPC clusters often requires a complete reformulation
of the algorithms and is typically performed individually for each use case and
meticulously tailored for specific hardware systems. The use of the emerging
task-parallel programming paradigm proves promising for the creation of more
generalized, portable and interoperable implementations.

The Visualization Toolkit (VTK) [Sch+06] provides a framework for scientific visu-
alization that allows to build user specified pipelines from individual algorithmic
modules. This model finds wide spread use in the scientific community and is a
great support to scientific work of different fields. However, its applicability to
HPC clusters is limited as most general purpose modules have no corresponding
implementation for such systems.

This led to work in our research group that aims to create a similar visualization
pipeline framework targeted towards high performance computing clusters with the
use of a task-parallel programming paradigm. Multiple modules have been created
in collaboration with the author and collegial work on the framework is ongoing at
the time of writing.

During this work it became apparent, that the concept of topological simplification
would become a prerequisite for further work. Topological analysis and simplification
is often the first module of visualization pipelines, as noise and complexity of
the data need to be reduced to produce understandable images [EJ09; Pas+11;
Hei+16; Tie18]. Especially for the large and complex data sets that are the object
of investigation for the scientific work we want to support, this aspect appears
fundamental.

This leads us to the main contributions of this thesis. We lay the groundwork for a
framework for task-parallel visualization and data analysis pipeline management
targeted at HPC cluster hardware. To this end we introduce a novel, task-parallel
and distributed Merge Tree construction algorithm, which required to completely
revisit Merge Tree construction and derive novel insights into properties of inner
nodes of Merge Trees. We also provide a module for topological simplification
based on the Merge Tree that is applicable for HPC and in-situ scenarios. To
increase flexibility in such scenarios -where iterative human interaction and prior
domain knowledge might not be applicable- we propose novel parameters to guide
topological simplification in a more predictable manner. The use of these parameters

2 Chapter 1 Introduction

requires a self-correcting, statistical estimation, and we explore different possibilities
of its realization and the resulting accuracy.

1.2 Thesis Structure

Chapter 1

A brief motivation describes the scientific work we want to support and establishes
task-parallel, distributed modules for Merge Tree construction and topological
simplification as our main contributions.

Chapter 2

A detailed introduction to parallel programming is given to establish the terms
task-parallel and distributed. The utilized parallel framework HPX is introduced and
complemented with what we learned regarding the corresponding design principles
and algorithmic properties of this setting.

Chapter 3

A detailed, theoretical introduction to Contour Trees, Merge Trees and topological
simplification is given. We extend this established field by a modified definition
for Contour Trees, that allows us to unify different aspects of Contour Trees that
emerged in related work. This foundation is important to understand both the
motivation and realization of our work.

Chapter 4

A unified perspective on Contour Tree construction is established and extended
by a novel insight that guides the construction method of this thesis. Additionally,
an extensive survey and comparison of contemporary Contour Tree construction
methods is given. This also highlights that the construction method of this thesis
contributes to the state of the art by filling a gap in contemporary construction
capabilities.

Chapter 5

The novel, task-parallel and distributed Merge Tree construction method is presented.
Building on both previous chapters, the reader should be able to understand the
complex algorithm in detail. We discuss implementation details and optimization
opportunities along with the necessary adaption of the algorithm to distributed
settings.

Chapter 6

1.2 Thesis Structure 3

The simplification module based on the Merge Trees and the necessary algorithms to
employ alternative, more flexible parameters for this simplification are introduced.
Setting a percentage p or absolute numberN of tree edges to keep after simplification
allows for a more direct control of the simplification effects without prior domain
knowledge.

Chapter 7

The results of benchmarks and evaluations performed on the modules are presented
and strengths and limitations of the novel algorithms are discussed. A concluding
summary is followed by an integration of this thesis into ongoing collegial work and
suggestions for future work.

4 Chapter 1 Introduction

Parallel Programming with
HPX

2
The scientific work we want to support requires us to adapt algorithms to allow
for efficient and scalable parallel and distributed execution. Of course, this is a
rather open problem statement. In this section, the used terms for and relevant
aspects of both the conceptual and hardware setting targeted by our algorithms are
introduced to adequately describe the problem. On the other hand, the utilized
parallel paradigm and software framework, along with associated design goals and
principles and common pitfalls and limitations are introduced to adequately describe
the chosen solution.

2.1 The Parallel Setting

The term concurrency refers to portions of a process not being limited to a certain
order of execution or mutual exclusivity in simultaneous execution. Such portions
are often called independent from each other. A concurrent process or algorithm has
at least some concurrently independent portions. A concurrent problem is a problem
that can be solved by a concurrent process. In contrast, a problem or algorithm that
exposes no concurrency is called sequential.

In reality, problems and algorithms are neither purely sequential nor consist solely
of concurrent portions. Concurrency and sequentiality are therefore often used as
comparative, sometimes quantifiable properties. The full extent of concurrent poten-
tial of a problem is hard to grasp mathematically and many gradual improvements
of parallel programs in the literature came from the identification of more and more
concurrent aspects in the problem.

Not all concurrent portions of such processes need to be pairwise independent. If a
problem can be solved by solving two completely independent, purely sequential
problems, it would still be a concurrent problem. Nonetheless, one of the most
common abstractions for concurrent algorithms, called Amdahl’s law [Amd07]
models them as a purely sequential portion and a portion that is fully concurrent.

5

This model optimistically assumes the complete mutual concurrency of the latter
portion.

The term parallelism refers to portions of processes actually happening simulta-
neously. Concurrency can be seen as the conceptual possibility for parallelism.
Parallel programming therefore is concerned with assessing the concurrency in a
problem, deriving an algorithm that exposes that concurrency and deriving a parallel
implementation that realizes the concurrency. In reality, it is practically impossi-
ble to perfectly realize concurrency. Realizations of parallel concepts in hardware
often require the introduction of extra work growing with the number of parallel
workers.

We will refer to the maximal number of parallel workers a hardware system can
execute simultaneously as hardware threads. To utilize effects such as CPU instruction
pipelining, the operating system of most hardware systems obfuscates the number
of hardware threads and instead exposes a (typically larger) number of operating
system threads (OS-threads). The programmer typically has no control over this
process and assumes the number of OS-threads to be the number of parallel workers
available to the program.

2.2 Task-Parallel Paradigm

A conventional form of parallelism realizes concurrency with respect to the OS-
threads. Parallel portions of the program are exposed by specifying software threads,
with each thread being a distinct sequential process. The number of these software
threads is often based on -if not identical- to the number of OS-threads. We call this
form of parallelism thread-parallel. In contrast, task-parallelism bases the parallel
portions of the program primarily on the concurrent portions of the algorithm
("tasks") with little regard for the number of available OS-threads. Instead of leaving
the allocation of software threads onto OS-threads to the operating system (often
aiming for a one to one association), tasks are allocated, suspended and overall
managed by a runtime scheduler (often running a thread-parallel back-end).

The term task-parallel has been used in the literature to represent complete parallel
programming paradigms. These paradigms include additional commitments to
parallel approaches and priorities. The work in this thesis is based on the task-
parallel programming paradigm ParalleX and the realizing framework HPX [KBS09].
To understand the different aspects that form this paradigm, we will introduce
additional classification of parallel approaches.

6 Chapter 2 Parallel Programming with HPX

Parallel granularity is a term that describes the average size (often measured in
runtime), or inversely the total number of parallel portions of the program like
threads or tasks. A fine granularity refers to many, small portions of the process
that are individually modelled and allowed to run in parallel. A coarse granularity
refers to few, large portions of the process that partition the total work in parallel
regions.

Threads are often comprised of rather coarse-grained portions of work that might be
concurrent among themselves. While this discards this internal concurrency, parallel
efficiency does not necessarily suffer, since there is a limit for parallelism already
given by the number of hardware threads. Thread-parallel programs typically try
to minimize the number of context-switches, that is the number of re-allocations of
software-threads to OS-threads, along with other sources for parallel overheads.

On the contrary, task-parallel approaches often aim for fine-grained tasks, to expose
as much concurrency as possible. The driving design goal is avoiding restrictions
of the algorithm and problem concurrency. However, efficiency of this approach is
highly dependent on allocation and context-switch costs of tasks to OS-threads.

Synchronous parallelism makes the overall program follow a sequential outline, with
parallel regions creating and then terminating threads (fork & join) before continuing
to the next step after a global barrier. In asynchronous parallelism, threads or tasks
can be created and terminated at any time, often within some nested hierarchy. The
use of global barriers is replaced by local synchronization means for pre-defined
objects or between specific threads or tasks.

The communication and thus synchronization between threads or tasks can follow
one of three principles. If all parallel workers have access to the same shared
memory they can communicate information by side effects. Writing and reading
on the same memory locations transfers information between threads, but requires
synchronization, for example by atomic operation, mutex or similar. If this form
of communication is not provided or desired, communication can take the form of
explicit message passing [93]. For this, each communication participator is assigned
a rank. Information and data can be sent by direct messages to a target rank.
Synchronization takes the form of active or passive waiting for messages. Lastly, the
communication between threads can be limited to parameters and return values
of object oriented method invocation. For this, objects and callable methods have
to be made addressable in a similar way to the ranks of message passing, which
often requires some kind of registration with a communication manager before the
communication.

2.2 Task-Parallel Paradigm 7

Another important distinction in parallelization approaches can be made with respect
to the data the algorithm is performed on. A program is called data-parallel, if threads
perform similar work on different (portions of the) data. At an extreme, data parallel
programming is the SIMD model [FR96] of vector processing or GPUs. However,
in a wider sense a program is often called data parallel, if a clear distribution onto
disjoint portions of data guides the design of the exposed parallelism. This is often
done to minimize the performance cost of the communication and synchronization
methods described above.

The prevalent parallel programming paradigm for CPU based systems is a coarse-
grained, synchronous thread-parallel approach. It is associated with a data-parallel
fork & join (divide & conquer) approach. In contrast, the task-parallel programming
paradigm facilitates a fine-grained, asynchronous approach. Also, it is often not easy
to mix task-parallel and data-parallel principles and let both problem concurrency
and data segmentation guide the parallel structure.

The task-parallel paradigm can expose a number of benefits over the conventional
approach. Forked threads may have different runtimes due to load imbalance
between them. This, and external latencies like memory or disk lookup or network
communication can lead to hardware threads being idle, while most software
threads are waiting. With finer granularity and asynchronous parallelism, such
waiting times can be filled with other work. Another aspect is the closer relation of
the conventional thread-parallel approach to hardware capabilities. The task-parallel
paradigm makes far less assumptions about the available number and nature of
hardware threads. The demanding responsibility of thread allocation is separated
from the program design and programmers can rely on the quality of the runtime
scheduler provided with task-parallel frameworks. Both aspects are of increasing
importance with respect to growing complexity and size of contemporary high
performance computing hardware.

2.3 Distributed Systems

A distributed memory system is a parallel system where not all parallel workers
share the same memory. More specifically, when talking about distributed systems
in this thesis, we refer to the setting of computer clusters for high performance
computing. In this setting, a number of parallel workers that do have a shared
memory are grouped together to form a locality. This concept is often called node,
which we avoid because of the danger of confusing them with graph nodes. These

8 Chapter 2 Parallel Programming with HPX

localities typically are multi-core linux computers in the cluster, with parallel workers
associated with OS-threads. The computers are connected by a network layer and
can thus communicate. Multiple localities are involved in the execution of a parallel
program, distributing the total memory among them.

Local parallel workers can communicate by side effects on shared memory. Commu-
nication across localities however has to be done explicitly, by message passing or
remote method invocation. In an attempt to treat all communication consistently,
such a distributed system can of course emulate a purely non-shared memory, by di-
viding local memory among local workers and forming virtual localities. Otherwise,
the parallel memory setting is often called hybrid parallel programming, as shared
memory parallelism techniques are combined with explicit communication.

In this setting, data-parallelism typically is a driving factor, regardless of used
communication and parallelization techniques. Moving large amounts of data or
passing large quantities of network traffic comes with heavy hardware latencies,
that can easily become a dominating runtime influence compared to CPU cycles and
shared memory communication. Minimizing the amount of communication between
localities can often be achieved by moving work to the data, rather than the other
way around. Algorithms that expose no parallelism over distinct data regions, but
rely strictly on sequential work flows with global data dependencies often need to
be reformulated in a more data-parallel way for such settings, if possible.

The task-parallel paradigm is difficult to combine with data-parallel requirements, as
an algorithm has to be formulated to expose work that is primarily concurrent over
data regions while not sacrificing too much possible concurrency of the problem.
Such design is driven by the question what fine-grained concurrent work can be
done as locally contained as possible to perform the overall algorithm. This has some
striking similarities to ad-hoc network or agent-based algorithms. If successfully
applied, the fine-grained task-parallel paradigm can be especially beneficial to
performance and scalability in these settings, as the unavoidable network latencies
that some tasks will encounter can be filled with work of other tasks.

2.4 Task-Parallel Programming with HPX

They key element of task-parallel programming in HPX is creating asynchronous
tasks represented by c++ methods and passively waiting for their return values.
At the center of this process is the future. A future is created together with a task
and represents the promise of its return value. The fulfillment of this future can be

2.4 Task-Parallel Programming with HPX 9

queried, passively waited on or used as a dependency for further task creations in
conjunction with other futures. This concept provides a wide variety of possibilities
to control when and under which conditions to create a task and when and where
to wait for or utilize its results.

Tasks may have side effects in shared memory, including the synchronization with
local control objects (LCOs) like mutices, semaphores and events. However, the
main tool for communication and synchronization between tasks (especially for
distributed settings) is parameters of method invocations and the futures of the
corresponding return values, see Figure 2.1. Futures and thus tasks are created in
HPX with a call to the function async. This is a form of synchronization, as the system
guarantees that work of a task can start only after the corresponding call to async.
Without the use of LCOs, no further guarantees on the timing and synchronization
of the work of a task is made. It might be suspended from and allocated to different
OS-threads multiple times during its lifetime. It may run in parallel to the original
task (that called async) and can even still run after the calling task terminated.

This is where the future comes into play. It allows to capture the fleeting chunk
of work that is the task, by representing its end point. A call to is_ready() on a
future returns true if the associated task has finished its work. A call to get() on
a future returns the return value of the associated task. get() will block until the
associated task is done and the return value is ready. With this, the lifetime of task
is guaranteed to be between the call to async and the first time a get() on its future
returns.

Fig. 2.1: Sequence diagram of a simple, direct use of a future. Both tasks can run in parallel,
if two OS-threads are available and the HPX scheduler allocates them accordingly.

10 Chapter 2 Parallel Programming with HPX

This principal functionality of tasks also exists in the c++ standard. Apart from
providing a custom scheduler and powerful tools for hybrid programming, HPX
extends the capabilities of futures. The async function has to be called from an
active task to create a new task. It does so immediately, resulting in the allocation
of resources (e.g. the stack) for the new task. Since dependencies between tasks
(meaning the timings of futures to become ready) are unpredictable, a growing
number of active but suspended tasks waiting for futures may arise.

The extensions of HPX allow the scheduling of tasks to be tied to futures becoming
ready. The most basic function then allows to attach a task call to a future. A future
to the attached task is returned immediately, but the actual scheduling of the task is
delayed until the future it is attached to becomes ready. When_all and for_each are
methods that allow for the composition and bundled treatment of futures in a similar
way. The dataflow method is similar to then, but allows tasks to depend on multiple
futures. The shared_future is a future that can be queried multiple times allowing
arbitrary n to m dependencies between tasks finishing and starting their work. With
this, the main method (and initial task) of an HPX application may consist solely
of creating tasks and attaching tasks as continuations to the resulting futures. This
allows to model entire algorithms as a task graph, mapping the concurrency of the
algorithm at compile time and leaving the actual parallel realization to the scheduler,
see Figure 2.2 .

Fig. 2.2: Sequence diagram of a simple dataflow. The main task schedules two tasks and a
continuation once both of them are done.

2.4 Task-Parallel Programming with HPX 11

However, this conceptual method is hard to fully realize. Task dependencies often
arise from intermediate results and the task graph has to be built on the fly. Even with
the minimized context switch cost the HPX scheduler aims for, parallel granularity
can only become so fine before scheduling overheads exceed actual work time
per task. This means that not every synchronization dependency can be modelled
by tasks and futures. Instead, conventional synchronization with LCOs becomes
necessary, eroding the meaningfulness of the task graph. Lastly, leaving the details
of parallelization entirely to the scheduler will not result in optimal performance.
This conceptual responsibility of the scheduler had to be alleviated by manually
optimized scheduling orders in the projects presented in this thesis to achieve optimal
performance.

Under the hood, the HPX scheduler maintains queues for OS-threads to hold sched-
uled tasks. Tasks undergo a series of state changes. At some point, they become
active, being allocated resources (including a fixed size stack) that stay fully occu-
pied until the tasks eventually terminate. The nature and relation of the queues can
be configured using scheduling policies, OS-thread pools and executors, ranging
from FIFO queues and a round-robin OS-thread assignment of tasks to NUMA aware
work stealing schemes on priority queues. Working with the system, it became
clear that other configurable aspects like work stealing parameters, the maximal
amount of simultaneously active tasks and stack sizes can have a dominant impact
on performance. Especially memory consumption can reach extreme values if the
number of active tasks is not limited and stack sizes are not carefully managed
(reminiscent of GPU warp stack management). If the number of active tasks is
limited however, one has to be careful not to create deadlocks. If all tasks that
already have allocated resources wait for work by some tasks that have not yet
allocated resources, the program cannot continue. Ultimately, the choices for these
configurations fall to the programmer and may be based on assumptions about the
hardware and algorithm.

Another limitation of this programming model that results in increased implemen-
tation complexity for the developer is termination handling. A strain of parallel
computation is only guaranteed to have terminated once all involved futures are
ready. To validate this, all involved futures have to be accumulated in a single
control flow. In a distributed setting this often requires complex reference counting
and heavy use of LCOs. This is an innate problem to the unpredictable order and
timing of asynchronous parallelism, however it is particularly in conflict with design
goals of the task-parallel paradigm.

12 Chapter 2 Parallel Programming with HPX

2.5 Hybrid Programming with HPX

HPX supports task-based parallelism by asynchronously invoking methods and
handling futures to their results. HPX also incorporates a solution to hybrid program-
ming, managing multiple localities. This solution stayed as close to the governing
principles of local parallelism as possible. Not any c++ method can be called by
async right away. It has to be registered as an action using a macro at compile time.
This registration also sets the action up for remote method invocation. A target
locality can be specified with an additional parameter to async, creating the task
for the action on the specified locality. The future is created on the calling locality
which allows task dependencies and synchronization to span across localities.

To incorporate object oriented programming, the same mechanism can be applied
for member functions of classes. For that, the class in question has to be registered
as a component with a macro at compile time as well. Component instances are
assigned global addresses similar to locality ranks and class member functions can
be called remotely by specifying these addresses to async when calling component
actions. Components are subject to garbage collection based on existing copies of
their address and can also be actively migrated to other localities, with all existing
copies of their address remaining valid. The mechanism that manages registration,
lifetime and addresses of components is called active global address space (AGAS).

AGAS allows local and remote method invocations to be treated identically by the
programmer. In fact, whether an action is called on a component that is in shared
memory or resides on a different locality is not necessarily known at compile time.
Dependencies of the task graph and the associated data can span across localities, as
if working in one large shared memory. However, methods to evaluate whether a
component is co-located are available and component migration is not automated.
The degree of abstraction from hardware localities therefore lies in the hands of
the programmer. The experience gained during the work on the algorithms in this
thesis led us to a very limited use of AGAS capabilities. Often, only one component
instance of an overall manager type class existed per locality with no component
migration performed.

The main reason for this is that frequent data migration comes with harsh perfor-
mance penalties and an efficient data-parallel design often eliminated the need for it
completely. Additionally, interaction between local processes often can be optimized
by the use of shared memory side effects and LCOs. Such optimizations are lost, if
interactions are actually programmed to be agnostic of locality affiliation.

2.5 Hybrid Programming with HPX 13

An Introduction to Data
Analysis and Simplification
with the Contour Tree

3

3.1 Domain and Scope

The scientific work we want to support concerns itself with scalar functions that
represent natural phenomena. These may be for example temperature, density or
even complex attributes reflected in some arithmetically achieved metric. We try
to use topological features of these functions to allow for some semi-automated
analysis of this data, like segmentation and simplification. To grasp these topological
features we need some mathematical structures from algorithmic topology and
Morse theory.

We consider the domain on which the scalar function we are interested in lives to
be a 3-manifold M that is homeomorphic to the 3-sphere. This is a limitation to
compact, (simply-)connected, not self-intersecting domains without boundary in 3D
space. We consider the function itself to be a smooth, real-valued Morse (see below)
function f on the domain M .

With these definitions come some assumptions about and limitations of the domain
and attributes of the function. These limitations are necessary for two distinct
reasons.

The first reason is to make it more easy to formally talk about the domain, data and
algorithm. Topology is a very formal construct. The studied natural phenomena
and especially the questions about them and the expected results of computational
analysis are often far less formal. To map the measurements, simulations and insights
of real world data to the topological structure of the Contour Tree we have to begin
with continuous Morse theory, adapt to a piecewise-linear setting and ultimately
formulate our algorithm input and output on graphs. The unavoidable ambivalence
in this field manifests itself in the very name and definition of the Reeb Graph and
Contour Tree. They are named graph and tree but defined as continuous quotient
spaces.

15

On the other hand, data acquisition is often just as ambiguous, producing artifacts
and noise. In most cases data sources are point based, so that the very topology of
the data (e.g. regular grids vs. triangulations) is an arbitrary choice.

Mitigating some of this complexity therefore is the first reason to introduce assump-
tions and limitations in our formal description. This however is not a technical
limitation and to our knowledge the presented algorithms may as well produce
expected (although not necessarily formally correct) results for non-smooth, non-
morse functions, higher dimensions, domains with boundary or even non-manifold
domains.

Technical limitations exist however and form the second reason for the assumptions
in the definition. The Contour Tree is a special case of the Reeb Graph. The latter may
include cycles and thus is not only well-defined for manifolds that are homeomorphic
to a sphere. This however requires special care during construction. For that, more
complex and computationally expensive data structures and methods have to be
introduced. Additionally, the concept of trunk skipping that can drastically reduce
runtime is only applicable to Contour Trees. While the authors of [Gue+19] manage
to partially replace that concept within their algorithm - providing the fastest Reeb
Graph construction algorithm known to us at the time of writing - the achieved
performance (measured in runtime per vertex) still falls short of their own Merge
Tree variant of the same algorithm [Gue+17] by an order of magnitude.

The limitation to domains that are homeomorphic to spheres therefore is a limitation
of our work to Contour Tree construction over Reeb Graph construction. This allows
for a faster and more scalable algorithm. Most real world data sets, especially the
prevalent scalar fields, do not include "holes". A conversion by "filling" holes with
some base function values might produce desired results for additional data sets.

Morse Function The definition of a smooth Morse function is not crucial in our
work, since we will be concerned with its piecewise linear equivalent introduced
below. For the sake of completeness the brief definition will follow. A point p on M
is critical if the differential df, p of f at p is zero. It is further non-degenerate if the
matrix of second order partial derivatives (the Hessian) H(p) is non-singular.

f is called a Morse function, if all critical points are non-degenerate and f(p) 6= f(q)
for all points p 6= q that are critical.

16 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

3.2 Contour Trees as Quotient Spaces

Contour Trees can briefly be described as a contraction of each connected area of
points with identical function values. With this, they are a tool that allows us to
identify such areas that are "insignificant", to set such areas in a hierarchical context
and to make batchwise operations on them instead of individual points.

Going further it is clear that we will need a notion for "points with identical function
value". A level set is the pre-image f−1(h) of a given level h ∈ R.

Level values have been associated with height and time in the literature and we will
use terms like lower, higher, before and after as if talking about a rising level, that is
as if considering level sets for increasing values for h over time. A popular image is
the comparison to a rising water level. If the domain were subject to rain and "up"
and "down" regarding the water flow would be defined by the function values of f ,
then a level set would be a straight water surface at a given time (and corresponding
height h).

Note that for Morse functions, a level set includes at most one critical point.

A sub-level set f−1
−∞(h) is the pre-image of the interval (−∞, h] and a sur-level set

f−1
+∞(h) is the pre-image for the interval [h,∞) respectively. Intuitively, the sub-level

set is everything under water and the sur-level set is everything dry (ignoring the
falling rain itself).

When restricting the domain M of f to a level set, each connected component in
the restricted domain is called a contour. We denote the contour that contains a
point p by f−1(h)p. Note that the contours form a partition of M and thus f−1(h)p

is unique.

One can define the equivalence relation ∼ on points p1, p2 ∈M as: p1 ∼ p2 ⇔ p2 ∈
f−1(f(p1))p1 . That is two points are equivalent if they belong to the same contour.

The Reeb Graph of M w.r.t f is the quotient space R(f) = M/ ∼. For our chosen
attributes of M , R(f) will be loop-free and thus is called Contour Tree. With
this, we have arrived at the brief description above. However,we need two more
structures that are easier-to-construct, intermediate steps for actual Contour Tree
construction.

The Join Tree of M is the quotient space J(f) = M/ ∼J , with p1 ∼J p2 ⇔ f(p1) =
f(p2) ∧ p2 ∈ f−1

−∞(f(p1))p1 . Similarily, the Split Tree of M is S(f) = M/ ∼S , with
p1 ∼S p2 ⇔ f(p1) = f(p2) ∧ p2 ∈ f−1

+∞(f(p1))p1 .

3.2 Contour Trees as Quotient Spaces 17

Together, Join and Split Tree are called the Merge Trees. Intuitively, they contract all
points with identical function values, that belong to the same body of water (and
grotto of air respectively) just like the Contour Tree contracts contours.

3.3 PL Morse Theory and Contour Trees as Graphs

Contour Trees are defined as a quotient space regarding continuous functions and
domains. Data produced, measured, simulated and used in the scientific work we
want to support might not always represent continuous phenomena however. More
importantly, data representations for computational analysis are not continuous and
general infinite precision is technically impossible. This requires us to find discrete
analogies for the above definitions.

Let K be a simplical complex that triangulates M . In this discrete setting, we
consider continuous, real-valued Morse functions f , that are piecewise-linear on
K. That means f is linear when restricted to any simplex of K. Such functions are
now uniquely defined by their function values on vertices of K [Rou72], as other
values can be obtained by linear interpolation. This piecewise-linear (PL) setting
fits well with the typically point based data from real world measurements and
simulations.

However, the PL setting requires an adjusted definition of critical points (and thus
Morse functions), as a piecewise-linear f cannot be smooth w.l.o.g. and with that,
the differential and Hessian are not well defined.

PL Morse Function As mentioned above, the piecewise-linear equivalent of Morse
functions is fundamental for our work. Critical points have a close relation to nodes
of the Contour Tree and the PL definitions for them will be starting point and anchor
to many considerations regarding tree construction.

Critical points are defined by the function behaviour in the immediate vicinity of the
point. The star St(v) of a vertex v ∈ K is the set of all simplices that contain v as
a face. The link Lk(v) of a vertex v ∈ K is the set of all faces of simplices in St(v)
that are disjoint from v. The lower link Lk(v) respectively contains all simplices in
Lk(v) for which v is the point with the highest value.

We will follow the definition of critical points in the piecewise-linear context given
in [Ede+03]. It is based on the reduced Betti numbers of lower links of vertices in
K. A proper introduction of Betti numbers is not profitable here, but it suffices to

18 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

observe the following. β̃−1 is 1 for empty lower links. β̃0 is the number of connected
components of the lower link. β̃1 is the genus of and β̃2 the number of enclosed
voids in the lower link.

β̃−1 β̃0 β̃1 β̃2

regular 0 0 0 0

minimum 1 0 0 0
1-saddle 0 1 0 0
2-saddle 0 0 1 0
maximum 0 0 0 1

In other words: A regular point has a topologically trivial smaller valued immediate
vicinity. A minimum has no smaller valued vicinity. A maximum tears a void into its
smaller valued (thus entire) vicinity. A 1-saddle has two connected components in
its smaller valued vicinity. Lastly a 2-saddle has two connected components in its
larger valued vicinity, which together with the saddle itself form a tunnel through
the smaller valued vicinity. Any other configuration of Betti numbers constitutes a
degenerate critical point.

With this, the definition of a PL Morse function can be worded just like in the
continuous case. f is called a PL Morse function, if all critical points are non-
degenerate and f(p) 6= f(q) for all points p 6= q that are critical. Note that critical
points are always at vertices of K.

Since the definitions of level sets, sub-level sets and sur-level sets transfer to the PL
setting well, Contour Trees and Merge Trees can be defined as quotient spaces on K
instead of M accordingly. However, they are still quotient spaces and not graphs,
much less trees.

The prevalent definition of Contour Trees [CSA03] as graphs associates nodes with
points in the quotient space where the number of connected components changes
with respect to a small change of the level h. In this paper however, we will use
another property of those points for a simpler, formal transition to graphs: Points
at which the number of connected components changes have a local neighborhood
that is not topologically equivalent to the interval (0,1). Intuitively, they do not lie
on the interior of a line in the quotient space, but at line endings or junctions.

We introduce the skeleton graph Sk(K) of a simplical complex K, that quite trivially
represents the 1-simplical skeleton of K. For each 0-simplex v in K there is an
associated node ṽ in Sk(K). Two nodes ũ, ṽ share an edge in Sk(K), iff there exists
a 1-simplex in K with u and v as its faces.

3.3 PL Morse Theory and Contour Trees as Graphs 19

The Contour Tree as a graph R̃(f) is the skeleton graph of a triangulation K(R(f)) of
the Contour Tree as a quotient space R(f). This definition covers an infinite amount
of different graphs, one for each possible triangulation. And in fact, graphs have been
called Contour Trees in the literature for different triangulations. Triangulations
were always limited to contain only vertices for levels with vertices in the original
domain. Sometimes, the limitation was tightened to contain only vertices for levels
with Morse critical vertices. In this paper we will refer to such forms as non-canonical
Contour Trees. The canonical Contour Tree of this thesis stems from a triangulation
K(R(f)) that has a minimal number of 0-simplices. This does not allow the graph to
contain vertices with degree 2 and coincides with the prevalent intuition described
above. Definitions for Merge Tree graphs follow similarly from their respective
quotient spaces.

It is important to note, that a skeleton graph is always a graph in the strict sense.
That is, the edges form a set of tuples of vertices. However, the Reeb Graph as a
quotient space may contain circular structures and thus can only be represented by
a multigraph. That is, the edges form a set of distinct symbols and an incidence
function maps those to tuples of vertices.

The definition above therefore relies on a loop-free quotient space and thus is
applicable only for Contour Trees. When applied to Reeb Graph quotient spaces
that are not also Contour Trees, triangulations (even with minimal simplex count)
may introduce "auxiliary nodes" that have a degree of two and are not part of the
Reeb Graph’s conventional definition. However, with an additional step, all nodes of
degree two can be removed, instead introducing a new edge between their neighbors.
This may produce double edges and necessitates a switch to the multigraph model,
but produces the conventional Reeb Graph.

Sometimes Contour Tree and Merge Tree graphs are represented as directed graphs,
with edges being assigned a direction based on the function values. In this thesis
they will go from small to large values for Join and Contour Trees and from large to
small values for Split Trees. This makes Join and Split Trees directed rooted in-trees.
That is, all edges are pointing towards the root.

Now we have defined the Contour Tree -our algorithm output- as a structure that
can be computationally represented, a graph. Let us do the same with the input.
Remember that PL functions are uniquely defined by their function values on vertices.
Also, we chose M to be homeomorphic to a sphere and so is its triangulation K,
which makes it uniquely defined by its 0- and 1-simplices (if all faces of a higher
order simplex exist, the simplex exists). This allows us to represent all relevant

20 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

information of K and f within the skeleton graph Sk(K) of K, by assigning the
nodes ṽ scalar values corresponding to f(v).

This graph representation of the input saves us the work of actually computing Betti
numbers for lower links and instead observe the following properties of critical
points.

Let the lower/upper link for scalar-valued nodes v in a Graph G be a subgraph of G
that contains all smaller/larger valued neighbors of v and all edges in G between
those neighbors. Consider the node m̃ in Sk(K) for a vertex m in K.

m is a minimum, iff the lower link of m̃ is empty. m is a 1-saddle, iff the lower link
of m̃ consists of two connected components. Similarily m is a maximum, iff the
upper link of m̃ is empty and m is a 2-saddle, iff the upper link of m̃ consists of two
connected components. m is regular, iff both the upper and lower link of m̃ consist
of one connected component. m is a degenerate critical point if either the upper or
lower link of m̃ consist of more than two connected components.

There is a number of nested relations between Contour Tree graph nodes and points
on K. Going forward we will facilitate a notation, that allows us to shortcut these
nested relations and to identify related entities with each other.

A graph node ṽ, in a Contour Tree ˜R(f) corresponds to a point v̂ on the respective
quotient space R(f). This point represents an equivalence class [v] that corresponds
to f−1(f(v))v. v could be chosen arbitrarily from any point in that equivalence class.
For ease of notation however, we will always choose v to be the only such point, that
is critical, if it exists. Remember, that such a v will always be a vertex in K.

All graph nodes ṽ correspond to quotient space points v̂ that in turn correspond to
level set components [v] which include a critical point v of K. However, the opposite
direction is not guaranteed. All points p in K belong to a level set component [p] and
are represented by a quotient space point p̂, but not for all of them exists a graph
node p̃. This is even the case if [p] = [v] for some critical v (e.g. p itself is critical).

More intuitively, every Contour Tree node ṽ "is" a critical point v in the domain,
but not every critical point (let alone regular points) "appears in" the graph. The
relations for Join and Split Tree nodes are similar. More specifically, every node in a
Join Tree is either a minimum or a 1-saddle or the global maximum. Similarly, every
node in a Split Tree is either a maximum or a 2-saddle or the global mimimum.

3.3 PL Morse Theory and Contour Trees as Graphs 21

Augmented Contour Tree The above description and definition of canonical Con-
tour Trees as graphs does not assign a graph node to every vertex v (much less every
point p) in K (not even to every critical one). While this reduction of represented
information is part of the abstraction that the Contour Tree is used for, the lost infor-
mation is still needed for segmentation, simplification and other global modifications
of K.

The term augmented Contour Tree has been defined [V P03] as a (here non-
canonical) representation of the tree, with all Morse critical vertices in the domain
being assigned a graph node in the tree. This guarantees that all contours repre-
sented by one tree edge share the same topology w.r.t. Betti numbers. These Betti
numbers were computed and added as meta information (augmented) to the tree
edges. Because of this property, this representation was later termed the Contour
Topology Tree [Chi+05].

We use the term augmented to describe a Contour Tree with all vertices of the input
being assigned (augmented) to a tree edge like [CSA03]. This augmented Contour
Tree encodes the information of "where in the tree" each vertex v lies. From this, the
Betti numbers can be computed in post processing and additional applications based
on the implied data segmentation become available. This tree is often represented
by another (here non-canonical) representation of the tree, with all vertices in the
domain being assigned a graph node in the tree.

In this paper we will define the augmented Contour Tree as a tuple of the (canonical)
Contour Tree and a second structure called augmentation (of the tree). The augmen-
tation is a map that assigns each vertex v in K to an edge of the (canonical) Contour
Tree, if there exists no ṽ for v in the tree. This edge corresponds to the 1-simplex in
the triangulation of the Reeb Graph space that contains v̂. Similarily, Merge Trees
can be tupled with an augmentation to form Augmented Merge Trees.

3.4 Applications of the Contour Tree in Visual Analysis

As described above, the Contour Tree forms a kind of skeleton of a function on
geometry. This high level representation has a wide variety of applications for
(semi-)automated data analysis and modification. A central capability of the contour
tree is to grasp advanced features and often extract previously unknown points of
interest in large and complex, possibly time-variant data.

22 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

This allows for interactive and hierarchical visual exploration of data and scientific
results [Wid+12; Bre+11; Ros+17]. The Augmented Contour Tree additionally
allows associating these topological features with a meaningful segmentation of the
data, allowing for additional visual exploration and clustering techniques [WBP07],
like automated and sped up volume rendering [Web+06; BG15].

Grasping topological patterns also allows for similarity estimation, pattern matching,
finding periodic features and data retrieval [Hil+01; TS05; SSW14; TN14]. It is
also often at the heart of continuative data analysis and manipulation like surface
parametrization for texture mapping [ZMT05], deformation and animation [TVD06],
isosurface seed set extraction [Kre+97] and lastly compression and level of detail
control [Sol+18].

The essence of most of these applications is to highlight, extract, determine, maintain
or compare what is important and fundamental in the data, while fading, discarding
or manipulating what is not important or mutable. As such, almost all of them
contain an element of simplification. We want to support scientific work in the form
of pipelines made from modular algorithms and so we focus on this aspect directly.
The major application of Contour Trees discussed in this thesis therefore is general
simplification of scalar data.

3.5 Topological Simplification and the Contour Tree

A very well-defined approach to topological simplification of scalar functions is based
on persistence pairs [ELZ02]. A persistence pair is a pair of either a minimum and
a 1-saddle, or a maximum and a 2-saddle. The persistence of such a pair is the
distance in function value between both points.

From the perspective of Merge Trees, persistence pairs can be defined as pairs of
graph nodes, with each node appearing in exactly one pair. Following the directed
graph representation, a minimum is paired with the first of its descendants s in the
tree, with which it forms a persistence pair with minimal persistence (compared to
other minima that s is a decendant of). This leaves the global minimum and global
maximum without a pairing. When pairing the global minimum and maximum with
each other (and ignoring that they are strictly not a persistence pair), the Merge
Trees can be represented as hierarchically nested persistence pairs called branches
by a so called branch decomposition [PCS05].

3.5 Topological Simplification and the Contour Tree 23

(a) (b)

Fig. 3.1: (a) Exemplary domain with scalar function set to the height function, indicated by
dotted lines. Dotted arrows indicate persistence pairs. Colored arrows indicate
join and split tree of domain. (b) ε− simplification of the domain for ε = 10 and
the resulting Contour Tree (identical to Join Tree).

The pairs can be visualized in the so called persistence diagram [CEH07] and form
the basis for the ε-simplification [EMP06]. It allows for the simplification of the
scalar function f , creating a simplified f ′ by eliminating persistence pairs. To be
more precise, persistence pairs are cancelled, meaning that both critical points do
not exist in f ′ while all remaining persistence pairings remain unchanged (though
their persistence might have changed). This is achieved by adjusting function values
of regions around saddle points, until the paired minimum or maximum is no longer
critical, see Figure 3.1. Given a value ε to drive the simplification, the process gives
two strong guarantees:

1. all and only those persistence pairs with a persistence of up to ε will be
cancelled.

2. the maximal distance in function value (and persistence of remaining pairs)
before and after the simplification of a point p is ε: |f(p) − f ′(p)| ≤ ε, ∀p ∈
σ ∈ K.

However, it is possible to cancel the same persistence pairs with a smaller maximal
impact on function values [BLW12]. This is made possible by changing function
values in regions around both saddle and extremum of a persistence pair towards

24 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

each other. Since it is not possible to cancel any more persistence pairs while holding
the guarantee for a maximal function value change, this simplification is called
optimal by the authors. It gives the following guarantees:

1. all and only those persistence pairs with a persistence of up to 2ε will be
cancelled.

2. the maximal distance in function value before and after the simplification of a
point p is ε: |f(p)− f ′(p)| ≤ ε,∀p ∈ σ ∈ K.

Both of these simplification methods are rather sequential and global by nature. The
"movement" of saddles and regions around them modifies function values of points
that are augmented to more than one tree edge. Additionally, the simultaneous
treatment of 1-saddle-minimum pairs and 2-saddle-maximum pairs (and thus Join
Tree branches and Split Tree branches) requires some knowledge about both struc-
tures before the function can safely be modified. These requirements do not fit the
targeted, distributed memory and parallel setting of high performance computing
clusters well. Instead,semi-local operations that can safely be performed without
knowledge about the complete data set are preferred.

We therefore focused on another simplification method, that allows the cancellation
of persistence pairs by moving only regions around extrema towards their saddles
[TP12]. This approach generally allows the elimination of arbitrarily chosen extrema,
with some constraints, and is therefore called general by the authors. With this,
nested branches may be chosen to persist, while their containing, more presistent
branch extrema would be eliminated. This is not a direct cancellation of persis-
tence pairs, as it possibly recombines the remaining pairings. It still eliminates
the extremum and saddle and reduces the number of persistence pairs. However,
we will limit our application of this technique to cancel persistence pairs based on
persistence and ε. This also avoids the necessity to perform more than one iteration
of the algorithm.

General simplification limits the function change for each cancellation to the augmen-
tation of the Merge Tree edge that the cancelled extremum belongs to. Additionally,
all cancellations of 1-saddle-minimum pairs and 2-saddle-maximum pairs happen
in separated phases. This allows for the cancellation of a persistence pair without
knowledge about persistence pairs that are not nested within the first. Additionally, it
allows for one phase to be safely executed without knowledge about the persistence
pairs of the other. With taking some care about avoiding f ′ to become non-Morse,
these aspects allow for an efficient parallelization of the process [Luk+21] and will
also be beneficial to our efforts of task-parallel and distributed simplification.

3.5 Topological Simplification and the Contour Tree 25

However, the isolated phases weaken the formal guarantees of general simplification,
if based on persistence. From the original function f to the fully simplified function
f ′ an intermediate function f̂ is produced after the first phase. Due to the changes
in persistence of persistence pairs inherent to all simplification techniques, some
but not all persistence pairs with a persistence greater or equal ε in f might have a
persistence smaller than ε in f̂ and thus be cancelled in f ′. The formal guarantees
given by general simplification (based on ε persistence and one iteration) are
therefore as follows:

1. all persistence pairs with a persistence of up to ε will be cancelled.

2. only persistence pairs with a persistence of up to 2ε might be cancelled.

3. the maximal distance in function value before and after the simplification of a
point p is ε: |f(p)− f ′(p)| ≤ ε, ∀p ∈ σ ∈ K.

For a given ε it might therefore cancel more persistence pairs than ε-simplification,
of course up to the upper limit of optimal simplification. It is also important to note,
that even if the exact same set of persistence pairs is cancelled by all three methods
(e.g. if no pairs with a persistence p with ε < p ≤ 2ε exist), the resulting functions
f ′ will generally not be identical.

All of the above mentioned simplification methods do not compute the Merge Trees
or Contour Tree completely. However, they do contain work that partially overlaps
with Merge Tree construction. One might only be interested in the Merge Trees or
Contour Tree of the simplified function f ′ and try to reach it by simplifying the trees
of f accordingly, without having to actually compute f ′ completely. This can be
achieved by symbolic simplification of the Merge Tree of f , that is the desired Merge
Tree graph edges and nodes are simply discarded to obtain the Merge Tree of f ′.

One method for symbolic Merge Tree simplification is to compute its Branch De-
composition and discard all branches that correspond to persistence pairs with a
persistence less than ε. This results in the same Merge Tree as computing the Merge
Tree on a simplified function f ′ obtained by the ε-simplification with ε or a different
function f ′′ obtained by the optimal simplification with ε/2.

Another method for symbolic simplification can be achieved by identifying Y-shapes
that include leafs in the tree and pruning the leaf edges [TTF04]. This approach
can be adapted to degenerate multi-saddle scenarios [CSP10]. Since branches with
minimal persistence in the tree always coincide with leaf edges, both these methods
produce the same simplified Merge Tree as above.

26 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

(a) (b)

Fig. 3.2: (a) Optimal simplification for ε = 10 of the domain given in Figure 3.1. (b) Result
after the first phase (2-saddle-maximum) of generalized simplification of the same
domain for ε = 10. Note that the persistence of the remaining pair dropped
to 10. After the second phase the result will be similar to the result of optimal
simplification.

It has to be noted however, that the Contour Tree created by symbolic simplification
based on the Branch Decomposition may differ from the tree created by symbolic
simplification based on Y-shapes and both of them differ again from the actual
Contour Tree of f ′ (which is also the Contour Tree of f ′′) see Figure 3.3.

Additionally, the function f ′′′ obtained by one iteration of generalized simplification
based on persistence is different from f ′ and f ′′, has Merge Trees that are subtrees
of the above and thus generally has yet another different Contour Tree. The Merge
Trees and Contour Tree of f ′′′ can not be obtained by symbolic simplification of a
non-augmented Merge Tree or Contour Tree of f given only ε, since the effect phase
one has on phase two cannot be reproduced from this data.

In contrast to symbolic simplification, the simplification of augmented Merge Trees
or Contour Trees can also be applied back onto the underlying scalar function. This
can speed up topological scalar function simplification if an augmented tree structure
is already available, as persistence pairs and corresponding regions do not have to
be computed again. In general, there are two different methods for applying the
pruning of a tree edge to the scalar function. One is to "carve" a bridge between the
pruned extremum and the other parent node of its saddle. This involves modifying

3.5 Topological Simplification and the Contour Tree 27

optimal (halved epsilon)

generalized

construction

Function f

construction

Function f'
ε

Function f''

construction

Function
f'''

combination

branch decomposition

Y-Shapes
Merge Trees

branch decomposition

Y-ShapesContour Tree

Simplified
Contour Tree

Simplified
Contour Tree

combination

carving

Simplified
Merge Trees

subtree

flattening

Simplified
Merge Trees

Simplified
Contour Tree

Simplified
Contour Treecombination

construction

Fig. 3.3: An overview of different simplification methods for scalar functions, Merge and
Contour Trees. Note, that differently colored functions and trees are not identical
in general. Only the green Merge and Contour Trees could be made identical to
the purple variants, if the generalized simplification is taken with care and effects
of the first phase on the second phase are actively avoided.

function values in regions around the saddle just like in the ε − simplification.
Applying this method in conjunction with symbolic simplification that would result
in the Merge Tree of f ′ actually modifies the scalar function to become f ′. Again, no
such consistency can be found in Contour Tree simplification, see Figure 3.4.

The other method is to "flatten" regions around the pruned extremum towards its
saddle [Luk+21]. This performs the same function value modifications as done in
a single phase of the generalized simplification. In fact, when first simplifying the
augmented Join Tree and applying the prunings by flattening the resulting scalar
function is the same intermediate result as produced by generalized simplification
when starting with the 1-saddle-minimum phase. Simplifying the augmented Split
Tree of this intermediate result and applying the prunings by flattening will result in
f ′′′. As discussed above, generalized simplification has some beneficial properties for
our application. Therefore, for the purpose of topological simplification in this thesis,
we chose to implement the two-step process of flattening Merge Tree simplifications
described above.

28 Chapter 3 An Introduction to Data Analysis and Simplification with the Con-
tour Tree

(a) (b)

Fig. 3.4: (a) Contour Tree of the domain given in Figure 3.1. (b) Branch Decomposition of
that Contour Tree. Note that the branches do not coincide with persistence pairs.
Branch based tree simplification will leave the tree unchanged for ε < 20. Y-shape
based tree simplification will leave the tree unchanged for ε < 30.

3.5 Topological Simplification and the Contour Tree 29

Contour Tree Construction 4
In recent years, multiple Contour Tree construction methods emerged in the litera-
ture. Techniques vary in whether they compute augmentations, target distributed
memory settings and are task-parallel or data-parallel or expose massive parallelism
suited for SMP or GPU architectures. Our work is unique in this field, as it demon-
strates the best performance and scalability for augmented Merge Tree construction
on distributed systems at the time of writing.

In this section, a survey of 11 such techniques that emerged over the last 2 decades
(primarily over the last 5 years) presents a representative overview of the field
of contour tree construction and its development to highlight innate attributes
of the underlying problem. We chose a chronological approach, as reoccurring
concepts, data structures, observations and process steps will make it easier to
describe contemporary work, that has typically become rather complex. This will
also help with introducing the algorithm of this thesis.

It is hard to compare the capabilities and performance of all methods. Hardware
capabilities increased over the years, targeted hardware systems range from multi
core CPU to GPU to distributed, hybrid systems. Additionally, contour tree construc-
tion is always output sensitive (for some algorithms this has a larger impact then
for others) so the complexity of the data sets can drastically impact performance.
Although some data sets became popular for direct comparisons, not all methods
benchmarked on the same data sets. We therefore use a rough approximative metric
to give an overview of the order of magnitude of performance: processed vertices per
second. That is the number of vertices in the data set divided by the reported ideal
total runtime in seconds for that data set. This ideal runtime may come from any
number of parallel workers and any hardware configuration. Since some papers only
reported times for Contour Tree construction, we doubled the calculated amount of
vertices per second to compare against Merge Tree construction. This is an unfair
comparison to some degree, as in a sequential setting the overhead of the actual
combination step is neglected and in a perfectly parallel setting the construction of
both Merge Trees does not take any longer than the construction of one. However,a
factor of 2 in this data-set agnostic metric should not be interpreted as significant
prove for superior performance anyway.

31

Let us first explore the similarities and common ground of all techniques, to be able
to focus on the characterizing differences. All presented Contour Tree construction
methods compute the Contour Tree by first constructing both Merge Trees and
combining them. The combination of the Merge Trees is unaltered since its first
description [CSA03], except for recently developed partial parallelizations [AN15;
Gue+17; Car+16b]. It is typically not the bottleneck for runtime or memory
consumption and augmentation treatment is trivial. Additionally, the computation
of one Merge Tree is perfectly analogous and embarrassingly parallel to the other.
Going forward, we will therefore only be concerned with Join Tree construction,
refering to minima and 1-saddles. Split Tree construction follows symmetrically in
an identical manner and Contour Tree construction from both Merge Trees is well
understood. No contributions to this combination step are made in this thesis.

The identification of leafs in the tree is also common ground for all presented
methods. All Morse critical minima can be identified by their immediate local
neighborhood and have a 1 to 1 correspondence to Join Tree leafs. What remains is
the identification of inner nodes and edges of the Join Tree. So far, no parallelization
scheme was able to identify inner node edges, before all ancestors in the tree have
been identified. In other words Join Trees are always constructed bottom up to some
degree. It is possible, that this is an innate sequential requirement of the problem
and no concurrency can ever be exposed here.

Considering this common ground, all presented methods are therefore primarily
characterized by the process (and the nature of its parallelization) of finding the
Merge Tree adjacent saddle for an extremum. The development of algorithms in
this field therefore also was a development of observations about the properties
of the saddle for a given extremum. These observations were approached from a
multitude of strongly different perspectives. To help with understanding the different
methods -foremost the one presented in this thesis-, related work will be viewed
from one consistent, formal perspective for the saddle identification: the perspective
of monotone paths. This is neither a limitation nor an extension to observations
made in the literature, but rather a unification of underlying principles, although it
is in no way canonical and other valid formulations of the introduced relationships
exist.

32 Chapter 4 Contour Tree Construction

4.1 Saddle Identification with Monotone Paths

Formally, the problem of saddle identification is to find for each local minimum m a
vertex sm, such that there exists an edge (m̃, s̃m) in the Join Tree. Let Vmin denote
the set of all local minima in M . We call a path p monotone ascending w.r.t. the
scalar function f if f(p(a)) ≤ f(p(b)) for all 0 ≤ a < b ≤ 1. We denote the set of
such paths by P+. Symmetrically, we define P− as the set of monotone descending
paths. We call a path p monotone if p ∈ P+ ∪ P−.

With this, we want to define the set of all vertices reachable from a local minimum
m ∈ Vmin through a monotone ascending path as:

Up(m) :=
{
v ∈ V (M) : ∃p ∈ P+ s.t. p(0) = m, p(1) = v

}

Lemma 1. For a join node ṽ that is a descendant in the Join Tree to a leaf m̃ one
has v ∈ Up(m).

Proof. For the proof, it is sufficient to show that for each child ũ and parent ṽ in
the join tree there exists a path p ∈ P+ from u to v. This is already shown in the
literature (e.g. Lemma 9 in [Chi+05]). The claim then follows through a transitivity
argument.

This criterion is combined with the criterion, that Join Tree nodes are always Morse
critical points to directly motivate the algorithmic structure of [Chi+05].

Now consider the set of saddle candidates of a local minimum m ∈ Vmin as the set:

Sc(m) :=
⋃

n∈Vmin
n6=m

(Up(m) ∩Up(n))

In other words, a saddle candidate for a local minimumm is a vertex that is reachable
by a monotone path from m and another local minimum in M . The motivation
behind the chosen name saddle candidates becomes clear when considering the
following lemma:

Lemma 2. sm is a saddle candidate for m, i.e. sm ∈ Sc(m).

4.1 Saddle Identification with Monotone Paths 33

Proof. From the definition of sm follows sm ∈ Up(m) due to Lemma 1. Furthermore,
s̃m has to be connected to at least one other leaf ñ. Since a leaf in the join tree
corresponds to a local minimum n ∈ Vmin one has sm ∈ Up(n) again due to Lemma
1 and therefore sm ∈ Sc(m).

Lemma 3. The vertex sm is the smallest valued saddle candidate of m. That means
sm = arg min

v∈Sc(m)
f(v).

Proof. We need to show that every saddle candidate’s function value provides an
upper bound for f(sm). Then, the claim follows from Lemma 2. Let v ∈ Sc(m) be an
arbitrary saddle candidate of m. Then, there exist monotone ascending paths to v
from m and at least one additional local minimum n. The entirety of these paths is in
f−1
−∞(f(v))v. This especially means that m and n are connected in f−1

−∞(f(v))v and
therefore f−1

−∞(f(v))m = f−1
−∞(f(v))n. However, the initial connected components of

m and n were disjoint i.e. f−1
−∞(F)m ∩ f−1

−∞(F)n = ∅, where F := max {f(m), f(n)}.
Since both of these components are contained in f−1

−∞(f(v))v, they must have joined
by then; leaving the estimate F < f(sm) ≤ f(v).

In other words, the smallest valued vertex that is reachable through monotone paths
from m and at least one local minimum in M other than m, corresponds to the
adjacent inner node for m in the join tree. This criterion is behind most massively
parallel merge tree construction algorithms [RS14; RTP18; Car+19] that trace the
entirety of Sc(m) and find its minimum. Other approaches avoid the tracing of
the entire set Sc(m) by ordering progression based on function value. The first
saddle candidate encountered by strictly ascending progression from minima is their
actual saddle [Gue+17]. The conventional, fully sequential solution [CSA03] and
its divide & conquer based parallelizations [V P03; Lan+14; Gue+16] also rely on
this property.

From here, an additional observation allows us to search for saddle candidates
without the need for ordered progression and without tracing the entirety of Sc(m)
for all minima.

We define
Ex(m) := Up(m) \ Sc(m)

for m ∈ Vmin as the set of vertices that are exclusively reachable through a monotone
path from m. We write v1 ↔ v2 for vertices v1, v2 ∈ M , if there exists a 1-simplex

34 Chapter 4 Contour Tree Construction

in K being the convex hull of these vertices. That is, v1 and v2 are adjacent to each
other in the skeleton graph of K. With this, let furthermore

Bd(m) :=
{
v ∈M \ Ex(m) : ∃v′ ∈ Ex(m) : v′ ↔ v in M

}
be the set of vertices forming a boundary around Ex(m). Regarding this set, consider
the following properties.

Lemma 4. The set Bd(m) is a subset of Sc(m).

Proof. Let v ∈ Bd(m). By definition v /∈ Ex(m) which is only possible if either
v /∈ Up(m) or if v ∈ Sc(m). Thus, we have to rule out the first case by proving
v ∈ Up(m). Again due to the definition of Bd(m), there exists v′ ∈ Ex(m) such that
v ↔ v′. If f(v′) < f(v), the vertex v is reachable from m by a monotone ascending
path through v′; therefore, v ∈ Up(m). The remaining case can be ruled out by
contradiction. Assume that v /∈ Up(m) and f(v′) ≥ f(v). Note that then, there
has to exist at least one local minimum n ∈ Vmin, n 6= m, such that v ∈ Up(n).
This becomes clear when considering the following construction: by successively
choosing adjacent vertices in M with decreasing function values, one eventually
ends up in such a local minimum n. By traversing the involved 1-simplices in
reverse order, one thus obtains a monotone ascending path from n to v, proving
v ∈ Up(n). Since v′ was chosen adjacent to v and has a larger function value by
assumption, v′ is reachable by a monotone path through v from n, thus v′ ∈ Up(n).
This however contradicts v′ ∈ Ex(m). With this contradiction we prove f(v′) < f(v),
thus v ∈ Up(m) and finally v ∈ Sc(m).

Lemma 5. sm is in the boundary set of m, i.e. sm ∈ Bd(m).

Proof. Because of Lemma 2, sm is reachable from m through at least one monotone
ascending path. Let p denote one such path. Since m ∈ Ex(m) and sm /∈ Ex(m),
there has to exist a vertex v /∈ Ex(m) on p that is adjacent to a vertex in Ex(m).
Thus, v ∈ Bd(m) and therefore due to Lemma 4 v ∈ Sc(m). Because p is monotone
ascending, the estimate f(v) <= f(sm) holds true and due to Lemma 3 we obtain
sm = v ∈ Bd(m).

Lemma 4 and Lemma 5 together directly allow for a stronger variant of Lemma 3:

Lemma 6. The vertex sm is the smallest valued vertex in the boundary set of m.
That means sm = arg min

v∈Bd(m)
f(v).

4.1 Saddle Identification with Monotone Paths 35

SC(m)

m

(a) (b)

Fig. 4.1: (a) illustrates the saddle candidate set Sc for the leftmost local minimum with
rectangles. Note that saddle candidate sets of local minima overlap and can span
large portions of the domain. (b) illustrates the exclusively monotone reachable
region set Ex for all local minima with triangles according to color. Note that
those sets are mutually disjoint, connected and leave out large portions of the
domain. Additionally, it illustrates the boundary sets Bd for all local minima with
rectangles according to color. The smallest valued vertex in each such set is a
saddle node in the Join Tree.

In other words, the set Bd(m) restricts the search for saddles to special saddle
candidates that form a kind of hill ridge around the valley Ex(m) a minimum m

lives in. As these valleys are mutually disjoint, the amount of double work and size
of involved data regions is drastically reduced by this restriction, see Figure 4.1.
To our knowledge, no other construction method has utilized, let alone formally
introduced this tightening of saddle candidates.

4.2 Related Work Survey

4.2.1 Totally Ordered Construction

A general algorithm for computing the Contour Tree in all dimensions was introduced
in 2003 [CSA03]. We will refer to this algorithm as the sequential, or totally ordered
approach. This algorithm introduced the method to construct Contour Trees from
both Merge Trees, which all relevant Contour Tree construction work known to the
authors at the time of writing follow to date. Understanding this algorithm in detail
is a fundamental basis for understanding other Contour Tree construction methods,
including the one presented in this thesis.

36 Chapter 4 Contour Tree Construction

Method The major data structure used in this algorithm is the union-find data
structure, often also called disjoint-set. The structure has a close relation to Merge
Tree construction and is found in most construction algorithms in some form. It
represents a partition of a fixed set of elements into disjoint subsets. It is typically
initialized with each element forming a one-element subset and allows for the two
operations union and find. The union operation performed on two set elements
merges the two subsets they belong to into one. The find operation performed
on one set element returns the subset it belongs to. Some definitions of the data
structure allow for a third operation that adds elements to the (then not fixed)
underlying set.

The most common implementation of the disjoint-set data structure is an array based
disjoint-set forest: An array of integer values, with each set element being associated
with an index in the array. The stored integer values are themselves indices of the
array and therefore act as pointers. Initially, each element points to itself, as in the
array holds the first n natural numbers. A find operation for an element x follows
the linked list of pointers starting at x in the array until an element points to itself.
This element is returned as a representative for the subset x is in. Union operations
make one of the representatives of the arguments point to the other. This represents
subsets as trees in the array and makes representatives the roots of each tree. If
the union operations carefully make the root of the smaller subset point to the root
of the larger subset regardless of argument order and find operations compress
the linked list of pointers leading to the root, so that each element along the way
points to the root after the operation, the amortized runtime of both union and find
operations is in O (α(n)) with n the number of elements in the set and α the inverse
ackermann function. The memory consumption of the structure amounts to one
pointer per element (and one integer value for subset size management) and is thus
linear in n if pointer sizes are fixed.

The totally ordered construction method originally computes the fully augmented
Merge Trees as the non-canonical representation with one graph node per vertex
mentioned in Section 3.3. We will describe a variant here, that computes the
augmented Merge Tree as a tuple, like described in the same section. This algorithm
maintains a disjoint-set data structure over the vertices of the input. All input vertices
are ordered by function value and this ordered list is traversed in sequence. For each
traversed vertex v, a union operation is performed with all smaller-valued neighbors.
If all involved unions were trivial (as in the subsets were either already identical
or one of the subsets only consisted of v) then v is added to the augmentation for
the arc starting at the current representative of its subset. If however one (or more
in a degenerate multi-saddle setting) union is non-trivial (as in the merged subsets

4.2 Related Work Survey 37

are not identical and both contain vertices that are not v), then Join-Tree edges are
formed between v and both former representatives of the involved subsets. In this
case, v becomes the new representative of the resulting subset and is augmented to
itself (starting a new arc).

The algorithm closely follows the definition of the Join-Tree. After any given tra-
versed vertex v the subsets managed by the disjoint-set structure correspond precisely
to the sub-level set connected components for the level h = f(v). The water level
rising "over time" is associated with actual compute time by this algorithm, bodies
of water are directly tracked by the disjoint-set structure and whenever to formerly
disjoint bodies of water touch for the first time, the Join-Tree is updated.

It is this relation to intermediate events during traversal, that differentiates Merge
Tree construction from the more simple counting of total connected components,
often called union-find algorithm. The union-find algorithm only depends on the
final state of the union-find data structure after all unions and can be parallelized
disregarding intermediate states. This is why distributed union-find algorithms can
not be applied in Merge Tree construction, where we need to know "when and
where" non-trivial unions happen.

Although very close to the definition of Join-Trees, this sequential algorithm can
already be viewed from the perspective of monotone paths. By the total ordered
progression, minima are traversed before their neighbors. Every one-element trivial
union can be seen as extending ascending paths from such a minimum. It is
always the ascending path with the globally smallest valued reachable vertex that
is extended next. These trivial union path extensions trace portions of Ex(m) for
their respective minima m. At some point two such paths will meet, producing a
non-trivial union at a vertex v. Since v is adjacent to vertices in Ex(m) but reachable
by another ascending path it lies on a hill ridge and belongs to Bd(m). Due to the
progression ordered by function value it is the smallest valued vertex with these
properties and thus the saddle for m.

Here we can also observe how to find saddles for saddles. Vertices that are exclusively
reachable by monotone paths from ancestors of v cannot lead to non-trivial unions
and cannot be nodes in the Join-Tree, as all minima that can reach these vertices
have already merged to the connected component of v. Imagine contracting the
subtree of ancestors of v onto v. This can also be visualized by contracting the entire
domain that is augmented to edges leading towards v, that is the entire sub-level set
component (imagine the body of water) of v at the level h = f(v). This contraction
would make v a minimum, but leave the entire rest of the domain and Join Tree
unchanged. v itself can therefore now be treated like a minimum and search for the

38 Chapter 4 Contour Tree Construction

smallest valued vertex that is reachable by monotone paths from v and at least one
local minimum that is not already merged with v. This recurring concept will later
be called virtual contraction of saddles.

Profile The totally ordered construction of the Merge Trees allows for the con-
struction of the canonical augmented Contour Tree in all dimensions and simple
treatment of boundaries and degenerate multi-saddles. It is a general and funda-
mental solution to the problem and guided all later algorithm designs. The totally
ordered construction of Merge Trees achieves a performance of 23 to 32 thousand
vertices per second. The algorithm does not expose any concurrency and it is clear
that the algorithm has been advanced in all aspects by more recent solutions.

4.2.2 Divide & Conquer

In the same year, building on the above algorithm, the authors of [V P03] adjusted
the amount of tree nodes with degree 2 (reaching another non-canonical form)
and the augmentation of the tree to explicitly represent Betti numbers. Addition-
ally, they introduced a generalization of the formal Contour Tree construction on
triangulations. Treating cell interiors as externally solvable black boxes, allows to
abstract from function behaviour inside the cells and basically extended Contour
Tree Construction to CW-complices. However, the most important contribution with
respect to our survey is the first parallel Contour Tree construction.

Method The basic algorithm to compute the Merge Trees is basically identical to
the totally ordered construction. The parallelization is a classic data-parallel divide
& conquer approach: The data set is divided into segments of preferably equal size.
For each segment, the totally ordered construction method (modified like mentioned
above) is performed. The resulting Merge Trees of the segments can be combined
to form the overall Merge Tree in a "conquer" stage. For this the totally ordered
construction method is performed again, but using the segment Merge Trees as its
domain (connectivity between trees following from the original domain).

Profile This first Divide & Conquer technique introduced some powerful formal
extensions to the original algorithm. The parallel approach is methodically simple
and while the paper assumed shared memory, a strong basis for distributed data
handling is inert to the algorithm. The authors demonstrated a speedup per processor

4.2 Related Work Survey 39

of at least 62,5% at a maximum of 32 parallel workers. The largest utilized data
set contained around 7 million vertices. However, combining segment Merge Trees
introduces extra work over the sequential solution that is linear in their size. This
combination work does not expose the same concurrency as the computation of the
segment Merge Trees, which leaves available resources idle after the initial steps.
Especially for very complex or noisy data, the size of the segment Merge Trees can
become similar to the size of the underlying domain, which would make the final
combination almost as expensive as the entire sequential construction. No results on
absolute runtime were reported, but given the speedups they might go up to 900
thousand vertices per second. It is clear that the algorithm has been advanced in all
aspects by more recent divide & conquer solutions.

4.2.3 Domain Restriction

The relation of monotone paths to contours was already known in 2003 [CS03]. We
also refer to [CS03] for an overview of sequential and early work on contour trees
of that time, which will not be analysed in detail here. The first algorithm to directly
address this relation and use monotone path traversal for Merge Tree construction
[Chi+05] was introduced in 2005.

Method Morse critical points can be identified by their local neighborhood. The
observations about PL criteria for Morse critical points stated in 3.3 were actually
introduced in [Chi+05]. These points can therefore be identified in a strictly
data-parallel way (which would allow to process each vertex in parallel). After
identification of all 1-saddles and minima, the totally ordered construction method
is applied to a new domain, consisting only of these critical vertices.

Connectivity of the new domain is established on demand: When a critical point is
traversed by the algorithm and tries to perform union operations with its smaller
"neighbors", monotonely descending paths in the original domain are followed until
reaching other vertices that exist in the new domain. The Join Tree of the new
domain is the same as the Join Tree of the complete domain. This allows to skip
most trivial union operations by restricting the totally ordered construction to be
performed only on critical points and monotone paths between them.

Profile While the algorithm is a modified application of the purely sequential
original, the input is reduced by an embarrassingly data-parallel pre-processing.

40 Chapter 4 Contour Tree Construction

Real world data may be reduced by a factor less than 1% according to the authors.
Noisy and complex data sets that were examined in this thesis however rather
conform with a factor of one fourth to one third also encountered in some data sets
by the authors. This resulted in a performance of 30 to 41 thousand vertices per
second. The computations performed on this restricted domain may be parallelized
by a divide & conquer approach just like the original algorithm. Given the speedups
of [V P03] this may result in a performance of up to around 1 million vertices per
second. Of course, this algorithm cannot compute the full augmentation. It depends
on shared memory and sequential progression. However, it is worst case optimal
w.r.t output size and depending on the data set may be the fastest construction
method for single-thread systems if no augmentation is required, to date.

4.2.4 Minimum Lists

So far, all parallelization attempts were based on modified applications of the totally
ordered construction method. The relation of monotone paths to saddles allow for
parallel per-minimum approaches, like introduced in 2012 [MDN12]. When reading
the paper, please be advised that it defines the Join Tree with sur-level sets, so that
the terms Join Tree and Split Tree are swapped compared to this thesis.

Method Like with the domain restriction above, a fully data-parallel scan identifies
Morse critical 1-saddles by their local neighborhood. In this paper, authors did
utilize a GPU for this process. The algorithm uses the property we state in Lemma 1
above. From each 1-saddle s, arbitrary monotone descending paths are followed
until reaching minima. This allows to find all minima that are ancestors of s in the
Join Tree, if at least one such path is followed for each connected component of the
lower link of s.

Once this step is performed, minimum lists containing all ancestor minima for each
saddle and path lists containing all descendant 1-saddles for each minimum are
available. The node ŝ for the smallest valued path list entry s for a minimum m is
connected to m̂ in the Join Tree (more specifically the (non-canonical) Join Topology
Tree, as all Morse critical 1-saddles are still contained in the lists). The edge (ŝ, m̂)
is added to the algorithm output. m is removed from the minimum list of s and
replaced by s in all other minimum lists. Additionally, it adds its remaining path list
to that of s (possibly creating it). Once a minimum list for a saddle becomes empty,
we can perform virtual contraction on the saddle and it is treated like a minimum
above.

4.2 Related Work Survey 41

This paper also introduces the recurring concept of trunk skipping. Each minimum
processes remaining saddles in growing order of function value. If only one (virtually
contracted) minimum is still performing work, the remaining path list can just be
sorted by function value. The trunk of the Join Tree is a sequence of edges, basically
forming a linked list of this path list.

Profile The procedure of minimum and path list discovery can be done embar-
rassingly parallel for each 1-saddle and each path which exposes a fine-grained
parallelism. Considering the distributed memory adaptability of the algorithm, lo-
calities would have to send messages when following monotone paths outside of
their data region. Since monotone paths can be extended to arbitrary smaller valued
neighbors, a rapid back and forth of messages between localities following a zig-zag
path could be avoided.

The procedure of minimum and path list processing that actually constructs the
Join Tree is far more restricted in terms of parallelism. Each edge creation mod-
ifies multiple minimum and path lists with unpredictable access patterns, which
requires shared memory. While edge creation can be parallelized over all (virtually
contracted) minima, after each such creation round a global barrier is necessary to
make minimum and path list changes securely visible. Since noisy and complex data
sets can easily

Additionally, the saddle down-to minimum approach follows monotone paths along
their entire length. The high valued 1-saddles will parse multiple paths through the
entire function height, creating double work. For example, for a simple 1D data set
with the height function forming just a large inverted V structure, the entire domain
will be parsed similar to the totally ordered construction method.

The reported performance resulted in around 14,5 to 20,5 million vertices per
second in parallel for 8 threads and the use of a GPU. The largest processed data
set contained 16,7 million vertices. The algorithm requires shared memory and
cannot produce an augmentation. Depending on the data set, it be the fastest
construction method for single-thread systems if no augmentation is required, along
with [Chi+05].

4.2.5 Local-Global Merge Trees

In 2013, the first algorithm specifically targeting distributed memory [MW14;
MW13] revisited the conquering stages of the divide & conquer approach. The

42 Chapter 4 Contour Tree Construction

paper also concerns itself with topological simplification based on the branch decom-
position of Merge Trees and introduces the possibility to interleave simplification
and construction. They also immediately identify a "chicken-and-egg" problem with
choosing ε before having access to the topological insights of the Merge Trees. This
recurring concept will be called on-the-fly simplification in this thesis.

Method The actual merge tree construction on each distributed data region is
treated as a black box by this algorithm. The algorithm concerns itself with the
combination scheme of segment Join Trees and introduces multiple improvements.
The local-global Merge Tree is introduced. It is a sub-tree of the actual Join Tree,
that contains only relevant nodes and edges for a given data segment. Relevant
here means, that all and only those branches with an augmentation containing local
vertices are represented. Branches not represented in the local-global sub-tree are
called ghost.

Two observation about the local impact of sub-level set components are made: Firstly,
a body of water that is completely surrounded by land within the local data segment
cannot merge with any remote bodies of water anymore and thus its saddle is final.
Secondly, only connectivity along monotone ascending paths coming from other
data segments can have impacts on segment Join Trees while merging. Monotone
paths that enter the local data segment through vertices that have smaller valued
neighbors on the boundary cannot introduce any connectivity, that could not also be
introduced by paths through those smaller valued neighbors.

The first observation allows to prune any branches that are completely contained
in the data regions already represented by a tree, before merging the tree with the
ones from other data regions. The second observation allows to ease the handling of
domain connectivity for segment Join Tree merge processes, by tracking only vertices
with no smaller valued neighbors on data boundaries and "stitching" segment Merge
Trees together at those vertices.

Lastly, the algorithm does not gather the complete Join Tree on a single locality in
a fan-in reduction manner like in [V P03]. Instead, all localities merge their trees
with a partner locality and prune internal branches along with degree 2 nodes and
vertices that are not relevant for stitching. Holding ghost branches they now have
information about the united domain between them and their partner. In an iterative
all-to-all communication new partners are found until all localities hold information
about the entire domain and thus computed the complete local-global join tree for
their original segment.

4.2 Related Work Survey 43

Profile The algorithm improved on the divide & conquer based distributed par-
allelization method. It allowed for the processing of 33 to 57 million vertices per
second on up to 2048 (distributed) parallel workers. The maximal data set used
contained 8.5 billion vertices, which is more than there are function values rep-
resentable by 32-bit precision. It introduced a possibility to represent the Merge
Tree allowing certain operations without gathering the entire tree on a single node,
which is a unique capability to date. However, it does not provide an augmentation
and for storage or certain operations, a gathered, complete representation of the
Merge Tree may be necessary. Even for large, noisy and complex data used in the
work presented in this survey, merge tree edge counts stay within a few millions.
Even when using several hundred bytes of meta information per edge, contemporary
memory limits offer multiple orders of magnitude more memory than is needed for
tree storage. Nonetheless, the algorithm constitutes a benchmark against which new
distributed solutions must compare.

4.2.6 Pruned Divide & Conquer

Shortly after, in 2014, another distributed Merge Tree construction method was
introduced [Lan+14]. It is able to produce the augmented Merge Tree as described
in this thesis: A tuple of the canonical Merge Tree and a mapping of vertices to
edges. Again, Merge Tree computation on single data segments is a black box for
the actual algorithm and the variant of the totally ordered construction described
above is used in the paper.

Method Like in the local-global approach above, the conquering stage is modified
to prune irrelevant information from segment Join Trees to optimize the merging pro-
cess. This involves pruning branches that reside entirely in the already represented
data region. The additional information that the augmentation provides allows to
skip domain connectivity handling altogether. Instead, the data segment boundary
vertices relevant for stitching are already augmented to the Join Tree branches
affected by merge processes, which allows for a per-branch stitching process. In
contrast to the local-global representation, the full merge tree is gathered by a k-way
reduction fan-in among all localities. Additionally, they suggest, that stopping the
process during this reduction produces Join Trees of larger and larger data regions
with increasing fan-in steps. For some operations, these trees may suffice and further
fan-in processes might be skipped.

44 Chapter 4 Contour Tree Construction

Profile The comparison of this algorithm to [MW14] comes naturally. The authors
demonstrated comparable runtime on a data set also benchmarked in [MW14]
with a performance of 33 million vertices per second on the same number of
parallel workers. However, they match this runtime while additionally providing
the augmentation (called segmentation in the paper) and local gathering of the
complete, canonical tree. This is made possible by using the additional information
of the augmentation to their advantage. With this, the algorithm is the fastest and
most scalable distributed construction method for augmented Merge Trees. However,
the authors acknowledge that the algorithm runtime suffers from load imbalance
typical for fan-in processes. The merging of segment Join Trees has a linear runtime
in the size of the trees. Despite all pruning efforts, these sizes may be in the same
order of magnitude as the entire data set for worst case noisy data.

4.2.7 Unordered Construction

In 2014, a rather theoretical paper [RS14] introduced an algorithm that emphasizes
the semi-local nature of Merge Tree construction. The only sequentially ordered
dependencies exist between ancestors and descendants in the tree (consider virtual
saddle contraction). When reading the paper, please note that Join Trees again refer
to sur-level sets and are called Split Trees in this thesis.

Method Arbitrary ascending monotone paths are followed from minima and each
visited edge is "colored" by the color of that minimum. If an edge is already colored
it is not visited and colored by different minima again. While some write-after-read
synchronization efforts become necessary, this could potentially be done for all
minima in parallel.

Once done, the colors partition the domain edges with each colored region for a
color of m being a subset of (edges between vertices of) Up(m). Vertices that are
adjacent to edges of different colors form boundaries between these regions and
are per definition in Sc(m) and Sc(n). The arbitrary handling of precedence when
coloring regions results in an arbitrary shape of this boundary. However, there is no
"way around" the actual saddle of a minium: The smallest valued "color boundary
vertex" is also the smallest valued saddle candidate and thus saddle of a minimum.

Now, all Morse critical points are identified, sorted by increasing function value
and added to heaps of minima based on the colors of adjacent edges. These
heaps basically correspond to the Path Lists of [MDN12] and allow for a bottom-up
construction of the Join Tree.

4.2 Related Work Survey 45

Profile The method as described in the paper ultimately is similar to the Minimum
Lists. Monotone paths are traced along their entire length (although in different
direction compared to [MDN12]) to identify minimum-saddle relations. These
relations are used to build the tree in a partially parallelizeable manner. Within
the paper parallelization is not addressed. No implementation or performance
benchmarks are presented.

However, the approach explores the relation between minima and their saddles
in a way, that exposes high concurrency. The method of using monotone paths to
partition the domain edges forming arbitrarily placed (color) region boundaries
"catching" the saddle on this boundary as the smallest valued vertex will reoccur in
later work. In fact, the approach of our thesis is very similar to this, but restricts the
colored regions to Ex(m) to avoid a complete and unnecessary partitioning of the
data.

4.2.8 Distributed Domain-Restriction

Both [MW14] and [Lan+14] present divide & conquer policies, with a black box
performing the actual local Merge Tree construction for each data segment. In their
respective papers, this black box was a realization of the totally ordered construction
[Car+16b]. In 2015, a combination of the divide & conquer policy of [Lan+14] and
the Join Tree construction kernel of [Chi+05] created a memory-efficient Join Tree
construction [AN15].

Method The data is segmented based on an octree structure. One parallel worker
constructs the Join Tree for each data segment based on the domain restriction
solution explained above. Iterating between pruning and merging, all data segments
merge their trees in a reduction based on the distributed augmented divide &
conquer approach explained above. The overall method is very memory efficient, as
both combined methods prune unnecessary information as early as possible.

Additionally, the paper introduces a partially parallelized method for combining the
Merge Trees to form the Contour Tree. Instead of iterating over all Merge Tree edges
in sequence, the algorithm allows for parallel treatment of all leafs. After a global
barrier and virtual contraction of saddles, the resulting virtual leafs are treated in
parallel.

46 Chapter 4 Contour Tree Construction

Profile Since the domain restriction approach is faster than the totally ordered
construction, this combination with the divide & conquer policy of Landge et al. is
an expected improvement in terms of performance. The volvis.org vertebra data set
used to compare [Lan+14] and [MW14] is used again and showed a speedup of
around 3. Performance was between 21 and 50 million vertices per second. This is
impressive, considering the experiments were limited to a shared memory machine
with 64 parallel workers, as the focus of the data segmentation lied in memory
efficiency and not actual distributed computation.

Since most other publications did not mention memory consumption, it is an inter-
esting benchmark to see this arguably very memory efficient solution to consume
e.g. 11 GB of memory during construction for an 8GB data set (compared to 60GB
consumption using the method of [MDN12]). This demonstrates a large memory
footprint of Merge Tree construction that for example limits the maximal size of
processed data for GPU based approaches.

Of course the above approach cannot produce an augmentation (as it is based on
[Chi+05]) and exposes little concurrency within data segments, limiting its use in
hybrid distributed settings. When an augmentation is needed (which introduces
additional memory consumption and disqualifies the memory efficient solution
above) this memory footprint can even bring shared memory systems to their limits.
This highlights the importance of a distributed, augmented Merge Tree construction
like in [Lan+14].

4.2.9 Contour Forests

The latest work on divide & conquer based solutions presented here was introduced
in 2016 [Gue+16]. Again, the actual Merge Tree construction is a black box and the
totally ordered construction is used in the paper. This is also due to the fact, that no
inherently parallel construction method for augmented Merge Trees existed at the
time of writing. In this approach, the data segmentation is deliberately chosen to
split in the function image space instead of domain space. This reduces work for the
stitching operations.

Method To produce the necessary data segmentation all vertices are sorted by
function value and this list is split into the desired number of segments. Each
segment Contour Tree is computed with augmentation and in parallel. These
segment Contour Trees are actually segments of the complete Contour Tree as

4.2 Related Work Survey 47

well. In other words, their interior edges are already final and they deviate only in
artificial leaf nodes "dissecting" the tree. Instead of stitching arbitrary edges while
merging the segment trees, artificial minima and maxima need to be matched by
augmentation in adjacent segment trees and removed by stitching leaf edges.

Profile The initial sorting and segmentation of the data -or in other words the
necessary control over the data distribution- makes this approach unfit for many
distributed application scenarios where data distribution tends to be given. The
actual speedup of the approach over domain space segmented divide & conquer
approaches is very dependant on the data set, as the number of the artificial leaf
nodes may rise to the same order of magnitude as the number of total vertices for a
worst case. The authors demonstrate performance of 6 to 16 million vertices per
second on up to 8 parallel workers (shared memory CPU system) with the largest
(upsampled) data set containing 82 million vertices. While this was the fastest
shared memory solution producing augmented trees at the time, it has since then
been deprecated in favour of faster solutions.

4.2.10 Massively Parallel Peak Pruning

In 2017 [Car+16b] (and in greater detail in 2019 [Car+19]) a strictly data-parallel
algorithm for Merge Tree construction was introduced. It fully realizes the concur-
rency that was glimpsed at in the unordered construction description above [RS14]
and is the first parallel Merge Tree construction kernel (instead of divide & conquer
policies) since the introduction of the (rather limited) Minimum-Lists.

The paper introduces some terms with similar names to the ones used here. For
example the governing saddle for a minimum m corresponds to "the" saddle sm, to
differentiate it from Morse critical saddles adjacent to m in non-canonical Merge
Trees like Topology Trees. The saddle candidates in the paper form subsets of the
saddle candidates Sc introduced here.

Method Like described in the unordered construction above, the edges of the input
are partitioned based on which minimum m they can form a monotone path to
(they are adjacent to vertices in Up(m)). Instead of following the monotone paths
upwards from minima however, they are followed downwards from each vertex
of the data set in parallel. This is done by pointing to an arbitrary smaller valued
neighbor for each vertex. Then minima are found by iterative "pointer-jumping"

48 Chapter 4 Contour Tree Construction

which basically corresponds to the path compression of Union-Find approaches. In
fact the whole data structure corresponds to a disjoint set forest.

The regions Ex(m) are guaranteed to be incident to the edges in the partition of m,
while the Sc of multiple minima are arbitrarily divided between them. A boundary
of vertices separates these partitions. These partition boundary vertices are called
saddle candidates in the paper and in fact are guaranteed to be saddle candidates
(like defined here) for the minima of all involved partitions. They can be identified in
parallel, by performing the find operation for each incident edge for each vertex.

Although partition boundaries are arbitrarily chosen from the saddle candidates by
path precedence, it is guaranteed that the governing saddle is among them (and
thus the smallest valued one). This is where the algorithm deviates from the ideas of
[RS14] and actually realizes concurrency. For each minimum the governing saddle is
found with a parallel sorting process. Edges that are incident to a saddle candidate
are sorted by partition and then function value of that saddle candidate, identifying
the smallest valued saddle candidate for each partition and thus minimum.

Next, the algorithm utilizes an interesting observation about Merge Tree edge
augmentations. The augmentation for an edge from a minimum m to its governing
saddle sm is exactly the set of all vertices that are reachable through monotone paths
from m with a smaller function value than sm. With that it becomes a subset of
Ex(m) which is guaranteed to be incident to the edges in the partition for m. The
augmentation can therefore be collected, by adding all vertices that are incident
to edges in the partition of m and have a function value smaller than sm. This
observation and "cutting" of considered regions at the saddle function value will
reoccur in the algorithm presented in this paper.

This allows for the virtual saddle contraction, in fact it is not that virtual in this case.
All vertices in the augmentation are deleted from the domain going further and all
edges that are incident to exactly one deleted vertex are made incident with sm

instead. This process is called saddle pruning in the paper, giving the procedure its
name.

Profile The method is a realization of the idea of treating each minimum-saddle
edge in the Merge Tree individually in parallel. The concurrency of this approach is
fully exploited by formulating region growth and minimum saddle candidate search
as operations over the complete domain with one up to one parallel worker per
edge of the input. This of course introduces extra work, as not all edges have to be
sorted or even visited to find the saddle. Monotone paths are again traced along

4.2 Related Work Survey 49

their entire length creating a complete partitioning of the domain. The approach
therefore lends itself well for massively parallel hardware like GPUs. Additionally,
operations like pointer jumping and edge sorting heavily rely on fast communication
between parallel workers and thus shared memory. Performance is reported only
including an optimization that is based on domain restriction like explained above
[Chi+05], which makes it impossible to construct the full augmentation of the tree.
For augmented Merge Tree construction the algorithm did not terminate within 24
hours of runtime for data sets that otherwise took less than a minute to compute.
The reported Performance is between 3 and 47 million vertices per second with a
maximum of 64 parallel workers and the largest data set containing over 1 billion
vertices. Performing this on a GPU instead resulted in an additional speedup, which
makes this and similar approaches [RTP18] the fastest method for Merge Tree
construction, if the limited memory of GPU is sufficient.

4.2.11 Locally ordered Task-Parallelism

Simultaneously, a task-parallel augmented construction method was introduced, that
also highlights the individual treatment of each minimum-saddle edge [Gue+17].
Instead of exposing massive parallelism over all edges, one parallel task performs
the saddle search for each minimum.

Method A parallel scan over the data identifies all minima by their local neighbor-
hood. Then, one parallel task for each minimum starts to grow regions around the
minima. The region growth is similar to breadth first or depth first searches, but
instead of using a FIFO-queue or LIFO-stack the growth is governed by a smallest
valued vertex first out priority queue (realized by a fibonacci heap to allow for faster
merging later on).

In other words, starting at the minimum the region always grows to the smallest
valued vertex adjacent to any region-vertex. Region membership of vertices is
tracked by a disjoint set forest with minima representing connected components.
In fact, this process performs the exact same union find operations as the totally
ordered construction would. The only difference being, that the trivial, one-element
union operations of different connected components are performed in parallel. From
the perspective of monotone paths, the totally ordered construction always only
follows the ascending monotone path with the globally smallest valued next-to-visit
vertex, while the locally ordered construction follows for each minimum in parallel

50 Chapter 4 Contour Tree Construction

one ascending monotone path with the locally smallest valued next-to-visit vertex
respectively.

Just like in the totally ordered construction, this process guarantees that the regions
around minima (or connected components of sub-level sets) reach the governing
saddle sm at some point. The problem is, that for totally ordered progression,
this saddle can be identified by performing a non-trivial union. This is the case,
because it is guaranteed to be adjacent to two vertices that have already been
processed and belong to different regions. At first glance, this criterion requires
some synchronization between region growth tasks to "meet" at saddles.

However, as discussed multiple times above, finding saddles ultimately is a local
operation. The region growth for a minimum m is terminated, once a vertex v
is visited, that has smaller-valued, un-visited neighbors. These smaller valued
neighbors cannot belong to Ex(m), because all monotone paths leading to them
from m would have already be considered by the strictly ordered region growth
before v and thus they could not be un-visited at this point. Since v is reachable by a
monotone path from m, but also adjacent to a vertex not in Ex(m) and additionally
the smallest valued vertex with these attributes, it is the saddle sm.

In other words, the region growths perform the same trivial unions as the totally
ordered progression and once a vertex is reached that could potentially perform a
non-trivial union, it is guaranteed to do so and is the searched saddle. Additionally,
the vertices that form the region when encountering the saddle corresponds exactly
to the augmentation of the edge between the minimum and the saddle. This is
because these vertices are reachable by monotone paths from m and are smaller
valued than sm.

Virtual saddle contraction however does require some synchronization. The termi-
nated minimum finalizes its augmentation and stores its fibonacci heap tied to the
saddle. For each task terminating this way, the saddle is tested for contractability, by
performing find operations on all smaller valued neighbors. If all neighbors belong
to a finalized augmentation, then all involved minima have arrived and the saddle
can be contracted. This is done by merging all stored fibonacci heaps and updating
the union find data set accordingly.

With a global counting of active tasks, trunk skipping can be performed once only
one task is active. This is because the one region that is still growing will sweep
through the entire unvisited domain in sequence and collect dangling saddles in
order of their function values. Trunk skipping can typically speed up construction by
an order of magnitude.

4.2 Related Work Survey 51

Profile This elegant dissection of the totally ordered construction allows a fine-
grained task-parallel construction of augmented Merge Trees. Presented performance
was between 10 and 93 million vertices per second for (resampled) data sets of
16 million vertices on up to 32 OS-threads. This makes it the fastest augmented
Merge Tree construction when limited to shared memory to date. As the default
implementation in the TTK [Tie+17], it is also arguably the most widely used
solution at the time of writing.

Of course, concurrency is limited by the number of Merge Tree edges. If a small
number of regions (but more than one) contain large portions of the data in their
augmentation the region growth becomes rather sequential and expensive. Addi-
tionally, adaption to distributed settings is difficult, as each region can span multiple
data segments but can only perform work on one locality at a time, back and forth
communication may dramatically hinder performance.

4.2.12 Other works

A quantized approximation of the Contour Tree can be constructed by a data-
parallel algorithm [Car+16a]. They define interval level sets as the union of level-
sets for levels between n ∗ q and (n + 1) ∗ q with q as the quantization fidelity
parameter. Interval contours are connected components of interval level sets and
can be used as the equivalence relation basis like contours for Contour Trees. These
"Interval Contour" Trees are a quantized approximation of Contour Trees and can
be constructed by taking fragments with an image space sampling rate of q. These
fragments are subjected to a data-parallel union-find algorithm to construct the
Contour Tree directly, without the use of Merge Trees.

The algorithm produces an augmentation with respect to fragments instead of ver-
tices. It is not dependant on shared memory and distributed benchmarks have been
performed. Performance was below 20 million vertices per second for 2D data sets
of 23 million vertices on up to 256 parallel workers (16 localities). The quantization
of course introduces large portions of extra work and memory consumption while
lossless approximation cannot be guaranteed a priori. The gained concurrency may
cancel out this extra work on massively parallel systems like GPUs, but this approach
is harshly limited by memory constraints. For these reasons, the authors state they
shifted their focus towards the massively parallel peak pruning method described
above.

There is a reformulation of a classic divide & conquer solution [Nat+16] for the
massively parallel communication model MPC. Actual Merge Tree construction per

52 Chapter 4 Contour Tree Construction

data segment is black boxed and suggested to be done with the totally ordered
construction. Data segmentation is based on the MPC model with a recursive cuboid
structure. The merging of two segment trees is done like in [V P03] with some
pruning ideas like in [MW14] or [Lan+14]. No implementation or performance
benchmarks are demonstrated.

Lastly we want to mention an adaption of Contour Tree construction to ad-hoc
sensor networks [Sar+08]. In this hardware setting each vertex in the data is
a reading from a sensor that also forms a parallel worker. Edges are formed by
the network topology of the sensor computers, so communication is only possible
among neighbors. This requires a strictly data-parallel approach with no global
data structures. As early as 2008, the paper introduced a monotone path based,
decentralized and data-parallel solution. Each sensor can identify its vertex to
be a local minimum and start a region growing procedure. A sensor is visited by
a region growth if all smaller valued neighbors have been visited by the growth.
The region growth therefore follows monotone ascending paths in arbitrary order.
These regions will in turn create a partition of the data similar to those in [RS14]
and [Car+16b]. Sensors that find neighbors visited by different minima are again
partition boundary vertices and thus saddle candidates (called potential merge
saddle in the paper). Their smallest valued member is determined by an elegant
broadcasting poll and saddle contraction can continue. Of course performance in
this setting is not comparable to other settings. The paper is not cited in any other
work described here (likely because of the network setting being published in a
different community) and similar ideas emerged here almost a decade later.

4.2.13 Conclusion and Comparison

The history of Merge and Contour Tree construction has let to a diverse field of
methods. Some of these methods became obsolete, but most are still the most per-
formant solution for at least some hardware or requirement setting. To complete our
overview, we therefore refer to Table 4.1. Only methods with implementations and
reported runtimes are listed. The table is sorted into two types: actual Merge Tree
construction methods (kernels) and divide & conquer distribution policies (policy)
that can be combined with any kernel. The parallel hardware column differentiates
between data-parallel solutions for massive amounts of parallel workers (oversimpli-
fied as GPU), multi core CPU targets with shared memory and HPC clusters or other
distributed settings. The columns do not account for theoretically possible adaptions
of the general approaches, but rather the actually utilized settings for the reported
benchmarks. Figure 4.2 shows a flow-chart to decide on the best algorithm to use,

4.2 Related Work Survey 53

Year Parallel Hardware Augmentation Performance
Kernels

Totally Ordered 2003 Sequential Yes 0.02 - 0.03
Domain Restriction 2005 Sequential + GPU No 0.03 - 0.04

Minimum Lists 2012 Shared Memory + GPU No 14 - 20
Contour Forests 2016 Shared Memory Yes 6 - 16

Peak Pruning 2016 Shared Memory + GPU No 3 - 47
Task-Parallel 2017 Shared Memory Yes 0.1 - 20

This Thesis [WG21] 2021 Distributed Yes 8 - 74
Policies

Divide & Conquer 2003 Shared Memory No ∼ 0.9
Local-Global 2013 Distributed No 33 - 57

Pruned Divide & Conquer 2014 Distributed Yes ∼ 33
Distributed Domain-Restr. 2015 Shared Memory No 21 - 50

Tab. 4.1: Comparison of presented Merge Tree construction methods. Performance is in
million vertices per second based on all available benchmarks. For the results of
this thesis, two outliers (6 and 107 million) are not included in the span.

based on whether or not the augmentation is needed and a distributed memory
cluster is available or shared memory can be assumed.

Merge Tree
Construction

Yes NoAugmentation
Needed?

No

Yes Shared Memory
Required?

This Thesis [WG21]

Task Parallel
[Gue+17]

Shared Memory
Required?

Local-Global [MW14]

Distributed Representation

Peak Pruning
[Car+19]

Yes

No

Fig. 4.2: Flow chart for deciding the Merge Tree construction type with the best expected
performance.

54 Chapter 4 Contour Tree Construction

Unordered Task-Parallel
Distributed Augmented Merge
Tree Construction

5

Within the surveyed related work, the Merge Tree construction method developed
in this thesis can be characterized with a few keywords. The algorithm follows the
unordered method similar to [RS14] and [Car+16b] but avoids following monotone
paths through the entire domain. The resulting colorings do not form a complete
partition but correspond precisely to Ex(m). The region boundary vertices are still
subsets of Bd(m) and are still guaranteed to contain sm as their smallest valued
member. This avoids double work and shrinks the size of regions that have relevance
for a minimum, which is beneficial in a distributed setting.

The algorithm is also task-parallel. Regions are not created by data-parallel opera-
tions on all edges, but are grown around minima by tasks like in [Gue+17]. From
this follows that no global data structures or barriers are needed. A minimum can
identify its saddle and register its region there independently of all other minima.
Once a saddle is identified by all its ancestors in the Join Tree, it can be (virtually)
contracted by merging involved regions. This fits well with the goal of using the
algorithm in a task-parallel pipeline.

This combination allows the algorithm to be distributed. In a distributed memory
setting, regions can grow beyond data boundaries and on multiple localities simul-
taneously. With a (rather complex) polling strategy, the overall smallest valued
saddle candidate is found and shared with all involved localities. While the tree is
ultimately collected on a master locality, the ongoing representation built on each
locality is very similar to the local-global Merge tree of [MW14]. The algorithm
works the same locally as on multiple localities (a few poll steps would be skipped if
only a single locality is involved) and thus exposes parallelism both within a data
segment and across. It is therefore the first inherently hybrid kernel in contrast to
divide & conquer distribution policies of shared memory kernels. This avoids the
diminishing parallelism of fan-in stages and spreads communication costs across the
entire computation.

55

The algorithm allows to construct the Augmentation as well. Like in [Car+16b] we
utilize the observation, that the Augmentation for an edge starting at m is exactly
the subset of Up(m) containing all vertices with smaller values than sm. As this is
also a subset of the region colored by m -namely Ex(m)-, we can "cut" these regions
at the value of the saddle. In contrast to [Car+16b] we do not perform domain
restriction like in [Chi+05] and thus obtain the complete augmentation for the edge
of m after this cut.

(a) (b)

(c) (d)

Fig. 5.1: Exemplary Join Tree computation on the height function of a manifold, deliberately
made comparable to an example in [Gue+17]. In (a) local minima and thus Join
Tree leaves are found according to 5.1.1. In (b) independent sweeps grow a region
around each local minimum following arbitrary monotone paths according to 5.1.2.
In (c) these growths terminated at non-exclusively monotone reachable vertices,
namely boundary sets. The smallest valued boundary vertices are identified and
prepared for their own sweep according to 5.1.3. In (d) prepared saddles continue
their own sweeps in the same manner, constructing the entire Join Tree.

56 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

5.1 Algorithmic Structure

The input is treated as a 1-skeleton (skeleton graph), the dimension of the cells and
embedding domain are therefore not relevant for the algorithm. Cell interiors of
meshes that are not a triangulation could be treated by triangulating or employing
an oracle but are neglected in our implementation. This enforces saddles to be at
vertices and might introduce errors in the sub-resolution scale, see Figure 5.2. Since
most data sets do not represent Morse functions natively, a simulation of simplicity
is employed. In our implementation this is done by breaking up ties in function
value by vertex index. This might introduce artificial persistence pairs with zero
persistence (another important reason for simplification). Multi-saddles can be
implicitly handled by the algorithm and will just create nodes with degree larger
3.

Fig. 5.2: Exemplary cuboid cell data with trilinear interpolated function. The actual Join
Tree might deviate from the Join Tree of the 1-simplicial skeleton and might
contain saddles that are not located at vertices.

The algorithmic structure follows the related work described above in the most
general points, see Figure 5.1. Minima are identified by comparing their function
values to all direct neighbors. Regions are grown around minima along monotone
ascending paths to identify their saddle node adjacent in the canonical Join Tree.
Augmentations can be obtained from these regions by cutting them at the saddle
function value. The saddles are eventually virtually contracted and can be treated
like the minima before. The Contour Tree could then be constructed from Join and
Split Tree as usual. Since this thesis makes no contribution to this process it was not
implemented for benchmarks. All runtimes (and those in the literature we directly
compare to) were obtained for Join Tree construction only.

5.1 Algorithmic Structure 57

These individual steps will be described in all necessary detail below. We will
first explain the algorithm for a shared memory system and detail the necessary
communication to handle data boundaries after that. This is fitting for our algorithm,
as the general process for shared and distributed memory is the same. The distributed
algorithm is not an explicit combination of independent local processes but rather an
adaption of region growth, saddle identification and saddle contraction to include
more than one involved locality.

5.1.1 Minimum Search

Identifying minima is embarrassingly parallel and very simple. A vertex is a minimum
if its function value is smaller than the function value of all its neighbors. It might
be intuitive to expose as much of this concurrency as possible, creating one task for
each vertex to be tested. However, these tasks would have runtimes below a few
milliseconds. This may be suitable for SMP or GPU hardware, but even with the
low cost context switches of HPX, the task management overhead would exceed
the actual compute time. Depending on the data size and hardware availability it
could be beneficial to perform the scan for minima on a GPU and pass back a list of
minima to CPU.

In our implementation, the search for minima is a sequential iteration over all
vertices within a single task. This allows other parallel workers to immediately
start working on the region growth of discovered minima and keeps the number
of pending tasks low. This also evenly distributes the trivial, low latency work on
small leaf regions across the computation time, allowing it to be a reliable backup
to fill the growing latencies of inner nodes with their larger regions that span more
and more localities. This is a great example for the sometimes unintuitive design
principles of task-parallel latency hiding.

Algorithm 1 SCAN_MINIMA()

for all v : DOMAIN_VERTICES do
if smallerValuedNeighbors(v).empty() then

HPX.async<GROW_REGION>(v);
end if

end for

58 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

5.1.2 Region Growth

The heart of the algorithm is the identification of saddles for minima. This is achieved
by growing a region around a minimum m that traces the set Ex(m). During this
growth the sweep front is explicitly maintained, so that it corresponds exactly to
Bd(m) once the growth terminates. It is then easy to extract the smallest valued
vertex as the saddle.

The growth of the region is tracked by a union find data structure, more precisely a
disjoint set forest. Like in other related work each minimum becomes the represen-
tative root of its connected component. Trivial one-element unions are performed
for each vertex that is in Ex(m) to track their membership in the region around m.
This allows for fast tracking (union) and lookup (find) of region memberships.

A vertex v can be added to the region of m if it is guaranteed to be in Ex(m). This is
the case if all smaller valued direct neighbors of v are guaranteed to be in Ex(m).
As m is in Ex(m) it can be added right away, initializing its region and becoming
the root of its disjoint set tree. After that, all neighbors of m that have no smaller
valued neighbors other than m can be added to the region and united in the disjoint
set forest. This way the region grows to all vertices that only have smaller valued
neighbors that are already in the region.

In theory, all those vertices could be added in parallel and we will use this property
for distributed data settings. Within a locality however, only a single task is assigned
to a region growth. This avoids any need to synchronize access to the involved data
structures. For noisy data sets, regions will be small and additional parallelism will
typically not be worth its overhead. For example, the average size of the regions
Ex(m) of leafs was around 7 for the data sets utilized in the benchmarks in this thesis.
To achieve production quality performance the region growth could autonomously
create helper tasks to further parallelize the region growth, once a certain region
size is reached.

In our implementation a single queue therefore manages the region growth. Be-
ginning with m, every vertex that is added to the region (united in the union find
structure) adds all its larger valued neighbors to the queue. Then, the next queue
element v is visited. All its smaller valued neighbors are tested for region member-
ship (find in the union find structure) and if they are all in the region, v is added to
the region (and adds its larger valued neighbors to the queue). Once the queue is
empty, all and exactly those vertices in Ex(m) have been added to the region.

5.1 Algorithmic Structure 59

This modified breadth first search can result in duplicate entries in the queue and
in fact, vertices will be visited once for each smaller valued neighbor. To alleviate
the performance impact of this, the queue could be replaced by a priority queue
(based on a min heap) to visit smaller valued elements first. Similar to the locally
ordered progression of [Gue+17], this would allow to actually add a vertex as soon
as possible and quickly discard it every time it is visited after that, see Figure 5.3.
Our experiments showed however, that the additional insertion cost of min heaps
actually exceeded the benefits of that and our implementation features a regular
queue.

2

1

1 7

2
3

3

4 11

12

1

3

4

Visit and Test

Fast Discard

Fig. 5.3: Visiting pattern for a queue (outside red arrows) and a priority queue (inside
green arrows). If the vertex 7 is visited before 4 it is fully tested but not added,
even though that will change on the second visit. If 7 is visited after 4 it can be
added immediately and a second visit can be skipped without full testing.

In addition to the union find structure (that is shared with all other growth tasks)
and the growth queue, a third data structure allows us to track the sweep front and
to capture the set Bd(m). Whenever a vertex is visited but not added to the region
it is instead added to this boundary data structure. If the same vertex is later added
to the region, it is removed from the boundary. In our implementation this data
structure is a simple set (based on a red black tree), as it allows for fast insertion,
removal and constant time minimum search.

In other words, a breadth first search adds all vertices that belong to Ex(m) to the
union find component of m. It also tracks in a boundary set all vertices that are
adjacent to this region but have smaller valued neighbors outside of the region.
Once the growth terminates the boundary set corresponds to Bd(m) and a minimum
search identifies the saddle sm.

All vertices that have been added to the region and have a smaller function value
than sm belong to the augmentation of the edge (m̂, ŝm). All of these vertices
currently point to m in the union find data structure. A modified path compression

60 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

Algorithm 2 GROW_REGION(m)

edge = JoinTree.edgeFrom(m);
(queue, boundary, augmentation) = edge.getStructures();
queue.push(m);

while !queue.empty() do
v = queue.pop()
if unionFind.find(v) == m then

continue;
end if

bool canAdd = true;
for all n : smallerValuedNeighbors(v) do

if unionFind.find(n) != m then
canAdd = false;

end if
end for

if !canAdd then
boundary.add(v);
continue;

end if

unionFind.union(m, v);
augmentation.add(v);
boundary.remove(v);
for all n : largerValuedNeighbors(v) do

queue.push(n);
end for

end while

sm = boundary.min();
edge.saddle = sm;
edge.augmentation = augmentation.lowerValuedThan(sm);
ASSIGN_SADDLE(m, sm, boundary, augmentation.higherValuedThan(sm);

may allow to implicitly represent the augmentation within the union find data
structure. However in our implementation, we explicitly tracked augmentations
with a forth data structure. Every time a vertex is added to the region of m it is
also added to the augmentation of its edge. Edges are therefore represented by
their lower end vertex, which is unique. Once sm is found, the augmentation is
split at its function value, meaning all vertices with a function value smaller than
sm remain in the structure and form the augmentation of the edge. The rest forms

5.1 Algorithmic Structure 61

an inherited augmentation that will be assigned to descendants in the tree during
saddle contraction (see below).

To allow for a constant time cut of the augmentation we realized the structure by
means of a skip list set. However, our experiments showed, that the additional
overhead of its maintenance is larger than its benefits and a simple flat set is used in
our implementation instead.

The same union find data structure is shared between all growth tasks. The use of
this data structure is thread safe without any use of synchronization. No regions
Ex(m) intersect and boundary vertices are not used in union operations so no two
tasks will write to the same positions. Find operations only read and are thus safe
to use. The growth queue, augmentation set and boundary set are only used by
one task, thus no synchronization is necessary for the region growth and saddle
identification.

5.1.3 Saddle Contraction

The region growth above allows a single task to find a single leaf edge and its
augmentation without any synchronization or interaction with other tasks. To be
able to virtually contract saddles and treat them like minima in another region
growth, the tasks now have to coordinate and share information about saddles.

For this, we maintain a map of pointers to edges with the lower valued incident vertex
as key. Edges store both incident vertices and also aggregate the three data structures
used for their computation: growth queue, boundary set and augmentation set. This
allows to modify these structures for a saddle before that saddle starts its own region
growth to perform virtual saddle contraction.

Once a growth tasks terminated and identified its saddle it will call a method
(ASSIGN_SADDLE) for the saddle. This method has two purposes. First, it prepares
the saddle for contraction based on the information of the finished edge. Second, it
tests if this is the last incoming edge to perform this preparation. If so, the virtual
contraction is complete and a growth task can be scheduled for the saddle.

Let us revisit what virtual saddle contraction is. The sub-tree of a Join Tree that
includes all ancestors of a given saddle s augments only vertices with lower function
value than s. We will call it the sub-tree below s. These contained vertices are
connected and could be contracted onto the saddle. For that, all contained vertices
could be deleted. All edges between two deleted vertices could also be deleted. All

62 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

edges between one deleted and one remaining vertex could replace the deleted
vertex with s. This would make the saddle a local minimum and the Join Tree of the
resulting domain would be exactly the Join Tree minus the sub-tree below s.

This allows us to treat a saddle s like a minimum for our computation, if the sub-
tree below s is already computed. Luckily, we do not need to perform the actual
saddle contraction like above. It suffices to update the growth queue, boundary and
augmentation for s before its growth starts as if s itself was a minimum and had
already performed the region growth that was in reality done by its ancestors.

The region Ex(s) after contraction contains the regions Ex(m) for all minima m
that are ancestors of s. The union find structure can simply unite these sets by
performing a union operation of m and s, with s as the representative. If this is
done for all minima assigned to s, the union find data structure represents a virtual
contraction of s.

The initial boundary of s is also simple to compute. It is the current state of the
sweep front and thus simply a union of all boundaries of minima reaching the saddle.
The initial augmentation of s is again just a union of all inherited augmentations
of minima reaching s. Performing the unions on the set data structures has linear
runtime in their size and becomes increasingly expensive for larger and larger
regions. This is one of the reasons, why the assign saddle procedure is the largest
overhead introduced by our method over related work. However, this mainly
becomes a problem if few large regions contain large portions of the data. For
noisy and complex data sets individual regions are small and the trunk contains the
majority of the domain. If data sets are known a priori to contain large, smooth
features it could be advisable to replace the sets that are fast for insertion, removal,
min search and split with data structures that perform faster unions (e.g. heaps or
disjoint set forests).

The initial state of the growth queue is a little more complicated. The first intuition
is to only push s to the queue. However, since actual saddle contraction would
drastically expand the connectivity of s the direct neighborhood of s may not suffice.
Naively, we need to add the entirety of the (united) sweep front boundary of s to
the queue to test again whether region growth might now continue where ancestor
regions could not. However, most of these tests would be redundant, as the region
membership of smaller valued neighbors could only have changed because of the
union operations between s and minima reaching it. This limits the vertices that
need to be tested again to the intersection of boundaries of ancestors, as only
those vertices have smaller valued neighbors that are members in regions that were
originally different and might have united now.

5.1 Algorithmic Structure 63

Algorithm 3 ASSIGN_SADDLE(m, sm, m-boundary, m-inheritedAugmentation

edge = JoinTree.edgeFrom(sm);
edge.lock();
(queue, boundary, augmentation) = edge.getStructures();

unionFind.union(sm, m);
(intersection, complement) = m-boundary.dissectBy(boundary);
boundary.add(complement);
queue.push(intersection);
augmentation.add(m-inheritedAugmentation);

for all n : smallerValuedNeighbors(sm) do
if unionFind.find(n) != sm then

edge.unlock();
return;

end if
end for
HPX.async<GROW_REGION>(sm);
edge.unlock();

The assign saddle preparation for a terminated region growth of a minimum m for
a saddle s thus consists of the following: Perform a union operation for m and s

in the union find data structure. Intersect the boundary of m with the preparation
boundary of s and add these vertices to the preparation growth queue of s. Unite the
remaining boundary of m with the preparation boundary of s. Unite the inherited
augmentation from m with the preparation augmentation of s.

After that the test if m is the last minimum to call assign saddle for s is easy. If
find operations for all smaller valued neighbors of s return s, then all assign saddle
union operations have been performed. A new region growth task for s can now
be scheduled. Whether or not this was the case, the region growth task ends after
performing the assign saddle operation.

Access to the edge map is guarded by a lock, allowing only one task to receive or
emplace pointers at a time. A lockfree, threadsafe map implementation may have a
noticeable performance benefit, as there are many accesses to this map. If enough
memory is available, the map could be realized as a fixed size array of pointers for
each vertex id. However, each access simply stores or retrieves a pointer so even
with high congestion latencies on map access should be low. Additionally, each edge
contains a lock, so that the assign saddle procedure can only be performed by one
finished growth task per saddle at a time.

64 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

5.1.4 Trunk Skipping

In conclusion, the minimum search task schedules region growth tasks. Let us call
them tasks of the first generation. These identify for their minimum a corresponding
saddle and prepare it for its own region growth. Each saddle that has only incoming
edges from leafs in the tree will become contractible after the termination of the
corresponding first generation growths. It will be virtually contracted and start its
own region growth task, now of the second generation. The growth for any inner
tree node v̂ will eventually be started in the (n+1)-th generation, with n being the
height of the subtree below v̂.

Like in [Gue+17] the task-parallel paradigm includes no global barriers after each
generation. Tasks of all generations can run in parallel, with the only sequential
dependency being between ancestors and descendants in the Tree. The critical path
(as in the longest chain of sequentially dependent tasks) therefore corresponds to
the branch with the greatest height in the tree. For Merge Trees, this corresponds to
the branch between global minimum and global maximum and is called the trunk.
Noisy data sets, especially measurements of objects of interest that are contained in
a larger open volume (like air or tissue) tend to augment the majority of vertices
to edges along the trunk and have a rather large jump in height from the second
highest branch to the trunk. For such data sets the procedure of trunk skipping
described in [Gue+17] can increase performance by an order of magnitude.

Once only one task is still running, it is clear that the corresponding region will
"collect" all saddles that are not yet contractible. This also has to happen in order of
their function value, since only ascending paths are followed to discover saddles.
All vertices that do not yet belong to an augmentation will be reached during this
process and will be assigned to edges according to their function value. With these
observations the actual spatial and neighborhood relations become irrelevant and
the region growth procedures can be replaced by a fast parallel scan and sort.

First, stop the last region growth task and sort all dangling saddles, as in non-
contractible saddles that are missing one incoming edge. In our implementation,
dangling saddles are identified by iterating over the edge map and adding all edges
that have been created but not assigned an endpoint to an ordered collection (e.g.
set). If memory is available, the list of dangling saddles could be maintained
explicitly throughout computation.

The last region growth task can assign the first saddle in the sorted list of dangling
saddles. Iterating over this list, each endpoint can be assigned to the next dangling
saddle, with the highest valued dangling saddles endpoint being the global maximum

5.1 Algorithmic Structure 65

of the function. These saddle assignments can skip union find, queue and boundary
operations completely.

Second, for each vertex v that still points to itself in the disjoint set forest, find the
edge (s1, s2) with f(s1) < f(v) < f(s2) via binary search in the list of dangling
saddles. Add v to the augmentation of this edge. Again, it could be beneficial to
move this computation to a GPU depending on the data.

With this, the augmented canonical Join Tree is constructed in the form of a set of
edges, containing their augmentation as meta information.

5.2 Hybrid Distribution

The above description of the algorithmic structure assumed shared memory for
simplicity. The described algorithm cannot have better performance than the one in
[Gue+17], as we are performing precisely the same, but also additional computa-
tions. Especially the explicit management of sweep fronts (boundaries) introduces
additional computational effort.

The only benefit of our approach is that a single region growth could be paral-
lelized, like in [RS14] or [Car+16b]. However, as a majority of regions is very
small in complex, real world data sets and task granularity has a lower limit, we
did not utilize this possibility on shared memory. The real strength and scope of
our algorithm is scalability on distributed hardware systems. Growing regions on
all involved localities in parallel, hiding communication latencies by task-parallel
context switches and avoiding fan-in stages of strict divide & conquer policies creates
a unique set of synergies with these systems.

For the hybrid distributed setting, we assume a number of localities. Each locality
can host multiple OS-threads, but all parallel workers on the locality have a shared
memory. Different localities however do not share memory and can communicate
only by scheduling tasks on other localities (and by their method parameters and
return values). We do not utilize HPX capabilities to explicitly migrate objects
between localities.

A static segmentation of the complete data set onto the localities is assumed given
in advance. This may well represent the output of an earlier pipeline stage. Each
locality can begin work once its data arrives, independently of other localities data
becoming available, so no global barrier is needed between the preceding pipeline
stage and the Merge Tree construction. No assumptions about data distributions

66 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

or data segment topology is made, but we do require one ghost layer (the function
values and indices of vertices adjacent to those in the localities own segment need to
be available). The benchmarks presented in this thesis were acquired by segmenting
data into axis aligned cuboids of approximately similar size.

To scale our algorithm to distributed settings, the underlying algorithmic structure
is not changed. No barriers, global data structures or fan-in stages are necessary.
Instead, the four main aspects of the algorithm have to be adjusted, so that multiple
involved localities can cooperate. This allows to focus communication on individual
edge construction.

5.2.1 Minimum Search

Localities are responsible for the vertices within their own data segment. This
excludes ghost layer vertices, that are known on a locality but have a different locality
responsible for them. This way, each vertex has exactly one locality responsible for
it. The minimum search procedure does not change in a distributed setting. Each
locality starts one task that iterates over the vertices it is responsible for and starts a
region growth for each minimum found. Using the ghost cells actual minima can be
distinguished from vertices that have no smaller valued neighbors within the data
segment.

5.2.2 Region Growth

Each locality schedules a region growth task for each local minimum it is responsible
for. These tasks fundamentally perform the same growth as described for shared
memory. The main difference, is that the region might grow beyond the data segment
of the locality. In this case, each involved locality maintains its own version of the
edge data. Growth queue, boundary and augmentation exist once per locality and
edge and will only ever contain vertices this locality is responsible for. The union
find and edge map data structures were global in the shared memory setting. Now,
each locality has its own version of these two structures (still shared between all
local tasks).

The union find data structure will at least contain all vertices the locality is responsi-
ble for. Additionally, it will have to track all remote vertices that represent connected
components that any local vertex belongs to. These remote vertices will be saddles
of edges the local vertices are augmented to and their descendants in the Join Tree.

5.2 Hybrid Distribution 67

For this purpose the data structure is represented by a tuple of a fixed size array over
all local vertices and a map with remote vertex IDs as key. The "pointers" stored in
the array and map are in fact vertex IDs that are either arithmetically assigned to
array positions or looked up in the map. This way, local and remote vertices can
perform union operations with each other (possibly introducing remote vertices to
the map) and find operations always return correct IDs. Even though some remote
saddles are represented in the structure, the majority of remote vertices is not. This
is very similar to the local-global representation of Merge Trees in [MW14].

Similarly, the edge map will at least contain all edges with start- or endpoints the
locality is responsible for. Additionally, it will contain a local version for edges
between descendants of these points. Since the edge map is a map with vertex IDs
as key, the implementation does not need to change.

The cooperative region growth allows to continue region growth on remote localities.
These localities keep track of their own local boundary and can themselves again
continue the region growth on remote localities (even coming back to already
involved localities). Once all growth queues on all localities are empty the set Bd
is available, but is partitioned onto all involved localities. Each involved locality
reports its local boundary minimum to the locality that originally started the region
growth, which in turn finds the saddle and issues the saddle assignment on all
involved localities. See Figure 5.4.

This simple idea is not trivial to implement. The original region growth will at first
proceed as in shared memory. The reaching of a data boundary can be identified by
trying to push a ghost vertex to the queue. The growth can of course not operate
on the ghost vertex and instead schedules a subordinate region growth task on the
locality responsible for the vertex. We will call such recursive, remote region growth
tasks a finger of the calling task.

If a vertex is added to the region and has larger valued neighbors that are ghost
vertices it is called a finger vertex. For each finger vertex, the region growth "spills" to
the neighboring data segments and "stretches a finger" to another locality to continue
the region growth. Within the fingers, the minimum m is a remote vertex, but this
can be handled by the union find data structures map portion. Vertices can still
perform union operations and the local portion of Ex(m) is traced on each locality
individually. The local portion of the sweep front can be maintained per locality
and once the finger terminates, the minimal valued vertex on that sweep front (the
fingers saddle nominee) can be sent back to the caller as the return value.

68 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

33

36

4

28

37

8

11

35

9

18

16

10

6

13

29

5

12730

32

34

1

26

14

31

24

27

17

15

30

21

20

19

22

39

38

25

23

2A

B

C

I

II

III

(a)

33

36

4

28

37

8

11

35

9

18

16

10

6

13

29

5

12730

32

34

1

26

14

31

24

27

17

15

30

21

20

19

22

39

38

25

23

2

I
A

B II

III

(b)

Fig. 5.4: (a) Region growth tasks (I-III) start at each minimum (colored vertices). Regions
are grown like indicated by the arrows, which creates finger tasks (A,B) which
again can create finger tasks (C). (b) Ex regions (colored vertices) and boundary
sets (colored lines) are identified locally for each locality. The illustration shows
task labels at the saddle nominees returned by them. C started while I was still
running and thus just injected 32 to the queue and returned an empty resultMap.

There is one problem however. A locality might receive multiple fingers for the
same minimum region growth, since one finger has to be scheduled for each ghost
vertex that is put in the queue. The timings and interaction between these fingers
create multiple edge cases, highlighting the complexity of task-parallel responsibility
management. These additional fingers might be scheduled while another finger (or
the original growth task) on that locality for the same minimum is already running.
Since queue, boundary and augmentation are not thread safe, this will not work

5.2 Hybrid Distribution 69

Algorithm 4 GROW_REGION(m)

edge = JoinTree.edgeFrom(m);
(queue, boundary, augmentation, flag, counter) = edge.getStructures();
queue.push(m);
resultMap = new ResultMap();
GROW_LOOP(m, resultMap);
resultMap[locality(m)] = boundary.min();
sm = resultMap.overallMin();
for all loc : resultMap.keys() do

HPX.async<ASSIGN_SADDLE>(loc, m, sm);
end for

naively. On the other hand, additional fingers might be scheduled after earlier
fingers already terminated and reported back a saddle nominee.

To clear up this confusion, additional meta-data is embedded in the edge data
structures. First, a flag is added, that keeps track of whether or not a finger is
currently performing work on the edge region. Second, a counter is added, that
counts how many saddle nominees have already been returned.

Once a finger task starts, it acquires the lock of the edge and tests whether the
ongoing work flag is set. If not, then the task sets the flag, releases the lock and
starts a region growth loop like in the shared memory case. It adds the starting finger
vertex to the region (similar to the minimum being added in the original growth
task) and grows the region until the growth queue is empty again. At this point
it acquires the lock of the edge again, increases the nominee counter, un-sets the
ongoing work flag and returns a tuple of the smallest valued vertex on the boundary
as saddle nominee and the current nominee count.

If a starting finger task finds the working flag set, it simply adds its starting finger
vertex to the queue, which is replaced by a double ended queue for this purpose,
to allow for thread safe handling of front and back ends. Since ghost vertices are
never pushed to the queue by the actual region growth loop, any ghost cells that are
pulled from the queue are guaranteed to be finger vertices and can be added to the
region without testing their smaller neighbors (which would not be possible, since
not all neighbors for ghost vertices are known on a locality).

This way, an arbitrary number of fingers can be scheduled on a locality. If the target
locality is already performing a growth, the new information about data segment
border vertices is simply injected into the running process queue. If the target
locality has already reported saddle nominees for earlier fingers, the counter allows
the calling task to overwrite older results with the most current finger.

70 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

Algorithm 5 GROW_LOOP(m, resultMap)

edge = JoinTree.edgeFrom(m);
(queue, boundary, augmentation, workflag, counter) = edge.getStructures();
while !queue.empty() do

v = queue.pop()
if isGhost(v) then

for all n : smallerValuedNeighbors(v) do
if unionFind.find(n) != m then

canAdd = false;
end if

end for
end if
if unionFind.find(v) == m then

continue;
end if

bool canAdd = true;

if !canAdd then
boundary.add(v);
continue;

end if

unionFind.union(m, v);
augmentation.add(v);
boundary.remove(v);
for all n : largerValuedNeighbors(v) do

if isGhost(n) then
resultMap.UpdateWith(HPX.async<GROW_FINGER>(m, v));

else
queue.push(n);

end if
end for

end while

However, there is another problem. Fingers might create fingers themselves and
have to account for the resulting remote saddle nominees as well as their own.
Naively, a finger could simply return the best (lowest valued) saddle nominee among
all its recursive sub-fingers and its own. However, consider the following scenario:
Locality 0 starts a region growth and creates a finger on locality 1. The finger on
locality 1 creates another finger on locality 2, performs its region growth and finds
a saddle nominee of value 30. The finger on locality 2 performs its region growth
and finds a saddle nominee of value 20. Naively, 20 is reported back to locality
0 as a saddle nominee. Locality 0 however might also start a finger on locality 2

5.2 Hybrid Distribution 71

Algorithm 6 GROW_FINGER(m, v)

edge = JoinTree.edgeFrom(m);
edge.lock();
(queue, boundary, augmentation, flag, counter) = edge.getStructures();
resultMap = new ResultMap();
if workflag then

queue.push_back(v);
edge.unlock();
return resultMap;

end if

workflag = true;
edge.unlock();
unionFind.union(m, v);
for all n : largerValuedNeighbors(v) do

if !isGhost(n) then
queue.push(n);

end if
end for

GROW_LOOP(m, resultMap);

edge.lock();
resultMap[locality(v)] = (boundary.min(), ++counter)
flag = false;
edge.unlock();
return resultMap;

afterwards. This finger might continue the region growth, adding the vertex with
value 20 to the region and removing it from the boundary. If both locality 0 and
locality 2 now find saddle nominees with values larger 30, the actual saddle 30 is
lost.

Therefore, instead of returning only its own saddle nominee and counter, each finger
returns a map with involved localities as key and saddle nominee/counter tuples as
value. This map keeps track of the most recent nominee of each locality as observed
by the finger task. Everytime a finger returns, the task that called it compares this
returned map to its own and replaces the entry for each locality with the nominee
that has the most recent counter. Once the original region growth has an empty
queue AND all called fingers returned, the final map contains the saddle as the
smallest valued, current saddle nominee.

The original region growth task therefore is the root of a call tree of fingers. Each
finger either performs a recursive region growth or just injects the new information

72 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

into a running region growth. Every time a growth queue runs empty, the smallest
valued boundary vertex is reported as a saddle nominee. All recursive calls that
return, are tracked in a result map. Once all recursive calls returned, this map
represents all nominees found by descendants in the call tree.

5.2.3 Saddle Contraction

With this branching, distributed region growth, the original GROW_REGION task
for m collects a map of all localities the region spans and the minimal elements of
their respective local boundary. The smallest valued of these final nominees is the
actual saddle sm.

Considering the objectives of the assign saddle task in shared memory, there is little
we need to change for the distributed setting. The edge for sm in the edge map
needs to be created or retrieved if it already exists. A union operation with m and sm

is performed. The augmentation is split and the larger valued portion is inherited.
The boundary of m is intersected with that of sm to fill initial queue and boundary.
The difference is simply, that all involved localities have to perform these operations
on all their respective local portions of these data structures.

Edge maps and union find structures exist once per locality and are able to track
entries for remote vertices. Edges that local vertices are involved in and all their
descendants in the Join Tree are tracked on a locality. This coincides with the
local-global tree representation [MW14].

Augmentations, boundaries and queues of different localities are disjoint, as all data
structures only incorporate vertices that the locality is responsible for. The local
augmentation can be cut and added to the edge. The inherited portion consists of
vertices that will be augmented to edges that are between descendants of m in the
Join Tree. All of those edges will be represented in the local edge map and will
perform assign saddle operations on this locality. Each vertex will find the edge
it is augmented to at some point, even if the locality is not responsible for both
incident vertices. Similarly, the local boundaries can be intersected and added to
local boundaries and queues, as no remote vertices can interfere here.

The only adaptions to the saddle contraction phase, is that the assign saddle task
has to be called by the finished original region growth not only on its own locality,
but on all localities that are responsible for any involved vertices. This is handily
available as the set of keys in the final result map. Note, that finished fingers can

5.2 Hybrid Distribution 73

33

36

4

28

37

8

11

35

9

18

16

10

6

13

29

5

12730

32

34

1

26

14

31

24

27

17

15

30

21

20

19

22

39

38

25

23

2
III

IV D

(a)

33

36

4

28

37

8

11

35

9

18

16

10

6

13

29

5

12730

32

34

1

26

14

31

24

27

17

15

30

21

20

19

22

39

38

25

23

2
III

IV
D

(b)

Fig. 5.5: (a) For the saddle with value 11 a new edge (purple color) is created on both
localities. Augmentations have been cut and inherited (colored vertices). Boundary
intersections push 13, 28, 29, 36 and 37 to the queue on the left locality and 26,
27, 34 to the queue on the right locality. Additionally, 35 is added to the initial
boundary of 11 on the left locality and 22, 23, 25, 38 and 39 are added to the
initial boundary on the right locality. A region growth task IV starts on the left
locality, which immediately starts a peer finger D on the right locality. (b) IV grows,
finds an empty boundary and has no saddle nominee. D grows and finds 22 as the
smallest valued vertex on the remaining boundary. This is returned to IV, which in
turn will assign the saddle 22 to 11 and issue the right locality to do the same.

not initiate assign saddle operations, as there is no way to determine locally if the
overall region growth is fully terminated.

The assign saddle operation of shared memory contains a check for the saddle
being contractible. In a distributed setting this is only possible and necessary on
the locality that is actually responsible for sm. If all smaller valued neighbors of sm

74 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

return sm from a find operation, then the saddle can start its own region growth.
However, multiple localities have local representations for the edge of sm. These
representations include initial region growth queues of vertices where the growth
needs to be continued.

In other words, the starting region growth on the locality responsible for sm has
multiple peers: localities that also have initial work to perform for the region growth
of sm. In order to correctly perform the region growth for sm, all peers need to start
a region growth on their own and report back to the original region growth exactly
like fingers would, see Figure 5.5.

5.2.4 Tree Collection and Trunk Skipping

The procedures described above allow each locality to identify local minima and
start region growths in parallel. The region growths progress independently and
span across localities with recursive fingers. Saddles are identified, prepared and
ultimately start their own region growths with mutual communications between
involved localities only, creating local-global Join Tree representations.

In order to collect the entire Join Tree on a single locality, a master locality (e.g.
with rank 0) is informed about every finished edge. Every time a saddle is checked
for contractibility, the incoming edge that issued the assign saddle operation is
registered with the master locality by scheduling a register task. This edge only
contains both incident vertex indices and no data structures or meta information.
When the Join Tree construction is done, the master locality therefore has a set of
all Join Tree edges. The augmentations of the edges however are partitioned among
the localities with all localities having knowledge about the augmentations of all
local vertices. If memory is sufficient, these augmentations could be collected on a
master locality too.

To manage trunk skipping in the distributed setting, the master locality also keeps
track of the number of active region growths. For this, each locality reports the
number of local minima its scan found back to the master locality, which adds them
all up in a counter. This is the total number of starting points.

If a saddle is not yet contractible during the responsible assign saddle operation,
then the number of active region growths effectively is reduced by one. The work
issued from that starting point is completely done and the continuation is left to
be discovered by work from other starting points. The register edge task therefore
is passed a boolean flag, that is true only if the saddle was contractible and the

5.2 Hybrid Distribution 75

region growth can continue. If the flag is false, the master locality decreases its work
counter by one.

While intuitively the counter should always be positive and only reach 0 once, the
minimum scan tasks will most probably return only after the majority of region
growths. The counter will therefore be negative for most of the computation time.
Thus, trunk skipping can only be issued once all localities have reported their
minimum counts AND the counter reaches 1. Only then is it guaranteed, that only
one active region growth remains and trunk skipping can safely be performed.

The process of trunk skipping needs only little adaption to the distributed setting.
The master locality has knowledge about all dangling saddles and can sort them like
in a shared memory setting. This list is then broadcasted to all other localities (who
are idling anyway) to allow them to sort their not yet augmented local vertices into
these edges with binary sort like before.

76 Chapter 5 Unordered Task-Parallel Distributed Augmented Merge Tree Con-
struction

On-The-Fly Simplification 6
We have described an effective Merge Tree construction module for use in a task-
parallel, distributed pipeline. Especially in this setting, it might be interesting to
represent the output of the pipeline stage not as the final tree, but as a stream of
tree edges. Whenever a saddle is contractible, all information about the incoming
tree edges are available. The localities responsible for the extrema have information
about the saddle and all involved localities, which in turn hold complete information
about the augmentations. At this point subsequent pipeline stages could start to
perform work on these incoming edges.

The scientific work we want to support typically requires topological simplification
of the data as an initial step in visualization pipelines. As discussed in Section 3.5,
generalized simplification allows for topological simplification based on individual
Merge Tree leaf edges and thus presents itself for a simplification module, that can
perform online work on the tree edge output stream described above. Similar ideas
of on-the-fly simplification emerged in related work [Pas+07].

This on-the-fly simplification profits from all benefits our task-parallel pipeline aims
for. Idle times at late construction stages can be filled with simplification work,
as a global barrier between pipeline stages is avoided. The increased occupancy
allows for latency hiding and parallel scalability is improved. Additionally, since
simplification can drastically reduce the size of the tree, the master locality collecting
the tree is relieved of some memory consumption, as only persistent edges are
reported to it.

This module is very simple in its function. For each leaf edge in the stream, test if
the difference in function value between saddle and extremum is larger than a given
ε. If not, let all involved localities set the function value of all augmented vertices to
the value of the saddle (to obtain f ′′′). In this case, the edge is also removed from
the stream (to obtain the simplified tree), see Figure 6.1. That way the simplification
module acts as a kind of filter on the stream.

There are two formal problems to this. First, the resulting stream of edges now may
represent a tree with obsolete degree 2 nodes. Discarding a leaf edge should discard
the corresponding saddle as well. This can be achieved by modifying the construction

77

optimal (halved epsilon)

generalized

construction

this thesis

this thesis

Function f

construction

Function f'
ε

Function f''

construction

Function
f'''

combination

branch decomposition

Y-Shapes
Merge Trees

branch decomposition

Y-ShapesContour Tree

Simplified
Contour Tree

Simplified
Contour Tree

combination

carving

Simplified
Merge Trees

subtree

flattening

Simplified
Merge Trees

Simplified
Contour Tree

Simplified
Contour Treecombination

construction

Fig. 6.1: The construction module presented in this thesis allows for unsimplified Merge
Tree construction. Additionally, a connected pipeline stage can perform on-the-fly
simplification of the constructed tree and apply the simplification back to the
domain to obtain f ′′′.

module by extending the check saddle procedure. If at most one incoming edge for a
saddle has a persistence larger ε, the saddle needs to be discarded and region growth
is instead handled as if continuing the growth for the ancestor with the highest
persistence. Instead, the degree 2 nodes could be collapsed in a post-processing
step.

The second formal problem, is that simply setting the simplified regions function
values to the function value of the saddle can introduce artificial persistence pairs,
because of simulation of simplicity. This problem can be avoided by careful handling
of function values like discussed in [Luk+21]. Since the introduced persistence pairs
have a persistence of zero and the affected regions are guaranteed to have been
processed by the construction module already, we chose to ignore these artifacts
instead.

6.1 Alternative Parameters for Persistence Based
Simplification

Apart from some formal caveats, the simplification module above is simple and
effective. However it still depends on a user-supplied ε, which is an absolute value
expressed in the function value scale. This value has to be chosen based on prior

78 Chapter 6 On-The-Fly Simplification

domain knowledge. Since gaining domain knowledge is often the very goal of the
visualization pipeline, this is a chicken-or-egg problem that is typically solved by
multiple iterations of analysis and interaction.

For large and complex data this process can become lengthy and thus costly. Espe-
cially in the setting of high performance computing, compute time on the hardware
systems typically has to be reserved and is too limited for interactive trial and error.
This is especially true for in-situ scenarios. Here, a costly simulation producing the
data is the first step in a visualization pipeline that is only run once. Often, the
raw data is too large to store in consistent memory and is made only temporarily
available during pipeline execution, so that only the resulting visualizations are
stored for later human interaction.

Thus, choosing a fixed ε sometimes becomes a guessing game and rules of thumb
based on a fixed percentage of the total function range are suggested in the literature.
However, if the distinction between noise and features is not clear or does not fit
such estimations, simplification effects can differ greatly from expected results.

0 1 2 3 4 5 6
 in % of total function range

0

20

40

60

80

100

Re
m

ai
ni

ng
 %

 o
f A

rc
s

Foot
Meteor
Jet

0.0 0.1 0.2
0

2

4

Fig. 6.2: The percentage of remaining arcs after simplification decreases with larger choices
for the persistence threshold ε. The relation is highly non-linear and depends
strongly on the specific data, making it difficult for the user to control simplification
results by choosing ε. Other data sets lie between the shown graphs and are not
shown to avoid visual cluttering.

6.1 Alternative Parameters for Persistence Based Simplification 79

From the perspective of the actual effect of the simplification -expressed in the
percentage of pruned edges p- the fixed ε is a very unwieldy parameter. In the data
sets used in this thesis, we observed a highly non-linear and greatly varying relation
between ε and p, see Figure 6.2. We observed some data sets where an epsilon as
small as 0.1% of the total function range would already result in the simplification
of over 99% of all tree edges.

While alternatives to persistence based simplification have been proposed [CSP04]
and general simplification can be applied to an arbitrary set of minima, such pa-
rameters typically suffer from the same problem of being based on prior domain
knowledge and formulated in terms of absolute domain specific metrics.

We propose to perform persistence based simplification, but expose parameters to
the user, that are based on the actual effect of the simplification. Setting either
the percentage p or the absolute number N of tree edges that shall remain after
simplification will allow users a more direct control over the simplification and
increases flexibility in large-data applications.

The following presentation of online simplification based on p and N closely follows
the published version of this work [WG20], for which the author is also the primary
author.

6.2 Constrained Branch Count N

One setting of interest is to set ε such that a given number N of branches remain
after simplification. This is for example necessary if work is performed in a memory-
constrained environment.

For conventional post-processing, finding an ε so that N branches have a larger
weight than ε is easily done by an inverse rank query. However for on-the-fly
simplification the decision to prune or keep a branch must be done before weights
for all branches are known.

To this end, we propose to use a lock-free priority queue [Pug89] Q. For each arc in
the stream S, the arc is enqueued in Q, with its weight as priority. If more than N
elements have been enqueued, Q is immediately dequeued from, resulting in the arc
with N + 1 largest weight so far. This arc cannot be among the N largest weighted
arcs overall and thus has a weight smaller than the hypothetical ε we search. Thus it
can be immediately pruned.

80 Chapter 6 On-The-Fly Simplification

Substituting ε for N as a decision basis for topological simplification allows to main-
tain maximum detail in a memory constrained setting. Subsequent simplification
may then be performed within main memory outside of the large-data application.

6.3 Percentile Size Reduction to p

Persistence is expressed in terms of the scalar function values and thus requires
knowledge about the scale of that function to interpret and use. Reducing the output
size by a given percentage however does not rely on that knowledge. Thus another
interesting problem is to choose ε, such that a given percentage p of branches remain
after simplification.

For on-the-fly simplification based on a given p the problem is the following: For
each arc in the stream S, calculate the percentile rank of the arc and prune it if
it is smaller than p. Of course precise ranks are only known a posteriori, thus an
estimation based on the streamed arcs so far has to be made.

We next turn to the problem of estimating the percentile rank of an arc from all
previously streamed arcs with minimal memory overhead.

6.3.1 Quantile Summary

To this end we propose the use of a biased quantile (bq-)summary [Cor+06]. When
restricting the range of possible weights for the arcs, we can store those arcs as
leafs in a binary tree over this range. The bq-summary instead stores a subset of
nodes of this tree with associated counts, to approximate the distribution of stored
leafs. By maintaining a set of invariants upon insertion, and running an amortized
compression of the tree, sublinear memory consumption, insertion and estimation
runtimes are achieved.

The data structure as proposed by the authors depends on a discretized range restric-
tion of possible weights, containing U different weights. Insertion of a weight to the
summary has an amortized cost of O(log logU). Rank estimation technically has the
same cost, however as we will estimate the rank of every inserted weight (thus for
every arc) we can slightly adapt the insertion method to yield the rank estimation as
a byproduct. Memory consumption of the data structure is O(log U

ε log(εN)), with N
the overall size of the stream and ε the maximal relative error of the estimation.

6.3 Percentile Size Reduction to p 81

Since we do not want to rely on previous domain knowledge, we choose the range
restriction to contain the whole range representable by floating point variables.
Overall estimation accuracy achieved on real world data sets and runtime penalties
paid for maintaining the data structure will be shown in Section 7.1.

6.3.2 Statistical Estimation

Online rank estimation inevitably suffers from irregular distribution of weights
within the stream. With this, ranks of arcs within the history of the stream upon
their arrival will deviate from the ranks of those arcs in the overall data. In other
words, if a lot of short arcs are finalized first, the resulting summary data structure
will rank short arcs too high.

To alleviate this problem one can try to introduce a measure of uncertainty into
the summary, that represents size and variance of the observed part of the stream.
If uncertainty is high, rank estimation can be adjusted to, for example, prune less
arcs.

The most simple approach to statistical online rank estimation, is to assume arc
weight distribution to be Gaussian. If arc weights are distributed according to a
normal distribution, we can estimate this distribution by interpreting the previously
observed stream as a sample. Small sample sizes will result in pessimistically
estimated distributions, that will prune less arcs. Consider the following update
mechanism for each arc a:

1. Filter the weight of a with Tukey’s Fences [Tuk77] to reduce impact of outliers.
Small outliers are pruned, large outliers are stored to the output.

2. If a is not an outlier, increase the sample size n by 1 and update overall empiric
mean and empiric variance of the sample with a numerically stabilized Steiner
Translation [CGL83].

3. From the sample, calculate a Students t and χ squared distribution with n− 1
degrees of freedom. For a given significance ε find the smallest explainable
mean and variance.

4. These mean and variance correspond to the most pessimistic normal distri-
bution that can explain the sample with significance ε. Evaluate the upper p
percent quantile of this distribution and compare it to the value of a.

82 Chapter 6 On-The-Fly Simplification

With this, after each arrival of an arc a, we calculate a confidence interval around
the empiric mean, in which the true mean of the arc weights lies with ε percent
certainty. To be most pessimistic and thus try to keep arcs instead of pruning them
when in doubt, we choose the smallest mean in this range. Similarly we calculate an
interval around the empiric variance, in which the true variance lies with ε percent
certainty and choose the smallest variance. From this mean and variance we derive
a pessimistic normal distribution. The upper p percent quantile of this distribution is
a value, below which most probably at most 1− p percent of the actual arc weights
lie. Thus if the weight of a is below that value it is pruned.

6.3 Percentile Size Reduction to p 83

Conclusion 7
7.1 Results

In this section, we present performance and scalability of the resulting implementa-
tion of the construction module.

Fig. 7.1: Isosurface visualization of the Foot data set. CT scan of a human foot.

Benchmark Environment

All results emerged from experiments run on the AHRP High Performance Computer
’Elwetritsch’ at TU Kaiserslautern. All involved processors were of type Intel XEON SP
6126 (19.25M Cache, 2.6 GHz, 12 CPU cores, 96GB RAM) with two processors per
cluster node (locality). All times were measured for Join Tree construction, including

85

Fig. 7.2: Isosurface visualization of the Vertebra data set. Rotational angiography scan of a
head with an aneurysm (contrasted vessels).

Fig. 7.3: Isosurface visualization of the Meteor data set. Simulation of a meteor impacting
on deep ocean surface.

the augmentation and gathering of resulting arcs at the master node. No on-the-

86 Chapter 7 Conclusion

Fig. 7.4: Isosurface visualization of the Backpack data set. CT scan of a backpack.

Fig. 7.5: Isosurface visualization of the Jet data set. Simulation of a water jet flow.

fly simplification was performed and the complete Join Trees were constructed.
Runtime impacts and estimation accuracy of the simplification module are presented
separately further below.

Our C++ and CUDA based implementations utilize the HPX framework on top of an
OpenMPI parcelport and VTK for data input, using gcc version 9.1, nvcc version 9.2,

7.1 Results 87

Fig. 7.6: Isosurface visualization of the Aneurism data set. Rotational C-arm x-ray scan of
the arteries of the right half of a human head.

Fig. 7.7: Isosurface visualization of the Miranda data set. Density field in a simulation of
the mixing transition in Rayleigh-Taylor instability.

hpx 1.3.0 and OpenMPI version 4.0. They are made publicly available via codeocean
[Wer20].

Experiments were performed on openly accessible, well known data sets to al-
low for better comparability, see Table 7.1. Most data sets are from the Open
SciVis Dataset page (https://klacansky.com/open-scivis-datasets/). Additionally,
we use time step 15422 from simulation yA31 of the SciVis contest asteroid data
set [PG17], the foot ct scan from the TTK example data (https://topology-tool-
kit.github.io/downloads.html) and a simulation of a jet fluid stream [Gar20]. These

88 Chapter 7 Conclusion

Fig. 7.8: Isosurface visualization of the Spathorhynchus data set. Density field of a scan
of a Spathorhynchus fossil. This specimen, the holotype, was collected from the
Middle Eocene Green River Formation of Sweetwater County, Wyoming on 27 July
1967 by Frank L. Pearce.

data sets are also the data sets referred to in earlier chapters, where observations
and attributes of contemporary data sets are mentioned.

Tab. 7.1: Data set overview including runtimes on an ideal number of nodes and dimen-
sionality for all involved data sets.

Data set Size Edge Count Runtime Acknowledgment

[million] [seconds]

Foot 2563 0.54 1.19 [Tie+17]

Vertebra 5123 1.5 2.48 [Kla19]

Meteor 3003 0.038 3.31 [PG17]

Backpack 5122x373 4.8 6.23 Kevin Kreeger, Via-
tronix Inc., USA

Jet 2562x512 0.24 4.49 [Gar20]

Aneurism 2563 0.007 0.23 Philips Research,
Hamburg, Germany

Vertebra 10243 10243 1.7 10.02 see above

Foot 10243 10243 2.2 14.64 see above

Miranda 10243 3.4 29 [CCM04]

Spathorhynchus 10242x750 30 117.33 Matthew Colbert

7.1 Results 89

Strong Scaling

1 2 4 8 16 32 64 96
Number of nodes

0
2
4
6
8

10

15

20

25

30
Ru

nt
im

e
[s

]
Foot
Vertebra
Backpack
Jet
Meteor
Aneurism

1 1 2 4 8 16 32 64 96
Number of nodes

100

101

102

103

Ru
nt

im
e

[s
]

Foot
Vertebra
Miranda
Spathorhynchus

Fig. 7.9: Strong scaling for different data sets. Runtimes are illustrated for a growing
number of localities showing feasible scalability on up to 96 nodes depending on
data size. On the bottom, data sets Vertebra and Foot are resampled to a 10243

grid size.

Considering Amdahl’s law, a deciding factor for the usefulness of a distributed
algorithm is the turnaround point at which the total runtime is no longer reduced
by additional resources, as communication and synchronization overhead exceed

90 Chapter 7 Conclusion

parallelization benefits. The term strong scalability measures the impact of additional
resources on runtime for a given problem size and makes this turnaround point
visible. Our results show sufficient strong scalability of up to 96 nodes (2304 cores),
see upper Figure 7.9, although the turnaround point is typically reached around
32 or 64 localities. As will be shown in a direct comparison to other distributed
solutions below, this is an improved level of scalability, which allows us to utilize
the capabilities of modern HPC hardware. This allows us to reduce the necessary
runtime for augmented Merge Tree construction on large data sets by an order
of magnitude over a single shared-memory node, as can bee seen in lower Figure
7.9. However, Merge Tree construction -like other topological problems- retains
some global attributes and sequential dependencies which still makes distributed
construction methods communication heavy. As can be seen for the Spathorhynchus
data set, this limits scalability for very complex data sets (with large amounts of tree
edges) and improvements to communication patterns present itself as interesting
future work. For example, it might be beneficial to buffer finger-start-tasks and send
them in batches between neighboring localities to reduce the number of messages.

Note, that missing entries in the diagram represent configurations, that timed out
consistently. This may be due to a sharp increase in parallel overhead, due to network
congestion, or similar hardware related thresholds. Such sharp communication
overhead increases can for example be seen for the Backpack and Spathorhynchus
data sets when reaching 8 localities. This is probably due to the network topology
of the Elwetritsch cluster, where some (e.g. up to 4) localities might share a faster
sub-net (e.g. on the same board).

Weak Scaling

In weak scaling experiments, problem sizes are grown proportionally to the number
of utilized cores to determine the maximal problem sizes the algorithm can feasibly
solve. Runtimes of our algorithm stayed within the same order of magnitude when
scaling problem sizes up to 2 billion data points, see Figure 7.10. Again, some
sudden and steep increases in runtime can be observed. This is no statistical artifact,
as all data points represent the average of 20 iterations. As mentioned before,
the increasing worst case round trip time in network communication will increase
sharply with a growing number of involved localities. Additionally, the number
of tree edges does not increase or decrease linearly when resampling data sets
to different vertex counts. Weak scalability on over three thousand involved CPU
cores allowed to compute the augmented Merge tree on a data set with over two
billion vertices in around 20 seconds. As the problem requires/enforces unique

7.1 Results 91

1 2 4 8 16 32 64 96 128
Number of nodes

0

10

20

Ru
nt

im
e

[s
] Foot

Miranda

16.7 33.5 67.1 134 268 536 1073 1610 2147
Data size in millions of vertices

Fig. 7.10: Weak Scaling demonstrated on the Foot and Miranda data sets. To achieve
adjustable data size, the Foot data set has been upsampled and the Miranda data
set has been downsampled accordingly.

vertex values, the number of values a float can represent (4 billion) will become a
scalability issue before the runtime of our algorithm exceeds a few minutes.

Shared Memory Performance

The sequential runtime of our novel algorithm on a single, shared memory system is
almost on par with the current state-of-the-art TTK implementation [Gue+17], see
Figure 7.11. Additionally, a GPU-hybrid solution as mentioned in Section 5.1 demon-
strates speed ups between x5 and x20. While the algorithm is targeted towards
distributed systems and faster and more readily available solutions for shared-
memory systems exist, this comparison shows, that speedups of parallelization do
not have to compensate for a subpar sequential runtime.

Distributed Performance

Comparison to related work in a distributed setting shows, that our novel algorithm
outperforms both [Lan+14] and [MW14] significantly (compared to their reported
runtimes on the volvis.org vertebra data set, see Figure 7.12). Thus, we conclude
that the algorithm described here is at least competitive with the state of the art
with respect to performance and scalability.

92 Chapter 7 Conclusion

Jet Meteor Foot
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ru
nt

im
e

of
 T

TK
 C

on
to

ur
 F

or
es

ts

Runtime by dataset and algorithm
TTK Contour Forests
CPU
TTK FTM
GPU-Hybrid

Fig. 7.11: Runtime comparison between the state of the art task parallel TTK solution
(FTM) [Gue+17] and the previous TTK solution (Contour Forests) [Gue+16]
with our novel solution (CPU), along with a GPU-hybrid version (GPU-hybrid).
All algorithms constructed the augmented Join Tree running on a single cluster
node.

96 128 192 256 384 512 768 1024 1536 2048 2304
Number of Processes (Cores)

0
2
4
6
8

10
12
14
16
18
20

Ru
nt

im
e

[s
]

Volvis.org - Vertebra16 dataset (512x512x512)
Morozov et al. technique
Landge et al. technique
Technique in this paper

Fig. 7.12: Runtime comparison between our algorithm and reported runtimes of [Lan+14]
and [MW14] on the volvis.org vertebra data set.

Alternative Simplification Parameter Overhead

Note that the results reported above used no simplification and the complete tree
was constructed. With respect to simplification the fastest solution is to employ
a fixed ε like is conventionally used for simplification. To allow the user to guide
simplification based on p (percentage of tree edges to keep) either the BQ-Summary
or the Gaussian kernel density estimation can be used. Finally, a priority queue
based solution can limit the number of edges to a budget of N . Since using either p
or N as simplification parameter introduces additional work, we measured runtime
differences to the use of a pre-defined ε, see Table 7.2. The simplification was

7.1 Results 93

performed purely symbolic, so that the measured runtime differences represent the
overheads for using p or N over ε most closely.

Tab. 7.2: Total runtimes of simplification based on classical fixed threshold, BQ-Summary
or kernel density estimation based percentile threshold and fixed memory budget.
The overhead of simplification methods based on p or N over ε are also shown in
%.

Data set Fixed ε BQ-Summary Gaussian KDE Budget N
[s] [s] [%] [s] [%] [s] [%]

Foot 6.24 7.01 12,3 7.17 14,9 6.48 3,8
Meteor 0.42 0.48 14,2 0.44 4,7 0.44 4,7

Jet 46.81 48.03 2,6 48.98 4,6 47.2 0,8

Percentile Rank Estimation Precision

Both statistical estimators need some initial information to base their estimations
on. This means, that estimation precision will be low at first. Over time however, a
stable estimation of a fixed value ε that corresponds to the required p in the given
data is derived. In the observed data sets this stabilization is achieved very fast.
Figure 7.13 shows only the first 600 edges in the stream for an application of the
simplification module on a single cluster node. The used data is the foot data set
and p was specified to prune all but 20% of the edges. This is only one visualized
example, but the behaviour was similar for all other data sets and values of p. Note,
that the kernel density estimation barely contains false negatives. The method
always uses the most pessimistic estimation and thus avoids pruning edges that in
fact are among the p percent most persistent ones. Similarly, this process could be
inverted to focus on the most optimistic estimation and avoid to keep any edges
that in fact are not among the most persistent. In contrast, the BQ-summary error is
more or less symmetrical by nature creating both false positives and false negatives
equally.

The overall estimation accuracy is demonstrated in Figure 7.14. The data sets
Foot, Meteor and Jet have been benchmarked with a pipeline of both Join Tree
construction and simplification modules. In addition, an artificial "normal" data
set was created, so that the persistence of edges in the data set follows a Gaussian
normal distribution. This was done to evaluate the general feasibility of the kernel
density estimation approach, if applied to data that fits its normal distribution
assumption perfectly.

The x-axis represents the parameter p that was used to guide the simplification. Both
estimators tried to perform simplification so that p percent of edges remain after

94 Chapter 7 Conclusion

0 100 200 300 400 500 600
Number of finalized Arcs

0

10

20

30

40

50

Ar
c

pe
rs

ist
en

ce

 [%
 o

f m
os

t p
er

sis
te

nt
 a

rc
] Pruned

Retained

(a)

0 100 200 300 400 500 600
Number of finalized Arcs

0

10

20

30

40

50
Pruned
Retained

(b)

Fig. 7.13: (a) and (b) show the first 600 (of ca. 400.000) decisions/edges for the Gaussian
estimation and bq-summary on the Foot data set. Each finalized arc is represented
by a triangle in sequence of their arrival in the stream on the x-axis and their
(relative) persistence/weight w on the y-axis. One can see some initial fluctuation,
that stabilizes towards a mostly constant threshold (for the rest of the 400.000
decisions).

simplification. The x-axis spans only p lower than 50%, because the precision is
symmetrical: for p larger 50% just take p = 1− p and invert the decision of keeping
vs. pruning. The y-axis represents the percentage of edges that actually remained
after simplification.

As can be seen, the Gaussian kernel density estimation method performs well for
un-biased p, that is for p between 20% and 70%. Beyond that, the skewness of
real-world persistence distributions hurts estimation accuracy. The pessimistic "keep
rather than prune" approach makes the method keep between 5% and 10% on real
world data, even if p is as small as 0.5%. For very noisy data, where over 90%
of edges are considered noise this approach is not feasible. However, please note
that the estimation works almost perfectly for the artifical data where persistence is
actually distributed normally among edges and skewness is low. This suggests, that
the kernel density estimation approach could perform well for real world data sets,
if the Gaussian kernel is replaced with a distribution that fits real world persistence
distribution better.

The BQ-Summary approach on the other hand performs rather well, even for biased
p. The percentage of edges remaining after simplification was always close to the
target p. This is the case for some data sets even when considering 99% of the edges
as noise. A reduction in tree size by 95% was successful in all tests for all data sets.
However, for extremely biased p the risk grows, that the estimator calculates an
ε too high and prunes every single edge from the tree. Data simplification of this

7.1 Results 95

degree maybe needs to be addressed by further user interaction, after the heavy
burden of data complexity was reduced by a less biased p. This improved precision
over the kernel density estimation comes at the price of a larger runtime overhead
for maintaining the BQ-Summary.

0.5% 1% 5% 10% 20% 50%
p - desired percentage of remaining branches

1%
5%

10%

20%

50%

re
m

ai
ni

ng
 b

ra
nc

he
s

Statistical Estimation Accuracy
Foot
Meteor
Jet
Normal

(a)

0.5% 1% 5% 10% 20% 50%
p - desired percentage of remaining branches

1%
5%

10%

20%

50%

re
m

ai
ni

ng
 b

ra
nc

he
s

BQ-Summary Accuracy
Foot
Meteor
Jet
Normal

(b)

Fig. 7.14: (a) and (b) show achieved estimation accuracy for the Gaussian estimation and
the BQ-Summary with different p on four data sets.

96 Chapter 7 Conclusion

7.2 Summary, Future and Ongoing Work

We laid the groundwork for a framework for task-parallel and distributed visualiza-
tion and data analysis pipeline management. We evaluated HPX as a task-parallel
runtime to base the framework on and identified topological simplification as a pre-
requisite for most continuative pipeline stages. As task-parallel, distributed Merge
Tree construction was still an open problem, we had to completely revisit Merge Tree
construction and derive a novel insight and algorithm, to fulfill this requirement. We
supplied efficient and scalable modules for Merge Tree construction and topological
simplification and introduced alternative parameters for topological simplification,
to increase flexibility in our targeted use case of large data analysis.

Going beyond availability in our framework, the resulting Merge Tree construction
brought the benefits of contemporary task-parallel approaches to a distributed
setting and achieved improved performance and scalability over existing distributed
techniques, contributing to the state of the art in Merge Tree construction.

There are multiple opportunities to further improve performance and scalability
of our implementation. From buffered communication to the distributed use of
GPUs (per locality) these opportunities have been discussed in this thesis in the
appropriate sections. The most important prerequisite to efficiently go forward with
this work is a detailed profiling toolchain that can work with the challenging setting
of task-parallel and distributed programs. Conventional profilers and Gantt charts
are not applicable to or insufficient for the analysis of task parallel programs, as
tasks can for example suspend and continue on different OS-threads and have no
clear hierarchical nesting. The profiler APEX that is shipped with HPX is not usable
out of the box and is still subject to regular mailing list issues. The absence of such a
toolchain also limited the level of detail in benchmark and result acquisition.

The author collaborated on a Bachelors thesis that produced a prototype for a novel
profiling tool that specifically focuses on interactive exploration of task-parallel
dependency and execution graphs. At the time of writing, the author is collaborating
on two additional Bachelor theses continuing this work.

Additionally, the author collaborated on work (primarily Bachelor and Master theses)
with the goal of producing other modules for task-parallel, distributed visualization
pipelines. These works include modules for iso-surface extraction, volume rendering
[BG15], integral lines in vector fields and a rendering component [Ebe20]. An actual
framework -that is runtime, API and GUI- to allow for user-defined pipelines built

7.2 Summary, Future and Ongoing Work 97

from these modules is currently worked on in collaboration with the author in the
scope of an other PhD thesis.

There are also some future work opportunities that are primarily based on the
contributions in this thesis rather than the pipeline framework efforts. The task-
parallel partially ordered Merge Tree construction [Gue+17] has been adjusted to
Reeb Graph construction [Gue+19] and it poses an interesting question, whether
this adjustment can be made in a similar way to our work, to bring Reeb Graph
construction to distributed systems. During the work on this thesis, many weeks
have been invested into improving the Merge Tree combination step, where the
Contour Tree is constructed. Ultimately, we were unable to identify a method with
improved concurrency or better suitability for distributed systems. This is mainly due
to the problems posed by W-structures in Contour Trees [HC20]. These structures
are also behind the divergence of the different simplification methods (see Section
3.5).

Lastly, a statistical kernel function that better represents the distribution of persis-
tence among Merge Tree edges would greatly benefit the estimation accuracy of the
kernel density estimation approach presented above. This would allow for a faster
and more accurate use of the simplification parameter p instead of ε.

7.3 Acknowledgements

Work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 398122172.

Thank you for reading.

98 Chapter 7 Conclusion

Bibliography

[AN15] Aditya Acharya and Vijay Natarajan. “A parallel and memory efficient algorithm
for constructing the contour tree”. In: 2015 IEEE Pacific Visualization Symposium
(PacificVis) (2015), pp. 271–278 (cit. on pp. 32, 46).

[Amd07] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities, Reprinted from the AFIPS Conference Proceed-
ings, Vol. 30 (Atlantic City, N.J., Apr. 18–20), AFIPS Press, Reston, Va., 1967, pp.
483–485, when Dr. Amdahl was at International Business Machines Corpora-
tion, Sunnyvale, California”. In: IEEE Solid-State Circuits Society Newsletter 12.3
(2007), pp. 19–20 (cit. on p. 5).

[BLW12] Ulrich Bauer, Carsten Lange, and Max Wardetzky. “Optimal Topological Simplifi-
cation of Discrete Functions on Surfaces”. In: Discrete & Computational Geometry
47.2 (Mar. 2012), pp. 347–377 (cit. on p. 24).

[BG15] Tim Biedert and Christoph Garth. “Contour Tree Depth Images For Large Data
Visualization”. In: Eurographics Symposium on Parallel Graphics and Visualization.
Ed. by C. Dachsbacher and P. Navrátil. The Eurographics Association, 2015 (cit.
on pp. 23, 97).

[Bre+11] Peer-Timo Bremer, Gunther Weber, Julien Tierny, et al. “Interactive Exploration
and Analysis of Large-Scale Simulations Using Topology-Based Data Segmenta-
tion”. In: IEEE Transactions on Visualization and Computer Graphics 17.9 (2011),
pp. 1307–1324 (cit. on p. 23).

[Car+16a] H. Carr, C. Sewell, L-T. Lo, and J. Ahrens. “Hybrid Data-parallel Contour Tree
Computation”. In: Proceedings of the Conferece on Computer Graphics & Visual
Computing. CGVC ’16. Bournemouth, United Kingdom: Eurographics Association,
2016, pp. 73–80 (cit. on p. 52).

[Car+16b] H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. “Parallel peak pruning
for scalable SMP contour tree computation”. In: IEEE Symposium on Large Data
Analysis and Visualization 2016, LDAV 2016. IEEE, 2016 (cit. on pp. 32, 46, 48,
53, 55, 56, 66).

[CS03] Hamish Carr and Jack Snoeyink. “Path Seeds and Flexible Isosurfaces Using
Topology for Exploratory Visualization”. In: Eurographics / IEEE VGTC Sympo-
sium on Visualization. Ed. by G.-P. Bonneau, S. Hahmann, and C. D. Hansen.
The Eurographics Association, 2003 (cit. on p. 40).

[CSA03] Hamish Carr, Jack Snoeyink, and Ulrike Axen. “Computing contour trees in
all dimensions”. In: Computational Geometry 24.2 (2003). Special Issue on the
Fourth CGC Workshop on Computational Geometry, pp. 75–94 (cit. on pp. 19,
22, 32, 34, 36).

99

[CSP10] Hamish Carr, Jack Snoeyink, and Michiel van de Panne. “Flexible isosurfaces:
Simplifying and displaying scalar topology using the contour tree”. In: Computa-
tional Geometry 43.1 (2010). Special Issue on the 14th Annual Fall Workshop,
pp. 42–58 (cit. on p. 26).

[CSP04] Hamish Carr, Jack Snoeyink, and Michiel van de Panne. “Simplifying Flexible
Isosurfaces Using Local Geometric Measures”. In: Proceedings of the Conference
on Visualization ’04. VIS ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 497–504 (cit. on p. 80).

[Car+19] Hamish Carr, Gunther Weber, Christopher Sewell, et al. “Scalable Contour
Tree Computation by Data Parallel Peak Pruning”. In: IEEE transactions on
visualization and computer graphics (Nov. 2019) (cit. on pp. 34, 48).

[CGL83] Tony F. Chan, Gene H. Golub, and Randall J. Leveque. “Algorithms for Comput-
ing the Sample Variance: Analysis and Recommendations”. In: The American
Statistician 37.3 (1983), pp. 242–247. eprint: https://amstat.tandfonline.
com/doi/pdf/10.1080/00031305.1983.10483115 (cit. on p. 82).

[Chi+05] Yi-Jen Chiang, Tobias Lenz, Xiang Lu, and Günter Rote. “Simple and optimal
output-sensitive construction of contour trees using monotone paths”. In: Com-
putational Geometry 30 (Feb. 2005), pp. 165–195 (cit. on pp. 22, 33, 40, 42, 46,
47, 50, 56).

[CEH07] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. “Stability of Per-
sistence Diagrams”. In: Discrete & Computational Geometry 37.1 (Jan. 2007),
pp. 103–120 (cit. on p. 24).

[CCM04] Andrew W. Cook, William Cabot, and Paul L. Miller. “The mixing transition in
Rayleigh-Taylor instability”. In: Journal of Fluid Mechanics 511 (2004), pp. 333–
362 (cit. on p. 89).

[Cor+06] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. “Space-
and Time-efficient Deterministic Algorithms for Biased Quantiles over Data
Streams”. In: Proceedings of the Twenty-fifth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems. PODS ’06. Chicago, IL, USA: ACM,
2006, pp. 263–272 (cit. on p. 81).

[Ebe20] Kevin Eberle. “A Task-Parallel Distributed Rendering and Compositing Module”.
MA thesis. Germany: TU Kaiserslautern, 2020 (cit. on p. 97).

[EJ09] H. Edelsbrunner and J.Harer. Computational Topology: An Introduction. Ameri-
can Mathematical Society, 2009 (cit. on p. 2).

[Ede+03] Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci. “Morse-
smale Complexes for Piecewise Linear 3-manifolds”. In: Proceedings of the Nine-
teenth Annual Symposium on Computational Geometry. SCG ’03. San Diego,
California, USA: ACM, 2003, pp. 361–370 (cit. on p. 18).

[EMP06] Herbert Edelsbrunner, Dmitriy Morozov, and Valerio Pascucci. “Persistence-
sensitive Simplification Functions on 2-manifolds”. In: Proceedings of the Twenty-
second Annual Symposium on Computational Geometry. SCG ’06. Sedona, Arizona,
USA: ACM, 2006, pp. 127–134 (cit. on p. 24).

100 Bibliography

https://amstat.tandfonline.com/doi/pdf/10.1080/00031305.1983.10483115
https://amstat.tandfonline.com/doi/pdf/10.1080/00031305.1983.10483115

[ELZ02] Edelsbrunner, Letscher, and Zomorodian. “Topological Persistence and Simplifi-
cation”. In: Discrete & Computational Geometry 28.4 (Sept. 2002), pp. 511–533
(cit. on p. 23).

[FR96] Michael J Flynn and Kevin W Rudd. “Parallel architectures”. In: ACM computing
surveys (CSUR) 28.1 (1996), pp. 67–70 (cit. on p. 8).

[Gar20] Christoph Garth. Simulation of a jet flow. 2020 (cit. on pp. 88, 89).

[Gue+17] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. “Task-based augmented merge
trees with Fibonacci heaps”. In: 2017 IEEE 7th Symposium on Large Data Analysis
and Visualization (LDAV). Oct. 2017, pp. 6–15 (cit. on pp. 16, 32, 34, 50, 55,
56, 60, 65, 66, 92, 93, 98).

[Gue+16] C. Gueunet, P. Fortin, J. Jomier, and Vijay. “Contour forests: Fast multi-threaded
augmented contour trees”. In: IEEE Symposium on Large Data Analysis and
Visualization 2016, LDAV 2016. IEEE, 2016 (cit. on pp. 34, 47, 93).

[Gue+19] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien Tierny. “Task-based
Augmented Reeb Graphs with Dynamic ST-Trees”. In: Eurographics Symposium
on Parallel Graphics and Visualization. Porto, Portugal, June 2019 (cit. on pp. 16,
98).

[Hei+16] C. Heine, H. Leitte, M. Hlawitschka, et al. “A Survey of Topology-based Methods
in Visualization”. In: Comput. Graph. Forum 35.3 (June 2016), pp. 643–667
(cit. on p. 2).

[Hil+01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii.
“Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes”.
In: SIGGRAPH ’01. New York, NY, USA: Association for Computing Machinery,
2001, pp. 203–212 (cit. on p. 23).

[HC20] P. Hristov and H. Carr. “W-Structures in Contour Trees”. In: Topological Methods
in Data Analysis and Visualization VI. Mathematics and Visualization. Cham,
Switzerland: Springer, Aug. 2020 (cit. on p. 98).

[KBS09] Hartmut Kaiser, Maciej Brodowicz, and Thomas Sterling. “ParalleX An Advanced
Parallel Execution Model for Scaling-Impaired Applications”. In: Oct. 2009,
pp. 394–401 (cit. on p. 6).

[Kla19] Pavol Klacansky. Open SciVis Datasets. https://klacansky.com/open-scivis-datasets/.
Apr. 2019 (cit. on p. 89).

[Kre+97] Marc van Kreveld, René van Oostrum, Chandrajit Bajaj, Valerio Pascucci, and
Dan Schikore. “Contour Trees and Small Seed Sets for Isosurface Traversal”. In:
Proceedings of the Thirteenth Annual Symposium on Computational Geometry.
SCG ’97. Nice, France: Association for Computing Machinery, 1997, pp. 212–
220 (cit. on p. 23).

[Lan+14] Aaditya G. Landge, Valerio Pascucci, Attila Gyulassy, et al. “In-Situ Feature
Extraction of Large Scale Combustion Simulations Using Segmented Merge
Trees”. In: SC. IEEE Computer Society, 2014, pp. 1020–1031 (cit. on pp. 34, 44,
46, 47, 53, 92, 93).

Bibliography 101

[Luk+21] Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, and Julien Tierny. “Lo-
calized Topological Simplification of Scalar Data”. In: IEEE Transactions on
Visualization and Computer Graphics 27.2 (2021), pp. 572–582 (cit. on pp. 25,
28, 78).

[MDN12] S. Maadasamy, H. Doraiswamy, and V. Natarajan. “A hybrid parallel algorithm
for computing and tracking level set topology”. In: 2012 19th International
Conference on High Performance Computing. 2012, pp. 1–10 (cit. on pp. 41,
45–47).

[MW14] D. Morozov and G. Weber. “Distributed Contour Trees”. In: Topological Methods
in Data Analysis and Visualization III. 2014, pp. 89–102 (cit. on pp. 42, 45–47,
53, 55, 68, 73, 92, 93).

[MW13] Dmitriy Morozov and Gunther Weber. “Distributed Merge Trees”. In: SIGPLAN
Not. 48.8 (Feb. 2013), pp. 93–102 (cit. on p. 42).

[93] “MPI: A message passing interface”. In: Supercomputing ’93:Proceedings of the
1993 ACM/IEEE Conference on Supercomputing. 1993, pp. 878–883 (cit. on p. 7).

[Nat+16] Abhinandan Nath, Kyle Fox, Pankaj K. Agarwal, and Kamesh Munagala. “Mas-
sively Parallel Algorithms for Computing TIN DEMs and Contour Trees for Large
Terrains”. In: Proceedings of the 24th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. SIGSPACIAL ’16. Burlingame,
California: Association for Computing Machinery, 2016 (cit. on p. 52).

[PCS05] Valerio Pascucci, Kree Cole-McLaughlin, and Giorgio Scorzelli. “Multi-Resolution
computation and presentation of Contour Trees”. In: 2005 (cit. on p. 23).

[Pas+07] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas.
“Robust On-line Computation of Reeb Graphs: Simplicity and Speed”. In: ACM
Trans. Graph. 26.3 (July 2007) (cit. on p. 77).

[Pas+11] Valerio Pascucci, Xavier Tricoche, Hans Hagen, and Julien Tierny. Topological
Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications.
1st. Springer Publishing Company, Incorporated, 2011 (cit. on p. 2).

[PG17] John Patchett and Galen Gisler. Deep Water Impact Ensemble Data Set. Tech. rep.
LA-UR-17-21595. Feb. 14, 2017. published (cit. on pp. 88, 89).

[Pug89] W. Pugh. “Concurrent Maintenance of Skip Lists”. In: Institute for Advanced Com-
puter Studies, Department of Computer Science, University of Maryland, College
Park, CS-TR-2222.1 (1989) (cit. on p. 80).

[RS14] Benjamin Raichel and C. Seshadhri. “A Mountaintop View Requires Minimal
Sorting: A Faster Contour Tree Algorithm”. In: CoRR abs/1411.2689 (2014)
(cit. on pp. 34, 45, 48, 49, 53, 55, 66).

[RTP18] Paul Rosen, Junyi Tu, and Les Piegl. “A Hybrid Solution to Parallel Calculation
of Augmented Join Trees of Scalar Fields in Any Dimension”. In: Computer-Aided
Design and Applications 15.1 (2018), pp. 610–618 (cit. on pp. 34, 50).

[Ros+17] Paul Rosen, Bei Wang, Anil Seth, et al. “Using Contour Trees in the Analysis and
Visualization of Radio Astronomy Data Cubes”. In: (Apr. 2017) (cit. on p. 23).

102 Bibliography

[Rou72] Brian Rourke Colin amd Sanderson. Introduction to Piecewise-Linear Topology.
Springer-Verlag, 1972 (cit. on p. 18).

[SSW14] Himangshu Saikia, Hans-Peter Seidel, and Tino Weinkauf. “Extended Branch
Decomposition Graphs: Structural Comparison of Scalar Data”. In: Computer
Graphics Forum 33.3 (2014), pp. 41–50 (cit. on p. 23).

[Sar+08] R. Sarkar, X. Zhu, J. Gao, L. J. Guibas, and J.S.B. Mitchell. “Iso-Contour Queries
and Gradient Descent with Guaranteed Delivery in Sensor Networks”. In: IN-
FOCOM 2008. The 27th Conference on Computer Communications. IEEE, 2008
(cit. on p. 53).

[Sch+06] William J. Schroeder, Ken Martin, William E. Lorensen, Lisa Sobierajski Avila,
and Kenneth W. Martin. The visualization toolkit. an object-oriented approach to
3D graphics ; [visualize data in 3D - medical, engineering or scientific ; build your
own applications with C++, Tcl, Java or Python ; includes source code for VTK
(supports UNIX, Windows and Mac)]. eng. 4. ed. Literaturangaben. [Clifton Park,
NY]: Kitware, 2006, XVI, 512 S. (Cit. on p. 2).

[Sol+18] Maxime Soler, Mélanie Plainchault, Bruno Conche, and Julien Tierny. “Topo-
logically Controlled Lossy Compression”. In: 2018 IEEE Pacific Visualization
Symposium (PacificVis). 2018, pp. 46–55 (cit. on p. 23).

[TTF04] Shigeo Takahashi, Yuriko Takeshima, and Issei Fujishiro. “Topological Volume
Skeletonization and Its Application to Transfer Function Design”. In: Graph.
Models 66.1 (Jan. 2004), pp. 24–49 (cit. on p. 26).

[TN14] Dilip Mathew Thomas and Vijay Natarajan. “Multiscale Symmetry Detection in
Scalar Fields by Clustering Contours”. In: IEEE Transactions on Visualization and
Computer Graphics 20.12 (2014), pp. 2427–2436 (cit. on p. 23).

[Tie18] J. Tierny. Topological Data Analysis for Scientific Visualization. Springer, 2018
(cit. on p. 2).

[Tie+17] Julien Tierny, Guillaume Favelier, Joshua A Levine, Charles Gueunet, and
Michael Michaux. “The Topology ToolKit”. In: IEEE Transactions on Visualization
and Computer Graphics (https: // topology-tool-kit. github. io/) (2017)
(cit. on pp. 52, 89).

[TP12] Julien Tierny and Valerio Pascucci. “Generalized Topological Simplification of
Scalar Fields on Surfaces”. In: IEEE Transactions on Visualization and Computer
Graphics 18.12 (Dec. 2012), pp. 2005–2013 (cit. on p. 25).

[TVD06] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi. “3D Mesh
Skeleton Extraction Using Topological and Geometrical Analyses”. In: (Oct.
2006), pp. 85–94 (cit. on p. 23).

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977 (cit. on p. 82).

[TS05] Tony Tung and Francis Schmitt. “The Augmented Multiresolution Reeb Graph
Approach for Content-based Retrieval of 3d Shapes”. In: International Journal of
Shape Modeling 11.1 (2005), pp. 91–120 (cit. on p. 23).

Bibliography 103

https://topology-tool-kit.github.io/

[V P03] K. Cole-McLaughlin V. Pascucci. “Parallel Computation of the Topology of Level
Sets”. In: Algorithmica 38(1) (2003), pp. 249–268 (cit. on pp. 22, 34, 39, 41,
43, 53).

[WBP07] Gunther Weber, Peer-Timo Bremer, and Valerio Pascucci. “Topological Land-
scapes: A Terrain Metaphor for Scientific Data”. In: IEEE Transactions on Vi-
sualization and Computer Graphics 13.6 (Sept. 2007), pp. 1416–1423 (cit. on
p. 23).

[Web+06] Gunther Weber, Scott E. Dillard, Hamish A. Carr, Valerio Pascucci, and Bernd
Hamann. “Topology-Controlled Volume Rendering”. In: IEEE Transactions on
Visualization and Computer Graphics 13 (2006), pp. 330–341 (cit. on p. 23).

[Wer20] Kilian Werner. Reproducible Source Code for Unordered Task-Parallel Augmented
Merge Tree Construction. Available at https : / / codeocean . com / capsule /
0498480/tree/v1. 2020 (cit. on p. 88).

[WG20] Kilian Werner and Christoph Garth. “Alternative Parameters for On-The-Fly Sim-
plification of MergeTrees”. In: Eurographics Symposium on Parallel Graphics and
Visualization. Ed. by Steffen Frey, Jian Huang, and Filip Sadlo. The Eurographics
Association, 2020 (cit. on p. 80).

[WG21] Kilian Werner and Christoph Garth. “Unordered Task-Parallel Augmented Merge
Tree Construction”. In: IEEE Transactions on Visualization and Computer Graphics
(2021), pp. 1–1 (cit. on p. 54).

[Wid+12] Wathsala Widanagamaachchi, Cameron Christensen, Valerio Pascucci, and Peer-
Timo Bremer. “Interactive exploration of large-scale time-varying data using
dynamic tracking graphs”. In: Large Data Analysis and Visualization (LDAV),
2012 IEEE Symposium on. Oct. 2012, pp. 9–17 (cit. on p. 23).

[ZMT05] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. “Feature-based Surface
Parameterization and Texture Mapping”. In: ACM Trans. Graph. 24.1 (Jan. 2005),
pp. 1–27 (cit. on p. 23).

104 Bibliography

https://codeocean.com/capsule/0498480/tree/v1
https://codeocean.com/capsule/0498480/tree/v1

List of Figures

2.1 Sequence diagram of a simple, direct use of a future. Both tasks can
run in parallel, if two OS-threads are available and the HPX scheduler
allocates them accordingly. 10

2.2 Sequence diagram of a simple dataflow. The main task schedules two
tasks and a continuation once both of them are done. 11

3.1 (a) Exemplary domain with scalar function set to the height function,
indicated by dotted lines. Dotted arrows indicate persistence pairs. Col-
ored arrows indicate join and split tree of domain. (b) ε−simplification
of the domain for ε = 10 and the resulting Contour Tree (identical to
Join Tree). 24

3.2 (a) Optimal simplification for ε = 10 of the domain given in Figure
3.1. (b) Result after the first phase (2-saddle-maximum) of generalized
simplification of the same domain for ε = 10. Note that the persistence
of the remaining pair dropped to 10. After the second phase the result
will be similar to the result of optimal simplification. 27

3.3 An overview of different simplification methods for scalar functions,
Merge and Contour Trees. Note, that differently colored functions and
trees are not identical in general. Only the green Merge and Contour
Trees could be made identical to the purple variants, if the generalized
simplification is taken with care and effects of the first phase on the
second phase are actively avoided. 28

3.4 (a) Contour Tree of the domain given in Figure 3.1. (b) Branch Decom-
position of that Contour Tree. Note that the branches do not coincide
with persistence pairs. Branch based tree simplification will leave the
tree unchanged for ε < 20. Y-shape based tree simplification will leave
the tree unchanged for ε < 30. 29

105

4.1 (a) illustrates the saddle candidate set Sc for the leftmost local minimum
with rectangles. Note that saddle candidate sets of local minima overlap
and can span large portions of the domain. (b) illustrates the exclusively
monotone reachable region set Ex for all local minima with triangles
according to color. Note that those sets are mutually disjoint, connected
and leave out large portions of the domain. Additionally, it illustrates
the boundary sets Bd for all local minima with rectangles according to
color. The smallest valued vertex in each such set is a saddle node in the
Join Tree. 36

4.2 Flow chart for deciding the Merge Tree construction type with the best
expected performance. 54

5.1 Exemplary Join Tree computation on the height function of a manifold,
deliberately made comparable to an example in [Gue+17]. In (a) local
minima and thus Join Tree leaves are found according to 5.1.1. In (b) in-
dependent sweeps grow a region around each local minimum following
arbitrary monotone paths according to 5.1.2. In (c) these growths termi-
nated at non-exclusively monotone reachable vertices, namely boundary
sets. The smallest valued boundary vertices are identified and prepared
for their own sweep according to 5.1.3. In (d) prepared saddles continue
their own sweeps in the same manner, constructing the entire Join Tree. 56

5.2 Exemplary cuboid cell data with trilinear interpolated function. The
actual Join Tree might deviate from the Join Tree of the 1-simplicial
skeleton and might contain saddles that are not located at vertices. . . . 57

5.3 Visiting pattern for a queue (outside red arrows) and a priority queue
(inside green arrows). If the vertex 7 is visited before 4 it is fully tested
but not added, even though that will change on the second visit. If 7
is visited after 4 it can be added immediately and a second visit can be
skipped without full testing. 60

5.4 (a) Region growth tasks (I-III) start at each minimum (colored vertices).
Regions are grown like indicated by the arrows, which creates finger tasks
(A,B) which again can create finger tasks (C). (b) Ex regions (colored
vertices) and boundary sets (colored lines) are identified locally for
each locality. The illustration shows task labels at the saddle nominees
returned by them. C started while I was still running and thus just
injected 32 to the queue and returned an empty resultMap. 69

106 List of Figures

5.5 (a) For the saddle with value 11 a new edge (purple color) is created
on both localities. Augmentations have been cut and inherited (colored
vertices). Boundary intersections push 13, 28, 29, 36 and 37 to the
queue on the left locality and 26, 27, 34 to the queue on the right
locality. Additionally, 35 is added to the initial boundary of 11 on the
left locality and 22, 23, 25, 38 and 39 are added to the initial boundary
on the right locality. A region growth task IV starts on the left locality,
which immediately starts a peer finger D on the right locality. (b) IV
grows, finds an empty boundary and has no saddle nominee. D grows
and finds 22 as the smallest valued vertex on the remaining boundary.
This is returned to IV, which in turn will assign the saddle 22 to 11 and
issue the right locality to do the same. 74

6.1 The construction module presented in this thesis allows for unsimplified
Merge Tree construction. Additionally, a connected pipeline stage can
perform on-the-fly simplification of the constructed tree and apply the
simplification back to the domain to obtain f ′′′. 78

6.2 The percentage of remaining arcs after simplification decreases with
larger choices for the persistence threshold ε. The relation is highly
non-linear and depends strongly on the specific data, making it difficult
for the user to control simplification results by choosing ε. Other data
sets lie between the shown graphs and are not shown to avoid visual
cluttering. 79

7.1 Isosurface visualization of the Foot data set. CT scan of a human foot. . 85

7.2 Isosurface visualization of the Vertebra data set. Rotational angiography
scan of a head with an aneurysm (contrasted vessels). 86

7.3 Isosurface visualization of the Meteor data set. Simulation of a meteor
impacting on deep ocean surface. 86

7.4 Isosurface visualization of the Backpack data set. CT scan of a backpack. 87

7.5 Isosurface visualization of the Jet data set. Simulation of a water jet flow. 87

7.6 Isosurface visualization of the Aneurism data set. Rotational C-arm x-ray
scan of the arteries of the right half of a human head. 88

7.7 Isosurface visualization of the Miranda data set. Density field in a
simulation of the mixing transition in Rayleigh-Taylor instability. 88

7.8 Isosurface visualization of the Spathorhynchus data set. Density field
of a scan of a Spathorhynchus fossil. This specimen, the holotype, was
collected from the Middle Eocene Green River Formation of Sweetwater
County, Wyoming on 27 July 1967 by Frank L. Pearce. 89

List of Figures 107

7.9 Strong scaling for different data sets. Runtimes are illustrated for a
growing number of localities showing feasible scalability on up to 96
nodes depending on data size. On the bottom, data sets Vertebra and
Foot are resampled to a 10243 grid size. 90

7.10 Weak Scaling demonstrated on the Foot and Miranda data sets. To
achieve adjustable data size, the Foot data set has been upsampled and
the Miranda data set has been downsampled accordingly. 92

7.11 Runtime comparison between the state of the art task parallel TTK solu-
tion (FTM) [Gue+17] and the previous TTK solution (Contour Forests)
[Gue+16] with our novel solution (CPU), along with a GPU-hybrid ver-
sion (GPU-hybrid). All algorithms constructed the augmented Join Tree
running on a single cluster node. 93

7.12 Runtime comparison between our algorithm and reported runtimes of
[Lan+14] and [MW14] on the volvis.org vertebra data set. 93

7.13 (a) and (b) show the first 600 (of ca. 400.000) decisions/edges for
the Gaussian estimation and bq-summary on the Foot data set. Each
finalized arc is represented by a triangle in sequence of their arrival in
the stream on the x-axis and their (relative) persistence/weight w on
the y-axis. One can see some initial fluctuation, that stabilizes towards a
mostly constant threshold (for the rest of the 400.000 decisions). 95

7.14 (a) and (b) show achieved estimation accuracy for the Gaussian estima-
tion and the BQ-Summary with different p on four data sets. 96

108 List of Figures

List of Tables

4.1 Comparison of presented Merge Tree construction methods. Performance
is in million vertices per second based on all available benchmarks. For
the results of this thesis, two outliers (6 and 107 million) are not included
in the span. 54

7.1 Data set overview including runtimes on an ideal number of nodes and
dimensionality for all involved data sets. 89

7.2 Total runtimes of simplification based on classical fixed threshold, BQ-
Summary or kernel density estimation based percentile threshold and
fixed memory budget. The overhead of simplification methods based on p
or N over ε are also shown in %. 94

Kilian Werner received the bachelor’s and master’s degrees in
computer science from Technische Universität Kaiserslautern, in
2016 and 2018, respectively. He is currently a PhD student
there. His research interests include topology-based methods
in visualization, large-scale data analysis and scientific visualiza-
tion.

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

109

http://cleanthesis.der-ric.de/

	Cover
	Abstract
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Structure

	2 Parallel Programming with HPX
	2.1 The Parallel Setting
	2.2 Task-Parallel Paradigm
	2.3 Distributed Systems
	2.4 Task-Parallel Programming with HPX
	2.5 Hybrid Programming with HPX

	3 An Introduction to Data Analysis and Simplification with the Contour Tree
	3.1 Domain and Scope
	3.2 Contour Trees as Quotient Spaces
	3.3 PL Morse Theory and Contour Trees as Graphs
	3.4 Applications of the Contour Tree in Visual Analysis
	3.5 Topological Simplification and the Contour Tree

	4 Contour Tree Construction
	4.1 Saddle Identification with Monotone Paths
	4.2 Related Work Survey
	4.2.1 Totally Ordered Construction
	4.2.2 Divide & Conquer
	4.2.3 Domain Restriction
	4.2.4 Minimum Lists
	4.2.5 Local-Global Merge Trees
	4.2.6 Pruned Divide & Conquer
	4.2.7 Unordered Construction
	4.2.8 Distributed Domain-Restriction
	4.2.9 Contour Forests
	4.2.10 Massively Parallel Peak Pruning
	4.2.11 Locally ordered Task-Parallelism
	4.2.12 Other works
	4.2.13 Conclusion and Comparison

	5 Unordered Task-Parallel Distributed Augmented Merge Tree Construction
	5.1 Algorithmic Structure
	5.1.1 Minimum Search
	5.1.2 Region Growth
	5.1.3 Saddle Contraction
	5.1.4 Trunk Skipping

	5.2 Hybrid Distribution
	5.2.1 Minimum Search
	5.2.2 Region Growth
	5.2.3 Saddle Contraction
	5.2.4 Tree Collection and Trunk Skipping

	6 On-The-Fly Simplification
	6.1 Alternative Parameters for Persistence Based Simplification
	6.2 Constrained Branch Count N
	6.3 Percentile Size Reduction to p
	6.3.1 Quantile Summary
	6.3.2 Statistical Estimation

	7 Conclusion
	7.1 Results
	7.2 Summary, Future and Ongoing Work
	7.3 Acknowledgements

	Bibliography
	List of Figures
	List of Tables
	Colophon

