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. 1 The heat treatment system of lacquered wires 

Heat treatment is the last procedure of a process of enamelling wires. The main parts of 
the heat treatment plant consist of a furnace, several containers with lacquer, a ventilation 
installation, a servo mechanism and a preheating device. 
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Fig. 1 The heat treatment furnace 
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A furnace is divided into 7 layers. Each layer is separated from the others by a steel plate 
(10 mm thick). The sizes of the furnaces are slightly different. A typical example is as 
following: 6 m long, 1.5 m wide, 1.3 m high. There are three separated heating coils and 
3 temperature measuring sensors in each layer. The electric current or/and voltage of the 
heating coils are considered as inputs of the system and the temperatures at the positions 
of the sensors as system outputs. There are 21 inputs and 21 outputs. The desired values 
at the temperature measurement points are 375’ C at the layer entrances and 385’C at the 
layer exits. 32-40 untreated copperwires are fed through a pretreating device before the 
central heating process. Via this preheating the adherence properties of the lacquer are 
improved. On every furnace layer the preheated copper wires pass through the containers 
with lacquer into the heating zone with the three seperated heating coils. This way 
the lacquered wires are moved with a certain speed by a servo mechanism through the 
furnace from the lowest to the highest layer. This process of enameling and heat treatment 
is repeated three times. A ventilation installation is placed on the top of the furnace. The 
main parameters of the ventilation system are fixed during the system is operating. Some 
parameters, for example the amount of passing air, are properly adjusted by workers on 
duty based on their experience according to the different temperatures around the furnace. 
The ventilation system makes the temperature inside the furnace more uniform and at 



the same time displaces the polluted air inside. Furthermore there is a special flux mixed 
with the lacquer. When it is heated, the flux will vaporize and release heat. This process 
helps uniforming the temperature inside of the furnace. The speed of the copper wires is 
fixed during the heating process however it varies with different wire diameters (0.2 mm 
to 0.25 mm). In our modelling and controller design the speed is not used as a control 
variable although it influences the heat treatment process. 

2 Modelling and identification 

In Fig. 1 the numbers 1-14 denote local system loops whose input can be controlled, while 
the heating coils 15-21 have fixed inputs (voltage supply). If the loops l-14 are controlled 
well then also in the interior system measuring points show temperatures which are close 
to the desired set values and the product quality is satisfying. For the modelling procedure 
the loops 1-14 are ignored and the process is modelled as a 14 x 14 input-output system. 

The desired reference temperatures are 375’ C at the heating coils 8-14 and 385’ C at the 
heating coils l-7. Due to the technical restrictions the inputs are of switch on switch off 
type, i.e. there are only two possible input values, u(t) E (0,220). 
At present the furnace is considered as 14 independent identical local control loops con- 
sisting of a heating coil (HC) a temperature sensor (TS) and a fixed PI-controller: 

- u Y mea.9 
- PI - WC - TS --+ c 

Fig. 2: Single PI-controlled system loop 

However because of couplings between the 21 heating coils which are not considered by 
this decentralized control strategy the process is badly controlled and the error signals 
ei(t) = ySef(t) - ~;“~““(t) ft o en escape from the tolerance bands of size AT = 10°C around 
the operating temperatures 375OC resp. 385OC. 
Our model of the furnace is based on closed loop identification experiments around the 
operating point of the system. As a result of these experiments the following two modelling 
assumptions were applied: 

(i) System output i, i = 2,3,4,5,6,9,10,11,12,13, depends only on system input i and 
system outputs i - 1 and i + 1. System output i = 1,7,8,14 depend only on system 
input i and system outputs 2,6,9 resp. 13. The influence of the other outputs can 
be neglected. 



. (ii) The furnace is symmetric with respect to the vertical axis through the heating coils 
15-21, hence instead of a 14 x 14 model it suffices to consider a 7 x 7-input-output- 
model. 

(iii) The process is modeled as a discrete-time, time-invariant linear model where one 
time-step corresponds to 5 minutes in real time. 

According to these assumption we obtain a mathematical model of the following type: 

AmY = B(q-l)u(t) 
where: 

- 
A@‘) = 

a11 a12 0 0 0 0 0 

a21 a22 U23 0 0 0 0 
0 U32 a33 U34 0 0 0 

0 0 a43 a44 U45 0 0 

0 0 0 U54 U55 U56 0 

0 0 0 0 U65 U66 a67 

0 0 0 0 0 U76 a77 

B(q-‘) = diag(b 11 22 33 44 55 66 77 b b b 6 b b ) (2.k) 

(2.la) 

I I 
, (2.W 

Y(t) = (Yl@>, * * * , Y7(W, 

u(t) = (w(t), . * * ) U7(t)y. 

Here uij(q-r),i,j = 1,. . . ,7 and b;i(q-‘),i = 1,. . . ,7 are polynomials in the operator 
q%(t) := v(t - 1). 
Our model is designed as a linearization of the heat treatment process around a operating 
point. Thus y;(t) d enotes the error signal: 

y;(t) := yyyt) - yyf(t), i = 1,. . . ) 7 (2.2) 

Furthermore u;(t) d enotes a normalized input signal. 

- 1 5 U;(l) = 
(u?-(t) - 2.5) 

2.5 
< 1, i= 1,...,7 (2.3) 

where uyeas(t) is th e connecting time of the i-th control device between the time samplings 
t - 1 and t (5 minutes). 

There are three further a priori requirements on the mathematical model: 

(iv) a;j(q-l) is a Hurwitz polynomial for i = 1,. . . ,7 A(~-~)-~l?(q-*) is a stable trans- 
fer matrix (the real system is stable). 



(4 h(l) > 0 , U;j(l) > 0 for i # j. 

The coefficients on A( q-‘) and B(q-r) were determined on the basis of date (cf. Appendix) 
collected in seven identification experiments, where step inputs successively were applied 
to the loops i = l,... ,7 while the system was working around, an operating point with 
PI-controlled closed loops j # i. 
In order to reduce the complexity of the model the following structure (system of difference 
equations of second order) was presupposed: 

&y(t + 2) + A,y(t + 1) + &y(t) = &u(t + 1) + B24t) 

resp. 

A(q-‘) = I7 + A& + A2q-2,B(q-1) = &q-l + &q-2 
where 

Al,A2,&,B2 E W7x7 
Y = (YlY ,y7y E IR7,u = (Ul,..‘U7) E R7. 

(2.4a) 

(2.4b) 

The following matrices Al, AZ, Bi, B2 were determined by a least square estimation 

technique applied to the experimental data (cf. Appendix) 

A1 = 

A2 = 

/ -1.5008 0.2150 0 0 0 0 0 
-0.1337 -0.6690 -0.0996 0 0 0 0 

0 -0.2550 -0.9810 -0.2377 0 0 0 
0 0 -0.0443 -1.1829 -0.4388 0 0 
0 0 0 -0.1764 -0.9711 -0.2157 0 
0 0 0 0 -0.0069 -1.5224 -0.1780 

\ 0 0 0 0 0 -0.2249 -0.9125 

’ 0.5059 -0.2172 0 0 0 0 0 
0.0223 0.0921 -0.0401 0 0 0 0 

0 0.1955 0.2410 0.0485 0 0 0 
0 0 -0.0565 0.5121 0.2103 0 0 
0 0 0 0.1089 0.1207 0.0609 0 
0 0 0 0 -0.0053 0.5484 0.1664 

\ 0 0 0 0 0 0.1918 0.0461 

7 
(2.4d) 

bl = diag(1.6991 0.7846 1.1435 0.5388 - 0.0689 1.2515 0.4869), (2.4e) 

b2 = diag(l,7732 - 0.41 2.9399 3.3678 1.8529 - 0.757 1.9747). (2.4f) 

This model satisfies the requirements (iv)- (v). In particular we have the following pole 
configuration inside the unit disc: 

Poles of A(q-‘) = {-0,0123, 0,1996 + 0,19262’, 0,0951, ,0,5455 + 0,3762i, 0,5638 •t 
0,0930i, 0,9918, 0,9976, 0,6809} 



.  

I  3 Controller design 

Although the obtained model for the heat treatment process is stable there are strong rea- 
sons to apply adaptive controllers which are designed on the basis of the model structure 
(2.4), i.e. tridiagonal (diagonal) structure of A(qml)(B(qml)) and maximal order two of 
the polynomials in A(q-‘) and B(q-l): 

- The obtained model is a linearization of the nonlinear real process around an oper- 
ating point, 

- The parameters of the true systems depend on the wire speed, furnace outside 
temperature, ventilation speed, etc., 

- There are disturbances originating from the voltage supply, measurement sensor 
noise and sensor failures. 

According to these uncertainties 5 different controllers have been simulated (cf. Harris 
and Billings (1981), Anderson et al (1986)): 

(a) Decentralized self tuning pole assignment regulators for 

- the noninteracting model (Cl) 

- the interconnected model (C2) 

- modification of C2 (C4) 

(b) simple proportional control (C3) 

(c) Centralized self-t uning pole assignment regulator (C5) 

In the following we describe in more detail the control algorithms (l)-(5). 

(Cl) Decentralized self-tuning pole assignment regulator for the noninter- 
acting model. 

Instead of (2.4) we assume a decentralized model of the form: 

aii(q-l)$/i(t) = bii(q-l)U;(t)j 
aii(q-l) = 1 + CL:q-l + f&,2qm2 

bii(q-l) = b;q-’ + b;q-2 , i = 1,. . . ,7 

(3.1) is equivalent to: 
y;(t) = dT(t - 1)Oi 

where 
Oi = (of, ~a, bi, bf)* 

(3.la) 

(3.lb) 

(3.lc) 
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a and 
@i(t - I) = (-yi(t - 1)~ -yj(t - 2), Ui(t - IL), Ui(t - 2))T 

Parameter estimation 6;: 

The 0:s are recursively estimated by the following algorithm: 

6;(t) = &(t - 1) + Ki(t)(y;(t) - &(t - 1)6,(t - 1.)) (3.2a) 

K;(t) = 
qt - l)&@ - 1) 

1 + @(t - l)P;(t - l)$;(t - 1) 
(3.2b) 

Pi(t) = (1 - 1(;(t)+T(t - l))P;(t - 1) (3.2~) 

with initialization: g,(O) = O,P;(O) = lo6 for i = 1, *** 7 

Feedback controller: 
. 

Determine from (3.2): 

2;; = 1 + a^;y + c-i;2q-2 
iii = &-1 + gi2q-2 

(3.3a) 

(3.3b) 

(3.3c) 

Solve 

U^;iGi + b:iji = 1, i = 1, . . . ,7 (34 

with ii and ji of the form: 

. 

(ji = 1 + &lq-l (3.5a) 

fi = jiO + &-l (3.5b) 

Determine ui(t) from the controller equation: 

. 

and 

jiyi(t) + @iG(t) = 0 (3.6) 

u;(t) = 
{ 

q(t) if -1 < T&(t) < 1 
-1 1 if if l;(t) G(t) > < 1 -1 

(3.7) 

Closed loop equation: 

Let al = diag(u~l,...,a&),& = diug(b;l,ee-, b;T),k = diag(f;l,.-. ,&) and 2 = 
diag(g^,,, . . . ,g&) then we obtain from (3.4) and (3.6): 



. 

M,+P’i3=I, 
Py+&=o 

Now consider the original interconnected model: 

with 

[A&I-‘1 + ~(Q-~)IY(~) = Bk-‘)W 

and 

A&-l) = diag(all, . . . ,a7& B = diag(bll, . +. , b77) 

(3.8a) 

(3.8b) 

(3.9) 

Let further Ar := Ar - A,,& := Br - &. Then we obtain from (3.8) and (3.9) for the 
closed loop system: 

(I + &:;2, + BP + &42)y = 0 (3.10) 

c2 Decentralized self-tuning pole assignment regulator for the in- 
terconnected model 

We assume that the process model is of the form (2.4) resp. (3.9), i.e. the i’th local loop 
is given by: 

aii(q-1)9i(t) + ai,i-lYi-l(t) + Gi+lyi+l(t) = biiui(t) , i = 1,...,7 (3.11) 

or equivalently: 

YiO) = #T(t-l)Oir i=1,...,7 (3.12a) 

$;Ct - l> = (-Yi-*(t - I), -y;-l(t - 2), ?Ji(t - I), 

- Yi(t - 2)~ --Yi+l(t - l), -yi+l(t - 2), ui(t - l), ~i(t - 2))T (3.12b) 

@i = (~Y;‘,~~,U,!,U;2,p!,p~,b;l,b;2) (3.12~) 

where ai, a:, bi, bP are given by (3.1) and (Y:, of, ,B,‘, ,@ denote the coefficients in ui;+r(q-‘) 
resp. u;;+r (4-l): 

Ui;-1 = CYtq-l + O!y;2qm2 , Uii+l = ,B!q-’ + p,“q-’ (3.13) 



. The estimation of 0; as well as the controller design is analogous to controller Cl (cf. 
(3.2), (3.4), (3.6)). In the closed loop equation (3.10) we now have convergence of the 
parameters to the true values, i.e. 

and asymptotically we obtain the closed loop dynamics: 

(17 + tiA,)y = 0 (3.14) 

(C3) Simple proportional control 

u;(t) = 

. { 

-$/i(t) if Iyj(t)l 5 7 
1 if y;(t) < -7 

-1 if y;(t) > 7 

. If Iv;(t>l I 7 f or some t 2 7’ we have for t 2 T the closed loop system: 

(A+fB)y=O (3.15) 

with pole set {0,4179 f 0,7183i, 0,5566 f 0,71292, 0,611O f 0,62445i, 0,4761 f 
0,4140i, 0,4937 f 0,3321i, 0,8024, 0,4877, 0,3918, 0,1137}. This controller shifts the 
poles of the original model a bit further away from the unit circle. 

(C4) Controller C4 

C4 assumes k in (3.8) 1 a so in tridiagonal form, however the simulations don’t show sig- 
nificant improvements compared with controller C2. 

. 
(C5) Centralized self tuning pole assignment regulator 

We assume the complete process model (2.4) in the form: 

. (I + &q-l + A&)y = (&q-l + Bzq-‘)u 

We estimate Al,Az,Bl and B2 by (3.12) and solve the equation: 

ii(q-‘)qq-‘) + B(q-‘)P(q-1) = IT 
a * 

where G and F are of the form: 

(3.16) 

(3.17) 

(3.16) is equivalent to: 



resp. 

Determine (? := I + (?i:1~-’ and p = Fo + yin-’ such that 

Finally u(t) is determined by the controller equation: 

&z(t) + Fy(t) = 0 
and u(t) is calculated via (3.7). 
From (3.20) and (3.19) we obtain: 

u(t) = -PFy(t) = -W’y(t) 
substituting (3.21) into (2.4) we get: 

which is equivalent to: 

(A + B k&‘)y(t) = 0 

(a + Bm-1 + A + m2-l)y(t) = 0 

(3.18a) 

(3.18b) 

(3.1%) 

(3.18d) 

(3.19a) 

(3.19b) 

(3.19c) 

(3.19d) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

if we insert A = A - a, B = B - k in (3.22). Now applying (3.16) and assuming that 
the estimated parameters A, & converge to the true values A, B the closed loop equation 
(3.22) asymptotically converges to: 

y(t) = 0 (3.24) 

It should be mentioned that in this paper we did not prove the convergence of the adaptive 
algorithms inherent in the controller design Cl, C2, C4 and C5. This is postponed to 
a forthcoming paper. However the simulations show satisfactory behaviour of the closed 
loop systems. 
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. 4 Simulations 

Simulated are systems of the form: 

A(q-‘)y(t) = B(q-‘)u(t) + C(q-‘)e(t) + d - mod(t, 40) 

e(t) = a - T. E(t) 

(4.la) 

where d, (Y E Iw+ and the disturbance mod(t, 40) is defined as: 

mod(t, 40) = 
0 if t # 4Ok, 
1 if t = 4Ok, 

LEN (4.lb) 

The second disturbance d(t) = C(q-‘)e(t) is a stochastic ARMA-process of the form 

Id(t + 2) + Ald(t + 1) + And(t) = ITe(t + 2) + Ge(t + 1) + &e(t) (4.2) 

* with e(t) = cu.TZ(t) where E(t) is white noise (E;(t) = 0, E(E(t)ET(t)} = 17) and Cr, C2 
and T are given as: 

Cr = diag (-0,6, -0,5, -0,6, -1, -1,2, -0,31, -1,3) 

Ca = diag (0.05, 0.06, 0.5, 0,25 0,5 0, 0.42) 

T = 

’ 1.165 1.7971 0.5774 -0.7989 0.4005 -0.3229 -0.9235 
0.6268 0.2641 -0.3600 -0.7652 -1.3414 0.3180 -0.0705 
0.0751 0.8717 -0.1356 -0.8617 0.3750 -0.5112 0.1479 
0.3516 -0.7012 -1.2704 0.5135 0.7286 1.6065 -0.3367 
1.6961 1.2460 0.9846 0.3967 -2.3775 0.8476 0.4152 

\ 0.0591 -0.6390 -0.0449 -0.7562 -0.2738 0.2681 1.5578 

The initialization for all simulations is: 

u(0) = 0,6, ~(-1) = 0,6, y(0) = 8, ~(-1) = 8 
. 

. Simulation results 

The Figures 4.1 show the behaviour of the system (4.1) controlled by Cl, C2 resp. C3 
without disturbance (cx = 0 = d). 
Although for (C2) th e estimated parameters converge to the true values (cf. Fig. 4.2) 
while this is not true for (Cl) th e c osed loop behaviour of (Cl) is better than (C2). In the 1 
simulations the model outputs 6 and 7 do not converge to 0 for (C2). The reason is that 
the term (I? influences the closed loop system. The following table gives the asymptotic 



. values of d for the controllers (Cl) and (C2): 

G 
1 + 0.6841q-1 

c$ 1 + 1.8528;-i 1 + 8.6274q-i 
& 1 + 0.6365q-’ 1 + 0.7579q-’ 
& 1 + l.O729q-l 1 + l.O52Oq-1 
& 1 + 1.0975q-1 1 + 1.5027q-1 
& 1+7.5044q-l 1 + 34.4624q-1 
d, 1 1 + 0.7409q-1 1+ 0.7525q-l 

As long as the system (2.4) really models our process the simple proportional controller 
shows acceptable behavior (cf. Fig. 4.1). 

The centralized self tuning controller (C5) shows a behaviour (cf. Fig. 4.2) which is 
II similar to (Cl). Th e oscillating limiting dynamics which was observed at the outputs 6 

and 7 for controller C2 does not occur for (C5). On th e other hand there are no obvious 
preformance advantages compared with (Cl), h owever the computing time for (Cl) is less . 
than half of the computing time needed for (C5). 

In Fig. 4.3 the closed loop behaviour of the controllers (Cl), (C3) and (C5) are compared 
when the system outputs are disturbed. For the white noise ARMA-process the results are 
very similar for all three controllers with slight advantages for the centralized controller 
(C5). For the deterministic disturbances there are conversely significant advantages for 
the decentralized controller (Cl) compared with (C5). 
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. Appendix (Data collected in the identification experiment) 

Data were collected in 7 identification experiments. The corresponding data lists are 
denoted by cep 2,..., cep 8. In every experiment the output (temperatures) of the 21 
heating units were recorded. Sampling time was 5 minutes. In every test only one unit 
was open loop controlled while the others were PI-closed loop controlled. The open loop 
controllers are of switch on - switch off type. 

name of data file 
Cep2.dat 
Cep3.dat 
Cep4.dat 
Cep5.dat 
CepG.dat 

. Cep7.dat 
Cep8.dat 

. 

unit in open-loop state number of samplings k 
5 21 
8 19 
4 16 
2 17 

13 16 
10 16 
7 16 

In every data file the first two rows contain the input values applied to the open loop 
units at t = 0,5,10,. . . , Ice 5. Here input 1(-l) means that the heating coil is switched on 
(off) and input 0 means that the voltage supply was connected for 2.5 minutes in every 
sampling intervall. The remaining 42 rows contain the temperatures for the 21 heating 
coils. 
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