Towards PACE - CAD Systems

Pragmatic, Accurate, Confident & FExplainable Computer-Aided
Diagnosis

Thesis approved by
the Department of Computer Science
Technische Universitat Kaiserslautern
for the award of the Doctoral Degree
Doctor of Engineering (Dr.-Ing)

to

Muhammad Naseer Bajwa

Date of Defense : August 03, 2022
Dean : Prof. Dr. Jens Schmitt
Reviewers : Prof. Dr. Prof. h.c. Andreas Dengel

: Prof. Dr. Seiichi Uchida

i-:' TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

DE-386






Executive Summary

and the development of modern classification algorithms, Computer-Aided Diag-

nosis (CAD) has had limited practical exposure in the real-world clinical work-
flow. This is primarily because of the inherently demanding and sensitive nature of
medical diagnosis that can have far-reaching and serious repercussions in case of mis-
diagnosis. In this work, a paradigm called PACE (Pragmatic, Accurate, Confident, &
Explainable) is presented as a set of some of must-have features for any CAD. Diagnosis
of glaucoma using Retinal Fundus Images (RFIs) is taken as the primary use case for
development of various methods that may enrich an ordinary CAD system with PACE.
However, depending on specific requirements for different methods, other application
areas in ophthalmology and dermatology have also been explored.

Pragmatic CAD systems refer to a solution that can perform reliably in day-to-day
clinical setup. In this research two, of possibly many, aspects of a pragmatic CAD are
addressed. Firstly, observing that the existing medical image datasets are small and
not representative of images taken in the real-world, a large RFI dataset for glaucoma
detection is curated and published. Secondly, realising that a salient attribute of a
reliable and pragmatic CAD is its ability to perform in a range of clinically relevant
scenarios, classification of 622 unique cutaneous diseases in one of the largest publicly
available datasets of skin lesions is successfully performed.

Accuracy is one of the most essential metrics of any CAD system’s performance. Do-
main knowledge relevant to three types of diseases, namely glaucoma, Diabetic Retinopa-
thy (DR), and skin lesions, is industriously utilised in an attempt to improve the accu-
racy. For glaucoma, a two-stage framework for automatic Optic Disc (OD) localisation
and glaucoma detection is developed, which marked new state-of-the-art for glaucoma
detection and OD localisation. To identify DR, a model is proposed that combines coarse-
grained classifiers with fine-grained classifiers and grades the disease in four stages with
respect to severity. Lastly, different methods of modelling and incorporating metadata
are also examined and their effect on a model’s classification performance is studied.

Confidence in diagnosing a disease is equally important as the diagnosis itself. One of
the biggest reasons hampering the successful deployment of CAD in the real-world is that
medical diagnosis cannot be readily decided based on an algorithm’s output. Therefore,
a hybrid CNN architecture is proposed with the convolutional feature extractor trained
using point estimates and a dense classifier trained using Bayesian estimates. Evalua-
tion on 13 publicly available datasets shows the superiority of this method in terms of
classification accuracy and also provides an estimate of uncertainty for every prediction.

Explainability of Al-driven algorithms has become a legal requirement after Europe’s
General Data Protection Regulations came into effect. This research presents a frame-
work for easy-to-understand textual explanations of skin lesion diagnosis. The framework
is called ExAID (Explainable AI for Dermatology) and relies upon two fundamental mod-
ules. The first module uses any deep skin lesion classifier and performs detailed analysis
on its latent space to map human-understandable disease-related concepts to the latent
representation learnt by the deep model. The second module proposes Concept Local-
isation Maps, which extend Concept Activation Vectors by locating significant regions
corresponding to a learned concept in the latent space of a trained image classifier.

This thesis probes many viable solutions to equip a CAD system with PACE. How-
ever, it is noted that some of these methods require specific attributes in datasets and,
therefore, not all methods may be applied on a single dataset. Regardless, this work
anticipates that consolidating PACE into a CAD system can not only increase the con-
fidence of medical practitioners in such tools but also serve as a stepping stone for the
further development of Al-driven technologies in healthcare.

D espite phenomenal advancements in the availability of medical image datasets
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CHAPTER

Introduction

ith the advent of computers, many laborious and time-consuming tasks were

delegated to these newly invented machines. Among other applications, com-

puters were used to process and analyse medical images [1, 2], since it was one
of those tasks in which computers were thought to perform better than humans. This
early research on medical image processing produced promising results encouraging the
researchers to dream big - a dream where a medical diagnosis was altogether delegated to
machines [3, 4]. Thus the idea of Automated Diagnosis (AD) was born. But surely, the
researchers hastened to place their trust in those rudimentary computers with limited
computational capabilities and non-availability of advanced image processing techniques.
And when the available computational power and algorithms of that time were unable to
deliver on those high expectations, there was a sense of despair among the researchers.
Ralph Engle notes in his review on computers as diagnostic aids in medical decision

making [5],

”Thus, we do not see much promise in the development of computer programs

to simulate the decision-making of a physician.

In the future, computers will certainly be used in medicine in many ways.
However, after many years we have concluded that we should stop trying to

make computers act like diagnosticians.”

This was perhaps the result of expecting from the computers too much too early.

Luckily, a necessary course correction was made and the job description of computers



CHAPTER 1. INTRODUCTION

was redefined as ”a second pair of eyes”. This new approach shifted the research focus
from automated diagnosis to Computer-Aided Diagnosis (CAD), in which the role of
computers is to assist clinicians by providing a second opinion instead of replacing them
in clinical workflows. Contrary to AD systems, which were expected to perform at par
or better than human counterparts since they were solely responsible for final diagnosis,
the performance of CAD systems was only needed to be complementary to that of diag-
nosticians [6]. Today, CAD has evolved into a major research area in medical diagnosis,
and the rise of modern hardware accompanied by sophisticated Artificial Intelligence

(AI) based algorithms has provided much-needed support.

Computer-Aided Diagnosis is a multidisciplinary research area primarily involving
Medicine and Computer Science as shown in Fig. 1.1. The branch of computer science
that deals with the development of expert systems, like CAD, is Deep Learning (DL) [7],
which is a part Al in which a computer algorithm analyses raw data and automatically
learns discriminatory features needed for recognising hidden patterns in them. Over the
last decade, this field has witnessed striking advances in the ability to analyse various
types of data, especially images [8] and natural language [9]. The most common DL
models are trained using supervised learning, in which datasets are composed of inputs,
for example, radiography images of lungs, and corresponding target output labels, for in-
stance, any pulmonary pathology. Healthcare and medicine have greatly benefited from
recent advances in image classification and object detection [10], particularly those med-
ical disciplines in which diagnoses are primarily based on the detection of morphologic
changes such as pathology, radiology, ophthalmology, and dermatology, etc. In such
medical domains, digital images are captured and provided to DL algorithms for CAD.

These advanced algorithms have made their mark on automated detection of many dis-

CAD Computer

Medicine :
Science

Figure 1.1: Computer-Aided Diagnosis sits at the intersection of medicine and computer
science
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eases like tuberculosis [11], breast malignancy [12], glaucoma [13], diabetic retinopathy

[14] and serious brain findings such as stroke, haemorrhage, and mass effects [15].

1.1 Motivation for CAD

United Nations (UN) recognised healthcare and well-being as one of the 17 Sustainable
Development Goals (SDGs) to create a better future for everyone by 2030 [16]. How-
ever, achieving this goal requires concerted and sustained efforts in utilising all available
resources to improve healthcare since many people are needlessly suffering from pre-
ventable diseases. With a rapid increase in population, and consequently rising demand
for healthcare services, World Health Organisation (WHO) estimates a global shortage
of 18 million healthcare workers by 2030 [17] and nine million more nurses and midwives
are required by the same time to achieve this SDG [18]. In face of this global shortage
and maldistribution of healthcare resources, the potential of Al to help achieve this SDG
and solve other greatest global challenges was identified by Al for Good [19], which is a
UN initiative to provide a global platform for researchers.

There are some obvious benefits of using CAD over manual diagnosis by medical

professionals in routine clinical scenarios. Some of them are briefly mentioned below.

e Financial and Time Economy: It takes hundreds of thousands of euros to
train a medical doctor, whether the cost is paid by the student, the state, or
shared by both. This huge financial cost comes on top of years of rigorous training.
Therefore, as mentioned above, the number of medical practitioners is estimated
to be far fewer than actually required and their uniform distribution poses another
challenge in the way of the equitable dispensation of medical services. Furthermore,
there is no way of mass-producing medical practitioners to amortise training time
and cost. On the other hand, the primary cost involved in software-based CAD
solutions is related to research and development. Once a system is developed,
tested, and approved for use in clinical routine, it can be cheaply and efficiently

mass-produced and deployed across many healthcare establishments.

o Equitability: Like everyone else, healthcare professionals too are subject to cog-
nitive biases which can greatly hinder their ability to make a correct and fair
assessment of the case at hand. These cognitive biases are ubiquitous across clin-
ical practice and are increasingly recognised as the prime source of error in the
diagnosis and prognosis of a patient [20, 21]. CAD systems, which are essentially

complex mathematical models, do not suffer from such cognitive biases. However,
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there are peculiar biases in CAD systems that are mostly related to dataset cura-
tion [22] like spectrum biases, which occur when the proportion of selected diseases
in the dataset is not representative of the target population and verification biases
that creep in when a dataset is limited to only those patients that have definitive

verification of a given disease, or lack thereof.

o Efficiency: In a hospital’s outpatient department, it can take up to 24 hours
to furnish a report for a crucial diagnostic modality like CT scan and MRI — in
emergency situations, however, this time could be as short as an hour. This long
time accounts for the availability of medical specialists and actual time spent on
reading and interpreting diagnostic modalities. However, CAD systems can be
ideally available round the clock and with powerful computing machines, the time
to process a case is much shorter than that for humans. In addition, when used
properly in an assistive role, these CAD systems can also cut the time short for

human graders to review and interpret a case [23, 24].

e Accessibility: Availability of medical services is a major barrier, particularly in
low-income countries and populations living in remote areas. Many people might
suffer unnecessarily from advanced stages of diseases, which, if diagnosed early,
can be easily treated and prevented from affecting a patient’s quality of life. For
example, retinal disorders like Glaucoma, Diabetic Retinopathy and Age-Related
Macular Degeneration (AMD) progress slowly and take decades to develop notice-
able symptoms, at which stage the damage already caused is sometimes irreversible.
Large-scale screening programmes for such diseases can help mitigate the needless
burden on the healthcare system by nipping the evil in the bud. However, such
systematic large-scale programmes are expensive and require specialised medical
experts making it difficult to scale up and expand rapidly and widely enough to
cater to the needs of a given population [25]. Screening programs using CAD
systems have the potential to fill this niche by providing the first line of defence
against disease progression [14]. They can allow a timely referral to specialist

doctors and thus help improve prognosis.

e Objectivity: Manual diagnosis may be affected by physicians’ level of experi-
ence and different diagnostic algorithms in which they are formally trained. This
can lead to multiple experts disagreeing on their diagnosis for a certain condition
[26, 27]. Additionally, due to physicians’ subjective judgements, manual diagnosis
is hardly reproducible [28]. On the other hand, CAD can provide standardised
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and objective diagnosis of various diseases which can be reproduced. Fatigue and
tiredness of doctors can also interfere with their ability to perform effectively in
their clinical diagnosis whereas CAD systems are completely free from any such

shortcomings and can provide consistent performance throughout their lifespan.

1.2 Rationale for PACE

CAD has evolved significantly from a rudimentary image processing tool to a potential
digital aid in routine clinical workflows. This evolution was partly due to technological
advancements in the past few decades and partly because of changing expectations of
the end-users. There are a few examples of limited use of CAD systems in some medical
domains [29] like mammography and radiology. However, this promising application of
Al is not as prevalent as it should be in current times. This thesis identifies potential
reasons for this scarce use of CAD in today’s clinical setups and proposes a paradigm
abbreviated as PACE (Pragmatic, Accurate, Confident, & Explainable), which any mod-
ern CAD system must comply with in order to be accepted and deployed in real-world

scenarios. The rationale for each aspect of PACE is briefly described below.

1.2.1 Pragmatic

Early prototypes of every new invention start with a simple yet working example serving
as a proof-of-concept. Such rudimentary examples need to mature into sophisticated
solutions that can be used in real-world applications. In CAD using Medical Image
Analysis (MIA), most publicly available medical image datasets are curated by using
the over-simplistic image capturing conditions, which are not representative of medical
imaging in hectic clinical routines. Such datasets, though provide encouraging results
in lab settings, are unable to train robust image classifiers that can work reliably in
a clinical environment. Similarly, the task of medical image classification can also be
made overly easy even when there is room to venture into realistic and pragmatic image
diagnosis tasks, for example choosing to classify a few diseases when images pertaining
to multiple diseases are available in the dataset. Therefore, a pragmatic CAD system
needs to be trained to identify a wide range of clinically relevant diseases using datasets

that are representative of medical imaging in real life.



CHAPTER 1. INTRODUCTION

1.2.2 Accurate

Accuracy is surely one of the most salient features of any CAD system. Although in the
early days CAD systems were not expected to perform at par with human counterparts
since they were supposed to only provide an opinion to human diagnosticians [6] yet with
the advancement of computing resources and modern DL based algorithms, these CAD
systems are now anticipated to work competitively with human experts. And modern
CAD systems have proved to be able to do just that [14, 30, 31]. Achieving high accuracy,
however, is not only a matter of using cutting-edge hardware, modern software suits, and
a humongous amount of data. It requires an in-depth understanding of the diagnostic
task at hand and possibly mimicking experts’ behaviour into Al algorithms to combine
automated feature learning of Al and established clinical criteria for providing correct

diagnoses.

1.2.3 Confident

An Al-based CAD system usually only provides numerical values corresponding to its
predictions for given data samples. Sometimes these predictions are incorrect. Other
times these predictions are correct but could be the result of a lucky guess. However,
in critical application areas like medical diagnosis, there is justifiable reluctance by clin-
icians and patients to trust an algorithmic prediction without any consideration on the
possibility of a fluke. Therefore, despite the extensive implementation of Deep Neural
Networks (DNNs) in CAD [32-34], there has been growing advocacy for the need for un-
certainty estimation in such decision support systems [35] in order to successfully deploy
these solutions in the detection and diagnosis of diseases. It is, therefore, imperative for
a trustworthy CAD system that it only provides an opinion in cases when it is sufficiently
certain about its prediction. This can be achieved by estimating the uncertainty of a

trained DNN and supplementing it with the network’s prediction.

1.2.4 Explainable

Numerous remarkable studies have been conducted recently successfully applying deep
learning for disease classification using various medical image modalities [10]. However,
the acceptance of such CAD solutions with doctors and patients remains uncertain partly
due to the fact that the exact decision-making process of these complex DNNs is not
unambiguous. This lack of transparency in the whole decision-making process cannot

be overlooked in various high-stake application areas including medical diagnosis. With
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increasing legislation across the world conferring Right to an Explanation [36] to any sub-
ject of algorithmic decisions, it has become paramount for modern Al-based algorithms

to supplement their decision with justifiable explanations.

This should be emphasised here that this PACE paradigm is not exhaustive in that
there may be other important features, which, in the fullness of time, may be added to
the final industry standard CAD solutions.

1.3 Research Goal and Objectives

The ultimate goal of this thesis is to identify potential limitations in the successful
implementation of CAD systems in the clinical workflow of the near future and propose
possible solutions so that CAD can have a tangible social impact on the healthcare
system. In achieving this goal, this thesis presents the PACE paradigm which can act
as a blueprint to develop CAD systems that are not confined to lab settings and present
potential methods for realisation of each of the four dimensions of PACE. The following
objectives correlate with some of the implementation strategies that may be employed
to enrich a CAD system with PACE.

1. To curate and make a publicly available, high-quality, and large dataset that char-
acterises realistic imaging conditions in routine ophthalmology for the training of

robust glaucoma classification models.

2. To study the feasibility of emulating experts’ decision-making process and inte-
grating it into DL-based medical image classifiers for improving diagnostic perfor-

mance.

3. To explore economical and effective ways of estimating uncertainly associated with
DL-based CAD systems without compromising on the accuracy and computational

cost.

4. To investigate various methods of explainable AI, their viability in image-based
CAD systems, and development of an explainable CAD which provides easy-to-

understand multi-modal explanations for medical professionals and patients.
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1.4 Contributions

In this thesis various methods have been proposed, which may help a CAD system
pick some pace. However, some of the methods are not viable in every application or
dataset and therefore it is difficult to apply all of them on a certain dataset. Therefore,
glaucoma classification using RFT is taken as primary use case and where required other
application areas like cutaneous disease classification or diabetic retinopathy detection
have also been used as secondary use cases to showcase that this PACE paradigm can
be adopted in a variety of application areas. Important contributions of this thesis are

as follows.

1. Since non-availability of high-quality, large, and publicly available medical datasets
that have the characteristics of actual images captured in clinical practice is one of
the bottlenecks of developing a reliable CAD solution, a dataset of Retinal Fundus
Images (RFIs) called G1020 is gathered, curated, and published as part of this
thesis. This dataset does not impose strict inclusion criteria making it sufficiently
challenging for glaucoma classification and segmentation of optic discs and optic

cups.

2. Many existing works on image-based disease classification tend to tread cautiously
on unchallenging paths of classifying only a few diseases. However, a pragmatic
CAD must be able to identify a broad range of clinically relevant diseases. There-
fore, in this work, one of the largest publicly available skin lesion datasets called

DermNet is used for successful classification of more than 600 distinct skin lesions.

3. To improve the classification performance of existing image classifiers, this thesis
proposes to augment DL models with knowledge garnered from ophthalmologists
in detecting retinal disorders like Glaucoma and Diabetic Retinopathy. For glau-
coma detection, for example, doctors pay attention to the optic disc region in
RFI. Therefore, a two-stage model is developed which can automatically localise
optic disc from whole RFI and then analyse it closely to identify biomarkers of
this disease. Similarly, diabetic retinopathy is diagnosed by first briefly glancing
over the whole RFI, identifying potential Regions Of Interest (ROIs), which are
usually scattered all over the image, and then closely analysing those ROIs to look
for signs of diabetic retinopathy. To mimic this, it is shown that an ensemble of
fine-grained and coarse-grained image classifiers can provide competitive results
on a range of classification tasks using publicly available datasets like EyePACS

and Messidor.
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4. Understanding the importance of uncertainty estimates with AI predictions in
sensitive application areas like medical diagnosis, a classifier is developed that
is not compulsive in its predictions, meaning that the model has the option to
withhold its prediction if it is not entirely certain about it. This model is a hybrid
between deterministic and probabilistic Convolutional Neural Networks (CNN).
Deterministic CNNs have been shown to provide better classification performance
while being sufficiently economical with respect to computations. However, they
are innately unable to provide uncertainty estimates. Bayesian CNNs, a type
of probabilistic neural networks, can provide posterior distribution which can be
used to estimate the network’s uncertainty. However, they are computationally
expensive and not as high-performing as their deterministic counterparts. A hybrid

between them, therefore, combines the merits of both training paradigms.

5. Substantial research is conducted in this thesis on ways of elucidating the decision-
making process of DL-based image classifiers. Using Concept Activation Vectors
it is verified that DL algorithms are able to encode and utilise the same concepts
as defined and employed by dermatologists. Part of this thesis presents methods
to localise the region on input space which was most influential in learning those
concepts. It was found that located regions conform to the spatial positions of
concepts. This verification of concept learning and their localisation is integrated
into a unified framework called ExAID, which can spit out easy-to-understand

textual explanations justifying the prediction of the classifier.

1.5 Thesis Organisation

The rest of the thesis is organised as follows. Chapter 2 opens the core body of research
by addressing the first dimension of the PACE framework. This chapter proposes two
disjoint yet complementary ways of making a CAD system more pragmatic. The first way
deals with curation and publication of a large publicly available dataset of RFIs to ensure
training of robust glaucoma classifier and segmentation algorithms. The second approach
advocates to use the full potential of DL-based image classifiers and shows that modern
classifiers are fairly capable of identifying hundreds of skin lesions. Chapter 3 explores
various ways of improving the classification performance of image-based CAD systems. It
takes retinal disorders as example use cases and shows that DL models can be configured
to follow the diagnostic approach used by ophthalmologists. This chapter also studies the

possibility of modelling and incorporating non-visual clinical data into a deep model for
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performance improvement. Chapter 4 presents a method to estimate the uncertainty of
DL-based classifiers. The method given in this chapter employs a novel hybrid between
deterministic and probabilistic CNNs to allow the estimation of uncertainty with the
classifier’s predictions. The last dimension of PACE, i.e. Explainability, is highlighted
and addressed in Chapter 5. This chapter presents various approaches that can be
used to get a sneak peek into the decision-making process of image-based CAD systems.
Finally, Chapter 6 concludes the thesis with a comprehensive discussion and summarises

important findings.
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CHAPTER

Pragmatic CAD Solutions

omputer-Aided Diagnosis of various diseases is receiving a lot of attention from

the research community due to its far-reaching benefits of providing swift and

accurate large-scale screening as well as reducing physicians’ workload in rou-
tine clinical setups [37]. However, one of the biggest hurdles of CAD not being widely
used in real-world healthcare environments is its incompatibility with clinical workflows.
As with any new invention, CAD systems are developed in laboratory setups under rel-
atively strict, and sometimes over-simplistic, conditions. These lab-born CAD systems
must morph significantly if they are to be successfully deployed outside the controlled
laboratory environment. In this chapter, two such limitations of CAD systems are iden-
tified and potential solutions are provided. First, realising that the non-availability of a
publicly available medical image dataset that represents images captured in hectic clin-
ical routine might hamper a trained DL-based image classifier’s performance when put
to test in the field, a large publicly available RFI dataset is curated and published for
glaucoma classification and many image processing tasks. Second, instead of perform-
ing binary or tertiary classification tasks, the potential of DL-based image recognition
models is stretched to classify hundreds of clinically relevant skin lesions to make it
more useful in clinical scenarios. There may be many other aspect which contribute
towards making a CAD system more pragmatic and practically usable like safety [38]
and integration into clinical workflows [39], for instance. However, notwithstanding the
significance of these other aspects, the focus in this research is maintained on the issues

mentioned above.
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2.1 Impractical Limitations of Existing CAD Systems

2.1.1 Limitations in Medical Image Datasets

Deep Learning based techniques have been used to automatically detect various ocular
diseases like glaucoma [40], diabetic retinopathy [14], AMD [41] and many other retinal
disorders [42]. Recently, it has been shown that RFIs can be used to detect non-ocular
diseases as well like Type-1I diabetics [43], anaemia [44], and cardiovascular risks [45]. For
automated glaucoma detection, different image modalities and clinical tests are used, for
instance, RFIs [46], Optical Coherence Tomography (OCT) [47], and Visual Field Tests
(VFTs) [48]. However, fundus imaging is the most common and inexpensive imaging
technique [49] for large-scale screening of various retinal diseases.

The scarcity of large publicly available medical image datasets for automated de-
tection of various diseases has been the bottleneck for the successful application of Al
towards practical CAD systems. A few small datasets that are available for the research
community usually suffer from impractical image capturing conditions [50] and stringent
inclusion criteria, for example for RFI datasets centralising Optic Disc (OD) [51] or mac-
ula and removing images containing certain artefacts [52]. These shortcomings in the
already limited choice of existing datasets make it challenging to mature a CAD system
so that it can perform well in a real-world environment. Since the most important ap-
plication of automated glaucoma detection is cost-effective and large-scale screening [53]
of the general population, these automated solutions should be able to perform well in
the field with fundus images taken in day-to-day practice without many constraints [54].
Removing images that do not conform to strict inclusion criteria for example, from the
available datasets might result in a CAD that works exceptionally well in a controlled
laboratory environment but is most likely to fail in routine screening or in a clinical

setting.

2.1.2 Limitations in Image Classification Tasks

Most publicly available datasets for clinical or dermoscopic images like Interactive Atlas
of Dermoscopy [55], Dermofit Image Library [50], Global Skin Atlas, MED-NODE [56]
and PH2 [57] etc. contain only a few hundred to a couple of thousand images. Ali et
al. [58] reported that around 78% of the studies they surveyed used datasets smaller
than 1000 images and the study using the largest dataset had 2430 images. Therefore,
most existing works on CAD of skin diseases use either private or very small publicly

available datasets. Additionally, these studies usually render overwhelming focus on only
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binary or ternary classification of skin diseases, and not much attention is paid to multi-
class classification to explore the full potential of DL. Therefore, such studies, though
produce glamorous publishable results with performance metrics well above 90% in some
cases, act merely as a proof-of-concept for the efficacy of Al in dermatology. There is a
pressing need to extend previous works by showing that DL models are fairly capable
of recognising hundreds of skin lesions, and therefore should be capitalised to their full

extent.

2.2 Related Work

This section provides an overview of some of the research works relevant to the above-
mentioned two limitations of CAD systems, namely non-availability of large public
datasets for glaucoma detection and few-class classification of skin lesions even when

a large number of classes are available in dermoscopic datasets.

2.2.1 Existing RFI Datasets

ORIGA Online Retinal fundus Image database for Glaucoma Analysis and research
(ORIGA) [51] is one of the largest and most commonly used datasets for glaucoma
detection made public since 2010. This dataset consists of 650 images (168 glaucomatous,
482 healthy) collected by Singapore Eye Research Institute between 2004 and 2007. The
dataset provides class labels for healthy and glaucoma, OD and Optic Cup (OC) contours,
and Cup-to-Disk Ratio (CDR) values for each image.

RIM-ONE This small dataset [59] consists of 169 high-resolution RFIs collected at
three Spanish hospitals. Each image is classified as healthy, early glaucoma, moder-
ate glaucoma, deep glaucoma, or ocular hypertension. Additionally, it provides OD

segmentation annotations to evaluate disc detection algorithms.

RIGA Retinal fundus Images for Glaucoma Analysis (REGA) [60] consists of 750
images taken from Messidor dataset [61] and two clinics in Saudi Arabia. This dataset
provides OD and OC boundary annotations; however, it does not provide any diagnosis

with regards to glaucoma detection.

REFUGE REtinal FUndus Glaucoma ChalengE (REFUGE) [62] is one of the largest
and RFT datasets publicly available for glaucoma detection. It was made public in 2018

as a grand challenge and consists of 1200 fundus images with ground truth segmentation
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of OD and OC and clinical glaucoma labels. Despite the large size of this dataset, it is

highly unbalanced towards the healthy class as it contains only 120 glaucoma images.

ACRIMA This new dataset [52] consists of a total of 705 fundus images with 396
glaucoma images and 309 normal images taken with a centred optic disc. The dataset
does not provide any annotations for OD and OC segmentation. A relatively balanced
proportion of normal and glaucomatous images in this dataset makes it particularly

suitable for training DL-based classifiers.

ODIR Ocular Disease Intelligent Recognition [63] is a dataset published by Peking
University China for International Competition on recognition of eight ocular conditions
including glaucoma. This structured ophthalmic dataset consists of left and right fundus
images of varying resolution from 5000 patients who visited various hospitals and medical
centres in China. The images are taken under realistic settings with different cameras.
Seven thousand images from around 3500 cases are provided for training and 1000 images
are reserved for off-site testing. The number of glaucoma positive images in the training

set are only 207 which accounts for 0.03% of the total images.

DRISHTI-GS1 This small dataset [64] of 101 high-resolution colour RFIs captured
after pupil dilation with 30-degree FOV. The dataset is divided into 50 training and 51
testing images. The exclusion criteria include poor contrast and positioning of OD other
than in the centre of the image. This dataset consists of 70 glaucoma-positive and 31
glaucoma-negative images. This is the only dataset encountered in our research where

the proportion of glaucomatous images is higher than normal images.

LAG Large-scale Attention based Glaucoma dataset [65] consists of 5824 colour RFIs
with 2392 glaucomatous images and 3432 healthy images collected from Beijing Tongren
Hospital. In addition to binary labels, this dataset is unique in providing attention
maps of grading ophthalmologists captured using a simulated eye-tracking experiment.
Diagnosis is based on considerations of morphologic and functional analysis of the images
like Intra-Ocular Pressure (IOP), Visual Field Loss (VFL), and manual OD assessment.

2.2.2 Optic Disc and Optic Cup Segmentation

Almazroa et al. [66] devised an image processing based heuristic algorithm for optic disc
segmentation using RIGA dataset, which was later made public [60]. Their algorithm

achieved an accuracy of 83.9% for marking the OD area and centroid. Al-Bander et
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al. [67] used a U-Net [68] like Fully Convolutional Neural Network (FCNN) for OD and
OC segmentation and evaluated their method on 1129 RFIs from five public datasets.
Their method was shown to be invariant to population demography, camera models,
and other ocular diseases. They outperformed the state-of-the-art on two datasets and
gave competitive results on two datasets without training on these four datasets. Fu et
al. [69] attempted to jointly segment OD and OC. They modified faster R-CNN [70] by
replacing its Region Proposal Network (RPN) with two networks named Disc Proposal
Network (DPN) and Cup Proposal Network (CPN). The proposed network is tested on a
publicly available ORIGA dataset and 1676 images of a private dataset called SCES [71]
and outperformed state-of-the-art methods for joint segmentation of OD and OC.

Park et al. [72] compared YOLO V3 [73], ResNet [74], and DenseNet [75] architec-
tures for automatic Optic Nerve Head (ONH) localisation and CDR calculation. Using
2163 RF1Is captured at Pusan National University Hospital, South Korea, they found that
DenseNet performed best and YOLO-V3 performed worst in terms of mean Average Pre-
cision (mAP) and Intersection Over Union (IOU) for low-resolution images of 224 x 224
and 416 x 416. However, when the image resolution increased to 832 x 832, YOLO-V3
took the lead from ResNet and fared at par with DenseNet. In terms of mean detec-
tion time, ResNet took the least amount of time and YOLO-V3 took the most amount
of time while running on CPU. However, YOLO-V3 appeared to capitalise better on
GPUs than competing architectures. Zhou et al. [76] employed Support Vector Machine
(SVM) to classify the brightest OD region in RFI based on structural and intensity fea-
tures. Image processing techniques like convex hull are applied on detected candidate
regions to locate centre of OD. They achieved 96.7%, 97.8%, and 100% localisation ac-
curacy on a total of 259 test images taken from DIARETDBO [77], DIARETDBI1 [78],
and DRIVE [79] datasets, respectively. For training SVM, 81 images from STARE [80]
dataset are used. In [81], Sreng et al. performed OD segmentation using a combination
of DeepLabV3+ [82] and MobileNet [83]. The encoder part of DeepLabV3+ is replaced
with various CNN architectures. Evaluation is performed on 2787 images from five
datasets with an accuracy of 99.7% and dice coefficient of 91.73% on the combined test
set. Joshi et al. [84] proposed two methods for OD segmentation. The first method uses
Interference Maps [85], which are obtained from Generalised Motion Pattern (GMP) [86]
of the images. The second method makes use of Grab Cut algorithm [87]. Their methods
are evaluated on DRISHTI-GS1 dataset and they achieved 97% precision, 90% recall,
and accuracy of 88%.

Veena et al. [88] performed OD and OC segmentation, and using these segmentation

results they calculated CDR. They first employ various image processing techniques
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like adaptive histogram equalisation, Sobel edge detection algorithm, and Watershed
algorithm to enhance and capture salient image features. Afterwards, two U-Net based
models are used for separately segmenting OD and OC. They achieved 98% accuracy for
OD segmentation and 97% for OC on DRISHTI-GS dataset. Similarly, using DRISHTT-
GS, DRIONSDB, and RIM-ONE v3 datasets, Magnipudi et al. [89] achieved 96.62%,
96.15% and 98.42% IOU respectively for OD segmentation via U-Net based model.

2.2.3 Skin Lesion Classification

Towards automated skin disease classification, Jibhakate et al. [90] detected seven skin
cancers from HAM10000 [91] dataset. They used 10% of this dataset for validation of pre-
trained models and 20% for CNNs trained from scratch. However, their train/validation
split was selected ’after considerable permutations of various train-test splits’. Although
they achieved up to 99% accuracy with some pretrained models, in absence of the exact
train/validation split, these results cannot be reproduced. Salian et al. [92] classified
six skin lesions using HAM10000 and PH? [57] datasets. Data augmentation was used
to balance the under-represented classes. They report interesting results where three
DL-based classifiers achieved better F-1 scores without data augmentation as compared
to using augmentation.

Kawahara et al. [93] employed CNNSs to extract features and trained a linear classifier
on them using 1300 images of Dermofit Image Library to perform 10-ary classification. A
similar approach was used by Ge et al. [94] on MoleMap dataset to do 15-ary classification.
Esteva et al. [31] used a pre-trained Inception v3 on around 130,000 images. Although
their results for two binary-classification tasks are merely ”on par with all tested experts”,
yet this work was the first credible proof of concept based on a large dataset that
DL can make a practical contribution in real-world diagnosis. Following their steps,
Haenssle et al. [30] pitched their fine-tuned Inception v4 model against 58 dermatologists
after evaluating binary classification performance of their model on two test sets of size
100 and 300 only. The sensitivity and specificity of their DNN model were certainly
higher than that of dermatologists’ mean performance on two private test sets, however,
their performance on publicly available International Symposium on Biomedical Imaging
(ISBI) 2016 Challenge [95] test data is below the performance of the first two winning
entries in that challenge.

The non-availability of high-quality, large, and publicly available skin lesion datasets
makes realisation of reliable CAD systems significantly challenging. Deep learning meth-

ods trained on small datasets can produce very good results but are generally unpre-
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dictable when tested on large datasets [96]. Many researchers make up for this paucity
of large datasets by using private data. However, it makes it more difficult to repro-
duce the results and draw a fair comparison among various CAD systems. Ntoutsi et
al. [97] note that in addition to the small size of publicly available datasets, another
issue regarding their quality is that they do not represent the demographic distribu-
tion of various races in the dataset. This non-representation or under-representation of
some demographic populations can induce racial bias in the dataset which can affect
DL-based models to provide optimal predictions for such populations. To address the
scarcity of available data for tracking and detecting skin diseases, Li et al. [98] devel-
oped a domain-specific data augmentation technique by merging individual lesions with
full-body images to generate a large volume of synthetic data. Li and Shen [99] also

used DNN to segment lesions, extract their dermoscopic features and classify them.

Cullell-Dalmau et al. [100] presented a pedagogical framework for implementing skin
lesion classification model using CNNs. They provide a hands-on educational activity

to understand and develop a DL-based classification model using commonly used APIs.

2.3 Curation of G1020 Dataset

We curated and published a new publicly available RFI dataset called G1020! for segmen-
tation of OD and Optic Cup (OC) and detection of glaucoma. This dataset is curated by
conforming to standard practices in routine ophthalmology and contains images taken
under realistic conditions without many imaging constraints and, as a result, is fairly
representative of real-world fundus imaging practices. We provided ground truth anno-
tations for glaucoma diagnosis, OD and OC segmentation, bounding box coordinates for
OD localisation, vertical Cup-to-Disc Ratio (CDR), and size of the neuroretinal rim in
Inferior, Superior, Nasal and Temporal quadrants to see if ISNT rule is followed. We also
provide a gold standard clinical diagnosis for glaucoma and many other ocular disorders.
We believe that this challenging dataset can be used as a benchmark dataset to train
robust algorithms for glaucoma detection capable of performing in the field or in clin-
ics. We also report baseline results by conducting extensive experiments for automated

glaucoma diagnosis and segmentation of optic disc and optic cup.

! Available at: https://www.dfki.uni-kl.de/g1020
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2.3.1 Description of G1020

G1020 database consists of 1020 high-resolution colour fundus images. The images are
collected at a private clinical practice in Kaiserslautern, Germany between the years
2005 and 2017 with a 45-degree field of view after using dilation drops. The records
were subsequently anonymised and random unique patient identifiers were assigned to
each case. Because the images are collected retrospectively and are fully anonymised
the informed consent of the patients was not required. To achieve a dataset that reflects
routine clinical practice at busy healthcare facilities, no specific imaging constraints, like
centring of OD or macula, were imposed. Figure. 2.1 shows the density map of OD in all
images of G1020 as compared to the corresponding density map of OD in ORIGA. It can
be seen that the images in G1020 have OD at a wider spatial area making post-processing
of any segmentation algorithm significantly challenging. The images are stored in .JPG
format. In the final dataset released, the black background is truncated and only the
fundus region is preserved resulting in images of size between 1944 x2108 and 2426x3007

pixels.
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(a) G1020 (b) ORIGA

Figure 2.1: Density map of optic disc in G1020 and ORIGA. The optic discs in G1020
are not centralised, making post-processing of segmentation algorithms more challenging

The images of G1020 are taken from 432 patients. Each patient has a minimum of 1
image and a maximum of 12 images. Out of 1020 images, 296 images from 110 patients
were found to have glaucoma and 724 images from 322 patients were healthy. There was

no patient with images belonging to both healthy and glaucomatous classes.
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Clinical diagnosis is provided for each patient with regards to the presence or ab-
sence of glaucoma and any other ocular disorder observed. To provide segmentation
Ground Truth (GT), an expert marked OD and OC boundaries as well as bounding box
annotations using labelme [101], which is an open-source annotation tool developed by
MIT. These manual annotations are verified and corrected (if required) by a veteran
ophthalmologist with more than 25 years of clinical experience. The annotations are
saved in JSON files corresponding to each image. Based on the ground truth annota-
tions for OD and OC, vertical CDR is calculated and the size of the neuroretinal rim in
four quadrants is measured to see if ISNT rule is followed. In 60 glaucomatous images,
OC was not visible whereas 170 healthy images also do not show any visible OC. In the
absence of visible OC, the diagnosis was made using other clinical assessment and testing

modalities. Fig. 2.2 shows sample images with OD, OC, and bounding box annotations.

(b) Sample image without optic cup
(a) Sample image with all three annotations

Figure 2.2: Sample images with optic cup (black polygon), optic disc (white polygon)
and bounding box (red rectangle) annotations

2.3.2 Benchmark Results
2.3.2.1 Segmentation of OD and OC

The state-of-the-art segmentation algorithms and image classification networks are evalu-
ated on the G1020 dataset. Mask R-CNN [102] pre-trained on ImageNet [103] is used for
automated segmentation of OD and OC with ResNet-50 [74] as convolutional backbone.
Separate models are trained for the segmentation of OD and OC. First, Mask-RCNN is
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trained using 80% random images from G1020 and tested on the remaining 20% images.
The names of images in both training and testing splits are given with the dataset. Sec-
ondly, the model is trained using all images of ORIGA and evaluated on all images of
G1020. Table 2.1 summarises segmentation results. Multiple criteria are employed to
consider a detected OD and OC as correct or incorrect. Table 2.1 shows results for three
such criteria, namely when Intersection Over Union (IOU) between predicted object and
ground truth object is > 40, 50, or 60.

Table 2.1: Segmentation performance of Mask R-CNN on G1020 dataset

Train/Test Splits Object Criterion Average IOU Precision Recall F1-Score

10U>0.4 0.8852 0.9951  0.9951  0.9951
Train: G1020 Optic Disc  I0U>0.5 0.8852 0.9951  0.9951  0.9951
(random 80%) 10U>0.6 0.8852 0.9951  0.9951  0.9951
TeSt:i (;102(17 10U>0.4 0.7276 0.9810  0.9810  0.9810
(random 20%) i cup  TOUS0.5 0.7364 0.9494  0.9494  0.9494

10U>0.6 0.7645 0.8228  0.8228  0.8228

10U>0.4 0.8641 0.9920  0.9774  0.9847
Train: ORIGA  Optic Disc  10U>0.5 0.8665 0.981 09716  0.9786
(all images) 10U>0.6 0.8719 0.9692  0.9549  0.9620
Teﬁtf G1020 10U>0.4 0.6496 0.9071  0.9014  0.9042
(all images) Optic Cup  I0U>0.5 0.6809 0.7812  0.7762  0.7787

10U>0.6 0.7256 0.5489  0.5752  0.5770

To refine these segmentation results, Non-Maximum Suppression (NMS) is employed
and all but one contour with the highest probability score is preserved. If the overlap
(IOU) between a predicted object (OD or OC) and its ground truth is less than the
criterion (IOU > 0.4, for example), it’s considered as both a False Negative (FN) since
the actual object is not detected, and a False Positive (FP) since an object other than
the actual object is predicted. For training and testing on G1020, the network was able
to predict OC and OD for each image. In this experiment, there was only one image with
IOU = 0.2689 below three criteria given in Table 2.1. The second minimum IOU was
found to be 0.6429. Therefore, precision, recall, and F-1 score for all three criteria are
the same. Furthermore, since the only misclassified image resulted in one FP and one
FN, therefore, the values of precision and recall are also the same. For the experiment
with training using ORIGA and testing on G1020, the network was able to detect 786
cups out of 791 actual cups and 1005 discs out of 1020 discs. Therefore, precision and
recall are different in that experiment for each criterion. Figure 2.3 shows sample images
with incorrectly detected OD and OC.
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(a) Image with the smallest IOU (= 0.2689) be- (b) Image with the smallest IOU (= 0.308) be-
tween prediction and GT of OD tween prediction and GT of OC

Figure 2.3: Example images with incorrect OD and OC detection. Dotted annotations
correspond to G'T, whereas solid annotations represent prediction

Using correctly predicted OD and OC, CDR and size of the neuroretinal rim in infe-
rior, superior, nasal, and temporal quadrants are predicted. Mean Absolute Percentage
Error (MAPE) between various predicted values and ground truth values is given in
Table 2.2. All the values in this table are calculated using IOU>0.5.

Table 2.2: Mean Absolute Percentage Error (MAPE) of various parameters for correctly
detected optic disc and optic cup. STD stands for Standard Deviation

Train/Test Split Parameters Mean STD
Cup Diameter 0.2242 0.1933

. Disc Diameter 0.0502 0.0664
(ﬁiﬁf;(g% CDR 0.2304 0.1852
Test: G1020 Inferior  0.1226 0.1002

(random 20%) Neuroretinal ~ Superior  0.0206 0.0314

Rim Nasal 0.0880 0.0881

Temporal 0.0669 0.0688

Cup Diameter 0.1396 0.1031

. Disc Diameter 0.0593 0.0692
ﬁ(zll?'m?;;gA CDR 0.1674 0.1181
Test: G1020 Inferior  0.2102 0.2170

Neuroretinal ~ Superior 0.2066 0.1278
Rim Nasal 0.2177 0.1933
Temporal 0.2150 0.1483

(all images)
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2.3.2.2 Classification of Glaucoma

After localising and extracting ODs from the whole fundus images, these extracted discs
are used to train Inception V3 [104] for classification of healthy and glaucomatous images.
Cross validation with k =6 is used with respect to patients to ensure that all images
belonging to one patient are in either training set or validation set. The k-fold cross
validation is a statistical method to ensure that the classifier’s performance is less biased
towards a randomly taken train/test split. It is implemented by dividing the whole
dataset into k, possibly equal, portions or folds. During a training iteration, one of these
folds is kept aside for validation and the rest of k—1 folds are used for training the model.
In next training iteration a different fold is kept aside for validation and remaining k—1
are used for training. This way, the train and test sets in each iteration are completely
mutually exclusive. This process is repeated k times such that each of the k-folds is
used for validation exactly once. This cross-validation approach provides a more realistic
generalisation approximation. The inception model with the same experimentation setup
was also used to classify ORIGA dataset using 5-fold cross validation. Performance of
another custom CNN presented later in section 3.3 that gave state-of-the-art results on
ORIGA was also evaluated for detection of glaucoma in G1020 dataset. Table 2.3 shows
performance metrics for both classifiers on both datasets. It is evident from the table
that both network were able to classify images from ORIGA with high precision and
recall. However, those networks struggled hard against G1020. The difference between
the performance of both networks on these two datasets could be correlated with the way
these datasets are collected. ORIGA, and most other publicly available RFI datasets
impose many constraints on imaging techniques and selection of images into final dataset
so that the resulting image set is no longer representative of realistic image capturing
practices. A DL model trained on such carefully curated datasets may have the ability

to perform well in laboratory conditions but is likely to be unsuccessful in the field.

The Receiver Operator Characteristic (ROC) curve is a popular performance met-
ric used to evaluate the discriminative ability of a binary classifier. It uses a varying
threshold, on the confidence of an instance being positive, to measure the performance
of the classifier by plotting sensitivity against specificity. Sensitivity or True Positive
Rate (TPR) is defined as,

TruePositives

Sensitivity = (2.1)

TruePositives+ FalseNegatives
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Table 2.3: Performance metrics for glaucoma detection on G1020 and ORIGA.

Method Class Precision Recall F1-Score
Healthy  0.8578+0.0383 0.9170+0.0208 0.8861+0.0252
Glaucoma  0.6947+0.0869 0.5581+0.1408 0.6157+0.1165
. . Total 0.8157+0.0486  0.8246+0.0419 0.8164+0.0476
inception v3
Healthy  0.7150£0.1053 0.8183+0.0289 0.7587+0.0619
Glaucoma  0.2894+0.0834 0.1920£0.0637 0.2219+0.0513
Total 0.6055+0.0940 0.6344+0.0722  0.60800.0988
Healthy — 0.8231+0.0288 0.9186+0.0229 0.8681+0.2460
Glaucoma  0.6552+0.0665 0.43662£0.0495 0.5237+0.5340
Bajwa et al. Total 0.7797+0.0378  0.7938+0.0342  0.7788+0.0366
(2019) [105] Healthy — 0.4735+£0.3348 0.6667+0.4714 0.5537+0.3916
Glaucoma  0.0970+0.1373  0.3333+0.4714  0.1503+0.2126
Total 0.3646+0.1979  0.5706+0.1976 0.4371+0.2162

Similarly, Specificity or True Negative Rate (TNR) is defined as,

Specificity =

TrueNegatives

TrueNegatives+ FalsePositives

(2.2)

The AUC of this ROC gives a quantitative measure to compare the performance of
different classifiers. Fig. 2.4 shows Area Under ROC Curve (AUC) for each fold and their
mean for both datasets. The network was able to achieve competitive AUC compared to
state-of-the-art AUC results on ORIGA classification by Bajwa et al.[105] (AUC = 0.874)
and Fu et al. [69] (AUC = 0.851), but suffered from serious performance degradation on
G1020.

To provide deeper insight into the complexity of G1020 dataset and compare it with
ORIGA, image embeddings of both datasets from the final convolutional layer of the
inception model are deeply analysed. To do so, Principal Component Analysis (PCA) is
applied on image embeddings to obtain two of the most significant principal components
and the same are visualised on a 2D plane. Fig. 2.5 illustrates the results of PCA. It
can be seen that glaucoma images (blue dots) and healthy images (red dots) are fairly
separable in the ORIGA dataset. However, both classes have a huge overlap in the latent

representation of the classifier trained on G1020 images.
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Figure 2.4: Receiver operating characteristic (ROC) and AUC for 6-fold cross-validation
on G1020 and 5-fold cross-validation on ORIGA datasets using Inception V3
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Figure 2.5: Visualisation of image embeddings learnt by DL model from G1020 and
ORIGA datasets plotted on 2D plane after dimensionality reduction using PCA. Blue
dots represent embeddings corresponding to glaucomatous images whereas red dots stand
for embeddings of healthy images
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2.4 Extending CAD to Clinically Relevant Skin Disease

Detection

Large-scale manual screening for diseases is exhaustively laborious, extremely protracted,
and severely susceptible to human predisposition and fatigue. CAD can provide a swift,
reliable, and standardised diagnosis of various diseases with consistency and accuracy.
CAD can also afford the opportunity of efficient and cost-effective screening and preven-
tion of advanced tumour diseases to people living in rural or remote areas where expert
dermatologists are not readily available. To make CAD systems practically more usable,
this section extends previous works on CAD for dermatology by exploring the poten-
tial of DL to classify hundreds of skin diseases and improve classification performance.
Various DNNs are trained on two of the largest publicly available skin image datasets,
namely DermNet and ISIC Archive and it is shown that modern DL algorithms are
capable of undertaking daunting tasks of recognising hundreds of, sometimes, seemingly

similar skin lesions.

2.4.1 Datasets Used for Skin Lesion Classification

DermNet is a freely available dataset of around 23000 images gathered and labelled by
Dermnet Skin Disease Atlas. Only 22501 images could be downloaded, however, and the
links for the rest of them appeared to be inactive. This dataset provides diagnosis for 23
super-classes of diseases which are taxonomically divided into 642 sub-classes. However,
there were some duplicate, empty and irrelevant sub-classes in the data. After pruning,
21844 images in distinct 622 sub-classes remained. The distribution of DermNet dataset
used in this work is given in Table 2.4.

The second dataset is an online archive of around 24000 images divided into seven
classes. The dataset is maintained by The International Skin Imaging Collaboration
(ISIC). Their growing archive of high-quality clinical and dermoscopic images is manually
labelled. The distribution of images in ISIC Archive-2018 dataset can be found in Table
2.5.

2.4.2 Experiments and Results

Many state-of-the-art DNN architectures that are used in this project are developed in
recent years like residual networks, inception networks, densely connected networks, and
frameworks facilitating architecture search. To cope up with the never-ending appetite

of deep CNNs for data, the models used were pre-trained on ImageNet, which is a large
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Table 2.4: Overview of DermNet dataset and the distribution of classes

Class Label Abbreviation

Super-Class Name

Np. of Images

No. of Sub-Classes

0 ACROS
1 AKBCC
2 ATO
3 BUL
4 CEL
5 ECZ
6 WXA
7 ALO
8 HER
9 PIG
10 LUPUS
11 MEL
12 NAIL
13 POI
14 PSO
15 SCA
16 SEB
17 SYS
18 TIN
19 URT
20 VASCT
21 VASCP
22 WARTS

Acne and Rosacea

Actinic Keratosis, Basal Cell Carcinoma, and other Malignant Lesions

Atopic Dermatitis

Bullous Diseases

Cellulitis, Impetigo, and other Bacterial Infections

Eczema Photos

Exanthems and Drug Eruptions

Alopecia and other Hair Diseases

Herpes, Genetal Warts and other STIs

Pigmentation Disorder

Lupus and other Connective Tissue diseases

Melanoma and Melanocytic Nevi

Nail Fungus and other Nail Disease

Poison Ivy and other Contact Dermatitis

Psoriasis Lichen Planus and related diseases

Scabies Lyme Disease and other Infestations and Bites

Seborrheic Keratoses and other Benign Tumors

Systemic Disease

Tinea Candidiasis and other Fungal Infections

Urticaria

Vascular Tumors

Vasculitis

Common Warts, Mollusca Contagiosa and other
Total

912
1437
807
561
361
1950
497
195
554
711
517
635
1541
373
2112
611
2397
816
1871
265
603
569
1549
21844

622

dataset of around 1.5 million natural scene images divided into 1000 classes. These mod-

els were fine-tuned on dermatology datasets to leverage the benefits of transfer learning.

From various CNN architectures explored for this task, eventually a few were selected
including ResNet-152 [74], DenseNet-161 [75], SE-ResNeXt-101 [106], and NASNet [107]

for their better performance. To report the final results, the potential of all of these bio-

logically inspired neural networks is combined by taking an ensemble of their individual

predictions. For performing ensemble the average of individual predictions of four best

performing CNNs is used to output the final prediction.

It is important to note here that comparing researches that use different datasets,

Table 2.5: Overview of ISIC Archive dataset and the distribution of classes

Class Label Abbreviation Class Np. of Images

0 AKIEC Bowen Disease 334

1 BCC Basal Cell Carcinoma 583

2 BKL Benign Keratosis-like Lesions 1674

3 DF Dermatofibroma 122

4 MEL Melanoma 2177

5 NV Melanocytic Nevi 18618

6 VASC Vascular Lesions 157
Total 23665
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different subsets or train/test splits of the same dataset is not scientifically correct. Since
neither of the two datasets used in this work provided instructions on dividing the data
into train and test sets, we used stratified k-fold cross-validation (k=5 in this work)
so that any future research can be compared with our work at least. For training, we
randomly cropped the images with scale probability ranging between 0.7 and 1.0 while
maintaining the aspect ratio. These cropped images are then resized to 224 x 224 pixels
(for NASNet the input is resized to 331 x 331) before feeding them to the network.
The images are also randomly flipped horizontally with a flip probability of 0.5. During
testing, an image is cropped from four corners (top left, top right, bottom left, and
bottom right) and one central crop of the required size. These cropped images are given
to the classifier for inference and an ensemble of five predictions is taken to provide the
final output. The initial learning rate is set to 107 and is halved every five epochs.
The networks are trained for 20 epochs and 10 epochs for DermNet and ISIC Archive,
respectively. The number of training epochs for each dataset and initial learning rate
were determined empirically. To handle class imbalance, the weighted loss was used
where the weight for a certain class equals the reciprocal of that class’s ratio in the

dataset.

2.4.2.1 Results on DermNet

As DermNet provides the opportunity to leverage taxonomical relationships among var-
ious diseases, therefore, for 23-ary classification the experiments were conducted in two
ways. In the first experiment (Exp-1), the networks were trained on 23 classes and in-
ferred on 23 classes. This is the most prevalent approach. With this experiment, Top-1
accuracy of 77.53 + 0.64% and Top-5 accuracy of 93.87 + 0.37% was achieved with 97.60
+ 0.15% AUC using an ensemble of four best models. In the second experiment (Exp-2),
additionally given ontology in the dataset was utilised. The networks were trained on
622 classes but inferred on 23 classes only. The use of disease ontology information
translates into the incorporation of expert knowledge into the network. This was im-
plemented by summing the predictions of all sub-classes to calculate the prediction of
respective super-class. This approach gave a noticeable boost in classifiers’ performance.
Top-1 accuracy of 79.94 + 0.45% and Top-2 accuracy of 95.02 + 0.15% was obtained
with 98.07 + 0.07% AUC using ensemble.

Top-N accuracy indicates the capability of a classifier to predict the correct class
in the first N attempts. This metric gives a deeper insight into the classifier’s learning

and discriminating ability. The obtained results, of Exp-2 for example, show that the
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Table 2.6: Performance metrics for 23-Class classification of DermNet using ensemble.
Exp-1! refers to training on 23 classes and testing on 23 classes without using disease
ontology. Exp-22 refers to training on 622 classes and testing on 23 classes using disease
ontology. Refer to Table 2.4 for full-form of class abbreviations

Precision (%)  Sensitivity (%) Specificity (%) F-1 Score (%)

Class

Exp-11 Exp-22 Exp-1 Exp-2 Exp-1 Exp-2 Exp-1 Exp-2

ACROS 81.39 81.66 85.86 87.39 98.90 98.94 83.56 84.43
AKBCC 79.17 81.45 77.24 79.75 98.19 98.43 78.20 80.59
ATO 71.95 75.76 75.34 77.08 98.57 98.83 73.61 76.41
BUL 75.72 74.08 60.61 64.71 99.35 99.26 67.33 69.08
CEL 61.60 64.18 44.88 50.14 99.40 99.42 51.92 56.30
ECZ 75.19 78.41 81.59 83.79 96.69 97.24 78.26 81.01
WXA 62.99 65.17 64.39 67.00 98.88 98.97 63.68 66.07
ALO 76.96 81.19 85.64 84.10 99.70 99.78 81.07 82.62
HER 77.87 77.99 71.12 74.19 99.33 99.32 74.34 76.04
PIG 69.57 73.31 68.50 71.87 98.72 98.91 69.03 72.59
LUPUS 69.61 74.60 59.38 63.64 99.20 99.35 64.09 68.68
MEL 82.85 83.46 80.63 83.46 99.36 99.38 81.72 83.43
NAIL 89.64 89.08 88.71 90.01 99.00 98.95 89.17 89.53
POI 76.81 75.33 56.84 61.39 99.62 99.57 65.33 67.65
PSO 78.39 79.61 78.65 81.91 97.09 97.26 78.52 80.75
SCA 74.51 77.42 62.19 70.70 99.22 99.27 67.80 73.91
SEB 79.14 85.16 86.10 87.15 96.47 97.69 82.48 86.14
SYS 68.61 72.35 72.06 72.79 98.38 98.67 70.29 72.57
TIN 80.97 80.97 83.70 85.73 97.66 97.68 82.31 83.28
URT 75.67 78.21 75.09 75.85 99.62 99.68 78.38 77.01
VASCT 83.30 84.77 72.80 76.62 99.47 99.51 77.70 80.49
VASCP 72.43 77.24 74.34 75.75 99.03 99.26 73.37 76.49
WARTS 77.76 81.97 81.02 82.76 97.76 98.29 79.36 82.36

‘Weighted Average 71.81 79.82 77.53 79.94 98.14 98.40 77.34 79.80
Standard Deviation 06.46 05.89 11.20 09.83 00.95 00.75 08.42 07.72

model was able to predict the correct diagnosis out of 23 possible diseases in the first
attempt with almost 80% accuracy. However, when allowed to make the 5 most probable
predictions about a given image, the classifier achieved more than 95% accuracy. This
means that even when the first prediction of the classifier is wrong, the actual correct
prediction was high on the list of the next four predictions. Table 2.6 shows detailed

performance metrics of 23-ary classification in both experiments.

Figure 2.6 shows that many reciprocatory misclassifications in Exp-1, like between
Eczema (Abbreviated as ECZ in Figure 2.6) and Psoriasis Lichen Planus (PSO) and
between Actinic Keratosis BCC (AKBCC) and Seborrheic Keratosis (SEB), are corrected

to a large extent in Exp-2 by utilising taxonomical relationship among diseases.
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Figure 2.6: Accumulated confusion matrix of 23-ary classification of DermNet dataset

Previous works on DermNet have generally opted for a subset of 23 super-classes for
classification. Classification of 23-super classes in DermNet is performed by a few other
research works as well. Haofu Liao [108] chose to classify all 23 classes and reported
the best Top-1 accuracy of 73.1% and Top-5 accuracy of 91% on 1000 randomly chosen
test images. Cicero et al. [109] reported Top-1 accuracy of 60% on 24 classes (they split
“Melanoma and Melanocytic Nevi” into malignant and benign classes). They chose only
100 examples of each class for their test set.

Detailed literature survey on the classification of skin lesions using DermNet revealed
that previously the classification task with the highest number of classes using DermNet
has been performed by Prabhu et al. [110]. They performed 200-ary classification and
obtained the highest Mean Class Accuracy (MCA) around 51%. However, this work
took a step forward and tried to classify all 622 unique sub-classes to study the potential
of DNNs in distinguishing among these skin lesions. Using similar experimental setup
and DNN models, Top-1 accuracy of 66.74 + 0.64% and Top-5 accuracy of 86.26 + 0.54%
was achieved with 98.34 + 0.09% AUC. Small values of standard deviation in all of these

results signify the stability and consistency of DNN classifiers’ performance.

2.4.2.2 Results on ISIC Archive-2018

ISIC Archive consists of high-resolution clinical and dermoscopic images. It does not
provide any ontology information about the diseases. Therefore, the approach used in

Exp-2 for DermNet cannot be applied here. Aforementioned experimental setup and
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CNN architectures yielded Top-1 accuracy of 93.06% + 0.31% and Top-2 accuracy of
98.18% + 0.06% with 99.23% + 0.02% AUC using ensemble approach. Since this dataset
has only seven classes, only Top-2 accuracy was calculated instead of Top-5 as was the
case with 23 and 622 classes of DermNet. Table 2.7 shows that the ensemble of four
classifiers was able to achieve high precision of over 80% for all classes except Vascular
Lesions that can be justified by the small number of images (157 only) in this class.
Confusion matrix showing the number of correctly classified and misclassified images

per class in this dataset is shown in Figure 2.7.

Table 2.7: Performance metrics of ISIC Archive-2018 using ensemble

Class Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)
Bowen Disease (AKIEC) 80.43 78.74 99.71 79.58
Basal Cell Carcinoma (BCC) 91.85 86.96 99.79 89.34
Benign Keratosis-like Lesions (BKL) 85.55 77.48 98.95 81.32
Dermatofibroma (DF) 91.67 81.15 99.96 86.09
Melanoma (MEL) 84.64 66.05 98.75 74.20
Melanocytic Nevi (NV) 94.90 98.30 79.09 96.57
Vascular Lesions (VASC) 66.10 74.52 99.73 70.06
‘Weighted Average 85.02 80.46 96.57 82.45
Standard Deviation 09.10 09.38 07.15 08.38

The ISIC Challenges of 2016 [95] and 2017 [111] have focused on binary classification
of skin lesions whereas ISIC Challenge 2018 [112] included seven classes. However, as

shown in these experiments DL has an enormous capacity to discern far many diseases
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Figure 2.7: Confusion Matrix showing number of correctly classified and misclassified
images per class in ISIC Archive-2018
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with high sensitivity and specificity if given enough data. While reliable and accurate
detection of melanoma is of utmost importance, because of its lethality, it might also be
of interest for dermatologists to use CAD to detect other non-lethal skin diseases.
Figure 2.8 shows some examples of correct and misclassified images. It can be ob-
served that some of these misclassified images had a very high correlation with other
classes. For example, there is significantly small inter-class variance between Figure 2.8a
and Figure 2.8e and between Figure 2.8d and Figure 2.8h. Therefore, CAD had a really

hard time classifying those classes.

(e) (f)

Figure 2.8: Examples of correctly and incorrectly classified skin diseases from ISIC
Archive dataset. (a) Correctly classified ACROS in DermNet (b) Correctly Classified
NAIL in DermNet (c) Correctly Classified SEB in DermNet (d) Correctly Classified
VASC in ISIC (e) CEL Misclassified as ACROS in DermNet (f) Correctly Classified
AKIEC in ISIC (g) BKL Misclassified as MEL in ISIC (h) NV Misclassified as VASC in
ISIC. All images are resized to fit in square windows

2.5 Discussion

To make a CAD solution practically relevant in large-scale screening or routine clinical
practices, it is inevitable that the CAD is trained using data that are representative of

real-world image capturing practices. Most of the existing RFI datasets for glaucoma
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detection are very small in size (a few hundred images) and almost all of them are col-
lected in a controlled environment. These datasets do not consider practical limitations
in imaging and usually exclude images that have other retinal artefacts [52]. It has been
reported in the literature that the presence of multiple eye diseases degrades the perfor-
mance of DL algorithms trained on such datasets [67]. Due to these reasons, most of
the publicly available datasets for glaucoma detection are unable to train a robust CAD
system that can perform equally well in a real clinical environment. In this chapter, a
new large publicly available dataset of RFIs is presented that closely represents fundus
imaging in practical clinical routine and does not enforce strict inclusion criteria on the
captured images. The initial evaluation of various DL methods for OD and OC seg-
mentation and glaucoma classification highlights challenges that need to be addressed
to develop a practical CAD system for swift and reliable glaucoma screening. Obtained
results set a baseline for comparison by future works in this domain. The research com-
munity is invited to utilise this dataset and evaluate its segmentation and classification
algorithms.

Glaucoma is a multiplex disorder and sometimes requires more than one diagnostic
modality, like fundoscopy, OCT, and VFT, to reliably and accurately identify its early
stages. Fundus imaging is the preferred approach for quick screening for various ocular
diseases including glaucoma due to its low cost and portability [113], however, relying on
this single test does not provide dependable diagnosis either in field testing or in clinics.
Therefore, a multi-modal classification model could be of interest that can process various
testing modalities and makes a fairly informed decision regarding the presence or absence
of glaucoma or other ocular disorders.

Another important factor to ease integration of CAD systems in the healthcare sys-
tem as a Decision Support System (DSS) is to enable it to assist clinicians in identifying
a wide range of highly prevalent diseases. Despite a lot of research focusing on classify-
ing skin diseases using AI, most of these researches confine themselves to only binary or
ternary classification [114-119] even when a large number of classes are available [120].
The importance of early detection of melanoma is understandable given the growing
risk it poses to the patient’s survival with every passing day. However, there are thou-
sands of other skin diseases [31] that might not be as fatal as melanoma but have an
enormous impact on a patient’s quality of life. DL is extremely competent to take on
hundreds of classes simultaneously, as evident by results recorded in this chapter. It is
believed that this is the right time to harvest the potential of DL to its full extent and
accelerate conducting impactful research that can translate into an industry-standard

solution for automated skin disease diagnosis on a larger scale. These solutions can
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have a far-reaching social impact by not only helping dermatologists with their diagno-
sis in a clinical setup but also providing an economical and efficient initial screening for
underprivileged people in both developed and developing countries.

An important consideration in terms of the application of DL in medical image anal-
ysis is that many researchers either use private datasets or public datasets with their
own choice of train/test splits (although randomly taken) and the number of classes.
For this reason, there is little common ground, and often no ground at all, to compare
various classification methods — as also noted by Brinker et al. [121]. This issue of non-
comparability can be resolved by collecting and maintaining a standardised publicly
available large dataset with explicitly specified train/test splits and standard perfor-
mance metrics for benchmarking. Notwithstanding that some public datasets, like ISIC
Challenges datasets, do provide this beforehand train/test split but their size is nor-
mally small and the task is usually restricted to binary or ternary classification. Any
research on such small datasets cannot be reliably generalised and although the results
are publishable, they cannot be used as a foundation stone for practical applications of
AT in real-world diagnosis. On the other hand, large public datasets normally have a
lot of noise, images with disgracefully low resolution, or are watermarked. Significant
useful information required for fine-grained classification of seemingly similar diseases is
lost in such low resolution or watermarked images. Additionally, non-visual metadata,
like medical history, is not usually available with most medical image datasets. How-
ever, this additional information could be pivotal for a confident and accurate diagnosis.
This project was able to utilise disease taxonomy for DermNet dataset and improved
the results by 2.5% (refer to Table 2.6). If multi-modal datasets are curated and pro-
vided publicly, Al can surely leverage additional information to improve its classification
performance.

While understanding and interpreting the results of any Al-based classifier it is im-
portant to realise that accuracy, or even sensitivity and specificity, might not portray
the complete picture of a model’s performance. That is why AUC is also reported along
with other performance metrics. From Al point of view, one might argue that achieving
around 80% average sensitivity with 1.6% average false positive rate (Table 2.6, Exp-2)
for 23-ary classification task using highly unbalanced datasets of low-resolution and wa-
termarked images is a reasonable achievement. Nevertheless, the actual performance of
any Al-based classifier can be significantly different in practical clinical setup as noted
by Navarrete-Dechent et al. [122]. They found that the classifier developed by Han
et al. [123] did not generalise well when presented with data from an archive of dif-

ferent demography than the one which was used to train the classifier. For a medical
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practitioner, it is certainly a cause of concern. However, Han et al. advocated in their
response [124] that a classifier should not be judged merely on the basis of sensitivity
and specificity. The ROC curves indicate the true ability of a classifier to perform under
a wide range of operating points or thresholds while making a diagnosis prediction for
a given image. Varying this threshold from 0 to 1 on the model’s output can change
the trade-off between sensitivity and specificity and yield different accuracy. Therefore,
higher AUC values ensure that the model has the ability to correctly predict a certain
disease, for examples melanoma, with a minimum chance of classifying any other disease

as that particular disorder.
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CHAPTER

Accuracy of CAD Systems

ith the advancement of powerful image processing and machine learning tech-

niques, CAD has become ever more prevalent in all fields of medicine. These

computing methods have helped CAD evolve into a reliable DSS that can
provide accurate and standardised large-scale screening of various image modalities to
assist clinicians in identifying diseases. Today’s CAD systems are expected to be at
least at par with human counterparts in terms of accuracy. However, continuous efforts
are still being exerted on finding new ways of making Al-based disease classifiers even
more accurate and hence reliable. In addition to curating bigger medical image datasets
and developing deeper DNNs, Al developers must work in close liaison with medical
practitioners to understand their thought process and possibly follow that in their smart

solutions.

This chapter focuses on improving the classification performance of DL-based medical
image classifiers by taking advantage of domain knowledge from ophthalmology. Two
retinal disorders that can be identified using RFIs are taken as example use cases and
DL-based classification models are tailored around the way human experts analyse these

images for detection of glaucoma and diabetic retinopathy.
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3.1 Domain Knowledge as a Means to Improve Accuracy

3.1.1 Understanding Glaucoma

Glaucoma is a syndrome of eye disease that leads to subtle, gradual, and eventually total
loss of vision if left untreated. The disordered physiological processes associated with this
disease are multifactorial. However, the causes of glaucoma are usually associated with
the build-up of IOP in the eye that results from blockage of intraocular fluid drainage
[125]. Although the exact cause of this blockage is unknown, it tends to be inherited and
can be linked to old age, ethnicity, a steroid medication, and other diseases like diabetes
and hypertension [126]. The increased IOP damages the optic nerve that carries visual
information of photoreceptors from eye to brain. Generally, glaucoma does not show
any signs or symptoms until it has progressed to an advanced stage at which point
the damage becomes irreversible. It has been reported that the damage to optic nerve
fibres becomes noticeable and a reduction in the visual field is detected when about 40%
of axons are already lost [125]. However, it is possible to slow down the impairment
caused by glaucoma if it is diagnosed sufficiently early. World Health Organisation
recognised glaucoma as the third biggest cause of blindness after un-operated cataract
and uncorrected refractive errors [127] and the leading cause of irreversible vision loss.

Glaucoma is normally diagnosed by obtaining the medical history of patients, mea-
suring IOP, performing VFL test, and conducting a manual assessment of OD using
ophthalmoscopy to examine the shape and colour of optic nerve [46, 128]. The optic
disc is the cross-sectional view of the optic nerve connecting to the retina of each eye. It
looks like a bright round spot in RFIs. In the case of glaucoma, the IOP damages the
nerve fibres constituting the optic nerve. As a result, OD begins to form a cavity and
develops a crater-like depression, at the front of the nerve head, called the optic cup.
The boundary of the disc also dilates and the colour changes from healthy pink to pale.
The CDR is one of the major structural image cues considered for glaucoma detection
[129]. Figure 3.1 shows a healthy optic disc and its condition during various stages of
glaucoma.

In retinal images, some of the important structural indications of glaucoma are disc
size, CDR, the width of the neuroretinal rim in inferior, superior, nasal, and temporal
quadrants (ISNT rule), and peripapillary atrophy (PPA) [131] etc. These indications are
usually concentrated in and around OD. Therefore, segmentation of this ROI, that is
detecting the contour of OD, is not only useful for a more focused clinical assessment by
the ophthalmologists but also helpful in training a DL-based automated method for clas-

sification. However, automated glaucoma detection techniques based upon segmented
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(a) Healthy optic disc (b) Early glaucoma im- (¢) Moderate glaucoma (d) Advanced glau-
image age image coma image

Figure 3.1: Stages of glaucoma in retinal fundus images taken from Rim-One
dataset [130]

discs are very sensitive to the accuracy of segmentation and even a small error in the
delineation of OD may affect the diagnosis significantly [132]. Localisation, on the other
hand, gives the exact location of OD in the whole image with some surrounding context.
Automatic methods for glaucoma detection based upon this approach of ROI extraction
are more resilient to localization errors.

From an automated classification point of view, the disease pattern in retinal fundus
images is inconspicuous and complex. Detecting ROI from natural scene images is com-
paratively easy because it has an obvious visual appearance, for example, colour, shape,
and texture, etc. In contrast, the significant features of the disease in medical images are
hidden and not readily discernible except by highly trained and qualified field experts.
Since OD is the most important part of retinal fundus image for glaucoma detection, it
is prudent to first detect and localise it before a thorough analysis is performed for the

classification of healthy or glaucomatous images.

3.1.2 Understanding Diabetic Retinopathy

Diabetic patients are at constant risk of developing diabetic retinopathy that may even-
tually lead to permanent vision loss if left unnoticed or untreated. In such patients,
increased blood sugar, blood pressure, and cholesterol can cause small blood vessels in
the retina to protrude and, in due course, haemorrhage blood into retinal layers and/or
vitreous humour [133]. In severe conditions, scar tissues and newly proliferated fragile
blood vessels blanket the retina and obstruct incoming light from falling on it. As a re-
sult, the retina is unable to translate light into neural signals which results in blindness.
Diabetic retinopathy advances slowly and gradually and may take years to reach the
proliferative stage. However, almost every diabetic patient is potentially susceptible to

this complication.
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Timely diagnosis is the key to an appropriate prognosis. Ophthalmologists usually
detect diabetic retinopathy by examining retinal fundus and looking for any signs of mi-
croaneurysms (bulging of blood vessels), blood leakage, and/or neovascularization [134].
While the indications of advanced stages of diabetic retinopathy are rather prominent,
these symptoms remain largely discrete in the early stages. Figure 3.2 shows progress
of diabetic retinopathy from healthy to proliferative stage in RFIs taken from EyePACS
dataset. It can be observed from the figure that the difference between healthy and early
stages of diabetic retinopathy is very subtle and not readily discernible. Manual analysis
of these images requires highly qualified and specialised ophthalmologists who may not

be easily accessible in developing countries or remote areas of developed countries.

(a) Healthy (b) Mild (¢) Moderate

(d) Severe (e) Proliferative

Figure 3.2: Progression of diabetic retinopathy from healthy to proliferative stage is
subtle and gradual. Images are taken from EyePACS train set

Visual artefacts of early diabetic retinopathy in RFIs are usually small in size, in-
conspicuous, and scattered all over the retina. Detecting diabetic retinopathy requires
physicians to visually scan the whole image and fixate on some specific regions to identify

potential biomarkers of the disease. Therefore, getting inspiration from ophthalmolo-
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gists, a DL-based model can be designed that combines coarse-grained classifiers, which
detect discriminating features from the whole images, and a recent breed of fine-grained

classifiers that discovers and pays special attention to pathologically significant regions.

3.2 Related Work

This section discusses various image processing, Machine Learning (ML), and DL ap-
proaches making use of various diagnostic criteria for optic disc localization, glaucoma

identification, and diabetic retinopathy grading.

3.2.1 Optic Disc Localisation

Although OD can be spotted manually as a round bright spot in a retinal image, yet
performing large-scale manual screening can prove to be tiresome, time-consuming, and
prone to human fatigue and predisposition. Usually, the disc is the brightest region
in the image. However, if ambient light finds its way into the image while capturing
the photo it can look brighter than OD. Furthermore, occasionally some shiny reflective
areas appear in the fundus image during image capturing. These shiny reflections can
also look very bright and mislead a heuristic algorithm in considering them as candidate
ROIs. There are many approaches laid out by researchers for OD localization exploiting
different image characteristics. Some of these approaches are briefly covered below.
Intensity variations in the image can help locate OD in fundus images. To make
use of this variation the image contrast is first improved using some locally adaptive
transforms. The appearance of OD is then identified by noticing rapid variation in
intensity as the disc has dark blood vessels alongside bright nerve fibres. The image is
normalised and average intensity variance is calculated within a window of size roughly
equal to the expected disc size. The disc centre is marked at the point where the highest
intensity is found. Eswaran et al. [135] used such intensity variation based approach.
They applied a 25x35 averaging filter with equal weights of 1 on the image to smooth
it and get rid of low-intensity variations and preserve ROI. Chréstek et al. [136] used
31x31 averaging filter and the ROI is assumed to be 130x130 pixels. They used Canny
Edge Detector [137] to plot the edges in the image. To localise the OD region they
used only the green channel of RGB image. Abramoff et al. [138] proposed that the
OD can be selected by taking only the top 5% brightest pixels and hue values in the
yellow range. The surrounding pixels are then clustered to constitute a candidate region.

The clusters which are below a certain threshold are discarded. Liu et al. [139] used
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a similar approach. They first divided the image into 8x8 pixels grid and selected the
block with a maximum number of top 5% brightest pixels as the centre of the disc.
Nyl [140] employed adaptive thresholding with a window whose size is determined to
approximately match the size of the vessel thickness. A mean filter with the large kernel
is then used with threshold probing for rough localization.

Another extensively used approach is threshold-based localization. A quick look at
the retinal image tells that the OD is mostly the brightest region in the image. This
observation is made and exploited by many including Siddalingaswamy and Prabhu [141].
It is also noticed that the green channel of RGB has the greatest contrast compared to
red and blue channels [142-144], however, the red channel has also been used [145]
since it has fewer blood vessels that can confuse the rule-based localization algorithm.
The Optimal threshold is chosen based upon the approximation of the image histogram.
The histogram of the image is gradually scanned from a high-intensity value I, slowly
decreasing the intensity until it reaches a lower value I, that produces at least 1000
pixels with the same intensity. It results in a subset of the histogram. The optimal
threshold is taken as the mean of the two intensities I} and L. Applying this threshold
produces several connected candidate regions. The region with the highest number of
pixels is taken as the OD. Dashtbozorg et al. [146] used Sliding Band Filter (SBF) [147]
on downsampled versions of high resolution images since SBF is computationally very
expensive. They apply this SBF first to a larger region of interest on downsampled
images to get a rough localization. The position of this roughly estimated ROI is then
used to establish a smaller ROI on the original sized image for a second application
of SBF. The maximum filter response results in k-candidates pointing to potential OD
regions. They then use a regression algorithm to smooth the disc boundary. Zhang et
al. [148] proposed a fast method to detect the OD. Three vessel distribution features
are used to calculate possible horizontal coordinates of the disc. These features are local
vessel density, compactness of the vessels, and their uniformity. The vertical coordinates
of the disc are calculated using Hough Transform according to the global vessel direction

characteristics.

Hough Transform (HT) has also been widely utilised to detect OD [148-150] due
to the disc’s inherent circular shape and bright intensity. The technique is applied to
binary images after they have undergone morphological operations to remove noise or
reflection of light from the ocular fundus that may interfere with the calculation of
Hough Circles. The HT maps any point (z, y) in the image to a circle in a parameter
space that is characterised by centre (a, b) and radius r, and passes through the point

(z, y) by following the equation of circle. Consequently, the set of all feature points in
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the binary image are associated with circles that may almost be concentric around a
circular shape in the image for some given value of radius r. This value of r should be
known a priori by experience or experiments. Akyol et al. [151] presented an automatic
method to localise OD from retinal images. They employ keypoint detectors to extract
discriminative information about the image and the Structural Similarity (SSIM) index
for textual analysis. They then used a visual dictionary and random forest classifier
[152] to detect the disc location.

3.2.2 Glaucoma Classification

Automatic detection and classification of glaucoma have been widely studied by re-
searchers since long. A brief overview of some of the current works is presented below.
For a thorough coverage of glaucoma detection techniques using Al, [113, 153, 154] may
be consulted.

Maheshwari et al. [155] used pre-trained AlexNet [103] on RIM-ONE dataset of RFIs
to classify glaucoma. They split RGB images into their constituting Red, Green, and
Blue channels and compute Local Binary Pattern (LBP) [156] on each of the three chan-
nels. These LBP images are used for training the classifier. During test time, individual
channels of test images are fed directly to the classifier without LBP-augmentation, and
the classifier’s predictions for each of R, G, and B channels are fused to get the final
decision. Raghavendra et al. [157] used 1426 private RFIs to train and test an 18-layer
DNN and achieved 95.6% accuracy, 95.5% sensitivity, and 95.7% specificity for glau-
coma classification. In a large and comprehensive study using around 40,000 RFIs, Li et
al. [53] evaluated the performance of inception v3 for detecting referable Glaucomatous
Optic Neuropathy (GON). They defined GON as vertical CDR greater than 0.7. They
achieved 92.9% accuracy and 98.6% AUC with 95.6% sensitivity and 92.0% specificity.
They found that the leading reason for false-positive results was the presence of other eye
conditions in the fundus images. Al-Bander et al. [158] used 455 images of RIM-ONE v2
dataset and extracted discriminating features using DNN before classifying them using
SVM. They obtained 88.2% accuracy, 85% sensitivity, and 90.8% specificity.

R. Shinde [159] used a combination of image processing, ML, and DL methods to
recognise glaucoma images. She used LeNet[160] for validating input images and bright
spot algorithm for detecting ROIs. The OD and OC are segmented using UNet and
finally, classification is performed using SVM, NN, and Adaboost classifiers. The CAD
system is trained and evaluated on six small datasets, five of which are publicly available.

The total number of images in the training and validation sets is merely 666. Fuente-
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Arriaga et al. [161] proposed measuring blood vessels displacement within the disc for
glaucoma detection. The authors first segment the vascular bundle in OD to set a
reference point in the temporal side of the cup. Centroid positions of inferior, superior,
and nasal vascular bundles are then determined which are used to calculate L1 distance
between the centroid and the normal position of vascular bundles. They applied their
method on a set of 67 images carefully selected for clarity and quality of the retina from
a private dataset and report 91.34% overall accuracy. Ahmad et al. [162] and Khan
et al. [163] have used almost similar techniques to detect glaucoma. They calculate
CDR and ISNT quadrants and classify an image as glaucomatous if the CDR is greater
than 0.5 and it violates the ISNT rule. Ahmad et al. applied the method on 80 images
taken from DMED dataset, FAU data library, and Messidor dataset and reported 97.5%
accuracy whereas Khan et al. used 50 images taken from the above-mentioned datasets
and reported 94% accuracy. Though the accuracies reported by the aforementioned
researchers are well above 90%, their test images are handpicked and so fewer in number
that the results are not statistically significant and cannot be reliably generalised to
large public datasets.

Xu et al. [164] formulated a reconstruction-based method for localising and classify-
ing optic discs. They generate a codebook by random sampling from manually labelled
images. This codebook is then used to calculate OD parameters based on their similar-
ity to the input and their contribution towards the reconstruction of the input image.
They report AUC for glaucoma diagnosis at 0.823. Noting that classification-based ap-
proaches perform better than segmentation-based approaches for glaucoma detection, Li
et al. [165] proposed to integrate local features with holistic features to improve glau-
coma classification. They ran various CNNs like AlexNet, VGG-16 and VGG-19 [166]
and found that combining holistic and local features with AlexNet as the classifier gives
the highest AUC at 0.8384 using 10-fold cross-validation, while the manual classification
gives AUC equal to 0.839 on ORIGA dataset. Chen et al. [128] also used DNN based
approach for glaucoma classification on the ORIGA dataset. Their method inserts mi-
cro neural networks within more complex models so that the receptive field has a more
abstract representation of data. They also make use of a contextualisation network to
get the hierarchical and discriminative representation of images. Their achieved AUC is
0.838 with 99 randomly selected train images and the rest for testing. In another of their
publications, Chen et al. [46] used a six-layer CNN to detect glaucoma from ORIGA
images. They used the same strategy of taking 99 random images for training and the

rest for testing and obtained 0.931 AUC.

Franco et al. [167] designed and evaluated an automated glaucoma classifier based on
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ResNet-50 using more than ten thousand RFIs from seven datasets. They achieved 95%
accuracy and 91% AUC based on 50 cross-validation sets comprising of a total of 3551
images. A recent study by Wang et al. [168] performed multi-label classification of RFIs
using EfficientNet [169]. Their model consists of EfficientNet-based feature extractor
followed by an NN-based custom classifier for multi-label prediction. The models are
trained using ODIR-2019 dataset and achieved 0.73 AUC and 0.88 F1-score on the test
set. Al-Bander et. al [67] used deep learning approach to segment OC and OD from
fundus images. Their segmentation model has a U-Shape architecture inspired from U-
Net [68] with densely connected convolutional blocks, inspired from DenseNet [75]. They
outperformed state-of-the-art segmentation results on various fundus datasets including
ORIGA. For glaucoma diagnosis, however, in spite of combining commonly used vertical
CDR with horizontal CDR, they were able to achieve AUC at 0.778 only. Similarly,
Fu et. al [69] also proposed a U-Net like architecture for joint segmentation of OC
and OD and named it M-Net. They added a multi-scale input layer that gets the
input image at various scales and gives receptive fields of respective sizes. The main
U-shaped convolutional network learns hierarchical representation. The so-called side-
output layers generate prediction maps for early layers. These side-output layers not only
relieve the vanishing gradient problem by back-propagating side-output loss directly to
the early layers but also help achieve better output by supervising the output maps of
each scale. For glaucoma screening on ORIGA data set, they trained their model on
325 images and tested on the rest of 325 images. Using vertical CDR of their segmented
discs and cups they achieved 0.851 AUC.

3.2.3 Diabetic Retinopathy Grading

Recently, a large-scale study on detecting four stages of diabetic retinopathy, excluding
healthy class, has been conducted by Dai et al. [170] using a private dataset of 666,383 im-
ages from 173,346 patients. Their proposed CAD system for diabetic retinopathy called
DeepDR is evaluated on 200,136 private images and 9186 images from publicly available
datasets and gives AUC for four classes in the range of 94% to 97% for private images
and 91% to 97% for external images. In addition to diabetic retinopathy detection, they
also detected microaneurysms, cotton-wool spots, hard exudates, and haemorrhages and
obtained promising results. Mushtaq et al. [171] classified five stages of diabetic retinopa-
thy using the Diabetic Retinopathy Detection 2015 dataset and APTOS-2019 datasets
with the help of DenseNet-169. Data augmentation was used to obtain 7000 images per

class and remove class imbalance. They have reported 90% validation accuracy and 80%
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Cohen’s kappa score. However, they have not mentioned their train and test split or
whether they trained the model on individual datasets or merged them. Their results
also lack the confusion matrix necessary to perform in-depth error analysis and evaluate
their model.

Welikala et al. [172] detected proliferative DR by identifying neovascularization.
They used an ensemble of two networks trained separately on 100 different patches
for each network. The patches are taken from a selected set of 60 images collected from
Messidor [61] and a private dataset. Since the dataset had only 60 images they per-
formed leave-one-out cross-validation and achieved 0.9505 AUC and sensitivity of 1 with
the specificity of 0.95 at the optimal operating point. Wang et al. [173] identified suspi-
cious regions in RFIs and classified diabetic retinopathy into normal (nDR) vs abnormal
(aDR) and referable (rDR) vs non-referable (nrDR). They developed a CNN-based model
called Zoom-in-Network to identify important regions. To classify an image the network
uses the overview of the whole image and pays particular attention to important regions.
They took 182 images from the EyePACS dataset and had a trained ophthalmologist
draw bounding boxes around 306 lesions. On the Messidor dataset, they achieved 0.921
AUC, 0.905 accuracy, and 0.960 sensitivity at 0.50 specificity for nDR vs aDR.

Gulshan et al. [14] conducted a comprehensive study to distinguish rDR from nrDR
grades. They trained a deep CNN on 128175 fundus images from a private dataset and
tested on 9963 images from EyePACS-I and 1748 images of Messidor-2. They achieved
an AUC of 0.991 on EyePACS-I and 0.990 on Messidor-2. Guan et al. [174] proposed
that modelling each classifier after individual human grader instead of training a single
classifier using average grading of all human experts improves classification performance.
They trained 31 classifiers using a dataset of a total of 126522 images collected from
EyePACS and three other clinics. The method is tested on 3547 images from EyePACS-
I and Messidor-2 and achieved 0.9728 AUC, 0.9025 accuracy, and 0.8181 specificity at
0.97 sensitivity. However, it would have been more interesting if they had provided a
comparison of their suggested approach with a simple ensemble of 31 networks modelled
after average grading. Costa et al. [175] used adversarial learning to synthesise colour
retinal images. However, the performance of their classifier trained on synthetic images
was less than the classifier trained on real images. Aujih et al. [176] found that blood
vessels play important role in disease classification and fundus images without blood
vessels resulted in poor performance by the classifier.

The role of multiple filter sizes in learning fine-grained features was studied by Vo
et al. [177]. They used VGG network with extra kernels and combined kernels with
multiple loss networks. They achieved 0.891 AUC for rDR vs nrDR and 0.870 AUC for
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normal vs abnormal on Messidor dataset using 10-fold cross-validation. Somkuwar et
al. [178] performed classification of hard exudates by exploiting intensity features using
90 images from the Messidor dataset and achieved 100% accuracy on normal and 90%
accuracy on abnormal images. Seoud et al. [179] focused on red lesions in RFIs, like
haemorrhages and microaneurysms, and detected these biomarkers using dynamic shape
features to classify DR. They achieved 0.899 AUC and 0.916 AUC for nDR vs aDR and
rDR vs nrDR, respectively on Messidor. Rakhlin et al. [180] used around 82000 images
taken from EyePACS for training and around 7000 EyePACS images and 1748 images
from Messidor-2 for testing their deep learning-based classifier. They achieved 0.967
AUC on Messidor and 0.923 AUC on EyePACS for binary classification. Ramachandran
et al. [181] used 485 private images and 1200 Messidor images to test a third-party
DL-based classification platform, which was trained on more than 100000 images. Their
validation gave them 0.980 AUC on Messidor dataset for rDR vs nrDR classification.
Quellec et al. [182] capitalised a huge private dataset of around 110000 images and
around 89000 EyePACS images to train and test a classifier for rDR vs nrDR grades
and achieved 0.995 AUC on EyePACS. A comprehensive review on Diabetic retinopathy

detection through deep learning techniques can be found in [183]

3.3 Two-Stage Framework for Glaucoma Classification

Providing whole RFT to an image classifier for glaucoma detection does not enable the
model to concentrate on clinically significant ROI. Therefore, a two-stage framework is
developed as shown in Fig. 3.3. The first stage is based on Regions with Convolutional
Neural Network (R-CNN) and is responsible for localising and extracting OD from an
RFI while the second stage uses DNN to classify the extracted disc into healthy or glau-
comatous. Unfortunately, none of the publicly available retinal fundus image datasets
provides any bounding box ground truth required for disc localization. Therefore, in
addition to the proposed two-stage solution, a rule-based semi-automatic ground truth
generation method is also developed that provides necessary annotations for training
R-CNN based model for automated disc localisation.

For the automatic localisation stage of this framework, no fully automated disc local-
ization method could be found at that time that could give robust and accurate results
independent of the datasets. Also, many existing heuristic methods, for example, [184—
186], set the bar for correct localization as low as accepting a predicted disc location
correct if IOU between actual and predicted locations is greater than zero. To address

these issues a dataset-independent fully automated disc localization method is proposed
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Figure 3.3: Complete framework of disc localization and classification. Detailed diagrams
and description of both sub modules are given in their respective sections

based on faster R-CNN [70] as shown in Figure 3.3(a). This approach sets new state-
of-the-art on six out of seven datasets for localization while setting the bar for correct
localization at IOU>50.

3.3.1 Datasets for Disc Localisation and Glaucoma Detection

It can be noticed from the brief introduction of publicly available RFI datasets used in
this work given below that none of these datasets provide any bounding box ground truth
for disc localisation, thus prompting for development of a new ground truth generation

mechanism.

ORIGA (-light)

ORIGA [51] dataset already introduced in 2.2 aims to provide clinical ground truth to
benchmark segmentation and classification algorithms. It uses a custom-developed tool
to generate manual segmentation for OD and OC. It also provides CDR and labels for
each image as glaucomatous or healthy. This dataset has been used as a standard dataset

in some of the recent state-of-the-art researches for glaucoma classification.

HRF Image Database

High-Resolution Fundus [187] (HRF) Image database is provided by the Department
of Ophthalmology, Friedrich-Alexander University Erlangen-Nuremberg, Germany. It

consists of 15 healthy images, 15 glaucomatous images, and 15 images with diabetic
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retinopathy. For each image, binary gold standard vessel segmentation is provided by a

group of experts and clinicians.

OCT & CFI

This dataset [188] contains OCT and Colour RFIs of both eyes of 50 healthy persons
collected at the Ophthalmology Department of Feiz Hospital, Isfahan, Iran. As the
images were taken as part of a study on the comparison of macular OCTs in right and
left eyes of normal people, it doesn’t provide any ground truth for segmentation of OD

or blood vessels, or OD localization.

DIARETDBI1

Standard DIAbetic RETinopathy DataBase calibration level 1 (DIARETDB1) [78] is a
publicly available dataset consisting of 89 colour RFIs taken at Kuopio University Hos-
pital, Finland. The prime objective of this dataset is to benchmark the performance of
automated methods for diabetic retinopathy detection. Four independent medical ex-
perts are employed to annotate the dataset and provide the markings for microaneurysms,
haemorrhages, and hard and soft exudates. Based upon the markings provided, 84 of the
images were found to have at least mild non-proliferative diabetic retinopathy while the
rest of the five images were found to be healthy. The dataset does not provide retinopa-
thy grades following International Clinical Diabetic Retinopathy (ICDR) severity grade

or ground truth for OD localization.

DRIVE

Digital Retinal Images for Vessel Extraction (DRIVE) [79] consists of 40 images taken
in the Netherlands as part of a diabetic retinopathy screening programme. The dataset
is divided into train and test splits. Train set contains 20 images with manual segmen-
tation masks for blood vessels. The test set also contains 20 images with two manual
segmentation masks. This dataset also does not provide any annotation for OD localiza-

tion.

DRIONS-DB

Digital Retinal Images for Optic Nerve Segmentation DataBase [189] commonly known
as DRIONS-DB is a dataset for benchmarking ONH segmentation from retinal images.
The data were collected at Ophthalmology Service at Miguel Servet Hospital, Saragossa,
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Spain and contains 110 images. It provides ONH contours traced by two independent

experts using a software tool for image annotation.

Messidor

Methods to evaluate segmentation and indexing techniques in the field of retinal oph-
thalmology (Messidor) [61] is a large publicly available dataset of 1200 high-resolution
colour fundus images. The dataset contains 400 images collected from three ophthal-
mology departments each, under a project funded by the French Ministry of Research
and Defence. It provides diabetic retinopathy grade for each image from 0 (healthy) to

3 (severe) as well as the risk of macular oedema at a scale of 0 (no risk) to 2 (high risk).

3.3.2 Localisation of Optic Disc

A heuristic method is developed to approximate the location of OD in retinal images. Re-
sults generated by this heuristic method are manually checked and necessary corrections
are made where needed. Figure 3.4 depicts the workflow of this mechanism. It consists
of a heuristic algorithm that gives a proposal for OD location which is then manually
verified by an expert. This way localization ground truth for all seven datasets discussed
in the previous section was generated.

Three publicly available datasets of high-resolution colour retinal fundus images were
chosen to evaluate the performance of the heuristic localization algorithm. Table 3.1
gives an overview of the datasets used. Out of 780 images, 525 were randomly selected
for training, 48 images were taken for validation and the rest of 207 images were kept
aside for testing. The validation set was used to find various empirical parameters like
retinal rim crop margin and maximum size of valid disc radius etc. The mixture of three
different datasets introduces enough inter-dataset variations in the images to thoroughly

and rigorously validate the accuracy and robustness of the heuristic method.

Table 3.1: Overview of datasets used for the evaluation of the heuristic method

Dataset  Total Size Healthy Glaucoma Split
Train Validate Test
ORIGA 650 482 168 441 36 173
HRF 30 15 15 12 04 14
OCT&CFI 100 100 Nil 72 20 08
Total 780 597 183 525 48 207
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3.3.2.1 Heuristic Algorithm for OD Localisation

This section details a heuristic algorithm to find approximate OD location from retinal
images. The basic flow of the method is shown in Figure 3.4(a). It can be observed from
RFIs that OD is usually the brightest region in the RFI. However, there could be other
bright spots in the image, due to some disease or imperfect image capturing conditions,
that can affect the performance of any empirical or heuristic method. Figure 3.5 shows

two examples of such misleading bright spots.

N Otsu || Frinee Croppine |- OD Center )

) E Thresholding & pping Approximation Approximate ) 455
Retinal ! Disc Location =
Fundus -4 o] -

| =]
Image i { g
Morphological | | ODRadius | | OD Location . 5
Operations Calculation Proposal
(a) Flow of proposed heuristic method (b) Manual Validation

Figure 3.4: Workflow of semi-automatic ground truth generation mechanism

The first column of each subfigure shows colour RFI and the second column shows
the binary image corresponding to the respective colour image. The bright fringe at
the retinal rim, as shown in Figure 3.5(a), occurs when a patient does not place his/her
eye correctly on the image capturing equipment and the ambient light gets through the
corners of the eye. Figure 3.5(b) shows an example of shiny cloud-like spots around
the macular region caused by the reflection of light from the ocular fundus which is a

common phenomenon in younger patients.

Reflective / Reflective
/ \
Areas Areas

(a) Binarisation of image with bright fringe at
retinal rim

(b) Binarisation of image with reflection spots

Figure 3.5: Binary images showing misleading bright spots. RGB image in (a) is rescaled
to fit in square window
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In this heuristic method, the fringe is removed by first finding the diameter of the
retinal rim inside the image. This is done by applying Otsu thresholding [190] on the
image. Otsu binarisation method assumes that the image consists of only two classes
of pixels (foreground and background) following a bi-model histogram. It adaptively
calculates the most appropriate threshold value that can categorise all the pixels into
two classes. As a result, it turns the whole retina into a white disc and keeps the
background black. This output is used to calculate the centre and radius of the retina.
A circular mask with a radius less than the retinal radius is created and applied to the
original image to crop and possibly get rid of the fringe.

A custom adaptive binarisation is then applied on the resultant image with a thresh-
old for each image calculated as the mean of the top 1% brightest pixels. This technique
locates the approximate core of OD. Before finding the centre of this approximate OD,
morphological erosion operation is applied to remove small reflective areas and random
impulse noise. This is followed by a dilation operation to connect disjoint white spots
into fewer and bigger connected blobs. The result of these operations is a better ap-
proximation of OD. The radius and centre of this approximate disc location are then
calculated and a circle with a radius greater than the calculated radius is drawn on the
image to identify and localise OD. Lastly, these proposed locations are manually verified
by an expert and necessary corrections are made where necessary.

Visual inspection of the output of train and test datasets showed that the method
failed on only 3 out of 573 (test+validate) images and on only 1 of 207 test images
from three different datasets which is shown in Figure 3.6. To quantify the accuracy of
this approach IOU between bounding boxes given by the proposed method and manual
ground truth is calculated. Table 3.2 shows the accuracy of this method in terms of
overlap between predicted disc and actual disc. The results show that more than 96%
of ODs are localised with more than 50% of actual disc present in the prediction. Also,
about 52% of the predicted discs contain more than 70% of the actual disc. The average
overlap between predicted disc area and ground truth for the test images is around 70%.
It is also worth mentioning here that the minimum IOU of a correctly localised disc in
this method is more than 20% whereas some researchers [184-186] have opted to consider

their localization correct if the distance between predicted disc centre and actual disc

Table 3.2: Intersection Over Union (IOU) of heuristic predictions and the ground truth

10U (%) 20 50 60 70 80
Test Accuracy 99.52 96.14 75.96 51.97 09.18
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ROI Detected. ROI Detected. ROI Detected. ROI Detected.
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(a) Correct localisation (b) Correct localisation (c¢) Correct localisation (d) Incorrect localiza-
of an HRF image of an OCT&CFI image of an ORIGA image  tion of ORIGA image

Figure 3.6: Results of Heuristic Localisation of OD. Subfigure 5(d) shows the only ex-
ample where heuristic failed.

centre is less than expected disc diameter — in other words if IOU>0.

3.3.2.2 Automated Disc Localisation

Although the results of the heuristic-based approach are very promising, yet they are
dataset specific and might not work well in real-world scenarios on a diverse spectrum
of fundus images. Therefore, a fully automated approach of precise disc localization
without using any empirical knowledge about the dataset is also explored. Necessary
corrections were made in the annotations given by the heuristic approach and these
semi-automated annotations were provided to the automated localization method as the
ground truth.

As shown in Fig. 3.7, the model consists of three major modules: Region Proposal
Network (RPN), CNN classifier, and Bounding Box Regression. Given an image for
object detection, RPN generates a number of random rectangular object proposals with
associated objectness scores. These proposals are fed to the CNN that classifies whether
a given object is present in the proposal. Then bounding box regression is performed to
fit the rectangle closely to the object and provide the precise location of the object in
the image.

For automated localisation of OD, the model was trained for 100,000 iterations using
VGG16 as classifier pre-trained on Pascal VOC2007 [191]. The GT generated by our
semi-automated method is used along with 573 images, previously employed for training
and validation of the heuristic method, to train the network. The disc localisation
outcome of faster R-CNN on three datasets, shown in Table 3.1, is given in Table 3.3.
As can be seen in the Table, faster R-CNN gives 100% correct localization for 60% IOU

and an average overlap of 97.11% on these three datasets combined.
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Figure 3.7: Internal components of faster R-CNN (Figure 3.3(a))

Once trained and evaluated on ORIGA, HRF, and OCT & CFI datasets, the model
was also tested on other publicly available databases and the results are compared with
some state-of-the-art methods developed specifically for those datasets. The results
highlight the comparative performance of a fully automated method with state-of-the-art
heuristic algorithms. The accuracies of our method are taken for 50% IOU. The results
reported by [184-186] are for IOU > 0 whereas rest also have considered a localization

correct if 50% overlap is achieved.

Table 3.3: Accuracy of automated disc localisation compared with heuristic method

10U (%)
20 50 60 70 80

Heuristic 99.52 96.14 75.96 51.97 09.18
Automated 100.0 100.0 100.0 99.52 94.69

Method
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Table 3.4: Generalisation performance of faster R-CNN on unseen datasets

Papers Criterion DIARETDB1 DRIVE DRIONS-DB MESSIDOR
(I0U >) N=8 N=40 N=110 N = 1200
Our Method (RCNN-based) 50 100.0 97.50 99.09 99.17
Giachetti et al. [184] 0 N/A N/A N/A 99.83
Yu et al. [185] 0 N/A N/A N/A 99.08
Aquino et al. [186] 0 N/A N/A N/A 98.83
Akyol et al. [151] 50 94.38 95.00 N/A N/A
Qureshi et al. [192] 50 94.02 100.0 N/A N/A
Godse et al. [193] 50 96.62 100.0 N/A N/A
Lu et al. [194] 50 96.91 N/A N/A N/A

As can be seen from Table 3.4, the automated method performed significantly better
than existing heuristics methods, which means that it was able to learn the discriminative
representation of OD. It should be noted here that heuristics methods are normally
designed with a particular dataset in focus. Figure 3.6 and Figure 3.8 show that there
exists substantial variations in the colour, brightness, contrast, and resolution etc. among
images of different datasets. The proposed fully automated method was not trained on
any of the four datasets listed in table 3.4 and yet it performed superior to those methods
tailored specifically for those individual datasets. The average overlap of predicted and
actual OD bounding boxes is 84.65% for DTARETDBI, 84.13% for DRIVE, 80.46% for
DRIONS-DB, and 84.82% for MESSIDOR.

(a) Sample image from (b) Sample image from (c¢) Sample image from (d) sample Image from
DRIVE dataset DIARETDBI1 dataset DRIONS-DB dataset Messidor dataset

Figure 3.8: Results of automated localization on different datasets. Notice the illumina-
tion and contrast variations amongst the datasets
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Figure 3.9: Convolutional neural network used for glaucoma classification (Figure 3.3b)

3.3.3 Classification of Glaucoma

In the first stage, the OD is extracted because most of the glaucoma-related information
is contained in this region [46, 128]. Extracting this ROI not only produces a smaller
initial image that is computationally efficient but also allows a DNN to focus on the
most important part of the image. Figure 3.9 depicts the architecture of the CNN used
in this work.

The network consists of four convolutional layers followed by three fully connected
layers. Max pooling with overlapping strides and local response normalisation is used
after the first two convolutional layers. Max Pooling also follows the fourth convolutional
layer. The first two fully connected layers are followed by dropout layers with a dropout
probability of 0.5. The output of the last dense layer is fed to the softmax function that

gives prediction probabilities for each class.

3.3.3.1 Results of Classification

Due to class imbalance in the ORIGA dataset, as shown in Table 3.1, a stratified sampling
technique is implemented where it is made sure that each batch for training contains
some of the glaucoma images. This technique is used to prevent any bias towards the
healthy class. Furthermore, a constant learning rate of 0.0001 along with Adam optimiser

and Cross Entropy loss was used during training.

Results with Random Training

As no standard split of train and test set is available for this dataset, therefore, to

compare the proposed model with other recently reported works the same training setup
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Table 3.5: Precision, Recall and F1 score of classification with random train and test
split

Class Precision (%) Recall (%) F1 Score No. of Samples
Healthy 81.12 94.9 0.8747 412
Glaucoma 69.57 34.53 0.4615 139
Total 78.21 79.67 0.7705 551

used by most of them [46, 128, 164] is used first. The model is trained repeatedly
every time randomly taking 99 images for training and the rest for testing. From more
than 1500 training runs the best combination of train and test split resulted in overall
classification accuracy of 79.67%. Class-based average precision, recall, and F1 scores
are tabulated in the Table 3.5.

Figure 3.10 shows the confusion matrix. It can be observed from the figure that
out of 412 images without glaucoma, 391 are correctly classified and 21 such images
are misclassified as having glaucoma. On the other hand, only 48 of the total 139
glaucomatous images are correctly classified and 91 images with glaucoma are incorrectly
classified as healthy.

Table 3.6 shows the superiority of our model over other comparative studies in terms
of AUC. Most of the works cited in Table 3.6 reported only AUC as a performance
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Figure 3.10: Confusion matrix showing the distribution of True Positives, False Positives,
and False Negatives
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metric for their classifiers. However, it was found during the experimentation that for
some combinations of 99 train and 551 test images the model was able to achieve higher
AUC, 84.87%, than four results in [46, 128, 164, 165] while predicting only healthy class
for every test image leading to the healthy class recall of 1 and glaucoma class recall of 0.
It means that the trade-off between sensitivity and specificity of the models can result in
higher AUC without learning anything. Therefore, in the absence of clearly defined train
and test splits and without knowing the proportion of healthy and glaucomatous images
in both sets, AUC only may not depict the complete and true picture of a classifier.
Other performance measures like precision, recall, and F1-scores should also be reported
for a fair analysis and comprehensive comparison with other models. In the case of a
well-defined train and test split, however, AUC alone might be enough to quantify the

classification ability of a model.

Table 3.6: Comparison of obtained Area Under the Curve (AUC) with random train
and test split

Performance Metric ~ [46]  [128] [165] [164] [69] Our Method
AUC 0.831 0.838 0.838 0.823 0.851 0.868

Results with Cross Validation

Realising this pitfall in performance evaluation of classifiers, and to facilitate future
researchers in thorough comparison of their models, 10-fold cross-validation is performed
on the dataset. The whole dataset was randomly divided into 10 equal portions. In one
training session, for example, the first part is reserved for testing and the other nine are
used for training. In the next session, the second part, for example, is kept aside for
testing, and the rest of the nine are used for training. Average is taken over 10 training
sessions and the accumulative test accuracy is found to be 79.39% + 3.42%. Class-based

precision, recall, and F1-score are tabulated in Table 3.7.

Table 3.7: Precision, Recall, and Fl-score of classification with cross validation

Class Precision (%) Recall (%) F1 Score

Healthy 82.31 £2.88  91.86 +2.29 0.8681 +0.246
Glaucoma  65.52 +6.65 43.66 £4.95 0.5231 +0.534
Total 77.97 £3.78 79.38 +£3.42 0.7788 +0.366

56



3.3. TWO-STAGE FRAMEWORK FOR GLAUCOMA CLASSIFICATION

Table 3.8: Comparison of obtained Area Under the Curve (AUC) with cross validation.
The sensitivity is calculated at observed specificity of 85%

Performance Chen et al.  Cheng et al. Xuet al. Fuet al. Proposed Model

Hetrie [46]  [128] [165] [164] o) ~ Ramdom - Cross
Training Validation

AUC 0.831 0.838  0.838 0823 0851  0.868  0.874
Sensitivity (%) N/A N/A N/A 58 N/A 71 71.17

The comparison of AUC obtained using cross-validation with other works is sum-
marised in Table 3.8 which clearly shows that the proposed network outperforms stat-
of-the-art results for glaucoma classification on ORIGA dataset. Fig. 3.11 shows sample

images of correctly and incorrectly classified glaucoma and healthy images.

(a) Glaucoma Image (b) Glaucoma Image (c) Healthy Image Cor-(d) Healthy Image In-
Correctly Classified Incorrectly Classified rectly Classified correctly Classified

Figure 3.11: Results of Glaucoma Classification using DCNN

Data augmentation was also performed to study its effects on the accuracy of clas-
sification. It was implemented by horizontal and vertical flips and cropping 227x227x3
patches from four corners and centre of 256x256x3 extracted images of OD. However,
the experiments performed with and without data augmentation showed no significant
difference between the performances of both approaches. The effect of network com-
plexity on classification accuracy was also explored. For this purpose, Alexnet was used
as the reference model and the impact of the number of layers on the network’s perfor-
mance was assessed while all the other conditions were the same. It was observed that
increasing network complexity actually deteriorated the accuracy of the classifier. The
reason for this performance degradation can be the small size of the dataset. Deeper

networks have a habit of overfitting during training when not enough training samples
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are provided. The networks working better than others had four convolutional layers.
The best working model among all the different versions tried is used for classification

and is the one shown in Figure 3.9.

Comparison with Later Researches

We compared the performance of our method with some of the research works that
emerged after the publication of our results. It is obvious from Table 3.9 that over the
years, this topic has attracted a lot of attention from the research community who have
employed newer techniques on this task and have achiever superior results. However,
this comparison should be analysed with extreme caution. Since changing the samples
in train and test splits can have noticeable effect on the performance of any trained
classifier, no two method can be compared hear-to-head unless they follow exactly the
same train/test split. Whereas, Table 3.9 clearly shows that some researchers report their
results without any mention of train/test split. The authors, who do mention this split,
sometime, make the split as per their wishes instead of following any previous research
or using conventional k-fold cross-validation. Even different instances of, for instance
10-fold, cross validation cannot be directly compared because of distinct possibility of

folds composition.

Table 3.9: Performance comparison of our method with the later approaches using
ORIGA dataset for glaucoma detection. Direct comparison between these methods is
not fair due to different train/test splits.

Paper Year Train/Test Split AUC Sensitivity Specificity
Our Method Jun 2019 99/551 (random)  0.868 0.710 0.850
Our Method Jun 2019 10-fold CV 0.874 0.712 0.850
Liao et al. [195] Oct 2019 10-fold CV 0.880 N/A N/A
Nazir et al. [196] 2020 unknown 0.940 0.941 0.945
Nazir et al. [197] 2021  455/195 (random)  0.970 0.963 N/A
Nawaz et al. [198] 2022 unknown 0.979 0.970 N/A
Doperlioglu et al. [199] 2022 unknown 0.951 0.977 0.926

3.3.4 Verification of Clinical Criteria for Glaucoma Detection

As mentioned above in the section 3.1, the majority of visual artefacts significant for
glaucoma detection from RFT are centred around the OD. While examining a fundoscopy
image, ophthalmologists focus exclusively on this region to find out if glaucoma-related

morphological changes can be spotted. This diagnostic criterion has been developed since
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long and has become a standard protocol for identifying glaucoma using ophthalmoscopy.
In this project, a small study is conducted to validate whether OD is indeed the integral
part of RFI for the reliable identification of glaucoma.

To endorse the veracity of this clinically established criterion, the vital information
in OD was systematically obscured and these manipulated images were used for training
glaucoma classifiers. The obscuring of the disc achieved in two ways: masking the whole
optic disc by replacing disc pixels with its mean value, and inpainting the disc from the

outside to its centre as shown in Fig. 3.12.

(a) Original Image (b) Inpainted Disc (¢) Masked Disc

Figure 3.12: An original RFI with two variations to obscure optic disc

Pretrained Inception V3 was used to fine-tune the model on these doctored images
since it was found to perform better in classification experiments discussed in section 2.3.
For ORIGA dataset, 5-fold cross-validation was used for training and evaluation. Sep-
arate classifiers were trained for each type of manipulated images and the results are
compared with classifiers trained with the whole RFI and with disc only. Table 3.10
clearly shows that the classification performance of the model noticeably drops when
the most important region in the whole RFI for glaucoma detection is either masked
or inpainted. The classifier trained using the whole unadulterated images gives rela-
tively better performance. However, when the optic disc is extracted and a deep model
is trained with only this part of the image, the performance of the model improves

significantly.

3.4 Combined Coarse-and Fine-Grained Classifier for

Diabetic Retinopathy Detection

Automated image recognition can be divided into coarse-grained classification and fine-
grained classification. In the former case, images are classified into high-level categories

like humans, animals, vehicles, and other objects in a natural scene, for example. In the
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Table 3.10: Performance comparison of Inception V3 trained for glaucoma detection
using different variations of RFIs

Input Image Precision Recall F1-Score AUC

Inpainted Disc  0.7014£0.03 0.6877+0.08 0.6538+0.05 65+0.07
Masked Disc 0.7018£0.06 0.7292+0.03  0.694£0.04 66+0.04
Whole Image 0.6474+0.09 0.7462+0.02 0.6701£0.06 67+0.04
Only Disc 0.7834£0.02 0.7969+0.02 0.7774+0.03 82+0.02

latter case, classification is focused on low-level categories like species of dogs or models of
cars, etc. Fine-grained classification is particularly challenging owing to high intra-class
variations and low inter-class variations. Since the difference between two consecutive
grades of diabetic retinopathy is not always very obvious, as shown in Fig. 3.2, it could
be treated as a fine-grained classification task, although it has normally been addressed

using simple coarse-grained classification algorithms.

This section presents a combination of coarse-grained and fine-grained deep CNNs
to analyse RFIs and predict automated diagnosis for diabetic retinopathy. The models
used include two of the most popular conventional image classification architectures i.e.
Residual Networks [74] and Densely Connected Networks [75], a network search frame-
work called NASNet [107] and two methods for fine-grained classification namely NTS-
Net [200] and SBS Layer [201]. This amalgamation of various types of models explores
to draw on the combined potential of both fine-grained and coarse-grained approaches
by training them separately and taking their ensemble during inference. Two commonly
used RFT datasets for diabetic retinopathy grading named EyePACS and Messidor are
used for evaluation. Since previous researches have used vastly disparate experimental
setups, as evident from section 3.2, it is not possible to directly compare obtained results
with most of them. However, a broad range of experiments are performed, following the
most common problem settings in the literature like normal vs abnormal, referable vs
non-referable, ternary and quaternary classification to set benchmarks, which can afford
future works with an opportunity of fair comparison. In the following, details on the
datasets used in this work and the ensemble methodology employed to perform classifi-

cation are presented.
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3.4.1 Datasets for Diabetic Retinopathy Detection

The EyePACS dataset is published publicly by Kaggle for a competition ' on diabetic
retinopathy detection. Table 3.11 gives overview of EyePACS dataset. Although this
dataset is very large in size, only about 75% of its images are of reasonable quality that
they can be graded by human experts [180]. EyePACS is graded on a scale of 0 to 4
following International Clinical Diabetic Retinopathy (ICDR) guidelines [202]. However,
the low gradeability of this dataset raises suspicions about the fidelity of labels provided
with each image. The train set was pruned to get rid of 657 completely uninterpretable

images. For evaluation on EyePACS, 33423 images were taken from the test set.

Table 3.11: Overview of EyePACS dataset. IrMA stands for IntraRetinal Microvascular
Abnormalities

Severity Grade Criterion Train Set Test Set
Images Percentage Images Percentage
0 No Abnormalities 25810 73.48 39533 73.79
1 Microaneurysms Only 2443 6.95 3762 7.02
2 More than just microaneurysms but 5292 15.07 7861 14.67

less than Grade 3

More than 20 intraretinal haemor-
rhages in each of 4 quadrants

OR Definite venous beading in 2+
quadrants

OR Prominent IrMA in 1+ quad-
rant

AND no signs of proliferative
retinopathy

873 2.48 1214 2.27

Neovascularization
4 OR Vitreous/preretinal haemor- 708 2.02 1206 2.25
rhage

Total 35126 100 53576 100

As can be observed from Table 3.11, the data is highly unbalanced. About three-
quarters of the images in the training set belong to the healthy category, which leaves
only around 26% of the images for the classifiers to learn the minute details significant
to discern among four grades of this disease.

Messidor dataset [61], publicly available since 2008, consists of 1200 high-resolution
colour images of the posterior pole collected at three different ophthalmology depart-

ments in France. Each participating site contributed 400 images. This dataset is graded

1 Available at https://www.kaggle.com/c/diabetic-retinopathy-detection
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for diabetic retinopathy on a scale of 0 to 3 following the criteria given in Table 3.12
and for macular oedema on a scale of 0 to 2. Two-thirds of the images were taken with
pupil dilation and the remaining one-third were captured without pupil dilation. The
Messidor dataset is carefully validated by experts and is, therefore, of higher quality
than EyePACS in terms of both image resolution and labels.

Table 3.12: Overview of Messidor dataset showing grading criteria and class distribution

Severity Grade Criterion Images Percentage
No microaneurysms
0 AND No haemorrhages 546 45.50
1 Microaneurysms <= 5 153 12.75

AND No haemorrhages
5 <Microaneurysms <15

2 AND 0 <Haemorrhages <5 247 20.58
AND No Neovascularization

Microaneurysms >= 15

3 OR Haemorrhages >= 5 254 21.17
OR Neovascularization
Total 1200 100

3.4.2 Methodology

Figure 3.13 illustrates the complete pipeline of the system combining coarse-grained and
find-grained classifiers. Before feeding an image to the network, it is preprocessed as
shown in Fig. 3.14. First, Otsu Thresholding is applied to extract and crop retinal
rim from RFT and get rid of the superfluous black background, as shown in Fig. 3.14a.
Since the images in both datasets are taken with different cameras and under different
clinical settings, they suffer from large brightness and colour variations. To compensate
for that, adaptive histogram equalisation is used to normalise brightness and enhance
the contrast of visual artefacts which are critical for diabetic retinopathy detection.
Adaptive histogram equalisation can be applied on single-channel images, whereas the
images provided in the datasets are in RGB colour space. Therefore, the images are
first translated into YCbCr colour space to distribute all luminosity information in the
Y channel and colour information in Cb and Cr channels. Then, adaptive histogram
equalisation is applied on the Y channel only. This equalised Y channel is merged with
Cb and Cr channels and the resultant image is converted back to RGB colour space.
The effect of this contrast enhancement can be seen in Fig. 3.14b. The images are

further normalised by subtracting local average colour from each pixel to highlight the
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Figure 3.13: System Overview of combining coarse-grained and fine-grained classifiers

foreground and help our network detect small features, as shown in Fig. 3.14c. These pre-

processed images are then used to train all five networks individually. During inference,

(a) Original Image before Pre- (b) After Adaptive Histogram (c) After Local Average Colour
processing Equalisation Subtraction

Figure 3.14: Effects of preprocessing steps on retinal fundus images
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each network gives its independent diagnoses which are ensembled to calculate the final

prediction.

3.4.3 Experiments and Results

From the EyePACS train set, 30000 images are randomly selected for training, and the
rest of the 4469 images are used for validation. Images from the test set of EyePACS
are used for reporting evaluation results on this dataset. From Messidor, 800 images
are used for training and 400 images from Lariboisiéere Hospital for testing (as done
by Lam et al. [203]). A broad range of hyperparameters was explored during training.
All networks are initialised with pre-trained weights and fine-tuned on ophthalmology
datasets. To evaluate these models on EyePACS and Messidor datasets under similar
problem settings, diabetic retinopathy grades of both datasets are first parallelised using

criteria given in Figure 3.15.

EyePACS | Grade-0 | Grade-1 | Grade-2 | Grade-3 | Grade-4
Messidor | Grade-0 Grade-1 Grade-2 | Grade-3
Ternary | Grade-0 Grade-1 Grade-2
Binary Non-Referable Referable
Binary | Normal Abnormal

Figure 3.15: Conversion of five retinopathy grades in EyePACS to quaternary, ternary
and binary classification

From section 3.2, it can be observed that previous works on EyePACS and Messidor
have used the disparate train and test splits and different classification tasks, for example,
Quaternary, Ternary, and Binary (rDR vs nrDR and nDR vs aDR). Furthermore, differ-
ent researchers use different performance metrics to evaluate their methods. Therefore,
in such scenarios comparison of any two works is not directly possible [204]. However,
in this work, extensive experiments are conducted to perform all four classification tasks
mentioned above and report comprehensive results to allow a rough comparison with

some of the published state-of-the-art results on these datasets.
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3.4.3.1 Results of Binary Classification

As discussed above, many previous works focus primarily on binary classification as
nDR vs aDR or rDR vs nrDR grading. This binary classification is useful for large-
scale screening programmes where the only objective is to screen for potential diabetic
retinopathy patients, who can be directed to promptly consult a specialist for a thorough
assessment of disease and appropriate treatment regimen. The criteria to convert 4 or 5
grades into binary grades is given in Fig. 3.15. For binary classification, the number of
images used for training, validation, and testing from EyePACS and Messidor is given
in Table 3.13 and Table 3.14. It can be seen from the tables that there is an extensive

class imbalance between both classes.

Table 3.13: Class distribution for Normal vs Abnormal classification

Grade EyePACS Messidor
Train Validate Test Train Validate Test
Normal 22668 2744 24741 346 49 151
Abnormal 7332 1725 8682 354 51 249
Total 30000 4469 33423 700 100 400

Table 3.15 provides detailed performance metrics for all classification tasks including
nDR vs aDR and nDR vs aDR classification. These results show that for normal vs
abnormal classification using Messidor, the proposed approach outperformed all three
methods from the literature except for accuracy in which Wang et al. [173] performed
slightly better. It should be noted here that Wang et al. performed 10-fold cross-
validation and although their sensitivity of 96 is higher than 89.75 obtained with the
proposed approach, it is calculated at 50% specificity while in these experiments it is
calculated at 90% specificity. Therefore, it can be argued that getting a 90% true positive
rate with less than 10% false positive is rate is better than having a 96% true positive

rate with a 50% false positive rate.

Table 3.14: Class distribution for Referable vs Non-Referable classification

Grade EyePACS Messidor
Train Validate Test Train Validate Test
Non-Referable 28825 4177 31937 453 65 181
Referable 1175 292 1486 247 35 219
Total 30000 4469 33423 700 100 400

Results of rDR vs nrDR classification can also be found in Table 3.15. All networks

performed significantly better for this task than for normal vs abnormal classification on
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Table 3.15: Detailed performance metrics for various classification settings

Results of Binary (Normal vs Abnormal) Classification

Model Accuracy (%) AUC (%) Sensitivity (%) Specificity (%)
EyePACS Messidor EyePACS Messidor EyePACS Messidor EyePACS Messidor
NTS-Net 88.19 88.00 92.72 95.20 88 88.00 72 87.51
SBS Layer 80.11 89.50 86.20 95.17 80 89.50 54 92.07
ResNet-50 82.86 87.75 89.46 95.06 83 87.75 5 90.49
DenseNet-201 82.66 87.75 89.69 95.89 83 87.75 7 88.14
NASNet 82.19 87.25 88.49 95.04 82 87.25 73 89.14
Ensemble 87.74 89.75 93.44 96.50 88 89.75 75 91.44
Vo et. al N/A 87.10 N/A 87.00 N/A 88.2 N/A 85.7
Wang et. al N/A 90.50 N/A 92.10 N/A 96 N/A 50
Soud et. al N/A N/A N/A 89.90 N/A N/A N/A N/A
Results of Binary (Referable vs Non-Referable) Classification
NTS-Net 94.93 93.25 99.10 96.56 95 93 75 94
SBS Layer 95.89 88.75 99.44 94.90 96 89 67 90
ResNet-50 95.08 86.75 98.97 94.95 95 87 81 89
DenseNet-201 94.70 89.25 99.05 95.33 95 89 82 91
NASNet 91.98 87.50 97.45 95.16 92 88 85 89
Ensemble 95.34 89.25 99.23 96.45 95 89 81 91
Lam et. al N/A 74.5 N/A N/A N/A N/A N/A N/A
Vo et. al N/A 89.70 N/A 89.10 N/A 89.3 N/A 90
Wang et. al N/A 91.10 N/A 95.70 N/A 97.8 N/A 50
Seoud et. al N/A 74.5 N/A 91.60 N/A N/A N/A N/A
Results of Ternary Classification
NTS-Net 84.43 84.50 94.89 94.61 84 85 72 94
SBS Layer 76.93 84.50 90.95 94.12 r 85 50 91
ResNet-50 81.23 80.50 93.51 93.79 81 81 74 92
DenseNet-201 79.20 80.25 92.87 94.25 79 80 77 93
NASNet 78.95 81.75 91.93 94.00 79 82 71 89
Ensemble 84.94 85.25 95.28 95.40 85 85 73 92
Lam et. al N/A 68.8 N/A N/A N/A N/A N/A N/A
Results of Quaternary Classification

NTS-Net 82.53 74.50 95.72 91.84 83 75 76 92
SBS Layer 82.00 65.00 95.69 88.43 82 65 67 88
ResNet-50 81.82 70.25 95.53 91.31 82 70 71 89
DenseNet-201 79.38 74.00 95.04 92.26 79 74 75 91
NASNet 73.73 71.75 92.06 90.84 74 72 74 86
Emsemble 83.42 76.25 96.31 92.99 83 76 73 91
Lam et. al N/A 57.2 N/A N/A N/A N/A N/A N/A

EyePACS dataset reaching maximum accuracy around 96% with 99.44% AUC using SBS
layer architecture. For Messidor dataset, both fine-grained classifiers i.e. NTS-Net and
SBS Layer stand out from the coarse-grained classifiers. NT'S-Net outperforms all other

methods in all metrics, whereas ensemble of all methods gives sub-optimal performance
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than individual fine-grained methods. This can happen when the majority of classifiers
used for ensembling have a skewed performance towards the downside and only a few

give standout results.

3.4.3.2 Results of Multi-Class Classification

In addition to serving as a screening tool at primary healthcare facilities, CAD can
also be used in secondary and tertiary healthcare establishments to provide a more
precise diagnosis. Therefore, the complexity of the classification task was gradually
increased from binary to ternary and eventually quaternary classification. Table 3.16
and Table 3.17 show the class distribution in train, validation and test splits for this
multi-class setting for both datasets. For ternary classification, conversion criterion

used by [203, 205] is used in these experiments, as shown in Fig. 3.15.

Table 3.16: Class distribution for 4-Class classification

Grade EyePACS Messidor
Train Validate Test Train Validate Test
0 22668 2744 24741 346 49 151
1 6157 1433 7196 107 16 30
2 685 166 753 155 22 70
3 490 126 733 92 13 149

Total 30000 4469 33423 700 100 400

Performance of individual networks and their ensemble for ternary and quaternary
classification is also summarised in Table 3.15. Ensemble of all models gave a better
performance in this case. It can also be observed that the performance of NTS-Net is
higher than all other individual networks. The accuracy values for both ternary and

quaternary classification are superior to the values reported by Lam et al. [203].

Table 3.17: Class distribution for 3-Class classification

Grade EyePACS Messidor
Train Validate Test Train Validate Test
0 22668 2744 24741 346 49 151
1 6157 1433 7196 107 16 30
2 1175 292 1486 247 35 219

Total 30000 4469 33423 700 100 400

Figure 3.16 shows confusion matrices providing a detailed overview of classification

performance of ensemble in multi-class scenarios. These confusion matrices are consis-

67



CHAPTER 3. ACCURACY OF CAD SYSTEMS

184 | B>0000

=)

20000

=

15000 112923 3295 669 309 |F15000

11 3006 3470 720

10000 10000

]

21 28 181 393 151

True Labels

True Labels

True Labels
2o 5 a3
S L © W

True Labels

5000

1053 46 78 140 469 3

351

9

N v ™
Predicted Labels

Q N q 3 N

Predicted Labels ’

Q N Vv ™
Predicted Labels

(a) 3-Class EyePACS  (b) 3-Class Messidor  (c) 4-Class EyePACS  (d) 4-Class Messidor

N
Predicted Labels

Figure 3.16: Confusion matrices for EyePACS and Messidor for multi-class classification
tasks

tent with challenges of identifying grade 1 and 2 diabetic retinopathy reported in the
literature [203]. For example, in ternary classification the sensitivity for healthy, mild,
and severe diabetic retinopathy is 96.5%, 48.2%, and 70.9% respectively for EyePACS
(Fig. 3.16a) and 96.7%, 10%, and 86.7% respectively for Messidor dataset (Fig. 3.16b).
These statistics conform to established challenges in precisely grading diabetic retinopa-
thy, where grading of the stages on the opposite spectrum of this progressive disease
has higher sensitivity than intermediate stages. Furthermore, mild diabetic retinopathy
appears to be misclassified with healthy images more frequently (80.7% and 88.9% for
EyePACS and Messidor respectively) compared to misclassified with severe disease. This
trend can be explained by the progressive nature of such disease, where visual artefacts
start very slowly and unremarkably and manifest gradually into noticeable features.
Similarly, for quaternary classification the recall for all four grades starting from
healthy class are 95.9%, 45.8%, 52.2%, and 64% for EyePACS dataset (Fig. 3.16¢) and
96.7%, 16.7%, 52.8%, 78.5% for Messidor (Fig. 3.16d). Once again it can be seen that the
disease grades at the opposite sides of the spectrum have higher sensitivities compared
to intermediate stages. Low recall of mild class in Messidor data in both ternary and
quaternary classification tasks can be attributed to the infinitesimally small number of
samples in those classes. Figure 3.17 shows ROC curves for all four classification tasks

for both datasets and all individual classifiers as well as their ensemble.

3.5 Capitalising Non-Visual Metadata to Improve

Classification Accuracy

Many DL-based classification and diagnosis models base their decisions solely on im-
ages and ignore non-visual metadata such as sex, age, and ethnicity of the patients and

anatomical location of the skin lesions, for example. Although the availability of datasets
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Figure 3.17: ROC Curves for all classification tasks

that provide this metadata is still a challenge, recent works on this issue show that incor-
porating metadata, when available with medical images, in DL-based diagnosis systems
may result in improvement of classification and prediction accuracy of DNNs [206]. For
instance, Kharazmi et al. [207] demonstrate that data-driven feature learning by com-
bining dermoscopic images with patient’s profile, which consists of patient’s age, sex,
location of the lesion and its size and elevation, improves sensitivity, specificity, and
accuracy of detection of Basal Cell Carcinoma (BCC). However, the prime question
regarding incorporating metadata into deep learning models is about the way these
metadata should be processed and modelled [208]. Pachecho et al. [209] unsuccessfully
tried to apply Naive Bayes and Decision Tree on metadata but could not achieve any
performance improvement for their skin lesion classification task. Mitani et al. [44] also

exploited metadata along with 114205 RFIs from a private dataset to detect anaemia
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but could not achieve any significant and noticeable boost in their model’s performance.

To explore ways of incorporating non-visual clinical data with medical images, ISIC-
2020 dataset 2 is selected. This dataset consists of around 33000 training images and
around 11000 test images. The task is to classify between melanoma and benign skin
lesions. The ratio of benign lesions to melanoma in the training set is almost 98.25:1.75,
so the data is heavily unbalanced. In addition to image-level disease labels, three types of
clinical metadata are available, namely the age and sex of the patient and the anatomical
location of the lesion. For many data points, one or more of these metadata are missing,
which are replaced by the ‘unknown’ category during metadata preprocessing. To set
a baseline for comparison with metadata incorporation, experiments were performed
using the given training set and many CNN architectures. Various techniques were
employed to handle exceptionally high-class imbalance like weighted loss, stratified batch
sampling, and gradient accumulation. Once the experimental setup was established and
hyperparameters tuned, metadata was introduced into the classification pipeline using

different ways.

Firstly, the metadata was directly concatenated with visual embeddings obtained by
processing a dermoscopic image with convolutional layers of DNNs, as shown in Fig. 3.18.
Fach piece of metadata, e.g. sex, anatomical location, and age, are individually one-
hot encoded with sex represented with a vector of size 3 (male, female and unknown),
anatomical location with a vector of size 7 (six defined locations plus unknown), and age
with a vector of size 18 (unknown age plus seventeen defined age levels with increment
of 5 years). These encodings are then concatenated to form a feature vector of size 28,
which is then concatenated with the visual embeddings extracted by the relevant image
classifier. The results of this type of metadata incorporation are tabulated in Table 3.18

and represented by ’concat’ under the Metadata field.

Secondly, the one-hot encoded metadata was processed through a two-layered Multi-
Layer Perceptron (MLP) network simultaneously as the corresponding image is processed
by CNN. The resulting feature vector is then concatenated with visual embeddings be-
fore they are passed on to the softmax classifier. Figure 3.19 shows the schematic of
this approach. The results of this approach can also be found in Table 3.18 and are
represented by 'MLP’ under Metadata filed.

In these experiments, the inclusion of metadata appears to have mixed results, some-
times improving the accuracy slightly and other times having a negative impact com-

pared to classification with images only. This shows that contextual information is easier

2https://challenge2020.isic-archive.com/
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Figure 3.18: Incorporating metadata in image classifier by direct concatenation with
visual embeddings.

to understand for human medical practitioners, yet tricky to model and incorporate in
DL algorithms. Geesert et al. [206] who won ISIC 2019 challenge with 8 skin lesion

classes also report a similar trend with the incorporation of metadata.
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Figure 3.19: Converting metadata into feature vector by processing them with MLP
before concatenating with visual embeddings.

An ensemble was also taken for the individual predictions of all classifiers listed in
Table 3.18 using all three experimental setups namely, without metadata, direct con-
catenation of metadata, and passing metadata through a neural network. The ensemble
was performed in two ways: averaging individual predictions of the classifiers and taking
maximum voting. Table 3.19 summarises ensemble results of three experiments. No

significant improvement in the classification performance could be achieved.
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Table 3.18: Classification performance of various models with and without metadata

Model Metadata Accuracy F-1 Score AUC Test AUC

None 0.78 0.86 0.8657 0.761
Inception-V3 Concat 0.76 0.85 0.8520 0.7638
MLP 0.74 0.83 0.809 0.7452
None 0.71 0.81 0.7996 0.732
ResNet-18 Concat 0.68 0.79 0.7934 0.7355
MLP 0.69 0.80 0.7796 0.7355
None 0.69 0.80 0.7652 0.7255
ResNet-152 Concat 0.68 0.80 0.7441 0.7332
MLP 0.78 0.86 0.8645 0.7811
None 0.77 0.85 0.8625 0.75
ResNext-50 Concat 0.78 0.86 0.8636 0.7588
MLP 0.76 0.85 0.867 0.749
None 0.79 0.86 0.8765 0.7833
ResNext-101 Concat 0.81 0.88 0.885 0.7991
MLP 0.80 0.87 0.8937 0.7946
None 0.78 0.86 0.8615 0.7946
DenseNet-121 Concat 0.78 0.86 0.8704 0.7652
MLP 0.77 0.85 0.8512 0.7664
None 0.80 0.87 0.8868 0.7938
DenseNet-201 Concat 0.73 0.83 0.8073 0.7394
MLP 0.78 0.86 0.8696 0.7768
None 0.69 0.80 0.7799 0.7401
EfficientNet-B7 Concat 0.70 0.80 0.7785 0.7392
MLP 0.69 0.80 0.775 0.7362

3.6 Discussions

Improving the accuracy of CAD systems is not restricted merely to using advanced
CNN architectures and larger high-quality image datasets. It also requires a deeper un-
derstanding of the task and smart improvisation. For glaucoma detection using RFTs,
realising that OD is instrumental in examining the eye for glaucoma, this chapter pre-
sented a fully automated disc localization method based on faster R-CNN. This method
eliminates the need for the development of dataset-specific empirical or heuristic local-
isation methods by providing robust and accurate localisation across several datasets.
The performance of these fully automated systems sets new state-of-the-art results in

six out of seven publicly available datasets.

The classification of images into diseased and healthy using CNN has also been
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Table 3.19: Performance of best performing individual models versus two types of en-
semble predictions

Metadata Ensemble Method Leaderboard Score

DenseNet-201 0.7938

None Average 0.7795
Voting 0.7755

ResNext-101 0.7991

Concat Average 0.7678
Voting 0.7651

ResNext-101 0.7946

MLP Average 0.7797
Voting 0.7788

investigated. Although some researchers have reported around 95% accuracy on private
datasets or carefully selected a small set of images from public datasets, the classification
accuracy and AUC for publicly available ORIGA dataset has been challenging to improve.
Even though the experiments submitted in this chapter were able to achieve significantly
higher AUC on ORIGA with both random training and k-fold cross-validation, the
detailed performance measures of the classifier on this dataset revealed that the network
has difficulty in learning discriminative features to classify glaucomatous images in this
public dataset. It appears that the fine-grained discriminative details in the images of
this dataset are lost with the increase in the hierarchy of the network. Therefore, more
effort is required to tailor classifiers capable of identifying glaucomatous images with
reliability. The empirical evaluation of glaucoma classification on ORIGA also shows
that reporting only AUC, for datasets with the class imbalance and without pre-defined
train and test splits, does not portray the true picture of the classifier’s performance and

calls for additional performance metrics to substantiate the results.

Diabetic retinopathy detection using retinal fundus images is a fine-grained classifica-
tion task. The biomarkers of this disease on retinal images are usually very small in size,
especially for early stages, and are scattered all across the image. The ratio of the patho-
logically important region to the whole input volume is therefore minuscule. Due to this
reason traditional deep CNNs usually struggle to identify regions of interest and do not
learn discriminatory features well. This problem of small and distributed visual artefacts
coupled with the unavailability of a large publicly available high-quality dataset with rea-
sonable class imbalance makes diabetic retinopathy detection particularly challenging for

DNN models. However, fine-grained classification networks have a high potential to pro-
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vide standardised and large-scale initial screening of diabetic retinopathy and help in the
prevention and better management of this disease. These networks are equipped with
specialised algorithms to discover the important region from the image and pay heed to
learning characterising features from those regions. The results recorded in this chapter
exhibit superior performance for diabetic retinopathy detection on binary, ternary and
quaternary classification tasks than many previously reported results. However, due to
hugely different experimental setups and the choice of performance metrics, it is unfair to
draw a direct comparison with any of the cited research. Nevertheless, a wide spectrum
of performance metrics and detailed experimental setup are provided for comparison by
any future work.

In addition to understanding the classification task, for example, visual biomarkers
and their spatial distribution for glaucoma and diabetic retinopathy, utilising non-visual
metadata can also be useful for improving the accuracy of CAD systems. However,
availability of such medical image datasets and exploring effective modelling and incor-
poration methods in CNN architectures are significant challenges in effective use of such
metadata [44]. ISIC 2019 Skin Lesion Classification Challenge 3 invited researchers to
utilise available metadata with skin images. However, all top-ranking entries in the com-
petitions were unable to propose an incorporation strategy that would yield substantial
improvement in the performance of skin lesion classifiers. Close collaboration with medi-
cal practitioners to understand the way these metadata are capitalised by doctors could
help AT researchers and can also aid in paving the way for efficient assimilation of this

vital modality.

3https://challenge2019.isic-archive.com/
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Uncertainty Estimation in CAD

espite remarkable performance of Al in many classification tasks [107, 210],

including sensitive and critical automated decision-making scenarios like au-

tonomous driving [211], financial systems [212], and medical image analysis for
disease prediction [32-34], there is justifiable reluctance by the users of these models to
trust an algorithmic prediction without any supplementing estimate of algorithm’s un-
certainty. In medical diagnosis, human diagnosticians may often refrain from providing
any concrete diagnosis if they are not sufficiently confident about a given case. They
may require additional information about the case, run some more tests or seek consul-
tation from their fellow doctors. In CAD, no such facilities are usually at the disposal of
AT algorithms. Image classifiers trained using the supervised learning paradigm are pro-
vided with a limited number of distinct classes and are expected to produce a prediction
for each and every test sample. Even when these CAD systems are provided with an
ambiguous or completely unknown case, for which the classifier was not trained at all,
they lack the liberty to say, "Well! T don’t know”. In such cases, these algorithms will
categorise an unknown sample to the 'nearest’ class known to them. Such compulsive
behaviour of traditional medical image classifiers may have deep and unwanted reper-
cussions on diagnosis and prognosis. Therefore, there has been growing advocacy for the
need for uncertainty estimation in such DSS [213], in order to successfully deploy these

solutions in the detection and diagnosis of diseases.
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4.1 Problem Definition

Convolutional Neural Networks gained significant attention due to their parameter effi-
ciency, in contrast to other deep learning models like densely-connected MLPs, resulting
in comparatively better generalisation performance. They are particularly powerful in
analysing visual modalities like images and videos [7] but have also proved their worth in
time-series analysis where they have been used for classification [214, 215] and anomaly
detection [216, 217].

The fundamental principle behind conventional CNNs is to learn the optimal combi-
nation of network parameters (weights and biases) that can capture an encoded represen-
tation of the training data. These conventional CNNs use point-estimates to represent
network parameters and although they work astonishingly well in most image recognition
tasks, they have a large insatiable appetite for data [218]. Additionally, the softmax
function tips the odds in favour of one class by squashing classification probabilities for
others. Therefore, often it results in overly confident predictions even when the network
is completely wrong. This compulsive behaviour of traditional point-based neural net-
works to always be relentlessly assertive in their prediction raises serious concerns in
many crucial application areas like medical image analysis, security, autonomous driv-
ing, financial transactions, and IoT (Internet of Things) based human health monitoring.
Also, the very nature of these point-based classifiers prohibits them to associate uncer-
tainty with their predictions, which is a highly desired characteristic of any Al-based

classifier.

Bayesian estimation introduces a probabilistic perspective to the neural networks
and addresses many shortcomings of traditional point-based deterministic neural net-
works. It represents each parameter with a probability distribution instead of a single
point-estimate. As a result, Bayesian Neural Networks (BNNs) are able to learn effec-
tively from a relatively small amount of data and are fairly robust to overfitting [219].
They can provide an inherent regularisation effect [220] by constraining the network
parameters within a distribution instead of allowing them to grow out of bounds. Most
importantly, Bayesian inference can permit the estimation of the network’s uncertainty
about any prediction. However, a full Bayesian estimation over all network parameters
is computationally expensive, and finding true posterior probability is intractable [35].
These limitations are normally addressed by employing various tricks like Markov Chain
Monte Carlo (MCMC) sampling [221] and Variational Inference (VI) [222], or a combina-
tion of the two [223] to approximate the true posterior with a manageable distribution.

A CNN trained using Bayesian estimates for network parameters is shown to lag its
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counterpart trained using point-estimates in terms of classification accuracy [219, 224].

In this chapter, the need for uncertainty estimation with CAD is recognised and a
potential solution is proposed by acknowledging specific merits of each training approach
discussed above and combining them into a hybrid training paradigm. This hybrid ap-
proach integrates deterministic CNNs, where each parameter assumes only one numerical
value, with probability-driven Bayesian CNNs, where each parameter may take any value
drawn from a probability distribution characterised by a mean and a standard deviation.
The probability distribution is learnt for each parameter during training. This proposed
training method provides an estimate of uncertainty, using a Bayesian classifier, without
compromising on classification accuracy owing to a deterministic feature extractor. It
also captures maximum weight configurations from small datasets while still remaining
computationally manageable. The approach is tested on medical image datasets from
ophthalmology and dermatology. To show that the performance of this method is not
limited to MIA or image analysis in general, it is evaluated on different classification
datasets including benchmark image datasets and time-series datasets. The proposed
hybrid method is shown to be superior to both fully deterministic and fully Bayesian

CNN approaches in terms of classification accuracy.

4.2 Related Work

Although applications of the Bayesian method into neural networks have been investi-
gated for many decades [225-227], it was only after Blundell et al. [228] proposed Bayes
by Backprop that training of deep neural networks was made possible using Bayesian
estimation. This method of variational inference allowed backpropagation of so-called
Expected Lower BOund (ELBO) loss and regularising weight distributions. A CNN
trained using the Bayesian method was proposed by Shridhar et. al [224] as a fundamen-
tal construct for other network architectures. They used Bayes by Backprop for training
CNNs and reported comparable results on many benchmark datasets.

Acknowledging the excessive computational cost of Bayesian models, Gal and Ghahra-
mani [229] proposed a Monte Carlo dropout method to approximate Bayesian inference
in deep Gaussian processes. The method is equivalent to performing multiple forward
passes through the network and taking the average of results to model the uncertainty
of the network. Combining deterministic and probabilistic models in various fashions
has also been studied before. Tang and Salakhutdinov [230] pointed out that the condi-
tional distribution p(Y|X) does not need to be unimodal, as normally assumed by MLPs,

but can also be represented as a multimodel output distribution for many structured
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prediction problems. They proposed a hybrid Sigmoid Belief Network (SBN) with some
stochastic hidden variables and some deterministic hidden variables and achieved supe-
rior performance on synthetic and facial expression datasets. Similarly, other neural
networks with partially Bayesian parameters have been proposed for regression tasks as
an alternative to Gaussian Processes [220, 231], which do not scale well with the num-
ber of training samples. Hybrid optimisation of MLPs [232, 233] has also been studied
in depth. Furthermore, Bi-level CNNs have been employed to prove the competitive
advantages for the point-based and probabilistic interval prediction [234].

Kwon et al. [235] recognised the importance of uncertainty quantification especially
in the medical domain and proposed to calculate it by splitting the uncertainty into
aleatoric uncertainty, which corresponds to model’s uncertainty; and epistemic uncer-
tainty, which represents inherent noise in the data. Kendall and Gal [236] examined the
advantages of modelling epistemic uncertainty as compared to aleatoric uncertainty in
deep Bayesian models. The problem of estimating uncertainty has been addressed in a
variety of ways, for example, Out-Of-Distribution (OOD) sample detection [237, 238] and
density estimation using flow-based models. Normalising flows and autoregressive models
have been successfully combined to produce state-of-the-art results in density estimation
via Masked Autoregressive Flows (MAF) [239], and to accelerate WaveNet-based speech
synthesis to 20x faster than real-time [240] via Inverse Autoregressive Flows (IAF) [241].
Huang et al. [242] presented Neural Autoregressive Flows (NAFs) and demonstrated that
these models are universal approximators for continuous probability distributions, and
their greater expressivity allows them to better capture multimodal target distributions.
Adding on to their work, Cao et al. [243] proposed Block Neural Autoregressive Flow
which is a much more compact universal approximator of density functions, where a
bijection is directly modelled using a single feedforward network. Dinh et al. [244] in-
troduced a set of transformations called real-valued Non-Volume Preserving (real NVP)
as a tractable and expressive way to modelling high-dimensional data. Ardizzone et
al. [245] extended real NVP architecture and argued that their proposed Invertible Neu-
ral Networks (INNs) are well suited for determining full posterior parameter distribution
conditioned on training data. They noted that alternating backward and forward train-
ing passes and accumulating gradients from both sides before updating parameters allow
efficient training. Kingma et al. [246] advanced flow-based generative models [247], which
are useful for calculating exact log-likelihood, by performing exact latent-variable infer-
ence and parallelising training and synthesis pipelines. Their Generative flow (Glow)
model uses an invertible 1 x 1 convolution and is shown to be capable of efficient and

accurate synthesis of large images.
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Laves et al. [248] compared Baysian ResNet and Variational ResNet trained for de-
tecting various retinal disorders using Optical Coherence Tomography (OCT). They eval-
uated these models for integrating prediction uncertainty into medical image classifiers.
They found that the models showed up to 8 times higher uncertainly for misclassifica-
tion as compared to correct classification. QuickNAT [249] is a method based on Fully
Convolutional Neural Networks (FCNN) for quick segmentation of neuroanatomy us-
ing MRI scans. This method samples multiple segmentations to estimate segmentation
uncertainty as a means to ensure quality control. In another study, Laves et al. [250]
used four DL-based architectures to segment seven regions in the human larynx. They
used stochastic inference to obtain an approximate distribution of softmax probabili-
ties. The variance of this distribution is then used to model uncertainties of individual

architectures.

4.3 Hybrid Between Deterministic and Probabilistic
CNNs

A CNN primarily consists of two main modules: a convolutional feature extractor and
a dense classifier. The proposed network consists of a set of convolutional layers trained
with point estimates followed by fully-connected layers trained using Bayesian estimates.
It provides a trade-off between the high accuracy of deterministic models and the un-
certainty estimation of Bayesian models. It also restricts the parameter space of the

network as compared to fully Bayesian models because the probability distribution is

: o
/ ] 1240 124110 Point Estimated Bayesian Estimated
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1

K Convolutional Feature Extractor / FC Classifier

Figure 4.1: The proposed hybrid model. Convolutional feature extractor is trained
separately using point estimates. The parameters of the convolutional layers are then
frozen and Bayesian classifier is retrained
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placed only on the parameters of the classifier part of the network. Figure 4.1 shows
a schematic diagram of the proposed hybrid model. The network initially trains to op-
timise parameters for both convolutional feature extractor and dense classifier as given
below in equation 4.1.

1

W W = argminWe, Wi Y L(vewnoinn)y), (4.1)

|%| X)X x¥
where £ denotes the loss function, ® represents the convolutional part of the network
parameterised by #¢ and ¥ represents the dense layers parameterised by #p.

Once the network is trained using traditional point-estimates, fully connected lay-
ers are reinitialised with random variables following normal distribution and retrained
using Bayesian estimation. The parameters of the convolutional feature extractor are
frozen throughout this retraining. This whole training paradigm allows to capitalise on
economically learned features by deterministic convolutional block and use expensive
Bayesian inference only to approximate posterior distribution, which can then be used
for uncertainty estimation. Mathematically, the learning of dense classifier of the hybrid

model is given by equation 4.2

05, = argmin@D% > ff(‘l’((b(x; 7//C*);6D),y), (4.2)

X)) eX x¥
where W represents the Bayesian layers learned through Bayes by Backprop and 6p
denotes the distribution of weights. Since the weights are described by a distribution
instead of point-wise estimates, £, in this case, denotes the ELBO loss. Convolutional
feature extractor trained with point-estimates learns crisp features of the input data
while probabilistic classifier allows to sample from the posterior distribution and offers

an insight into network’s confidence.

4.3.1 Uncertainty Estimation Algorithm

After this retraining is finished, the inference is performed by passing test samples a
number of times from the network. Since the parameters of the last fully-connected
layers of the network are sampled from a probability distribution, each pass of the same
test sample gives a different prediction. These output predictions are used to draw
a posterior distribution and help estimate the network’s uncertainty. The complete
algorithm used for this task is given in Algorithm 1.

For uncertainty analysis in Bayesian and hybrid architectures during inference, the

algorithm works by sampling 10 classifier models from Bayesian weights distribution for
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Algorithm 1 Uncertainty Estimation

Inputs modelOutput: Array containing softmax probabilities of all images for all
models

allPredictions: Array containing class predictions for all images and for all models
allTargets: Array containing actual targets for all images and for all models
percentile: A scalar parameter to ascertain uncertain images to ignore

consensus: A scalar parameter representing minimum number of confident models to
reach certain prediction

Outputs certainAccuracy: Accuracy when model is certain

uncertainlmages: A percentage of uncertain images filtered out

1: procedure ESTIMATEUNCERTAINTY

2: for each model i in allModels do
3: for each image j in alllmages do
4: differences = differences of top two classes’ probabilities in
modelOutputlillj]
5: end for
6: end for
7 threshold = calculate for each model by filtering percentile number of images
from dif ferences of each model and average them.
8: for each image j in alllmages do
9: Let confPred =0, uncertain=0, confModels =0 be new variables
10: for each model i in allModels do
11: if dif ferencesli][j]l > threshold then
12: if allPredictionsli][jl == allTargets[i][j] then
13: increment confModels
14: end if
15: end if
16: end for
17: if confModels>= consensus then
18: increment confPred
19: else
20: increment uncertain
21: end if
22: end for
23: return confPred/(len(alllmages)—uncertain), uncertain/len(alllmages)

24: end procedure

every test sample and taking their output predictions. This way, instead of a single
prediction, a set of predictions are obtained representing a probability distribution on

the network’s output. This set of predictions are normalised in the [0-1] range using min-

81



CHAPTER 4. UNCERTAINTY ESTIMATION IN CAD

max normalisation for direct comparison. Predictions for the top two classes are taken
and the difference in their values is recorded. After having the normalised differences, a
distribution of all these differences is built and a percentile value (40% in this case) is used
to automatically select a threshold for the measure of uncertainty. The percentile value
of 40% is determined heuristically. This parameter can be considered as a knob to control
how confident predictions are desired in any given application area. In circumstances
where 'no prediction’ is deemed better than a 'wrong prediction’ — medical diagnosis, for
example — this value can be raised to ensure that only the most confident predictions
are given by the network. For other, relatively less critical, scenarios this knob can be
adjusted accordingly. The underlying assumption for this uncertainty estimation is that
if the network is able to recognise a given test sample then the difference in softmax
probabilities of the top two classes should be greater than the threshold and the model
is regarded as certain about prediction; otherwise, it is considered uncertain. If a test
sample is regarded as certain by more than half models — represented by consensus

parameter — using simple majority voting then it is output as a fairly certain prediction.

4.3.1.1 Time and space complexity analysis

The hybrid model uses fewer parameters than its Bayesian counterpart as is evident
from Table 4.1. This table shows the number of trainable parameters in each method
and training time per epoch for some of the datasets. The hybrid model does not incur
any additional cost in terms of network parameters or training time for combining the

benefits of both deterministic and Bayesian methods.

Table 4.1: Time and space requirement of fully deterministic, fully Bayesian and hybrid
models for some datasets

Dataset Network Parameters (Millions) Execution Time per epoch (s)
. .,. Bayesian Hybrid . ... Bayesian Hybrid
Deterministic [224] [Ours] Deterministic [224] [Ours]
MNIST 2.457 4.914 2.459 15 70 27
CIFAR-10 5.851 11.703 9.528 25 129 49
ISIC-Subset 58.294 116.587 112.840 338 832 602
ORIGA 58.29 116.579 112.831 5 16 6
Electric Devices 0.655 3.277 0.577 2 16 3
Mallat 3.801 33.423 3.486 2 10 3
Thorax-1 2.726 24.589 2.569 2 10 5

The time complexity of the Algorithm 1 is O(2M x S), where M represents the number

of models sampled and S denotes the number of test samples. Also, the algorithm

82



4.3. HYBRID BETWEEN DETERMINISTIC AND PROBABILISTIC CNNS

computes in constant space since, regardless of the number of total models and test

samples, only one model and one test sample are loaded at any given time.

4.3.2 Datasets for Evaluating Hybrid CNN

A total of 13 datasets of disparate modalities and from diverse areas of application
are used to ascertain the viability of this proposed hybrid CNN architecture. A brief

description of all the datasets used and the overall experimental setup is given below.

Table 4.2 gives an overview of all the datasets used in this work. Standard benchmark
image datasets, as well as challenging fine-grained medical image classification datasets
and many time-series datasets, are selected so that the validity of the approach on a

broad range of datasets may be extensively investigated.

Table 4.2: Distribution of datasets used to evaluate the proposed architecture

No. of No. of Samples
Classes Train Test Total

Datasets Modality

Image Datasets

MNIST Grey Images 10 60k 10k 70k
CIFAR-10 Color Images 10 50k 10k 60k
Medical Image Datasets
ORIGA Color Retinal Fundus Images 2 520 130 650
ISIC-Subset Color Clinical Skin Images 3 5201 600 5801
Time Series Datasets
Fish Image-derived data 7 175 175 350
ShapesAll Image-derived data 60 600 600 1200
Plane Sensor data 7 105 105 210
TwoPattern Simulation data 4 1000 4000 5000
ECG5000 ECG data 5 500 4500 5000
Medicallmages Image-derived data 10 381 760 1141
ElectricalDevices Device data 7 8926 7711 16637
Mallat Simulation data 8 55 2345 2400
ECG Thorax1 ECG data 42 1800 1965 3765
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4.3.2.1 Image Datasets

The detail of the ORIGA dataset is given in chapter 2.2.1. It provides clinical ground
truth to benchmark segmentation of optic disc and classification of healthy and glauco-
matous images. Since this dataset is very small and no predefined train and test splits
are given, 5-fold cross-validation is used. The second dataset of medical images was taken
from ISIC Archive 2018 version !. It consists of around 24000 clinical and dermoscopic
images of skin lesions categorised into 7 classes. Some of the classes in this dataset have
as few as 122 images, therefore, a subset with the three largest classes namely Benign
Keratosis-like Lesions (BKL), Melanoma (MEL), and melanocytic Nevi (NV) is taken
and randomly divided into training and test sets.

Two of the most common benchmark datasets i.e. MNIST [160] and CIFAR-10 [251]

are also used. For these datasets, standard pre-defined train and test splits are used.

4.3.2.2 Timeseries Datasets

Nine datasets from UCR archive [252] are also selected for evaluation of this approach.
The time-series datasets were generated based on different modalities including device
usage, sensors data, ECG, motion sensor, and simulation, etc. Each time-series contains
a different number of classes; the number of observations also varies in each dataset. All

datasets are already divided into train and test sets by the publisher.

4.3.3 Preprocessing

To preprocess medical image datasets, histogram equalisation is applied to enhance con-
trast and normalise brightness. Different data augmentation techniques like rotations,
flipping, and random crops are also utilised to increase the dataset size. In addition
to preprocessed images, original images are also kept in the dataset. Data augmenta-
tion was done keeping in mind the class ratio, such that the minor class can have more
augmentations and more copies generated. On benchmark image datasets (MNIST and
CIFAR-10), random crop and normalisation by mean subtraction are applied. Time-

series datasets are used without any preprocessing.

4.3.4 Experimental Setup and Hyperparameter Selection

All of the image datasets were trained and compared with a similar experimental setup. A

5-layer convolutional block is used as baseline CNN. However, experiments with varying

Ihttps://challenge2018.isic-archive.com/
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depths and breadths of CNN showed that the approach is fairly scalable to more advanced
CNN architectures. This CNN is trained using Maximum Likelihood Estimation (MLE)
for 60 epochs with a learning rate of 1073, weight decay of 5x 1074, and batch size of
32. For probabilistic models, the same setup is used as described above but instead
of using point estimates the convolutional and fully connected layers are trained with
distribution-based weights using Bayes by Backprop for 60 epochs.

In the hybrid approach, a fully-connected classifier is employed with a frozen con-
volutional feature extractor, pre-trained using MLE, and is fine-tuned using Bayesian
estimation for 60 epochs with similar parameters. Two hyperparameters used in Al-
gorithm 1, i.e. percentile and consensus can be selected according to the use case
requirements. In critical application areas, for example, medical image diagnosis or
stock market prediction, where there is little room for incorrect classification, higher
values of these parameters can be selected to ensure only the most certain predictions
are given by the network. In other applications, a relaxed criterion for uncertainty es-
timation might be acceptable. In these experiments, percentile =40% and consensus
of more than half models (i.e. 6 models) is used. These values were selected empirically
and they worked well in all 13 datasets of different kinds. It should be emphasised here
that, for a given dataset, the same underlying architecture (number, width, and depth
of convolutional layers and size of dense layers) is used in all three training paradigms,
i.e. fully deterministic, fully Bayesian, and Hybrid, to ensure fair comparison among
three approaches.

For time-series modality, a CNN with two convolutional layers is used, each followed
by a max-pooling layer for deterministic model analysis. On top of that, two fully
connected layers were added as the classifier. For probabilistic and hybrid approaches,

the same settings are kept as explained before.

4.3.5 Results and Analysis

Table 4.3 summarises classification accuracies obtained by traditional fully deterministic
CNN, Bayesian CNN [224] and the proposed hybrid CNN (HCNN). The table shows
that the HCNN outperforms not only purely Bayesian CNNs but also their deterministic
counterparts in 9 out of 13 datasets while giving comparable results on the rest of them.
Even when the hybrid approach lagged other methods in classification accuracies, the
difference was very small and came at no additional cost in terms of time or number of
parameters as shown in Table 4.1. The results in Bayesian Accuracy field in Table 4.3

are generated by running experiments using the implementation of Shridhar et al. [224]

85



CHAPTER 4. UNCERTAINTY ESTIMATION IN CAD

Table 4.3: Comparison of fully deterministic, fully Bayesian, and the proposed hybrid
models on different datasets without using uncertainty estimation

Deterministic Bayesian [224] Hybrid [Proposed]

Datasets Accuracy (%) Accuracy (%) Accuracy (%)
Benchmark Datasets
MNIST 99.0 99.01 99.3
CIFAR-10 88 72.0 88.7
Medical Image Datasets
ORIGA 76 74.4 80.3
ISIC-Subset 74 65.5 75.7
Time Series Datasets
Fish 85.1 80.7 84.7
ShapesAll 67.0 70.9 72.3
Plane 97.0 96.7 95.1
TwoPattern 89.0 81.0 89.4
ECG5000 92.0 93.2 91.9
Medicallmages 69.0 62.4 64.7
ElectricalDevices 55.0 54.0 56.6
Mallat 88.0 82.5 89.3
ECG Thorax1 90.0 89.1 91.3

for Bayesian CNNs.

Figure 4.2 shows output probabilities of deterministic, Bayesian, and hybrid models
for various correctly classified and misclassified images from CIFAR-10 and ORIGA. It
can be observed from Fig. 4.2 that when the hybrid model was unable to make a correct
prediction (subfigures (b), (d), (e), and (h)), it associated relatively smaller probability
scores with its misclassification than its competing models who also misclassified but did
so with overconfidence. For example, consider Fig4.2 (h) where the original label of the
image is healthy. Although the hybrid model failed to correctly classify this image it
predicted glaucoma with only a 74.14 probability score. In contrast, deterministic and
Bayesian models also misclassified this image but predicted glaucoma with 95.97 and
95.37 probability scores, respectively. Additionally, in cases where both deterministic
and Bayesian models failed to correctly classify an image and hybrid network succeeded
(subfigures (c), (f), and (g)), it predicted very cautiously with reasonable probability
scores. 'The probability scores of the hybrid model were at par with the other two

methods for relatively easy examples as shown in subfigure (a).
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Figure 4.2: An analysis of confidence comparison for all three approaches on various
samples of CIFAR10 and ORIGA datasets. The actual class is mentioned on the left
side of each image in bold vertical text

4.3.5.1 Uncertainty Estimation

Since the deterministic model does not have the intrinsic ability to estimate uncertainty
— although some works like [229, 253] have used deterministic models and applied some
post-processing to get confidence estimates — this section focuses on Bayesian and Hybrid
models only and compares their performance. As the classifier part of both Bayesian and
Hybrid methods are trained using Bayesian estimates, both networks provide posterior
distribution which is used to estimate uncertainty using Algorithm-I. Table 4.4 compares
the accuracies of both training methods before and after using Algorithm 1. In this ta-
ble, Overall Accuracy refers to the accuracy of the model before applying Algorithm 1,
whereas Certain Accuracy refers to the accuracy on the predictions for which the net-
work was certain according to Algorithm 1. When the algorithm is not sure about the

prediction it tags the test sample as uncertain.

It can be observed from Table 4.4 that the accuracies for both fully Bayesian and
hybrid approaches improved after the uncertainty estimation algorithm was applied.
The accuracy of the hybrid approach is higher than the fully Bayesian model especially
when it was fairly certain about the predictions. However, in the case of medical image
datasets, HCNN outperformed the Bayesian approach even without uncertainty analysis.
Removing uncertain predictions from all predictions, accuracies for both Bayesian and
hybrid models improved with HCNN outperforming by up to 15% for fairly confident

predictions. Figure 4.3 shows some examples of images that were considered certain
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Table 4.4: Comparison of fully Bayesian and the proposed hybrid models on different
datasets with uncertainty estimation

Bayesian Model [224] Hybrid Model
Overall Certain Uncertain Overall Certain Uncertain
Datasets
Accuracy Accuracy Samples Accuracy Accuracy Samples
(%) (%) (%) (%) (%) (%)
Image Datasets
MNIST 99.01 99.17 20.5 99.26 99.28 9.6
CIFAR-10 65.41 72 66.9 88.70 91.11 46.2
Medical Image Datasets
ORIGA 74.42 77.10 35.65 80.31 77.21 38.7
ISIC-Subset 58.15 65.48 34.3 75.67 81.5 53.8
Time Series Datasets
Fish 80.7 92.4 9.1 84.7 100.0 6.8
ShapesAll 70.9 71.8 1.0 72.3 72.9 1.3
Plane 96.7 98.9 0.95 95.1 97.1 0.0
TwoPattern 81.0 84.4 25.0 89.4 91.3 24.9
ECG5000 93.2 93.8 36.2 91.9 93.9 36.8
Medicallmages 62.4 62.9 0.13 64.7 66.5 0.13
ElectricalDevices 54.0 55.8 14.6 56.6 57.9 14.8
Mallat 82.5 84.2 35.6 89.3 92.1 37.7
ECG Thorax1 89.1 90.9 14.9 91.3 91.6 14.8

or uncertain by both the Bayesian model (top row) and hybrid model (bottom row).
It is very interesting to observe that the algorithm enabled both models to confidently
categorised those images that had clearly defined optic disc border (black dotted elliptical
boundary drawn on images to highlight disc boundary). In both training approaches the
images where the boundary of the disc dwindled, for example, because of papilledema
(Fig. 4.3d and Fig. 4.3h) or optic atrophy (Fig. 4.3b and Fig. 4.3f), were filtered out and

the models did not predict on these images because of high uncertainty.

Figure 4.4 depicts the trade-off between the number of uncertain samples and classi-
fication accuracy for both Bayesian and Hybrid models. It can be seen from this figure
that the accuracy of the networks increases with the increase in the percentage of un-
certain samples. Though one can argue from these curves that since difficult samples
have been skipped by the classifier and prediction is given for easy samples only, that
is why there is a positive trend in the accuracy with a growing number of uncertain
samples. However, in many crucial application areas, it is better to abstain from giving
any half-cooked prediction than making a potentially costly mistake. In medical image

analysis, for instance, such non-compulsive classifiers can reduce the workload of human
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Figure 4.3: Comparison of output probabilities for fully Bayesian and hybrid training

approaches on ORIGA dataset

experts by screening relatively easy disease patterns and allowing the physicians to focus

their time and energy only on the most challenging of the cases.
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Figure 4.4: Trade-off between number of uncertain samples and the accuracy on re-
maining predictions. The threshold on x-axis is calculated using percentile parameter as

shown in Algorithm 1
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4.4 End-to-End Training of Hybrid CNN

The method described above in section 4.3 has a practical limitation regarding train-
ing the architecture. The model needs to be trained in two stages: first, training the
whole architecture using cross-entropy loss, and second re-training probabilistic clas-
sifier using ELBO loss. To remove this limitation and enable the proposed hybrid
CNN train smoothly in a single pass, the hybrid architecture shown in Fig. 4.1 is re-
implemented. The traditional fully-connected layer is replaced with an analogue that
effectuates Bayesian variational inference by assuming that the convolutional kernels or
bias, or both, are drawn from probabilistic distributions. This layer implements Local
Reparametrisation Estimator (LRE) proposed by Kingma et al. [254] which reduces the
variance of stochastic gradients for variational Bayesian inference of a posterior over
layer’s parameters. This parametrisation technique uses a Monte Carlo approximation
of the distribution on kernel’s and bias’s hidden units. However, instead of multiplica-
tive parametrisation as employed in [254], this layer uses additive noise reparmeteri-
sation [255] which is shown to achieve faster convergence and reduce the variance of
stochastic gradients.

Using Local Reparametrization Estimator in the dense layers of an otherwise tradi-
tional CNN allowed training the parameters of convolutional layers with point-estimates
and the parameters of the dense classifier with probabilistic kernels in a single train-
ing run. The loss function used to train the whole network in the backward pass is

categorical cross-entropy,

C
CEposs = — Z tiZOg(pi) (4'3)

i=1
where t; and p; are ground-truth and network predictions, respectively, for each class
i in C. In order to update the parameters in the probabilistic dense layer forward KL

divergence is used,

P (x)) (4.4)

D (PIlQ) = ¥ log[—=
xL(PlIQ) xezxog(Q(x)

where for all random variables x € X, P(X) is the true distribution, and Q(X) is its approx-
imated distribution. KL Divergence calculates the weighted average on the difference
between P(X) and Q(X) probability distributions at x.

The datasets given in Table 4.2 are used along with the G1020 dataset described in
section 2.3 to perform another set of experiments with this new HCNN. The experiments

for fully deterministic and fully Bayesian counterparts are also repeated with slight
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modifications for hyperparameters. For image datasets, the CNN architecture consists of
six convolutional layers and two dense layers, while for time-series datasets the network
has two convolutional layers and two dense layers as used in section 4.3 above. For

uncertainty estimation, Algorithm 1 is used.

4.4.1 Experiments and Results

Table 4.5 shows the comparison of the accuracy using deterministic CNN, BCNN, and
HCNN. The hybrid network outperforms the other two on medical image datasets and
does far better than the Bayesian network on benchmark and time-series datasets. Al-
though the accuracies of deterministic CNN are better than the Hybrid approach on most
datasets, yet in many sensitive application areas higher prediction accuracies without

any measure of uncertainty are of little practical value.

Table 4.5: Comparison of Accuracy (%) of deterministic, Bayesian, and proposed hybrid
models on different datasets without using uncertainty estimation

Dataset Deterministic Bayesian Hybrid

Medical Image Datasets

ORIGA 76.92 73.84 80.76
ISIC-Subset 78.79 42.37 82.73
G1020 81.86 62.74 76.00
Benchmark Image Datasets
MNIST 99.66 98.54 99.42
CIFAR-10 85.26 58.04 80.14
Time Series Datasets
Electrical Devices 64.93 59.11 61.08
Mallat 93.98 81.96 84.35
ECG5000 93.75 93.60 94.24
Medical Images 69.08 62.23 66.05
Fish 88.00 56.57 84.00
Shapes All 75.00 54.17 70.33
Plane 96.19 94.28 96.20
Two Pattern 88.12 84.20 85.30

The performance of the new HCNN shines brightly when compared to the other
network that allows uncertainty estimates, namely BCNN. Here, the hybrid approach
does not only give higher classification accuracies compared to BCNN but also more

confident predictions as shown in Table 4.6. Using the hybrid approach resulted in a
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smaller percentage of samples that the model was not confident about and was classified
as uncertain. Additionally, the certain accuracy, which is the accuracy of the confi-
dent predictions, is higher for the hybrid approach than its Bayesian counterpart for all
datasets. This implies that the hybrid model gives fewer confident predictions that are

misclassified.

Table 4.6: Comparison of Bayesian and Hybrid models on different datasets before and
after uncertainty estimation.

Bayesian Model Hybrid Model

Dataset Uncertain Certain Uncertain Uncertain  Certain  Uncertain
Accuracy Accuracy Samples Accuracy  Accuracy  Samples

Medical Image Datasets

ORIGA 73.84 72.88 9.23 80.76 83.00 23.08
ISIC-Subset 42.37 53.73 18.78 82.73 87.59 21.82
G1020 62.74 67.36 6.87 75.98 76.92 17.16
Benchmark Image Datasets
MNIST 98.54 99.74 5.64 99.42 99.87 2.2
CIFAR-10 58.04 68.25 28.30 80.14 91.76 27.4
Time Series Datasets
Electrical Devices 59.11 62.43 9.76 61.08 66.63 16.31
Mallat 81.96 83.22 3.41 84.35 86.01 4.01
ECG5000 93.60 93.90 0.6 94.24 94.15 0.49
Medical Images 62.23 66.33 8.55 66.05 69.78 8.54
Fish 56.57 61.68 4.57 84.81 84.00 9.71
Shapes All 54.17 73.32 33.2 70.33 82.56 24.5
Plane 94.28 94.12 2.86 96.20 96.20 0.00
Two Pattern 84.20 83.79 0.65 85.89 85.30 0.6

4.4.2 Analysis

On all medical image datasets, it was observed that HCNN by far outperformed its
Bayesian counterpart. However, the more crucial observation is that HCNN gave not just
higher accuracy but a higher certain accuracy justifying that the hybrid implementation
can be used for confident CAD. On the ORIGA dataset, HCNN gave better accuracy
along with higher precision and recall. The HCNN had a precision of 0.69 and a recall of
0.61, higher than both the deterministic and probabilistic models, which had precision
and recall values of 0.64 and 0.57, and 0.50 and 0.50 respectively. What is of greater

significance is the finding that the precision and recall values were fairly high for the
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malignant images in ISIC-subset. The HCNN had a precision of 0.84 and recall of 0.94
on the malignant images, showing that the model did fairly well to correctly classify
malignant tumours.

The HCNN also gave high certain accuracy. A deeper analysis of the results showed
that for confident results that were incorrectly classified, the model misclassified nor-
mal images as glaucoma more often than it misclassified glaucoma images as normal.
This observation was consistent across both the Bayesian and the hybrid architectures.
However, the ratio of confidently misclassified normal images to confidently misclassified
glaucoma images is 3:1 on BCNN whereas the same is 16:1 on HCNN. This suggests
that even when HCNN gave wrong confident predictions, it wrongly predicted normal
images as glaucoma rather than the opposite. A false positive at an early screening of a
disease can be corrected by advanced testing before prognosis. However, a false negative
is more likely to result in negligence of a serious condition.

On the ISIC dataset, BCNN gave a low certain accuracy suggesting that the model
could do better in correctly and confidently making predictions. However, HCNN showed
more promising results, giving high certain accuracy. Moreover, while BCNN had a
precision of 53.2 and a recall of 52.4, the hybrid model far exceeded this performance
standard with a precision of 82.2 and recall of 81.1. Higher precision and recall values of
the hybrid model corroborate that the hybrid model is a suitable candidate for realising

non-compulsive confident CAD systems.

4.5 Discussion

Practical applications of DL-based medical image classification models require high accu-
racy, better generalisation, computational efficiency, and an estimate of the uncertainty
in the model’s predictions. All these characteristics are not readily available with either
traditional deterministic CNNs or Bayesian CNNs. Deterministic models, though pro-
vide better accuracies, do not facilitate uncertainty estimation on their own. Bayesian
method, on the other hand, allows explication of posterior distribution but has a sig-
nificantly larger number of parameters that require more memory and time for tuning.
Therefore, in this chapter, a hybrid CNN is conceptualised and implemented, which is
capable of combining some of the merits of deterministic and Bayesian methods. The pro-
posed method is validated on a number of different datasets and shows promising results.
The experimentation with different architectures with a varying number of convolutional
and dense layers showed that the hybrid training approach performed consistently better

than its deterministic and Bayesian equivalents. This work might serve as a stepping
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stone for further exploration of such hybrid CNNs since it has the potential of perform-
ing noticeably better while at the same time facilitating estimation of the network’s
certainty for every prediction. Improved HCNN with end-to-end training in a single run
is efficient to train and does not cost extra in terms of training time or memory require-
ment. A thorough architecture search and hyper-parameter tuning might be required
to increase baseline accuracies for each dataset. However, the experimentation with var-
ious data modalities and application areas has shown great promise to prompt further
comprehensive investigation into this training paradigm. One logical next step in this
research could be to incorporate this hybrid approach with dataset-specific architectures
obtained through, for instance, NAS-Net [107] and ENAS [256] algorithms.
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Explainability of CAD

n 2016, Ribeiro et al. [257] reported an image classifier that was able to inadver-

tently classify correctly but for wrong reasons. They found out that their wolf

versus dog classifier learnt an undesirable correlation between the wolf and the
background snow and, therefore, would classify a given image as a wolf if there was snow
in the background. If it were not due to the authors’ vigilance in finding explanations to
the model’s predictions, it would have been difficult to properly evaluate the trustwor-
thiness of this image classifier. The inherently inquisitive human nature prompts us to
unfold and understand the rationale behind decisions taken by DNN based algorithms.
This curiosity has led to the rise of eXplainable Artificial Intelligence (XAT), which deals
with making Al-based models considerably transparent and building trust in their pre-
dictions. Over the past few years, Al researchers are increasingly turning their attention
to this rapidly developing area of research not only because it is driven by human na-
ture but also because legislations across the world are mandating the explainability of
Al-based solutions [258, 259].

Although the case of correct classification for incorrect reasons as reported in [257]
was an inconsequential example of spurious correlations learnt from a large amount of
data, medical diagnosis resulting from such misunderstandings can potentially have a
grave impact on human lives. One of the biggest advantages of consulting a doctor is
the opportunity to discuss one’s medical conditions, ask questions about the differential
diagnosis and talk over the likely course of action. Similarly, when a group of doc-

tors deliberates over a case, they provide an explanation on their viewpoint and justify
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their opinion through arguments. Such discussions that offer justifiable explanations of
medical diagnosis and prognosis allow patients to confer their trust on their healthcare
providers and help medical practitioners avoid any pitfall in their decision-making pro-
cess. Moreover, many health insurance companies require that any medical procedure,
test, or course of treatment must be justified to be medically necessary before a claim
to cover the cost of such services is settled. Therefore, in a routine clinical environment,
simply naming a medical condition might not be enough. Commonly developed medi-
cal image-based disease classifiers only provide a numerical value corresponding to the
class label without giving a quick peep into their decision-making process. This lack of
transparency could be one of the mightiest hurdles in the successful integration of CAD
systems in real-world healthcare systems. The requirement for a CAD to be explain-
able arose with early applications of Al in healthcare [260] and became more relevant
with recent ethical and legal standards [261, 262]. The consequent increase in research
activity in the domain of XAl also reflects the growing interest of the community to pro-
vide explanations for CAD systems [261]. In addition to evaluating the reasons behind
a model’s predictions, explanation methods can also help in revealing new diagnostic
criteria [263] previously unknown to medical practitioners.

This chapter addresses the need for explainable Al, especially in medical image diag-
nosis. It provides a comprehensive overview of existing achievements and open challenges
in explainable CAD systems and presents methods to help explain disease prediction of
DL-based classifiers. These methods are then unified into a framework for generating
easy-to-understand textual explanations for medical diagnosis.

Skin cancer is the most common type of cancer in the U.S [264]. According to a recent
study, [265], skin cancer related death rate forecast for the U.S in 2019 amounted to
11,650 people. These rising rates of skin cancer incidences can not only cost precious lives
but also incur a huge burden on healthcare systems. It is estimated that approximately
3 million people are treated annually for skin cancer in the U.S and it costs around 8.1
billion USD [266]. Therefore, in this thesis, the classification of malignant melanoma

from benign naevi is chosen as a use case to study explainable CAD systems.

5.1 Problem Definition

The human-centric explainability of Al-based DSS using visual input modalities is di-
rectly related to the reliability and practicality of such algorithms. An otherwise accurate
and robust DSS might not enjoy the trust of domain experts in mission-critical appli-

cation areas if it is not able to provide reasonable justifications for its predictions. It
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is, therefore, the need of the hour to elucidate the working principle of deep learning
based classifiers so that practical applications of Al in medical diagnosis can be realised
expeditiously.

Compared to other fields of applications of DNNs, the MIA often presents unique
challenges due to the inherent complexity of this task. Manual classification of complex
diseases involves recognising subtle features and high-level concepts that are challenging
to grasp without expert knowledge. Even with expert knowledge, doctors’ subjective un-
derstanding of disease biomarkers leads to low inter-expert agreement [267, 268]. There-
fore, common explanation methods like visualisation of saliency maps, which strongly
rely on spatial divisibility of concepts, work well on common object detection tasks [269—
271] that have well-distinguishable features but fail on more complex medical image

analysis tasks.

5.2 Achievements and Challenges in Explainable CAD

This section provides a comprehensive analysis of Al approaches successfully employed
in explainable CAD systems and some of the most prominent open challenges requiring

further attention.

5.2.1 Overview of Common XAI Methods

Methods explaining the decision-making process of DNNs exist in a variety of forms.
Not only the derivation of the explanations differs but also the way it is communicated
to the user. There are a number of taxonomies available in the literature to differentiate
these methods. An important distinction for Al users, for example, is made between
post-hoc and ante-hoc methods. Methods that can explain the decision of a so-called
'black box’ model after it is developed and trained are called post-hoc (literally mean-
ing, after-this event) methods. Ante-hoc (literally meaning, before-this event) methods,
on the other hand, are already interpretable — to some extent at least — due to their
architecture. Since these ante-hoc explanations are usually achieved by architectural
or conceptual restrictions in the learning process that limits modelling capacity, such
inherently interpretable models are often thought to be under-performing than their
unrestricted conspecifics in terms of final model performance. However, this effect can
sometimes be mitigated by pre-processing raw data with noisy features into meaningfully
structured representations [272]. Another distinction among these explanation methods

can be made with respect to a classifier’s ability to explain their decision-making process
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on a global scale or locally on a single data point at a time. Although local explana-
tions might be initially sufficient for clinical applications as assistive diagnosis systems,
global explanations are crucial for understanding a model’s behaviour as a whole. This
is specifically important for identifying decision biases and hence for the development of
autonomous decision systems. As mentioned before, there exist various taxonomies for
XAI methods in the literature. A few types of explainable methods are discussed below
that are specifically relevant to medical imaging. A visual overview of the grouping is

provided in Fig. 5.1.

Expert Knowledge

Model & Data Correction

D y®
Visual Relevance Heatmap

Prototype Abstraction

Explanation
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pleomorphism...

Symmetric
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Concept Localisation Verbal Diagnosis Report
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Figure 5.1: Topology of the X AT process with optional model and data correction as well
as taxonomy of common and relevant explainable Al methods in medical image analysis

5.2.1.1 Visual Relevance Heatmaps

Probably the most popular group of methods for explaining and interpreting image-based
classification methods is the generation of visual heatmaps representing the influence of
individual pixels on the result of the classification. Existing methods differ significantly
in the computation of relevance values. The most obvious approach is the visualisa-
tion of the internal activations of a model [273]. Therefore, single or combinations of
intermediate, two-dimensional activation values are scaled to input size and are visu-
alised. Other common methods rely on the attribution of the classification results to
the individual pixels. In practice, this is done using, for instance, weighted activations
in Class Activation Maps (CAMs) [274], gradient-based methods like Saliency [275],
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Gradient*Input [276], Grad-CAM [271], Integrated Gradient [277], DeepLift [278] or
methods based on mathematical decomposition like Layerwise-Relevance Propagation
(LRP) [279], Agglomerative Contextual Decomposition (ACD) [280] and SHapley Addi-
tive exPlanations (SHAP) [281]. All these methods require access to the model parame-

ters and thus an understanding of the model architecture.

Perturbation-based methods, on the other hand, are completely model-agnostic and
can therefore be used for model-independent explanation without knowledge of their
internal constructs. In order to explain a given sample, it is modified several times and
evaluated by the model repeatedly in order to systematically record the changes caused
by the perturbations. Methods like Occlusion [273], RISE [282], and Extremal Pertur-
bation [283] differ in the occlusion strategy (procedure and perturbation). LIME [257]
goes one step further and trains local approximation models based on the results of the

randomly modified images.

In addition to the post-hoc methods mentioned so far, there is also a possibility to
generate relevance heatmaps in an ante-hoc process. Here, model architectures can be
extended by attention mechanisms that force the model to focus its attention explicitly on
certain parts of the input and to hide the remaining part. This distribution of attention
can often be visualised in a heatmap [284], using pointers [285] or by explicitly cropping
the input to the intended region [286] to gain insight into the network’s decision-making

process.

5.2.1.2 Class- and Prototype Abstraction

Visual Relevance Heatmaps (VRHs) usually help to explain the decision on individual
samples. Another approach that aims towards both global and local explanations of DL
models is the generalised representation of prototypes of individual classes or neurons as
learned by the model. This includes, for instance, methods maximising the activation of
particular outputs [275] or intermediate neurons [287] by optimising over an input image
to determine their ”"prototypical” activation patterns. Many variations of this approach
have already yielded interesting results and insights [288] for general image recognition
tasks. However, only a few works can be found applying abstraction methods to medical
problems [289-291]. This might be attributed to the complexity and entanglement of

disease criteria and consequently complications in interpreting the prototypical results.
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5.2.1.3 Conceptual Explainability and Biomarker Identification

The aim of concept-based explanation methods is to map human-understandable seman-
tic concepts to the concepts learned by DL models after training in order to make their
decision-making processes more comprehensible. Such concepts can be very simple char-
acteristics such as colours, shapes, or textures. However, complex concepts can also
be defined, consisting of combinations of simpler concepts. The Testing with Concept
Activation Vector (TCAV) method developed by Kim et al. [292] requires a small num-
ber of sample images per concept to compute global concept influence scores. Further
exploitation of this method allows explicit localisation of the concepts recognised by the
network in the input domain, extending its application to regression tasks [289, 293]
and introduce improved metrics [294]. Other concept-based approaches include Network
Dissection [295] the quantifies how interpretable the latent representation of a CNN is
by evaluating the alignment between individual hidden units in the network and a set
of semantic concepts, and Interpretable Basis Decomposition [296] that provides visual
explanations for image-based classification models by decomposition intermediate acti-
vations pertaining to an input image into semantically interpretable components that
are pretrained from a concept dataset.

Especially in the application of DL in the medical domain, the detection and local-
isation of biomarkers by the model is popular in addition to the diagnosis of diseases.
This approach allows intermediate steps of the models to be validated by experts. As
has been shown in recent works [289, 293], even post-hoc concept-based methods can be
used to detect such biomarkers. However, more common approaches in the literature are
ante-hoc methods based on multi-task learning [297], where the models are trained for
the combined classification or localisation of biomarkers [298-300]. Segmentation net-
works are often used for localization also as in [299], however, such explicit approaches
presuppose that correspondingly annotated data are available. An alternative approach
by Zhang et al. [301] combines the optimisation of a CNN and a Generative Adversar-
ial Network (GAN) in a single end-to-end architecture for the localisation of biomarkers
without the presence of explicit biomarker annotations. Generative DNNs can be trained
to learn the underlying data generating process of a given training dataset, which can

be used to interpolate among samples and synthesise new images.

5.2.1.4 Textual Explainability

There are different methods for generating verbal explanations of DL model decisions.

These methods can be categorised into those that use a template-based approach [302—

100



5.2. ACHIEVEMENTS AND CHALLENGES IN EXPLAINABLE CAD

304], rule-based methods [305-307], and those that utilise Natural Language Processing
(NLP) models to generate an explanatory text [308]. An early use case of NLP-based,
textual explanation generation in the medical domain is MDNet framework developed by
Zhang et al. [309]. This framework allows the generation of a textual diagnostic report
based on a medical image. In addition, a heatmap is generated for each word of the

diagnostic report, which shows users the model’s attention at that step.

5.2.2 Achievements of xAI in Medicine

The number of research papers on interpretability and explainability of AI has mush-
roomed in the last few years [261] and thereby the application and adaption of XAI
methods to specific medical domains have also increased. In the following, some influ-

ential research works are presented with the most practical significance towards clinical
DSS.

5.2.2.1 Interventional Methods

The explanation of high-performing Al algorithms that utilise spurious indicators for
classification allows revealing biases. To make practical use of these explanations, meth-
ods that facilitate intervention and correction of working of algorithms are required.
Common methods for penalisation and correction of explanations in DL models work
by imposing a loss on explanation heatmaps, for example from VRH method, or concep-
tual predictions, like TCAV, against ground truth explanations provided by the human
experts [310, 311]. This area is strongly related to the field of explicit expert knowledge
incorporation. Examples of successful application of such methods in the medical domain
are disease grading in diabetic retinopathy [312], lymph node histopathology [313] and
dermoscopic skin lesion classification [314, 315]. Rieger et al. [315], for instance, were
able to correct a classifier trained on the ISIC 2019 dataset, which is heavily biased to-
wards benign predictions when coloured patches appear beside the lesion. A comparison
between Grad-CAM maps generated before and after correction of the network can be
seen in Fig. 5.2. Inspired by the concept-based explanation method of TCAV, Graziani
et al. [313] fine-tuned a deep classifier for histopathologic lymph node tumour detection.

By penalising undesired control targets (concepts), they managed to increase AUC by
2%.
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Image

Vanilla

Figure 5.2: Comparison between Grad-CAM heatmaps generated before and after correc-
tion of the trained network using model correlation methods. The left column shows the
original image samples from the dataset. The middle and right columns show grad-CAM
heatmaps before and after correction

5.2.2.2 Revealing New Criteria

Explainability methods are often employed in specific, sometimes medical application,
areas by expert computer scientists to prove their effectiveness. Lack of domain knowl-
edge on part of computer scientists often hampers the proper interpretation of presented
results, rendering the provided explanations less useful for assessing the correctness of
the network. However, an increasing trend of collaborations between medical profes-
sionals and computer scientists is apparent in the application and tuning of DL models.
The need to obtain domain knowledge for both computer scientists and domain experts
in order to understand and explain models has been reflected in a growing number of
publications on XAI

A team of computer scientists and neurosurgeons succeeded in training a CNN for
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the localization of diagnostic features in confocal laser endomicroscopy images for glioma
detection using only image-level annotations. Izadyyazdanabadi et al. [263] sequentially
applied a visual relevance localization method to a multi-head network, merging the
resulting maps by collateral integration as well as biologically inspired lateral inhibi-
tion principle. Their diagnostic localization maps correctly identified familiar diagnostic
features and also revealed new diagnostic regions that were previously unknown to the
neurosurgeons. Using a complex model architecture consisting of two autoencoders and
further processing steps, an interdisciplinary team of pathologists and computer sci-
entists successfully predicted the recurrence of prostate cancer from digitised slides of
histological sections in [316]. A custom-made method for calculating an impact score,
which provides information about the direction of influence of an image section for di-
agnosis, offers further insights. It has been confirmed that the model independently
learned the concept of the Gleason Score, an established prognostic value for prostate
cancer among experts worldwide, and identified the occurrence of stroma, which is an
intermediate tissue running through the parenchymatous organs, as a prognostic factor
for prostate cancer in areas of the incision-free of cancer cells.

No clear physiological characteristics of insomnia are known yet. Researchers from
Charité Berlin, HTW Berlin, and University Medicine Go6ttingen have used machine
learning models in [317] to detect insomnia in polysomnographic data with the aim of
revealing such physiological features through AI. By applying DeepLift [278] method,
some factors such as increased and less synchronous eye movement were highlighted as
relevant for the prediction of insomnia. However, the authors themselves stress that
the results should be interpreted with caution, as neither the bias of the results due to
laboratory conditions can be excluded nor can the validity of the factors be definitively

confirmed.

A team of computer scientists and biologists used samples of microbiomes of human
female skin to determine phenotypes such as age, skin moisture, menopause status, and
smoking status in [318]. The SHAP method was used to assess the relevance of each
bacterial genus in the microbiome. As this method generates local explanations, SHAP
values for all bacterial genera were averaged over the subset of samples with correct
and good results for classification and regression. The most relevant bacterial genera
and their influence on the respective task were reported. For the determination of all
phenotypes, a number of relevant bacteria genera were identified. In the case of skin
moisture determination, for instance, the genera identified by the model as particularly
important were already associated with skin moisture in previous studies. Essemlali et

al. [319] were able to determine whether patients suffer from mild cognitive impairment
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or even Alzheimer’s dementia using their two-dimensional connectivity matrix of brain
regions. They used a specially adapted CNN architecture for this purpose. To explain
the disease prognosis, the gradients of all images of the respective classes were averaged
to obtain a global explanation. These averaged heatmaps of different classes were sub-
tracted to emphasize the crucial differences between the two conditions. The results
confirmed that the connectivity of the entorhinal cortex is crucial for the separation be-
tween healthy and Alzheimer’s disease subjects and the hippocampus for the separation
between healthy subjects and those with mild cognitive impairment. Their results have

been discussed with an expert neuroanatomist.

A project at the German Research Center for Artificial Intelligence (DFKI) is specifi-
cally focused on the development of a CAD system for the detection of skin diseases [320,
321]. The system developed in the Skincare project is capable of analysing images of skin
diseases taken with a smartphone, generating a differential diagnosis, and segmenting
the skin lesion and individual biomarkers. The explainability of the system is ensured
through the calculation of expert scores and VRHs. A demo of the system can be tested
on the project webpage!.

5.2.3 Challenges for XAI Applications in Medicine

Since the initial applications of modern DL-based systems in medical domains, there
have been remarkable strides in the explanation of systems that in some cases already
led to correction and verification of Al as well as disclosure of new potential diagnostic
criteria. However, there are still a number of challenges pertinent to medical image
diagnosis, which should be addressed by concerted efforts from Al researchers, medical

practitioners, and regulatory authorities.

5.2.3.1 Evaluation of Explanation Methods

Before XAI methods can be practically deployed, it must be ensured that their expla-
nations are reliable, trustworthy, and useful. This evaluation of explanations must take
into account the truthfulness and usefulness of the explanations and their interpretation

by the users.

Ihttp: //www.dfki.de/skincare/classify.html
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Evaluation of Truthfulness

One of the key challenges in explainable Al is difficulty in evaluating if the explanation
of a model’s behaviour is reliable. This is primarily because there is no gold standard
ground truth available for such evaluations [322]. Truthfulness or fidelity of an explana-
tion refers to whether it is reliable and reflects the actual decision process of the Al. In
order to practically install Al in clinical environments such that it increases the efficiency
and accuracy of human doctors, it is of paramount importance to ensure the fidelity of
XAI methods. However, due to the lack of explanation ground truth, evaluation of such

methods is largely subjective.

There have been attempts to quantify and measure the quality of explanations.
Samek et al. [323] introduced a metric called Area Over the MoRF Perturbation Curve
(AOPC) to quantitatively compare VRHs. The measure gradually perturbs input im-
ages starting from the regions that are marked as the most relevant according to a given
explanation method. High AOPC values indicate that a model is sensitive to perturba-
tions in those regions, thus confirming the validity. The RemOve And Retrain (ROAR)
framework [322] is an advancement of AOPC approach. As image perturbations lead
to a change in image distribution, they retrain the network on the perturbed images to
avoid distribution gaps and evaluate the achieved accuracy. However, the evaluation of
an altered model cannot give reliable insights into the sensitivity of the original model.
In [324] a synthetic dataset with ground truth explanations has been generated for easier
XATI method evaluation. Adebayo et al. [325] introduced randomisation tests in which
model weights and data labels were systematically randomised to reveal if explanation
methods were really model and data-dependent. Although this method has not been

used to quantify fidelity, its results are certainly meaningful for evaluation.

Truthfulness is the basis for robust and useful XAI. Results from works like [325]
showed that some methods produce convincing explanations that are worth no more
than simple edge detectors. Eitel et al. [326] performed a quantitative comparison of
visual relevance methods for MRI-based Alzheimer’s disease classification. They found
that guided backpropagation attribution maps [327] averaged over all true positives
for multiple training runs highlighted different regions in brain MRI. However, despite
the variance, which makes it harder to compare and replicate outcomes of individual
experiments, some regions like the hippocampus, cerebellum, and edges of the brain
were commonly identified as salient regions. Other visual relevance methods like Gradi-
ent*Input, Occlusion Sensitivity, and LRP also showed similar behaviour, which raises

serious questions on the robustness and coherence of these explanation methods. How-
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ever, this could also indicate an abundance of biomarkers in the data that allows DNN’s

to perform the same task in a variety of ways.

Evaluation of Usefulness

Besides evaluating the fidelity and completeness of explanation methods, it is also cru-
cial to quantify and qualify the usefulness of generated explanations. Doshi-Velez and
Kim [328] proposed the distinction between application-grounded, human-grounded,
and functionally-grounded evaluation of explanations. In [329] the first functionally-
grounded metrics were introduced, allowing to objectively judge the quality of an expla-
nation. This quantification has the advantage of being independent of human subjectiv-
ity. On the other hand, human-grounded evaluation makes use of non-specialist human
evaluators to subjectively compare or rate explanations. The evaluation approach that
is found to be the most important for XAl in medicine is the application-grounded eval-
uation. Depending on the domain or problem, medical practitioners have a very specific
way of thinking about a problem, communicating or explaining a diagnosis. Hence, the
application-grounded evaluation is necessary to find and optimise the right explanation

methods for a medical use case.

Evaluation with respect to Evaluators

An equally decisive factor in the use of XAI methods is their interpretation by the
end-user. One explanation can be interpreted differently by different individuals. A
wrong or too naive interpretation of decision processes by developers or users can lead
to serious consequences in the practical use of Al. The approach to the interpretation of
explanations differs significantly for Al researchers and medical practitioners, but also
overlaps to some extent.

For Al developers, explainability methods can help them design better models by
understanding the interactions between the model and the data. However, Al developers
and data scientists can sometimes over-trust or misuse these interpretability tools as
noted by [330]. They conducted a small-scale study to learn how data scientists utilise
publicly available interpretation tools and found that visual explanations are usually
taken at their face values and used for rationalisation of suspicious observations instead
of understanding how Al models worked. Experienced data scientists, on the other hand,
were able to capitalise on these interpretability tools and effectively understand issues

with models and data.
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For medical practitioners, such tools can provide reasoning for model predictions and,
therefore, develop trust and ease their acceptance into routine clinical workflow. Sayres
et al. [331] evaluated the impact of DL-based diabetic retinopathy detection algorithm
on the performance of human graders in the computer-assisted setting. They found
that the accuracy of human graders improved when assisted by the algorithm that pro-
vided only disease prediction without any explanation. However, when the graders were
provided prediction plus visual explanation by the algorithm, their detection accuracy
improved only for patients who had diabetic retinopathy (resulting in high sensitivity)
and decreased for patients without the disease (resulting in low specificity). Although
the qualitative feedback of human graders on the explanations provided by the algorithm
was generally positive, the participants were not able to harness this additional informa-
tion to notably improve their performance. This could partly be because the pathologic
features of diabetic retinopathy are very tiny in size, inconspicuous, and occupy only a
fraction of the whole image space.

To meet the challenges in the evaluation of XAI, special focus should be placed on
the evaluation of the realistic applicability of methods in a clinical environment. This
includes truthfulness, robustness, quality, and the actual usefulness of the methods.
Through such detailed analyses, the agreement between medical expert knowledge and
the knowledge gained from the model and data can be evaluated and validated and, pos-
sibly, new knowledge can be gained. A further dimension that should not be neglected
when evaluating xAl applications in healthcare is the ethical assessment of the impact
on individuals and society. There is an increasing commercial interest in explaining
AT decisions. This requires the development of regulatory measures that take into ac-
count different needs of different individuals and user groups and are adaptable to the
constantly evolving AT technology [332]. However, this also requires clearly defined eval-
uation and certification processes to assess the ethical conformity of the use of Al in a
specific context. z-Inspection [333] is one of the first ethical evaluation and certification
processes that integrates theoretical principles for the ethical evaluation of Al into a

practically applicable framework.

5.2.3.2 Deployment in Clinical Workflow

Proof of concept studies and prototype methods are required to be tested rigorously to
analyse their contextual fit in a real-world clinical environment. However, many obstacles
have been discovered and highlighted by researchers in implementing laboratory research

in clinical settings. These challenges include lack of utility to clinicians’ logistical hurdles
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that hamper clinical deployment and trials [334]. Ineffective use, or misuse, of these
assistive systems can even lead to performance degradation of human graders [335-
337]. Cai et al. [337] developed interactive user-centric techniques for pathologists to
improve diagnostic utility and trust in algorithmic predictions in laboratory settings.
Previously, such Human-Computer Interface (HCI) techniques have been used only to
improve the algorithm. However, these interactive tools have the potential to enable
users to test, understand, and grapple with Al algorithms, leading to new ways for
improving their explainability. Instead of waiting for algorithms to generate human-
understandable explanations [257, 338, interactive techniques can allow users to play
an active role in the interpretation of algorithm predictions and hypothesis-test their
intuitions. In a study [339] designed for the field assessment of a DSS for cardiologists,
it was found that the clinicians were more likely to embrace and use such systems if it
was seamlessly and unobtrusively integrated into their existing workflow. However, the
misuse of these systems can sometimes let the clinicians develop their own tolerance and

workarounds in order to trust the algorithm results [340].

There are a few examples of such translation of Al into commercial applications, for
instance, in the detection of diabetic retinopathy [341], cancer, and analysis of radiology
images [342]. Deployment of CAD solutions in clinical settings can also help focus on
the effects of a workflow when new diagnostic and information systems are introduced
into clinical environments. Arbabshirani et al. [343] integrated their Al-based model
for identification of Intracranial Haemorrhage (ICH) using head CT scans into a clinical
workflow for three months. During the trials, the model was able to reduce the median
time to diagnosis for routine studies from more than eight hours to only 19 minutes,
while at the same time discovering some probable ICH cases which were overlooked by

radiologists.

5.2.3.3 Diverse and Complete Explanations

Most applications of XAl in research focus on utilising single approaches and modalities
for the explanation of Al models in given use cases. This can be seen in the analysis
of achievements of XAl in section 5.2.2 as well as many reviews on this topic [324, 344—
346]. However, the integration of XAl in the clinical workflow can benefit more from
a combination of multiple explanatory views to draw explanations that are diverse and
as complete as possible. This is inspired by medical practitioners in routine healthcare
environments using textual descriptions alongside visualisations and temporal coherence

to communicate decisions effectively and reliably. On one hand, this should motivate
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AT researchers to think of new and creative paths for XAI methods for complementing
existing methods and on the other to not only evaluate the effectiveness of approaches
in isolation but also in combination with diverse methods and leverage synergies. Early
efforts towards diverse explanations have been recently made in the Visual Question An-
swering community in works like [347] and [348]. Huk Park et al. [347] show the positive
complementary effect of visual relevance and textual explanations which is backed up
by human evaluation. Completeness of explanations can be considered from the point of
view of the model and the user. Completeness from a model’s point of view is directly
related to fidelity. Yeh et al. [349] introduced a measure that quantifies the complete-
ness of a given concept-based explanation for a model’s prediction. Completeness from

a user’s point of view is subjective but equally relevant to usefulness.

5.2.3.4 Human-Centric Explanations

High-performing DNNs often utilise unintelligible notions of concepts to reach a predic-
tion. Integration of Al assistants in clinical workflows requires a human-centric explana-
tion of a decision that is able to not only describe a decision with high fidelity but also
conforms to human-understandable thought models. Compared to simpler use-cases
like visual object classification or part segmentation, complex medical concepts used
for diagnosis particularly necessitate making explanations as human-understandable as

possible.

Human-Understandable Concepts

One way to explain the decisions of Al-based CAD systems in a human-centric way is to
investigate the role of human-understandable concepts, learned by DL-based algorithms.
It is very important to analyse the learned features of an algorithm that makes the right
decisions but is based on wrong reasons. It is a major issue that can affect performance
when the system is deployed in the real world. Explaining the role of a model’s concepts
can reduce reliability concerns of medical practitioners and help develop their trust in
CAD.

Application of concept-based XAI methods in MIA has been challenging partly be-
cause these methods require concept datasets [296] or image patches corresponding to
those concepts that are human-understandable [292], which are not always available. An
unsupervised approach, extending the Concept Activation Vectors (CAVs) method, is de-
veloped by Ghorbani et al. [350] to cluster object datasets by performing segmentation

of single objects and clustering their relevant activations into semantically meaningful
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groups. This approach cannot be directly applied to, for example, skin lesion classi-
fication where there is a substantial overlap between various concepts that can not be
segmented into distinct spatial patches. Also, this method does not guarantee the discov-
ery of human-understandable concepts and requires thorough human evaluation effort.

Sometimes general explanation methods cannot be readily used for certain medical
image tasks due to technical requirements or inappropriateness to the domain. Besides
the continuous development of advanced XAI methods, it is important that developers
pay attention to the domain-specific needs of particular medical applications and their
users. There have been many studies extending existing methods to better suit the
challenges of MIA. For example, Yang et al. [351] proposed Expressive Gradients (EG),
an extension of commonly used Integrated Gradients [277] to cover the retinal lesions
better while [293] extended CAVs from [292] for continuous concepts like eccentricity
and contrast. A part of this thesis extended the method for localising and highlighting
image regions significant for network’s concept recognition in a medical inspired dataset.
This could allow doctors to verify the network’s concept learning and suggest precise
image regions for concepts. Such studies lead to the advancement of the XAI domain
and provide specialisation to application domains without designing new methods from
the scratch.

Challenges in Textual Explanations

Most disease classification algorithms using medical images attempt to answer Multiple
Choice Questions (MCQs) in which the algorithm is expected to select one disease from a
list of all possible diseases. In this type of experimental setting, there is a fair chance that
a correct prediction given by Al-based CAD is nothing more than a fluke — though the
probability of fluke decreases with the increase in the total number of classes. Therefore,
such classification algorithms require explicit interpretations of network predictions to
validate their results.

In many medical domains like radiology and histopathology, doctors routinely write
textual reports clearly noting salient findings before providing their impression (diagno-
sis). The nature of this type of detailed diagnosis substantiated by textual descriptions
of the image is self-explanatory — at least for the domain experts. Al-based CAD can
be enabled to process this multi-modal data (image and text) and generate textual re-
ports to mimic the behaviour of radiologists and histopathologists. Such systems embed
explanations of their decisions within their predictions. These natural language explana-

tions, using domain-specific terminology and mimicking the structure of communication
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provide an intuitive and effective way of explaining decision processes to practitioners.
However, providing textual explanations in the form of clinically accurate medical re-
ports for medical images has some differences compared to other application areas where
NLP is used to describe an image.

Generating long coherent reports (more than a few dozens of words) is one of the
major challenges in textual XAI. Language generation models usually start with a few
coherent sentences and after that their performance tapers off generating completely
random words that have no association with the previously generated words or phrases.
This happens generally due to very long temporal dependency among words which Long
Short-Term Memory (LSTM) [352] models have difficulty handling. One way to address
this problem is to use transformer networks [353] as a language model decoder. These
models are able to capture the relationship between words in a longer sentence better
than Recurrent Neural Network (RNN) based models. Input text reports are tokenised
and passed to the transformer network that consists of a decoder layer and generates
a query vector for another transformer model that generates reports by combining this
query with information obtained from the image processing model. The size of the
generated reports and vocabulary can also be limited to ensure that the text is coherent
and clinically meaningful.

Most of the reports written by doctors are free text reports, which means that they
do not always follow any defined template. Reports written by two radiologists, for
example, for a given X-ray image can be vastly different. There can be superfluous
information that does not contribute directly to the final diagnosis. This makes it very
difficult to compare Al-generated reports with human-generated reports especially when
some of the reports depend on the previous examination of the patients and provide a
continuous diagnosis. This problem can be addressed by removing those parts of the
input reports which bear no influence on the diagnosis such as at what time the doctor

saw the patient or who was the doctor on call.

Incorporation of Context

Traditional Al algorithms overwhelmingly rely on one input modality, for example, im-
ages in medical image analysis. However, medical practitioners routinely incorporate
context, in the form of, for instance, a patient’s clinical history, age, and sex, etc., in
their decision-making process. Compared to raw image pixels, this contextual infor-
mation is much easier to understand for practitioners. However, incorporation of this

metadata into Al algorithms is tricky since context is difficult to represent in a form that
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is appropriate for processing by AI algorithms [354]. Not leveraging this useful context
in DNNs can not only restrict their performance but also make explanations challenging.
Therefore, another direction of research to make DNNs more transparent and explain-
able is to use multi-modal data like medical images and patients’ records together in
the decision-making process and attribute the model decisions to each of them [345].
This approach simulates the diagnostic workflow of a clinician where both images and
physical parameters of a patient are used to make the decision. It can not only improve
the diagnostic performance of these algorithms but also explain the phenomena more

comprehensively.

5.3 Explaining Network Decision using Concept

Activation Vectors

The applications of XAl are at least as widespread as Al itself including in medical
image analysis for disease predictions, text analytics [355], industrial manufacturing [356],
autonomous driving [357], and insurance sector [358]. Many of these application areas
utilise visual inputs in the form of images or videos. Humans recognise these images and
videos by identifying and localising various concepts that are associated with objects
— for example, concepts of shape (bananas are long and apples are round) and colour
(bananas are generally yellow and apples are mostly red or green). XAI methods dealing
with images also employ a similar approach of identifying and localising regions in the
input space of a given image that corresponds strongly with the presence or absence of

a certain object, or concept associated with the object.

One way of elucidating a deep learning based CAD could be to verify that the model
learns and utilises similar disease-related concepts as defined and employed by human
diagnosticians. The objective of this study is to scrutinise if the concepts learnt by deep
image-based classifiers in complex skin lesion classification tasks are similar to those
used by dermatologists. To do so, human-understandable concepts are mapped to the
RECOD image classification model, which is a well-trained and high-performing DNN
developed by REasoning for COmplex Data (RECOD) Lab for the classification of skin
tumours, with the help of Concept Activation Vectors (CAVs). The RECOD model is
trained for the classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma,
and Seborrheic Keratosis. A detailed analysis is performed on the latent space of DNNs
to comprehend what they learn and what they rely on for their predictions in medical

diagnosis. Two well-established and publicly available skin disease datasets, PH? and
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derm7pt, are used for experimentation. These datasets are selected because they provide
concept annotations in addition to image-level diagnosis labels.

A thorough survey on the use of concept-based explanation methods for skin lesion
classification showed that these methods have not previously been explored for this
application area. Due to the nature of this problem, not all of the previously described
methods can be directly applied to this task. Unsupervised clustering as used in [359],
for example, is not suitable in skin lesions as there is a huge spatial concept overlap and
thus no possibility for distinct part segmentation. Regression Concept Vectors (RCVs)
are also not applicable as skin lesion concepts are hardly quantifiable. The method
in [296] requires a concept corpus that is not readily available for this specific task. Any
type of textual explanation generation is also not applicable, as no diagnostic reports or
descriptions of diagnosis are provided with any public dermoscopic skin lesion dataset.
The computation of CAVs as given in [292] requires patches corresponding to general
human-understandable concepts. In this work, the TCAV method is adopted to the
problem of skin lesion classification. Instead of providing general, OOD concept patches,
concept classifiers are trained using samples from identically distributed datasets to map
human-understandable concepts to the network’s latent space.

The CAVs and the method of calculating TCAV scores are briefly described below
as used in this work to quantify the contribution of a concept to DNN’s prediction.

Moreover, dermoscopic concepts explaining the classifier’s decisions are also introduced.

5.3.1 Concept Activation Vectors

To achieve human-centred interpretability of DNNs, Kim et al. [292] introduced Concept
Activation Vectors. A CAV, denoted by 7., is a vector in the embedding space of a
neural network pointing into the direction that encodes the concept ¢. The CAVs can be
calculated by training a binary concept classifier that distinguishes samples containing
a given concept from samples where the concept is absent. The CAV is then defined as

the normal to the hyperplane separating the two classes.

TCAV Score The metric introduced in [292] to estimate the influence of a CAV on a
class of input images is the TCAV score. It makes use of directional derivatives Sc i ;(x)
to measure the contextual sensitivity of a concept towards an entire input class, therefore

providing global explanations. The TCAV score is given by:

|x€ Xk : Scyk,l(x) > 0|

TCAVg.,., = Xl

, (5.1)
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where X denotes all inputs, k represents the class labels and Sc k. ;(x) is the direc-
tional derivative of a sample’s activation x from layer [ with respect to class k and
concept C. The TCAV score effectively measures the ratio of class k’s inputs, that
are positively affected by concept C without taking any magnitude into the account.
As compared to saliency maps or other per-feature metrics, the TCAV score allows for

quantitative evaluation of concepts on whole input classes.

5.3.2 Dermoscopic Concepts used for Analysis

The concepts used in this work to understand the decision-making of a deep classifier
are briefly defined below in accordance with standardised terminology agreed upon by
expert dermatologists in the 3rd Consensus Conference of the International Society of

Dermoscopy (ISD) [360]. Figure 5.3 depicts examples of some concepts mentions below.

5.3.2.1 Pigment Networks

Pigment Networks consist of interconnected pigmented lines forming a grid-like pattern.
Depending on the subtype of Pigment Networks, it can either have minimal variability
in colour, thickness, and spacing of the lines, forming a symmetric grid (Typical Pig-
ment Network), or have greater variability in colour, thickness, and spacing of the lines,
forming an asymmetric grid (Atypical Pigment Network). Apart from those two general
types, more subtypes are also defined in the literature. Atypical Pigment Networks can
be a clue for Melanoma (although many dysplastic naevi also have atypical networks)

whereas typical Pigment Networks normally indicate benign melanocytic lesions (Naevi).

(a) Typical Pig-(b) Regular (c) Regression (d) Regular Dots(e) Blue Whitish
ment Network Streaks Structure & Globules Veil

Figure 5.3: Exemplary cases of skin lesion concepts from derm7pt dataset
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5.3.2.2 Streaks

Streaks describe an abnormality of the lesion that can either have the form of straight
radial extensions, radial extensions with bulbous and often kinked projections on their
ends, or a widening of broken lines with incomplete connections. Streaks are referred to
as irregular if they are irregularly distributed along the edge of the lesion and are brown-
black in colour [361]. Regular Streaks indicate benign lesions and Irregular Streaks are

clues for malignant Melanoma.

5.3.2.3 Regression Structures

Regression Structures are characterised by the appearance of either area of fine, grey-blue
dots, or areas of skin whiter than the surrounding normal-looking skin without blood

vessels or shiny-white structures. Its presence is highly indicative of melanoma [361].

5.3.2.4 Dots and Globules

Dots are small structures of pigmented areas clustered in any distribution in or around
the lesion. Dots clustered in the centre or on the network lines are referred to as regular,
otherwise, they are called irregular. Globules are round, oval, or polygonal structures
larger than dots that can have high variability in colour, size, and shape along with
asymmetric distribution for Irregular Globules, or minimal variability along with sym-
metric distribution for Regular Globules. Regular Dots and Globules are indicators for

benign melanocytic lesions and irregular Dots and Globules indicate melanoma [361].

5.3.2.5 Blue-Whitish Veils

Blue-Whitish Veils describe an irregularly shaped, structureless blotch on the lesion area
that is characterised by a blue hue with an overlying whitish ground-glass haze. In [362]

it is rated as the most useful single diagnostic indicator for melanoma.

5.3.2.6 Asymmetry

Asymmetry is the most important factor in malignant melanoma identification using
ABCD rule [363]. In this work, asymmetry refers to an asymmetrical lesion contour as
well as asymmetrical distributions of structures and colours within a lesion [57]. The

asymmetry concept is further divided into symmetric or asymmetric in one or two axes.
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5.3.2.7 Colour

This concept refers to the colours present within the lesion area. As the appearance
of a single colour is not yet indicative of any diagnosis, a combined concept of three or
more colours is used in the analysis. The presence of three or more colours increases the

probability of melanoma drastically [361].

The intricate explanations of concepts given above along with the concepts’ innate
variability offer much room for interpretation, implying the complexity of the problem
itself. This is evident by the fact that even expert dermatologists tend to have notable
disagreements when it comes to diagnosis, localization, or identification of concept [267,
268].

5.3.3 The RECOD Model

The model used in this work as the basis for the exploration and experimentation is
developed by the University of Campinas in Brazil. Their RECOD Lab made their
submission [364] to the IEEE International Symposium on Biomedical Imaging (ISBI)
2017 challenge and is publicly available on github?. By applying a transfer learning
approach combined with extensive ensembling using an SVM meta-layer on top of seven
base models trained on different data subsets, they achieved the best AUC for Melanoma
(MEL) classification (87.4%), 3rd best AUC for Seborrheic Keratosis (SK) classification
(94.3%), and 3rd best combined/mean AUC (90.8%) in part 3 of 2017 challenge. In
this part of the thesis, this RECOD model is used in lieu of training another skin
lesion classification model as the primary objective is the explainability of deep models
instead of their classification performance. In the later part of this chapter (section 5.5)
it is shown that this method is equally effective with any other DNN trained for any
classification problem, as long as relevant concept annotations are available. Thus, for
these experimentations, attention is only focused on a single module from RECOD’s
well-trained architecture. The base models® with Inception v4 [104] architecture is used,
which is subsequently referred to as the model or the network. This base model was

trained on RECOD’s "deploy” set of 9,640 images using per-image normalisation.

2https://github.com/learningtitans /isbi2017-part3
3 checkpoint.rc25 of RECOD model
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5.3.4 Datasets for Concept Classification and Evaluation

The datasets used for concept training are PH? dataset [57] and Seven-Point Checklist
Dermatology dataset abbreviated as derm7pt [298].

The PH? dataset consists of only 200 dermoscopic images of melanocytic lesions,
including 80 common naevi, 80 atypical naevi, and 40 melanomas. Along with the
images, colour and lesion segmentation masks are provided along with extensive well-
curated annotations. The derm7pt dataset consists of 1,011 clinical and dermoscopic
images. Each sample is assigned to either a miscellaneous class or one of 4 diagnosis
classes. Two of these diagnosis classes i.e. Melanoma and Naevi (NV) are further divided
into 13 sub-classes. From this dataset, only MEL and NV samples have been considered,
resulting in 823 images. SK samples have been discounted due to their low count of only

45 samples. Table 5.1 provides an overview of some samples for each concept class.

Table 5.1: Distribution of image samples into different concept classes in PH? and
derm7pt datasets. Note that PH? dataset does not distinguish between regular and
irregular streaks

Concepts  Presentation Abbreviation PH?[57] dermT7pt [298]

Piormont PN N/A 551
N egt ok Typical PN T 84 335
Atypical PN AT 116 216
ST 30 333
Streaks Regular ST R N/A 96
Irregular ST IR N/A 237
Regression RS 95 933
Structures
DG 113 690
(gzgif; Regular DG R 54 300
Irregular DR_1IR 59 390
Blue-Whltlsh BWV 36 182
Veils
Sym 117 N/A
Asymmetry 1-Axis Asym_ 1 31 N/A
2-Axis Asym_ 2 52 N/A
Colours 3 or more C_3 39 N/A
Total Samples 200 823
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For evaluation purposes, the original ISBI 2017 challenge dataset [111] is used. The
train set of the ISBI 2017 challenge contains 1372 samples of NV, 374 samples of MEL,
and 254 samples of SK whereas the test set contains 393 images of NV, 117 images of
MEL, and 90 images of SK.

To verify the statistical significance of the results, CAVs for random concepts are
calculated to compare against the CAVs for real dermoscopic concepts. For this purpose,
random concept labels are assigned to a subset of the ISIC archive? images, excluding
MEL and NV classes, resulting in 2870 samples. The idea behind leaving out those two
classes is that the remaining samples hardly contain concepts similar to the ones used

for concept training.

5.3.5 Experiments and Results

As previously described, all experiments have been conducted on one of the Inception v4
base models from [364]. For each concept, binary classifiers are trained on the network’s
activations to find the concepts’ directions in the embedding space. The training and
evaluation scheme is depicted in Fig. 5.4. First, the activations are extracted from
mized_6h layer of the model using PH? and derm7pt datasets. A clustering-based under-
sampling technique along with stratified splitting is applied to ensure evenly balanced
train and validation splits for each binary concept training. These dataset splits are
balanced with respect to not only concept labels, but also target class labels. Train
and validation data are split with a ratio of 2:1. Second, the TCAV score is used to
evaluate a concept’s importance to a specific target class. To account for differences in
pre-processing and classifier initialisation, each classifier training is repeated 20 times
on a randomly sampled dataset split, resulting in different CAVs and different TCAV

scores.

Additional 50 random CAVs per layer are trained to ensure the statistical significance
of the learnt concepts. The random datasets are produced by repeatedly sampling 1,000
random images from the ISIC archive subset and assigning them random binary labels.
The distribution of random concept TCAV scores and real concept TCAV scores is then
compared by conducting a two-sided t¢-test with a = 0.05 to assure significance of the
calculated CAVs. In the results section, statistical insignificance is represented by red
asterisks on top of the plotted bars. The lack of quantifiability in most of the relevant

explanation methods does not allow for proper comparison with previous approaches.

4https://isic-archive.com/
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Hence, the focus is placed on the quantitative evaluation of the concept classifier’s accu-
racies and TCAV scores as well as a qualitative analysis of the resulting CAVs.

Figure 5.5a shows all mean validation accuracies achieved by individual binary con-
cept classifiers, and their standard deviation, trained on derm7pt embeddings from
mized__6h layer. The mean baseline results from training on 50 random concept subsets
are depicted by horizontal red line along with light red shaded area marking standard
deviation. It is evident from the figure that all concept classifiers achieved significantly
higher validation accuracies than random baseline. At first look, the overall accuracies
achieved might not seem very high. However, it has to be mentioned here that computa-
tion of CAVs requires the use of linear classifiers to calculate normal vector to decision
hyperplane. The results are clear evidence that the network’s latent space is structured
in a way that allows activation’s separation with respect to similar concepts.

Figure 5.5b shows the classifiers’ validation accuracy trained on PH? dataset em-
beddings from mized 6h layer. It is notable that many concepts achieved relatively
mediocre accuracies near the random baseline. This can be explained by a very small
number of positive concept samples available in PH? dataset.

The TCAV score quantifies the positive or negative influence of a given concept
towards a specific target class. Values above 0.5 indicate a positive influence of the
concept on the prediction and lower values indicate negative influence. Figure 5.6 shows

the TCAV scores achieved by evaluating 20 CAVs per concept on the mized 6h layer

Step 1 - CAV Computation
'"Typical Pigment Annotations
Network'

Activations Classifier

Step 2 - CAV Evaluation

> Binary Concept
3
>

Concept Annotation

Input Image -

: CAV
TCAV
NV Gradient w.r.t Score
Ground Truth Label
Ground Truth Label

Figure 5.4: Overview of training concept classifiers and calculating CAV and TCAV
scores
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trained on derm7pt dataset. Average baseline scores of all 50 random concepts are
again depicted by red horizontal lines along with their standard deviation in light red.
Statistically insignificant results are marked by red asterisks.

The results for NV and MEL classes for concepts trained using derm7pt look very
much as expected. Although the score for PN turned out to be insignificant in one exper-
iment, features indicating benign melanocytic lesions like PN_T, ST R and DG_R all
contributed positively towards NV class. On the other hand, strong signs for malignant
melanoma like PN_AT, ST IR, RS, DG__IR and BWYV show strong negative influence.
Also, it is notable that the presence of Streaks in general (ST) has a stronger negative
influence as compared to the presence of regular Streaks (ST _R). Results for MEL class
show the exact opposite behaviour, which is perfectly aligned with the descriptions in
the medical literature. It is again noticeable that the presence of Dots and Globules
(DG) and the presence of Streaks (ST') show a higher positive impact on MEL class as
compared to their regular kind, for example, regular Streaks (ST_R). The results for the
SK class show similar concept influence as for MEL, except for (PN) exhibiting negative

influence. In [365] the appearance of network-like structures in Seborrheic Keratosis has

90 90

80 II I 80 I
570 I II IIII 279 L I I II
> >
g 60 E 60
3 PN 3 T T T PN T
8 50 PN T 350 : ST
< - < o 1
a PN_AT = RS
240 ST % 40 DG
é ST R g DG R
=30 ST IR 730 DG IR
3 RS 3 BWV
©20 DG ©20 Sym

DG R Asym_1
10 DG_IR 10 Asym 2
BWV c3
0 - 0 -
mixed_6h mixed_6h
(a) DermT7pt dataset (b) PH? dataset

Figure 5.5: Validation accuracies of all concept classifiers trained and tested individually
on derm7pt and PH? datasets. Random baseline is denoted by horizontal red line along

with light red area marking standard deviation. Insignificant classifiers are marked with
a red asterisk
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Figure 5.6: The TCAV scores of each concept for derm7pt with respect to each target
class on miexed_ 6h layer of RECOD model

been confirmed. The model might have encoded those structures in the (PN_AT) con-
cept, as their appearance slightly differs from the classical pigment networks definition.
In the same study, evidence for Dots and blue-gray areas in SK lesions have been found
as well.

Figure 5.7 shows resulting TCAV scores for CAVs trained on PH? dataset. All con-
cepts achieving less than 55% validation accuracy have not been considered. Again,
TCAV scores for NV and MEL show expected behaviour. Only typical Pigment Net-
works (PN__T), regular Dots and Globules (DG_R) and Symmetry (Sym) contribute
positively towards Naevi class. For melanoma, the exact opposite holds again which can
be confirmed by the concept descriptions in Section 5.3.2. Additionally, from the results,
it appears that asymmetric lesions (Asym_2) and lesions containing more than three
colours (C'_3) tend to be classified as melanoma. For SK we can again observe the low
influence of typical Pigment Networks (PN_T) as well as high influence for all other
concepts including asymmetry (Asym__2) and colour diversity (C_3).

To further validate that the model has comprehensively learnt these disease-related
concepts instead of learning something randomly, the model was made to sort all the
test images with respect to the degree of visibility of a certain concept in each image.
The model ordered all 300 test images starting from those that presented the very obvi-
ous existence of a concept and ending with those which had the least evidence of that

concept. This ordering is performed based on Euclidean distance in a CAV’s direction.
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Figure 5.8 through Figure 5.10 show the first five and the last five images from the sorted
test set with respect to different concepts. The first row of each figure shows positive
examples, where the concept is most clearly visible, and the second row shows negative
examples, where the concept is virtually absent. It is evident from these figures that the
proposed method for explaining skin disease classifiers does not only provide justifica-
tion of classifier’s decision on global dataset scale but also sensibly identifies reasons for

per-image predictions.

5.4 Mapping Concepts from Latent Space to Image Space

This section builds upon CAVs and extends it by introducing visual Concept Localisa-
tion Maps (CLMs), which are generated to locate human-understandable concepts that
are learnt and encoded by a classifier in its latent space, in the input image. These
CLMs validate that DNNs learn to focus on pertinent regions in the image while under-
standing relevant concepts. Furthermore, a new synthetic dataset called Simple Concept
DataBase (SCDB) is developed, which consists of geometric shapes with annotations for
10 concepts and their segmentation maps. This dataset mimics complex relationships
between concepts and classes in real-world skin lesion analysis tasks and can assist re-

searchers in the classification and localization of complex concepts. These CLMs are

1.0 — — = = =
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-
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. c3
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Target Class

Figure 5.7: The TCAV scores of each concept for PH? with respect to each target class
on mized_ 6h layer of RECOD model
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Figure 5.8: The sorting of the test images with respect to the presence of Typical Pigment
Network (PN__T). The first row depicts the test images that show the strongest presence
of Typical Pigment Network (PN__T'). The second row shows the images with the weakest
presence of this concept

Figure 5.9: The sorting of the test images with respect to the presence of Irregular Streaks
(ST _IR). The first row depicts the test images that show the strongest presence of
Irregular Streaks (ST _IR). The second row shows the images with the weakest presence
of this concept

qualitatively and quantitatively evaluated using three different model architectures i.e.,
VGG16, ResNet50, and SE-ResNeXt-50 trained on SCDB dataset to show that the
proposed method works across different network architectures. The practicality of this
method in real-world applications is also demonstrated by applying it on SE-ResNeXt-50
trained on CelebA dataset.
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' g;«'w{ e 3 by

Figure 5.10: The sorting of the test images with respect to the presence of Regression
Structure (RS). The first row depicts the test images that show the strongest presence of

Regression Structure (RS). The second row shows the images with the weakest presence
of this concept

5.4.1 Datasets for CLM Generation
5.4.1.1 SCDB: Simple Concept DataBase

Attribution methods proved to work well in simpler detection tasks where entities are
spatially easy to separate [270, 271] but often fail to provide meaningful explanations
in more complex and convoluted domains like dermatology, where concepts indicative
of the predicted classes are spatially overlapping. Therefore, SCDB is developed and
released °, which is a new synthetic dataset of complex composition inspired by the
challenges in skin lesion classification using dermoscopic images. In SCDB, skin lesions
are modelled as randomly placed large geometric shapes ( called base shapes) on black
background. These base shapes are randomly rotated and have varying sizes and colours.
The disease biomarkers indicative of the ground truth labels are given as combinations
of smaller geometric shapes within a larger base shape. These biomarkers can appear in
a variety of colours, shapes, orientations, and at different locations. Semi-transparent fill
colour allows biomarkers to spatially overlap. The dataset has two defined classes, C1
and C2, indicated by different combinations of biomarkers. Class C1 is represented by
joint presence of concepts hexagonA star or ellipseA star or triangle ellipse A starmarker.
Class C2 is characterised by joint presence of concepts pentagon A tripod or starA tripod
or rectangleA starA starmarker. In addition to these combinations, additional biomarkers
are randomly generated within the base shape without violating the classification rules.

Two more biomarkers (i.e. cross and line) are randomly generated on the base shape

Shttps://github.com/adriano-lucieri/SCDB
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without any relation to target classes. Finally, random shapes are generated outside of

the base shape as noise.

The dataset consists of 7500 samples for binary image classification and is divided
into train, validation, and test splits of 4800, 1200, and 1500 samples, respectively. An-
other 6000 images are provided separately for concept training. Along with each image,
binary segmentation maps are generated and made available for every concept present
in the image in order to evaluate concept localization performance. Segmentation maps

are provided as the smallest circular area enclosing the biomarker. Figure 5.11 shows

examples of SCDB dataset samples.

Figure 5.11: Training samples from SCDB dataset. Large hexagons, ellipses, and pen-
tagons are examples of base shapes, akin to skin lesions; small squares, stars, and trian-
gles etc. represent disease-related concepts.

5.4.1.2 CelebA

CelebA [366] is a dataset containing 202,599 face images each annotated with regards
to 40 binary attributes. The dataset is split into train, validation, and test splits of
129,664, 32,415, and 40,520 samples, respectively. The images in each split are evenly
divided with respect to gender labels. This dataset is chosen for qualitative evaluation
because the gender annotation allows for solving a non-trivial, high-level classification
task that relies on some of the fine-grained face-attributes like baldness, moustache, and
makeup. An important aspect to consider while selecting datasets was to find a dataset
that not only contains annotations of fine-grained concepts but also high-level concepts
that can be reflected by solving an interim task of fine-grained concept detection. Gender
annotations in CelebA dataset allow solving a non-trivial classification task that relies on
some of the remaining annotated concepts like baldness, moustache, lipstick and makeup,

which statistically suggests the gender in the given data distribution.
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5.4.1.3 Dermatology Datasets

Two skin lesion datasets with rich dermoscopic criteria annotations, namely PH? dataset
and derm7pt are also used. Both datasets are merged for evaluation, resulting in 1023

images of melanoma and nevus.

5.4.2 Concept Localisation Maps

The CLM method obtains a localisation map mg¢; for a concept C learnt on DNN’s
layer [, that locates the relevant region essential for the prediction of a concept classifier
gc(fi(x;0)) given an input image x € X. The linear concept classifier gc generates a
concept score for concept C given a latent vector of trained DNN f;(x;0) with optimal
weights 6 at layer [. The resulting map m; corresponds to the region in the latent space
of DNN that encodes the concept C.

5.4.2.1 g-CLM

To apply gradient-based attribution methods for concept localization a binary mask
Mp;inc is required that filters out latent dimensions that contribute the least to the classi-
fication of concept C. For each concept, those dimensions are determined by thresholding
the concept classifier’s weight vector vc, also known as CAV. High absolute weight val-
ues imply a stronger influence of the latent feature dimension on the concept prediction
and shall thus be retained. Therefore, a threshold value T¢ is computed automatically
based on the 90th percentile of weight values in vc¢.

Gradient-based attribution methods are applied once the latent feature dimension
is masked and the concept-relevant latent subset fjc(x,0) is obtained. The methods
evaluated in this work apply SmoothGrad? [367] and VarGrad [325] as ensembling ap-
proaches using plain input gradients as base-estimator. The noise vector g; ~ A(0, o?) is
drawn from a normal distribution and sampling is repeated N =15 times. SmoothGrad?
and VarGrad were proven to be superior to the classical SmoothGrad [322] in terms
of trustworthiness and spatial density of attribution maps. Henceforth, all experiments
referring to gradient-based CLM will be denoted by g-CLM.

5.4.2.2 p-CLM

The application of perturbation-based attribution methods requires local manipulation
of the input image to observe changes in prediction output. In the case of CLM, the

output is the predicted score of the concept classifier instead of the image classifier.
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The systematic occlusion method from [273] is used in all experiments with a patch-
size of 30 and stride of 10 since it provides a good trade-off between the smoothness
of obtained maps and localization performance. Occluded areas are replaced by black

patches. Experiments referring to the perturbation-based CLM method are denoted as
p-CLM.

5.4.3 Experiments and Results

Three DNN types, namely VGG16, ResNetb0, and SE-ResNeXt-50 are examined using
CLM to study the influence of architectural complexity on concept representation and
localisation. All models were initialised with weights pre-trained on ImageNet. Hyper-
parameter tuning on optimiser and Initial Learning Rate (ILR) provided best results for
optimisation using RMSprop [368] with ILR of 107*. Experiments were conducted for
a maximum of 100 epochs using learning rate decay with factor 0.5 and tolerance of 5
epochs, and early stopping if no improvement in the validation loss is achieved after 10

epochs.

The VGG16, ResNet50, and SE-ResNeXt-50 achieved 97.5%, 93.5%, and 95.6% im-
age classification accuracy and 85.7%, 81.1%, and 72.8% concept classification accuracy,
respectively. Surprisingly, the simplest and shallowest architecture achieved the high-
est test accuracy. However, the average concept classification accuracies on the archi-
tectures’ last pooling layers (pool5) indicate that complex architectures possess more

informed representations of concepts.

Figure 5.12 shows some examples of SCDB along with generated CLMs. Rows two
and three correspond to g-CLM (SG-SQ) and p-CLM, respectively. The examples pre-
sented in this figure reveal that g-CLMs can be used to localise concepts in many cases.
However, it appears that the method often highlights additional biomarkers that do not
correspond to the investigated concept. For some concepts, localisation was not success-
ful for almost all examples. Furthermore, the generated maps appear to be sparse and
distributed, which is typical for methods based on input gradients. The heatmaps ob-
tained from p-CLM are extremely meaningful and descriptive, as shown in the last row
of Fig. 5.12. The granularity of these heatmaps is restricted by the computational cost
(through chosen patch size and stride) as well as the average concept size on the image.
The method can separate the contributions of specific image regions to the prediction of

a certain concept. This even holds if shapes are overlapping.
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5.4.3.1 Quantitative Evaluation:

To quantify CLMs performance, average loU, precision, and recall are computed be-
tween predicted CLMs and their respective ground truth masks for all images in the
validation set of SCDB dataset. The predicted CLMs are binarised using a per-map
threshold from the 98th percentile. The metrics are computed for all images with a pos-
itive concept ground truth which means that images with incorrect concept prediction
are included as well. Average results for all 10 concepts for all networks and variants are
presented in Fig. 5.13. Concept localisation performance of all methods increased with
the model complexity. This suggests that concept representations are most accurate in
SE-ResNeXt-50. The results also clearly show that both variants of g-CLM are outper-
formed by p-CLM over all networks, achieving the best average localization recall of 68%
for all 10 concepts, followed by g-CLM (SG-SQ) with 38% and g-CLM (VarGrad) with
36%. Most concepts relevant to the classification achieved recalls over 80% with p-CLM.
The best ToU of 26% is also scored by p-CLM. It needs to be noted that IoU is an

Original

¢-CLM

p-CLM

"‘l13$
- .

Hexagon Hexagon Star Star

Figure 5.12: Concept Localisation Maps (CLMs) for SCDB images. Input images are
shown in the first row along with corresponding concept localisation maps from SE-
ResNeXt-50 on layer pool5. The middle and the bottom rows show corresponding g-
CLM (SG-SQ) and p-CLM, respectively. The respective concept names for the CLM
computation is given below each column
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imperfect measure considering the sparsity of gradient-based CLMs and the granularity
of p-CLMs.

ToU scores are mostly low with starmarker achieving the best value of only 0.38. This
can have several reasons. First, the patch size for occlusion was chosen to be 30 x 30
pixels to avoid excessive computation time resulting in relatively coarse CLMs. Secondly,
the IoU may be sensitive to the binarisation threshold. However, a better indicator for
the viability of the method is the recall, as it describes the portion of concept pixels
that are correctly localised. For many concepts, recalls over 80% were achieved. It is
interesting that SE-ResNeXt-50 and ResNet50 show better overall concept localisation.
This includes concepts like cross and line that are uninformative for the target task.
Furthermore, SE-ResNeXt-50 is the only architecture that shows constant localisation

performance in the last three layers.

Both qualitative and quantitative analyses suggest that the performance of CLM
and thus the representation of concepts is improved with the complexity of the model
architecture. This finding is contrary to the recent claims by Hu et al. [369]. They
concluded that simpler architectures allow for easier disentanglement and are therefore

more interpretable, comparing VGG16 to ResNet and DenseNet.
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Figure 5.13: Average IOU, precision and recall over all 10 concepts for predicted CLMs
applied to three network architectures
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5.4.3.2 Evaluation on CelebA Dataset

Learning from the experiments on SCDB, the SE-ResNeXt-50 model was trained on the
binary gender classification task using CelebA. The resulting network achieved 98.6%
accuracy on the test split. Concepts that achieved highest accuracies are often strongly
related to single classes like facial hair (e.g. goatee, moustache, beard and sideburns) or
makeup (e.g. heavy makeup, rosy cheeks and lipstick). Figure 5.14 shows images with
their corresponding CLMs generated with the proposed method. Due to the absence of

ground truth segmentation masks in this dataset, results are only discussed qualitatively.

\,.AI// /

¢-CLM Overlay

p-CLM

Lipstick Lipstick Bald Bald Bald

Figure 5.14: Examples for CLMs generated from SE-ResNeXt-50 trained on binary
classification of gender with CelebA dataset. The first row shows the original images
with the heatmap overlay of p-CLM, the second row shows g-CLM (SG-SQ) and the
last row shows p-CLM. The respective concept names for the CLM computation is given

below each column

The first two columns in Fig. 5.14 show examples of CLMs for the lipstick concept.
Although it is quite likely that the network learnt a more abstract notion of female and
male lips for the classification, the robust localisation indicates that the network indeed
encodes a lip-related concept in the learnt CAV direction. It is striking that g-CLM
often fails and highlights the cheeks as well.

All concepts related to facial hair achieved concept accuracies exceeding 80%. How-
ever, inspecting the generated CLMs reveals that the CAVs do not properly correspond
with the nuances in concept definitions. The localisation maps reveal that the concept
sideburns never actually locates sideburns but beards in general. For the goatee and

moustache it can be observed that a distinction between both is rarely made. It is thus
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very likely that the network learned a general representation of facial hair instead of
different styles, as it would not aid in solving the target task of classifying males versus
females.

The bald concept produces almost perfect p-CLMs focusing on the forehead and bald
areas, as can be seen in columns 3 and 4 of Fig. 5.14. It perfectly demonstrates how the
network learnt an intermediate-level feature from raw input that is strongly correlated
to a target class. However, this also shows a tendency to classify the male class when
too much forehead is detected. An intriguing finding is that hats are often confused with
baldness, as shown in the CLM for baldness in the second last column. However, g-CLM
consistently failed to locate this concept. In addition to being sometimes mistaken for
baldness, the CLM for hat in the last column shows that the network struggled to learn

the correct representation of a hat.

5.5 The ExAID Framework: Providing Multi-modal

Explanations

Explanation methods for Al come in a variety of forms and provide explanations using
a range of modalities such as visualisations [273], text [302], or quantitative relevance
measures for abstract concepts [292]. They differ not only in the way they are presented
to the users but also in their derivation, resulting in varying levels of insight provided
regarding the decision-making of the AI. However, most model explanations given by a
single XAI method are usually not sufficient to provide plausible and easy-to-understand

decision justification to the end-users.

This section presents a framework called Explainable Artificial Intelligence for Der-
matology (ExAID) which is able to provide easy-to-understand textual, visual, and con-
ceptual explanations for automated analysis of dermoscopic images of malignant and
benign skin lesions. This framework is built upon the works explained in section 5.3,
which verifies that deep learning models are able to learn and utilise similar disease-
related concepts as described by dermatologists and employed by them during the man-
ual analysis of dermoscopic images; and section 5.4, which localises these concepts, learnt
and embedded in the latent space of the model, on the original image space. The ExAID
extends these explanation modalities by introducing concept-based textual explanations
and integrates all modalities in a unified framework to further enhance the intelligibil-
ity of AT’s decision-making in a diagnostic setting, providing in-depth analysis tools for

medical researchers and students. The framework offers two distinct interfaces for clin-
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ical diagnosis and research purposes, laying the foundation for the understandable and

transparent integration of Al in medical workflows.

5.5.1 Datasets for Skin and Concept Classification

The ExAID contains two types of classifiers: Disease-level classifiers for lesion diagnosis
and concept-level classifiers for detection of dermatological concepts in a given image. To
train these two classifiers, it requires datasets with two types of labels, namely disease
labels, like Melanoma and Nevus, and concept annotations, for example, presence or

absence of dermoscopic concepts.

5.5.1.1 Datasets for Disease-level Classification

The training set for disease-level classification consists of Melanoma and Nevi images
taken from ISIC 2019, PH2, and derm7pt datasets. These datasets are already described
in the previous sections of this chapter. A brief account of their usage and distribution
in this section is given below.

ISIC 2019 dataset is a public collection of 25,331 images of different provenance di-
vided into eight different classes. This dataset is a coalition of three datasets, HAM10000 [91],
BCN20000 [370], and MSK [111]. Since the common denominator of ISIC2019, PH2, and
derm7pt datasets are Melanoma and Nevi classes, a subset of the three datasets was as-
sembled consisting of images from these two classes only. The subset was manually
cleansed for duplicates and samples with low quality, e.g. systematic artefacts, resulting
in a total of 6475 images. As PH? and derm7pt are used for training the concept-level
classifiers, a custom dataset split is gathered from a combination of all three strati-
fied datasets to avoid covariate shifts between disease-level and concept-level training
stages. The distribution of images in training, validation, and test sets for disease-level
classification is given in Table 5.2. Additionally, the generalisability of the model is
evaluated on a range of other datasets including 2016 and 2017 ISIC challenge datasets
and SKINL2 [371] dataset.

5.5.1.2 Datasets for Concept-level Classification

Training of concept classifiers requires annotations regarding the presence or absence
of specific dermoscopic concepts. These annotations are not usually available with der-
moscopic image datasets, which limits the selection of training and evaluation datasets

primarily to PH2 and derm7pt. In PH? dataset, colour, and lesion segmentation masks
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Table 5.2: The distribution of data in training, validation and test splits for disease-level
classification

. Lesions

Split Dataset Melanoma Nevi Total
ISIC2019 1250 2894 4144

Train Derm7pt 158 368 526
PH2 26 102 128
1ISIC2019 313 723 1036

Validate DermT7pt 40 92 132
PH2 6 26 32
1ISIC2019 391 904 1295

Test Derm7pt 50 115 165
PH2 8 32 40
1ISIC2019 1954 4521 6475

Total Derm7pt 248 575 823
PH2 40 160 200

and extensive, well-curated annotations with respect to the presence or absence of var-
ious concepts are given for each image. From derm7pt dataset, 823 images belonging
to Melanoma and Naevi classes are selected. The combination of derm7pt and PH?
used for concept classification is subsequently referred to as D7TPH2. Table 5.3 shows
the distribution of images used in the concept-level classification task. The ISIC 2016
and 2017 challenge datasets are also used for the evaluation of the concept classifier’s
generalisability. However, both datasets only include annotations of two dermoscopic
concepts each, namely Pigment Networks and Streaks as well as Dots & Globules and

Streaks, respectively.

Table 5.3: The distribution of data in training, validation and test splits for concept-level
classification with D7PH2 dataset

Split Dataset MelanomIzlieSilciTeri Total
Train gﬁgm e 12568 ?gg ?;g
Validate gg;m vt 460 32 13322
Test gg;l Pt 580 13125 14605
Tl o™ T 6 o
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5.5.2 Components of the Framework

At its core, ExAID is a generic toolbox for human-centred post-hoc explanations capable
of explaining arbitrary DL-based models even beyond applications in dermatology. In
addition to the DL model to be explained, its computational foundation consists of three
basic components, namely Concept Identification, Concept Localisation, and Decision

Explanation modules as depicted in Fig. 5.15.
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Figure 5.15: The ExAID Framework architecture. The schematic drawing shows the
input, output and the flow of information through ExAID as well as the relationship
between its components

5.5.2.1 Concept Identifier

The Concept Identifier module is based on the work discussed in detail in section 5.3.
It maps disease-related dermatological concepts to their corresponding representations
learnt by the DL-based model in its latent space using Concept Activation Vectors [292]
(CAVs). For each pre-defined concept, a linear binary classifier is trained on the de-

tection of the said concept from the model’s activation space, resulting in a CAV that
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represents the main concept direction in this latent space. The CAV training can be
executed on arbitrary model layers, automatically selecting each concept’s best perform-
ing activations, for inference. Once trained, the concept classifiers allow predicting the
presence or absence of individual concepts on unseen images, based on the model’s latent
activation patterns. The CAVs additionally allow for computation of the global TCAV
metric, estimating a concept’s overall contribution to the prediction of a certain target

class.

5.5.2.2 Concept Localiser

Concept Localisation Maps (CLMs), as explained in section 5.4, extend CAVs by lo-
calising regions pertinent to a learned concept in the latent space of a trained image
classifier. They provide qualitative and quantitative assurance of the model’s ability
to learn the right interpretation of a concept by indicating the exact spatial location
that contributed to a concept prediction and moreover enable the visualisation of other,

potentially abstract, concepts.

5.5.2.3 Decision Explainer

The Decision Explainer receives all concept prediction scores for a given image from
the Concept Identifier. A rule-base is derived from a calibration dataset and applied
to the translation of single concept scores into a textual decision explanation grounded
in human-understandable conceptual evidence. The explanations derived from concept
detection are composed of coherent and easy-to-understand explanation texts. An ex-
planation sentence is constructed based on concept scores and directional derivatives
computed during concept detection under discrimination between absence, moderate
evidence, and strong evidence of concepts to reflect the fuzzy nature of concepts’ ap-
pearance. Manifestation of a concept is decided by means of thresholds derived from
the concept training data. This is achieved by first scaling the unbound concept predic-
tion using a two-sided normalisation scheme to obtain a centred probability of concept
presence. Thresholds are then derived by maximising False Positive Rate (FPR) and
True Positive Rate (TPR) among all positive predictions on the training dataset for
moderate and strong evidence thresholds, respectively. The directional derivatives of
the predicted class along with the individual CAV are used to indicate a positive or neg-
ative influence of concept on the prediction. Conceptual evidence is mentioned after the

keyword ”despite” in the case of negative class influence to signalise contraindication.
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5.5.3 Operation Modes

The ExAID offers two complementary operation modes that are meant for different
use cases. The diagnostic mode provides functionality meant to support dermatologists
during clinical examination of patient’s skin lesions. For research and education purposes,
ExAID offers an educational mode including a collection of tools for holistic analysis of

the deep model’s behaviour as well as the collected case data.

5.5.3.1 Diagnostic Mode

The majority of a dermatologist’s clinical routine consists of a visual examination of pa-
tients’ skin lesions to reach a decision regarding the further investigation of a potentially
malignant lesion. Provided enough evidence for malignancy is available, the suspicious
tissue may be excised under local anaesthesia. Physicians with considerable experience
in dermoscopy develop an intuition that enables them to promptly reach a conclusion
while novices initially need to pay greater attention to the assessment of a particular
skin lesion. This is among other things owing to the disarray of dermoscopic terms and
concepts and their usage in different schools of thought. Having developed a routine
and diagnostic intuition not only bears the risk of subjective bias in a decision, it might
also lead to negligence in the identification of important diagnostic details, which is
furthermore aggravated by emotional stress and time constraints.

The diagnostic mode of ExAID aims at mediating subjectivity by offering a supple-
ment to the experienced physician’s first impressions, serving as a second opinion that
stimulates the physician’s thought and breaks the routine. Through this additional in-
formation, it is made sure that cues vital for the successful identification of malignant
conditions are not overseen during manual examination. The user interface of the di-
agnostic mode is presented in Fig 5.16. While allowing dermatologists to examine the
dermoscopic image manually, an initial diagnosis suggestion is provided supported by
concept-based textual, quantitative, and visual explanations. Through its neutral de-
sign, the interface assures that users are not biased towards the proposed diagnosis but
are free to reconstruct the AI’s decision process by considering and validating biomarker

scores along with their optional localisations provided in the form of CLMs.

5.5.3.2 Educational Mode

Explanations of classifiers’ decisions in ExAID have further utility beyond mere informa-
tion and guidance of the algorithm’s users. It is of central importance for the validation

of individual automated decisions and verification of plausibility of a model’s global
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Figure 5.16: Diagnostic mode of ExAID can be used as decision support system in
routine clinical workflows

generalisation behaviour and can additionally aid in the decryption of unintelligible
decision-relevant concepts learned by the Al. With its educational mode, as presented in
Fig. 5.17, ExAID offers an extensive toolbox for the investigation of model behaviour and
data distribution. Dataset-level model behaviour analysis is enabled through a combi-
nation of class-wise performance evaluation metrics and concept-wise global explanation
metrics in combination with tools for facilitated overview of individual decision outcomes

and explanations.

5.5.3.3 Interactive Features of ExAID

Some of the most salient interactive features of the ExAID framework are introduced

below.

Filtering The filtering option allows filtering arbitrary subsets of samples by metadata
such as age, concept presence, concept prediction, or correct prediction. An adaptive
data distribution plot helps to quickly identify important statistical characteristics re-

lated to biomarker presence as well as certain failure modes of the model.
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Highlighting A highlighting feature allows spotlighting certain useful properties of
samples to further facilitate the review of model behaviour and data. This feature
allows the highlighting of not only binary attributes such as the correct target class
prediction but also more complex relationships such as the presence of classes or concepts
in the annotations as well as the class and concept prediction by the model. Complex
highlighting is always supported by visual cues indicating the accordance of attribute
prediction with expert annotations.

Localisation In addition to individual localisation of concepts in data samples, ExAID
allows to visualise concept localisation simultaneously for all samples of a dataset. This
allows for quick examination of a model’s concept localisation behaviour, aiding the
validation of system behaviour and identification of potential systematic errors in the

dataset or model by revealing patterns in the localisation process.

Latent Inspection Examination of the model’s latent space structure gives further
insight into the disentanglement of data representations and potential biases captured
by the model parameters. A latent view functionality based on Tensorboard’s projec-

torS allows to intuitively examine the latent distribution of data samples by means of

Shttps://projector.tensorflow.org/
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Figure 5.17: Educational mode of ExAID can help in training of resident dermatologists
by allowing them to explore many of its interactive features.

Data Distribution

R Melanoma Nevus

pw“:’lw% o
o [

Concept

138



5.5. THE EXAID FRAMEWORK: PROVIDING MULTI-MODAL EXPLANATIONS

dimensionality reduction techniques.

5.5.4 Experiments and Results
5.5.4.1 Classifier Training & Evaluation

To demonstrate the utility of the proposed framework, a deep network for binary classi-
fication of Melanoma and Naevi from dermoscopic skin lesion images is trained. Experi-
mentation included VGG16, ResNet, DenseNet, NASNet, SEResNeXt architectures with
Adam, SGD, and RMSprop optimisers using learning rates ranging from le-3 to le-4.
Among various architecture, learning rate, and optimiser combinations, the best results
are achieved using SEResNeXt architecture with RMSprop optimiser and a learning rate
of le-4 trained for 100 epochs. Training images were augmented by random horizontal
and vertical flip as well as random cropping to 85% of the image size, resulting in input
images of size 224x224.

Evaluation on a variety of datasets is presented in Table 5.4. Results clearly show
the strong generalization capability of the model, even on unseen datasets like SKINL2,
consisting of high-quality images of 20 Melanomas and 35 Naevi. Poor performance on
the ISIC2017 test dataset can be explained by the large fraction of artefacts present in
the images, which have been intentionally left out of the training procedure to restrict the
use case to a realistic, adapted environment focusing on the image acquisition specifically

for Al processing.

Table 5.4: Performance evaluation of lesion classifier on various datasets

Accuracy Precision Recall

Datasets Size (%) (%) (%) AUC
Derm7pt (Test) 165 83.6 81.7 78.0 0.85
PH2 (Test) 40 100.0 100.0 100.0 1.00
ISIC2019 (Test) 1295 88.9 88.2 84.9 0.91
ISIC2017 (Test) 510 78.4 68.5 62.3 0.70
ISIC2016 (Test) 379 89.7 83.7 84.0 0.92
SkinL.2 55 90.9 89.9 90.7 0.99

5.5.4.2 Explanation Training and Evaluation

For the explanation of the final DL-based classifier’s decisions, the procedure outlined in
section 5.3 is followed. To this end, concept annotated samples from D7PH2 have been

utilised to assure generalisation while learning CAVs. In each run, the data are internally
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split into folds for concept training and validation under stratification of both concept
and disease labels. Linear concept classifiers are trained for 200 runs using stochastic

gradient descent with early stopping for each concept.

5.5.4.3 Concept Detection

The final CAV for a concept is chosen based on the average concept direction for all runs.
Due to concept annotation requirements, concept detection performance is evaluated
only on ISIC 2016 and ISIC 2017 datasets as well as DYTPH2 test set. Table 5.5 presents

Macro Average F1-Scores for concept detection.

Table 5.5: Performance evaluation of concept classifiers on various datasets. The results
are given as macro average F1-Scores (%) to account for class imbalance.

Datasets Streaks Pigment Dots & Globules Regression Blue-Whitish Veil
Networks Structures
derm7pt (test)  70.91 78.74 63.14 59.41 71.66
ISIC-2017 51.75 50.37 - - -
ISIC-2016 56.53 - 53.03 - -

It can be seen that concept generalisation to unseen datasets such as ISIC 2017 and
ISIC 2016 is poor. This is most likely a consequence of diverging annotation standards be-
tween the derm7pt and PH? datasets used for CAV training and furthermore influenced
by artefacts present in the challenge test sets. Moreover, results show the superiority of
coarse-grained biomarkers such as Streaks, Pigment Networks, and Blue-Whitish Veils

over more fine-grained ones such as Dots & Globules.

5.5.4.4 Concept Localisation

Fair quantitative evaluation of a network’s CLMs for skin lesions poses a number of dif-
ficulties including the selection of a suitable binarisation scheme, subjectivity of concept
annotations as well as lack of representative metrics for fuzzy localisation tasks. Proper
binarisation is especially difficult as it depends on the size of a particular ROI, its sig-
nificance to the prediction score as well as further noise stemming from the saliency
method used. Furthermore, evaluation is limited by the availability of annotated con-
cept segmentation maps. The ISIC 2016 and ISIC 2017 challenge datasets each provide
concept segmentation maps for two concepts which are used to provide a qualitative

assessment of the trained model’s concept localisation ability. The CLMs were binarised
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using variable percentiles, which are manually chosen based on the size of the respective
ROI in a specific image.

Figure 5.18 shows examples of the model’s concept localisation ability for concept
classes Streaks and Pigment Network using an adaptation of the method proposed in 5.4.
Whereas in some cases, CLM localisation aligned very well with the concept annotations,
most of the time CLMs highlighted slightly different regions. However, these highlights
often depict areas that could plausibly count as concept regions, as can be seen in the
second row of Fig. 5.18. The qualitative evaluation confirmed quantitative results and
showed that the network performed better in localising concepts Streaks and Pigment
Networks as compared to the more fine-grained Dots & Globules concept. Scattered spots
in CLMs outside the lesion regions highlight noise problems inherent in perturbation-
based CLM computation and the dependence on a proper binarisation scheme, especially

when quantitatively evaluating the maps.

Original Ground Truth igi Ground Truth

(a) Streaks (b) Pigment Network

Figure 5.18: Positive and negative examples of visual explanations provided by ExAID
along with the corresponding samples and ground truth concept masks

5.5.4.5 Textual Explanation

Quantitative evaluation of textual explanation results is performed based on the perfor-
mance evaluation for concept detection presented in Table 5.5. A qualitative evaluation
of these textual explanations is provided below.

Figure 5.19 shows examples of images along with correct and incorrect textual ex-
planations provided by ExAID. The examples in Fig. 5.19a showcase the simplicity and
intelligibility of the generated explanations. These explanations reflect the most impor-
tant criteria necessary for experts to understand the network decision. Interestingly, it

appeared that although correct concept predictions were given, the network sometimes
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misclassified the underlying disease as seen in the third row of Fig. 5.19a. This could
be a result of wrong ground truth annotation or the presentation of an ambiguous bor-
derline case. However, the explanation exposes Streaks, Irregular Dots & Globules, and
Blue-Whitish Veil as contraindications for the prediction of Naevus. In a clinical set-
ting, such contraindication would raise the suspicion of a user, possibly initiating a more
thorough review of the case. This emphasises the utility of such a system since a correct
explanation will allow physicians to scrutinise a given prediction instead of solely relying

on an automated opaque categorical output value.
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(a) Correct concept prediction. (b) Incorrect concept prediction.

Figure 5.19: Positive and negative examples of textual explanations are provided by
ExAID along with the corresponding skin lesion samples. The ground truth class of the
sample is given below the image

Figure 5.19b on the contrary shows failure cases where the network confused different
visual cues for concepts. Whereas Irregular Dots & Globules have been correctly detected
in the top-right image, the middle-right image contains white blobs which might have
been confused as Dots & Globules by the model. The bottom right case shows a Blue
Naevus which has been confused by the network as a Melanoma showing signs of Blue-
Whitish Veil although it is actually containing Regular Dots & Globules. It is also evident
that samples with incorrect concept predictions already expose a certain uncertainty by
exhibiting moderate concept detections more frequently as compared to the samples from
Fig. 5.19a as well as their prevalence of contraindications. This shows that irrespective of
the model used for the prediction, ExAID can provide well-founded justifications which
help to express model uncertainty, encouraging closer examination of rare and borderline

cases.
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5.5.5 Limitations

This study on multi-modal easy-to-understand explainable CAD system presents a uni-
fied framework that primarily focuses on the comprehensible user interface, conveying
textual, visual, and conceptual explanations for reliable DSS in dermatology. Although
concept classification, localisation, and textual explanation abilities of ExAID are re-
markable given the fact that the DL model has not explicitly been trained on those
tasks, some challenges must be resolved before an application in real clinical settings

becomes feasible.

Current public datasets often suffer from low sample quality that can be attributed
to a lack of process standardisation — different camera setups, operators, and techniques
like polarised and non-polarised dermoscopy resulting in varying image quality, lighting,
alignment, and artefacts — that can lead to uncertain diagnosis and subjective annota-
tion. Together with the low number of overall available images, particularly those with
detailed concept annotation, this results in a significant shift of data distributions be-
tween datasets, which could have been a major reason for the sub-optimal generalisation

of the proposed concept classifiers to other datasets.

The concept localisation ability of ExAID currently suffers from limitations stem-
ming from the perturbation-based nature of saliency map generation which results in
noisy heatmaps and high sensitivity to hyperparameters, especially in case of varying
biomarker size. Future work applying optimisation-based perturbation methods for
concept localisation can mitigate these issues and result in more flexible and robust
heatmaps. Textual explanations are generated based on concept predictions as well as
directional derivatives as used in TCAV scores. Lacking a meaningful scaling of gra-
dients, only the direction without the magnitude of a concept’s influence is currently
used to improve the explanation text. Incorporation of more robust concept influence
measures could add another level of details to the rule-base, making the explanations

more differentiated and rendering the system even more useful in practice.

Quantitative evaluation of concept detection or localisation is still limited due to the
lack of similarly and sufficiently annotated data from other sources. To solve this issue,
an agreed-upon definition and consensual annotation of a large number of representative
images are required, which will reflect higher-quality explanations. Moreover, evaluation
of CLMs is aggravated by noise artefacts emerging during binarisation and a lack of
definite measures for fuzzy localisation tasks. A qualitative evaluation in the real-world
setting by medical experts is of extreme value for the evaluation of the explanations’

utility to the diagnostic workflow.
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The influence of subjectivity is not only reflected in the data annotations, but also the
general uncertainty surrounding the field of dermoscopy. Despite first attempts towards
standardisation of dermoscopic terminologies and concepts [360], no general consensus
has yet been broadly established among physicians. Thus, a variety of diagnostic schools
exist and interpretation of terms and concepts is still largely depending on the education,
preference, and experience of the individual dermatologists. This work focused on the
7-point checklist criteria [372] as well as further dermoscopic concepts from [57], due to
the public availability of annotated data.

The commitment to a specific set of concepts before the decision of a standard
consensus might hamper the acceptance of the framework by physicians accustomed
to various methods and the mixture of different schools and interpretations of concepts
bears the risk of contrasting labelling. Productive deployment of such a system requires
diligent assessment by medical practitioners in real-world environments and providing
their valuable feedback to evaluate and improve such a system. Prior to performing
clinical trials, the system should be fed with carefully selected data properly representing
a set of meaningful and unambiguously defined dermoscopic concepts as agreed by a large

body of dermatology experts.

5.6 Understanding Glaucoma Diagnosis using GradCAM

The ExAID framework described in the previous section can be used on datasets which
clearly define clinical concepts used for disease classification and provide annotations for
such concepts. However, other medical domains, like glaucoma classification, may not
have such elaborately defined concepts attributed with the disease and therefore no such
concept annotations are available with such datasets. To explain the predictions of DL
models in such use cases, one can resort to simpler explanation methods as described in
section 5.2.1.

GradCAM method was used to visualise the input regions, which were deemed the
most significant by Inception V3 trained on G1020 and ORIGA datasets (refer to sec-
tion 2.3 for detailed experimental setup). Figure 5.20 shows some sample images along
with their GradCAM results for correctly classified healthy and glaucoma images from
both datasets. It is interesting to note here that, when supplied with the whole RFI
instead of cropped optic disc, the classifier may focus on input regions other than optic
disc, which is considered most important by ophthalmologists. These GradCAm results
on glaucoma prediction by DL model should be analysed with great caution. While it

cannot be ruled out that the classifier might have made a mistake in understanding the
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discriminatory features of the disease, as Ribeiro’s classifier did with the classification
of wolf [257], and these correct classifications are merely a fluke — after all the accuracy
of the classifier dropped noticeably when whole RFIs were provided instead of ODs as
seen in Table 3.10 — these maps may also hint at some hidden patterns in the image,
tucked away from normally focused OD, which might have escaped human eye until now.
To know for sure, ophthalmologists should have a comprehensive analysis on these class
relevance maps. This prospect of Al finding new criteria for disease classification has a
lot of potential. To make the scope of this thesis more manageable, further exploration

into this topic is left for future work.

5.7 Discussion

One principal impediment in the successful deployment of Al-based CAD systems in
the everyday clinical workflow is their lack of transparent decision-making. Although
commonly used explanation methods provide some insight into these largely opaque al-

gorithms, yet such explanations are usually convoluted and not readily comprehensible

(a) Correctly classified healthy image from (b) Correctly classified glaucoma image from
G1020 G1020

(¢) Correctly classified healthy image from (d) Correctly classified glaucoma image from
ORIGA ORIGA

Figure 5.20: Examples of correct classification by Inception V3 albeit by looking at
different regions in the RFI than analysed by ophthalmologists
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except by highly trained AI experts. That is why beyond academic research and proof
of concept studies, there has been a healthy scepticism about to what extent, if at all,
AT should make or support medical decisions in real clinical workflows [373]. Although
the sequential computation of DL-based models is traceable, they often lack explicit
declarative representation of knowledge. Justifying the decisions taken by Al using ex-
planations can help bring such academic research one step closer to practical deployment
in the healthcare sector. Concept-based methods for network explanation offer great po-
tential especially for complex classification tasks in sensitive application areas like MIA.
In this chapter leveraging of these methods is explored to verify the ability of DNNs
to learn and utilise human-understandable concepts for skin lesion classification. It is
shown that a strong correlation exists between DNN’s learnt representation of various
concepts and those routinely used by dermatologists. These findings corroborate that
deep learning based CAD systems are able to learn and capitalise on similar disease-
related concepts for prediction as used by dermatologists. It has also been shown that
Testing with CAVs (TCAV) is applicable using complete identically distributed images
instead of general concept patches. However, this approach can further be improved by
using more granular labelling of disease indicative concepts to get a deeper insight into

the model’s classification processes as well as further validation of its decisions.

Due to the complexity of the problem, possibly subjective annotations of a training
set by various experts, and a small number of concept training samples, not all human-
defined disease-related concepts were thoroughly analysed. Since supervised concept
learning is highly dependent on high-quality and precisely annotated human concept
examples, more focus should be placed on generating clean datasets of high-quality con-
cept annotations that can be used for explaining models in medical imaging applications.
Standardising the annotation according to one school of thought in the dermatology
community, for example, following [360], can decrease inter-observer disagreement but
it would require an enormous amount of time and effort by dermatology experts. To
allow for a more comprehensive interpretation of the TCAV scores for this specific task,
it would be desirable to curate a high-quality dataset with reliable fine-grained labels
of concepts that are known to be highly indicative of specific diagnoses. As supervised
concept classification from network activations has already been proven to be effective,
an extension of unsupervised concept discovery should be considered. This alternative,
or perhaps supplementary approach, could not only allow improvement towards simpli-
fying the interpretability of networks by eliminating the necessity for laborious expert
annotations but it could also provide insights into a network’s own concepts, potentially

revealing new knowledge for domain experts or unexpected biases in the network.
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A novel direction of concept localisation for the explanation of Al-based DSS is also
introduced and a robust perturbation-based concept localization method (p-CLM) is
proposed that has been evaluated on a synthetically generated dataset as well as on a
publicly available dataset of natural face images. The p-CLM considerably outperformed
two gradient-based variants (g-CLM) in qualitative and quantitative evaluation. The
initial results are promising and encourage further refinement of this approach. The
computational efficiency and quality of heatmaps can be greatly improved by utilising
optimisation-based perturbation methods like [283] and [374]. Not only will they reduce
the number of network propagations by optimising the prediction score, but also the
flexible shape of masks would be beneficial for the quality of CLMs. Perturbation-based
methods always introduce some distribution shift that might distort predicted outcomes.
However, more sophisticated methods like image in-painting could minimise distribution
shifts through perturbation.

The ExAID framework consolidated and built upon previous works on detection of
human-defined concepts for skin lesions diagnosis in the DL model’s latent space and
their localisation on the input image to provide an intelligible textual explanation of
the model’s predictions. In spite of severe limitations in terms of data and annotation
availability, the system provides useful insights into the DL classifier’s decision-making,
even in case of wrong predictions. However, when the current limitations of ExAID
framework are thoroughly addressed, it will not only play a useful assistive role in reliable,
efficient, and objective screening of melanoma, which is one of the most serious skin
cancers but also help train new dermatologists efficiently and effectively. It is anticipated
that physicians would be able to confer higher confidence to such CAD systems that
are able to justify their prediction by listing the concepts that influenced positively or
negatively towards a certain output.

Collaboration of Al developers and medical professionals already led to interesting
advances in medical Al, including practical Al evaluation and discovery of new potential
diagnostic criteria. However, despite success of concept-based and heatmap-based expla-
nation methods, sensible and comprehensible explanations for medical image analysis
tasks are still one of the greatest challenges related to medical image diagnosis, which
should be addressed by concerted efforts from AT researchers, medical practitioners and
regulatory authorities. Qualitatively evaluating an explanation with regards to its inter-
pretability and completeness can be substantially subjective. Recently, there have been
many efforts to quantify and qualify XAI methods and their explanations in objective
and subjective ways. However, there are no agreed-upon and standardised evaluation

procedures for explanation methods that can guarantee fidelity and rate quality. De-
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velopment of standardised and objective evaluation criteria can greatly help benchmark
upcoming explainable CAD systems and is thus an extremely important requirement
for application in routine clinical environments. Moreover, appropriate regulatory mea-
sures should provide an ethical framework for the application of Al in healthcare, which
can ensure safety and transparency through standardised evaluation and certification

procedures.
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resent status of CAD is the culmination of years of efforts expended by medical

professionals and computer scientists. Yet, owing to the substantially sensitive

nature of this application, these solutions fall short of very high standards of
performance and reliability expectations from patients, healthcare providers, and reg-
ulators. The most straightforward approach to improve existing CAD systems is to
enable them to emulate the time-tested diagnostic decision-making processes designed
by medical practitioners. This, however, requires a comprehensive understanding of such
diagnostic criteria on part of Al developers and their ability to mathematically model
this decision-making process so that it can be integrated into DNNs. Therefore, it is
advocated that well-coordinated collaboration must be established among researchers

and professionals from all stakeholders.

6.1 Discussion

This thesis identified many open challenges requiring smart engineering and innovation.
In any CAD development process, the first step is to gather relevant data and assess its
quality. There are many issues worth addressing with regard to data curation. Since
DL-based models are data-driven, they suffer from limitations and biases inherent in the
data [97]. Although AI algorithms are not capable of showing any bias, yet they can
inadvertently behave with partiality due to any bias that crept in during data collection.

This contamination of data with bias can seriously hamper the ability of CAD systems

149



CHAPTER 6. CONCLUSION

to perform effectively and objectively. For example, some data might suggest that a
cohort who took a certain drug recovered quickly compared to those who did not. Deep
models can detect this correlation easily. However, if the causality between the drug and
the recovery is missing from the data, the models can overlook this causality and found
their decision purely on association. The CAD systems trained on such datasets cannot
propose an acceptable explanation of their decision either [375]. Therefore, CAD solu-
tions will hugely benefit from a carefully curated dataset that incorporates the context
and does not leave out any confounding variables. Such dataset curation can be achieved
by concerted and close collaboration between medical practitioners and Al developers
right from the onset.

Class imbalance in existing medical image datasets is another huge problem. Since
some diseases have a very low prevalence, for example, melanoma, therefore it is really
difficult to collect a large number of samples with such rarely occurring diseases. Sub-
jectivity in annotating datasets is also a bottleneck. The performance of a CAD system
is compared to the ground truth generated by human graders. When there is a signifi-
cant disagreement of human graders on the diagnosis of a sample in the dataset, it can
only deteriorate the performance of Al-based models. Therefore, while Al developers
should be able to devise methods to identify erroneous data and handle missing values
or outliers, profound efforts must be exerted by medical professionals in curating and
publishing high-quality datasets.

Another challenge is capitalising on expert knowledge. The utilisation of expert
knowledge in Al-based solutions does not only improve prediction accuracy of these sys-
tems as shown in section 2.4, section 3.3, and section 3.4, but also help explain these
predictions as given in section 5.3.1. However, sometimes this expert knowledge and
unstructured or semi-structured clinical data upon which this expert knowledge could
be based happens to be phenomenally complex, massive and challenging to process ef-
fectively by AI algorithms [376] as seen in section 3.5. This could be partly because of a
lack of guidelines and standardised Electronic Health Records (EHR) protocols. These
EHRs play a vital role in routine manual diagnosis and can also be helpful in improv-
ing CAD performance. However, EHRs are not sometimes treated with the same level
of diligence as bestowed upon other research and diagnostic data [377]. Although the
quantity of EHRs is increasing since more and more healthcare establishments are using
them in one form or the other, their availability with public medical image datasets
remains scarce. Even when these additional data are available, there may be frequent
missing or incorrect records as with ISIC-2019 and ISIC-2020 datasets. Therefore, im-

proving the quality assessment of EHRs by emphasising accuracy, completeness, and
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credibility can have a direct positive impact on the ability of CAD systems to make the
most out of these data. Moreover, the advancement of interventional methods for the
correction of algorithms and incorporation of explicit expert knowledge could account
for retrospective adjustments during trial phases of CAD systems.

An interesting example in which clinical metadata and context of the case mattered
and lack of their inclusion in Al models resulted in a technically valid yet misleading
ML prognostic model, was the use of mortality risk prediction to make decisions about
whether to provide treatment on an inpatient or outpatient basis for more than 14000 pa-
tients with pneumonia [378]. In this study, the algorithm counter-intuitively suggested
that patients with pneumonia and asthma were at a lower risk of death compared to
patients with only pneumonia, an indication that surprised the researchers who eventu-
ally ruled it out. A closer analysis of the data revealed that, at the hospital hosting this
study, patients with a history of asthma who presented with pneumonia were usually
admitted directly to intensive care units to prevent complications. This led to a pat-
tern in the data that reflected better outcomes for such patients compared to patients
with pneumonia and without a history of asthma with approximately 50% less mortality
rate. This example not only emphasises the importance of representative training data
for such algorithms but also that a contextually complete description of the data is of
crucial importance.

One of the major use cases of CAD systems is in large-scale screening for early detec-
tion of possibly asymptomatic diseases. In such scenarios, these systems are expected to
be highly accurate and sensitive to the early stages of the disease for which the screening
is conducted. However, this usage has the risk of over-diagnosis [379]. Over-diagnosis
means that a patient indeed had a disease and it was correctly identified by CAD but
this diagnosis has little to no benefit for the patient. Instead, it can even be harmful to
the patients [380]. In cancer screening, for example, it has been observed that repeated
testing can result in increased detection of findings that are consistent with cancer, yet
the mortality rates corresponding to such findings do not decrease accordingly. This
peculiar and unexpected discovery raises questions about the actual benefits of such
early screening of diseases. Over-diagnosis happens with manual diagnosis as well and
some researchers argue for its benefits [381, 382]. However, with CAD it can quickly
become overwhelming when coupled with the prediction of false positives. Therefore, in
addition to becoming highly sensitive in their diagnosis, the CAD system may be able
to reconcile this problem.

There is, unfortunately, no standardised method of evaluating CAD systems [22, 383].

This creates a hurdle for regulators to approve such solutions for practical use [384]. As
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evident by section 2.2 and section 3.2, for example, researchers have used different per-
formance metrics for the same datasets and the same classification tasks. While one
performance metric may deal with certain aspects of the CAD system’s performance,
it may miss other crucial information. For example, classification accuracy is the most
easily understandable metric. However, it does not always portray a true and complete
picture of a classifier’s performance, especially with highly imbalanced datasets. Other
methods like sensitivity, specificity, and AUC are very useful in evaluating CAD systems.
For multiclass classification, confusion matrices, in addition to the above-mentioned met-
rics, are also important to perform detailed error analysis. Therefore, to thoroughly and
fairly evaluate the diagnostic performance of a system, a comprehensive and standardised
assessment mechanism needs to be developed and followed. Additionally, an objective
performance evaluation of a CAD system should also carefully consider unit misclassifi-
cation costs for false positive and false negative errors [383]. The American Association
of Physicists in Medicine (AAPM) constituted the Computer-Aided Detection in Di-
agnostic Imaging Subcommittee (CADSC) to develop standardised evaluation methods
for medical image-based CAD systems [22] and raise awareness in medical professionals
about various aspects of these systems like appreciating their effectiveness and cautious
usage given the open challenges they still face. There is a pressing need to duplicate such
regulating bodies to streamline the scientific evaluation of these systems and expedite
their introduction in healthcare workflows.

Although there have been numerous studies on CAD systems that report encour-
aging results in lab settings, there are very limited instances where such algorithms
are actually validated in clinical practice [385]. Effective and constant feedback from
clinicians, who test such systems in their day-to-day routine, to AI researchers, who
design these systems, can greatly hasten the development of practically usable CAD
systems [386]. This back and forth feedback can also mitigate another major barrier
in the successful deployment of CAD systems in a clinical environment, which is the
lack of training of medical practitioners in terms of correct use and interpretation of
the outcome of a CAD system [387]. Therefore, in addition to refining CAD systems,
adequate training and education of their users are also equally vital since it has been
observed that the communication gap between Al developers and their users can lead to
misuse of technology [335, 336]) and eventual performance degradation [331].

There have been some studies with controversial findings of existing CAD systems,
for example, with regards to generalisability of CAD [122] and their usefulness [336,
388]. Prima facie such studies might discourage other researchers to continue research

or medical insurance companies to not covering the cost of using these systems [383].
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Therefore, it is ever more important now to address all dubious aspects of CAD and win
the confidence of physicians, patients, and regulators. In doing so, it is also necessary
to signify that, as with every other medical procedure, drug, and device, the use of
CAD systems has specific risks and will probably continue to have some imperfections.
However, as long as the benefits of CAD usage are overwhelmingly higher than their
potential, albeit rare, risks and the prerogative of taking final decision remains with
human experts, CAD should be allowed a fair opportunity to show their mettle in the
field. This can only be achieved with close and concerted efforts by medical and Al
researchers.

In the medical domain, it is imperative to explain the output of algorithms in a
human-understandable language as to support and not distract experts. Holzinger et
al. [389] believe that the only way forward towards explainable CAD is to combine
knowledge-driven and data-driven approaches, which could harness interpretability of
the former method and high accuracy of the latter. This thesis advocates that the tran-
sition towards multimodal, diverse, and complete explanations that combine human-
understandable modalities such as text, human-understandable concepts, and context
will substantially support the way of XAl in clinical assistive settings. In medical diag-
nosis, explanations can be different for different users. For instance, a doctor might use
different language, modality, or depth of explanation depending upon whether he/she
is explaining to a patient, a regulator, or a fellow doctor. Similarly, explainable AI for
healthcare serves a different purpose for medical practitioners and Al developers. It is
inevitable that Al engineers design solutions that provide diverse explanations fitting
the need of specific use-cases.

Finally, CAD should be used by medical researchers as it was intended by its de-
velopers since misuse of such systems can do more harm than good as discussed in
section 5.2.3. These systems are developed as an aid, not as a primary decision-maker.
In spite of all the technological panoply of AI, most CAD systems only achieve high
sensitivity comparable to human graders at the expense of low specificity. However, the
types of mistakes that CAD makes are different from those made by human experts, and,
therefore, the complementary use of CAD by medical practitioners has the potential to
improve overall performance. For example, a CAD system for screening mammography
images to detect breast cancer was approved by the FDA only as a second reader [34].
Therefore, radiologists are expected to analyse a given case as observantly as they would
in the absence of this helping hand, and only use CAD as a spell-checker to verify their
diagnosis. Even with the second opinion given by the CAD, an expert diagnostician

must not readily dismiss their own findings and should be able to discern between a
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true negative and a false positive or vice versa. Appropriate and efficient use of CAD
by clinicians can surely improve their performance and allow effective dispensation of

medical services to the patients.

6.2 Future Outlook

From a healthcare perspective, CAD can have a promising future in general medicine
encompassing a range of applications in the healthcare process like risk assessment,
prognosis prediction, and monitoring of disease recurrence, in addition to using CAD
systems for detection of certain diseases. In any role, however, the interface of these
systems should be smooth and intuitive so that it can be seamlessly integrated into
modern clinical practices without compromising on workflow efficiency.

In addition to the challenges identified and addressed in this thesis, this thesis also
found some other interesting research directions which can be useful in realising a diverse
CAD system and may help improve their accuracy and explainability. In radiology
and histopathology, for instance, doctors do not just label an image with a certain
disease or condition. They interpret the image by noting their findings and giving an
impression based on those findings. These findings and impressions are usually free-
hand text and do not follow any structure. Enabling a CAD system to analyse a visual
modality and produce a coherent textual report can have an inherent explainability
advantage since the impression (diagnosis) is substantiated by findings (justification of
diagnosis). Although there is a reasonable body of research on this topic, a break-through
in producing clinically meaningful detailed textual reports is yet awaited.

Many diseases, like diabetic retinopathy, are graded with respect to their severity.
These grades have an ordinal relationship between two successive stages. In deep learning
algorithms, various disease or their stages are usually one-hot encoded before they can
be fed to the model. This encoding is very easy for DL models to process, however, it
loses vital information regarding how close or distant two stages are from each other.
For example, if Cheetah, Leopard, and Dog are three classes for an image classifier, it
is evident from the classes that taxonomically Cheetah and Leopard are closer to each
other and either feline is very distant from a dog. However, when these three classes are
one-hot encoded, the encoded representation of each class is equally dissimilar from the
other two, therefore, losing vital information which might be helpful for DL methods to
exploit. There is a need to investigate alternative encoding schemes for such scenarios
and take advantage of inherent relationships in class labels.

There is a growing interest in commercialising CAD solutions and developing use-
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case-specific frameworks. However, caution must be exercised to carefully gauge those
achievements and continue investing efforts in standardised evaluation and investigation
of CAD methods in close cooperation with domain experts. Modern Al technologies have
the potential to revolutionise healthcare in innumerable ways and plays a crucial role in
creating a solid foundation of understanding and improving CAD functionality. Current
advancements show that close collaboration of medical domain experts and computer
scientists paired with persistent efforts of Al experts to advance and develop new methods
will eventually lead to many practical applications which are just an anticipation of what

will be possible in the future.
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