

Efficiency Improvements in the Quality Assurance
Process for Data Races

Vom Fachbereich Informatik der

Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Wirtsch.-Inf. Alexander Klaus

Datum der wissenschaftlichen Aussprache: 08.04.2022

Dekan: Prof. Dr. Jens Schmitt

Berichterstatter: Prof. Dr. Dr. h. c. Dieter Rombach

Berichterstatter: Prof. Dr. Reinhard Gotzhein

DE-386

Acknowledgements

iii

Acknowledgements

It was a long journey that eventually has led to finalizing this thesis. Throughout this journey,
many different people have supported me.

First, I would like to thank my parents, who raised my interest in computers, and who enabled me
to study computer science.

I feel deep thankfulness to my wife Maryna and my children Julius and Johann, who had to be
very patient and enduring during too many long weekends and evenings spent for conducting
the work presented in this thesis.

I would like to thank Prof. Dr. Dr. h.c. Dieter Rombach and Prof. Dr.-Ing. Jörg Dörr for their
valuable advice and their patience during the many years of working on this thesis. I would also
like to thank Prof. Dr. Dr. h.c. Dieter Rombach and Prof. Dr. Reinhard Gotzhein for their
commitment to evaluate this thesis, and Prof. Dr. Hans Hagen for taking over the chair of the
dissertation committee.

Many thanks go to my former colleague from Fraunhofer IESE, Dr. Frank Elberzhager, who
supported me in the early steps of my thesis. Many thanks also go to Gero Zimmer, who
conducted a Master Thesis in the context of my thesis, and with whom I had many intensive
discussions about UML Activities.

I would like to thank Prof. Dr. Katharina Anna Zweig and Dr. Marsha Kleinbauer from the
Technische Universität Kaiserslautern for their support and the collaboration on the graph
theoretic aspects in the analysis of UML Activities.

Many thanks go to Prof. Dr.-Ing. Jörg Dörr and Dr. Christian Jung from Fraunhofer IESE and to
Prof. Dr. Volodymyr O. Liubchak from Sumy State University for their support in conducting the
controlled experiment.

I would also like to thank Caroline Frey for her organizational support.

Acknowledgements

 iv

Abstract

v

Abstract

As the usage of concurrency in software has gained importance in the last years, and is still rising,
new types of defects increasingly appeared in software. One of the most prominent and critical
types of such new defect types are data races. Although research resulted in an increased
effectiveness of dynamic quality assurance regarding data races, the efficiency in the quality
assurance process still is a factor preventing widespread practical application. First, dynamic
quality assurance techniques used for the detection of data races are inefficient. Too much effort
is needed for conducting dynamic quality assurance. Second, dynamic quality assurance
techniques used for the analysis of reported data races are inefficient. Too much effort is needed
for analyzing reported data races and identifying issues in the source code.

The goal of this thesis is to enable efficiency improvements in the process of quality assurance
for data races by: (1) analyzing the representation of the dynamic behavior of a system under
test. The results are used to focus instrumentation of this system, resulting in a lower runtime
overhead during test execution compared to a full instrumentation of this system. (2) Analyzing
characteristics and preprocessing of reported data races. The results of the preprocessing are
then provided to developers and quality assurance personnel, enabling an analysis and
debugging process, which is more efficient than traditional analysis of data race reports. Besides
dynamic data race detection, which is complemented by the solution, all steps in the process of
dynamic quality assurance for data races are discussed in this thesis.

The solution for analyzing UML Activities for nodes possibly executing in parallel to other nodes
or themselves is based on a formal foundation using graph theory. A major problem that has
been solved in this thesis was the handling of cycles within UML Activities. This thesis provides a
dynamic limit for the number of cycle traversals, based on the elements of each UML Activity to
be analyzed and their semantics. Formal proofs are provided with regard to the creation of
directed acyclic graphs and with regard to their analysis concerning the identification of
elements that may be executed in parallel to other elements. Based on an examination of the
characteristics of data races and data race reports, the results of dynamic data race detection are
preprocessed and the outcome of this preprocessing is presented to users for further analysis.

This thesis further provides an exemplary application of the solution idea, of the results of
analyzing UML Activities, and an exemplary examination of the efficiency improvement of the
dynamic data race detection, which showed a reduction in the runtime overhead of 44% when
using the focused instrumentation compared to full instrumentation. Finally, a controlled
experiment has been set up and conducted to examine the effects of the preprocessing of
reported data races on the efficiency of analyzing data race reports. The results show that the
solution presented in this thesis enables efficiency improvements in the analysis of data race
reports between 190% and 660% compared to using traditional approaches.

Finally, opportunities for future work are shown, which may enable a broader usage of the results
of this thesis and further improvements in the efficiency of quality assurance for data races.

Abstract

 vi

Table of Contents

vii

Table of Contents

ACKNOWLEDGEMENTS ... III

ABSTRACT ..V

TABLE OF CONTENTS .. VII

LIST OF FIGURES ... XI

LIST OF TABLES ... XIII

1 INTRODUCTION .. 1

1.1 CONTEXT ... 1
1.2 PROBLEM STATEMENT ... 4
1.3 CONTRIBUTION ... 8
1.4 ASSUMPTIONS AND LIMITATIONS ... 15
1.5 RESEARCH APPROACH .. 16
1.6 OUTLINE ... 18
1.7 SUMMARY ... 19

2 FOUNDATIONS ... 21

2.1 RESEARCH APPROACH .. 21
2.2 ORDERINGS, CONSISTENCY MODELS AND DATA RACES .. 22
2.3 PROCESS SYNCHRONIZATION IN SOFTWARE .. 24
2.4 STATIC AND DYNAMIC QUALITY ASSURANCE FOR DATA RACES .. 26
2.5 BEHAVIORAL MODELS OF SOFTWARE .. 35
2.6 SUMMARY ... 38

3 RELATED WORK ... 41

3.1 RESEARCH APPROACH .. 41
3.2 BEHAVIORAL MODELS OF SOFTWARE AS BASIS FOR THE ANALYSIS OF THE DYNAMIC BEHAVIOR 42
3.3 ANALYZING UML ACTIVITIES .. 44

3.3.1 Process of the Systematic Literature Review ... 46
3.3.2 Sun ... 47
3.3.3 Sapna ... 48
3.3.4 Xu ... 48
3.3.5 Chandler ... 48
3.3.6 Lei ... 49
3.3.7 Boghdady ... 49
3.3.8 Kundu ... 50
3.3.9 Kim ... 50
3.3.10 Verma ... 50
3.3.11 Lima ... 51

Table of Contents

 viii

3.3.12 Summary and Assessment ... 51
3.4 CLASSIFYING DATA RACES .. 53
3.5 ANALYSIS OF DATA RACES .. 55
3.6 SUMMARY .. 59

4 ANALYSIS OF UML ACTIVITIES AS BASIS FOR FOCUSING QUALITY ASSURANCE 61

4.1 RESEARCH APPROACH ... 61
4.2 GRAPH THEORETIC CONCEPTS ... 63
4.3 UML ELEMENTS .. 64
4.4 HANDLING OF UML ELEMENTS IN THE ANALYSIS .. 71

4.4.1 Basic Elements ... 72
4.4.2 Additional Elements ... 74

4.5 TRANSFORMATION OF UML ACTIVITIES .. 77
4.5.1 Group Reduction .. 78
4.5.2 Group Structured ... 79
4.5.3 Group Specific .. 80
4.5.4 Group Post-Analysis ... 81
4.5.5 ActivityFinalNodes ... 81
4.5.6 ObjectElements .. 82
4.5.7 ExecutableNodes ... 83
4.5.8 ActivityGroups ... 83

4.6 ANALYSIS OF UML ACTIVITIES .. 84
4.6.1 Representing Execution Instances of Computations by DAGs 84
4.6.2 Parallelism and Data Races ... 89
4.6.3 On the Number of DAGs as a Result of Transforming UML Activities 90
4.6.4 Token Concept for Walks in a DAG .. 93
4.6.5 Complete Analyses of UML Activities with Limited Cycle and Edge Traversals . 97

4.7 POST-ANALYSIS OF UML ELEMENTS .. 105
4.8 DISCUSSION .. 108
4.9 SUMMARY .. 111

5 ANALYSIS OF DATA RACE REPORTS .. 113

5.1 RESEARCH APPROACH ... 113
5.2 CHARACTERISTICS OF DATA RACE REPORTS.. 114
5.3 PREPROCESSING DATA RACE REPORTS .. 116
5.4 VISUALIZING PREPROCESSED DATA REPORTS ... 119
5.5 SUMMARY .. 120

6 EXAMINATIONS OF EFFICACY ... 123

6.1 RESEARCH APPROACH ... 123
6.2 EXEMPLARY APPLICATION .. 126
6.3 DAGS AS RESULT OF ANALYZING UML ACTIVITIES ... 131
6.4 ON THE EFFICIENCY IMPROVEMENT OF FOCUSED DATA RACE DETECTION................................ 134
6.5 CONTROLLED EXPERIMENT ON ANALYZING DATA RACE REPORTS ... 137

6.5.1 Improvement Possibilities .. 137
6.5.2 Goals, Questions and Metrics .. 139

Table of Contents

ix

6.5.3 Experimental Design .. 142
6.5.4 Conduct of the Controlled Experiment ... 146
6.5.5 Assessment of the Results of the Controlled Experiment 146
6.5.6 Discussion of the Results .. 152

6.6 SUMMARY ... 154

7 SUMMARY AND FUTURE WORK ... 157

7.1 CONTRIBUTIONS ... 157
7.2 OPEN QUESTIONS AND FUTURE WORK ... 160

REFERENCES .. 163

APPENDIX .. 175

APPENDIX A: TASK LIST FOR THE CONTROLLED EXPERIMENT – GROUP 1 ... 176
APPENDIX B: TASK LIST FOR THE CONTROLLED EXPERIMENT – GROUP 2 ... 183
APPENDIX C: QUESTIONNAIRE FOR THE CONTROLLED EXPERIMENT... 190

LEBENSLAUF .. 191

Table of Contents

 x

List of Figures

xi

List of Figures

Figure 1: Parallelism and Concurrency.. 2

Figure 2: Pseudo Code and Exemplary Interleavings .. 3

Figure 3: Simplified Process of Dynamic Quality Assurance for Data Races 7

Figure 4: Proposed Solution Idea - Optimized Process 11

Figure 5: Problems, Goals, Research Objectives, and Hypotheses 15

Figure 6: Event Diagram, Adapted from [Ma88] .. 29

Figure 7: Literature Review of Related Work .. 42

Figure 8: Directed Graph ... 64

Figure 9: Exemplary UML Activity Diagram 1 .. 73

Figure 10: DAGs Created for the Exemplary UML Activity Diagram 1..............86

Figure 11: Exemplary UML Activity Diagram 2 ..98

Figure 12: Exemplary UML Activity Diagram 3 (2*k Cycle Traversals) 99

Figure 13: Exemplary UML Activity Diagram 4 (2*k*l Cycle Traversals) 100

Figure 14: Exemplary UML Activity Diagram 5 (Combination of Edge
Traversals) .. 101

Figure 15: Data Race Entry in a Data Race Report .. 115

Figure 16: Characteristics of Data Races in Data Race Reports 116

Figure 17: Exemplary Contents of a Data Race Report (Pictorial
Representation) ... 117

Figure 18: Exemplary Contents of a Data Race Report, Focused on Distinct
Accesses (Pictorial Representation) ... 118

Figure 19: Screenshot of the Tool for the Analysis of Reported Data Races .. 120

Figure 20: Problems and Goals Related to this Thesis 123

Figure 21: Simplified Process of Dynamic Quality Assurance for Data Races
with Efficiency Improvements ... 127

Figure 22: UML Activity Representing Apache Tomcat (Excerpt) 128

Figure 23: Screenshot of ActivityReducer .. 129

Figure 24: Screenshot of ADDAG ... 129

Figure 25: Screenshot of build.xml (Full Instrumentation) 130

Figure 26: Screenshot of build.xml (Focused Instrumentation) 130

Figure 27: Screenshot of DataRaceAnalyzer ... 131

Figure 28: Box Plots for the Tasks 1, 2, and 3.. 148

Figure 29: Screenshot of G*Power for Task 2 ... 150

List of Figures

 xii

List of Tables

xiii

List of Tables

Table 1: Assessment of Existing Approaches .. 52

Table 2: Handling of Action Types .. 76

Table 3: Handling of Further Elements ... 76

Table 4: Assessment of Existing Approaches and the Solution Presented in
this Thesis ... 110

Table 5: Results of Experiments on DAGs and DAG* 133

Table 6: Groups and Rounds ... 144

Table 7: Raw Data of the Controlled Experiment ... 147

Table 8: Rates Calculated from Raw Data .. 147

Table 9: Raw Data of the Questionnaire ... 151

Table 10: Summary of Achieved Confirmation of Hypotheses...................... 155

List of Tables

 xiv

Introduction

 1

1 Introduction

This chapter elaborates on the context and topic of this thesis and explains the
contributions of this thesis. The chapter presents the research approach and
closes with an outline of the following chapters.

1.1 Context

Distributed systems are an established area in computer science since many
decades [La78]. With the rise of multicore CPUs and multiprocessor systems in
the past years [Ch09], [JT14], problems, which were specific to distributed
systems became part of common programming [La78], [WS06].

In processor assembly, there was a shift from creating more processing power
in terms of CPU clock rates towards creating multi core processors [La10]. To
benefit from these developments, software needs to be developed using
multithreading techniques, so that computations may be executed in parallel
on different cores [La10], [Pa19b]. Nowadays, multithreading techniques are
widely used in software development [Bo19], [OGH20].

With multithreading techniques being used in software development,
parallelism and concurrency are part of modern software applications [Me15],
[Ro19]. Parallelism itself does not necessarily lead to concurrency. Instead,
software using concurrent computation regularly involves the usage of shared
memory [OGH20].

The following Figure 1 demonstrates this distinction. While the computations
in the upper part of this figure are executed in parallel, the lower part shows
resource 2 as shared resource. This shared resource leads to the different
computations not only running in parallel, but concurrently.

However, with concurrent computation, new types of defects evolved, which
are perceived as being hard to detect and more time consuming than defects
not related to concurrency [PLZ09], [Er10], [Ka17], [Li19].

Introduction

 2

Figure 1: Parallelism and Concurrency

Concurrency is related to non-determinism in the execution of different
concurrently executed computations [Ba06b]. This means that it is not clear,
and not predictable, in which order the computations, and the instructions
involved in these computations, are executed. It cannot be determined
upfront. With non-deterministic execution of concurrent instructions, access to
shared memory may happen in different interleavings [Ab17], [O’05], [Kl12],
[Ab17]. Some of those interleavings may be unexpected and may lead to
problems [FQ03], [PS08], [KZC13], [Kl13].

Unexpected interleavings may, for example, be reached due to
misunderstandings of program and compiler behavior. Often, the assumption
of sequential consistency is made, it is assumed that instructions are executed
in the order, in which they appear in the source code [KZC15]. However, in
many modern programming languages, such as Java or C++, this sequential

consistency is not guaranteed in the case of multithreaded software [Bo12a],
[Ro19]. In addition, changes in variables executed in one thread may not
always be immediately visible to other threads [Bo12a], [KZC15].

In the following Figure 2, an example for a concurrent computation is given
and four exemplary out of 24 possible interleavings and the consequences of
these four interleavings are demonstrated.

The methods runByThreadOne and runByThreadTwo are executed in

parallel by two different threads. Both methods access both variables x and y,

and thus, a concurrent computation is given. The first three interleavings show
typical examples, of how the instructions in the two methods may be executed.
The fourth, separated, interleaving is possible due to instruction reordering.
This instruction reordering leads to the instructions in each method not being
executed in the order written in the application. Sequential execution of the
instructions in any of these methods is not guaranteed. As a result, the two

Introduction

 3

variables resultOne and resultTwo can have any of the depicted value

combinations after the execution of the code shown.

Figure 2: Pseudo Code and Exemplary Interleavings

Various categorizations exist for concurrency defects [Lu08], [As15], [Lo17],
[WLW17]. Most categorizations mention the following types:

• Data Race – a data race is defined as a concurrent access of at least two
threads to the same memory location, of which at least one access is a
write, without proper synchronization [Ba06a], [La10].

Often, literature focuses on data races consisting of two threads, i.e., two
concurrent accesses, as in [NA07][La10].

• Deadlock – a deadlock “is the situation in which one or more processes in a
system are blocked forever because of requirements that can never be
satisfied” [Ho72]. An example for such a blocking situation in concurrent
systems is a thread waiting for a resource held by another thread, which
cannot be released by this thread. Deadlocks are not necessarily related to
concurrency [Ho72], but new types of deadlock situations emerged due to
concurrency [Lu08], [As15].

• Livelock – a livelock has similarities with a deadlock, except that threads
are executing, i.e., they are not blocked, and change state, but cannot
progress [As15], [Lo17].

• Starvation – starvation occurs when a thread is delayed forever because
other threads are given priority, so that this thread cannot proceed [St18].

Introduction

 4

• Order violation – an order violation occurs, whenever the interleaving
expected by the developer of operations does not happen, e.g., when the
access to shared memory does follow the intended order [Lu08], [As15].

• Atomicity violation – an atomicity violation occurs, when a section of code
was intended by the developer to be executed atomically, but was not
executed atomically, i.e., whenever another code sections was executed in
parallel [Lu08], [As15].

• Unintended sharing – a resource meant to be used in isolation is shared
between different threads [Er10].

These categories for concurrency defects are not orthogonal, e.g., a data race
can be related to an atomicity violation, order violation or an unintended
sharing of resources [KZC13].

Detecting concurrency defects is more challenging than detecting defects in
sequential software [Ab17]. Concurrency defects may not occur in every
execution of the software, but may be dependent on certain interleavings. Due
to the huge interleaving space of concurrent software [ZSL10] and the non-
deterministic behavior [AS15], detecting and debugging such defects is very
time consuming [Sa97], [Bl18].

Out of these concurrency defects, data races are especially critical [HMR14],
[Xu20]. A data race may not only lead to directly observable behavior, such as
a crash of the software, but may also result in data corruption [Kl13], which
may not be directly observable [RGB20], or inconsistent program states [JT14].
Data races can lead to critical defects. Examples are Therac-25 [Ka17],

[Bi17], which resulted in deaths of multiple patients, or the Northeast Blackout
of 2003 [ZSL10], [Bi17], which resulted in 55 Million people being without
electricity, a financial loss of estimated six billion dollars [Mi08], and which
contributed to the deaths of almost 100 people [Re12].

Precisely detecting and debugging data races is said to be NP-hard [Ba06a]
[SI09]. Since the amount of parallel and concurrent software is still growing,
the number of data races in software is expected to further grow [KZC15],
[Bi17], [Ge19]. Thus, although data race detection is an active research area
since many years, there is still a growing need for efficient data race detection
[ZSL10], [Ge19], [Li19].

1.2 Problem Statement

Both static and dynamic quality assurance techniques have been developed
with a focus on data race detection. Sophocleous and Kapitsaki conducted a
survey with 252 individuals and came to the conclusion, that 96.8% of these

Introduction

 5

individuals are using static and dynamic quality assurance techniques [SK20].
While this is a sign that the usage of both static and dynamic quality assurance
techniques is widespread in general, the situation is different when focusing on
concurrency. Vasallo et al. conducted a survey with 56 developers, interviewed
eleven experts from industry and investigated 176 open source systems with
regard to the usage of automated static analysis tools [Va20]. They came to
the conclusion, that when “using static analysis tools, only 8% use it for
concurrency” [Va20]. This means that when targeting data races or
concurrency in general, dynamic quality assurance techniques are most
prevalent. A reason might be that “for object-oriented software, static analysis

does not suffice” [ABF04], [SH20]1. Static data race detectors are “prone to
excessive false warnings” [Er10], may miss data races, or require annotations
[Er10]. In addition, Kasikci et al. mention that static data race detection
techniques report more false positives than dynamic techniques [KZC15].

Nevertheless, static quality assurance techniques are a valuable and necessary
technique, as they are not as limited as dynamic quality assurance techniques.
Dynamic quality assurance techniques rely on actual program execution, and
can only observe those parts of a program, which are executed. As such, these
techniques depend on, e.g., the depth of source code coverage reached with
test cases used for executing different paths through a program. Parts that are
not executed are not observed, and data races may be missed. In contrast,
static quality assurance techniques are not limited to any execution, and
analyze complete programs. Thus, both techniques have value and should be
used together.

Dynamic testing techniques usually rely on instrumentation [PG08], i.e., code
is added to the system under test, e.g., “to observe the runtime behavior of
each thread in the program” [Ba06b]. Besides affecting system behavior and
the timing in the software itself, one of the main problems related to
instrumentation is runtime overhead. Erickson et al. report about dynamic data
race detection tools that it “is not uncommon for such tools to incur up to 200𝑥
slowdowns” [Er10], which means a runtime overhead of up to 20,000%.
Bodden and Havelund report about runtime overheads of up to 230% [BH08].
Chew and Lie report about runtime overheads of up to 72% [CL10]. Flanagan
and Freund report slowdowns of up to 8.5𝑥, which results in a runtime
overhead of 850% [FF09]. Besides the improvements achieved in research,
the overhead in current techniques is considered to be significant [Xu20].
Roemer et al., e.g., present an optimization for a dynamic quality assurance
approach, that still induces a runtime overhead of more than 6𝑥 [RGB20].

Based on these observations, it can be concluded that dynamic quality
assurance techniques suffer from a huge runtime overhead and as a result,

1 The techniques for static and dynamic data race detection will be examined in more detail in

Chapter 2.4.

Introduction

 6

that too much time is needed for conducting quality assurance. This leads to
the first practical problem to be solved by this thesis:

Practical Problem 1

Dynamic quality assurance techniques used for the detection of data races are
inefficient – too much effort is needed for conducting dynamic quality
assurance.

Besides this runtime overhead, mainly the effectiveness has been improved in
recent years. In 2008, Bodden and Havelund reported a number of 70 data
races found [BH08], and Sen reported 547 data races detected in the
application jigsaw [Se08]. Nowadays, however, modern approaches are

able to detect thousands of data races in a single program. As an example,
Roemer et al. present statistics for different systems under test [RGB20]. Even
for small applications, such as pmd with 61,000 lines of code, up to 10,000 data

races have been reported by the data race detector [RGB20]. For others, such
as xalan with 176,000 lines of code, the data race detector even reports more

than 12 million data races [RGB20].

These huge numbers of data races detected lead to difficulties in the practical
application. Raychev et al. warned for their own approach, that “the race
detector produces too many races to be practically useful” [RVS13]. For
analyzing all these reported data races, “developers have to manually check all
the reports, which is tedious and very time consuming. As a result, the wide use
of data race detectors has been limited in practice.” [Zh11]

The increased effectiveness of dynamic quality assurance techniques, i.e., the
increased number of reported data races, has also worsened these drawbacks,
as modern techniques, as shown above, result in huge log information, i.e.,
data race reports to be analyzed. However, only few publications mention
techniques to ease analysis of the reported data races besides possibilities to
reproduce detected data races [HMR14] or record and replay techniques
[LD19]. Such replay techniques allow replaying the situations, during which a
data race occurred. Still, all data race reports found need to be analyzed
manually for identifying and resolving problems in the source code, resulting in
a huge effort necessary. Godefroid and Nagappan conducted a survey with
684 employees from Microsoft [GN08] and observed that analyzing data races
is very time consuming; it “often takes days of work to analyze a single
concurrency bug” [GN08]. Remaining work focuses on visualization of data

races [Tr14], [Ko15], [Pa19b], [Wa20] 2.

2 The techniques for the analysis of data race reports will be examined in more detail in

chapter 3.5.

Introduction

 7

To make it worse, many of the reported data races are duplicates. As an
example, out of the 12 million reported data races for xalan, there are only

162 distinct data races, and out of the 10,000 data races reported for pmd, only

12 data races are distinct (with distinct meaning affecting “distinct program
locations”) [RGB20].

These observations lead to the second practical problem to be solved by this
thesis:

Practical Problem 2

Dynamic quality assurance techniques used for the analysis of data races are
inefficient – too much effort is needed for analyzing reported data races and
identifying issues in the source code.

Summarized, the process of dynamic quality assurance for data races lacks
efficiency in terms of time and effort needed. A simplified depiction of this
process for dynamic quality assurance technique can be found in Figure 3.

On the left side, and shown as out of scope, is the creation of test cases.
Dynamic data race detectors rely on existing test cases, and do not include
specific techniques for their creation. Instead, test cases are created using
standard test case creation techniques, e.g., during unit testing. On the right
side of this figure, the process of dynamic quality assurance for data races is
shown: the source code is instrumented and test cases are executed under
control of the dynamic data race detector. This instrumentation and the
techniques used by the dynamic data race detectors to detect data races result
in the runtime overhead, and thus, in the inefficiency described in the first
practical problem. After the execution of the test cases, the reported data
races need to be analyzed to identify problems in the source code, and finally
for debugging the system under test. Since this is a manual process without
much guidance besides the log information in the data race reports, as
described above, this is a time consuming task.

Figure 3: Simplified Process of Dynamic Quality Assurance for Data Races

Introduction

 8

Running example – Original approach

The system Apache Tomcat in Version 8.0.26 is to be tested using the

dynamic data race detection tool RV-Predict3 [HMR14]. The test cases to

be executed are the unit test cases shipped together with Apache Tomcat

8.0.26 without any modification. Testing is conducted under Ubuntu 18.0.4.

Executing the test cases without any instrumentation takes 46 minutes and
two seconds. Now, the same test cases are executed with the goal to detect
data races, and the code is instrumented by the data race detection tool. This
instrumentation is conducted automatically, and executing the test cases takes
345 minutes and ten seconds. The runtime overhead for testing with a focus on
data races is 6.5𝑥, i.e., test execution takes 650% the time it took without
instrumentation and analysis. Testing results in 771 folders containing the
results. It is unknown, how many reported data races are duplicates, and which
variables and which source code classes are affected.

Thus, the developers need to manually analyze all reports to identify
problematic accesses to variables in the source code. Since the number of
reports is too high for one developer to be able to complete the analysis in a
reasonable amount of time, the reports are split up between the developers.
However, there are overlaps in the reports each developer analyzes, and thus,
effort is spent on communication and coordination, and on the analysis of data
races already under investigation of other developers.

1.3 Contribution

The goal of this thesis is improve the efficiency in the process of dynamic
quality assurance for data races.

To solve the practical problems described above, the idea is to optimize the
runtime overhead during test execution by using knowledge about the
dynamic behavior of the system under test and by providing guidance and
knowledge for the analysis of data race reports.

The instrumentation of source code, usually conducted as instrumentation of
the complete source code, shall be optimized by focusing instrumentation on
those source code locations that can be prone to data races, i.e., classes in the
source code, which can be executed in parallel to other classes in the source
code. This leads to a reduction in the amount of instrumentation necessary,
and thus, reduces runtime overhead.

3 This tool can be downloaded online: https://runtimeverification.com/predict/ (last visited:

30.01.2021)

https://runtimeverification.com/predict/

Introduction

 9

Guidance for the analysis of data race reports shall optimize the process step
of analysis by providing information on duplicate entries and on the number of
data races reported, and by providing possibilities to focus analysis on specific
variables and source code classes. With the possibility to ignore duplicates,
time spent on navigating through data race reports and reading reports for
data races already analyzed can be saved. Furthermore, an analysis can be
conducted more focused, and communication and coordination effort can be
reduced in a team of developers analyzing data race reports.

These efficiency improvements shall be illustrated with the example described
above:

Running example – Optimized approach

The system Apache Tomcat in Version 8.0.26 is to be tested using the

dynamic data race detection tool RV-Predict [HMR14]. The test cases to

be executed are the unit test cases shipped together with Apache Tomcat

8.0.26 without any modification. Testing is conducted under Ubuntu 18.0.4.

Executing the test cases without any instrumentation takes 46 minutes and
two seconds. Now, the same test cases are executed with the goal to detect
data races, and the code is instrumented based on the knowledge, which
source code classes can be executed in parallel to other source code classes,
and which source code classes can be ignored. This instrumentation is
conducted automatically, and executing the test cases takes 212 minutes and
two seconds. The runtime overhead for testing with a focus on data races is
3.6𝑥, i.e., test execution takes 360% the time it took without instrumentation
and analysis. Testing results in 771 folders containing the results, with 489
empty result files and 282 result files with data race reports.

These reports contain 2,079 data races, of which 2,002 are duplicates. The
remaining 77 data races affect 28 variables and 21 different source code
classes. The developers split the reports between each other, so that a distinct
set of variables is analyzed by each developer.

This example demonstrates that quality assurance can profit from the results
of this thesis. With a reduced instrumentation, runtime overhead is reduced,
and faster quality assurance is possible. As a side-effect, as instrumentation,
i.e., code injected in the original source code, also alters the runtime behavior
of a system under test, the reduction in the amount of instrumentation also
leads to a system under test, which is more close to the original system
compared to a fully instrumented system.

Developers can benefit from more information, and thus, a more goal-
oriented debugging. With the ability to sort out duplicate reports, and to focus
on specific variables and source code classes, analysis and debugging can be
conducted more efficiently, as no effort needs to be spent to analyze data

Introduction

 10

races, which already have been analyzed or are currently under analysis. In
addition, the effort for communication and coordination of the debugging
activities can be reduced.

The scientific problems to be solved in this thesis are connected to the
challenge of using knowledge about the dynamic behavior of the system to
improve the efficiency for dynamic quality assurance for the detection of data
races, and to the challenge of improving efficiency in the analysis of data race
reports by using knowledge about data race characteristics.

This thesis therefore is targeted at answering the following research questions:

Research Question 1

How can knowledge about the dynamic behavior of the system be used to
achieve a reduction in the runtime overhead during dynamic quality assurance
for data races?

Research Question 2

How can knowledge about the characteristics of data races and data race
reports be used to improve the efficiency in analyzing data race reports?

To answer these research questions, the following solution is proposed in this
thesis, targeting two challenges:

1) providing a tool-supported technique for the systematic and complete
usage of knowledge about the dynamic behavior of a system for the
instrumentation of a system under test, and

2) providing a tool-supported technique for the incorporation of knowledge
of characteristics of data race reports into guidance for the analysis of
these data race reports.

To solve these challenges, the dynamic behavior of a system must be analyzed,
and all classes in the source code, which may run in parallel to other classes,
must be identified. To achieve this, models of the dynamic behavior of a
system shall be analyzed. Goal of the analysis is the identification of elements
in these models, which represent parts of the source code that can be executed
in parallel to other parts of the source code. The results of the analysis shall
then be used to focus the instrumentation for dynamic quality assurance for
data races, so that only classes in the source code, which are subject to data
races, are instrumented.

Introduction

 11

After execution of the test cases for the detection of data races, the data race
reports shall be analyzed, and the results shall be provided to the development
team. This preprocessing allows the development team to sort out duplicates,
and to group the data races according to the source code classes affected and
according to the variables affected.

As described, this approach is not meant to substitute existing approaches to
dynamic data race detection. Instead, the process of dynamic data race
detection for data races is optimized. This means, the approach provides input
to the dynamic data race detection tool, and processes the output of this data
race detection tool.

The solution idea is depicted in the following Figure 4.

Figure 4: Proposed Solution Idea - Optimized Process

To solve the problems mentioned above and to establish the solution idea,
several research objectives are to be reached. These research objectives form
the remaining outline of this thesis.

Research Objectives

1) Assess the representations of dynamic behavior of a system with the goal
to select one representation for the analysis.

2) Analyze the characteristics of the chosen representation of the dynamic
behavior with the goal to understand the specifics and how these specifics
influence the interpretation of this representation.

Introduction

 12

3) Create a technique to analyze the chosen representation of the dynamic
behavior of a system for parallel elements, with the goal to obtain an
algorithmic approach for the analysis.

4) Show the completeness and correctness of the obtained algorithmic
approach, with the goal to establish confidence in this approach.

5) Evaluate the effects on efficiency of the test execution of the algorithmic
approach compared to not using the algorithmic approach to focus
instrumentation.

6) Enable the practical application of the algorithmic approach, with the goal
to obtain a fully automated tool implementing this algorithmic approach.

7) Analyze characteristics of data race reports, with the goal to obtain
knowledge about how to preprocess data races reports so that the
analysis is more efficient.

8) Enable the practical application of the knowledge obtained on
characteristics of data race reports, with the goal to obtain tool support.

9) Empirically evaluate the effects of the preprocessing of the data race
reports and of the tool support on the efficiency on the analysis of data
race reports compared to analyzing unprocessed data race reports.

While research objectives 1 to 6 are concerned with the first practical problem,
research objectives 7 to 9 are concerned with the second practical problem.

Upon realization and usage of the solution idea, several benefits are expected.
From a scientific perspective, the benefit is related to the analysis of the
representation of the dynamic behavior of a system.

Hypothesis 1 – Complete and Correct Analysis

H1. The analysis of the representation of the dynamic behavior of a system for
parallel elements is complete and correct, .i.e., there are no false positives and
no false negatives.

From a practical point of view, the benefit can be perceived as efficiency
improvement in the process of dynamic quality assurance for data races in
terms of a reduced effort without impact on the outcome.

No precise hypotheses can be given regarding the efficiency improvement
concerning the dynamic detection of data races, in terms of the runtime
overhead when executing test cases, as this depends on the amount of
parallelism in the system under test. Assuming a direct relation of the amount

Introduction

 13

of parallelism in a system and the efficiency improvement in the runtime
overhead, the hypothesis is formulated as:

Hypothesis 2 – Efficiency Improvement in the Dynamic Detection of Data
Races (Runtime Overhead)

H2. Using the focused approach for the instrumentation, the runtime overhead
of test execution of a system under test is reduced compared to the runtime
overhead using the same test execution technique on the same system under
test without the focused approach. The reduction in the runtime overhead is at
least inversely proportional to the amount of parallelism in the representation
of that system under test.

For illustration, if 10% of the elements in the representation of a system
represent parallel behavior, a reduction of the runtime overhead of 90% can
be achieved, and if 80% represent parallel behavior, a reduction of 20% can
be achieved.

The efficiency improvement in the analysis of data race reports is defined
using one main hypothesis, which can be split up into three different
hypotheses.

Hypothesis 3 – Efficiency Improvement in Analyzing Data Races

H3. Using the log preprocessing, the effort for results analysis is at least 40%
less with at least the same effectiveness compared to using the unprocessed
log files.

Hypothesis 3.1 – Efficiency Improvement in Analyzing Data Race Reports for
Data Races

H3.1. Using the log preprocessing, the number of analyzed reported data races
in a given amount of time is at least 40% higher compared to using the
unprocessed log files.

Hypothesis 3.2 – Efficiency Improvement in Analyzing Data Race Reports for
Data Races affecting a Variable in the Source Code

H3.2. Using the log preprocessing, the number of analyzed reported data races
related to specific variables in a given amount of time is at least 40% higher
compared to using the unprocessed log files.

Introduction

 14

Hypothesis 3.3 – Efficiency Improvement in Analyzing Data Race Reports for
Data Races affecting a Source Code Class

H3.3. Using the log preprocessing, the number of analyzed reported data races
related to specific source code locations in a given amount of time is at least
40% higher compared to using the unprocessed log files.

Analysis in this context means identifying the location of a reported access.
Specific in this context means that in the experimental evaluation, a variable or
a source code location (source code class) is predefined and only these
predefined items are of interest. The term effectiveness refers to an amount
(of analyzed data races), while the term efficiency refers to an amount in
relation to the time needed.

As can be seen, no hypotheses are stated regarding the effectiveness of
testing. The test case creation, the execution of test cases and the analysis of
the instrumented parts of the source code and the information gained during
testing are not affected by this thesis. The solution is not meant to replace or
improve the effectiveness of test case execution, but instead focuses on
efficiency improvements as mentioned above. As such, the solution proposed
in this thesis complements existing approaches for dynamic data race
detection.

The following Figure 5 shows the relations of the practical and underlying
scientific problems, the goals and research objectives of this thesis, and the
related hypotheses.

Introduction

 15

Figure 5: Problems, Goals, Research Objectives, and Hypotheses

1.4 Assumptions and Limitations

The solution idea and earning the benefits when applying this solution idea
cannot be realized in every case. Instead, this thesis builds upon the following
assumptions and accepts some limitations:

Existence of a representation of the dynamic behavior: the approach
presented in thesis assumes that a representation of the dynamic behavior of a
system already exists in the representation format needed or can be created or
generated.

However, the solution idea includes a transformation of the elements of the
chosen transformation to a limited subset of elements, so that other

Introduction

 16

representations can be used by adjusting the transformation or adding another
transformation part. This can be seen as an interface, which allows connecting
other representation formats without a need to change the algorithm for
analysis. Admittedly, semantics exclusive to such a representation may not be
considered by the analysis; in such a case, the algorithm would need to be
adapted.

Completeness of the representation of the dynamic behavior: furthermore, it is
assumed that the representation is complete, in the sense that the system
under test is correctly and completely included.

Granularity of the representation of the dynamic behavior: finally, it is assumed
that the representation is on a granularity level, which allows a direct
connection between source code classes and elements in the representation.
Since such a direct connection can then be broken down into single source
code classes and elements using standard methods, it is assumed for
simplicity, that there is a one-to-one relationship between elements in the
representation and classes in the source code (and not a one-to-many, many-
to-one, or many-to-many relationship).

Compatibility of the dynamic data race detection tool: since the solution idea
includes focusing the instrumentation, the dynamic data race detection tool
needs to be configurable in terms of controlling the instrumentation.

Data Race Reports: the solution idea relies on the dynamic data race detection
tool to report the data races found in a format, which can be processed in an
automated manner.

As can be seen later, the solution idea relies on basic information regarding
data race reports (access type (read or write), variable affected, and location in
the source code) for preprocessing, so that no further assumptions or
limitations are given. Adjusting the preprocessing to different representations
(e.g., a different ordering of the information in a report) is an engineering task
and the assumption of a specific format for the tool support is a necessity,
which does not limit the approach.

1.5 Research Approach

The research approach followed in this thesis can be broken down as follows:

State of the Practice analysis: the current state of the practice was captured by
a literature review with respect to quality assurance in the field of concurrency.
As data races are considered as a prominent and critical issue in practice,
research was focused on those. Current problems in quality assurance for data
races were identified. Based on these problems, requirements for a solution to
mitigate these problems could be derived.

Introduction

 17

For the analysis of representations of dynamic behavior, the first step was to
identify a representation format, which is of practical value. Thus, a literature
survey was conducted to obtain information regarding the suitability of
representation formats for the dynamic behavior of a system, with
consideration of the usage in practice.

State of the Art analysis: the identified problems drove the literature review
regarding research approaches. The requirements derived on basis of those
problems were used to assess the approaches from research, and gaps were
identified regarding the analysis of representations of the dynamic behavior of
a system.

Regarding the analysis of data race reports and efficiency improvements in the
analysis of data race reports, a general lack of research was detected, as not
much literature exists in this regard. Literature mostly focuses on detecting or
visualizing data races, and less on the analysis of found data races with the goal
to debug a system under test. Still, the existing literature was valuable, as it
helped identify directions for the own research.

Development of the solution idea: based on these research gaps, the solution
idea was developed. For the analysis of representations of the dynamic
behavior, two major gaps were identified: first, a lack of a formal basis for the
analysis, and second a lack in the systematic and complete analysis of all
elements and element combinations in the chosen representation.

In addition, mitigating the limitation to only one possible representation was
another driver for the solution idea. Thus, a subset of all elements of the
chosen representation format (called “basic elements”) was selected. A
transformation of all other elements to one or a combination of basic elements
under consideration of the semantics of the elements was then created. The
transformed set of elements served as basis for the formal model and the
systematic algorithmic approach to analyzing the representation format.

The data race reports, on the other hand, were analyzed, and characteristics
were derived, which then formed the basis for the preprocessing of those
reports.

Examination of Efficacy: the approach for analyzing representations of the
dynamic behavior was formally proven to be correct and complete (hypothesis
1). The effect of the results of the analysis, i.e., the focus for the
instrumentation, in terms of efficiency improvements, was tested on an
exemplary system. As described above, a general statement regarding the
improvement of the runtime overhead cannot be given. However, it could be
tested for a system, if the improvement of the runtime overhead is at least
inversely proportional to the amount of parallelism in the representation, as
stated in hypothesis 2.

Introduction

 18

Finally, a controlled experiment was performed to assess efficiency
improvements in the analysis of data race reports with regard to the
preprocessing of data race reports (hypothesis 3).

1.6 Outline

In chapter 2, the foundations for the contents of this thesis are presented.
These foundations enable a deep understanding of this thesis. Furthermore,
the concepts, formal definitions, and results of this chapter form the basis for
the decisions taken and the solution presented in this thesis.

In chapter 3, related work is discussed with regard to analyzing behavioral
models, and with regard to analyzing data race reports. The approaches found
in the literature are discussed in terms of strengths and gaps regarding the
mitigation of the practical problems and the scientific problem, and
requirements for a solution are identified.

In addition, the possibilities and limitations for the classification of data races
with the goal to minimize the effort for data race analysis and debugging are
discussed. Multiple research approaches to classify data races in harmless
(benign) data races and harmful data races have been developed. However,
such classifications are controversially discussed in research. It is shown why
these classifications cannot be used without misclassifications. As the reliability
of such classifications is low, such a classification is not part of the solution
presented in this thesis.

In chapter 4, the main contribution of this thesis is presented. This chapter
contains the formal foundation for the analysis of the representation of the
dynamic behavior of a system and the approach for the analysis. The analysis
itself is conducted in three steps: the transformation of the elements of the
representation format to the set of basic elements, the analysis of behavioral
models based on this set of basic elements, and a post-analysis handling of
special cases. Formal proofs regarding the analysis of the representation of the
dynamic behavior show the completeness and correctness of the analysis. The
theoretical and formal approach for analysis is implemented in a tool for
practical application. Finally, this solution is assessed based on the identified
requirements for a solution.

In chapter 5, the approach for the analysis and preprocessing of data race
reports, i.e., the results of the dynamic data race detection, is presented.
Characteristics of data races and data race reports form the basis for the
preprocessing, which is then implemented in a tool. This tool not only presents
the results of the preprocessing but also provides guidance in terms of
knowledge about the reported data races and in terms of their distribution to
variables and source code classes.

Introduction

 19

In chapter 6, the examinations of efficacy for each step in the process of
dynamic quality assurance are presented. Besides an exemplary application of
the approach for focusing the instrumentation, the results of the analysis are
discussed, and the impact of applying this analysis and its results on the
efficiency of dynamic data race detection are demonstrated exemplarily.
Finally, a controlled experiment regarding efficiency improvements for the
analysis of data race reports is presented and the results and implications are
discussed.

The thesis closes with a summary and an outlook on future work in chapter 7.

1.7 Summary

As the usage of concurrency in software has gained importance in the last
years, and is still rising, new types of defects increasingly appeared in software.
Quality assurance is still struggling with such concurrency-related defects. One
of the most prominent and critical types of such defects are data races.

Although research resulted in an increased effectiveness of dynamic quality
assurance regarding data races, the efficiency in the quality assurance process
still is a factor preventing widespread practical application of these techniques.

The contributions presented in this thesis enable efficiency improvements in
the process of dynamic quality assurance for data races. The main scientific
contribution in the area of the analysis of representations of the dynamic
behavior of a system is presented. The results of the analysis are used as input
to steer the instrumentation of a system under test, resulting in a lower
runtime overhead during test execution compared to a full instrumentation of
this system. The results of the test execution are then preprocessed, enabling
an analysis and debugging process, which is more efficient than the traditional
analysis of data race reports.

This thesis describes the concepts, the formal basis, and the realization of the
solution idea as well as the examinations of the efficacy. Besides dynamic data
race detection (i.e., test execution), which is complemented by the solution
idea, all steps in the process of dynamic quality assurance for data races, as
depicted in Figure 3, are discussed in the subsequent chapters.

Introduction

 20

Foundations

 21

2 Foundations

As described in chapter 1, this thesis provides a solution for efficiency
improvements in the process of quality assurance for data races. This chapter
gives an overview on the foundations in the areas discussed in this thesis. The
goal of this chapter is to enable a deeper understanding of topics, as the
concepts, formal definitions, and results of this chapter form the basis for the
decisions taken as part of the solution idea.

2.1 Research Approach

The areas discussed in this thesis comprise different steps in the process of
quality assurance of data races. As such, different topics need to be
considered. The existing literature was thus reviewed with the goal to identify
the central concepts of those topics.

As data races are in the focus of this thesis, the questions to be answered are:

1) What is a data race?

2) What can be done in software engineering, i.e., programming, to prevent
data races?

3) How can data races be detected?

4) What are advantages and disadvantages of different approaches to detect
data races?

In addition, as behavioral models of software are part of this thesis, further
questions arise:

5) What types of behavioral models exist?

6) What can be represented by these models?

While reviewing the literature with the goal to answer these questions, further
questions came up with regard to the background of the topic of those
questions. As an example, a formal definition of data races requires an
understanding of ordering relations. This understanding is also required for an
informed insight into the advantages and disadvantages of quality assurance
techniques for data races. The topics discussed in questions 1 to 4 are
interrelated and cannot be viewed in isolation. As such, the literature review

Foundations

 22

was an iterative process, leading to a deeper understanding in those areas. The
result of this research provides a common foundation of the topics of this
thesis.

2.2 Orderings, Consistency Models and Data Races

The following definitions partially follow the contents of the publication “Time,
clocks, and the ordering of events in a distributed system” by Leslie Lamport
[La78].

When executing a sequential program, all events in that execution take place
one after the other. Assuming two events 𝑎 and 𝑏, either 𝑎 is executed and
afterwards 𝑏 is executed, or 𝑏 is executed first and then 𝑎 is executed. With
defining an ordering relation < between two events, expressing a relation of
two events to the order in time they took place, the relation 𝑎 < 𝑏 can be
understood as “𝑎 took place at an earlier point in time than 𝑏”. Since the
execution is sequential, no two events can take place at the same point in time.
All events in such a sequential execution can be compared. The relation is
transitive, i.e., if a third event 𝑐 exists and 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐. The
events of an execution of a sequential program form a sequence, a total order
[La78].

When executing a parallel or concurrent program, this does not hold. With two
processes 𝑝 and 𝑞, with the events 𝑝𝑎 and 𝑝𝑏 within process 𝑝, and the events
𝑞𝑎 and 𝑞𝑏 within process 𝑞, and those two processes executing in parallel, the
following can be observed:

1) Either 𝑝𝑎 < 𝑝𝑏 , or 𝑝𝑏 < 𝑝𝑎 , and

2) Either 𝑞𝑎 < 𝑞𝑏, or 𝑞𝑏 < 𝑞𝑎.

For simplicity, it is assumed that 𝑝𝑎 < 𝑝𝑏 and 𝑞𝑎 < 𝑞𝑏 . Since for each
process, the events in that process are executed sequentially, the set of
elements in each process is totally ordered. However, the set of all elements (in
this case: the events in the two processes) is not necessarily totally ordered.
Assuming that 𝑝𝑏 involves notifying process 𝑞, and process 𝑞 cannot start to
execute without notification (following the definitions of [La78]) , meaning that
𝑝𝑏 < 𝑞𝑎 , then with 𝑝𝑎 < 𝑝𝑏 , and 𝑞𝑎 < 𝑞𝑏 these events can be ordered:
𝑝𝑎 < 𝑝𝑏 < 𝑞𝑎 < 𝑞𝑏. However, assuming an event 𝑝𝑐 with 𝑝𝑏 < 𝑝𝑐 , this
event 𝑝𝑐 cannot be compared to the events 𝑞𝑎 and 𝑞𝑏. Thus, there is no total
order, but a partial order [La78].

As mentioned, an analogous definition has been published by Leslie Lamport
[La78]. However, the author mentioned the necessity of precise and global
clocks to be able to use the notion of time, and speaks of “happened before”
using the relation → [La78] instead of using a relation < meaning “took place at

Foundations

 23

an earlier point in time”. With this definition, “two distinct events 𝑎 and 𝑏 are
said to be concurrent, if 𝑎 ↛ 𝑏 and 𝑏 ↛ 𝑎” [La78], with ↛ meaning “not →”.
The happened before relation, in the literature often referred to as happens
before, is one of the two central concepts used by most quality assurance
techniques for data race detection.

Note that the definitions above apply to executions of software, and cannot be
compared to the order, in which instructions are written in that software
without assuming sequential consistency [La79]. However, sequential
consistency is not guaranteed in all cases in various modern programming
languages, e.g., it is not guaranteed in all cases in Java [Ma04] or c++

[BA08].

Based on such a relation, Netzer and Miller developed a formalization of data
races [NM92]. The authors use a program execution 𝑃 containing events, a
temporal ordering relation and a shared-data dependence relation as starting
point. A shared-data dependence relation describes a relation of two events, in
which one event accesses a shared variable, which another event later
accesses, with at least one access modifying that variable [NM92]. In a
situation, in which one event accesses a shared memory location with a write
access and another event accesses this location with either a read or write
access, there exists a data conflict between those two events.

The authors formulate three different sets of program execution prefixes of 𝑃.
Such a prefix contains the same events as an initial part of 𝑃, operating on the
same input. Netzer and Miller further use the term feasible to denote program
executions, which can actually happen based on the program semantics. This
includes explicit synchronization operations, i.e., synchronization using
operations provided by the respective programming language exactly for this
purpose, but also self-constructed operations to force some order of execution
or control flow. An example for such an implicit operation is the usage of a flag,
which may trigger a certain event 𝑒, but which needs to be set upfront by
another event 𝑓 in another process. If event 𝑓 is executed before the flag is
computed, the event 𝑒 is executed. If event 𝑓 is not executed before the flag is
computed, the event 𝑒 is not executed. In such a case, there is a shared-data
dependence [NM92].

The set of program executions 𝐹𝑆𝐴𝑀𝐸 contains all feasible program executions
with the same events as a prefix of 𝑃 and the same shared-data dependences
as 𝑃 . The set of program executions 𝐹𝐷𝐼𝐹𝐹 contains feasible program
executions with the same events as a prefix of 𝑃 , but the shared-data
dependences may differ. Finally, the set of program executions 𝐹𝑆𝑌𝑁𝐶 contains
the same events as a prefix of 𝑃, but the relations in terms of ordering and
shared-data dependence only need to adhere to explicit synchronization
constructs.

Foundations

 24

This means that 𝐹𝑆𝑌𝑁𝐶 may contain executions, which are not feasible, i.e., the
program cannot be executed in this way [NM92]. The authors point out that
many quality assurance techniques only consider explicit synchronization, and
thus implicitly use the set 𝐹𝑆𝑌𝑁𝐶 [NM92].

Netzer and Miller define a data race between two events 𝑎 and 𝑏 over a (here
unspecified) set of program executions 𝐹 as

1) A data conflict exists in 𝑃 between 𝑎 and 𝑏, and

2) There exists a program execution 𝑃’ ∈ 𝐹, containing events 𝑎’ and 𝑏’,
such that 𝑎’ ↛ 𝑏’ and 𝑏’ ↛ 𝑎’ [NM92].

With these definitions, two types of data races can be defined:

1) A feasible data race between events 𝑎 and 𝑏 exists, iff a data race between
events 𝑎 and 𝑏 exists over 𝐹𝐷𝐼𝐹𝐹 or 𝐹𝑆𝐴𝑀𝐸 [NM92].

2) An apparent data race between events 𝑎 and 𝑏 exists, iff a data race
between events 𝑎 and 𝑏 exists over 𝐹𝑆𝑌𝑁𝐶 [NM92].

Due to the usage of 𝐹𝑆𝑌𝑁𝐶 , not all apparent data races can occur in a program
execution. However, as mentioned above, many quality assurance techniques
imply 𝐹𝑆𝑌𝑁𝐶 , and thus, report data races, which may not be possible. This is
especially an issue in static quality assurance, as the code is not executed. But
depending on the analysis technique used, also dynamic quality assurance may
be prone to reporting apparent data races.

The existence of apparent data races indicates the existence of at least one
feasible data race, but it is not clear, where this feasible data race is located and
what variable is involved [NM92]. As there may be many apparent data races
indicating one feasible data race, developers and quality assurance personnel
“can be overwhelmed with large amounts of misleading information, irrelevant
for debugging, that masks the location of actual failures.” [NM92] This issue
has already been mentioned in chapter 1.2.

2.3 Process Synchronization in Software

Modern programming languages provide possibilities to implement different
concepts to cope with concurrency. As this thesis is not concerned with
programming details, but with quality assurance for data races, the goal of this
chapter is not to provide a complete overview of all techniques, but to provide
an overview of the most prominent techniques.

Foundations

 25

A fundamental concept in concurrency is the concept of mutual exclusion, first
defined by Dijkstra in 1965 [Di65b]. Since then, many concepts have been
defined to control access to shared resources and to realize mutual exclusion.

Semaphores have been published by Dijkstra in 1965 [Di65a]. These are data
structures used to control access to shared resources or to synchronize
concurrent events to enforce an order of operations. Semaphores can be
binary, used for implementing locks (explained below), or counting. A counting
semaphore controls the number of free resources or waiting threads. A thread
requesting a resource, which is not free, will be sent to a wait state, and
notified upon availability of that resource, so that this thread can continue to
operate on the now free resource. With this mechanism, a queue for waiting
threads can be realized. Java offers a class semaphore for the implementation
of this concept.

Monitors have been described by Brinch Hansen [Br73] and Hoare [Ho74]. A
monitor is a programming language construct with a set of operations. Only
one thread can use a monitor at a certain point in time. Thus, monitors can be
used for mutual exclusion. Often, monitors use the concept of locks.

A lock, also called mutex, is a mechanism for controlling access to a resource,
thus enforcing mutual exclusion. A thread trying to access such a resource has
to acquire this lock and then releases it when the access is finished. A lock can
be blocking, which means a thread accessing a resource with a lock, has to wait
passively if that resource is not free, or a spinlock, which means a thread waits
and tries repeatedly to acquire the lock. A problem with locks is that the
operation to check availability and to acquire the lock needs to be atomic to
prevent synchronization problems. This is not guaranteed in software, and
among the most prominent solutions to this problem are the first known
accepted algorithm for this problem, Dekker’s Algorithm (published by Dijkstra
[Di65a]), Peterson’s Algorithm [Pe81], the Eisenberg & McGuire algorithm
[EM72], Lamport’s bakery algorithm [La74], and Szymański’s algorithm [Sz88].

If a thread accesses such a shared resource secured with a lock, it may have
acquired one or more locks (due to former operations). The accumulation of
the different locks held by a thread at this point in time is called lockset [Sa97].
Locksets are the second of the two central concepts used by most quality
assurance techniques for data race detection.

The keyword volatile for variables in Java is used to guarantee that accesses to
this variable are immediately visible to all threads and that there exists a
happened-before relation between different operations on volatile variables
[Ma04]. Actions on volatile happen in a total order. The usage of volatile does
not induce the overhead of ensuring mutual exclusion [Ma04].

Foundations

 26

In general, there is a total order over all synchronization actions. Manson
describes this order as follows: “volatile writes are ordered before subsequent
volatile reads of the same variable. Unlocks are ordered before subsequent
locks of the same monitor.” [Ma04]

As mentioned before, operations in different threads cannot be totally ordered
due to parallelism. However, synchronization mechanisms create
dependencies between threads, which generally enable partial order relations
between events in different threads.

Operations or keywords provided by programming languages that enable
implementing and using the techniques or concepts are called explicit
synchronization operations (as mentioned in chapter 2.2).

Synchronization, or mutual exclusion, may also be achieved using other
programming constructs, such as the usage of a flag described in chapter 2.2,
and is referred to as implicit synchronization.

2.4 Static and Dynamic Quality Assurance for Data Races

As mentioned in chapter 1.2, both static and dynamic quality assurance
techniques should be used for data race detection. Both types of techniques,
however, bring along drawbacks.

Static quality assurance analyzes applications without executing them. As such,
programming constructs and their implications need to be considered during
analysis. Static quality assurance suffers from three different drawbacks:

1) Code constructs that cannot be analyzed without ambiguity

2) Analysis techniques that have to trade off between precision and
scalability

3) Code constructs that cannot be analyzed with static methods

In object-oriented programming, inheritance, polymorphism and dynamic
binding bear problems in identifying correct paths, as it is often unclear before
execution, which methods are called [ABF04], [SH20]. Thus, analysis may
consider paths in a program, which cannot be executed. This may result in
findings, which are not feasible, i.e., the program cannot be executed in a way
that would enable such a data race to appear.

In addition, as mentioned before, often only explicit synchronization constructs
are considered, but not implicit synchronization [NM92] (see chapter 2.3). As
explained above, techniques only considering explicit synchronization report
apparent data races, and not feasible data races [NM92] (see chapter 2.2).

Foundations

 27

Static analysis often relies on lockset analysis [NA07] (see chapter 2.3), i.e., for
each access to a variable, the set of locks held is examined. If a variable may be
accessed at the same time by different threads, the sets of locks held in these
concurrently executing threads are compared. If the intersection of these sets
is empty, this is interpreted as an access without mutual exclusion. Whenever
such pairs of accesses are found, and one of these accesses is a write access, a
data race is reported.

However, lockset analysis requires further techniques to be employed, since it is
not always clear, if two references refer to the same element, or not. Due to
this, pointer analyses in terms of alias analyses or points-to analyses are used
[Sp16]. A points-to analysis is used to “determine the set of objects pointed to
by a variable or field carrying a reference” [OM08]. An alias analysis [DMM98]
determines accesses to memory locations. If several accesses exist to the same
memory location, the references, or pointers, are said to alias.

Different algorithms exist for such analyses, and different sensitivity levels,
which influence the precision and the general outcome of the analysis, can be
distinguished. Widely used are context- and flow-sensitivity [SAB19], [HS09] as
well as field- [SAB19] or object- [HS09] sensitivity. As an example, a flow-
sensitive analysis considers the order of statements in an application, and a
context-sensitive analysis distinguishes between different calls to the same
method [HS09]. While sensitivity improves the precision, the analysis will
become more complex, and due to this, scalability is affected negatively:
“precise analyses need to encode a drastically larger - even infinite - data-flow
domain that leads to analyses that are difficult to scale.” [Sp19] Gharat,
Khedker and Mycroft, as an example, presented a “fully flow-and context-
sensitive exhaustive points-to analysis to C programs as large as 158 kLoC”
(Kilo Lines of Code) in 2020 [GKM20]. However, modern applications can be
much larger than this.

Due to this, a tradeoff has to be made in static quality assurance for data races:
different algorithms for analysis with varying precision and scalability have
been developed. Two of the most prominent algorithms used, Steensgaard’s
Algorithm [St96] and Andersen’s Algorithm [An94], are flow-insensitive and
context-insensitive. In practice, an over-approximation is used for analysis, i.e.,
the analysis is scalable and less precise, but does not contain false negatives.
The drawback is that such analyses “produce an unacceptable amount of false
positives”. [Sp19]

Finally, code constructs exist that cannot be analyzed by static quality
assurance techniques. Among those are code that is dynamically generated or
loaded, binary or native code parts, which cannot be accessed by the
algorithms used during static quality assurance, and programming techniques
or code, such as reflection or invoke statements (e.g., for invoking a method

Foundations

 28

that is defined by a value in a variable), for which no possibility exists to analyze
them without executing the program [SK18].

Summarized, static quality assurance techniques imply a tradeoff between
scalability and precision, leading to either a limitation in the size of the
programs to be analyzed, or a high amount of false positives. These techniques
do not produce false negatives, but false positives, with the exception of code
that cannot be analyzed without execution of the program. Such code may
also contain data races, which could then not be detected, thus resulting in
false negatives.

Static quality assurance is thus a valuable means for data race detection, but
should not be used alone, but in conjunction with dynamic quality assurance
techniques.

Dynamic quality assurance techniques execute applications, usually using test
cases, and use instrumentation. Code is injected into those parts of the
application, which shall be analyzed. This injected code then enables to extract
information relevant for the analysis. As explained in chapter 1.2, such
instrumentation may lead to a massive runtime overhead and results in a
changed runtime behavior of the application under analysis.

Dynamic quality assurance often relies on the happened-before relation (see
chapter 2.2) to detect data races. The necessity of using global clocks
mentioned in chapter 2.2 is replaced by using vector clocks [Fi88], [Ma88] or
variants of those. The underlying concept is to establish causal relationships
between events of different processes, so that the existence or non-existence
of ordering relations can be used to assess events for possible data races.

The concept of vector clocks introduces the usage of several process-specific
clocks in absence of a globally available clock. These clocks are combined and
used as a vector [Ma88]. Considering three different processes, such a vector is
three-dimensional (and 𝑛 -dimensional for 𝑛 different processes). Each
dimension in each vector starts with the number zero, and can only be
increased. Each process is assigned to one dimension. Processes may influence
each other by sending messages and receiving messages, and process-internal
events may exist. Each of these three types of events in such a process
increases the value in this specific dimension. Every message sent contains a
copy of the vector specific to the sending process. The vector in the receiving
process is then updated, i.e., the vectors are combined, and for each
dimension, the higher number is used. This way, an approximation of the
global time is calculated based on the information available to this process.
Considering two processes, the process-specific vectors used for a
combination may be (2, 0) and (0, 3), resulting in the vector (2, 3). Such
vector clocks establish a causal relationship. If there is no causal relationship
between two events, a possibility for a data race exists [Ma88]. The following

Foundations

 29

Figure 6, adapted from [Ma88], shows an exemplary computation including
three different processes.

Figure 6: Event Diagram, Adapted from [Ma88]

In this figure, events are depicted with a green dot, containing a number
indicating the process number (1, 2, or 3), followed by the number of the event
in that process. Arrows represent messages sent and received by processes.
These messages, or arrows, establish causal relationships. As an example,
event 33 sends a message to process 1, which is received in event 13. The
vector of process 1 is then updated and changes from (2, 0, 0) to (3, 0, 3). For
events in process 1, if the first number of the vector is equal to or greater than
3, an order is then evident related to all events of process 3 with the process-
related number in this vector smaller or equal to that number (3). Event 14,
with vector (4, 4, 3) is in an order compared to event 32 with vector (0, 0, 2).
This order has been established by the message sent in event 33 and received
in event 13. But there is no order established between event 14 with vector
(4, 4, 3) and event 34 with vector (0, 0, 4). Thus, even if events 14 and 32
access the same variable and there is at least one write access, there is no
possibility for a data race. However, a data race may, e.g., exist between events
14 and 34, or between events 12 and 32.

Vector Clocks are an early and fundamental concept. However, as systems have
become dynamic, other concepts with more flexibility were needed and
introduced. It may not be clear from beginning of the execution, how many
processes may exist, as this may, e.g., depend on the input to the execution. In
addition, processes may be created and finish dynamically during runtime of
an application.

Foundations

 30

A concept considering this variability was created by Fidge [Fi91] a few years
after the Vector Clock concept was introduced. Since then, various mechanisms
have been developed, such as Clock Trees [Au97], improved Matrix Clocks
[DB03] (originally introduced by [FM82]), Tree Clocks [La07], and Interval Tree
Clocks [ABF08].

Vector Clock-based concepts focus on events in general, and this “generality of
concepts if unnecessary in most cases” [FF09], when using such concepts for
data race detection. As a result, optimizations exist, which reduce the
complexity of such approaches. Among the most popular approaches is using
an epoch to capture many of the events in a lightweight format, and then to
order these epochs to the remaining vector clock-monitored events [FF09].

In addition to those concepts, many other mechanisms exist in other areas of
computer science, such as Version Vectors [Pa83], used with regard to mutual
(in)consistency in distributed systems.

Conducting dynamic quality assurance using the happened-before relation relies
on an execution of the application to be checked. Thus, the quality of the
results of such approaches depends on the proportion of executed different
paths through an application compared to all possible paths through this
application. Parts of the application that are not executed cannot be analyzed
for data races using dynamic data race detection.

However, even parts of the program, which are executed, may contain data
races, which are not detected by approaches using the happened-before
relation. The order of events may differ in other executions, and such a
different order may lead to data races not present in the observed execution of
an application. Thus, in dynamic data race detection, techniques have been
developed to reorder events in execution traces, with the goal to detect more
data races. Such techniques are called predictive data race detection techniques.

However, the happened-before relation itself implies limitations in the
possibilities to reorder events. These limitations prevent creating some orders
of events, although these different orders of events are feasible [KMV17].
Therefore, other relations as happened-before have been explored in research,
which allow more data races to be detected.

The happened-before relation was introduced within the context of message
passing [Sm12]. Such message passing is strict in the sense, that sending and
receiving messages is only possible in one ordering. However, mutual
exclusion, e.g., introduced by using locks, is not limited to only one order of
executing sections protected by locks [Sm12]. This means when two different
parts of a program can only be executed one after the other due to a lock used,
there is no strict order implied by this lock, which of these sections has to be
executed first. Referring to Figure 6, if the arrows would not represent

Foundations

 31

messages, but synchronized accesses, their direction could be reversed,
leading to a different order of execution.

Research thus tried to create new ordering relations, which more flexibly
capture the nature of issues related to data races. Smaragdakis et al.
introduced the causally-precedes relation (CP) [Sm12], weakening the
happened-before relation. The CP relation is targeted at causality of events
[Sm12]. Due to this, it allows a more flexible reordering of events, and thus
enables to detect more data races. However, this relation was criticized and
another relation was introduced by Kini et al. [KMV17]. This new relation, Weak
Causal Precedence (WCP) slightly relaxes the rules enforced by CP, to enable the
detection of additional data races. However, the authors show that whenever
their algorithm detects a so-called WCP-race, it could not only be data race, but
also a deadlock [KMV17]. Although such a WCP-race is a true positive
regarding concurrency, in the strict sense of data race detection, one could
argue that such a finding might be a false positive.

Roemer et al. mention that WCP is “the weakest known” relation “that is also
sound” (sound means in this context that any reported issue is a true issue), but
still misses data races [RGB18]. The authors introduce a doesn´t commute
analysis (DC), which is weaker than WCP but may contain false positives
[RGB18]. Thus, data race detection using only DC is not sound. Due to this, an
additional component is used by the authors to analyze each reported issue
[RGB18]. The authors present a proof that the detection using DC is complete,
however, the analysis, used to filter out false positives by searching for a
reordering that confirms a reported issue, is not complete [RGB18]. For their
proof of completeness, the authors use the assumption that conflicting
accesses cannot be reordered [RGB18].

Pavlogiannis shows that this assumption is not true in all cases, and presents
examples, for which both the DC and the accompanying analysis of the results
fail, thus producing false negatives [Pa19a]. The author introduced Trace-close
Partial Orders and a decision-solving algorithm to decide if two events are
conflicting, i.e., if a data race might exist. Although the author reports to find
more data races than the approaches mentioned before, the algorithm is
limited to input traces of two processes [Pa19a].

Summarized, there has been a development in using partial ordering
techniques for data race detection towards weaker and more flexible orderings
compared to the traditional happened-before relation, which allow finding more
data races than stricter ordering techniques. However, this flexibility leads to
more event reorderings, which have to be analyzed, thus increasing runtime
overhead of the approaches. This problem of increased runtime overhead has
been captured in Practical Problem 1 (chapter 1.2).

Foundations

 32

This increased runtime overhead is the reason, why Pavlogiannis has limited
the data race detection to two processes [Pa19a]. Other approaches operate
with a limitation in the reordering of events, the so-called windowing. When
reordering events, such approaches do not examine the full set of events, but
limit the set of events to a certain number of events, a window. As an example,
Huang et al. limit their approach to windows of 10,000 events each, and these
windows are examined separately [HMR14]. The downside of such an
approach is, that events, which are in different windows, are analyzed
separately, and thus, data races involving events in different windows cannot
be detected. However, the tool implementing their approach can be
configured to compute smaller or bigger windows, with reduced or increased
runtime overhead.

A slightly different approach has been used by Mathur et al., who introduced
the schedulable happens-before (SHB) ordering [MKV18]. This ordering builds
upon the happened-before relation. The authors tackle a different problem, not
considered by other approaches. Whenever a data race in an application exists,
the behavior of this application after this data race is affected. This means that
data races, which are detected after the first data race in an execution
happened, might not reflect the behavior an application would show when this
first data race would have been corrected [MKV18]. SHB strengthens the
happened-before relation, and with using reordering of events following the
SHB, aims to detect data races [MKV18].

Finally, an optimization for approaches using predictive data race detection
has been presented by Roemer et al. [RGB20], using conflicting critical section
optimizations for reducing the general runtime overhead of approaches. Using
this optimization, critical sections are compared, i.e., sections protected, e.g.,
by locks, and conflicting critical sections are identified, which are used as basis
for further analysis. Two critical sections conflict, when the same variable is
accessed, and at least one of the accesses is a write access. The authors also
use an optimization for the vector clocks used, and report an improvement in
the runtime overhead, which allows predictive analysis techniques “to perform
nearly as well as state-of-the art non-predictive race detectors” [RGB20].
While non-optimized predictive data race analysis usually can cause a runtime
overhead of 30𝑥 , the optimizations lead to a runtime overhead of 6𝑥
compared to a non-instrumented execution of an application [RGB20].

A completely different research direction is established by SAT (Satisfiability) -
or SMT- (Satisfiability Modulo Theory) solving approaches. Such approaches
are based on the same execution traces and events as the partial order based
and predictive approaches described above. SAT- or SMT-solving approaches
rely on execution traces and the characteristics of data races. A data race is
then detected using a constraint solving algorithm. Feasible trace reorderings
are examined using an SMT-solver, with consideration of certain constraints.
Such reorderings are examined to detect data races.

Foundations

 33

A basis for this research direction was set by Serbănută et al., who introduced a
maximal causal model, which opposes the partial order relations by focusing on
consistency of shared memory accesses and formulating constraints for
shared memory consistency [SCR08].

However, with regard to specific programming languages and their
concurrency-related constructs (see Chapter 2.3), the maximal causal model is
not encompassing, as not all such constructs are considered. Said et al. have
thus extended the maximal causal model to include “a wide range of
synchronization primitives in Java” [Sa11]. The authors also introduced the
usage of an SMT-solver instead of enumerating all feasible trace reorderings
[Sa11].

Based on this work, Huang et al. presented an approach with “maximal
detection capability for any sound race detector given the same execution
trace under sequential consistency” [HMR14]. The authors minimize the
constraints for trace reordering to obtain maximal flexibility for such
reorderings, thus enabling a higher detection capability [HMR14]. The authors
formulate a data race as a property over a model of execution traces,
representing the set of feasible traces following the maximal causal model. This
model is created using a formula for specifying all feasible traces based on the
observed execution trace, while adhering to the maximal causal model.
Constraints are then formulated for must happen-before relations, locking, and
for data races. The must happen-before constraints differ from the happened-
before relations already mentioned, as the constraints are not used with regard
to read and write events for different threads, and acquire and release events.
This is because, as explained above, such an ordering would unnecessarily limit
the flexibility and thus, prevent detecting possible data races. Instead, the must
happen-before constraint considers the creation (i.e., fork) and start events of a
thread, and the end and possible join events. Lock constraints are used for
formulating mutual exclusion consistency with regard to acquire and release
events. Race constraints consist of arithmetic constraints with regard to read
and write events to the same variable, and control flow constraints [HMR14].

An SMT-solver is then used to examine possible feasible traces for the
constraints formulated with regard to a pair of variables. If the SMT-solver
reports a feasible trace, a data race is detected [HMR14].

Besides their usage for detecting data races in multithreaded programs, such
SMT-solver based approaches are also used in the area of distributed systems
[PMS20].

Finally, a variety of other approaches for quality assurance with regard to data
races exist, such as explicitly specifying mechanisms for synchronization and
then verifying the adherence of an application to those specifications [FF20].

Foundations

 34

Hybrid approaches combine one or more techniques, such as lockset analysis
and happened-before analysis.

As runtime overhead is one of the prevalent problems in quality assurance for
data races, as shown above, due to the inherent complexity [MPV20], research
also focused on optimization approaches that complement existing
approaches for data race detection. Besides optimizations regarding the
vector clock concept [FF09], or regarding conflicting critical sections as basis
for the analysis in predictive data race detection [RGB20], the number of
events to consider during an analysis has been targeted.

Huang et al. introduced an approach to filter out events that are redundant.
Redundancy in this context means, that those events cannot be used to detect
new data races, e.g., multiple read or write events to the same variable in the
same critical section [HZZ13], [RH15].

Other approaches use a sampling strategy. Using such a strategy, not all read
or write events are examined. Instead, a proportion of those events is
examined, leading to a reduced runtime overhead [BCM10], [MMN09],
[BCM10]. However, this leads to the possibility of missing data races, which
could have been detected examining those events, which are ignored.

Besides sampling instrumentation, another strategy is to reduce the level of
detail of the instrumentation. Von Praun and Gross used instrumentation on
the object level instead of instrumenting single variables [PG01]. The authors
use this concept for object race detection, and not data race detection [PG01].

The concept of object level instrumentation has been adopted for data race
detection by Yu et al., who relied on an adaptive analysis [YRC05]. The authors
dynamically adapt the tracked granularity (e.g., object granularity and field
granularity) and history (lockset and set of threads) information of an
application, with the goal to reduce the runtime overhead [YRC05]. As such a
reduced amount of details may lead to missed data races, the algorithm also
presents warnings to the users [YRC05].

Effinger et al. introduced interference-free regions to reduce instrumentation
[Ef12]. Instead of instrumenting single accesses to a variable, regions are
identified for instrumentation, and multiple accesses to the same variable are
combined during the instrumentation. This leads to a lower runtime overhead,
but this approach may miss data races [Ef12].

The approach presented in this thesis can be classified into the optimization
approaches. However, instead of targeting the events in an execution trace,
the instrumentation itself is in the focus for optimization. Based on an analysis
of the dynamic behavior of an application, classes to instrument are identified,
and instrumentation is conducted only for those places, which may be

Foundations

 35

executed in parallel to other places or to themselves. For such an analysis, an
abstract model of the dynamic behavior is used, leading to reduced complexity
compared to analyzing whole applications.

2.5 Behavioral Models of Software

Various languages and notations are employed in the area of model-driven
development. Seven languages and notations can be identified as being the
most prominent ones [BK20], [St20], [GG21], [Sc21]:

1. BPMN (Business Process Model and Notation)

2. WS-BPEL (Web Services Business Process Execution Language)

3. ER Diagrams (Entity-Relationship Diagrams)

4. EPC (Event-Driven Process Chains)

5. Petri Nets

6. YAWL (Yet Another Workflow Language).

7. UML (Unified Modeling Language)

BPMN [OM13] provides a notation for business users for creating business
processes. Developers may implement the software supporting those
processes using the created model. BPMN is used to create “a standardized
bridge for the gap between the business process design and process
implementation” [OM13]. A BPMN model may consist of three types of sub
models: processes, choreographies, and collaborations. A process is a
“sequence or flow of activities”. A collaboration is used to model interactions
between business entities [OM13]. A choreography defines the expected
behavior between different processes. The notation provides, among others,
elements for events, activities, message exchange, data objects, sequence
flows, and gateways (used for decisions, merging, forks, and joins) [OM13]. The
BPMN contains compliance points, and software can claim compliance with
BPMN if those compliance points are fulfilled [OM13]. Software may be
modeled using this notation, but the intent of BPMN is not to provide a
notation for modeling software. Instead, “Inter-operation of Business
Processes at the human level, rather than the software engine level, can be
solved with standardization of the Business Process Model and Notation
(BPMN)” [OM13].

WS-BPEL is directed at specifying the behavior of business processes based on
web services in the form of abstract and executable business processes
[OA07]. The intention of this language is to “achieve interoperability between

Foundations

 36

applications by using Web standards” [OA07]. The language defines, among
others, elements for activities, message exchange, conditional behavior,
repetitive behavior, concurrency and synchronization (both as special forms of
activities), as well as events [OA07]. The WS-BPEL standard does not provide a
modeling notation, but only a language in a style similar to XML [OA07]. As
with BPMN, this language is targeted at business processes, and not software.
The BPMN standard provides a mapping from BPMN to WS-BPEL [OM13].

The Entity Relationship Model, introduced by Chen [Ch76], serves to model data
and associations between data. It consists of entities and entity sets,
relationships, roles and relationship sets, and attributes, values and value sets.
An entity, which can be classified into an entity set, is described as “a thing
which can be distinctly identified” [Ch76]. A relationship is used to describe
associations between such entities. Relations can be formulated as a
relationship set, a mathematical relation. An entity can have a role associated
with a relationship, which is used to define “the function that it performs in the
relationship” [Ch76]. An entity or a relationship can have attribute-value pairs,
to express information about such an entity or relationship. Values can be
classified into value sets. An attribute is a function mapping from a relationship
set or an entity set into a value set [Ch76]. An Entity Relationship Model is a data
model, originally used for database design [Ch76], and does not contain any
elements to describe the behavior of a system.

Event-Driven Process Chains are process models used to describe a dynamic
view on the execution of functions driven by events [KNS92], the control flow.
An event is a passive state representing the occurrence of values of attributes,
which triggers a function. A function describes the execution of an operating
process contributing to reaching a corporate objective [KNS92]. In the model,
events may trigger functions, which may lead to triggering an event. Events
and functions may be connected directly or using connection operators. Such
connection operators may describe a conjunctive connection, a disjunctive
connection, or an adjunctive connection. To model the data view and for meta
modeling, originally Entity Relationship Models were used [KNS92]. However,
using these models for meta modeling was discarded in favor of the UML
[Sc02]. Event-Driven Process Chains are targeted at organizational workflows,
and are separated from implementation specific considerations related to
software [NZ98].

Petri Nets, introduced by Petri, consist of a formal model and graphical
notation for describing distributed systems [Pe62], thus providing support for
concurrency. Petri Nets are used in many different areas, including software
engineering and workflow specification. A Petri Net consists of places,
representing states, and transitions, representing state changes. Graphically,
places are represented as circles, and transitions are represented as
rectangles. Different definitions of Petri Nets exist, which are mostly equivalent
[Wi08]. One definition states that Petri Nets are a triple (𝑃, 𝑇, 𝐹) , with 𝑃 being

Foundations

 37

a finite set of places, 𝑇 being a finite set of transitions, and 𝐹 being a flow
relation (𝐹: 𝑃 ⨯ 𝑇 ∪ 𝑇 ⨯ 𝑃). Flow relations are graphically represented as
directed arcs leading from a place to a transition or leading from a transition to
a place.

The state space (the set of all states) of a Petri Net is defined as ℕ𝑃 , with the
relation 𝑠: 𝑃 → ℕ being a state or marking of a Petri Net [Wi08]. If 𝑠(𝑝𝑖) =
 𝑘, then the place 𝑝𝑖 holds 𝑘 tokens. Graphically, a token is shown as a dot in
the place. A transition in state 𝑠 is enabled, i.e., the Petri Net may change its
state, if 𝑠 ≥ 𝐹(·, 𝑡), meaning ∀𝑝 ∈ 𝑃: 𝑠(𝑝) ≥ 𝐹(𝑝, 𝑡). In other words, a
transition is enabled, if there is a token in each place connected to this
transition, with this connection representing a flow from this place to the
transition.

The state 𝑠 changes to 𝑠’ if 𝑠 ≥ 𝐹(·, 𝑡) and 𝑠’ = 𝑠 – 𝐹(·, 𝑡) + 𝐹(𝑡,·)
[Wi08]. A Petri Net starts at an initial state 𝑠0 and is called dead when no
transition is enabled. Different variations of Petri Nets exist, such as Colored
Petri Nets or High-Level Petri Nets [Je82].

Yet Another Workflow Language has been created with consideration of Petri
Nets, but with a different semantics [vH05]. Van der Aalst and Hofstede
examined different workflow patterns, and the suitability of Petri Nets and
several workflow management systems to model those patterns [vH05]. On
the basis of their results, the authors extended workflow nets, which are
themselves extensions of Petri Nets [va98], to support constructs, such as
multiple instances with different levels of synchronization or cancellation
patterns. Although Yet Another Workflow Language is formally defined, with
similarities to Petri Nets, the token concept, e.g., is not formally defined [vH05].
Yet Another Workflow Language may be used for modeling software and its
behavior, but the language is focused on workflows.

The Unified Modeling Language (UML) consists of a language and specifications
for a variety of models and is accompanied by graphical representations of
such models. The UML is currently available in Version 2.5.1 [OM17]. The UML
originated from different concepts for object-oriented development [BRJ96]
and is targeted at analysis, design and implementation of software systems,
although processes and workflows also may be modeled using the UML. The
specification consists of two main areas: structural modeling (e.g., using the
graphical representations class diagram or component diagram), and behavioral
modeling (e.g., using the graphical representations activity diagram or sequence
diagram). The focus in this thesis is on UML Activities instead of other
representations of the UML, because the focus is on representing the behavior
of an application and because UML Activities are more commonly used for
representing complete applications. Just as UML Activities, UML Sequences
may also be used for modeling concurrent behavior, but UML Sequences are
more likely to be used for modeling the interactions between objects in

Foundations

 38

specific cases, and not the application as a whole [Fo10]. In recent versions,
especially UML Activities have received changes in the form of extensions and
formalizations. Basically, an activity captures dynamic behavior and consists of
nodes and edges. Nodes may be executable, hold data, or may be nodes
“specifying the sequencing of executable nodes” [OM17]. Edges may be
control flow edges or data flow edges. As such, activities represent both the
control flow and the data flow. Activities describe “models of computation”
[OM17], which are “inherently concurrent” [OM17]. Activities may form
hierarchies, and special constructs exist for, e.g., timing, events, signals, or
exceptions [OM17].

2.6 Summary

Research in the area of concurrency has been conducted both to understand
and define concurrency and related issues, such as data races, and to cope with
these issues in a constructive and analytical manner.

Based on the happened-before relation, describing a partial order over events in
parallel or concurrent processes, a formal definition for data races has been
defined. In addition, data races were separated into feasible data races and
apparent data races.

To cope with concurrency, the concept of mutual exclusion was defined. In
development, both implicit and explicit synchronization can be implemented
using different programming language constructs. Explicit synchronization is
implemented using specific programming language elements, such as
semaphores, monitors, or locks. Besides the happened-before relation, the
concept of locksets is used as central concept for quality assurance for data
races.

Static quality assurance often relies on lockset analysis as central concept. As
the source code of an application is not executed, not all code constructs can
be analyzed correctly or without ambiguity. In addition, static quality assurance
techniques have to balance between precision and scalability. Although static
quality assurance in general may be able to detect all data races, with the
limitations mentioned, the techniques usually suffer from a huge amount of
false positives. One reason is that static quality assurance techniques often not
only report feasible data races, but also apparent data races.

Dynamic quality assurance, on the other hand, classically only reported feasible
data races, but was limited to data races related to executions observed. Based
on the happened-before relation, other relations were defined, which were less
strict and enabled data race detection techniques to find a higher number of
data races. Additionally, techniques to reorder events in the observed
execution traces were developed. The development of less strict ordering

Foundations

 39

relations has lead to techniques, which report a high number of data races, but
also report false positives.

As a less strict ordering relation implies more possibilities to reorder events in
execution traces, more data races could be detected, but at the cost of an
increased runtime overhead. This has lead to a research area focused on
optimizations of existing approaches in terms of the runtime overhead.
Optimizations were introduced regarding the underlying vector clock concept,
the analysis phase in predictive data race detection, the events of an execution
trace to consider for analysis, and, as in this thesis, the instrumentation itself.

Behavioral models form the basis for the solution presented in this thesis. In
model-driven development, several different approaches for modeling exist,
and seven languages and models have been identified as being the most
prominent ones. These approaches vary in their main application domain,
targeting mainly business processes or workflows, or mainly software
development, have different levels of underlying formalisms, and vary in their
support for concurrency and software related constructs.

Foundations

 40

Related Work

 41

3 Related Work

This chapter shows an overview on the related work with regard to the
practical and scientific problems of this thesis, and the research questions.

The purpose of this chapter is on the hand to discuss the decisions made with
regard to the solution presented in this thesis, and on the other hand to assess
similar approaches found in the literature regarding their ability to fulfill the
goals of this thesis.

3.1 Research Approach

As shown in chapter 2.4, a variety of static and dynamic techniques exist for
quality assurance focused on data races. Research has led to a substantial
improvement in the effectiveness of quality assurance approaches, but at the
cost of increased runtime overhead. Although research has identified
approaches to reduce this runtime overhead, it is still perceived as a problem.
Current solution ideas focus on different aspects with regard to the usage of
the data collected by instrumenting the code, or on different depths of
instrumentations. Research on the instrumentation itself has focused on how
to instrument code, but not on what to instrument. The solution presented in
this thesis is new in terms of providing a systematic approach regarding what
to instrument.

Existing approaches rely on a sampling strategy to steer the examination of
read or write accesses, which may lead to missed data races, as explained in
chapter 2.4. The solution idea presented in this thesis instead steers
instrumentation based on places in the source code, i.e., source code classes.
The definition of a data race (as stated in chapter 2.2) shows that several
requirements need to be fulfilled for a data race to exist: multiple accesses to
the same data with at least one of the accesses being a write access, and
concurrency without proper synchronization. The approaches discussed in
chapter 2.4 are based on these requirements to detect a data race. The
solution presented in this thesis reduces the runtime overhead by focusing on
one of these requirements, the concurrency. If there is no concurrency, i.e., no
parallel execution of threads, there cannot be a data race, independent of what
data is accessed and how it is accessed. If source code classes in the code exist,
which cannot be executed in parallel to other source code classes, they do not
need to be analyzed regarding possible data races, as there cannot be data
races. Thus, there is no need to instrument those source code classes.

Related Work

 42

To obtain the basis for such a decision on what to instrument, a model of the
dynamic behavior of a system is analyzed. As multiple models are used in the
area of model-driven development (see chapter 2.5), an assessment is made in
this chapter, which model to use in the solution.

Having identified the model, requirements for an approach to analyze such
models can be set up. Related work is then analyzed with regard to their ability
to fulfill these requirements.

The related work described in this chapter has been identified and analyzed
following the guidelines for systematic literature reviews defined by
Kitchenham et al. [Ki07b], [KE14]. The following figure shows the steps
conducted for the literature review.

Figure 7: Literature Review of Related Work

As such a systematic literature review, its goal and the research question to be
answered, as well as the requirements for a solution, depend on a clear
definition of the type of model in the focus of research, the decision on the
type of model to focus on has to be made before starting the systematic
literature review. This decision is presented next.

A detailed explanation of all activities conducted during the literature review,
following the guidelines provided by Kitchenham et al. [Ki07b], is given in
chapter 3.3.

3.2 Behavioral Models of Software as Basis for the Analysis of the Dynamic
Behavior

The models presented in chapter 2.5 target different areas and can thus be
classified into the following categories:

Related Work

 43

1) Workflow and process models: BPMN, WS-BPEL, EPC, YAWL

2) Software models: ER Diagrams, Petri Nets, UML

As workflow and process models target different areas, and are not meant for
modeling software, they have been discarded. Of the software models, ER
Diagrams serve to model data and relations between entities. Such diagrams
are not able to describe the dynamic behavior of software.

Of the models mainly used in model-driven engineering, only two types are
suitable for representing the dynamic behavior of software, and have thus
been examined in detail. The assessment resulted in UML Activities being
selected as the type of behavioral model used as basis for the analysis of the
dynamic behavior of software.

Both UML Activities and Petri Nets share a token concept. While for UML
Activities, the tokens are related to the execution of the activities (regarding
control tokens), the tokens in Petri Nets are related to their state. The token
concept in Petri Nets is embedded in formalisms as foundation for the model.
Petri Nets are based on formal semantics, and analysis techniques exist for
different properties, such as invariants or deadlocks [va98]. In contrast, UML
Activities and the related token concept are not formally defined.

However, van der Aalst and ter Hofstede mention three “serious limitations”
regarding Petri Nets [vH05]:

1) A process or thread may instantiate several sub threads. The number of
such threads may be flexible, and, e.g., depend on the input to an
application. In addition, some of those threads running in parallel may
need to be synchronized at various occasions. In such a situation, creating
a Petri Net may require keeping track of the identities of those sub threads
and the number of threads active using a counter [vH05]. Van der Aalst
and ter Hofstede judge the tasks to create such elements manually by
designers as being ”not acceptable” [vH05].

2) Additional challenges arise when considering threads that are optional,
i.e., in some cases, a number of threads need to be executed, and in other
cases, a different number of threads need to be executed in the context of
the same main task. After all those threads have been completed, the
main task may be continued. Such a situation may, e.g., arise in
computations, for which different sub tasks of this computation are
spread to different threads. Thus, different forms of synchronization
occur: no synchronization, partial synchronization and full synchronization
[vH05]. In such cases, substantial effort has to be made to create
appropriate Petri Nets capturing this flexibility [vH05].

Related Work

 44

3) By definition, enabling a transition in Petri Nets is based on tokens being
present on incoming arcs; this transition is always local [vH05]. Thus, to
capture non-local events, such as a timer or a cancellation of an action,
additional effort is necessary to capture the nature of removing tokens
based on non-local events. This often results in “spaghetti-like” diagrams
[vH05].

Using UML Activities, such situations may be modeled using standard modeling

elements provided by the language. ControlNodes4, such as ForkNodes and
JoinNodes, DecisionNodes and MergeNodes, are used to manage the control
flow. Additional nodes may, among others, be used for referencing other
activities, i.e., to establish calling hierarchies, to send and receive signals, to
raise and react to events or exceptions, to model loops, or to define groups of
nodes, which may be interrupted during execution [OM17].

These differences show the different foci and strengths of the languages.
Although Petri Nets enable automated analyses, modeling programming
constructs as those mentioned above, are only possible with additional effort.
This shifts the effort of modelers from modeling the actual program behavior
towards modeling administrative constructs [vH05]. Compared to using UML
Activities, more effort is thus needed for modeling a concurrent application
using Petri Nets. The analysis capabilities regarding data races using Petri Nets
are limited in terms of the state space or the variables to be analyzed and often
require additional manual steps [BHO20], [KO20], [XZL21].

Thus, the existing advantages of Petri Nets regarding analysis cannot be fully
used in the context of this thesis. The disadvantage in terms of modeling the
behavior of concurrent applications however, is present. With regard to this
and considering the possibilities of transforming UML constructs to source
code for further usage of the results of modeling, i.e., a more efficient software
engineering process, UML Activities have been selected as representative for
behavioral models used in the solution presented in this thesis.

3.3 Analyzing UML Activities

To retrieve related work in terms of using UML Activities in the detection of
data races, a systematic literature review was conducted as mentioned in
chapter 3.1.

When examining the UML superstructure [OM17] regarding UML Activities,
several requirements can be defined for an approach to analyze such UML
Activities:

4 In the following, the elements of UML Activities are written according to the notation in the

UML superstructure [OM17]. As an example, a “control node” is written as “ControlNode”.

Related Work

 45

• Requirement 1 – Multiple UML Activities: using the node type
CallBehaviorAction, it is possible to connect UML Activities. Situations can
be created, in which an activity 𝐴 contains a CallBehaviorAction, which
leads to activity 𝐵, which in turn contains a CallBehaviorAction leading
back to activity 𝐴. This would lead to an activity spanning cycle. Any
approach capable of fully analyzing UML Activities must not only consider
CallBehaviorActions, and thus a set of connected UML Activities, but also
provide solutions for such an activity spanning cycle.

• Requirement 2 – Multiple InitialNodes: as defined in the UML
superstructure, an InitialNode is a starting point for the execution of an
activity. However, any activity may contain several InitialNodes. When
execution of such an activity begins, all InitialNodes are executed, thus
forming a parallel execution without a ForkNode. An approach capable of
handling concurrency must be able to consider multiple InitialNodes as a
source of parallelism.

• Requirement 3 – Multiple FinalNodes: according to the UML
superstructure, there is no limit in the amount of FinalNodes included in an
activity [OM17]. While FlowFinalNodes end one of possibly multiple
executions (i.e., a flow of tokens) in an activity, an ActivityFinalNode ends
the execution of the whole activity (i.e., all token flows). An approach must
consider that multiple FinalNodes with different semantics may exist
within the same activity.

• Requirement 4 – Cycle Traversals: an activity may contain node
combinations that form cycles. Depending on the nodes within that cycle,
such a cycle may have different exit conditions, which may require
multiple cycle traversals to be fulfilled. The exact amount of necessary
cycle traversals depends on the specific cycle characteristics. Thus, any
approach properly handling cycles must take into account the
characteristics of such cycles.

• Requirement 5 – ForkNodes and JoinNodes: according to the UML
superstructure, a ForkNode has multiple outgoing edges, which are all
followed concurrently [OM17]. A JoinNode has one outgoing and multiple
incoming edges and may have a joinSpec, which specifies the condition,
which must hold for the JoinNode to offer a token at the outgoing edge.
The UML superstructure mentions no dependency between ForkNodes
and JoinNodes [OM17]. An activity may contain ForkNodes without
JoinNodes. In case of multiple InitialNodes, JoinNodes may also be present
without any ForkNodes. An approach handling concurrency therefore must
account for both ForkNodes and JoinNodes independently.

• Requirement 6 – UML Activity Elements: besides well known control node
types, such as InitialNodes, FinalNodes, ActionNodes, DecisionNodes,

Related Work

 46

MergeNodes, ForkNodes and JoinNodes, and object node types, many other
node types or elements exist. Examples for additional elements are
AcceptEventActions, StructuredActions, InvocationActions,
RaiseExceptionActions, InterruptibleActivityRegions, InterruptingEdges, or
different types of Pins. Any approach fully capable of analyzing UML
Activities must consider the complete set of elements related to UML
Activities specified in the UML superstructure [OM17].

3.3.1 Process of the Systematic Literature Review

The first step was the planning of the literature review. In this phase, the
rationale for the survey and the research question to be answered were
specified. Based on those, the search strategy including selection and
assessment criteria could be defined. The search was limited to publications
from 2005 on, as in this year the UML was released in Version 2.0, which
included several additions to UML Activities.

The research question to be answered by the literature review was: What
approaches exist to detect places with parallel access to shared data in UML
Activities?

This question targets the existing literature regarding approaches analyzing
UML Activities with the goal to identify either data races directly or modeling
elements involved in data races.

The second step (searching and filtering) included testing and then applying
the search string developed as part of the search strategy to the identified
sources. The search string was applied at SCOPUS, IEEE Xplore Digital Library
and ScienceDirect. Those libraries include most of the relevant work in the
area of this thesis. The libraries also cover contents of other databases, such as
the Proceedings hosted by Springer. Thus, a search using other databases was
not necessary.

The first part of the analysis consisted of filtering out duplicates and invalid
entries, such as entries referencing tables of contents of proceedings. As many
publications were found using the search string, which were not related to the
context of this literature review, a filtering was applied by reading and
analyzing the titles and the abstracts (step two). Publications, which were
found to not being relevant in the context of this research, were sorted out.
Publications selected as being relevant were then analyzed in detail (step
three). The references of those publications have been examined to identify
additional publications not yet identified (step four). For those additional
findings, the filtering and analysis approach steps have been repeated.

The systematic literature review and the process described have been
repeated several times, with the last time of the review being at the time of

Related Work

 47

writing the thesis. Although results published in the last years could not be
considered when creating the solution presented in this thesis, they serve for
comparison regarding the current state regarding approaches to analyze UML
Activities.

Although a systematic approach was applied, this chapter is not entitled to
provide a complete overview on all publications related to the topic of this
thesis.

The majority of the publications found are concerned with methods for test
generation. The remaining publications focus on other model-related quality
assurance techniques, such as model checking, formal modeling and proof,
product line tests, methods, which do not focus on test generation, and
analysis techniques. The literature review also revealed two methods for
model conversion, i.e., one technique for model reduction, and one technique
for the specification of Event-B models based on UML Activities. One
publication is concerned with a comparison of two methods for test generation
based on UML Activities, but does not present an own method.

13 publications contained an approach for the analysis of UML Activities
considering parallel access to shared data or nodes, which may be executed in
parallel to other nodes or to themselves. The analysis revealed several
limitations and inabilities in the approaches.

3.3.2 Sun

The approach from Sun et al. [Su08], [SZL09], [Su15] targets concurrent
applications and derives test scenarios based on coverage criteria. The
approach transforms UML Activities to extended binary trees. Then, the nodes
are traversed to generate test scenarios. Finally, test cases are derived. The
approach is limited to UML Activities, which include specific combinations of
ForkNodes and JoinNodes to detect concurrency, for which all outgoing edges
of a ForkNode eventually lead to incoming edges of one JoinNode. Such
combinations form clearly limited areas, concurrent regions, in which parallel
execution of nodes is possible. This results in a defined amount and
combination of nodes between a pair of ForkNodes and JoinNodes. The authors
describe three coverage criteria for concurrent regions to steer the amount of
test cases in terms of the coverage of paths achieved. “Weak concurrency
coverage” is used for generating one sequence of nodes for a concurrent
region without considering interleavings between parallel nodes. “Moderate
concurrency coverage” results in generating all sequences regarding parallel
branches without considering different interleavings of parallel nodes. “Strong
concurrency coverage” is used for generating all sequences of nodes, with
consideration of interleavings. As UML Activities may contain cycles, the
solution to the problem of how to control and limit possibly infinite cycle
traversals is critical to any approach. Sun et al. limit the cycle traversal to one

Related Work

 48

cycle traversal. The approach only supports UML Activities with one InitialNode
and one FinalNode.

3.3.3 Sapna

Sapna and Mohanty [SM08] present an approach to generate test cases in
terms of paths through a UML Activity. The authors rely on user input to apply
criteria for constraints. These constraints result in a reduction of the
interleaving possibilities of concurrent operations defined in UML Activities,
and thus, in a reduction of the test cases to generate. In the article, two types
of criteria are defined for test scenario generation: priority-based criteria, in
which the interleavings are based on priorities added by users, and level-based
selection, in which dependencies are used to reduce the number of possible
test paths. In this context, dependency means that one node has to be
executed before another node can start. To steer the amount of paths
generated for testing, three coverage criteria are supported in addition: node,
transition and path coverage are supported. The approach also relies on
combinations of ForkNodes and JoinNodes to detect concurrency. There is no
proposal to solve the problem of cycle traversals and infinite paths. Instead,
cycles are only traversed at most twice. The approach supports UML Activities
with one InitialNode and one FinalNode.

3.3.4 Xu

Xu et al. present an algorithm to generate abstract test cases from UML
Activities [XLL05], [Xu08]. The authors propose using adaptive agents to find all
paths in activities. The authors mention that the tool also relies on pairs of
ForkNodes and JoinNodes to detect concurrency. The authors present four
patterns for such pairs, which describe different scenarios, such as a nested
fork-join, or a branch inside a fork-join-pair. Test cases are derived based on all
interleavings of nodes within such concurrent regions. The approach supports
one InitialNode and multiple FinalNodes. Cycle traversals are limited to a fixed
number of traversals, which can be defined by users. ExpansionRegions, which
can be executed multiple times depending on the input provided to that
region, are limited to a single execution. ExceptionHandlers are considered in
the test case generation similar to a DecisionNode, i.e., two test cases are
created. One test case assumes that an exception has been raised, and the
second test case assumes that the exception has not been raised. For
InterruptibleActivityRegions, all possibilities for an event that interrupts
execution of the nodes in that InterruptibleActivityRegion are listed and multiple
test cases are created.

3.3.5 Chandler

Chandler et al. present a method to generate usage scenarios for testing of
programs based on UML Activities [CLL07]. For creating such usage scenarios,

Related Work

 49

each edge of a UML Activity is visited at most once during a cycle traversal, and
twice overall. The authors enlarge the patterns for detecting concurrency
presented by Xu et al. [XLL05], and present six categories for classification of
situations describing concurrency, which are based on the aforementioned
approach, and extend these. The patterns include nested fork-join-pairs and
cycles inside a fork-join-pair. These patterns also describe situations, in which
the processing of nodes inside such a fork-join-pair is dependent on certain
guard conditions. For these patterns, possible test sequences are generated.
However, more complex situations are not supported, e.g., activities, which do
not contain pairs of ForkNodes and JoinNodes, or branches and cycles, which
span across the borders of ForkNodes and JoinNodes. The approach considers
multiple InitialNodes and FinalNodes, and relies on combinations of ForkNodes
and JoinNodes to detect concurrency. The algorithm processes UML Activities
and generates paths through the diagrams, which can be used for testing.

3.3.6 Lei

Lei et al. present an approach and a tool for testing Java programs based on
UML Activities for data races [LWL08]. Data races are identified by checking
state transitions of the shared variables. To enable the analysis of state
transitions for shared variables, UML Activities are extended with so-called
“data operation tags” and the system under test is instrumented accordingly.
Test cases are generated randomly by using a path analysis based on the UML
Activity. Several restrictions apply with regard to the UML Activities: swim lanes
are mandatory and are named after the class in the source code. Any method
that implements a certain node of the UML Activity must be known and
annotated to this node. The swim lanes and the references to source code in
the UML Activities have to be annotated manually. There is no statement
regarding handling of cycles in UML Activities for path analysis. The generated
test cases can be executed using the provided tool. The information added to
UML Activities is used for instrumentation of the source code. In addition, users
are required to specify the input and the expected output regarding the test
cases. During execution of the system under test, a trace file is written, and
monitored state transitions of the shared variables are analyzed for data races.
Access times are recorded by wrapping the first and last lines of getter and
setter methods for shared variables. If time overlaps are found, a data race is
reported. However, the authors mention, that due to the inherent non-
determinism related to concurrency, the system under test has to be executed
several times to reveal specific interleavings. The approach supports activities
with one InitialNode and multiple FinalNodes.

3.3.7 Boghdady

Boghdady et al. transform UML Activities stored in an XML format to a table
containing information related to the nodes, input and output, and
predecessor and successor information [Bo11b]. The table is then used to

Related Work

 50

create an activity dependency graph. Paths through this directed graph form
test cases. The approach relies on a single InitialNode and FinalNode. Cycles are
traversed at most once. Parallel nodes are summarized to a single node in the
activity dependency graph. Thus, clearly separated concurrent regions are
required by the approach.

3.3.8 Kundu

Kundu and Samanta use directed cyclic graphs as intermediate representation
of UML Activities [KS09]. Those graphs are used for generating test cases. The
approach only considers isolated activities and relies on a single InitialNode, but
multiple FinalNodes per activity are considered. Cycles are traversed at most
once. The approach also requires concurrent regions, and parallel nodes are
serialized, i.e., one sequence of node execution is considered.

3.3.9 Kim

Kim et al. present an approach for black box testing, and focus on inputs and
outputs from and to users or testers. The authors propose to transform UML
Activities to I/O explicit activity diagrams [Ki07a] (I/O refers to Input/Output).
Then, a directed graph is generated and test cases are extracted as paths
through this graph. It is unclear, how the information whether an action node
involves data visible to users is obtained. Activities may only include a single
InitialNode and a single FinalNode. Cycles are traversed once. The approach
relies on concurrent regions. Nodes in the concurrent region are classified as
being related to either input or output data. Only nodes related to input are
considered regarding interleavings of concurrently executing nodes. It is
assumed that “if a tester waits long enough”, then nodes providing output “will
eventually execute” [Ki07a]. This assumption is used for reducing the amount
interleavings considered for test cases by always using nodes providing output
as starting points.

3.3.10 Verma

Verma and Arora present an approach to generate test cases based on isolated
UML Activities [VA14]. Based on an XML representation, in a first step all
incoming and outgoing edges for each node are identified. Assuming only one
InitialNode, all test cases start with this node. The identified outgoing edges of
this node are then used to identify the successor node. If a DecisionNode is
reached, the path up to this node is copied, and each outgoing edge of the
DecisionNode is appended to one of the copies, i.e., additional test cases are
created. In case of ForkNodes, all paths are followed “simultaneously” in the
same test case [VA14]. The pseudo code algorithm does not contain
information, how exactly test cases are generated in such a case. After all test
cases are generated, all test cases, which do not contain pairs of ForkNodes and
JoinNodes, are discarded. Cycles are traversed once.

Related Work

 51

3.3.11 Lima

Lima et al. propose a framework to detect non-determinism in UML Activities
[LTN19]. The authors use CSP, process algebra, as representation. UML
Activities are transformed to CSP and then analyzed using an existing model
checker. The approach considers SendSignalActions, AcceptEventActions, and
CallBehaviorActions. No information is given related to the handling of cycles of
activities calling each other. UML Activities compatible with the approach may
have multiple InitialNodes and FinalNodes. There are also no restrictions
regarding ForkNodes and JoinNodes. The model checker, however, only reports
that non-determinism is present, and gives an example of such a situation, i.e.,
a path leading to a point in an activity, where the non-determinism occurs.
Such a non-deterministic situation may not necessarily be related to
parallelism, but may also be related, e.g., to a DecisionNode with outgoing
edges, for which it is not defined which edge to follow [LTN19].

3.3.12 Summary and Assessment

Summarized, none of the approaches contain a formal and theoretic basis for
the included algorithms, which is shown to be correct. Several of these
approaches also rely on pairs of ForkNodes and JoinNodes to detect
concurrency [Su08], [SZL09], [Su15], [SM08], [XLL05], [Xu08], [CLL07],
[Bo11b], [KS09], [Ki07a], [VA14]. However, there is no mandatory relation of
ForkNodes and JoinNodes, and UML Activities adhering to the UML specification
can include ForkNodes, but no JoinNodes, and may also contain multiple
InitialNodes, which then start in parallel. Most approaches restrict the number
of InitialNodes and / or FinalNodes to be contained in UML Activities [Su08],
[SZL09], [Su15], [SM08], [XLL05], [Xu08], [LWL08], [Bo11b], [KS09], [Ki07a],
[VA14].

Additionally, two of the approaches are only able to recognize certain
concurrency patterns, for example the “looping-nested-fork-join” pattern
[XLL05], [Xu08], [CLL07], as mentioned above. In case models include
combinations of concurrent nodes, which do not match these patterns, the
combinations will not be analyzed appropriately or the UML Activity will even
be rejected.

Support for concurrency requires full coverage of the implications of
concurrency. With relying on certain coverage criteria, an approach can only
capture some of the interleavings possible in concurrent regions. In some
cases, interleavings are even enforced, while other interleavings are neglected
[SM08]; parallel executions are serialized to obtain a certain execution order.
Non-determinism, respectively the problem of data races, is not appropriately
covered using such an approach.

Related Work

 52

None of the articles discussed explicitly mentions the problems of cycle
traversals, which is however, a critical and non-trivial problem with regard to
nodes, which may run in parallel to other nodes or to themselves. Instead,
cycles are often always traversed to a limited or hard-coded extent. The most
flexible approach is published by Xu et al., and includes a hard limit, which can
be set by users [Xu08]. As can be seen in chapter 4.6.5, such a limit is
insufficient, as UML Activities can be created, for which any fixed limit
(regardless of the hard-coded number) is not enough to obtain complete
results. To fully consider the implications of such UML Activities, users would be
required to manually analyze each activity to obtain the correct number for a
limit.

Finally, although all approaches discussed are published after the publication
date of the UML V2.0, only two of the publications discuss modeling constructs
newly introduced with Version 2.0 [Xu08], [LTN19]. One of those articles also
contains a discussion regarding possible relationships and hierarchies between
UML Activities [LTN19].

The following Table 1 summarizes the results of the assessment.

Approach

Require-
ment 1

Require-
ment 2

Require-
ment 3

Require-
ment 4

Require-
ment 5

Require-
ment 6

Multiple
UML

Activities

Multiple
Initial
Nodes

Multiple
Final

Nodes
Cycle

Traversals
Forks and

Joins
UML

Elements

Sun - - - - - -

Sapna - - - - - -

Xu - - + 0 - 0

Chandler - + + - - -

Lei - - + ??? + -

Boghdady - - - - - -

Kundu - - + - - -

Kim - - - - - -

Verma - - + - - -

Lima 0 + + - + 0

 (-: not fulfilled, 0: partially fulfilled, +: fulfilled, ???: unclear)

Table 1: Assessment of Existing Approaches

As can be seen, many of the requirements are not completely fulfilled by
existing approaches. The areas the least fulfilled are handling of multiple UML

Related Work

 53

Activities (requirement 1), Cycle Traversals (requirement 4), and support for a
complete set of UML Activity Elements (requirement 6). The solution
presented in this thesis is targeted at closing these gaps.

3.4 Classifying Data Races

As the practical problems defined in chapter 1.2 are strongly related to the
effort spent in quality assurance for data races, it was initially intended that the
solution presented in this thesis also contains an approach for the classification
of data races. However, a review of the literature and existing approaches
revealed that classifying data races into harmful and harmless data races
cannot be conducted with the reliability required for a solution to be applicable
in practice.

Based on the high number of reported data races (see chapter 1.2), several
approaches to classify data races have been published. Researchers stated that
80% to over 90% of all reported data races are harmless and benign [Er10],
[KZC12], [Na07], [Zh11], [YRC05]. It is assumed that such data races do not
affect the correctness of an application, and may also be intentionally included
in an application [KZC12].

Due to this, eliminating such types of data races from the amount of reported
data races would lead to effort reduction, as no time would be spent on data
races, which do not affect the correctness of an application. The main
approaches for classification of data races into harmful or benign data races
include heuristic classification, replay-based classification, and identification of
ad-hoc synchronization.

Heuristic classification uses patterns to identify data races to be considered
harmless. Such patterns may be, among others, updates of statistics counters,
usage of special variables, which include intentional and harmless data races
(such as for the current time, which is constantly updated), and concurrent
read and write operations to different flag bits in the same memory location
[Er10].

In replay-based classification, the execution of an application is replayed for a
specific data race. In the replay, the order of accesses to the shared variable is
switched with regard to the original execution. If both executions yield the
same result, the data race is considered as being potentially benign [Na07].

Identifying ad-hoc synchronization is concerned with finding custom
synchronization operations in an application. If such operations exist, and a
data race is involved in that ad-hoc synchronization, the data race is
considered as being benign [Zh11].

Related Work

 54

However, all these approaches suffer from drawbacks. Heuristic classification
is dependent on the context of an application. If, e.g., such a statistics counter
is critical to that application, then such a data race could not be classified as
being benign. In general, heuristic classification can produce false positives and
false negatives [KZC15].

Replay-based classification also can produce false negatives and false
positives. If a replay of two concurrent operations produces the same result as
the original execution, this may be due to the input parameters. A different
input to the test case may produce different results. Different results in the
original execution and the replay with switched accesses may also be
intentional and correct, e.g., when printing the order of accesses. Another
problem arises when a different ordering of two concurrent operations is not
possible due to programming constructs, leading to a classification of the data
race being harmful, which may or may not be correct.

Finally, the identification of ad-hoc synchronization may also produce false
positives and false negatives. It may not be possible for such an approach to
identify all code constructs leading to synchronization. In addition, if ad-hoc
synchronization is detected, there is no analysis whether such a custom
synchronization operation is correctly implemented.

The problems mentioned can lead to high misclassification rates, and Kasikci
et al. report misclassification rates of 50% for ad-hoc synchronization, and of
74% for replay-based classification [KZC15].

Finally, it is disputed whether benign data races in an application, independent
of how they are identified, are indeed harmless [Bo11a], [Ad10], [Bo12b]. For C

and C++, the semantics for an application with data races are undefined, and

the reason is that due to compiler optimizations, an application with data races
may lead to unforeseen behavior [Ad10], [Bo12b]. For Java, only weak

semantics are given for applications with data races [Ad10], [Bo12b]. It can be
argued that the language specifications do not consider that memory accesses
will happen concurrently, i.e., without proper synchronization with regard to a
defined behavior of an application [Ad10], [Bo12b]. An example for unforeseen
behavior of an application due to instruction reordering has been presented in
chapter 1.1 (see interleaving 4).

Often, classification approaches make assumptions regarding memory
models, which are not always true, i.e., assuming single processor
environments and sequential consistency (see chapters 1.1 and 2.4) [KZC15].
However, in multiprocessor environments, updates to a memory location may
not always be immediately visible to other threads on other processors. When
assuming only a single processor, schedulers only execute one thread at a
time. In multiprocessor environments, multiple threads may be executed
concurrently on different processors. Together with delayed visibility of

Related Work

 55

updates on different processors, it is not guaranteed that threads on different
processors see updates to memory locations in the same order than they were
originally processed [KZC15]. Thus, those classifications are conducted under
wrong assumptions.

Finally, Adve and Boehm argue that although it is known that compilers can
perform optimizations, an instruction reordering may not only appear due to
such optimizations, but also due to store buffers, which enable performance
optimizations [AB10]. Such an instruction reordering may have unforeseen
consequences, if concurrent accesses are not synchronized. The authors state
that “even with sequential consistency, such simultaneous accesses can remain
dangerous” [AB10].

Based on such doubts regarding data races being benign, Boehm has stated
that “non-determinism is unavoidable, but data races are pure evil” [Bo12b].
Automated approaches for classification of data races often include wrong
assumptions and may lead to false positives and false negatives with a
misclassification rate of up to 74%, as shown above. In addition, even if a data
race is classified as being benign, it is unclear, whether this classification may
only be correct for the observed case, and perhaps the specific input for
execution, or if such a classification would be valid in all execution scenarios.
Finally, unforeseen behavior due to instruction reordering, as discussed above,
may lead to unknown consequences.

The consequence for this thesis is, that a classification of data races into
harmful and harmless data races, being unreliable, has not been included as
part of the solution.

3.5 Analysis of Data Races

Improvements in the efficiency of quality assurance related to data races thus
cannot be made reliably by sorting out some of the findings, raising the
question how efficiency improvements may be reached in analyzing the high
amount of data race reports.

As explained in chapter 1.2, several techniques exist in this regard, such as
reproducing detected data races and record and replay techniques. However,
it is still necessary to analyze all data race reports manually to identify and
resolve problems in the source code, and those techniques also offer no
support in identifying duplicate data race reports. The only information given
with regard to the analysis of reports is contained in those reports, and
includes information such as stack traces, information regarding the class and
line of concurrent accesses, the variable or memory location, and locks held by
threads involved, as e.g., provided by approaches presented in [Ba06b],
[CL10], [Bl18], [HMR14], [Li19]. However, it is up to users of those data race

Related Work

 56

detectors to analyze the information given. Thus, the problem of too much
effort needed for analyzing data race reports is not solved by such solutions.

Considering the problem regarding the effort necessary for analyzing data
race reports and the reasons for this problem (see chapter 1.2), as well as the
characteristics of data race reports, several requirements can be defined for an
approach to enable efficiency improvements in the analysis of data race
reports:

1) Duplicates: many of the data race reports by data race detection tools are
duplicates. A data race consists of a pair of accesses to the same shared
variable. Assuming two data races 𝑑𝑟𝐴 and 𝑑𝑟𝐵, a duplicate may exist in
that both data races contain exactly the same pair of accesses. However, a
duplicate may also exist in terms of single accesses, when both data races
are related to the same shared variable. Assuming that 𝑑𝑟𝐴 contains
accesses 𝑑𝑟𝐴1 and 𝑑𝑟𝐴2 , and 𝑑𝑟𝐵 contains accesses 𝑑𝑟𝐵1 and 𝑑𝑟𝐵2 ,
duplicate single accesses exist, iff {𝑑𝑟𝐴1, 𝑑𝑟𝐴2} ∩ {𝑑𝑟𝐵1, 𝑑𝑟𝐵2} ≠ ∅.
Thus, duplicate entries may not only exist on data race level, but also on
access level. A solution to improve the efficiency of data race analysis shall
consider such duplicate entries on both levels.

2) Focus on shared variables: any data race is related to one shared variable,
and multiple different data races may exist related to the same shared
variable. When multiple data races related to the same shared variable
exist, eliminating one of the data races from the source code may not
impact other data races. Data races may still exist, and may even exist in
the same source code classes and lines that have just been rewritten for
eliminating a data race regarding the same variable. Thus, to effectively
eliminate data races related to the same shared variable, all those related
data races need to be considered. Any approach for the analysis of data
race reports shall thus enable an overview on all accesses to the same
shared variable.

3) Focus on source code classes: any access to a shared variable is related to
a specific source code class and line. There may be different source code
classes involved in data races related to the same shared variable, and
there may be multiple accesses to different shared variables related to
data races located in the same source code class. For analyzing the source
code, an approach shall thus be able to not only focus on shared variables,
but also on source code classes. Such a focus can especially be valuable
for risk-based approaches, with different risk levels assigned to
components and source code classes of an application.

4) Status tracking: since data race detection often results in hundreds or
more data race reports, it is useful to keep track of the status of data race
reports and the entries included. Using a status, such as “closed” or “fixed”,

Related Work

 57

it is possible to monitor progress in the analysis of data race detection, and
also to concentrate on entries not yet analyzed. Any approach shall thus
allow monitoring the current status of an entry regarding the analysis of
data race reports.

5) Information preservation: approaches to improve the efficiency in the
analysis of data race reports always include a processing of data race
reports (with a minimum of reading the information provided to identify
duplicate entries according to requirement 1, see above). However, as
such approaches have to present the results of this processing, users have
a different view on the results compared to just analyzing the unprocessed
data race reports. This view shall nevertheless allow seeing all information
contained in the original data race reports, so that no possibly important
information is hidden from and inaccessible to users. Especially when
identifying duplicates, those duplicates shall not be deleted, as the
information is then lost. Thus, any approach shall preserve all information
contained in data race reports and allow users to access this information.

Only a few publications cover the problem of how to use the information
provided to efficiently analyze data race reports.

Pande has published an approach to visualize modified execution traces using
AspectJ, additional instrumentation of the code, and refactoring [Pa19b].
However, the tool only visualizes one execution trace by highlighting source
code entries, and does not provide further information regarding data race
analysis. The purpose of the tool is to visualize thread-based events of an
execution trace. However, when focusing on data race reports, such
information is usually provided in clear text, and thus, highlighting these places
in the source code would not need additional instrumentation, but a parser and
static access to the source code (i.e., without the need to execute the source
code again). In addition, the scalability of the approach is limited and further
decreases not only with the size of an application, but also with the number of
active threads. The author mentions that the usability of the visualization is
limited if many interleavings happen. Finally, the instrumentation used adds
additional thread switches to the execution, thus producing incorrect
interleavings [Pa19b].

Trümper also presented an approach for visualization of execution traces for
multithreaded applications [Tr14]. The approach focuses on visualizing sets of
hierarchical event sequences and can be used for analyzing dependencies
between threads. Although different views are provided, there is no focus or
support for the analysis of data races or a possibility to integrate data race
reports [Tr14].

Walker et al. focus on static analysis tools and mention the need to “show
results in a concise, comprehensive way” [Wa20]. The authors present a

Related Work

 58

dashboard providing an overview on the results of static analysis reports
[Wa20]. The approach presented only covers results of static analyses, and is
not related to concurrency issues, such as data races. Due to this, there is no
specific assistance related to the characteristics of data races.

Koutsopoulos et al. identified the need for an efficiency improvement of “the
manual investigation and classification process of the data race warnings
through improved usability of the available information” [Ko15]. The authors
focus on visualization and a reduction of information. Reduction is achieved by
merging access locations, which have “the same full path, location (line and
column), thread id, shared variable id, and action (read/write)” [Ko15]. The
visualization of access pairs is thus lost, as “the typical representation of race
pairs no longer exists” [Ko15]. Accesses are presented graphically on a file-
based graph representation. Shared variables are shown in a row on top of the
screen. All files with accesses to a shared variable are presented below and are
connected to this shared variable with lines. Using such an approach, not only
pairs of accesses, but all accesses to a shared variable can be observed. The
authors acknowledge the complexity of such a view, and provide further
functionality, including a filter function for code conditions, a zoom function to
view details of accesses within a file, and an abstracted view of the call graph
[Ko15].

Summarized, the need for efficiency improvements in the analysis of data race
reports has been identified in research, but only a small amount of approaches
have been developed. Only one approach focuses on data race reports

[Ko15].5 This approach tackles the problem of duplicate entries by merging
access locations, which share characteristics (as described above); however,
the information on duplicates is lost by such a merge, and cannot be recovered
by users. The approach focuses on shared variables, and lists all of them at
once, i.e., in the same view. The authors mention the complexity of this view,
and considering large applications with thousands of data race reports, it
remains unclear how this amount of information can be managed within the
same view. The listing of different files enables an overview on all files, within
which a shared variable is accessed, but the information, how many different
accesses exist, is only visible by inspecting all information in those related file
listings, as there may be multiple accesses within the same file. Additionally, by
presenting all accesses within a file in a long list, and several connections to
other files and to multiple shared variables at the same time, readability is
impacted. It is not clear, which part of the list is related to other file list parts,
i.e., other source code classes, or to which variable. As the approach relies on
static analysis, it is not possible to provide lock ids for comparison or an
execution trace. Finally, although the tool supports analysis, the article does
not mention possibilities to track the progress of the analysis, i.e., to set a

5 Due to this, the assessment of fulfillment of the requirements defined in this chapter is only

given textually, and not within a table.

Related Work

 59

status for an entry, and to filter out data races, which have already been fixed
[Ko15]. There is no quantitative evaluation of the approach. Although “a
qualitative evaluation suggested a definite speedup in the investigation
process of data race warnings” [Ko15], there is no additional information given
on this evaluation besides that it has been applied to real-time systems with
more than 100,000 lines of code. Thus, it is not possible to assess this
evaluation and the efficiency improvements achieved by using this tool.

3.6 Summary

In this chapter, the focus of the thesis has been narrowed to UML Activities as
basis for the analysis of representations of the dynamic behavior of an
application. An overview on related work in this area has been presented.
Although approaches for analyzing UML Activities have been identified, many
of those approaches reveal gaps with regard to the identified requirements for
a solution. The largest gaps in the related work are concerned with analyzing
sets of connected UML Activities (requirement 1), handling Cycle Traversals
within a UML Activity (requirement 4), and support for a complete set of UML
Activity elements (requirement 6).

This chapter also presented an overview on the literature regarding the
classification of data races into harmful and harmless data races. Based on the
discussions in research, it has been shown why such classifications cannot
provide reliable results. Thus, it has been decided that such a classification,
although initially planned, will not be part of this thesis.

Finally, this chapter has provided an overview on related work regarding
analyzing data race reports. In this area, little research has been conducted,
and although improvements have been reached by the sole identified existing
approach, which focuses on efficiency improvements in the analysis of data
race reports, gaps still exist. The ideas underlying this approach serve as
valuable input for the solution presented in this thesis.

Profound knowledge of the current state of the art and existing research gaps
is the basis for scientific work. This chapter has thus provided the basis for the
solution presented in the following chapters of this thesis.

Chapter 4 will present the solution for the analysis of UML Activities, which
closes the identified research gaps. The result of the analysis, a set of nodes
representing source code classes, can be used to steer the instrumentation for
dynamic data race detection. Support for the analysis of data race reports is
not yet sufficiently provided, and research gaps exist in this area. In chapter 5,
this thesis presents a solution for the analysis of data race reports, tackling
those identified research gaps. Chapter 6 is concerned with assessments and
evaluations of the solution.

Related Work

 60

Analysis of UML Activities as Basis for Focusing Quality Assurance

 61

4 Analysis of UML Activities as Basis for Focusing Quality
Assurance

In this chapter, the solution for the analysis of UML Activities is presented. This
solution is targeted at the first practical problem (as defined in chapter 1.2).

The solution consists of three parts: in a first step, UML Activities are read in
and the UML elements are transformed into a limited set of basic elements,
with preserving the semantics of the elements as necessary for the goal of the
analysis: identifying nodes that can be executed in parallel to other nodes.

This transformation on the one hand allows limiting the analysis to a reduced
set of UML elements. On the other hand, such a transformation enables
creating transformation approaches for other modeling languages besides
UML, so that the further steps of this approach can be reused.

The transformed set of UML Activities is then analyzed using Directed Acyclic
Graphs, in short DAGs, forming the second step.

As the analysis shall obtain complete results, the longest path possible is
required, i.e., paths that may be shortened are not shortened. Such a
shortening could lead to loosing information, e.g., in the form of missing nodes
that may run in parallel to other nodes, thus possibly leading to false negatives.

The third step consists of a post-analysis handling of elements, for which
further measures are necessary besides those of the transformation and the
analysis phase.

Technically, the solution processes files created by Enterprise

Architect from Sparx Systems Ltd. The transformation tool reads such

files, processes the transformation, and outputs an XML file. This XML file is
then read in for the analysis. Output of the analysis is a list of nodes. This list
can then be used to limit the instrumentation for the dynamic analysis related
to data races.

4.1 Research Approach

The first part of the research for creating a solution for the analysis of UML
Activities consisted of an analysis of the structure of UML Activities. These
activities are treated as graphs, but they do not have a formal foundation (see

Analysis of UML Activities as Basis for Focusing Quality Assurance

 62

chapter 3.2). Furthermore, the tokens used in UML Activities are only able to be
transported in one direction.

For the analysis of UML Activities, the intent is to employ a formally defined
representation, thus allowing certain properties to be formally proven. As UML
Activities already are specified as graphs according to the UML [OM17], but
with semantics specific to the UML, the direct formal representation is a graph.
Due to the token flow within UML Activities, directed graphs are selected.
Finally, since UML Activities may contain cycles, and those have to be analyzed,
the idea is to break up these cycles for the formal representation to be
analyzed. Thus, directed acyclic graphs are used for the analysis of UML
Activities.

Since such a directed acyclic graph only contains nodes and edges, and not a
multitude of different node types and edge types, as UML Activities, the next
step was to analyze the elements of UML Activities according to the UML.
Since all those elements have different and specific semantics, a mapping of
the semantics represented by the elements of UML Activities to graphs
containing nodes and edges had to be created. As a direct mapping was not
possible in all cases, the approach for the analysis consists of several phases:
the transformation, the analysis, and the post-analysis phase.

Presenting the results of this research approach resulted in the following
structure of the chapter. As the solution presented in this thesis is related to
the field of graph theory, a short introduction into important concepts relevant
for this solution is given in chapter 4.2.

This chapter then provides a concise description of the set of UML elements
provided the UML superstructure (chapter 4.3). As this superstructure consists
of more than 700 pages, of which more than 200 pages are related to UML
Activities, only a short description can be provided. Those UML elements are
split up into basic elements and additional elements, since these elements
require different strategies for handling them during the analysis (chapter 4.4).

With the knowledge provided in the former chapters, the transformation part
of the solution can be presented (chapter 4.5). Chapter 4.6 then presents the
solution for the analysis of UML Activities for nodes that may run in parallel to
other nodes. The analysis is accompanied with a post-analysis phase, targeted
at elements, which cannot be completely handled during the analysis phase
(chapter 4.7).

In chapter 4.8, the solution is then discussed and assessed with regard to the
solutions presented in chapter 3.3.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 63

4.2 Graph Theoretic Concepts

All graphs 𝐺 = (𝑉, 𝐸) in this chapter are simple and directed with node set 𝑉
and edge set 𝐸 ⊆ 𝑉 𝑥 𝑉, except where explicitly noted. For a given graph 𝐺,
the sets 𝑉 and 𝐸 may be referred to as 𝑉𝐺 and 𝐸𝐺 , for clarity. In edge 𝑒 =
(𝑢, 𝑣) ∈ 𝐸, node 𝑢 is its tail and node 𝑣 is its head. In that case, 𝑒 is an
incoming edge of 𝑣, and an outgoing edge of 𝑢.

Since 𝐺 is simple, it contains no self-loops: ∀ 𝑣 ∈ 𝑉, (𝑣, 𝑣) ∉ 𝐸, and no
parallel edges: |{𝑒 ∈ 𝐸 |𝑒 = (𝑢, 𝑣) ∧ 𝑢, 𝑣 ∈ 𝑉}| ≤ 1.

Given a vertex (i.e., node) 𝑣 in a simple and directed graph 𝐺 = (𝑉, 𝐸), the
neighborhood of 𝑣 is the subgraph of 𝐺 built by all incoming and outgoing
edges of 𝑣 and all nodes connected to these edges except for 𝑣 itself (since 𝐺
is simple). Any node in the neighborhood of 𝑣 is called adjacent to 𝑣 or neighbor
of 𝑣. The degree of a vertex 𝑣 is the number of neighbors of 𝑣. The degree of 𝑣
in 𝐺 can be split up into the indegree and the outdegree. The indegree of 𝑣 is the
sum of all nodes connected to 𝑣 with an edge, of which 𝑣 is its head. The
outdegree is the sum of all nodes connected to 𝑣 with an edge, of which 𝑣 is its
tail. Thus, the indegree of 𝑣 in 𝐺 𝑑𝐺

−(𝑣) ∶= |{𝑢 ∈ 𝑉 |(𝑢, 𝑣) ∈ 𝐸}| and the
outdegree of 𝑣 in 𝑑𝐺

+(𝑣) ∶= |{𝑢 ∈ 𝑉 |(𝑣, 𝑢) ∈ 𝐸}|.

A walk 𝑤 = 𝑣1𝑣2 … 𝑣𝑖 in a graph 𝐺 is a sequence of nodes such that 𝑣𝑗 ∈ 𝑉

for 𝑗 = 1, . . . , 𝑖 and (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝐸 for 𝑘 = 1, . . . , 𝑖 − 1 with $𝛼(𝑤): = 𝑣1
and 𝜔(𝑤): = 𝑣𝑖 . A walk with 𝑣1 = 𝑣𝑖 is called a cycle. A directed graph without
any cycle is called a Directed Acyclic Graph or DAG, for short.

Given the walks 𝑤1 = 𝑣1𝑣2 … 𝑣𝑖 and 𝑤2 = 𝑢1𝑢2 … 𝑢𝑗, let 𝑐𝑎𝑡(𝑤1, 𝑤2) denote

a new walk 𝑤′ = 𝑣1𝑣2 … 𝑣𝑖𝑢2 … 𝑢𝑗 whenever 𝜔(𝑤1) = 𝛼(𝑤2) , otherwise

𝑐𝑎𝑡(𝑤1, 𝑤2) is undefined. The walk 𝑤′ is called the concatenation of 𝑤1
and 𝑤2.

Given the walks 𝑤1 and 𝑤2, 𝑤2 is a direct successor of 𝑤1, iff 𝜔(𝑤1) = 𝛼(𝑤2).
The walk 𝑤1 is then called a direct predecessor of 𝑤2.

Given the walks 𝑤1 , 𝑤2, . . . , 𝑤𝑛 with 𝑤𝑖+1 being a direct successor of 𝑤𝑖 ∀ 𝑖 ≤
 𝑛 − 1, then 𝑤𝑗 is called an indirect successor of 𝑤𝑖 , if 𝑖 + 1 < 𝑗 ≤ 𝑛. In such a

case, 𝑤𝑖 is called indirect predecessor of 𝑤𝑗 .

The following Figure 8 shows a directed graph 𝐻 illustrating these concepts.
Nodes are depicted as dots and identified with letters, and edges are depicted
with solid and with dashed arrows and are identified with numbers.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 64

Figure 8: Directed Graph

As can be seen, this graph is cyclic (e.g., walk 𝑤1 = 𝑎𝑏𝑐𝑎) and is thus not a
DAG. This graph is also not simple, as it contains parallel edges (edges 6 and
8), and a loop (edge 9), and is thus not adhering to the definition of graph 𝐺
above. Eliminating the red edges 8 and 9 results in a simple graph. Eliminating
the edges 6, 8, and 9 results in a DAG.

The head of edge 1 is 𝑒, and the tail of edge 1 is 𝑎. The neighborhood of 𝑏
consists of the nodes 𝑎, 𝑐, 𝑑, 𝑒 and the edges 2, 3, 4, 5. The degree of 𝑏 is thus
4, which can be split up into the indegree 𝑑𝐻

−(𝑏) = 1 and the outdegree
𝑑𝐻

+(𝑏) = 3 . The walks 𝑤1 and 𝑤2 = 𝑎𝑒 can be concatenated and
𝑐𝑎𝑡(𝑤1, 𝑤2) = 𝑎𝑏𝑐𝑎𝑒. 𝑤1is the direct predecessor of 𝑤2, and 𝑤2is the direct
successor of 𝑤1. Given the walks 𝑤3 = 𝑎𝑏, 𝑤4 = 𝑏𝑐 and 𝑤5 = 𝑐𝑑, 𝑤5 is an
indirect successor of 𝑤3 , and 𝑤3 is an indirect predecessor of 𝑤5 . As
𝑐𝑎𝑡(𝑐𝑎𝑡(𝑐𝑎𝑡(𝑤1, 𝑤3), 𝑤4), 𝑤5) is defined, 𝑤5is also an indirect successor of
𝑤1.

4.3 UML Elements

In this chapter, UML Activities and elements within activities are discussed. The
semantic implications of different elements and combinations of elements are
analyzed. This chapter provides the knowledge required to understand the
decisions made for the solution to analyze UML Activities. This chapter does
not intend to provide a complete overview on UML Activities. Such an overview
can be found in the UML superstructure [OM17].

According to the UML superstructure, “a Behavior is a specification of events
that may occur dynamically over time” [OM17]. Thus, such a Behavior can be

Analysis of UML Activities as Basis for Focusing Quality Assurance

 65

used to describe what happens during the runtime of a system. A UML Activity
is a “kind of Behavior [...] that is specified as a graph of nodes interconnected
by edges” [OM17]. The graphical description of a UML Activity is called UML
Activity Diagram.

A UML Activity may have input and output parameters, so-called
ActivityParameterNodes. An example for such an input parameter is a postal
address for a UML Activity specifying a delivery.

As already described in chapter 3.2, UML Activities use a token concept: nodes
offer tokens to edges. Edges can transport tokens to nodes connected to their
head. Whether a token is transported or not depends on two requirements:
first, an edge may have a guard condition. If this guard condition evaluates to
false, then the token is rejected. Second, the token type must match the type
of the edge: both object and control tokens exist, and both object edges
(ObjectFlow) and control edges (ControlFlow) exist.

This token concept not only defines how an activity is executed, but also how
the execution can be stopped. The execution of an activity ends as soon as an
ActivityFinalNode is reached by a token, or when no more tokens can be
transported by edges and no nodes are currently executing.

UML Activities may be modeled implicitly and explicitly. In the first case, certain
nodes or combinations of nodes and edges are not modeled, but implied. In
the latter case, all nodes and edges are modeled. The interpretation of implicit
modeling constructs is given in the UML superstructure [OM17].

UML Activities may contain the following types of nodes:

1) ControlNodes: these nodes steer flows between nodes within an activity.
Seven types of ControlNodes exist [OM17]:

a) InitialNodes: these nodes are automatically executed as soon as the
execution of a surrounding activity is started. InitialNodes have an
indegree of 0 and an outdegree > 0, and place a control token to
outgoing edges. If an InitialNode has multiple outgoing edges, a token
is placed on all these outgoing edges, thus starting a parallel
execution. This implies a single edge from an InitialNode to a ForkNode
(explained below), which then has multiple outgoing edges. An
activity can have multiple InitialNodes, which are executed
simultaneously. This implies a single InitialNode, which is connected
by a single edge to a ForkNode, which is then connected to these
former InitialNodes. If an activity has no InitialNode, all nodes in that
activity, which have an indegree of 0 start executing. This again
implies a single InitialNode, which is connected by a single edge to a

Analysis of UML Activities as Basis for Focusing Quality Assurance

 66

ForkNode, which is connected to those nodes implicitly modeled with
an indegree of 0.

b) FlowFinalNodes: a FlowFinalNode has an indegree of 1 (assuming
explicit modeling) and an outdegree of 0. Any token reaching such a
node is destroyed. This assumes explicit modeling. Implicitly
modeled, an FlowFinalNode may have an indegree > 1, which is
interpreted as having a MergeNode (see below) connected to those
incoming edges, which itself is connected by a single edge to that
FlowFinalNode.

c) ActivityFinalNodes: an ActivityFinalNode has an indegree of 1
(assuming explicit modeling) and an outdegree of 0. If a token
reaches an ActivityFinalNode, all tokens within the surrounding activity
are destroyed, thus ending the execution of this activity. Furthermore,
this also impacts other activities synchronously invoked from within
the activity. If an ActivityFinalNode is modeled with an indegree > 1,
again a MergeNode is implied, similar to FlowFinalNodes.

d) DecisionNodes: a DecisionNode has one incoming ControlFlow and may
have an additional ObjectFlow representing the input to that decision.
Such a node has at least two outgoing ControlFlows, which represent
the flows followed based upon the decision made. Each of these
outgoing ControlFlows may have a guard condition. If the condition is
satisfied, the edge may accept the token offered. If conditions of
multiple outgoing edges are satisfied, the token is offered to only one
ControlFlow, and the choice of this ControlFlow is made non-
deterministic according to the UML [OM17]. Thus, a DecisionNode has
an indegree of 1 or 2, and an outdegree > 1.

e) MergeNodes: a MergeNode unites several incoming flows into one flow
without synchronization. It has multiple incoming edges and one
outgoing edge. The edge may either be all ObjectFlows or all
ControlFlows. Thus, a MergeNode has an indegree > 1 and an
outdegree of 1.

f) ForkNodes: a ForkNode is used to start parallel flows and has one
incoming edge. The token received through the incoming edge is
copied and one of these tokens is offered to each of the outgoing
edges in parallel. Since an edge may have a guard condition attached,
it depends on whether such a condition is attached, and whether this
guard condition is evaluated to true, if the token is accepted by the
edge. Assuming that at least two outgoing edges are present, a
ForkNode has an indegree of 1 and an outdegree of > 1. Having
more than one outgoing edge is not required by the UML for

Analysis of UML Activities as Basis for Focusing Quality Assurance

 67

ForkNodes, however, as the intent of using a ForkNode is to start
parallel flows, it can be argued that such a construction is a mistake.

g) JoinNodes: a JoinNode is used to synchronize parallel flows and
continue with one flow. A JoinNode has a ValueSpecification, which
defines the conditions for the node to offer a token to the outgoing
edge. If no explicit specification is provided, then tokens need to be
offered on all incoming edges, to be consumed by the node. Using a
ValueSpecification, it may also be sufficient to offer tokens on some of
the incoming edges. The evaluation of this ValueSpecification (to true
of false) is started whenever a new token is offered on an incoming
edge, and cannot be interrupted by newly arriving tokens. It is also
not possible to start multiple evaluations in parallel. However, the
format of such a ValueSpecification is not exactly defined in the UML
[OM17], and a ValueSpecification may also be given using textual
expressions. Thus, it cannot be guaranteed that the ValueSpecification
can be processed by an algorithm, and thus it is not considered during
the analysis. Assuming explicit modeling, a JoinNode has an indegree
> 1 and an outdegree of 1.

Both JoinNodes and ForkNodes can implicitly be modeled with an
indegree and an outdegree > 1. In these cases, a combination of a
JoinNode (with an indegree > 1) connected by a single edge to a
ForkNode (with an outdegree > 1) is implied.

2) ObjectNodes: such nodes hold object tokens, representing objects, i.e.,
some kind of data. An ObjectNode may hold several object tokens,
independent of the value represented by the individual token. All
ObjectNodes except ActionPins (see below) have an indegree and an
outdegree of 1, assuming explicit modeling. Four different types of
ObjectNodes are defined in the UML [OM17]:

a) ActivityParameterNodes: These nodes are attached to an activity, and
represent input and output parameters for objects, thus forming
sources and sinks of objects used in an activity.

b) CentralBufferNodes: such nodes act as buffers between incoming and
outgoing ObjectFlows. All object tokens offered to such nodes are
immediately accepted and held until they can be passed to an
outgoing ObjectFlow.

c) DataStoreNodes: these nodes are similar to CentralBufferNodes, but in
addition act as a store. All object tokens passed to outgoing
ObjectFlows are copied, and this copy is stored in the DataStoreNode
as long as the surrounding activity is executing.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 68

d) ActionPins: an ActionPin holds object tokens and represents an input
to or an output from an action. As such, an ActionPin is associated
with a node, and therefore either has an indegree of 0 and an
outdegree of 1, or vice versa, assuming explicit modeling.

3) ExecutableNodes: these are nodes that represent an execution as a step
within the overall desired behavior specified by the surrounding activity
[OM17]. ControlNodes steer the flow of execution, i.e., they are used to
influence the sequences of ExecutableNodes computed (i.e., the control
flow). ObjectFlows are used to manage the data flow between these
ExecutableNodes [OM17].

All ExecutableNodes are ActionNodes. All incoming and outgoing edges are
ControlFlows. For processing data, ActionPins are used (as described
above). An ExecutableNode has an implicit JoinNode or ForkNode attached
in case of multiple incoming or outgoing edges, thus with explicit
modeling, such a node has an indegree and an outdegree of 1.

When an ExecutableNode has finished its execution, a control token is
offered to the outgoing edge.

An ExecutableNode may raise an exception (RaiseExceptionNode, see
below), and if this exception is not handled during the execution of this
node, this exception is propagated to the outside of the ExecutableNode.
Any ExecutableNode may be associated with one or more
ExceptionHandlers, i.e., ExecutableNodes, which match certain types of
exceptions. If multiple ExceptionHandlers match an exception, it is not
defined in the UML, which ExceptionHandler will be executed [OM17].

The UML defines 42 different ActionNodes, which can be categorized into
ten categories [OM17]:

1) InvocationActions: actions related to the invocation of behaviors or
operations in behaviors, sending signals or objects.

2) ObjectActions: actions related to operations on objects.

3) LinkActions: actions related to operations on links, i.e., associations
and their instances.

4) LinkObjectActions: actions related to operations on link objects, i.e.,
instances of AssociationClasses (associations with class properties).

5) StructuralFeatureActions: abstract class for all actions concerning
structural features (e.g., attributes).

Analysis of UML Activities as Basis for Focusing Quality Assurance

 69

6) VariableActions: actions related to operations on variables.

7) AcceptEventActions: actions waiting for certain events to be triggered
before executing.

8) StructuredActions: actions containing nodes and edges themselves to
realize more complex behaviors (in comparison to single actions).

Some of the action types are not clustered into categories by the UML
itself, and have been put into categories as shown below for the purpose
of further processing:

9) None: actions, which are not specified by the UML (functionality not
defined by the UML), so-called OpaqueActions.

10) Other actions: ReduceActions that reduce a collection of values to a
single value, and RaiseExceptionActions, which throw an exception.

The ActionNode category StructuredActions bears a special complexity and
is thus further examined in this chapter. Details for all other ActionNode
types can be found in the UML superstructure [OM17].

StructuredActions can contain nodes and edges themselves, and may thus
serve as containers for other nodes. The following StructuredActions exist:

StructuredActivityNodes: this type acts as container in the form of a sub-
activity, without further semantics. It is also called simple.

ConditionalNodes: such a node type consists of at least one clause, which
represents a branch of the conditional executions. Each clause contains
body and test sections, which contain disjoint subsets of the
ExecutableNodes contained in the ConditionalNode. When a
ConditionalNode is executed, all test sections are executed, and if the
evaluate to true, the respective body section is executed. Test sections
(and related body sections) may also be executed in parallel to each other.

LoopNodes: these node types represent iterations in the computation. All
ExecutableNodes within a LoopNode are either part of the setup, the test, or
the body. The setup contains the initialization of the LoopNode, the test
decides whether the body is executed, and the body contains
ExecutableNodes to be executed during the iterations. Different types of
loops can be created using LoopNodes, e.g., the body part may be
executed before the test part, or after the test part.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 70

SequenceNodes: a SequenceNode contains nodes, which are executed in
sequence, i.e., one after the other. It defines a total order of
ExecutableNodes within itself.

ExpansionRegions: such types process collections of values or objects and
contain ExecutableNodes and edges. For each value or object in the
collection, the ExpansionRegion is executed once. Collections are defined
by the execution engine executing the activity, and could be sets, bags or
other collection types. If results are produced, these can be stored in
output collections. There may be different numbers of input and output
collections. The flow across boundaries of an ExpansionRegion is specified
by ExpansionNodes (which are ObjectNodes). The nodes and edges
contained in an ExpansionRegion are executed once per element of the
input collections. The mode, i.e., how the execution is conducted, is
defined by a parameter. Tokens offered to InputPins of an
ExpansionRegion and tokens offered by edges crossing the boundaries of
an ExpansionRegion (in this case from outside to inside the region), are
copied for each execution of an ExpansionRegion, so that an execution
does not influence other executions of that same region. For edges
crossing a boundary of an ExpansionRegion from inside to outside the
region, the semantics are not defined [OM17]. If an ExpansionRegion
contains an ActivityFinalNode, then all executions of this ExpansionRegion
are stopped, and the results are offered at the output ExpansionNodes, i.e.,
the activity containing such and ExpansionRegion continues to execute.
The mode of execution may be parallel, in which case all executions are
processed concurrently, iterative, in which case one execution has to finish
before the next execution can start, or stream. In stream mode, there is
only one execution, but multiple tokens are offered on the outgoing edges
[OM17].

Finally, activities may contain ActivityGroups, in the form of ActivityPartitions
and InterruptibleActivityRegions. StructuredActivityNodes belong to both
ActivityGroups and Actions [OM17], and have thus been included in the action
types above. Nodes and edges may belong to multiple of such ActivityGroups,
and an ActivityGroup may itself contain multiple nodes and edges.

ActivityPartitions “do not affect the token flow of the model” [OM17] and are
used to allocate characteristics or resources among the nodes of an activity.

InterruptibleActivityRegions form a group of nodes, which may be interrupted
without interrupting the whole surrounding activity. Such regions contain
InterruptingEdges, which lead from within to outside of the region. Not all such
edges must be InterruptingEdges. When a token flows through such an
InterruptingEdge, all nodes within the region stop executing and all tokens
within the region are deleted, except tokens traversing an edge leading from
within to outside of the region. This means that although an execution may be

Analysis of UML Activities as Basis for Focusing Quality Assurance

 71

interrupted, it depends on the timing of the interruption whether another
token is transported to nodes outside of the region as a result of the
interrupted execution [OM17]. An AcceptEventAction inside such a region with
an indegree of 0 is only reacting to events if a token exists within this region
[OM17].

4.4 Handling of UML Elements in the Analysis

UML Activities can be modeled using implicit and explicit notation. As
Schattkowsky and Förster show, implicit modeling, which consists, e.g., of the
combination of certain nodes into one node or omitting nodes (which are then
implied during the interpretation, as shown above), can lead to ambiguities
and wrong interpretations of UML Activities [SF07]. It is thus assumed for the
analysis that explicit modeling has been used. Implicit notation constructs, if
found, are transformed into explicit modeling constructs during the
transformation from the source file.

A UML Activity 𝐷 is a graph and is created to capture the essential steps in
computation (assuming a UML Activity is used in the context of representing
dynamic behavior of software). A UML Activity may contain several types of
nodes and edges. The solution presented in this thesis includes a preprocessing
for UML Activities to reduce the types of nodes to consider in the analysis, i.e.,
certain types of nodes are transformed to constructs of other types of nodes
(see chapter 4.5). For the analysis, the elements in UML Activities, discussed
above, are split up into basic elements and additional elements. Basic elements
are directly considered in the analysis, i.e., they are not changed during the
preprocessing.

Additional elements can either be transformed to a combination of basic
elements, which form an equivalent in terms of the goal of the solution, or need
to be considered after the analysis, e.g., to filter out false positives.

In this thesis, a concrete occurrence of a node in a UML Activity during
traversal, i.e., execution, is called an instance of a node. If a UML Activity is
executed, and a certain node is reached and traversed, this is referred to as an
instance. Since nodes can be traversed multiple times, given that cycles are
possible in 𝐷, each traversed node is considered as a separate instance of this
node in 𝐷. There may be several instances of the same node. An edge 𝑒 of a
UML Activity 𝐷 is also referred to as 𝑒𝐷 whenever it is suitable for clarity
reasons.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 72

4.4.1 Basic Elements

As mentioned, only basic elements need to be considered in the analysis, as for
all other elements of UML Activities, a dedicated handling is used. These basic
elements are as follows:

1) InitialNodes.

2) ActionNodes. There exist various types of ActionNodes, which have to be
handled differently. Thus, ActionNodes form an exception in that they are
also included in chapter 4.4.2.

3) DecisionNodes. For simplicity, it is assumed that a decision can directly
lead to one (but only one) of multiple cases (represented by the outdegree
of this DecisionNode in 𝐷) without nesting multiple binary if-then-decisions
into each other; it is also assumed that there are at least two different
cases.

4) MergeNodes. MergeNodes can appear independent of case distinctions,
i.e., there is no rule in the UML, which restricts their usage to the context
of case dependent decisions (by former DecisionNodes).

5) Final nodes. For the analysis, only FlowFinalNodes are considered, as
ActivityFinalNodes are transformed (see chapter 4.4.2).

A UML Activity containing these five types of nodes represents all possible
executions of a single computation thread, which computes a single result on a
single processor by a single sequence of computation events (computations
and decisions). A finishing execution results in a finite sequence, a non-
finishing execution results in an infinite sequence. To represent a single
execution instance by a DAG, all cycles are rolled out by numbering multiple
instances of the same node in the sequence consecutively. Any such single
execution instance starts with an InitialNode, followed by a sequence of action
and control nodes that ends with a FinalNode if and only if the execution
instance finishes its computation.

To represent parallel computations in a UML Activity, two more types of nodes
are required:

6) ForkNodes. A ForkNode represents a single incoming computation thread
and 𝑑𝐷

+ outgoing computation threads that run in parallel. It is always
assumed that a ForkNode is followed by at least two different threads.

7) JoinNodes. A JoinNode represents one outgoing and 𝑑𝐷
− incoming

computation threads. Semantically, it represents a situation where
threads are synchronized.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 73

Parallel computations may also emerge directly at the start of the computation
of a UML Activity, as explained above. In such a case, computation starts in
parallel at each of the InitialNodes in that UML Activity. During the
preprocessing, such nodes are substituted with a single initial node, which is
directly connected to a ForkNode, after which the parallel computation starts.

An example of a fragment of a UML Activity Diagram can be seen in Figure 9.
This diagram consists of five different ActionNodes and six ControlNodes, i.e.,
one InitialNode and one FinalNode, one ForkNode and one JoinNode, one
DecisionNode and one MergeNode.

Figure 9: Exemplary UML Activity Diagram 1

The UML Activity Diagram shows parallel computations, which are started at
the node “Fork1” and which end at node “Join1”. Due to the DecisionNode
“Decision1”, two different computations and thus, two different execution
instances are possible, one leading through node “Action3”, the other leading
through “Action4”. Both instances lead to “Merge1”, after which there is no
further difference in the computations.

act Example 1

Activ ity Example

Initial

Action1

Fork1

Decision1

Action3 Action4

Join1

Merge1

Action2

Action5

ActivityFinal

Analysis of UML Activities as Basis for Focusing Quality Assurance

 74

4.4.2 Additional Elements

Besides the nodes mentioned in chapter 4.4.1, further elements exist, for which
a special handling was necessary during the transformation and/or after the
analysis.

The biggest group, which had to be handled separately, was the group of
action types (i.e., the different ActionNodes). The following Table 2 shows the
different action types and their according categories. The categories of action
types are independent of those groups. Note that during the transformation, it
is not necessary for the purpose of the solution presented in this thesis to
retain the exact structure of an activity, but to obtain all possible executions,
with the statements made in chapter 4 in mind.

The action types are divided into four groups and different strategies are
applied for handling those action type groups:

• Group Reduction: all action types, for which no special handling was
necessary, are transformed into an ActionNode (see chapter 4.4.1); this
transformation is called a reduction. All node types belonging to this group
are marked with a “Y (a)” in Table 2, in the transformation column.

• Group Specific: All action types, which are marked with a “Y” in the
transformation column and no marking in the post-analysis column of
Table 2, are treated with a specific handling during the transformation.
This may result in those elements being transformed to other elements,
which belong to other groups. An example is the BroadcastSignalAction,
which is transformed to a SendSignalAction, which itself is handled in the
post-analysis phase.

• Group Post-Analysis: the action types marked with a “-” in the
transformation column of the table are treated according to the semantics
of ActionNodes. This means they are treated as ActionNodes, but their
special type and semantics are preserved. They are handled after the
analysis, to reflect their specialized meanings and semantics (marked with
a “Y” in the post-analysis column in Table 2).

• Group Structured: special cases are the StructuredActivityNode and the
ExpansionRegion, which needed a special handling both during the
transformation and after the analysis (marked with a “Y” in the
transformation and in the post-analysis column).

The specific strategies and rationales are explained in chapter 4.5 for the
transformation and in chapter 4.7 for post-analysis handling.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 75

Category Name Trans-
formation

Post-
Analysis

(none) OpaqueAction Y(a) -

InvocationActions

StartObjectBehaviorAction Y(a) -

CallBehaviorAction - Y

CallOperationAction Y(a) -

SendObjectAction Y(a) -

SendSignalAction - Y

BroadcastSignalAction Y -

ObjectActions

CreateObjectAction Y(a) -

DestroyObjectAction Y(a) -

TestIdentityAction Y(a) -

ReadSelfAction Y(a) -

ValueSpecificationAction Y(a) -

ReadExtentAction Y(a) -

ReclassifyObjectAction Y(a) -

ReadIsClassifiedObjectAction Y(a) -

StartClassifierBehaviorAction Y(a) -

LinkActions

ReadLinkAction Y(a) -

CreateLinkAction Y(a) -

DestroyLinkAction Y(a) -

ClearAssociationAction Y(a) -

LinkObjectActions

ReadLinkObjectEndAction Y(a) -

ReadLinkObjectEndQualifierAction Y(a) -

CreateLinkObjectAction Y(a) -

StructuralFeatureActions

ReadStructuralFeatureAction Y(a) -

AddStructuralFeatureValueAction Y(a) -

RemoveStructuralFeatureValueAction Y(a) -

ClearStructuralFeatureAction Y(a) -

VariableActions

ReadVariableAction Y(a) -

AddVariableValueAction Y(a) -

RemoveVariableValueAction Y(a) -

ClearVariableAction Y(a) -

AcceptEventActions

AcceptEventAction - Y

AcceptCallAction Y(a) -

ReplyAction Y(a) -

UnmarshallAction Y(a) -

Analysis of UML Activities as Basis for Focusing Quality Assurance

 76

Category Name Trans-
formation

Post-
Analysis

StructuredActions

StructuredActivityNode Y Y

ConditionalNode Y -

LoopNode Y -

SequenceNode Y -

ExpansionRegion Y Y

Other actions
ReduceAction Y(a) -

RaiseExceptionAction Y(a) -

Table 2: Handling of Action Types

Besides the action types mentioned above, further elements exist, which need
to be considered individually. The following Table 3 contains all other
elements, which need to be considered. Note that elements in the same
groups in this table are not necessarily in the same category according to the
UML. In some cases, they are put together because certain relations between
them are considered, e.g., between ObjectNodes and ObjectFlows.

The element “ActionNode” in the group ExecutableNodes is in parentheses,
because all ActionNodes are handled in Table 2.

Group Name Trans-
formation

Post-
Analysis

FinalNodes
ActivityFinalNodes Y -

ObjectElements
ActivityParameterNodes Y -

ActionPins Y -

CentralBufferNodes Y -

DataStoreNodes Y -

ObjectFlows Y -

ExecutableNodes
“ActionNodes” see Table 2 see Table 2

ExceptionHandler Y -

InputPin Y -

OutputPin Y -

ActivityGroups
ActivityPartitions Y -

InterruptibleActivityRegions Y Y

InterruptingEdges Y Y

Table 3: Handling of Further Elements

All elements marked with a “Y” in the transformation column in this Table are
handled during the transformation. Details on the individual handling and
rationales for each handling can be found in chapter 4.5.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 77

All elements marked with a “Y” in the post-analysis column in this Table are
handled after the analysis. Details on the individual post-analysis handling can
be found in chapter 4.7.

As a short summary in this section, elements marked with a “Y” in the
transformation column, but no “Y” in the post-analysis column are either
transformed to other elements or basic elements, or deleted (other
transformations may be necessary for deletion). All other elements are
handled according to the semantics of ActionNodes, but their special semantics
are retained for post-analysis consideration.

The purpose of the analysis is identifying nodes that may run in parallel to
other nodes, but with the goal to steer instrumentation for detecting data
races. Due to this and since parallelism itself is not a problem, the computation
of pairs of nodes that can possibly run in parallel is limited to nodes that
actually may be related to source code parts accessing data.

By definition InitialNodes, FinalNodes, MergeNodes, ForkNodes, and JoinNodes
are not related to data accesses. Thus, the focus of the analysis can be set to
DecisionNodes and ActionNodes. In the following, these two types of nodes are
called data accessing nodes, short DANs. Note that the UML actually defines
many other node types, which are related to possible data accesses, but that
the limitation to these two node types is possible due to the preprocessing,
which transforms those other node types.

The goal of the analysis of UML Activities can thus be reformulated to
identifying all DANs that may be executed in parallel to other DANs or to
themselves. For this, an intermediary representation of a superset containing all
possible execution instances as DAGs, based on UML Activities, is used.

4.5 Transformation of UML Activities

The transformation of UML Activities serves to limit UML elements to be
considered for the analysis to basic elements. The transformation of UML
elements, together with a formal reasoning for the decisions regarding the
transformation are extensively documented by Zimmer in [Zi16], a master
thesis conducted in the context of this thesis. In this chapter 4.5, only a short
summary is given.

 This transformation is conducted using eight steps:

1) Reducing ActivityFinalNodes

2) Reducing ExpansionRegions

3) Reducing non-structured actions

Analysis of UML Activities as Basis for Focusing Quality Assurance

 78

4) Reducing ObjectNodes and ObjectFlows

5) Reducing ConditionalNodes, LoopNodes and SequenceNodes

6) Reducing ExceptionHandlers

7) Remodeling regarding InitialNodes and FlowFinalNodes (implicit to explicit)

8) Remodeling regarding ForkNodes and JoinNodes (implicit to explicit)

First, ActivityFinalNodes are reduced to FlowFinalNodes, ExpansionRegions to
simple StructuredActivityNodes and most non-structured actions to generic
actions. ActionNodes related to signals and CallBehaviorActions require special
considerations, since they might have an impact on the execution order. In the
next step, ObjectNodes and ObjectFlows are reduced. All pairs of ObjectNodes
ordered by ObjectFlows are then expressed via ControlFlows between
ExecutableNodes.

The transformation of SequenceNodes, LoopNodes and ConditionalNodes
follows the idea of expressing the implied ControlFlow ordering of these nodes
explicitly by means of new DecisionNodes and MergeNodes. Next,
ExceptionHandlers are reduced.

Finally, additional actions are performed to make implicit constructs in UML
Activities explicit. This involves two steps: first, the InitialNodes and
FlowFinalNodes of each container are combined, and implicitly modeled
constructs are explicitly modeled. Second, implicit ForkNodes and JoinNodes
are explicitly modeled by the introduction of new ForkNodes and JoinNodes.

As the transformation of elements may require a former transformation of
other elements, the sequence of the steps of the transformation is critical to
the success of the transformation. Elements related to signals and
CallBehaviorActions may impact the order of the execution of ExecutableNodes
in UML Activities. The transformation of ObjectNodes and ObjectFlows may
have an impact on all other transformations following this step. The
transformation of ExceptionHandlers may require the introduction of new
CallBehaviorActions.

The elements requiring a dedicated handling during the transformation,
presented in chapter 4.4.2, are analyzed in the following. It is shown how these
elements are handled and what assumptions, if any, have been made.

4.5.1 Group Reduction

All elements in the “Group Reduction” are transformed to “plain ActionNodes”
(reduced), i.e., the information that data may be read or written is retained.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 79

ObjectActions, LinkActions, LinkObjectActions, StructuralFeatureActions,
VariableActions, and ReduceActions deal with data manipulation and are thus
contained in this group.

During the execution of RaiseExceptionActions, an exception is thrown. If the
current container has an ExceptionHandler, it is executed. Otherwise the
exception propagates to the outside. If no ExceptionHandler matches, the
exception terminates the current activity [OM17]. As will be explained in
chapter 4.5.7 concerning ExceptionHandlers, it is not relevant, where an
exception is exactly thrown, but where and how this exception is handled. Thus,
RaiseExceptionActions can be reduced. However, the exception raised still
needs to be taken into account, i.e., the respective ExceptionHandlers are
considered during transformation and re-arrangement of the UML Activity.

OpaqueActions are actions whose impact is described in a textual modeling
language. Since the functionality of such actions is not defined by the UML and
thus cannot be evaluated, they are reduced.

As the focus of the solution is set to UML Activities, the analysis does not
support elements, which refer to other UML elements outside of activities,
such as UML Class Diagrams. Because of this, the following elements of
activities are also reduced: StartObjectBehaviorActions, CallOperationActions,
SendObjectActions, AcceptCallActions, ReplyActions, and UnmarshallActions.

For SendObjectActions, the UML mentions that objects sent may also be
signals. In such a case, it is assumed that the respective element is modeled
using a SendSignalAction.

4.5.2 Group Structured

StructuredActivityNodes are handled both during the transformation and post-
analysis. These elements are containers for nodes and edges. Edges are
allowed, which cross the borders of these containers, and which directly
connect an element outside of the container with an element inside the
container (CrossingEdges).

CrossingEdges require a special handling after the analysis due to the special
semantics for such edges and the target nodes (see [OM17]).

Thus, StructuredActivityNodes are left intact during the transformation. In the
output of the transformation, there is an element “StructuredActivityNode”,
which itself contains other elements.

Both the StructuredActivityNodes and the contained elements are subject to the
analysis: there can be (1) parallel executions of elements outside a
StructuredActivityNode and the structured activity itself (and thus, the elements

Analysis of UML Activities as Basis for Focusing Quality Assurance

 80

inside, with consideration of CrossingEdges), and (2) parallel executions of
elements inside a StructuredActivityNode.

ExpansionRegions also are containers for other elements, and also may contain
CrossingEdges. With ExpansionRegions, collections of values or objects can be
processed in three different processing modes: iterative, streaming and
parallel (see chapter 4.3). The collections of elements are realized by
ExpansionNodes. ExpansionRegions can have InputPins, whose tokens are
copied for each execution of an ExpansionRegion, and OutputPins.

The UML states that the “semantics is undefined for offering tokens to such
OutputPins” [OM17]and for “ActivityEdges from within the expansion
executions” [OM17] to outside of the ExpansionRegion.

ExpansionRegions in iterative mode are transformed to StructuredActivityNodes,
and these are handled as described above. ExpansionNodes are transformed
into pins.

In the iterative mode, values are processed one by one, i.e., each value is
processed in an execution of the ExpansionRegion, and such executions can
never run in parallel in iterative mode. Thus, no data races between executions
of an ExpansionRegion can exist.

For the streaming and the parallel mode, executions may be parallel to each
other [OM17]. If a collection of elements to process contains references to the
same object, this can lead to a data race. However, whether a data race is
actually possible, depends on the modeling, and on whether a modeler has
taken measures, so that duplicate references to the same object cannot exist.

ExpansionRegions in parallel and in streaming mode are also transformed to
StructuredActivityNodes, and the mode can be attached to this
StructuredActivityNode for further analysis. That way, possible false positives,
introduced by ignoring whether duplicate references may exist in a collection,
could be resolved after the analysis, if modelers use assertions regarding
duplicate object references in a collection. However, such assertions are not
standardized.

4.5.3 Group Specific

For each of the elements in the “Group Specific”, an individual handling during
the transformation is necessary.

A BroadcastSignalAction sends a signal similar to SendSignalActions (which are
handled post-analysis and left unchanged during the transformation), but to
multiple targets. The UML states, that the “manner of identifying the exact set
of objects that are broadcast targets is not defined in this specification,

Analysis of UML Activities as Basis for Focusing Quality Assurance

 81

however, and may be limited to some subset of all the objects that exist.”
[OM17] For being able to at least partially support such types of actions, it is
assumed that there is exactly one target. Since then, the behavior is exactly the
same as for SendSignalActions, BroadcastSignalActions are transformed to
SendSignalActions. Checking whether there is an element receiving this signal
is done in the post-analysis phase.

ConditionalNodes, LoopNodes and SequenceNodes are all containers for
elements, and order the execution of contained nodes implicitly with regards
to the ControlFlow. In general, such loops, branches and sequences can be
expressed by means of DecisionNodes, MergeNodes and ControlFlows.

Because of this, such nodes are transformed and StructuredActivityNodes are
used to retain the distinct parts contained in those nodes, e.g., setup and test
parts. These parts are ordered using DecisionNodes, MergeNodes and
ControlFlows.

4.5.4 Group Post-Analysis

Elements in the “Group Post-Analysis” are CallBehaviorActions,
AcceptEventActions and SendSignalActions.

A CallBehaviorAction is used to invoke other Behaviors, in the context of this
thesis UML Activities (the UML also describes other types of Behaviors). Such
invocations may be synchronous or asynchronous.

A SendSignalAction itself only sends a signal and then execution is continued
without waiting for the reception of this signal. AcceptEventActions, in contrast,
wait for a signal before execution can continue. This means that for each
AcceptEventAction, a respective signal had to be sent before the
AcceptEventAction can execute. Whether this is the case depends on the
concrete execution. Since possible executions are analyzed after the
transformation, these nodes are preserved during the transformation and then
handled in the post-analysis phase. During the analysis, these nodes are
treated as if they were ActionNodes. Information on callers and callees for
SendSignalActions and AcceptEventActions is attached to the respective nodes.

4.5.5 ActivityFinalNodes

ActivityFinalNodes end all flows in a UML Activity. In case of a synchronous call
of other UML Activities within such a UML Activity, these other activities are also
aborted. Since only the worst case is relevant, i.e., the longest execution
possible, all flows, which are currently executing are further executed until
these flows also end at a FinalNode. This is effectively the same as interpreting
ActivityFinalNodes as FlowFinalNodes. Because of this, all ActivityFinalNodes are
transformed into FlowFinalNodes.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 82

4.5.6 ObjectElements

Two different ObjectElements can be distinguished: ObjectNodes and
ObjectFlows.

Different types exist for ObjectNodes: ActivityParameterNodes, ActionPins,
CentralBufferNodes, and DataStoreNodes.

ObjectNodes represent objects, which are produced, manipulated or read in
actions. ObjectNodes have ObjectFlows as incoming and outgoing edges.
Instead of using ObjectNodes, the flow of objects can also be represented by
using pins attached to ActionNodes.

ActivityParameterNodes are used for representing input and output parameters
of UML Activities, and are used for holding objects. Both CentralBufferNodes
and DataStoreNodes represent buffers between ObjectNodes, with slight
differences (chapter 4.3).

ObjectFlows, although transporting objects, define an ordering of actions due
to the necessity of the objects being transported to nodes before these nodes
can and will be executed.

ObjectNodes are replaced during the transformation, and ObjectFlows are
replaced by ControlFlows and re-connected (see [Zi16]).

ActivityParameterNodes, as they influence how and when activities are started
and ended (objects must have reached the respective ActivityParameterNodes),
are replaced by InitialNodes and FinalNodes.

DataStoreNodes and CentralBufferNodes are also replaced analogous to
ObjectNodes. During these transformations, it is necessary to consider and
reflect the special semantics of ObjectFlows and ObjectNodes, which differs
from that of ControlNodes and ControlFlows. See chapter 4.3 and [OM17] for
the semantics and [Zi16] for details on the transformations.

ActionPins are reduced and transformed depending on whether an ActionPin is
related to an ActionNode or to a container. In the former case they are
transformed to a combination of MergeNodes and JoinNodes, or to a
combination of DecisionNodes and ForkNodes (adhering to the semantics of
ObjectNodes and ActionNodes). In the latter case, ActionPins are additionally
handled similar to ActivityParameterNodes for the edges leading to or coming
from nodes inside such a container. See [Zi16] for additional information.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 83

4.5.7 ExecutableNodes

ExecutableNodes are abstract and the UML states, that all concrete kinds of
them are actions. All ExecutableNodes can be associated with an
ExceptionHandler. ExecutableNodes can have input pins and output pins
attached to them, associated to ObjectFlows, as explained above.

ExceptionHandlers in turn also contain ExecutableNodes. ExceptionHandlers are
always associated with a certain type of exception, which can occur during the
execution of an ExecutableNode.

If during an execution, an exception occurs, an appropriate handler is searched
for along the hierarchies, i.e., from inside the current container, where the
exception was thrown, to the enclosing containers. If a handler was found, the
nodes contained in this ExceptionHandler are executed, i.e., control flow is
transferred from the node throwing the exception to the appropriate handler.
Afterwards, the control flow is returned, and the execution continues from the
point after the node throwing this exception.

An exception may be thrown from a region containing several nodes, and in
that case, the control flow returns to the point reached when the region has
finished execution.

For ExceptionHandlers, considering the overall goal of the analysis, the longest
execution path possible needs to be considered, as otherwise some possible
parallel executions of nodes could be missed.

Thus, ExceptionHandlers are replaced with DecisionNodes, and the nodes inside
the handlers are combined with the DecisionNode using a ControlFlow, i.e., an
exception is thrown, or not. This DecisionNode is placed at the latest point
possible, i.e., if an exception is thrown, it is always assumed that all nodes,
which can be executed before the exception occurs, are executed.

4.5.8 ActivityGroups

An ActivityGroup is a collection of ActivityEdges, ActivityNodes and other,
possibly nested, ActivityGroups. ActivityGroups are abstract, and the UML
describes two concrete types: ActivityPartitions and InterruptibleActivityRegions
[OM17].

As ActivityPartitions do not have any impact on the execution semantics and
are meant for structuring purpose only, they are not relevant for the analysis
and are deleted.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 84

InterruptibleActivityRegions may contain InterruptingEdges, which may either be
ControlFlows or ObjectFlows. As soon as an InterruptingEdge is traversed, the
execution of all contained nodes in the region terminates.

An additional element, which needs to be considered in combination with
InterruptibleActivityRegions, is the AcceptEventAction (see chapter 4.3).

In contrast to StructuredActivityNodes, the region itself is not connected to
other elements with edges, and is not a region, for which encapsulation holds.
This means, there always exist CrossingEdges, which connect an element
outside of the region to an element inside of the region. InterruptingEdges are
CrossingEdges by definition.

Thus, during the transformation, the nodes inside such
InterruptibleActivityRegions are preserved (and possibly transformed because of
their type). The connections between the nodes inside the region, and to and
from the nodes outside the region are also preserved. Finally, the information
regarding which nodes are located in which InterruptibleActivityRegion, is
preserved for post-analysis handling.

4.6 Analysis of UML Activities

The input for the analysis of UML Activities is the XML file produced by the
transformation tool. This file may contain multiple UML Activities, which are
processed one after the other. Possible relations from one activity to another
activity are considered during the analysis, thus enabling the analysis of
hierarchies of UML Activities. The analysis is conducted using a formally
defined approach, and consists of creating and analyzing DAGs.

4.6.1 Representing Execution Instances of Computations by DAGs

A UML Activity 𝐷 represents the way to compute the result given any input. It
thus represents multiple, possible execution instances where the input is
known. For the analysis, the exact timing of the computation steps is irrelevant,
and thus abstracted. For each execution instance, the single computation
threads can be represented by directed walks (as defined in chapter 4.2).

Single sequential threads occur in the following situations:

• between an InitialNode and the first ForkNode or a FinalNode,

• between a ForkNode or JoinNode and the next ForkNode or JoinNode, and

• between a ForkNode or JoinNode node and a FinalNode.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 85

Given a ForkNode 𝑢, 𝑑𝐷
+(𝑢) walks start, and given a JoinNode 𝑣, 𝑑𝐷

−(𝑣) walks
end. This can be easily represented by a DAG where the vertices are the walks
and where the edges connect instances of JoinNodes or ForkNodes.

The following procedure summarizes the creation of all possible DAGs based
on a given UML Activity such that each possible execution instance is
represented by exactly one DAG. The set of all DAGs produced by the following
procedure is a superset of all possible DAGs representing an execution instance
since some decisions along the computation might not be independent of each
other such that some combinations of walks might never occur.

The superset 𝑆 of DAGs is created by the following procedure. Each 𝐷𝐴𝐺 =
(𝑊, 𝐸) ∈ 𝑆 has a vertex set 𝑊, a set of walks (where exactly one walk begins
with an InitialNode), and an edge set 𝐸 ⊆ 𝑊 × 𝑊, the connections between
walks described by the procedure, also referred to as 𝐸𝐷𝐴𝐺 whenever suitable
for clarity reasons.

Consider a UML Activity 𝐷 with InitialNode 𝑢.

1. Create a DAG with single vertex 𝑤0 = 𝑢 and add the DAG to 𝑆. Set the
current edge 𝑒 of 𝐷 to the outgoing edge of 𝑢. Set the current vertex 𝑤 of
the DAG to 𝑤0.

2. For current edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸𝐷 , create a new instance 𝑣′ of 𝑣 and
update 𝑤 to 𝑤𝑣′.

a. If 𝑣 is an ActionNode or MergeNode, set the current edge to be the
outgoing edge of 𝑣 in 𝐷 and repeat step 2.

b. If 𝑣 is a DecisionNode, copy this DAG 𝑑𝐷
+ − 1 times. For each copy, set

the current walk to 𝑤 and add the DAG to 𝑆. For each outgoing edge
(𝑣, 𝑥) ∈ 𝐸𝐷 of 𝑣, repeat step 2 for a separate DAG (with current walk
𝑤) with the current edge in 𝐷 updated to (𝑣, 𝑥).

c. If 𝑣 is a ForkNode, mark vertex 𝑤 ∈ 𝑊 as complete. Let 𝑛 = |𝑊|.
Create a vertex 𝑤𝑖 = 𝑣′ ∈ 𝑊 and edge (𝑤, 𝑤𝑖) ∈ 𝐸𝐷𝐴𝐺 for each 𝑖
where 𝑛 ≤ 𝑖 ≤ 𝑛 + 𝑑𝐷

+(𝑣) − 1. For each outgoing edge (𝑣, 𝑥) ∈
 𝐸𝐷 of 𝑣, repeat step 2 with the current vertex 𝑤 set to 𝑤𝑖 ∈ 𝑊 with
the current edge 𝑒 in 𝐷 set to (𝑣, 𝑥).

d. If 𝑣 is a JoinNode, mark vertex 𝑤 ∈ 𝑊 with current edge 𝑒. Search
for vertices 𝑧 in the DAG such that 𝜔(𝑧) is an instance of the JoinNode
𝑣 . Let 𝑛 = |𝑊|. If there is a set {𝑤𝑖1

, 𝑤𝑖2
, … , 𝑤𝑖𝑑𝐷

−(𝑣)− 1
} of such

vertices which have marks, the set 𝐸′ such that |𝐸′ ∪ {𝑒}| = 𝑑𝐷
−(𝑣),

Analysis of UML Activities as Basis for Focusing Quality Assurance

 86

i. Create vertex 𝑤𝑛 = 𝑣′ ∈ 𝑊, edge (𝑤, 𝑤𝑛) ∈ 𝐸𝐷𝐴𝐺 , and edges

(𝑤𝑖ℎ
, 𝑤𝑛) ∈ 𝐸𝐷𝐴𝐺 for each ℎ where 1 ≤ ℎ ≤ 𝑑𝐷

−(𝑣) − 1.

ii. Set current edge 𝑒 to the outgoing edge of 𝑣 in 𝐷, set the current
vertex to 𝑤𝑛 ∈ 𝑊, and repeat step 2.

e. If 𝑣 is a FinalNode, then do nothing. The current vertex is complete.

An example for created DAGs can be seen in Figure 10. It shows two DAGs
created based on the UML Activity depicted in Figure 9. Each of the DAGs
contains four walks and two marks, each containing an edge. The DAGs differ
in one walk, more precisely in the node following the node “Decision1”: DAG 1
covers “Action3”, and DAG 2 contains “Action4”.

Figure 10: DAGs Created for the Exemplary UML Activity Diagram 1

As can be seen, each instance of a node is only contained once in the DAG,
with the exception of ForkNodes and JoinNodes. Although one instance of these
nodes is always contained in directly succeeding walks, it only belongs to one
computation step, as every other single instance of a node. However, as
ForkNodes and JoinNodes represent the transition from one walk to another,
they are included more than once.

Only valid UML Activities are considered. To be valid, a UML Activity must
adhere to the definitions for the UML Activity itself and the nodes and edges
given above. UML Activities can be implicitly and explicitly modeled, and the

Analysis of UML Activities as Basis for Focusing Quality Assurance

 87

preprocessing during the transformation creates explicitly modeled activities
out of implicitly modeled ones.

Concerning execution instances, worst case execution instances are
considered. This means that, if due to parallel execution, one of the parallel
computations reaches a FinalNode, it is always assumed that other parallel
computations have proceeded as far as possible. With this assumption, the
number of considered execution instances is reduced without losing
information, as shorter execution instances are subsumed under the longest
path possible. Since the goal of the solution is to find possible data races, the
worst case is the relevant case, as otherwise possible data races (in the
analysis: nodes that may be executed in parallel to other nodes) could be
missed.

Every execution instance leads to a single DAG by construction. However, two
sets of input values may result in the same traversal of a UML Activity, and thus
in the same DAG. Execution instances resulting from such sets of input values
are equivalent, they are the same.

Lemma 1

Every pair of non-equivalent execution instances through a UML Activity 𝐷
results in a unique DAG.

Proof

Assumption: two non-equivalent execution instances 𝑒𝑖1 and 𝑒𝑖2 result in the
same DAG.

By definition, non-equivalent execution instances result in different outgoing
edges of a DecisionNode 𝑢 being followed at least once. Thus, different
DAGs are created.

For each of the DAGs, a different outgoing edge of 𝑢 is followed, thus leading
to a difference in the resulting DAGs. As each instance can only be processed
once by definition, one DAG is created for each single outgoing edge of an
instance of a DecisionNode.

If two different execution instances result in the same DAG, this thus means
that for each DecisionNode encountered in 𝐷, the same outgoing edge has
been followed for the construction of the DAG. However, if for each
DecisionNode all outgoing edges followed are the same, then 𝑒𝑖1 and 𝑒𝑖2

Analysis of UML Activities as Basis for Focusing Quality Assurance

 88

represent the same single execution instance. Thus, there cannot be different
execution instances that lead to the same DAG, and thus, every execution
instance results in a unique DAG. ∎

It is also possible that there is no set of input values that leads to a given
combination of edge traversals of a UML Activity, due to DecisionNodes
possibly being dependent, as explained above. For this reason, a DAG in the set
𝑆 of DAGs might not reflect any execution instance.

Since an execution instance may be infinite, a DAG can have an infinite size.
This will be discussed in chapter 4.6.5.

Two different DAGs based on the same UML Activity differ in at least one
decision made at one of the DecisionNodes because that is the only way to
create different DAGs. Every directed path in any DAG describes a sequence of
computational threads that need to be executed sequentially and that never
run in parallel. The following fundamental corollary is now proven, which
highlights the relation of paths in a DAG and parallelism:

Corollary 1

Two computation threads 𝐴, 𝐵 can run in parallel if an only if there is no path in
the DAG in which 𝐴 and 𝐵 are contained, i.e., no path from 𝐴 to 𝐵 or 𝐵 to 𝐴.

Proof

By construction, all computations in a computation thread are finished before
any successor threads as represented in the DAG can start. Let there now be a
directed path from 𝐴 to 𝐵 (without loss of generality). Then, the computations
from computation thread 𝐴 are, by construction of the DAG, finished before
𝐵's results are computed and the two threads cannot run in parallel. Thus, if
two threads run in parallel, there cannot be a directed path between them in
the DAG.

If there is no single path containing both 𝐴 and 𝐵 in the DAG, let 𝑃(𝑢, 𝐴) and
𝑃(𝑢, 𝐵) denote the set of all directed paths from the InitialNode 𝑢 to 𝐴 and 𝑢
to 𝐵, respectively. For any given paths 𝑝𝐴 ∈ 𝑃(𝑢, 𝐴) and 𝑝𝐵 ∈ 𝑃(𝑢, 𝐵) there
needs to be some common vertex 𝑤 to both paths as both start at 𝑢. The last
common vertex 𝑤 cannot be either 𝐴 or 𝐵, as otherwise the longer path would
contain both 𝐴 and 𝐵 in contrast to the assumption. After 𝑤, there exist no

Analysis of UML Activities as Basis for Focusing Quality Assurance

 89

further common vertices along 𝑝𝐴 and 𝑝𝐵. Thus 𝜔(𝑤) needs to be a ForkNode,
because a ForkNode is the only node of the UML Activity that creates more than
one outgoing edge attached to its corresponding node in the DAG. Since 𝐴 and
𝐵 are thus in different computation threads regarding any pair of paths, they
can run in parallel. ∎

4.6.2 Parallelism and Data Races

As mentioned above, nodes in walks, which are executed in parallel and access
data are in general prone to possible data races. Not all parallel executions lead
to a data race, but each data race is related to parallel executions. In the
following, the link between walks in DAGs and DANs in UML Activities is
discussed.

Theorem 1

Let 𝑤1 and 𝑤2 be two walks in some DAG.

If two walks 𝑤1 and 𝑤2 are executed in parallel then so are all pairs of instances
of DANs from the UML Activity 𝐷 (𝑢1, 𝑢2) with 𝑢1 ∈ 𝑤1 and 𝑢2 ∈ 𝑤2.

Proof

Assumption: Let 𝑤1 and 𝑤2 be two walks in some DAG, which are executed in
parallel. Let 𝑢1 and 𝑢2 be a pair of instances of DANs in a UML Activity with
𝑢1 ∈ 𝑤1 and 𝑢2 ∈ 𝑤2.

As defined above, each walk contains a sequence of nodes, which are executed
sequentially. Let 𝑤3 be a walk with 𝑛 elements 𝑣1 . . . 𝑣𝑛. Then ∀ pairs of nodes
(𝑣𝑖 , 𝑣𝑖+1) with 𝑣𝑖 ∈ 𝑤3 and 𝑣𝑖+1 ∈ 𝑤3 and 1 ≤ 𝑖 < 𝑛 , ∃ an edge 𝑒 with
𝑒 = (𝑣𝑖 , 𝑣𝑖+1).

A walk 𝑤4, which is a direct successor of 𝑤3 is defined to start executing after
𝑤3 has finished. This means that 𝜔(𝑤3) = 𝛼(𝑤4). This means that all DANs
that are contained in 𝑤3 have been executed when the DANs contained in 𝑤4
start.

If the two walks 𝑤1 and 𝑤2 are executed in parallel, neither does 𝑤1 start after
𝑤2 has been completely executed, nor does 𝑤2 start after 𝑤1 has been
completely executed. Thus, no edges exist in the DAG, which lead from 𝑢1 to

Analysis of UML Activities as Basis for Focusing Quality Assurance

 90

𝑢2. If 𝑢1 and 𝑢2 are not executed in parallel, then they either run sequentially,
or they represent the same instance of a certain DAN. However, if they
represent the same instance, they cannot belong to different walks by
definition, as each instance of a DAN is contained only in one walk.

Thus, if 𝑢1 and 𝑢2 are not executed in parallel, then they run sequentially. If
they run sequentially, then edges exist, which lead from 𝑢1 to 𝑢2 or from 𝑢2 to
𝑢1 in the DAG. However, since the walks 𝑤1 and 𝑤2 are executed in parallel, no
edges exist in 𝐷 between nodes in 𝑤1 and nodes in 𝑤2. Thus, the nodes 𝑢1 and
𝑢2 cannot run sequentially, they are executed in parallel. ∎

Due to this, if two walks are executed in parallel, all DANs in one walk are prone
to possible data races with all the DANs in the other walk. The remaining
questions are whether such two DANs actually access the same data, if at least
one of the accesses is a write access, and if there is a correct synchronization of
these accesses. Answering these questions is part of the dynamic data race
detection.

4.6.3 On the Number of DAGs as a Result of Transforming UML Activities

After elaborating on walks in a single DAG, parallelism and data races, the
different possibilities for results of the construction of DAGs out of a UML
Activity are discussed.

Since only the traversal of DecisionNodes influences the number of DAGs
created, there are three different situations to consider:

1) A UML Activity contains no cycles and no DecisionNodes.

2) A UML Activity contains DecisionNodes, which can be traversed once each.
This is the case when there are DecisionNodes, but no cycle, or when there
are cycles, but the DecisionNodes cannot be traversed within a cycle
traversal.

3) A UML Activity contains DecisionNodes, which can be traversed more than
once. This is the case when there are cycles, and within a cycle traversal, a
DecisionNode can be traversed.

In the following, the effects of these situations on the number of DAGs created
for a UML Activity are examined.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 91

Lemma 2

If all nodes in a valid UML Activity 𝐷 are executed sequentially and 𝐷 contains
no decisions, then ∃ a walk through every node in a single DAG of 𝐷.

Proof

Assumption: all nodes in a valid UML Activity 𝐷 are executed sequentially and
𝐷 contains no decisions, and there is no walk through every node in a single
DAG of 𝐷.

Let 𝑢𝑖 be the nodes in 𝐷 , with 𝑖 = 1, … 𝑛. If all nodes in 𝐷 are executed
sequentially, then (𝑢𝑗 , 𝑢𝑗+1) ∈ 𝐸 ∀ 𝑗 = 1, … 𝑛 − 1.

Since all nodes are executed sequentially, i.e., there are no ForkNodes, and
there are no DecisionNodes, each node has 𝑑𝐷

+ ≤ 1. In such a case, during the
construction of the walks for DAGs, no new walks are created and no new
DAGs are created. Thus, there is a single DAG of 𝐷 with exactly one walk.

If ∃ 𝑣 ∈ 𝑉 and 𝑣 is not in the walk, and since this walk is the only walk in the
DAG, then no edge 𝑒 exists between 𝑣 and any node 𝑢. However, since all
nodes in 𝐷 are executed sequentially and an edge exists for each node in 𝐷
either to its direct successor or its direct predecessor or both in a sequence of
nodes, 𝑣 has to be included in the walk. ∎

Lemma 3

If all nodes in a valid UML Activity 𝐷 are sequential and 𝐷 contains
DecisionNodes but no cycles, within which a DecisionNode can be traversed,
then ∃ a walk through every node in a set of DAGs of 𝐷. For a UML Activity 𝐷
with a set of DecisionNodes {𝑢1, 𝑢2, … , 𝑢𝑛}, the set of DAGs has a size of
∑ (𝑑𝐷

+(𝑢𝑖) − 1) + 1𝑛
𝑖=1 .

Proof

Assumption: All nodes of 𝐷 are sequential and 𝐷 contains DecisionNodes but
no cycles, within which a DecisionNode can be traversed. Then ∃ a node 𝑣
which is not covered in any walk.

By Lemma 2, if all nodes in 𝐷 are executed sequentially, a single walk is
created. However, due to DecisionNodes multiple DAGs are created. Each of

Analysis of UML Activities as Basis for Focusing Quality Assurance

 92

these DAGs contains one walk, covering one execution instance. Since, given a
DecisionNode 𝑢 with 𝑑𝐷

+(𝑢) > 1, 𝑑𝐷
+(𝑢) − 1 new DAGs are created and each

of the DAGs containing 𝑢 represents the traversal of a different outgoing edge
of 𝑢, all outgoing edges of 𝑢 are covered. Thus, all possible differences in
execution instances are represented in different DAGs.

Since all nodes in 𝐷 are sequential and 𝐷 is valid, there is an edge 𝑒, which
connects 𝑣 either to its direct predecessor or to its direct successor, or both.
Since all nodes are sequential, there exists exactly one initial node 𝑠. Without
loss of generality, we can thus assume that 𝑣 is a (direct or indirect) successor
of 𝑠 or that 𝑣 is 𝑠. If 𝑣 = 𝑠, it is included in every DAG and thus the assumption
is wrong.

If 𝑣 ≠ 𝑠, then in the sequence of nodes from 𝑠 to 𝑣, there is either no
DecisionNode or there is at least one DecisionNode. If there is no DecisionNode in
the sequence, then up to 𝑣, only one execution instance exists, and this
execution instance includes 𝑣, as shown above.

If there is at least one DecisionNode in the sequence of nodes from 𝑠 to 𝑣, then,
as shown, all different execution instances resulting from the outgoing edges
of DecisionNodes are covered in different DAGs. Thus, ∃ a DAG, which includes
the sequence of nodes from 𝑠 to 𝑣, and thus, ∃ a DAG, which includes 𝑣. Since
all nodes in D are sequential, this DAG contains one walk. Thus, ∃ a walk in a
DAG that covers 𝑣.

Given a DecisionNode 𝑢, 𝑑𝐷
+(𝑢) − 1 different DAGs are created. Since no cycles

exist in 𝐷, within which a DecisionNode can be traversed, each DecisionNode in
an execution instance can only be instantiated once. Since all execution
instances cover all decisions and the set of DAGs covers all execution instances,
during the construction of the set of DAGs, ∑ (𝑑𝐷

+(𝑢𝑖) − 1)𝑛
𝑖=1 new DAGs are

created. Since the construction of DAGs starts with an empty DAG, a UML
Activity, which contains at least one DecisionNode, results in ∑ (𝑑𝐷

+(𝑢𝑖) −𝑛
𝑖=1

 1) + 1 DAGs. ∎

Lemma 4

If all nodes in a valid UML Activity 𝐷 are sequential and 𝐷 contains at least one
cycle, within which DecisionNodes can be traversed, then ∃ a walk through
every node in a set of DAGs of 𝐷. There are infinitely many resulting DAGs.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 93

Proof

By Lemma 3, if all nodes of 𝐷 are sequential and 𝐷 contains decisions, every
node is included in at least one walk of a DAG out of the set of DAGs created.

𝐷 contains at least one cycle, and this cycle contains at least one DecisionNode
𝑢. Due to the cyclic structure, this 𝑢 may be instantiated more than once, up to
infinitely many times. Since each instance of 𝑢 is independent of other
instances, for each of these instances 𝑑𝐷

+(𝑢) − 1 DAGs are created. Since a
cycle can be traversed infinitely many times, infinitely many decisions have to
be made. Thus, a UML Activity 𝐷, which contains at least one cycle, within
which a DecisionNode can be traversed, results in infinitely many DAGs. ∎

4.6.4 Token Concept for Walks in a DAG

It is now clear, and proven, how many DAGs will be created using the solution
shown above in the different situations that exist using the basic elements of
UML Activities. It has also been shown, that if two walks are executed in parallel,
all DANs in one walk may run in parallel with all DANs in the other walk. The
remaining question is how such parallel walks may be identified.

For identifying parallel walks, and for symbolizing the execution path of nodes
contained in walks in a DAG, tokens are used. Each token is modeled by a set of
sequences of numbers for each walk in each DAG in the set of DAGs. Each walk
has exactly one token, which contains one or more sequences of numbers. The
numbers are separated by a dot.

𝑇𝑎 is defined as the token of a walk 𝑎, containing a set of sequences. |𝑇𝑎| is
defined as the cardinality of 𝑇𝑎 , i.e., the number of sequences in Token 𝑇𝑎.

𝑠𝑎𝑗 is defined as being the 𝑗-th sequence in the token 𝑇𝑎. 𝑃(𝑠𝑎𝑗) is defined as

the prefixes of sequence 𝑠𝑎𝑗 . A prefix is defined as a proper prefix, i.e., the

length of a prefix of a sequence is always smaller than the sequence itself.
∀ 𝑝 ∈ 𝑃(𝑠𝑎𝑗), with the length of 𝑝 = 𝑘, the 𝑗-th position with 1 ≤ 𝑗 ≤ 𝑘 is

identical to the 𝑗-th position of 𝑠𝑎𝑗 . The sequences in tokens are constructed as

follows:

1. There is exactly one token 𝑇 at the root walk of the DAG, i.e., the walk
containing the InitialNode of a UML Activity. This token is modeled by the
sequence 0.

2. The sequences and the set of sequences in a token 𝑇 follow the outgoing
edges of a walk. They will be changed according to the following case
distinction:

Analysis of UML Activities as Basis for Focusing Quality Assurance

 94

a. The current walk 𝑒 has 𝑘 outgoing edges, with 𝑘 > 1. Copy 𝑇 𝑘 – 1
times such that in total there are 𝑘 copies, 𝑇1, 𝑇2, … , 𝑇𝑘. Append a
dot and one of the numbers 1 to 𝑘 to all sequences in each token,
corresponding to the index of this token. The token 𝑇𝑖 is then
assigned to the 𝑖-th successor of 𝑒, with 1 ≤ 𝑖 ≤ 𝑘.

b. The current walk 𝑒 has 1 outgoing edge and the successor walk 𝑣 has
𝑗 incoming edges. Let 𝑇1, 𝑇2, . . . , 𝑇𝑗 be the tokens of the incoming

neighbors of 𝑣 . The sequences in the tokens of the incoming
neighbors of 𝑣 are copied and attached to the token of 𝑣. The walk 𝑣

then has one token with ∑ |𝑇𝑛|
𝑗
𝑛= 1 sequences.

The intuition behind the sequences in a token is to memorize the walks on
which this token builds on, i.e., the token contains only those sequences of the
tokens of walks that are definitely finished, when the walk related to the token
is executed. The sequences may either be unchanged and combined out of
sequences of other tokens, or extended, according to the rules for the
construction of the sequences in tokens described above. Actions that are in a
sequence are combined into one walk, and new walks only emerge when
parallel threads are started or synchronized. As an example, if the InitialNode in
a UML Activity leads to four actions in a sequence, these would all be contained
in the root walk and covered by the token 0. Note that tokens in different DAGs
cannot be set into relation to each other, as different DAGs for the same UML
Activity represent alternative executions.

Theorem 2

Let 𝑎, 𝑏 be two walks in some DAG. The walks 𝑎, 𝑏 can be executed in parallel,
iff ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏 it holds that 𝑠𝑎𝑖 ≠ 𝑠𝑏𝑗 , 𝑠𝑎𝑖 ∉ 𝑃(𝑠𝑏𝑗) , and

𝑠𝑏𝑗 ∉ 𝑃(𝑠𝑎𝑖).

Proof

(⇐) Walks 𝑎 and 𝑏 run in parallel ⇐ ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏 it holds that

(1) 𝑠𝑎𝑖 ≠ 𝑠𝑏𝑗 , (2) 𝑠𝑎𝑖 ∉ 𝑃(𝑠𝑏𝑗), and (3) 𝑠𝑏𝑗 ∉ 𝑃(𝑠𝑎𝑖).

Assuming ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏 it holds that (1) 𝑠𝑎𝑖 ≠ 𝑠𝑏𝑗 ,

(2) 𝑠𝑎𝑖 ∉ 𝑃(𝑠𝑏𝑗), and (3) 𝑠𝑏𝑗 ∉ 𝑃(𝑠𝑎𝑖) and walks 𝑎 and 𝑏 run not in parallel. If

𝑎 and 𝑏 do not run in parallel, they are identical or are successors of each
other.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 95

If (1), (2) and (3), then 𝑠𝑎𝑖 and 𝑠𝑏𝑗 are different at at least one position 𝑛, with 𝑛

≤ length of 𝑠𝑎𝑖 and 𝑛 ≤ length of 𝑠𝑏𝑗 ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏 by

construction. Since all sequences start with a 0, representing the root walk, 𝑠𝑎𝑖
and 𝑠𝑏𝑗 are identical at the first position by construction. A given sequence is

only changed, if during the construction of the DAG, a ForkNode is reached; in
such a case, a dot and a number are added to each sequence in the token, with
each succeeding walk being represented by a different number (see the
construction of the sequences and the tokens above). Thus, the sequences of
walks represented by 𝑠𝑎𝑖 and 𝑠𝑏𝑗 both contain the same ForkNode.

Since (2) and (3) ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏, walks 𝑎 and 𝑏 are not successors

of each other, which are separated by a ForkNode in the sequence of walks
between 𝑎 and 𝑏 or directly between 𝑎 and 𝑏.

Since (1) ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏 , walks 𝑎 and 𝑏 are not identical and

walks 𝑎 and 𝑏 are not successors of each other, which are directly separated by
a JoinNode. Since two succeeding walks can only be separated by ForkNodes or
by JoinNodes by construction, walks 𝑎 and 𝑏 can thus not be successors of each
other.

However, if the sequences of walks represented by 𝑠𝑎𝑖 and 𝑠𝑏𝑗 both contain

the same ForkNode, 𝑎 and 𝑏 are not identical to each other and are not direct
or indirect successors of each other, 𝑎 and 𝑏 are different successors or
successors of different successors of the common ForkNode. Thus, they run in
parallel. This is a contradiction to the assumption.

(⇒) Walks 𝑎 and 𝑏 run in parallel ⇒ ∀ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∀ 𝑠𝑏𝑗 ∈ 𝑇𝑏 it holds that

(1) 𝑠𝑎𝑖 ≠ 𝑠𝑏𝑗 , (2) 𝑠𝑎𝑖 ∉ 𝑃(𝑠𝑏𝑗), and (3) 𝑠𝑏𝑗 ∉ 𝑃(𝑠𝑎𝑖).

1. Assumption: walks 𝑎 and 𝑏 run in parallel, and ∃ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∃ 𝑠𝑏𝑗 ∈

 𝑇𝑏 , so that 𝑠𝑎𝑖 = 𝑠𝑏𝑗.

Then, the tokens 𝑇𝑎 and 𝑇𝑏 contain the same sequence 𝑠, with 𝑠 = 𝑠𝑎𝑖 =
𝑠𝑏𝑗 . This can only happen, if 𝑇𝑎 and 𝑇𝑏 are identical, or if a sequence from

token 𝑇𝑎 is copied to token 𝑇𝑏 , or vice versa.

If 𝑇𝑎 and 𝑇𝑏 are identical, then 𝑎 and 𝑏 are identical, as, by construction,
the same walk can only be contained once in each DAG with identical
tokens. However, a walk cannot run in parallel to itself.

If a sequence from token 𝑇𝑎 is copied to token 𝑇𝑏 or vice versa, then a
JoinNode has been encountered between walks 𝑎 and 𝑏. Without loss of
generality, it can be assumed that a JoinNode has been encountered
between 𝑎 and 𝑏 (and not between 𝑏 and 𝑎). It can be excluded that a

Analysis of UML Activities as Basis for Focusing Quality Assurance

 96

ForkNode is encountered between 𝑎 and 𝑏, as otherwise, the sequence
would have been changed due to that ForkNode.

If the JoinNode between 𝑎 and 𝑏 is not the same, then a sequence is not
copied from one token to another token. Thus, 𝑠𝑎𝑖 ≠ 𝑠𝑏𝑗. If the JoinNode

between 𝑎 and 𝑏 is the same, then 𝑏 can only be executed after 𝑎 has
been finished. Thus, they cannot run in parallel.

2. Assumption: walks 𝑎 and 𝑏 run in parallel, and ∃ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∃ 𝑠𝑏𝑗 ∈

 𝑇𝑏 , so that 𝑠𝑎𝑖 ∈ 𝑃(𝑠𝑏𝑗).

Then, 𝑠𝑎𝑖 is a prefix of 𝑠𝑏𝑗 and the length of 𝑠𝑎𝑖 is smaller than the length

of 𝑠𝑏𝑗. A number is by construction only attached to a sequence, if a

ForkNode is encountered during the construction of the DAG. Since 𝑎 and
𝑏 run in parallel, the sequences of walks represented by 𝑠𝑎𝑖 and 𝑠𝑏𝑗 both

contain the same ForkNode.

Let the length of 𝑠𝑎𝑖 be 𝑘 and let the length of 𝑠𝑏𝑗 be 𝑛. Then, 𝑘 < 𝑛, since

𝑠𝑎𝑖 is a prefix of 𝑠𝑏𝑗. Since 𝑠𝑎𝑖 being identical to 𝑠𝑏𝑗 up to the 𝑘-th position,

each sequence of a walk directly following a ForkNode being extended by a
number, and the number being separate for each different direct
successor of a ForkNode, the sequences of walks represented by 𝑠𝑎𝑖 and
𝑠𝑏𝑗 cannot both contain the same ForkNode, or both share the same

successor walk following a ForkNode, up to the 𝑘 − 1-th position of the
sequence. If the sequences of walks represented by 𝑠𝑎𝑖 and 𝑠𝑏𝑗 both

contain the same ForkNode and the same direct successor walk of this
ForkNode, they cannot run in parallel.

However, they can share a ForkNode in the 𝑘-th position of the sequence.
This means that 𝑎 ends with the same ForkNode that 𝑏 starts with and that
𝑏 is a successor of 𝑎. Thus, 𝑏 can only run after 𝑎 has been executed and is
finished. Thus, they cannot run in parallel.

3. Assumption: walks 𝑎 and 𝑏 run in parallel, and ∃ 𝑠𝑎𝑖 ∈ 𝑇𝑎 and ∃ 𝑠𝑏𝑗 ∈

 𝑇𝑏 , so that 𝑠𝑏𝑗 ∈ 𝑃(𝑠𝑎𝑖).

Then, 𝑠𝑏𝑗 is a prefix of 𝑠𝑎𝑖 and the length of 𝑠𝑏𝑗 is smaller than the length

of 𝑠𝑎𝑖 . A number is by construction only attached to a sequence, if a
ForkNode is encountered during the construction of the DAG. Since 𝑎 and
𝑏 run in parallel, the sequences of walks represented by 𝑠𝑎𝑖 and 𝑠𝑏𝑗 both

contain the same ForkNode.

Let the length of 𝑠𝑏𝑗 be 𝑘 and let the length of 𝑠𝑎𝑖 be 𝑛. Then, 𝑘 < 𝑛, since

𝑠𝑏𝑗 is a prefix of 𝑠𝑎𝑖 . Since 𝑠𝑏𝑗 being identical to 𝑠𝑎𝑖 up to the 𝑘-th position,

each sequence of a walk directly following a ForkNode being extended by a

Analysis of UML Activities as Basis for Focusing Quality Assurance

 97

number, and the number being separate for each different direct
successor of a ForkNode, the sequences of walks represented by 𝑠𝑎𝑖 and
𝑠𝑏𝑗 cannot both contain the same ForkNode, or both share the same

successor walk following a ForkNode, up to the 𝑘 − 1-th position of the
sequence. If the sequences of walks represented by 𝑠𝑎𝑖 and 𝑠𝑏𝑗 both

contain the same ForkNode and the same direct successor walk of this
ForkNode, they cannot run in parallel.

However, they can share a ForkNode in the 𝑘-th position of the sequence.
This means that 𝑏 ends with the same ForkNode that 𝑎 starts with and that
𝑎 is a successor of 𝑏. Thus, 𝑎 can only run after 𝑏 has been executed and is
finished. Thus, they cannot run in parallel. ∎

4.6.5 Complete Analyses of UML Activities with Limited Cycle and Edge Traversals

It has been shown how to create DAGs based on UML Activities using basic
elements. The token concept is used for identifying parallel walks. DANs in
such parallel walks may be executed in parallel.

In this chapter, the challenges related to using UML Activities to determine
pairs of nodes that may run in parallel with regard to cycles are discussed.
Obviously, to determine all possible pairs of DANs, all such nodes must be
contained in at least one of the considered execution instances of the UML
Activity.

It is desirable to determine such pairs in a reasonable amount of time and one
common solution is to limit the number of traversals of a cycle in the UML
Activity (see chapter 3.3).

However, it is possible that a data accessing node, 𝑢, runs in parallel with itself.
Thus, if it is possible to execute 𝑢 twice or more often in the same execution
instance, then it is also possible that there exists an execution instance where
one instance of 𝑢 is running in parallel with a different instance of 𝑢. For this
reason, some cycles must be traversed at least once (compare the definition of
cycles in chapter 4.2) if such a pair is to be determined as possibly running in
parallel.

Figure 11 illustrates a UML Activity Diagram exhibiting this situation with node
“Action2”.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 98

Figure 11: Exemplary UML Activity Diagram 2

Additionally, considering nodes and edges that are contained in at least one
execution instance, then the following conditions together are not enough to
ensure that all possible pairs of data accessing nodes, which may run in
parallel, are identified:

• all nodes of the UML Activity have been traversed at least once,

• all edges of the UML Activity have been traversed at least once, and

• all cycles of the UML Activity have been traversed at least once.

Figure 12 shows an example of a UML Activity, for which there is no way to
determine that the node “Action2” is in parallel with itself given adherence to
the above conditions. Note that the number of incoming edges to the JoinNode
“Join1”, 𝑘, need only be 2 and these conditions will already be too limiting. It
can be seen that requiring 2 ∗ 𝑑𝐷

−(𝐽𝑜𝑖𝑛1) traversals of each cycle are
necessary to ensure that all possible data races are determined for this figure.
Since 𝑘 can be varied by including additional edges, there is no fixed limit in the
number of cycle traversals that might be necessary for computing all pairs of
data accessing nodes possibly running in parallel with this requirement.

act Example 2

Activ ity Example

Initial

Merge1

Fork1

Action2

FlowFinal1

Decision1

FlowFinal2

Action1

Analysis of UML Activities as Basis for Focusing Quality Assurance

 99

Figure 12: Exemplary UML Activity Diagram 3 (2*k Cycle Traversals)

This figure can be edited slightly (see Figure 13) leading to requirements that
the number of traversals of cycles be quadratic in the indegree (more precise:
for the two JoinNodes “Join1” and “Join2”, it is 2 ∗ 𝑑𝐷

−(𝐽𝑜𝑖𝑛1) ∗ 𝑑𝐷
−(𝐽𝑜𝑖𝑛2).

This means there is no fixed limit in the number of cycle traversals that might
be necessary for computing all pairs of data accessing nodes possibly running
in parallel with this requirement. It has been shown that for all approaches
computing nodes that may run in parallel, which use hard-defined limits in the
number of cycle traversals, an example demonstrating the incompleteness of
the analysis can easily be created. This shows the limitations of the approaches
for the analysis of UML Activities discussed in chapter 3.3.

act Example 2*k

Activ ity Example

Initial

Merge1

Decision1

Fork1

Decision2

Join1

Fork2

Action2

Merge2

ActivityFinal

... 1 2 k

Action1

Analysis of UML Activities as Basis for Focusing Quality Assurance

 100

Figure 13: Exemplary UML Activity Diagram 4 (2*k*l Cycle Traversals)

By definition, the number of DAGs created depends on the number of
traversals of DecisionNodes in a UML Activity (see chapter 4.6.1 and chapter
4.6.3). If there are cycles in the activity, this results in an infinite number of
resulting DAGs. If there are no cycles, but a set of DecisionNodes {𝑢1, 𝑢2, … , 𝑢𝑛}
then the number of DAGs created is ∑ (𝑑𝐷

+(𝑢𝑖) − 1) + 1𝑛
𝑖=1 . If there are no

DecisionNodes, then one DAG is created that captures all nodes in the UML
Activity. Parallelism in a UML Activity does not affect the number of DAGs
created, but instead the number of computation threads, i.e., walks in a DAG.

Cycles are insofar related to DecisionNodes as without such a DecisionNode
inside a cycle, it would not be possible to exit a cycle, resulting in an infinite
DAG. UML Activities with a possibility to exit cycles instead lead to an infinite
number of resulting DAGs.

act Example 2*k*l

Activ ity Example

Initial

Merge1

Decision1

Fork1

Decision2

Join1

Fork2

Action3

Merge2

ActivityFinal

... 1 2 k

Action1

Decision3

Join2

1 2 ... l

Action2

Analysis of UML Activities as Basis for Focusing Quality Assurance

 101

Without a stopping criterion, cycles would thus not be analyzable. It has been
shown that any fixed limit in the number of cycle traversals is not enough for
UML Activities in general to be completely analyzed for nodes that may run in
parallel.

Thus, a dynamic stopping criterion is required, which is adapted for each UML
Activity.

In addition to the challenge of exiting cycles, nodes possibly running in parallel
to themselves must be considered in this stopping criterion.

In this regard, the criterion forming the lower bound for cycle traversals is not
related to a single DAG or to a number of nodes or edges traversed within a
DAG. Instead, all combinations of two traversals of edges must be contained in
the sum of the DAGs. A DAG, which contains all edges of a UML Activity
traversed at least twice (where possible), is called DAG*.

The addition “(where possible)” refers to the fact that some edges cannot be
traversed twice or more often. This is, e.g., true for the first edges in a UML
Activity, following the InitialNode, when there is no cycle at this point. There is
only one InitialNode as the analysis follows the transformation and
preprocessing, as shown in chapter 4.5. As there is no cycle at that point, these
edges cannot be traversed more than once. Thus, all edges until a MergeNode
is reached are ignored for this stopping criterion (but traversals are still
counted).

The following Figure 14 shows a UML Activity Diagram, for which it is not
enough to create a random DAG containing two traversals of each edge.
Instead, a certain combination of edge traversals is required.

Figure 14: Exemplary UML Activity Diagram 5 (Combination of Edge Traversals)

In the example above, the node “Action 2” may be executed in parallel to itself.
However, the edge (Decision 2, Action 2) must be traversed twice, and the

act Example combination of trav ersals

Activ ity Example

Start

Action 1

Merge 1

Decision 1

Fork 1

Decision 4

Merge 2

Decision 2

Action 2

Merge 3

Decision 3

Join 1

FlowFinal

Analysis of UML Activities as Basis for Focusing Quality Assurance

 102

walks containing these two traversals must not be successor or predecessor of
each other. The following two paths contain two traversals of the edge
(Decision 2, Action 2), but do not exhibit the parallel execution of node “Action
2”:

Path 1: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Merge 2 – Decision 2 –
Action 2 – Merge 3 – Decision 3 – Merge 1 – Decision 1 – Fork 1 – Merge 2 –
Decision 2 – Action 2 – Merge 3 – Decision 3 – Join 1 – FlowFinal.

Path 2: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Decision 4 – Join 1 –
FlowFinal.

The following two paths instead show the parallel execution of node “Action
2”:

Path 1: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Merge 2 – Decision 2 –
Action 2 – Merge 3 – Decision 3 – Join 1 – FlowFinal.

Path 2: Start – Action 1 – Merge 1 – Decision 1 – Fork 1 – Decision 4 – Merge 1 –
Decision 1 – Fork 1 – Merge 2 – Decision 2 – Action 2 – Merge 3 – Decision 3 –
Join 1 – FlowFinal.

In this example, the edge (Decision 2, Merge 3) has not been traversed. It is not
possible to traverse the edge (Start, Action 1) or the edge (Action 1, Merge 1)
more than once.

It has been shown that the challenges of detecting nodes running in parallel to
themselves and of cycle traversals cannot be solved in isolation. Only
considering nodes that may run in parallel to themselves may lead to missing
exit criteria for cycles, and to infinite DAGs. Only considering cycle traversals
may lead to missing such nodes running in parallel to themselves. Thus, the
following two challenges needs to be considered in combination:

1) all combinations of two edge traversals are needed to capture the parallel
execution of an instance of a node with another instance of the same node
(if possible).

2) how the challenge of cycles can be solved with a dynamic stopping
criterion resulting from analyzing the elements within a specific cycle and
considering the semantics of those elements, leading to the possibility to
exit cycles (when possible) while preventing infinite cycle traversals.

Only elements that may have an outdegree or indegree > 1 may influence
these criteria, as all other elements can just be traversed following the only
outgoing or incoming edge. These are ForkNodes, JoinNodes, DecisionNodes,
and MergeNodes.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 103

MergeNodes are necessary for cycles to be possible. Such nodes have an
indegree > 1 . Assuming explicit modeling (which is guaranteed by the
transformation step), at least one of the incoming edges can be traced back to
the same MergeNode, if a cycle exists. The other node type possibly having an
indegree > 1 is the JoinNode. However, a JoinNode cannot be used to initiate
or close a cycle, as the JoinNode requires tokens offered on all edges to be
traversed. This assumes the standard ValueSpecification being used. As the
ValueSpecification cannot be considered in the analysis, this assumption holds.
A ValueSpecification could be formulated, that uses an “OR” semantics, leading
to only one of the incoming edges offering a token would be sufficient to
traverse this node, basically simulating a MergeNode. However, it can be
argued that this violates the purpose of a JoinNode to synchronize incoming
flows [OM17]. Thus, such a construction can be considered as being invalid as
per the definition provided in chapter 4.6.1. The analysis only considers valid
UML Activities, and thus such a construction can be excluded without loss of
generality.

ForkNodes start parallel flows. As such, these nodes are required for a node
being able to be executed in parallel to itself. All outgoing edges of a ForkNode
are traversed in parallel, and in the creation of DAGs, a ForkNode leads to
initiating new walks within a DAG.

DecisionNodes offer alternative flows. As explained, such node types affect the
creation of new DAGs and the number of DAGs created in the analysis of a
UML Activity. These nodes also affect the traversals of edges, as only one of
the outgoing edges is following per instance of such a node within a DAG.
Thus, DecisionNodes affect challenge 1 mentioned above.

JoinNodes affect challenge 2 mentioned above, as explained. The indegree of
JoinNodes within cycles, if existing, affects the ability to progress past these
JoinNodes, and thus, to reach edges following such JoinNodes and eventually to
exit, i.e., progress past such cycles. Since, as per challenge 1, each edge needs
to be traversed at least twice, the relevant number for a JoinNode 𝑢 in a UML
Activity 𝐷 is 2 ∗ 𝑑𝐷

−(𝑢). The criterion is then created by summarizing the
numbers for all JoinNodes in a UML Activity. This criterion is a stopping criterion
and is called EmergencyExit. If there is no JoinNode, then according to challenge
1, the limit is 2.

Both criteria are counted for each DAG and each edge in a DAG individually
and only affect the current DAG. As for the criterion related to challenge 1,
some edges are ignored for this limit, as explained above.

Still, UML Activities can be created, for which this criterion cannot hold alone,
as there may also be edges after a MergeNode, which cannot be traversed
twice or more often. Thus, the second criterion is required to be processed in
combination.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 104

As shown, no hard-coded, i.e., fixed, limit for the number of cycle traversals
can be used. In this regard, the “each edge twice” criterion does not induce a
fixed limit on the number of cycle traversals, as the number of needed cycle
traversals for traversing each edge twice depends not only on the structure of
the UML Activity, but also varies from DAG to DAG (as at each DecisionNode,
for each outgoing edge, a new DAG is created).

As for the EmergencyExit, if at least one edge is traversed as often in a DAG, as
the EmergencyExit is set to, then this EmergencyExit is reached and any further
attempt to traverse the respective edge is stopped. Other parts of the DAG,
i.e., other edge traversals continue.

The creation of a DAG does not fully stop when the EmergencyExit is reached,
but just the traversal of the respective edge. This means that other parts of a
DAG might continue to be created. Because of this, there might be several
edges in one DAG, for which the EmergencyExit is reached.

When an EmergencyExit is reached, the respective DAG or walk in this DAG is
called incomplete. For avoiding misinterpretations of incomplete walks, an
“artificial EmergencyExit node” is inserted at the end of such walks, i.e., instead
of the node that would follow the edge just traversed. This artificial node is
identified during the analysis of walks and nodes contained in these walks.
These artificial nodes are interpreted as FlowFinalNodes.

Even if it is possible to traverse an edge of the UML Activity twice or more in a
single DAG, it is unclear when that edge will appear in a DAG more than once if
it will at all. Because of this, the EmergencyExit has to be reached during the
analysis to be stopped. Even if an edge is not traversed twice, and thus, the
“two edge traversal” criterion is not reached, any traversal path through a UML
Activity will either eventually lead to a FinalNode or end up in a cycle. In this
cycle, some edge is continued to be traversed, and at some point in time, the
EmergencyExit is triggering. Then, the further creation of walks will be stopped,
and the problem of infinite DAGs is avoided.

It is not guaranteed that with the above criteria, a DAG* is always created. In
some cases, this is also not possible. Creating a DAG* is on the one hand not
enough, and on the other hand, not necessary to detect all nodes that may be
executed in parallel to themselves

As shown above, it is not enough to obtain just any DAG* to find all pairs of
nodes possibly running in parallel, because in some cases, it is not enough to
traverse each edge twice, but a certain combination of edge traversals is
necessary to obtain complete results.

It is, however, not necessary to traverse each edge twice and to analyze all
possible combinations of edge traversals to find a certain pair of nodes. It is

Analysis of UML Activities as Basis for Focusing Quality Assurance

 105

sufficient to traverse some edges twice and to fulfill some combination of edge
traversals to find a certain pair of nodes (as shown above). Due to the
systematic exploration of edges and traversals, these different combinations of
traversals are captured in different DAGs. These DAGs are systematically
constructed while following edges and counting traversals of single edges.

Considering the algorithm to create DAGs in chapter 4.6.1, step 2.(b) includes
the creation of new DAGs when a DecisionNode is analyzed and the instruction
to follow each of the outgoing edges in a separate DAG. This allows to explore
a UML Activity in the breadth and then to extend the DAGs in the depth.
Because of this, it is not necessary to wait for a DAG* to be created (if it will be
created), where possible. Instead, since DAGs with different combinations of
traversals and different edge traversals are created, those edges traversed at
least twice mentioned above as some and the combinations of traversals
mentioned above as some are included in a DAG before a DAG* would be
created, if possible. Because of this, there is no need to construct a DAG* to
find all pairs of nodes possibly running in parallel. Instead, all edge traversals
and all combinations of edge traversals required are reached with using the
EmergencyExit.

After DAGs and walks have been created, tokens and sequences in the tokens
are added to each walk for each DAG. This process of attaching tokens and
sequences to walks follows the procedure defined in chapter 4.6.4.

With these tokens and sequences, walks, which may run in parallel, are
calculated by comparing the sequences in the token for each walk with each
other walk. This comparison follows the rules defined and proven to be correct
in chapter 4.6.4. The calculation of tokens and sequences is conducted in
between the post-analysis (as explained next).

Based on walks, which may run in parallel, it is trivial to extract nodes contained
in these walks. These nodes are then collected, and cleaned from duplicates.

4.7 Post-Analysis of UML Elements

As mentioned, for some elements of UML Activities, it is not sufficient or not
possible to handle the specific semantics during the transformation. Instead, a
post-analysis handling is necessary. This post-analysis handling takes place
after DAGs and walks have been created.

Some parts of the handling have to be conducted before calculating tokens
and sequences, and some parts have to be executed while identifying nodes
possibly running in parallel.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 106

The following elements require a post-analysis handling:

• CallBehaviorAction

• AcceptEventAction

• SendSignalAction

• StructuredActivityNode

• CrossingEdge

• ExpansionRegion

• InterruptibleActivityRegion

• InterruptingEdge

A CallBehaviorAction is used to invoke other behaviors, in the context of this
thesis other UML Activities. After creating DAGs and walks, each walk is
analyzed for such CallBehaviorActions.

If the call is synchronous, all the elements of the called activity, except for
InitialNodes and FinalNodes, are inserted into the current walk, replacing the
CallBehaviorAction. Afterwards, this walk is again analyzed for
CallBehaviorActions, as the called activity may contain other
CallBehaviorActions. As per the assumption that all elements contained in a
UML Activity can be executed, all elements of the called activity can be
included. The order, in which the elements of the called activity are executed,
is not important in this context, because this order is analyzed when analyzing
this called UML Activity itself. If a CallBehaviorAction can be executed in parallel
to another node, all elements of the called UML Activity may run in parallel to
this node. After this handling, all CallBehaviorActions are eliminated.

It is possible that CallBehaviorActions in UML Activities form a cycle, i.e., a node
in activity 𝐶 calls an activity 𝐷, in which activity 𝐶 is called. In such a case, the
insertion of nodes ends after inserting all the elements of activity 𝐶 in the
currently analyzed walk of activity 𝐶. In case of such a cycle, all elements of
activity 𝐶 may run in parallel to any node possibly running in parallel to the
CallBehaviorAction of activity 𝐶 initiating this cycle. As all necessary
information is already obtained and duplicated entries cannot provide
additional information, it is not necessary to insert further elements, and
further CallBehaviorActions, continuing this cycle, are just deleted in this walk
and the cycle is resolved.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 107

In case the call is asynchronous, the flow continues with the outgoing edge of
the CallBehaviorAction, while the called UML Activity is executed in parallel. A
new walk is created, which runs in parallel to the further elements of the walk
containing this CallBehaviorAction instance. This is achieved by replacing the
CallBehaviorAction with a ForkNode. The walk is then split at this ForkNode, and
the elements of the called activity are placed in a new walk, which runs in
parallel to the walk containing all the elements of the original walk, which
follows the CallBehaviorAction. The newly formed walks follow the rules for
walks stated in chapter 4.6.1. The reflections on cycles using
CallBehaviorActions also hold for asynchronous calls.

AcceptEventActions and SendSignalActions are checked per DAG. As each
signal sent by a SendSignalAction can only be received by one
AcceptEventAction, it is necessary to track which signal sent by a
SendSignalAction has already been received and used. For each
AcceptEventAction to continue executing, a corresponding signal has to be
received. Because of this, for each AcceptEventAction it is checked if there is a
corresponding SendSignalAction, whose signal has not been consumed yet,
and which has been executed before, or which is executing in parallel.

The corresponding SendSignalAction can be contained in the same walk or in
another walk as the AcceptEventAction waiting for the signal. In the latter case,
this walk has to be executed either before or in parallel to the walk containing
the AcceptEventAction. If both are contained in the same walk, then the
SendSignalAction has to be executed before the AcceptEventAction is executed.

If these conditions are not met, then an AcceptEventAction waits for a signal,
which will not be sent, and the node cannot be executed. In such cases, the
DAG and the walk containing such an AcceptEventAction are shortened. The
walk containing this node is shortened at the position of this node. All walks,
which are successors of this walk, are deleted, as they cannot execute. This
shortened DAG can then be analyzed using tokens as described.

The post-analysis handling of InterruptibleActivityRegions and InterruptingEdges
consists of using additional information obtained during the transformation.
For each node contained in such an InterruptibleActivitiyRegion, the ID of this
region is added to the node and the node is marked as “interruptible”.

Afterwards, the InterruptingEdges are checked. For the node connected by the
InterruptingEdge as head, and all nodes following this node in a DAG, the ID of
the source region is added, and the flag “interruptingFollower” is set.

Afterwards, for each node it is checked, if it is interruptible. If yes, then it is
checked if there are other nodes marked as “interruptingFollower”. If this is the
case, and the IDs of the regions are the same, then these nodes cannot run in
parallel. Such an InterruptibleActivityRegion can be interrupted at different

Analysis of UML Activities as Basis for Focusing Quality Assurance

 108

stages of execution, i.e., different nodes may have been executed when the
execution of the nodes inside a region is interrupted, and this needs to be
considered during the handling of such constructs.

There is a special semantics of AcceptEventActions in such regions (chapter
4.5.8). Also, CrossingEdges currently executing when the interrupt is triggered
continue to execute.

StructuredActivityNodes, along with CrossingEdges, are again handled post-
analysis using additional information. For each edge, the information whether
this edge is a CrossingEdge is contained in the XML file. For the creation of the
DAGs, these edges have been ignored.

For each CrossingEdge, all walks in each DAG are examined. If any of the nodes
in a walk is the tail of this CrossingEdge, then all nodes before this node and the
node itself in this walk are marked as “incoming” and the ID of the CrossingEdge
is added. All nodes in predecessor walks of the current walk are also marked as
“incoming” and the ID is added to each of these nodes.

Then, the node that is the head of this CrossingEdge is searched for. This node
and all succeeding nodes in the walk containing this node, and all nodes in all
successor walks are marked as “outgoing” and the ID of the CrossingEdge is
added. Any node may be contained several times in a DAG, and it is crucial to
not only identify the correct node, but also the correct instance of a node.

CrossingEdges define a sequential ordering. Thus, when a pair of nodes that
may run in parallel is found, the IDs and “incoming” and “outgoing” marks are
examined. If one of these nodes is “incoming” for an ID, for which the other
node is “outgoing”, they cannot run in parallel.

As mentioned in chapter 4.5.2, ExpansionRegions in parallel or streaming mode
are transformed to StructuredActivityNodes, and the mode can be attached to
this StructuredActivityNode for further analysis, if modelers additionally use
assertions regarding duplicate object references in a collection. Analyzing such
assertions is not implemented, as there is no standardized method for these
assertions.

4.8 Discussion

As described in chapter 3.3, several approaches exist to analyze UML Activities.
In contrast to those approaches, the solution provided in this thesis includes a
formal and theoretic basis for analyzing UML Activities.

In the following, an assessment of the fulfillment of the requirements stated in
chapter 3.3.12 is presented.

Analysis of UML Activities as Basis for Focusing Quality Assurance

 109

Requirement 1: only one of the approaches discussed considers
CallBehaviorActions in the analysis [LTN19].The analysis is limited to
synchronous execution of the called activity and does not consider cyclic calls
of activities. In this regard, the analysis may not terminate in case of cycles.
The solution advances the state of the art in that CallbehaviorActions with
synchronous and asynchronous calls are considered, and in that the solution
considers cyclic calls of activities, as shown in chapter 4.7. This ensures
termination of the analysis without missing information with regard to the
purpose of the analysis.

Requirement 2: two of the approaches discussed are not limited to a single
InitialNode in the analysis [CLL07], [LTN19]. The solution presented in this
thesis also considers multiple InitialNodes.

Requirement 3: as most of the approaches discussed, the solution presented in
this thesis considers multiple FlowFinalNodes and ActivityFinalNodes.

Requirement 4: the challenge of cycle traversals is one of the key challenges to
a complete analysis of UML Activities (see chapter 3.6). For the approaches
discussed in chapter 3.3, there is either no information on handling cycles
([LWL08]), or a fixed limit for the traversals is set, e.g., a limit of one cycle
execution ([Su15]), at most two cycle traversals ([SM08]), or traversing each
edge once during a loop and twice overall ([CLL07]). The most flexible
approach discussed uses a hard limit, which can be set by users ([Xu08]). Such
limits are not sufficient and for each hard limit, UML Activities can be created,
for which such algorithms produce incomplete results (see chapter 4.6.5). To
solve this challenge, a dynamic limit based on the structure of the UML Activity
has been introduced and discussed with regard to completeness of the results
(chapter 4.6.5).

Requirement 5: most of the approaches discussed rely on pairs of ForkNodes
and JoinNodes with regard to the analysis of UML Activities [Su08], [SZL09],
[Su15], [SM08], [XLL05], [Xu08], [CLL07], [Bo11b], [KS09], [Ki07a], [VA14]. As
such relations of ForkNodes and JoinNodes are not defined in the UML [OM17],
this is a limitation. The solution presented in this thesis considers ForkNodes
and JoinNodes independent of each other. Two of the approaches discussed
also set no limitations on ForkNodes and JoinNodes [LWL08], [LTN19].

Requirement 6: as shown in chapter 4.3, the UML offers a variety of elements
for modelers. An approach for the analysis of UML Activities should therefore
not be limited to a small subset of the elements, but consider most, if not all of
the possibilities provided. Only two of the approaches discussed are able to
consider more than the basic elements (see chapter 4.4.1). Xu et al. consider
ExpansionRegions to a limited extent, ExceptionHandlers and
InterruptibleActivityRegions [Xu08]. Lima et al. consider CallBehaviorActions to a
limited extent, SendSignalActions, and AcceptEventActions [LTN19]. However,

Analysis of UML Activities as Basis for Focusing Quality Assurance

 110

all of the other elements discussed in chapter 4.4.2 are not supported. The
solution presented in this thesis instead advances the state of the art in that all
elements of UML Activities, for which both semantics and a definition of its
representation are given, are considered (see chapters 4.5, 4.6, and 4.7).
Elements, which are not fully specified and standardized in the UML, cannot be
considered due to a missing basis for identification and recognition. Examples
of such elements are assertions for duplicate data references regarding
ExpansionRegions in parallel and in streaming mode. Note that this may not
lead to false positives, as the results of the analysis serve as an input for
dynamic data race detection, and not to directly identifying data races. As the
elements of ExpansionRegions are considered nevertheless, this may also not
lead to false negatives in the sense of not identifying classes, which should be
instrumented in dynamic data race detection.

The solution presented in this thesis tackles the challenges described in
chapter 3.6 and closes the gaps left by the approaches discussed in chapter 3.3
and summarized in Table 1. The assessment shown in this table is extended
with the solution presented in this thesis, resulting in Table 4.

Approach

Require-
ment 1

Require-
ment 2

Require-
ment 3

Require-
ment 4

Require-
ment 5

Require-
ment 6

Multiple
UML

Activities

Multiple
Initial
Nodes

Multiple
Final

Nodes
Cycle

Traversals
Forks and

Joins
UML

Elements

Sun - - - - - -

Sapna - - - - - -

Xu - - + 0 - 0

Chandler - + + - - -

Lei - - + ??? + -

Boghdady - - - - - -

Kundu - - + - - -

Kim - - - - - -

Verma - - + - - -

Lima 0 + + - + 0

Klaus + + + + + +

Table 4: Assessment of Existing Approaches and the Solution Presented in this Thesis

Analysis of UML Activities as Basis for Focusing Quality Assurance

 111

4.9 Summary

In this chapter, the analysis of UML Activities has been presented. As the
analysis is based on a formal foundation using graph theory, the most
important graph theoretic concepts have been presented.

The UML offers a variety of elements with regard to UML Activities. To analyze
UML Activities, a three-step approach was introduced. First, the UML Activities
are transformed, and the set of elements provided by the UML is reduced:
some elements are preserved and other elements are transformed. The
analysis is then conducted on the adapted UML Activities. However, not all
elements of the UML can be transformed with preserving their complete
semantics. Thus, they need to be considered in the post-analysis step.

This analysis is conducted by creating DAGs out of UML Activities. Tokens are
then attached to the walks contained in each DAG. By analyzing these tokens,
walks, which may be executed in parallel to other walks, are identified. Walks
always represent a sequential execution of the DANs contained in these walks.
Thus, by identifying such walks, nodes, which may be executed in parallel to
other nodes, are identified, and the goal of the analysis is fulfilled.

The analysis of existing approaches in the analysis of UML Activities revealed
three main gaps: analyzing sets of connected UML Activities (Requirement 1),
handling Cycle Traversals within a UML Activity (Requirement 4), and support
for a complete set of UML Activity Elements (Requirement 6). It has been
shown how these gaps are closed by the solution presented in this thesis.

Handling cycle traversals within a UML Activity required introducing two
criteria for traversals. On the one hand, a node may run in parallel to itself,
which introduces one criterion regarding edge traversals. On the other hand, it
is required that incoming edges of JoinNodes are considered, to enable the
outgoing edge to be traversed. Both criteria are considered for edges in each
DAG. UML Activities are explored in the breadth, and the DAGs are then
extended in the depth. This ensures (1) that the necessary combinations of
edge traversals to detect all nodes, which may be executed in parallel to
themselves, are covered in a DAG, (2) that cycles can be left, when possible,
and (3) that traversals are aborted when a certain amount of traversals is
reached, thus preventing infinite DAGs and infinitely many DAGs. This amount
is specific to each UML Activity and is calculated automatically during the
analysis.

Finally, this chapter contained formal proofs with regard to the creation of
DAGs and the analysis.

It has been proven that every execution instance of a UML Activity results in a
unique DAG. Two parallel threads cannot be contained in one path in a DAG. A

Analysis of UML Activities as Basis for Focusing Quality Assurance

 112

path in a DAG is always related to walks. If two walks 𝑤1 and 𝑤2 are executed
in parallel then so are all pairs of instances of DANs from the UML Activity 𝐷
(𝑢1, 𝑢2) with 𝑢1 ∈ 𝑤1 and 𝑢1 ∈ 𝑤2.

The number of DAGs created with regard to DecisionNodes and cycles
contained in a UML Activity has been defined and proven to be correct (without
considering criteria for limiting edge traversals).

Finally, it has been proven how the tokens and the sequences in the tokens can
be used to correctly and completely identify walks, which may be executed in
parallel.

Analysis of Data Race Reports

 113

5 Analysis of Data Race Reports

In this chapter, the solution for the analysis of data race reports is presented.
This solution is targeted at the second practical problem, as defined in chapter
1.2.

The solution reads in data race reports, and preprocesses the contents of those
data race reports. The results are then visualized, enabling users to profit from
the preprocessing and possible effects of this preprocessing on the efficiency
of the analysis of data race reports.

5.1 Research Approach

The research approach consisted of several steps. As a first step, the
characteristics of data race reports and the data races contained were
analyzed.

Based on the insights gained, the next step was to examine how to utilize those
characteristics with the goal to improve the efficiency in the analysis of data
race reports. This utilization resulted in the preprocessing of data race reports.

Finally, a concept for the visualization of the preprocessed data race reports
was developed and applied.

Following the research approach described above, the characteristics of data
race reports are presented next (chapter 5.2).

The preprocessing of those data race reports is then introduced in chapter 5.3,
followed by the visualization of the preprocessed data race reports (chapter
5.4).

This chapter closes with a summary and a comparison of the solution
presented in this thesis with the approaches discussed in chapter 3.5, including
an assessment with regard to the requirements for a solution defined in
chapter 3.5.

Analysis of Data Race Reports

 114

5.2 Characteristics of Data Race Reports

Reconsidering the definition of a data race from chapter 2.2, originating from
Netzer and Miller, a data race between two events 𝑎 and 𝑏 over a set of

program executions 𝐹6 exists, if

1) A data conflict exists in a program execution 𝑃 between 𝑎 and 𝑏, and

2) There exists a program execution 𝑃’ ∈ 𝐹, containing events 𝑎’ and 𝑏’,
such that 𝑎’ ↛ 𝑏’ and 𝑏’ ↛ 𝑎’ [NM92].

Based on this definition, the following observations can be made with regard
to characteristics of data races:

a) A data race is related to one shared memory location (due to the data
conflict).

b) A data race is related to two accesses. Due to the ordering relations
defined above, those accesses are concurrent.

c) An access can either be a read or a write access. In the following this is
called access type. At least one access is of the access type write (due to
the data conflict).

d) Since those accesses are found in a program execution, resulting from an
execution of source code, the accesses are located in this source code.
There is no restriction on where this access happens.

e) Furthermore, there is no restriction on the number of data races related to
a shared memory location, or on the number of times an access may be
related to a data race.

Analyzing data race reports, more information on characteristics can be
identified. Most of those characteristics are general in the sense that many
different data race reports stemming from different dynamic data race
detection tools may allow to extract this information. However, the following
insights are based on the data race reports produced by the publicly available
dynamic data race detection tool RV-Predict, which has been used in the

course of this thesis, and to which is referred in chapter 1.3, in the running
example.

Any data race report may contain multiple entries, i.e., many different data
races. The reasons for this are technical and not related to the characteristics

6 Consider the relation of 𝐹 and 𝑃defined in chapter 2.2: 𝐹 contains the same events as a

prefix of 𝑃.

Analysis of Data Race Reports

 115

of data races. The following Figure 15 shows an exemplary entry for a detected
data race.

Figure 15: Data Race Entry in a Data Race Report

The entry shows one data race (line 53) to a shared memory location

org.apache.catalina.startup.ContextConfig.context.

Two accesses can be seen, hierarchically subordinated below this data race.
One access is listed in lines 54-61, and the second one in lines 63-66. Each

of the accesses has an access type (lines 54 and 63). The source code location

for each access is listed one line below (lines 55 and 64). The second listed

access, e.g., is of type write, and located in the source code class
ContextConfig.java, in source code line 297.

In addition to characteristics a) to e) described above, this entry allows to
identify additional characteristics, related to those data race reports.

f) An access can be guarded by one or more locks (see chapter 2.3). This is
shown in line 54.

g) In the data race report, an access has trace information, i.e., not only the
source code location of the access itself is listed, but also source code
locations related to the flow of execution (lines 55-61). In the following,

this information is referred to as call history.

h) As can be seen in lines 55-61, the locks related to the access are acquired

during the execution of the program, and at different locations than the
access itself (lines 56 and 59).

i) Consistent to characteristic b), each access is executed by a different
thread. The threads of the accesses are listed in lines 54 and 63.

j) Each thread has an origin. Such origins can be seen in lines 60 and 66.

This can be either a source code location or the current thread is the main
thread, i.e., it is created at the start of the system under test.

Analysis of Data Race Reports

 116

Summarized, the characteristics of data races contained in data race reports
are shown in the following Figure 16.

Figure 16: Characteristics of Data Races in Data Race Reports

The constraint that at least one of the accesses of a data race is a write access
is not shown in this figure. The reason is that if this constraint is not fulfilled,
then there is no data race, and thus the access is not contained in a data race
report (assuming that no pairs of read-only accesses are contained in that data
race report, as such pairs cannot form a data race).

5.3 Preprocessing Data Race Reports

Based on the relations defined in Figure 16, the central element chosen for the
preprocessing was not a data race, but an access, as each element can be
associated to a specific access. This is in line with the idea presented in [Ko15].

Furthermore, as there can be multiple data races with regard to one variable, it
is not enough to focus the analysis of data race reports on a specific data race.

class Data Race

Data Race Shared Memory

Location

Access

+ Access Type

Source Code

Location

Lock

Call History

Thread

0..*

protects

0..*

1

contains

0..*

0..*

acquired at

1..*

0..*

originates at

0..11

leading to

0..*

1

associated to

0..*

2

associated to

0..*

1

executes

0..*

Analysis of Data Race Reports

 117

Instead, all accesses to that variable need to be considered for eliminating
issues in the source code. The following Figure 17 shows an example, illustrated
with results of the dynamic data race detection using RV-Predict.

Figure 17: Exemplary Contents of a Data Race Report (Pictorial Representation)

This figure shows four data races, which are related to a total of four source
code locations, all in source code class StandardContext.java. All these

data races are related to the same variable StandardContext.context.

Eliminating only one of those data races does not necessarily reduce the
amount of source code locations related to a data race.

Assuming that Data Race 1 is eliminated by inserting locks protecting the
accesses in line 2159 and in line 5451, then those source code locations

might still be related to data races (this depends on the exact mechanism used
for eliminating the data race). The access in line 2159 is part of Data Race 3,

and the access in line 5451 is part of Data Race 2. Further assuming that

afterwards, Data Race 2 is eliminated by inserting locks then the access in line
2154 might still be related to a data race, as it is part of Data Race 4. Finally, if

afterwards Data Race 3 is eliminated by inserting locks protecting the accesses
in line 2159 and in line 2155, Data Race 4 might still be present, although all

the accesses contained in this data race already have been treated in the
context of other data races. This holds, if the locks inserted for eliminating one
data race are not consistent with the locks inserted for eliminating other data
races.

Besides the need to analyze all data races with such an approach, the extensive
usage of locks may lead to introducing deadlocks to the system.

When instead focusing on the distinct accesses related to a data race, four
different source code locations can be identified, as shown in Figure 18. Due to
this, the effort necessary may be reduced, since less source code locations are

Analysis of Data Race Reports

 118

to be examined, as two of the source code locations were examined twice in
the former example. In addition, the attention may be raised to take care of
these accesses in a consistent way.

Figure 18: Exemplary Contents of a Data Race Report, Focused on Distinct Accesses (Pictorial
Representation)

Thus, when focusing on accesses instead of data races as a whole, a view on
issues in the source code may be induced. In addition, the example above has
shown that such data race reports may contain multiple entries of the same
access. Whenever there are at least two accesses related to the same variable,
with the same access type, at the same location (source code class and line),
these are called duplicates.

Any data race report may also contain duplicate data races, which can be
broken down into sets of duplicate accesses. In addition, as a specific source
code location may be executed by multiple threads, a single data race may also
contain the same access twice.

Note that the definition of duplicates is only related to the access type, the
variable, and the location. As such, these duplicate accesses may still differ in
terms of the call history, and thus in terms of the locks acquired up to the
specific access. As such, duplicates are identified during the preprocessing, but
may not be deleted.

This information is used for preprocessing data race reports. The tool for
preprocessing and visualizing data is written in C#. Users can import sets of

data race reports in textual form, i.e., a root folder is selected, and all files and
subfolders are automatically imported.

During the import, all the entries of the data race reports are read in and stored
in a data structure. The import process relies on the syntax of data race reports
as shown in Figure 15. The data structure is created based on the analysis of
the characteristics of data races and data race reports, and follows Figure 16.

Analysis of Data Race Reports

 119

By analyzing all accesses, duplicate entries are identified and a flag is set. In
addition, statistical information is processed.

5.4 Visualizing Preprocessed Data Reports

The information is then processed and provided to users in a tabular form.
Each line in the table shows one of the accesses found. The columns show,
among others, the variable, the source code class and line, the access type, the
IDs of the locks held, the thread ID, and the origin of the thread. Below this
table, the trace information of an access is provided in a separate field. Each
line additionally shows if an access is contained multiple times, i.e., duplicates
are marked in a separate column. The entries may be sorted alphabetically or
by numbers in each column.

Users have the option to focus on one of the variables prone to data races, to
focus on one the affected source code classes, or see all information. In
addition, duplicates may be hidden. The tool also provides an option to add a
status in free text to an access or to an access and all duplicates at once, and to
mark an access or an access and all duplicates as solved. Such solved entries
can also be hidden. However, the tool is still a prototype and there is currently
no option to save and reload these results.

Finally, statistical information shows the number of files read, the number of
accesses, and the number of different variables and source code locations
affected, differentiated as overall numbers, numbers according to a filtered
view, and according to a view with hidden entries. Figure 19 shows a
screenshot of the tool.

The statistical information reveals that in summary 4,164 entries have been
read in by the tool. As each data race is related to exactly two accesses, 2,082
data races have been processed. The current table contents, defined by setting
the focus to all, a specific variable, or a specific source code class, in this
example set to the variable StandardContext.context, encompass 52

entries (shown in the statistical information as “Current”). The current view,
defined by selecting whether or not to ignore duplicate entries or solved
entries, is set to ignoring duplicate entries, and contains four entries.

The entries shown in the screenshot are the same as presented in Figure 18.
The current table contents relate to all data race reports with regard to the
variable StandardContext.context, showing that the example shown

in Figure 17 only represents a part of all data races with regard to that variable.

Analysis of Data Race Reports

 120

Figure 19: Screenshot of the Tool for the Analysis of Reported Data Races

5.5 Summary

The solution for the analysis of data race reports differs from all the
approaches discussed in chapter 3.5 in that it is the only solution focusing on a
simplified presentation of accesses in data race reports without the intent to
visualize information. The approaches presented by Pande [Pa19b], Trümper
[Tr14] and Koutsopoulos et al. [Ko15] focus on visualization aspects, and only
one of those approaches [Ko15] is targeted at data races. Walker et al. also
considered a need for a succinct presentation of the results, but focus on static
analysis, and not on concurrency [Wa20].

Thus, the analysis and the comparison of the solution presented in this thesis
to approaches presented in the literature had to be reduced to a comparison
between two approaches – the one presented in this thesis and the approach
presented by Koutsopoulos et al. [Ko15].

Requirement 1 - Duplicates: both approaches consider duplicate entries.
However, while in [Ko15], the information is lost, the solution presented in this
thesis provides a choice on whether duplicates are shown or just ignored, i.e.,
hidden. In addition, the solution presented in this thesis includes information

Analysis of Data Race Reports

 121

on the total number of entries, the number of duplicate entries and the
number of distinct entries.

Requirement 2 – Focus on shared variables: both approaches enable to focus
on accesses related to shared variables, but differ in the presentation of that
information. The approach of Koutsopoulos et al. presents all shared variables
in one view, and focuses on the files, within which accesses to those shared
variables happen. The authors admit the complexity of such a view [Ko15]. The
solution presented in this thesis instead shows all the shared variables in a
simple list. When such a shared variable is selected, the focus is on accesses,
not on files. This emphasizes the focus of the solution presented in this thesis,
to provide guidance on the elimination of data races. In addition, the
knowledge about how many accesses exist with regard to such a shared
variable, is directly visible, while in the approach presented in [Ko15], all the file
listings need to be inspected for obtaining this information.

Requirement 3 – Focus on source code classes: the solution presented in this
thesis is the only approach providing a focus on source code classes, again
providing directly accessible information on problematic accesses and on
statistical information.

Requirement 4 – Status tracking: no information could be found with regard to
the ability of any of the approaches discussed in chapter 3.5 with regard to the
tracking of the status of assessing the entries. The solution presented in this
thesis allows setting the status of an access to “solved” and hiding such solved
entries. This status can automatically be transferred to all duplicate entries.
However, at the time of writing this thesis, the solution was still a prototype,
and the ability to save a set of entries together with the status for later
continuation of the work was not implemented.

Requirement 5 – Information preservation: the solution presented in this thesis
does not delete any part of the information processed. All processed
information is preserved and can be seen by users. The approach of
Koutsopoulos et al. instead deletes duplicates [Ko15], and thus does not
preserve all available information.

In addition to the fulfillment of the requirements introduced in chapter 3.5, the
solution presented in this thesis is unique in that it provides knowledge in the
form of statistical information. Whether such knowledge is useful, and if the
fulfillment of those requirements is in fact leading to a higher efficiency in the
analysis of data race reports is not guaranteed and has to be assessed. A
controlled experiment assessing such potential efficiency improvements is
presented in chapter 6.5.

Analysis of Data Race Reports

 122

Examinations of Efficacy

 123

6 Examinations of Efficacy

In this chapter, different aspects of the solution presented in this thesis are
discussed and analyzed. The purpose of this chapter is to examine the analysis
of UML Activities, to assess the completeness of this solution in practice, and to
study possible effects of the solution on the efficiency.

Thus, this chapter contains a description of the research approach used for the
examination of efficacy (chapter 6.1), followed by an exemplary application of
the solution to demonstrate its practical usage (chapter 6.2). Aligned on the
steps of the overall process, depicted in Figure 4, different important aspects
are then examined. These examinations relate to the completeness of the
analysis of UML Activities (chapter 6.3), possible efficiency improvements in the
dynamic data race detection (chapter 6.4), and possible efficiency
improvements in the analysis of data race reports (chapter 6.5).

6.1 Research Approach

The basis for the research conducted and presented in this thesis was a
thorough understanding of the current state of the practice and the existing
practical problems, as stated in chapter 1.2. A study of the state of the art
revealed gaps, which have led to defining scientific problems and related
goals. For these goals, research objectives had been defined, and hypotheses
have been stated, defining benefits that were intended to be achieved and
defining how the fulfillment of these goals shall be assessed. Summarized, the
practical and scientific problems, and the goals were defined in chapters 1.2
and 1.3 as shown in the following Figure 20.

Figure 20: Problems and Goals Related to this Thesis

Examinations of Efficacy

 124

The overall goal of this thesis was the efficiency improvement in the quality
assurance process for data races. Analogous to the quality assurance process
being split up into finding data races and eliminating data races, two practical
problems have been defined, both related to the efficiency in the respective
field. The underlying scientific problems dealt with using knowledge about the
systems under test and the detected data races to enable efficiency
improvements.

Scientific problem 1 was covered by analyzing UML Activities, representing the
dynamic behavior of a system, to gain the knowledge required to enable the
required efficiency improvements in the dynamic data race detection.
Scientific problem 2 was covered by analyzing data races and the reported
data races, to provide guidance and knowledge about these detected data
races, to enable efficiency improvements.

The goals were closely aligned with the problems defined, and were thus
targeted at the intended efficiency improvements, both in the detection of
data races and in the analysis of detected data races.

Based on these goals, hypotheses have been defined. As already stated in
chapter 1.3, those hypotheses were:

Hypothesis 1 – Complete and Correct Analysis (Goal 1)

H1. The analysis of the representation of the dynamic behavior of a system for
parallel elements is complete and correct, .i.e., there are no false positives and
no false negatives.

Hypothesis 2 – Efficiency Improvement in the Dynamic Detection of Data
Races (Runtime Overhead) (Goal 1)

H2. Using the focused approach for the instrumentation, the runtime overhead
of test execution of a system under test is reduced compared to the runtime
overhead using the same test execution technique on the same system under
test without the focused approach. The reduction in the runtime overhead is at
least inversely proportional to the amount of parallelism in the representation
of that system under test.

Hypothesis 3 – Efficiency Improvement in Analyzing Data Races (Goal 2)

H3. Using the log preprocessing, the effort for results analysis is at least 40%
less with at least the same effectiveness compared to using the unprocessed
log files.

Examinations of Efficacy

 125

Hypothesis 3 has been split up into:

Hypothesis 3.1 – Efficiency Improvement in Analyzing Data Race Reports for
Data Races (Goal 2)

H3.1. Using the log preprocessing, the number of analyzed reported data races
in a given amount of time is at least 40% higher compared to using the
unprocessed log files.

Hypothesis 3.2 – Efficiency Improvement in Analyzing Data Race Reports for
Data Races affecting a Variable in the Source Code (Goal 2)

H3.2. Using the log preprocessing, the number of analyzed reported data races
related to specific variables in a given amount of time is at least 40% higher
compared to using the unprocessed log files.

Hypothesis 3.3 – Efficiency Improvement in Analyzing Data Race Reports for
Data Races affecting a Source Code Class (Goal 2)

H3.3. Using the log preprocessing, the number of analyzed reported data races
related to specific source code locations in a given amount of time is at least
40% higher compared to using the unprocessed log files.

A crucial step in the overall research was to decide, how to evaluate these
hypotheses.

The first hypothesis was evaluated using a mixture of methods. Since this
hypothesis targets an analysis, which is based on formal methods, the
algorithms were formally proven to be correct and complete, as shown in
chapter 4.6. However, this encompasses only the theoretic part. From a
practical point of view, the challenge of limiting possibly infinite cycle
traversals while retaining complete results is critical to the completeness of the
results. Thus, it was decided to assess the completeness of the results using
exemplary UML Activities of varying complexity (see chapter 6.3). It was not
possible to conduct an assessment of UML Activities to an extent that would
provide generalizable results, because the possibilities to combine elements of
UML Activities are too high to provide a set of UML Activities adequately
representing all possible combinations of elements and thus all possible UML
Activities. Still, the solution to the analysis has been shown to be complete in
theory, and regarding the practical application, the challenge can be reduced
to the question whether the chosen stopping criteria allow obtaining complete
results, or whether they need to be adjusted.

The second hypothesis was evaluated using an exemplary examination (see
chapter 6.4). Such an exemplary examination does not allow drawing
generalizable conclusions. Since applications can have different levels of

Examinations of Efficacy

 126

parallelism, a representative experimental evaluation would need to include
these different levels of parallelism. However, even when assuming that a
representative set of applications could be composed, both test cases and
models of the dynamic behavior would be required. In addition, single source
code classes can be of varying complexity and thus may induce a varying
overhead in the runtime when instrumenting such a class and analyzing the
data collected for possible data races, and this needs to be considered when
composing such a representative set of applications. As such, composing such
a set of applications and conducting the necessary analyses requires too much
time to be included in this thesis. This is therefore future work.

Hypothesis 3 targets the efficiency in the analysis of reported data races.
Although theoretical discussions on the solution provided in this thesis indicate
a possible improvement in the efficiency, this indication does not allow
drawing any conclusions. Thus, it was decided to evaluate these hypotheses
using a controlled experiment (see chapter 6.5).

6.2 Exemplary Application

This chapter demonstrates an exemplary application of the solution,
highlighting how the different aspects of the solution support steps in the
overall process of dynamic data race detection for data races.

Preconditions for the exemplary application of the solution presented in this
thesis are the availability of the source code to test for data races, and of UML
Activities representing the dynamic behavior of the system under test. As the
solution presented in this thesis is not related to the dynamic data race
detection itself, the availability of a tool for such dynamic data race detection
together with test cases is a further requirement for the overall process.

The solution requires the input to be in a defined format. Although such a
format may be changed, the current versions of the tool for the transformation
of models requires the UML Activities to be modeled using Enterprise

Architect, as mentioned in chapter 4. The tool for the analysis and

processing of data race reports requires the reports in a format as created by
RV-Predict, as mentioned in chapters 1.3 and 5.2.

The overall process is depicted in the following Figure 21. The UML Activities
have been modeled using Enterprise Architect. These models are

read in and analyzed using the algorithms discussed in chapter 4. The results
are used for focusing the instrumentation. After the execution of the test
cases, the log files are read in, and processed and presented to users as
discussed in chapter 5. The preprocessed data race information can then be
used for debugging the system under test.

Examinations of Efficacy

 127

Figure 21: Simplified Process of Dynamic Quality Assurance for Data Races with Efficiency Improvements

The system under test used throughout this thesis, including this exemplary
application, is Apache Tomcat in Version 8.0.26. This application is open

source, and is shipped together with test cases. Those test cases are used for
the dynamic data race detection. However, there were only rudimentary
models of the dynamic behavior available. Thus, they had to be created
manually.

This has been done by executing the shipped test cases in an instrumented test
run. The logs, containing trace information, have been analyzed, and the call
history has been analyzed in detail by inspecting the source code, to analyze
how the control flow is exactly defined. As examples, it may not be clear from
the log files, if a method call from one source code class to a different source
code class is dependent on a decision (and a DecisionNode has to be set), or
where such alternative flows are merged (and a MergeNode has to be set).

As the same behavior may be modeled in different ways, using different
amounts of UML Activities, and different combinations of nodes, there is not a
single solution. The completeness of the model can, however, be checked by
comparing the results of the dynamic data race detection using complete
instrumentation and using the focused instrumentation. As the tool used for
the dynamic data race detection used predictive data race analysis, those
results may, e.g., differ, when the focused instrumentation would not include a

Examinations of Efficacy

 128

source code class containing an access related to a data race, or when the
model would not correctly represent classes creating new threads,
synchronization points, or decisions leading to alternative control flows. The
model created contains 282 nodes and 314 edges. An excerpt of this model,
meant for illustration purposes, and not for readability, can be seen in the
following Figure 22.

Figure 22: UML Activity Representing Apache Tomcat (Excerpt)

The model is exported as XMI file using standard functionality of
Enterprise Architect. This file is read in by the tool

ActivityReducer. This tool has been created as part of a master thesis,

and is extensively described in [Zi16]. This tool conducts the transformation as
defined in chapter 4.5 and saves the results as an XML file. A screenshot of this
tool is shown in the following Figure 23.

This XML file then serves as input to the tool ADDAG. This tool creates DAGs in

a first step and then analyzes those DAGs as defined in chapters 4.6 and 4.7.
The emergency exit, defined in chapter 4.6.5, has been set to 4. The following
Figure 24 shows a screenshot of the tool. The result of the analysis is a list of
nodes. Those nodes represent source code classes, as defined in chapter 1.4,
and can thus be directly used to focus the instrumentation of the dynamic data
race detection.

Examinations of Efficacy

 129

Figure 23: Screenshot of ActivityReducer

Figure 24: Screenshot of ADDAG

As mentioned, Apache Tomcat is shipped with test cases. These test cases

are executed with JUnit. The source code can be used to build the

executable file using Apache Ant. To instead execute the test cases, the

command ant test is used. The test cases to execute, along with the tool to

execute, are configured in the file build.xml, which is shipped together

Examinations of Efficacy

 130

with the source code, and which is used to define different properties during
the build process, which can be set without changing the source code.

In this file, the properties for JUnit are set, and the dynamic data race

detector can be inserted, as shown in Figure 25, line 1430. A java agent is

a jar file using the instrumentation API provided by the Java Virtual

Machine. The dynamic data race detector RV-Predict is provided as such

an agent. This allows executing the test cases for the dynamic data race
detection.

Figure 25: Screenshot of build.xml (Full Instrumentation)

As the dynamic data race detector can be configured using parameters in this
file, the list of source code classes is added as parameter. Those parameters
allow including and excluding source code classes. All source code classes
obtained from the analysis of the behavioral model are included, and all others
are excluded, as shown in Figure 26, line 1430.

Figure 26: Screenshot of build.xml (Focused Instrumentation)

The test cases and the dynamic data race detection with focused
instrumentation are then conducted using the command as shown above. This
test case execution resulted in a total 0f 771 folders created by the dynamic
data race detector, with each folder containing a results.txt file and a

debug.log file.

Examinations of Efficacy

 131

These files can then be read in by the tool DataRaceAnalyzer. The data

races contained in those report files are processed and presented to users as
defined in chapter 5 and shown in Figure 27.

Figure 27: Screenshot of DataRaceAnalyzer

6.3 DAGs as Result of Analyzing UML Activities

In this chapter, the numbers of DAGs created during the analysis of UML
Activities and the results of the analysis itself are assessed using ten exemplary
activities, representing different classes of complexity. Additionally, the
completeness of the results with regard to the EmergencyExit and a possible
DAG* are discussed. This chapter thus targets hypothesis 1, as explained in
chapter 6.1.

For the examinations, UML Activities have been created and manually
analyzed. Afterwards, these activities have been processed with the tools for
the transformation and analysis of UML Activities. This approach can only show
fulfillment for a small sample of UML Activities. The external validity is thus
limited. Additionally, manual analysis of UML Activities always includes the
possibility of missing node instances, which may run in parallel to other node

Examinations of Efficacy

 132

instances. However, for none of the activities analyzed, ADDAG could find

additional results not found in manual analysis.

Each UML Activity was analyzed using different settings for the EmergencyExit.
The EmergencyExit was set as defined in chapter 4.6.5, and was manually set
for analyzing the effects on the analysis. Each DAG created for a UML Activity
is identified by a number. For each analyzed activity, ADDAG was used to

calculate:

• the number of DAGs created,

• the EmergencyExit,

• the number of DAGs necessary to obtain all findings,

• the first DAG, which is a DAG*, and

• the necessary EmergencyExit number to obtain a DAG*.

Note that the number of DAGs necessary to find a certain pair of nodes, and
also to create a DAG, which is a DAG*, differs depending on how the edges are
traversed during the analysis. When encountering a DecisionNode, then for
each outgoing edge, a separate DAG is used, as explained in chapter 4.6.
During the analysis of UML Activities using the tool, the first edge, according to
the order in the XML file, is always used for the existing DAG, and for other
edges, new DAGs are created and used. If this order would be changed, the
analysis would result in the same DAGs, but in a different order. The number of
DAGs necessary to find a certain pair of nodes may then differ (as their order
has been changed). This behavior could be observed during the experiments.

The UML Activity used to demonstrate the behavior concerning the number of
DAGs in relation to the order of edges in the XML file is shown in Figure 14. For
this analysis, the order of both outgoing edges of node “Decision 2” has been
changed in the XML file.

Table 5 shows the results of the experiments. In each line of the table, the
results for one UML Activity are shown. Each activity is identified by a number
in the first column. In the following two columns, the results in terms of DAGs
created for an EmergencyExit set to “2 * number of incoming join node edges”,
and the value for the maximum number of edge traversals until the
EmergencyExit is reached for that specific UML Activity are shown. Since an
experimentation regarding manually set limits for edge traversals has been
conducted, exact numbers for the EmergencyExit value necessary to create a
DAG, which is a DAG*, can be provided. Finally, it is shown how many DAGs
have been necessary to find all nodes, which may run in parallel to other nodes

Examinations of Efficacy

 133

or to themselves using an EmergencyExit factor of 2, and how many DAGs were
necessary until a DAG has been created, which is a DAG*.

UML
Activity

DAGs
created

EmergencyExit
Necessary Emergency

Exit to find a DAG*
DAGs to find all
parallel nodes

First to be a
DAG*

1 1 2 1 1 1

2 1 4 1 1 1

3 1 16 1 1 1

4 5 4 3 2 3

5 17 8 n/a 5 n/a

6 35 4 6 21 118

7 1,273 6 8 1,271 14,916

8a 8,460 4 6 1 153,859

8b 8,460 4 6 137 153,859

9 9,385 8 10 3,082 53,764

Table 5: Results of Experiments on DAGs and DAG*

Activities 8a and 8b represent the same UML Activity, but with a changed order
of outgoing edges, as mentioned above. For both activities, the same numbers
of DAGs are created. For activity 8a, all relevant nodes are found with the first
DAG, while for finding the same nodes in 8b, 137 DAGs were necessary. For
both activities, the first DAG* was found in DAG 153,859. Although the order, in
which edges are traversed differs for these two UML Activities, the amount of
traversals of each edge, which are necessary for obtaining a DAG*, is reached
with the same DAG.

Activity 5 represents a not yet discussed situation. In this activity, a
DecisionNode is contained, which can only be traversed once per DAG. This
UML Activity additionally contains a cycle, and another DecisionNode, which
can be traversed multiple times. Due to one DecisionNode only being
traversable once per DAG, there is no DAG*, as in each DAG, one edge is not
traversed. Still, all nodes running in parallel to other nodes or to themselves
could be identified. This shows that it cannot be a criterion to obtain a DAG* to
find all nodes, which may run in parallel to other nodes or to themselves. If it
would, this UML Activity could not have been analyzed completely.

The results show that it is not necessary to create DAGs until a DAG* is
reached to find all nodes possibly running in parallel to other nodes or to
themselves. With the EmergencyExit, all nodes, which may run in parallel to
other nodes or to themselves, are obtained. This is especially demonstrated
with UML Activity 8a, for which all results were already obtained with DAG 1. All
153,858 further DAGs until a DAG* is created did not reveal any additional
nodes possibly running in parallel to other nodes or to themselves.

Examinations of Efficacy

 134

The reasons for these results are as follows. For being a DAG*, each edge has
to be traversed twice in a DAG, where possible. As shown in chapter 4.6.5, it is
not enough to obtain just any DAG* to find all nodes possibly running in
parallel to other nodes or to themselves, because in some cases, it is not
enough to traverse each edge twice, but a certain combination of edge
traversals is necessary to obtain complete results, and in other cases, it is not
even possible to obtain a DAG*.

It is not necessary to traverse each edge twice and to analyze all possible
combinations of edge traversals to find a certain pair of nodes. It is sufficient to
traverse some edges twice and to fulfill some combination of edge traversals
to find certain nodes running in parallel to other nodes or to themselves. Due
to the systematic exploration of edges and traversals in ADDAG, these different

combinations of traversals are captured in different DAGs. These DAGs are
systematically constructed while following edges and counting traversals of
single edges. UML Activities are explored in the breadth and then the DAGs are
extended in the depth. Because of this, there is no need to wait for a DAG* to
be created (if it will be created), where possible. Instead, since DAGs are
constructed with different combinations of traversals and different edge
traversals, those edges traversed at least twice mentioned above as “some”
and the combinations of traversals mentioned above as “some” are traversed,
before a DAG*, if possible, is obtained. Because of this, there is no need to
construct a DAG* to find all nodes running in parallel to other nodes or to
themselves. All edge traversals and all combinations needed are obtained with
using the EmergencyExit, and before a DAG* is created (if it will be created).

6.4 On the Efficiency Improvement of Focused Data Race Detection

To assess the solution with regard to hypothesis 2 (see chapter 6.1), an
exemplary examination using Apache Tomcat 8.0.26 was performed.

There are two reasons for using this system in this specific version. There exists
an extensive bug database for Apache Tomcat [No21b]. In addition, as an

examination using RV-Predict has shown, version 8.0.26 is known to

contain a number of data races [Da16]. Those data races have been fixed after
they have been reported. The same tool is used for the examination presented
in this thesis. This tool is configured for focusing on code parts identified using
the approach to analyze UML Activities, as demonstrated in chapter 6.2. This
allows to not only compare the runtime overhead (no instrumentation versus
full instrumentation versus focused instrumentation), but also to check
completeness of the findings, i.e., the data races identified.

Since UML Activities for Apache Tomcat were not available, they had to be

manually created, as explained in chapter 6.2. Such an approach can only be
used to analyze code parts actually executed when running the test cases.
However, since the same test cases were used to perform the data race

Examinations of Efficacy

 135

detection, possible incompleteness of the traces does not affect the results of
the examination: completeness is given with regard to those code parts
examined using the test cases.

Afterwards, the resulting UML Activities were analyzed using the approach
presented in chapter 4. All steps of this examination were performed on a
notebook with a Core i5-6200U processor and 8 GB RAM. During the fully
automated analysis, 382 DAGs were created. The creation required 11.02
seconds. Analyzing those DAGs took additional 14.89 seconds.

A crucial step of the approach is the mapping of nodes in the UML Activities to
source code parts. In the exemplary examination, the mapping has been
created on basis of the traces used for creating the UML Activities. Because of
this, the source code parts to focus the data race analysis on were directly
identified by identifying nodes in the UML Activities. The existence of such a
direct connection has been stated as one of the assumptions in chapter 1.4.
Out of the 97 different source code classes referenced in the model, 65
different source code classes have been identified as possibly being involved in
data races. The analysis thus resulted in a reduction of 33% of source code
classes in need to be instrumented, as 67% of all source code classes
contained in the model have been selected for focusing instrumentation on.

For the exemplary examination, three test runs have been performed. The
runtime has been measured automatically within the context of the test
execution. These test runs together with their runtime were:

1) Execution of the test cases without any instrumentation: 51 minutes.

2) Execution of the test cases with focused instrumentation (i.e.,
instrumentation limited to the code parts identified): 211 minutes and 52
seconds.

3) Execution of the test cases with full instrumentation (i.e., no focus for the
instrumentation is set): 339 minutes and one second.

This means the runtime for the focused instrumentation was reduced by 127
minutes and nine seconds (i.e., 37.4%) compared to the fully instrumented
test execution. Based on the execution of test cases without any
instrumentation, the runtime for the focused instrumentation was 415% of
the runtime without instrumentation. This means the runtime overhead for the
focused instrumentation is 315%. The runtime for the full instrumentation was
664% of the runtime without instrumentation. The runtime overhead for the
full instrumentation is 564%.

Comparing those numbers, it can be concluded that the focused
instrumentation reduces the runtime by 37.4% and the runtime overhead by

Examinations of Efficacy

 136

44.1% (related to the runtime overhead of the fully instrumented execution of
the test cases). Hypothesis 2 stated that the reduction in the runtime overhead
is at least inversely proportional to the amount of parallelism in the
representation of that system under test. As stated above, 67% of all different
source code classes represented in the model are included in a parallel
computation. As such, the inverse proportion is 33% . As the achieved
reduction in the runtime overhead using focused instrumentation compared to
full instrumentation is higher than that, the hypothesis can be confirmed in the
specific case examined.

Note that the authors of [Da16] mention a runtime of roughly 260 minutes for
the fully instrumented test run, and of 50 minutes for the test run without
instrumentation. It is unclear why these differences appear. Still, using these
numbers for a fully instrumented test execution, a reduction of the runtime of
48 minutes (i.e., 18.46%) and of the runtime overhead of 22.9% can be
calculated. However, since the fully instrumented test execution was reported
in [Da16] to be much faster than the fully instrumented test execution reported
in this thesis, chances are that the test execution with focused instrumented
also would be much faster. This would again result in higher reductions of the
runtime and the runtime overhead.

Since runtime reduction can simply be achieved by ignoring code parts, and
shall not result in false negatives (i.e., data races found with full
instrumentation, but not with focused instrumentation), the data races found
during both data race detection runs had to be compared. This comparison has
shown that all data races found using full instrumentation are also found
during focused instrumentation.

As this examination only covers one application, a generalization of the results
is not possible. Since a runtime reduction can only be achieved by sorting out
code parts irrelevant for data race detection, the runtime reduction achievable
is closely related to the type of application in terms of the amount of
parallelism inside an application. It can be expected that the runtime reduction
for a highly parallel application is less than that for an application with only few
code parts possibly running in parallel.

Finally, manually creating the UML Activities induces a possible bias, as those
UML Activities were created with the intent to demonstrate the achievable
reduction of the runtime overhead. This bias has been tackled by relating to
the traces created during test case execution. In addition, comparing the
number of data races reported when executing the data race detection with
full instrumentation to the number of data races reported when using focused
instrumentation gives insight into the completeness of the UML Activities in
relation to the code parts executed.

Examinations of Efficacy

 137

6.5 Controlled Experiment on Analyzing Data Race Reports

To measure possible efficiency improvements in the identification of data
races, more precise in the identification of problematic source code locations
related to data races, a controlled experiment has been conducted. As
understanding and fixing problems in the source code can be very time
consuming, this important part in the overall process could not be included in
the experimental evaluation. This chapter is thus focused on evaluating
hypothesis 3 and its subordinated hypotheses 3.1, 3.2, and 3.3, as explained in
chapter 6.1.

6.5.1 Improvement Possibilities

When thinking about improvement possibilities, the following cases to
consider can be identified, with two variants for each:

1. A single data race

a. Not a specific data race: one data race, regardless of the variable or
the location (i.e., the variable and the location are not defined
upfront).

b. A specific data race: it is known that a data race exists for a certain
pair of accesses or locations (either the locations or the variables are
defined upfront), but more information is required (i.e., the reported
data race). A pair of accesses with a data race is by definition always
related to the same variable. Thus, this case can also be specified as: a
single specific pair of accesses to the same variable.

2. A single pair of accesses in a location in the code with reported data races

a. Not a specific location (the location is not defined): since by definition
the accesses reported in a pair of accesses with a data race have to
take place in some location in the code, this case can also be specified
as: a single data race (not a specific data race)

b. A specific location (the location is defined)

3. A single pair of accesses to a variable

a. Not a specific variable (the variable is not defined)

b. A specific variable (the variable is defined)

4. All accesses in a specific (defined) location in the code with reported data
races

Examinations of Efficacy

 138

a. Affecting the same variable (one of possibly several variables)

b. Affecting different variables (in case of access to several variables in
the same line of code or same operation). This means: all accesses to
a specific location independent of the variable affected.

5. All accesses to the same variable (in different or the same location) with
reported data races

a. Not a specific variable (the variable is not defined upfront)

b. A specific variable (the variable is defined upfront)

Case 1 number of represents a typical task during analyzing and debugging
results of data race detection. Cases 2 and 3 both represent specific cases,
which may be of interest in certain situations. This may seem rather unlikely, as
this would in most of the cases represent an incomplete phase of analyzing
and debugging data race reports. Nevertheless, these cases are included to
obtain a more complete overview on improvement possibilities. Finally, cases 4
and 5 represent relevant tasks for the practice, as they are targeted at all
reported data races with regard to a single variable or to a single location.
These cases in sum also subsume the case “all reported data races”, as data
races always are related to a variable and to locations in the code: analyzing all
accesses to all variables or in all locations results in having analyzed all
reported data races.

Based on an analysis of those cases, three tasks to consider for the controlled
experiment can be identified. The tasks to consider are:

1. Identifying distinct accesses related to a variable

2. Identifying distinct accesses within a source code class

3. Identifying distinct accesses independent of a specific variable or source
code class

For the experimental evaluation, there were no other tools to compare the
solution presented in this thesis with, as explained in chapter 3.5. Due to this, a
basic approach, i.e., using traditional office tools was selected. Thus, the
experimental evaluation can only assess the assumption, that tool support
focused on specific tasks can improve the efficiency in conducting those tasks
in comparison to general-purpose tools. Still, such an assumption, as obvious
as it may be, cannot be relied on and needs to be scientifically assessed.

For the tasks identified, it was theoretically analyzed, how many and which
steps are needed to fulfill a task. Those steps were then transformed into a

Examinations of Efficacy

 139

hypothetical required effort in terms of clicks. This analysis did only include the
process steps of identifying problematic accesses, not the steps of analyzing
the source code for reasons for issues and ways to fix possible problems. Since
the information provided is the same in both approaches to compare, and the
time needed for analyzing and fixing problems can be very high, too high for
inclusion in the experimental evaluation, and since this time is strongly
dependent on a specific situation, those steps were not included.

6.5.2 Goals, Questions and Metrics

For our experimental evaluation, the GQM approach was used. The main
hypothesis is, as shown in chapters 1.3 and 6.1:

H3: using the log preprocessing, the effort for results analysis is at least 40%
less with the same effectiveness compared to using the unprocessed log files.

This main hypothesis was then split up for the identified tasks, and
measurement goals were formulated.

H3.1: using the log preprocessing, the number of analyzed data races in a given
amount of time is at least 40% higher compared to using the unprocessed log
files.

H3.2: using the log preprocessing, the number of analyzed reported data races
related to specific variables in a given amount of time is at least 40% higher
compared to using the unprocessed log files.

H3.3: using the log preprocessing, the number of analyzed reported data races
related to specific source code locations in a given amount of time is at least
40% higher compared to using the unprocessed log files.

MG3.1: Analyze the analysis of reported data races using the approach for
preprocessing of log files and the analysis of the same reported data races
without any preprocessing for the purpose of comparison with regard to the
number of analyzed accesses in a given amount of time from the viewpoint of
software developers in the context of a controlled experiment.

MG3.2: Analyze the analysis of reported data races using the approach for
preprocessing of log files and the analysis of the same reported data races
without any preprocessing for the purpose of comparison with regard to the
number of analyzed accesses related to specific variables in a given amount of
time from the viewpoint of software developers in the context of a controlled
experiment.

Examinations of Efficacy

 140

MG3.3: Analyze the analysis of reported data races using the approach for
preprocessing of log files and the analysis of the same reported data races
without any preprocessing for the purpose of comparison with regard to the
number of analyzed accesses related to a specific source code location in a
given amount of time from the viewpoint of software developers in the context
of a controlled experiment.

These measurement goals lead to the following research questions:

RQ3.1: does the proposed preprocessing lead to efficiency improvement with
the same effectiveness for analysis of reported data races compared to
analyzing the same reported data races without preprocessing?

RQ3.2: does the proposed preprocessing lead to efficiency improvement with
the same effectiveness for analysis of reported data races related to specific
variables compared to analyzing reported data races related to the same
variables without preprocessing?

RQ3.3: does the proposed preprocessing lead to efficiency improvement with
the same effectiveness for analysis of reported data races related to specific
source code locations compared to analyzing reported data races related to
the same source code locations without preprocessing?

Finally, the null hypotheses and alternative hypotheses can be formulated as
follows, considering the relation of data races and accesses:

H0,3.1: the proposed preprocessing does not lead to an improvement of the
number of analyzed reported accesses of at least 40% with at least the same
effectiveness in a given amount of time compared to analyzing the same
reported accesses without preprocessing.

H1,3.1: the proposed preprocessing leads to an improvement of the number of
analyzed reported accesses of at least 40% with at least the same
effectiveness in a given amount of time compared to analyzing the same
reported accesses without preprocessing.

H0,3.2: the proposed preprocessing does not lead to an improvement of the
number of analyzed accesses directly affecting a specific variable of at least
40% with at least the same effectiveness in a given amount of time compared
to analyzing the same reported accesses without preprocessing.

Examinations of Efficacy

 141

H1,3.2: the proposed preprocessing leads to an improvement of the number of
analyzed accesses directly affecting a specific variable of at least 40% with at
least the same effectiveness in a given amount of time compared to analyzing
the same reported accesses without preprocessing.

H0,3.3: the proposed preprocessing does not lead to an improvement of the
number of analyzed accesses related to a specific location in the source code
of at least 40% with at least the same effectiveness in a given amount of time
compared to analyzing the same reported accesses without preprocessing.

H1,3.3: the proposed preprocessing leads to an improvement of the number of
analyzed accesses related to a specific location in the source code of at least
40% with at least the same effectiveness in a given amount of time compared
to analyzing the same reported accesses without preprocessing.

To be able to answer the research questions and to evaluate the hypotheses,
several measures need to be taken during the controlled experiment:

• M1: Number of analyzed reported accesses

• M2: Number of analyzed reported accesses related to specific variables

• M3: Number of analyzed reported accesses related to specific source code
locations

• M4: Time needed for analysis of the reported accesses

Derived from these measures:

• M5: Average time needed for analysis of a reported access

• M6: Average time needed for analysis of a reported access related to a
specific variable

• M7: Average time needed for analysis of a reported access related to a
specific source code location

Analysis in this context means identifying the location of a reported access.
Specific in this context means that in the controlled experiment, a variable or a
source code location (source code class) is predefined and only these
predefined items are of interest. The term effectiveness refers to an amount
(of analyzed accesses or data races), while the term efficiency refers to an
amount in relation to the time needed.

Examinations of Efficacy

 142

6.5.3 Experimental Design

In the controlled experiment, one factor was examined: the technique
executed for analyzing reported data races. There were two factor alternatives,
namely (1) analyzing the unprocessed reported data races, i.e., the log files,
using office tools, and (2) analyzing the preprocessed reported data races
using the newly created tool.

The experimental unit is the analysis phase in the software engineering
process, after execution of test cases has taken place. Experimental subjects
are the individuals applying the techniques, i.e., personnel in software
development.

Similar to the measures defined above, the response variables are defined:

• Effort for analysis of reported accesses: the time needed for analysis of
the reported accesses is measured. This measure is observed as a number
(ratio scale).

• Number of analyzed reported accesses (ratio scale)

• Number of analyzed reported accesses related to a specific variable (ratio
scale)

• Number of analyzed reported accesses related to a specific source code
location (ratio scale)

Derived from those measures are:

• Average time needed to analyze one access: this measure is calculated
from the above measures and is calculated three times (for the number of
analyzed reported accesses and the time needed, for the number of
analyzed reported accesses related to a specific variable and the time
needed, and for the number of analyzed reported accesses to a specific
source code location and the time needed).

• Average number of analyzed accesses per time unit, i.e., minutes: this
measure is also calculated from the above measures and is again
calculated three times (for the number of analyzed reported accesses and
the time needed, for the number of analyzed reported accesses related to
a specific variable and the time needed, and for the number of analyzed
reported accesses to a specific source code location and the time needed).

Both of these two derived measures are related to the same data and these
derived measures can replace each other. As an example, six analyzed
accesses within three minutes would mean an average time of 30 seconds per

Examinations of Efficacy

 143

finding, and an analysis rate of two findings per minute. Therefore, both
derived measures have been calculated, but only the analysis rate has been
used for the statistical analysis.

There are several parameters to consider, and not all of them are under
control.

• Complexity of the software under analysis: under control, as the same
software is used for both alternatives.

• Programming language used: under control, as the same software, and
thus the same programming language, is used for both alternatives.

• Process for the analysis: under control, as for both factors, the tasks to do
are defined, and explained to the experimental subjects.

• Number of reported data races: under control, as the reported data races,
i.e., the input for the controlled experiment, are chosen according to
several characteristics, as explained below.

• Difficulty of the analysis of reported data races selected by experimental
subjects: not under control, and eliminated by using a substitute for this
task (main characteristics of an access are noted down instead of
analyzing a reported access in detail)

• Familiarity and experience of subjects with debugging, code reading,
reading bug reports: not under control, and considered as blocking
variable. Hence, a block design (within-subject design) with a random
assignment of factor alternatives and experimental subjects is used.

The controlled experiment is set up as a block design, with two groups and two
rounds, as depicted in Table 6. In each round, three tasks are to be conducted,
in accordance with the tasks identified. The tasks are:

1. Find all distinct accesses related to the variable X

2. Find all distinct accesses related to the source code class Y

3. Find as many distinct accesses as possible

Note that “X” and “Y” in the text above are placeholders. The tasks for both
groups contain one variable and one source code class each, with those entries
being different for each group and each round. The term distinct refers to the
characteristics of data races in terms of the variable affected, the access type,
the source code class, and the source code line. If for two accesses at least one

Examinations of Efficacy

 144

of these characteristics is different, then those accesses are considered as
being distinct.

 Group 1 Group 2

Round 1
Factor alternative 1

Data race set 1
Factor alternative 2

Data race set 1

Round 2
Factor alternative 2

Data race set 2
Factor alternative 1

Data race set 2

Table 6: Groups and Rounds

Due to the controlled experiment consisting of two rounds, a possible learning
effect of the experimental subjects needed to be considered as thread to
validity. If experimental subjects analyze the same data races or accesses
twice, a learning effect may happen. This learning effect may substantially
affect the results in terms of effectiveness and efficiency. To avoid this thread
to validity while not injecting another thread to validity, the data races or
accesses need to be different for the two experimental runs. Therefore, two
different sets of reported data races were prepared. Each set is used in one of
the two rounds, and for each set, one variable and one source code class is
selected for usage in the tasks, as described above.

Both sets used are based on the same set of reported data races, which were
gained by conducting dynamic data race detection on an application using test
cases shipped with the source code of that application. To retain comparability
when using two different sets of data races, those sets do not differ in terms of
the following characteristics:

• Number of reported data races

• Number of duplicates

• Number of files with reported data races

Although the characteristics for the data races related to the source code class
and to the variable were the same in each of the two sets, it was not possible to
obtain sets with completely identical characteristics. Set 1 consisted of 36 files,
which contained 838 accesses. Of those, 807 were duplicates. The data races
contained were spread upon 12 different variables and 30 different locations
(source code class and line). Set 2 consisted of 36 files, which contained 838
accesses, with 807 being duplicates. The data races were related to eleven
different variables and 29 different locations. The relation of data races to
duplicate data races for the two sub sets is the same as in the complete set.

For task 1 in set 1, three distinct accesses out of 86 accesses had to be
identified, spread over 29 files (two files considering only distinct accesses).

Examinations of Efficacy

 145

For task 2 in set 1, five distinct accesses out of 202 accesses had to be
identified, spread over 29 files (two files considering only distinct accesses).
For task 3 in set 1, 31 distinct accesses out of all 838 accesses had to be
identified, spread over 36 files (five considering only distinct accesses).

For task 1 in set 2, three distinct accesses out of 128 accesses had to be
identified, spread over all 36 files (two files considering only distinct accesses).
For task 2 in set 2, five distinct accesses out of 212 accesses had to be
identified, spread over 29 files (two files considering only distinct accesses).
For task 3 in set 2, 31 distinct accesses out of all 838 accesses had to be
identified, spread over 36 files (five considering only distinct accesses).

The characteristics for both sets are similar in many cases, but not completely
the same. Although, based on the design of the controlled experiment, no
negative effects were expected on the results, it was planned at this stage to
not only compare the two factor alternatives, but also to examine and compare
the results for the two sets with regard to possible differences in the outcome.

In addition to the task lists (see Appendix A and B), a questionnaire (see
Appendix C) has been created to obtain an insight into the perception of the
participants concerning the tasks fulfilled. This questionnaire asked for the
professional experience in the area of software engineering, and contained
four statements for each round:

1. When thinking about the analysis of data race reports with the
unprocessed log files…

• … I feel confidence in the completeness of the results

• … I feel confidence in the correctness of the results

• … the analysis was difficult for me

• … the analysis was exhausting for me

2. When thinking about the analysis of data race reports with the
preprocessed data race results…

• … I feel confidence in the completeness of the results

• … I feel confidence in the correctness of the results

• … the analysis was difficult for me

• … the analysis was exhausting for me

Examinations of Efficacy

 146

These statements could be rated using a five point Likert scale, with the values
“totally disagree” (1), “rather disagree” (2), “neither agree not disagree” (3),
“rather agree” (4), and “totally agree” (5).

6.5.4 Conduct of the Controlled Experiment

The controlled experiment was conducted with professionals in the software
engineering domain. As their availability was limited, the time was restricted to
90 minutes. This has been split up into an introduction into the topic (30
minutes), and two rounds of 30 minutes each. In both rounds, three tasks had
to be conducted, which were limited to ten minutes each.

As the controlled experiment was conducted during the pandemic, it was not
possible to have in-person meetings with the participants. Instead, individual
video calls were used. Since there were no other possibilities to observe the
participants, it was required that the call was not only a voice call, but always
accompanied with live video.

Each participant received the two sets of data races, the tool to use, one of two
task lists (one for each group), and the questionnaire. Each task list contained a
short description of the scenario (i.e., the participant is part of software
engineering, test case execution has taken place, and now, the findings shall be
analyzed), and the tasks themselves together with instructions how to
document their findings. The time needed for each task was measured, and
the execution had to be stopped for each task after ten minutes. The time
needed was then noted for each task and each round. After both rounds, the
participants were asked to fill out the questionnaire. The filled-out task lists
and questionnaires had to be sent back directly within the video conference.

6.5.5 Assessment of the Results of the Controlled Experiment

Due to the necessity of video calls, the controlled experiment was conducted
over several weeks, with eight participants. As a first step of the assessment, all
entries were manually checked for correctness. When, during software
development, a wrong location would be identified as being part of a data
race, the following review of the source code would reveal this issue, as the
location would not match the characteristics of the reported accesses. This
would result in additional work, i.e., the reported access would have to be
examined again. Thus, it was decided to sort out wrong entries in the task lists.
This had to be done for two participants, with two entries each. This situation
occurred one time when using factor alternative 1, and one time when using
factor alternative 2. The raw data of the controlled experiment, with the
corrected number of entries, can be found in Table 7. For all the statistical
calculations, an 𝛼 of 0.05 was used.

Examinations of Efficacy

 147

 Participant ID 1 2 3 4 5 6 7 8

Unprocessed
(Factor
alternative
1)

Set 1 1 1 1 2 2 2 2

Task 1 – Corrected # 3 3 2 2 2 3 3 2

Task 1 – Time (minutes
and seconds)

09:00 05:00 10:00 10:00 09:30 05:40 08:05 10:00

Task 2 – Corrected # 5 5 5 4 5 5 5 4

Task 2 – Time (minutes
and seconds)

09:00 06:00 10:00 10:00 10:00 08:40 08:45 10:00

Task 3 – Corrected # 17 20 14 12 11 11 25 9

Task 3 – Time (minutes
and seconds)

10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00

Processed
(Factor
alternative
2)

Set 2 2 2 2 1 1 1 1

Task 1 – Corrected # 3 3 3 3 3 3 3 3

Task 1 – Time (minutes
and seconds)

03:00 01:05 00:45 01:40 01:30 00:50 02:30 03:25

Task 2 – Corrected # 5 5 5 5 5 5 5 5

Task 2 – Time (minutes
and seconds)

02:00 00:50 01:00 01:45 01:30 01:10 01:32 03:30

Task 3 – Corrected # 29 31 31 21 21 31 30 19

Task 3 – Time (minutes
and seconds)

10:00 06:30 07:55 10:00 10:00 07:30 10:00 10:00

Table 7: Raw Data of the Controlled Experiment

Based on those data, the time per finding and the findings per minute for each
task and each participant were calculated. These numbers are shown in Table
8. Although these numbers are displayed with three decimal digits, for all
statistical calculations except the statistical power, ten decimal digits had been
used. For the statistical power, eight decimal digits have been considered.

 Participant ID 1 2 3 4 5 6 7 8

Unprocessed
(Factor
alternative
1)

Set 1 1 1 1 2 2 2 2

Task 1 – Time per finding 03:00 01:40 05:00 05:00 04:45 01:53 02:41 05:00

Task 1 – Findings per
minute

0.333 0.600 0.200 0.200 0.211 0.529 0.371 0.200

Task 2 – Time per finding 01:48 01:12 02:00 02:30 02:00 01:44 01:45 02:30

Task 2 – Findings per
minute

0.556 0.833 0.500 0.400 0.500 0.577 0.571 0.400

Task 3 – Time per finding 00:35 00:30 00:42 00:50 00:54 00:54 00:24 01:06

Task 3 – Findings per
minute

1.700 2.000 1.400 1.200 1.100 1.100 2.500 0.900

Processed
(Factor
alternative
2)

Set 2 2 2 2 1 1 1 1

Task 1 – Time per finding 01:00 00:21 00:15 00:33 00:30 00:16 00:50 01:08

Task 1 – Findings per
minute

1.000 2.769 4.000 1.800 2.000 3.600 1.200 0.878

Task 2 – Time per finding 00:24 00:10 00:12 00:21 00:18 00:14 00:18 00:42

Task 2 – Findings per
minute

2.500 6.000 5.000 2.857 3.333 4.286 3.261 1.429

Task 3 – Time per finding 00:20 00:12 00:15 00:28 00:28 00:14 00:20 00:31

Task 3 – Findings per
minute

2.900 4.769 3.916 2.100 2.100 3.100 3.000 1.900

Table 8: Rates Calculated from Raw Data

Examinations of Efficacy

 148

Then, the means, the variances and the standard deviations for each task and
each factor alternative were calculated. For each task, a box plot, a p-p plot
and a histogram were created to visually check the data and the distribution of
values. The box plots are shown in Figure 28.

Figure 28: Box Plots for the Tasks 1, 2, and 3

The visual inspection indicated that there is a difference in the means, and that
the distribution is skewed for all tasks. Calculated values for the skewness for
task 1 are 0.887 for factor alternative 1, and 0.562 for factor alternative 2. For
task 2, the skewness is 1.403 for factor alternative 1 and 0.345 for factor
alternative 2. For task 3, the skewness is 0.994 for factor alternative 1 and
0.807 for factor alternative 2.

Focusing on the tails of the distributions, the kurtosis was calculated. For task 1,
the kurtosis is −0.765 for factor alternative 1 and −1.236 for factor alternative
2. For task 2, the kurtosis is 2.945 for factor alternative 1 and −0.207 for factor
alternative 2. For task 3, the kurtosis is 0.176 for factor alternative 1 and 0.053
for factor alternative 2.

As this led to doubts regarding the assumption of a normal distribution, and as
the sample size is small, a Shapiro-Wilk test was conducted to see if the sample
data originate from a normally distributed population. Those tests revealed an
ambivalence, as for all data for tasks with factor alternative 1 the null
hypothesis of normal distribution was rejected (Task 1: 𝑊 = 0.136, Task 2:
𝑊 = 0.113; Task 3: 𝑊 = 0.491; critical 𝑊 = 0.818). For all data for tasks
with factor alternative 2 instead, the null hypothesis was accepted (Task 1:
𝑊 = 1.087, Task 2: 𝑊 = 1.387; Task 3: 𝑊 = 0.884; critical 𝑊 = 0.818).
It is unclear, why there is such a clear separation in the data. It has been
concluded that for further calculations, non-parametric tests have to be used.

Due to the paired design, a two-tailed Wilcoxon signed-rank test was used to
check, whether there are differences in the efficiency of the task execution for
each task when using factor alternative 1 compared to using factor alternative

Examinations of Efficacy

 149

2, assuming that there are no significant differences (null hypothesis). Again,
the derived number of findings per minute was used for the calculations.

For all three tasks, the calculated ranks were 36 and 0. As for a two-tailed test
with a sample size of 8, the critical value for the rank is 3 using an 𝛼 = 0.05,
the null hypothesis is rejected for tasks 1, 2 and 3.

Finally, the tool G*Power [Fa09] was used for a post-hoc analysis of the

statistical power achieved and the effect size for each task. For the calculation
of the statistical power, a parent distribution had to be selected. However, it
can only be stated that there is no normal distribution. Out of the options
“Normal, Laplace, Logistic, and min ARE”, the option “min ARE” has been
selected, resulting in a “theoretical minimum of the power” [No21a]. This
results in the actual statistical power being at least as high as the calculated
value.

The results of these computations were surprising, as for all three tasks, a high
statistical power was calculated although the sample size was low. The reason
for this was always the calculated effect size, which turned out to be extremely
high. Note that the effect size numbers presented below are still within the
sizes reported by Sawilowsky [Sa09].

For task 1, the calculated effect size was 1.586, resulting in a statistical power
of the analysis of 0.930. For task 2, the calculated effect size was even higher,
with 2.244. This resulted in a statistical power of the analysis of 0.9978. A
screenshot of the calculation with G*Power can be found below in Figure 29.

Finally, for task 3, the calculated effect size was 1.786, and the statistical
power was calculated with 0.971.

Examinations of Efficacy

 150

Figure 29: Screenshot of G*Power for Task 2

As mentioned above, there are slight differences in the sets of data races for
the two groups. Thus, possible differences in the efficiency using set 1 or set 2
for each task were calculated, for both factor alternatives (i.e., six
examinations).

Again, descriptive statistics in the form of calculating the means, the variances,
and the standard deviations was used as a first step. The box plots were almost
the same for the tasks 1 and 2 with factor alternative 1 and indicated a slight
difference for task 3 with factor alternative 1, with set 2 having lower values.
For factor alternative 2, in contrast, the values for set 2 were slightly higher for
all tasks.

Once again, supported by the p-p plot, the histogram, and calculations of
skewness and kurtosis, a normal distribution could not be confirmed, and thus,
non-parametric tests were used for the further calculations. Note that in these
calculations, the sample sizes were always 4, as the data had to be split up with
regard to the set used.

To check whether there are differences in the efficiency of conducting the
tasks with using set 1 or set 2, a Mann-Whitney-U test was used.

Examinations of Efficacy

 151

For factor alternative 1 and all three tasks, the test revealed no statistically
relevant difference, and the null hypotheses had to be accepted with 𝑈 = 17
for task 1, 𝑈 = 18 for task 2, and 𝑈 = 14 for task 3, all using a two-tailed test
with 𝛼 = 0.05. The same holds for factor alternative 2, with 𝑈 = 16 for task
1, 𝑈 = 16 for task 2, and 𝑈 = 14.5 for task 3.

Because of these measurements, it can be concluded that the sets had no
statistically significant influence on the efficiency of conducting the tasks. Due
to the within-subject design, the experience of experimental subjects is also
excluded as influencing factor. Thus, the differences in the efficiency of
conducting the three tasks can be attributed to the factor alternatives.

Finally, the efficiency improvements observed in the controlled experiment
were calculated by comparing the mean values for the derived measure of
findings per minute. For task 1, an efficiency improvement of 6.522 could be
observed, i.e., the efficiency improved from 100% for factor alternative 1 to
652% for factor alternative 2. For task 2, a similar value was observed, with an
efficiency improvement of 6.609 when using factor alternative 2. Finally, for
task 3, an efficiency improvement of 1.999 when using factor alternative 2
could be observed.

As these values are much higher than the hypothesized efficiency
improvements of at least 0.40, all three null hypotheses stated in chapter 6.5.2
are rejected, and the alternative hypotheses are accepted.

Besides analyzing the data of the analysis of data race reports, the
questionnaire was analyzed with regard to the ratings of the participants
concerning the statements mentioned in chapter 6.5.3. The raw data of these
ratings can be seen in the following Table 9:

 Participant ID 1 2 3 4 5 6 7 8

 Experience (in years) 5 10 6 2 8 13 12 17

Unprocessed
(Factor
alternative
1)

Confidence in
completeness

2 2 1 1 2 3 2 2

Confidence in correctness 4 2 2 2 3 4 4 2

Difficult 1 2 5 3 4 3 2 4

Exhausting 1 4 5 4 5 4 5 5

Processed
(Factor
alternative
2)

Confidence in
completeness

5 5 5 5 3 5 5 5

Confidence in correctness 5 5 5 4 3 5 5 5

Difficult 1 1 1 1 1 1 1 2

Exhausting 1 1 1 1 1 2 2 2

Table 9: Raw Data of the Questionnaire

The experience was not further analyzed statistically. This data was instead
used to examine whether there are any dependencies between the experience
and the efficiency in the analysis of data race reports. Such a dependency
could not be found.

Examinations of Efficacy

 152

As the data received from using the Likert scale is ordinal data, the possibilities
to analyze the data are more limited than when using a ratio scale. A Mann-
Whitney-U test has been used to analyzing the data and comparing the ratings
for the factor alternatives 1 and 2. It was hypothesized that there is no
difference between the ratings for both factor alternatives (zero hypothesis).
The statistical analyses have been conducted with an 𝛼 = 0.05, and due to
both 𝑛1 and 𝑛2 being 8, 𝑈𝑐𝑟𝑖𝑡 = 13 for the Mann-Whitney U Test.

All hypotheses had to be rejected. The hypothesis regarding the confidence in
the completeness of the results had to be rejected with 𝑈𝑚𝑖𝑛 = 0.5, 𝑧 =
 −3.308, and 𝑝 = 0.001 . The analysis regarding the confidence in the
correctness of the results revealed values of 𝑈𝑚𝑖𝑛 = 5, 𝑧 = −2.866, and 𝑝 =
0.005. Computing the rank sums for the ratings regarding the perception of
the tasks being difficult and being exhausting resulted in the same rank sums,
and the same values of 𝑈𝑚𝑖𝑛 = 5.5, 𝑧 = −2.783, and 𝑝 = 0.005 . The
calculated effect sizes were 0.827 for the confidence in the completeness of
the results, 0.709 for the confidence in the correctness of the results, and
0.696 both for the tasks being difficult and being exhausting.

Summarized, it can be concluded that the participants had more confidence
both in the completeness and in the correctness of the results of the analysis
when using the preprocessed data race reports compared to when using the
unprocessed log files. In addition, the participants perceived these tasks less
difficult and less exhausting when using the preprocessed data race reports.

6.5.6 Discussion of the Results

Although the sample size for the controlled experiment was low, the immense
effect sizes allowed drawing conclusions with a high statistical power. Still, the
small sample size is a threat to the validity. Due to the randomization of
experimental subjects and group assignment, the risk can be assessed to be
acceptable. An influence by learning effects due to the experimental subjects
getting used to analyze data races and accesses has been mitigated by using a
within-subject design.

Another possible threat to validity might be related to the sets of data races
selected for the controlled experiment. Although the sets were selected out of
a real-world set of data races, the characteristics of the selected sets of data
races match the source set of reported data races, and those characteristics at
least in terms of duplicate data races match what is reported for data races in
general in literature, it cannot be excluded that with other sets of reported data
races different values would have been observed.

Thus, the controlled experiment should be replicated with an increased sample
size, and with a different set of reported data races.

Examinations of Efficacy

 153

It is interesting to note that the efficiency improvements for tasks 1 and 2 are
much higher than for task 3, and that the efficiency improvement for task 2 is
higher than for task 1. A possible interpretation is as follows.

For tasks 1 and 2, specific affected variables and source code locations had to
be searched for. While the tool presented in this article allows to just filtering
the data for such criteria, it is a time consuming task to read through all the
reported data races. For each entry in the result files, it has to be checked
whether the affected variables or source code locations are those searched for.
In addition, there is a high number of duplicates, which need to be read and
compared to what has already been found, which again is time consuming.
The tool instead allows hiding those duplicate entries. These factors contribute
to the high efficiency improvement.

The difference in the efficiency improvements in tasks 1 and task 2 might stem
from the fact, that for task 1, a certain variable was specified, and for task 2, a
source code class was specified. As a variable is connected to a data race, and
a source code class to each of the two accesses building a data race, the effort
for examining specific source code classes is higher than for examining specific
variables.

When conducting task 3, those specific variables and source code classes are
not of interest, and thus do not influence the efficiency. However, the
duplicates still are present for factor alternative 1 and can be hidden in factor
alternative 2. This contributes to the difference in the efficiency of conducting
task 3 with factor alternative 1 or 2.

Finally, the tool presents all results in a tabular format, providing a view on all
the accesses at once (although scrolling may be needed), while for factor
alternative 1, the accesses were spread across many different files. In addition,
another important influence on the efficiency stems from the knowledge
provided by factor alternative 2 on how many distinct accesses exist, with
regard to a specific variable or source code location, and in general. Without
such a knowledge, all reported data races had to be examined to gain
confidence on how many distinct data races or accesses exist, and that all
existing distinct data races or accesses have been found. It can be assumed
that this strongly influences the efficiency in data race analysis.

The results from analyzing the questionnaires support these conclusions. The
participants profited from the knowledge gained by using the tool in that they
felt more confident in their results regarding completeness and correctness.
When using the tool, the participants were able to compare their results with
the entries the tool displayed. Without having such an overview, there is no
basis for that judgment except for an overview on how many folders were
analyzed and how many folders were remaining. However, the number of files
or folders does not allow a reliable assessment, as there may be different

Examinations of Efficacy

 154

numbers of reported data races within each file. The only concerns that were
raised during the video calls were that the participants had no possibility to
review the source code of the tool for the preprocessing itself and thus had to
trust on its reliability.

Furthermore, having an organized overview on all the results at one place, and
not having to browse through several folders and reading files supported the
participants in their task in that the task was perceived as being less difficult
and less exhausting. A reason may be that with the presentation in the tool, the
participants could focus on reading the details of the accesses and data races
and there was no necessity to concentrate on such surrounding tasks.

The higher confidence in the completeness of the results when using the
preprocessing could be confirmed in that the participants could in summary
indeed detect more accesses or data races in the same amount of time.
However, the higher confidence in the correctness of the results could not be
confirmed when analyzing the results of the data race report analysis. For both
factor alternatives each, one participant had two wrong entries, as stated in
chapter 6.5.5. For factor alternative 2 (preprocessed), one participant wrote
down a wrong source code line in two cases. For factor alternative 1
(unprocessed), another participant inserted two wrong entries in the task list.
These entries could not be attributed to a specific source of error, e.g., writing
down a wrong number for the source code line, or reading a wrong variable.

It has to be noted that the comparison of the efficiency could not be done
between two tools specialized exactly on the purpose of analyzing data races.
As such, the controlled experiment can only show efficiency improvements
when using such a specialized tool compared to not using such a specialized
tool.

6.6 Summary

As the solution presented in this thesis was targeted at efficiency
improvements in the quality assurance process for data races, the effects of
the solution have been studied in terms of achievable efficiency
improvements. Based on the problems and goals, hypotheses have been
formulated. Some properties of the solution could be formally proven. Other
properties of the solution have been studied using exemplary evaluations and a
controlled experiment.

As for hypothesis 1, the complete and correct analysis has been formally
proven in chapter 4.6 in theory. As explained, in the practical application, cycle
traversals need to be limited to prevent infinite DAGs and infinitely sized
DAGs. This limitation has been implemented as shown in chapter 4.6.5. An
additional assessment of the completeness in the practical application of the
analysis has thus been conducted. Although this assessment confirmed the

Examinations of Efficacy

 155

hypothesis, as shown in chapter 6.3, it is not possible to generalize those
results, as explained in chapter 6.1.

The efficiency improvement in the dynamic detection of data races, as
assumed in hypothesis 2, has been assessed using an exemplary examination
on one system. Although this system is a real-world system, and not created
for the specific purpose of this thesis, it cannot be seen as representative for all
applications that exist. As such, hypothesis 2 could be confirmed in that case,
as explained in chapter 6.4. These results are again not generalizable.

A controlled experiment has been conducted with regard to hypothesis 3 and
the underlying hypotheses 3.1, 3.2, and 3.3, as presented in chapter 6.5. This
controlled experiment revealed a very high effect size, and due to this, the
results have a high statistical power despite the rather low sample size. With
achieved efficiency improvements of 652% (relating to hypothesis 3.1), 661%
(relating to hypothesis 3.2), and 199% (relating to hypothesis 3.3), the
achieved efficiency improvement in analyzing data race reports is much higher
than what was expected.

Table 10 summarizes the results. As explained, experimental evaluations could
not be conducted for all hypotheses defined in this thesis. To further raise the
knowledge regarding the achieved effects of the solution presented in this
thesis, additional experimental evaluations can be set up especially regarding
hypotheses 1 and 2. This should be addressed in future work.

Hypotheses Confirmation achieved

Hypothesis 1: Complete and correct analysis

(partially)
Formally proven (theory) and

confirmed exemplarily (practice)
No experimental evaluation

Hypothesis 2: Efficiency improvement in the
dynamic data race detection of data races

(runtime overhead)

(specific case)
Confirmed exemplarily

No experimental evaluation

Hypothesis 3:Efficiency improvement in analyzing
data races

Indirectly by evaluating subordinated
hypotheses

Hypothesis 3.1: Efficiency improvement in
analyzing data race reports for data races

Controlled experiment

Hypothesis 3.2: Efficiency improvement in
analyzing data race reports for data races affecting

a source code class
Controlled experiment

Hypothesis 3.3: Efficiency improvement in
analyzing data race reports for data races affecting

a variable in the source code.
Controlled experiment

Table 10: Summary of Achieved Confirmation of Hypotheses

Examinations of Efficacy

 156

Summary and Future Work

 157

7 Summary and Future Work

In this thesis, a solution for efficiency improvements in the quality assurance
process for data races was presented. The purpose of this chapter is to explain
the contributions made, related to the research objectives stated in chapter
1.3, and how the state of the art has been extended. Furthermore, directions
for future work are given.

7.1 Contributions

The solution presented in this thesis consists of two main parts, surrounding
the test execution in the quality assurance process for data races:

1. Analyzing the dynamic behavior of a system under test, with the goal to
identify nodes, representing source code classes that may be executed in
parallel to other nodes or to themselves. This information can then be
used to focus instrumentation for the dynamic data race detection,
enabling a reduction in the runtime overhead without affecting its
effectiveness, and thus an efficiency improvement in the dynamic data
race detection.

2. Analyzing characteristics of data races in general and of data race reports,
with the goal to process these data race reports, and to provide the results
of the preprocessing to users. This preprocessing and the presentation of
the results enable a more efficient analysis of detected data races.

Several contributions have been made while conducting the research in the
context of this thesis, aligned with the objectives of the research (see chapter
1.3), as shown in the following.

1) Assess the representations of dynamic behavior of a system with the goal
to select one representation for the analysis.

Several different representations of the dynamic behavior of a system
exist. In this thesis, the most prominent types of representations,
according to the literature, have been examined. As a result, UML Activities
have been chosen as the representation of the dynamic behavior of a
system used in the context of this thesis.

2) Analyze the characteristics of the chosen representation of the dynamic
behavior with the goal to understand the specifics and how these specifics
influence the interpretation of this representation.

Summary and Future Work

 158

The UML specification has been examined in detail and all elements, for
which a definition exists, have been analyzed with the goal to understand
the influence of these elements on the UML Activities. This not only
includes nodes and edges, but also regions, pins, parameters,
combinations of elements, and combinations of UML Activities. As a result,
all elements, for which a definition exists, could be considered in the
analysis.

3) Create a technique to analyze the chosen representation of the dynamic
behavior of a system for parallel elements, with the goal to obtain an
algorithmic approach for the analysis.

Based on a systematic literature review, the current state of the art in the
analysis has been identified. The analysis of the state of the art revealed
several research gaps, which could be closed by the solution presented in
this thesis. As such, the state of the art could be advanced in this thesis. A
core contribution to advancing the state of art is the possibility to obtain
complete analysis results while limiting possibly infinite cycle traversals.

Based on the knowledge gained by analyzing the UML superstructure, the
elements could be categorized into basic and additional elements. While
basic elements could be directly considered in the analysis of UML
Activities, additional elements required a specific handling, and those
elements either had to be transferred to other elements, considered after
the analysis, or both.

The solution for the analysis therefore consists of three steps:
transformation, analysis, and post-analysis. The algorithmic approaches
forming the core of the analysis and the post-analysis steps are formal
approaches based on graph theoretic concepts, and thus, the algorithms
for the analysis could be clearly defined.

4) Show the completeness and correctness of the obtained algorithmic
approach, with the goal to establish confidence in this approach.

As the analysis of UML Activities presented in this thesis is a formal
approach, formal proofs could be used to show certain characteristics of
the solution, including correctness of the results. The completeness of the
approach has been proven from a theoretic viewpoint. The
implementation of this approach has been examined using several UML
Activities representing different levels of complexity, and completeness
and correctness of the results could be confirmed for these examples.

5) Evaluate the effects on efficiency of the test execution of the algorithmic
approach compared to not using the algorithmic approach to focus
instrumentation.

Summary and Future Work

 159

As an evaluation of the effects on the efficiency of the test execution with
the necessary external validity to draw generalizable results would require
an immense effort, this could not be included in this thesis. However, an
exemplary examination has been conducted, and for this specific case, a
reduction of the runtime overhead when using the focused
instrumentation compared to using full instrumentation could be shown.

6) Enable the practical application of the algorithmic approach, with the goal
to obtain a fully automated tool implementing this algorithmic approach.

The algorithmic approach for the analysis of UML Activities has been
implemented prototypically in ADDAG. The usage of ADDAG has been

shown with an exemplary application, and the approach itself has been
used to demonstrate the completeness of the results of the analysis and to
demonstrate possible improvements in the runtime overhead in dynamic
data race detection.

7) Analyze characteristics of data race reports, with the goal to obtain
knowledge about how to preprocess data races reports so that the
analysis is more efficient.

Based on a formal definition of data races from literature, the
characteristics of data races have been derived. These characteristics have
been complemented by the results of the analysis of data race reports,
provided by the dynamic data race detector used in this thesis. The
knowledge gained has been transferred to a UML model. In addition,
possible duplicates in data race reports have been considered in the
analysis.

8) Enable the practical application of the knowledge obtained on
characteristics of data race reports, with the goal to obtain tool support.

Based on the knowledge gained concerning data races and data race
reports, the application DataRaceAnalyzer has been developed,

which preprocesses data race reports, and presents the results of this
preprocessing to users. Since no other applications exist that are targeted
at guiding the analysis of data race reports and the elimination of such
defects despite a need for such tools, the state of the art could be
advanced.

9) Empirically evaluate the effects of the preprocessing of the data race
reports and of the tool support on the efficiency on the analysis of data
race reports compared to analyzing unprocessed data race reports.

The effects of the preprocessing of data race reports on the efficiency of
the analysis of data race reports have been empirically evaluated in a

Summary and Future Work

 160

controlled experiment with eight participants. Despite the low sample
size, the effect size was very high, and thus, a high statistical power could
be achieved. The results of this controlled experiment have shown that
immense improvements in the efficiency of the analysis of data race
reports could be enabled when using the preprocessing compared to
analyzing unprocessed data race reports.

7.2 Open Questions and Future Work

The open questions and directions for future work can be categorized into
methodologies, tool support, and empirical evaluation.

In terms of methodologies, multiple opportunities for future work are given. In
this thesis, it was assumed, that behavioral representations of the system
under test exist. As this is not always given, an open question is how to
automatically derive such models, if they have not been created during
development, on the basis of the source code of an application. In the same
regard, the completeness of the behavioral representation was assumed.
Based on such a methodology to derive such models, an approach to check the
completeness of these behavioral descriptions would be valuable.

The algorithm and the solution for analyzing behavioral descriptions are
focused on UML Activities. Since other representations exist, algorithms to
analyze such other types of representations could enable an extension of the
solution, providing more flexibility in terms of the prerequisites. In the same
manner, and interesting direction is to include other models of the UML itself
in the analysis, such as sequence diagrams or class diagrams.

Once methodologies to derive behavioral representations in the form of UML
Activities have been created, the next logical step is to implement these
methodologies to create tool support, and in the best case a fully-automated
approach. The solution presented in this thesis can be extended in this regard,
to provide better support for applications under test by lowering the
prerequisites for usage.

The same holds with regard to tool support for deriving other types of
behavioral representations of a system. In that case, the solution for the
analysis of UML Activities could be extended to broaden its scope. Since a three
step approach is used, and the first step is a transformation, the tool is already
prepared in that the analysis relies on general node types for the analysis.
Thus, another transformation would be required. If a mapping from the
elements of a representation of the dynamic behavior to the elements already
used in the analysis can be created, this analysis could be reused. However, the
post-analysis phase might require to be extended, depending on the elements
of that newly supported type of representation.

Summary and Future Work

 161

With regard to the analysis of reported data races, the tool presented in this
thesis can be further improved for continuous usage. Although a status can be
assigned to each entry in the results list, it is not possible to export or import
those lists together with the status information. Such a feature allows working
on the results across several sessions. Another opportunity for future work is to
prepare the tool for multi user operation. By splitting up responsibilities for
data races related to certain variables to several users, it would be possible to
work on the same list in parallel, thus saving time in case multiple users need to
analyze and eliminate data races for the same application.

Open questions remain with regard to the empirical evaluations. Although the
correctness and completeness of the analysis of UML Activities has been
formally proven, more assessments in terms of the practical application of the
implementation are desirable. In the course of this thesis, such an assessment
has been made using ten activities. However, the possibilities to combine UML
elements are vast, and a more intensive assessment allows a better
understanding of the completeness of the analysis with regard to the
implementation, and would thus provide more confidence in the usage of the
tool.

Furthermore, the efficiency improvement of dynamic data race detection
using a focused instrumentation could only be assessed exemplarily with one
application. Thus, the external validity of this assessment is low. Additional
assessments using different applications of various sizes can provide a better
insight into the benefits of using focused instrumentation, and thus strengthen
the knowledge regarding its effects.

Finally, the controlled experiment with regard to the assessment of efficiency
improvements in the analysis of data race reports could only be done by
comparing DataRaceAnalyzer to office tools. At the time of conducting

this controlled experiment, there was no other tool available, which focused on
the analysis of data race reports in terms of enabling efficiency improvements.
In the future, other tools supporting the analysis of data race reports may be
released. It would then be very interesting to compare those tools to
DataRaceAnalyzer, to obtain insight into different approaches and their

effects. As DataRaceAnalyzer was the first tool with such a focus, the

insights gained may then allow additional improvements, with the ultimate
goal to further improve the efficiency of data race analysis and eventually the
whole quality assurance process for data races.

Summary and Future Work

 162

References

 163

References

[AB10] Adve, S. V.; Boehm, H.-J.: Memory Models: A Case For Rethinking Parallel
Languages and Hardware. Communications of the ACM 8/53, pp. 90–101, 2010.

[Ab17] Abbaspour Asadollah, S.; Sundmark, D.; Eldh, S.; Hansson, H.: Concurrency bugs in
open source software: a case study. Journal of Internet Services and Applications
1/8, 2017.

[ABF04] Arisholm, E.; Briand, L. C.; Foyen, A.: Dynamic coupling measurement for object-
oriented software. IEEE Transactions on Software Engineering 8/30, pp. 491–506,
2004.

[ABF08] Almeida, P. S.; Baquero, C.; Fonte, V.: Interval Tree Clocks: A Logical Clock for
Dynamic Systems. In (Baker, T. P.; Bui, A.; Tixeuil, S. Eds.): Principles of Distributed
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 259–274, 2008.

[Ad10] Adve, S.: Data races are evil with no exceptions. Communications of the ACM
11/53, p. 84, 2010.

[An94] Andersen, L. O.: Program Analysis and Specialization for the C Programming
Language. Dissertation, Copenhagen, 1994.

[As15] Asadollah, S. A.; Hansson, H.; Sundmark, D.; Eldh, S.: Towards Classification of
Concurrency Bugs Based on Observable Properties. In: Proceedings of the First
International Workshop on Complex faUlts and Failures in LargE Software
Systems (COUFLESS '15). IEEE Press, pp. 41–47, 2015.

[AS15] Atkey, R.; Sannella, D.: ThreadSafe: Static Analysis for Java Concurrency, 2015.

[Au97] Audenaert, K.: Clock trees: logical clocks for programs with nested parallelism.
IEEE Transactions on Software Engineering 10/23, pp. 646–658, 1997.

[Ba06a] Banerjee, U.; Bliss, B.; Ma, Z.; Petersen, P.: A theory of data race detection. July 17 -
20, 2006, Portland, Maine, USA. ACM Press, New York, NY, 2006.

[Ba06b] Banerjee, U.; Bliss, B.; Ma, Z.; Petersen, P.: Unraveling Data Race Detection in the
Intel® Thread Checker, 2006.

[BA08] Boehm, H.-J.; Adve, S. V.: Foundations of the C++ concurrency memory model. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI '08). Association for Computing Machinery,
New York, NY, USA ACM, New York, NY, 2008.

[BCM10] Bond, M. D.; Coons, K. E.; McKinley, K. S.: PACER: Proportional Detection of Data
Races. ACM SIGPLAN Notices 6/45, pp. 255–268, 2010.

[BH08] Bodden, E.; Havelund, K.: Racer: Effective Race Detection Using AspectJ.
Association for Computing Machinery, New York N.Y., 2008.

References

 164

[BHO20] Blondin, M.; Haase, C.; Offtermatt, P.: Directed Reachability for Infinite-State
Systems, Springer International Publishing, 2020.

[Bi17] Biswas, S.; Cao, M.; Zhang, M.; Bond, M. D.; Wood, B. P.: Lightweight data race
detection for production runs. In: Proceedings of the 26th International
Conference on Compiler Construction (CC 2017). Association for Computing
Machinery, New York, NY, USA, pp. 11–21, 2017.

[BK20] Burzynski, P.; Karagiannis, D.: bee-up – A teaching tool for fundamental
conceptual modelling. Joint Proceedings of Modellierung 2020 Short, Workshop
and Tools & Demo Papers, pp. 217–221, 2020.

[Bl18] Blackshear, S.; Gorogiannis, N.; O'Hearn, P. W.; Sergey, I.: RacerD: compositional
static race detection. In: Proceedings of the ACM on Programming Languages
OOPSLA/2, pp. 1–28, 2018.

[Bo11a] Boehm, H.-J.: How to miscompile programs with “benign” data races. HotPar'11:
Proceedings of the 3rd USENIX conference on Hot topic in parallelism, 2011.

[Bo11b] Boghdady, P.N. et al. Eds.: An enhanced test case generation technique based on
activity diagrams. Cairo, Egypt, 29 November - 1 December 2011. IEEE,
Piscataway, NJ, 2011.

[Bo12a] Boehm, H.-J.: Position paper: Nondeterminism is unavoidable, but data races are
pure evil. In (Black, A. P. et al. Eds.): Proceedings of the 2012 ACM workshop on
Relaxing synchronization for multicore and manycore scalability - RACES '12. ACM
Press, New York, New York, USA, p. 9, 2012.

[Bo12b] Boehm, H.-J.: Position Paper: Nondeterminism is unavoidable, but data races are
pure evil. RACES '12: Proceedings of the 2012 ACM workshop on Relaxing
synchronization for multicore and manycore scalability, p. 9, 2012.

[Bo19] Bo, L.; Jiang, S.; Qian, J.; Wang, R.; Yao, Y.: Performance Evaluation of Data Race
Detection Based on Thread Sharing Analysis With Different Granularities: An
Empirical Study. IEEE Access 7, pp. 73819–73829, 2019.

[Br73] Brinch Hansen, P.: Operating System Principles. Prentice-Hall, Inc., New Jersey,
1973.

[BRJ96] Booch, G.; Rumbaugh, J.; Jacobson, I.: The Unified Modeling Language for Object-
Oriented Development. Unix Review 13/14, 1996.

[Ch09] Chen, Q.; Wang, L.; Yang, Z.; Stoller, S. D.: HAVE: Detecting Atomicity Violations
via Integrated Dynamic and Static Analysis. In (Chechik, M.; Wirsing, M.
Eds.): Fundamental Approaches to Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 425–439, 2009.

[Ch76] Chen, P. P.-S.: The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems 1/1, pp. 9–36, 1976.

[CL10] Chew, L.; Lie, D.: Kivati: Fast Detection and Prevention of Atomicity Violations.
Proceedings of the EuroSys 2010 Conference, Paris, France, April 13-16, 2010.
Association for Computing Machinery, New York, 2010.

References

 165

[CLL07] Chandler, R.; Li, H.; Lam, C. P.: Generating Usage Scenarios Automatically from
UML Activity Diagrams. Technical Report: TR-SERG-06-01, Mount Lawley, 2007.

[Da16] Daian, P.; Guth, D.; Hathhorn, C.; Li, Y.; Pek, E.; Saxena, M.; Şerbănuţă, T. F.; Roşu,
G.: Runtime Verification at Work: A Tutorial. In (Falcone, Y.; Sánchez, C.

Eds.): Runtime Verification. Springer International Publishing, Cham, pp. 46–67,

2016.

[DB03] Drummond, L. M.; Barbosa, V. C.: On reducing the complexity of matrix clocks.
Parallel Computing 7/29, pp. 895–905, 2003.

[Di65a] Dijkstra, E. W.: Cooperating sequential processes. Technical Report EWD-123,
1965.

[Di65b] Dijkstra, E. W.: Solution of a problem in concurrent programming control.
Communications of the ACM 9/8, p. 569, 1965.

[DMM98] Diwan, A.; McKinley, K. S.; Moss, J. E. B.: Type-based alias analysis. ACM SIGPLAN
Notices 5/33, pp. 106–117, 1998.

[Ef12] Effinger-Dean, L.; Lucia, B.; Ceze, L.; Grossman, D.; Boehm, H.-J.: IFRit:
interference-free regions for dynamic data-race detection. In: Proceedings of the
ACM international conference on Object oriented programming systems
languages and applications (OOPSLA '12). Association for Computing Machinery,
New York, NY, USA, 2012.

[EM72] Eisenberg, M. A.; McGuire, M. R.: Further comments on Dijkstra's concurrent
programming control problem. Communications of the ACM 11/15, p. 999, 1972.

[Er10] Erickson, J.; Musuvathi, M.; Burckhardt, S.; Olynyk, K.: Effective Data-Race
Detection for the Kernel, 2010.

[Fa09] Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G.: Statistical power analyses using
G*Power 3.1: tests for correlation and regression analyses. Behavior research
methods 4/41, pp. 1149–1160, 2009.

[FF09] Flanagan, C.; Freund, S. N.: FastTrack: Efficient and Precise Dynamic Race
Detection. ACM SIGPLAN Notices 6/44, pp. 121–133, 2009.

[FF20] Flanagan, C.; Freund, S. N.: The anchor verifier for blocking and non-blocking
concurrent software. Proceedings of the ACM on Programming Languages
OOPSLA/4, pp. 1–29, 2020.

[Fi88] Fidge, C. J.: Timestamps in Message-Passing Systems That Preserve the Partial
Ordering. Australian Computer Science Communications No. 1/Vol. 10, pp. 56–66,
1988.

[Fi91] Fidge, C.: Logical time in distributed computing systems. Computer 8/24, pp. 28–
33, 1991.

[FM82] Fischer, M. J.; Michael, A.: Sacrificing serializability to attain high availability of
data in an unreliable network. In: Proceedings of the 1st ACM SIGACT-SIGMOD

References

 166

symposium on Principles of database systems (PODS '82). Association for
Computing Machinery, New York, NY, USA, 1982.

[Fo10] Fowler, M.: UML distilled. A brief guide to the standard object modeling language.
Addison-Wesley, Boston, MA, 2010.

[FQ03] Flanagan, C.; Qadeer, S.: A type and effect system for atomicity. In: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and
implementation (PLDI '03). Association for Computing Machinery, New York, NY,
USA, 2003.

[Ge19] Genç, K.; Roemer, J.; Xu, Y.; Bond, M. D.: Dependence-aware, unbounded sound
predictive race detection. Proceedings of the ACM on Programming Languages
OOPSLA/3, pp. 1–30, 2019.

[GG21] Guizani, K.; Ghannouchi, S. A.: An approach for selecting a business process
modeling language that best meets the requirements of a modeler. Procedia
Computer Science 181, pp. 843–851, 2021.

[GKM20] Gharat, P. M.; Khedker, U. P.; Mycroft, A.: Generalized Points-to Graphs: A Precise
and Scalable Abstraction for Points-to Analysis. ACM Transactions on
Programming Languages and Systems 2/42, pp. 1–78, 2020.

[GN08] Godefroid, P.; Nagappan, N.: Concurrency at Microsoft – An Exploratory Survey.
Microsoft Research Technical Report MSR-TR-2008-75, 2008.

[HMR14] Huang, J.; Meredith, P. O.; Rosu, G.: Maximal sound predictive race detection with
control flow abstraction. In (O'Boyle, M.; Pingali, K. Eds.): Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, NY, USA, pp. 337–348, 2014.

[Ho72] Holt, R. C.: Some Deadlock Properties of Computer Systems. ACM Computing
Surveys 3/4, pp. 179–196, 1972.

[Ho74] Hoare, C. A. R.: Monitors. Communications of the ACM 10/17, pp. 549–557, 1974.

[HS09] Hammer, C.; Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International
Journal of Information Security 6/8, pp. 399–422, 2009.

[HZZ13] Huang, J.; Zhou, J.; Zhang, C.: Scaling predictive analysis of concurrent programs
by removing trace redundancy. ACM Transactions on Software Engineering and
Methodology 1/22, pp. 1–21, 2013.

[Je82] Jensen, K.: High-Level Petri Nets. Applications and Theory of Petri Nets.
Informatik-Fachberichte 66, pp. 166–180, 1982.

[JT14] Jannesari, A.; Tichy, W. F.: Library-Independent Data Race Detection. IEEE
Transactions on Parallel and Distributed Systems 10/25, pp. 2606–2616, 2014.

[Ka17] Kasikci, B.; Cui, W.; Ge, X.; Niu, B.: Lazy Diagnosis of In-Production Concurrency
Bugs: Proceedings of the 26th Symposium on Operating Systems Principles. ACM,
New York, NY, USA, pp. 582–598, 2017.

References

 167

[KE14] Klaus, A.; Elberzhager, F.: Retrieving the state of the art and of the practice in QA
for data inconsistencies. In (Büren, G. et al. Eds.): MetriKon 2014 - Praxis der
Software-Messung. Tagungsband des DASMA Software Metrik Kongresses ;
MetriKon 2014, 06.-07. November 2014, Stuttgart. Shaker, Aachen, pp. 127–136,
2014.

[Ki07a] Kim, H.; Kang, S.; Baik, J.; Ko, I.: Test Cases Generation from UML Activity
Diagrams: Eighth ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD
2007). IEEE, pp. 556–561, 2007 - 2007.

[Ki07b] Kitchenham, B.; Charters, S.; Budgen, D.; Brereton, P.; Turner, M.; Linkman, S.;
Jorgensen, M.; Mendes, E.; Visaggio, G.: Guidelines for performing Systematic
Literature Reviews in Software Engineering. Version 2.3. EBSE Technial Report.
EBSE-2007-01, 2007.

[Kl12] Klaus, A.: Stakeholder-orientierter Software Test für Geschäftsanwendungen.
Softwaretechnik-Trends 1/32, pp. 8–9, 2012.

[Kl13] Klaus, A.: Analyse und Test konkurrierender Zugriffe auf Daten bei
Geschäftsanwendungen - Konzept zur Evaluierung. In (Büren, G. et al.
Eds.): MetriKon 2013 - Praxis der Software-Messung. Tagungsband des DASMA
Software Metrik Kongresses ; MetriKon 2013, 14.-15. November 2013,
Kaiserslautern. Shaker, Aachen, pp. 313–318, 2013.

[KMV17] Kini, D.; Mathur, U.; Viswanathan, M.: Dynamic race prediction in linear time. In
(Cohen, A.; Vechev, M. Eds.): Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, New York, NY,
USA, pp. 157–170, 2017.

[KNS92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der
Grundlage „Ereignisgesteuerter Prozeßketten (EPK)“. Scheer, A.-W. (Hrsg.):
Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi), Universität des
Saarlandes 89, 1992.

[Ko15] Koutsopoulos, N.; Northover, M.; Felden, T.; Wittiger, M.: Advancing data race
investigation and classification through visualization. Bremen, Germany, 27-28
September 2015. IEEE, Piscataway, NJ, 2015.

[KO20] Kharitonov, D. I.; Odyakova, D. S.: Modelling race conditions in multithreading
programs in terms of Petri nets. IOP Conference Series: Materials Science and
Engineering 734, p. 12030, 2020.

[KS09] Kundu, D.; Samanta, D.: A Novel Approach to Generate Test Cases from UML
Activity Diagrams. The Journal of Object Technology 3/8, p. 65, 2009.

[KZC12] Kasikci, B.; Zamfir, C.; Candea, G.: Data Races vs. Data Race Bugs: Telling the
Difference with Portend. Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, March 3-7, 2012,
London, England, UK. ACM Press, New York N.Y., 2012.

References

 168

[KZC13] Kasikci, B.; Zamfir, C.; Candea, G.: RaceMob: Crowdsourced Data Race Detection.
In (Kaminsky, M.; Dahlin, M. Eds.): Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, New York, NY, USA, pp. 406–
422, 2013.

[KZC15] Kasikci, B.; Zamfir, C.; Candea, G.: Automated Classification of Data Races Under
Both Strong and Weak Memory Models. ACM Transactions on Programming
Languages and Systems 3/37, pp. 1–44, 2015.

[La07] Landes, T.: Tree clocks: an efficient and entirely dynamic logical time
system: Proceedings of the 25th IASTED International Multi-Conference: parallel
and distributed computing and networks, pp. 375–380, 2007.

[La10] Ladani, A. J.: Dynamic Race Detection in Parallel Programs. Dissertation,
Karlsruhe, 2010.

[La74] Lamport, L.: A new solution of Dijkstra's concurrent programming problem.
Communications of the ACM 8/17, pp. 453–455, 1974.

[La78] Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 7/21, pp. 558–565, 1978.

[La79] Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers 9/C-28, pp. 690–691,
1979.

[LD19] Lidbury, C.; Donaldson, A. F.: Sparse record and replay with controlled scheduling.
In (McKinley, K. S.; Fisher, K. Eds.): Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, New
York, NY, USA, pp. 576–593, 2019.

[Li19] Li, G.; Lu, S.; Musuvathi, M.; Nath, S.; Padhye, R.: Efficient scalable thread-safety-
violation detection. In (Brecht, T.; Williamson, C. Eds.): Proceedings of the 27th
ACM Symposium on Operating Systems Principles. ACM, New York, NY, USA, pp.
162–180, 2019.

[Lo17] Lopez, C. T.; Marr, S.; Mössenböck, H.; Boix, E. G.: A Study of Concurrency Bugs
and Advanced Development Support for Actor-based Programs. In: Ricci A.; Haller
P. (eds) Programming with Actors. Lecture Notes in Computer Science, vol 10789.
Springer, Cham. 2017.

[LTN19] Lima, L.; Tavares, A.; Nogueira, S. C.: A framework for verifying deadlock and
nondeterminism in UML activity diagrams based on CSP, 2019.

[Lu08] Lu, S.; Park, S.; Seo, E.; Zhou, Y.: Learning from Mistakes —A Comprehensive
Study on Real World Concurrency Bug Characteristics. Thirteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, March 1-5, 2008, Seattle, Washington, USA. Association for Computing
Machinery, New York N.Y., 2008.

References

 169

[LWL08] Lei, B.; Wang, L.; Li, X.: UML Activity Diagram Based Testing of Java Concurrent
Programs for Data Race and Inconsistency: 2008 International Conference on
Software Testing, Verification, and Validation. IEEE, pp. 200–209, 2008 - 2008.

[Ma04] Manson, J.: The Java Memory Model. Dissertation, Maryland, 2004.

[Ma88] Mattern, F.: Virtual Time and Global States of Distributed Systems. In (Corsnard
M. et al. Ed.): Proceedings of the International Workshop on Parallel and
Distributed Algorithms. Elsevier Science Publishers B. V., pp. 120–134, 1988.

[Me15] Melo, S. M.; Souza, S. R. S.; Silva, R. A.; Souza, P. S. L.: Concurrent software testing
in practice: a catalog of tools. In (Vos, T.; Eldh, S.; Prasetya, W. Eds.): Proceedings
of the 6th International Workshop on Automating Test Case Design, Selection and
Evaluation. ACM, New York, NY, USA, pp. 31–40, 2015.

[Mi08] Minkel, J. R.: The 2003 Northeast Blackout--Five Years Later. Scientific American,
2008.

[MKV18] Mathur, U.; Kini, D.; Viswanathan, M.: What Happens - After the First Race?
Enhancing the Predictive Power of Happens - Before Based Dynamic Race
Detection. In: Proceedings of the ACM on Programming Languages, Volume 2,
Issue OOPSLA. ACM, New York, NY, USA, 2018.

[MMN09] Marino, D.; Musuvathi, M.; Narayanasamy, S.: LiteRace: Effective Sampling for
Lightweight Data-Race Detection. ACM, New York, NY, 2009.

[MPV20] Mathur, U.; Pavlogiannis, A.; Viswanathan, M.: The Complexity of Dynamic Data
Race Prediction. In (Hermanns, H. et al. Eds.): Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. ACM, New York, NY, USA,
pp. 713–727, 2020.

[Na07] Narayanasamy, S.; Wang, Z.; Tigani, J.; Edwards, A.; Calder, B.: Automatically
classifying benign and harmful data races using replay analysis. ACM, New York,
NY, 2007.

[NA07] Naik, M.; Aiken, A.: Conditional must not aliasing for static race detection. In:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL '07). Association for Computing Machinery,
New York, NY, USA, 2007.

[NM92] Netzer, R. H. B.; Miller, B. P.: What are race conditions? ACM Letters on
Programming Languages and Systems 1/1, pp. 74–88, 1992.

[No21a] No author mentioned: G * Power 3.1 manual.
https://www.psychologie.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-
Naturwissenschaftliche_Fakultaet/Psychologie/AAP/gpower/GPowerManual.pdf,
accessed 14 Nov 2021.

[No21b] No author mentioned: Apache Bug Database.
https://bz.apache.org/bugzilla/query.cgi, accessed 14 Nov 2021.

[NZ98] Nüttgens, M.; Zimmermann, V.: Geschäftsprozeßmodellierung mit der
objektorientierten Ereignisgesteuerten Prozeßkette (oEPK). In (Maicher, M.;

References

 170

Scheruhn, H.-J. Eds.): Informationsmodellierung. Deutscher Universitätsverlag,
Wiesbaden, pp. 23–35, 1998.

[O’05] O’Callahan, R.; Jones, C.; Froyd, N.; Huey, K.; Noll, A.; Partush, N.: Engineering
Record And Replay For Deployability. USENIX Association, Berkeley, Calif., 2005.

[OA07] OASIS WS-BPEL Technical Committee: Web Services Business Process Execution
Language, 2007.

[OGH20] Oortwijn, W.; Gurov, D.; Huisman, M.: An Abstraction Technique for Verifying
Shared-Memory Concurrency. Applied Sciences 11/10, p. 3928, 2020.

[OM08] Otto, F.; Moschny, T.: Finding synchronization defects in java
programs: Proceedings of the International Conference on Software Engineering
& co-located workshops Leipzig, Germany, May 10 - 18, 2008. ACM, New York,
NY, p. 41, 2008.

[OM13] OMG: Business Process Model and Notation (BPMN), Version 2.0.2, 2013.

[OM17] OMG: Unified Modeling Language, v2.5.1, 2017.

[Pa19a] Pavlogiannis, A.: Fast, Sound and Effectively Complete Dynamic Race Prediction.
In: Proceedings of the ACM on Programming Languages, Volume 4, Issue POPL.
Association for Computing Machinery, New York, NY, USA, 2019.

[Pa19b] Pande, M.: Visual Analytics Tool for Java_Virtual Machine Execution Traces.
Master Thesis, Stockholm, 2019.

[Pa83] Parker, D. S.; Popek, G. J.; Rudisin, G.; Stoughton, A.; Walker, B. J.; Walton, E.;
Chow, J. M.; Edwards, D.; Kiser, S.; Kline, C.: Detection of Mutual Inconsistency in
Distributed Systems. IEEE Transactions on Software Engineering 3/SE-9, pp. 240–
247, 1983.

[Pe62] Petri, C. A.: Kommunikation mit Automaten. Dissertation, Darmstadt, 1962.

[Pe81] Peterson, G. L.: Myths about the mutual exclusion problem. Information
Processing Letters 3/12, pp. 115–116, 1981.

[PG01] Praun, C. von; Gross, T. R.: Object race detection. ACM SIGPLAN Notices 11/36,
pp. 70–82, 2001.

[PG08] Patil, R. V.; George, B.: Tools And Techniques to Identify Concurrency Issues.
MSDN Magazine 2008, 2008.

[PLZ09] Park, S.; Lu, S.; Zhou, Y.: CTrigger: Exposing Atomicity Violation Bugs from Their
Hiding Places. In: Proceedings of the 14th international conference on
Architectural support for programming languages and operating systems
(ASPLOS XIV). Association for Computing Machinery, New York, NY, USA, 2009.

[PMS20] Pereira, J. C.; Machado, N.; Sousa Pinto, J.: Testing for Race Conditions in
Distributed Systems via SMT Solving. In (Ahrendt, W.; Wehrheim, H. Eds.): Tests
and Proofs. Springer International Publishing, Cham, pp. 122–140, 2020.

References

 171

[PS08] Park, C.-S.; Sen, K.: Randomized active atomicity violation detection in concurrent
programs. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering (SIGSOFT '08/FSE-16). Association for
Computing Machinery, New York, NY, USA,2008.

[Re12] Reuters: Spike in deaths blamed on 2003 New York blackout. Reuters, 2012.

[RGB18] Roemer, J.; Genç, K.; Bond, M. D.: High-coverage, unbounded sound predictive
race detection. In (Foster, J. S.; Grossman, D. Eds.): Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
ACM, New York, NY, USA, pp. 374–389, 2018.

[RGB20] Roemer, J.; Genç, K.; Bond, M. D.: SmartTrack: efficient predictive race detection.
In (Donaldson, A. F.; Torlak, E. Eds.): Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, New
York, NY, USA, pp. 747–762, 2020.

[RH15] Rajagopalan, A. K.; Huang, J.: RDIT: race detection from incomplete traces. In (Di
Nitto, E.; Harman, M.; Heymans, P. Eds.): Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, New York, NY, USA, pp.
914–917, 2015.

[Ro19] Roemer, J.: Practical High-Coverage Sound Predictive Race Detection.
Dissertation, Ohio, 2019.

[RVS13] Raychev, V.; Vechev, M.; Sridharan, M.: Effective race detection for event-driven
programs. In (Hosking, A.; Eugster, P.; Lopes, C. V. Eds.): Proceedings of the 2013
ACM SIGPLAN international conference on Object oriented programming
systems languages & applications. ACM, New York, NY, USA, pp. 151–166, 2013.

[Sa09] Sawilowsky, S. S.: New Effect Size Rules of Thumb. Journal of Modern Applied
Statistical Methods 2/8, pp. 597–599, 2009.

[Sa11] Said, M.; Wang, C.; Yang, Z.; Sakallah, K.: Generating Data Race Witnesses by an
SMT-Based Analysis: NASA Formal Methods - Third International Symposium,
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, pp. 313–327, 2011.

[Sa97] Savage, S.; Burrows, M.; Nelson, G.; Sobalvarro, P.; Anderson, T.: Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions on
Computer Systems 4/15, pp. 391–411, 1997.

[SAB19] Späth, J.; Ali, K.; Bodden, E.: Context-, flow-, and field-sensitive data-flow analysis
using synchronized Pushdown systems. Proceedings of the ACM on Programming
Languages POPL/3, pp. 1–29, 2019.

[Sc02] Scheer, A.-W.: ARIS - vom Geschäftsprozess zum Anwendungssystem. Springer,
Berlin, 2002.

[Sc21] Schäffer, E.; Stiehl, V.; Schwab, P. K.; Mayr, A.; Lierhammer, J.; Franke, J.: Process-
Driven Approach within the Engineering Domain by Combining Business Process
Model and Notation (BPMN) with Process Engines. Procedia CIRP 96, pp. 207–212,
2021.

References

 172

[SCR08] Serbănută, T. F.; Chen, F.; Rosu, G.: Maximal Causal Models for Multithreaded
Systems. Technical Report UIUCDCS-R-2008-3017, 2008.

[Se08] Sen, K.: Race directed random testing of concurrent programs. ACM, New York,
NY, 2008.

[SF07] Schattkowsky, T.; Förster, A.: On the Pitfalls of UML 2 Activity Modeling.
International Workshop on Modeling in Software Engineering (MISE'07: ICSE
Workshop 2007), p. 8, 2007.

[SH20] Schnoor, H.; Hasselbring, W.: Comparing Static and Dynamic Weighted Software
Coupling Metrics. Computers 2/9, p. 24, 2020.

[SI09] Serebryany, K.; Iskhodzhanov, T.: ThreadSanitizer – data race detection in
practice. In: Proceedings of the Workshop on Binary Instrumentation and
Applications (WBIA '09). Association for Computing Machinery, New York, NY,
USA, 2009.

[SK18] Smaragdakis, Y.; Kastrinis, G. Eds.: Defensive Points-To Analysis: Effective
Soundness via Laziness. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
GmbH, Wadern/Saarbruecken, Germany, 2018.

[SK20] Sophocleous, R.; Kapitsaki, G. M.: Examining the Current State of System Testing
Methodologies in Quality Assurance. In (Stray, V. et al. Eds.): Agile Processes in
Software Engineering and Extreme Programming. Springer International
Publishing, Cham, pp. 240–249, 2020.

[SM08] Sapna, P. G.; Mohanty, H.: Automated Scenario Generation Based on UML
Activity Diagrams: 2008 International Conference on Information Technology.
IEEE, pp. 209–214, 2008 - 2008.

[Sm12] Smaragdakis, Y.; Evans, J.; Sadowski, C.; Yi, J.; Flanagan, C.: Sound predictive race
detection in polynomial time. POPL'12 ; January 25-27, 2012, Philadelphia, PA,
USA. ACM, New York, NY, 2012.

[Sp16] Späth, J. et al. Eds.: Boomerang: Demand-Driven Flow- and Context-Sensitive
Pointer Analysis for Java. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
GmbH, Wadern/Saarbruecken, Germany, 2016.

[Sp19] Späth, J.: Synchronized Pushdown Systems for Pointer and Data-Flow Analysis.
Dissertation, Paderborn, 2019.

[St18] Stallings, W.: Operating systems. Internals and design principles. Pearson, Harlow,
Essex, 2018.

[St20] Striewe, M.; Houy, C.; Rehse, J.-R.; Ullrich, M.; Fettke, P.; Schaper, N.; Oberweis,
A.: Towards an Automated Assessment of Graphical (Business Process) Modelling
Competences: A Research Agenda. Lecture Notes in Informatics (LNI), pp. 665–
670, 2020.

[St96] Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages

References

 173

(POPL '96). Association for Computing Machinery, New York, NY, USA, 32–41. pp.
32–41, 1996.

[Su08] Sun, C.: A Transformation-Based Approach to Generating Scenario-Oriented Test
Cases from UML Activity Diagrams for Concurrent Applications: 2008 32nd
Annual IEEE International Computer Software and Applications Conference. IEEE,
pp. 160–167, 2008 - 2008.

[Su15] Sun, C.; Zhao, Y.; Pan, L.; He, X.; Towey, D.: A transformation-based approach to
testing concurrent programs using UML activity diagrams. Software: Practice and
Experience 4/46, pp. 551–576, 2015.

[Sz88] Szymanski, B. K.: A simple solution to Lamport's concurrent programming
problem with linear wait. In (Lenfant, J. Ed.): Proceedings of the 2nd international
conference on Supercomputing - ICS '88. ACM Press, New York, New York, USA,
pp. 621–626, 1988.

[SZL09] Sun, C.; Zhang, B.; Li, J.: TSGen: A UML Activity Diagram-Based Test Scenario
Generation Tool: 2009 International Conference on Computational Science and
Engineering. IEEE, pp. 853–858, 2009 - 2009.

[Tr14] Trümper, J.: Visualization techniques for the analysis of software behavior and
related structures. Dissertation, Potsdam, 2014.

[VA14] Verma, V.; Arora, V.: A novel approach for automatic test sequence generation for
java fork/join from activity diagram. IEEE, Piscataway, NJ, 2014.

[Va20] Vassallo, C.; Panichella, S.; Palomba, F.; Proksch, S.; Gall, H. C.; Zaidman, A.: How
developers engage with static analysis tools in different contexts. Empirical
Software Engineering 2/25, pp. 1419–1457, 2020.

[va98] van der AALST, W. M. P.: THE APPLICATION OF PETRI NETS TO WORKFLOW
MANAGEMENT. Journal of Circuits, Systems and Computers 01/08, pp. 21–66,
1998.

[vH05] van der Aalst, W.; Hofstede, A. ter: YAWL: yet another workflow language.
Information Systems 4/30, pp. 245–275, 2005.

[Wa20] Walker, A.; Coffey, M.; Tisnovsky, P.; Cerny, T.: On Limitations of Modern Static
Analysis Tools. In (Kim, K. J.; Kim, H.-Y. Eds.): Information Science and
Applications. Springer Singapore, Singapore, pp. 577–586, 2020.

[Wi08] Wimmel, H.: Entscheidbarkeit bei Petri Netzen. Überblick und Kompendium.
Springer, Berlin, Heidelberg, 2008.

[WLW17] Wu, Z.; Lu, K.; Wang, X.: Surveying concurrency bug detectors based on types of
detected bugs. Science China Information Sciences 3/60, 2017.

[WS06] Wang, L.; Stoller, S. D.: Runtime analysis of atomicity for multithreaded programs.
IEEE Transactions on Software Engineering 2/32, pp. 93–110, 2006.

References

 174

[XLL05] Xu, D.; Li, H.; Lam, C. P.: Using adaptive agents to automatically generate test
scenarios from the UML activity diagrams. Proceedings 15-17 December 2005,
Taipei, Taiwan. IEEE Computer Society, Los Alamitos Calif., 2005.

[Xu08] Xu, D.; Liu, W.; Liu, Z.; Philbert, N.: Tool Support to Deriving Test Scenarios from
UML Activity Diagrams: 2008 International Symposium on Information Science
and Engineering. IEEE, pp. 73–76, 2008 - 2008.

[Xu20] Xu, M.; Kashyap, S.; Zhao, H.; Kim, T.: Krace: Data Race Fuzzing for Kernel File
Systems: 2020 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 1643–
1660, 2020.

[XZL21] Xiang, D.; Zhao, F.; Liu, Y.: DICER 2.0: A New Model Checker for Data-Flow Errors
of Concurrent Software Systems. Mathematics 9/9, p. 966, 2021.

[YRC05] Yu, Y.; Rodeheffer, T.; Chen, W.: RaceTrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. ACM, New York, NY, 2005.

[Zh11] Zhang, J.; Xiong, W.; Liu, Y.; Park, S.; Zhou, Y.; Ma, Z.: ATDetector: improving the
accuracy of a commercial data race detector by identifying address transfer. ACM,
New York, NY, 2011.

[Zi16] Zimmer, G.: Reduction of UML 2 Activity Diagrams to a Corresponding
Representation using a Limited Subset of Elements for Concurrency Analysis.
Master Thesis, Kaiserslautern, 2016.

[ZSL10] Zhang, W.; Sun, C.; Lu, S.: ConMem: Detecting Severe Concurrency Bugs through
an Effect-Oriented Approach. Fifteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, March 13-17, 2010,
Pittsburgh, PA, USA. ACM Press, New York N.Y., 2010.

Appendix

Appendix

Appendix A: Task List for the Controlled Experiment – Group 1

 176

Appendix A: Task List for the Controlled Experiment – Group 1

Appendix A: Task List for the Controlled Experiment – Group 1

 177

Appendix A: Task List for the Controlled Experiment – Group 1

 178

Appendix A: Task List for the Controlled Experiment – Group 1

 179

Appendix A: Task List for the Controlled Experiment – Group 1

 180

Appendix A: Task List for the Controlled Experiment – Group 1

 181

Appendix A: Task List for the Controlled Experiment – Group 1

 182

Appendix B: Task List for the Controlled Experiment – Group 2

 183

Appendix B: Task List for the Controlled Experiment – Group 2

Appendix B: Task List for the Controlled Experiment – Group 2

 184

Appendix B: Task List for the Controlled Experiment – Group 2

 185

Appendix B: Task List for the Controlled Experiment – Group 2

 186

Appendix B: Task List for the Controlled Experiment – Group 2

 187

Appendix B: Task List for the Controlled Experiment – Group 2

 188

Appendix B: Task List for the Controlled Experiment – Group 2

 189

Appendix C: Questionnaire for the Controlled Experiment

 190

Appendix C: Questionnaire for the Controlled Experiment

Lebenslauf

 191

Lebenslauf

Name Alexander Klaus

Schulbildung 1986-1990 Carl-Bosch-Grundschule, Frankenthal (Pfalz)
 1990-1999 Albert-Einstein-Gymnasium, Frankenthal (Pfalz)
 Abschluss: Abitur

Studium 2000-2007 Studium der Wirtschaftsinformatik

Universität Mannheim
Abschluss: Diplom

Berufstätigkeit 2007-2016 Wissenschaftlicher Mitarbeiter

Fraunhofer Institut für Experimentelles Software
Engineering, Kaiserslautern

 2016-heute Angestellter
EXCO GmbH, Frankenthal (Pfalz)

Maxdorf, den 08. April 2022

